WorldWideScience

Sample records for machine wind generation

  1. An improved excitation control technique of three-phase induction machine operating as dual winding generator for micro-wind domestic application

    International Nuclear Information System (INIS)

    Chatterjee, Arunava; Chatterjee, Debashis

    2015-01-01

    Highlights: • A three-phase induction machine working as single phase generator is studied. • The generator is assisted by an inverter and photovoltaic panel for excitation. • Proposed control involves operating the machine as balanced two-phase generator. • Torque pulsations associated with unbalanced phase currents are minimized. • The generator can be used for grid-isolated micro-wind power generation. - Abstract: Single-phase generation schemes are widely utilized for harnessing wind power in remote and grid secluded applications. This paper presents a novel control methodology for a three-phase induction machine working as a single-phase dual winding induction generator. Three-phase induction machines providing single-phase output with proper control strategy can be beneficial in grid secluded micro-wind energy conversion systems compared to single-phase induction generators. Three-phase induction machines operating in single-phase mode are mostly excited asymmetrically to provide single-phase power leading to unbalanced current flow in the stator windings causing heating and insulation breakdown. The asymmetrical excitation also initiates torque pulsations which results in additional stress and vibration at the machine shaft and bearings degrading the machine performance. The proposed control is chiefly aimed to minimize this unbalance. The variable excitation required for the proposed generator is provided through a single-phase inverter with photovoltaic panels. The suitability for such a generator along with its control is tested with appropriate simulations and experimental results. The induction generator with the proposed control strategy is expected to be useful in remote and grid isolated households as a standalone source of single-phase electrical power

  2. Wind generator based on cascade connection of two asynchronized synchronous machines

    International Nuclear Information System (INIS)

    Dzhagarov, N.; Dzhagarova, Yu.

    2000-01-01

    A model of a wind generator with two asynchronized synchronous machines presented and different regimes are investigated. The analysis shows that the suggested scheme of a brushless generator works and has more advantages (reliability, easy for operation) in comparison with the known ones

  3. Probabilistic forecasting of wind power generation using extreme learning machine

    DEFF Research Database (Denmark)

    Wan, Can; Xu, Zhao; Pinson, Pierre

    2014-01-01

    an extreme learning machine (ELM)-based probabilistic forecasting method for wind power generation. To account for the uncertainties in the forecasting results, several bootstrapmethods have been compared for modeling the regression uncertainty, based on which the pairs bootstrap method is identified......Accurate and reliable forecast of wind power is essential to power system operation and control. However, due to the nonstationarity of wind power series, traditional point forecasting can hardly be accurate, leading to increased uncertainties and risks for system operation. This paper proposes...... with the best performance. Consequently, a new method for prediction intervals formulation based on theELMand the pairs bootstrap is developed.Wind power forecasting has been conducted in different seasons using the proposed approach with the historical wind power time series as the inputs alone. The results...

  4. Generation and Validation of Spatial Distribution of Hourly Wind Speed Time-Series using Machine Learning

    International Nuclear Information System (INIS)

    Veronesi, F; Grassi, S

    2016-01-01

    Wind resource assessment is a key aspect of wind farm planning since it allows to estimate the long term electricity production. Moreover, wind speed time-series at high resolution are helpful to estimate the temporal changes of the electricity generation and indispensable to design stand-alone systems, which are affected by the mismatch of supply and demand. In this work, we present a new generalized statistical methodology to generate the spatial distribution of wind speed time-series, using Switzerland as a case study. This research is based upon a machine learning model and demonstrates that statistical wind resource assessment can successfully be used for estimating wind speed time-series. In fact, this method is able to obtain reliable wind speed estimates and propagate all the sources of uncertainty (from the measurements to the mapping process) in an efficient way, i.e. minimizing computational time and load. This allows not only an accurate estimation, but the creation of precise confidence intervals to map the stochasticity of the wind resource for a particular site. The validation shows that machine learning can minimize the bias of the wind speed hourly estimates. Moreover, for each mapped location this method delivers not only the mean wind speed, but also its confidence interval, which are crucial data for planners. (paper)

  5. Generation and Validation of Spatial Distribution of Hourly Wind Speed Time-Series using Machine Learning

    Science.gov (United States)

    Veronesi, F.; Grassi, S.

    2016-09-01

    Wind resource assessment is a key aspect of wind farm planning since it allows to estimate the long term electricity production. Moreover, wind speed time-series at high resolution are helpful to estimate the temporal changes of the electricity generation and indispensable to design stand-alone systems, which are affected by the mismatch of supply and demand. In this work, we present a new generalized statistical methodology to generate the spatial distribution of wind speed time-series, using Switzerland as a case study. This research is based upon a machine learning model and demonstrates that statistical wind resource assessment can successfully be used for estimating wind speed time-series. In fact, this method is able to obtain reliable wind speed estimates and propagate all the sources of uncertainty (from the measurements to the mapping process) in an efficient way, i.e. minimizing computational time and load. This allows not only an accurate estimation, but the creation of precise confidence intervals to map the stochasticity of the wind resource for a particular site. The validation shows that machine learning can minimize the bias of the wind speed hourly estimates. Moreover, for each mapped location this method delivers not only the mean wind speed, but also its confidence interval, which are crucial data for planners.

  6. Directly driven generators for wind power applications

    Energy Technology Data Exchange (ETDEWEB)

    Lampola, P [Helsinki Univ. of Technology, Espoo (Finland). Lab. of Electromechanics

    1996-12-31

    The article deals with an analysis of directly driven, low-speed wind generators. The generators studied were a permanent-magnet synchronous machine and an asynchronous machine. The machines were compared with a typical generator of a wind power plant. The electromagnetic optimization of the machines was done by the finite element method. The rated power of the generators was 500 kW and the rotational speed was 40 rpm. (author)

  7. Directly driven generators for wind power applications

    Energy Technology Data Exchange (ETDEWEB)

    Lampola, P. [Helsinki Univ. of Technology, Espoo (Finland). Lab. of Electromechanics

    1995-12-31

    The article deals with an analysis of directly driven, low-speed wind generators. The generators studied were a permanent-magnet synchronous machine and an asynchronous machine. The machines were compared with a typical generator of a wind power plant. The electromagnetic optimization of the machines was done by the finite element method. The rated power of the generators was 500 kW and the rotational speed was 40 rpm. (author)

  8. Permanent magnet machines with air gap windings and integrated teeth windings

    Energy Technology Data Exchange (ETDEWEB)

    Alatalo, M [Chalmers Univ. of Technology, Goeteborg (Sweden). School of Electrical and Computer Engineering

    1996-06-01

    The Thesis deals with axial and radial flux permanent magnet machines with air gap windings and an integrated teeth winding. The aim is to develop a machine that produces a high torque per unit volume with as low losses as possible. The hypothesis is that an advanced three-phase winding, magnetized by a permanent magnet rotor should be better than other machine topologies. The finite element method is used to find favourable dimensions of the slotless winding, the integrated teeth winding and the permanent magnet rotor. Three machines were built and tested in order to verify calculations. It can be concluded that the analysis method shows good agreement with the calculated and the measured values of induced voltage and torque. The experiments showed that the slotless machine with NdFeB-magnets performs approximately like the slotted machine. A theoretical comparison of axial flux topology to radial flux topology showed that the torque production of the inner rotor radial flux machine is superior to that of the axial flux machine. An integrated teeth winding based on iron powder teeth glued to the winding was studied. The force density of a pole with integrated teeth is around three times the force density of a slotless pole. A direct drive wind power generator of 6.4 kW with integrated teeth can have the same power losses and magnet weight as a transversal flux machine. Compared to a standard induction machine the integrated teeth machine had approximately 2.5 times the power capacity of the induction machine with the same power losses and outer volume. 39 refs

  9. MACHINE-TRANSFORMER UNITS FOR WIND TURBINES

    Directory of Open Access Journals (Sweden)

    V.I. Panchenko

    2016-03-01

    Full Text Available Background. Electric generators of wind turbines must meet the following requirements: they must be multi-pole; to have a minimum size and weight; to be non-contact, but controlled; to ensure the maximum possible output voltage when working on the power supply system. Multipole and contactless are relatively simply realized in the synchronous generator with permanent magnet excitation and synchronous inductor generator with electromagnetic excitation; moreover the first one has a disadvantage that there is no possibility to control the output voltage, and the second one has a low magnetic leakage coefficient with the appropriate consequences. Purpose. To compare machine dimensions and weight of the transformer unit with induction generators and is an opportunity to prove their application for systems with low RMS-growth rotation. Methodology. A new design of the electric inductor machine called in technical literature as machine-transformer unit (MTU is presented. A ratio for estimated capacity determination of such units is obtained. Results. In a specific example it is shown that estimated power of MTU may exceed the same one for traditional synchronous machines at the same dimensions. The MTU design allows placement of stator coil at some distance from the rotating parts of the machine, namely, in a closed container filled with insulating liquid. This will increase capacity by means of more efficient cooling of coil, as well as to increase the output voltage of the MTU as a generator to a level of 35 kV or more. The recommendations on the certain parameters selection of the MTU stator winding are presented. The formulas for copper cost calculating on the MTU field winding and synchronous salient-pole generator are developed. In a specific example it is shown that such costs in synchronous generator exceed 2.5 times the similar ones in the MTU.

  10. Generation of electricity by wind power

    Energy Technology Data Exchange (ETDEWEB)

    Golding, E W

    1976-01-01

    Information on wind power is presented concerning the history of windmills; estimation of the energy obtainable from the wind; wind characteristics and distribution; wind power sites; wind surveys; wind flow over hills; measurement of wind velocity; wind structure and its determination; wind data and energy estimation; testing of wind driven ac generators; wind-driven machines; propeller type windmills; plants for isolated premises and small communities; economy of wind power generation; construction costs for large wind-driven generators; relationship of wind power to other power sources; research and development; and international cooperation.

  11. Design of large permanent magnetized synchronous electric machines: Low speed, high torque machines - generator for direct driven wind turbine - motor for rim driven thruster

    Energy Technology Data Exchange (ETDEWEB)

    Kroevel, Oeystein

    2011-02-15

    This work presents the design of two prototype permanent magnetized electric machines for two different applications where large permanent magnet machines might be used. Existing technology have been used as the fundament for new design and adapted to new applications, contributing, hopefully, to the development of better and more environmental friendly energy conversion. The first application presented is represented with a prototype made in cooperation with the industry in which a PM-motor is integrated into a propeller unit. Both because of the industrial connection, and the integration between the PM-motor and the propeller, the choices made for the PM-motor are conservative trying to reduce the risk. The direct rim driven thruster prototype includes a surface mounted radial flux permanent magnet machine (SM RFPM) with fractional slot winding with a q around 1. Other engineering features were introduced to make the integration of propeller and motor feasible, but without the PM-machine the thruster would not have reached the performance demand. An important part of the project was to show that the SM RFPM enables this solution, providing high performance with a large air gap. The prototype has been tested in sea, under harsh conditions, and even though the magnets have been exposed directly to sea water and been visible corroded, the electric motor still performs well within the specifications. The second application is represented with a prototype PM-generator for wind turbines. This is an example of a new, very low speed high torque machine. The generator is built to test phenomena regarding concentrated coils, and as opposed to the first application, being a pure academic university project, its success is not connected to its performance, but with the prototype's ability to expose the phenomena in question. The prototype, or laboratory model, of the generator for direct driven wind turbines features SM RFPM with concentrated coils (CC). An opportunity

  12. Variable geometry Darrieus wind machine

    Science.gov (United States)

    Pytlinski, J. T.; Serrano, D.

    1983-08-01

    A variable geometry Darrieus wind machine is proposed. The lower attachment of the blades to the rotor can move freely up and down the axle allowing the blades of change shape during rotation. Experimental data for a 17 m. diameter Darrieus rotor and a theoretical model for multiple streamtube performance prediction were used to develop a computer simulation program for studying parameters that affect the machine's performance. This new variable geometry concept is described and interrelated with multiple streamtube theory through aerodynamic parameters. The computer simulation study shows that governor behavior of a Darrieus turbine can not be attained by a standard turbine operating within normally occurring rotational velocity limits. A second generation variable geometry Darrieus wind turbine which uses a telescopic blade is proposed as a potential improvement on the studied concept.

  13. Gearless wind power generator

    Energy Technology Data Exchange (ETDEWEB)

    Soederlund, L.; Ridanpaeae, P.; Vihriaelae, H.; Peraelae, R. [Tampere Univ. of Technology (Finland). Lab. of Electricity and Magnetism

    1998-12-31

    During the wind power generator project a design algorithm for a gearless permanent magnet generator with an axially orientated magnetic flux was developed and a 10 kW model machine was constructed. Utilising the test results a variable wind speed system of 100 kW was designed that incorporates a permanent magnet generator, a frequency converter and a fuzzy controller. This system produces about 5-15% more energy than existing types and stresses to the blades are minimised. The type of generator designed in the project represents in general a gearless solution for slow-speed electrical drives. (orig.)

  14. Development of superconducting wind turbine generators

    DEFF Research Database (Denmark)

    Jensen, Bogi Bech; Mijatovic, Nenad; Abrahamsen, Asger Bech

    2013-01-01

    In this paper, the commercial activities in the field of superconducting machines, particularly superconducting wind turbine generators, are reviewed and presented. Superconducting generators have the potential to provide a compact and light weight drive train at high torques and slow rotational...... speeds, because high magnetic fields can be produced by coils with very little loss. Three different superconducting wind turbine generator topologies have been proposed by three different companies. One is based on low temperature superconductors; one is based on high temperature superconductors......; and one is a fully superconducting generator based on MgB2. It is concluded that there is large commercial interest in superconducting machines, with an increasing patenting activity. Such generators are, however, not without their challenges. The superconductors have to be cooled down to somewhere...

  15. Development of Superconducting Wind Turbine Generators

    DEFF Research Database (Denmark)

    Jensen, Bogi Bech; Mijatovic, Nenad; Abrahamsen, Asger Bech

    2012-01-01

    In this paper the commercial activities in the field of superconducting machines, particularly superconducting wind turbine generators, are reviewed and presented. Superconducting generators have the potential to provide a compact and light weight drive train at high torques and slow rotational...... speeds, because high magnetic fields can be produced by coils with very little loss. Three different superconducting wind turbine generator topologies have been proposed by three different companies. One is based on low temperature superconductors (LTS); one is based on high temperature superconductors...... (HTS); and one is a fully superconducting generator based on MgB2. It is concluded that there is large commercial interest in superconducting machines, with an increasing patenting activity. Such generators are however not without their challenges. The superconductors have to be cooled down...

  16. Comparison of 10 MW superconducting generator topologies for direct-drive wind turbines

    DEFF Research Database (Denmark)

    Liu, Dong; Polinder, Henk; Abrahamsen, Asger Bech

    2015-01-01

    Large wind turbines of 10 MW or higher power levels are desirable for reducing the cost of energy of offshore wind power conversion. Conventional wind generator systems will be costly if scaled up to 10 MW due to rather large size and weight. Direct drive superconducting generators have been...... magnetic field excitation allows for lightweight non-magnetic composite materials for machine cores instead of iron. A topology would probably not be a good option for an offshore wind turbine generator if it demands a far more expensive active material cost than others, even if it has other advantages...... proposed to address the problem with generator size, because the electrical machines with superconducting windings are capable of achieving a higher torque density of an electrical machine. However, the topology to be adopted for superconducting wind generators has not yet been settled, since the high...

  17. Superconducting Wind Turbine Generators

    Directory of Open Access Journals (Sweden)

    Yunying Pan

    2016-08-01

    Full Text Available Wind energy is well known as a renewable energy because its clean and less polluted characteristic, which is the foundation of development modern wind electricity. To find more efficient wind turbine is the focus of scientists around the world. Compared from conventional wind turbines, superconducting wind turbine generators have advantages at zero resistance, smaller size and lighter weight. Superconducting wind turbine will inevitably become the main trends in this area. This paper intends to introduce the basic concept and principle of superconductivity, and compare form traditional wind turbine to obtain superiority, then to summary three proposed machine concept.While superconductivity have difficulty  in modern technology and we also have proposed some challenges in achieving superconducting wind turbine finally.

  18. Direct Drive Synchronous Machine Models for Stability Assessment of Wind Farms

    Energy Technology Data Exchange (ETDEWEB)

    Poeller, Markus; Achilles, Sebastian [DIgSILENT GmbH, Gomaringen (Germany)

    2003-11-01

    The increasing size of wind farms requires power system stability analysis including dynamic wind generator models. For turbines above 1MW doubly-fed induction machines are the most widely used concept. However, especially in Germany, direct-drive wind generators based on converter-driven synchronous generator concepts have reached considerable market penetration. This paper presents converter driven synchronous generator models of various order that can be used for simulating transients and dynamics in a very wide time range.

  19. Concentrated Windings in Compact Permanent Magnet Synchronous Generators: Managing Efficiency

    Directory of Open Access Journals (Sweden)

    Olivier Barré

    2016-01-01

    Full Text Available In electric power generation, customers want generators with high efficiency. Nowadays, modern turbo-generators have efficiencies greater than 98%. Although this amount should not be obtained for all kind of machines, efficiency will remain one of the main parameters for customer choice. Efficiency is also linked to the life of the machine: the higher the efficiency is, the longer the machine’s lifetime. During the past decade, new forms of energy production have appeared and generators have been developed to fit well into this market. For example, wind generators evolved towards permanent magnet generators having high polarity and running at low speed. Nevertheless, their structure is not fixed. An industrial company has built a prototype of such a generator which uses fractional-slot concentrated-windings (FSCW. This kind of winding is not the structure used by default in such electrical machines. Another field of interest is in autonomous generators which can be used on boats. Even if everyone has in mind large merchant ships, we must not forget smaller ships, such as fishing boats and short-range cruise ships, which spend the most of their time near the coast. This kind of ship does nothave large areas for installing the electric generation or the electric propulsion. It is the reason why, in this article, we focus on the efficiency of machines using fractional-slot concentrated-windings. In many publications which compare performances between distributed and concentrated windings, the result is almost the same. The efficiency of FSCW is not as high as the efficiency associated to the machines which are using distributed windings. Design methods have to be redrawn to integrate, as soon as possible, the loss mitigation in order to provide the best efficiency in power conversion. The following discussion, step by step, introduces the loss mitigation in every part of a machine using FSCW. To close the discussion, a design is produced and it

  20. Characterization of sound emitted by wind machines used for frost control

    Energy Technology Data Exchange (ETDEWEB)

    Gambino, V.; Gambino, T. [Aercoustics Engineering Ltd., Toronto, ON (Canada); Fraser, H.W. [Ontario Ministry of Agriculture, Food and Rural Affairs, Vineland, ON (Canada)

    2007-07-01

    Wind machines are used in Niagara-on-the-Lake to protect cold-sensitive crops against cold injury during winter's extreme cold temperatures,spring's late frosts and autumn's early frosts. The number of wind machines in Ontario has about doubled annually from only a few in the late 1990's, to more than 425 in 2006. They are not used for generating power. Noise complaints have multiplied as the number of wind machines has increased. The objective of this study was to characterize the sound produced by wind machines; learn why residents are annoyed by wind machine noise; and suggest ways to possibly reduce sound emissions. One part of the study explored acoustic emission characteristics, the sonic differences of units made by different manufacturers, sound propagation properties under typical use atmospheric conditions and low frequency noise impact potential. Tests were conducted with a calibrated Larson Davis 2900B portable spectrum analyzer. Sound was measured with a microphone whose frequency response covered the range 4 Hz to 20 kHz. The study examined and found several unique acoustic properties that are characteristic of wind machines. It was determined that noise from wind machines is due to both aerodynamic and mechanical effects, but aerodynamic sounds were found to be the most significant. It was concluded that full range or broadband sounds manifest themselves as noise components that extend throughout the audible frequency range from the bladepass frequency to upwards of 1000 Hz. The sound spectrum of a wind machine is full natural tones and impulses that give it a readily identifiable acoustic character. Atmospheric conditions including temperature, lapse rate, relative humidity, mild winds, gradients and atmospheric turbulence all play a significant role in the long range outdoor propagation of sound from wind machines. 6 refs., 6 figs.

  1. Performance of a 3 kW wind turbine generator with variable pitch control system

    International Nuclear Information System (INIS)

    Nagai, Baku M.; Ameku, Kazumasa; Roy, Jitendro Nath

    2009-01-01

    A prototype 3 kW horizontal upwind type wind turbine generator of 4 m in diameter has been designed and examined under real wind conditions. The machine was designed based on the concept that even small wind turbines should have a variable pitch control system just as large wind turbines, especially in Japan where typhoons occur at least once a year. A characteristic of the machine is the use of a worm and gear system with a stepping motor installed in the center of the hub, and the rotational main shaft. The machine is constructed with no mechanical breaking system so as to avoid damage from strong winds. In a storm, the wind turbine is slowed down by adjusting the pitch angle and the maximum electrical load. Usually the machine is controlled at several stages depending on the rotational speed of the blades. Two control methods have been applied: the variable pitch angle, and regulation of the generator field current. The characteristics of the generator under each rotational speed and field current are first investigated in the laboratory. This paper describes the performances of the wind turbine in terms of the functions of wind turbine rotational speed, generated outputs, and its stability for wind speed changes. The expected performances of the machine have been confirmed under real wind conditions and compared with numerical simulation results. The wind turbine showed a power coefficient of 0.257 under the average wind speed of 7.3 m/s.

  2. Design study of high-temperature superconducting generators for wind power systems

    Energy Technology Data Exchange (ETDEWEB)

    Maki, N [Technova Inc. 13th Fl. Imperial Hotel Tower, 1-chome, Chiyoda-ku, Tokyo 100-0011 (Japan)], E-mail: naokmaki@technova.co.jp

    2008-02-15

    Design study on high-temperature superconducting machines (HTSM) for wind power systems was carried out using specially developed design program. Outline of the design program was shown and the influence of machine parameters such as pole number, rotor outer diameter and synchronous reactance on the machine performance was clarified. Three kinds of generator structure are considered for wind power systems and the HTSM operated under highly magnetic saturated conditions with conventional rotor and stator has better performance than the other types of HTSM. Furthermore, conceptual structure of 8 MW, 20 pole HTSM adopting salient-pole rotor as in the case of water turbine generators and race-truck shaped HTS field windings like Japanese Maglev was shown.

  3. Design study of high-temperature superconducting generators for wind power systems

    International Nuclear Information System (INIS)

    Maki, N

    2008-01-01

    Design study on high-temperature superconducting machines (HTSM) for wind power systems was carried out using specially developed design program. Outline of the design program was shown and the influence of machine parameters such as pole number, rotor outer diameter and synchronous reactance on the machine performance was clarified. Three kinds of generator structure are considered for wind power systems and the HTSM operated under highly magnetic saturated conditions with conventional rotor and stator has better performance than the other types of HTSM. Furthermore, conceptual structure of 8 MW, 20 pole HTSM adopting salient-pole rotor as in the case of water turbine generators and race-truck shaped HTS field windings like Japanese Maglev was shown

  4. Fuzzy logic based variable speed wind generation system

    Energy Technology Data Exchange (ETDEWEB)

    Simoes, M.G. [Sao Paulo Univ., SP (Brazil). Escola Politecnica. PMC - Mecatronica; Bose, B.K. [Tennessee Univ., Knoxville, TN (United States). Dept. of Electrical Engineering; Spiegel, Ronal J. [Environmental Protection Agency, Research Triangle Park, NC (United States). Air and Energy Engineering Research Lab.

    1996-12-31

    This work demonstrates the successful application of fuzzy logic to enhance the performance and control of a variable speed wind generation system. A maximum power point tracker control is performed with three fuzzy controllers, without wind velocity measurement, and robust to wind vortex and turbine torque ripple. A squirrel cage induction generator feeds the power to a double-sided PWM converter system which pumps the power to a utility grid or supplies to an autonomous system. The fuzzy logic controller FLC-1 searches on-line the generator speed so that the aerodynamic efficiency of the wind turbine is optimized. A second fuzzy controller FLC-2 programs the machine flux by on-line search so as to optimize the machine-converter system wind vortex. Detailed analysis and simulation studies were performed for development of the control strategy and fuzzy algorithms, and a DSP TMS320C30 based hardware with C control software was built for the performance evaluation of a laboratory experimental set-up. The theoretical development was fully validated and the system is ready to be reproduced in a higher power installation. (author) 7 refs., 3 figs., 1 tab.

  5. Arrangement for matching a wind rotor to an electrical generator

    Energy Technology Data Exchange (ETDEWEB)

    Beusse, H

    1978-04-06

    The invention concerns an arrangement for matching a wind power machine to an electrical generator, which feeds a consumer network. According to the invention first generator using the shaft horsepower of the wind power machine feeds an electric water, which is coupled to a second generator, whose power is taken to the consumer network. The output signal of a computer which has the annemometer feeding into it controls the excitation of the motor at sufficient wind speed, so that the speed of rotation of the second generator is practically constant, and a spted regulator takes excess energy via a controlled rectifier (thyristor) to a shunt circuit of the motor, if the wind power exceeds the load taken from the output of the second generator. As an extension of the arrangement according to the invention it is proposed to arrange a Diesel engine in the shaft of the second generator, which can be controlled at constant speed by the control device, so that it takes over the missing output if the wind power is less than the load at the generator output. Apart from this, it is proposed that the loading of the wind rotor should be controlled by the control device so that it only comes in if the wind rotor has reached a stable working point after accelerating on no load.

  6. AUTOMATIC WINDING GENERATION USING MATRIX REPRESENTATION - ANFRACTUS TOOL 1.0

    Directory of Open Access Journals (Sweden)

    Daoud Ouamara

    2018-02-01

    Full Text Available This paper describes an original approach dealing with AC/DC winding design in electrical machines. A research software called “ANFRACTUS Tool 1.0”, allowing automatic generation of all windings in multi-phases electrical machines, has been developed using the matrix representation. Unlike existent methods, where the aim is to synthesize a winding with higher performances, the proposed method provides the opportunity to choose between all doable windings. The specificity of this approach is based on the fact that it take only the slots, phases and layers number as input parameters. The poles number is not requested to run the generation process. Windings generation by matrix representation may be applied for any number of slots, phases and layers. The software do not deal with the manner that coils are connected but just the emplacement of coils in each slot with its current sense. The waveform and the harmonic spectrum of the total magnetomotive force (MMF are given as result.

  7. Superconducting Wind Turbine Generators

    DEFF Research Database (Denmark)

    Mijatovic, Nenad

    A HTS machine could be a way to address some of the technical barriers offshore wind energy is about to face. Due to the superior power density of HTS machines, this technology could become a milestone on which many, including the wind industry, will rely in the future. The work presented...... in this thesis is a part of a larger endeavor, the Superwind project that focused on identifying the potentials that HTS machines could offer to the wind industry and addressing some of the challenges in the process. In order to identify these challenges, I have design and constructed a HTS machine experimental...... setup which is made to serve as precursor, leading towards an optimized HTS machine concept proposed for wind turbines. In part, the work presented in this thesis will focus on the description of the experimental setup and reasoning behind the choices made during the design. The setup comprises from...

  8. Reactive power generation in high speed induction machines by continuously occurring space-transients

    Science.gov (United States)

    Laithwaite, E. R.; Kuznetsov, S. B.

    1980-09-01

    A new technique of continuously generating reactive power from the stator of a brushless induction machine is conceived and tested on a 10-kw linear machine and on 35 and 150 rotary cage motors. An auxiliary magnetic wave traveling at rotor speed is artificially created by the space-transient attributable to the asymmetrical stator winding. At least two distinct windings of different pole-pitch must be incorporated. This rotor wave drifts in and out of phase repeatedly with the stator MMF wave proper and the resulting modulation of the airgap flux is used to generate reactive VA apart from that required for magnetization or leakage flux. The VAR generation effect increases with machine size, and leading power factor operation of the entire machine is viable for large industrial motors and power system induction generators.

  9. Optimized Generator Designs for the DTU 10-MW Offshore Wind Turbine using GeneratorSE

    Energy Technology Data Exchange (ETDEWEB)

    Sethuraman, Latha; Maness, Michael; Dykes, Katherine

    2017-01-09

    Compared to land-based applications, offshore wind imposes challenges for the development of next generation wind turbine generator technology. Direct-drive generators are believed to offer high availability, efficiency, and reduced operation and maintenance requirements; however, previous research suggests difficulties in scaling to several megawatts or more in size. The resulting designs are excessively large and/or massive, which are major impediments to transportation logistics, especially for offshore applications. At the same time, geared wind turbines continue to sustain offshore market growth through relatively cheaper and lightweight generators. However, reliability issues associated with mechanical components in a geared system create significant operation and maintenance costs, and these costs make up a large portion of overall system costs offshore. Thus, direct-drive turbines are likely to outnumber their gear-driven counterparts for this market, and there is a need to review the costs or opportunities of building machines with different types of generators and examining their competitiveness at the sizes necessary for the next generation of offshore wind turbines. In this paper, we use GeneratorSE, the National Renewable Energy Laboratory's newly developed systems engineering generator sizing tool to estimate mass, efficiency, and the costs of different generator technologies satisfying the electromagnetic, structural, and basic thermal design requirements for application in a very large-scale offshore wind turbine such as the Technical University of Denmark's (DTU) 10-MW reference wind turbine. For the DTU reference wind turbine, we use the previously mentioned criteria to optimize a direct-drive, radial flux, permanent-magnet synchronous generator; a direct-drive electrically excited synchronous generator; a medium-speed permanent-magnet generator; and a high-speed, doubly-fed induction generator. Preliminary analysis of leveled costs of

  10. Design and optimize of 3-axis filament winding machine

    Science.gov (United States)

    Quanjin, Ma; Rejab, M. R. M.; Idris, M. S.; Bachtiar, B.; Siregar, J. P.; Harith, M. N.

    2017-10-01

    Filament winding technique is developed as the primary process for composite cylindrical structures fabrication at low cost. Fibres are wound on a rotating mandrel by a filament winding machine where resin impregnated fibres pass through a pay-out eye. This paper aims to develop and optimize a 3-axis, lightweight, practical, efficient, portable filament winding machine to satisfy the customer demand, which can fabricate pipes and round shape cylinders with resins. There are 3 main units on the 3-axis filament winding machine, which are the rotary unit, the delivery unit and control system unit. Comparison with previous existing filament winding machines in the factory, it has 3 degrees of freedom and can fabricate more complex shape specimens based on the mandrel shape and particular control system. The machine has been designed and fabricated on 3 axes movements with control system. The x-axis is for movement of the carriage, the y-axis is the rotation of mandrel and the z-axis is the movement of the pay-out eye. Cylindrical specimens with different dimensions and winding angles were produced. 3-axis automated filament winding machine has been successfully designed with simple control system.

  11. Optimized Generator Designs for the DTU 10-MW Offshore Wind Turbine using GeneratorSE: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Sethuraman, Latha; Maness, Michael; Dykes, Katherine

    2017-01-01

    Compared to land-based applications, offshore wind imposes challenges for the development of next generation wind turbine generator technology. Direct-drive generators are believed to offer high availability, efficiency, and reduced operation and maintenance requirements; however, previous research suggests difficulties in scaling to several megawatts or more in size. The resulting designs are excessively large and/or massive, which are major impediments to transportation logistics, especially for offshore applications. At the same time, geared wind turbines continue to sustain offshore market growth through relatively cheaper and lightweight generators. However, reliability issues associated with mechanical components in a geared system create significant operation and maintenance costs, and these costs make up a large portion of overall system costs offshore. Thus, direct-drive turbines are likely to outnumber their gear-driven counterparts for this market, and there is a need to review the costs or opportunities of building machines with different types of generators and examining their competitiveness at the sizes necessary for the next generation of offshore wind turbines. In this paper, we use GeneratorSE, the National Renewable Energy Laboratory's newly developed systems engineering generator sizing tool to estimate mass, efficiency, and the costs of different generator technologies satisfying the electromagnetic, structural, and basic thermal design requirements for application in a very large-scale offshore wind turbine such as the Technical University of Denmark's (DTU) 10-MW reference wind turbine. For the DTU reference wind turbine, we use the previously mentioned criteria to optimize a direct-drive, radial flux, permanent-magnet synchronous generator; a direct-drive electrically excited synchronous generator; a medium-speed permanent-magnet generator; and a high-speed, doubly-fed induction generator. Preliminary analysis of leveled costs of

  12. Lightweight MgB2 superconducting 10 MW wind generator

    Science.gov (United States)

    Marino, I.; Pujana, A.; Sarmiento, G.; Sanz, S.; Merino, J. M.; Tropeano, M.; Sun, J.; Canosa, T.

    2016-02-01

    The offshore wind market demands a higher power rate and more reliable turbines in order to optimize capital and operational costs. The state-of-the-art shows that both geared and direct-drive conventional generators are difficult to scale up to 10 MW and beyond due to their huge size and weight. Superconducting direct-drive wind generators are considered a promising solution to achieve lighter weight machines. This work presents an innovative 10 MW 8.1 rpm direct-drive partial superconducting generator using MgB2 wire for the field coils. It has a warm iron rotor configuration with the superconducting coils working at 20 K while the rotor core and the armature are at ambient temperature. A cooling system based on cryocoolers installed in the rotor extracts the heat from the superconducting coils by conduction. The generator's main parameters are compared against a permanent magnet reference machine, showing a significant weight and size reduction. The 10 MW superconducting generator concept will be experimentally validated with a small-scale magnetic machine, which has innovative components such as superconducting coils, modular cryostats and cooling systems, and will have similar size and characteristics as the 10 MW generator.

  13. Feasibility study of permanent magnet generator topologies for small-scale wind power application

    Energy Technology Data Exchange (ETDEWEB)

    Rovio, T.

    2010-07-01

    In this work the design of electric generators for use in a 300-Watt wind power plant is explored. These generators must also be suitable for short-series manufacture. There are two foci: the best design methods for these machines and comparison of technical and economical performance of machnines designed with these methods. I explain how the wind turbine affects the generator design process. Easy-to-manufacture structures are selected from each electric machine topology. The design and construction of prototype axial and radial flux machines is studied. A design method for a claw-pole transversal flux machine is introduced. This design method is based on FEM and genetic optimization, without recourse to iron-circuit models. Finally, I compare the predicted performance of the new claw-pole transversal flux generator to axial flux and radial flux generator prototypes is compared

  14. Technological and economical analysis of salient pole and permanent magnet synchronous machines designed for wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Guendogdu, Tayfun, E-mail: tgundogdu@itu.edu.tr [Istanbul Technical University, Department of Electrical Engineering, Ayazaga Campus, 34469 Maslak/Istanbul (Turkey); Koemuergoez, Gueven, E-mail: komurgoz@itu.edu.tr [Istanbul Technical University, Department of Electrical Engineering, Ayazaga Campus, 34469 Maslak/Istanbul (Turkey)

    2012-08-15

    Chinese export restrictions already reduced the planning reliability for investments in permanent magnet wind turbines. Today the production of permanent magnets consumes the largest proportion of rare earth elements, with 40% of the rare earth-based magnets used for generators and other electrical machines. The cost and availability of NdFeB magnets will likely determine the production rate of permanent magnet generators. The high volatility of rare earth metals makes it very difficult to quote a price. Prices may also vary from supplier to supplier to an extent of up to 50% for the same size, shape and quantity with a minor difference in quality. The paper presents the analysis and the comparison of salient pole with field winding and of peripheral winding synchronous electrical machines, presenting important advantages. A neodymium alloy magnet rotor structure has been considered and compared to the salient rotor case. The Salient Pole Synchronous Machine and the Permanent Magnet Synchronous Machine were designed so that the plate values remain constant. The Eddy current effect on the windings is taken into account during the design, and the efficiency, output power and the air-gap flux density obtained after the simulation were compared. The analysis results clearly indicate that Salient Pole Synchronous Machine designs would be attractive to wind power companies. Furthermore, the importance of the design of electrical machines and the determination of criteria are emphasized. This paper will be a helpful resource in terms of examination and comparison of the basic structure and magnetic features of the Salient Pole Synchronous Machine and Permanent Magnet Synchronous Machine. Furthermore, an economic analysis of the designed machines was conducted. - Highlights: Black-Right-Pointing-Pointer Importance of the design of electrical machines and the determination of criteria are emphasized. Black-Right-Pointing-Pointer Machines were investigated in terms of

  15. Technological and economical analysis of salient pole and permanent magnet synchronous machines designed for wind turbines

    International Nuclear Information System (INIS)

    Gündoğdu, Tayfun; Kömürgöz, Güven

    2012-01-01

    Chinese export restrictions already reduced the planning reliability for investments in permanent magnet wind turbines. Today the production of permanent magnets consumes the largest proportion of rare earth elements, with 40% of the rare earth-based magnets used for generators and other electrical machines. The cost and availability of NdFeB magnets will likely determine the production rate of permanent magnet generators. The high volatility of rare earth metals makes it very difficult to quote a price. Prices may also vary from supplier to supplier to an extent of up to 50% for the same size, shape and quantity with a minor difference in quality. The paper presents the analysis and the comparison of salient pole with field winding and of peripheral winding synchronous electrical machines, presenting important advantages. A neodymium alloy magnet rotor structure has been considered and compared to the salient rotor case. The Salient Pole Synchronous Machine and the Permanent Magnet Synchronous Machine were designed so that the plate values remain constant. The Eddy current effect on the windings is taken into account during the design, and the efficiency, output power and the air-gap flux density obtained after the simulation were compared. The analysis results clearly indicate that Salient Pole Synchronous Machine designs would be attractive to wind power companies. Furthermore, the importance of the design of electrical machines and the determination of criteria are emphasized. This paper will be a helpful resource in terms of examination and comparison of the basic structure and magnetic features of the Salient Pole Synchronous Machine and Permanent Magnet Synchronous Machine. Furthermore, an economic analysis of the designed machines was conducted. - Highlights: ► Importance of the design of electrical machines and the determination of criteria are emphasized. ► Machines were investigated in terms of efficiency, weight and maintenance requirements. ► An

  16. An automated coil winding machine for the SSC dipole magnets

    International Nuclear Information System (INIS)

    Kamiya, S.; Iwase, T.; Inoue, I.; Fukui, I.; Ishida, K.; Kashiwagi, S.; Sato, Y.; Yoshihara, T.; Yamamoto, S.; Johnson, E.; Gibson, C.

    1990-01-01

    The authors have finished the preliminary design of a fully automated coil winding machine that can be used to manufacture the large number of SSC dipole magnets. The machine aims to perform all coil winding operations including coil parts inserting without human operators at a high productive rate. The machine is composed of five industrial robots. In order to verify the design, they built a small winding machine using an industrial robot and successfully wound a 1 meter long coil using SSC dipole magnet wire. The basic design for the full length coil and the robot winding technique are described in this paper. A fully automated coil winding machine using standard industrial components would be very useful if duplicate production lines are used. 5 figs., 1 tab

  17. 5MW Direct Drive Wind Turbine Generator Design

    DEFF Research Database (Denmark)

    Zaidi, Arsalan; Senn, Lucile; Ortega, Iratxe

    2012-01-01

    A 5MW direct drive offshore wind turbine generator was studied and simulated using Vector Fields OPERA. This software allows calculation of the flux density, force, torque, and eddy currents in the machine at different rotor positions. Based on the data obtained from the model, initial assumptions...... for the suitable machine are listed and the modelling process presented. The model of the generator was improved by changing design parameters, e.g the position of the magnets or fitting additional I-Cores, and analyse the effect of it....

  18. Design Tool for Direct Drive Wind Turbine Generators

    DEFF Research Database (Denmark)

    Leban, Krisztina Monika

    . A comparison of the selected machine types in view of up-scaling to 20 [MW] was performed. As an example fitness criterion, the use of active materials for the generators was considered. Based on this, suggestions for 20 [MW] generators were made. The results are discussed and future work, directions......The current work offers a comparison of the proposed machine geometries for 6 [MW] direct drive wind generator candidates with the prospective of up scaling to 20MW. The suggestions are based on a design tool especially built for this investigation. The in-built flexibility of the design tool gives...

  19. Renewable energy and sustainable communities: Alaska's wind generator experience.

    Science.gov (United States)

    Konkel, R Steven

    2013-01-01

    In 1984, the Alaska Department of Commerce and Economic Development (DCED) issued the State's first inventory/economic assessment of wind generators, documenting installed wind generator capacity and the economics of replacing diesel-fuel-generated electricity. Alaska's wind generation capacity had grown from hundreds of installed kilowatts to over 15.3 megawatts (MW) by January 2012. This article reviews data and conclusions presented in "Alaska's Wind Energy Systems; Inventory and Economic Assessment" (1). (Alaska Department of Commerce and Economic Development, S. Konkel, 1984). It provides a foundation and baseline for understanding the development of this renewable energy source. Today's technologies have evolved at an astonishing pace; a typical generator in an Alaska wind farm now is likely rated at 1.5-MW capacity, compared to the single-kilowatt (kW) machines present in 1984. Installed capacity has mushroomed, illustrated by Unalakleet's 600-kW wind farm dwarfing the original three 10-kW machines included in the 1984 inventory. Kodiak Electric had three 1.5-MW turbines installed at Pillar Mountain in 2009, with three additional turbines of 4.5-MW capacity installed in 2012. Utilities now actively plan for wind generation and compete for state funding. State of Alaska energy policy provides the context for energy project decision-making. Substantial renewable energy fund (REF) awards--$202,000,000 to date for 227 REF projects in the first 5 cycles of funding--along with numerous energy conservation programs--are now in place. Increasing investment in wind is driven by multiple factors. Stakeholders have interests both in public policy and meeting private investment objectives. Wind generator investors should consider project economics and potential impacts of energy decisions on human health. Specifically this article considers: changing environmental conditions in remote Alaska villages, impacts associated with climate change on human health, progress in

  20. Influence of winding construction on starter-generator thermal processes

    Science.gov (United States)

    Grachev, P. Yu; Bazarov, A. A.; Tabachinskiy, A. S.

    2018-01-01

    Dynamic processes in starter-generators features high winding are overcurrent. It can lead to insulation overheating and fault operation mode. For hybrid and electric vehicles, new high efficiency construction of induction machines windings is proposed. Stator thermal processes need be considered in the most difficult operation modes. The article describes construction features of new compact stator windings, electromagnetic and thermal models of processes in stator windings and explains the influence of innovative construction on thermal processes. Models are based on finite element method.

  1. Wind power plant for electricity generation

    Energy Technology Data Exchange (ETDEWEB)

    Landsiedel, E

    1978-11-09

    The invention concerns a wind power plant which rotates on a vertical axis and is suitable for the generation of electricity. This wind power machine with a vertical axis can be mounted at any height, so that it can catch the wind on the vertical axis of rotation. Further, it does not have to be turned into the direction of the wind and fixed. The purpose of the invention is to obtain equal load on the structure due to the vertical axis. The purpose of the invention is fulfilled by having the wind vanes fixed above one another from the bottom to the top in 6 different directions. The particular advantage of the invention lies in the fact that the auxiliary blades can bring the other blades to the operating position in good time, due to their particular method of fixing.

  2. Development of electric machines with superconducting windings

    International Nuclear Information System (INIS)

    Glebov, I.A.; Novitskij, V.G.

    1977-01-01

    Some studies are discussed performed in the USSR with the aim to develop the most promising electrical machines with superconducting windings, i.e. powerful (more than 1 MW) cryoturbogenerators for power heat and nuclear plants, electric motors of more than 10,000 kW, reverse systems of an electric driver and unipolar generators for electrolysis industry. The design and performances of the simulator of a 1500 kW cryoturbogenerator are given. Problems of coooling and oscillations of the simulator rotor are considered

  3. Lightweight MgB2 superconducting 10 MW wind generator

    International Nuclear Information System (INIS)

    Marino, I; Pujana, A; Sarmiento, G; Sanz, S; Merino, J M; Tropeano, M; Sun, J; Canosa, T

    2016-01-01

    The offshore wind market demands a higher power rate and more reliable turbines in order to optimize capital and operational costs. The state-of-the-art shows that both geared and direct-drive conventional generators are difficult to scale up to 10 MW and beyond due to their huge size and weight. Superconducting direct-drive wind generators are considered a promising solution to achieve lighter weight machines. This work presents an innovative 10 MW 8.1 rpm direct-drive partial superconducting generator using MgB 2 wire for the field coils. It has a warm iron rotor configuration with the superconducting coils working at 20 K while the rotor core and the armature are at ambient temperature. A cooling system based on cryocoolers installed in the rotor extracts the heat from the superconducting coils by conduction. The generator’s main parameters are compared against a permanent magnet reference machine, showing a significant weight and size reduction. The 10 MW superconducting generator concept will be experimentally validated with a small-scale magnetic machine, which has innovative components such as superconducting coils, modular cryostats and cooling systems, and will have similar size and characteristics as the 10 MW generator. (paper)

  4. Gearless wind power generator

    Energy Technology Data Exchange (ETDEWEB)

    Soederlund, L.; Ridanpaeae, P.; Vihriaelae, H.; Peraelae, R. [Tampere Univ. of Technology (Finland). Lab. of Electricity and Magnetism

    1998-10-01

    In the project a 100 kW axial flux permanent magnet wind power generator has been designed. The toroidal stator with air gap winding is placed between two rotating discs with permanent magnets. The magnet material is NdBFe due to its excellent magnetic properties compared to other materials. This type of topology enables a very large number of poles compared to conventional machine of the same size. A large number of poles is required to achieve a low rotational speed and consequently a direct driven system. The stator winding is formed by rectangular coils. The end winding is very short leading to small resistive losses. On the other hand, the absence of iron teeth causes eddy current losses in the conductors. These can be restricted to an acceptable level by keeping the wire diameter and flux density small. This means that the number of phases should be large. Several independent three phase systems may be used. The toothless stator also means that the iron losses are small and there exists no cogging torque

  5. Modulated Field Synchronous Generator for Wind Turbines

    Directory of Open Access Journals (Sweden)

    Petru Chioncel

    2013-01-01

    Full Text Available This paper presents a modern electromechanical conversion systemsolution as the modulated field synchronous generator, offering on theone hand, an output voltage with constant frequency in terms of speedvariation of the wind turbine and on the other hand an advantagepower / weight ratio due to the high frequency for which the magneticcircuit of the electric machine is sized. The mathematical model of the modulated field synchronous generator is implemented in MatLABmodeling language, highlighting the command structure on thetransistors bases of the inverter transistors, through which thefunctioning of the electric machine can be studied, especially in terms of the frequency of the delivered voltage.

  6. Electric Generators and their Control for Large Wind Turbines

    DEFF Research Database (Denmark)

    Boldea, Ion; Tutelea, Lucian; Rallabandi, Vandana

    2017-01-01

    induction generator, the cage rotor induction generator, and the synchronous generator with DC or permanent magnet excitation. The operating principle, performance, optimal design, and the modeling and control of the machine-side converter for each kind of generator are adressed and evaluated. In view......The electric generator and its power electronics interface for wind turbines (WTs) have evolved rapidly toward higher reliability and reduced cost of energy in the last 40 years. This chapter describes the up-to-date electric generators existing in the wind power industry, namely, the doubly fed...... of the fact that individual power rating of WTs has increased to around 10 MW, generator design and control technologies required to reach this power rating are discussed....

  7. Dual stator winding variable speed asynchronous generator: optimal design and experiments

    International Nuclear Information System (INIS)

    Tutelea, L N; Deaconu, S I; Popa, G N

    2015-01-01

    In the present paper is carried out a theoretical and experimental study of dual stator winding squirrel cage asynchronous generator (DSWA) behavior in the presence of saturation regime (non-sinusoidal) due to the variable speed operation. The main aims are the determination of the relations of calculating the equivalent parameters of the machine windings to optimal design using a Matlab code. Issue is limited to three phase range of double stator winding cage-induction generator of small sized powers, the most currently used in the small adjustable speed wind or hydro power plants. The tests were carried out using three-phase asynchronous generator having rated power of 6 [kVA]. (paper)

  8. Half century of wind power generation memoir. Part 1; Furyoku hatsuden hanseiki sono omoide. 1

    Energy Technology Data Exchange (ETDEWEB)

    Nakata, H.

    1995-12-01

    This article may be deemed an autobiography of an individual on his development of wind power generation devices. The author began to be interested in electricity while he was a pupil of primary school and during his time of middle school student, when he walked against the strong wind on an embankment, he got an idea to utilize the wind power and succeeded to generate electricity with his handmade wind power generator using a bicycle generator. Afterwards he kept interested in devices utilizing the wind power, in 1973, energy saving was widely promoted due to the oil crises, and taking that opportunity, he established single-handedly a laboratory for development of utilization of the breeze power. Since his retirement from teaching profession in the spring of 1980, he has coped with earnestly the development of wind power generators. He acquired and installed various machine tools for metal works for generators and various machines for wood works for making propellers. In this article, wind power generators using bicycle generators (direct connection type and speed increasing type), small D.C. motors (motors for driving tape recorder, motors for automobile radiator and windshield wiper, etc.) and automobile generators (D.C. generators and alternators) are explained. 11 figs.

  9. Advanced control of direct-driven PMSG generator in wind turbine system

    Directory of Open Access Journals (Sweden)

    Gajewski Piotr

    2016-12-01

    Full Text Available The paper presents the advanced control system of the wind energy conversion with a variable speed wind turbine. The considered system consists of a wind turbine with the permanent magnet synchronous generator (PMSG, machine side converter (MSC, grid side converter (GSC and control circuits. The mathematical models of a wind turbine system, the PMSG generator and converters have been described. The control algorithms of the converter systems based on the methods of vector control have been applied. In the advanced control system of the machine side converter the optimal MPPT control method has been used. Additionally the pitch control scheme is included in order to achieve the limitation of maximum power and to prevent mechanical damage of the wind turbine. In the control system of the grid side converter the control of active and reactive power has been applied with the application of Voltage Oriented Control (VOC. The performance of the considered wind energy system has been studied by digital simulation. The results of simulation studies confirmed the good effectiveness of the considered wind turbine system and very good performance of the proposed methods of vector control and control systems.

  10. A novel design of DC-AC electrical machine rotary converter for hybrid solar and wind energy applications

    International Nuclear Information System (INIS)

    Mohammed, K G; Ramli, A Q; Amirulddin, U A U

    2013-01-01

    This paper proposes the design of a new bi-directional DC-AC rotary converter machine to convert a d.c. voltage to three-phase voltage and vice-versa using a two-stage energy conversion machine. The rotary converter consists of two main stages which are combined into single frame. These two stages are constructed from three main electromagnetic components. The first inner electromagnetic component represents the input stage that enables the DC power generated by solar energy from photo-voltaic cells to be transformed by the second and third components electro-magnetically to produce multi-phase voltages at the output stage. At the same time, extra kinetic energy from wind, which is sufficiently available, can be added to existing torque on the second electromagnetic component. Both of these input energies will add up to the final energy generated at the output terminals. Therefore, the machine will be able to convert solar and wind energies to the output terminals simultaneously. If the solar energy is low, the available wind energy will be able to provide energy to the output terminals and at the same time charges the batteries which are connected as backup system. At this moment, the machine behaves as wind turbine. The energy output from the machine benefits from two energy sources which are solar and wind. At night when the solar energy is not available and also the load is low, the wind energy is able to charge the batteries and at the same time provides output electrical power to the remaining the load. Therefore, the proposed system will have high usage of available renewable energy as compared to separated wind or solar systems. MATLAB codes are used to calculate the required dimensions, the magnetic and electrical circuits parameters to design of the new bi-directional rotary converter machine.

  11. Renewable energy and sustainable communities: Alaska's wind generator experience†

    Science.gov (United States)

    Konkel, R. Steven

    2013-01-01

    Background In 1984, the Alaska Department of Commerce and Economic Development (DCED) issued the State's first inventory/economic assessment of wind generators, documenting installed wind generator capacity and the economics of replacing diesel-fuel-generated electricity. Alaska's wind generation capacity had grown from hundreds of installed kilowatts to over 15.3 megawatts (MW) by January 2012. Method This article reviews data and conclusions presented in “Alaska's Wind Energy Systems; Inventory and Economic Assessment” (1). (Alaska Department of Commerce and Economic Development, S. Konkel, 1984). It provides a foundation and baseline for understanding the development of this renewable energy source. Results Today's technologies have evolved at an astonishing pace; a typical generator in an Alaska wind farm now is likely rated at 1.5-MW capacity, compared to the single-kilowatt (kW) machines present in 1984. Installed capacity has mushroomed, illustrated by Unalakleet's 600-kW wind farm dwarfing the original three 10-kW machines included in the 1984 inventory. Kodiak Electric had three 1.5-MW turbines installed at Pillar Mountain in 2009, with three additional turbines of 4.5-MW capacity installed in 2012. Utilities now actively plan for wind generation and compete for state funding. Discussion State of Alaska energy policy provides the context for energy project decision-making. Substantial renewable energy fund (REF) awards – $202,000,000 to date for 227 REF projects in the first 5 cycles of funding – along with numerous energy conservation programs – are now in place. Increasing investment in wind is driven by multiple factors. Stakeholders have interests both in public policy and meeting private investment objectives. Wind generator investors should consider project economics and potential impacts of energy decisions on human health. Specifically this article considers:changing environmental conditions in remote Alaska villages,impacts associated

  12. Renewable energy and sustainable communities: Alaska's wind generator experience†

    Directory of Open Access Journals (Sweden)

    R. Steven Konkel

    2013-08-01

    Full Text Available Background . In 1984, the Alaska Department of Commerce and Economic Development (DCED issued the State's first inventory/economic assessment of wind generators, documenting installed wind generator capacity and the economics of replacing diesel-fuel-generated electricity. Alaska's wind generation capacity had grown from hundreds of installed kilowatts to over 15.3 megawatts (MW by January 2012. Method . This article reviews data and conclusions presented in “Alaska's Wind Energy Systems; Inventory and Economic Assessment” (1. (Alaska Department of Commerce and Economic Development, S. Konkel, 1984. It provides a foundation and baseline for understanding the development of this renewable energy source. Results . Today's technologies have evolved at an astonishing pace; a typical generator in an Alaska wind farm now is likely rated at 1.5-MW capacity, compared to the single-kilowatt (kW machines present in 1984. Installed capacity has mushroomed, illustrated by Unalakleet's 600-kW wind farm dwarfing the original three 10-kW machines included in the 1984 inventory. Kodiak Electric had three 1.5-MW turbines installed at Pillar Mountain in 2009, with three additional turbines of 4.5-MW capacity installed in 2012. Utilities now actively plan for wind generation and compete for state funding. Discussion . State of Alaska energy policy provides the context for energy project decision-making. Substantial renewable energy fund (REF awards – $202,000,000 to date for 227 REF projects in the first 5 cycles of funding – along with numerous energy conservation programs – are now in place. Increasing investment in wind is driven by multiple factors. Stakeholders have interests both in public policy and meeting private investment objectives. Wind generator investors should consider project economics and potential impacts of energy decisions on human health. Specifically this article considers: a. changing environmental conditions in remote Alaska

  13. Design and realization on function of pre-forming and continuous winding for HT-7U special winding machine

    International Nuclear Information System (INIS)

    Yu Jie; Gao Daming; Wen Jun; Zhu Wenhua; Cheng Leping; Tao Yuming

    2000-05-01

    The winding machine is one of the critical facilities for R and D of HT-7U construction. The machine mainly consists of five parts, CICC pay-off spool, a four-rollers straightening assembly, a four-roller forming/bending assembly, continuous winding structure and CNC control system with three-axis CNC control. The facility is needed for CICC magnet fabrication of HT-7U. The main requirements of the winding machine are: continuous winding to reduce number of joints inside the coils; pre-forming CICC conductor to avoid winding with tension; suitable for all TF and PF coils within the scope of various coil shape and dimension limit; improving the configuration tolerance, specially flatness of the CICC conductor. The author emphasizes on the design and realization on function of Pre-forming and Continuous Winding for HT-7U special winding machine. The winding machine with high accuracy has just been developed and applied to the construction of HT-7U model coils

  14. Four wind speed multi-step forecasting models using extreme learning machines and signal decomposing algorithms

    International Nuclear Information System (INIS)

    Liu, Hui; Tian, Hong-qi; Li, Yan-fei

    2015-01-01

    Highlights: • A hybrid architecture is proposed for the wind speed forecasting. • Four algorithms are used for the wind speed multi-scale decomposition. • The extreme learning machines are employed for the wind speed forecasting. • All the proposed hybrid models can generate the accurate results. - Abstract: Realization of accurate wind speed forecasting is important to guarantee the safety of wind power utilization. In this paper, a new hybrid forecasting architecture is proposed to realize the wind speed accurate forecasting. In this architecture, four different hybrid models are presented by combining four signal decomposing algorithms (e.g., Wavelet Decomposition/Wavelet Packet Decomposition/Empirical Mode Decomposition/Fast Ensemble Empirical Mode Decomposition) and Extreme Learning Machines. The originality of the study is to investigate the promoted percentages of the Extreme Learning Machines by those mainstream signal decomposing algorithms in the multiple step wind speed forecasting. The results of two forecasting experiments indicate that: (1) the method of Extreme Learning Machines is suitable for the wind speed forecasting; (2) by utilizing the decomposing algorithms, all the proposed hybrid algorithms have better performance than the single Extreme Learning Machines; (3) in the comparisons of the decomposing algorithms in the proposed hybrid architecture, the Fast Ensemble Empirical Mode Decomposition has the best performance in the three-step forecasting results while the Wavelet Packet Decomposition has the best performance in the one and two step forecasting results. At the same time, the Wavelet Packet Decomposition and the Fast Ensemble Empirical Mode Decomposition are better than the Wavelet Decomposition and the Empirical Mode Decomposition in all the step predictions, respectively; and (4) the proposed algorithms are effective in the wind speed accurate predictions

  15. Smoothing Control of Wind Farm Output by Using Kinetic Energy of Variable Speed Wind Power Generators

    Science.gov (United States)

    Sato, Daiki; Saitoh, Hiroumi

    This paper proposes a new control method for reducing fluctuation of power system frequency through smoothing active power output of wind farm. The proposal is based on the modulation of rotaional kinetic energy of variable speed wind power generators through power converters between permanent magnet synchronous generators (PMSG) and transmission lines. In this paper, the proposed control is called Fluctuation Absorption by Flywheel Characteristics control (FAFC). The FAFC can be easily implemented by adding wind farm output signal to Maximum Power Point Tracking control signal through a feedback control loop. In order to verify the effectiveness of the FAFC control, a simulation study was carried out. In the study, it was assumed that the wind farm consisting of PMSG type wind power generator and induction machine type wind power generaotors is connected with a power sysem. The results of the study show that the FAFC control is a useful method for reducing the impacts of wind farm output fluctuation on system frequency without additional devices such as secondary battery.

  16. Ripple Field AC Losses in 10-MW Wind Turbine Generators With a MgB2 Superconducting Field Winding

    DEFF Research Database (Denmark)

    Liu, Dong; Polinder, Henk; Magnusson, Niklas

    2016-01-01

    Superconducting (SC) synchronous generators are proposed as a promising candidate for 10-20-MW direct-drive wind turbines because they can have low weights and small sizes. A common way of designing an SC machine is to use SC wires with high current-carrying capability in the dc field winding...... and the ac armature winding is made with copper conductors. In such generators, the dc field winding is exposed to ac magnetic field ripples due to space harmonics from the armature. In generator design phases, the ac loss caused by these ripple fields needs to be evaluated to avoid local overheating...... and an excessive cooling budget. To determine the applicability of different design solutions in terms of ac losses, this paper estimates the ac loss level of 10-MW wind generator designs employing a MgB2 SC field winding. The effects on ac losses are compared between nonmagnetic and ferromagnetic teeth...

  17. Unconventional wind machine

    International Nuclear Information System (INIS)

    Sheff, J.R.

    1979-01-01

    It is the purpose of this paper to introduce an unconventional wind machine which has economics comparable with nuclear power and is already available in the public market place. Specifically, up to about 17 MWE could be saved for other uses such as sale in most 1000 MWE plants of any type - nuclear, oil, gas, peat, or wood - which use conventional electrically driven fans in their cooling towers. 10 refs

  18. Site-optimization of wind turbine generators

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, T.J. de; Thillerup, J. [Nordtank Energy Group, Richmond, VA (United States)

    1997-12-31

    The Danish Company Nordtank is one of the pioneers within the wind turbine industry. Since 1981 Nordtank has installed worldwide more than 2500 wind turbine generators with a total name plate capacity that is exceeding 450 MW. The opening up of new and widely divergent markets has demanded an extremely flexible approach towards wind turbine construction. The Nordtank product range has expanded considerable in recent years, with the main objective to develop wind energy conversion machines that can run profitable in any given case. This paper will describe site optimization of Nordtank wind turbines. Nordtank has developed a flexible design concept for its WTGs in the 500/750 kW range, in order to offer the optimal WTG solution for any given site and wind regime. Through this flexible design, the 500/750 turbine line can adjust the rotor diameter, tower height and many other components to optimally fit the turbine to each specific project. This design philosophy will be illustrated with some case histories of recently completed projects.

  19. Design and fabrication of radial flux permanent magnet generator for wind turbine applications

    International Nuclear Information System (INIS)

    Ashraf, M.M.; Malik, T.N.; Zafar, S.; Raja, U.N.

    2013-01-01

    Presently alternate energy resources are replacing conventional energy sources to produce electrical power to minimize the usage of fossil fuels. Wind power is one of the potential alternate energy resources and is being exploited and deployed actively. The wind energy system is basically composed of two core components: wind turbine and electrical generator. This paper presents the design and fabrication of permanent magnet generator for direct drive wind turbine applications. Radial flux permanent magnet generator (RFPMG) producing three phase alternating current voltage has been designed subject to satisfying the features of low operating shaft speed, higher power density , higher current density, cost effectiveness and compact structure. RFPMG design focuses on usage of neodymium permanent magnets for excitation instead of electromagnets to minimize the excitation arrangement challenges and losses. A 300 W prototype RFPMG has been fabricated. The performance of the generator has been evaluated on specially designed wind tunnel. The generator is directly coupled with wind turbine shaft to eliminate the gearbox losses. No load and load tests show that the performance of the machine is up to the mark. The improved design parameters of power density and current density are 73.2 W/kg and 5.9 A/mm 2 respectively. The same machine output has been rectified using bridge rectifier for battery charging application. The desired output voltages are obtained at minimum shaft speed of the generator. Thus the design of generator confirms its application with small scale domestic wind turbines produci ng direct current supply. (author)

  20. Optimization of electrical parameters of windings used in axial flux electrical machines

    International Nuclear Information System (INIS)

    Uhrik, M.

    2012-01-01

    This paper deals with shape optimization of windings used in electrical machines with disc type construction. These machines have short axial length what makes them suitable for use in small wind-power turbines or in-wheel traction drives. Disc type construction of stator offers more possibilities for winding arrangements than are available in classical machines with cylindrical construction. To find out the best winding arrangement for the novel disc type machine construction a series of analytical calculations, simulations and experimental measurements were performed. (Authors)

  1. Multi-phase alternative current machine winding design | Khan ...

    African Journals Online (AJOL)

    ... single-phase to 18-phase excitation. Experimental results of a five-phase induction machine supplied from a static five-phase supply are provided to support the proposed design. Keywords: AC machine, Multi-phase machine, Stator winding, Five-phase. International Journal of Engineering, Science and Technology, Vol.

  2. Power train analysis for the DOE/NASA 100-kW wind turbine generator

    Science.gov (United States)

    Seidel, R. C.; Gold, H.; Wenzel, L. M.

    1978-01-01

    Progress in explaining variations of power experienced in the on-line operation of a 100 kW experimental wind turbine-generator is reported. Data are presented that show the oscillations tend to be characteristic of a wind-driven synchronous generator because of low torsional damping in the power train, resonances of its large structure, and excitation by unsteady and nonuniform wind flow. The report includes dynamic analysis of the drive-train torsion, the generator, passive driveline damping, and active pitch control as well as correlation with experimental recordings. The analysis assumes one machine on an infinite bus with constant generator-field excitation.

  3. Wind generator with electronic variable-speed drives

    Energy Technology Data Exchange (ETDEWEB)

    David, A.; Buchheit, N.; Jakobsen, H.

    1996-12-31

    Variable speed drives have been inserted between the network and the generator on certain recent wind power facilities. They have the following advantages: the drive allows the wind generator to operate at low speed with a significant reduction in acoustic noise, an important point if the facilities are sited near populated areas; the drive optimizes energy transfer, providing a gain of 4 to 10 %; the drive can possibly replace certain mechanical parts (the starting system and it in some cases, the reduction gear); the drive not only provides better transient management in relation to the network for less mechanical stress on the wind generator, it is also able to control reactive power. One commercial drive design sold by several manufacturers has already been installed on several wind generators with outputs of between 150 and 600 kw. In addition, such a solution is extremely well suited to mixed renewable energy systems. This design uses two inverse rectifier type converters and can therefore exchange energy in both directions. The equivalent drive with a single IGBT converter on the motor side and a diode converter on the network side is the solution most widely adopted throughout industry (with more than 50, 000 units installed in France per year). It still remains to be seen whether such a solution could be profitable in wind generator application (since the cost of the drive is quite high). This technical analysis is more destined for the converter-machine assembly specialists and is presented in this document, paying particular attention as it does to the modelling of the `wind energy - generator - drive - network` assembly, the associated drive command and control strategies and the simulations obtained during various transients. A 7.5 kW test bed has been installed in the Laboratoire d`Electronique de Puissance de Clamart, enabling tests to be carried out which emulate the operation of a wind generator.

  4. Design Preliminaries for Direct Drive under Water Wind Turbine Generator

    DEFF Research Database (Denmark)

    Leban, Krisztina Monika; Ritchie, Ewen; Argeseanu, Alin

    2012-01-01

    This paper focuses on the preliminary design process of a 20 MW electric generator. The application calls for an offshore, vertical axis, direct drive wind turbine. Arguments for selecting the type of electric machine for the application are presented and discussed. Comparison criteria for deciding...... on a type of machine are listed. Additional constraints emerging from the direct drive, vertical axis concepts are considered. General rules and a preliminary algorithm are discussed for the machine selected to be most suitable for the imposed conditions....

  5. A comparative investigation of three PM-less MW power range wind generator topologies

    DEFF Research Database (Denmark)

    Bratiloveanu, Catalin-Rauti; Traian Cosmin Anghelus, Dumitru; Boldea, I.

    2012-01-01

    As the wind energy penetration range increases steadily and the high energy PM costs are rising dramatically, PM-less large power wind generators with high performance are needed. Apart from extending the range of cage rotor induction generators, doubly-fed induction generators and dc excited...... investigates by quasi 2D-FEM two dc stator polarized (to increase machine side PWM converter voltage utilization, that is to reduce peak kVA ratings and costs of the machine side PWM converter) directly-driven switched reluctance generators (one with circumferential field and one with transverse flux (with...... heteropolar-rotor (standard) synchronous generators, especially for direct drives (very low speed) and multibrid (with single stage transmission (5/1-8/1 ratio)), new topologies have to be investigated to reduce initial costs and weights for high enough efficiency and energy annual yield. The present paper...

  6. Advanced control of a doubly-fed induction generator for wind energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Poitiers, F.; Bouaouiche, T.; Machmoum, M. [Institut de Recherche en Electronique et Electrotechnique de Nantes Atlantique, rue Christian Pauc, 44306 Nantes (France)

    2009-07-15

    The aim of this paper is to propose a control method for a doubly-fed induction generator used in wind energy conversion systems. First, stator active and reactive powers are regulated by controlling the machine inverter with three different controllers: proportional-integral, polynomial RST based on pole placement theory and Linear Quadratic Gaussian. The machine is tested in association with a wind-turbine emulator. Secondly a control strategy for the grid-converter is proposed. Simulations results are presented and discussed for each converter control and for the whole system. (author)

  7. Multi-Pole HTS Generators for Direct Drive Wind Turbines

    DEFF Research Database (Denmark)

    Jensen, Bogi Bech; Abrahamsen, Asger Bech; Seiler, Eugen

    or the performance of the coated conductor has to improve significantly (by a factor of 10 or more) in order for HTS generators to become feasible in direct drive offshore wind turbines. This price/performance improvement is not unrealistic in the coming decade. Additionally the reliability of such machines...

  8. Deterministic and probabilistic interval prediction for short-term wind power generation based on variational mode decomposition and machine learning methods

    International Nuclear Information System (INIS)

    Zhang, Yachao; Liu, Kaipei; Qin, Liang; An, Xueli

    2016-01-01

    Highlights: • Variational mode decomposition is adopted to process original wind power series. • A novel combined model based on machine learning methods is established. • An improved differential evolution algorithm is proposed for weight adjustment. • Probabilistic interval prediction is performed by quantile regression averaging. - Abstract: Due to the increasingly significant energy crisis nowadays, the exploitation and utilization of new clean energy gains more and more attention. As an important category of renewable energy, wind power generation has become the most rapidly growing renewable energy in China. However, the intermittency and volatility of wind power has restricted the large-scale integration of wind turbines into power systems. High-precision wind power forecasting is an effective measure to alleviate the negative influence of wind power generation on the power systems. In this paper, a novel combined model is proposed to improve the prediction performance for the short-term wind power forecasting. Variational mode decomposition is firstly adopted to handle the instability of the raw wind power series, and the subseries can be reconstructed by measuring sample entropy of the decomposed modes. Then the base models can be established for each subseries respectively. On this basis, the combined model is developed based on the optimal virtual prediction scheme, the weight matrix of which is dynamically adjusted by a self-adaptive multi-strategy differential evolution algorithm. Besides, a probabilistic interval prediction model based on quantile regression averaging and variational mode decomposition-based hybrid models is presented to quantify the potential risks of the wind power series. The simulation results indicate that: (1) the normalized mean absolute errors of the proposed combined model from one-step to three-step forecasting are 4.34%, 6.49% and 7.76%, respectively, which are much lower than those of the base models and the hybrid

  9. Solar wind classification from a machine learning perspective

    Science.gov (United States)

    Heidrich-Meisner, V.; Wimmer-Schweingruber, R. F.

    2017-12-01

    It is a very well known fact that the ubiquitous solar wind comes in at least two varieties, the slow solar wind and the coronal hole wind. The simplified view of two solar wind types has been frequently challenged. Existing solar wind categorization schemes rely mainly on different combinations of the solar wind proton speed, the O and C charge state ratios, the Alfvén speed, the expected proton temperature and the specific proton entropy. In available solar wind classification schemes, solar wind from stream interaction regimes is often considered either as coronal hole wind or slow solar wind, although their plasma properties are different compared to "pure" coronal hole or slow solar wind. As shown in Neugebauer et al. (2016), even if only two solar wind types are assumed, available solar wind categorization schemes differ considerably for intermediate solar wind speeds. Thus, the decision boundary between the coronal hole and the slow solar wind is so far not well defined.In this situation, a machine learning approach to solar wind classification can provide an additional perspective.We apply a well-known machine learning method, k-means, to the task of solar wind classification in order to answer the following questions: (1) How many solar wind types can reliably be identified in our data set comprised of ten years of solar wind observations from the Advanced Composition Explorer (ACE)? (2) Which combinations of solar wind parameters are particularly useful for solar wind classification?Potential subtypes of slow solar wind are of particular interest because they can provide hints of respective different source regions or release mechanisms of slow solar wind.

  10. Background and system description of the Mod 1 wind turbine generator

    Science.gov (United States)

    Ernst, E. H.

    1978-01-01

    The Mod-1 wind turbine considered is a large utility-class machine, operating in the high wind regime, which has the potential for generation of utility grade power at costs competitive with other alternative energy sources. A Mod-1 wind turbine generator (WTG) description is presented, taking into account the two variable-pitch steel blades of the rotor, the drive train, power generation/control, the Nacelle structure, and the yaw drive. The major surface elements of the WTG are the ground enclosure, the back-up battery system, the step-up transformer, elements of the data system, cabling, area lighting, and tower foundation. The final system weight (rotor, Nacelle, and tower) is expected to be about 650,000 pounds. The WTG will be capable of delivering 1800 kW to the utility grid in a wind-speed above 25 mph.

  11. Wind Generation Participation in Power System Frequency Response: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgian, Vahan; Zhang, Yingchen

    2017-01-01

    The electrical frequency of an interconnected power system must be maintained close its nominal level at all times. Excessive under- and overfrequency excursions can lead to load shedding, instability, machine damage, and even blackouts. There is a rising concern in the electric power industry in recent years about the declining amount of inertia and primary frequency response (PFR) in many interconnections. This decline may continue due to increasing penetrations of inverter-coupled generation and the planned retirements of conventional thermal plants. Inverter-coupled variable wind generation is capable of contributing to PFR and inertia with a response that is different from that of conventional generation. It is not yet entirely understood how such a response will affect the system at different wind power penetration levels. The modeling work presented in this paper evaluates the impact of wind generation's provision of these active power control strategies on a large, synchronous interconnection. All simulations were conducted on the U.S. Western Interconnection with different levels of instantaneous wind power penetrations (up to 80%). The ability of wind power plants to provide PFR - and a combination of synthetic inertial response and PFR - significantly improved the frequency response performance of the system.

  12. Wind Generators

    Science.gov (United States)

    1989-01-01

    When Enerpro, Inc. president, Frank J. Bourbeau, attempted to file a patent on a system for synchronizing a wind generator to the electric utility grid, he discovered Marshall Space Flight Center's Frank Nola's power factor controller. Bourbeau advanced the technology and received a NASA license and a patent for his Auto Synchronous Controller (ASC). The ASC reduces generator "inrush current," which occurs when large generators are abruptly brought on line. It controls voltage so the generator is smoothly connected to the utility grid when it reaches its synchronous speed, protecting the components from inrush current damage. Generator efficiency is also increased in light winds by applying lower than rated voltage. Wind energy is utilized to drive turbines to generate electricity for utility companies.

  13. Crowbar System in Doubly Fed Induction Wind Generators

    Directory of Open Access Journals (Sweden)

    Maurício B. C. Salles

    2010-04-01

    Full Text Available In the last 15 years, the use of doubly fed induction machines in modern variable-speed wind turbines has increased rapidly. This development has been driven by the cost reduction as well as the low-loss generation of Insulated Gate Bipolar Transistors (IGBT. According to new grid code requirements, wind turbines must remain connected to the grid during grid disturbances. Moreover, they must also contribute to voltage support during and after grid faults. The crowbar system is essential to avoid the disconnection of the doubly fed induction wind generators from the network during faults. The insertion of the crowbar in the rotor circuits for a short period of time enables a more efficient terminal voltage control. As a general rule, the activation and the deactivation of the crowbar system is based only on the DC-link voltage level of the back-to-back converters. In this context, the authors discuss the critical rotor speed to analyze the instability of doubly fed induction generators during grid faults.

  14. 风速波动下变速机组风电场的单机等值建模方法%Single machine equivalent modeling method of wind farms with variable speed wind turbines under wind speed fluctuations

    Institute of Scientific and Technical Information of China (English)

    苏勋文; 秦浩宇; 杨荣峰; 岳红轩

    2017-01-01

    由于风电机组的输出功率滞后于风速波动,等值风计算不能反映实际工况,采用DIg-SILENT/Powerfactory搭建变速机组风电场详细模型和单机等值模型,研究风速波动下双馈机组和直驱永磁机组风电场模型的并网点输出特性.研究表明:对于双馈机组风电场,与详细模型相比,单机等值模型会出现一定误差;对于直驱永磁机组风电场,使用等值风的优于使用平均风的等值模型.利用单机表征法建立的风电场等值模型与详细模型的动态响应基本一致.该研究验证了单机等值方法的有效性和适用性.%This paper seeks to explore an efficient and simple wind farm equivalent modeling meth-od. The exploration involves the following process:providing the calculation method of the equivalent pa-rameters and equivalent wind in the single machine equivalent model; developing a detailed model of wind farm and a single machine equivalent model using the simulation software DIgSILENT/Powerfactory;investigating dynamic response at point of interconnection of wind farm with doubly fed induction genera-tor wind turbines and directly driven permanent magnet wind turbines under wind speed fluctuation. The results demonstrate that, in the case of wind farm with doubly fed induction generator wind turbines, where wind turbine operates at the output power lagging behind the wind speed fluctuation, equivalent wind calculation fails to reflect the actual operating conditions; there occurs a certain error in the single machine equivalent model compared;equivalent wind is better than the average wind for wind farm with directly driven permanent magnet wind turbines;and the dynamic response is basically same between the equivalent model of wind farm based on the single machine representation method and the detailed model of wind farm. The research verifies the validity and applicability of the single machine equivalent method.

  15. An experimental study on a superconducting generator with dual machine shield system

    International Nuclear Information System (INIS)

    Ishigohka, T.; Ninomiya, A.; Okada, T.; Nitta, T.; Shintani, T.; Mukai, E.

    1988-01-01

    The authors have studied the optimal machine shield system through experiments on a 20kVa superconducting generator. The first experiment is carried out on a fully iron-less aluminum-shield machine which has only an aluminum eddy current machine shield in the stator. The second experiment is carried out on a generator with a dual-shield system which has both an aluminum eddy current shield and an iron magnetic shield. From the first one, the authors have got an experimental result that the aluminum-shield machine exhibits so large eddy current loss in the shield that it would be difficult to operate the machine continuously. On the other hand, the second experiment shows that the dual-shield machine exhibits much smaller loss in the shielding system, and that it has higher output power than the aluminum-shield machine. From these experiments, it becomes clear that insertion of a very thin iron shield between the armature winding and the eddy current shield can improve the machine performance eminently without large weight increase even if the iron shield were saturated

  16. Design of a 3 kW wind turbine generator with thin airfoil blades

    Energy Technology Data Exchange (ETDEWEB)

    Ameku, Kazumasa; Nagai, Baku M.; Roy, Jitendro Nath [Faculty of Mechanical Engineering, University of the Ryukyus, 1 Senbaru, Nishihara-cho, Okinawa 903-0213 (Japan)

    2008-09-15

    Three blades of a 3 kW prototype wind turbine generator were designed with thin airfoil and a tip speed ratio of 3. The wind turbine has been controlled via two control methods: the variable pitch angle and by regulation of the field current of the generator and examined under real wind conditions. The characteristics of the thin airfoil, called ''Seven arcs thin airfoil'' named so because the airfoil is composed of seven circular arcs, are analyzed with the airfoil design and analysis program XFOIL. The thin airfoil blade is designed and calculated by blade element and momentum theory. The performance characteristics of the machine such as rotational speed, generator output as well as stability for wind speed changes are described. In the case of average wind speeds of 10 m/s and a maximum of 19 m/s, the automatically controlled wind turbine ran safely through rough wind conditions and showed an average generator output of 1105 W and a power coefficient 0.14. (author)

  17. Study of the AC machines winding having fractional q

    Science.gov (United States)

    Bespalov, V. Y.; Sidorov, A. O.

    2018-02-01

    The winding schemes with a fractional numbers of slots per pole and phase q have been known and used for a long time. However, in the literature on the low-noise machines design there are not recommended to use. Nevertheless, fractional q windings have been realized in many applications of special AC electrical machines, allowing to improve their performance, including vibroacoustic one. This paper deals with harmonic analysis of windings having integer and fractional q in permanent magnet synchronous motors, a comparison of their characteristics is performed, frequencies of subharmonics are revealed. Optimal winding pitch design is found giving reduce the amplitudes of subharmonics. Distribution factors for subharmonics, fractional and high-order harmonics are calculated, results analysis is represented, allowing for giving recommendations how to calculate distribution factors for different harmonics when q is fractional.

  18. An experimental study of water absorption characteristics for generator stator winding insulation

    International Nuclear Information System (INIS)

    Lee, D. S.; Bae, Y. C.; Kim, H. S.; Kim, Y. H.; Lee, H.

    2004-01-01

    Leaking water coolant into stator electrical insulation is a growing concern for the aging water-cooled generator since leaks in the generator water-cooled stator winding can affect machine availability and insulation life. But a domestic techniques of such field are insufficient and depend wholly on GE or TOSHIBA technique. Therefore this paper introduces measuring principle and developed measuring system, which has been used to detecting wet absorption. We accomplished the experiment with a stator promotion of virtue which is used in actual power plant. Also, experimental method of generator stator winding, which is investigated into wet absorption test

  19. Variable slip wind generator modeling for real-time simulation

    Energy Technology Data Exchange (ETDEWEB)

    Gagnon, R.; Brochu, J.; Turmel, G. [Hydro-Quebec, Varennes, PQ (Canada). IREQ

    2006-07-01

    A model of a wind turbine using a variable slip wound-rotor induction machine was presented. The model was created as part of a library of generic wind generator models intended for wind integration studies. The stator winding of the wind generator was connected directly to the grid and the rotor was driven by the turbine through a drive train. The variable resistors was synthesized by an external resistor in parallel with a diode rectifier. A forced-commutated power electronic device (IGBT) was connected to the wound rotor by slip rings and brushes. Simulations were conducted in a Matlab/Simulink environment using SimPowerSystems blocks to model power systems elements and Simulink blocks to model the turbine, control system and drive train. Detailed descriptions of the turbine, the drive train and the control system were provided. The model's implementation in the simulator was also described. A case study demonstrating the real-time simulation of a wind generator connected at the distribution level of a power system was presented. Results of the case study were then compared with results obtained from the SimPowerSystems off-line simulation. Results showed good agreement between the waveforms, demonstrating the conformity of the real-time and the off-line simulations. The capability of Hypersim for real-time simulation of wind turbines with power electronic converters in a distribution network was demonstrated. It was concluded that hardware-in-the-loop (HIL) simulation of wind turbine controllers for wind integration studies in power systems is now feasible. 5 refs., 1 tab., 6 figs.

  20. Design and analysis of a direct-drive wind power generator with ultra-high torque density

    Science.gov (United States)

    Jian, Linni; Shi, Yujun; Wei, Jin; Zheng, Yanchong

    2015-05-01

    In order to get rid of the nuisances caused by mechanical gearboxes, generators with low rated speed, which can be directly connected to wind turbines, are attracting increasing attention. The purpose of this paper is to propose a new direct-drive wind power generator (DWPG), which can offer ultra-high torque density. First, magnetic gear (MG) is integrated to achieve non-contact torque transmission and speed variation. Second, armature windings are engaged to achieve electromechanical energy conversion. Interior permanent magnet (PM) design on the inner rotor is adopted to boost the torque transmission capability of the integrated MG. Nevertheless, due to lack of back iron on the stator, the proposed generator does not exhibit prominent salient feature, which usually exists in traditional interior PM (IPM) machines. This makes it with good controllability and high power factor as the surface-mounted permanent magnet machines. The performance is analyzed using finite element method. Investigation on the magnetic field harmonics demonstrates that the permanent-magnetic torque offered by the MG can work together with the electromagnetic torque offered by the armature windings to balance the driving torque captured by the wind turbine. This allows the proposed generator having the potential to offer even higher torque density than its integrated MG.

  1. Variable cross-section windings for efficiency improvement of electric machines

    Science.gov (United States)

    Grachev, P. Yu; Bazarov, A. A.; Tabachinskiy, A. S.

    2018-02-01

    Implementation of energy-saving technologies in industry is impossible without efficiency improvement of electric machines. The article considers the ways of efficiency improvement and mass and dimensions reduction of electric machines with electronic control. Features of compact winding design for stators and armatures are described. Influence of compact winding on thermal and electrical process is given. Finite element method was used in computer simulation.

  2. Multi-winding homopolar electric machine

    Science.gov (United States)

    Van Neste, Charles W

    2012-10-16

    A multi-winding homopolar electric machine and method for converting between mechanical energy and electrical energy. The electric machine includes a shaft defining an axis of rotation, first and second magnets, a shielding portion, and a conductor. First and second magnets are coaxial with the shaft and include a charged pole surface and an oppositely charged pole surface, the charged pole surfaces facing one another to form a repulsive field therebetween. The shield portion extends between the magnets to confine at least a portion of the repulsive field to between the first and second magnets. The conductor extends between first and second end contacts and is toroidally coiled about the first and second magnets and the shield portion to develop a voltage across the first and second end contacts in response to rotation of the electric machine about the axis of rotation.

  3. Superconducting Coil Winding Machine Control System

    Energy Technology Data Exchange (ETDEWEB)

    Nogiec, J. M. [Fermilab; Kotelnikov, S. [Fermilab; Makulski, A. [Fermilab; Walbridge, D. [Fermilab; Trombly-Freytag, K. [Fermilab

    2016-10-05

    The Spirex coil winding machine is used at Fermilab to build coils for superconducting magnets. Recently this ma-chine was equipped with a new control system, which al-lows operation from both a computer and a portable remote control unit. This control system is distributed between three layers, implemented on a PC, real-time target, and FPGA, providing respectively HMI, operational logic and direct controls. The system controls motion of all mechan-ical components and regulates the cable tension. Safety is ensured by a failsafe, redundant system.

  4. Lewis Research Center studies of multiple large wind turbine generators on a utility network

    Science.gov (United States)

    Gilbert, L. J.; Triezenberg, D. M.

    1979-01-01

    A NASA-Lewis program to study the anticipated performance of a wind turbine generator farm on an electric utility network is surveyed. The paper describes the approach of the Lewis Wind Energy Project Office to developing analysis capabilities in the area of wind turbine generator-utility network computer simulations. Attention is given to areas such as, the Lewis Purdue hybrid simulation, an independent stability study, DOE multiunit plant study, and the WEST simulator. Also covered are the Lewis mod-2 simulation including analog simulation of a two wind turbine system and comparison with Boeing simulation results, and gust response of a two machine model. Finally future work to be done is noted and it is concluded that the study shows little interaction between the generators and between the generators and the bus.

  5. A Case Study Regarding Influence of Solvers in Matlab/Simulink for Induction Machine Model in Wind Turbine Simulations

    DEFF Research Database (Denmark)

    Iov, F.; Blaabjerg, Frede; Hansen, A.D.

    2002-01-01

    In the last years Matlab/Simulink® has become the most used software for modelling and simulation of dynamic systems. Wind energy conversion systems are for example such systems because they contain parts with different range for the time constant: wind, turbine, generator, power electronics...... the different implementations of induction machine model, influence of the solvers from Simulink and how the simulation speed can be increase for a wind turbine....

  6. Model for Investigation of Operational Wind Power Plant Regimes with Doubly–Fed Asynchronous Machine in Power System

    Directory of Open Access Journals (Sweden)

    R. I. Mustafayev

    2012-01-01

    Full Text Available The paper presents methodology for mathematical modeling of power system (its part when jointly operated with wind power plants (stations that contain asynchronous doubly-fed machines used as generators. The essence and advantage of the methodology is that it allows efficiently to mate equations of doubly-fed asynchronous machines, written in the axes that rotate with the machine rotor speed with the equations of external electric power system, written in synchronously rotating axes.

  7. FY1999 technological development of wind power generation systems for islands. Development of wind power generation systems in islands; 1999 nendo ritoyo furyoku hatsuden system nado gijutsu kaihatsu. Rito ni okeru furyoku hatsuden system no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    With an objective of developing wind power generation systems that suit small to medium size islands in Japan, conceptual design was made on a 100-kW class wind mill to satisfy such requirements as no need of large heavy machines, and gust resisting performance. Investigations were performed on sites suitable for demonstration tests thereof. This paper reports the achievements in fiscal 1999. In investigating the site location feasibilities, which took small to medium size islands in Okinawa Prefecture as the discussion objects, environmental investigation, wind condition forecast and investigation, and system linkage investigation were carried out, whereas one point each in three islands were extracted as the promising sites. The system discussion and design called for wind velocity resistance of 80 m/s, system linkage percentage of 40% at maximum, power generation cost of 20 yen per kWh, design life of 20 years, constructability of requiring no large heavy machines, and operation mode of diesel hybrid use. Along with these specifications, conceptual design was performed on the system constituting elements, such as wind mill blades, generators, electric power control devices, and towers. In the blade aerodynamic test, wind tunnel tests were executed by using three types of blade wings. Sample blades were fabricated for the preparation of blade material tests. (NEDO)

  8. Grid-connected in-stream hydroelectric generation based on the doubly fed induction machine

    Science.gov (United States)

    Lenberg, Timothy J.

    Within the United States, there is a growing demand for new environmentally friendly power generation. This has led to a surge in wind turbine development. Unfortunately, wind is not a stable prime mover, but water is. Why not apply the advances made for wind to in-stream hydroelectric generation? One important advancement is the creation of the Doubly Fed Induction Machine (DFIM). This thesis covers the application of a gearless DFIM topology for hydrokinetic generation. After providing background, this thesis presents many of the options available for the mechanical portion of the design. A mechanical turbine is then specified. Next, a method is presented for designing a DFIM including the actual design for this application. In Chapter 4, a simulation model of the system is presented, complete with a control system that maximizes power generation based on water speed. This section then goes on to present simulation results demonstrating proper operation.

  9. Wind Generators and Market Power

    DEFF Research Database (Denmark)

    Misir, Nihat

    price thresholds are significantly higher when the monopolist at the peakload level owns both types of generators. Furthermore, when producing electricity with the peakload generator, the monopolist can avoid facing prices below marginal cost by owning a certain share of the wind generators.......Electricity production from wind generators holds significant importance in European Union’s 20% renewable energy target by 2020. In this paper, I show that ownership of wind generators affects market outcomes by using both a Cournot oligopoly model and a real options model. In the Cournot...... oligopoly model, ownership of the wind generators by owners of fossil-fueled (peakload) generators decreases total peakload production and increases the market price. These effects increase with total wind generation and aggregate wind generator ownership. In the real options model, start up and shut down...

  10. Permanent magnet machine with windings having strand transposition

    Science.gov (United States)

    Qu, Ronghai; Jansen, Patrick Lee

    2009-04-21

    This document discusses, among other things, a stator with transposition between the windings or coils. The coils are free from transposition to increase the fill factor of the stator slots. The transposition at the end connections between an inner coil and an outer coil provide transposition to reduce circulating current loss. The increased fill factor reduces further current losses. Such a stator is used in a dual rotor, permanent magnet machine, for example, in a compressor pump, wind turbine gearbox, wind turbine rotor.

  11. Effect of pole number and slot number on performance of dual rotor permanent magnet wind power generator using ferrite magnets

    Directory of Open Access Journals (Sweden)

    Peifeng Xu

    2017-05-01

    Full Text Available Dual rotor permanent magnet (DRPM wind power generator using ferrite magnets has the advantages of low cost, high efficiency, and high torque density. How to further improve the performance and reduce the cost of the machine by proper choice of pole number and slot number is an important problem to be solved when performing preliminarily design a DRPM wind generator. This paper presents a comprehensive performance comparison of a DRPM wind generator using ferrite magnets with different slot and pole number combinations. The main winding factors are calculated by means of the star of slots. Under the same machine volume and ferrite consumption, the flux linkage, back-electromotive force (EMF, cogging torque, output torque, torque pulsation, and losses are investigated and compared using finite element analysis (FEA. The results show that the slot and pole number combinations have an important impact on the generator properties.

  12. Wind Turbine Generator Modeling and Simulation Where Rotational Speed is the Controlled Variable

    DEFF Research Database (Denmark)

    Mihet-Popa, Lucian; Blaabjerg, Frede; Boldea, Ion

    2004-01-01

    the interaction between a wind turbine and the power system. The model is intended to simulate the behaviour of the wind turbine using induction generators both during normal operation. Sample simulation results for two induction generators (2/0.5 MW) validate the fundamental issues.......To optimise the power produced in a wind turbine, the speed of the turbine should vary with the wind speed. A simple control method is proposed that will allow an induction machine to run a turbine at its maximum power coefficient. Various types of power control strategies have been suggested...... for application in variable speed wind turbines. The usual strategy is to control the power or the torque acting on the wind turbine shafts. This paper presents an alternative control strategy, where the rotational speed is the controlled variable. The paper describes a model, which is being developed to simulate...

  13. Electromagnetic force analysis on the stator and rotor windings of a superconducting generator

    International Nuclear Information System (INIS)

    Colovini, L.; Martinelli, G.; Morini, A.

    1985-01-01

    The determination of values and distribution of the forces acting on the components of a superconducting generator is important when designing the machine, particularly in the choice of materials. The paper analyses the electromagnetic forces acting on the field and armature windings; for this purpose, with reference to the preliminary design of a two-pole 300 MVA superconducting generator, a two-dimensional analytical method set up by the authors is utilized to calculate the forces on the windings under steady state operation and results are compared with those obtained by means of a numerical method

  14. Magnet Free Generators - 3rd Generation Wind Turbine Generators

    DEFF Research Database (Denmark)

    Jensen, Bogi Bech; Mijatovic, Nenad; Henriksen, Matthew Lee

    2013-01-01

    This paper presents an introduction to superconducting wind turbine generators, which are often referred to as 3rd generation wind turbine generators. Advantages and challenges of superconducting generators are presented with particular focus on possible weight and efficiency improvements. A comp...

  15. Rotor Position Estimation for Switched Reluctance Wind Generator Using Extreme Learning Machine

    DEFF Research Database (Denmark)

    Wang, Chao; Liu, Xiao; Chen, Zhe

    2014-01-01

    Switched reluctance generator (SRG) is becoming more and more attractive in wind energy applications mainly because of its high fault tolerant ability and high reliability. The position sensor is one of the vulnerable points of the SRG when exposed to harsh environments such as offshore where man...

  16. DOE/NASA Lewis large-wind-turbine program

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, R.L.

    1982-01-01

    There are several ongoing large wind system development project; ots directed toward meeting the technology requirements for utility applications. First generation tehcnology machines (Mod-0A and Mod-1) and second generation machines (Mod-2) are in opoeration at selected utility sites. Third generation technology machines (Mod-5) are in the design phase and are scheduled for initial operation in 1984 if project funding is continued. An overview of the large wind turbine activities managed by NASA Lewis is provided. These activities include results from the first and second generation field machines (Mod-0A, 01, and -2), the status of the Department of Interior WTS-4 machine for which NASA is responsible for technical management, and the design phase of the third generation wind turbines (Mod-5).

  17. Vibration monitoring of large generator stator and-winding

    International Nuclear Information System (INIS)

    Duffeau, F.; Bernard, P.

    1999-01-01

    Large generators of French Nuclear Power plants are equipped with a standardised vibration monitoring system. The first aim of these new systems is to protect the machines by generating alarms in the control room when predefined vibration thresholds have been over-passed. Secondly, this specially designed instrumentation permits to create a National data base allowing to compare different generators of the same technology. Additionally, statistical methods have been developed in order to 'guess' vibration level at several locations of the stator end-windings, depending on the actual operating parameters of the generator, i.e. reactive and active power load. So this paper presents the general concept of the vibration monitoring of EDF large generator stators and deals with a new method to predict vibrations in different locations under control. (authors)

  18. FUZZY LOGIC BASED INTELLIGENT CONTROL OF A VARIABLE SPEED CAGE MACHINE WIND GENERATION SYSTEM

    Science.gov (United States)

    The paper describes a variable-speed wind generation system where fuzzy logic principles are used to optimize efficiency and enhance performance control. A squirrel cage induction generator feeds the power to a double-sided pulse width modulated converter system which either pump...

  19. The general atomic strand winding machine

    International Nuclear Information System (INIS)

    Matt, P.

    1976-01-01

    In conjunction with the integrated development of their high temperature gas cooled reactors (HTGR), General Atomic of San Diego, USA, also developed a strand winding system for the horizontal prestressing of pressure vessels. The machine lay-out, its capabilities and the test program carried out in the laboratory and on a full scale pressure vessel model are described. (author)

  20. Comparison of PMAC Machines for Starter-Generator Application in a Series Hybrid-Electric Bus

    OpenAIRE

    Sinisa Jurkovic; Elias G. Strangas

    2011-01-01

    This paper presents a comparative study of outer rotor PMAC machine candidates for starter-generator application in hybrid bus with series power train configuration. PMAC machines with interior and surface mount permanent magnets are considered and compared, although a complete analysis is only carried out for the SPM. Different design aspects such as concentrated versus distributed windings as well as interior and exterior rotor structures are evaluated. Different slot numbers per pole per p...

  1. Probabilistic Wind Power Ramp Forecasting Based on a Scenario Generation Method

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qin [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Florita, Anthony R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Krishnan, Venkat K [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hodge, Brian S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cui, Mingjian [University of Texas at Dallas; Feng, Cong [University of Texas at Dallas; Wang, Zhenke [University of Texas at Dallas; Zhang, Jie [University of Texas at Dallas

    2018-02-01

    Wind power ramps (WPRs) are particularly important in the management and dispatch of wind power and currently drawing the attention of balancing authorities. With the aim to reduce the impact of WPRs for power system operations, this paper develops a probabilistic ramp forecasting method based on a large number of simulated scenarios. An ensemble machine learning technique is first adopted to forecast the basic wind power forecasting scenario and calculate the historical forecasting errors. A continuous Gaussian mixture model (GMM) is used to fit the probability distribution function (PDF) of forecasting errors. The cumulative distribution function (CDF) is analytically deduced. The inverse transform method based on Monte Carlo sampling and the CDF is used to generate a massive number of forecasting error scenarios. An optimized swinging door algorithm is adopted to extract all the WPRs from the complete set of wind power forecasting scenarios. The probabilistic forecasting results of ramp duration and start-time are generated based on all scenarios. Numerical simulations on publicly available wind power data show that within a predefined tolerance level, the developed probabilistic wind power ramp forecasting method is able to predict WPRs with a high level of sharpness and accuracy.

  2. Reduced-Capacity Inrush Current Suppressor Using a Matrix Converter in a Wind Power Generation System with Squirrel-Cage Induction Machines

    Directory of Open Access Journals (Sweden)

    Sho Shibata

    2016-03-01

    Full Text Available This paper describes the reduced capacity of the inrush current suppressor using a matrix converter (MC in a large-capacity wind power generation system (WPGS with two squirrel-cage induction machines (SCIMs. These SCIMs are switched over depending on the wind speed. The input side of the MC is connected to the source in parallel. The output side of the MC is connected in series with the SCIM through matching transformers. The modulation method of the MC used is direct duty ratio pulse width modulation. The reference output voltage of the MC is decided by multiplying the SCIM current with the variable control gain. Therefore, the MC performs as resistors for the inrush current. Digital computer simulation is implemented to confirm the validity and practicability of the proposed inrush current suppressor using PSCAD/EMTDC (power system computer-aided design/electromagnetic transients including DC. Furthermore, the equivalent resistance of the MC is decided by the relationship between the equivalent resistance and the capacity of the MC. Simulation results demonstrate that the proposed inrush current suppressor can suppress the inrush current perfectly.

  3. Wind electric power generation

    International Nuclear Information System (INIS)

    Groening, B.; Koch, M.; Canter, B.; Moeller, T.

    1995-01-01

    The monthly statistics of wind electric power generation in Denmark are compiled from information given by the owners of private wind turbines. For each wind turbine the name of the site and of the type of turbine is given, and the power generation data are given for the month in question together with the total production in 1988 and 1989. Also the data of operation start are given. On the map of Denmark the sites of the wind turbines are marked. The statistics for December 1994 comprise 2328 wind turbines

  4. ZONES OF STEADY CAPACITOR EXCITATION IN A MODE OF GENERATION OF TYPICAL ASYNCHRONOUS MACHINES

    Directory of Open Access Journals (Sweden)

    Postoronca Sv.

    2009-12-01

    Full Text Available In work some features of a mode of capacitor excitation of industrial asynchronous electric motors, and also generators made on their base which can be used in wind installations of low power are considered. Borders of zones of steady capacitor excitation of asynchronous electric motors in rated power of 0,25-22,0 kW and generators made on their base, and also character of influence of own losses and active capacity of loading of the equivalent circuit of the asynchronous machine resulted in parameters have been determined. Some recommendations after maintenance of stability of capacitor excitation of asynchronous machines for work in a mode of generation of electric energy are given.

  5. Coordinated control of wind generation and energy storage for power system frequency regulation

    Science.gov (United States)

    Baone, Chaitanya Ashok

    Large-scale centralized synchronous generators have long been the primary actors in exercising active power and frequency control, and much of the existing grid control framework is predicated upon their dynamic terminal characteristics. Important among these characteristics is the inertia of such generators. These play key roles in determining the electromechanical stability of the electric power grid. Modern wind generator systems are partially or fully connected to the grid through power electronic interfaces, and hence do not present the same level of inertial coupling. The absence of inertial frequency response from modern wind generator systems is a topic of growing concern in power engineering practice, as the penetration of wind generation is expected to grow dramatically in the next few years. Solutions proposed in the literature have sought to address this problem by seeking to mimic the inherent inertial response characteristics of traditional synchronous generators via control loops added to wind generators. Recent literature has raised concerns regarding this approach, and the work here will further examine its shortcomings, motivating approaches that seek to optimally design for the characteristics of the equipment exercising the control, rather than forcing new technologies to mimic the characteristics of synchronous machines. In particular, this work will develop a new approach to power system frequency regulation, with features suited to distributed energy storage devices such as grid-scale batteries and wind turbine speed and blade pitch control. The dynamic characteristics of these new technologies are treated along with existing mechanisms, such as synchronous machine governor control, to develop a comprehensive multi-input control design approach. To make the method practically feasible for geographically distributed power systems, an observer-based distributed control design utilizing phasor measurement unit (PMU) signals along with local

  6. Machine for winding under tension a prestressing wire

    International Nuclear Information System (INIS)

    Perez, M.A.; Thillet, Georges.

    1975-01-01

    This invention concerns a machine for winding under tension a prestressing wire or cable. It is used in the wrapping of cylindrical structures, particularly concrete vessels, for the purpose of achieving radial prestressing in them [fr

  7. Design study of 10 kW superconducting generator for wind turbine applications

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Mijatovic, Nenad; Seiler, Eugen

    2009-01-01

    = 1 Tesla to be similar to the performance of permanent magnets and to represent a layout, which can be scaled up in future off-shore wind turbines. The proposed generator is a 8 pole synchronous machine based on race-track coils of high temperature superconducting tapes and an air cored copper stator...

  8. Axial gap rotating electrical machine

    Science.gov (United States)

    None

    2016-02-23

    Direct drive rotating electrical machines with axial air gaps are disclosed. In these machines, a rotor ring and stator ring define an axial air gap between them. Sets of gap-maintaining rolling supports bear between the rotor ring and the stator ring at their peripheries to maintain the axial air gap. Also disclosed are wind turbines using these generators, and structures and methods for mounting direct drive rotating electrical generators to the hubs of wind turbines. In particular, the rotor ring of the generator may be carried directly by the hub of a wind turbine to rotate relative to a shaft without being mounted directly to the shaft.

  9. Wind electric power generation

    International Nuclear Information System (INIS)

    Koch, M. K.; Wind, L.; Canter, B.; Moeller, T.

    2002-01-01

    The monthly statistics of wind electric power generation in Denmark are compiled from information given by the owners of the private wind turbines. For each wind turbine the name of the site and of the type of turbine is given, and the power generation data are given for the month in question together with the total production in 2000 and 2001. Also the data of operation start are given. On the map of Denmark the sites of the wind turbines are marked. (SM)

  10. Wind electric power generation

    International Nuclear Information System (INIS)

    Koch, M.K.; Wind, L.; Canter, B.; Moeller, T.

    2001-01-01

    The monthly statistics of wind electric power generation in Denmark are compiled from information given by the owners of the private wind turbines. For each wind turbine the name of the site and of the type of turbine is given, and the power generation data are given for the month in question together with the total production in 1999 and 2000. Also the data of operation start are given. On the map of Denmark the sites of the wind turbines are marked. (CLS)

  11. Design and Comparison of a Novel Stator Interior Permanent Magnet Generator for Direct-Drive Wind Turbines

    DEFF Research Database (Denmark)

    Zhang, Johan Xi; Chen, Zhe; Cheng, M.

    2007-01-01

    A novel stator interior permanent magnet generator (SIPMG) is presented. A modular stator design is used for convenience in manufacture and maintenance. The generator has the advantages of rugged rotor and concentrated winding design whereas the torque ripple is smaller than that produced...... by a doubly salient machine. Several low-speed multi-pole SIPMGs are designed for direct-drive wind turbines with ratings from 3 to 10 MW. Comparisons between the SIPMG and rotor-surface-mounted permanent magnet synchronous generator (PMSG) show that the SIPMGs have about 120% torque density and 78% cost per...

  12. Device for delivering cryogen to rotary super-conducting winding of cryogen-cooled electrical machine

    International Nuclear Information System (INIS)

    Filippov, I.F.; Gorbunov, G.S.; Khutoretsky, G.M.; Popov, J.S.; Skachkov, J.V.; Vinokurov, A.A.

    1980-01-01

    A device is disclosed for delivering cryogen to a superconducting winding of a cryogen-cooled electrical machine comprising a pipe articulated along the axis of the electrical machine and intended to deliver cryogen. One end of said pipe is located in a rotary chamber which communicates through channels with the space of the electrical machine, and said space accommodating its superconducting winding. The said chamber accommodates a needle installed along the chamber axis, and the length of said needle is of sufficient length such that in the advanced position of said cryogen delivering pipe said needle reaches the end of the pipe. The layout of the electrical machine increases the reliability and effectiveness of the device for delivering cryogen to the superconducting winding, simplifies the design of the device and raises the efficiency of the electrical machine

  13. Linear wind generator

    International Nuclear Information System (INIS)

    Kozarov, A.; Petrov, O.; Antonov, J.; Sotirova, S.; Petrova, B.

    2006-01-01

    The purpose of the linear wind-power generator described in this article is to decrease the following disadvantages of the common wind-powered turbine: 1) large bending and twisting moments to the blades and the shaft, especially when strong winds and turbulence exist; 2) significant values of the natural oscillation period of the construction result in the possibility of occurrence of destroying resonance oscillations; 3) high velocity of the peripheral parts of the rotor creating a danger for birds; 4) difficulties, connected with the installation and the operation on the mountain ridges and passages where the wind energy potential is the largest. The working surfaces of the generator in questions driven by the wind are not connected with a joint shaft but each moves along a railway track with few oscillations. So the sizes of each component are small and their number can be rather large. The mechanical trajectory is not a circle but a closed outline in a vertical plain, which consists of two rectilinear sectors, one above the other, connected in their ends by semi-circumferences. The mechanical energy of each component turns into electrical on the principle of the linear electrical generator. A regulation is provided when the direction of the wind is perpendicular to the route. A possibility of effectiveness is shown through aiming of additional quantities of air to the movable components by static barriers

  14. Is nuclear energy power generation more dangerous than power generation by wind and solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Y

    1979-03-01

    Since the occurrence of the petroleum crisis, many countries have devoted a great deal of effort to search for substitute energy sources. Aside from nuclear energy, forms of power generation with wind, solar energy, and geothermal energy have all been actually adopted in one place or another. Most recently, a research report was published by the Canadian Bureau of Nuclear Energy Management stating that the use of wind and solar energy to generate electricity is much more dangerous than power generation with nuclear energy. When mining, transportation, machine manufacturing, etc. are included in the process of producing unit power, i.e. kilowatt/year, the data of various risks of death, injury, and diseases are computed in terms of man/day losses by the bureau. They indicate that of the ten forms of power generation, the danger is the least with natural gas, only about a 6 man/day, and nuclear energy is the next least dangerous, about 10 man/day. The danger of using temperature differential of sea water to generate electricity is about 25 man/day, and the most dangerous form of power generation is coal, amounting to three thousand man/day.

  15. Winding machine and tools for the ISR Superconducting Quadrupole Prototype

    CERN Multimedia

    1975-01-01

    The picture shows the rotating and rocking winding machine with its "light" clamping system to keep the conductor turns in place during winding.At the back left one sees the conductor spool with its electromagnetic brake and the "heavy" clamping system used during curing. See also 7510217X, 7702690X.

  16. Analysis of induction machines with combined stator windings

    Czech Academy of Sciences Publication Activity Database

    Schreier, Luděk; Bendl, Jiří; Chomát, Miroslav

    2015-01-01

    Roč. 60, č. 2 (2015), s. 155-171 ISSN 0001-7043 R&D Projects: GA ČR GA13-35370S Institutional support: RVO:61388998 Keywords : induction machines * symmetrical components * combined stator winding Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  17. Probabilistic Wind Power Ramp Forecasting Based on a Scenario Generation Method: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qin [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Florita, Anthony R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Krishnan, Venkat K [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hodge, Brian S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cui, Mingjian [Univ. of Texas-Dallas, Richardson, TX (United States); Feng, Cong [Univ. of Texas-Dallas, Richardson, TX (United States); Wang, Zhenke [Univ. of Texas-Dallas, Richardson, TX (United States); Zhang, Jie [Univ. of Texas-Dallas, Richardson, TX (United States)

    2017-08-31

    Wind power ramps (WPRs) are particularly important in the management and dispatch of wind power, and they are currently drawing the attention of balancing authorities. With the aim to reduce the impact of WPRs for power system operations, this paper develops a probabilistic ramp forecasting method based on a large number of simulated scenarios. An ensemble machine learning technique is first adopted to forecast the basic wind power forecasting scenario and calculate the historical forecasting errors. A continuous Gaussian mixture model (GMM) is used to fit the probability distribution function (PDF) of forecasting errors. The cumulative distribution function (CDF) is analytically deduced. The inverse transform method based on Monte Carlo sampling and the CDF is used to generate a massive number of forecasting error scenarios. An optimized swinging door algorithm is adopted to extract all the WPRs from the complete set of wind power forecasting scenarios. The probabilistic forecasting results of ramp duration and start time are generated based on all scenarios. Numerical simulations on publicly available wind power data show that within a predefined tolerance level, the developed probabilistic wind power ramp forecasting method is able to predict WPRs with a high level of sharpness and accuracy.

  18. Stator for a rotating electrical machine having multiple control windings

    Science.gov (United States)

    Shah, Manoj R.; Lewandowski, Chad R.

    2001-07-17

    A rotating electric machine is provided which includes multiple independent control windings for compensating for rotor imbalances and for levitating/centering the rotor. The multiple independent control windings are placed at different axial locations along the rotor to oppose forces created by imbalances at different axial locations along the rotor. The multiple control windings can also be used to levitate/center the rotor with a relatively small magnetic field per unit area since the rotor and/or the main power winding provides the bias field.

  19. Influence of Rare Earth Element Supply on Future Offshore Wind Turbine Generators

    DEFF Research Database (Denmark)

    Jensen, Bogi Bech; Abrahamsen, Asger Bech; Henriksen, Matthew Lee

    2011-01-01

    electrical machines. Such machines are utilized in applications such as electric cars, and wind turbines. This paper will examine the rare earth supply issue, in order to comment on its relevance to the wind turbine industry. The wind turbine topologies which are currently being used are compared...

  20. Design of an Electric Commutated Frog-Leg Winding Permanent-Magnet DC Machine

    Directory of Open Access Journals (Sweden)

    Hang Zhang

    2014-03-01

    Full Text Available An electric commutated frog-leg winding permanent-magnet (PM DC machine is proposed in this paper. It has a semi-closed slotted stator with a classical type of mesh winding introduced from the conventional brushed DC machine and a polyphase electric commutation besides a PM excitation rotor and a circular arrayed Hall position sensor. Under the cooperation between the position sensor and the electric commutation, the proposed machine is basically operated on the same principle of the brushed one. Because of its simplex frog-leg winding, the combination between poles and slots is designed as 4/22, and the number of phases is set as 11. By applying an exact analytical method, which is verified comparable with the finite element analyses (FEA, to the prediction of its instantaneous magnetic field, electromotive force (EMF, cogging torque and output torque, it is well designed with a series of parameters in dimension aiming at the lowest cogging torque. A 230 W, 4-pole, and 22-slot new machine is prototyped and tested to verify the analysis.

  1. Control system of mutually coupled switched reluctance motor drive of mining machines in generator mode

    Science.gov (United States)

    Ivanov, A. S.; Kalanchin, I. Yu; Pugacheva, E. E.

    2017-09-01

    One of the first electric motors, based on the use of electromagnets, was a reluctance motor in the XIX century. Due to the complexities in the implementation of control system the development of switched reluctance electric machines was repeatedly initiated only in 1960 thanks to the development of computers and power electronic devices. The main feature of these machines is the capacity to work both in engine mode and in generator mode. Thanks to a simple and reliable design in which there is no winding of the rotor, commutator, permanent magnets, a reactive gate-inductor electric drive operating in the engine mode is actively being introduced into various areas such as car industry, production of household appliances, wind power engineering, as well as responsible production processes in the oil and mining industries. However, the existing shortcomings of switched reluctance electric machines, such as nonlinear pulsations of electromagnetic moment, the presence of three or four phase supply system and sensor of rotor position prevent wide distribution of this kind of electric machines.

  2. Superconducting three element synchronous ac machine

    International Nuclear Information System (INIS)

    Boyer, L.; Chabrerie, J.P.; Mailfert, A.; Renard, M.

    1975-01-01

    There is a growing interest in ac superconducting machines. Of several new concepts proposed for these machines in the last years one of the most promising seems to be the ''three elements'' concept which allows the cancellation of the torque acting on the superconducting field winding, thus overcoming some of the major contraints. This concept leads to a device of induction-type generator. A synchronous, three element superconducting ac machine is described, in which a room temperature, dc fed rotating winding is inserted between the superconducting field winding and the ac armature. The steady-state machine theory is developed, the flux linkages are established, and the torque expressions are derived. The condition for zero torque on the field winding, as well as the resulting electrical equations of the machine, are given. The theoretical behavior of the machine is studied, using phasor diagrams and assuming for the superconducting field winding either a constant current or a constant flux condition

  3. Model 0A wind turbine generator FMEA

    Science.gov (United States)

    Klein, William E.; Lalli, Vincent R.

    1989-01-01

    The results of Failure Modes and Effects Analysis (FMEA) conducted for the Wind Turbine Generators are presented. The FMEA was performed for the functional modes of each system, subsystem, or component. The single-point failures were eliminated for most of the systems. The blade system was the only exception. The qualitative probability of a blade separating was estimated at level D-remote. Many changes were made to the hardware as a result of this analysis. The most significant change was the addition of the safety system. Operational experience and need to improve machine availability have resulted in subsequent changes to the various systems which are also reflected in this FMEA.

  4. Performance analysis of a composite dual-winding reluctance machine

    International Nuclear Information System (INIS)

    Anih, Linus U.; Obe, Emeka S.

    2009-01-01

    The electromagnetic energy conversion process of a composite dual-winding asynchronous reluctance machine is presented. The mechanism of torque production is explained using the magnetic fields distributions. The dynamic model developed in dq-rotor reference frame from first principles depicts the machine operation and response to sudden load change. The device is self-starting in the absence of rotor conductors and its starting current is lower than that of a conventional induction machine. Although the machine possesses salient pole rotors, it is clearly shown that its performance is that of an induction motor operating at half the synchronous speed. Hence the device produces synchronous torque while operating asynchronously. Simple tests were conducted on a prototype demonstration machine and the results obtained are seen to be in tune with the theory and the steady-state calculations.

  5. Optimal controller design of a doubly fed induction generator wind turbine system for small signal stability enhancement

    DEFF Research Database (Denmark)

    Yang, Lihui; Yang, Guang-Ya; Xu, Zhao

    2010-01-01

    Multi-objective optimal controller design of a doubly-fed induction generator (DFIG) wind turbine system using differential evolution (DE) is presented. A detailed mathematical model of DFIG wind turbine with a closed-loop vector control system is developed. Based on this, objective functions...... and the constraint with DE, respectively. Eigenvalue analysis and time-domain simulations are performed on a single machine infinite bus system as well as a nine-bus multi-machine system with two DFIG wind turbines to illustrate the control performance of the DFIG wind turbine with the optimised controller...... addressing the steady-state stability and dynamic performance at different operating conditions are implemented to optimise the controller parameters of both the rotor and grid-side converters. A superior 1-constraint method and method of adaptive penalties are applied to handle the multi-objective problem...

  6. Simplified model of wind turbines with doubly-fed induction generator

    Energy Technology Data Exchange (ETDEWEB)

    Timbus, Adrian; Korba, Petr [ABB Corporate Research, Baden-Daettwil (Switzerland); Vilhunen, Antti; Pepe, Giuseppe; Seman, Slavomir; Niiranen, Jouko [ABB Oy, Helsinki (Finland)

    2011-07-01

    With an ever increasing pace of wind power installations around the world, the necessity of studying the functionality of the power system with intermittent generation becomes a critical necessity. Power system studies have been carried out by different organizations, using mainly generic models of turbines available in most utilized software tools such as PSS/E, PowerFactory, PSLF, etc. Very often the system operators ask for models of turbines which represent a specific vendor, hence vendor specific models become also available in these tools. These are necessary to evaluate a realistic response of the grid when a particular technology is used for the wind turbines. This paper elaborates on the development of a simplified model of a wind turbine equipped with Doubly-Fed Induction Generator. The model is meant to be suitable for power system studies and should reflect the concept provided by ABB. This model comprises a series of state machines which reflect the functionality of the turbine from start-up until shut-down due to high wind speeds. In addition, attention and efforts were focused to provide the right functionality during low voltage values, - the so called low voltage ride through feature - and to support the grid after voltage sag. (orig.)

  7. The Bearingless Electrical Machine

    Science.gov (United States)

    Bichsel, J.

    1992-01-01

    Electromagnetic bearings allow the suspension of solids. For rotary applications, the most important physical effect is the force of a magnetic circuit to a high permeable armature, called the MAXWELL force. Contrary to the commonly used MAXWELL bearings, the bearingless electrical machine will take advantage of the reaction force of a conductor carrying a current in a magnetic field. This kind of force, called Lorentz force, generates the torque in direct current, asynchronous and synchronous machines. The magnetic field, which already exists in electrical machines and helps to build up the torque, can also be used for the suspension of the rotor. Besides the normal winding of the stator, a special winding was added, which generates forces for levitation. So a radial bearing, which is integrated directly in the active part of the machine, and the motor use the laminated core simultaneously. The winding was constructed for the levitating forces in a special way so that commercially available standard ac inverters for drives can be used. Besides wholly magnetic suspended machines, there is a wide range of applications for normal drives with ball bearings. Resonances of the rotor, especially critical speeds, can be damped actively.

  8. Wind power. [electricity generation

    Science.gov (United States)

    Savino, J. M.

    1975-01-01

    A historical background on windmill use, the nature of wind, wind conversion system technology and requirements, the economics of wind power and comparisons with alternative systems, data needs, technology development needs, and an implementation plan for wind energy are presented. Considerable progress took place during the 1950's. Most of the modern windmills feature a wind turbine electricity generator located directly at the top of their rotor towers.

  9. Induction generator-induction motor wind-powered pumping system

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, M.S.; Lyra, R.O.C.; Silva, S.R. [CPDEE - UFMG, Belo Horizonte (Brazil)

    1997-12-31

    The energy storage matter plays an important role in wind-electric conversion systems for isolated applications. Having that in mind, two different approaches can be basically considered: either the immediate conversion of the generated electric energy, as in a water pumping system or electric energy storage for later use, as in a battery charging system. Due to some features such as no need of an external reactive power source and, sometimes, a gearbox, permanent-magnet synchronous generators have been broadly used in low rated power isolated systems. Despite that, system performance can be affected when the generator is feeding an inductive load (e.g., an induction motor) under variable-speed-variable-frequency operational conditions. Since there is no effective flux control, motor overload may occur at high wind speeds. Thus, good system performance can be obtained through additional control devices which may increase system cost. Although being rugged and cheap, induction machines always work as a reactive power drain; therefore, they demand an external reactive power source. Considering that, reactive static compensators appear as an attractive alternative to the cost x performance problem. In addition to that, different control strategies can be used so that system performance can be improved.

  10. Wind power generation

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    The monthly statistics of wind electric power generation in Denmark are compiled from information given by the owners of private wind turbines. The data are arranged according to the size of the turbines. For each wind turbine the name of the site and type of turbine is given as well as the production during the last 3 months in 1998, and the total production in 1997 and 1998. Data on the operation is given

  11. Trading wind generation from short-term probabilistic forecasts of wind power

    DEFF Research Database (Denmark)

    Pinson, Pierre; Chevallier, Christophe; Kariniotakis, Georges

    2007-01-01

    Due to the fluctuating nature of the wind resource, a wind power producer participating in a liberalized electricity market is subject to penalties related to regulation costs. Accurate forecasts of wind generation are therefore paramount for reducing such penalties and thus maximizing revenue......, as well as on modeling of the sensitivity a wind power producer may have to regulation costs. The benefits resulting from the application of these strategies are clearly demonstrated on the test case of the participation of a multi-MW wind farm in the Dutch electricity market over a year....... participation. Such strategies permit to further increase revenues and thus enhance competitiveness of wind generation compared to other forms of dispatchable generation. This paper formulates a general methodology for deriving optimal bidding strategies based on probabilistic forecasts of wind generation...

  12. Wind energy systems solutions for power quality and stabilization

    CERN Document Server

    Ali, Mohd Hasan

    2012-01-01

    Unlike conventional power plants, wind plants emit no air pollutants or greenhouse gases--and wind energy is a free, renewable resource. However, the induction machines commonly used as wind generators have stability problems similar to the transient stability of synchronous machines. To minimize power, frequency, and voltage fluctuations caused by network faults or random wind speed variations, control mechanisms are necessary. Wind Energy Systems: Solutions for Power Quality and Stabilization clearly explains how to solve stability and power quality issues of wind generator systems. Covering

  13. Superconducting wind turbine generators

    DEFF Research Database (Denmark)

    Mijatovic, Nenad

    cryostat design, where a concept with 20 W of heat transfer is achieved. Following the setup description, the focus turns to the electromagnetic design of the HTS machine. Particularly, an approach to increase the performance of HTS coils and the influence of the armature reaction to the HTS field winding...... magnetic characteristic with respect to the critical current. I have showed that the potential for the reduction of HTS conductor can be significant, if the coils are placed strategically, whereby the coils wound with BSCCO performed 40% better depending on the placement in the field winding. The 2G coils...... were less sensitive to the placement which made them particularly useful for high magnetic field regions in the eld winding. The second design approach proposed and tested was to use multiple current supplies which allowed each coil to operate close to its critical current. I have demonstrated...

  14. Estimation of the wind turbine yaw error by support vector machines

    DEFF Research Database (Denmark)

    Sheibat-Othman, Nida; Othman, Sami; Tayari, Raoaa

    2015-01-01

    Wind turbine yaw error information is of high importance in controlling wind turbine power and structural load. Normally used wind vanes are imprecise. In this work, the estimation of yaw error in wind turbines is studied using support vector machines for regression (SVR). As the methodology...... is data-based, simulated data from a high fidelity aero-elastic model is used for learning. The model simulates a variable speed horizontal-axis wind turbine composed of three blades and a full converter. Both partial load (blade angles fixed at 0 deg) and full load zones (active pitch actuators...

  15. GeneratorSE: A Sizing Tool for Variable-Speed Wind Turbine Generators

    Energy Technology Data Exchange (ETDEWEB)

    Sethuraman, Latha [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dykes, Katherine L [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-22

    This report documents a set of analytical models employed by the optimization algorithms within the GeneratorSE framework. The initial values and boundary conditions employed for the generation of the various designs and initial estimates for basic design dimensions, masses, and efficiency for the four different models of generators are presented and compared with empirical data collected from previous studies and some existing commercial turbines. These models include designs applicable for variable-speed, high-torque application featuring direct-drive synchronous generators and low-torque application featuring induction generators. In all of the four models presented, the main focus of optimization is electromagnetic design with the exception of permanent-magnet and wire-wound synchronous generators, wherein the structural design is also optimized. Thermal design is accommodated in GeneratorSE as a secondary attribute by limiting the winding current densities to acceptable limits. A preliminary validation of electromagnetic design was carried out by comparing the optimized magnetic loading against those predicted by numerical simulation in FEMM4.2, a finite-element software for analyzing electromagnetic and thermal physics problems for electrical machines. For direct-drive synchronous generators, the analytical models for the structural design are validated by static structural analysis in ANSYS.

  16. Flapping wing applied to wind generators

    Science.gov (United States)

    Colidiuc, Alexandra; Galetuse, Stelian; Suatean, Bogdan

    2012-11-01

    The new conditions at the international level for energy source distributions and the continuous increasing of energy consumption must lead to a new alternative resource with the condition of keeping the environment clean. This paper offers a new approach for a wind generator and is based on the theoretical aerodynamic model. This new model of wind generator helped me to test what influences would be if there will be a bird airfoil instead of a normal wind generator airfoil. The aim is to calculate the efficiency for the new model of wind generator. A representative direction for using the renewable energy is referred to the transformation of wind energy into electrical energy, with the help of wind turbines; the development of such systems lead to new solutions based on high efficiency, reduced costs and suitable to the implementation conditions.

  17. Optimal Pole Number and Winding Designs for Low Speed–High Torque Synchronous Reluctance Machines

    Directory of Open Access Journals (Sweden)

    Gurutz Artetxe

    2018-01-01

    Full Text Available This paper studies the feasibility of using synchronous reluctance machines (SynRM for low speed–high torque applications. The challenge lies in obtaining low torque ripple values, high power factor, and, especially, high torque density values, comparable to those of permanent magnet synchronous machines (PMSMs, but without resorting to use permanent magnets. A design and calculation procedure based on multistatic finite element analysis is developed and experimentally validated via a 200 Nm, 160 rpm prototype SynRM. After that, machine designs with different rotor pole and stator slot number combinations are studied, together with different winding types: integral-slot distributed-windings (ISDW, fractional-slot distributed-windings (FSDW and fractional-slot concentrated-windings (FSCW. Some design criteria for low-speed SynRM are drawn from the results of the study. Finally, a performance comparison between a PMSM and a SynRM is performed for the same application and the conclusions of the study are summarized.

  18. Optimal Control of Wind Power Generation

    Directory of Open Access Journals (Sweden)

    Pawel Pijarski

    2018-03-01

    Full Text Available Power system control is a complex task, which is strongly related to the number and kind of generating units as well as to the applied technologies, such as conventional coal fired power plants or wind and photovoltaic farms. Fast development of wind generation that is considered as unstable generation sets new strong requirements concerning remote control and data hubs cooperating with SCADA systems. Considering specific nature of the wind power generation, the authors analyze the problem of optimal control for wind power generation in farms located over a selected remote-controlled part of the Operator grid under advantageous wind conditions. This article presents an original stepwise method for tracing power flows that makes possible to eliminate current (power overloading of power grid branches. Its core idea is to consider the discussed problem as an optimization task.

  19. McCabe wind energy system

    International Nuclear Information System (INIS)

    Norton, R.; McCabe, F.; MacMichael, G.

    1995-01-01

    A wind machine utilizing novel low-speed air foils and shrouds has been developed and is now undergoing a refinement process. Energy generated by the machine at a variety of wind speeds is significant. Use of the machine to compress air, which can serve a variety of applications, simplifies the total power producing system ranking it economical and practical for use at a variety of locations to fill many energy requirements. (author)

  20. McCabe wind energy system

    Energy Technology Data Exchange (ETDEWEB)

    Norton, R [Wyndmoor (United States); McCabe, F [Levr/Air, Inc., Doylestown (United States); MacMichael, G [Regional Technical College, Galway (Iran, Islamic Republic of)

    1996-12-31

    A wind machine utilizing novel low-speed air foils and shrouds has been developed and is now undergoing a refinement process. Energy generated by the machine at a variety of wind speeds is significant. Use of the machine to compress air, which can serve a variety of applications, simplifies the total power producing system ranking it economical and practical for use at a variety of locations to fill many energy requirements. (author)

  1. McCabe wind energy system

    Energy Technology Data Exchange (ETDEWEB)

    Norton, R. [Wyndmoor (United States); McCabe, F. [Levr/Air, Inc., Doylestown (United States); MacMichael, G. [Regional Technical College, Galway (Iran, Islamic Republic of)

    1995-12-31

    A wind machine utilizing novel low-speed air foils and shrouds has been developed and is now undergoing a refinement process. Energy generated by the machine at a variety of wind speeds is significant. Use of the machine to compress air, which can serve a variety of applications, simplifies the total power producing system ranking it economical and practical for use at a variety of locations to fill many energy requirements. (author)

  2. Wind energy utilization: A bibliography

    Science.gov (United States)

    1975-01-01

    Bibliography cites documents published to and including 1974 with abstracts and references, and is indexed by topic, author, organization, title, and keywords. Topics include: Wind Energy Potential and Economic Feasibility, Utilization, Wind Power Plants and Generators, Wind Machines, Wind Data and Properties, Energy Storage, and related topics.

  3. Wind energy conversion system

    Science.gov (United States)

    Longrigg, Paul

    1987-01-01

    The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

  4. A solar PV augmented hybrid scheme for enhanced wind power generation through improved control strategy for grid connected doubly fed induction generator

    Directory of Open Access Journals (Sweden)

    Adikanda Parida

    2016-12-01

    Full Text Available In this paper, a wind power generation scheme using a grid connected doubly fed induction generator (DFIG augmented with solar PV has been proposed. A reactive power-based rotor speed and position estimation technique with reduced machine parameter sensitivity is also proposed to improve the performance of the DFIG controller. The estimation algorithm is based on model reference adaptive system (MRAS, which uses the air gap reactive power as the adjustable variable. The overall generation reliability of the wind energy conversion system can be considerably improved as both solar and wind energy can supplement each other during lean periods of either of the sources. The rotor-side DC-link voltage and active power generation at the stator terminals of the DFIG are maintained constant with minimum storage battery capacity using single converter arrangement without grid-side converter (GSC. The proposed scheme has been simulated and experimentally validated with a practical 2.5 kW DFIG using dSPACE CP1104 module which produced satisfactory results.

  5. A Condensed Introduction to the Doubly Fed Induction Generator Wind Energy Conversion Systems

    Directory of Open Access Journals (Sweden)

    Julius Mwaniki

    2017-01-01

    Full Text Available The increase in wind power penetration, at 456 GW as of June 2016, has resulted in more stringent grid codes which specify that the wind energy conversion systems (WECS must remain connected to the system during and after a grid fault and, furthermore, must offer grid support by providing reactive currents. The doubly fed induction generator (DFIG WECS is a well-proven technology, having been in use in wind power generation for many years and having a large world market share due to its many merits. Newer technologies such as the direct drive gearless permanent magnet synchronous generator have come up to challenge its market share, but the large number of installed machines ensures that it remains of interest in the wind industry. This paper presents a concise introduction of the DFIG WECS covering its construction, operation, merits, demerits, modelling, control types, levels and strategies, faults and their proposed solutions, and, finally, simulation. Qualities for the optimal control strategy are then proposed. The paper is intended to cover major issues related to the DFIG WECS that are a must for an overview of the system and hence serve as an introduction especially for new entrants into this area of study.

  6. Dynamics of a Flywheel Energy Storage System Supporting a Wind Turbine Generator in a Microgrid

    Science.gov (United States)

    Nair S, Gayathri; Senroy, Nilanjan

    2016-02-01

    Integration of an induction machine based flywheel energy storage system with a wind energy conversion system is implemented in this paper. The nonlinear and linearized models of the flywheel are studied, compared and a reduced order model of the same simulated to analyze the influence of the flywheel inertia and control in system response during a wind power change. A quantification of the relation between the inertia of the flywheel and the controller gain is obtained which allows the system to be considered as a reduced order model that is more controllable in nature. A microgrid setup comprising of the flywheel energy storage system, a two mass model of a DFIG based wind turbine generator and a reduced order model of a diesel generator is utilized to analyse the microgrid dynamics accurately in the event of frequency variations arising due to wind power change. The response of the microgrid with and without the flywheel is studied.

  7. Wind Power Ramp Events Prediction with Hybrid Machine Learning Regression Techniques and Reanalysis Data

    Directory of Open Access Journals (Sweden)

    Laura Cornejo-Bueno

    2017-11-01

    Full Text Available Wind Power Ramp Events (WPREs are large fluctuations of wind power in a short time interval, which lead to strong, undesirable variations in the electric power produced by a wind farm. Its accurate prediction is important in the effort of efficiently integrating wind energy in the electric system, without affecting considerably its stability, robustness and resilience. In this paper, we tackle the problem of predicting WPREs by applying Machine Learning (ML regression techniques. Our approach consists of using variables from atmospheric reanalysis data as predictive inputs for the learning machine, which opens the possibility of hybridizing numerical-physical weather models with ML techniques for WPREs prediction in real systems. Specifically, we have explored the feasibility of a number of state-of-the-art ML regression techniques, such as support vector regression, artificial neural networks (multi-layer perceptrons and extreme learning machines and Gaussian processes to solve the problem. Furthermore, the ERA-Interim reanalysis from the European Center for Medium-Range Weather Forecasts is the one used in this paper because of its accuracy and high resolution (in both spatial and temporal domains. Aiming at validating the feasibility of our predicting approach, we have carried out an extensive experimental work using real data from three wind farms in Spain, discussing the performance of the different ML regression tested in this wind power ramp event prediction problem.

  8. Impact of Neutral Point Current Control on Copper Loss Distribution of Five Phase PM Generators Used in Wind Power Plants

    Directory of Open Access Journals (Sweden)

    ARASHLOO, R. S.

    2014-05-01

    Full Text Available Efficiency improvement under faulty conditions is one of the main objectives of fault tolerant PM drives. This goal can be achieved by increasing the output power while reducing the losses. Stator copper loss not only directly affects the total efficiency, but also plays an important role in thermal stress generations of iron core. In this paper, the effect of having control on neutral point current is studied on the efficiency of five-phase permanent magnet machines. Open circuit fault is considered for both one and two phases, and the distribution of copper loss along the windings are evaluated in each case. It is shown that only by having access to neutral point, it is possible to generate less stator thermal stress and more mechanical power in five-phase permanent magnet generators. Wind power generation and their applications are kept in mind, and the results are verified via simulations and experimental tests on an outer-rotor type of five-phase PM machine.

  9. Methods and apparatus for cooling wind turbine generators

    Science.gov (United States)

    Salamah, Samir A [Niskayuna, NY; Gadre, Aniruddha Dattatraya [Rexford, NY; Garg, Jivtesh [Schenectady, NY; Bagepalli, Bharat Sampathkumaran [Niskayuna, NY; Jansen, Patrick Lee [Alplaus, NY; Carl, Jr., Ralph James

    2008-10-28

    A wind turbine generator includes a stator having a core and a plurality of stator windings circumferentially spaced about a generator longitudinal axis. A rotor is rotatable about the generator longitudinal axis, and the rotor includes a plurality of magnetic elements coupled to the rotor and cooperating with the stator windings. The magnetic elements are configured to generate a magnetic field and the stator windings are configured to interact with the magnetic field to generate a voltage in the stator windings. A heat pipe assembly thermally engaging one of the stator and the rotor to dissipate heat generated in the stator or rotor.

  10. Symbolic Solution Approach to Wind Turbine based on Doubly Fed Induction Generator Model

    DEFF Research Database (Denmark)

    Cañas–Carretón, M.; Gómez–Lázaro, E.; Martín–Martínez, S.

    2015-01-01

    –order induction generator is selected to model the electric machine, being this approach suitable to estimate the DFIG performance under transient conditions. The corresponding non–linear integro-differential equation system has been reduced to a linear state-space system by using an ad-hoc local linearization......This paper describes an alternative approach based on symbolic computations to simulate wind turbines equipped with Doubly–Fed Induction Generator (DFIG). The actuator disk theory is used to represent the aerodynamic part, and the one-mass model simulates the mechanical part. The 5th...

  11. A robust combination approach for short-term wind speed forecasting and analysis – Combination of the ARIMA (Autoregressive Integrated Moving Average), ELM (Extreme Learning Machine), SVM (Support Vector Machine) and LSSVM (Least Square SVM) forecasts using a GPR (Gaussian Process Regression) model

    International Nuclear Information System (INIS)

    Wang, Jianzhou; Hu, Jianming

    2015-01-01

    With the increasing importance of wind power as a component of power systems, the problems induced by the stochastic and intermittent nature of wind speed have compelled system operators and researchers to search for more reliable techniques to forecast wind speed. This paper proposes a combination model for probabilistic short-term wind speed forecasting. In this proposed hybrid approach, EWT (Empirical Wavelet Transform) is employed to extract meaningful information from a wind speed series by designing an appropriate wavelet filter bank. The GPR (Gaussian Process Regression) model is utilized to combine independent forecasts generated by various forecasting engines (ARIMA (Autoregressive Integrated Moving Average), ELM (Extreme Learning Machine), SVM (Support Vector Machine) and LSSVM (Least Square SVM)) in a nonlinear way rather than the commonly used linear way. The proposed approach provides more probabilistic information for wind speed predictions besides improving the forecasting accuracy for single-value predictions. The effectiveness of the proposed approach is demonstrated with wind speed data from two wind farms in China. The results indicate that the individual forecasting engines do not consistently forecast short-term wind speed for the two sites, and the proposed combination method can generate a more reliable and accurate forecast. - Highlights: • The proposed approach can make probabilistic modeling for wind speed series. • The proposed approach adapts to the time-varying characteristic of the wind speed. • The hybrid approach can extract the meaningful components from the wind speed series. • The proposed method can generate adaptive, reliable and more accurate forecasting results. • The proposed model combines four independent forecasting engines in a nonlinear way.

  12. The design of wind turbine for electrical power generation in Malaysian wind characteristics

    International Nuclear Information System (INIS)

    Abas Ab Wahab; Chong Wen Thong

    2000-01-01

    The paper describes the study of a wind turbine for electrical power generation in Malaysia wind characteristics. In this research, the wind turbine is designs based on the local wind characteristics and tries to avoid the problems faced in the past (turbine design, access, manpower and technical). The new wind turbine rotor design for a medium speed wind speed turbine utilises the concept of open-close type of horizontal axis (up-wind) wind turbine is intended to widen the optimum performance range for electrical generation in Malaysia wind characteristics. The wind turbine has been designed to cut-in at a lower speed, and to provide the rotation speed that high enough to run a generator. The analysis and design of new low speed wind turbine blades and open-close turbine rotor and prediction of turbine performance are being detailed in this paper. (Author)

  13. Wind Turbine Generator Efficiency Based on Powertrain Combination and Annual Power Generation Prediction

    Directory of Open Access Journals (Sweden)

    Dongmyung Kim

    2018-05-01

    Full Text Available Wind turbine generators are eco-friendly generators that produce electric energy using wind energy. In this study, wind turbine generator efficiency is examined using a powertrain combination and annual power generation prediction, by employing an analysis model. Performance testing was conducted in order to analyze the efficiency of a hydraulic pump and a motor, which are key components, and so as to verify the analysis model. The annual wind speed occurrence frequency for the expected installation areas was used to predict the annual power generation of the wind turbine generators. It was found that the parallel combination of the induction motors exhibited a higher efficiency when the wind speed was low and the serial combination showed higher efficiency when wind speed was high. The results of predicting the annual power generation considering the regional characteristics showed that the power generation was the highest when the hydraulic motors were designed in parallel and the induction motors were designed in series.

  14. Topology Optimization of a High-Temperature Superconducting Field Winding of a Synchronous Machine

    DEFF Research Database (Denmark)

    Pozzi, Matias; Mijatovic, Nenad; Jensen, Bogi Bech

    2013-01-01

    This paper presents topology optimization (TO) of the high-temperature superconductor (HTS) field winding of an HTS synchronous machine. The TO problem is defined in order to find the minimum HTS material usage for a given HTS synchronous machine design. Optimization is performed using a modified...... genetic algorithm with local optimization search based on on/off sensitivity analysis. The results show an optimal HTS coil distribution, achieving compact designs with a maximum of approximately 22% of the available space for the field winding occupied with HTS tape. In addition, this paper describes...... potential HTS savings, which could be achieved using multiple power supplies for the excitation of the machine. Using the TO approach combined with two excitation currents, an additional HTS saving of 9.1% can be achieved....

  15. Winding machines for the manufacturing of superconductive coils of the main European fusion research machines

    CERN Document Server

    Cazzaniga, R; D’Urzo, C

    2005-01-01

    The successfull construction of large magnets passes through the development and application of non-conventional manufacturing processes. A difficult and delicate step in the manufacturing of superconducting coils is the conductor winding technique. It is often a challenging and technologically advanced process, developed according to the requirements of each project. An important aspect during the winding is to avoid any deformation of the cable cross section leading to a damage of the strands and to maintain the design features of the cable. A second aspect is to assure the suitable repeatability and a production rate for an industrial process. The winding line is a system of different machines linked and tuned together properly designed for each project. An adapted software assures the overall process control. TPA realized for ANSALDO Superconduttori the winding lines for many projects: TFMC (NET-TEAM), CMS (INFN-CERN), WENDELSTEIN W7-X (Max Planck Institute, IPP), etc. The experience acquired in this fiel...

  16. Low Voltage Ride-Through Capability Solutions for Permanent Magnet Synchronous Wind Generators

    Directory of Open Access Journals (Sweden)

    Victor F. Mendes

    2016-01-01

    Full Text Available Due to the increasing number of wind power plants, several countries have modified their grid codes to include specific requirements for the connection of this technology to the power system. One of the requirements is the ride-through fault capability (RTFC, i.e., the system capability to sustain operation during voltage sags. In this sense, the present paper intends to investigate the behavior of a full-converter wind generator with a permanent magnet synchronous machine during symmetrical and asymmetrical voltage sags. Two solutions to improve the low voltage ride-through capability (LVRT of this technology are analyzed: discharging resistors (brake chopper and resonant controllers (RCs. The design and limitations of these solutions and the others proposed in the literature are discussed. Experimental results in a 34 kW test bench, which represents a scaled prototype of a real 2 MW wind conversion system, are presented.

  17. DIAGNOSIS OF THE WINDING MACHINE IN THE OLD SHAFT WITH SKIP IN LONEA MINING PLANT

    Directory of Open Access Journals (Sweden)

    Răzvan Bogdan ITU

    2017-05-01

    Full Text Available To study the operation of the winding machine in the Old Shaft with Skip in Lonea Mining Plant, the dynamic analysis of the driving wheel (Koepe wheel was performed, by resistive electric tensometry methods, acceleration measurements, and vibromechanical analysis on the bearings of Koepe driving wheels, on functioning cycles and vibromechanical analysis of the reduction gear. The paper presents aspects regarding vibromechanical measurements and resistive electric tensometry methods in the winding machine..

  18. Simulation of Small Wind Turbine Generation System Using Ring Winding Slotless PMSG by FEM

    OpenAIRE

    徳永, 翔平; 袈裟丸, 勝己; Tokunaga, Shohei; Kesamaru, Katsumi

    2011-01-01

    This paper describes a novel small wind turbine generation system with ring winding slotless PMSG. To reduce cogging torque, ring winding PM generator is used for a wind turbine generator. Using finite element analysis, the characteristics of slotless PMSGs are elucidated and the dynamic performance of the proposed system with MPPT control is represented. In this paper, the constant wind test and the quasi-natural wind test are conducted. The results of these tests indicate the proposed syste...

  19. Wind energy generation and pollution control

    International Nuclear Information System (INIS)

    Mohibullah; Mohd Nishat Anwar

    2009-01-01

    Full text: In India, power generation from wind has emerged as one of the most successful programme. It is making meaningful contributions to the overall power requirements in some of the states. India is emerging as fifth nation in wind power generation. As per the projections made by Ministry of New and Renewable Energy, Govt. of India, 10 % of the total capacity of power generation will come from renewable energy sources by the year 2012. It is envisaged that 50 % of this capacity may come from wind power alone. The paper describes a WECS (Wind Energy Conversion Systems) structure implemented in the MATLAB-Simulink simulation environment by using the specialized PSB toolbox, designed for modeling and simulation of electrical equipment. A study is made to show effectiveness in pollution control. An analytical study is also made regarding the potential of wind energy in limiting the amount of green house gases added into the atmosphere per year in different states in India. The amount of green house gases which are saved in the process are calculated for nine wind potential sites in India. The amount of green house gases saved is considerable to reduce environmental pollution and saving in carbon credit. Approximately an amount of 70681 Euro per year may be saved if the scheme is implemented and use of wind energy known in India is fully utilized for power generation. (author)

  20. Model of a generator end-winding cage

    International Nuclear Information System (INIS)

    Leger, A.C.; Fanton, J.P.; Davies, C.

    1994-09-01

    This document presents some studies concerning the vibratory characterization of particular structures called: generator end-winding cages. These structures are mainly made up of the endings of armature windings. The question of their good mechanical behaviour is of prime importance, since they are submitted to high electromagnetic efforts during the different electrical ratings encountered during operation. The designer (GEC-Alsthom) and the user (EDF) have both undertaken numerical calculations in order to characterize a given machine, in this case a 600 MW bipolar generator; it appeared interesting to compare such calculations. The models realized respectively by GEC-Alsthom and EDF make use of different techniques and hypotheses. GEC-Alsthom represents the sets of rods and spacers by plates, which properties are determined by a pre-processor. The model is simplified to take into account the existing symmetries. It takes profit of previous experience and aims at a fast utilisation. The EDF model tends to allow a further comprehensive calculation, form the electromagnetic efforts to the determination of local stresses. The whole set of the constituting elements of the structure is modelled by beams, which leads to an important size for the model (21 000 degrees of freedom). The validation performed on the two models has been focused on the comparison between respective results and also with experimental results. Each model provides values for the first eigenfrequencies and the associated modes shapes. (authors). 3 refs., 3 figs., 2 tabs

  1. Conditional prediction intervals of wind power generation

    DEFF Research Database (Denmark)

    Pinson, Pierre; Kariniotakis, Georges

    2010-01-01

    A generic method for the providing of prediction intervals of wind power generation is described. Prediction intervals complement the more common wind power point forecasts, by giving a range of potential outcomes for a given probability, their so-called nominal coverage rate. Ideally they inform...... on the characteristics of prediction errors for providing conditional interval forecasts. By simultaneously generating prediction intervals with various nominal coverage rates, one obtains full predictive distributions of wind generation. Adapted resampling is applied here to the case of an onshore Danish wind farm...... to the case of a large number of wind farms in Europe and Australia among others is finally discussed....

  2. Superconducting generators for wind turbines: design considerations

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Abrahamsen, Asger Bech; Træholt, Chresten

    2010-01-01

    The harmonic content of high temperature superconductors (HTS) field winding in air-core high temperature superconducting synchronous machine (HTS SM) has been addressed in order to investigate tendency of HTS SM towards mechanical oscillation and additional loss caused by higher flux harmonic...

  3. Wind Power Utilization Guide.

    Science.gov (United States)

    1981-09-01

    The expres- sions for the rotor torque for a Darrieus machine can be found in Reference 4.16. The Darrieus wind turbine offers the following... turbine generators, wind -driven turbines , power conditioning, wind power, energy conservation, windmills, economic ana \\sis. 20 ABS 1"ACT (Conti,on... turbines , power conditioning requirements, siting requirements, and the economics of wind power under different conditions. Three examples are given to

  4. Integrated Control for Small Power Wind Generator

    Directory of Open Access Journals (Sweden)

    Hongliang Liu

    2018-05-01

    Full Text Available The control strategies of the small power wind generator are usually divided into the maximum power point tracking (MPPT case, which requires the wind generator produce power as much as possible, and the power limited control (PLC case that demands the wind generator produce a power level following the load requirement. Integration of these two operating cases responding to flexible and sophisticated power demands is the main topic of this article. A small power wind generator including the sluggish mechanical dynamic phenomenon, which uses the permanent magnet synchronous generator, is introduced to validate different control methods integrating MPPT and PLC cases and based on hysteresis control. It is a matter of an indirect power control method derived from three direct methods following perturb and observe principle as well as from a look-up table. To analyze and compare the proposed power control methods, which are implemented into an emulator of a small power wind generator, a power demand profile is used. This profile is randomly generated based on measured rapid wind velocity data. Analyzing experimental results, from the power viewpoint, all proposed methods reveal steady-state error with big amount of peak resulting from the nature of perturb and observe.

  5. Wind Velocity and Position Sensor-less Operation for PMSG Wind Generator

    Science.gov (United States)

    Senjyu, Tomonobu; Tamaki, Satoshi; Urasaki, Naomitsu; Uezato, Katsumi; Funabashi, Toshihisa; Fujita, Hideki

    Electric power generation using non-conventional sources is receiving considerable attention throughout the world. Wind energy is one of the available non-conventional energy sources. Electrical power generation using wind energy is possible in two ways, viz. constant speed operation and variable speed operation using power electronic converters. Variable speed power generation is attractive, because maximum electric power can be generated at all wind velocities. However, this system requires a rotor speed sensor, for vector control purpose, which increases the cost of the system. To alleviate the need of rotor speed sensor in vector control, we propose a new sensor-less control of PMSG (Permanent Magnet Synchronous Generator) based on the flux linkage. We can estimate the rotor position using the estimated flux linkage. We use a first-order lag compensator to obtain the flux linkage. Furthermore‚we estimate wind velocity and rotation speed using a observer. The effectiveness of the proposed method is demonstrated thorough simulation results.

  6. Armature reaction effects on HTS field winding in HTS machine

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech

    2013-01-01

    sensitivity to both armature reaction intensity and angular position with respect to the HTS coils. Furthermore, the characterization of the HTS feld winding has been correlated to the electromagnetic torque of the machine where the maximal Ic reduction of 21% has been observed for the maximum torque....

  7. Class Generation for Numerical Wind Atlases

    DEFF Research Database (Denmark)

    Cutler, N.J.; Jørgensen, B.H.; Ersbøll, Bjarne Kjær

    2006-01-01

    A new optimised clustering method is presented for generating wind classes for mesoscale modelling to produce numerical wind atlases. It is compared with the existing method of dividing the data in 12 to 16 sectors, 3 to 7 wind-speed bins and dividing again according to the stability...... of the atmosphere. Wind atlases are typically produced using many years of on-site wind observations at many locations. Numerical wind atlases are the result of mesoscale model integrations based on synoptic scale wind climates and can be produced in a number of hours of computation. 40 years of twice daily NCEP...... adapting to the local topography. The purpose of forming classes is to minimise the computational time for the mesoscale model while still representing the synoptic climate features. Only tried briefly in the past, clustering has traits that can be used to improve the existing class generation method...

  8. An effective secondary decomposition approach for wind power forecasting using extreme learning machine trained by crisscross optimization

    International Nuclear Information System (INIS)

    Yin, Hao; Dong, Zhen; Chen, Yunlong; Ge, Jiafei; Lai, Loi Lei; Vaccaro, Alfredo; Meng, Anbo

    2017-01-01

    Highlights: • A secondary decomposition approach is applied in the data pre-processing. • The empirical mode decomposition is used to decompose the original time series. • IMF1 continues to be decomposed by applying wavelet packet decomposition. • Crisscross optimization algorithm is applied to train extreme learning machine. • The proposed SHD-CSO-ELM outperforms other pervious methods in the literature. - Abstract: Large-scale integration of wind energy into electric grid is restricted by its inherent intermittence and volatility. So the increased utilization of wind power necessitates its accurate prediction. The contribution of this study is to develop a new hybrid forecasting model for the short-term wind power prediction by using a secondary hybrid decomposition approach. In the data pre-processing phase, the empirical mode decomposition is used to decompose the original time series into several intrinsic mode functions (IMFs). A unique feature is that the generated IMF1 continues to be decomposed into appropriate and detailed components by applying wavelet packet decomposition. In the training phase, all the transformed sub-series are forecasted with extreme learning machine trained by our recently developed crisscross optimization algorithm (CSO). The final predicted values are obtained from aggregation. The results show that: (a) The performance of empirical mode decomposition can be significantly improved with its IMF1 decomposed by wavelet packet decomposition. (b) The CSO algorithm has satisfactory performance in addressing the premature convergence problem when applied to optimize extreme learning machine. (c) The proposed approach has great advantage over other previous hybrid models in terms of prediction accuracy.

  9. Wind turbines - generating noise or electricity?

    International Nuclear Information System (INIS)

    Russell, Eric

    1999-01-01

    Wind turbine technology has made great strides in the past few years. Annual energy output is up by two orders of magnitude and nacelle weight and noise has been halved. Computational fluid dynamics has paid a part in advancing knowledge of air flow and turbulence around wind generators. Current research is focused on how to increase turbine size and improve efficiency. A problem is that while larger wind turbines will produce cheaper electricity, the noise problem will mean that the number of acceptable sites will decrease. The biggest wind generators will need about 800 m clearance from the nearest house. (UK)

  10. Modelisation de la conversion electromecanique des machines ...

    African Journals Online (AJOL)

    These implemented models would constitute the module of possible generators that one could couple with a model of wind power engine in order to study, within the framework of a virtual laboratory, the performances of wind-driven systems of electricity generation. Cet article présente les modèles de machines électriques ...

  11. Superconducting magnetic systems and electrical machines

    International Nuclear Information System (INIS)

    Glebov, I.A.

    1975-01-01

    The use of superconductors for magnets and electrical machines attracts close attention of designers and scientists. A description is given of an ongoing research program to create superconductive magnetic systems, commutator motors, homopolar machines, topological generators and turbogenerators with superconductive field windings. All the machines are tentative experimental models and serve as a basis for further developments

  12. Performance Comparison of Conventional Synchronous Reluctance Machines and PM-Assisted Types with Combined Star–Delta Winding

    Directory of Open Access Journals (Sweden)

    Mohamed Nabil Fathy Ibrahim

    2017-09-01

    Full Text Available This paper compares four prototype Synchronous Reluctance Motors (SynRMs having an identical geometry of iron lamination stacks in the stator and rotor. Two different stator winding layouts are employed: a conventional three-phase star connection and a combined star–delta winding. In addition, two rotors are considered: a conventional rotor without magnets and a rotor with ferrite magnets. The performance of the four SynRMs is evaluated using a two-dimensional (2D Finite Element Model (FEM. For the same copper volume and current, the combined star–delta-connected stator with Permanent Magnets (PMs in the rotor corresponds to an approximately 22% increase in the output torque at rated current and speed compared to the conventional machine. This improvement is mainly thanks to adding ferrite PMs in the rotor as well as to the improved winding factor of the combined star–delta winding. The torque gain increases up to 150% for low current. Moreover, the rated efficiency is 93.60% compared to 92.10% for the conventional machine. On the other hand, the impact on the power factor and losses of SynRM when using the star–delta windings instead of the star windings is merely negligible. The theoretical results are experimentally validated using four identical prototype machines with identical lamination stacks but different rotors and winding layouts.

  13. Determining the impact of wind on system costs via the temporal patterns of load and wind generation

    International Nuclear Information System (INIS)

    Davis, Clay D.; Gotham, Douglas J.; Preckel, Paul V.; Liu, Andrew L.

    2013-01-01

    Ambitious targets have been set for expanding electricity generation from renewable sources, including wind. Expanding wind power impacts needs for other electricity generating resources. As states plan for increasing levels of wind generation in their portfolio of generation resources it is important to consider how this intermittent resource impacts the need for other generation resources. A case study for Indiana estimates the value of wind capacity and demonstrates how to optimize its level and the levels of other generation resources. Changes are driven by temporal patterns of wind power output and load. System wide impacts are calculated for energy, capacity, and costs under multiple wind expansion scenarios which highlight the geographic characteristics of a systems portfolio of wind generation. The impacts of carbon prices, as proposed in the Bingaman Bill, are considered. Finally, calculations showing the effect increasing levels of wind generation will have on end use Indiana retail rates are included. - Highlights: • We estimate the value of wind capacity. • We determine wind generation's impact on the optimal mix of non-wind generation. • Optimal levels of wind and non-wind generation are determined. • We consider the impact of a carbon price on the optimal mix of resources. • The impact of additional wind capacity on Indiana residential rates is calculated

  14. Analysis of wind energy generation possibilities with various rotor types at disadvantageous wind condition zones

    Science.gov (United States)

    Bieniek, Andrzej

    2017-10-01

    The paper describe possibilities of energy generation using various rotor types but especially with multi-blade wind engine operates in the areas with unfavourable wind condition. The paper presents also wind energy conversion estimation results presented based on proposed solution of multi-blade wind turbine of outer diameter of 4 m. Based on the wind distribution histogram from the disadvantage wind condition zones (city of Basel) and taking into account design and estimated operating indexes of the considered wind engine rotor an annual energy generation was estimated. Also theoretical energy generation using various types of wind turbines operates at disadvantage wind conditions zones were estimated and compared. The conducted analysis shows that introduction of multi-blade wind rotor instead of the most popular 3- blades or vertical axis rotors results of about 5% better energy generation. Simultaneously there are energy production also at very disadvantages wind condition at wind speed lower then 4 m s-1. Based on considered construction of multi-blade wind engine the rise of rotor mounting height from 10 to 30 m results with more then 300 % better results in terms of electric energy generation.

  15. Analysis of wind energy generation possibilities with various rotor types at disadvantageous wind condition zones

    Directory of Open Access Journals (Sweden)

    Bieniek Andrzej

    2017-01-01

    Full Text Available The paper describe possibilities of energy generation using various rotor types but especially with multi-blade wind engine operates in the areas with unfavourable wind condition. The paper presents also wind energy conversion estimation results presented based on proposed solution of multi-blade wind turbine of outer diameter of 4 m. Based on the wind distribution histogram from the disadvantage wind condition zones (city of Basel and taking into account design and estimated operating indexes of the considered wind engine rotor an annual energy generation was estimated. Also theoretical energy generation using various types of wind turbines operates at disadvantage wind conditions zones were estimated and compared. The conducted analysis shows that introduction of multi-blade wind rotor instead of the most popular 3- blades or vertical axis rotors results of about 5% better energy generation. Simultaneously there are energy production also at very disadvantages wind condition at wind speed lower then 4 ms-1. Based on considered construction of multi-blade wind engine the rise of rotor mounting height from 10 to 30 m results with more then 300 % better results in terms of electric energy generation.

  16. Two Machine Learning Approaches for Short-Term Wind Speed Time-Series Prediction.

    Science.gov (United States)

    Ak, Ronay; Fink, Olga; Zio, Enrico

    2016-08-01

    The increasing liberalization of European electricity markets, the growing proportion of intermittent renewable energy being fed into the energy grids, and also new challenges in the patterns of energy consumption (such as electric mobility) require flexible and intelligent power grids capable of providing efficient, reliable, economical, and sustainable energy production and distribution. From the supplier side, particularly, the integration of renewable energy sources (e.g., wind and solar) into the grid imposes an engineering and economic challenge because of the limited ability to control and dispatch these energy sources due to their intermittent characteristics. Time-series prediction of wind speed for wind power production is a particularly important and challenging task, wherein prediction intervals (PIs) are preferable results of the prediction, rather than point estimates, because they provide information on the confidence in the prediction. In this paper, two different machine learning approaches to assess PIs of time-series predictions are considered and compared: 1) multilayer perceptron neural networks trained with a multiobjective genetic algorithm and 2) extreme learning machines combined with the nearest neighbors approach. The proposed approaches are applied for short-term wind speed prediction from a real data set of hourly wind speed measurements for the region of Regina in Saskatchewan, Canada. Both approaches demonstrate good prediction precision and provide complementary advantages with respect to different evaluation criteria.

  17. Modeling and control of a variable-speed wind turbine equipped with permanent magnet synchronous generator

    Energy Technology Data Exchange (ETDEWEB)

    Aliprantis, D.C.; Papathanassiou, S.A.; Papadopoulos, M.P.; Kladas, A.G. [Purdue University, Electrical and Computer Engineering, West Lafayette, IN (United States)

    2000-08-01

    In this paper the operation of a variable-speed, stall regulated wind turbine equipped with a permanent magnet synchronous generator (PMSG) is examined. The emphasis is placed on the analysis of the electric part of the system, i.e. the electrical generator, the power electronics converters and the control. The operational characteristics of the machine are investigated through a series of computer simulations and the speed control system is designed to maximize the power output and achieve a smooth torque and power profile. (orig.)

  18. The axial flux generator of the Octopus Wind Technology. A feasibility study; De axiale flux-generator van Octopus Wind Technology. Een haalbaarheidsstudie

    Energy Technology Data Exchange (ETDEWEB)

    Van Schie, R. [ECN Technologische Services and Consultancy, Petten (Netherlands)

    2001-02-01

    This report presents the results of a feasibility study of a generator concept for wind turbines that was suggested by Octopus Wind Technology (OWT). In this concept the following ideas were implemented: (1) The generator is a direct-drive generator with permanent magnets; (2) (Sliding) bearings are integrated in the generator on the circumference; (3) Rotor and stator are divided into (radial) modular segments; (4) The generator has an axial magnetic flux; (5) The blades of the turbine are mounted between the rotors. The result of this study is that the OWT-concept has to be changed. It is better to mount the turbine blades on a compact hub than on the large rotor ring. Also in this concept there is no reason to choose for the axial magnetic flux. The use of modules, of permanent magnets and a large bearing are very useful developments in wind turbines and are already examined or implemented. The application of a bearing on an even larger diameter of approximately 3,5 m still is (very) expensive. Hydrostatic bearings are the sliding bearings to implement on this diameter and have the advantage of being modular as well. The drawback of this bearing type is the use of oil. Jeumont uses axial modules in their generator design. The objective is to use the same modules in turbines with different power ratings. In the OWT-concept the modules are radial and the aim is ease of production, transport and maintenance. This idea was already patented in December 1998 (US-patent 5 844 341) for a radial flux machine and that appeared to be the logical choice. It is concluded that after the desired changes the OWT-concept has insufficient unique characteristics to protect the design. Most of the good ideas in the OWT-concept were already implemented in the research work following the mentioned patent and in the design of the LW 50/750. A combination of these ideas could be a good basis for a new turbine design, but a detailed analysis is needed to examine the true perspective of

  19. Generation of electricity from wind

    International Nuclear Information System (INIS)

    Debroy, S.K.; Behera, S.; Murty, J.S.

    1997-01-01

    Bulk power can be generated by using a chain of wind mills with the current level of technology. Wind turbine technology has improved considerably resulting in better efficiency, availability and capacity factor including a significant reduction in the cost of manufacture and installation

  20. Multi-objective Generation Expansion Planning for Integrating Largescale Wind Generation

    DEFF Research Database (Denmark)

    Zhang, Chunyu; Ding, Yi; Kang, Chongqing

    2013-01-01

    Due to the growth of energy consumption, the extensive use of conventional fossil fuels from the exhaustible resources and the environmental concerns, high penetration of renewable energy resources is considerably observed worldwide. Wind power generation is holding the first rank in terms...... of utilization and importance. In the last decade, the growth rate of the global installed wind capacity has been about 30% per annum. Denmark, Germany, and Spain are the first few countries generating 20% of their electricity from wind turbines....

  1. Compound induction electric rotating machine

    Energy Technology Data Exchange (ETDEWEB)

    Decesare, D

    1987-07-28

    The present invention generally relates to dynamo-electric machines cabable of operating in a generator mode or in a motor mode and more specifically, to increased efficiency compound interaction AC and/or DC dynamo-electric machines. This patent describes such a machine having a distributed armature winding in a cylindrical rotor wound to form axial and substantially radial winding portions and including permanent and/or electromagnets to couple magnetic flux into the peripheral or circumferential surface of the rotor, and to provide interaction between a magnetic field formed beyond the rotor axial surfaces and the rotor to thereby enhance the total induction of flux into the rotor for improved, more efficient operation. 28 figs.,

  2. design of a small scale wind generator for low wind speed areas

    African Journals Online (AJOL)

    USER

    Most small scale level wind turbine generators are directly driven system, variable speed, and partially ... the best solutions for small-scale wind power plants. Low-speed multi-pole PM generators ..... Designs of the Same Magnet Structure for.

  3. Design Optimization and Evaluation of Different Wind Generator Systems

    DEFF Research Database (Denmark)

    Chen, Zhe; Li, Hui

    2008-01-01

    . In this paper, seven variable speed constant frequency (VSCF) wind generator systems are investigated, namely permanent magnet synchronous generators with the direct-driven (PMSG_DD), the single-stage gearbox (PMSG_1G) and three-stage gearbox (PMSG_3G) concepts, doubly fed induction generators with the three......With rapid development of wind power technologies and significant growth of wind power capacity installed worldwide, various wind generator systems have been developed and built. The objective of this paper is to evaluate various wind generator systems by optimization designs and comparisons......-stage gearbox (DFIG_3G) and with the single-stage gearbox (DFIG_1G), the electricity excited synchronous generator with the direct-driven (EESG_DD), and the VSCF squirrel cage induction generator with the three-stage gearbox (SCIG_3G). Firstly, the design models of wind turbines, three/single stage gearbox...

  4. Design Study of Fully Superconducting Wind Turbine Generators

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Mijatovic, Nenad; Jensen, Bogi Bech

    2015-01-01

    In this paper, two fully superconducting generators employing MgB2 armature winding, with YBCO and MgB2 field winding respectively, are presented and analyzed. The ac loss in armature winding is estimated, and a simple comparative study is carried out. The results show that both electromagnetic...... designs for fully superconducting generators are promising with respect to the power density. However, the cost of removing ac loss in armature winding is as high as $900 000. It is also noted that with the current price of YBCO tape, the generator employing MgB 2 field winding would have lower cost....

  5. A methodology for assessment of wind turbine noise generation

    Science.gov (United States)

    Kelley, N. D.; Hemphill, R. R.; McKenna, H. E.

    1982-05-01

    An investigation of the sources of impulsive noise generated by the operation of the Mod 1 2 MW wind turbine was performed to establish criteria for assessing the noise-producing potential of other large wind turbines. Unsteady loading of the rotors was determined to be the cause of the sound pressure, which was generally below 100 Hz. Complaints originated from people in dwellings with a room with a window facing the machine. Indoor monitoring revealed pressure traces in the 31.5 Hz band with energy densities exceeding background by about 30 dB. It was concluded that the sound pressure was conveyed by the walls acting as a diaphragm. The induced vibration coupled with human body fundamental modes to produce a feeling of whole-body vibration. Spectral analyses were made of the vibration fields of the Mod 2, a 17 m Darrieus, and a Mod OA to allow comparison with the nuisance points of the Mod 1. Sound pressure levels were found at certain frequencies which would eliminate the occurrence of acoustic pollution.

  6. Two Capacitive Micro-Machined Ultrasonic Transducers for Wind Speed Measurement.

    Science.gov (United States)

    Bui, Gia Thinh; Jiang, Yu-Tsung; Pang, Da-Chen

    2016-06-02

    This paper presents a new wind speed measurement method using a single capacitive micro-machined ultrasonic transducer (CMUT). The CMUT was arranged perpendicular to the direction of the wind flow, and a reflector was set up a short distance away, facing the CMUT. To reduce the size, weight, cost, and power consumption of conventional ultrasonic anemometers this study proposes two CMUT designs for the measurement of wind speed using either the amplitude of the signal or the time of flight (TOF). Each CMUT with a double array element design can transmit and receive signals in five different operation modes. Experiments showed that the two CMUT designs utilizing the TOF were better than those utilizing the amplitude of the signal for wind speed measurements ranging from 1 m/s to 10 m/s, providing a measurement error of less than 0.2 m/s. These results indicate that the sensitivity of the TOF is independent of the five operation modes.

  7. Economic Selection of Generators for a Wind Farm

    Directory of Open Access Journals (Sweden)

    Omid Alavi

    2015-09-01

    Full Text Available The selection suitable generator for wind turbines will be done based on technical criteria and priorities of the project. In this paper, a method for determining the type of wind turbine generator with an example is explained. In the paper, for a 10kW wind turbine, two generators have been proposed. The first case is a squirrel-cage asynchronous generator coupled to the turbine through the gearbox and directly connected to three phase output. Other PM generators that are directly coupled to the turbine and it is connected to the grid using the inverter. The results show that according to wind conditions, a 10kW permanent magnet generator is more advantageous in terms of energy production.

  8. High-Altitude Wind Power Generation

    NARCIS (Netherlands)

    Fagiano, L.; Milanese, M.; Piga, D.

    2010-01-01

    Abstract—The paper presents the innovative technology of highaltitude wind power generation, indicated as Kitenergy, which exploits the automatic flight of tethered airfoils (e.g., power kites) to extract energy from wind blowing between 200 and 800 m above the ground. The key points of this

  9. THE VERIFICATION BRAKE MECHANISM OF WINDING MACHINES WITH SINGLE CABLE DRIVING WHEELS ON

    Directory of Open Access Journals (Sweden)

    Răzvan Bogdan ITU

    2017-12-01

    Full Text Available The development in safe conditions of the extracting process continuously imposes the need of optimal functioning of the extracting installations as important links in the transport flow. Diagnosis of winding engine brake mechanism in mines is important to provide normal extraction vessel movement in the shaft, or stopping machines in a certain position of the vessels in disturbances or failures. The paper presents the calculus of safety coefficients in the use of safety and maneuver brakes. Mine winding engines brake mechanisms is important to provide normal extraction vessel movement along the shaft, or stopping the engine in a certain position of the vessel in disturbances or failures. To assess the real safety coefficient, results obtained by tensiometric measurements were used. After diagnosis, necessary information is obtained to improve present maintenance system and repair this category of machines in view of increasing safety in use of winding installations, with possibility of monitoring brake mechanism...

  10. Development of wind power generation in China

    International Nuclear Information System (INIS)

    Zhiquan, Y.; Yan, C.; Lijun, X.

    1995-01-01

    Present status and development of wind power generation in China is described in this paper. China is vast in territory with abundant wind resources. The exploitable wind energy in China is estimated up to 253,000 MW. At present, more than 150 thousand small WTGs of a total capacity of 17 MW are used to provide residential electricity uses in non-grid connected areas and 13 wind farms, with above 160 medium and large scale grid connected WTGs (50-500 kW) of a total capacity of 30 MW, have been constructed. At the same time, some progress has been made in the fields of nation-wide wind resource assessment, measurement technology of wind turbine performance, the assimilation of foreign wind turbine technology, grid connected WTG technology and the operation of wind farm etc. It is planned that the total installed capacity of WTGs will reach 1000 MW by the end of 2000. Wind power generation could be a part of electric power industry in China. (Author)

  11. Winding machines for the manufacturing of superconductive coils of the main European fusion research machines

    International Nuclear Information System (INIS)

    Cazzaniga, Rodolfo; Valle, N.; D'Urzo, C.

    2005-01-01

    The successful construction of large magnets passes through the development and application of non-conventional manufacturing processes. A difficult and delicate step in the manufacturing of superconducting coils is the conductor winding technique. It is often a challenging and technologically advanced process, developed according to the requirements of each project. An important aspect during the winding is to avoid any deformation of the cable cross section leading to a damage of the strands and to maintain the design features of the cable. A second aspect is to assure the suitable repeatability and a production rate for an industrial process. The winding line is a system of different machines linked and tuned together properly designed for each project. An adapted software assures the overall process control. TPA realized for ANSALDO Superconduttori the winding lines for many projects: TFMC (NET-TEAM), CMS (INFN-CERN), WENDELSTEIN W7-X (Max Planck Institute, IPP), etc. The experience acquired in this field by ANSALDO Superconduttori and by TPA (as manufacturing tools and equipments supplier) has been acknowledged by CERN with 'The CMS Gold Award' of the Year 2004. The paper describes the main features of the winding lines, the main problems, the technical solutions used for the above mentioned projects and the new ideas for the forthcoming ones

  12. Neural network based control of Doubly Fed Induction Generator in wind power generation

    Science.gov (United States)

    Barbade, Swati A.; Kasliwal, Prabha

    2012-07-01

    To complement the other types of pollution-free generation wind energy is a viable option. Previously wind turbines were operated at constant speed. The evolution of technology related to wind systems industry leaded to the development of a generation of variable speed wind turbines that present many advantages compared to the fixed speed wind turbines. In this paper the phasor model of DFIG is used. This paper presents a study of a doubly fed induction generator driven by a wind turbine connected to the grid, and controlled by artificial neural network ANN controller. The behaviour of the system is shown with PI control, and then as controlled by ANN. The effectiveness of the artificial neural network controller is compared to that of a PI controller. The SIMULINK/MATLAB simulation for Doubly Fed Induction Generator and corresponding results and waveforms are displayed.

  13. Simulation of Lightning Overvoltage Distribution on Stator Windings of Wind Turbine Generators

    Institute of Scientific and Technical Information of China (English)

    LIU Rong; LIU Xue-zhong; WANG Ying; LI Dan-dan

    2011-01-01

    This paper analyzes lightning surge on the stator windings of wind turbine generators. The path of lightning in the wind turbines was analyzed. An equivalent circuit model for megawatt direct-driven wind turbine system was developed, in which high-frequency distributed parameters of the blade conducts, tower, power cables and stator windings of generator were calculated based on finite element method, and the models of converter, grounding, loads, surge protection devices and power grid were established. The voltage distribution along stator windings, when struck by lightning with 10/350 ~ts wave form and different amplitude current between 50 kA and 200 kA, was simulated u- sing electro-magnetic transient analysis method. The simulated results show that the highest coil-to-core voltage peak appears on the last coil or near the neutral of stator windings, and the voltage distribution along the windings is non- uniform initially. The voltage drops of each coil fall from first to last coil, and the highest voltage drop appears on the first coil. The insulation damage may occur on the windings under lightning overvoltage. The surge arresters can re- strain the lightning surge in effect and protect the insulation. The coil-to-core voltage in the end of windings is nearly 19.5 kV under the 200 kA lightning current without surge arresters on the terminal of generator, but is only 2.7 kV with arresters.

  14. Co-generation of hydrogen from nuclear and wind: the effect on costs of realistic variations in wind generation. Paper no. IGEC-1-094

    International Nuclear Information System (INIS)

    Miller, A.I.; Duffey, R.B.

    2005-01-01

    Can electricity from high-capacity nuclear reactors be blended with the variable output of wind turbines to produce electrolytic hydrogen competitively? To be competitive with alternative sources, hydrogen produced by conventional electrolysis requires low-cost electricity (likely <2.5 cents US/kW.h). One approach is to operate interruptibly, allowing an installation to sell electricity when the grid price is high and to make hydrogen when it is low. Our previous studies show that this could be cost-competitive using nuclear power generator producing electricity around 3 cents US/kW.h. Although similar unit costs are projected for wind-generated electricity, idleness of the electrolysis facility due to the variability of wind-generated electricity imposes a significant cost penalty. This paper reports on ongoing work on the economics of blending electricity from nuclear and wind sources by using wind-generated power, when available, to augment the current through electrolysis equipment that is primarily nuclear-powered - a concept we call NuWind. A voltage penalty accompanies the higher current. A 10% increase in capital cost for electrolysis equipment to enable it to accommodate the higher rate of hydrogen generation is still substantially cheaper than the capital cost of wind-dedicated electrolysis. Real-time data for electricity costs have been combined with real-time wind variability. The variability in wind fields between sites was accommodated by assigning average wind speeds that produced an average electricity generation from wind of between 32 and 42% of peak capacity, which is typical of the expectations for superior wind-generation sites. (author)

  15. Aggregated wind power generation probabilistic forecasting based on particle filter

    International Nuclear Information System (INIS)

    Li, Pai; Guan, Xiaohong; Wu, Jiang

    2015-01-01

    Highlights: • A new method for probabilistic forecasting of aggregated wind power generation. • A dynamic system is established based on a numerical weather prediction model. • The new method handles the non-Gaussian and time-varying wind power uncertainties. • Particle filter is applied to forecast predictive densities of wind generation. - Abstract: Probability distribution of aggregated wind power generation in a region is one of important issues for power system daily operation. This paper presents a novel method to forecast the predictive densities of the aggregated wind power generation from several geographically distributed wind farms, considering the non-Gaussian and non-stationary characteristics in wind power uncertainties. Based on a mesoscale numerical weather prediction model, a dynamic system is established to formulate the relationship between the atmospheric and near-surface wind fields of geographically distributed wind farms. A recursively backtracking framework based on the particle filter is applied to estimate the atmospheric state with the near-surface wind power generation measurements, and to forecast the possible samples of the aggregated wind power generation. The predictive densities of the aggregated wind power generation are then estimated based on these predicted samples by a kernel density estimator. In case studies, the new method presented is tested on a 9 wind farms system in Midwestern United States. The testing results that the new method can provide competitive interval forecasts for the aggregated wind power generation with conventional statistical based models, which validates the effectiveness of the new method

  16. Machine Learning for Wind Turbine Blades Maintenance Management

    Directory of Open Access Journals (Sweden)

    Alfredo Arcos Jiménez

    2017-12-01

    Full Text Available Delamination in Wind Turbine Blades (WTB is a common structural problem that can generate large costs. Delamination is the separation of layers of a composite material, which produces points of stress concentration. These points suffer greater traction and compression forces in working conditions, and they can trigger cracks, and partial or total breakage of the blade. Early detection of delamination is crucial for the prevention of breakages and downtime. The main novelty presented in this paper has been to apply an approach for detecting and diagnosing the delamination WTB. The approach is based on signal processing of guided waves, and multiclass pattern recognition using machine learning. Delamination was induced in the WTB to check the accuracy of the approach. The signal is denoised by wavelet transform. The autoregressive Yule–Walker model is employed for feature extraction, and Akaike’s information criterion method for feature selection. The classifiers are quadratic discriminant analysis, k-nearest neighbors, decision trees, and neural network multilayer perceptron. The confusion matrix is employed to evaluate the classification, especially the receiver operating characteristic analysis by: recall, specificity, precision, and F-score.

  17. Transition of wind power utilization technology in the 20th century; 20 seiki ni okeru furyoku riyo gijutsu no hensen

    Energy Technology Data Exchange (ETDEWEB)

    Ushiyama, I. [Ashikaga Inst. of Tech., Tochigi (Japan)

    2000-04-01

    Windmills are one of the oldest prime movers and have been used for more than 700 years in Europe. The transition from low speed windmills for grain grinding and water pumping to high speed wind turbines for electric power generation had occurred at the end of 19{sup th} century. This paper, at first, reviews the windmill technologies and the researchers before 20th century. Then describes the back ground of how the wind power generator has existed and how the four pioneers developed their wind power generator. The historical developments of windmills to wind turbines in this century are studied focusing mainly on Danish activities. Then, the effort of the development of large wind turbine such as Smith-Putnum's first MW machine in U.S.A. and other mammoth machine concept are introduced. The new concept machines such as Savonius and Darrieus wind turbines in 1920s to 1930s are also explained. Finally, the novel technologies of wind turbine covering larger machines, variable speed generators, special wing sections for wind turbines, theoretical analysis method of wind turbine performance, offshore wind turbines, and wind turbine control technologies are stated. (author)

  18. Hybrid biomass-wind power plant for reliable energy generation

    International Nuclear Information System (INIS)

    Perez-Navarro, A.; Alfonso, D.; Alvarez, C.; Ibanez, F.; Sanchez, C.; Segura, I.

    2010-01-01

    Massive implementation of renewable energy resources is a key element to reduce CO 2 emissions associated to electricity generation. Wind resources can provide an important alternative to conventional electricity generation mainly based on fossil fuels. However, wind generators are greatly affected by the restrictive operating rules of electricity markets because, as wind is naturally variable, wind generators may have serious difficulties on submitting accurate generation schedules on a day ahead basis, and on complying with scheduled obligations in real-time operation. In this paper, an innovative system combining a biomass gasification power plant, a gas storage system and stand-by generators to stabilize a generic 40 MW wind park is proposed and evaluated with real data. The wind park power production model is based on real data about power production of a Spanish wind park and a probabilistic approach to quantify fluctuations and so, power compensation needs. The hybrid wind-biomass system is analysed to obtain main hybrid system design parameters. This hybrid system can mitigate wind prediction errors and so provide a predictable source of electricity. An entire year cycle of hourly power compensations needs has been simulated deducing storage capacity, extra power needs of the biomass power plant and stand-by generation capacity to assure power compensation during critical peak hours with acceptable reliability. (author)

  19. Stochastic generation of hourly wind speed time series

    International Nuclear Information System (INIS)

    Shamshad, A.; Wan Mohd Ali Wan Hussin; Bawadi, M.A.; Mohd Sanusi, S.A.

    2006-01-01

    In the present study hourly wind speed data of Kuala Terengganu in Peninsular Malaysia are simulated by using transition matrix approach of Markovian process. The wind speed time series is divided into various states based on certain criteria. The next wind speed states are selected based on the previous states. The cumulative probability transition matrix has been formed in which each row ends with 1. Using the uniform random numbers between 0 and 1, a series of future states is generated. These states have been converted to the corresponding wind speed values using another uniform random number generator. The accuracy of the model has been determined by comparing the statistical characteristics such as average, standard deviation, root mean square error, probability density function and autocorrelation function of the generated data to those of the original data. The generated wind speed time series data is capable to preserve the wind speed characteristics of the observed data

  20. Power Maximization Control of Variable Speed Wind Generation System Using Permanent Magnet Synchronous Generator

    Science.gov (United States)

    Morimoto, Shigeo; Nakamura, Tomohiko; Takeda, Yoji

    This paper proposes the sensorless output power maximization control of the wind generation system. A permanent magnet synchronous generator (PMSG) is used as a variable speed generator in the proposed system. The generator torque is suitably controlled according to the generator speed and thus the power from a wind turbine settles down on the maximum power point by the proposed MPPT control method, where the information of wind velocity is not required. Moreover, the maximum available generated power is obtained by the optimum current vector control. The current vector of PMSG is optimally controlled according to the generator speed and the required torque in order to minimize the losses of PMSG considering the voltage and current constraints. The proposed wind power generation system can be achieved without mechanical sensors such as a wind velocity detector and a position sensor. Several experimental results show the effectiveness of the proposed control method.

  1. Operating of Small Wind Power Plants with Induction Generators

    OpenAIRE

    Jakub Nevrala; Stanislav Misak

    2008-01-01

    This paper describes different systems of small wind power plants with induction generators used in the Czech Republic. Problems of wind power plants running with induction generators are solved within partial target of the research project MSM 6198910007. For small wind power plants is used induction motor as a generator. Parameters of the name plate of motor must be resolved for generator running on measuring base. These generators are running as a separately working generators or generator...

  2. Wind turbine generators having wind assisted cooling systems and cooling methods

    Science.gov (United States)

    Bagepalli, Bharat [Niskayuna, NY; Barnes, Gary R [Delanson, NY; Gadre, Aniruddha D [Rexford, NY; Jansen, Patrick L [Scotia, NY; Bouchard, Jr., Charles G.; Jarczynski, Emil D [Scotia, NY; Garg, Jivtesh [Cambridge, MA

    2008-09-23

    A wind generator includes: a nacelle; a hub carried by the nacelle and including at least a pair of wind turbine blades; and an electricity producing generator including a stator and a rotor carried by the nacelle. The rotor is connected to the hub and rotatable in response to wind acting on the blades to rotate the rotor relative to the stator to generate electricity. A cooling system is carried by the nacelle and includes at least one ambient air inlet port opening through a surface of the nacelle downstream of the hub and blades, and a duct for flowing air from the inlet port in a generally upstream direction toward the hub and in cooling relation to the stator.

  3. Superconducting generator technology--an overview

    International Nuclear Information System (INIS)

    Edmonda, J.S.

    1979-01-01

    Application of superconducting technology to field windings of large ac generators provides virtually unlimited field capability without incurring resistive losses in the winding. Several small-scale superconducting generators have been built and tested demonstrating the feasibility of such concepts. For machines of much larger capacity, conceptual designs for 300 Mva and 1200 Mva have been completed. The development of a 300 Mva generator is projected. Designed, engineered and fabricated as a turbo generator, the superconducting machine is to be installed in a power plant, tested and operated in concert with a prime mover, the steam generator and the auxiliary support systems of the power plant. This will provide answers to the viability of operating a superconducting machine and its cryogenic handling systems in a full time, demanding environment. 21 refs

  4. Design of High Performance Permanent-Magnet Synchronous Wind Generators

    Directory of Open Access Journals (Sweden)

    Chun-Yu Hsiao

    2014-11-01

    Full Text Available This paper is devoted to the analysis and design of high performance permanent-magnet synchronous wind generators (PSWGs. A systematic and sequential methodology for the design of PMSGs is proposed with a high performance wind generator as a design model. Aiming at high induced voltage, low harmonic distortion as well as high generator efficiency, optimal generator parameters such as pole-arc to pole-pitch ratio and stator-slot-shoes dimension, etc. are determined with the proposed technique using Maxwell 2-D, Matlab software and the Taguchi method. The proposed double three-phase and six-phase winding configurations, which consist of six windings in the stator, can provide evenly distributed current for versatile applications regarding the voltage and current demands for practical consideration. Specifically, windings are connected in series to increase the output voltage at low wind speed, and in parallel during high wind speed to generate electricity even when either one winding fails, thereby enhancing the reliability as well. A PMSG is designed and implemented based on the proposed method. When the simulation is performed with a 6 Ω load, the output power for the double three-phase winding and six-phase winding are correspondingly 10.64 and 11.13 kW. In addition, 24 Ω load experiments show that the efficiencies of double three-phase winding and six-phase winding are 96.56% and 98.54%, respectively, verifying the proposed high performance operation.

  5. Dynamoelectric machine with a superconductive field winding that can operate in either a synchronous or an asynchronous mode

    International Nuclear Information System (INIS)

    Mole, C.J.; Haller, H.E. III.

    1977-01-01

    Two parallel magnetic flux paths are provided in a dynamoelectric machine having a superconductive field winding. A first, or main, magnetic flux path includes at least one area of nonferromagnetic or diamagnetic material. A second, or shunt, magnetic flux path prevents the relatively low frequency ac flux present during starting or asynchronous operation of the machine, when used as an ac motor, from penetrating the superconductive winding

  6. Survey of variable speed operation of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Ola; Hylander, J.; Thorborg, K. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Electric Power Engineering

    1996-12-01

    During the last five years the production and operation of variable-speed wind turbines have advanced from a few experimental machines to a serial production of at least 10 MW of installed capacity of variable speed machines per week. The rated power of serial wind turbines is today around 600 kW and for the prototypes up to 3000 kW. Variable speed operation of wind turbines can be obtained with several different types of electrical generating systems, such as synchronous generators with diode rectifiers and thyristor inverters or induction generators with IGBT-converters, for the wide speed range. For the narrow speed range the wound motor induction generator with a rotor cascade or a controlled rotor resistance is preferable. The development of permanent magnetic material and the reduction of costs of the power electronic components have opened a possibility of designing cost-effective wind turbines with a directly driven generator. Pitch control together with variable speed will make it possible to limit the power variation within a few percent, 2 to 5 %, of the rated power. 7 refs, 4 figs, 2 tabs

  7. Wind Generator & Biomass No-draft Gasification Hybrid

    Science.gov (United States)

    Hein, Matthew R.

    The premise of this research is that underutilized but vast intermittent renewable energy resources, such as wind, can become more market competitive by coupling with storable renewable energy sources, like biomass; thereby creating a firm capacity resource. Specifically, the Midwest state of South Dakota has immense wind energy potential that is not used because of economic and logistic barriers of electrical transmission or storage. Coupling the state's intermittent wind resource with another of the state's energy resources, cellulosic non-food biomass, by using a wind generator and no-draft biomass gasification hybrid system will result in a energy source that is both firm and storable. The average energy content of common biomass feedstock was determined, 14.8 MJ/kg (7.153 Btu/lb), along with the assumed typical biomass conversion efficiency of the no-draft gasifier, 65%, so that an average electrical energy round trip efficiency (RTE) of 214% can be expected (i.e. One unit of wind electrical energy can produce 2.14 kWh of electrical energy stored as syngas.) from a wind generator and no-draft biomass gasification system. Wind characteristics are site specific so this analysis utilizes a synthetic wind resource to represent a statistically sound gross representation of South Dakota's wind regime based on data from the Wind Resource Assessment Network (WRAN) locations. A synthetic wind turbine generated from common wind turbine power curves and scaled to 1-MW rated capacity was utilized for this analysis in order to remove equipment bias from the results. A standard 8,760-hour BIN Analysis model was constructed within HOMER, powerful simulation software developed by the National Renewable Energy Laboratory (NREL) to model the performance of renewable power systems. It was found that the optimum configuration on a per-megawatt-transmitted basis required a wind generator (wind farm) rated capacity of 3-MW with an anticipated annual biomass feedstock of 26,132 GJ

  8. Stability improvement of induction generator-based wind turbine systems

    DEFF Research Database (Denmark)

    Chen, Zhe; Hu, Y.; Blaabjerg, Frede

    2007-01-01

    The stability improvement of induction-generator-based wind turbine systems under power system fault conditions has been studied. Two types of generators are considered, namely rotor short-circuited induction generators and dynamic slip-controlled wound rotor induction generators. The factors...... affecting the stability are analysed. The characteristics of the induction-generator-based wind turbines are described, and possible methods of improving stability of the wind generators are discussed. The system modelling is presented, and then the discussed methods of improving stability are investigated...

  9. Axial flux permanent magnet brushless machines

    CERN Document Server

    Gieras, Jacek F; Kamper, Maarten J

    2008-01-01

    Axial Flux Permanent Magnet (AFPM) brushless machines are modern electrical machines with a lot of advantages over their conventional counterparts. They are being increasingly used in consumer electronics, public life, instrumentation and automation system, clinical engineering, industrial electromechanical drives, automobile manufacturing industry, electric and hybrid electric vehicles, marine vessels and toys. They are also used in more electric aircrafts and many other applications on larger scale. New applications have also emerged in distributed generation systems (wind turbine generators

  10. A simplified approach to detect undervoltage tripping of wind generators

    Energy Technology Data Exchange (ETDEWEB)

    Sigrist, Lukas; Rouco, Luis [Universidad Pontificia Comillas, Madrid (Spain). Inst. de Investigacion Tecnologica

    2012-07-01

    This paper proposes a simplified but fast approach based on a Norton equivalent of wind generators to detect undervoltage tripping of wind generators. This approach is successfully applied to a real wind farm. The relevant grid code requires the wind farm to withstand a voltage dip of 0% retained voltage. The ability of the wind generators to raise the voltage supplying reactive current and to avoid undervoltage tripping is investigated. The obtained results are also compared with the results obtained from detailed dynamic simulations, which make use of wind generator models complying with the relevant grid code. (orig.)

  11. Power Quality Improvements in Wind Diesel Power Generation System

    Directory of Open Access Journals (Sweden)

    Omar Feddaoui

    2015-08-01

    Full Text Available Generation of electricity using diesel is costly for small remote isolated communities. At remote location electricity generation from renewable energy such as wind can help reduce the overall operating costs by reducing the fuel costs. However, the penetration of wind power into small diesel-based grids is limited because of its effect on power quality and reliability. This paper focuses on the combination of Wind Turbine and Diesel Generator systems for sustained power generation, to improve the power quality of wind generation system. The performances of the optimal control structure are assessed and discussed by means of a set of simulations.

  12. Generators of Modern Wind Turbines

    DEFF Research Database (Denmark)

    Chen, Zhe

    2008-01-01

    In this paper, various types of wind generator configurations, including power electronic grid interfaces, drive trains, are described The performance in power systems is briefed. Then the optimization of generator system is presented. Some investigation results are presented and discussed....

  13. Sources of the wind power stations

    International Nuclear Information System (INIS)

    Chudivani, J.; Huettner, L.

    2012-01-01

    The paper deals with problems of the wind power stations. Describes the basic properties of wind energy. Shows and describes the different types of electrical machines used as a source of electricity in the wind power stations. Shows magnetic fields synchronous generator with salient poles and permanent magnets in the program FEMM. Describes methods for assessing of reversing the effects of the wind power stations on the distribution network. (Authors)

  14. Modeling and Simulation of Generator Side Converter of Doubly Fed Induction Generator-Based Wind Power Generation System

    DEFF Research Database (Denmark)

    Guo, Yougui; Zeng, Ping; Blaabjerg, Frede

    2010-01-01

    A real wind power generation system is given in this paper. SVM control strategy and vector control is applied for generator side converter and doubly fed induction generator respectively. First the mathematical models of the wind turbine rotor, drive train, generator side converter are described...

  15. Modeling and analysis of doubly fed induction generator wind energy systems

    CERN Document Server

    Fan, Lingling

    2015-01-01

    Wind Energy Systems: Modeling, Analysis and Control with DFIG provides key information on machine/converter modelling strategies based on space vectors, complex vector, and further frequency-domain variables. It includes applications that focus on wind energy grid integration, with analysis and control explanations with examples. For those working in the field of wind energy integration examining the potential risk of stability is key, this edition looks at how wind energy is modelled, what kind of control systems are adopted, how it interacts with the grid, as well as suitable study

  16. Effects of distributing wind energy generation over Europe

    Energy Technology Data Exchange (ETDEWEB)

    Giebel, G [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)

    1999-03-01

    Using data from 60 meteorological stations distributed all over Europe in conjunction with the National Grid Model (NGM) from the Rutherford Appleton Laboratory, the effects of the large-scale distribution of wind energy generation are studied. In some regions of Europe, wind energy already covers a significant proportion of the electricity demand. But the intermittence of the wind resource is always a limiting factor when penetration levels are high. Studies for single countries have shown that distributing the generation over a large area reduces the variability of the output and hence makes wind energy more appealing to utilities, since the stability requirement of the network are easier to fulfil. The data are analysed in terms of absolute highs and lows, temporal and spatial correlations. To assess the financial benefits, the NGM is used to evaluate the match of electricity demand and generation as well as the possibel savings of fossil fuel in an electricity grid incorporating various capacities of wind energy generation. To assess the value of wind energy on a trans-national scale, the European plant mix is modelled, and the NGM is used to simulate the scheduling of these plants in the presence of different penetrations of wind energy. (au) EU-JOULE-3. 11 refs.

  17. Needs versus bottlenecks in utilization of wind energy in Egypt

    International Nuclear Information System (INIS)

    El Semery, M.M.

    1991-01-01

    The company AOI Engine Factory in Cairo, Egypt, is involved in the production of renewable energy systems. It is shown, that with respect to wind, Egypt has a good potential. However, along the river Nile wind speed is moderate (<4,4 m/s). The three main wind energy developments in Egypt are discussed. Four 100 kW machines for grid connection have been imported from Denmark. These machines have been adapted for local production and operation circumstances. After a testing period the first batch of 100 turbines is now being manufactured. For water pumping in isolated areas, a 15 kW wind generator with two submergible electric pumps have been tested. For small wind generators a considerable market exists, but a design, suitable for local production and adapted to the local wind regime, is not available yet

  18. Market protocols in ERCOT and their effect on wind generation

    International Nuclear Information System (INIS)

    Sioshansi, Ramteen; Hurlbut, David

    2010-01-01

    Integrating wind generation into power systems and wholesale electricity markets presents unique challenges due to the characteristics of wind power, including its limited dispatchability, variability in generation, difficulty in forecasting resource availability, and the geographic location of wind resources. Texas has had to deal with many of these issues beginning in 2002 when it restructured its electricity industry and introduced aggressive renewable portfolio standards that helped spur major investments in wind generation. In this paper we discuss the issues that have arisen in designing market protocols that take account of these special characteristics of wind generation and survey the regulatory and market rules that have been developed in Texas. We discuss the perverse incentives some of the rules gave wind generators to overschedule generation in order to receive balancing energy payments, and steps that have been taken to mitigate those incentive effects. Finally, we discuss more recent steps taken by the market operator and regulators to ensure transmission capacity is available for new wind generators that are expected to come online in the future.

  19. Controller for a small induction-generator based wind-turbine

    Energy Technology Data Exchange (ETDEWEB)

    Ahshan, R.; Iqbal, M.T.; Mann, George K.I. [Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John' s, Newfoundland (Canada)

    2008-04-15

    Design of a low-cost micro-controller for a small induction-generator based grid-connected wind-turbine is presented in this paper. The controller senses the parameters of the wind-turbine generator and the grid, and makes decisions about grid connection and disconnection. Low-cost instrumentation circuitry has been developed to measure the generator and grid parameters. Based on the measurement of voltage and frequency of the wind-turbine generator and the grid side, a control decision is taken to connect the system to the grid. The controller makes decision to disconnect the system from the grid based on the power flow measurement between the wind turbine and the grid. The power flow between wind turbine and the grid depends upon the availability of the wind. The prototype controller has been developed based on a micro-controller PIC16F877 and has been tested in the laboratory. (author)

  20. Kompensasi Kesalahan Sensor Berbasis Descriptor dengan Performa H_inf pada Winding Machine

    Directory of Open Access Journals (Sweden)

    Hendra Antomy

    2015-12-01

    Full Text Available Kesalahan pada sensor dapat terjadi pada sistem kontrol dengan umpan balik sehingga mengakibatkan sistem mengalami penurunan stabilitas dan performa. Fault Tolerant Control (FTC adalah metode untuk mengkompensasi kesalahan pada komponen sistem, salah satunya adalah kesalahan sensor. FTC dapat disusun dengan cara mendesain estimator untuk mengestimasi besarnya kesalahan sensor yang terjadi. Kompensasi dilakukan dengan cara mengurangkan estimasi kesalahan sensor dengan keluaran sistem. Pada makalah ini, FTC untuk kesalahan sensor diterapkan pada sistem winding machine. Estimator dirancang menggunakan pendekatan sistem descriptor dan didesain memenuhi performa H_inf. Permasalahan dalam desain estimator dirumuskan dalam bentuk Linear Matrix Inequality (LMI. Untuk merancang kontroler nominal, sistem winding machine direpresentasikan sebagai model fuzzy Takagi-Sugeno (T-S. Berdasarkan model tersebut, aturan kontroler disusun menggunakan konsep Parallel Distributed Compensation (PDC dengan struktur kontrol servo tipe 1. Hasil simulasi menunjukkan bahwa kompensasi yang diberikan dapat menjaga performa dan stabilitas sistem saat terjadi kesalahan sensor. Selain itu, estimator memenuhi performa H_inf dengan L2-Gain kurang dari tingkat pelemahan yang ditentukan.

  1. Fault diagnosis of direct-drive wind turbine based on support vector machine

    International Nuclear Information System (INIS)

    An, X L; Jiang, D X; Li, S H; Chen, J

    2011-01-01

    A fault diagnosis method of direct-drive wind turbine based on support vector machine (SVM) and feature selection is presented. The time-domain feature parameters of main shaft vibration signal in the horizontal and vertical directions are considered in the method. Firstly, in laboratory scale five experiments of direct-drive wind turbine with normal condition, wind wheel mass imbalance fault, wind wheel aerodynamic imbalance fault, yaw fault and blade airfoil change fault are carried out. The features of five experiments are analyzed. Secondly, the sensitive time-domain feature parameters in the horizontal and vertical directions of vibration signal in the five conditions are selected and used as feature samples. By training, the mapping relation between feature parameters and fault types are established in SVM model. Finally, the performance of the proposed method is verified through experimental data. The results show that the proposed method is effective in identifying the fault of wind turbine. It has good classification ability and robustness to diagnose the fault of direct-drive wind turbine.

  2. Optimization of power generation from shrouded wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Foote, Tudor; Agarwal, Ramesh [Department of Mechanical Engineering and Materials Science, Washington University in St. Louis (United States)

    2013-07-01

    In past several years, several studies have shown that the shrouded wind turbines can generate greater power compared to bare turbines. The objective of this study is to determine the potential of shrouded wind turbines for increased power generation by conducting numerical simulations. An analytical/computational study is performed by employing the well-known commercial Computational Fluid Dynamics (CFD) software FLUENT. An actuator disc model is used to model the turbine. The incompressible Navier-Stokes equations and a two equation realizable {kappa}-{epsilon} model are employed in the calculations. The power coefficient Cp and generated power are calculated for a large number of cases for horizontal axis wind turbines (HAWT) of various diameters and wind speeds for both bare and shrouded turbines. The design of the shroud is optimized by employing a single objective genetic algorithm; the objective being the maximization of the power coefficient Cp. It was found that the shroud indeed increases the Cp beyond the Betz’s limit significantly and as a result the generated power; this effect is consistent with that found in the recent literature that the shrouded wind-turbines can generate greater power than the bare turbines. The optimized shape of the shroud or diffuser further increases the generated power and Cp.

  3. Generating wind fluctuations for Large Eddy Simulation inflow boundary condition

    International Nuclear Information System (INIS)

    Bekele, S.A.; Hangan, H.

    2004-01-01

    Large Eddy Simulation (LES) studies of flows over bluff bodies immersed in a boundary layer wind environment require instantaneous wind characteristics. The influences of the wind environment on the building pressure distribution are a well-established fact in the experimental study of wind engineering. Measured wind data of full or model scale are available only at a limited number of points. A method of obtaining instantaneous wind data at all mesh points of the inlet boundary for LES computation is necessary. Herein previous and new wind inflow generation techniques are presented. The generated wind data is then applied to a LES computation of a channel flow. The characteristics of the generated wind fluctuations in comparison to the measured data and the properties of the flow field computed from these two wind data are discussed. (author)

  4. Wind Generation Feasibility Study in Bethel, AK

    Energy Technology Data Exchange (ETDEWEB)

    Tom Humphrey, YKHC; Lance Kincaid, EMCOR Energy & Technologies

    2004-07-31

    This report studies the wind resources in the Yukon-Kuskokwim Health Corporation (YKHC) region, located in southwestern Alaska, and the applicability of wind generation technologies to YKHC facilities.

  5. Wind energy technology : from the past to the future; 20 seiki ni okeru furyoku riyo gijutsu no henkan. Furyoku hatsuden : kako kara mirai e

    Energy Technology Data Exchange (ETDEWEB)

    Ushiyama, I. [Ashikaga Institute of Technology, Tochigi (Japan)

    2000-01-20

    Windmills are one of the oldest prime movers and have been used for more than 700 years in Europe. The transition from low speed windmills for grain grinding and water pumping to high speed wind turbines for electric power generation had occurred at first, reviews the windmill technologies and the researchers before 20{sup th} century. Then describes the back ground of how the wind power generator has existed and how the four pioneers developed their wind power generator. The historical developments of windmills to wind turbines in this century are studied focusing mainly on Danish activities. Then, the effort of the development of large wind turbine such as Smith-Putnum's first MW machine in U.S.A. and other mammoth machine concept are introduced. The new concept machines such as Savonius and Darrieus wind turbines in 1920s to 1930s are also explained. Finally, the novel technologies of wind turbine covering larger machines, variable speed generators, special wing sections for wind turbines, theoretical analysis method of wind turbine performance, offshore wind turbines, and wind turbine control technologies are stated. (author)

  6. Interconnector capacity allocation in offshore grids with variable wind generation

    DEFF Research Database (Denmark)

    Schröder, Sascha Thorsten

    2013-01-01

    the interconnector capacity should be allocated for wind generation and for international power trading. The main difficulty arises from the stochastic nature of wind generation: in a case with radial connections to the national coast, the wind park owner has the possibility of aggregating the offshore wind park....... It is concluded that treating offshore generation as a single price zone within the interconnector reduces the wind operator’s ability to pool it with other generation. Furthermore, a single offshore price zone between two markets will always receive the lower spot market price of the neighbouring zones, although...

  7. Effect of wind turbine generator model and siting on wind power changes out of large WECS arrays

    Science.gov (United States)

    Schleuter, R. A.; Park, G. L.; Lotfalian, M.; Dorsey, J.; Shayanfar, H.

    1981-01-01

    Methods of reducing the WECS generation change through selection of the wind turbine model for each site, selection of an appropriate siting configuration, and wind array controls are discussed. An analysis of wind generation change from an echelon and a farm for passage of a thunderstorm is presented. Reduction of the wind generation change over ten minutes is shown to reduce the increase in spinning reserve, unloadable generation and load following requirements on unit commitment when significant WECS generation is present and the farm penetration constraint is satisfied. Controls on the blade pitch angle of all wind turbines in an array or a battery control are shown to reduce both the wind generation change out of an array and the effective farm penetration in anticipation of a storm so that the farm penetration constraint may be satisfied.

  8. Transient stability enhancement of wind farms connected to a multi-machine power system by using an adaptive ANN-controlled SMES

    International Nuclear Information System (INIS)

    Muyeen, S.M.; Hasanien, Hany M.; Al-Durra, Ahmed

    2014-01-01

    Highlights: • We present an ANN-controlled SMES in this paper. • The objective is to enhance transient stability of WF connected to power system. • The control strategy depends on a PWM VSC and DC–DC converter. • The effectiveness of proposed controller is compared with PI controller. • The validity of the proposed system is verified by simulation results. - Abstract: This paper presents a novel adaptive artificial neural network (ANN)-controlled superconducting magnetic energy storage (SMES) system to enhance the transient stability of wind farms connected to a multi-machine power system during network disturbances. The control strategy of SMES depends mainly on a sinusoidal pulse width modulation (PWM) voltage source converter (VSC) and an adaptive ANN-controlled DC–DC converter using insulated gate bipolar transistors (IGBTs). The effectiveness of the proposed adaptive ANN-controlled SMES is then compared with that of proportional-integral (PI)-controlled SMES optimized by response surface methodology and genetic algorithm (RSM–GA) considering both of symmetrical and unsymmetrical faults. For realistic responses, real wind speed data and two-mass drive train model of wind turbine generator system is considered in the analyses. The validity of the proposed system is verified by the simulation results which are performed using the laboratory standard dynamic power system simulator PSCAD/EMTDC. Notably, the proposed adaptive ANN-controlled SMES enhances the transient stability of wind farms connected to a multi-machine power system

  9. Efficient operation of anisotropic synchronous machines for wind energy systems

    International Nuclear Information System (INIS)

    Eldeeb, Hisham; Hackl, Christoph M.; Kullick, Julian

    2016-01-01

    This paper presents an analytical solution for the Maximum-Torque-per-Ampere (MTPA) operation of synchronous machines (SM) with anisotropy and magnetic cross-coupling for the application in wind turbine systems and airborne wind energy systems. For a given reference torque, the analytical MTPA solution provides the optimal stator current references which produce the desired torque while minimizing the stator copper losses. From an implementation point of view, the proposed analytical method is appealing in terms of its fast online computation (compared to classical numerical methods) and its efficiency enhancement of the electrical drive system. The efficiency of the analytical MTPA operation, with and without consideration of cross-coupling, is compared to the conventional method with zero direct current. (paper)

  10. Spatio-temporal data analytics for wind energy integration

    CERN Document Server

    Yang, Lei; Zhang, Junshan

    2014-01-01

    This SpringerBrief presents spatio-temporal data analytics for wind energy integration using stochastic modeling and optimization methods. It explores techniques for efficiently integrating renewable energy generation into bulk power grids. The operational challenges of wind, and its variability are carefully examined. A spatio-temporal analysis approach enables the authors to develop Markov-chain-based short-term forecasts of wind farm power generation. To deal with the wind ramp dynamics, a support vector machine enhanced Markov model is introduced. The stochastic optimization of economic di

  11. Structural Design Optimization of Doubly-Fed Induction Generators Using GeneratorSE

    Energy Technology Data Exchange (ETDEWEB)

    Sethuraman, Latha [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Fingersh, Lee J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dykes, Katherine L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Arthurs, Claire [Georgia Institute of Technology

    2017-11-13

    A wind turbine with a larger rotor swept area can generate more electricity, however, this increases costs disproportionately for manufacturing, transportation, and installation. This poster presents analytical models for optimizing doubly-fed induction generators (DFIGs), with the objective of reducing the costs and mass of wind turbine drivetrains. The structural design for the induction machine includes models for the casing, stator, rotor, and high-speed shaft developed within the DFIG module in the National Renewable Energy Laboratory's wind turbine sizing tool, GeneratorSE. The mechanical integrity of the machine is verified by examining stresses, structural deflections, and modal properties. The optimization results are then validated using finite element analysis (FEA). The results suggest that our analytical model correlates with the FEA in some areas, such as radial deflection, differing by less than 20 percent. But the analytical model requires further development for axial deflections, torsional deflections, and stress calculations.

  12. Direct Interval Forecasting of Wind Power

    DEFF Research Database (Denmark)

    Wan, Can; Xu, Zhao; Pinson, Pierre

    2013-01-01

    This letter proposes a novel approach to directly formulate the prediction intervals of wind power generation based on extreme learning machine and particle swarm optimization, where prediction intervals are generated through direct optimization of both the coverage probability and sharpness...

  13. Indices for planning wind power generation; Furyoku hatsuden no keikaku shihyo

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, H

    1997-11-25

    Outlined herein are status of wind power generation development, indices for planning development, and actual development results. At present, wind power generates electric power of 6,781MW worldwide. USA has been rapidly developing wind power generation since enactment of the PURPA law, and accounted for 25% of the world output in the past. However, the county is recently unseated from the world top position by Germany, which has been extensively developing wind power generation since enactment of the EFL law to reach 1,799MW. In Japan, electric power companies, local governments and public institutions have been positively introducing wind mills since 1992, when Tohoku Electric Power Co. built Ryuhi Wind Park, now generating a total power of 15MW by 64 units located at 33 different points. According to the surveys by NEDO on wind conditions, there are a number of districts suited for wind mills in Hokkaido, Tohoku, Okinawa and sea areas in Honshu. The indices described herein for planning wind power generation include rotor diameter, tower height, speed of rotation, weight, power to be generated, utilization and service factors, noise level, and investment and running costs. In the present state of the development of wind power generation in Japan, development points are 33, generated ouptut 15,097kW and units 64. 14 figs.

  14. Alternative methods of modeling wind generation using production costing models

    International Nuclear Information System (INIS)

    Milligan, M.R.; Pang, C.K.

    1996-08-01

    This paper examines the methods of incorporating wind generation in two production costing models: one is a load duration curve (LDC) based model and the other is a chronological-based model. These two models were used to evaluate the impacts of wind generation on two utility systems using actual collected wind data at two locations with high potential for wind generation. The results are sensitive to the selected wind data and the level of benefits of wind generation is sensitive to the load forecast. The total production cost over a year obtained by the chronological approach does not differ significantly from that of the LDC approach, though the chronological commitment of units is more realistic and more accurate. Chronological models provide the capability of answering important questions about wind resources which are difficult or impossible to address with LDC models

  15. Superconductivity for Large Scale Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    R. Fair; W. Stautner; M. Douglass; R. Rajput-Ghoshal; M. Moscinski; P. Riley; D. Wagner; J. Kim; S. Hou; F. Lopez; K. Haran; J. Bray; T. Laskaris; J. Rochford; R. Duckworth

    2012-10-12

    A conceptual design has been completed for a 10MW superconducting direct drive wind turbine generator employing low temperature superconductors for the field winding. Key technology building blocks from the GE Wind and GE Healthcare businesses have been transferred across to the design of this concept machine. Wherever possible, conventional technology and production techniques have been used in order to support the case for commercialization of such a machine. Appendices A and B provide further details of the layout of the machine and the complete specification table for the concept design. Phase 1 of the program has allowed us to understand the trade-offs between the various sub-systems of such a generator and its integration with a wind turbine. A Failure Modes and Effects Analysis (FMEA) and a Technology Readiness Level (TRL) analysis have been completed resulting in the identification of high risk components within the design. The design has been analyzed from a commercial and economic point of view and Cost of Energy (COE) calculations have been carried out with the potential to reduce COE by up to 18% when compared with a permanent magnet direct drive 5MW baseline machine, resulting in a potential COE of 0.075 $/kWh. Finally, a top-level commercialization plan has been proposed to enable this technology to be transitioned to full volume production. The main body of this report will present the design processes employed and the main findings and conclusions.

  16. Next Generation Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Cheraghi, S. Hossein [Western New England Univ., Springfield, MA (United States); Madden, Frank [FloDesign Wind Turbine Corp., Waltham, MA (United States)

    2012-09-01

    The goal of this collaborative effort between Western New England University's College of Engineering and FloDesign Wind Turbine (FDWT) Corporation to wok on a novel areodynamic concept that could potentially lead to the next generation of wind turbines. Analytical studies and early scale model tests of FDWT's Mixer/Ejector Wind Turbine (MEWT) concept, which exploits jet-age advanced fluid dynamics, indicate that the concept has the potential to significantly reduce the cost of electricity over conventional Horizontal Axis Wind Turbines while reducing land usage. This project involved the design, fabrication, and wind tunnel testing of components of MEWT to provide the research and engineering data necessary to validate the design iterations and optimize system performance. Based on these tests, a scale model prototype called Briza was designed, fabricated, installed and tested on a portable tower to investigate and improve the design system in real world conditions. The results of these scale prototype efforts were very promising and have contributed significantly to FDWT's ongoing development of a product scale wind turbine for deployment in multiple locations around the U.S. This research was mutually beneficial to Western New England University, FDWT, and the DOE by utilizing over 30 student interns and a number of faculty in all efforts. It brought real-world wind turbine experience into the classroom to further enhance the Green Engineering Program at WNEU. It also provided on-the-job training to many students, improving their future employment opportunities, while also providing valuable information to further advance FDWT's mixer-ejector wind turbine technology, creating opportunities for future project innovation and job creation.

  17. Wind Turbine Generator System Acoustic Noise Test Report for the Gaia Wind 11-kW Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Huskey, A.

    2011-11-01

    This report details the acoustic noise test conducted on the Gaia-Wind 11-kW wind turbine at the National Wind Technology Center. The test turbine is a two- bladed, downwind wind turbine with a rated power of 11 kW. The test turbine was tested in accordance with the International Electrotechnical Commission standard, IEC 61400-11 Ed 2.1 2006-11 Wind Turbine Generator Systems -- Part 11 Acoustic Noise Measurement Techniques.

  18. Modelling and analysis of transient state during improved coupling procedure with the grid for DFIG based wind turbine generator

    Science.gov (United States)

    Kammoun, Soulaymen; Sallem, Souhir; Ben Ali Kammoun, Mohamed

    2017-11-01

    The aim of this study is to enhance DFIG based Wind Energy Conversion Systems (WECS) dynamics during grid coupling. In this paper, a system modelling and a starting/coupling procedure for this generator to the grid are proposed. The proposed non-linear system is a variable structure system (VSS) and has two different states, before and after coupling. So, two different state models are given to the system to analyse transient stability during the coupling. The given model represents well the transient state of the machine, through which, a behaviour assessment of the generator before, during and after connection is given based on simulation results. For this, a 300 kW DFIG based wind generation system model was simulated on the Matlab/SIMULINK environment. We judge the proposed procedure to be practical, smooth and stability improved.

  19. Operating of Small Wind Power Plants with Induction Generators

    Directory of Open Access Journals (Sweden)

    Jakub Nevrala

    2008-01-01

    Full Text Available This paper describes different systems of small wind power plants with induction generators used in the Czech Republic. Problems of wind power plants running with induction generators are solved within partial target of the research project MSM 6198910007. For small wind power plants is used induction motor as a generator. Parameters of the name plate of motor must be resolved for generator running on measuring base. These generators are running as a separately working generators or generators connected to the power grid. Methods of control these systems as a separately working, directly connecting to power grid, control by frequency converter and wiring by synchronous cascade are confronted on the measuring base too.

  20. Investigation of surge protective devices operation of a wind generator

    International Nuclear Information System (INIS)

    Dimitrov, D.; Vasileva, M.

    2008-01-01

    The interest to the investments in a wind energetics increases in the last years. The wind energetics is the fastest developing direction in the energetics in global scale. The wind energy is more attractive because its prices are lower in comparison of the other technologies for generating energy. The right choice of the surge protective devices has the important meaning on building and exploitation of the wind generators. The aim of this paper is investigation of the surge protective devices operation when they are installation to a wind generator. (authors)

  1. Representational Learning for Fault Diagnosis of Wind Turbine Equipment: A Multi-Layered Extreme Learning Machines Approach

    Directory of Open Access Journals (Sweden)

    Zhi-Xin Yang

    2016-05-01

    Full Text Available Reliable and quick response fault diagnosis is crucial for the wind turbine generator system (WTGS to avoid unplanned interruption and to reduce the maintenance cost. However, the conditional data generated from WTGS operating in a tough environment is always dynamical and high-dimensional. To address these challenges, we propose a new fault diagnosis scheme which is composed of multiple extreme learning machines (ELM in a hierarchical structure, where a forwarding list of ELM layers is concatenated and each of them is processed independently for its corresponding role. The framework enables both representational feature learning and fault classification. The multi-layered ELM based representational learning covers functions including data preprocessing, feature extraction and dimension reduction. An ELM based autoencoder is trained to generate a hidden layer output weight matrix, which is then used to transform the input dataset into a new feature representation. Compared with the traditional feature extraction methods which may empirically wipe off some “insignificant’ feature information that in fact conveys certain undiscovered important knowledge, the introduced representational learning method could overcome the loss of information content. The computed output weight matrix projects the high dimensional input vector into a compressed and orthogonally weighted distribution. The last single layer of ELM is applied for fault classification. Unlike the greedy layer wise learning method adopted in back propagation based deep learning (DL, the proposed framework does not need iterative fine-tuning of parameters. To evaluate its experimental performance, comparison tests are carried out on a wind turbine generator simulator. The results show that the proposed diagnostic framework achieves the best performance among the compared approaches in terms of accuracy and efficiency in multiple faults detection of wind turbines.

  2. Power generation from wind turbines in a solar chimney

    Energy Technology Data Exchange (ETDEWEB)

    Foote, Tudor [Graduate Student, Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, Jolley Hall, Campus Box 1185, One Brookings Drive, St. Louis, Missouri, 63130 (United States); Agarwal, Ramesh K. [William Palm Professor, Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, Jolley Hall, Campus Box 1185, One Brookings Drive, St. Louis, Missouri, 63130 (United States)

    2013-07-01

    Recent studies have shown that shrouded wind turbines can generate greater power compared to bare turbines. A solar chimney generates an upward draft of wind inside a tower and a shroud around the wind turbine. There are numerous empty silos on farms in the U.S. that can be converted to solar chimneys with minor modifications at modest cost. The objective of this study is to determine the potential of these silos/chimneys for generating wind power. The study is conducted through analytical/computational approach by employing the commercial Computational Fluid Dynamics (CFD) software. Computations are performed for five different geometric configurations consisting of a turbine, a cylindrical silo, and/or a venturi and/or a diffuser using the dimensions of typical silos and assuming Class 3 wind velocity. The incompressible Navier-Stokes equations with the Boussinesq approximation and a two equation realizable {kappa}-{epsilon} model are employed in the calculations, and the turbine is modeled as an actuator disk. The power coefficient (Cp) and generated power are calculated for the five cases. Consistent with recent literature, it was found that the silos with diffusers increase the Cp beyond Betz’s limit significantly and thus the generated power. It should be noted that Cp is calculated by normalizing it by the turbine area swept by the wind. This study shows the potential of using abandoned silos in the mid-west and other parts of the country for localized wind power generation.

  3. Wind power: cost effective generation for the 1990s

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, T [Vestas Wind Systems A/S (Denmark)

    1989-01-01

    Wind power plants have been installed all over the world, notably in California and Denmark. Commercially available wind turbines today are rated from 50 KW to 1 MW with emphasis on the 1 MW range. As the fuel is ''free'' generating costs are identical to the capital, operation and maintenance costs of the plant. An estimate of the unit price of wind power generated electricity in Denmark is comparable to that generated by a coal fired plant. The main environmental impacts of a wind farm are considered. These are visual impact, noise emission, use of (agricultural) space and the impact on wildlife, mainly birds. Finally the installation of a wind farm and its connection to the grid are described. (3 figures, 1 table). (UK)

  4. Effect of fall wind on wind power generation; Furyoku hatsuden ni okeru dashikaze no koka

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, H [Nihon University, Tokyo (Japan)

    1997-11-25

    Wind conditions in Arakawa Town, Niigata Prefecture, were surveyed by anemometers and anemoscopes installed at 3 different points, and the data are analyzed to develop the prediction model for investigating possibility of introduction of wind mills there. Outlined herein is power generated by fall wind by comparing predicted power availability with the actual results. In order to investigate possibility of power generation by fall wind, the wind conditions and power availability are simulated using the observed wind condition data. Predicted wind velocity involves a large error at a point where frequency of prevailing wind direction is high, and direction in which average wind velocity is high coincides with direction in which land is slanted at a high slope. Fall wind occurs locally for geographical reasons. Location of the wind mill must be carefully considered, because it is complex, although potentially gives a larger quantity of power. A wind mill of 400kW can produce power of around 600MWh annually, when it is located at the suited site confirmed by the wind condition analysis results. 6 refs., 5 figs., 6 tabs.

  5. Capacity expansion model of wind power generation based on ELCC

    Science.gov (United States)

    Yuan, Bo; Zong, Jin; Wu, Shengyu

    2018-02-01

    Capacity expansion is an indispensable prerequisite for power system planning and construction. A reasonable, efficient and accurate capacity expansion model (CEM) is crucial to power system planning. In most current CEMs, the capacity of wind power generation is considered as boundary conditions instead of decision variables, which may lead to curtailment or over construction of flexible resource, especially at a high renewable energy penetration scenario. This paper proposed a wind power generation capacity value(CV) calculation method based on effective load-carrying capability, and a CEM that co-optimizes wind power generation and conventional power sources. Wind power generation is considered as decision variable in this model, and the model can accurately reflect the uncertainty nature of wind power.

  6. Applications of wind generation for power system frequency control, inter-area oscillations damping and parameter identification

    Science.gov (United States)

    Wilches-Bernal, Felipe

    Power systems around the world are experiencing a continued increase in wind generation as part of their energy mix. Because of its power electronics interface, wind energy conversion systems interact differently with the grid than conventional generation. These facts are changing the traditional dynamics that regulate power system behavior and call for a re-examination of traditional problems encountered in power systems like frequency response, inter-area oscillations and parameter identification. To address this need, realistic models for wind generation are necessary. The dissertation implements such models in a MATLAB-based flexible environment suited for power system research. The dissertation continues with an analysis of the frequency response of a test power system dependent mainly on a mode referred to as the frequency regulation mode. Using this test system it is shown that its frequency regulation capability is reduced with wind penetration levels of 25% and above. A controller for wind generation to restore the frequency response of the system is then presented. The proposed controller requires the WTG to operate in a deloaded mode, a condition that is obtained through pitching the wind turbine blades. Time simulations at wind penetration levels of 25% and 50% are performed to demonstrate the effectiveness of the proposed controller. Next, the dissertation evaluates how the inter-area oscillation of a two-machine power system is affected by wind integration. The assessment is performed based on the positioning of the WTG, the level of wind penetration, and the loading condition of the system. It is determined that integrating wind reduces the damping of the inter-area mode of the system when performed in an area that imports power. For this worst-case scenario, the dissertation proposes two controllers for wind generation to improve the damping of the inter-area mode. The first controller uses frequency as feedback signal for the active power control

  7. Feasibility study of wind-generated electricity for rural applications in southwestern Ohio

    Science.gov (United States)

    Kohring, G. W.

    The parameters associated with domestic production of wind generated electricity for direct use by small farms and rural homes in the southwestern Ohio region are discussed. The project involves direct utility interfaced electricity generation from a horizontal axis, down-wind, fixed pitch, wind powered induction generator system. Goals of the project are to determine: the ability to produce useful amounts of domestic wind generated electricity in the southwestern Ohio region; economic justification for domestic wind generated electrical production; and the potential of domestic wind generated electricity for reducing dependence on non-renewable energy resources in the southwestern Ohio region.

  8. Different Models for Forecasting Wind Power Generation: Case Study

    Directory of Open Access Journals (Sweden)

    David Barbosa de Alencar

    2017-11-01

    Full Text Available Generation of electric energy through wind turbines is one of the practically inexhaustible alternatives of generation. It is considered a source of clean energy, but still needs a lot of research for the development of science and technologies that ensures uniformity in generation, providing a greater participation of this source in the energy matrix, since the wind presents abrupt variations in speed, density and other important variables. In wind-based electrical systems, it is essential to predict at least one day in advance the future values of wind behavior, in order to evaluate the availability of energy for the next period, which is relevant information in the dispatch of the generating units and in the control of the electrical system. This paper develops ultra-short, short, medium and long-term prediction models of wind speed, based on computational intelligence techniques, using artificial neural network models, Autoregressive Integrated Moving Average (ARIMA and hybrid models including forecasting using wavelets. For the application of the methodology, the meteorological variables of the database of the national organization system of environmental data (SONDA, Petrolina station, from 1 January 2004 to 31 March 2017, were used. A comparison among results by different used approaches is also done and it is also predicted the possibility of power and energy generation using a certain kind of wind generator.

  9. Doubly Fed Induction Generator Wind Turbines with Fuzzy Controller: A Survey

    Directory of Open Access Journals (Sweden)

    J. S. Sathiyanarayanan

    2014-01-01

    Full Text Available Wind energy is one of the extraordinary sources of renewable energy due to its clean character and free availability. With the increasing wind power penetration, the wind farms are directly influencing the power systems. The majority of wind farms are using variable speed wind turbines equipped with doubly fed induction generators (DFIG due to their advantages over other wind turbine generators (WTGs. Therefore, the analysis of wind power dynamics with the DFIG wind turbines has become a very important research issue, especially during transient faults. This paper presents fuzzy logic control of doubly fed induction generator (DFIG wind turbine in a sample power system. Fuzzy logic controller is applied to rotor side converter for active power control and voltage regulation of wind turbine.

  10. Doubly fed induction generator wind turbines with fuzzy controller: a survey.

    Science.gov (United States)

    Sathiyanarayanan, J S; Kumar, A Senthil

    2014-01-01

    Wind energy is one of the extraordinary sources of renewable energy due to its clean character and free availability. With the increasing wind power penetration, the wind farms are directly influencing the power systems. The majority of wind farms are using variable speed wind turbines equipped with doubly fed induction generators (DFIG) due to their advantages over other wind turbine generators (WTGs). Therefore, the analysis of wind power dynamics with the DFIG wind turbines has become a very important research issue, especially during transient faults. This paper presents fuzzy logic control of doubly fed induction generator (DFIG) wind turbine in a sample power system. Fuzzy logic controller is applied to rotor side converter for active power control and voltage regulation of wind turbine.

  11. Comparison of superconducting generators and permanent magnet generators for 10-MW direct-drive wind turbines

    DEFF Research Database (Denmark)

    Liu, Dong; Polinder, Henk; Abrahamsen, Asger Bech

    2016-01-01

    Large offshore direct-drive wind turbines of 10-MW power levels are being extensively proposed and studied because of a reduced cost of energy. Conventional permanent magnet generators currently dominating the direct-drive wind turbine market are still under consideration for such large wind...... turbines. In the meantime, superconducting generators (SCSGs) have been of particular interest to become a significant competitor because of their compactness and light weight. This paper compares the performance indicators of these two direct-drive generator types in the same 10-MW wind turbine under...... the same design and optimization method. Such comparisons will be interesting and insightful for commercialization of superconducting generators and for development of future wind energy industry, although SCSGs are still far from a high technology readiness level. The results show that the SCSGs may...

  12. Optimization of Multibrid Permanent-Magnet Wind Generator Systems

    DEFF Research Database (Denmark)

    Chen, Zhe; Li, H.; Polinder, H.

    2009-01-01

    and multibrid wind turbine configurations are obtained, and the suitable ranges of gear ratios for different power ratings are investigated. Finally, the detailed comparisons of themost cost-effective multibridPMgenerator system and the optimized direct-drive PM generator system are also presented and discussed....... The comparative results have shown that the multibrid wind turbine concept appears more cost-effective than the direct-drive concept.......This paper investigates the cost-effective ranges of gearbox ratios and power ratings of multibrid permanent-magnet (PM) wind generator systems by using a design optimization method. First, the analytical model of a multibrid wind turbine concept consisting of a single-stage gearbox and a three...

  13. Photovoltaic-wind hybrid autonomous generation systems in Mongolia

    Energy Technology Data Exchange (ETDEWEB)

    Dei, Tsutomu; Ushiyama, Izumi

    2005-01-01

    Two hybrid stand-alone (autonomous) power systems, each with wind and PV generation, were studied as installed at health clinics in semi-desert and mountainous region in Mongolia. Meteorological and system operation parameters, including power output and the consumption of the system, were generally monitored by sophisticated monitoring. However, where wind and solar site information was lacking, justifiable estimates were made. The results show that there is a seasonal complementary relationship between wind and solar irradiation in Tarot Sum. The users understood the necessity of Demand Side Management of isolated wind-PV generation system through technology transfer seminars and actually executed DSM at both sites. (author)

  14. Entropy method combined with extreme learning machine method for the short-term photovoltaic power generation forecasting

    International Nuclear Information System (INIS)

    Tang, Pingzhou; Chen, Di; Hou, Yushuo

    2016-01-01

    As the world’s energy problem becomes more severe day by day, photovoltaic power generation has opened a new door for us with no doubt. It will provide an effective solution for this severe energy problem and meet human’s needs for energy if we can apply photovoltaic power generation in real life, Similar to wind power generation, photovoltaic power generation is uncertain. Therefore, the forecast of photovoltaic power generation is very crucial. In this paper, entropy method and extreme learning machine (ELM) method were combined to forecast a short-term photovoltaic power generation. First, entropy method is used to process initial data, train the network through the data after unification, and then forecast electricity generation. Finally, the data results obtained through the entropy method with ELM were compared with that generated through generalized regression neural network (GRNN) and radial basis function neural network (RBF) method. We found that entropy method combining with ELM method possesses higher accuracy and the calculation is faster.

  15. Full-load converter connected asynchronous generators for MW class wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Akhmatov, Vladislav

    2005-06-15

    Wind turbines equipped with full-load converter-connected asynchronous generators are a known concept. These have rating up to hundreds of kW and are a feasible concept for MW class wind turbines and may have advantages when compared to conventional wind turbines with directly connected generators. The concept requires the use of full-scale frequency converters, but the mechanical gearbox is smaller than in conventional wind turbines of the same rating. Application of smaller gearbox may reduce the no-load losses in the wind turbines, which is why such wind turbines with converter connected generators may start operation at a smaller wind speed. Wind turbines equipped with such converted connected asynchronous generators are pitch-controlled and variable-speed. This allows better performance and control. The converter control may be applied to support the grid voltage at short-circuit faults and to improve the fault-ride-through capability of the wind turbines, which makes the concepts relevant for large wind farms. The Danish transmission system operator Energinet-DK has implemented the general model of wind turbines equipped with converter connected asynchronous generators with the simulation tool Powerfactory (DlgSilent). The article presents Energinet-DK's experience of modeling this feasible wind turbine concept. (Author)

  16. SimWIND: A geospatial infrastructure model for optimizing wind power generation and transmission

    International Nuclear Information System (INIS)

    Phillips, Benjamin R.; Middleton, Richard S.

    2012-01-01

    Wind is a clean, enduring energy resource with the capacity to satisfy 20% or more of U.S. electricity demand. Presently, wind potential is limited by a paucity of electrical transmission lines and/or capacity between promising wind resources and primary load centers. We present the model SimWIND to address this shortfall. SimWIND is an integrated optimization model for the geospatial arrangement and cost minimization of wind-power generation–transmission–delivery infrastructure. Given a set of possible wind-farm sites, the model simultaneously determines (1) where and how much power to generate and (2) where to build new transmission infrastructure and with what capacity in order to minimize the cost for delivering a targeted amount of power to load. Costs and routing of transmission lines consider geographic and social constraints as well as electricity losses. We apply our model to the Electric Reliability Council of Texas (ERCOT) Interconnection, considering scenarios that deliver up to 20 GW of new wind power. We show that SimWIND could potentially reduce ERCOT's projected ∼$5B transmission network upgrade line length and associated costs by 50%. These results suggest that SimWIND's coupled generation–transmission–delivery modeling approach could play a critical role in enhancing planning efforts and reducing costs for wind energy integration. - Highlights: ► Wind power is limited by transmission capacity between resources and demands. ► SimWIND is a coupled generation-transmission-delivery model for wind infrastructure. ► The model minimizes costs considering realistic transmission routing and networking. ► We show that SimWIND could save 50% of $5B costs for expanding the Texas grid. ► Results suggest SimWIND may play a critical role in enhancings wind planning efforts.

  17. Electricity generating system. [Wind/diesel/flywheel system

    Energy Technology Data Exchange (ETDEWEB)

    Moody, R.L.

    1992-02-05

    An electricity generating system is described which includes a water tank with electric heating elements connected to the water cooling system of a diesel engine which is heated by excess output of the system. Power in excess of that required by a load which is generated by a wind turbine driven generator runs up a flywheel and further excess is absorbed in the tank. A fan associated with a radiator connected to the tank may be operated to dissipate further excess power. When the load requirements exceed the output of the generators linked to the wind turbine and the flywheel the engine operates a synchronous alternator. (author).

  18. Electrical machines, in particular generators: superconductor technology in competition with improved conventional technology; Elektrische Maschinen, insbesondere Generatoren: Supraleiter-Technologie im Wettbewerb mit verbesserter konventioneller Technologie

    Energy Technology Data Exchange (ETDEWEB)

    Joho, R; Ginet, C; Schleussinger, A

    2006-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) summarises work done within the framework of a second project on the use of superconductor technology and conventional technology in electrical machines. The two variants, a generator using second-generation high-temperature superconductors (HTSC) and one using improved conventional technology are described and compared. The use of various coolants for the windings of generators of various types and usage is described and the optimisation of winding-geometry is discussed. The refrigeration equipment used to provide low-temperature coolant is looked at and the energy balance for the combination of generator and cooling system is discussed. The conclusions drawn by the project are presented and the advantages offered by both variants are discussed.

  19. Analysis of Properties of Induction Machine with Combined Parallel Star-Delta Stator Winding

    Czech Academy of Sciences Publication Activity Database

    Schreier, Luděk; Bendl, Jiří; Chomát, Miroslav

    2017-01-01

    Roč. 113, č. 1 (2017), s. 147-153 ISSN 0239-3646 R&D Projects: GA ČR(CZ) GA16-07795S Institutional support: RVO:61388998 Keywords : induction machine * parallel combined stator winding Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering OBOR OECD: Electrical and electronic engineering

  20. Short circuit signatures from different wind turbine generator types

    DEFF Research Database (Denmark)

    Martinez, Jorge; Kjær, Philip C.; Rodriguez, Pedro

    2011-01-01

    Modern wind power plants are required and designed to ride through faults in the network, subjected to the fault clearance and following grid code demands. Beside voltage support during faults, the wind turbine fault current contribution is important to establish the correct settings for the relay...... of the protections. The following wind turbine generator during faults have been studied: (i) induction generator, (ii) induction generator with variable rotor resistance (iii) converter-fed rotor (often referred to as DFIG) and (iv) full scale converter. To make a clear comparison and performance analysis during...... faults, and the consequent effects on substation protections, the aforementioned configurations have been simulated using PSCAD/EMTDC, with the same power plant configuration, electrical grid and generator data. Additionally, a comparison of these wind turbine technologies with a conventional power plant...

  1. RELIABILITY OF MACHINE ELEMENTS IN WIND TURBINES

    Directory of Open Access Journals (Sweden)

    Willi GRUENDER

    2010-06-01

    Full Text Available Worldwide electrical energy production generated by wind turbines grows at a rate of 30 percent. This doubles the total production every three years. At the same time the power of individual stations goes up by 20 percent annually. Whereas today the towers, rotors and drive trains have to handle 5 MW, in about six to eight years they might produce up to fifteen MW. As a consequence, enormous pressure is put on the wind turbine manufacturers, the component suppliers and the operators. And because prototype and field testing is limited by its expense, the design of new turbines demands thorough analysis and simulation. Looking at the critical components of a wind turbine this paper describes advanced design tools which help to anticipate failures, but also assists in optimizing reliability and service life. Development of the software tools has been supported by research activities in many universities.

  2. Wind turbine/generator set and method of making same

    Science.gov (United States)

    Bevington, Christopher M.; Bywaters, Garrett L.; Coleman, Clint C.; Costin, Daniel P.; Danforth, William L.; Lynch, Jonathan A.; Rolland, Robert H.

    2013-06-04

    A wind turbine comprising an electrical generator that includes a rotor assembly. A wind rotor that includes a wind rotor hub is directly coupled to the rotor assembly via a simplified connection. The wind rotor and generator rotor assembly are rotatably mounted on a central spindle via a bearing assembly. The wind rotor hub includes an opening having a diameter larger than the outside diameter of the central spindle adjacent the bearing assembly so as to allow access to the bearing assembly from a cavity inside the wind rotor hub. The spindle is attached to a turret supported by a tower. Each of the spindle, turret and tower has an interior cavity that permits personnel to traverse therethrough to the cavity of the wind rotor hub. The wind turbine further includes a frictional braking system for slowing, stopping or keeping stopped the rotation of the wind rotor and rotor assembly.

  3. Assessing the value of wind generation in future carbon constrained electricity industries

    International Nuclear Information System (INIS)

    Vithayasrichareon, Peerapat; MacGill, Iain F.

    2013-01-01

    This paper employs a novel Monte-Carlo based generation portfolio assessment tool to explore the implications of increasing wind penetration and carbon prices within future electricity generation portfolios under considerable uncertainty. This tool combines optimal generation mix techniques with Monte Carlo simulation and portfolio analysis methods to determine expected overall generation costs, associated cost uncertainty and expected CO 2 emissions for different possible generation portfolios. A case study of an electricity industry with coal, Combined Cycle Gas Turbines (CCGT), Open Cycle Gas Turbines (OCGT) and wind generation options that faces uncertain future fossil-fuel prices, carbon pricing, electricity demand and plant construction costs is presented to illustrate some of the key issues associated with growing wind penetrations. The case study uses half-hourly demand and wind generation data from South Eastern Australia, and regional estimates of new-build plant costs and characteristics. Results suggest that although wind generation generally increases overall industry costs, it reduces associated cost uncertainties and CO 2 emissions. However, there are some cases in which wind generation can reduce the overall costs of generation portfolios. The extent to which wind penetration affects industry expected costs and uncertainties depends on the level of carbon price and the conventional technology mix in the portfolios. - Highlights: ► A probabilistic portfolio analysis tool to assess generation portfolios with wind power. ► Explore the impacts of wind penetrations and carbon prices under uncertainties. ► Wind generation increases overall portfolio costs but reduces cost risks and emissions. ► The value of wind power depends on the carbon price and the technology mix. ► Complex interactions between wind penetration level and carbon pricing.

  4. Transmission cost minimization strategies for wind-electric generating facilities

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, R. [Northern States Power Company, Minneapolis, MN (United States)

    1997-12-31

    Integrating wind-electric generation facilities into existing power systems presents opportunities not encountered in conventional energy projects. Minimizing outlet cost requires probabilistic value-based analyses appropriately reflecting the wind facility`s operational characteristics. The wind resource`s intermittent nature permits relaxation of deterministic criteria addressing outlet configuration and capacity required relative to facility rating. Equivalent capacity ratings of wind generation facilities being a fraction of installed nameplate rating, outlet design studies contingency analyses can concentrate on this fractional value. Further, given its non-dispatchable, low capacity factor nature, a lower level of redundancy in outlet facilities is appropriate considering the trifling contribution to output unreliability. Further cost reduction opportunities arise from {open_quotes}wind speed/generator power output{close_quotes} and {open_quotes}wind speed/overhead conductor rating{close_quotes} functions` correlation. Proper analysis permits the correlation`s exploitation to safely increase line ratings. Lastly, poor correlation between output and utility load may permit use of smaller conductors, whose higher (mostly off-peak) losses are economically justifiable.

  5. Low-Cost Superconducting Wire for Wind Generators: High Performance, Low Cost Superconducting Wires and Coils for High Power Wind Generators

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-01-01

    REACT Project: The University of Houston will develop a low-cost, high-current superconducting wire that could be used in high-power wind generators. Superconducting wire currently transports 600 times more electric current than a similarly sized copper wire, but is significantly more expensive. The University of Houston’s innovation is based on engineering nanoscale defects in the superconducting film. This could quadruple the current relative to today’s superconducting wires, supporting the same amount of current using 25% of the material. This would make wind generators lighter, more powerful and more efficient. The design could result in a several-fold reduction in wire costs and enable their commercial viability of high-power wind generators for use in offshore applications.

  6. Models for Numerical Evaluation of Variable Speed Different Wind Generator Systems

    DEFF Research Database (Denmark)

    Li, Hui; Chen, Zhe; Polinder, H.

    2007-01-01

    of different wind generator systems, the other presents the optimization results and evaluation of variable speed wind generator systems. In this report, firstly, it gives an overview of various wind generator topologies, including their advantages and disadvantages, market status and developing trends. Next...

  7. Fuzzy generation scheduling for a generation company (GenCo) with large scale wind farms

    International Nuclear Information System (INIS)

    Siahkali, H.; Vakilian, M.

    2010-01-01

    Wind power is a promising alternative in power generation because of its tremendous environmental and social benefits. Generation scheduling (GS) is more important in a power system integrating wind farms. Unlike conventional power generation sources, wind power generators supply intermittent power because of uncertainty in resource. This paper presents a fuzzy approach to the generation scheduling problem of a GenCo considering uncertainties in parameters or constraints such as load, reserve and available wind power generation. The modeling of constraints is an important issue in power system scheduling. A fuzzy optimization approach is an approach that can be used to obtain the generation scheduling under an uncertain environment. In this paper, a fuzzy optimization-based method is developed to solve power system GS problem with fuzzy objective and constraints. The crisp formulation of this GS problem is firstly defined and is rearranged by introduction of a membership function of some constraints and objective function. Then, this fuzzy optimization problem is converted to a crisp optimization and solved using GAMS software by mixed integer nonlinear programming. Employing the fuzzy optimization GS, it is expected that in practice a higher profit would be achieved in the operation and cost management of a real power system with large scale wind farms in different level of constraints' satisfaction. The proposed approach is applied to a sample system (including six conventional units and two wind farms) and the results are compared with the results of crisp solution. This approach is also applied to a larger test case to demonstrate the robustness of this fuzzy optimization method.

  8. Structural Flexibility of Large Direct Drive Generators for Wind Turbines

    NARCIS (Netherlands)

    Shrestha, G.

    2013-01-01

    The trend in wind energy is towards large offshore wind farms. This trend has led to the demand for high reliability and large single unit wind turbines. Different energy conversion topologies such as multiple stage geared generators, single stage geared generators and gearless (direct drive)

  9. Residual stresses generated in F-522 steel by different machining processes

    International Nuclear Information System (INIS)

    Gracia-Navas, V.; Ferreres, I.; Maranon, J. A.; Garcia-Rosales, C.; Gil-Sevillano, J.

    2005-01-01

    Machining operations induce plastic deformation and heat generation in the near surface area of the machined part, giving rise to residual stresses. Depending on their magnitude and sign, these stresses can be detrimental or beneficial to the service life of the part. The final stress state depends on the machining process applied, as well as on the machining parameters. Therefore, the establishment of adequate machining guidelines requires the measurement of the residual stresses generated both at the surface and inside the material. in this work, the residual stresses generated in F-522 steel by two hard turning (conventional and laser assisted) and two grinding (production and finishing) processes were measured by X-ray diffraction. Additionally, depth profiles of the volume fraction of retained austenite, microstructure and nano hardness were obtained in order to correlate those results with the residual stress state obtained for each machining process. It has been observed that turning generates tensile stresses in the surface while grinding causes compressive stresses. Below the surface grinding generates weak tensile or nearly null stresses whereas turning generates strong compressive stresses. These results show that the optimum mechanising process (disregarding economical considerations) implies the combination of turning plus elimination of a small thickness by final grinding. (Author) 19 refs

  10. Exploration of dispatch model integrating wind generators and electric vehicles

    International Nuclear Information System (INIS)

    Haque, A.N.M.M.; Ibn Saif, A.U.N.; Nguyen, P.H.; Torbaghan, S.S.

    2016-01-01

    Highlights: • A novel business model for the BRPs is analyzed. • Imbalance cost of wind generation is considered in the UC-ED model. • Smart charging of EVs is included into the UC-ED problem to mitigate the imbalance cost. • Effects of smart charging on generation cost, CO 2 emissions and total network load are assessed. - Abstract: In recent years, the share of renewable energy sources (RES) in the electricity generation mix has been expanding rapidly. However, limited predictability of the RES poses challenges for traditional scheduling and dispatching mechanisms based on unit commitment (UC) and economic dispatch (ED). This paper presents an advanced UC-ED model to incorporate wind generators as RES-based units alongside conventional centralized generators. In the proposed UC-ED model, an imbalance cost is introduced reflecting the wind generation uncertainty along with the marginal generation cost. The proposed UC-ED model aims to utilize the flexibility of fleets of plug-in electric vehicles (PEVs) to optimally compensate for the wind generation uncertainty. A case study with 15 conventional units and 3 wind farms along with a fixed-sized PEV fleet demonstrates that shifting of PEV fleets charging at times of high wind availability realizes generation cost savings. Nevertheless, the operational cost saving incurred by controlled charging appears to diminish when dispatched wind energy becomes considerably larger than the charging energy of PEV fleets. Further analysis of the results reveals that the effectiveness of PEV control strategy in terms of CO 2 emission reduction is strongly coupled with generation mix and the proposed control strategy is favored in cases where less pollutant-based plants like nuclear and hydro power are profoundly dominant.

  11. The current wind energy programme in Italy

    International Nuclear Information System (INIS)

    Ambrosini, G.; Foli, U.; Sesto, E.; Vigotti, R.

    1991-01-01

    In Italy, the main activities in the field of wind energy are carried out by two state-owned organizations, ENEA (Italian National Agency for New Technologies, Energy and the Environment) and ENEL (Italian National Electricity Board), and two major wind turbine generator manufacturers, Alenia/WEST and Riva Calzoni, within the framework of a national programme which is supervized by the Ministry of Industry and Commerce. The work currently under way concerns both wind power plant siting and the development and testing of Italian-made wind turbine generators ranging from 5 to 1500 kW in power. In addition, programmes aimed at constructing wind-farms made up of medium-sized machines (200-400 kW) have recently been launched

  12. ANALYSING SOLAR-WIND HYBRID POWER GENERATING SYSTEM

    Directory of Open Access Journals (Sweden)

    Mustafa ENGİN

    2005-02-01

    Full Text Available In this paper, a solar-wind hybrid power generating, system that will be used for security lighting was designed. Hybrid system was installed and solar cells, wind turbine, battery bank, charge regulators and inverter performance values were measured through the whole year. Using measured values of overall system efficiency, reliability, demanded energy cost per kWh were calculated, and percentage of generated energy according to resources were defined. We also include in the paper a discussion of new strategies to improve hybrid power generating system performance and demanded energy cost per kWh.

  13. Wind Power Generation in India: Evolution, Trends and Prospects

    Directory of Open Access Journals (Sweden)

    M.F. Khan

    2013-10-01

    Full Text Available In the present context of shrinking conventional resources coupled with environmental perils, the wind power offers an attractive alternative. Wind power generation in India started way back in early 1980s with the installation of experimental wind turbines in western and southern states of Gujarat and Tamil Nadu. For first two decades of its existence until about 2000 the progress was slow but steady. In last one decade Indian wind electricity sector has grown at very rapid pace which has promoted the country to the fifth position as largest wind electric power generator and the third largest market in the world. The galvanization of wind sector has been achieved through some aggressive policy mechanisms and persistent support by government organizations such as MNRE and C-WET. This paper articulates the journey of Indian wind program right since its inception to the present trends and developments as well as the future prospects. Keywords: mnre, c-wet, renewable energy, wind power, wind turbines.

  14. Combined hydro-wind generation bids in a pool-based electricity market

    International Nuclear Information System (INIS)

    Angarita, Jorge L.; Usaola, Julio; Martinez-Crespo, Jorge

    2009-01-01

    Present regulatory trends are promoting the direct participation of wind energy in electricity markets. The final result of these markets sets the production scheduling for the operation time, including a power commitment from the wind generators. However, wind resources are uncertain, and the final power delivered usually differs from the initial power committed. This imbalance produces an overcost in the system, which must be paid by those who produce it, e.g., wind generators among others. As a result, wind farm revenue decreases, but it could increase by allowing wind farms to submit their bids to the markets together with a hydro generating unit, which may easily modify its production according to the expected imbalance. This paper presents a stochastic optimization technique that maximizes the joint profit of hydro and wind generators in a pool-based electricity market, taking into account the uncertainty of wind power prediction. (author)

  15. Generation of statistical scenarios of short-term wind power production

    DEFF Research Database (Denmark)

    Pinson, Pierre; Papaefthymiou, George; Klockl, Bernd

    2007-01-01

    Short-term (up to 2-3 days ahead) probabilistic forecasts of wind power provide forecast users with a paramount information on the uncertainty of expected wind generation. Whatever the type of these probabilistic forecasts, they are produced on a per horizon basis, and hence do not inform...... on the development of the forecast uncertainty through forecast series. This issue is addressed here by describing a method that permits to generate statistical scenarios of wind generation that accounts for the interdependence structure of prediction errors, in plus of respecting predictive distributions of wind...

  16. Wind energy-hydrogen storage hybrid power generation

    Energy Technology Data Exchange (ETDEWEB)

    Wenjei Yang; Orhan Aydin [University of Michigan, Ann Arbor, MI (United States). Dept. of Mechanical Engineering and Applied Mechanics

    2001-07-01

    In this theoretical investigation, a hybrid power generation system utilizing wind energy and hydrogen storage is presented. Firstly, the available wind energy is determined, which is followed by evaluating the efficiency of the wind energy conversion system. A revised model of windmill is proposed from which wind power density and electric power output are determined. When the load demand is less than the output of the generation, the excess electric power is relayed to the electrolytic cell where it is used to electrolyse the de-ionized water. Hydrogen thus produced can be stored as hydrogen compressed gas or liquid. Once the hydrogen is stored in an appropriate high-pressure vessel, it can be used in a combustion engine, fuel cell, or burned in a water-cooled burner to produce a very high-quality steam for space heating, or to drive a turbine to generate electric power. It can also be combined with organic materials to produce synthetic fuels. The conclusion is that the system produces no harmful waste and depletes no resources. Note that this system also works well with a solar collector instead of a windmill. (author)

  17. Energy-efficient electrical machines by new materials. Superconductivity in large electrical machines

    International Nuclear Information System (INIS)

    Frauenhofer, Joachim; Arndt, Tabea; Grundmann, Joern

    2013-01-01

    The implementation of superconducting materials in high-power electrical machines results in significant advantages regarding efficiency, size and dynamic behavior when compared to conventional machines. The application of HTS (high-temperature superconductors) in electrical machines allows significantly higher power densities to be achieved for synchronous machines. In order to gain experience with the new technology, Siemens carried out a series of development projects. A 400 kW model motor for the verification of a concept for the new technology was followed by a 4000 kV A generator as highspeed machine - as well as a low-speed 4000 kW propeller motor with high torque. The 4000 kVA generator is still employed to carry out long-term tests and to check components. Superconducting machines have significantly lower weight and envelope dimensions compared to conventional machines, and for this reason alone, they utilize resources better. At the same time, operating losses are slashed to about half and the efficiency increases. Beyond this, they set themselves apart as a result of their special features in operation, such as high overload capability, stiff alternating load behavior and low noise. HTS machines provide significant advantages where the reduction of footprint, weight and losses or the improved dynamic behavior results in significant improvements of the overall system. Propeller motors and generators,for ships, offshore plants, in wind turbine and hydroelectric plants and in large power stations are just some examples. HTS machines can therefore play a significant role when it comes to efficiently using resources and energy as well as reducing the CO 2 emissions.

  18. DESIGN METHODOLOGY OF SELF-EXCITED ASYNCHRONOUS GENERATOR

    Directory of Open Access Journals (Sweden)

    Berzan V.

    2012-04-01

    Full Text Available The paper sets out the methodology of designing an asynchronous generator with capacitive self-excitation. It is known that its design is possible on the basis of serial synchronous motor with squirrel cage rotor. With this approach, the design reworked only the stator winding of electrical machines, making it cost-effectively implement the creation of the generator. Therefore, the methodology for the design, optimization calculations, the development scheme and the stator winding excitation system gain, not only of practical interest, and may also be useful for specialists in the field of electrical machines in the design of asynchronous generators.

  19. Reducing storage of global wind ensembles with stochastic generators

    KAUST Repository

    Jeong, Jaehong

    2018-03-09

    Wind has the potential to make a significant contribution to future energy resources. Locating the sources of this renewable energy on a global scale is however extremely challenging, given the difficulty to store very large data sets generated by modern computer models. We propose a statistical model that aims at reproducing the data-generating mechanism of an ensemble of runs via a Stochastic Generator (SG) of global annual wind data. We introduce an evolutionary spectrum approach with spatially varying parameters based on large-scale geographical descriptors such as altitude to better account for different regimes across the Earth’s orography. We consider a multi-step conditional likelihood approach to estimate the parameters that explicitly accounts for nonstationary features while also balancing memory storage and distributed computation. We apply the proposed model to more than 18 million points of yearly global wind speed. The proposed SG requires orders of magnitude less storage for generating surrogate ensemble members from wind than does creating additional wind fields from the climate model, even if an effective lossy data compression algorithm is applied to the simulation output.

  20. Reducing storage of global wind ensembles with stochastic generators

    KAUST Repository

    Jeong, Jaehong; Castruccio, Stefano; Crippa, Paola; Genton, Marc G.

    2018-01-01

    Wind has the potential to make a significant contribution to future energy resources. Locating the sources of this renewable energy on a global scale is however extremely challenging, given the difficulty to store very large data sets generated by modern computer models. We propose a statistical model that aims at reproducing the data-generating mechanism of an ensemble of runs via a Stochastic Generator (SG) of global annual wind data. We introduce an evolutionary spectrum approach with spatially varying parameters based on large-scale geographical descriptors such as altitude to better account for different regimes across the Earth’s orography. We consider a multi-step conditional likelihood approach to estimate the parameters that explicitly accounts for nonstationary features while also balancing memory storage and distributed computation. We apply the proposed model to more than 18 million points of yearly global wind speed. The proposed SG requires orders of magnitude less storage for generating surrogate ensemble members from wind than does creating additional wind fields from the climate model, even if an effective lossy data compression algorithm is applied to the simulation output.

  1. Optimized power generation in offshore wind parks

    NARCIS (Netherlands)

    Oliveira Filho, J. de; Papp, Z.

    2011-01-01

    Electricity generation on offshore wind parks has an increasing economic importance - the European Commission foresees that 12% of the wind energy will be produced on offshore installations by 2020, and this share is likely to increase further in the following years. However, the continuously

  2. Great expectations: large wind turbines

    International Nuclear Information System (INIS)

    De Vries, E.

    2001-01-01

    This article focuses on wind turbine product development, and traces the background to wind turbines from the first generation 1.5 MW machines in 1995-6, plans for the second generation 3-5 MW class turbines to meet the expected boom in offshore wind projects, to the anticipated installation of a 4.5 MW turbine, and offshore wind projects planned for 2000-2002. The switch by the market leader Vestas to variable speed operation in 2000, the new product development and marketing strategy taken by the German Pro + Pro consultancy in their design of a 1.5 MW variable speed pitch control concept, the possible limiting of the size of turbines due to logistical difficulties, opportunities offered by air ships for large turbines, and the commissioning of offshore wind farms are discussed. Details of some 2-5 MW offshore wind turbine design specifications are tabulated

  3. Modeling and Parameter Estimation of a Small Wind Generation System

    Directory of Open Access Journals (Sweden)

    Carlos A. Ramírez Gómez

    2013-11-01

    Full Text Available The modeling and parameter estimation of a small wind generation system is presented in this paper. The system consists of a wind turbine, a permanent magnet synchronous generator, a three phase rectifier, and a direct current load. In order to estimate the parameters wind speed data are registered in a weather station located in the Fraternidad Campus at ITM. Wind speed data were applied to a reference model programed with PSIM software. From that simulation, variables were registered to estimate the parameters. The wind generation system model together with the estimated parameters is an excellent representation of the detailed model, but the estimated model offers a higher flexibility than the programed model in PSIM software.

  4. Power Electronics for the Next Generation Wind Turbine System

    DEFF Research Database (Denmark)

    Ma, Ke

    generation unit, are becoming crucial in the wind turbine system. The objective of this project is to study the power electronics technology used for the next generation wind turbines. Some emerging challenges as well as potentials like the cost of energy and reliability are going to be addressed. First...... conversion is pushed to multi-MW level with high power density requirement. It has also been revealed that thermal stress in the power semiconductors is closely related to many determining factors in the wind power application like the reliability, cost, power density, etc. therefore it is an important......The wind power generation has been steadily growing both for the total installed capacity and for the individual turbine size. Due to much more significant impacts to the power grid, the power electronics, which can change the behavior of wind turbines from an unregulated power source to an active...

  5. Wind energy utilization: A bibliography with abstracts - Cumulative volume 1944/1974

    Science.gov (United States)

    1975-01-01

    Bibliography, up to 1974 inclusive, of articles and books on utilization of wind power in energy generation. Worldwide literature is surveyed, and short abstracts are provided in many cases. The citations are grouped by subject: (1) general; (2) utilization; (3) wind power plants; (4) wind power generators (rural, synchronous, remote station); (5) wind machines (motors, pumps, turbines, windmills, home-built); (6) wind data and properties; (7) energy storage; and (8) related topics (control and regulation devices, wind measuring devices, blade design and rotors, wind tunnel simulation, aerodynamics). Gross-referencing is aided by indexes of authors, corporate sources, titles, and keywords.

  6. Performance evaluation of stand alone hybrid PV-wind generator

    Energy Technology Data Exchange (ETDEWEB)

    Nasir, M. N. M.; Saharuddin, N. Z.; Sulaima, M. F.; Jali, Mohd Hafiz; Bukhari, W. M.; Bohari, Z. H. [Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, 76100 Melaka (Malaysia); Yahaya, M. S. [Faculty of Engineering Technology, Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, 76100 Melaka (Malaysia)

    2015-05-15

    This paper presents the performance evaluation of standalone hybrid system on Photovoltaic (PV)-Wind generator at Faculty of Electrical Engineering (FKE), UTeM. The hybrid PV-Wind in UTeM system is combining wind turbine system with the solar system and the energy capacity of this hybrid system can generate up to charge the battery and supply the LED street lighting load. The purpose of this project is to evaluate the performance of PV-Wind hybrid generator. Solar radiation meter has been used to measure the solar radiation and anemometer has been used to measure the wind speed. The effectiveness of the PV-Wind system is based on the various data that has been collected and compared between them. The result shows that hybrid system has greater reliability. Based on the solar result, the correlation coefficient shows strong relationship between the two variables of radiation and current. The reading output current followed by fluctuate of solar radiation. However, the correlation coefficient is shows moderate relationship between the two variables of wind speed and voltage. Hence, the wind turbine system in FKE show does not operate consistently to produce energy source for this hybrid system compare to PV system. When the wind system does not fully operate due to inconsistent energy source, the other system which is PV will operate and supply the load for equilibrate the extra load demand.

  7. Performance evaluation of stand alone hybrid PV-wind generator

    Science.gov (United States)

    Nasir, M. N. M.; Saharuddin, N. Z.; Sulaima, M. F.; Jali, Mohd Hafiz; Bukhari, W. M.; Bohari, Z. H.; Yahaya, M. S.

    2015-05-01

    This paper presents the performance evaluation of standalone hybrid system on Photovoltaic (PV)-Wind generator at Faculty of Electrical Engineering (FKE), UTeM. The hybrid PV-Wind in UTeM system is combining wind turbine system with the solar system and the energy capacity of this hybrid system can generate up to charge the battery and supply the LED street lighting load. The purpose of this project is to evaluate the performance of PV-Wind hybrid generator. Solar radiation meter has been used to measure the solar radiation and anemometer has been used to measure the wind speed. The effectiveness of the PV-Wind system is based on the various data that has been collected and compared between them. The result shows that hybrid system has greater reliability. Based on the solar result, the correlation coefficient shows strong relationship between the two variables of radiation and current. The reading output current followed by fluctuate of solar radiation. However, the correlation coefficient is shows moderate relationship between the two variables of wind speed and voltage. Hence, the wind turbine system in FKE show does not operate consistently to produce energy source for this hybrid system compare to PV system. When the wind system does not fully operate due to inconsistent energy source, the other system which is PV will operate and supply the load for equilibrate the extra load demand.

  8. Performance evaluation of stand alone hybrid PV-wind generator

    International Nuclear Information System (INIS)

    Nasir, M. N. M.; Saharuddin, N. Z.; Sulaima, M. F.; Jali, Mohd Hafiz; Bukhari, W. M.; Bohari, Z. H.; Yahaya, M. S.

    2015-01-01

    This paper presents the performance evaluation of standalone hybrid system on Photovoltaic (PV)-Wind generator at Faculty of Electrical Engineering (FKE), UTeM. The hybrid PV-Wind in UTeM system is combining wind turbine system with the solar system and the energy capacity of this hybrid system can generate up to charge the battery and supply the LED street lighting load. The purpose of this project is to evaluate the performance of PV-Wind hybrid generator. Solar radiation meter has been used to measure the solar radiation and anemometer has been used to measure the wind speed. The effectiveness of the PV-Wind system is based on the various data that has been collected and compared between them. The result shows that hybrid system has greater reliability. Based on the solar result, the correlation coefficient shows strong relationship between the two variables of radiation and current. The reading output current followed by fluctuate of solar radiation. However, the correlation coefficient is shows moderate relationship between the two variables of wind speed and voltage. Hence, the wind turbine system in FKE show does not operate consistently to produce energy source for this hybrid system compare to PV system. When the wind system does not fully operate due to inconsistent energy source, the other system which is PV will operate and supply the load for equilibrate the extra load demand

  9. Wind Integration into Various Generation Mixtures

    NARCIS (Netherlands)

    Maddaloni, J.D.; Rowe, A.M.; Kooten, van G.C.

    2009-01-01

    A load balance model is used to quantify the economic and environmental effects of integrating wind power into three typical generation mixtures. System operating costs over a specified period are minimized by controlling the operating schedule of the existing power generating facilities for a range

  10. 1 MVA HTS-2G Generator for Wind Turbines

    Science.gov (United States)

    Kovalev, K. L.; Poltavets, V. N.; Ilyasov, R. I.; Verzhbitsky, L. G.; Kozub, S. S.

    2017-10-01

    The calculation, design simulations and design performance of 1 MVA HTS-2G (second-generation high-temperature superconductor) Generator for Wind Turbines were done in 2013-2014 [1]. The results of manufacturing and testing of 1 MVA generator are presented in the article. HTS-2G field coils for the rotor were redesigned, fabricated and tested. The tests have shown critical current of the coils, 41-45 A (self field within the ferromagnetic core, T = 77 K), which corresponds to the current of short samples at self field. Application of the copper inner frame on the pole has improved internal cooling conditions of HTS coil windings and reduced the magnetic field in the area, thereby increased the critical current value. The original construction of the rotor with a rotating cryostat was developed, which decreases the thermal in-flow to the rotor. The stator of 1 MW HTS-2G generator has been manufactured. In order to improve the specific weight of the generator, the wave (harmonic drive) multiplier was used, which provides increasing RPM from 15 RPM up to 600 RPM. The total mass of the multiplier and generator is significantly smaller compared to traditional direct-drive wind turbines generators [2-7]. Parameters of the multiplier and generator were chosen based on the actual parameters of wind turbines, namely: 15 RPM, power is 1 MVA. The final test of the assembled synchronous generator with HTS-2G field coils for Wind Turbines with output power 1 MVA was completed during 2015.

  11. Incorporation of a Wind Generator Model into a Dynamic Power Flow Analysis

    Directory of Open Access Journals (Sweden)

    Angeles-Camacho C.

    2011-07-01

    Full Text Available Wind energy is nowadays one of the most cost-effective and practical options for electric generation from renewable resources. However, increased penetration of wind generation causes the power networks to be more depend on, and vulnerable to, the varying wind speed. Modeling is a tool which can provide valuable information about the interaction between wind farms and the power network to which they are connected. This paper develops a realistic characterization of a wind generator. The wind generator model is incorporated into an algorithm to investigate its contribution to the stability of the power network in the time domain. The tool obtained is termed dynamic power flow. The wind generator model takes on account the wind speed and the reactive power consumption by induction generators. Dynamic power flow analysis is carried-out using real wind data at 10-minute time intervals collected for one meteorological station. The generation injected at one point into the network provides active power locally and is found to reduce global power losses. However, the power supplied is time-varying and causes fluctuations in voltage magnitude and power fl ows in transmission lines.

  12. Low Cost Small Wind Turbine Generators for Developing Countries

    NARCIS (Netherlands)

    Ani, S.O.

    2013-01-01

    Wind energy accounts for an increasing percentage of the energy supplied to the electricity network. Electricity generation from wind is now cheaper than other renewables and almost cost competitive with other conventional sources of electricity generation. However, this impressive growth is largely

  13. Wind power, distrubted generation and transmission

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg

    the possibilities for integration of even more wind power using new power balancing strategies that exploit the possibilities given by the existence of CHP plants as well as the impact of heat pumps for district heating. The analyses demonstrate that it is possible to accommodate 50% or more wind power without......Denmark has the World?s highest penetration of wind power in electricity generation with a share of 15.0% of total domestic demand in 2002 (DEA, 2004). This is unevenly distributed in the two electricity systems of Denmark giving a share as high as 20.7% in Western Denmark in 2003 up from 18...... power balancing strategies are not applied, costly grid expansions will follow expansions in installed wind power capacity....

  14. Assessing the impact of wind generation on wholesale prices and generator dispatch in the Australian National Electricity Market

    International Nuclear Information System (INIS)

    Forrest, Sam; MacGill, Iain

    2013-01-01

    Growing climate change and energy security concerns are driving major wind energy deployment in electricity industries around the world. Despite its many advantages, growing penetrations of this highly variable and somewhat unpredictable energy source pose new challenges for electricity industry operation. One issue receiving growing attention is the so-called ‘merit order effect’ of wind generation in wholesale electricity markets. Wind has very low operating costs and therefore tends to displace higher cost conventional generation from market dispatch, reducing both wholesale prices and conventional plant outputs. This paper extends the current literature on this effect through an empirical study employing a range of econometric techniques to quantify the impacts of growing wind penetrations in the Australian National Electricity Market (NEM). The results suggest that wind is having a marked impact on spot market prices and, while wind is primarily offsetting higher operating cost gas generation, it is now also significantly reducing dispatch of emissions intensive brown coal generation. Great care needs to be taken in extrapolating these results to longer-term implications, however, the study does propose a methodology for assessing this effect, highlights the impacts that wind is already having on NEM outcomes and suggests promising directions for future research. - Highlights: ► Proposes methodologies to estimate short run impact of wind on electricity markets. ► Quantifies the merit order effect of wind generation on wholesale spot price. ► Wind is found to be significantly effecting gas fired generation. ► Evidence is found for wind having a notable impact on baseload coal generation. ► Discusses the implications for development of wind generation in Australia

  15. Effects of an electromagnetic shield and armature teeth on the short-circuit performance of a direct drive superconducting generator for 10 MW wind turbines

    DEFF Research Database (Denmark)

    Liu, Dong; Polinder, Henk; Abrahamsen, Asger Bech

    2015-01-01

    reactance. An electromagnetic (EM) shield between the rotor and the stator as well as iron or non-magnetic composite (NMC) armature teeth affects the sub-transient reactance of a superconducting machine so that they play a role in the short-circuit performance of a superconducting wind generator. This paper...

  16. Wind hazard assessment for Point Lepreau Generating Station

    International Nuclear Information System (INIS)

    Mullin, D.; Moland, M.; Sciaudone, J.C.; Twisdale, L.A.; Vickery, P.J.; Mizzen, D.R.

    2015-01-01

    In response to the CNSC Fukushima Action Plan, NB Power has embarked on a wind hazard assessment for the Point Lepreau Generating Station site that incorporates the latest up to date wind information and modeling. The objective was to provide characterization of the wind hazard from all potential sources and estimate wind-driven missile fragilities and wind pressure fragilities for various structures, systems and components that would provide input to a possible high wind Probabilistic Safety Assessment. The paper will discuss the overall methodology used to assess hazards related to tornadoes, hurricanes and straight-line winds, and site walk-down and hazard/fragility results. (author)

  17. Modeling of wind turbines with doubly fed generator system

    CERN Document Server

    Fortmann, Jens

    2014-01-01

    Jens Fortmann describes the deduction of models for the grid integration of variable speed wind turbines and the reactive power control design of wind plants. The modeling part is intended as background to understand the theory, capabilities and limitations of the generic doubly fed generator and full converter wind turbine models described in the IEC 61400-27-1 and as 2nd generation WECC models that are used as standard library models of wind turbines for grid simulation software. Focus of the reactive power control part is a deduction of the origin and theory behind the reactive current requ

  18. Electrical Machines: Turn-to-Turn Capacitance in Formed Windings with Rectangular Cross-Section Wire

    NARCIS (Netherlands)

    Djukic, Nenad; Encica, L.; Paulides, Johan

    2015-01-01

    Calculation of turn-to-turn capacitance (Ctt) in electrical machines (EMs) with formed windings with rectangular cross-section wire is presented. Three calculation methods are used for the calculation of Ctt in case of rectangular conductors – finite element (FE) method and two previously published

  19. Effect of unbalanced voltage on windings temperature, operational life and load carrying capacity of induction machine

    Energy Technology Data Exchange (ETDEWEB)

    Gnacinski, P. [Gdynia Maritime University, Department of Ship Electrical Power Engineering, Morska Street 83, 81-225 Gdynia (Poland)

    2008-04-15

    This paper investigates the influence of the CVUF angle on the windings temperature rise and the derating factor of an induction machine supplied with unbalanced voltage. The effect of simultaneous voltage unbalance and harmonics on its operational life is analyzed as well. The results of calculations and experimental investigations are presented for two induction cage machines of rated power 3 and 5.5 kW. (author)

  20. Analysis of wind energy generation possibilities with various rotor types at disadvantageous wind condition zones

    OpenAIRE

    Bieniek Andrzej

    2017-01-01

    The paper describe possibilities of energy generation using various rotor types but especially with multi-blade wind engine operates in the areas with unfavourable wind condition. The paper presents also wind energy conversion estimation results presented based on proposed solution of multi-blade wind turbine of outer diameter of 4 m. Based on the wind distribution histogram from the disadvantage wind condition zones (city of Basel) and taking into account design and estimated operating index...

  1. Early stages of wind wave and drift current generation under non-stationary wind conditions.

    Science.gov (United States)

    Robles-Diaz, Lucia; Ocampo-Torres, Francisco J.; Branger, Hubert

    2016-04-01

    Generation and amplification mechanisms of ocean waves are well understood under constant wind speed or limited fetch conditions. Under these situations, the momentum and energy transfers from air to water are also quite well known. However during the wind field evolution over the ocean, we may observe sometime high wind acceleration/deceleration situations (e.g. Mexican Tehuano or Mediterranean Mistral wind systems). The evolution of wave systems under these conditions is not well understood. The purpose of these laboratory experiments is to better understand the early stages of water-waves and surface-drift currents under non-stationary wind conditions and to determine the balance between transfers creating waves and surface currents during non-equilibrium situations. The experiments were conducted in the Institut Pythéas wind-wave facility in Marseille-France. The wave tank is 40 m long, 2.7 m wide and 1 m deep. The air section is 50 m long, 3 m wide and 1.8 m height. We used 11 different resistive wave-gauges located along the tank. The momentum fluxes in the air column were estimated from single and X hot-film anemometer measurements. The sampling frequency for wind velocity and surface displacement measurements was 256 Hz. Water-current measurements were performed with a profiling velocimeter. This device measures the first 3.5 cm of the water column with a frequency rate of 100Hz. During the experiments, the wind intensity was abruptly modified with a constant acceleration and deceleration over time. We observed that wind drag coefficient values for accelerated wind periods are lower than the ones reported in previous studies for constant wind speed (Large and Pond 1981; Ocampo-Torres et al. 2010; Smith 1980; Yelland and Taylor 1996). This is probably because the turbulent boundary layer is not completely developed during the increasing-wind sequence. As it was reported in some theoretical studies (Miles 1957; Phillips 1957; Kahma and Donelan 1988), we

  2. Dynamic modeling and performance evaluation of axial flux PMSG based wind turbine system with MPPT control

    Directory of Open Access Journals (Sweden)

    Vahid Behjat

    2014-12-01

    Full Text Available This research work develops dynamic model of a gearless small scale wind power generation system based on a direct driven single sided outer rotor AFPMSG with coreless armature winding. Dynamic modeling of the AFPMSG based wind turbine requires machine parameters. To this end, a 3D FEM model of the generator is developed and from magnetostatic and transient analysis of the FEM model, machine parameters are calculated and utilized in dynamic modeling of the system. A maximum power point tracking (MPPT-based FOC control approach is used to obtain maximum power from the variable wind speed. The simulation results show the proper performance of the developed dynamic model of the AFPMSG, control approach and power generation system.

  3. The viability of balancing wind generation with large scale energy storage

    International Nuclear Information System (INIS)

    Nyamdash, Batsaikhan; Denny, Eleanor; O'Malley, Mark

    2010-01-01

    This paper studies the impact of combining wind generation and dedicated large scale energy storage on the conventional thermal plant mix and the CO 2 emissions of a power system. Different strategies are proposed here in order to explore the best operational strategy for the wind and storage system in terms of its effect on the net load. Furthermore, the economic viability of combining wind and large scale storage is studied. The empirical application, using data for the Irish power system, shows that combined wind and storage reduces the participation of mid-merit plants and increases the participation of base-load plants. Moreover, storage negates some of the CO 2 emissions reduction of the wind generation. It was also found that the wind and storage output can significantly reduce the variability of the net load under certain operational strategies and the optimal strategy depends on the installed wind capacity. However, in the absence of any supporting mechanism none of the storage devices were economically viable when they were combined with the wind generation on the Irish power system. - Research Highlights: → Energy storage would displace the peaking and mid-merit plants generations by the base-load plants generations. Energy storage may negate the CO 2 emissions reduction that is due to the increased wind generations. →Energy storage reduces the variation of the net load. →Under certain market conditions, merchant type energy storage is not viable.

  4. Optimizing Wind And Hydropower Generation Within Realistic Reservoir Operating Policy

    Science.gov (United States)

    Magee, T. M.; Clement, M. A.; Zagona, E. A.

    2012-12-01

    Previous studies have evaluated the benefits of utilizing the flexibility of hydropower systems to balance the variability and uncertainty of wind generation. However, previous hydropower and wind coordination studies have simplified non-power constraints on reservoir systems. For example, some studies have only included hydropower constraints on minimum and maximum storage volumes and minimum and maximum plant discharges. The methodology presented here utilizes the pre-emptive linear goal programming optimization solver in RiverWare to model hydropower operations with a set of prioritized policy constraints and objectives based on realistic policies that govern the operation of actual hydropower systems, including licensing constraints, environmental constraints, water management and power objectives. This approach accounts for the fact that not all policy constraints are of equal importance. For example target environmental flow levels may not be satisfied if it would require violating license minimum or maximum storages (pool elevations), but environmental flow constraints will be satisfied before optimizing power generation. Additionally, this work not only models the economic value of energy from the combined hydropower and wind system, it also captures the economic value of ancillary services provided by the hydropower resources. It is recognized that the increased variability and uncertainty inherent with increased wind penetration levels requires an increase in ancillary services. In regions with liberalized markets for ancillary services, a significant portion of hydropower revenue can result from providing ancillary services. Thus, ancillary services should be accounted for when determining the total value of a hydropower system integrated with wind generation. This research shows that the end value of integrated hydropower and wind generation is dependent on a number of factors that can vary by location. Wind factors include wind penetration level

  5. Large superconducting wind turbine generators

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Magnusson, Niklas; Jensen, Bogi Bech

    2012-01-01

    and the rotation speed is lowered in order to limit the tip speed of the blades. The ability of superconducting materials to carry high current densities with very small losses might facilitate a new class of generators operating with an air gap flux density considerably higher than conventional generators...... and thereby having a smaller size and weight [1, 2]. A 5 MW superconducting wind turbine generator forms the basics for the feasibility considerations, particularly for the YBCO and MgB2 superconductors entering the commercial market. Initial results indicate that a 5 MW generator with an active weight of 34...

  6. Financial analysis of wind power projects

    International Nuclear Information System (INIS)

    Juanico, Luis E.; Bergallo, Juan E.

    1999-01-01

    In this work a financial assessment of the economic competitiveness of wind power projects in Argentina compared with other no CO 2 emission sources, such as nuclear, was developed. Argentina has a market driven electrical grid system, and no greenhouse gas emissions penalty taxes, together with a very low natural gas cost and a sustained nuclear development program. For the financial analysis an average wind velocity source of 8 m/s, on several wind farms (from 2 machines to 60) built with new technology wind generators (750 kilowatts power, 900 dollar/kilowatt cost) operating over 20 years, was considered. The leveled cost obtained is decreasing while the number of machines is increasing, from 0,130 dollar/kilowatt-hour to 0,090 dollar/kilowatts-hour. This poor performance can be partially explained considering the higher interest rates in the argentine financial market (15%) than the ones in developed countries

  7. Design and development of direct drive generators for wind turbines

    International Nuclear Information System (INIS)

    Nagrial, M.; Hellany, A.

    2011-01-01

    This paper discusses various options for wind generators in modern wind turbines without any gearbox. Various power converter configurations are also discussed. The design of modern and efficient variable speed generators is also proposed. The design of a novel permanent magnet generator is also given. (author)

  8. Control of variable speed wind turbine with doubly-fed induction generator

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, A.D.; Soerensen, P. [Risoe National Lab., Wind Energy Dept., Roskilde (Denmark); Iov, F.; Blaabjerg, F. [Aalborg Univ., Inst. of Energy Technology, Aalborg (Denmark)

    2004-07-01

    draIn this paper, a Control method suitable for a variable speed grid connected pitch-controlled wind turbine with doubly-fed induction generator (DFIG) is developed. The targets of the Control system are: 1) to Control the power drawn from the wind turbine in order to track the wind turbine optimum operation point 2) to limit the power in case of high wind speeds and 3) to Control the reactive power interchanged between the wind turbine generator and the grid. The considered configuration of DFIG is an induction generator with a wound rotor connected to the grid through a back-to-back power converter and a stator directly connected to the grid. The paper presents the overall Control system of the variable speed DFIG wind turbine, with focus on the Control strategies and algorithms applied at each hierarchical Control level of the wind turbine. There are two Control levels: a DFIG Control level and wind turbine Control level. The DFIG Control level contains a fast Control of the power converter and of the doubly-fed induction generator and it has as goal to Control the active and reactive power of the wind turbine independently. The wind turbine Control level supervises with Control signals both the DFIG Control level and the hydraulic pitch Control system of the wind turbine. The present Control method is designed for normal continuous operations. The variable speed/variable pitch wind turbine with doubly-fed induction generator is implemented in the dynamic power system simulation tool DIgSILENT, which makes possible to investigate the dynamic performance of gid-connected wind turbines as a part of realistic electrical grid models. Several significant simulation results are performed With the overall Control-implemented algorithm applied on a variable speed, variable pitch wind turbine model. (au)

  9. Synchronous generator wind energy conversion control system

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, A.L.R. [Wind Energy Group, Recife (Brazil); Lima, A.M.N.; Jacobina, C.B.; Simoes, F.J. [DEE, Campina Grande (Brazil)

    1996-12-31

    This paper presents the performance evaluation and the design of the control system of a WECS (Wind Energy Conversion System) that employs a synchronous generator based on its digital simulation. The WECS discussed in this paper is connected to the utility grid through two Pulse Width Modulated (PWM) power converters. The structure of the proposed WECS enables us to achieve high performance energy conversion by: (i) maximizing the wind energy capture and (ii) minimizing the reactive power flowing between the grid and the synchronous generator. 8 refs., 19 figs.

  10. Using Unsupervised Machine Learning for Outlier Detection in Data to Improve Wind Power Production Prediction

    OpenAIRE

    Åkerberg, Ludvig

    2017-01-01

    The expansion of wind power for electrical energy production has increased in recent years and shows no signs of slowing down. This unpredictable source of energy has contributed to destabilization of the electrical grid causing the energy market prices to vary significantly on a daily basis. For energy producers and consumers to make good investments, methods have been developed to make predictions of wind power production. These methods are often based on machine learning were historical we...

  11. Speed-sensorless control strategy for multi-phase induction generator in wind energy conversion systems

    Directory of Open Access Journals (Sweden)

    Dumnić Boris P.

    2016-01-01

    Full Text Available Renewable energy sources, especially wind energy conversion systems (WECS, exhibit constant growth. Increase in power and installed capacity led to advances in WECS topologies. Multi-phase approach presents a new development direction, with several key advantages over three-phase systems. Paired with a sensorless control strategy, multi-phase machines are expected to take primacy over standard solutions. This paper presents speed sensorless vector control of an asymmetrical six-phase induction generator based on a model reference adaptive system (MRAS. Suggested topology and developed control algorithm show that sensorless control can yield appropriate dynamic characteristics for the use in WECS with increase in reliability and robustness. [Projekat Ministarstva nauke Republike Srbije, br. III 042004: Smart Electricity Distribution Grids Based on Distribution Management System and Distributed Generation

  12. Fine tuning support vector machines for short-term wind speed forecasting

    International Nuclear Information System (INIS)

    Zhou Junyi; Shi Jing; Li Gong

    2011-01-01

    Research highlights: → A systematic approach to tuning SVM models for wind speed prediction is proposed. → Multiple kernel functions and a wide range of tuning parameters are evaluated, and optimal parameters for each kernel function are obtained. → It is found that the forecasting performance of SVM is closely related to the dynamic characteristics of wind speed. → Under the optimal combination of parameters, different kernels give comparable forecasting accuracy. -- Abstract: Accurate forecasting of wind speed is critical to the effective harvesting of wind energy and the integration of wind power into the existing electric power grid. Least-squares support vector machines (LS-SVM), a powerful technique that is widely applied in a variety of classification and function estimation problems, carries great potential for the application of short-term wind speed forecasting. In this case, tuning the model parameters for optimal forecasting accuracy is a fundamental issue. This paper, for the first time, presents a systematic study on fine tuning of LS-SVM model parameters for one-step ahead wind speed forecasting. Three SVM kernels, namely linear, Gaussian, and polynomial kernels, are implemented. The SVM parameters considered include the training sample size, SVM order, regularization parameter, and kernel parameters. The results show that (1) the performance of LS-SVM is closely related to the dynamic characteristics of wind speed; (2) all parameters investigated greatly affect the performance of LS-SVM models; (3) under the optimal combination of parameters after fine tuning, the three kernels give comparable forecasting accuracy; (4) the performance of linear kernel is worse than the other two kernels when the training sample size or SVM order is small. In addition, LS-SVMs are compared against the persistence approach, and it is found that they can outperform the persistence model in the majority of cases.

  13. Wind generation systems for remote communities: market assessment and guidelines for wind turbines selection

    International Nuclear Information System (INIS)

    Brothers, C.

    1993-06-01

    Wind technology and its market potential in remote communities of the Canadian North were discussed. These communities, unserviced by the main utility electricity grid, generate their own electricity using high quality, expensive diesel fuel to power diesel driven generators. The logistics of delivering fuel to these remote communities is an expensive operation. Wind resource in many of these communities is substantial and wind energy is seen as a prime candidate for supplying electricity to many potential sites in the Arctic and also areas in Quebec and Newfoundland. However, the severe service (i.e., cold climate, remote locations with limited facilities) requires special considerations to ensure that equipment installed performs reliably. This report described some demonstration projects in northern Canada over the last ten years, where an understanding of the special needs of wind turbines in remote areas has been developed. A guide which assessed the suitability of wind turbines for Arctic applications was included to assist organisations in preparing requirements to be used in acquiring wind turbines for use in cold regions. Refs., tabs., figs

  14. Reliability analysis of wind embedded power generation system for ...

    African Journals Online (AJOL)

    This paper presents a method for Reliability Analysis of wind energy embedded in power generation system for Indian scenario. This is done by evaluating the reliability index, loss of load expectation, for the power generation system with and without integration of wind energy sources in the overall electric power system.

  15. HTS machine laboratory prototype

    DEFF Research Database (Denmark)

    machine. The machine comprises six stationary HTS field windings wound from both YBCO and BiSCOO tape operated at liquid nitrogen temperature and enclosed in a cryostat, and a three phase armature winding spinning at up to 300 rpm. This design has full functionality of HTS synchronous machines. The design...

  16. Estimation of wake propagation behind the rotors of wind-powered generators

    DEFF Research Database (Denmark)

    Naumov, I. V.; Mikkelsen, Robert Flemming; Okulov, Valery

    2016-01-01

    . It is shown that the recovery of velocity of incident flow is faster than has been previously defined in the models of calculating the impact of wind electric power plants on the regional climate changes. Thus, existing wind loss calculated on the model of wake behind the wind-powered generator, adjusted......The objectives of this work are to develop the experimental model of wake behind the wind-power generator rotor to estimate its propagation distance and the impact on the average and pulsation characteristics of incident flow with the possibility of further use of these data in the calculation...... models of wind and climate changes in the regions and to determine the optimal operation of wind turbines. For experimental modeling, the laboratory model of wind-powered generator with a horizontal axis was used that operated as wind turbine in optimal mode. The kinematic characteristics of flow...

  17. Assessment of wind power generation along the coast of Ghana

    Energy Technology Data Exchange (ETDEWEB)

    Adaramola, Muyiwa S., E-mail: muyiwa.adaramola@umb.no [Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, Ås (Norway); Agelin-Chaab, Martin [Department of Automotive, Mechanical and Manufacturing Engineering, University of Ontario Institute of Technology, Oshawa, ON (Canada); Paul, Samuel S. [REHAU Industries, Winnipeg, Manitoba (Canada)

    2014-01-15

    Highlights: • The wind energy and its economic viability along the coastal region of Ghana are examined. • Wind resource along the coastal region of Ghana fall into Class 2 or less wind resource. • Wind turbine with rated speed from 9 to 11 m/s is suggested for wind power development. • The unit cost of wind generated electricity is found be between 0.0732 GH¢/kW h and 0.2905 GH¢/kW h. - Abstract: This study examined the wind energy potential and the economic viability of using wind turbine for electricity generation in selected locations along the coastal region of Ghana. The two-parameter Weibull probability density function was employed to analyze the wind speed data obtained from the Ghana Energy Commission. The energy output and unit cost of electricity generated from medium size commercial wind turbine models with rated powers ranging from 50 kW to 250 kW were determined. It was found that the wind resource along the coastal region of Ghana can be classified into Class 2 or less wind resource which indicate that this resource in this area is marginally suitable for large scale wind energy development or suitable for small scale applications and be useful as part of hybrid energy system. It was further observed that wind turbine with designed cut-in wind speed of less than 3 m/s and moderate rated wind speed between 9 and 11 m/s is more suitable for wind energy development along the coastal region of Ghana. Based on the selected wind turbine and assumptions used in this study, it was estimated that the unit cost of electricity varied between 0.0695 GH¢/kW h and 0.2817 GH¢/kW h.

  18. Assessment of wind power generation along the coast of Ghana

    International Nuclear Information System (INIS)

    Adaramola, Muyiwa S.; Agelin-Chaab, Martin; Paul, Samuel S.

    2014-01-01

    Highlights: • The wind energy and its economic viability along the coastal region of Ghana are examined. • Wind resource along the coastal region of Ghana fall into Class 2 or less wind resource. • Wind turbine with rated speed from 9 to 11 m/s is suggested for wind power development. • The unit cost of wind generated electricity is found be between 0.0732 GH¢/kW h and 0.2905 GH¢/kW h. - Abstract: This study examined the wind energy potential and the economic viability of using wind turbine for electricity generation in selected locations along the coastal region of Ghana. The two-parameter Weibull probability density function was employed to analyze the wind speed data obtained from the Ghana Energy Commission. The energy output and unit cost of electricity generated from medium size commercial wind turbine models with rated powers ranging from 50 kW to 250 kW were determined. It was found that the wind resource along the coastal region of Ghana can be classified into Class 2 or less wind resource which indicate that this resource in this area is marginally suitable for large scale wind energy development or suitable for small scale applications and be useful as part of hybrid energy system. It was further observed that wind turbine with designed cut-in wind speed of less than 3 m/s and moderate rated wind speed between 9 and 11 m/s is more suitable for wind energy development along the coastal region of Ghana. Based on the selected wind turbine and assumptions used in this study, it was estimated that the unit cost of electricity varied between 0.0695 GH¢/kW h and 0.2817 GH¢/kW h

  19. Model of analysis of maximum loads in wind generators produced by extreme winds

    International Nuclear Information System (INIS)

    Herrera – Sánchez, Omar; Schellong, Wolfgang; González – Fernández, Vladimir

    2010-01-01

    The use of the wind energy by means of the wind turbines in areas of high risk of occurrence of Hurricanes comes being an important challenge for the designers of wind farm at world for some years. The wind generator is not usually designed to support this type of phenomena, for this reason the areas of high incidence of tropical hurricanes of the planning are excluded, that which, in occasions disables the use of this renewable source of energy totally, either because the country is very small, or because it coincides the area of more potential fully with that of high risk. To counteract this situation, a model of analysis of maxims loads has been elaborated taken place the extreme winds in wind turbines of great behavior. This model has the advantage of determining, in a chosen place, for the installation of a wind farm, the micro-areas with higher risk of wind loads above the acceptable for the standard classes of wind turbines. (author)

  20. Wind Turbine Power Curve Design for Optimal Power Generation in Wind Farms Considering Wake Effect

    Directory of Open Access Journals (Sweden)

    Jie Tian

    2017-03-01

    Full Text Available In modern wind farms, maximum power point tracking (MPPT is widely implemented. Using the MPPT method, each individual wind turbine is controlled by its pitch angle and tip speed ratio to generate the maximum active power. In a wind farm, the upstream wind turbine may cause power loss to its downstream wind turbines due to the wake effect. According to the wake model, downstream power loss is also determined by the pitch angle and tip speed ratio of the upstream wind turbine. By optimizing the pitch angle and tip speed ratio of each wind turbine, the total active power of the wind farm can be increased. In this paper, the optimal pitch angle and tip speed ratio are selected for each wind turbine by the exhausted search. Considering the estimation error of the wake model, a solution to implement the optimized pitch angle and tip speed ratio is proposed, which is to generate the optimal control curves for each individual wind turbine off-line. In typical wind farms with regular layout, based on the detailed analysis of the influence of pitch angle and tip speed ratio on the total active power of the wind farm by the exhausted search, the optimization is simplified with the reduced computation complexity. By using the optimized control curves, the annual energy production (AEP is increased by 1.03% compared to using the MPPT method in a case-study of a typical eighty-turbine wind farm.

  1. Wind Turbine Generator System Power Performance Test Report for the ARE442 Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    van Dam, J.; Jager, D.

    2010-02-01

    This report summarizes the results of a power performance test that NREL conducted on the ARE 442 wind turbine. This test was conducted in accordance with the International Electrotechnical Commission's (IEC) standard, Wind Turbine Generator Systems Part 12: Power Performance Measurements of Electricity Producing Wind Turbines, IEC 61400-12-1 Ed.1.0, 2005-12. However, because the ARE 442 is a small turbine as defined by IEC, NREL also followed Annex H that applies to small wind turbines. In these summary results, wind speed is normalized to sea-level air density.

  2. Speed control at low wind speeds for a variable speed fixed pitch wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Rosmin, N.; Watson, S.J.; Tompson, M. [Loughborough Univ., Loughborough, Leicestershire (United Kingdom)

    2010-03-09

    The maximum power regulation below rated wind speed is regulated by changing the rotor/generator speed at large frequency range in a fixed pitch, variable speed, stall-regulated wind turbine. In order to capture the power at a maximum value the power coefficient is kept at maximum peak point by maintaining the tip speed ratio at its optimum value. The wind industry is moving from stall regulated fixed speed wind turbines to newer improved innovative versions with better reliability. While a stall regulated fixed pitch wind turbine is among the most cost-effective wind turbine on the market, its problems include noise, severe vibrations, high thrust loads and low power efficiency. Therefore, in order to improve such drawbacks, the rotation of the generator speed is made flexible where the rotation can be controlled in variable speed. This paper discussed the development of a simulation model which represented the behaviour of a stall regulated variable speed wind turbine at low wind speed control region by using the closed loop scalar control with adjustable speed drive. The paper provided a description of each sub-model in the wind turbine system and described the scalar control of the induction machine. It was concluded that by using a constant voltage/frequency ratio of the generator's stator side control, the generator speed could be regulated and the generator torque could be controlled to ensure the power coefficient could be maintained close to its maximum value. 38 refs., 1 tab., 10 figs.

  3. A Dynamic Wind Generation Model for Power Systems Studies

    OpenAIRE

    Estanqueiro, Ana

    2007-01-01

    In this paper, a wind park dynamic model is presented together with a base methodology for its application to power system studies. This detailed wind generation model addresses the wind turbine components and phenomena more relevant to characterize the power quality of a grid connected wind park, as well as the wind park response to the grid fast perturbations, e.g., low voltage ride through fault. The developed model was applied to the operating conditions of the selected sets of wind turbi...

  4. Halbach array DC motor/generator

    Science.gov (United States)

    Merritt, B.T.; Dreifuerst, G.R.; Post, R.F.

    1998-01-06

    A new configuration of DC motor/generator is based on a Halbach array of permanent magnets. This motor does not use ferrous materials so that the only losses are winding losses and losses due to bearings and windage. An ``inside-out`` design is used as compared to a conventional motor/generator design. The rotating portion, i.e., the rotor, is on the outside of the machine. The stationary portion, i.e., the stator, is formed by the inside of the machine. The rotor contains an array of permanent magnets that provide a uniform field. The windings of the motor are placed in or on the stator. The stator windings are then ``switched`` or ``commutated`` to provide a DC motor/generator much the same as in a conventional DC motor. The commutation can be performed by mechanical means using brushes or by electronic means using switching circuits. The invention is useful in electric vehicles and adjustable speed DC drives. 17 figs.

  5. Halbach array DC motor/generator

    Science.gov (United States)

    Merritt, Bernard T.; Dreifuerst, Gary R.; Post, Richard F.

    1998-01-01

    A new configuration of DC motor/generator is based on a Halbach array of permanent magnets. This motor does not use ferrous materials so that the only losses are winding losses and losses due to bearings and windage. An "inside-out" design is used as compared to a conventional motor/generator design. The rotating portion, i.e., the rotor, is on the outside of the machine. The stationary portion, i.e., the stator, is formed by the inside of the machine. The rotor contains an array of permanent magnets that provide a uniform field. The windings of the motor are placed in or on the stator. The stator windings are then "switched" or "commutated" to provide a DC motor/generator much the same as in a conventional DC motor. The commutation can be performed by mechanical means using brushes or by electronic means using switching circuits. The invention is useful in electric vehicles and adjustable speed DC drives.

  6. Two methods for estimating limits to large-scale wind power generation.

    Science.gov (United States)

    Miller, Lee M; Brunsell, Nathaniel A; Mechem, David B; Gans, Fabian; Monaghan, Andrew J; Vautard, Robert; Keith, David W; Kleidon, Axel

    2015-09-08

    Wind turbines remove kinetic energy from the atmospheric flow, which reduces wind speeds and limits generation rates of large wind farms. These interactions can be approximated using a vertical kinetic energy (VKE) flux method, which predicts that the maximum power generation potential is 26% of the instantaneous downward transport of kinetic energy using the preturbine climatology. We compare the energy flux method to the Weather Research and Forecasting (WRF) regional atmospheric model equipped with a wind turbine parameterization over a 10(5) km2 region in the central United States. The WRF simulations yield a maximum generation of 1.1 We⋅m(-2), whereas the VKE method predicts the time series while underestimating the maximum generation rate by about 50%. Because VKE derives the generation limit from the preturbine climatology, potential changes in the vertical kinetic energy flux from the free atmosphere are not considered. Such changes are important at night when WRF estimates are about twice the VKE value because wind turbines interact with the decoupled nocturnal low-level jet in this region. Daytime estimates agree better to 20% because the wind turbines induce comparatively small changes to the downward kinetic energy flux. This combination of downward transport limits and wind speed reductions explains why large-scale wind power generation in windy regions is limited to about 1 We⋅m(-2), with VKE capturing this combination in a comparatively simple way.

  7. Analysis and MPPT control of a wind-driven three-phase induction generator feeding single-phase utility grid

    Directory of Open Access Journals (Sweden)

    Krishnan Arthishri

    2017-05-01

    Full Text Available In this study, a three-phase diode bridge rectifier and a single-phase voltage source inverter topology has been proposed for feeding single-phase utility grid employing a three-phase induction generator fed from wind energy. A self-excited induction generator configuration has been chosen for wide speed operation of wind turbine system, which gives the scope for extracting maximum power available in the wind. In addition to maximum power point tracking (MPPT, the generator can be loaded to its rated capacity for feeding single-phase utility grid using a three-phase induction machine, whereas it is not possible with existing configurations because of the absence of power converters. For the proposed system, MPPT algorithm has been devised by continuously monitoring the grid current and a proportional resonant controller has been employed for grid synchronisation of voltage source inverter with single-phase grid. A MATLAB/Simulink model of the proposed system has been developed to ascertain its successful working by predetermining the overall performance characteristics. The present proposal has also been tested with sag, swell and distortion in the grid voltage. The control strategy has been implemented using field programmable gate array (FPGA controller with modularised programming approach. The efficacy of the system has been demonstrated with the results obtained from an experimental set-up in the laboratory.

  8. On the spatial hedging effectiveness of German wind power futures for wind power generators

    DEFF Research Database (Denmark)

    Christensen, Troels Sønderby; Pircalabu, Anca

    2018-01-01

    The wind power futures recently introduced on the German market fill the gap of a standardized product that addresses directly the volume risk in wind power trading. While the German wind power futures entail risk-reducing benefits for wind power generators generally speaking, it remains unclear...... the extent of these benefits across wind farms with different geographical locations. In this paper, we consider the wind utilization at 31 different locations in Germany, and for each site, we propose a copula model for the joint behavior of the site-specific wind index and the overall German wind index....... Our results indicate that static mixture copulas are preferred to the stand-alone copula models usually employed in the economic literature. Further, we find evidence of asymmetric dependence and upper tail dependence. To quantify the benefits of wind power futures at each wind site, we perform...

  9. Arrangement for adapting a wind wheel to an electric power generator

    Energy Technology Data Exchange (ETDEWEB)

    Beusse, H

    1977-08-11

    The invention is concerned with a device for adapting a wind wheel to an electric power generator in such a way that the wind wheel will always be operated with a maximum performance coefficient, that another source of energy, e.g. a prime mover, can supply the power deficit if the wind power is not sufficient, and that the generator at the output of the facility is kept mains-synchronous of constant speed and constant voltage. According to the invention, the shaft power of the wind power engine is transmitted to a first generator driving an electromotor. The motor is coupled to a second generator feeding into a consumer grid. By means of an anemometer the excitation output of the motor is controled in such manner that the speed of the generator is practically constant-provided a sufficient supply of wind is available. On the shaft of the output generator a prinse mover, e.g. a Diesel engine, is mounted being controllable for contant speed by means of a controll device in such a way that the prime mover takes over the missing amount of power if the wind supply falls short of the power taken off at the generator output.

  10. Power system reliability impacts of wind generation and operational reserve requirements

    Directory of Open Access Journals (Sweden)

    Esteban Gil

    2015-06-01

    Full Text Available Due to its variability, wind generation integration presents a significant challenge to power system operators in order to maintain adequate reliability levels while ensuring least cost operation. This paper explores the trade-off between the benefits associated to a higher wind penetration and the additional operational reserve requirements that they impose. Such exploration is valued in terms of its effect on power system reliability, measured as an amount of unserved energy. The paper also focuses on how changing the Value of Lost Load (VoLL can be used to attain different reliability targets, and how wind power penetration and the diversity of the wind energy resource will impact quality of supply (in terms of instances of unserved energy. The evaluation of different penetrations of wind power generation, different wind speed profiles, wind resource diversity, and different operational reserve requirements, is conducted on the Chilean Northern Interconnected System (SING using statistical modeling of wind speed time series and computer simulation through a 24-hour ahead unit commitment algorithm and a Monte Carlo simulation scheme. Results for the SING suggest that while wind generation can significantly reduce generation costs, it can also imply higher security costs to reach acceptable reliability levels.

  11. Density of Plutonium Turnings Generated from Machining Activities

    Energy Technology Data Exchange (ETDEWEB)

    Gonzales, John Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vigil, Duane M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jachimowski, Thomas A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Archuleta, Alonso [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Arellano, Gerald Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Melton, Vince Lee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-20

    The purpose of this project was to determine the density of plutonium (Pu) turnings generated from the range of machining activities, using both surrogate material and machined Pu turnings. Verify that 500 grams (g) of plutonium will fit in a one quart container using a surrogate equivalent volume and that 100 grams of Pu will fit in a one quart Savy container.

  12. Performance of Doubly-Fed Wind Power Generators During Voltage Dips

    DEFF Research Database (Denmark)

    Aparicio, N.; Chen, Zhe; Beltran, H.

    The growing of wind generation in Spain has forced its Transmission System Operator (TSO) to release new requirements that establish the amount of reactive power that a wind turbine has to supply to the grid during a voltage dip. Wind turbines equipped with doubly-fed induction generators (DFIG......) can regulate easily the reactive power generated in steady state. However, difficulties appear when reactive power has to be generated during voltage dips. Simulations have been carried out in order to check whether DFIG wind turbines can fulfill the reactive power requirements. Protection system...... commonly employed with DFIG in order to achieve ride-through capabilities including crowbar plays an important role to meet the requirements together with grid-side converter. Resistance associated with the crowbar and its connection duration are crucial at the beginning of the fault. Grid-side converter...

  13. X-ray evaluation of residual stress distributions within surface machined layer generated by surface machining and sequential welding

    International Nuclear Information System (INIS)

    Taniguchi, Yuu; Okano, Shigetaka; Mochizuki, Masahito

    2017-01-01

    The excessive tensile residual stress generated by welding after surface machining may be an important factor to cause stress corrosion cracking (SCC) in nuclear power plants. Therefore we need to understand and control the residual stress distribution appropriately. In this study, residual stress distributions within surface machined layer generated by surface machining and sequential welding were evaluated by X-ray diffraction method. Depth directional distributions were also investigated by electrolytic polishing. In addition, to consider the effect of work hardened layer on the residual stress distributions, we also measured full width at half maximum (FWHM) obtained from X-ray diffraction. Testing material was a low-carbon austenitic stainless steel type SUS316L. Test specimens were prepared by surface machining with different cutting conditions. Then, bead-on-plate welding under the same welding condition was carried out on the test specimens with different surface machined layer. As a result, the tensile residual stress generated by surface machining increased with increasing cutting speed and showed nearly uniform distributions on the surface. Furthermore, the tensile residual stress drastically decreased with increasing measurement depth within surface machined layer. Then, the residual stress approached 0 MPa after the compressive value showed. FWHM also decreased drastically with increasing measurement depth and almost constant value from a certain depth, which was almost equal regardless of the machining condition, within surface machined layer in all specimens. After welding, the transverse distribution of the longitudinal residual stress varied in the area apart from the weld center according to machining conditions and had a maximum value in heat affected zone. The magnitude of the maximum residual stress was almost equal regardless of the machining condition and decreased with increasing measurement depth within surface machined layer. Finally, the

  14. Variable speed wind turbine generator system with current controlled voltage source inverter

    International Nuclear Information System (INIS)

    Muyeen, S.M.; Al-Durra, Ahmed; Tamura, J.

    2011-01-01

    highlights: → Current controlled voltage source inverter scheme for wind power application. → Low voltage ride through of wind farm. → Variable speed wind turbine driven permanent magnet synchronous generator-operation and control. -- Abstract: The present popular trend of wind power generation is to use variable speed wind turbine (VSWT) driving a doubly fed induction generator (DFIG), wound field synchronous generator (WFSG) or permanent magnet synchronous generator (PMSG). Among them, stability analyses of DFIG type of VSWT have already been reported in many literatures. However, transient stability and low voltage ride through (LVRT) characteristics analyses for synchronous generator type of VSWT is not sufficient enough. This paper focuses on detailed LVRT characteristic analysis of variable speed wind turbine driving a PMSG (VSWT-PMSG) with current controlled voltage source inverter (CC-VSI). Modeling and suitable control strategies for overall system are developed to augment the low voltage ride through capability of variable speed wind generator, considering recent wind farm grid code. Both symmetrical and unsymmetrical faults are analyzed as network disturbances in this paper. The permanent fault due to unsuccessful reclosing of circuit breakers is taken into consideration, which is a salient feature of this study. Moreover, the dynamic characteristic is analyzed using real wind speed data measured in Hokkaido Island, Japan. The proposed control scheme is simulated by using the standard power system simulation package PSCAD/EMTDC and results are verified by comparing that of voltage controlled voltage source inverter scheme available in power system literature.

  15. Variable speed wind turbine generator system with current controlled voltage source inverter

    Energy Technology Data Exchange (ETDEWEB)

    Muyeen, S.M., E-mail: muyeen0809@yahoo.co [Dept. of Electrical Engineering, Petroleum Institute, P.O. Box 2533, Abu Dhabi (United Arab Emirates); Al-Durra, Ahmed [Dept. of Electrical Engineering, The Petroleum Institute, P.O. Box 2533, Abu Dhabi (United Arab Emirates); Tamura, J. [Dept. of EEE, Kitami Institute of Technology, 165 Koen-cho, Kitami 090-8507 (Japan)

    2011-07-15

    highlights: {yields} Current controlled voltage source inverter scheme for wind power application. {yields} Low voltage ride through of wind farm. {yields} Variable speed wind turbine driven permanent magnet synchronous generator-operation and control. -- Abstract: The present popular trend of wind power generation is to use variable speed wind turbine (VSWT) driving a doubly fed induction generator (DFIG), wound field synchronous generator (WFSG) or permanent magnet synchronous generator (PMSG). Among them, stability analyses of DFIG type of VSWT have already been reported in many literatures. However, transient stability and low voltage ride through (LVRT) characteristics analyses for synchronous generator type of VSWT is not sufficient enough. This paper focuses on detailed LVRT characteristic analysis of variable speed wind turbine driving a PMSG (VSWT-PMSG) with current controlled voltage source inverter (CC-VSI). Modeling and suitable control strategies for overall system are developed to augment the low voltage ride through capability of variable speed wind generator, considering recent wind farm grid code. Both symmetrical and unsymmetrical faults are analyzed as network disturbances in this paper. The permanent fault due to unsuccessful reclosing of circuit breakers is taken into consideration, which is a salient feature of this study. Moreover, the dynamic characteristic is analyzed using real wind speed data measured in Hokkaido Island, Japan. The proposed control scheme is simulated by using the standard power system simulation package PSCAD/EMTDC and results are verified by comparing that of voltage controlled voltage source inverter scheme available in power system literature.

  16. Trends in Wind Turbine Generator Systems

    DEFF Research Database (Denmark)

    Polinder, Henk; Ferreira, Jan Abraham; Jensen, Bogi Bech

    2013-01-01

    This paper reviews the trends in wind turbine generator systems. After discussing some important requirements and basic relations, it describes the currently used systems: the constant speed system with squirrel-cage induction generator, and the three variable speed systems with doubly fed...... induction generator (DFIG), with gearbox and fully rated converter, and direct drive (DD). Then, possible future generator systems are reviewed. Hydraulic transmissions are significantly lighter than gearboxes and enable continuously variable transmission, but their efficiency is lower. A brushless DFIG...

  17. Wind turbine integrated multipole permanent magnet generator (PMG)

    Energy Technology Data Exchange (ETDEWEB)

    Vilsboell, N.; Pinegin, A.; Goussarov, D.

    1996-01-01

    Designed permanent magnet generator (PMG - 20 kW) possesses a number of advantages: it makes possible to replace gearbox, the generator and possibly the hub of the wind turbine by combining wind rotor with external rotor of the generator; use of rare earth magnets Nd-Fe-B allows to reduce mass and dimensions of the generator; use of the PMG for wind turbines increases the reliability of the construction during the life time, comparing to the conventional design (gearbox, asynchronous generator). The test of the PMG -20 kW informs that design method, developed for calculation of multipole permanent magnet generators is correct in general and meets engineering requirements. The calculation uncertainty of the magnetic system and output characteristics does not exceed 2-3%. The test shows, that the maximum efficiency of the PGM - 20 kW with full load can be achieved as high as 90-91.5% and excels the efficiency of the traditional system `generator-gearbox` by 4-5.5%. Designing permanent magnet generator, it is recommended to take into account voltage stabilization (capacitance). Efficiency is expected to be higher, mass and production cost of the generator can be reduced by 25-30%. The frequency converter shall be used not only for control of rotational speed, but also to obtain sinusoidal capacitive current on the generator side. For PMG - 20 kW the angle between voltage and current should be within the range 0-23%. (au)

  18. Tomography and generative training with quantum Boltzmann machines

    Science.gov (United States)

    Kieferová, Mária; Wiebe, Nathan

    2017-12-01

    The promise of quantum neural nets, which utilize quantum effects to model complex data sets, has made their development an aspirational goal for quantum machine learning and quantum computing in general. Here we provide methods of training quantum Boltzmann machines. Our work generalizes existing methods and provides additional approaches for training quantum neural networks that compare favorably to existing methods. We further demonstrate that quantum Boltzmann machines enable a form of partial quantum state tomography that further provides a generative model for the input quantum state. Classical Boltzmann machines are incapable of this. This verifies the long-conjectured connection between tomography and quantum machine learning. Finally, we prove that classical computers cannot simulate our training process in general unless BQP=BPP , provide lower bounds on the complexity of the training procedures and numerically investigate training for small nonstoquastic Hamiltonians.

  19. The noise generated by wind turbines

    International Nuclear Information System (INIS)

    Anon.

    2012-01-01

    Sound propagation damps down with distance and varies according to different parameters like wind direction and temperature. This article begins by recalling the basic physics of sound wave propagation and gives a list of common noises and corresponding decibels. The habitual noise of wind turbines 500 m away is 35 decibels which ranks it between a quiet bedroom (30 decibels) and a calm office (40 decibels). The question about whether wind turbines are a noise nuisance is all the more difficult as the feeling of a nuisance is so objective and personal. Any project of wind turbines requires a thorough study of its estimated acoustic impact. This study is a 3 step approach: first the initial noise environment is measured, secondly the propagation of the sound generated by the wind turbine farm is modelled and adequate mitigation measures are proposed to comply the law. The law stipulates that the increase of noise must be less than 5 db during daylight and less than 3 db during night. (A.C.)

  20. Complete wind farm electromagnetic transient modelling for grid integration studies

    International Nuclear Information System (INIS)

    Zubia, I.; Ostolaza, X.; Susperregui, A.; Tapia, G.

    2009-01-01

    This paper presents a modelling methodology to analyse the impact of wind farms in surrounding networks. Based on the transient modelling of the asynchronous generator, the multi-machine model of a wind farm composed of N generators is developed. The model incorporates step-up power transformers, distribution lines and surrounding loads up to their connection to the power network. This model allows the simulation of symmetric and asymmetric short-circuits located in the distribution network and the analysis of transient stability of wind farms. It can be also used to study the islanding operation of wind farms

  1. International cooperation on wind energy for rural areas in China

    International Nuclear Information System (INIS)

    Pengfei, Shi

    1991-01-01

    An overview of the recent wind energy activities in China is given. China has a long history in harnessing the wind; modern development started during the late seventies. The Chinese wind potential is mainly in the coastal regions (North East and South East) and in Inner Mongolia. The actual total installed wind power is estimated to be 15 MW. For low lift (within 2 meters), high volume applications, e.g. salt making in salt pans along the coast, of mechanical windmills coupled to screw pumps have been developed. In Inner Mongolia, small portable wind generators (50-200 MW) charging car batteries are supplying some 100,000 farmer and herdsman families with electricity for television and lighting. The average energy consumption is between 200 and 300 kWh per year and the corresponding kWh price 0.40 to 0.50 US$. Since 1988 the demand for small wind generators declined due to the lower wool prices on the world market, affecting the income of the herdsman, and due to the fact that the machines have to be marketed in remote, less accesible rural areas. Various demonstration projects have been set up, f.e. a decentralized energy system on Dachen Island, including a wind diesel hybrid system. On Kongdon Island a 60 kW wind turbine and a 60 kW diesel generator were installed. With several foreign wind turbine manufacturers cooperations have been set up for licensed production in China. Also wind farms have been installed. The largest Chinese prototype at the moment is a 32 meter diameter, 200 kW machine. Western organizations or manufacturers are involved in most of the cooperatives. For the next five years the focus is on development of a large 150 and 200 kW machine and a windmill coupled to a centrifugal pump for lifting heads between 2 and 5 meter. 1 fig., 3 refs

  2. Integrated analysis of wind turbines - The impact of power systems on wind turbine design

    DEFF Research Database (Denmark)

    Barahona Garzón, Braulio

    Megawatt-size wind turbines nowadays operate in very complex environmental conditions, and increasingly demanding power system requirements. Pursuing a cost-effective and reliable wind turbine design is a multidisciplinary task. However nowadays, wind turbine design and research areas...... conditions that stem from disturbances in the power system. An integrated simulation environment, wind turbine models, and power system models are developed in order to take an integral perspective that considers the most important aeroelastic, structural, electrical, and control dynamics. Applications...... of the integrated simulation environment are presented. The analysis of an asynchronous machine, and numerical simulations of a fixedspeed wind turbine in the integrated simulation environment, demonstrate the effects on structural loads of including the generator rotor fluxes dynamics in aeroelastic studies. Power...

  3. Minimisation of Generation Variability of a Group of Wind Plants

    Directory of Open Access Journals (Sweden)

    Dubravko Sabolić

    2017-09-01

    Full Text Available Minimisation of variability of energy delivered from a group of wind plants into the power system using portfolio theory approach was studied. One of the assumptions of that theory is Gaussian distribution of the sample, which is not satisfied in case of wind generation. Therefore, optimisation of a “portfolio” of plants with different goal functions was studied. It was supposed that a decision on distribution of a fixed amount of generation capacity to be installed among a set of geographical locations with known wind statistics is to be made with minimised variability of generation as a goal. In that way the statistical cancellation of variability would be used in the best possible manner. This article is a brief report on results of such an investigation. An example of nine locations in Croatia was used. These locations’ wind statistics are known from historic generation data.

  4. ARIMA-Based Time Series Model of Stochastic Wind Power Generation

    DEFF Research Database (Denmark)

    Chen, Peiyuan; Pedersen, Troels; Bak-Jensen, Birgitte

    2010-01-01

    This paper proposes a stochastic wind power model based on an autoregressive integrated moving average (ARIMA) process. The model takes into account the nonstationarity and physical limits of stochastic wind power generation. The model is constructed based on wind power measurement of one year from...... the Nysted offshore wind farm in Denmark. The proposed limited-ARIMA (LARIMA) model introduces a limiter and characterizes the stochastic wind power generation by mean level, temporal correlation and driving noise. The model is validated against the measurement in terms of temporal correlation...... and probability distribution. The LARIMA model outperforms a first-order transition matrix based discrete Markov model in terms of temporal correlation, probability distribution and model parameter number. The proposed LARIMA model is further extended to include the monthly variation of the stochastic wind power...

  5. Stochastic model of wind-fuel cell for a semi-dispatchable power generation

    DEFF Research Database (Denmark)

    Alvarez-Mendoza, Fernanda; Bacher, Peder; Madsen, Henrik

    2017-01-01

    electrolyte membrane fuel cell, which are embedded in one complete system with the wind power. This study uses historic wind speed data from Mexico; the forecasts are obtained using the recursive least square algorithm with a forgetting factor. The proposed approach provides probabilistic information......Hybrid systems are implemented to improve the efficiency of individual generation technologies by complementing each other. Intermittence is a challenge to overcome especially for renewable energy sources for electric generation, as in the case of wind power. This paper proposes a hybrid system...... for short-term wind power generation and electric generation as the outcome of the hybrid system. A method for a semi-dispatchable electric generation based on time series analysis is presented, and the implementation of wind power and polymer electrolyte membrane fuel cell models controlled by a model...

  6. Short Circuits of a 10-MW High-Temperature Superconducting Wind Turbine Generator

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Liu, Dong; Polinder, Henk

    2017-01-01

    Direct Drive high-temperature superconducting (HTS) wind turbine generators have been proposed to tackle challenges for ever increasing wind turbine ratings. Due to smaller reactances in HTS generators, higher fault currents and larger transient torques could occur if sudden short circuits take...... place at generator terminals. In this paper, a finite element model that couples magnetic fields and the generator's equivalent circuits is developed to simulate short-circuit faults. Afterward, the model is used to study the transient performance of a 10-MW HTS wind turbine generator under four...... show that the short circuits pose great challenges to the generator, and careful consideration should be given to protect the generator. The findings presented in this paper would be beneficial to the design, operation and protection of an HTS wind turbine generator....

  7. Electric power from vertical-axis wind turbines

    Science.gov (United States)

    Touryan, K. J.; Strickland, J. H.; Berg, D. E.

    1987-12-01

    Significant advancements have occurred in vertical axis wind turbine (VAWT) technology for electrical power generation over the last decade; in particular, well-proven aerodynamic and structural analysis codes have been developed for Darrieus-principle wind turbines. Machines of this type have been built by at least three companies, and about 550 units of various designs are currently in service in California wind farms. Attention is presently given to the aerodynamic characteristics, structural dynamics, systems engineering, and energy market-penetration aspects of VAWTs.

  8. Electrical machines and assemblies including a yokeless stator with modular lamination stacks

    Science.gov (United States)

    Qu, Ronghai; Jansen, Patrick Lee; Bagepalli, Bharat Sampathkumar; Carl, Jr., Ralph James; Gadre, Aniruddha Dattatraya; Lopez, Fulton Jose

    2010-04-06

    An electrical machine includes a rotor with an inner rotor portion and an outer rotor portion, and a double-sided yokeless stator. The yokeless stator includes modular lamination stacks and is configured for radial magnetic flux flow. The double-sided yokeless stator is concentrically disposed between the inner rotor portion and the outer rotor portion of the electrical machine. Examples of particularly useful embodiments for the electrical machine include wind turbine generators, ship propulsion motors, switch reluctance machines and double-sided synchronous machines.

  9. Dependency in State Transitions of Wind Turbines

    DEFF Research Database (Denmark)

    Herp, Jürgen; Ramezani, Mohammad Hossein; S. Nadimi, Esmaeil

    2017-01-01

    © 2017 IEEE. Turbine states and predicting the transition into failure states ahead of time is important in operation and maintenance of wind turbines. This study presents a method to monitor state transitions of a wind turbine based on the online inference on residuals. In a Bayesian framework...... be abstracted from generated data. Two models are presented: 1) assuming independence and 2) assuming dependence between states. In order to select the right models, machine learning is utilized to update hyperparameters on the conditional probabilities. Comparing fixed to learned hyperparameters points out...... the impact machine learning concepts have on the predictive performance of the presented models. In conclusion, a study on model residuals is performed to highlight the contribution to wind turbine monitoring. The presented algorithm can consistently detect the state transition under various configurations...

  10. Control of variable speed wind turbines with doubly-fed induction generators

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, A.D.; Soerensen, P.; Iov, F.; Blaabjerg, F.

    2005-07-01

    The paper presents an overall control method for variable speed pitch controlled wind turbines with doubly-fed induction generators (DFIG). Emphasis is on control strategies and algorithms applied at each hierarchical control level of the wind turbine. The objectives of the control system are: 1) to control the power drawn from the wind turbine in order to track the wind turbine maximum power operation point, 2) to limit the power in case of large wind speeds, and 3) to control the reactive power interchanged between the wind turbine generator and the grid. The present control method is designed for normal continuous operations. The strongest feature of the implemented control method is that it allows the turbine to operate with the optimum power efficiency over a wide range of wind speeds. The model of the variable speed, variable pitch wind turbine with doubly-fed induction generator is implemented in the dynamic power system simulation tool DlgSILENT PowerFactory which allows investigation of the dynamic performance of grid-connected wind turbines within realistic electrical grid models. Simulation results are presented and analysed in different normal operating conditions. (author)

  11. Control of Permanent Magnet Synchronous Generator for large wind turbines

    DEFF Research Database (Denmark)

    Busca, Cristian; Stan, Ana-Irina; Stanciu, Tiberiu

    2010-01-01

    Direct Torque Control (DTC) and Field Oriented Control (FOC) are the most dominant control strategies used in generators for wind turbines. In this paper both control methods were implemented on a Permanent Magnet Synchronous Generator (PMSG). The variable speed wind turbine with full scale power...... converter topology was chosen for design. Parameters from a 2 MW wind turbine were used for system modeling. All the components of the wind turbine system (WTS), except the DC-link and the grid site converter were implemented in MATLAB/Simulink. The pitch controller was used to limit the output power...... produced by the turbine. DTC and FOC strategies, using SVM were used to control the generator rotor speed. The performance of the two control strategies were compared after different tests have been carried out....

  12. Grid code requirements for wind power generation

    International Nuclear Information System (INIS)

    Djagarov, N.; Filchev, S.; Grozdev, Z.; Bonev, M.

    2011-01-01

    In this paper production data of wind power in Europe and Bulgaria and plans for their development within 2030 are reviewed. The main characteristics of wind generators used in Bulgaria are listed. A review of the grid code in different European countries, which regulate the requirements for renewable sources, is made. European recommendations for requirements harmonization are analyzed. Suggestions for the Bulgarian gird code are made

  13. A Vertical-Axis Off-Grid Squirrel-Cage Induction Generator Wind Power System

    Directory of Open Access Journals (Sweden)

    Peifeng Xu

    2016-10-01

    Full Text Available In order to broaden the limited utilization range of wind power and improve the charging and discharging control performance of the storage battery in traditional small wind power generation systems, a wind power system based on a vertical-axis off-grid induction generator is proposed in this paper. The induction generator not only can run in a wide wind speed range but can also assist the vertical-axis wind turbine to realize self-starting at low wind speed. Combined with the maximum power point tracking method, the slip frequency control strategy is employed to regulate the pulse width modulation (PWM converter to control the output power of the proposed system when the wind speed and load change. The charge and discharge of the storage battery is realized by the segmented current-limiting control strategy by means of an electric power unloader device connected to the DC bus. All these implement a balanced and stable operation of the proposed power generation system. The experimental research on the 5.5 kW prototype system is developed, and the corresponding results verify the correctness and feasibility of the system design and control strategy. Some comparison experiments with a magnetic suspension permanent magnet synchronous generator (PMSG demonstrate the application prospect of the proposed vertical-axis off-grid induction generator wind power system.

  14. Wind power generation and dispatch in competitive power markets

    Science.gov (United States)

    Abreu, Lisias

    Wind energy is currently the fastest growing type of renewable energy. The main motivation is led by more strict emission constraints and higher fuel prices. In addition, recent developments in wind turbine technology and financial incentives have made wind energy technically and economically viable almost anywhere. In restructured power systems, reliable and economical operation of power systems are the two main objectives for the ISO. The ability to control the output of wind turbines is limited and the capacity of a wind farm changes according to wind speeds. Since this type of generation has no production costs, all production is taken by the system. Although, insufficient operational planning of power systems considering wind generation could result in higher system operation costs and off-peak transmission congestions. In addition, a GENCO can participate in short-term power markets in restructured power systems. The goal of a GENCO is to sell energy in such a way that would maximize its profitability. However, due to market price fluctuations and wind forecasting errors, it is essential for the wind GENCO to keep its financial risk at an acceptable level when constituting market bidding strategies. This dissertation discusses assumptions, functions, and methodologies that optimize short-term operations of power systems considering wind energy, and that optimize bidding strategies for wind producers in short-term markets. This dissertation also discusses uncertainties associated with electricity market environment and wind power forecasting that can expose market participants to a significant risk level when managing the tradeoff between profitability and risk.

  15. Risk assessment of electric generation systems with high wind penetration

    International Nuclear Information System (INIS)

    Salgado Duarte, Yorlandys; Castillo Serpa, Alfredo M. del

    2017-01-01

    The research evaluates the risk function of an Electric Generation System (SGE) with high wind power penetration using the Sequential Monte Carlo Simulation (SMCS) method, which allows calculating indicators that characterize the performance of the SGE with expected average values. The research uses a Markov model of two states or four states according to the characteristics of the generator to simulate the instantaneous capacity. The primary sources of each conventional generator are assumed to be always available; however, wind power depends on the wind behavior in each analyzed region. In this research, the Chronological Series and Weibull models are used to model the wind behavior, and the analyzes are performed in the IEEE-RTS system. The work shows that the behavior of the probabilistic indicators used to analyze the static capacity of the SGE is determined by the model used to simulate the stochastic of the generators and by the primary energy source. (author)

  16. Short Circuits of a 10 MW High Temperature Superconducting Wind Turbine Generator

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Liu, Dong; Polinder, Henk

    2016-01-01

    Direct drive high temperature superconducting (HTS) wind turbine generators have been proposed to tackle challenges for ever increasing wind turbine ratings. Due to smaller reactances in HTS generators, higher fault currents and larger transient torques could occur if sudden short circuits happen...... at generator terminals. In this paper, a finite element model that couples magnetic fields and the generator’s equivalent circuits is developed to simulate short circuit faults. Afterwards, the model is used to study the transient performance of a 10 MW HTS wind turbine generator under four different short...... that the short circuits pose great challenges to the generator, and careful consideration should be given to protect the generator. The results presented in this paper would be beneficial to the design, operation and protection of an HTS wind turbine generator....

  17. Wind - Prototypes on the landscape

    Science.gov (United States)

    Smith, M. L.

    1981-12-01

    Large wind turbines are shown to be attractive to utilities because of the potential for decreasing gas and oil consumption, the relatively low costs for entry into the field, and the wide distribution of wind energy. The total generating capacity can be increased in incremental steps, experience in construction and operation of large turbines have been gained from the NASA Mod O, OA, 1, and 2 models, and advances in manufacturing processes will make the large turbines competitive as replacement power for oil and gas burning utility generators. The 300 ft rotor Mod 2 machines are described, along with designs for the Mod 5A and Mod 5B wind turbines, with 400 and 422 ft, 6.2 and 7.2 MW rotors and outputs, respectively. Current plans for multi-MW windfarms are reviewed, and the option of using the land around large wind turbines for other purposes is stressed.

  18. Technology assessment of wind energy conversion systems

    Energy Technology Data Exchange (ETDEWEB)

    Meier, B. W.; Merson, T. J.

    1980-09-01

    Environmental data for wind energy conversion systems (WECSs) have been generated in support of the Technology Assessment of Solar Energy (TASE) program. Two candidates have been chosen to characterize the WECS that might be deployed if this technology makes a significant contribution to the national energy requirements. One WECS is a large machine of 1.5-MW-rated capacity that can be used by utilities. The other WECS is a small machine that is characteristic of units that might be used to meet residential or small business energy requirements. Energy storage systems are discussed for each machine to address the intermittent nature of wind power. Many types of WECSs are being studied and a brief review of the technology is included to give background for choosing horizontal axis designs for this study. Cost estimates have been made for both large and small systems as required for input to the Strategic Environmental Assessment Simulation (SEAS) computer program. Material requirements, based on current generation WECSs, are discussed and a general discussion of environmental impacts associated with WECS deployment is presented.

  19. Wind up with continuous intra-day electricity markets? The integration of large-share wind power generation in Denmark

    International Nuclear Information System (INIS)

    Karanfil, Fatih; Li, Yuanjing

    2015-01-01

    This paper suggests an innovative idea to examine the functionality of an electricity intra-day market by testing causality among its fundamental components. As fluctuations of poorly predicted wind power generation are challenging the stability of the current electricity system, an intra-day market design can play an important role in managing wind forecast errors. Using Danish and Nordic data, it investigates the main drivers of the price difference between the intra-day and day-ahead markets, and causality between wind forecast errors and their counterparts. Our results show that the wind and conventional generation forecast errors significantly cause the intra-day price to differ from the day-ahead price, and that the relative intra-day price decreases with the unexpected amount of wind generation. Cross-border electricity exchanges are found to be important to handle wind forecast errors. Additionally, some zonal differences with respect to both causality and impulse responses are detected. This paper provides the first evidence on the persuasive functioning of the intra-day market in the case of Denmark, whereby intermittent production deviations are effectively reduced, and wind forecast errors are jointly handled through the responses from demand, conventional generation, and intra-day international electricity trade. (authors)

  20. Design Optimization and Site Matching of Direct-Drive Permanent Magnet Wind Generator Systems

    DEFF Research Database (Denmark)

    Li, H.; Chen, Zhe

    2009-01-01

    This paper investigates the possible site matching of the direct-drive wind turbine concepts based on the electromagnetic design optimization of permanent magnet (PM) generator systems. Firstly, the analytical models of a three-phase radial-flux PM generator with a back-to-back power converter...... of the maximum wind energy capture, the rotor diameter and the rated wind speed of a direct-drive wind turbine with the optimum PM generator are determined. The annual energy output (AEO) is also presented using the Weibull density function. Finally, the maximum AEO per cost (AEOPC) of the optimized wind...... are presented. The optimum design models of direct-drive PM wind generation system are developed with an improved genetic algorithm, and a 500-kW direct-drive PM generator for the minimal generator active material cost is compared to demonstrate the effectiveness of the design optimization. Forty-five PM...

  1. Economics of wind farm layout

    Energy Technology Data Exchange (ETDEWEB)

    Germain, A.C. [Wind Energy Resource Specialist, Oakland, CA (United States); Bain, D.A. [Oregon Office of Energy, Portland, OR (United States)

    1997-12-31

    The life cycle cost of energy (COE) is the primary determinant of the economic viability of a wind energy generation facility. The cost of wind turbines and associated hardware is counterbalanced by the energy which can be generated. This paper focuses on the turbine layout design process, considering the cost and energy capture implications of potential spacing options from the viewpoint of a practicing project designer. It is argued that lateral spacings in the range of 1.5 to 5 diameters are all potentially optimal, but only when matched to wind resource characteristics and machine design limits. The effect of wakes on energy capture is quantified while the effect on turbine life and maintenance cost is discussed qualitatively. Careful optimization can lower COE and project designers are encouraged to integrate the concepts in project designs.

  2. Local inertial oscillations in the surface ocean generated by time-varying winds

    Science.gov (United States)

    Chen, Shengli; Polton, Jeff A.; Hu, Jianyu; Xing, Jiuxing

    2015-12-01

    A new relationship is presented to give a review study on the evolution of inertial oscillations in the surface ocean locally generated by time-varying wind stress. The inertial oscillation is expressed as the superposition of a previous oscillation and a newly generated oscillation, which depends upon the time-varying wind stress. This relationship is employed to investigate some idealized wind change events. For a wind series varying temporally with different rates, the induced inertial oscillation is dominated by the wind with the greatest variation. The resonant wind, which rotates anti-cyclonically at the local inertial frequency with time, produces maximal amplitude of inertial oscillations, which grows monotonically. For the wind rotating at non-inertial frequencies, the responses vary periodically, with wind injecting inertial energy when it is in phase with the currents, but removing inertial energy when it is out of phase. The wind rotating anti-cyclonically with time is much more favorable to generate inertial oscillations than the cyclonic rotating wind. The wind with a frequency closer to the inertial frequency generates stronger inertial oscillations. For a diurnal wind, the induced inertial oscillation is dependent on latitude and is most significant at 30 °. This relationship is also applied to examine idealized moving cyclones. The inertial oscillation is much stronger on the right-hand side of the cyclone path than on the left-hand side (in the northern hemisphere). This is due to the wind being anti-cyclonic with time on the right-hand side, but cyclonic on the other side. The inertial oscillation varies with the cyclone translation speed. The optimal translation speed generating the greatest inertial oscillations is 2 m/s at the latitude of 10 ° and gradually increases to 6 m/s at the latitude of 30 °.

  3. Superconducting wind turbine generators

    International Nuclear Information System (INIS)

    Abrahamsen, A B; Seiler, E; Zirngibl, T; Andersen, N H; Mijatovic, N; Traeholt, C; Pedersen, N F; Oestergaard, J; Noergaard, P B

    2010-01-01

    We have examined the potential of 10 MW superconducting direct drive generators to enter the European offshore wind power market and estimated that the production of about 1200 superconducting turbines until 2030 would correspond to 10% of the EU offshore market. The expected properties of future offshore turbines of 8 and 10 MW have been determined from an up-scaling of an existing 5 MW turbine and the necessary properties of the superconducting drive train are discussed. We have found that the absence of the gear box is the main benefit and the reduced weight and size is secondary. However, the main challenge of the superconducting direct drive technology is to prove that the reliability is superior to the alternative drive trains based on gearboxes or permanent magnets. A strategy of successive testing of superconducting direct drive trains in real wind turbines of 10 kW, 100 kW, 1 MW and 10 MW is suggested to secure the accumulation of reliability experience. Finally, the quantities of high temperature superconducting tape needed for a 10 kW and an extreme high field 10 MW generator are found to be 7.5 km and 1500 km, respectively. A more realistic estimate is 200-300 km of tape per 10 MW generator and it is concluded that the present production capacity of coated conductors must be increased by a factor of 36 by 2020, resulting in a ten times lower price of the tape in order to reach a realistic price level for the superconducting drive train.

  4. Integration of wind generation forecasts. Volume 2

    International Nuclear Information System (INIS)

    Ahlstrom, M.; Zavadil, B.; Jones, L.

    2005-01-01

    WindLogics is a company that specializes in atmospheric modelling, visualization and fine-scale forecasting systems for the wind power industry. A background of the organization was presented. The complexities of wind modelling were discussed. Issues concerning location and terrain, shear, diurnal and interannual variability were reviewed. It was suggested that wind power producers should aim to be mainstream, and that variability should be considered as intrinsic to fuel supply. Various utility operating impacts were outlined. Details of an Xcel NSP wind integration study were presented, as well as a studies conducted in New York state and Colorado. It was concluded that regulations and load following impacts with wind energy integration are modest. Overall impacts are dominated by costs incurred to accommodate wind generation variability and uncertainty in the day-ahead time frame. Cost impacts can be reduced with adjustments to operating strategies, improvements in wind forecasting and access to real-time markets. Details of WindLogic's wind energy forecast system were presented, as well as examples of day ahead and hour ahead forecasts and wind speed and power forecasts. Screenshots of control room integration, EMS integration and simulations were presented. Details of a utility-scale wind energy forecasting system funded by Xcel Renewable Development Fund (RDF) were also presented. The goal of the system was to optimize the way that wind forecast information is integrated into the control room environment. Project components were outlined. It was concluded that accurate day-ahead forecasting can lead to significant asset optimization. It was recommended that wind plants share data, and aim to resolve issues concerning grid codes and instrumentation. refs., tabs., figs

  5. Co-generation of hydrogen from nuclear and wind: the effect on costs of realistic variations in wind capacity and power prices

    International Nuclear Information System (INIS)

    Miller, A.I.; Duffey, R.

    2005-01-01

    Can electricity from high-capacity nuclear reactors be blended with the variable output of wind turbines to produce electrolytic hydrogen competitively? Future energy hopes and emissions reduction scenarios place significant reliance on renewables, actually meaning largely new wind power both onshore and offshore. The opportunity exists for a synergy between high capacity factor nuclear plants and wind power using hydrogen by both as a 'currency' for use in transportation and industrial processing. But this use of hydrogen needs to be introduced soon. To be competitive with alternative sources, hydrogen produced by conventional electrolysis requires low-cost electricity (likely <2.5 Cent US/kW.h). One approach is to operate interruptibly allowing an installation to sell electricity when the grid price is high and to make hydrogen when it is low. Our previous studies have shown that this could be a cost-competitive approach with a nuclear power generator producing electricity around 3 Cent US/kW.h. Although similar unit costs are projected for wind-generated electricity, idleness of the hydrogen production (electrolysis) facility due to the variability of wind generated electricity imposes a serious cost penalty. This paper reports our latest results on the potential economics of blending electricity from nuclear and wind sources by using wind-generated power, when available, to augment the current through electrolysis equipment that is primarily nuclear-powered. A voltage penalty accompanies the higher current. A 10% increase in capital cost for electrolysis equipment enables it to accommodate the higher rate of hydrogen generation, while still being substantially cheaper than the capital cost of wind-dedicated electrolysis. Real-time data for electricity costs have been combined with real-time wind variability in our NuWind model. The variability in wind fields between sites was accommodated by assuming an average wind speed that produced an average electricity

  6. High penetration wind generation impacts on spot prices in the Australian national electricity market

    International Nuclear Information System (INIS)

    Cutler, Nicholas J.; Boerema, Nicholas D.; MacGill, Iain F.; Outhred, Hugh R.

    2011-01-01

    This paper explores wind power integration issues for the South Australian (SA) region of the Australian National Electricity Market (NEM) by assessing the interaction of regional wind generation, electricity demand and spot prices over 2 recent years of market operation. SA's wind energy penetration has recently surpassed 20% and it has only a limited interconnection with other regions of the NEM. As such, it represents an interesting example of high wind penetration in a gross wholesale pool market electricity industry. Our findings suggest that while electricity demand continues to have the greatest influence on spot prices in SA, wind generation levels have become a significant secondary influence, and there is an inverse relationship between wind generation and price. No clear relationship between wind generation and demand has been identified although some periods of extremely high demand may coincide with lower wind generation. Periods of high wind output are associated with generally lower market prices, and also appear to contribute to extreme negative price events. The results highlight the importance of electricity market and renewable policy design in facilitating economically efficient high wind penetrations. - Highlights: → In South Australia (SA) wind generation is having an influence on market prices. → Little or no correlation is found between wind generation and demand. → Wind farms in SA are receiving a lower average price than in other States. → The results highlight the importance of appropriate electricity market design.

  7. Decentralized/stand-alone hybrid Wind-Diesel power systems to meet residential loads of hot coastal regions

    International Nuclear Information System (INIS)

    Elhadidy, M.A.; Shaahid, S.M.

    2005-01-01

    In view of rising costs, pollution and fears of exhaustion of oil and coal, governments around the world are encouraging to seek energy from renewable/sustainable energy sources such as wind. The utilization of energy from wind (since the oil embargo of the 1970s) is being widely disseminated for displacement of fossil fuel produced energy and to reduce atmospheric degradation. A system that consists of a wind turbine and Diesel genset is called a Wind-Diesel power system.The literature indicates that the commercial/residential buildings in Saudi Arabia consume an estimated 10-40% of the total electric energy generated. In the present study, the hourly mean wind-speed data of the period 1986-1997 recorded at the solar radiation and meteorological station, Dhahran (26 deg. 32'N, 50 deg. 13'E in the Eastern Coastal Region of Saudi Arabia), has been analyzed to investigate the potential of utilizing hybrid (Wind-Diesel) energy conversion systems to meet the load requirements of a hundred typical two bedroom residential buildings (with annual electrical energy demand of 3512 MWh). The long term monthly average wind speeds for Dhahran range from 4.2 to 6.4 m/s. The hybrid systems considered in the present case study consist of different combinations/clusters of 150 kW commercial wind machines supplemented with battery storage and Diesel back-up. The deficit energy generated by the Diesel generator (for different battery capacities) and the number of operational hours of the Diesel system to meet a specific annual electrical energy demand of 3512 MWh have also been presented. The evaluation of the hybrid system shows that with seven 150 kW wind energy conversion system (WECS) and one day of battery storage, the Diesel back-up system has to provide 21.6% of the load demand. Furthermore, with three days of battery storage, the Diesel back-up system has to provide 17.5% of the load demand. However, in the absence of battery storage, about 37% of the load needs to be

  8. Comparative study of the behavior of wind-turbines in a wind farm

    Energy Technology Data Exchange (ETDEWEB)

    Migoya, Emilio; Crespo, Antonio; Garcia, Javier; Manuel, Fernando; Jimenez, Angel [Universidad Politecnica de Madrid (UPM), Madrid (Spain). Departamento de Ingenieria Energetica y Fluidomecanica, Laboratorio de Mecanica de Fluidos; Moreno, Fermin [Comision Nacional de la Energia, Madrid (Spain); Costa, Alexandre [Energia Eolica, Division de Energias Renovables, CIEMAT, Madrid (Spain)

    2007-10-15

    The Sotavento wind farm is an experimental wind farm which has different types of wind turbines. It is located in an area whose topography is moderately complex, and where wake effects can be significant. One of the objectives of Sotavento wind farm is to compare the performances of the different machines; particularly regarding power production, maintenance and failures. However, because of wakes and topography, the different machines are not working under identical conditions. Two linearized codes have been used to estimate topography effects: UPMORO and WAsP. For wind directions in which topography is abrupt, the non-linear flow equations have been solved with the commercial code FLUENT, although the results are only qualitatively used. For wake effects, the UPMPARK code has been applied. As a result, the incident velocity over each wind turbine is obtained, and the power production is estimated by means of the power curve of each machine. Experimental measurements give simultaneously the wind characteristics at the measuring stations, the wind velocity, at the nacelle anemometer, and the power production of each wind turbine. These experimental results are employed to validate the numerical predictions. The main objective of this work is to deduce and validate a relationship between the wind characteristics measured in the anemometers and the wind velocity and the power output in each machine. (author)

  9. A data-driven multi-model methodology with deep feature selection for short-term wind forecasting

    International Nuclear Information System (INIS)

    Feng, Cong; Cui, Mingjian; Hodge, Bri-Mathias; Zhang, Jie

    2017-01-01

    Highlights: • An ensemble model is developed to produce both deterministic and probabilistic wind forecasts. • A deep feature selection framework is developed to optimally determine the inputs to the forecasting methodology. • The developed ensemble methodology has improved the forecasting accuracy by up to 30%. - Abstract: With the growing wind penetration into the power system worldwide, improving wind power forecasting accuracy is becoming increasingly important to ensure continued economic and reliable power system operations. In this paper, a data-driven multi-model wind forecasting methodology is developed with a two-layer ensemble machine learning technique. The first layer is composed of multiple machine learning models that generate individual forecasts. A deep feature selection framework is developed to determine the most suitable inputs to the first layer machine learning models. Then, a blending algorithm is applied in the second layer to create an ensemble of the forecasts produced by first layer models and generate both deterministic and probabilistic forecasts. This two-layer model seeks to utilize the statistically different characteristics of each machine learning algorithm. A number of machine learning algorithms are selected and compared in both layers. This developed multi-model wind forecasting methodology is compared to several benchmarks. The effectiveness of the proposed methodology is evaluated to provide 1-hour-ahead wind speed forecasting at seven locations of the Surface Radiation network. Numerical results show that comparing to the single-algorithm models, the developed multi-model framework with deep feature selection procedure has improved the forecasting accuracy by up to 30%.

  10. Probabilistic Forecast of Wind Power Generation by Stochastic Differential Equation Models

    KAUST Repository

    Elkantassi, Soumaya

    2017-01-01

    Reliable forecasting of wind power generation is crucial to optimal control of costs in generation of electricity with respect to the electricity demand. Here, we propose and analyze stochastic wind power forecast models described by parametrized

  11. Wind Turbine Acoustics

    Science.gov (United States)

    Hubbard, Harvey H.; Shepherd, Kevin P.

    2009-01-01

    Wind turbine generators, ranging in size from a few kilowatts to several megawatts, are producing electricity both singly and in wind power stations that encompass hundreds of machines. Many installations are in uninhabited areas far from established residences, and therefore there are no apparent environmental impacts in terms of noise. There is, however, the potential for situations in which the radiated noise can be heard by residents of adjacent neighborhoods, particularly those neighborhoods with low ambient noise levels. A widely publicized incident of this nature occurred with the operation of the experimental Mod-1 2-MW wind turbine, which is described in detail elsewhere. Pioneering studies which were conducted at the Mod-1 site on the causes and remedies of noise from wind turbines form the foundation of much of the technology described in this chapter.

  12. Energy optimization for a wind DFIG with flywheel energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Hamzaoui, Ihssen, E-mail: hamzaoui-ihssen2000@yahoo.fr [Laboratory of Instrumentation, Faculty of Electronics and Computer, University of Sciences and Technology Houari Boumediene, BP 32 El-Alia 16111 Bab-Ezzouar (Algeria); Laboratory of Instrumentation, Faculty of Electronics and Computer, University of Khemis Miliana, Ain Defla (Algeria); Bouchafaa, Farid, E-mail: fbouchafa@gmail.com [Laboratory of Instrumentation, Faculty of Electronics and Computer, University of Sciences and Technology Houari Boumediene, BP 32 El-Alia 16111 Bab-Ezzouar (Algeria)

    2016-07-25

    The type of distributed generation unit that is the subject of this paper relates to renewable energy sources, especially wind power. The wind generator used is based on a double fed induction Generator (DFIG). The stator of the DFIG is connected directly to the network and the rotor is connected to the network through the power converter with three levels. The objective of this work is to study the association a Flywheel Energy Storage System (FESS) in wind generator. This system is used to improve the quality of electricity provided by wind generator. It is composed of a flywheel; an induction machine (IM) and a power electronic converter. A maximum power tracking technique « Maximum Power Point Tracking » (MPPT) and a strategy for controlling the pitch angle is presented. The model of the complete system is developed in Matlab/Simulink environment / to analyze the results from simulation the integration of wind chain to networks.

  13. Short-Term Wind Speed Forecasting Using the Data Processing Approach and the Support Vector Machine Model Optimized by the Improved Cuckoo Search Parameter Estimation Algorithm

    Directory of Open Access Journals (Sweden)

    Chen Wang

    2016-01-01

    Full Text Available Power systems could be at risk when the power-grid collapse accident occurs. As a clean and renewable resource, wind energy plays an increasingly vital role in reducing air pollution and wind power generation becomes an important way to produce electrical power. Therefore, accurate wind power and wind speed forecasting are in need. In this research, a novel short-term wind speed forecasting portfolio has been proposed using the following three procedures: (I data preprocessing: apart from the regular normalization preprocessing, the data are preprocessed through empirical model decomposition (EMD, which reduces the effect of noise on the wind speed data; (II artificially intelligent parameter optimization introduction: the unknown parameters in the support vector machine (SVM model are optimized by the cuckoo search (CS algorithm; (III parameter optimization approach modification: an improved parameter optimization approach, called the SDCS model, based on the CS algorithm and the steepest descent (SD method is proposed. The comparison results show that the simple and effective portfolio EMD-SDCS-SVM produces promising predictions and has better performance than the individual forecasting components, with very small root mean squared errors and mean absolute percentage errors.

  14. Impact of wind generation on the operation and development of the UK electricity systems

    International Nuclear Information System (INIS)

    Strbac, Goran; Shakoor, Anser; Pudjianto, Danny; Black, Mary; Bopp, Thomas

    2007-01-01

    Although penetration of wind generation may displace a significant amount of energy produced by large conventional plant, there are issues associated with the extent to which wind generation will be able to replace the capacity and flexibility of conventional generating plant. This is important since wind power is variable, so it will be necessary to retain a significant proportion of conventional plant to ensure security of supply especially under conditions of high demand and low wind. Hence, the capacity value of wind generation will be limited as it will not be possible to displace conventional generation capacity on a ''megawatt for megawatt'' basis. Wind power is variable and not easy to predict, hence various forms of additional reserves will be needed to maintain the balance between supply and demand at all times. Additionally, if the majority of wind generation plant is located in Scotland and the North of England, reinforcement of the transmission network will be needed to accommodate the increases in the north-south flow of electricity. In this paper an assessment of the costs and benefits of wind generation on the UK electricity system is carried out, assuming different levels of wind power capacity. Overall, it is concluded that the system will be able to accommodate significant increases in wind power generation with relatively small increases in overall costs of supply, about 5% of the current domestic electricity price in case of 20% energy produced by wind power. (author)

  15. Discussion on mass concrete construction of wind turbine generator foundation

    Science.gov (United States)

    Shang, Liang; Wu, Chaoxiang; Yin, Xiaoyong

    2018-04-01

    Wind power is one of the main power sources currently. China has rich wind power resources, wind power plants are developed faster and faster. However, China wind power construction started late, which is lack of relevant experience technology. It is easy to produce quality problems. The key to the construction quality of wind power plant is the construction quality of mass concrete construction. Therefore, construction technology and quality control of wind turbine generator foundation mass concrete are discussed and analyzed in the paper.

  16. Stochastic Prediction of Wind Generating Resources Using the Enhanced Ensemble Model for Jeju Island’s Wind Farms in South Korea

    OpenAIRE

    Deockho Kim; Jin Hur

    2017-01-01

    Due to the intermittency of wind power generation, it is very hard to manage its system operation and planning. In order to incorporate higher wind power penetrations into power systems that maintain secure and economic power system operation, an accurate and efficient estimation of wind power outputs is needed. In this paper, we propose the stochastic prediction of wind generating resources using an enhanced ensemble model for Jeju Island’s wind farms in South Korea. When selecting the poten...

  17. Adaptive Controller for Drive System PMSG in Wind Turbine

    Directory of Open Access Journals (Sweden)

    Gnanambal

    2014-07-01

    Full Text Available This paper proposes adaptive Maximum Power Point Tracking (MPPT controller for Permanent Magnet Synchronous Generator (PMSG wind turbine and direct power control for grid side inverter for transformer less integration of wind energy. PMSG wind turbine with two back to back voltage source converters are considered more efficient, used to make real and reactive power control. The optimal control strategy has introduced for integrated control of PMSG Maximum Power Extraction, DC link voltage control and grid voltage support controls. Simulation model using MATLAB Simulink has developed to investigate the performance of proposed control techniques for PMSG wind turbine steady and variable wind conditions. This paper shows that the direct driven grid connected PMSG system has excellent performances and confirms the feasibility of the proposed techniques. While the wind turbine market continues to be dominated by conventional gear-driven wind turbine systems, the direct drive is attracting attention. PM machines are more attractive and superior with higher efficiency and energy yield, higher reliability, and power-to-weight ratio compared with electricity-excited machines.

  18. Integration of permanent magnet synchronous generator wind turbines into power grid

    Science.gov (United States)

    Abedini, Asghar

    The world is seeing an ever-increasing demand for electrical energy. The future growth of electrical power generation needs to be a mix of technologies including fossil fuels, hydro, nuclear, wind, and solar. The federal and state energy agencies have taken several proactive steps to increase the share of renewable energy in the total generated electrical power. In 2005, 11.1% of the total 1060 GW electricity generation capacity was from Renewable Energy Sources (RES) in the US. The power capacity portfolio included 9.2% from hydroelectric, 0.87% from wind, and 0.7% from biomass. Other renewable power capacity included 2.8 GW of geothermal, 0.4 GW of solar thermal, and 0.2 GW of solar PV. Although the share of renewable energy sources is small compared with the total power capacity, they are experiencing a high and steady growth. The US is leading the world in wind energy growth with a 27% increase in 2006 and a projected 26% increase in 2007, according to the American Wind Energy Association (AWEA). The US Department of Energy benchmarked a goal to meet 5% of the nation's energy need by launching the Wind Powering America (WPA) program. Although renewable energy sources have many benefits, their utilization in the electrical grid does not come without cost. The higher penetration of RES has introduced many technical and non-technical challenges, including power quality, reliability, safety and protection, load management, grid interconnections and control, new regulations, and grid operation economics. RES such as wind and PV are also intermittent in nature. The energy from these sources is available as long as there is wind or sunlight. However, these are energies that are abundant in the world and the power generated from these sources is pollution free. Due to high price of foundation of wind farms, employing variable speed wind turbines to maximize the extracted energy from blowing wind is more beneficial. On the other hand, since wind power is intermittent

  19. Simulating European wind power generation applying statistical downscaling to reanalysis data

    International Nuclear Information System (INIS)

    González-Aparicio, I.; Monforti, F.; Volker, P.; Zucker, A.; Careri, F.; Huld, T.; Badger, J.

    2017-01-01

    Highlights: •Wind speed spatial resolution highly influences calculated wind power peaks and ramps. •Reduction of wind power generation uncertainties using statistical downscaling. •Publicly available dataset of wind power generation hourly time series at NUTS2. -- Abstract: The growing share of electricity production from solar and mainly wind resources constantly increases the stochastic nature of the power system. Modelling the high share of renewable energy sources – and in particular wind power – crucially depends on the adequate representation of the intermittency and characteristics of the wind resource which is related to the accuracy of the approach in converting wind speed data into power values. One of the main factors contributing to the uncertainty in these conversion methods is the selection of the spatial resolution. Although numerical weather prediction models can simulate wind speeds at higher spatial resolution (up to 1 × 1 km) than a reanalysis (generally, ranging from about 25 km to 70 km), they require high computational resources and massive storage systems: therefore, the most common alternative is to use the reanalysis data. However, local wind features could not be captured by the use of a reanalysis technique and could be translated into misinterpretations of the wind power peaks, ramping capacities, the behaviour of power prices, as well as bidding strategies for the electricity market. This study contributes to the understanding what is captured by different wind speeds spatial resolution datasets, the importance of using high resolution data for the conversion into power and the implications in power system analyses. It is proposed a methodology to increase the spatial resolution from a reanalysis. This study presents an open access renewable generation time series dataset for the EU-28 and neighbouring countries at hourly intervals and at different geographical aggregation levels (country, bidding zone and administrative

  20. Conceptual survey of Generators and Power Electronics for Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, L.H.; Helle, L.; Blaabjerg, F.; Ritchie, E.; Munk-Nielsen, S.; Bindner, H.; Soerensen, P.; Bak-Jensen, B.

    2001-12-01

    This report presents a survey on generator concepts and power electronic concepts for wind turbines. The report is aimed as a tool for decision-makers and development people with respect to wind turbine manufactures, utilities, and independent system operators as well as manufactures of generators and power electronics. The survey is focused on the electric development of wind turbines and it yields an overview on: State of the art on generators and power electronics; future concepts and technologies within generators and power electronics; market needs in the shape of requirements to the grid connection, and; consistent system solutions, plus an evaluation of these seen in the prospect of market needs. This survey on of generator and power electronic concepts was carried out in co-operation between Aalborg University and Risoe National Laboratory in the scope of the research programme Electric Design and Control. (au)

  1. Conceptual design of a fixed-pitch wind turbine generator system rated at 400 kilowatts

    Science.gov (United States)

    Pintz, A.; Kasuba, R.; Spring, J.

    1984-01-01

    The design and cost aspects of a fixed pitch, 400 kW Wind Turbine Generator (WTG) concept are presented. Improvements in reliability and cost reductions were achieved with fixed pitch operation and by incorporating recent advances in WTG technology. The specifications for this WTG concept were as follows: (1) A fixed pitch, continuous wooden rotor was to be provided by the Gougeon Bros. Co. (2) An 8 leg hyperboloid tower that showed promise as a low cost structure was to be used. (3) Only commercially available components and parts that could be easily fabricated were to be considered. (4) Design features deemed desirable based on recent NASA research efforts were to be incorporated. Detailed costs and weight estimates were prepared for the second machine and a wind farm of 12 WTG's. The calculated cost of energy for the fixed pitch, twelve unit windfarm is 11.5 cents/kW hr not including the cost of land and access roads. The study shows feasibility of fixed pitch, intermediate power WTG operation.

  2. Design of a wind turbine-generator system considering the conformability to wind velocity fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Wakui, Tetsuya; Hashizume, Takumi; Outa, Eisuke

    1999-07-01

    The conformability of the rated power output of the wind turbine-generator system and of the wind turbine type to wind velocity fluctuations are investigated with a simulation model. The authors examine three types of wind turbines: the Darrieus-Savonius hybrid, the Darrieus proper and the Propeller. These systems are mainly operated at a constant tip speed ratio, which refers to a maximum power coefficient points. As a computed result of the net extracting power, the Darrieus turbine proper has little conformability to wind velocity fluctuations because of its output characteristics. As for the other turbines, large-scale systems do not always have an advantage over small-scale systems as the effect of its dynamic characteristics. Furthermore, it is confirmed that the net extracting power of the Propeller turbine, under wind direction fluctuation, is much reduced when compared with the hybrid wind turbine. Thus, the authors conclude that the appropriate rated power output of the system exists with relation to the wind turbine type for each wind condition.

  3. A 200-kW wind turbine generator conceptual design study

    Science.gov (United States)

    1979-01-01

    A conceptual design study was conducted to define a 200 kW wind turbine power system configuration for remote applications. The goal was to attain an energy cost of 1 to 2 cents per kilowatt-hour at a 14-mph site (mean average wind velocity at an altitude of 30 ft.) The costs of the Clayton, New Mexico, Mod-OA (200-kW) were used to identify the components, subsystems, and other factors that were high in cost and thus candidates for cost reduction. Efforts devoted to developing component and subsystem concepts and ideas resulted in a machine concept that is considerably simpler, lighter in weight, and lower in cost than the present Mod-OA wind turbines. In this report are described the various innovations that contributed to the lower cost and lighter weight design as well as the method used to calculate the cost of energy.

  4. Wind Turbine Generator System Safety and Function Test Report for the Entegrity EW50 Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.; Huskey, A.; Jager, D.; Hur, J.

    2012-11-01

    This report summarizes the results of a safety and function test that NREL conducted on the Entegrity EW50 wind turbine. This test was conducted in accordance with the International Electrotechnical Commissions' (IEC) standard, Wind Turbine Generator System Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed.2.0, 2006-03.

  5. Floating wind generators offshore wind farm: Implications for structural loads and control actions

    International Nuclear Information System (INIS)

    Garcia, E.; Morant F, Quiles E.; Correcher, A.

    2009-01-01

    This paper describes the work currently carried out in the design of floating wind generators and their involvement in the future development of power generation in marine farms in depths exceeding 20 m. We discuss the main issues to be taken into account in the design of floating platforms, including the involvement of structural loads they bear. Also from a standpoint of control engineering are discussed strategies to reduce structural loads such a system to ensure adequate durability and therefore ensuring their economic viability. Finally, the abstract modeling tools for floating wind turbines that can be used in both structural design and the design of appropriate control algorithms

  6. Superconducting wind turbine generators

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Mijatovic, Nenad; Seiler, Eugen

    2010-01-01

    , the main challenge of the superconducting direct drive technology is to prove that the reliability is superior to the alternative drive trains based on gearboxes or permanent magnets. A strategy of successive testing of superconducting direct drive trains in real wind turbines of 10 kW, 100 kW, 1 MW and 10......We have examined the potential of 10 MW superconducting direct drive generators to enter the European offshore wind power market and estimated that the production of about 1200 superconducting turbines until 2030 would correspond to 10% of the EU offshore market. The expected properties of future...... offshore turbines of 8 and 10 MW have been determined from an up-scaling of an existing 5 MW turbine and the necessary properties of the superconducting drive train are discussed. We have found that the absence of the gear box is the main benefit and the reduced weight and size is secondary. However...

  7. Effect of operating methods of wind turbine generator system on net power extraction under wind velocity fluctuations in fields

    Energy Technology Data Exchange (ETDEWEB)

    Wakui, Tetsuya; Yamaguchi, Kazuya; Hashizume, Takumi [Waseda Univ., Advanced Research Inst. for Science and Engineering, Tokyo (Japan); Outa, Eisuke [Waseda Univ., Mechanical Engineering Dept., Tokyo (Japan); Tanzawa, Yoshiaki [Nippon Inst. of Technology, Mechanical Engineering Dept., Saitama (Japan)

    1999-01-01

    The effect of how a wind turbine generator system is operated is discussed from the viewpoint of net power extraction with wind velocity fluctuation in relation to the scale and the dynamic behaviour of the system. On a wind turbine generator system consisting of a Darrieus-Savonius hybrid wind turbine, a load generator and a battery, we took up two operating methods: constant tip speed ratio operation for a stand-alone system (Scheme 1) and synchronous operation by connecting a grid (Scheme 2). With our simulation model, using the result of the net extracting power, we clarified that Scheme 1 is more effective than Scheme 2 for small-scale systems. Furthermore, in Scheme 1, the appropriate rated power output of the system under each wind condition can be confirmed. (Author)

  8. Environmental Impact Assessment of Wind Generators in the Czech Republic

    Directory of Open Access Journals (Sweden)

    Vladimír Lapčík

    2008-11-01

    Full Text Available The article summarizes author´s experience with environmental impact assessment in branch of wind generators. The introductorypart of paper describes legislative obligations of the Czech Republic in frame of fulfilling the European Union´s limits in branch ofrenewable energy resources utilization. Next part of paper deals with analysis of impacts of wind generators on the environment.The final part of paper deals with experience with implementation of the environmental impact assessment process (pursuant to the ActNo. 100/2001 Coll. in the field of wind power in the Czech Republic.

  9. Assessment of wind energy potential for electricity generation

    African Journals Online (AJOL)

    Wind energy is proposed as an alternative source of electricity to fossil fuel generators .... can be connected to the national grid line to supplement the shortfall that arises during the dry ... systems are environmentally friendly. By generating ...

  10. Advanced Machine Learning for Classification, Regression, and Generation in Jet Physics

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    There is a deep connection between machine learning and jet physics - after all, jets are defined by unsupervised learning algorithms. Jet physics has been a driving force for studying modern machine learning in high energy physics. Domain specific challenges require new techniques to make full use of the algorithms. A key focus is on understanding how and what the algorithms learn. Modern machine learning techniques for jet physics are demonstrated for classification, regression, and generation. In addition to providing powerful baseline performance, we show how to train complex models directly on data and to generate sparse stacked images with non-uniform granularity.

  11. An aggregate model of grid-connected, large-scale, offshore wind farm for power stability investigations-importance of windmill mechanical system

    DEFF Research Database (Denmark)

    Akhmatov, Vladislav; Knudsen, H.

    2002-01-01

    . Because the shaft system gives a soft coupling between the rotating wind turbine and the induction generator, the large-scale wind farm cannot always be reduced to one-machine equivalent and use of multi-machine equivalents will be necessary for reaching accuracy of the investigation results....... This will be in cases with irregular wind distribution over the wind farm area. The torsion mode of the shaft systems of large wind turbines is commonly in the range of 1-2 Hz and close to typical values of the electric power grid eigenfrequencies why there is a risk of oscillation between the wind turbines...... and the entire network. All these phenomena are different compared to previous experiences with modelling of conventional power plants with synchronous generators and stiff shaft systems....

  12. Computation of Superconducting Generators for Wind Turbine Applications

    DEFF Research Database (Denmark)

    Rodriguez Zermeno, Victor Manuel

    The idea of introducing a superconducting generator for offshore wind turbine applications has received increasing support. It has been proposed as a way to meet energy market requirements and policies demanding clean energy sources in the near future. However, design considerations have to take......, to the actual generators in the KW (MW) class with an expected cross section in the order of decimeters (meters). This thesis work presents cumulative results intended to create a bottom-up model of a synchronous generator with superconducting rotor windings. In a first approach, multiscale meshes with large...... of the generator including ramp-up of rotor coils, load connection and change was simulated. Hence, transient hysteresis losses in the superconducting coils were computed. This allowed addressing several important design and performance issues such as critical current of the superconducting coils, electric load...

  13. Modelling wind speed parameters for computer generation of wind speed in Flanders. A case study using small wind turbines in an urban environment

    Energy Technology Data Exchange (ETDEWEB)

    Gay, Michael; Dessel, Michel van [Lessius Mechelen, Campus De Nayer (Belgium). Dept. of Applied Engineering; Driesen, Johan [Leuven Univ. (Belgium). Dept. of Electrical Engineering / ESAT

    2012-07-01

    The calculation of wind energy parameters is made for small wind turbines on moderate height in a suburban environment. After using the measured data, the same parameters were calculated using first order Markov chain computer generated data. Some characteristics of the wind and the wind power were preserved using Markov, other were not. (orig.)

  14. Rotor Speed Control of a Direct-Driven Permanent Magnet Synchronous Generator-Based Wind Turbine Using Phase-Lag Compensators to Optimize Wind Power Extraction

    Directory of Open Access Journals (Sweden)

    Ester Hamatwi

    2017-01-01

    Full Text Available Due to the intermittent nature of wind, the wind power output tends to be inconsistent, and hence maximum power point tracking (MPPT is usually employed to optimize the power extracted from the wind resource at a wide range of wind speeds. This paper deals with the rotor speed control of a 2 MW direct-driven permanent magnet synchronous generator (PMSG to achieve MPPT. The proportional-integral (PI, proportional-derivative (PD, and proportional-integral-derivative (PID controllers have widely been employed in MPPT studies owing to their simple structure and simple design procedure. However, there are a number of shortcomings associated with these controllers; the trial-and-error design procedure used to determine the P, I, and D gains presents a possibility for poorly tuned controller gains, which reduces the accuracy and the dynamic performance of the entire control system. Moreover, these controllers’ linear nature, constricted operating range, and their sensitivity to changes in machine parameters make them ineffective when applied to nonlinear and uncertain systems. On the other hand, phase-lag compensators are associated with a design procedure that is well defined from fundamental principles as opposed to the aforementioned trial-and-error design procedure. This makes the latter controller type more accurate, although it is not well developed yet, and hence it is the focus of this paper. The simulation results demonstrated the effectiveness of the proposed MPPT controller.

  15. Conceptual survey of generators and power electronics for wind turbines

    DEFF Research Database (Denmark)

    Hansen, L.H.; Helle, L.; Blaabjerg, F.

    2002-01-01

    This report presents a survey on generator concepts and power electronic concepts for wind turbines. The report is aimed as a tool for decision-makers and development people with respect to wind turbine manufactures, utilities, and independent systemoperators as well as manufactures of generators...... and power electronics. The survey is focused on the electric development of wind turbines and it yields an overview on: - State of the art on generators and power electronics. - future concepts andtechnologies within generators and power electronics. - market needs in the shape of requirements to the grid...... connection, and - consistent system solutions, plus an evaluation of these seen in the prospect of market needs. This survey on of generatorand power electronic concepts was carried out in co-operation between Aalborg University and Risø National Laboratory in the scope of the research programme Electric...

  16. Three essays on the effect of wind generation on power system planning and operations

    Science.gov (United States)

    Davis, Clay Duane

    While the benefits of wind generation are well known, some drawbacks are still being understood as wind power is integrated into the power grid at increasing levels. The primary difference between wind generation and other forms of generation is the intermittent, and somewhat unpredictable, aspect of this resource. The somewhat uncontrollable aspect of wind generation makes it important to consider the relationship between this resource and load, and also how the operation of other non-wind generation resources may be affected. The three essays that comprise this dissertation focus on these and other important issues related to wind generation; leading to an improved understanding of how to better plan for and utilize this resource. The first essay addresses the cost of increased levels of installed wind capacity from both a capacity planning and economic dispatch perspective to arrive at the total system cost of installing a unit of wind capacity. This total includes not only the cost of the wind turbine and associated infrastructure, but also the cost impact an additional unit of wind capacity has on the optimal mix and operation of other generating units in the electricity supply portfolio. The results of the model showed that for all wind expansion scenarios, wind capacity is not cost-effective regardless of the level of the wind production tax credit and carbon prices that were considered. Larger levels of installed wind capacity result in reduced variable cost, but this reduction is not able to offset increases in capital cost, as a unit of installed wind capacity does not result in an equal reduction in other non-wind capacity needs. The second essay develops a methodology to better handle unexpected short term fluctuations in wind generation within the existing power system. The methodology developed in this essay leads to lower expected costs by anticipating and planning for fluctuations in wind generation by focusing on key constraints in the system. The

  17. Assessment of wind characteristics for energy generation

    Energy Technology Data Exchange (ETDEWEB)

    Koray Ulgen [Ege University, Izmir (Turkey). Solar Energy Institute; Asir Genc [Selcuk University, Konya (Turkey). Dept. of Statistics; Arif Hepbasli [Ege University, Izmir (Turkey). Dept. of Mechanical Engineering; Galip Oturanc [Selcuk University, Konya (Turkey). Dept. of Mathematics

    2004-11-15

    Wind technology in Turkey has gained considerable maturity over the last five years, and wind energy projects are becoming commercially attractive in the country. In practice, it is essential to describe the variation of wind speeds for optimizing the design of the systems resulting in less energy generating costs. The wind variation for a typical site is usually described using the so-called Weibull distribution. In this study, the two Weibull parameters of the wind speed distribution function, the shape parameter k (dimensionless) and the scale parameter c (m/s), were computed from the wind speed data for Aksehir in Konya, located in Central Anatolia in Turkey (latitude: 38.35{sup o} and longitude: 31.42{sup o}). Wind data, consisting of hourly wind speed records over a 6 year period, 1997-2002, were obtained from the Aksehir State Meteorological Station. Based on the experimental data, it was found that the numerical values of both Weibull parameters (k and c) for Aksehir vary over a wide range. The yearly values of k range from 1.756 to 2.076, while those of c are in the range of 2.956 to 3.444. Average seasonal Weibull distributions for Aksehir are given. The wind speed distributions are represented by Weibull distribution and also by Rayleigh distribution with a special case of the Weibull distribution for k = 2. The Rayleigh distribution is found to be suitable to represent the actual probability of wind speed data for the site studied. (author)

  18. Evaluation of a small-scale wind power plant; Utvaerdering av smaaskaligt vindkraftverk

    Energy Technology Data Exchange (ETDEWEB)

    Arvidsson, Ulf; Hilding, Sten [Elforsk AB, Stockholm (Sweden)

    2001-12-01

    The aim of this work is to evaluate the electrical performance of the 20 kW Pitch Wind turbine. The work was originally intended to focus on evaluating the first machine in a series of three, which should be a machine ready for series production. However, the control system of the machine was not tested and verified so instead a large part of the work has been to check that the electrical system and the control system operates as intended and to adjust and suggest improvements. The design includes a self-regulating variable speed wind turbine coupled to a permanent magnet generator and a converter.

  19. A Machine LearningFramework to Forecast Wave Conditions

    Science.gov (United States)

    Zhang, Y.; James, S. C.; O'Donncha, F.

    2017-12-01

    Recently, significant effort has been undertaken to quantify and extract wave energy because it is renewable, environmental friendly, abundant, and often close to population centers. However, a major challenge is the ability to accurately and quickly predict energy production, especially across a 48-hour cycle. Accurate forecasting of wave conditions is a challenging undertaking that typically involves solving the spectral action-balance equation on a discretized grid with high spatial resolution. The nature of the computations typically demands high-performance computing infrastructure. Using a case-study site at Monterey Bay, California, a machine learning framework was trained to replicate numerically simulated wave conditions at a fraction of the typical computational cost. Specifically, the physics-based Simulating WAves Nearshore (SWAN) model, driven by measured wave conditions, nowcast ocean currents, and wind data, was used to generate training data for machine learning algorithms. The model was run between April 1st, 2013 and May 31st, 2017 generating forecasts at three-hour intervals yielding 11,078 distinct model outputs. SWAN-generated fields of 3,104 wave heights and a characteristic period could be replicated through simple matrix multiplications using the mapping matrices from machine learning algorithms. In fact, wave-height RMSEs from the machine learning algorithms (9 cm) were less than those for the SWAN model-verification exercise where those simulations were compared to buoy wave data within the model domain (>40 cm). The validated machine learning approach, which acts as an accurate surrogate for the SWAN model, can now be used to perform real-time forecasts of wave conditions for the next 48 hours using available forecasted boundary wave conditions, ocean currents, and winds. This solution has obvious applications to wave-energy generation as accurate wave conditions can be forecasted with over a three-order-of-magnitude reduction in

  20. Engineering handbook on the atmospheric environmental guidelines for use in wind turbine generator development

    Science.gov (United States)

    Frost, W.; Long, B. H.; Turner, R. E.

    1978-01-01

    The guidelines are given in the form of design criteria relative to wind speed, wind shear, turbulence, wind direction, ice and snow loading, and other climatological parameters which include rain, hail, thermal effects, abrasive and corrosive effects, and humidity. This report is a presentation of design criteria in an engineering format which can be directly input to wind turbine generator design computations. Guidelines are also provided for developing specialized wind turbine generators or for designing wind turbine generators which are to be used in a special region of the United States.

  1. Power Electronics for the Next Generation Wind Turbine System

    DEFF Research Database (Denmark)

    Ma, Ke

    This book presents recent studies on the power electronics used for the next generation wind turbine system. Some criteria and tools for evaluating and improving the critical performances of the wind power converters have been proposed and established. The book addresses some emerging problems...

  2. Intelligent control for large-scale variable speed variable pitch wind turbines

    Institute of Scientific and Technical Information of China (English)

    Xinfang ZHANG; Daping XU; Yibing LIU

    2004-01-01

    Large-scale wind turbine generator systems have strong nonlinear multivariable characteristics with many uncertain factors and disturbances.Automatic control is crucial for the efficiency and reliability of wind turbines.On the basis of simplified and proper model of variable speed variable pitch wind turbines,the effective wind speed is estimated using extended Kalman filter.Intelligent control schemes proposed in the paper include two loops which operate in synchronism with each other.At below-rated wind speed,the inner loop adopts adaptive fuzzy control based on variable universe for generator torque regulation to realize maximum wind energy capture.At above-rated wind speed, a controller based on least square support vector machine is proposed to adjust pitch angle and keep rated output power.The simulation shows the effectiveness of the intelligent control.

  3. PREDICTION OF POWER GENERATION OF SMALL SCALE VERTICAL AXIS WIND TURBINE USING FUZZY LOGIC

    Directory of Open Access Journals (Sweden)

    Altab Hossain

    2009-01-01

    Full Text Available Renewable energy from the wind turbine has been focused for the alternative source of power generation due to the following advances of the of the wind turbine. Firstly, the wind turbine is highly efficient and eco-friendly. Secondly, the turbine has the ability to response for the changeable power generation based on the wind velocity and structural framework. However, the competitive efficiency of the wind turbine is necessary to successfully alternate the conventional power sources. The most relevant factor which affects the overall efficiency of the wind turbine is the wind velocity and the relative turbine dimensions. Artificial intelligence systems are widely used technology that can learn from examples and are able to deal with non-linear problems. Compared with traditional approach, fuzzy logic approach is more efficient for the representation, manipulation and utilization. Therefore, the primary purpose of this work was to investigate the relationship between wind turbine power generation and wind velocity, and to illustrate how fuzzy expert system might play an important role in prediction of wind turbine power generation. The main purpose of the measurement over the small scaled prototype vertical axis wind turbine for the wind velocity is to predict the performance of full scaled H-type vertical axis wind turbine. Prediction of power generation at the different wind velocities has been tested at the Thermal Laboratory of Faculty of Engineering, Universiti Industri Selangor (UNISEL and results concerning the daily prediction have been obtained.

  4. PREDICTION OF POWER GENERATION OF SMALL SCALE VERTICAL AXIS WIND TURBINE USING FUZZY LOGIC

    Directory of Open Access Journals (Sweden)

    Altab Md. Hossain

    2009-12-01

    Full Text Available Renewable energy from the wind turbine has been focused for the alternative source of power generation due to the following advances of the of the wind turbine. Firstly, the wind turbine is highly efficient and eco-friendly. Secondly, the turbine has the ability to response for the changeable power generation based on the wind velocity and structural framework. However, the competitive efficiency of the wind turbine is necessary to successfully alternate the conventional power sources. The most relevant factor which affects the overall efficiency of the wind turbine is the wind velocity and the relative turbine dimensions. Artificial intelligence systems are widely used technology that can learn from examples and are able to deal with non-linear problems. Compared with traditional approach, fuzzy logic approach is more efficient for the representation, manipulation and utilization. Therefore, the primary purpose of this work was to investigate the relationship between wind turbine power generation and wind velocity, and to illustrate how fuzzy expert system might play an important role in prediction of wind turbine power generation. The main purpose of the measurement over the small scaled prototype vertical axis wind turbine for the wind velocity is to predict the performance of full scaled H-type vertical axis wind turbine. Prediction of power generation at the different wind velocities has been tested at the Thermal Laboratory of Faculty of Engineering, Universiti Industri Selangor (UNISEL and results concerning the daily prediction have been obtained.

  5. Output power control of two coupled wind generators

    Directory of Open Access Journals (Sweden)

    A Boukhelifa

    2016-09-01

    Full Text Available In this paper we are interested to the power control of two wind generators coupled to the network through power converters. Every energy chain conversion is composed of a wind turbine, a gearbox, a Double Fed Induction Generator (DFIG, two PWM converters and a DC bus. The power exchange and the DC voltage are controlled by the use of proportional integral correctors. For our study, initially we have modeled all the components of the one system energy conversion, and then we have simulated its behavior using Matlab/Simulink. In another part of this paper we present the analysis of the interaction and the powerflow between the two aerogenerators following a disturbance due to wind speed on every turbine. Also we have considered a connection fault to the DC bus. In each case the assessment of power brought into play is checked. Simulation tests are established.

  6. Generation Expansion Planning Considering Integrating Large-scale Wind Generation

    DEFF Research Database (Denmark)

    Zhang, Chunyu; Ding, Yi; Østergaard, Jacob

    2013-01-01

    necessitated the inclusion of more innovative and sophisticated approaches in power system investment planning. A bi-level generation expansion planning approach considering large-scale wind generation was proposed in this paper. The first phase is investment decision, while the second phase is production...... optimization decision. A multi-objective PSO (MOPSO) algorithm was introduced to solve this optimization problem, which can accelerate the convergence and guarantee the diversity of Pareto-optimal front set as well. The feasibility and effectiveness of the proposed bi-level planning approach and the MOPSO...

  7. Stability Augmentation of Wind Farm using Variable Speed Permanent Magnet Synchronous Generator

    Science.gov (United States)

    Rosyadi, Marwan; Muyeen, S. M.; Takahashi, Rion; Tamura, Junji

    This paper presents a new control strategy of variable speed permanent magnet wind generator for stability augmentation of wind farm including fixed speed wind turbine with Induction Generator (IG). A new control scheme is developed for two levels back-to-back converters of Permanent Magnet Synchronous Generator (PMSG), by which both active and reactive powers delivered to the grid can be controlled easily. To avoid the converter damage, the DC link protection controller is also proposed in order to protect the dc link circuit during fault condition. To evaluate the control capability of the proposed controllers, simulations are performed on two model systems composed of wind farms connected to an infinite bus. From transient and steady state analyses by using PSCAD/EMTDC, it is concluded that the proposed control scheme is very effective to improve the stability of wind farm for severe network disturbance and randomly fluctuating wind speed.

  8. Power control for direct-driven permanent magnet wind generator system with battery storage.

    Science.gov (United States)

    Guang, Chu Xiao; Ying, Kong

    2014-01-01

    The objective of this paper is to construct a wind generator system (WGS) loss model that addresses the loss of the wind turbine and the generator. It aims to optimize the maximum effective output power and turbine speed. Given that the wind generator system has inertia and is nonlinear, the dynamic model of the wind generator system takes the advantage of the duty of the Buck converter and employs feedback linearization to design the optimized turbine speed tracking controller and the load power controller. According to that, this paper proposes a dual-mode dynamic coordination strategy based on the auxiliary load to reduce the influence of mode conversion on the lifetime of the battery. Optimized speed and power rapid tracking as well as the reduction of redundant power during mode conversion have gone through the test based on a 5 kW wind generator system test platform. The generator output power as the capture target has also been proved to be efficient.

  9. Power Control for Direct-Driven Permanent Magnet Wind Generator System with Battery Storage

    Directory of Open Access Journals (Sweden)

    Chu Xiao Guang

    2014-01-01

    Full Text Available The objective of this paper is to construct a wind generator system (WGS loss model that addresses the loss of the wind turbine and the generator. It aims to optimize the maximum effective output power and turbine speed. Given that the wind generator system has inertia and is nonlinear, the dynamic model of the wind generator system takes the advantage of the duty of the Buck converter and employs feedback linearization to design the optimized turbine speed tracking controller and the load power controller. According to that, this paper proposes a dual-mode dynamic coordination strategy based on the auxiliary load to reduce the influence of mode conversion on the lifetime of the battery. Optimized speed and power rapid tracking as well as the reduction of redundant power during mode conversion have gone through the test based on a 5 kW wind generator system test platform. The generator output power as the capture target has also been proved to be efficient.

  10. Testing of a direct drive generator for wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Sondergaard, L.M. [Riso National Laboratory, Roskilde (Denmark)

    1996-12-31

    The normal drive train of a wind turbine consists a gearbox and a 4 to 8 poles asynchronous generator. The gearbox is an expensive and unreliable components and this paper deals with testing of a direct drive synchronous generator for a gearless wind turbine. The Danish company Belt Electric has constructed and manufactured a 27 kW prototype radial flux PM-generator (DD600). They have used cheap hard ferrite magnets in the rotor of this PM-generator. This generator has been tested at Riso and the test results are investigated and analyzed in this paper. The tests have been done with three different load types (1: resistance; 2: diode rectifier, DC-capacitor, resistance; 3: AC-capacitor, diode rectifier, DC-capacitor, resistance). 1 ref., 9 figs., 5 tabs.

  11. Effects of Wind Turbines Equipped with Doubly-fed Induction Generators on Distance Protection

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Nowadays wind energy is the fastest growing renewable energy resource in the world. The problems of integrating wind farms are caused by changes of wind speed during a day. Moreover, the behaviors of wind turbines equipped with doubly-fed induction generators differ fundamentally from synchronous generators. Therefore, more considerations are needed to analyze the performances of the distance protection relays. The protection of a wind farm with distance relay is inspected. By changing the conditions of the wind farm, the characteristics of the distance relay are studied.

  12. Wind Turbine Contingency Control Through Generator De-Rating

    Science.gov (United States)

    Frost, Susan; Goebel, Kai; Balas, Mark

    2013-01-01

    Maximizing turbine up-time and reducing maintenance costs are key technology drivers for wind turbine operators. Components within wind turbines are subject to considerable stresses due to unpredictable environmental conditions resulting from rapidly changing local dynamics. In that context, systems health management has the aim to assess the state-of-health of components within a wind turbine, to estimate remaining life, and to aid in autonomous decision-making to minimize damage to the turbine. Advanced contingency control is one way to enable autonomous decision-making by providing the mechanism to enable safe and efficient turbine operation. The work reported herein explores the integration of condition monitoring of wind turbines with contingency control to balance the trade-offs between maintaining system health and energy capture. The contingency control involves de-rating the generator operating point to achieve reduced loads on the wind turbine. Results are demonstrated using a high fidelity simulator of a utility-scale wind turbine.

  13. Flicker study on variable speed wind turbines with doubly fed induction generators

    DEFF Research Database (Denmark)

    Sun, Tao; Chen, Zhe; Blaabjerg, Frede

    2005-01-01

    to a conclusion that the factors mentioned above have different influences on flicker emission compared with that in the case of the fixed speed wind turbine. Flicker mitigation is realized by output reactive power control of the variable speed wind turbine with doubly fed induction generator. Simulation results...... show the wind turbine output reactive power control provides an effective means for flicker mitigation regardless of mean wind speed, turbulence intensity and short circuit capacity ratio.......Grid connected wind turbines may produce flicker during continuous operation. This paper presents a simulation model of a MW-level variable speed wind turbine with a doubly fed induction generator developed in the simulation tool of PSCAD/EMTDC. Flicker emission of variable speed wind turbines...

  14. Assessment of U.S. Manufacturing Capability for Next-Generation Wind Turbine Drivetrains

    Energy Technology Data Exchange (ETDEWEB)

    Cotrell, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stelhy, T. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-09-01

    Robust U.S. wind turbine manufacturing capabilities and supply chains are important for the United States to reduce the cost of electricity generated from wind turbines. These capabilities and supply chains are also critical to the invention and commercialization of new wind turbine technologies while providing high-quality jobs. The development of advanced drivetrain technologies for windturbine applications is advancing the state of the art for drivetrain design by producing higher capacity and operating reliability than conventional drivetrains. Advanced drivetrain technologies such as medium-speed and direct-drive generators, silicon-carbide (SiC) IGBT-based power electronics, and high torque density speed increasers require different manufacturing and supply chaincapabilities that present both risks and opportunities for U.S. wind turbine manufacturers and the wind industry as a whole. The primary objective of this project is to assess how advanced drivetrain technologies and trends will impact U.S. wind turbine manufacturing and its supply chains. The U.S. Department of Energy and other industry participants will use the information from this study toidentify domestic manufacturing gaps, barriers, and opportunities for developing U.S. wind turbine manufacturing capabilities and supply chains for next-generation drivetrain technologies. This report also includes recommendations for prioritizing technology areas for possible investments by public, private, or nonprofit entities that will reduce the cost of wind-generated electricity. Suchinvestments foster opportunities to invent and commercialize new wind turbine technologies, and provide high-quality jobs in the United States.

  15. sizing of wind powered axial flux permanent magnet alternator using

    African Journals Online (AJOL)

    user

    2016-10-04

    Oct 4, 2016 ... Keywords: Wind-Power, Axial flux, Axial Flux Permanent Machines (AFPM), Axial Flux Permanent Magnet ... energy for power generation, a high constraint is the .... arrangements as Single-Rotor Single-Stator Structure.

  16. A Summary of the Fatigue Properties of Wind Turbine Materials

    Energy Technology Data Exchange (ETDEWEB)

    SUTHERLAND, HERBERT J.

    1999-10-07

    Modern wind turbines are fatigue critical machines that are typically used to produce electrical power from the wind. The materials used to construct these machines are subjected to a unique loading spectrum that contains several orders of magnitude more cycles than other fatigue critical structures, e.g., an airplane. To facilitate fatigue designs, a large database of material properties has been generated over the past several years that is specialized to materials typically used in wind turbines. In this paper, I review these fatigue data. Major sections are devoted to the properties developed for wood, metals (primarily aluminum) and fiberglass. Special emphasis is placed on the fiberglass discussion because this material is current the material of choice for wind turbine blades. The paper focuses on the data developed in the U.S., but cites European references that provide important insights.

  17. A Fuzzy-PI control to extract an optimal power from wind turbine

    International Nuclear Information System (INIS)

    Aissaoui, Abdel Ghani; Tahour, Ahmed; Essounbouli, Najib; Nollet, Frédéric; Abid, Mohamed; Chergui, Moulay Idriss

    2013-01-01

    Highlights: ► We model the wind energy conversion system (WECS) based on the PMSG. ► We present the vector control of permanent magnet synchronous generator (PMSG). ► A speed control strategy is developed to extract maximal wind power. ► A Fuzzy-PI speed controller is proposed to overcome the WECS nonlinearity problem. ► Simulation results show the effectiveness of the proposed control strategy. - Abstract: In this article we develop the overall model of the wind energy conversion systems (WECSs) structure based on the permanent magnet synchronous generator (PMSG), and propose a study of the electrical parts (permanent magnet synchronous machine and static converter). Our study is developed on a wind conversion system in order to produce optimum power (to extract the maximal wind power). The speed control of all machine-turbine at optimal values can provide a valuable service and useful for the management and generation of power network to which the turbine is connected. The main drawback is that the WECS is highly nonlinear, and thus a nonlinear control strategy is required. An adaptive Fuzzy-PI speed controller is proposed to overcome this problem. Simulation results are given to show the effectiveness of this control strategy. Conclusions are summarized in the last section.

  18. Feature selection in wind speed prediction systems based on a hybrid coral reefs optimization – Extreme learning machine approach

    International Nuclear Information System (INIS)

    Salcedo-Sanz, S.; Pastor-Sánchez, A.; Prieto, L.; Blanco-Aguilera, A.; García-Herrera, R.

    2014-01-01

    Highlights: • A novel approach for short-term wind speed prediction is presented. • The system is formed by a coral reefs optimization algorithm and an extreme learning machine. • Feature selection is carried out with the CRO to improve the ELM performance. • The method is tested in real wind farm data in USA, for the period 2007–2008. - Abstract: This paper presents a novel approach for short-term wind speed prediction based on a Coral Reefs Optimization algorithm (CRO) and an Extreme Learning Machine (ELM), using meteorological predictive variables from a physical model (the Weather Research and Forecast model, WRF). The approach is based on a Feature Selection Problem (FSP) carried out with the CRO, that must obtain a reduced number of predictive variables out of the total available from the WRF. This set of features will be the input of an ELM, that finally provides the wind speed prediction. The CRO is a novel bio-inspired approach, based on the simulation of reef formation and coral reproduction, able to obtain excellent results in optimization problems. On the other hand, the ELM is a new paradigm in neural networks’ training, that provides a robust and extremely fast training of the network. Together, these algorithms are able to successfully solve this problem of feature selection in short-term wind speed prediction. Experiments in a real wind farm in the USA show the excellent performance of the CRO–ELM approach in this FSP wind speed prediction problem

  19. Centralised control of wind farm with doubly-fed induction generators

    DEFF Research Database (Denmark)

    Hansen, A.D.; Sørensen, Poul Ejnar; Iov, F.

    2005-01-01

    This paper describes the development of an advanced wind farm controller for a wind farm made-up exclusively of doubly-fed generators. The overall aim of such controller is to enable the wind farms to behave as active controllable components in the power system. The attention is mainly drawn...... to the ability of the wind farm control strategy to regulate the wind farm power production to the reference power ordered by the system operators. The performance of the control strategy is assessed and discussed by means of normal operation simulations of a grid connected wind farm....

  20. Increasing power generation in horizontal axis wind turbines using optimized flow control

    Science.gov (United States)

    Cooney, John A., Jr.

    In order to effectively realize future goals for wind energy, the efficiency of wind turbines must increase beyond existing technology. One direct method for achieving increased efficiency is by improving the individual power generation characteristics of horizontal axis wind turbines. The potential for additional improvement by traditional approaches is diminishing rapidly however. As a result, a research program was undertaken to assess the potential of using distributed flow control to increase power generation. The overall objective was the development of validated aerodynamic simulations and flow control approaches to improve wind turbine power generation characteristics. BEM analysis was conducted for a general set of wind turbine models encompassing last, current, and next generation designs. This analysis indicated that rotor lift control applied in Region II of the turbine power curve would produce a notable increase in annual power generated. This was achieved by optimizing induction factors along the rotor blade for maximum power generation. In order to demonstrate this approach and other advanced concepts, the University of Notre Dame established the Laboratory for Enhanced Wind Energy Design (eWiND). This initiative includes a fully instrumented meteorological tower and two pitch-controlled wind turbines. The wind turbines are representative in their design and operation to larger multi-megawatt turbines, but of a scale that allows rotors to be easily instrumented and replaced to explore new design concepts. Baseline data detailing typical site conditions and turbine operation is presented. To realize optimized performance, lift control systems were designed and evaluated in CFD simulations coupled with shape optimization tools. These were integrated into a systematic design methodology involving BEM simulations, CFD simulations and shape optimization, and selected experimental validation. To refine and illustrate the proposed design methodology, a

  1. FEM Simulation of Small Wind Power Generating System Using PMSG

    Science.gov (United States)

    Kesamaru, Katsumi; Ohno, Yoshihiro; Sonoda, Daisuke

    The paper describes a new approach to simulate the small wind power generating systems using PMSG, in which the output is connected to constant resistive load, such as heaters, through the rectifier and the dc chopper. The dynamics of the wind power generating system is presented, and it is shown by simulation results that this approach is useful for system dynamics, such as starting phenomena.

  2. An optimal design of coreless direct-drive axial flux permanent magnet generator for wind turbine

    International Nuclear Information System (INIS)

    Ahmed, D; Ahmad, A

    2013-01-01

    Different types of generators are currently being used in wind power technology. The commonly used are induction generator (IG), doubly-fed induction generator (DFIG), electrically excited synchronous generator (EESG) and permanent magnet synchronous generator (PMSG). However, the use of PMSG is rapidly increasing because of advantages such as higher power density, better controllability and higher reliability. This paper presents an innovative design of a low-speed modular, direct-drive axial flux permanent magnet (AFPM) generator with coreless stator and rotor for a wind turbine power generation system that is developed using mathematical and analytical methods. This innovative design is implemented in MATLAB / Simulink environment using dynamic modelling techniques. The main focus of this research is to improve efficiency of the wind power generation system by investigating electromagnetic and structural features of AFPM generator during its operation in wind turbine. The design is validated by comparing its performance with standard models of existing wind power generators. The comparison results demonstrate that the proposed model for the wind power generator exhibits number of advantages such as improved efficiency with variable speed operation, higher energy yield, lighter weight and better wind power utilization.

  3. An optimal design of coreless direct-drive axial flux permanent magnet generator for wind turbine

    Science.gov (United States)

    Ahmed, D.; Ahmad, A.

    2013-06-01

    Different types of generators are currently being used in wind power technology. The commonly used are induction generator (IG), doubly-fed induction generator (DFIG), electrically excited synchronous generator (EESG) and permanent magnet synchronous generator (PMSG). However, the use of PMSG is rapidly increasing because of advantages such as higher power density, better controllability and higher reliability. This paper presents an innovative design of a low-speed modular, direct-drive axial flux permanent magnet (AFPM) generator with coreless stator and rotor for a wind turbine power generation system that is developed using mathematical and analytical methods. This innovative design is implemented in MATLAB / Simulink environment using dynamic modelling techniques. The main focus of this research is to improve efficiency of the wind power generation system by investigating electromagnetic and structural features of AFPM generator during its operation in wind turbine. The design is validated by comparing its performance with standard models of existing wind power generators. The comparison results demonstrate that the proposed model for the wind power generator exhibits number of advantages such as improved efficiency with variable speed operation, higher energy yield, lighter weight and better wind power utilization.

  4. Real And Reactive Power Saving In Three Phase Induction Machine Using Star-Delta Switching Schemes

    Directory of Open Access Journals (Sweden)

    Ramesh Daravath

    2017-04-01

    Full Text Available Induction machines are the most commonly used industrial drives for variety of applications. It has been estimated that induction motors consumes approximately 50 of all the electric energy generated. Further in the area of renewable energy sources such as wind or bio-mass energy induction machines have been found suitable for functioning as generators. In this context it may be mentioned that a star-delta switching is common for the starting of three-phase induction motor. Now it is proposed to use this star-delta switching for energy conservation of induction machines i.e. at times of reduced loads the machine switched back to star connection. Using a three-phase 400 V 50 Hz 4-pole induction machine it has been demonstrated that the star-delta switching of stator winding of three-phase induction machine motor generator operations reconnected in star at suitable reduced loads with a switching arrangement can result in improved efficiency and power factor as compared to a fixed delta or star connection. The predetermined values along with the experimental results have also been presented in this report. A simulation program has been developed for the predetermination of performance of the three-phase induction machine using exact equivalent circuit. A case study on a 250 kW 400 V 4-pole three-phase induction machine operated with different load cycles reveals the significant real and reactive power savings that could be obtained in the present proposal.

  5. Wind farms generation limits and its impact in real-time voltage stability assessment

    DEFF Research Database (Denmark)

    Perez, Angel; Jóhannsson, Hjörtur; Østergaard, Jacob

    2015-01-01

    . Thismethodology is tested in a platform that produces synthesizedPMU measurements from time-domain simulations and criticalboundary for the wind-farm limits are shown. The methodology isalso tested for synchronous machines and its parallel structure isexploited when implemented in a High Performance...

  6. Fluid-structure interaction modeling of wind turbines: simulating the full machine

    Science.gov (United States)

    Hsu, Ming-Chen; Bazilevs, Yuri

    2012-12-01

    In this paper we present our aerodynamics and fluid-structure interaction (FSI) computational techniques that enable dynamic, fully coupled, 3D FSI simulation of wind turbines at full scale, and in the presence of the nacelle and tower (i.e., simulation of the "full machine"). For the interaction of wind and flexible blades we employ a nonmatching interface discretization approach, where the aerodynamics is computed using a low-order finite-element-based ALE-VMS technique, while the rotor blades are modeled as thin composite shells discretized using NURBS-based isogeometric analysis (IGA). We find that coupling FEM and IGA in this manner gives a good combination of efficiency, accuracy, and flexibility of the computational procedures for wind turbine FSI. The interaction between the rotor and tower is handled using a non-overlapping sliding-interface approach, where both moving- and stationary-domain formulations of aerodynamics are employed. At the fluid-structure and sliding interfaces, the kinematic and traction continuity is enforced weakly, which is a key ingredient of the proposed numerical methodology. We present several simulations of a three-blade 5~MW wind turbine, with and without the tower. We find that, in the case of no tower, the presence of the sliding interface has no effect on the prediction of aerodynamic loads on the rotor. From this we conclude that weak enforcement of the kinematics gives just as accurate results as the strong enforcement, and thus enables the simulation of rotor-tower interaction (as well as other applications involving mechanical components in relative motion). We also find that the blade passing the tower produces a 10-12 % drop (per blade) in the aerodynamic torque. We feel this finding may be important when it comes to the fatigue-life analysis and prediction for wind turbine blades.

  7. Grid-connected inverter for wind power generation system

    Institute of Scientific and Technical Information of China (English)

    YANG Yong; RUAN Yi; SHEN Huan-qing; TANG Yan-yan; YANG Ying

    2009-01-01

    In wind power generation system the grid-connected inverter is an important section for energy conversion and transmission, of which the performance has a direct influence on the entire wind power generation system. The mathematical model of the grid-connected inverter is deduced firstly. Then, the space vector pulse width modulation (SVPWM) is analyzed. The power factor can be controlled close to unity, leading or lagging, which is realized based on PI-type current controller and grid voltage vector-oriented control. The control strategy is verified by the simulation and experimental results with a good sinusoidal current, a small harmonic component and a fast dynamic response.

  8. Universal Generating Function Based Probabilistic Production Simulation Approach Considering Wind Speed Correlation

    Directory of Open Access Journals (Sweden)

    Yan Li

    2017-11-01

    Full Text Available Due to the volatile and correlated nature of wind speed, a high share of wind power penetration poses challenges to power system production simulation. Existing power system probabilistic production simulation approaches are in short of considering the time-varying characteristics of wind power and load, as well as the correlation between wind speeds at the same time, which brings about some problems in planning and analysis for the power system with high wind power penetration. Based on universal generating function (UGF, this paper proposes a novel probabilistic production simulation approach considering wind speed correlation. UGF is utilized to develop the chronological models of wind power that characterizes wind speed correlation simultaneously, as well as the chronological models of conventional generation sources and load. The supply and demand are matched chronologically to not only obtain generation schedules, but also reliability indices both at each simulation interval and the whole period. The proposed approach has been tested on the improved IEEE-RTS 79 test system and is compared with the Monte Carlo approach and the sequence operation theory approach. The results verified the proposed approach with the merits of computation simplicity and accuracy.

  9. Modeling long correlation times using additive binary Markov chains: Applications to wind generation time series

    Science.gov (United States)

    Weber, Juliane; Zachow, Christopher; Witthaut, Dirk

    2018-03-01

    Wind power generation exhibits a strong temporal variability, which is crucial for system integration in highly renewable power systems. Different methods exist to simulate wind power generation but they often cannot represent the crucial temporal fluctuations properly. We apply the concept of additive binary Markov chains to model a wind generation time series consisting of two states: periods of high and low wind generation. The only input parameter for this model is the empirical autocorrelation function. The two-state model is readily extended to stochastically reproduce the actual generation per period. To evaluate the additive binary Markov chain method, we introduce a coarse model of the electric power system to derive backup and storage needs. We find that the temporal correlations of wind power generation, the backup need as a function of the storage capacity, and the resting time distribution of high and low wind events for different shares of wind generation can be reconstructed.

  10. Modeling long correlation times using additive binary Markov chains: Applications to wind generation time series.

    Science.gov (United States)

    Weber, Juliane; Zachow, Christopher; Witthaut, Dirk

    2018-03-01

    Wind power generation exhibits a strong temporal variability, which is crucial for system integration in highly renewable power systems. Different methods exist to simulate wind power generation but they often cannot represent the crucial temporal fluctuations properly. We apply the concept of additive binary Markov chains to model a wind generation time series consisting of two states: periods of high and low wind generation. The only input parameter for this model is the empirical autocorrelation function. The two-state model is readily extended to stochastically reproduce the actual generation per period. To evaluate the additive binary Markov chain method, we introduce a coarse model of the electric power system to derive backup and storage needs. We find that the temporal correlations of wind power generation, the backup need as a function of the storage capacity, and the resting time distribution of high and low wind events for different shares of wind generation can be reconstructed.

  11. Status of the technology development of large scale HTS generators for wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Le, T. D.; Kim, J. H.; Kim, D. J.; Boo, C. J.; Kim, H. M. [Jeju National University, Jeju (Korea, Republic of)

    2015-06-15

    Large wind turbine generators with high temperature superconductors (HTS) are in incessant development because of their advantages such as weight and volume reduction and the increased efficiency compared with conventional technologies. In addition, nowadays the wind turbine market is growing in a function of time, increasing the capacity and energy production of the wind farms installed and increasing the electrical power for the electrical generators installed. As a consequence, it is raising the wind power energy contribution for the global electricity demand. In this study, a forecast of wind energy development will be firstly emphasized, then it continue presenting a recent status of the technology development of large scale HTSG for wind power followed by an explanation of HTS wire trend, cryogenics cooling systems concept, HTS magnets field coil stability and other technological parts for optimization of HTS generator design-operating temperature, design topology, field coil shape and level cost of energy, as well. Finally, the most relevant projects and designs of HTS generators specifically for offshore wind power systems are also mentioned in this study.

  12. Status of the technology development of large scale HTS generators for wind turbine

    International Nuclear Information System (INIS)

    Le, T. D.; Kim, J. H.; Kim, D. J.; Boo, C. J.; Kim, H. M.

    2015-01-01

    Large wind turbine generators with high temperature superconductors (HTS) are in incessant development because of their advantages such as weight and volume reduction and the increased efficiency compared with conventional technologies. In addition, nowadays the wind turbine market is growing in a function of time, increasing the capacity and energy production of the wind farms installed and increasing the electrical power for the electrical generators installed. As a consequence, it is raising the wind power energy contribution for the global electricity demand. In this study, a forecast of wind energy development will be firstly emphasized, then it continue presenting a recent status of the technology development of large scale HTSG for wind power followed by an explanation of HTS wire trend, cryogenics cooling systems concept, HTS magnets field coil stability and other technological parts for optimization of HTS generator design-operating temperature, design topology, field coil shape and level cost of energy, as well. Finally, the most relevant projects and designs of HTS generators specifically for offshore wind power systems are also mentioned in this study

  13. Generation management using batteries in wind farms: Economical and technical analysis for Spain

    International Nuclear Information System (INIS)

    Dufo-Lopez, Rodolfo; Bernal-Agustin, Jose L.; Dominguez-Navarro, Jose A.

    2009-01-01

    This paper presents an hourly management method for energy generated in grid-connected wind farms using battery storage (Wind-Batteries systems). The method proposed is analysed technically and economically. Electricity generation in wind farms does not usually coincide with the electrical demand curve. If the wind-power penetration becomes high in the Spanish electrical grid, energy management will become necessary for some wind farms. A method is proposed in this paper to adjust the generation curve to the demand curve by storing electrical energy in batteries during off-peak hours (low demand) and selling stored energy to the grid during peak hours (high demand). With the results obtained and reported in this paper, for a Wind-Batteries system to be economically as profitable as a Wind-Only system, the selling price of the energy provided by the batteries during peak hours should be between 22 and 66 c Euro /kWh, depending on the technology and cost of the batteries. Comparison with flexible thermal generation has been performed. Additionally, the results are compared with those obtained if using hydrogen (Wind-Hydrogen system, which uses an electrolyser, hydrogen tank, and fuel cell instead of batteries), concluding that the Wind-Batteries system is both economically and energetically far more suitable

  14. Voltage Control in Wind Power Plants with Doubly Fed Generators

    DEFF Research Database (Denmark)

    Garcia, Jorge Martinez

    In this work, the process of designing a wind power plant composed of; doubly fed induction generators, a static compensator unit, mechanically switched capacitors and on-load tap changer, for voltage control is shown. The selected control structure is based on a decentralized system, since...... supplied by the doubly fed induction generator wind turbines is overcome by installing a reactive power compensator, i.e. a static compensator unit, which is coordinated with the plant control by a specific dispatcher. This dispatcher is set according to the result of the wind power plant load flow....... To release the operation of the converters during steady-state disturbances, mechanically switched capacitors are installed in the wind power plant, which due to their characteristics, they are appropriate for permanent disturbances compensation. The mechanically switched capacitors are controlled to allow...

  15. Non-conventional rule of making a periodically varying different-pole magnetic field in low-power alternating current electrical machines with using ring coils in multiphase armature winding

    Science.gov (United States)

    Plastun, A. T.; Tikhonova, O. V.; Malygin, I. V.

    2018-02-01

    The paper presents methods of making a periodically varying different-pole magnetic field in low-power electrical machines. Authors consider classical designs of electrical machines and machines with ring windings in armature, structural features and calculated parameters of magnetic circuit for these machines.

  16. Variable Speed Wind Turbine Based on Multiple Generators Drive-Train Configuration

    DEFF Research Database (Denmark)

    Deng, Fujin; Chen, Zhe

    2010-01-01

    A variable speed wind turbine is presented in this paper, where multiple permanent magnet synchronous generators (MPMSGs) drive-train configuration is employed in the wind turbine. A cascaded multilevel converter interface based on the MPMSGs is developed to synthesize a desired high ac sinusoidal...... output voltage, which could be directly connected to the grids. What is more, such arrangement has been made so that the output ac voltage having a selected phase angle difference among the stator windings of multiple generators. A phase angle shift strategy is proposed in this paper, which effectively...... reduce the fluctuation of the electromagnetic torque sum and results in a good performance for the MPMSGs structure. The simulation study is conducted using PSCAD/EMTDC, and the results verify the feasibility of this variable speed wind turbine based on multiple generators drive-train configuration....

  17. Alliance created to study wind-generated power potential

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Wind-generated power may get a boost from a new consortium of companies that have joined together to expand the potential across the country for this cheap, renewable energy source. Niagara Mohawk Power Corporation has announced that it will join with the Pacific Gas and Electric Company (PG ampersand E), the Electric Power Research Institute (EPRI) and US Windpower, Inc., in developing an advanced, 33-meter, variable-speed wind turbine that reduced the cost and improves the power quality of wind energy. The majority of the estimated $20 million cost will be provided by US Windpower

  18. FY 1998 Report on development of large-scale wind power generation systems. Feasibility study on development of new technologies for wind power generation (Study on the development of wind power generation); 1998 nendo ogata furyoku hatsuden system kaihatsu. Furyoku hatsuden shingijutsu kaihatsu kanosei chosa (furyoku hatsuden gijutsu ni kansuru kaihatsu doko chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This survey is designed to analyze, e.g., current status of large-scale wind power generation devices/system technologies and development trends worldwide, and to make predictions about future developments, in an effort to contribute to advancements in new technology for wind power generation systems in Japan. The international R and D cooperation programs promoted by IEA and EU have helped the participants produce a number of good results at lower costs. The European countries have developed the wind power generation industries in each area, promoted by the governmental subsidy policies, and are leading the world. The system is becoming larger, from around an average unit capacity of 250kW in the beginning of the 90's to 600kW now, reducing the cost by the scale merit. The improved computer capacity has made it possible to more easily analyze the complicated rotor aerodynamics, structural dynamics, wind characteristics and other factors related to wind power generation systems. The future R and D directions will include world standards for large-scale wind turbines, advancements in wind farm technologies, offshore wind power generation systems, advancement in design technologies, and new concepts for wind power turbine designs, e.g., floating wind turbine. (NEDO)

  19. Proceedings of a workshop on wind turbine noise

    International Nuclear Information System (INIS)

    Legerton, M.

    1993-08-01

    Noise generated by wind turbines is an environmental constraint on the exploitation of wind energy. It is a major consideration when seeking planning consent for the siting of machines due to the high population density in the UK and low levels of background noise in rural areas. There is, therefore, a need to identify the sources and characteristics of noise emitted by wind turbine generators, assess the influences on the propagation of noise through the atmosphere, and provide information to both wind farm developers and planning regulators on noise levels. A one day workshop was organised to provide an opportunity for experts in the field of wind turbine noise to present the current thoughts on the subject and so allow a wide ranging discussion of particular issues of interest. This volume contains the 10 papers presented at the workshop for each of which a separate abstract has been prepared. (author)

  20. Generation of gear tooth surfaces by application of CNC machines

    Science.gov (United States)

    Litvin, F. L.; Chen, N. X.

    1994-01-01

    This study will demonstrate the importance of application of computer numerically controlled (CNC) machines in generation of gear tooth surfaces with new topology. This topology decreases gear vibration and will extend the gear capacity and service life. A preliminary investigation by a tooth contact analysis (TCA) program has shown that gear tooth surfaces in line contact (for instance, involute helical gears with parallel axes, worm gear drives with cylindrical worms, etc.) are very sensitive to angular errors of misalignment that cause edge contact and an unfavorable shape of transmission errors and vibration. The new topology of gear tooth surfaces is based on the localization of bearing contact, and the synthesis of a predesigned parabolic function of transmission errors that is able to absorb a piecewise linear function of transmission errors caused by gear misalignment. The report will describe the following topics: description of kinematics of CNC machines with six degrees of freedom that can be applied for generation of gear tooth surfaces with new topology. A new method for grinding of gear tooth surfaces by a cone surface or surface of revolution based on application of CNC machines is described. This method provides an optimal approximation of the ground surface to the given one. This method is especially beneficial when undeveloped ruled surfaces are to be ground. Execution of motions of the CNC machine is also described. The solution to this problem can be applied as well for the transfer of machine tool settings from a conventional generator to the CNC machine. The developed theory required the derivation of a modified equation of meshing based on application of the concept of space curves, space curves represented on surfaces, geodesic curvature, surface torsion, etc. Condensed information on these topics of differential geometry is provided as well.

  1. Research in the field of development of a new generation of metal-processing machines

    Directory of Open Access Journals (Sweden)

    L.Tanovič

    2017-12-01

    Full Text Available The paper presents a review of research in the field of development of a new generation of metal-working machines for manufacturing high-precision products with dimensions of several micrometers from various materials. Presented are several new, newly created micro-machines that have the ability to manufacture products of a wide range. Studies in the field of metalworking machines and robots of a new generation with parallel kinematics, creation of machining systems for multi-axis machining, improvement and application of controllable systems, testing of processing systems in production conditions, which are conducted at the Machine-Building Faculty of the Belgrade University (Serbia are considered.

  2. Short-term optimal wind power generation capacity in liberalized electricity markets

    International Nuclear Information System (INIS)

    Olsina, Fernando; Roescher, Mark; Larisson, Carlos; Garces, Francisco

    2007-01-01

    Mainly because of environmental concerns and fuel price uncertainties, considerable amounts of wind-based generation capacity are being added to some deregulated power systems. The rapid wind development registered in some countries has essentially been driven by strong subsidizing programs. Since wind investments are commonly isolated from market signals, installed wind capacity can be higher than optimal, leading to distortions of the power prices with a consequent loss of social welfare. In this work, the influence of wind generation on power prices in the framework of a liberalized electricity market has been assessed by means of stochastic simulation techniques. The developed methodology allows investigating the maximal wind capacity that would be profitably deployed if wind investments were subject to market conditions only. For this purpose, stochastic variables determining power prices are accurately modeled. A test system resembling the size and characteristics of the German power system has been selected for this study. The expected value of the optimal, short-term wind capacity is evaluated for a considerable number of random realizations of power prices. The impact of dispersing the wind capacity over statistical independent wind sites has also been evaluated. The simulation results reveal that fuel prices, installation and financing costs of wind investments are very influential parameters on the maximal wind capacity that might be accommodated in a market-based manner

  3. High speed operation of permanent magnet machines

    Science.gov (United States)

    El-Refaie, Ayman M.

    This work proposes methods to extend the high-speed operating capabilities of both the interior PM (IPM) and surface PM (SPM) machines. For interior PM machines, this research has developed and presented the first thorough analysis of how a new bi-state magnetic material can be usefully applied to the design of IPM machines. Key elements of this contribution include identifying how the unique properties of the bi-state magnetic material can be applied most effectively in the rotor design of an IPM machine by "unmagnetizing" the magnet cavity center posts rather than the outer bridges. The importance of elevated rotor speed in making the best use of the bi-state magnetic material while recognizing its limitations has been identified. For surface PM machines, this research has provided, for the first time, a clear explanation of how fractional-slot concentrated windings can be applied to SPM machines in order to achieve the necessary conditions for optimal flux weakening. A closed-form analytical procedure for analyzing SPM machines designed with concentrated windings has been developed. Guidelines for designing SPM machines using concentrated windings in order to achieve optimum flux weakening are provided. Analytical and numerical finite element analysis (FEA) results have provided promising evidence of the scalability of the concentrated winding technique with respect to the number of poles, machine aspect ratio, and output power rating. Useful comparisons between the predicted performance characteristics of SPM machines equipped with concentrated windings and both SPM and IPM machines designed with distributed windings are included. Analytical techniques have been used to evaluate the impact of the high pole number on various converter performance metrics. Both analytical techniques and FEA have been used for evaluating the eddy-current losses in the surface magnets due to the stator winding subharmonics. Techniques for reducing these losses have been

  4. Simulation of an offshore wind farm using fluid power for centralized electricity generation

    Directory of Open Access Journals (Sweden)

    A. Jarquin Laguna

    2017-07-01

    Full Text Available A centralized approach for electricity generation within a wind farm is explored through the use of fluid power technology. This concept considers a new way of generation, collection and transmission of wind energy inside a wind farm, in which electrical conversion does not occur during any intermediate conversion step before the energy has reached the offshore central platform. A numerical model was developed to capture the relevant physics from the dynamic interaction between different turbines coupled to a common hydraulic network and controller. This paper presents a few examples of the time domain simulation results for a hypothetical hydraulic wind farm subject to turbulent wind conditions. The performance and operational parameters of individual turbines are compared with those of a reference wind farm based on conventional wind turbine generator technology using the same wind farm layout and environmental conditions. For the presented case studies, results indicate that the individual wind turbines are able to operate within operational limits. Despite the stochastic turbulent wind conditions and wake effects, the hydraulic wind farm is able to produce electricity with reasonable performance in both below and above rated conditions. With the current pressure control concept, a continuous operation of the hydraulic wind farm is shown including the full stop of one or more turbines.

  5. Design of a DC-AC Link Converter for 500W Residential Wind Generator

    Directory of Open Access Journals (Sweden)

    Riza Muhida

    2012-12-01

    Full Text Available  As one of alternative sources of renewable energy, wind energy has an excellence prospect in Indonesia, particularly in coastal and hilly areas which have potential wind to generate electricity for residential uses. There is urgent need to locally develop low cost inverter of wind generator system for residential use. Recent developments in power electronic converters and embedded computing allow improvement of power electronic converter devices that enable integration of microcontrollers in its design. In this project, an inverter circuit with suitable control scheme design was developed. The circuit was to be used with a selected topology of Wind Energy Conversion System (WECS to convert electricity generated by a 500W direct-drive permanent magnet type wind generator which is typical for residential use. From single phase AC output of the generator, a rectifier circuit is designed to convert AC to DC voltage. Then a DC-DC boost converter is used to step up the voltage to a nominal DC voltage suitable for domestic use. The proposed inverter then will convert the DC voltage to sinusoidal AC. The duty cycle of sinusoidal Pulse-Width Modulated (SPWM signal controlling switches in the inverter was generated by a microcontroller. The lab-scale experimental rig involves simulation of wind generator by running a geared DC motor coupled with 500W wind generator where the prototype circuit was connected at the generator output. The experimental circuit produced single phase 240V sinusoidal AC voltage with frequency of 50Hz. Measured total harmonics distortion (THD of the voltage across load was 4.0% which is within the limit of 5% as recommended by IEEE Standard 519-1992.

  6. Superconductor Armature Winding for High Performance Electrical Machines

    Science.gov (United States)

    2016-12-05

    eddy -induced currents used for shielding. 3.1 SOLID SHIELD. The frequency of the induced current for our machines ... eddy   current  shields)   •  SuperSat     •  switch  reluctance  generators   •  AC  Homopolar   • Toroidal  (Gramme...higher than expected, due probably to highly conducting Nb sheath around the MgB2 filaments (the measured losses were coupling or eddy current

  7. A methodology to generate statistically dependent wind speed scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Morales, J.M.; Conejo, A.J. [Department of Electrical Engineering, Univ. Castilla - La Mancha, Campus Universitario s/n, 13071 Ciudad Real (Spain); Minguez, R. [Environmental Hydraulics Institute ' ' IH Cantabria' ' , Univ. Cantabria, Avenida de los Castros s/n, 39005 Santander (Spain)

    2010-03-15

    Wind power - a renewable energy source increasingly attractive from an economic viewpoint - constitutes an electricity production alternative of growing relevance in current electric energy systems. However, wind power is an intermittent source that cannot be dispatched at the will of the producer. Modeling wind power production requires characterizing wind speed at the sites where the wind farms are located. The wind speed at a particular location can be described through a stochastic process that is spatially correlated with the stochastic processes describing wind speeds at other locations. This paper provides a methodology to characterize the stochastic processes pertaining to wind speed at different geographical locations via scenarios. Each one of these scenarios embodies time dependencies and is spatially dependent of the scenarios describing other wind stochastic processes. The scenarios generated by the proposed methodology are intended to be used within stochastic programming decision models to make informed decisions pertaining to wind power production. The methodology proposed is accurate in reproducing wind speed historical series as well as computationally efficient. A comprehensive case study is used to illustrate the capabilities of the proposed methodology. Appropriate conclusions are finally drawn. (author)

  8. A methodology to generate statistically dependent wind speed scenarios

    International Nuclear Information System (INIS)

    Morales, J.M.; Minguez, R.; Conejo, A.J.

    2010-01-01

    Wind power - a renewable energy source increasingly attractive from an economic viewpoint - constitutes an electricity production alternative of growing relevance in current electric energy systems. However, wind power is an intermittent source that cannot be dispatched at the will of the producer. Modeling wind power production requires characterizing wind speed at the sites where the wind farms are located. The wind speed at a particular location can be described through a stochastic process that is spatially correlated with the stochastic processes describing wind speeds at other locations. This paper provides a methodology to characterize the stochastic processes pertaining to wind speed at different geographical locations via scenarios. Each one of these scenarios embodies time dependencies and is spatially dependent of the scenarios describing other wind stochastic processes. The scenarios generated by the proposed methodology are intended to be used within stochastic programming decision models to make informed decisions pertaining to wind power production. The methodology proposed is accurate in reproducing wind speed historical series as well as computationally efficient. A comprehensive case study is used to illustrate the capabilities of the proposed methodology. Appropriate conclusions are finally drawn.

  9. Complete methodology on generating realistic wind speed profiles based on measurements

    DEFF Research Database (Denmark)

    Gavriluta, Catalin; Spataru, Sergiu; Mosincat, Ioan

    2012-01-01

    , wind modelling for medium and large time scales is poorly treated in the present literature. This paper presents methods for generating realistic wind speed profiles based on real measurements. The wind speed profile is divided in a low- frequency component (describing long term variations...

  10. Improved thermal monitoring of rotating machine insulation

    International Nuclear Information System (INIS)

    Stone, G.C.; Sedding, H.G.; Bernstein, B.S.

    1991-01-01

    Aging of motor and generator insulation is most often induced as a result of operation at high temperatures. In spite of this knowledge, stator and rotor temperatures are only crudely monitored in existing machines. In EPRI project RP2577-1, three new means of detecting machine temperatures were successfully developed. Two of the techniques, the Electronic Rotor Temperature Sensor and the Passive Rotor Temperature Sensor, were specifically developed to give point temperature readings on turbine generator rotor windings. The Insulation Sniffer allows operators to determine when any electrical insulation in a motor is overheating. Another electronic device, called the Thermal Life Indicator, helps operators and maintenance personnel determine how accumulated operation has affected the remaining life of the insulation in rotating machines. These new devices permit nuclear station operators to avoid hazardous operating conditions and will help to determine priorities for maintenance and plant life extension programs

  11. Wind turbine power generation in the South Pennines

    International Nuclear Information System (INIS)

    Anon.

    1991-10-01

    This document has been produced in response to emerging demands for locating wind farms in the South Pennines region in the United Kingdom region, the absence - as yet - of any national policy guidelines and a concern that a lack of protected landscape area status may lead to increased targeting of the area for wind farm developments. Increasingly, the rich heritage based landscape of the South Pennines is gaining recognition. It is important that the basic landscape resource is conserved and enhanced. Thus the need to clarify a set of relevant guidelines against which individual proposals may be considered. It is recommended that policies for dealing with demands for wind turbine developments are based upon an appreciation of the intrinsic character of the South Pennine landscape. Similarly, it is important that the consideration of guidelines is supported by information on how demands for wind generated power have evolved and why development pressures for wind farms are now emerging in the sub-region. The document is structured as follows: (1) Wind Power -Background; (2) Wind Power in the South Pennines - The Potential; (3) The South Pennines: Landscape Character; (4) Planning Policy Guidelines. (author)

  12. Torque control of synchronous and induction generators for variable speed operation of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Ola; Ulen, E. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Electric Power Engineering

    1996-12-01

    The aim of this paper is to investigate variable speed electrical systems. Synchronous generators with diode rectifiers and line-commutated thyristor converters are compared with induction generators with force commutated transistor converters and scalar control. The system characteristics are examined regarding possible speed of response (bandwidth) of the torque control, including the sensitivity to disturbances for the drive train and also the possibility to get damping of the drive train resonance. Analyses, simulations and laboratory tests with a 40 kW machine set-up have been performed. The investigation shows that the system with synchronous generator is well suited for wind power applications. A rapid standard DC-current regulator is included in the torque control and can be used for damping of the resonance. The torque control has a bandwidth up to about 3 Hz and the DC-voltage controller up to about 1 Hz. The system with induction generator with scalar control (no transformations) is more difficult to control. A linear approach is only possible up to about 1.5 Hz. In this region it turns out that the behaviour can be visualized as an added inertia on the generator side that can be rather big. 4 refs, 9 figs

  13. Adaptive Backstepping Control Based on Floating Offshore High Temperature Superconductor Generator for Wind Turbines

    Directory of Open Access Journals (Sweden)

    Feng Yang

    2014-01-01

    Full Text Available With the rapid development of offshore wind power, the doubly fed induction generator and permanent magnet synchronous generator cannot meet the increasing request of power capacity. Therefore, superconducting generator should be used instead of the traditional motor, which can improve generator efficiency, reduce the weight of wind turbines, and increase system reliability. This paper mainly focuses on nonlinear control in the offshore wind power system which is consisted of a wind turbine and a high temperature superconductor generator. The proposed control approach is based on the adaptive backstepping method. Its main purpose is to regulate the rotor speed and generator voltage, therefore, achieving the maximum power point tracking (MPPT, improving the efficiency of a wind turbine, and then enhancing the system’s stability and robustness under large disturbances. The control approach can ensure high precision of generator speed tracking, which is confirmed in both the theoretical analysis and numerical simulation.

  14. Wind and waves: becoming serious Australian industries

    International Nuclear Information System (INIS)

    Anon

    1999-01-01

    Renewable energy is emerging as a critical policy issue in Australia following the Federal Government's 2% target for renewable energy. Adding to the potential for renewable energy in Victoria, Primergy in conjunction with its newly acquired subsidiary Renewable Energy Australia Pacific (REAP) Wind Pty Ltd has secured the exclusive license for the construction, operation and sale of, an advanced technology wind turbine throughout Australia and regional markets. Primergy believes that the potential market for wind generation in Australia could be between 500 to 800 MW or 700 to 1200 wind turbines. The company has also entered into a joint venture with Energetech and is funding 50% of the total cost to build the first wave machine which would be completed at Port Kembla, near Wollongong, by the end of 2000. The wave generator uses an innovative new concept incorporating an highly efficient air driven turbine

  15. Harmonics in a Wind Power Plant: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Preciado, V.; Madrigal, M.; Muljadi, E.; Gevorgian, V.

    2015-04-02

    Wind power generation has been growing at a very fast pace for the past decade, and its influence and impact on the electric power grid is significant. As in a conventional power plant, a wind power plant (WPP) must ensure that the quality of the power being delivered to the grid is excellent. At the same time, the wind turbine should be able to operate immune to small disturbances coming from the grid. Harmonics are one of the more common power quality issues presented by large WPPs because of the high switching frequency of the power converters and the possible nonlinear behavior from electric machines (generator, transformer, reactors) within a power plant. This paper presents a summary of the most important issues related to harmonics in WPPs and discusses practical experiences with actual Type 1 and Type 3 wind turbines in two WPPs.

  16. High Power Wind Generator Designs with Less or No PMs

    DEFF Research Database (Denmark)

    Boldea, Ion; Tutelea, Lucian; Blaabjerg, Frede

    2014-01-01

    synchronous generators, by doubly-fed (wound rotor) induction and cage induction generators and by introducing new topologies with pertinent costs for high power (MW range) wind energy conversion units. The present overview attempts, based on recent grid specifications, an evaluation of commercial and novel...... considering the interaction with the PWM converter in terms of power/speed range, losses, kVA, and costs) rather than on the control issues which abound in literature, will be of use for future R&D efforts in wind energy conversion, storage and use.......The recent steep increase in high energy permanent magnet (PM) price (above 130$/kg and more) triggered already strong R&D efforts to develop wind generators with less PMs (less weight in NdFeB magnets/kW or the use of ferrite PMs) or fully without PMs. All these by optimizing existing dc excited...

  17. Design of Electricity Markets for Efficient Balancing of Wind Power Generation

    OpenAIRE

    Scharff, Richard

    2015-01-01

    Deploying wind power to a larger extent is one solution to reduce negative environmental impacts of electric power supply. However, various challenges are connected with increasing wind power penetration levels. From the perspective of transmission system operators, this includes balancing of varying as well as - to some extent - uncertain generation levels. From the perspective of power generating companies, changes in the generation mix will affect the market's merit order and, hence, their...

  18. A Fast Calculation Method for Analyzing the Effect of Wind Generation on ATC

    Directory of Open Access Journals (Sweden)

    M.A Armin

    2015-12-01

    Full Text Available Wind energy penetration in power system has been increased very fast and large amount of capitals invested for wind farms all around the world. Meanwhile, in power systems with wind turbine generators (WTGs, the value of Available transfer capability (ATC is influenced by the probabilistic nature of the wind power. The Mont Carlo Simulation (MCS is the most common method to model the uncertainty of WTG. However, the MCS method suffers from low convergence rate. To overcome this shortcoming, the proposed technique in this paper uses a new formulation for solving ATC problem analytically. This lowers the computational burden of the ATC computation and hence results in increased convergence rate of the MCS. Using this fast technique to evaluate the ATC, wind generation and load correlation is required to get into modeling. A numerical method is presented to consider load and wind correlation. The proposed method is tested on the modified IEEE 118 bus to analyze the impacts of the WTGs on the ATC. The obtained results show that wind generation capacity and its correlation with system load has significant impacts on the network transfer capability. In other words, ATC probability distribution is sensitive to the wind generation capacity.

  19. Scope and prospects of re-engineering and retrofitting wind farms in India

    International Nuclear Information System (INIS)

    Rajsekhar, B.; Van Hulle, F.J.L.

    2001-09-01

    The paper starts with a brief analysis of the characteristics of the Indian wind energy programmes while enumerating the developments that have taken place so far. In view of the large scope for renewable energy based power generation and in order to boost the present uprise of the wind farm development, the authors investigate the possibilities that lay in re-engineering of existing wind farms. Existing wind farm entrepreneurs are showing interest to improve the performance of their wind farms. New initiatives are suggested addressing the involved technical and commercial concerns of both the state-run utility (the principal customer of wind generated electricity) and wind farm entrepreneur to spur development of economically competitive wind-power plants In addition, inferences are drawn from a recently conducted detailed case study at a 5 year old large wind farm in Muppandal area. The study involved conducting detailed WAsP based analysis based on remote land use and land cover details interfacing with GIS. In addition, detailed site investigations were conducted to assess the health of the machines and the adequacy of the power evacuation facility together with the analysis of the machine down times. The paper highlights the benefits that can be expected from such undertakings for several parties both in India and in EU. The paper finally outlines the possible business opportunities and economic benefits that exist for retrofitting and re-engineering in the country, which has over 700 individually designed wind farms. 2 refs

  20. A solid rotor iron free asynchronous generator for the production of high energy pulses

    International Nuclear Information System (INIS)

    Rioux, C.; Sultanem, F.

    1976-01-01

    A rotating machine capable of charging a noncooled magnetic storage coil is described. The rotor of the machine which is formed by metallic cylinder rotating at high speed, also behaves as a flywheel. The stator is composed of a three-phase winding connected to a system of rectifiers and power factor correcting condensers, thus forming an auto excited asynchronous generator. A very high power density is achieved because the machine has non ferrous winding, which permits a magnetic field of a few teslas. The basic machine theory and experimental model built are described

  1. Wind Energy Study and Energy Cost of Wind Electricity Generation in Nigeria: Past and Recent Results and a Case Study for South West Nigeria

    Directory of Open Access Journals (Sweden)

    Oluseyi O. Ajayi

    2014-12-01

    Full Text Available The study assessed the wind energy potential of ten selected sites in the south western region of Nigeria and carried out a cost benefit analysis of wind power generation at those sites. Twenty four years’ (1987 to 2010 wind speed data at 10 m height obtained from the Nigerian meteorological agency were employed to classify the sites wind profiles for electricity generation. The energy cost analysis of generating wind electricity from the sites was also carried out. The outcome showed that sites in Lagos and Oyo States were adequately suited for large scale generation with average wind speeds ranged between 2.9 and 5.8 m/s. Those from other sites may be suitable for small scale generation or as wind farms, with several small turbines connected together, to generate large enough wind power. The turbine matching results shows that turbines cut-in and rated wind speeds of between 2.0 and 3.0 m/s, and between 10 and 12.0 m/s respectively will be very suited to all the sites, particularly those in locations outside Lagos and Oyo States. The energy cost analysis shows that generation cost can be as low as 0.02 €/kWh and as high as 5.03/kWh, depending on the turbine model employed.

  2. Performance characteristics of aerodynamically optimum turbines for wind energy generators

    Science.gov (United States)

    Rohrbach, C.; Worobel, R.

    1975-01-01

    This paper presents a brief discussion of the aerodynamic methodology for wind energy generator turbines, an approach to the design of aerodynamically optimum wind turbines covering a broad range of design parameters, some insight on the effect on performance of nonoptimum blade shapes which may represent lower fabrication costs, the annual wind turbine energy for a family of optimum wind turbines, and areas of needed research. On the basis of the investigation, it is concluded that optimum wind turbines show high performance over a wide range of design velocity ratios; that structural requirements impose constraints on blade geometry; that variable pitch wind turbines provide excellent power regulation and that annual energy output is insensitive to design rpm and solidity of optimum wind turbines.

  3. Short Circuits of a 10 MW High Temperature Superconducting Wind Turbine Generator

    NARCIS (Netherlands)

    Song, X.; Polinder, H.; Liu, D.; Mijatovic, Nenad; Holbøll, Joachim; Jensen, Bogi Bech

    Direct drive high temperature superconducting (HTS) wind turbine generators have been proposed to tackle challenges for ever increasing wind turbine ratings. Due to smaller reactances in HTS generators, higher fault currents and larger transient torques could occur if sudden short circuits happen at

  4. Effect of power quality on windings temperature of marine induction motors. Part I: Machine model

    Energy Technology Data Exchange (ETDEWEB)

    Gnacinski, P. [Gdynia Maritime Univ., Dept. of Ship Electrical Power Engineering, Morska Str. 83, 81-225 Gdynia (Poland)

    2009-10-15

    Marine induction machines are exposed to various power quality disturbances appearing simultaneously in ship power systems: frequency and voltage rms value deviation, voltage unbalance and voltage waveform distortions. As a result, marine induction motors can be seriously overheated due to lowered supply voltage quality. Improvement of the protection of marine induction machines requires an appropriate method of power quality assessment and modification of the power quality regulations of ship classification societies. This paper presents an analytical model of an induction cage machine supplied with voltage of lowered quality, used in part II of the work (effect of power quality on windings temperature of marine induction motors. Part II. Results of investigations and recommendations for related regulations) for power quality assessment in ship power systems, and for justification of the new power quality regulations proposal. The presented model is suitable for implementation in an on-line measurement system. (author)

  5. Analysis of Wind Speed Forecasting Error Effects on Automatic Generation Control Performance

    Directory of Open Access Journals (Sweden)

    H. Rajabi Mashhadi

    2014-09-01

    Full Text Available The main goal of this paper is to study statistical indices and evaluate AGC indices in power system which has large penetration of the WTGs. Increasing penetration of wind turbine generations, needs to study more about impacts of it on power system frequency control. Frequency control is changed with unbalancing real-time system generation and load . Also wind turbine generations have more fluctuations and make system more unbalance. Then AGC loop helps to adjust system frequency and the scheduled tie-line powers. The quality of AGC loop is measured by some indices. A good index is a proper measure shows the AGC performance just as the power system operates. One of well-known measures in literature which was introduced by NERC is Control Performance Standards(CPS. Previously it is claimed that a key factor in CPS index is related to standard deviation of generation error, installed power and frequency response. This paper focuses on impact of a several hours-ahead wind speed forecast error on this factor. Furthermore evaluation of conventional control performances in the power systems with large-scale wind turbine penetration is studied. Effects of wind speed standard deviation and also degree of wind farm penetration are analyzed and importance of mentioned factor are criticized. In addition, influence of mean wind speed forecast error on this factor is investigated. The study system is a two area system which there is significant wind farm in one of those. The results show that mean wind speed forecast error has considerable effect on AGC performance while the mentioned key factor is insensitive to this mean error.

  6. Application of Boost Converter to Increase the Speed Range of Dual-stator Winding Induction Generator in Wind Power Systems

    DEFF Research Database (Denmark)

    Kavousi, Ayoub; Fathi, S. Hamid; Milimonfared, Jafar

    2018-01-01

    In this paper, a topology using a Dual-stator Winding Induction Generator (DWIG) and a boost converter is proposed for the variable speed wind power application. At low rotor speeds, the generator saturation limits the voltage of the DWIG. Using a boost converter, higher DC voltage can be produced...... while the DWIG operates at Maximum Power Point Tracking (MPPT) even at low speed and low voltage conditions. Semiconductor Excitation Controller (SEC) of the DWIG utilizes Control-Winding Voltage Oriented Control (CWVOC) method to adjust the voltage, considering V/f characteristics. For the proposed...... topology, the SEC capacity and the excitation capacitor is optimized by analyzing the SEC reactive current considering wind turbine power-speed curve, V/f strategy, and the generator parameters. The method shows that the per-unit capacity of the SEC can be limited to the inverse of DWIG magnetizing...

  7. Overall control strategy of variable speed doubly-fed induction generator wind turbine

    DEFF Research Database (Denmark)

    Hansen, A.D.; Iov, F.; Sørensen, Poul Ejnar

    2004-01-01

    The variable speed doubly-fed induction generator wind turbine is today the most widely used concept. The paper presents an overall control system of the variable speed DFIG wind turbine, with focus on the control strategies and algorithms applied at each hierarchical control level of the wind tu......-fed induction generator is implemented in the dynamic power system simulation tool DIgSILENT. Simulation results are performed and analyzed in different normal operating conditions....

  8. Issues and regulatory requirements for the connection of wind generation

    Energy Technology Data Exchange (ETDEWEB)

    Gimenez Alvarez, J.M. [National University of San Juan (Argentina)], E-mail: jgimenez@unsj.edu.ar; Gomez Targarona, J.C. [National University of Rio Cuarto, Cordoba (Argentina). Electric Power Systems Protection Institute (IPSEP)], E-mail: jcgomez@ing.unrc.edu.ar

    2009-07-01

    Pollution problems such as greenhouse effect as well as the high value and volatility of fuel prices have forced and accelerated the development and use of renewable energy sources. In this work a complete revision of wind generation is presented. In the first part a brief history of the wind energy developments is detailed. Next, some commentaries related to the present and future state are made. Then, a revision of the modern structures of wind generation is realized. In fourth place it is included a brief comparison between small and big size turbines. Then, different types of energy storage are mentioned. Finally regulatory aspects are discussed, respect to the treatment of the technical problems. (author)

  9. Potential for increased wind-generated electricity utilization using heat pumps in urban areas

    International Nuclear Information System (INIS)

    Waite, Michael; Modi, Vijay

    2014-01-01

    Highlights: • Large-scale wind power and increased electric heat pumps were evaluated. • A deterministic model of wind power and electricity demand was developed. • Sub-models for space heating and domestic hot water demand were developed. • Increased use of heat pumps can improve the viability of large-scale wind power. • Larger wind power capacity can meet a target utilization rate with more heat pumps. - Abstract: The U.S. has substantial wind power potential, but given wind’s intermittent availability and misalignment with electricity demand profiles, large-scale deployment of wind turbines could result in high electricity costs due to energy storage requirements or low utilization rates. While fuel switching and heat pumps have been proposed as greenhouse gas (GHG) emissions and energy reduction strategies at the building scale, this paper shows that heat pump adoption could have additional system-wide benefits by increasing the utilization of wind-generated electricity. A model was developed to evaluate the effects of coupling large-scale wind power installations in New York State with increased use of electric heat pumps to meet a portion of space heating and domestic hot water (DHW) demands in New York City. The analysis showed significant increases in wind-generated electricity utilization with increased use of heat pumps, allowing for higher installed capacity of wind power. One scenario indicates that 78.5% annual wind-generated electricity utilization can be achieved with 3 GW of installed wind power capacity generated electricity equal to 20% of existing NYC annual electricity demand; if 20% of space heating and DHW demands are provided by heat pumps, the 78.5% utilization rate can be achieved with an increase of total wind power capacity to 5 GW. Therefore, this integrated supply–demand approach could provide additional system-wide emissions reductions

  10. Understanding Power Electronics and Electrical Machines in Multidisciplinary Wind Energy Conversion System Courses

    Science.gov (United States)

    Duran, M. J.; Barrero, F.; Pozo-Ruz, A.; Guzman, F.; Fernandez, J.; Guzman, H.

    2013-01-01

    Wind energy conversion systems (WECS) nowadays offer an extremely wide range of topologies, including various different types of electrical generators and power converters. Wind energy is also an application of great interest to students and with a huge potential for engineering employment. Making WECS the main center of interest when teaching…

  11. Filament winding technique, experiment and simulation analysis on tubular structure

    Science.gov (United States)

    Quanjin, Ma; Rejab, M. R. M.; Kaige, Jiang; Idris, M. S.; Harith, M. N.

    2018-04-01

    Filament winding process has emerged as one of the potential composite fabrication processes with lower costs. Filament wound products involve classic axisymmetric parts (pipes, rings, driveshafts, high-pressure vessels and storage tanks), non-axisymmetric parts (prismatic nonround sections and pipe fittings). Based on the 3-axis filament winding machine has been designed with the inexpensive control system, it is completely necessary to make a relative comparison between experiment and simulation on tubular structure. In this technical paper, the aim of this paper is to perform a dry winding experiment using the 3-axis filament winding machine and simulate winding process on the tubular structure using CADWIND software with 30°, 45°, 60° winding angle. The main result indicates that the 3-axis filament winding machine can produce tubular structure with high winding pattern performance with different winding angle. This developed 3-axis winding machine still has weakness compared to CAWIND software simulation results with high axes winding machine about winding pattern, turnaround impact, process error, thickness, friction impact etc. In conclusion, the 3-axis filament winding machine improvements and recommendations come up with its comparison results, which can intuitively understand its limitations and characteristics.

  12. Power generation using photovoltaic induction in an isolated power network

    International Nuclear Information System (INIS)

    Kalantar, M.; Jiang, J.

    2001-01-01

    Owing to increased emphasis on renewable resources, the development of suitable isolated power generators driven by energy sources, the development of suitable isolated power generators driven by energy sources such as photovoltaic, wind, small hydroelectric, biogas and etc. has recently assumed greater significance. A single phase capacitor self excited induction generator has emerged as a suitable candidate of isolated power sources. This paper presents performance analysis of a single phase self-excited induction generator driven by photovoltaic (P V) system for low power isolated stand-alone applications. A single phase induction machine can work as a self-excited induction generator when its rotor is driven at suitable speed by an photovoltaic powered do motor. Its excitation is provided by connecting a single phase capacitor bank at a stator terminals. Either to augment grid power or to get uninterrupted power during grid failure stand-alone low capacity ac generators are used. These are driven by photovoltaic, wind power or I C engines using kerosene, diesel, petrol or biogas as fuel. Self-excitation with capacitors at the stator terminals of the stator terminals of the induction machines is well demonstrated experimentally on a P V powered dc motor-induction machine set. The parameters and the excitation requirements of the induction machine run in self-excited induction generator mode are determined. The effects of variations in prime mover speed,terminal capacitance and load power factor on the machine terminal voltage are studied

  13. Design and Implementation of the Permanent- Magnet Synchronous Generator Drive in Wind Generation Systems

    Directory of Open Access Journals (Sweden)

    Yuan-Chih Chang

    2018-06-01

    Full Text Available The design and implementation of the permanent-magnet synchronous generator drive in wind generation systems is presented in this paper. The permanent-magnet synchronous generator (PMSG can converse the alternating current (AC power of the wind turbine to direct current (DC power. In this paper, the dynamic model of a PMSG is first introduced. The current controller is designed based on T-S fuzzy models of the PMSG. The stability of the proposed PMSG drive system is analyzed and proved. The proposed T-S fuzzy current control possesses a disturbance suppression ability. Compared with the traditional fuzzy logic system, its stability can be proved and verified. Finally, the control performance of the PMSG drive is verified by experimental results.

  14. statistical analysis of wind speed for electrical power generation

    African Journals Online (AJOL)

    HOD

    sites are suitable for the generation of electrical energy. Also, the results ... Nigerian Journal of Technology (NIJOTECH). Vol. 36, No. ... parameter in the wind-power generation system. ..... [3] A. Zaharim, A. M Razali, R. Z Abidin, and K Sopian,.

  15. Wing/kite-based wind energy generation: An overview

    Science.gov (United States)

    Milanese, M.

    2013-06-01

    Several technologies, aimed at converting high-altitude wind into electricity, are actually being investigated by companies, research centers and universities worldwide, and the community of people working in this field has coined the term airborne wind energy (AWE) as a common umbrella for these concepts. Indeed, many basic ideas that are now being developed in the context of AWE were already present in patents and publications since the '70s. Then, these ideas remained somehow silent, until more recent years, when several research groups and companies started to carry out theoretical, numerical and experimental analyses, made possible by important advances in diverse fields like materials, aerodynamics, sensors, computation and control. In this lecture, the basic AWE concepts and results that have been up to date accomplished are overviewed, with a focus on a particular class of AWE generators, namely with flexible wings and ground level generators, and emphasis on optimization and control aspects. Finally, we delineate what challenges are still to be faced, in order to fully demonstrate the viability of airborne wind energy.

  16. A Control Approach and Supplementary Controllers for a Stand-Alone System with Predominance of Wind Generation

    Directory of Open Access Journals (Sweden)

    Tiago Lukasievicz

    2018-02-01

    Full Text Available This paper proposes a control approach and supplementary controllers for the operation of a hybrid stand-alone system composed of a wind generation unit and a conventional generation unit based on synchronous generator (CGU. The proposed controllers allow the islanded or isolated operation of small power systems with predominance of wind generation. As an advantage and a paradigm shift, the DC-link voltage of the wind unit is controlled by means of a conventional synchronous generator connected to the AC grid of the system. Two supplementary controllers, added to a diesel generator (DIG and to a DC dump load (DL, are proposed to control the DC-link voltage. The wind generation unit operates in V-f control mode and the DIG operates in PQ control mode, which allows the stand-alone system to operate either in wind-diesel (WD mode or in wind-only (WO mode. The strong influence of the wind turbine speed variations in the DC-link voltage is mitigated by a low-pass filter added to the speed control loop of the wind turbine. The proposed control approach does not require the use battery bank and ultra-capacitor to control the DC-link voltage in wind generation units based on fully rated converter.

  17. Study on Micro Wind Generator System for Automobile

    Science.gov (United States)

    Fujimoto, Koji; Washizu, Shinsuke; Ichikawa, Tomohiko; Yukita, Kazuto; Goto, Yasuyuki; Ichiyanagi, Katsuhiro; Oshima, Takamitsu; Hayashi, Niichi; Tobi, Nobuo

    This paper proposes the micro wind generator system for automobile. This proposes system is composed of the deflector, the micro windmill, the generator, and electric storage device. Then, the effectiveness is confirmed from an examination using air blower. Therefore, new energy can be expected to be obtained by installing this system in the truck.

  18. Some answers to power generation lie blowing in the wind

    Energy Technology Data Exchange (ETDEWEB)

    1975-10-02

    An assessment of wind power generation schemes by the Energy Technology Support Unit is reported. The capital cost of large, efficient windmills should be around 100--200 Pounds per installed kW and an optimum size for a single wind rotor would be 1 MW.

  19. Dynamic models for distributed generation resources

    Energy Technology Data Exchange (ETDEWEB)

    Morched, A.S. [BPR Energie, Sherbrooke, PQ (Canada)

    2010-07-01

    Distributed resources can impact the performance of host power systems during both normal and abnormal system conditions. This PowerPoint presentation discussed the use of dynamic models for identifying potential interaction problems between interconnected systems. The models were designed to simulate steady state behaviour as well as transient responses to system disturbances. The distributed generators included directly coupled and electronically coupled generators. The directly coupled generator was driven by wind turbines. Simplified models of grid-side inverters, electronically coupled wind generators and doubly-fed induction generators (DFIGs) were presented. The responses of DFIGs to wind variations were evaluated. Synchronous machine and electronically coupled generator responses were compared. The system model components included load models, generators, protection systems, and system equivalents. Frequency responses to islanding events were reviewed. The study demonstrated that accurate simulations are needed to predict the impact of distributed generation resources on the performance of host systems. Advances in distributed generation technology have outpaced the development of models needed for integration studies. tabs., figs.

  20. Time-Frequency Analysis of Signals Generated by Rotating Machines

    Directory of Open Access Journals (Sweden)

    R. Zetik

    1999-06-01

    Full Text Available This contribution is devoted to the higher order time-frequency analyses of signals. Firstly, time-frequency representations of higher order (TFRHO are defined. Then L-Wigner distribution (LWD is given as a special case of TFRHO. Basic properties of LWD are illustrated based on the analysis of mono-component and multi-component synthetic signals and acoustical signals generated by rotating machine. The obtained results confirm usefulness of LWD application for the purpose of rotating machine condition monitoring.

  1. Introduction guide book for wind power generation; Furyoku hatsuden donyu guide book

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This paper arranges essential items for introduction of wind power generation to local governments. Natural wind power energy which is free from emission of atmospheric pollutants such as CO2 and probably profitable, is leading regenerative energy among several new energies, and its rapid diffusion is expected. At the end of 1995, a wind power generation facility capacity amounts to 4900MW in the world, 1770MW in USA, 1140MW in Germany, 630MW in Denmark, 550MW in India, and 250MW in the Netherlands. In Japan, its introduction to local governments is in progress with preparation of a purchase system of surplus electric power and a system interconnection guideline. A total facility capacity reached 10MW in 1996, and is scheduled to reach 150MW in fiscal 2010. NEDO`s wind characteristic map of Japan shows many promising areas for power generation. Since these information is not yet well known, the following are summarized: the present state, features of wind condition, power generation systems, application cases, an approach to survey research, construction, maintenance and related laws, and a subsidy system. 31 refs., 48 figs., 40 tabs.

  2. Energy dissipation through wind-generated breaking waves

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shuwen; CAO Ruixue; XIE Lingling

    2012-01-01

    Wave breaking is an important process that controls turbulence properties and fluxes of heat and mass in the upper oceanic layer.A model is described for energy dissipation per unit area at the ocean surface attributed to wind-generated breaking waves,in terms of ratio of energy dissipation to energy input,windgenerated wave spectrum,and wave growth rate.Also advanced is a vertical distribution model of turbulent kinetic energy,based on an exponential distribution method.The result shows that energy dissipation rate depends heavily on wind speed and sea state.Our results agree well with predictions of previous works.

  3. Reactive power management of power networks with wind generation

    CERN Document Server

    Amaris, Hortensia; Ortega, Carlos Alvarez

    2012-01-01

    As the energy sector shifts and changes to focus on renewable technologies, the optimization of wind power becomes a key practical issue. Reactive Power Management of Power Networks with Wind Generation brings into focus the development and application of advanced optimization techniques to the study, characterization, and assessment of voltage stability in power systems. Recent advances on reactive power management are reviewed with particular emphasis on the analysis and control of wind energy conversion systems and FACTS devices. Following an introduction, distinct chapters cover the 5 key

  4. Torque ripple reduction in electric machines

    Science.gov (United States)

    Reddy, Patel Bhageerath; Huh, Kum-Kang; El-Refaie, Ayman Mohamed Fawzi; Galioto, Steven Joseph

    2017-08-22

    An electric machine, such as an Internal Permanent magnet or Synchronous Reluctance machine, having X phases, that includes a stator assembly, having M slots, with a stator core and stator teeth, that is further configured with stator windings to generate a stator magnetic field when excited with alternating currents and extends along a longitudinal axis with an inner surface that defines a cavity; and a rotor assembly, having N poles, disposed within the cavity which is configured to rotate about the longitudinal axis, wherein the rotor assembly includes a shaft, a rotor core located circumferentially around the shaft. The machine is configured such that a value k=M/(X*N) wherein k is a non-integer greater than about 1.3. The electric machine may alternatively, or additionally, include a non-uniformed gap between the exterior surface of the rotor spokes and the interior stator surface of the stator.

  5. Overall control strategy of variable speed doubly-fed induction generator wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Anca D.; Soerensen, Poul [Risoe National Laboratory, Roskilde (Denmark). Wind Energy Dept.; Iov, Florin; Blaabjerg, Frede [Aalborg Univ. (Denmark). Inst. of Energy Technology

    2004-07-01

    The variable speed doubly-fed induction generator wind turbine is today the most widely used concept. The paper presents an overall control system of the variable speed DFIG wind turbine, with focus on the control strategies and algorithms applied at each hierarchical control level of the wind turbine. The present control method is designed for normal continuous operations. The strongest feature of the implemented control method is that it allows the turbine to operate with the optimum power efficiency over a wider range of wind speeds. The variable speed/variable pitch wind turbine with doubly-fed induction generator is implemented in the dynamic power system simulation tool DIgSILENT. Simulation results are performed and analyzed in different normal operating conditions.

  6. Study of Interdependence of Wind Generation Output and Potential PV Generation in the Area of ENERGA-OPERATOR SA

    Directory of Open Access Journals (Sweden)

    Michał Bajor

    2016-09-01

    Full Text Available This paper presents the results of an analysis of the interdependence of wind generation output and photovoltaic generation potential in the ENERGA-OPERATOR SA grid. The first study of the interdependence of these two types of renewable sources’ generation outputs was carried out by the Gdańsk Branch of the Institute of Power Engineering in cooperation with ENERGA-OPERATOR in 2012. An important conclusion of the study was the need to repeat the analysis for a larger set of input data as the study covered the period of one year only, and for obvious reasons a limited number of wind farms. The present study’s inputs included a period of four years and more wind farms, due to the continuous connecting of new facilities to the grid. Thus, the results are characterized by a much higher level of credibility, and allow drawing mor correct conclusions regarding the analysed interdependence. The research on the interdependence of the annual wind generation output and potential generation from photovoltaic sources indicates that both generation types are characterized by mutual spatio-temporal dependency. In the study the relationship was quantified by evaluation of the maximum actual wind generation output in specific areas in the case of high PV generation output in a given area and vice versa. The results may allow for appropriate (i.e. substantiating the modelled operating conditions of the system in relation to reality consideration of both types of sources in various types of system analyses of their impact on the grid performance, such as interconnection studies for new sources and distribution grid development planning.

  7. Second Generation Dutch Pulsar Machine - PuMa-II

    NARCIS (Netherlands)

    Karuppusamy, Ramesh; Stappers, Ben; Slump, Cornelis H.; van der Klis, Michiel

    2004-01-01

    The Second Generation Pulsar Machine (PuMa- II) is under development for the Westerbork Synthesis Radio Telescope. This is a summary of th e system design and architecture. We show that state of the art pulsar research is possible with commercially available hardware components. This approach

  8. Stochastic Prediction of Wind Generating Resources Using the Enhanced Ensemble Model for Jeju Island’s Wind Farms in South Korea

    Directory of Open Access Journals (Sweden)

    Deockho Kim

    2017-05-01

    Full Text Available Due to the intermittency of wind power generation, it is very hard to manage its system operation and planning. In order to incorporate higher wind power penetrations into power systems that maintain secure and economic power system operation, an accurate and efficient estimation of wind power outputs is needed. In this paper, we propose the stochastic prediction of wind generating resources using an enhanced ensemble model for Jeju Island’s wind farms in South Korea. When selecting the potential sites of wind farms, wind speed data at points of interest are not always available. We apply the Kriging method, which is one of spatial interpolation, to estimate wind speed at potential sites. We also consider a wind profile power law to correct wind speed along the turbine height and terrain characteristics. After that, we used estimated wind speed data to calculate wind power output and select the best wind farm sites using a Weibull distribution. Probability density function (PDF or cumulative density function (CDF is used to estimate the probability of wind speed. The wind speed data is classified along the manufacturer’s power curve data. Therefore, the probability of wind speed is also given in accordance with classified values. The average wind power output is estimated in the form of a confidence interval. The empirical data of meteorological towers from Jeju Island in Korea is used to interpolate the wind speed data spatially at potential sites. Finally, we propose the best wind farm site among the four potential wind farm sites.

  9. Wind energy research activities of the Dutch Electricity Generating Board

    International Nuclear Information System (INIS)

    Halberg, N.

    1990-01-01

    The varying degrees of penetration of wind energy conversion systems (WECs) into the Dutch electricity generating system has been examined. A simulation has been carried out using wind data recorded at 6 sites spread across the area of interest in the Netherlands. The recorded wind data has been used in conjunction with a production costing model normally used by Sep (the Dutch Electricity Generating Board) for planning purposes. This model was modified to give a correct assessment of the quantity and value of fuel savings made by WECs. System studies were carried out for the year 2000 for zero wind penetration and for three distinctive penetration degrees of WECs, namely 5%, 10% and 15%. After incorporation of the WECS capacity, adjustments were made to the basic plant mix to allow the capacity credit WECs. Separate production cost simulations were executed for each distinct WECS capacity factor. Economic assessments were carried out using standard procedures. Except for the unpredictable development of fuel prices, the capital costs of the WECs proved to be the determinant for the economic viability of wind power. Significant improvements in costs and performance, as may be achieved through additional technological advances, are needed to made wind power competitive in widespread utility applications. (Author)

  10. Electric machines

    CERN Document Server

    Gross, Charles A

    2006-01-01

    BASIC ELECTROMAGNETIC CONCEPTSBasic Magnetic ConceptsMagnetically Linear Systems: Magnetic CircuitsVoltage, Current, and Magnetic Field InteractionsMagnetic Properties of MaterialsNonlinear Magnetic Circuit AnalysisPermanent MagnetsSuperconducting MagnetsThe Fundamental Translational EM MachineThe Fundamental Rotational EM MachineMultiwinding EM SystemsLeakage FluxThe Concept of Ratings in EM SystemsSummaryProblemsTRANSFORMERSThe Ideal n-Winding TransformerTransformer Ratings and Per-Unit ScalingThe Nonideal Three-Winding TransformerThe Nonideal Two-Winding TransformerTransformer Efficiency and Voltage RegulationPractical ConsiderationsThe AutotransformerOperation of Transformers in Three-Phase EnvironmentsSequence Circuit Models for Three-Phase Transformer AnalysisHarmonics in TransformersSummaryProblemsBASIC MECHANICAL CONSIDERATIONSSome General PerspectivesEfficiencyLoad Torque-Speed CharacteristicsMass Polar Moment of InertiaGearingOperating ModesTranslational SystemsA Comprehensive Example: The ElevatorP...

  11. Centralized electricity generation in offshore wind farms using hydraulic networks

    NARCIS (Netherlands)

    Jarquin Laguna, A.

    2017-01-01

    The work presented in this thesis explores a new way of generation, collection and transmission of wind energy inside a wind farm, in which the electrical conversion does not occur during any intermediate conversion step before the energy has reached the offshore central platform. A centralized

  12. MPPT for PM wind generator using gradient approximation

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Ying-Yi; Lu, Shiue-Der; Chiou, Ching-Sheng [Department of Electrical Engineering, Chung Yuan Christian University, 200, Chung-Pei Road, Chung Li 320 (China)

    2009-01-15

    This paper applies new maximum-power-point tracking (MPPT) algorithms to a wind-turbine generator system (WTGS). In this paper, the WTGS is a direct-drive system and includes the wind-turbine, permanent-magnet (PM) synchronous generator, three-phase full bridge rectifier, buck-boost converter and load. The new MPPT method uses gradient approximation (GA) algorithm. Three methods based on GA for achieving MPPT are discussed in this paper: (1) full-sensor control with anemometer and tachometer, (2) rule-based method and (3) adaptive duty cycle method. The third method has merits of no PID parameters, proportional constant, anemometer, tachometer and characteristics of WTGS required. This method enables the permanent-magnet synchronous generator (PMSG) to operate at variable speeds to achieve good performance. Simulation results show that the tip-speed ratio (TSR) and power coefficient obtained by the adaptive duty cycle method with GA can be almost identical to the optimal values. (author)

  13. MPPT for PM wind generator using gradient approximation

    International Nuclear Information System (INIS)

    Hong, Y.-Y.; Lu, S.-D.; Chiou, C.-S.

    2009-01-01

    This paper applies new maximum-power-point tracking (MPPT) algorithms to a wind-turbine generator system (WTGS). In this paper, the WTGS is a direct-drive system and includes the wind-turbine, permanent-magnet (PM) synchronous generator, three-phase full bridge rectifier, buck-boost converter and load. The new MPPT method uses gradient approximation (GA) algorithm. Three methods based on GA for achieving MPPT are discussed in this paper: (1) full-sensor control with anemometer and tachometer, (2) rule-based method and (3) adaptive duty cycle method. The third method has merits of no PID parameters, proportional constant, anemometer, tachometer and characteristics of WTGS required. This method enables the permanent-magnet synchronous generator (PMSG) to operate at variable speeds to achieve good performance. Simulation results show that the tip-speed ratio (TSR) and power coefficient obtained by the adaptive duty cycle method with GA can be almost identical to the optimal values

  14. Development of Microcontroller-Based Inverter Control Circuit for Residential Wind Generator Application

    OpenAIRE

    Ahmad Firdaus Ahmad Zaidi; Riza Muhida; Ahmad Mujahid Ahmad Zaidi; Sazali Yaacob; Nur Hidayah Ahmad Zaidi

    2011-01-01

    The current usage level of wind power as alternative source of energy in Malaysia is very low. Ironically, some areas particularly coastal area has steady wind energy supply that is potential to generate electricity for residential use. There is urgent need to locally develop the low cost wind turbine generator that has the capability to not only supply electricity to respective household but can be connected to power grid so that excess power could be sold back to the local utility company. ...

  15. A 2MW 6-phase BLDC Generator Developed from a PM Synchronous Generator for Wind Energy Application

    DEFF Research Database (Denmark)

    Chen, Zhuihui; Chen, Zhe; Liu, Xiao

    2014-01-01

    rectifier is adopted. The cases the with different loads are studied. The finite element simulation shows the developed BLDC generator is better than the PMSM generator in terms of DC voltage ripple and torque ripple. Furthermore, the volume of the BLDC generator is smaller, despite of more permanent magnet......In the direct drive wind turbine application, a PMSM generator often works together with a diode rectifier, which connects to a boost converter. In this paper, a six-phase BLDC generator is developed from the prototype design of three-phase permanent magnet synchronous generator. The diode...... is required. The efficiencies and the costs are also compared. As the result shows, BLDC generators connected with the diode rectifiers are good candidates for direct drive wind turbines....

  16. An Embeddable Virtual Machine for State Space Generation

    NARCIS (Netherlands)

    Weber, M.; Bosnacki, D.; Edelkamp, S.

    2007-01-01

    The semantics of modelling languages are not always specified in a precise and formal way, and their rather complex underlying models make it a non-trivial exercise to reuse them in newly developed tools. We report on experiments with a virtual machine-based approach for state space generation. The

  17. Next generation of electron-positron colliding beam machines

    International Nuclear Information System (INIS)

    Richter, B.

    1979-03-01

    The contribution of electron-positron colliding beam experiments to high-energy physics in the 1970's has been prodigious. From the research done with the two highest-energy e + e - machines of the present generation of these devices, have come such things as the discovery and illumination of the properties of the psi family, charmed particles, a new heavy lepton, non-ambigious evidence for hadronic jets, etc. The rapid pace of new developments in physics from such machines comes about for two reasons. First, the electron-positron annihilation process at present energies is particularly simple and well understood, making the problem of determining the quantum numbers and properties of new particles particularly simple. Second, in electron-positron annihilation all final states are on a relatively equal footing, and small production cross sections are compensated for by a lack of confusing background. For example, the rate of production of charmed particles at the SPEAR storage ring at SLAC and the DORIS storage ring at DESY is 3 or 4 orders of magnitude less than the rate of production at FNAL and the SPS. Yet these particles were first found at the storage rings where the background cross sections are comparable to the signal cross section, and have not yet been observed directly by their hadronic decays at the proton machines where the background cross sections are 4 orders of magnitude larger than the signal cross sections. The machines PEP at SLAC and PETRA at DESY will soon be operating at 35 to 40 GeV cm to explore new regions of energy. Studies of electron-positron annihilation at much higher energies than presently planned have a great deal to teach, not only about particle structure and dynamics, but also about the nature of the weak interaction. Some of the physics which can be done with such machines is discussed with a view toward getting an idea of the minimum required energy for the new generation of colliding beam devices

  18. The Modeling and Simulation of Thermal Analysis at Hydro Generator Stator Winding Insulation

    Directory of Open Access Journals (Sweden)

    Mihaela Raduca

    2006-10-01

    Full Text Available This paper presents the modelling and simulation of thermal analysis at hydro generator stator winding. The winding stator is supplied at high voltage of 11 kV for high power hydro generator. To present the thermal analysis for stator winding is presented at supply of coil by 11 kV, when coil is heat and thermal transfer in insulation at ambient temperature.

  19. DIAGNOSIS OF THE WINDING MACHINE IN THE OLD SHAFT WITH SKIP IN LONEA MINING PLANT

    OpenAIRE

    Răzvan Bogdan ITU; Vilhelm ITU

    2017-01-01

    To study the operation of the winding machine in the Old Shaft with Skip in Lonea Mining Plant, the dynamic analysis of the driving wheel (Koepe wheel) was performed, by resistive electric tensometry methods, acceleration measurements, and vibromechanical analysis on the bearings of Koepe driving wheels, on functioning cycles and vibromechanical analysis of the reduction gear. The paper presents aspects regarding vibromechanical measurements and resistive electric tensometry me...

  20. Power Control of Permanent Magnet Generator Based Variable Speed Wind Turbines

    DEFF Research Database (Denmark)

    Deng, Fujin; Chen, Zhe

    2009-01-01

    When the wind power accounts for a large portion of the grid, it will be required to regulate the active power and reactive power. This paper investigates a MWlevel variable speed wind turbine with a permanent magnet synchronous generator (PMSG). The power control capabilities of two kinds...... of control schemes conducted respectively on this wind turbine under two conditions, including rapid wind speed change and grids faults, are compared. The simulation study of the wind turbine system is conducted using PSCAD/EMTDC, and the results show the different power control capabilities of the two...