WorldWideScience

Sample records for machine vision algorithm

  1. Machine vision theory, algorithms, practicalities

    CERN Document Server

    Davies, E R

    2005-01-01

    In the last 40 years, machine vision has evolved into a mature field embracing a wide range of applications including surveillance, automated inspection, robot assembly, vehicle guidance, traffic monitoring and control, signature verification, biometric measurement, and analysis of remotely sensed images. While researchers and industry specialists continue to document their work in this area, it has become increasingly difficult for professionals and graduate students to understand the essential theory and practicalities well enough to design their own algorithms and systems. This book directl

  2. Computer and machine vision theory, algorithms, practicalities

    CERN Document Server

    Davies, E R

    2012-01-01

    Computer and Machine Vision: Theory, Algorithms, Practicalities (previously entitled Machine Vision) clearly and systematically presents the basic methodology of computer and machine vision, covering the essential elements of the theory while emphasizing algorithmic and practical design constraints. This fully revised fourth edition has brought in more of the concepts and applications of computer vision, making it a very comprehensive and up-to-date tutorial text suitable for graduate students, researchers and R&D engineers working in this vibrant subject. Key features include: Practical examples and case studies give the 'ins and outs' of developing real-world vision systems, giving engineers the realities of implementing the principles in practice New chapters containing case studies on surveillance and driver assistance systems give practical methods on these cutting-edge applications in computer vision Necessary mathematics and essential theory are made approachable by careful explanations and well-il...

  3. Using a vision cognitive algorithm to schedule virtual machines

    Directory of Open Access Journals (Sweden)

    Zhao Jiaqi

    2014-09-01

    Full Text Available Scheduling virtual machines is a major research topic for cloud computing, because it directly influences the performance, the operation cost and the quality of services. A large cloud center is normally equipped with several hundred thousand physical machines. The mission of the scheduler is to select the best one to host a virtual machine. This is an NPhard global optimization problem with grand challenges for researchers. This work studies the Virtual Machine (VM scheduling problem on the cloud. Our primary concern with VM scheduling is the energy consumption, because the largest part of a cloud center operation cost goes to the kilowatts used. We designed a scheduling algorithm that allocates an incoming virtual machine instance on the host machine, which results in the lowest energy consumption of the entire system. More specifically, we developed a new algorithm, called vision cognition, to solve the global optimization problem. This algorithm is inspired by the observation of how human eyes see directly the smallest/largest item without comparing them pairwisely. We theoretically proved that the algorithm works correctly and converges fast. Practically, we validated the novel algorithm, together with the scheduling concept, using a simulation approach. The adopted cloud simulator models different cloud infrastructures with various properties and detailed runtime information that can usually not be acquired from real clouds. The experimental results demonstrate the benefit of our approach in terms of reducing the cloud center energy consumption

  4. Using a vision cognitive algorithm to schedule virtual machines

    OpenAIRE

    Zhao Jiaqi; Mhedheb Yousri; Tao Jie; Jrad Foued; Liu Qinghuai; Streit Achim

    2014-01-01

    Scheduling virtual machines is a major research topic for cloud computing, because it directly influences the performance, the operation cost and the quality of services. A large cloud center is normally equipped with several hundred thousand physical machines. The mission of the scheduler is to select the best one to host a virtual machine. This is an NPhard global optimization problem with grand challenges for researchers. This work studies the Virtual Machine (VM) scheduling problem on the...

  5. Machine Vision Handbook

    CERN Document Server

    2012-01-01

    The automation of visual inspection is becoming more and more important in modern industry as a consistent, reliable means of judging the quality of raw materials and manufactured goods . The Machine Vision Handbook  equips the reader with the practical details required to engineer integrated mechanical-optical-electronic-software systems. Machine vision is first set in the context of basic information on light, natural vision, colour sensing and optics. The physical apparatus required for mechanized image capture – lenses, cameras, scanners and light sources – are discussed followed by detailed treatment of various image-processing methods including an introduction to the QT image processing system. QT is unique to this book, and provides an example of a practical machine vision system along with extensive libraries of useful commands, functions and images which can be implemented by the reader. The main text of the book is completed by studies of a wide variety of applications of machine vision in insp...

  6. Understanding and applying machine vision

    CERN Document Server

    Zeuch, Nello

    2000-01-01

    A discussion of applications of machine vision technology in the semiconductor, electronic, automotive, wood, food, pharmaceutical, printing, and container industries. It describes systems that enable projects to move forward swiftly and efficiently, and focuses on the nuances of the engineering and system integration of machine vision technology.

  7. Detection algorithm for glass bottle mouth defect by continuous wavelet transform based on machine vision

    Science.gov (United States)

    Qian, Jinfang; Zhang, Changjiang

    2014-11-01

    An efficient algorithm based on continuous wavelet transform combining with pre-knowledge, which can be used to detect the defect of glass bottle mouth, is proposed. Firstly, under the condition of ball integral light source, a perfect glass bottle mouth image is obtained by Japanese Computar camera through the interface of IEEE-1394b. A single threshold method based on gray level histogram is used to obtain the binary image of the glass bottle mouth. In order to efficiently suppress noise, moving average filter is employed to smooth the histogram of original glass bottle mouth image. And then continuous wavelet transform is done to accurately determine the segmentation threshold. Mathematical morphology operations are used to get normal binary bottle mouth mask. A glass bottle to be detected is moving to the detection zone by conveyor belt. Both bottle mouth image and binary image are obtained by above method. The binary image is multiplied with normal bottle mask and a region of interest is got. Four parameters (number of connected regions, coordinate of centroid position, diameter of inner cycle, and area of annular region) can be computed based on the region of interest. Glass bottle mouth detection rules are designed by above four parameters so as to accurately detect and identify the defect conditions of glass bottle. Finally, the glass bottles of Coca-Cola Company are used to verify the proposed algorithm. The experimental results show that the proposed algorithm can accurately detect the defect conditions of the glass bottles and have 98% detecting accuracy.

  8. Parallel Algorithm for GPU Processing; for use in High Speed Machine Vision Sensing of Cotton Lint Trash

    Directory of Open Access Journals (Sweden)

    Mathew G. Pelletier

    2008-02-01

    Full Text Available One of the main hurdles standing in the way of optimal cleaning of cotton lint isthe lack of sensing systems that can react fast enough to provide the control system withreal-time information as to the level of trash contamination of the cotton lint. This researchexamines the use of programmable graphic processing units (GPU as an alternative to thePC’s traditional use of the central processing unit (CPU. The use of the GPU, as analternative computation platform, allowed for the machine vision system to gain asignificant improvement in processing time. By improving the processing time, thisresearch seeks to address the lack of availability of rapid trash sensing systems and thusalleviate a situation in which the current systems view the cotton lint either well before, orafter, the cotton is cleaned. This extended lag/lead time that is currently imposed on thecotton trash cleaning control systems, is what is responsible for system operators utilizing avery large dead-band safety buffer in order to ensure that the cotton lint is not undercleaned.Unfortunately, the utilization of a large dead-band buffer results in the majority ofthe cotton lint being over-cleaned which in turn causes lint fiber-damage as well assignificant losses of the valuable lint due to the excessive use of cleaning machinery. Thisresearch estimates that upwards of a 30% reduction in lint loss could be gained through theuse of a tightly coupled trash sensor to the cleaning machinery control systems. Thisresearch seeks to improve processing times through the development of a new algorithm forcotton trash sensing that allows for implementation on a highly parallel architecture.Additionally, by moving the new parallel algorithm onto an alternative computing platform,the graphic processing unit “GPU”, for processing of the cotton trash images, a speed up ofover 6.5 times, over optimized code running on the PC’s central processing

  9. Machine Learning for Robotic Vision

    OpenAIRE

    Drummond, Tom

    2018-01-01

    Machine learning is a crucial enabling technology for robotics, in particular for unlocking the capabilities afforded by visual sensing. This talk will present research within Prof Drummond’s lab that explores how machine learning can be developed and used within the context of Robotic Vision.

  10. Manifold learning in machine vision and robotics

    Science.gov (United States)

    Bernstein, Alexander

    2017-02-01

    Smart algorithms are used in Machine vision and Robotics to organize or extract high-level information from the available data. Nowadays, Machine learning is an essential and ubiquitous tool to automate extraction patterns or regularities from data (images in Machine vision; camera, laser, and sonar sensors data in Robotics) in order to solve various subject-oriented tasks such as understanding and classification of images content, navigation of mobile autonomous robot in uncertain environments, robot manipulation in medical robotics and computer-assisted surgery, and other. Usually such data have high dimensionality, however, due to various dependencies between their components and constraints caused by physical reasons, all "feasible and usable data" occupy only a very small part in high dimensional "observation space" with smaller intrinsic dimensionality. Generally accepted model of such data is manifold model in accordance with which the data lie on or near an unknown manifold (surface) of lower dimensionality embedded in an ambient high dimensional observation space; real-world high-dimensional data obtained from "natural" sources meet, as a rule, this model. The use of Manifold learning technique in Machine vision and Robotics, which discovers a low-dimensional structure of high dimensional data and results in effective algorithms for solving of a large number of various subject-oriented tasks, is the content of the conference plenary speech some topics of which are in the paper.

  11. Computer vision and machine learning for archaeology

    NARCIS (Netherlands)

    van der Maaten, L.J.P.; Boon, P.; Lange, G.; Paijmans, J.J.; Postma, E.

    2006-01-01

    Until now, computer vision and machine learning techniques barely contributed to the archaeological domain. The use of these techniques can support archaeologists in their assessment and classification of archaeological finds. The paper illustrates the use of computer vision techniques for

  12. Machine Vision Implementation in Rapid PCB Prototyping

    Directory of Open Access Journals (Sweden)

    Yosafat Surya Murijanto

    2012-03-01

    Full Text Available Image processing, the heart of machine vision, has proven itself to be an essential part of the industries today. Its application has opened new doorways, making more concepts in manufacturing processes viable. This paper presents an application of machine vision in designing a module with the ability to extract drills and route coordinates from an un-mounted or mounted printed circuit board (PCB. The algorithm comprises pre-capturing processes, image segmentation and filtering, edge and contour detection, coordinate extraction, and G-code creation. OpenCV libraries and Qt IDE are the main tools used. Throughout some testing and experiments, it is concluded that the algorithm is able to deliver acceptable results. The drilling and routing coordinate extraction algorithm can extract in average 90% and 82% of the whole drills and routes available on the scanned PCB in a total processing time of less than 3 seconds. This is achievable through proper lighting condition, good PCB surface condition and good webcam quality. 

  13. Detection of Watermelon Seeds Exterior Quality based on Machine Vision

    OpenAIRE

    Xiai Chen; Ling Wang; Wenquan Chen; Yanfeng Gao

    2013-01-01

    To investigate the detection of watermelon seeds exterior quality, a machine vision system based on least square support vector machine was developed. Appearance characteristics of watermelon seeds included area, perimeter, roughness, minimum enclosing rectangle and solidity were calculated by image analysis after image preprocess.The broken seeds, normal seeds and high-quality seeds were distinguished by least square support vector machine optimized by genetic algorithm. Compared to the grid...

  14. Assessment of Beer Quality Based on a Robotic Pourer, Computer Vision, and Machine Learning Algorithms Using Commercial Beers.

    Science.gov (United States)

    Gonzalez Viejo, Claudia; Fuentes, Sigfredo; Torrico, Damir D; Howell, Kate; Dunshea, Frank R

    2018-05-01

    Sensory attributes of beer are directly linked to perceived foam-related parameters and beer color. The aim of this study was to develop an objective predictive model using machine learning modeling to assess the intensity levels of sensory descriptors in beer using the physical measurements of color and foam-related parameters. A robotic pourer (RoboBEER), was used to obtain 15 color and foam-related parameters from 22 different commercial beer samples. A sensory session using quantitative descriptive analysis (QDA ® ) with trained panelists was conducted to assess the intensity of 10 beer descriptors. Results showed that the principal component analysis explained 64% of data variability with correlations found between foam-related descriptors from sensory and RoboBEER such as the positive and significant correlation between carbon dioxide and carbonation mouthfeel (R = 0.62), correlation of viscosity to sensory, and maximum volume of foam and total lifetime of foam (R = 0.75, R = 0.77, respectively). Using the RoboBEER parameters as inputs, an artificial neural network (ANN) regression model showed high correlation (R = 0.91) to predict the intensity levels of 10 related sensory descriptors such as yeast, grains and hops aromas, hops flavor, bitter, sour and sweet tastes, viscosity, carbonation, and astringency. This paper is a novel approach for food science using machine modeling techniques that could contribute significantly to rapid screenings of food and brewage products for the food industry and the implementation of Artificial Intelligence (AI). The use of RoboBEER to assess beer quality showed to be a reliable, objective, accurate, and less time-consuming method to predict sensory descriptors compared to trained sensory panels. Hence, this method could be useful as a rapid screening procedure to evaluate beer quality at the end of the production line for industry applications. © 2018 Institute of Food Technologists®.

  15. Machine Learning an algorithmic perspective

    CERN Document Server

    Marsland, Stephen

    2009-01-01

    Traditional books on machine learning can be divided into two groups - those aimed at advanced undergraduates or early postgraduates with reasonable mathematical knowledge and those that are primers on how to code algorithms. The field is ready for a text that not only demonstrates how to use the algorithms that make up machine learning methods, but also provides the background needed to understand how and why these algorithms work. Machine Learning: An Algorithmic Perspective is that text.Theory Backed up by Practical ExamplesThe book covers neural networks, graphical models, reinforcement le

  16. Optics, illumination, and image sensing for machine vision II

    International Nuclear Information System (INIS)

    Svetkoff, D.J.

    1987-01-01

    These proceedings collect papers on the general subject of machine vision. Topics include illumination and viewing systems, x-ray imaging, automatic SMT inspection with x-ray vision, and 3-D sensing for machine vision

  17. Automatic turbot fish cutting using machine vision

    OpenAIRE

    Martín Rodríguez, Fernando; Barral Martínez, Mónica

    2015-01-01

    This paper is about the design of an automated machine to cut turbot fish specimens. Machine vision is a key part of this project as it is used to compute a cutting curve for specimen’s head. This task is impossible to be carried out by mechanical means. Machine vision is used to detect head boundary and a robot is used to cut the head. Afterwards mechanical systems are used to slice fish to get an easy presentation for end consumer (as fish fillets than can be easily marketed ...

  18. Machine vision systems using machine learning for industrial product inspection

    Science.gov (United States)

    Lu, Yi; Chen, Tie Q.; Chen, Jie; Zhang, Jian; Tisler, Anthony

    2002-02-01

    Machine vision inspection requires efficient processing time and accurate results. In this paper, we present a machine vision inspection architecture, SMV (Smart Machine Vision). SMV decomposes a machine vision inspection problem into two stages, Learning Inspection Features (LIF), and On-Line Inspection (OLI). The LIF is designed to learn visual inspection features from design data and/or from inspection products. During the OLI stage, the inspection system uses the knowledge learnt by the LIF component to inspect the visual features of products. In this paper we will present two machine vision inspection systems developed under the SMV architecture for two different types of products, Printed Circuit Board (PCB) and Vacuum Florescent Displaying (VFD) boards. In the VFD board inspection system, the LIF component learns inspection features from a VFD board and its displaying patterns. In the PCB board inspection system, the LIF learns the inspection features from the CAD file of a PCB board. In both systems, the LIF component also incorporates interactive learning to make the inspection system more powerful and efficient. The VFD system has been deployed successfully in three different manufacturing companies and the PCB inspection system is the process of being deployed in a manufacturing plant.

  19. Development of Moire machine vision

    Science.gov (United States)

    Harding, Kevin G.

    1987-10-01

    Three dimensional perception is essential to the development of versatile robotics systems in order to handle complex manufacturing tasks in future factories and in providing high accuracy measurements needed in flexible manufacturing and quality control. A program is described which will develop the potential of Moire techniques to provide this capability in vision systems and automated measurements, and demonstrate artificial intelligence (AI) techniques to take advantage of the strengths of Moire sensing. Moire techniques provide a means of optically manipulating the complex visual data in a three dimensional scene into a form which can be easily and quickly analyzed by computers. This type of optical data manipulation provides high productivity through integrated automation, producing a high quality product while reducing computer and mechanical manipulation requirements and thereby the cost and time of production. This nondestructive evaluation is developed to be able to make full field range measurement and three dimensional scene analysis.

  20. Algorithmic strategies for FPGA-based vision

    OpenAIRE

    Lim, Yoong Kang

    2016-01-01

    As demands for real-time computer vision applications increase, implementations on alternative architectures have been explored. These architectures include Field-Programmable Gate Arrays (FPGAs), which offer a high degree of flexibility and parallelism. A problem with this is that many computer vision algorithms have been optimized for serial processing, and this often does not map well to FPGA implementation. This thesis introduces the concept of FPGA-tailored computer vision algorithms...

  1. FPGA Implementation of Computer Vision Algorithm

    OpenAIRE

    Zhou, Zhonghua

    2014-01-01

    Computer vision algorithms, which play an significant role in vision processing, is widely applied in many aspects such as geology survey, traffic management and medical care, etc.. Most of the situations require the process to be real-timed, in other words, as fast as possible. Field Programmable Gate Arrays (FPGAs) have a advantage of parallelism fabric in programming, comparing to the serial communications of CPUs, which makes FPGA a perfect platform for implementing vision algorithms. The...

  2. Machine vision based quality inspection of flat glass products

    Science.gov (United States)

    Zauner, G.; Schagerl, M.

    2014-03-01

    This application paper presents a machine vision solution for the quality inspection of flat glass products. A contact image sensor (CIS) is used to generate digital images of the glass surfaces. The presented machine vision based quality inspection at the end of the production line aims to classify five different glass defect types. The defect images are usually characterized by very little `image structure', i.e. homogeneous regions without distinct image texture. Additionally, these defect images usually consist of only a few pixels. At the same time the appearance of certain defect classes can be very diverse (e.g. water drops). We used simple state-of-the-art image features like histogram-based features (std. deviation, curtosis, skewness), geometric features (form factor/elongation, eccentricity, Hu-moments) and texture features (grey level run length matrix, co-occurrence matrix) to extract defect information. The main contribution of this work now lies in the systematic evaluation of various machine learning algorithms to identify appropriate classification approaches for this specific class of images. In this way, the following machine learning algorithms were compared: decision tree (J48), random forest, JRip rules, naive Bayes, Support Vector Machine (multi class), neural network (multilayer perceptron) and k-Nearest Neighbour. We used a representative image database of 2300 defect images and applied cross validation for evaluation purposes.

  3. Machine Learning Techniques in Clinical Vision Sciences.

    Science.gov (United States)

    Caixinha, Miguel; Nunes, Sandrina

    2017-01-01

    This review presents and discusses the contribution of machine learning techniques for diagnosis and disease monitoring in the context of clinical vision science. Many ocular diseases leading to blindness can be halted or delayed when detected and treated at its earliest stages. With the recent developments in diagnostic devices, imaging and genomics, new sources of data for early disease detection and patients' management are now available. Machine learning techniques emerged in the biomedical sciences as clinical decision-support techniques to improve sensitivity and specificity of disease detection and monitoring, increasing objectively the clinical decision-making process. This manuscript presents a review in multimodal ocular disease diagnosis and monitoring based on machine learning approaches. In the first section, the technical issues related to the different machine learning approaches will be present. Machine learning techniques are used to automatically recognize complex patterns in a given dataset. These techniques allows creating homogeneous groups (unsupervised learning), or creating a classifier predicting group membership of new cases (supervised learning), when a group label is available for each case. To ensure a good performance of the machine learning techniques in a given dataset, all possible sources of bias should be removed or minimized. For that, the representativeness of the input dataset for the true population should be confirmed, the noise should be removed, the missing data should be treated and the data dimensionally (i.e., the number of parameters/features and the number of cases in the dataset) should be adjusted. The application of machine learning techniques in ocular disease diagnosis and monitoring will be presented and discussed in the second section of this manuscript. To show the clinical benefits of machine learning in clinical vision sciences, several examples will be presented in glaucoma, age-related macular degeneration

  4. Deep learning: Using machine learning to study biological vision

    OpenAIRE

    Majaj, Najib; Pelli, Denis

    2017-01-01

    Today most vision-science presentations mention machine learning. Many neuroscientists use machine learning to decode neural responses. Many perception scientists try to understand recognition by living organisms. To them, machine learning offers a reference of attainable performance based on learned stimuli. This brief overview of the use of machine learning in biological vision touches on its strengths, weaknesses, milestones, controversies, and current directions.

  5. Boosting Economic Growth Through Advanced Machine Vision

    OpenAIRE

    MAAD, Soha; GARBAYA, Samir; AYADI, Nizar; BOUAKAZ, Saida

    2012-01-01

    In this chapter, we overview the potential of machine vision and related technologies in various application domains of critical importance for economic growth and prospect. Considered domains include healthcare, energy and environment, finance, and industrial innovation. Visibility technologies considered encompass augmented and virtual reality, 3D technologies, and media content authoring tools and technologies. We overview the main challenges facing the application domains and discuss the ...

  6. Machine vision and mechatronics in practice

    CERN Document Server

    Brett, Peter

    2015-01-01

    The contributions for this book have been gathered over several years from conferences held in the series of Mechatronics and Machine Vision in Practice, the latest of which was held in Ankara, Turkey. The essential aspect is that they concern practical applications rather than the derivation of mere theory, though simulations and visualization are important components. The topics range from mining, with its heavy engineering, to the delicate machining of holes in the human skull or robots for surgery on human flesh. Mobile robots continue to be a hot topic, both from the need for navigation and for the task of stabilization of unmanned aerial vehicles. The swinging of a spray rig is damped, while machine vision is used for the control of heating in an asphalt-laying machine.  Manipulators are featured, both for general tasks and in the form of grasping fingers. A robot arm is proposed for adding to the mobility scooter of the elderly. Can EEG signals be a means to control a robot? Can face recognition be ac...

  7. Component Pin Recognition Using Algorithms Based on Machine Learning

    Science.gov (United States)

    Xiao, Yang; Hu, Hong; Liu, Ze; Xu, Jiangchang

    2018-04-01

    The purpose of machine vision for a plug-in machine is to improve the machine’s stability and accuracy, and recognition of the component pin is an important part of the vision. This paper focuses on component pin recognition using three different techniques. The first technique involves traditional image processing using the core algorithm for binary large object (BLOB) analysis. The second technique uses the histogram of oriented gradients (HOG), to experimentally compare the effect of the support vector machine (SVM) and the adaptive boosting machine (AdaBoost) learning meta-algorithm classifiers. The third technique is the use of an in-depth learning method known as convolution neural network (CNN), which involves identifying the pin by comparing a sample to its training. The main purpose of the research presented in this paper is to increase the knowledge of learning methods used in the plug-in machine industry in order to achieve better results.

  8. A robust embedded vision system feasible white balance algorithm

    Science.gov (United States)

    Wang, Yuan; Yu, Feihong

    2018-01-01

    White balance is a very important part of the color image processing pipeline. In order to meet the need of efficiency and accuracy in embedded machine vision processing system, an efficient and robust white balance algorithm combining several classical ones is proposed. The proposed algorithm mainly has three parts. Firstly, in order to guarantee higher efficiency, an initial parameter calculated from the statistics of R, G and B components from raw data is used to initialize the following iterative method. After that, the bilinear interpolation algorithm is utilized to implement demosaicing procedure. Finally, an adaptive step adjustable scheme is introduced to ensure the controllability and robustness of the algorithm. In order to verify the proposed algorithm's performance on embedded vision system, a smart camera based on IMX6 DualLite, IMX291 and XC6130 is designed. Extensive experiments on a large amount of images under different color temperatures and exposure conditions illustrate that the proposed white balance algorithm avoids color deviation problem effectively, achieves a good balance between efficiency and quality, and is suitable for embedded machine vision processing system.

  9. Machine-vision based optofluidic cell sorting

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Bañas, Andrew

    the available light and creating 2D or 3D beam distributions aimed at the positions of the detected cells. Furthermore, the beam shaping freedom provided by GPC can allow optimizations in the beam’s propagation and its interaction with the laser catapulted and sorted cells....... machine vision1. This approach is gentler, less invasive and more economical compared to conventional FACS-systems. As cells are less responsive to plastic or glass objects commonly used in the optical manipulation literature2, and since laser safety would be an issue in clinical use, we develop efficient...... approaches in utilizing lasers and light modulation devices. The Generalized Phase Contrast (GPC) method3-9 that can be used for efficiently illuminating spatial light modulators10 or creating well-defined contiguous optical traps11 is supplemented by diffractive techniques capable of integrating...

  10. A Machine Vision System for Automatically Grading Hardwood Lumber - (Proceedings)

    Science.gov (United States)

    Richard W. Conners; Tai-Hoon Cho; Chong T. Ng; Thomas H. Drayer; Joe G. Tront; Philip A. Araman; Robert L. Brisbon

    1990-01-01

    Any automatic system for grading hardwood lumber can conceptually be divided into two components. One of these is a machine vision system for locating and identifying grading defects. The other is an automatic grading program that accepts as input the output of the machine vision system and, based on these data, determines the grade of a board. The progress that has...

  11. A survey of camera error sources in machine vision systems

    Science.gov (United States)

    Jatko, W. B.

    In machine vision applications, such as an automated inspection line, television cameras are commonly used to record scene intensity in a computer memory or frame buffer. Scene data from the image sensor can then be analyzed with a wide variety of feature-detection techniques. Many algorithms found in textbooks on image processing make the implicit simplifying assumption of an ideal input image with clearly defined edges and uniform illumination. The ideal image model is helpful to aid the student in understanding the principles of operation, but when these algorithms are blindly applied to real-world images the results can be unsatisfactory. This paper examines some common measurement errors found in camera sensors and their underlying causes, and possible methods of error compensation. The role of the camera in a typical image-processing system is discussed, with emphasis on the origination of signal distortions. The effects of such things as lighting, optics, and sensor characteristics are considered.

  12. Machine Vision Tests for Spent Fuel Scrap Characteristics

    International Nuclear Information System (INIS)

    BERGER, W.W.

    2000-01-01

    The purpose of this work is to perform a feasibility test of a Machine Vision system for potential use at the Hanford K basins during spent nuclear fuel (SNF) operations. This report documents the testing performed to establish functionality of the system including quantitative assessment of results. Fauske and Associates, Inc., which has been intimately involved in development of the SNF safety basis, has teamed with Agris-Schoen Vision Systems, experts in robotics, tele-robotics, and Machine Vision, for this work

  13. Advanced Machine learning Algorithm Application for Rotating Machine Health Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kanemoto, Shigeru; Watanabe, Masaya [The University of Aizu, Aizuwakamatsu (Japan); Yusa, Noritaka [Tohoku University, Sendai (Japan)

    2014-08-15

    The present paper tries to evaluate the applicability of conventional sound analysis techniques and modern machine learning algorithms to rotating machine health monitoring. These techniques include support vector machine, deep leaning neural network, etc. The inner ring defect and misalignment anomaly sound data measured by a rotating machine mockup test facility are used to verify the above various kinds of algorithms. Although we cannot find remarkable difference of anomaly discrimination performance, some methods give us the very interesting eigen patterns corresponding to normal and abnormal states. These results will be useful for future more sensitive and robust anomaly monitoring technology.

  14. Advanced Machine learning Algorithm Application for Rotating Machine Health Monitoring

    International Nuclear Information System (INIS)

    Kanemoto, Shigeru; Watanabe, Masaya; Yusa, Noritaka

    2014-01-01

    The present paper tries to evaluate the applicability of conventional sound analysis techniques and modern machine learning algorithms to rotating machine health monitoring. These techniques include support vector machine, deep leaning neural network, etc. The inner ring defect and misalignment anomaly sound data measured by a rotating machine mockup test facility are used to verify the above various kinds of algorithms. Although we cannot find remarkable difference of anomaly discrimination performance, some methods give us the very interesting eigen patterns corresponding to normal and abnormal states. These results will be useful for future more sensitive and robust anomaly monitoring technology

  15. INFIBRA: machine vision inspection of acrylic fiber production

    Science.gov (United States)

    Davies, Roger; Correia, Bento A. B.; Contreiras, Jose; Carvalho, Fernando D.

    1998-10-01

    This paper describes the implementation of INFIBRA, a machine vision system for the inspection of acrylic fiber production lines. The system was developed by INETI under a contract from Fisipe, Fibras Sinteticas de Portugal, S.A. At Fisipe there are ten production lines in continuous operation, each approximately 40 m in length. A team of operators used to perform periodic manual visual inspection of each line in conditions of high ambient temperature and humidity. It is not surprising that failures in the manual inspection process occurred with some frequency, with consequences that ranged from reduced fiber quality to production stoppages. The INFIBRA system architecture is a specialization of a generic, modular machine vision architecture based on a network of Personal Computers (PCs), each equipped with a low cost frame grabber. Each production line has a dedicated PC that performs automatic inspection, using specially designed metrology algorithms, via four video cameras located at key positions on the line. The cameras are mounted inside custom-built, hermetically sealed water-cooled housings to protect them from the unfriendly environment. The ten PCs, one for each production line, communicate with a central PC via a standard Ethernet connection. The operator controls all aspects of the inspection process, from configuration through to handling alarms, via a simple graphical interface on the central PC. At any time the operator can also view on the central PC's screen the live image from any one of the 40 cameras employed by the system.

  16. Methodology for creating dedicated machine and algorithm on sunflower counting

    Science.gov (United States)

    Muracciole, Vincent; Plainchault, Patrick; Mannino, Maria-Rosaria; Bertrand, Dominique; Vigouroux, Bertrand

    2007-09-01

    In order to sell grain lots in European countries, seed industries need a government certification. This certification requests purity testing, seed counting in order to quantify specified seed species and other impurities in lots, and germination testing. These analyses are carried out within the framework of international trade according to the methods of the International Seed Testing Association. Presently these different analyses are still achieved manually by skilled operators. Previous works have already shown that seeds can be characterized by around 110 visual features (morphology, colour, texture), and thus have presented several identification algorithms. Until now, most of the works in this domain are computer based. The approach presented in this article is based on the design of dedicated electronic vision machine aimed to identify and sort seeds. This machine is composed of a FPGA (Field Programmable Gate Array), a DSP (Digital Signal Processor) and a PC bearing the GUI (Human Machine Interface) of the system. Its operation relies on the stroboscopic image acquisition of a seed falling in front of a camera. A first machine was designed according to this approach, in order to simulate all the vision chain (image acquisition, feature extraction, identification) under the Matlab environment. In order to perform this task into dedicated hardware, all these algorithms were developed without the use of the Matlab toolbox. The objective of this article is to present a design methodology for a special purpose identification algorithm based on distance between groups into dedicated hardware machine for seed counting.

  17. Algorithms for image processing and computer vision

    CERN Document Server

    Parker, J R

    2010-01-01

    A cookbook of algorithms for common image processing applications Thanks to advances in computer hardware and software, algorithms have been developed that support sophisticated image processing without requiring an extensive background in mathematics. This bestselling book has been fully updated with the newest of these, including 2D vision methods in content-based searches and the use of graphics cards as image processing computational aids. It's an ideal reference for software engineers and developers, advanced programmers, graphics programmers, scientists, and other specialists wh

  18. Learning surface molecular structures via machine vision

    Science.gov (United States)

    Ziatdinov, Maxim; Maksov, Artem; Kalinin, Sergei V.

    2017-08-01

    Recent advances in high resolution scanning transmission electron and scanning probe microscopies have allowed researchers to perform measurements of materials structural parameters and functional properties in real space with a picometre precision. In many technologically relevant atomic and/or molecular systems, however, the information of interest is distributed spatially in a non-uniform manner and may have a complex multi-dimensional nature. One of the critical issues, therefore, lies in being able to accurately identify (`read out') all the individual building blocks in different atomic/molecular architectures, as well as more complex patterns that these blocks may form, on a scale of hundreds and thousands of individual atomic/molecular units. Here we employ machine vision to read and recognize complex molecular assemblies on surfaces. Specifically, we combine Markov random field model and convolutional neural networks to classify structural and rotational states of all individual building blocks in molecular assembly on the metallic surface visualized in high-resolution scanning tunneling microscopy measurements. We show how the obtained full decoding of the system allows us to directly construct a pair density function—a centerpiece in analysis of disorder-property relationship paradigm—as well as to analyze spatial correlations between multiple order parameters at the nanoscale, and elucidate reaction pathway involving molecular conformation changes. The method represents a significant shift in our way of analyzing atomic and/or molecular resolved microscopic images and can be applied to variety of other microscopic measurements of structural, electronic, and magnetic orders in different condensed matter systems.

  19. Machine Vision Systems for Processing Hardwood Lumber and Logs

    Science.gov (United States)

    Philip A. Araman; Daniel L. Schmoldt; Tai-Hoon Cho; Dongping Zhu; Richard W. Conners; D. Earl Kline

    1992-01-01

    Machine vision and automated processing systems are under development at Virginia Tech University with support and cooperation from the USDA Forest Service. Our goals are to help U.S. hardwood producers automate, reduce costs, increase product volume and value recovery, and market higher value, more accurately graded and described products. Any vision system is...

  20. Applications of AI, machine vision and robotics

    CERN Document Server

    Boyer, Kim; Bunke, H

    1995-01-01

    This text features a broad array of research efforts in computer vision including low level processing, perceptual organization, object recognition and active vision. The volume's nine papers specifically report on topics such as sensor confidence, low level feature extraction schemes, non-parametric multi-scale curve smoothing, integration of geometric and non-geometric attributes for object recognition, design criteria for a four degree-of-freedom robot head, a real-time vision system based on control of visual attention and a behavior-based active eye vision system. The scope of the book pr

  1. Parallelization of TMVA Machine Learning Algorithms

    CERN Document Server

    Hajili, Mammad

    2017-01-01

    This report reflects my work on Parallelization of TMVA Machine Learning Algorithms integrated to ROOT Data Analysis Framework during summer internship at CERN. The report consists of 4 impor- tant part - data set used in training and validation, algorithms that multiprocessing applied on them, parallelization techniques and re- sults of execution time changes due to number of workers.

  2. Quality Evaluation for Appearance of Needle Green Tea Based on Machine Vision and Process Parameters

    DEFF Research Database (Denmark)

    Dong, Chunwang; Zhu, Hongkai; Zhou, Xiaofen

    2017-01-01

    ), extreme learning machine (ELM) and strong predictor integration algorithm (ELM-AdaBoost). The comparison of the results showed that the ELM-AdaBoost model based on image characteristics had the best performance (RPD was more than 2). Its predictive performance was superior to other models, with smaller......, and modeling faster (0.014~0.281 s). AdaBoost method, which was a hybrid integrated algorithm, can further promote the accuracy and generalization capability of the model. The above conclusions indicated that it was feasible to evaluate the quality of appearance of needle green tea based on machine vision...

  3. X-ray machine vision and computed tomography

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    This survey examines how 2-D x-ray machine vision and 3-D computed tomography will be used in industry in the 1988-1995 timeframe. Specific applications are described and rank-ordered in importance. The types of companies selling and using 2-D and 3-D systems are profiled, and markets are forecast for 1988 to 1995. It is known that many machine vision and automation companies are now considering entering this field. This report looks at the potential pitfalls and whether recent market problems similar to those recently experienced by the machine vision industry will likely occur in this field. FTS will publish approximately 100 other surveys in 1988 on emerging technology in the fields of AI, manufacturing, computers, sensors, photonics, energy, bioengineering, and materials

  4. Building Artificial Vision Systems with Machine Learning

    Energy Technology Data Exchange (ETDEWEB)

    LeCun, Yann [New York University

    2011-02-23

    Three questions pose the next challenge for Artificial Intelligence (AI), robotics, and neuroscience. How do we learn perception (e.g. vision)? How do we learn representations of the perceptual world? How do we learn visual categories from just a few examples?

  5. Trends and developments in industrial machine vision: 2013

    Science.gov (United States)

    Niel, Kurt; Heinzl, Christoph

    2014-03-01

    When following current advancements and implementations in the field of machine vision there seems to be no borders for future developments: Calculating power constantly increases, and new ideas are spreading and previously challenging approaches are introduced in to mass market. Within the past decades these advances have had dramatic impacts on our lives. Consumer electronics, e.g. computers or telephones, which once occupied large volumes, now fit in the palm of a hand. To note just a few examples e.g. face recognition was adopted by the consumer market, 3D capturing became cheap, due to the huge community SW-coding got easier using sophisticated development platforms. However, still there is a remaining gap between consumer and industrial applications. While the first ones have to be entertaining, the second have to be reliable. Recent studies (e.g. VDMA [1], Germany) show a moderately increasing market for machine vision in industry. Asking industry regarding their needs the main challenges for industrial machine vision are simple usage and reliability for the process, quick support, full automation, self/easy adjustment at changing process parameters, "forget it in the line". Furthermore a big challenge is to support quality control: Nowadays the operator has to accurately define the tested features for checking the probes. There is an upcoming development also to let automated machine vision applications find out essential parameters in a more abstract level (top down). In this work we focus on three current and future topics for industrial machine vision: Metrology supporting automation, quality control (inline/atline/offline) as well as visualization and analysis of datasets with steadily growing sizes. Finally the general trend of the pixel orientated towards object orientated evaluation is addressed. We do not directly address the field of robotics taking advances from machine vision. This is actually a fast changing area which is worth an own

  6. Machine learning and computer vision approaches for phenotypic profiling.

    Science.gov (United States)

    Grys, Ben T; Lo, Dara S; Sahin, Nil; Kraus, Oren Z; Morris, Quaid; Boone, Charles; Andrews, Brenda J

    2017-01-02

    With recent advances in high-throughput, automated microscopy, there has been an increased demand for effective computational strategies to analyze large-scale, image-based data. To this end, computer vision approaches have been applied to cell segmentation and feature extraction, whereas machine-learning approaches have been developed to aid in phenotypic classification and clustering of data acquired from biological images. Here, we provide an overview of the commonly used computer vision and machine-learning methods for generating and categorizing phenotypic profiles, highlighting the general biological utility of each approach. © 2017 Grys et al.

  7. Close range photogrammetry and machine vision

    CERN Document Server

    Atkinson, KB

    1996-01-01

    This book presents the methodology, algorithms, techniques and equipment necessary to achieve real time digital photogrammetric solutions, together with contemporary examples of close range photogrammetry.

  8. Quantum algorithm for support matrix machines

    Science.gov (United States)

    Duan, Bojia; Yuan, Jiabin; Liu, Ying; Li, Dan

    2017-09-01

    We propose a quantum algorithm for support matrix machines (SMMs) that efficiently addresses an image classification problem by introducing a least-squares reformulation. This algorithm consists of two core subroutines: a quantum matrix inversion (Harrow-Hassidim-Lloyd, HHL) algorithm and a quantum singular value thresholding (QSVT) algorithm. The two algorithms can be implemented on a universal quantum computer with complexity O[log(npq) ] and O[log(pq)], respectively, where n is the number of the training data and p q is the size of the feature space. By iterating the algorithms, we can find the parameters for the SMM classfication model. Our analysis shows that both HHL and QSVT algorithms achieve an exponential increase of speed over their classical counterparts.

  9. Handbook of 3D machine vision optical metrology and imaging

    CERN Document Server

    Zhang, Song

    2013-01-01

    With the ongoing release of 3D movies and the emergence of 3D TVs, 3D imaging technologies have penetrated our daily lives. Yet choosing from the numerous 3D vision methods available can be frustrating for scientists and engineers, especially without a comprehensive resource to consult. Filling this gap, Handbook of 3D Machine Vision: Optical Metrology and Imaging gives an extensive, in-depth look at the most popular 3D imaging techniques. It focuses on noninvasive, noncontact optical methods (optical metrology and imaging). The handbook begins with the well-studied method of stereo vision and

  10. A distributed algorithm for machine learning

    Science.gov (United States)

    Chen, Shihong

    2018-04-01

    This paper considers a distributed learning problem in which a group of machines in a connected network, each learning its own local dataset, aim to reach a consensus at an optimal model, by exchanging information only with their neighbors but without transmitting data. A distributed algorithm is proposed to solve this problem under appropriate assumptions.

  11. Machine vision for a selective broccoli harvesting robot

    NARCIS (Netherlands)

    Blok, Pieter M.; Barth, Ruud; Berg, Van Den Wim

    2016-01-01

    The selective hand-harvest of fresh market broccoli is labor-intensive and comprises about 35% of the total production costs. This research was conducted to determine whether machine vision can be used to detect broccoli heads, as a first step in the development of a fully autonomous selective

  12. Design and construction of automatic sorting station with machine vision

    Directory of Open Access Journals (Sweden)

    Oscar D. Velasco-Delgado

    2014-01-01

    Full Text Available This article presents the design, construction and testing of an automatic product sorting system in belt conveyor with machine vision that integrates Free and Open Source Software technology and Allen Bradley commercial equipment. Requirements are defined to determine features such as: mechanics of manufacturing station, an app of product sorting with machine vision and for automation system. For the app of machine vision a library is used for optical digital image processing Open CV, for the mechanical design of the manufacturing station is used the CAD tool Solid Edge and for the design and implementation of automation ISA standards are used along with an automation engineering project methodology integrating a PLC, an inverter, a Panel View and a DeviceNet Network. Performance tests are shown by classifying bottles and PVC pieces in four established types, the behavior of the integrated system is checked so as the efficiency of the same. The processing time on machine vision is 0.290 s on average for a piece of PVC, a capacity of 206 accessories per minute, for bottles was obtained a processing time of 0.267 s, a capacity of 224 bottles per minute. A maximum mechanical performance is obtained with 32 products per minute (1920 products/hour with the conveyor to 22 cm/s and 40 cm of distance between products obtaining an average error of 0.8%.

  13. Machine Vision Technology for the Forest Products Industry

    Science.gov (United States)

    Richard W. Conners; D.Earl Kline; Philip A. Araman; Thomas T. Drayer

    1997-01-01

    From forest to finished product, wood is moved from one processing stage to the next, subject to the decisions of individuals along the way. While this process has worked for hundreds of years, the technology exists today to provide more complete information to the decision makers. Virginia Tech has developed this technology, creating a machine vision prototype for...

  14. Machine-Vision Systems Selection for Agricultural Vehicles: A Guide

    Directory of Open Access Journals (Sweden)

    Gonzalo Pajares

    2016-11-01

    Full Text Available Machine vision systems are becoming increasingly common onboard agricultural vehicles (autonomous and non-autonomous for different tasks. This paper provides guidelines for selecting machine-vision systems for optimum performance, considering the adverse conditions on these outdoor environments with high variability on the illumination, irregular terrain conditions or different plant growth states, among others. In this regard, three main topics have been conveniently addressed for the best selection: (a spectral bands (visible and infrared; (b imaging sensors and optical systems (including intrinsic parameters and (c geometric visual system arrangement (considering extrinsic parameters and stereovision systems. A general overview, with detailed description and technical support, is provided for each topic with illustrative examples focused on specific applications in agriculture, although they could be applied in different contexts other than agricultural. A case study is provided as a result of research in the RHEA (Robot Fleets for Highly Effective Agriculture and Forestry Management project for effective weed control in maize fields (wide-rows crops, funded by the European Union, where the machine vision system onboard the autonomous vehicles was the most important part of the full perception system, where machine vision was the most relevant. Details and results about crop row detection, weed patches identification, autonomous vehicle guidance and obstacle detection are provided together with a review of methods and approaches on these topics.

  15. Stereoscopic Machine-Vision System Using Projected Circles

    Science.gov (United States)

    Mackey, Jeffrey R.

    2010-01-01

    A machine-vision system capable of detecting obstacles large enough to damage or trap a robotic vehicle is undergoing development. The system includes (1) a pattern generator that projects concentric circles of laser light forward onto the terrain, (2) a stereoscopic pair of cameras that are aimed forward to acquire images of the circles, (3) a frame grabber and digitizer for acquiring image data from the cameras, and (4) a single-board computer that processes the data. The system is being developed as a prototype of machine- vision systems to enable robotic vehicles ( rovers ) on remote planets to avoid craters, large rocks, and other terrain features that could capture or damage the vehicles. Potential terrestrial applications of systems like this one could include terrain mapping, collision avoidance, navigation of robotic vehicles, mining, and robotic rescue. This system is based partly on the same principles as those of a prior stereoscopic machine-vision system in which the cameras acquire images of a single stripe of laser light that is swept forward across the terrain. However, this system is designed to afford improvements over some of the undesirable features of the prior system, including the need for a pan-and-tilt mechanism to aim the laser to generate the swept stripe, ambiguities in interpretation of the single-stripe image, the time needed to sweep the stripe across the terrain and process the data from many images acquired during that time, and difficulty of calibration because of the narrowness of the stripe. In this system, the pattern generator does not contain any moving parts and need not be mounted on a pan-and-tilt mechanism: the pattern of concentric circles is projected steadily in the forward direction. The system calibrates itself by use of data acquired during projection of the concentric-circle pattern onto a known target representing flat ground. The calibration- target image data are stored in the computer memory for use as a

  16. A new method of machine vision reprocessing based on cellular neural networks

    International Nuclear Information System (INIS)

    Jianhua, W.; Liping, Z.; Fenfang, Z.; Guojian, H.

    1996-01-01

    This paper proposed a method of image preprocessing in machine vision based on Cellular Neural Network (CNN). CNN is introduced to design image smoothing, image recovering, image boundary detecting and other image preprocessing problems. The proposed methods are so simple that the speed of algorithms are increased greatly to suit the needs of real-time image processing. The experimental results show a satisfactory reply

  17. SAD-Based Stereo Vision Machine on a System-on-Programmable-Chip (SoPC)

    Science.gov (United States)

    Zhang, Xiang; Chen, Zhangwei

    2013-01-01

    This paper, proposes a novel solution for a stereo vision machine based on the System-on-Programmable-Chip (SoPC) architecture. The SOPC technology provides great convenience for accessing many hardware devices such as DDRII, SSRAM, Flash, etc., by IP reuse. The system hardware is implemented in a single FPGA chip involving a 32-bit Nios II microprocessor, which is a configurable soft IP core in charge of managing the image buffer and users' configuration data. The Sum of Absolute Differences (SAD) algorithm is used for dense disparity map computation. The circuits of the algorithmic module are modeled by the Matlab-based DSP Builder. With a set of configuration interfaces, the machine can process many different sizes of stereo pair images. The maximum image size is up to 512 K pixels. This machine is designed to focus on real time stereo vision applications. The stereo vision machine offers good performance and high efficiency in real time. Considering a hardware FPGA clock of 90 MHz, 23 frames of 640 × 480 disparity maps can be obtained in one second with 5 × 5 matching window and maximum 64 disparity pixels. PMID:23459385

  18. Principles of image processing in machine vision systems for the color analysis of minerals

    Science.gov (United States)

    Petukhova, Daria B.; Gorbunova, Elena V.; Chertov, Aleksandr N.; Korotaev, Valery V.

    2014-09-01

    At the moment color sorting method is one of promising methods of mineral raw materials enrichment. This method is based on registration of color differences between images of analyzed objects. As is generally known the problem with delimitation of close color tints when sorting low-contrast minerals is one of the main disadvantages of color sorting method. It is can be related with wrong choice of a color model and incomplete image processing in machine vision system for realizing color sorting algorithm. Another problem is a necessity of image processing features reconfiguration when changing the type of analyzed minerals. This is due to the fact that optical properties of mineral samples vary from one mineral deposit to another. Therefore searching for values of image processing features is non-trivial task. And this task doesn't always have an acceptable solution. In addition there are no uniform guidelines for determining criteria of mineral samples separation. It is assumed that the process of image processing features reconfiguration had to be made by machine learning. But in practice it's carried out by adjusting the operating parameters which are satisfactory for one specific enrichment task. This approach usually leads to the fact that machine vision system unable to estimate rapidly the concentration rate of analyzed mineral ore by using color sorting method. This paper presents the results of research aimed at addressing mentioned shortcomings in image processing organization for machine vision systems which are used to color sorting of mineral samples. The principles of color analysis for low-contrast minerals by using machine vision systems are also studied. In addition, a special processing algorithm for color images of mineral samples is developed. Mentioned algorithm allows you to determine automatically the criteria of mineral samples separation based on an analysis of representative mineral samples. Experimental studies of the proposed algorithm

  19. Robot path planning using expert systems and machine vision

    Science.gov (United States)

    Malone, Denis E.; Friedrich, Werner E.

    1992-02-01

    This paper describes a system developed for the robotic processing of naturally variable products. In order to plan the robot motion path it was necessary to use a sensor system, in this case a machine vision system, to observe the variations occurring in workpieces and interpret this with a knowledge based expert system. The knowledge base was acquired by carrying out an in-depth study of the product using examination procedures not available in the robotic workplace and relates the nature of the required path to the information obtainable from the machine vision system. The practical application of this system to the processing of fish fillets is described and used to illustrate the techniques.

  20. A machine vision system for the calibration of digital thermometers

    International Nuclear Information System (INIS)

    Vázquez-Fernández, Esteban; Dacal-Nieto, Angel; González-Jorge, Higinio; Alvarez-Valado, Victor; Martín, Fernando; Formella, Arno

    2009-01-01

    Automation is a key point in many industrial tasks such as calibration and metrology. In this context, machine vision has shown to be a useful tool for automation support, especially when there is no other option available. A system for the calibration of portable measurement devices has been developed. The system uses machine vision to obtain the numerical values shown by displays. A new approach based on human perception of digits, which works in parallel with other more classical classifiers, has been created. The results show the benefits of the system in terms of its usability and robustness, obtaining a success rate higher than 99% in display recognition. The system saves time and effort, and offers the possibility of scheduling calibration tasks without excessive attention by the laboratory technicians

  1. Machine vision automated visual inspection theory, practice and applications

    CERN Document Server

    Beyerer, Jürgen; Frese, Christian

    2016-01-01

    The book offers a thorough introduction to machine vision. It is organized in two parts. The first part covers the image acquisition, which is the crucial component of most automated visual inspection systems. All important methods are described in great detail and are presented with a reasoned structure. The second part deals with the modeling and processing of image signals and pays particular regard to methods, which are relevant for automated visual inspection.

  2. Software architecture for time-constrained machine vision applications

    Science.gov (United States)

    Usamentiaga, Rubén; Molleda, Julio; García, Daniel F.; Bulnes, Francisco G.

    2013-01-01

    Real-time image and video processing applications require skilled architects, and recent trends in the hardware platform make the design and implementation of these applications increasingly complex. Many frameworks and libraries have been proposed or commercialized to simplify the design and tuning of real-time image processing applications. However, they tend to lack flexibility, because they are normally oriented toward particular types of applications, or they impose specific data processing models such as the pipeline. Other issues include large memory footprints, difficulty for reuse, and inefficient execution on multicore processors. We present a novel software architecture for time-constrained machine vision applications that addresses these issues. The architecture is divided into three layers. The platform abstraction layer provides a high-level application programming interface for the rest of the architecture. The messaging layer provides a message-passing interface based on a dynamic publish/subscribe pattern. A topic-based filtering in which messages are published to topics is used to route the messages from the publishers to the subscribers interested in a particular type of message. The application layer provides a repository for reusable application modules designed for machine vision applications. These modules, which include acquisition, visualization, communication, user interface, and data processing, take advantage of the power of well-known libraries such as OpenCV, Intel IPP, or CUDA. Finally, the proposed architecture is applied to a real machine vision application: a jam detector for steel pickling lines.

  3. Machine Vision-Based Measurement Systems for Fruit and Vegetable Quality Control in Postharvest.

    Science.gov (United States)

    Blasco, José; Munera, Sandra; Aleixos, Nuria; Cubero, Sergio; Molto, Enrique

    Individual items of any agricultural commodity are different from each other in terms of colour, shape or size. Furthermore, as they are living thing, they change their quality attributes over time, thereby making the development of accurate automatic inspection machines a challenging task. Machine vision-based systems and new optical technologies make it feasible to create non-destructive control and monitoring tools for quality assessment to ensure adequate accomplishment of food standards. Such systems are much faster than any manual non-destructive examination of fruit and vegetable quality, thus allowing the whole production to be inspected with objective and repeatable criteria. Moreover, current technology makes it possible to inspect the fruit in spectral ranges beyond the sensibility of the human eye, for instance in the ultraviolet and near-infrared regions. Machine vision-based applications require the use of multiple technologies and knowledge, ranging from those related to image acquisition (illumination, cameras, etc.) to the development of algorithms for spectral image analysis. Machine vision-based systems for inspecting fruit and vegetables are targeted towards different purposes, from in-line sorting into commercial categories to the detection of contaminants or the distribution of specific chemical compounds on the product's surface. This chapter summarises the current state of the art in these techniques, starting with systems based on colour images for the inspection of conventional colour, shape or external defects and then goes on to consider recent developments in spectral image analysis for internal quality assessment or contaminant detection.

  4. Machine vision inspection of lace using a neural network

    Science.gov (United States)

    Sanby, Christopher; Norton-Wayne, Leonard

    1995-03-01

    Lace is particularly difficult to inspect using machine vision since it comprises a fine and complex pattern of threads which must be verified, on line and in real time. Small distortions in the pattern are unavoidable. This paper describes instrumentation for inspecting lace actually on the knitting machine. A CCD linescan camera synchronized to machine motions grabs an image of the lace. Differences between this lace image and a perfect prototype image are detected by comparison methods, thresholding techniques, and finally, a neural network (to distinguish real defects from false alarms). Though produced originally in a laboratory on SUN Sparc work-stations, the processing has subsequently been implemented on a 50 Mhz 486 PC-look-alike. Successful operation has been demonstrated in a factory, but over a restricted width. Full width coverage awaits provision of faster processing.

  5. Parallel algorithms on the ASTRA SIMD machine

    International Nuclear Information System (INIS)

    Odor, G.; Rohrbach, F.; Vesztergombi, G.; Varga, G.; Tatrai, F.

    1996-01-01

    In view of the tremendous computing power jump of modern RISC processors the interest in parallel computing seems to be thinning out. Why use a complicated system of parallel processors, if the problem can be solved by a single powerful micro-chip. It is a general law, however, that exponential growth will always end by some kind of a saturation, and then parallelism will again become a hot topic. We try to prepare ourselves for this eventuality. The MPPC project started in 1990 in the keydeys of parallelism and produced four ASTRA machines (presented at CHEP's 92) with 4k processors (which are expandable to 16k) based on yesterday's chip-technology (chip presented at CHEP'91). These machines now provide excellent test-beds for algorithmic developments in a complete, real environment. We are developing for example fast-pattern recognition algorithms which could be used in high-energy physics experiments at the LHC (planned to be operational after 2004 at CERN) for triggering and data reduction. The basic feature of our ASP (Associate String Processor) approach is to use extremely simple (thus very cheap) processor elements but in huge quantities (up to millions of processors) connected together by a very simple string-like communication chain. In this paper we present powerful algorithms based on this architecture indicating the performance perspectives if the hardware quality reaches present or even future technology levels. (author)

  6. Machine vision system for measuring conifer seedling morphology

    Science.gov (United States)

    Rigney, Michael P.; Kranzler, Glenn A.

    1995-01-01

    A PC-based machine vision system providing rapid measurement of bare-root tree seedling morphological features has been designed. The system uses backlighting and a 2048-pixel line- scan camera to acquire images with transverse resolutions as high as 0.05 mm for precise measurement of stem diameter. Individual seedlings are manually loaded on a conveyor belt and inspected by the vision system in less than 0.25 seconds. Designed for quality control and morphological data acquisition by nursery personnel, the system provides a user-friendly, menu-driven graphical interface. The system automatically locates the seedling root collar and measures stem diameter, shoot height, sturdiness ratio, root mass length, projected shoot and root area, shoot-root area ratio, and percent fine roots. Sample statistics are computed for each measured feature. Measurements for each seedling may be stored for later analysis. Feature measurements may be compared with multi-class quality criteria to determine sample quality or to perform multi-class sorting. Statistical summary and classification reports may be printed to facilitate the communication of quality concerns with grading personnel. Tests were conducted at a commercial forest nursery to evaluate measurement precision. Four quality control personnel measured root collar diameter, stem height, and root mass length on each of 200 conifer seedlings. The same seedlings were inspected four times by the machine vision system. Machine stem diameter measurement precision was four times greater than that of manual measurements. Machine and manual measurements had comparable precision for shoot height and root mass length.

  7. Practical guide to machine vision software an introduction with LabVIEW

    CERN Document Server

    Kwon, Kye-Si

    2014-01-01

    For both students and engineers in R&D, this book explains machine vision in a concise, hands-on way, using the Vision Development Module of the LabView software by National Instruments. Following a short introduction to the basics of machine vision and the technical procedures of image acquisition, the book goes on to guide readers in the use of the various software functions of LabView's machine vision module. It covers typical machine vision tasks, including particle analysis, edge detection, pattern and shape matching, dimension measurements as well as optical character recognition, enabli

  8. Machine learning, computer vision, and probabilistic models in jet physics

    CERN Multimedia

    CERN. Geneva; NACHMAN, Ben

    2015-01-01

    In this talk we present recent developments in the application of machine learning, computer vision, and probabilistic models to the analysis and interpretation of LHC events. First, we will introduce the concept of jet-images and computer vision techniques for jet tagging. Jet images enabled the connection between jet substructure and tagging with the fields of computer vision and image processing for the first time, improving the performance to identify highly boosted W bosons with respect to state-of-the-art methods, and providing a new way to visualize the discriminant features of different classes of jets, adding a new capability to understand the physics within jets and to design more powerful jet tagging methods. Second, we will present Fuzzy jets: a new paradigm for jet clustering using machine learning methods. Fuzzy jets view jet clustering as an unsupervised learning task and incorporate a probabilistic assignment of particles to jets to learn new features of the jet structure. In particular, we wi...

  9. Automatic Quality Inspection of Percussion Cap Mass Production by Means of 3D Machine Vision and Machine Learning Techniques

    Science.gov (United States)

    Tellaeche, A.; Arana, R.; Ibarguren, A.; Martínez-Otzeta, J. M.

    The exhaustive quality control is becoming very important in the world's globalized market. One of these examples where quality control becomes critical is the percussion cap mass production. These elements must achieve a minimum tolerance deviation in their fabrication. This paper outlines a machine vision development using a 3D camera for the inspection of the whole production of percussion caps. This system presents multiple problems, such as metallic reflections in the percussion caps, high speed movement of the system and mechanical errors and irregularities in percussion cap placement. Due to these problems, it is impossible to solve the problem by traditional image processing methods, and hence, machine learning algorithms have been tested to provide a feasible classification of the possible errors present in the percussion caps.

  10. Intelligent Machine Vision Based Modeling and Positioning System in Sand Casting Process

    Directory of Open Access Journals (Sweden)

    Shahid Ikramullah Butt

    2017-01-01

    Full Text Available Advanced vision solutions enable manufacturers in the technology sector to reconcile both competitive and regulatory concerns and address the need for immaculate fault detection and quality assurance. The modern manufacturing has completely shifted from the manual inspections to the machine assisted vision inspection methodology. Furthermore, the research outcomes in industrial automation have revolutionized the whole product development strategy. The purpose of this research paper is to introduce a new scheme of automation in the sand casting process by means of machine vision based technology for mold positioning. Automation has been achieved by developing a novel system in which casting molds of different sizes, having different pouring cup location and radius, position themselves in front of the induction furnace such that the center of pouring cup comes directly beneath the pouring point of furnace. The coordinates of the center of pouring cup are found by using computer vision algorithms. The output is then transferred to a microcontroller which controls the alignment mechanism on which the mold is placed at the optimum location.

  11. Robotics, vision and control fundamental algorithms in Matlab

    CERN Document Server

    Corke, Peter

    2017-01-01

    Robotic vision, the combination of robotics and computer vision, involves the application of computer algorithms to data acquired from sensors. The research community has developed a large body of such algorithms but for a newcomer to the field this can be quite daunting. For over 20 years the author has maintained two open-source MATLAB® Toolboxes, one for robotics and one for vision. They provide implementations of many important algorithms and allow users to work with real problems, not just trivial examples. This book makes the fundamental algorithms of robotics, vision and control accessible to all. It weaves together theory, algorithms and examples in a narrative that covers robotics and computer vision separately and together. Using the latest versions of the Toolboxes the author shows how complex problems can be decomposed and solved using just a few simple lines of code. The topics covered are guided by real problems observed by the author over many years as a practitioner of both robotics and compu...

  12. Machine vision system for automated detection of stained pistachio nuts

    Science.gov (United States)

    Pearson, Tom C.

    1995-01-01

    A machine vision system was developed to separate stained pistachio nuts, which comprise of about 5% of the California crop, from unstained nuts. The system may be used to reduce labor involved with manual grading or to remove aflatoxin contaminated product from low grade process streams. The system was tested on two different pistachio process streams: the bi- chromatic color sorter reject stream and the small nut shelling stock stream. The system had a minimum overall error rate of 14% for the bi-chromatic sorter reject stream and 15% for the small shelling stock stream.

  13. Development of machine vision system for PHWR fuel pellet inspection

    Energy Technology Data Exchange (ETDEWEB)

    Kamalesh Kumar, B.; Reddy, K.S.; Lakshminarayana, A.; Sastry, V.S.; Ramana Rao, A.V. [Nuclear Fuel Complex, Hyderabad, Andhra Pradesh (India); Joshi, M.; Deshpande, P.; Navathe, C.P.; Jayaraj, R.N. [Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh (India)

    2008-07-01

    Nuclear Fuel Complex, a constituent of Department of Atomic Energy; India is responsible for manufacturing nuclear fuel in India . Over a million Uranium-di-oxide pellets fabricated per annum need visual inspection . In order to overcome the limitations of human based visual inspection, NFC has undertaken the development of machine vision system. The development involved designing various subsystems viz. mechanical and control subsystem for handling and rotation of fuel pellets, lighting subsystem for illumination, image acquisition system, and image processing system and integration. This paper brings out details of various subsystems and results obtained from the trials conducted. (author)

  14. Vision Algorithms Catch Defects in Screen Displays

    Science.gov (United States)

    2014-01-01

    Andrew Watson, a senior scientist at Ames Research Center, developed a tool called the Spatial Standard Observer (SSO), which models human vision for use in robotic applications. Redmond, Washington-based Radiant Zemax LLC licensed the technology from NASA and combined it with its imaging colorimeter system, creating a powerful tool that high-volume manufacturers of flat-panel displays use to catch defects in screens.

  15. Vision Based Autonomous Robot Navigation Algorithms and Implementations

    CERN Document Server

    Chatterjee, Amitava; Nirmal Singh, N

    2013-01-01

    This book is devoted to the theory and development of autonomous navigation of mobile robots using computer vision based sensing mechanism. The conventional robot navigation systems, utilizing traditional sensors like ultrasonic, IR, GPS, laser sensors etc., suffer several drawbacks related to either the physical limitations of the sensor or incur high cost. Vision sensing has emerged as a popular alternative where cameras can be used to reduce the overall cost, maintaining high degree of intelligence, flexibility and robustness. This book includes a detailed description of several new approaches for real life vision based autonomous navigation algorithms and SLAM. It presents the concept of how subgoal based goal-driven navigation can be carried out using vision sensing. The development concept of vision based robots for path/line tracking using fuzzy logic is presented, as well as how a low-cost robot can be indigenously developed in the laboratory with microcontroller based sensor systems. The book descri...

  16. Machine protection system algorithm compiler and simulator

    International Nuclear Information System (INIS)

    White, G.R.; Sherwin, G.

    1993-01-01

    The Machine Protection System (MPS) component of the SLC's beam selection system, in which integrated current is continuously monitored and limited to safe levels through careful selection and feedback of the beam repetition rate, is described elsewhere in these proceedings. The novel decision making mechanism by which that system can evaluate open-quotes safe levelsclose quotes, and choose an appropriate repetition rate in real-time, is described here. The algorithm that this mechanism uses to make its decision is written in test files and expressed in states of the accelerator and its devices, one file per accelerator region. Before being used, a file is open-quotes compiledclose quotes to a binary format which can be easily processed as a forward-chaining decision tree. It is processed by distributed microcomputers local to the accelerator regions. A parent algorithm evaluates all results, and reports directly to the beam control microprocessor. Operators can test new algorithms, or changes they make to them, with an online graphical MPS simulator

  17. Dynamic Programming and Graph Algorithms in Computer Vision*

    Science.gov (United States)

    Felzenszwalb, Pedro F.; Zabih, Ramin

    2013-01-01

    Optimization is a powerful paradigm for expressing and solving problems in a wide range of areas, and has been successfully applied to many vision problems. Discrete optimization techniques are especially interesting, since by carefully exploiting problem structure they often provide non-trivial guarantees concerning solution quality. In this paper we briefly review dynamic programming and graph algorithms, and discuss representative examples of how these discrete optimization techniques have been applied to some classical vision problems. We focus on the low-level vision problem of stereo; the mid-level problem of interactive object segmentation; and the high-level problem of model-based recognition. PMID:20660950

  18. Applications of color machine vision in the agricultural and food industries

    Science.gov (United States)

    Zhang, Min; Ludas, Laszlo I.; Morgan, Mark T.; Krutz, Gary W.; Precetti, Cyrille J.

    1999-01-01

    Color is an important factor in Agricultural and the Food Industry. Agricultural or prepared food products are often grade by producers and consumers using color parameters. Color is used to estimate maturity, sort produce for defects, but also perform genetic screenings or make an aesthetic judgement. The task of sorting produce following a color scale is very complex, requires special illumination and training. Also, this task cannot be performed for long durations without fatigue and loss of accuracy. This paper describes a machine vision system designed to perform color classification in real-time. Applications for sorting a variety of agricultural products are included: e.g. seeds, meat, baked goods, plant and wood.FIrst the theory of color classification of agricultural and biological materials is introduced. Then, some tools for classifier development are presented. Finally, the implementation of the algorithm on real-time image processing hardware and example applications for industry is described. This paper also presented an image analysis algorithm and a prototype machine vision system which was developed for industry. This system will automatically locate the surface of some plants using digital camera and predict information such as size, potential value and type of this plant. The algorithm developed will be feasible for real-time identification in an industrial environment.

  19. Parallel Architectures and Parallel Algorithms for Integrated Vision Systems. Ph.D. Thesis

    Science.gov (United States)

    Choudhary, Alok Nidhi

    1989-01-01

    Computer vision is regarded as one of the most complex and computationally intensive problems. An integrated vision system (IVS) is a system that uses vision algorithms from all levels of processing to perform for a high level application (e.g., object recognition). An IVS normally involves algorithms from low level, intermediate level, and high level vision. Designing parallel architectures for vision systems is of tremendous interest to researchers. Several issues are addressed in parallel architectures and parallel algorithms for integrated vision systems.

  20. Research on machine learning framework based on random forest algorithm

    Science.gov (United States)

    Ren, Qiong; Cheng, Hui; Han, Hai

    2017-03-01

    With the continuous development of machine learning, industry and academia have released a lot of machine learning frameworks based on distributed computing platform, and have been widely used. However, the existing framework of machine learning is limited by the limitations of machine learning algorithm itself, such as the choice of parameters and the interference of noises, the high using threshold and so on. This paper introduces the research background of machine learning framework, and combined with the commonly used random forest algorithm in machine learning classification algorithm, puts forward the research objectives and content, proposes an improved adaptive random forest algorithm (referred to as ARF), and on the basis of ARF, designs and implements the machine learning framework.

  1. Computer Vision and Machine Learning for Autonomous Characterization of AM Powder Feedstocks

    Science.gov (United States)

    DeCost, Brian L.; Jain, Harshvardhan; Rollett, Anthony D.; Holm, Elizabeth A.

    2017-03-01

    By applying computer vision and machine learning methods, we develop a system to characterize powder feedstock materials for metal additive manufacturing (AM). Feature detection and description algorithms are applied to create a microstructural scale image representation that can be used to cluster, compare, and analyze powder micrographs. When applied to eight commercial feedstock powders, the system classifies powder images into the correct material systems with greater than 95% accuracy. The system also identifies both representative and atypical powder images. These results suggest the possibility of measuring variations in powders as a function of processing history, relating microstructural features of powders to properties relevant to their performance in AM processes, and defining objective material standards based on visual images. A significant advantage of the computer vision approach is that it is autonomous, objective, and repeatable.

  2. Extreme Learning Machine and Moving Least Square Regression Based Solar Panel Vision Inspection

    Directory of Open Access Journals (Sweden)

    Heng Liu

    2017-01-01

    Full Text Available In recent years, learning based machine intelligence has aroused a lot of attention across science and engineering. Particularly in the field of automatic industry inspection, the machine learning based vision inspection plays a more and more important role in defect identification and feature extraction. Through learning from image samples, many features of industry objects, such as shapes, positions, and orientations angles, can be obtained and then can be well utilized to determine whether there is defect or not. However, the robustness and the quickness are not easily achieved in such inspection way. In this work, for solar panel vision inspection, we present an extreme learning machine (ELM and moving least square regression based approach to identify solder joint defect and detect the panel position. Firstly, histogram peaks distribution (HPD and fractional calculus are applied for image preprocessing. Then an ELM-based defective solder joints identification is discussed in detail. Finally, moving least square regression (MLSR algorithm is introduced for solar panel position determination. Experimental results and comparisons show that the proposed ELM and MLSR based inspection method is efficient not only in detection accuracy but also in processing speed.

  3. Integration of USB and firewire cameras in machine vision applications

    Science.gov (United States)

    Smith, Timothy E.; Britton, Douglas F.; Daley, Wayne D.; Carey, Richard

    1999-08-01

    Digital cameras have been around for many years, but a new breed of consumer market cameras is hitting the main stream. By using these devices, system designers and integrators will be well posited to take advantage of technological advances developed to support multimedia and imaging applications on the PC platform. Having these new cameras on the consumer market means lower cost, but it does not necessarily guarantee ease of integration. There are many issues that need to be accounted for like image quality, maintainable frame rates, image size and resolution, supported operating system, and ease of software integration. This paper will describe briefly a couple of the consumer digital standards, and then discuss some of the advantages and pitfalls of integrating both USB and Firewire cameras into computer/machine vision applications.

  4. A Machine Vision System for Automatically Grading Hardwood Lumber - (Industrial Metrology)

    Science.gov (United States)

    Richard W. Conners; Tai-Hoon Cho; Chong T. Ng; Thomas T. Drayer; Philip A. Araman; Robert L. Brisbon

    1992-01-01

    Any automatic system for grading hardwood lumber can conceptually be divided into two components. One of these is a machine vision system for locating and identifying grading defects. The other is an automatic grading program that accepts as input the output of the machine vision system and, based on these data, determines the grade of a board. The progress that has...

  5. Robotic Arm Control Algorithm Based on Stereo Vision Using RoboRealm Vision

    Directory of Open Access Journals (Sweden)

    SZABO, R.

    2015-05-01

    Full Text Available The goal of this paper is to present a stereo computer vision algorithm intended to control a robotic arm. Specific points on the robot joints are marked and recognized in the software. Using a dedicated set of mathematic equations, the movement of the robot is continuously computed and monitored with webcams. Positioning error is finally analyzed.

  6. Auto-SEIA: simultaneous optimization of image processing and machine learning algorithms

    Science.gov (United States)

    Negro Maggio, Valentina; Iocchi, Luca

    2015-02-01

    Object classification from images is an important task for machine vision and it is a crucial ingredient for many computer vision applications, ranging from security and surveillance to marketing. Image based object classification techniques properly integrate image processing and machine learning (i.e., classification) procedures. In this paper we present a system for automatic simultaneous optimization of algorithms and parameters for object classification from images. More specifically, the proposed system is able to process a dataset of labelled images and to return a best configuration of image processing and classification algorithms and of their parameters with respect to the accuracy of classification. Experiments with real public datasets are used to demonstrate the effectiveness of the developed system.

  7. Vision-based algorithms for high-accuracy measurements in an industrial bakery

    Science.gov (United States)

    Heleno, Paulo; Davies, Roger; Correia, Bento A. B.; Dinis, Joao

    2002-02-01

    This paper describes the machine vision algorithms developed for VIP3D, a measuring system used in an industrial bakery to monitor the dimensions and weight of loaves of bread (baguettes). The length and perimeter of more than 70 different varieties of baguette are measured with 1-mm accuracy, quickly, reliably and automatically. VIP3D uses a laser triangulation technique to measure the perimeter. The shape of the loaves is approximately cylindrical and the perimeter is defined as the convex hull of a cross-section perpendicular to the baguette axis at mid-length. A camera, mounted obliquely to the measuring plane, captures an image of a laser line projected onto the upper surface of the baguette. Three cameras are used to measure the baguette length, a solution adopted in order to minimize perspective-induced measurement errors. The paper describes in detail the machine vision algorithms developed to perform segmentation of the laser line and subsequent calculation of the perimeter of the baguette. The algorithms used to segment and measure the position of the ends of the baguette, to sub-pixel accuracy, are also described, as are the algorithms used to calibrate the measuring system and compensate for camera-induced image distortion.

  8. Scaling up liquid state machines to predict over address events from dynamic vision sensors.

    Science.gov (United States)

    Kaiser, Jacques; Stal, Rainer; Subramoney, Anand; Roennau, Arne; Dillmann, Rüdiger

    2017-09-01

    Short-term visual prediction is important both in biology and robotics. It allows us to anticipate upcoming states of the environment and therefore plan more efficiently. In theoretical neuroscience, liquid state machines have been proposed as a biologically inspired method to perform asynchronous prediction without a model. However, they have so far only been demonstrated in simulation or small scale pre-processed camera images. In this paper, we use a liquid state machine to predict over the whole  [Formula: see text]  event stream provided by a real dynamic vision sensor (DVS, or silicon retina). Thanks to the event-based nature of the DVS, the liquid is constantly fed with data when an object is in motion, fully embracing the asynchronicity of spiking neural networks. We propose a smooth continuous representation of the event stream for the short-term visual prediction task. Moreover, compared to previous works (2002 Neural Comput. 2525 282-93 and Burgsteiner H et al 2007 Appl. Intell. 26 99-109), we scale the input dimensionality that the liquid operates on by two order of magnitudes. We also expose the current limits of our method by running experiments in a challenging environment where multiple objects are in motion. This paper is a step towards integrating biologically inspired algorithms derived in theoretical neuroscience to real world robotic setups. We believe that liquid state machines could complement current prediction algorithms used in robotics, especially when dealing with asynchronous sensors.

  9. Gradient Evolution-based Support Vector Machine Algorithm for Classification

    Science.gov (United States)

    Zulvia, Ferani E.; Kuo, R. J.

    2018-03-01

    This paper proposes a classification algorithm based on a support vector machine (SVM) and gradient evolution (GE) algorithms. SVM algorithm has been widely used in classification. However, its result is significantly influenced by the parameters. Therefore, this paper aims to propose an improvement of SVM algorithm which can find the best SVMs’ parameters automatically. The proposed algorithm employs a GE algorithm to automatically determine the SVMs’ parameters. The GE algorithm takes a role as a global optimizer in finding the best parameter which will be used by SVM algorithm. The proposed GE-SVM algorithm is verified using some benchmark datasets and compared with other metaheuristic-based SVM algorithms. The experimental results show that the proposed GE-SVM algorithm obtains better results than other algorithms tested in this paper.

  10. Machine-vision-based identification of broken inserts in edge profile milling heads

    NARCIS (Netherlands)

    Fernandez Robles, Laura; Azzopardi, George; Alegre, Enrique; Petkov, Nicolai

    This paper presents a reliable machine vision system to automatically detect inserts and determine if they are broken. Unlike the machining operations studied in the literature, we are dealing with edge milling head tools for aggressive machining of thick plates (up to 12 centimetres) in a single

  11. The Employment Effects of High-Technology: A Case Study of Machine Vision. Research Report No. 86-19.

    Science.gov (United States)

    Chen, Kan; Stafford, Frank P.

    A case study of machine vision was conducted to identify and analyze the employment effects of high technology in general. (Machine vision is the automatic acquisition and analysis of an image to obtain desired information for use in controlling an industrial activity, such as the visual sensor system that gives eyes to a robot.) Machine vision as…

  12. Broiler weight estimation based on machine vision and artificial neural network.

    Science.gov (United States)

    Amraei, S; Abdanan Mehdizadeh, S; Salari, S

    2017-04-01

    1. Machine vision and artificial neural network (ANN) procedures were used to estimate live body weight of broiler chickens in 30 1-d-old broiler chickens reared for 42 d. 2. Imaging was performed two times daily. To localise chickens within the pen, an ellipse fitting algorithm was used and the chickens' head and tail removed using the Chan-Vese method. 3. The correlations between the body weight and 6 physical extracted features indicated that there were strong correlations between body weight and the 5 features including area, perimeter, convex area, major and minor axis length. 5. According to statistical analysis there was no significant difference between morning and afternoon data over 42 d. 6. In an attempt to improve the accuracy of live weight approximation different ANN techniques, including Bayesian regulation, Levenberg-Marquardt, Scaled conjugate gradient and gradient descent were used. Bayesian regulation with R 2 value of 0.98 was the best network for prediction of broiler weight. 7. The accuracy of the machine vision technique was examined and most errors were less than 50 g.

  13. Optimization of spatial light distribution through genetic algorithms for vision systems applied to quality control

    International Nuclear Information System (INIS)

    Castellini, P; Cecchini, S; Stroppa, L; Paone, N

    2015-01-01

    The paper presents an adaptive illumination system for image quality enhancement in vision-based quality control systems. In particular, a spatial modulation of illumination intensity is proposed in order to improve image quality, thus compensating for different target scattering properties, local reflections and fluctuations of ambient light. The desired spatial modulation of illumination is obtained by a digital light projector, used to illuminate the scene with an arbitrary spatial distribution of light intensity, designed to improve feature extraction in the region of interest. The spatial distribution of illumination is optimized by running a genetic algorithm. An image quality estimator is used to close the feedback loop and to stop iterations once the desired image quality is reached. The technique proves particularly valuable for optimizing the spatial illumination distribution in the region of interest, with the remarkable capability of the genetic algorithm to adapt the light distribution to very different target reflectivity and ambient conditions. The final objective of the proposed technique is the improvement of the matching score in the recognition of parts through matching algorithms, hence of the diagnosis of machine vision-based quality inspections. The procedure has been validated both by a numerical model and by an experimental test, referring to a significant problem of quality control for the washing machine manufacturing industry: the recognition of a metallic clamp. Its applicability to other domains is also presented, specifically for the visual inspection of shoes with retro-reflective tape and T-shirts with paillettes. (paper)

  14. Parameter optimization of electrochemical machining process using black hole algorithm

    Science.gov (United States)

    Singh, Dinesh; Shukla, Rajkamal

    2017-12-01

    Advanced machining processes are significant as higher accuracy in machined component is required in the manufacturing industries. Parameter optimization of machining processes gives optimum control to achieve the desired goals. In this paper, electrochemical machining (ECM) process is considered to evaluate the performance of the considered process using black hole algorithm (BHA). BHA considers the fundamental idea of a black hole theory and it has less operating parameters to tune. The two performance parameters, material removal rate (MRR) and overcut (OC) are considered separately to get optimum machining parameter settings using BHA. The variations of process parameters with respect to the performance parameters are reported for better and effective understanding of the considered process using single objective at a time. The results obtained using BHA are found better while compared with results of other metaheuristic algorithms, such as, genetic algorithm (GA), artificial bee colony (ABC) and bio-geography based optimization (BBO) attempted by previous researchers.

  15. Considerations for implementing machine vision for detecting watercore in apples

    Science.gov (United States)

    Upchurch, Bruce L.; Throop, James A.

    1993-05-01

    Watercore in apples is a physiological disorder that affects the internal quality of the fruit. Growers can experience serious economic losses due to internal breakdown of the apple if watercored apples are placed unknowingly into long term storage. Economic losses can also occur if watercore is detected and the entire `lot' is downgraded; however, a gain can be obtained if watercored fruit is segregated and marketed as a premium apple soon after harvest. Watercore is characterized by the accumulation of fluid around the vascular bundles replacing air spaces between cells. This fluid reduces the light scattering properties of the apple. Using machine vision to measure the amount of light transmitted through the apple, watercored apples were segregated according to the severity of damage. However, the success of the method was dependent upon two factors. First, the sensitivity of the camera dictated the classes of watercore that could be detected. A highly sensitive camera could separate the less severe classes at the expense of not distinguishing between the more severe classes. A second factor which is common to most quality attributes in perishable commodities is the elapsed time after harvest at which the measurement was made. At the end of the study, light transmission levels decreased to undetectable levels with the initial camera settings for all watercore classes.

  16. A method of size inspection for fruit with machine vision

    Science.gov (United States)

    Rao, Xiuqin; Ying, Yibin

    2005-11-01

    A real time machine vision system for fruit quality inspection was developed, which consists of rollers, an encoder, a lighting chamber, a TMS-7DSP CCD camera (PULNIX Inc.), a computer (P4 1.8G, 128M) and a set of grading controller. An image was binary, and the edge was detected with line-scanned based digit image description, and the MER was applied to detected size of the fruit, but failed. The reason for the result was that the test point with MER was different from which was done with vernier caliper. An improved method was developed, which was called as software vernier caliper. A line between weight O of the fruit and a point A on the edge was drawn, and then the crossed point between line OA and the edge was calculated, which was noted as B, a point C between AB was selected, and the point D on the other side was searched by a way to make CD was vertical to AB, by move the point C between point A and B, A new point D was searched. The maximum length of CD was recorded as an extremum value. By move point A from start to the half point on the edge, a serial of CD was gotten. 80 navel oranges were tested, the maximum error of the diameter was less than 1mm.

  17. Machine Learning in Production Systems Design Using Genetic Algorithms

    OpenAIRE

    Abu Qudeiri Jaber; Yamamoto Hidehiko Rizauddin Ramli

    2008-01-01

    To create a solution for a specific problem in machine learning, the solution is constructed from the data or by use a search method. Genetic algorithms are a model of machine learning that can be used to find nearest optimal solution. While the great advantage of genetic algorithms is the fact that they find a solution through evolution, this is also the biggest disadvantage. Evolution is inductive, in nature life does not evolve towards a good solution but it evolves aw...

  18. Extreme learning machines 2013 algorithms and applications

    CERN Document Server

    Toh, Kar-Ann; Romay, Manuel; Mao, Kezhi

    2014-01-01

    In recent years, ELM has emerged as a revolutionary technique of computational intelligence, and has attracted considerable attentions. An extreme learning machine (ELM) is a single layer feed-forward neural network alike learning system, whose connections from the input layer to the hidden layer are randomly generated, while the connections from the hidden layer to the output layer are learned through linear learning methods. The outstanding merits of extreme learning machine (ELM) are its fast learning speed, trivial human intervene and high scalability.   This book contains some selected papers from the International Conference on Extreme Learning Machine 2013, which was held in Beijing China, October 15-17, 2013. This conference aims to bring together the researchers and practitioners of extreme learning machine from a variety of fields including artificial intelligence, biomedical engineering and bioinformatics, system modelling and control, and signal and image processing, to promote research and discu...

  19. Optimal Placement Algorithms for Virtual Machines

    OpenAIRE

    Bellur, Umesh; Rao, Chetan S; SD, Madhu Kumar

    2010-01-01

    Cloud computing provides a computing platform for the users to meet their demands in an efficient, cost-effective way. Virtualization technologies are used in the clouds to aid the efficient usage of hardware. Virtual machines (VMs) are utilized to satisfy the user needs and are placed on physical machines (PMs) of the cloud for effective usage of hardware resources and electricity in the cloud. Optimizing the number of PMs used helps in cutting down the power consumption by a substantial amo...

  20. A real-time surface inspection system for precision steel balls based on machine vision

    Science.gov (United States)

    Chen, Yi-Ji; Tsai, Jhy-Cherng; Hsu, Ya-Chen

    2016-07-01

    Precision steel balls are one of the most fundament components for motion and power transmission parts and they are widely used in industrial machinery and the automotive industry. As precision balls are crucial for the quality of these products, there is an urgent need to develop a fast and robust system for inspecting defects of precision steel balls. In this paper, a real-time system for inspecting surface defects of precision steel balls is developed based on machine vision. The developed system integrates a dual-lighting system, an unfolding mechanism and inspection algorithms for real-time signal processing and defect detection. The developed system is tested under feeding speeds of 4 pcs s-1 with a detection rate of 99.94% and an error rate of 0.10%. The minimum detectable surface flaw area is 0.01 mm2, which meets the requirement for inspecting ISO grade 100 precision steel balls.

  1. Potential application of machine vision technology to saffron (Crocus sativus L.) quality characterization.

    Science.gov (United States)

    Kiani, Sajad; Minaei, Saeid

    2016-12-01

    Saffron quality characterization is an important issue in the food industry and of interest to the consumers. This paper proposes an expert system based on the application of machine vision technology for characterization of saffron and shows how it can be employed in practical usage. There is a correlation between saffron color and its geographic location of production and some chemical attributes which could be properly used for characterization of saffron quality and freshness. This may be accomplished by employing image processing techniques coupled with multivariate data analysis for quantification of saffron properties. Expert algorithms can be made available for prediction of saffron characteristics such as color as well as for product classification. Copyright © 2016. Published by Elsevier Ltd.

  2. Vision-based vehicle detection and tracking algorithm design

    Science.gov (United States)

    Hwang, Junyeon; Huh, Kunsoo; Lee, Donghwi

    2009-12-01

    The vision-based vehicle detection in front of an ego-vehicle is regarded as promising for driver assistance as well as for autonomous vehicle guidance. The feasibility of vehicle detection in a passenger car requires accurate and robust sensing performance. A multivehicle detection system based on stereo vision has been developed for better accuracy and robustness. This system utilizes morphological filter, feature detector, template matching, and epipolar constraint techniques in order to detect the corresponding pairs of vehicles. After the initial detection, the system executes the tracking algorithm for the vehicles. The proposed system can detect front vehicles such as the leading vehicle and side-lane vehicles. The position parameters of the vehicles located in front are obtained based on the detection information. The proposed vehicle detection system is implemented on a passenger car, and its performance is verified experimentally.

  3. Relevance as a metric for evaluating machine learning algorithms

    NARCIS (Netherlands)

    Kota Gopalakrishna, A.; Ozcelebi, T.; Liotta, A.; Lukkien, J.J.

    2013-01-01

    In machine learning, the choice of a learning algorithm that is suitable for the application domain is critical. The performance metric used to compare different algorithms must also reflect the concerns of users in the application domain under consideration. In this work, we propose a novel

  4. Fire protection for launch facilities using machine vision fire detection

    Science.gov (United States)

    Schwartz, Douglas B.

    1993-02-01

    Fire protection of critical space assets, including launch and fueling facilities and manned flight hardware, demands automatic sensors for continuous monitoring, and in certain high-threat areas, fast-reacting automatic suppression systems. Perhaps the most essential characteristic for these fire detection and suppression systems is high reliability; in other words, fire detectors should alarm only on actual fires and not be falsely activated by extraneous sources. Existing types of fire detectors have been greatly improved in the past decade; however, fundamental limitations of their method of operation leaves open a significant possibility of false alarms and restricts their usefulness. At the Civil Engineering Laboratory at Tyndall Air Force Base in Florida, a new type of fire detector is under development which 'sees' a fire visually, like a human being, and makes a reliable decision based on known visual characteristics of flames. Hardware prototypes of the Machine Vision (MV) Fire Detection System have undergone live fire tests and demonstrated extremely high accuracy in discriminating actual fires from false alarm sources. In fact, this technology promises to virtually eliminate false activations. This detector could be used to monitor fueling facilities, launch towers, clean rooms, and other high-value and high-risk areas. Applications can extend to space station and in-flight shuttle operations as well; fiber optics and remote camera heads enable the system to see around obstructed areas and crew compartments. The capability of the technology to distinguish fires means that fire detection can be provided even during maintenance operations, such as welding.

  5. Interactive Algorithms for Unsupervised Machine Learning

    Science.gov (United States)

    2015-06-01

    in Neural Information Processing Systems, 2013. 14 [3] Louigi Addario-Berry, Nicolas Broutin, Luc Devroye, and Gábor Lugosi. On combinato- rial...Myung Jin Choi, Vincent Y F Tan , Animashree Anandkumar, and Alan S Willsky. Learn- ing Latent Tree Graphical Models. Journal of Machine Learning

  6. Some multigrid algorithms for SIMD machines

    Energy Technology Data Exchange (ETDEWEB)

    Dendy, J.E. Jr. [Los Alamos National Lab., NM (United States)

    1996-12-31

    Previously a semicoarsening multigrid algorithm suitable for use on SIMD architectures was investigated. Through the use of new software tools, the performance of this algorithm has been considerably improved. The method has also been extended to three space dimensions. The method performs well for strongly anisotropic problems and for problems with coefficients jumping by orders of magnitude across internal interfaces. The parallel efficiency of this method is analyzed, and its actual performance on the CM-5 is compared with its performance on the CRAY-YMP. A standard coarsening multigrid algorithm is also considered, and we compare its performance on these two platforms as well.

  7. Recent advances in the development and transfer of machine vision technologies for space

    Science.gov (United States)

    Defigueiredo, Rui J. P.; Pendleton, Thomas

    1991-01-01

    Recent work concerned with real-time machine vision is briefly reviewed. This work includes methodologies and techniques for optimal illumination, shape-from-shading of general (non-Lambertian) 3D surfaces, laser vision devices and technology, high level vision, sensor fusion, real-time computing, artificial neural network design and use, and motion estimation. Two new methods that are currently being developed for object recognition in clutter and for 3D attitude tracking based on line correspondence are discussed.

  8. Machine learning algorithms for datasets popularity prediction

    CERN Document Server

    Kancys, Kipras

    2016-01-01

    This report represents continued study where ML algorithms were used to predict databases popularity. Three topics were covered. First of all, there was a discrepancy between old and new meta-data collection procedures, so a reason for that had to be found. Secondly, different parameters were analysed and dropped to make algorithms perform better. And third, it was decided to move modelling part on Spark.

  9. Vision Algorithm for the Solar Aspect System of the HEROES Mission

    Science.gov (United States)

    Cramer, Alexander; Christe, Steven; Shih, Albert

    2014-01-01

    This work covers the design and test of a machine vision algorithm for generating high-accuracy pitch and yaw pointing solutions relative to the sun for the High Energy Replicated Optics to Explore the Sun (HEROES) mission. It describes how images were constructed by focusing an image of the sun onto a plate printed with a pattern of small fiducial markers. Images of this plate were processed in real time to determine relative position of the balloon payload to the sun. The algorithm is broken into four problems: circle detection, fiducial detection, fiducial identification, and image registration. Circle detection is handled by an Average Intersection method, fiducial detection by a matched filter approach, identification with an ad-hoc method based on the spacing between fiducials, and image registration with a simple least squares fit. Performance is verified on a combination of artificially generated images, test data recorded on the ground, and images from the 2013 flight.

  10. Integrating Symbolic and Statistical Methods for Testing Intelligent Systems Applications to Machine Learning and Computer Vision

    Energy Technology Data Exchange (ETDEWEB)

    Jha, Sumit Kumar [University of Central Florida, Orlando; Pullum, Laura L [ORNL; Ramanathan, Arvind [ORNL

    2016-01-01

    Embedded intelligent systems ranging from tiny im- plantable biomedical devices to large swarms of autonomous un- manned aerial systems are becoming pervasive in our daily lives. While we depend on the flawless functioning of such intelligent systems, and often take their behavioral correctness and safety for granted, it is notoriously difficult to generate test cases that expose subtle errors in the implementations of machine learning algorithms. Hence, the validation of intelligent systems is usually achieved by studying their behavior on representative data sets, using methods such as cross-validation and bootstrapping.In this paper, we present a new testing methodology for studying the correctness of intelligent systems. Our approach uses symbolic decision procedures coupled with statistical hypothesis testing to. We also use our algorithm to analyze the robustness of a human detection algorithm built using the OpenCV open-source computer vision library. We show that the human detection implementation can fail to detect humans in perturbed video frames even when the perturbations are so small that the corresponding frames look identical to the naked eye.

  11. Randomized Algorithms for Scalable Machine Learning

    OpenAIRE

    Kleiner, Ariel Jacob

    2012-01-01

    Many existing procedures in machine learning and statistics are computationally intractable in the setting of large-scale data. As a result, the advent of rapidly increasing dataset sizes, which should be a boon yielding improved statistical performance, instead severely blunts the usefulness of a variety of existing inferential methods. In this work, we use randomness to ameliorate this lack of scalability by reducing complex, computationally difficult inferential problems to larger sets o...

  12. [Algorithms, machine intelligence, big data : general considerations].

    Science.gov (United States)

    Radermacher, F J

    2015-08-01

    We are experiencing astonishing developments in the areas of big data and artificial intelligence. They follow a pattern that we have now been observing for decades: according to Moore's Law,the performance and efficiency in the area of elementary arithmetic operations increases a thousand-fold every 20 years. Although we have not achieved the status where in the singular sense machines have become as "intelligent" as people, machines are becoming increasingly better. The Internet of Things has again helped to massively increase the efficiency of machines. Big data and suitable analytics do the same. If we let these processes simply continue, our civilization may be endangerd in many instances. If the "containment" of these processes succeeds in the context of a reasonable political global governance, a worldwide eco-social market economy, andan economy of green and inclusive markets, many desirable developments that are advantageous for our future may result. Then, at some point in time, the constant need for more and faster innovation may even stop. However, this is anything but certain. We are facing huge challenges.

  13. Machine-Learning Algorithms to Code Public Health Spending Accounts.

    Science.gov (United States)

    Brady, Eoghan S; Leider, Jonathon P; Resnick, Beth A; Alfonso, Y Natalia; Bishai, David

    Government public health expenditure data sets require time- and labor-intensive manipulation to summarize results that public health policy makers can use. Our objective was to compare the performances of machine-learning algorithms with manual classification of public health expenditures to determine if machines could provide a faster, cheaper alternative to manual classification. We used machine-learning algorithms to replicate the process of manually classifying state public health expenditures, using the standardized public health spending categories from the Foundational Public Health Services model and a large data set from the US Census Bureau. We obtained a data set of 1.9 million individual expenditure items from 2000 to 2013. We collapsed these data into 147 280 summary expenditure records, and we followed a standardized method of manually classifying each expenditure record as public health, maybe public health, or not public health. We then trained 9 machine-learning algorithms to replicate the manual process. We calculated recall, precision, and coverage rates to measure the performance of individual and ensembled algorithms. Compared with manual classification, the machine-learning random forests algorithm produced 84% recall and 91% precision. With algorithm ensembling, we achieved our target criterion of 90% recall by using a consensus ensemble of ≥6 algorithms while still retaining 93% coverage, leaving only 7% of the summary expenditure records unclassified. Machine learning can be a time- and cost-saving tool for estimating public health spending in the United States. It can be used with standardized public health spending categories based on the Foundational Public Health Services model to help parse public health expenditure information from other types of health-related spending, provide data that are more comparable across public health organizations, and evaluate the impact of evidence-based public health resource allocation.

  14. Support vector machines optimization based theory, algorithms, and extensions

    CERN Document Server

    Deng, Naiyang; Zhang, Chunhua

    2013-01-01

    Support Vector Machines: Optimization Based Theory, Algorithms, and Extensions presents an accessible treatment of the two main components of support vector machines (SVMs)-classification problems and regression problems. The book emphasizes the close connection between optimization theory and SVMs since optimization is one of the pillars on which SVMs are built.The authors share insight on many of their research achievements. They give a precise interpretation of statistical leaning theory for C-support vector classification. They also discuss regularized twi

  15. Investigation into the use of smartphone as a machine vision device for engineering metrology and flaw detection, with focus on drilling

    Science.gov (United States)

    Razdan, Vikram; Bateman, Richard

    2015-05-01

    This study investigates the use of a Smartphone and its camera vision capabilities in Engineering metrology and flaw detection, with a view to develop a low cost alternative to Machine vision systems which are out of range for small scale manufacturers. A Smartphone has to provide a similar level of accuracy as Machine Vision devices like Smart cameras. The objective set out was to develop an App on an Android Smartphone, incorporating advanced Computer vision algorithms written in java code. The App could then be used for recording measurements of Twist Drill bits and hole geometry, and analysing the results for accuracy. A detailed literature review was carried out for in-depth study of Machine vision systems and their capabilities, including a comparison between the HTC One X Android Smartphone and the Teledyne Dalsa BOA Smart camera. A review of the existing metrology Apps in the market was also undertaken. In addition, the drilling operation was evaluated to establish key measurement parameters of a twist Drill bit, especially flank wear and diameter. The methodology covers software development of the Android App, including the use of image processing algorithms like Gaussian Blur, Sobel and Canny available from OpenCV software library, as well as designing and developing the experimental set-up for carrying out the measurements. The results obtained from the experimental set-up were analysed for geometry of Twist Drill bits and holes, including diametrical measurements and flaw detection. The results show that Smartphones like the HTC One X have the processing power and the camera capability to carry out metrological tasks, although dimensional accuracy achievable from the Smartphone App is below the level provided by Machine vision devices like Smart cameras. A Smartphone with mechanical attachments, capable of image processing and having a reasonable level of accuracy in dimensional measurement, has the potential to become a handy low-cost Machine vision

  16. A strategy for quantum algorithm design assisted by machine learning

    International Nuclear Information System (INIS)

    Bang, Jeongho; Lee, Jinhyoung; Ryu, Junghee; Yoo, Seokwon; Pawłowski, Marcin

    2014-01-01

    We propose a method for quantum algorithm design assisted by machine learning. The method uses a quantum–classical hybrid simulator, where a ‘quantum student’ is being taught by a ‘classical teacher’. In other words, in our method, the learning system is supposed to evolve into a quantum algorithm for a given problem, assisted by a classical main-feedback system. Our method is applicable for designing quantum oracle-based algorithms. We chose, as a case study, an oracle decision problem, called a Deutsch–Jozsa problem. We showed by using Monte Carlo simulations that our simulator can faithfully learn a quantum algorithm for solving the problem for a given oracle. Remarkably, the learning time is proportional to the square root of the total number of parameters, rather than showing the exponential dependence found in the classical machine learning-based method. (paper)

  17. A strategy for quantum algorithm design assisted by machine learning

    Science.gov (United States)

    Bang, Jeongho; Ryu, Junghee; Yoo, Seokwon; Pawłowski, Marcin; Lee, Jinhyoung

    2014-07-01

    We propose a method for quantum algorithm design assisted by machine learning. The method uses a quantum-classical hybrid simulator, where a ‘quantum student’ is being taught by a ‘classical teacher’. In other words, in our method, the learning system is supposed to evolve into a quantum algorithm for a given problem, assisted by a classical main-feedback system. Our method is applicable for designing quantum oracle-based algorithms. We chose, as a case study, an oracle decision problem, called a Deutsch-Jozsa problem. We showed by using Monte Carlo simulations that our simulator can faithfully learn a quantum algorithm for solving the problem for a given oracle. Remarkably, the learning time is proportional to the square root of the total number of parameters, rather than showing the exponential dependence found in the classical machine learning-based method.

  18. Designing machines for lattice physics and algorithm investigation

    International Nuclear Information System (INIS)

    Fischler, M.; Atac, R.; Cook, A.

    1989-10-01

    Special-purpose computers are appropriate tools for the study of lattice gauge theory. While these machines deliver considerable processing power, it is also important to be able to program complex physics ideas and investigate algorithms on them. We examine features that facilitate coding of physics problems, and flexibility in algorithms. Appropriate balances among power, memory, communications and I/O capabilities are presented. 10 refs

  19. Binary pressure-sensitive paint measurements using miniaturised, colour, machine vision cameras

    Science.gov (United States)

    Quinn, Mark Kenneth

    2018-05-01

    Recent advances in machine vision technology and capability have led to machine vision cameras becoming applicable for scientific imaging. This study aims to demonstrate the applicability of machine vision colour cameras for the measurement of dual-component pressure-sensitive paint (PSP). The presence of a second luminophore component in the PSP mixture significantly reduces its inherent temperature sensitivity, increasing its applicability at low speeds. All of the devices tested are smaller than the cooled CCD cameras traditionally used and most are of significantly lower cost, thereby increasing the accessibility of such technology and techniques. Comparisons between three machine vision cameras, a three CCD camera, and a commercially available specialist PSP camera are made on a range of parameters, and a detailed PSP calibration is conducted in a static calibration chamber. The findings demonstrate that colour machine vision cameras can be used for quantitative, dual-component, pressure measurements. These results give rise to the possibility of performing on-board dual-component PSP measurements in wind tunnels or on real flight/road vehicles.

  20. Ethical, environmental and social issues for machine vision in manufacturing industry

    Science.gov (United States)

    Batchelor, Bruce G.; Whelan, Paul F.

    1995-10-01

    Some of the ethical, environmental and social issues relating to the design and use of machine vision systems in manufacturing industry are highlighted. The authors' aim is to emphasize some of the more important issues, and raise general awareness of the need to consider the potential advantages and hazards of machine vision technology. However, in a short article like this, it is impossible to cover the subject comprehensively. This paper should therefore be seen as a discussion document, which it is hoped will provoke more detailed consideration of these very important issues. It follows from an article presented at last year's workshop. Five major topics are discussed: (1) The impact of machine vision systems on the environment; (2) The implications of machine vision for product and factory safety, the health and well-being of employees; (3) The importance of intellectual integrity in a field requiring a careful balance of advanced ideas and technologies; (4) Commercial and managerial integrity; and (5) The impact of machine visions technology on employment prospects, particularly for people with low skill levels.

  1. A System of Driving Fatigue Detection Based on Machine Vision and Its Application on Smart Device

    Directory of Open Access Journals (Sweden)

    Wanzeng Kong

    2015-01-01

    Full Text Available Driving fatigue is one of the most important factors in traffic accidents. In this paper, we proposed an improved strategy and practical system to detect driving fatigue based on machine vision and Adaboost algorithm. Kinds of face and eye classifiers are well trained by Adaboost algorithm in advance. The proposed strategy firstly detects face efficiently by classifiers of front face and deflected face. Then, candidate region of eye is determined according to geometric distribution of facial organs. Finally, trained classifiers of open eyes and closed eyes are used to detect eyes in the candidate region quickly and accurately. The indexes which consist of PERCLOS and duration of closed-state are extracted in video frames real time. Moreover, the system is transplanted into smart device, that is, smartphone or tablet, due to its own camera and powerful calculation performance. Practical tests demonstrated that the proposed system can detect driver fatigue with real time and high accuracy. As the system has been planted into portable smart device, it could be widely used for driving fatigue detection in daily life.

  2. Dataflow-Based Mapping of Computer Vision Algorithms onto FPGAs

    Directory of Open Access Journals (Sweden)

    Ivan Corretjer

    2007-01-01

    Full Text Available We develop a design methodology for mapping computer vision algorithms onto an FPGA through the use of coarse-grain reconfigurable dataflow graphs as a representation to guide the designer. We first describe a new dataflow modeling technique called homogeneous parameterized dataflow (HPDF, which effectively captures the structure of an important class of computer vision applications. This form of dynamic dataflow takes advantage of the property that in a large number of image processing applications, data production and consumption rates can vary, but are equal across dataflow graph edges for any particular application iteration. After motivating and defining the HPDF model of computation, we develop an HPDF-based design methodology that offers useful properties in terms of verifying correctness and exposing performance-enhancing transformations; we discuss and address various challenges in efficiently mapping an HPDF-based application representation into target-specific HDL code; and we present experimental results pertaining to the mapping of a gesture recognition application onto the Xilinx Virtex II FPGA.

  3. Automated Essay Grading using Machine Learning Algorithm

    Science.gov (United States)

    Ramalingam, V. V.; Pandian, A.; Chetry, Prateek; Nigam, Himanshu

    2018-04-01

    Essays are paramount for of assessing the academic excellence along with linking the different ideas with the ability to recall but are notably time consuming when they are assessed manually. Manual grading takes significant amount of evaluator’s time and hence it is an expensive process. Automated grading if proven effective will not only reduce the time for assessment but comparing it with human scores will also make the score realistic. The project aims to develop an automated essay assessment system by use of machine learning techniques by classifying a corpus of textual entities into small number of discrete categories, corresponding to possible grades. Linear regression technique will be utilized for training the model along with making the use of various other classifications and clustering techniques. We intend to train classifiers on the training set, make it go through the downloaded dataset, and then measure performance our dataset by comparing the obtained values with the dataset values. We have implemented our model using java.

  4. Inverse Problems in Geodynamics Using Machine Learning Algorithms

    Science.gov (United States)

    Shahnas, M. H.; Yuen, D. A.; Pysklywec, R. N.

    2018-01-01

    During the past few decades numerical studies have been widely employed to explore the style of circulation and mixing in the mantle of Earth and other planets. However, in geodynamical studies there are many properties from mineral physics, geochemistry, and petrology in these numerical models. Machine learning, as a computational statistic-related technique and a subfield of artificial intelligence, has rapidly emerged recently in many fields of sciences and engineering. We focus here on the application of supervised machine learning (SML) algorithms in predictions of mantle flow processes. Specifically, we emphasize on estimating mantle properties by employing machine learning techniques in solving an inverse problem. Using snapshots of numerical convection models as training samples, we enable machine learning models to determine the magnitude of the spin transition-induced density anomalies that can cause flow stagnation at midmantle depths. Employing support vector machine algorithms, we show that SML techniques can successfully predict the magnitude of mantle density anomalies and can also be used in characterizing mantle flow patterns. The technique can be extended to more complex geodynamic problems in mantle dynamics by employing deep learning algorithms for putting constraints on properties such as viscosity, elastic parameters, and the nature of thermal and chemical anomalies.

  5. Protyping machine vision software on the World Wide Web

    Science.gov (United States)

    Karantalis, George; Batchelor, Bruce G.

    1998-10-01

    Interactive image processing is a proven technique for analyzing industrial vision applications and building prototype systems. Several of the previous implementations have used dedicated hardware to perform the image processing, with a top layer of software providing a convenient user interface. More recently, self-contained software packages have been devised and these run on a standard computer. The advent of the Java programming language has made it possible to write platform-independent software, operating over the Internet, or a company-wide Intranet. Thus, there arises the possibility of designing at least some shop-floor inspection/control systems, without the vision engineer ever entering the factories where they will be used. It successful, this project will have a major impact on the productivity of vision systems designers.

  6. Computer vision and machine learning with RGB-D sensors

    CERN Document Server

    Shao, Ling; Kohli, Pushmeet

    2014-01-01

    This book presents an interdisciplinary selection of cutting-edge research on RGB-D based computer vision. Features: discusses the calibration of color and depth cameras, the reduction of noise on depth maps and methods for capturing human performance in 3D; reviews a selection of applications which use RGB-D information to reconstruct human figures, evaluate energy consumption and obtain accurate action classification; presents an approach for 3D object retrieval and for the reconstruction of gas flow from multiple Kinect cameras; describes an RGB-D computer vision system designed to assist t

  7. Toward The Robot Eye: Isomorphic Representation For Machine Vision

    Science.gov (United States)

    Schenker, Paul S.

    1981-10-01

    This paper surveys some issues confronting the conception of models for general purpose vision systems. We draw parallels to requirements of human performance under visual transformations naturally occurring in the ecological environment. We argue that successful real world vision systems require a strong component of analogical reasoning. We propose a course of investigation into appropriate models, and illustrate some of these proposals by a simple example. Our study emphasizes the potential importance of isomorphic representations - models of image and scene which embed a metric of their respective spaces, and whose topological structure facilitates identification of scene descriptors that are invariant under viewing transformations.

  8. Miniaturisation of Pressure-Sensitive Paint Measurement Systems Using Low-Cost, Miniaturised Machine Vision Cameras

    Directory of Open Access Journals (Sweden)

    Mark Kenneth Quinn

    2017-07-01

    Full Text Available Measurements of pressure-sensitive paint (PSP have been performed using new or non-scientific imaging technology based on machine vision tools. Machine vision camera systems are typically used for automated inspection or process monitoring. Such devices offer the benefits of lower cost and reduced size compared with typically scientific-grade cameras; however, their optical qualities and suitability have yet to be determined. This research intends to show relevant imaging characteristics and also show the applicability of such imaging technology for PSP. Details of camera performance are benchmarked and compared to standard scientific imaging equipment and subsequent PSP tests are conducted using a static calibration chamber. The findings demonstrate that machine vision technology can be used for PSP measurements, opening up the possibility of performing measurements on-board small-scale model such as those used for wind tunnel testing or measurements in confined spaces with limited optical access.

  9. Miniaturisation of Pressure-Sensitive Paint Measurement Systems Using Low-Cost, Miniaturised Machine Vision Cameras.

    Science.gov (United States)

    Quinn, Mark Kenneth; Spinosa, Emanuele; Roberts, David A

    2017-07-25

    Measurements of pressure-sensitive paint (PSP) have been performed using new or non-scientific imaging technology based on machine vision tools. Machine vision camera systems are typically used for automated inspection or process monitoring. Such devices offer the benefits of lower cost and reduced size compared with typically scientific-grade cameras; however, their optical qualities and suitability have yet to be determined. This research intends to show relevant imaging characteristics and also show the applicability of such imaging technology for PSP. Details of camera performance are benchmarked and compared to standard scientific imaging equipment and subsequent PSP tests are conducted using a static calibration chamber. The findings demonstrate that machine vision technology can be used for PSP measurements, opening up the possibility of performing measurements on-board small-scale model such as those used for wind tunnel testing or measurements in confined spaces with limited optical access.

  10. Four Machine Learning Algorithms for Biometrics Fusion: A Comparative Study

    Directory of Open Access Journals (Sweden)

    I. G. Damousis

    2012-01-01

    Full Text Available We examine the efficiency of four machine learning algorithms for the fusion of several biometrics modalities to create a multimodal biometrics security system. The algorithms examined are Gaussian Mixture Models (GMMs, Artificial Neural Networks (ANNs, Fuzzy Expert Systems (FESs, and Support Vector Machines (SVMs. The fusion of biometrics leads to security systems that exhibit higher recognition rates and lower false alarms compared to unimodal biometric security systems. Supervised learning was carried out using a number of patterns from a well-known benchmark biometrics database, and the validation/testing took place with patterns from the same database which were not included in the training dataset. The comparison of the algorithms reveals that the biometrics fusion system is superior to the original unimodal systems and also other fusion schemes found in the literature.

  11. Embedded vision equipment of industrial robot for inline detection of product errors by clustering–classification algorithms

    Directory of Open Access Journals (Sweden)

    Kamil Zidek

    2016-10-01

    Full Text Available The article deals with the design of embedded vision equipment of industrial robots for inline diagnosis of product error during manipulation process. The vision equipment can be attached to the end effector of robots or manipulators, and it provides an image snapshot of part surface before grasp, searches for error during manipulation, and separates products with error from the next operation of manufacturing. The new approach is a methodology based on machine teaching for the automated identification, localization, and diagnosis of systematic errors in products of high-volume production. To achieve this, we used two main data mining algorithms: clustering for accumulation of similar errors and classification methods for the prediction of any new error to proposed class. The presented methodology consists of three separate processing levels: image acquisition for fail parameterization, data clustering for categorizing errors to separate classes, and new pattern prediction with a proposed class model. We choose main representatives of clustering algorithms, for example, K-mean from quantization of vectors, fast library for approximate nearest neighbor from hierarchical clustering, and density-based spatial clustering of applications with noise from algorithm based on the density of the data. For machine learning, we selected six major algorithms of classification: support vector machines, normal Bayesian classifier, K-nearest neighbor, gradient boosted trees, random trees, and neural networks. The selected algorithms were compared for speed and reliability and tested on two platforms: desktop-based computer system and embedded system based on System on Chip (SoC with vision equipment.

  12. A two-level real-time vision machine combining coarse and fine grained parallelism

    DEFF Research Database (Denmark)

    Jensen, Lars Baunegaard With; Kjær-Nielsen, Anders; Pauwels, Karl

    2010-01-01

    In this paper, we describe a real-time vision machine having a stereo camera as input generating visual information on two different levels of abstraction. The system provides visual low-level and mid-level information in terms of dense stereo and optical flow, egomotion, indicating areas...... a factor 90 and a reduction of latency of a factor 26 compared to processing on a single CPU--core. Since the vision machine provides generic visual information it can be used in many contexts. Currently it is used in a driver assistance context as well as in two robotic applications....

  13. Machine vision applications for physical security, quality assurance and personnel dosimetry

    International Nuclear Information System (INIS)

    Kar, S.; Shrikhande, S.V.; Suresh Babu, R.M.

    2016-01-01

    Machine vision is the technology used to provide imaging-based solutions to variety of applications, relevant to nuclear facilities and other industries. It uses computerized image analysis for automatic inspection, process control, object sorting, parts assembly, human identity authentication, and so on. In this article we discuss the in-house developed machine vision systems at EISD, BARC for three specific areas: Biometric recognition for physical security, visual inspection for QA of fuel pellets, and fast neutron personnel dosimetry. The advantages in using these systems include objective decision making, reduced man-rem, operational consistency, and capability of statistical quantitative analysis. (author)

  14. A Multiple Model Prediction Algorithm for CNC Machine Wear PHM

    Directory of Open Access Journals (Sweden)

    Huimin Chen

    2011-01-01

    Full Text Available The 2010 PHM data challenge focuses on the remaining useful life (RUL estimation for cutters of a high speed CNC milling machine using measurements from dynamometer, accelerometer, and acoustic emission sensors. We present a multiple model approach for wear depth estimation of milling machine cutters using the provided data. The feature selection, initial wear estimation and multiple model fusion components of the proposed algorithm are explained in details and compared with several alternative methods using the training data. The final submission ranked #2 among professional and student participants and the method is applicable to other data driven PHM problems.

  15. Machine vision system for remote inspection in hazardous environments

    International Nuclear Information System (INIS)

    Mukherjee, J.K.; Krishna, K.Y.V.; Wadnerkar, A.

    2011-01-01

    Visual Inspection of radioactive components need remote inspection systems for human safety and equipment (CCD imagers) protection from radiation. Elaborate view transport optics is required to deliver images at safe areas while maintaining fidelity of image data. Automation of the system requires robots to operate such equipment. A robotized periscope has been developed to meet the challenge of remote safe viewing and vision based inspection. (author)

  16. The systematic development of a machine vision based milking robot

    NARCIS (Netherlands)

    Gouws, J.

    1993-01-01

    Agriculture involves unique interactions between man, machines, and various elements from nature. Therefore the implementation of advanced technology in agriculture holds different challenges than in other sectors of the economy. This dissertation stems from research into the application of

  17. Machine vision algorithms applied to dynamic traffic light control

    Directory of Open Access Journals (Sweden)

    Fabio Andrés Espinosa Valcárcel

    2013-01-01

    número de autos presentes en imágenes capturadas por un conjunto de cámaras estratégicamente ubicadas en cada intersección. Usando esta información, el sistema selecciona la secuencia de acciones que optimicen el flujo vehicular dentro de la zona de control, en un escenario simulado. Los resultados obtenidos muestran que el sistema disminuye en un 20% los tiempos de retraso para cada vehículo y que además es capaz de adaptarse rápida y eficientemente a los cambios de flujo.

  18. Automatic detection and counting of cattle in UAV imagery based on machine vision technology (Conference Presentation)

    Science.gov (United States)

    Rahnemoonfar, Maryam; Foster, Jamie; Starek, Michael J.

    2017-05-01

    Beef production is the main agricultural industry in Texas, and livestock are managed in pasture and rangeland which are usually huge in size, and are not easily accessible by vehicles. The current research method for livestock location identification and counting is visual observation which is very time consuming and costly. For animals on large tracts of land, manned aircraft may be necessary to count animals which is noisy and disturbs the animals, and may introduce a source of error in counts. Such manual approaches are expensive, slow and labor intensive. In this paper we study the combination of small unmanned aerial vehicle (sUAV) and machine vision technology as a valuable solution to manual animal surveying. A fixed-wing UAV fitted with GPS and digital RGB camera for photogrammetry was flown at the Welder Wildlife Foundation in Sinton, TX. Over 600 acres were flown with four UAS flights and individual photographs used to develop orthomosaic imagery. To detect animals in UAV imagery, a fully automatic technique was developed based on spatial and spectral characteristics of objects. This automatic technique can even detect small animals that are partially occluded by bushes. Experimental results in comparison to ground-truth show the effectiveness of our algorithm.

  19. Predicting Smoking Status Using Machine Learning Algorithms and Statistical Analysis

    Directory of Open Access Journals (Sweden)

    Charles Frank

    2018-03-01

    Full Text Available Smoking has been proven to negatively affect health in a multitude of ways. As of 2009, smoking has been considered the leading cause of preventable morbidity and mortality in the United States, continuing to plague the country’s overall health. This study aims to investigate the viability and effectiveness of some machine learning algorithms for predicting the smoking status of patients based on their blood tests and vital readings results. The analysis of this study is divided into two parts: In part 1, we use One-way ANOVA analysis with SAS tool to show the statistically significant difference in blood test readings between smokers and non-smokers. The results show that the difference in INR, which measures the effectiveness of anticoagulants, was significant in favor of non-smokers which further confirms the health risks associated with smoking. In part 2, we use five machine learning algorithms: Naïve Bayes, MLP, Logistic regression classifier, J48 and Decision Table to predict the smoking status of patients. To compare the effectiveness of these algorithms we use: Precision, Recall, F-measure and Accuracy measures. The results show that the Logistic algorithm outperformed the four other algorithms with Precision, Recall, F-Measure, and Accuracy of 83%, 83.4%, 83.2%, 83.44%, respectively.

  20. Comparison of machine learning algorithms for detecting coral reef

    Directory of Open Access Journals (Sweden)

    Eduardo Tusa

    2014-09-01

    Full Text Available (Received: 2014/07/31 - Accepted: 2014/09/23This work focuses on developing a fast coral reef detector, which is used for an autonomous underwater vehicle, AUV. A fast detection secures the AUV stabilization respect to an area of reef as fast as possible, and prevents devastating collisions. We use the algorithm of Purser et al. (2009 because of its precision. This detector has two parts: feature extraction that uses Gabor Wavelet filters, and feature classification that uses machine learning based on Neural Networks. Due to the extensive time of the Neural Networks, we exchange for a classification algorithm based on Decision Trees. We use a database of 621 images of coral reef in Belize (110 images for training and 511 images for testing. We implement the bank of Gabor Wavelets filters using C++ and the OpenCV library. We compare the accuracy and running time of 9 machine learning algorithms, whose result was the selection of the Decision Trees algorithm. Our coral detector performs 70ms of running time in comparison to 22s executed by the algorithm of Purser et al. (2009.

  1. Fall detection using supervised machine learning algorithms: A comparative study

    KAUST Repository

    Zerrouki, Nabil; Harrou, Fouzi; Houacine, Amrane; Sun, Ying

    2017-01-01

    Fall incidents are considered as the leading cause of disability and even mortality among older adults. To address this problem, fall detection and prevention fields receive a lot of intention over the past years and attracted many researcher efforts. We present in the current study an overall performance comparison between fall detection systems using the most popular machine learning approaches which are: Naïve Bayes, K nearest neighbor, neural network, and support vector machine. The analysis of the classification power associated to these most widely utilized algorithms is conducted on two fall detection databases namely FDD and URFD. Since the performance of the classification algorithm is inherently dependent on the features, we extracted and used the same features for all classifiers. The classification evaluation is conducted using different state of the art statistical measures such as the overall accuracy, the F-measure coefficient, and the area under ROC curve (AUC) value.

  2. Fall detection using supervised machine learning algorithms: A comparative study

    KAUST Repository

    Zerrouki, Nabil

    2017-01-05

    Fall incidents are considered as the leading cause of disability and even mortality among older adults. To address this problem, fall detection and prevention fields receive a lot of intention over the past years and attracted many researcher efforts. We present in the current study an overall performance comparison between fall detection systems using the most popular machine learning approaches which are: Naïve Bayes, K nearest neighbor, neural network, and support vector machine. The analysis of the classification power associated to these most widely utilized algorithms is conducted on two fall detection databases namely FDD and URFD. Since the performance of the classification algorithm is inherently dependent on the features, we extracted and used the same features for all classifiers. The classification evaluation is conducted using different state of the art statistical measures such as the overall accuracy, the F-measure coefficient, and the area under ROC curve (AUC) value.

  3. Towards the compression of parton densities through machine learning algorithms

    CERN Document Server

    Carrazza, Stefano

    2016-01-01

    One of the most fascinating challenges in the context of parton density function (PDF) is the determination of the best combined PDF uncertainty from individual PDF sets. Since 2014 multiple methodologies have been developed to achieve this goal. In this proceedings we first summarize the strategy adopted by the PDF4LHC15 recommendation and then, we discuss about a new approach to Monte Carlo PDF compression based on clustering through machine learning algorithms.

  4. A Multiple Sensor Machine Vision System for Automatic Hardwood Feature Detection

    Science.gov (United States)

    D. Earl Kline; Richard W. Conners; Daniel L. Schmoldt; Philip A. Araman; Robert L. Brisbin

    1993-01-01

    A multiple sensor machine vision prototype is being developed to scan full size hardwood lumber at industrial speeds for automatically detecting features such as knots holes, wane, stain, splits, checks, and color. The prototype integrates a multiple sensor imaging system, a materials handling system, a computer system, and application software. The prototype provides...

  5. Machine vision-based high-resolution weed mapping and patch-sprayer performance simulation

    NARCIS (Netherlands)

    Tang, L.; Tian, L.F.; Steward, B.L.

    1999-01-01

    An experimental machine vision-based patch-sprayer was developed. This sprayer was primarily designed to do real-time weed density estimation and variable herbicide application rate control. However, the sprayer also had the capability to do high-resolution weed mapping if proper mapping techniques

  6. Distance based control system for machine vision-based selective spraying

    NARCIS (Netherlands)

    Steward, B.L.; Tian, L.F.; Tang, L.

    2002-01-01

    For effective operation of a selective sprayer with real-time local weed sensing, herbicides must be delivered, accurately to weed targets in the field. With a machine vision-based selective spraying system, acquiring sequential images and switching nozzles on and off at the correct locations are

  7. Performance of Color Camera Machine Vision in Automated Furniture Rough Mill Systems

    Science.gov (United States)

    D. Earl Kline; Agus Widoyoko; Janice K. Wiedenbeck; Philip A. Araman

    1998-01-01

    The objective of this study was to evaluate the performance of color camera machine vision for lumber processing in a furniture rough mill. The study used 134 red oak boards to compare the performance of automated gang-rip-first rough mill yield based on a prototype color camera lumber inspection system developed at Virginia Tech with both estimated optimum rough mill...

  8. Gall mite inspection on dormant black currant buds using machine vision

    DEFF Research Database (Denmark)

    Nielsen, M. R.; Stigaard Laursen, Morten; Jonassen, M. S.

    2013-01-01

    This paper presents a novel machine vision-based approach detecting and mapping gall mite infection in dormant buds on black currant bushes. A vehicle was fitted with four cameras and RTK-GPS. Results compared automatic detection to human decisions based on the images, and by mapping the results...

  9. Reflections on the Development of a Machine Vision Technology for the Forest Products

    Science.gov (United States)

    Richard W. Conners; D.Earl Kline; Philip A. Araman; Robert L. Brisbon

    1992-01-01

    The authors have approximately 25 years experience in developing machine vision technology for the forest products industry. Based on this experience this paper will attempt to realistically predict what the future holds for this technology. In particular, this paper will attempt to describe some of the benefits this technology will offer, describe how the technology...

  10. MACHINE LEARNING METHODS IN DIGITAL AGRICULTURE: ALGORITHMS AND CASES

    Directory of Open Access Journals (Sweden)

    Aleksandr Vasilyevich Koshkarov

    2018-05-01

    Full Text Available Ensuring food security is a major challenge in many countries. With a growing global population, the issues of improving the efficiency of agriculture have become most relevant. Farmers are looking for new ways to increase yields, and governments of different countries are developing new programs to support agriculture. This contributes to a more active implementation of digital technologies in agriculture, helping farmers to make better decisions, increase yields and take care of the environment. The central point is the collection and analysis of data. In the industry of agriculture, data can be collected from different sources and may contain useful patterns that identify potential problems or opportunities. Data should be analyzed using machine learning algorithms to extract useful insights. Such methods of precision farming allow the farmer to monitor individual parts of the field, optimize the consumption of water and chemicals, and identify problems quickly. Purpose: to make an overview of the machine learning algorithms used for data analysis in agriculture. Methodology: an overview of the relevant literature; a survey of farmers. Results: relevant algorithms of machine learning for the analysis of data in agriculture at various levels were identified: soil analysis (soil assessment, soil classification, soil fertility predictions, weather forecast (simulation of climate change, temperature and precipitation prediction, and analysis of vegetation (weed identification, vegetation classification, plant disease identification, crop forecasting. Practical implications: agriculture, crop production.

  11. Accuracy of locating circular features using machine vision

    Science.gov (United States)

    Sklair, Cheryl W.; Hoff, William A.; Gatrell, Lance B.

    1992-03-01

    The ability to automatically locate objects using vision is a key technology for flexible, intelligent robotic operations. The vision task is facilitated by placing optical targets or markings in advance on the objects to be located. A number of researchers have advocated the use of circular target features as the features that can be most accurately located. This paper describes extensive analysis on circle centroid accuracy using both simulations and laboratory measurements. The work was part of an effort to design a video positioning sensor for NASA's Flight Telerobotic Servicer that would meet accuracy requirements. We have analyzed the main contributors to centroid error and have classified them into the following: (1) spatial quantization errors, (2) errors due to signal noise and random timing errors, (3) surface tilt errors, and (4) errors in modeling camera geometry. It is possible to compensate for the errors in (3) given an estimate of the tilt angle, and the errors from (4) by calibrating the intrinsic camera attributes. The errors in (1) and (2) cannot be compensated for, but they can be measured and their effects reduced somewhat. To characterize these error sources, we measured centroid repeatability under various conditions, including synchronization method, signal-to-noise ratio, and frequency attenuation. Although these results are specific to our video system and equipment, they provide a reference point that should be a characteristic of typical CCD cameras and digitization equipment.

  12. 3D Machine Vision and Additive Manufacturing: Concurrent Product and Process Development

    International Nuclear Information System (INIS)

    Ilyas, Ismet P

    2013-01-01

    The manufacturing environment rapidly changes in turbulence fashion. Digital manufacturing (DM) plays a significant role and one of the key strategies in setting up vision and strategic planning toward the knowledge based manufacturing. An approach of combining 3D machine vision (3D-MV) and an Additive Manufacturing (AM) may finally be finding its niche in manufacturing. This paper briefly overviews the integration of the 3D machine vision and AM in concurrent product and process development, the challenges and opportunities, the implementation of the 3D-MV and AM at POLMAN Bandung in accelerating product design and process development, and discusses a direct deployment of this approach on a real case from our industrial partners that have placed this as one of the very important and strategic approach in research as well as product/prototype development. The strategic aspects and needs of this combination approach in research, design and development are main concerns of the presentation.

  13. Prediction of Baseflow Index of Catchments using Machine Learning Algorithms

    Science.gov (United States)

    Yadav, B.; Hatfield, K.

    2017-12-01

    We present the results of eight machine learning techniques for predicting the baseflow index (BFI) of ungauged basins using a surrogate of catchment scale climate and physiographic data. The tested algorithms include ordinary least squares, ridge regression, least absolute shrinkage and selection operator (lasso), elasticnet, support vector machine, gradient boosted regression trees, random forests, and extremely randomized trees. Our work seeks to identify the dominant controls of BFI that can be readily obtained from ancillary geospatial databases and remote sensing measurements, such that the developed techniques can be extended to ungauged catchments. More than 800 gauged catchments spanning the continental United States were selected to develop the general methodology. The BFI calculation was based on the baseflow separated from daily streamflow hydrograph using HYSEP filter. The surrogate catchment attributes were compiled from multiple sources including digital elevation model, soil, landuse, climate data, other publicly available ancillary and geospatial data. 80% catchments were used to train the ML algorithms, and the remaining 20% of the catchments were used as an independent test set to measure the generalization performance of fitted models. A k-fold cross-validation using exhaustive grid search was used to fit the hyperparameters of each model. Initial model development was based on 19 independent variables, but after variable selection and feature ranking, we generated revised sparse models of BFI prediction that are based on only six catchment attributes. These key predictive variables selected after the careful evaluation of bias-variance tradeoff include average catchment elevation, slope, fraction of sand, permeability, temperature, and precipitation. The most promising algorithms exceeding an accuracy score (r-square) of 0.7 on test data include support vector machine, gradient boosted regression trees, random forests, and extremely randomized

  14. Optimization on robot arm machining by using genetic algorithms

    Science.gov (United States)

    Liu, Tung-Kuan; Chen, Chiu-Hung; Tsai, Shang-En

    2007-12-01

    In this study, an optimization problem on the robot arm machining is formulated and solved by using genetic algorithms (GAs). The proposed approach adopts direct kinematics model and utilizes GA's global search ability to find the optimum solution. The direct kinematics equations of the robot arm are formulated and can be used to compute the end-effector coordinates. Based on these, the objective of optimum machining along a set of points can be evolutionarily evaluated with the distance between machining points and end-effector positions. Besides, a 3D CAD application, CATIA, is used to build up the 3D models of the robot arm, work-pieces and their components. A simulated experiment in CATIA is used to verify the computation results first and a practical control on the robot arm through the RS232 port is also performed. From the results, this approach is proved to be robust and can be suitable for most machining needs when robot arms are adopted as the machining tools.

  15. The use of holographic and diffractive optics for optimized machine vision illumination for critical dimension inspection

    Science.gov (United States)

    Lizotte, Todd E.; Ohar, Orest

    2004-02-01

    Illuminators used in machine vision applications typically produce non-uniform illumination onto the targeted surface being observed, causing a variety of problems with machine vision alignment or measurement. In most circumstances the light source is broad spectrum, leading to further problems with image quality when viewed through a CCD camera. Configured with a simple light bulb and a mirrored reflector and/or frosted glass plates, these general illuminators are appropriate for only macro applications. Over the last 5 years newer illuminators have hit the market including circular or rectangular arrays of high intensity light emitting diodes. These diode arrays are used to create monochromatic flood illumination of a surface that is to be inspected. The problem with these illumination techniques is that most of the light does not illuminate the desired areas, but broadly spreads across the surface, or when integrated with diffuser elements, tend to create similar shadowing effects to the broad spectrum light sources. In many cases a user will try to increase the performance of these illuminators by adding several of these assemblies together, increasing the intensity or by moving the illumination source closer or farther from the surface being inspected. In this case these non-uniform techniques can lead to machine vision errors, where the computer machine vision may read false information, such as interpreting non-uniform lighting or shadowing effects as defects. This paper will cover a technique involving the use of holographic / diffractive hybrid optical elements that are integrated into standard and customized light sources used in the machine vision industry. The bulk of the paper will describe the function and fabrication of the holographic/diffractive optics and how they can be tailored to improve illuminator design. Further information will be provided a specific design and examples of it in operation will be disclosed.

  16. Color machine vision system for process control in the ceramics industry

    Science.gov (United States)

    Penaranda Marques, Jose A.; Briones, Leoncio; Florez, Julian

    1997-08-01

    This paper is focused on the design of a machine vision system to solve a problem found in the manufacturing process of high quality polished porcelain tiles. This consists of sorting the tiles according to the criteria 'same appearance to the human eye' or in other words, by color and visual texture. In 1994 this problem was tackled and led to a prototype which became fully operational at production scale in a manufacturing plant, named Porcelanatto, S.A. The system has evolved and has been adapted to meet the particular needs of this manufacturing company. Among the main issues that have been improved, it is worth pointing out: (1) improvement to discern subtle variations in color or texture, which are the main features of the visual appearance; (2) inspection time reduction, as a result of algorithm optimization and the increasing computing power. Thus, 100 percent of the production can be inspected, reaching a maximum of 120 tiles/sec.; (3) adaptation to the different types and models of tiles manufactured. The tiles vary not only in their visible patterns but also in dimensions, formats, thickness and allowances. In this sense, one major problem has been reaching an optimal compromise: The system must be sensitive enough to discern subtle variations in color, but at the same time insensitive thickness variations in the tiles. The following parts have been used to build the system: RGB color line scan camera, 12 bits per channel, PCI frame grabber, PC, fiber optic based illumination and the algorithm which will be explained in section 4.

  17. Detection of Two Types of Weed through Machine Vision System: Improving Site-Specific Spraying

    Directory of Open Access Journals (Sweden)

    S Sabzi

    2018-03-01

    Full Text Available Introduction With increase in world population, one of the approaches to provide food is using site-specific management system or so-called precision farming. In this management system, management of crop production inputs such as fertilizers, lime, herbicides, seed, etc. is done based on farm location features, with the aim of reducing waste, increasing revenues and maintaining environmental quality. Precision farming involves various aspects and is applicable on farm fields at all stages of tillage, planting, and harvesting. Today, in line with precision farming purposes, and to control weeds, pests, and diseases, all the efforts of specialists in precision farming is to reduce the amount of chemical substances in products. Although herbicides improve the quality and quantity of agricultural production, the possibility of applying inappropriately and unreasonably is very high. If the dose is too low, weed control is not performed correctly. Otherwise, If the dosage is too high, herbicides can be toxic for crops, can be transferred to soil and stay in it for a long time, and can penetrate to groundwater. By applying herbicides to variable rate, the potential for significant cost savings and reduced environmental damage to the products and environment will be possible. It is evident that in large-scale modern agriculture, individual management of each plant without using some advanced technologies is not possible. using machine vision systems is one of precision farming techniques to identify weeds. This study aimed to detect three plant such as Centaurea depressa M.B, Malvaneglecta and Potato plant using machine vision system. Materials and Methods In order to train algorithm of designed machine vision system, a platform that moved with the speed of 10.34 was used for shooting of Marfona potato fields. This platform was consisted of a chassis, camera (DFK23GM021,CMOS, 120 f/s, Made in Germany, and a processor system equipped with Matlab 2015

  18. Genetic algorithm enhanced by machine learning in dynamic aperture optimization

    Science.gov (United States)

    Li, Yongjun; Cheng, Weixing; Yu, Li Hua; Rainer, Robert

    2018-05-01

    With the aid of machine learning techniques, the genetic algorithm has been enhanced and applied to the multi-objective optimization problem presented by the dynamic aperture of the National Synchrotron Light Source II (NSLS-II) Storage Ring. During the evolution processes employed by the genetic algorithm, the population is classified into different clusters in the search space. The clusters with top average fitness are given "elite" status. Intervention on the population is implemented by repopulating some potentially competitive candidates based on the experience learned from the accumulated data. These candidates replace randomly selected candidates among the original data pool. The average fitness of the population is therefore improved while diversity is not lost. Maintaining diversity ensures that the optimization is global rather than local. The quality of the population increases and produces more competitive descendants accelerating the evolution process significantly. When identifying the distribution of optimal candidates, they appear to be located in isolated islands within the search space. Some of these optimal candidates have been experimentally confirmed at the NSLS-II storage ring. The machine learning techniques that exploit the genetic algorithm can also be used in other population-based optimization problems such as particle swarm algorithm.

  19. DC Algorithm for Extended Robust Support Vector Machine.

    Science.gov (United States)

    Fujiwara, Shuhei; Takeda, Akiko; Kanamori, Takafumi

    2017-05-01

    Nonconvex variants of support vector machines (SVMs) have been developed for various purposes. For example, robust SVMs attain robustness to outliers by using a nonconvex loss function, while extended [Formula: see text]-SVM (E[Formula: see text]-SVM) extends the range of the hyperparameter by introducing a nonconvex constraint. Here, we consider an extended robust support vector machine (ER-SVM), a robust variant of E[Formula: see text]-SVM. ER-SVM combines two types of nonconvexity from robust SVMs and E[Formula: see text]-SVM. Because of the two nonconvexities, the existing algorithm we proposed needs to be divided into two parts depending on whether the hyperparameter value is in the extended range or not. The algorithm also heuristically solves the nonconvex problem in the extended range. In this letter, we propose a new, efficient algorithm for ER-SVM. The algorithm deals with two types of nonconvexity while never entailing more computations than either E[Formula: see text]-SVM or robust SVM, and it finds a critical point of ER-SVM. Furthermore, we show that ER-SVM includes the existing robust SVMs as special cases. Numerical experiments confirm the effectiveness of integrating the two nonconvexities.

  20. Characteristics of the Arcing Plasma Formation Effect in Spark-Assisted Chemical Engraving of Glass, Based on Machine Vision

    OpenAIRE

    Chao-Ching Ho; Dung-Sheng Wu

    2018-01-01

    Spark-assisted chemical engraving (SACE) is a non-traditional machining technology that is used to machine electrically non-conducting materials including glass, ceramics, and quartz. The processing accuracy, machining efficiency, and reproducibility are the key factors in the SACE process. In the present study, a machine vision method is applied to monitor and estimate the status of a SACE-drilled hole in quartz glass. During the machining of quartz glass, the spring-fed tool electrode was p...

  1. Behavioral Modeling for Mental Health using Machine Learning Algorithms.

    Science.gov (United States)

    Srividya, M; Mohanavalli, S; Bhalaji, N

    2018-04-03

    Mental health is an indicator of emotional, psychological and social well-being of an individual. It determines how an individual thinks, feels and handle situations. Positive mental health helps one to work productively and realize their full potential. Mental health is important at every stage of life, from childhood and adolescence through adulthood. Many factors contribute to mental health problems which lead to mental illness like stress, social anxiety, depression, obsessive compulsive disorder, drug addiction, and personality disorders. It is becoming increasingly important to determine the onset of the mental illness to maintain proper life balance. The nature of machine learning algorithms and Artificial Intelligence (AI) can be fully harnessed for predicting the onset of mental illness. Such applications when implemented in real time will benefit the society by serving as a monitoring tool for individuals with deviant behavior. This research work proposes to apply various machine learning algorithms such as support vector machines, decision trees, naïve bayes classifier, K-nearest neighbor classifier and logistic regression to identify state of mental health in a target group. The responses obtained from the target group for the designed questionnaire were first subject to unsupervised learning techniques. The labels obtained as a result of clustering were validated by computing the Mean Opinion Score. These cluster labels were then used to build classifiers to predict the mental health of an individual. Population from various groups like high school students, college students and working professionals were considered as target groups. The research presents an analysis of applying the aforementioned machine learning algorithms on the target groups and also suggests directions for future work.

  2. Alignment of Custom Standards by Machine Learning Algorithms

    Directory of Open Access Journals (Sweden)

    Adela Sirbu

    2010-09-01

    Full Text Available Building an efficient model for automatic alignment of terminologies would bring a significant improvement to the information retrieval process. We have developed and compared two machine learning based algorithms whose aim is to align 2 custom standards built on a 3 level taxonomy, using kNN and SVM classifiers that work on a vector representation consisting of several similarity measures. The weights utilized by the kNN were optimized with an evolutionary algorithm, while the SVM classifier's hyper-parameters were optimized with a grid search algorithm. The database used for train was semi automatically obtained by using the Coma++ tool. The performance of our aligners is shown by the results obtained on the test set.

  3. Vision-based Human Action Classification Using Adaptive Boosting Algorithm

    KAUST Repository

    Zerrouki, Nabil; Harrou, Fouzi; Sun, Ying; Houacine, Amrane

    2018-01-01

    Precise recognition of human action is a key enabler for the development of many applications including autonomous robots for medical diagnosis and surveillance of elderly people in home environment. This paper addresses the human action recognition based on variation in body shape. Specifically, we divide the human body into five partitions that correspond to five partial occupancy areas. For each frame, we calculated area ratios and used them as input data for recognition stage. Here, we consider six classes of activities namely: walking, standing, bending, lying, squatting, and sitting. In this paper, we proposed an efficient human action recognition scheme, which takes advantages of superior discrimination capacity of AdaBoost algorithm. We validated the effectiveness of this approach by using experimental data from two publicly available databases fall detection databases from the University of Rzeszow’s and the Universidad de Málaga fall detection datasets. We provided comparisons of the proposed approach with state-of-the-art classifiers based on the neural network, K-nearest neighbor, support vector machine and naïve Bayes and showed that we achieve better results in discriminating human gestures.

  4. Vision-based Human Action Classification Using Adaptive Boosting Algorithm

    KAUST Repository

    Zerrouki, Nabil

    2018-05-07

    Precise recognition of human action is a key enabler for the development of many applications including autonomous robots for medical diagnosis and surveillance of elderly people in home environment. This paper addresses the human action recognition based on variation in body shape. Specifically, we divide the human body into five partitions that correspond to five partial occupancy areas. For each frame, we calculated area ratios and used them as input data for recognition stage. Here, we consider six classes of activities namely: walking, standing, bending, lying, squatting, and sitting. In this paper, we proposed an efficient human action recognition scheme, which takes advantages of superior discrimination capacity of AdaBoost algorithm. We validated the effectiveness of this approach by using experimental data from two publicly available databases fall detection databases from the University of Rzeszow’s and the Universidad de Málaga fall detection datasets. We provided comparisons of the proposed approach with state-of-the-art classifiers based on the neural network, K-nearest neighbor, support vector machine and naïve Bayes and showed that we achieve better results in discriminating human gestures.

  5. Hardware Approach for Real Time Machine Stereo Vision

    Directory of Open Access Journals (Sweden)

    Michael Tornow

    2006-02-01

    Full Text Available Image processing is an effective tool for the analysis of optical sensor information for driver assistance systems and controlling of autonomous robots. Algorithms for image processing are often very complex and costly in terms of computation. In robotics and driver assistance systems, real-time processing is necessary. Signal processing algorithms must often be drastically modified so they can be implemented in the hardware. This task is especially difficult for continuous real-time processing at high speeds. This article describes a hardware-software co-design for a multi-object position sensor based on a stereophotogrammetric measuring method. In order to cover a large measuring area, an optimized algorithm based on an image pyramid is implemented in an FPGA as a parallel hardware solution for depth map calculation. Object recognition and tracking are then executed in real-time in a processor with help of software. For this task a statistical cluster method is used. Stabilization of the tracking is realized through use of a Kalman filter. Keywords: stereophotogrammetry, hardware-software co-design, FPGA, 3-d image analysis, real-time, clustering and tracking.

  6. Automatic pellet density checking machine using vision technique

    International Nuclear Information System (INIS)

    Kumar, Suman; Raju, Y.S.; Raj Kumar, J.V.; Sairam, S.; Sheela; Hemantha Rao, G.V.S.

    2012-01-01

    Uranium di-oxide powder prepared through chemical process is converted to green pellets through the powder metallurgy route of precompaction and final compaction operations. These green pellets are kept in a molybdenum boat, which consists of a molybdenum base and a shroud. The boats are passed through the high temperature sintering furnaces to achieve required density of pellets. At present MIL standard 105 E is followed for measuring density of sintered pellets in the boat. As per AQL 2.5 of MIL standard, five pellets are collected from each boat, which contains approximately 800 nos of pellets. The densities of these collected pellets are measured. If anyone pellet density is less than the required value, the entire boat of pellets are rejected and sent back for dissolution for further processing. An Automatic Pellet Density Checking Machine (APDCM) was developed to salvage the acceptable density pellets from the rejected boat of pellets

  7. Express quality control of chicken eggs by machine vision

    Science.gov (United States)

    Gorbunova, Elena V.; Chertov, Aleksandr N.; Peretyagin, Vladimir S.; Korotaev, Valery V.; Arbuzova, Evgeniia A.

    2017-06-01

    The urgency of the task of analyzing the foodstuffs quality is determined by the strategy for the formation of a healthy lifestyle and the rational nutrition of the world population. This applies to products, such as chicken eggs. In particular, it is necessary to control the chicken eggs quality at the farm production prior to incubation in order to eliminate the possible hereditary diseases, as well as high embryonic mortality and a sharp decrease in the quality of the bred young. Up to this day, in the market there are no objective instruments of contactless express quality control as analytical equipment that allow the high-precision quality examination of the chicken eggs, which is determined by the color parameters of the eggshell (color uniformity) and yolk of eggs, and by the presence in the eggshell of various defects (cracks, growths, wrinkles, dirty). All mentioned features are usually evaluated only visually (subjectively) with the help of normalized color standards and ovoscopes. Therefore, this work is devoted to the investigation of the application opportunities of contactless express control method with the help of technical vision to implement the chicken eggs' quality analysis. As a result of the studies, a prototype with the appropriate software was proposed. Experimental studies of this equipment on a representative sample of eggs from chickens of different breeds have been carried out (the total number of analyzed samples exceeds 300 pieces). The correctness of the color analysis was verified by spectrophotometric studies of the surface of the eggshell.

  8. Selection of parameters for advanced machining processes using firefly algorithm

    Directory of Open Access Journals (Sweden)

    Rajkamal Shukla

    2017-02-01

    Full Text Available Advanced machining processes (AMPs are widely utilized in industries for machining complex geometries and intricate profiles. In this paper, two significant processes such as electric discharge machining (EDM and abrasive water jet machining (AWJM are considered to get the optimum values of responses for the given range of process parameters. The firefly algorithm (FA is attempted to the considered processes to obtain optimized parameters and the results obtained are compared with the results given by previous researchers. The variation of process parameters with respect to the responses are plotted to confirm the optimum results obtained using FA. In EDM process, the performance parameter “MRR” is increased from 159.70 gm/min to 181.6723 gm/min, while “Ra” and “REWR” are decreased from 6.21 μm to 3.6767 μm and 6.21% to 6.324 × 10−5% respectively. In AWJM process, the value of the “kerf” and “Ra” are decreased from 0.858 mm to 0.3704 mm and 5.41 mm to 4.443 mm respectively. In both the processes, the obtained results show a significant improvement in the responses.

  9. The implementation of depth measurement and related algorithms based on binocular vision in embedded AM5728

    Science.gov (United States)

    Deng, Zhiwei; Li, Xicai; Shi, Junsheng; Huang, Xiaoqiao; Li, Feiyan

    2018-01-01

    Depth measurement is the most basic measurement in various machine vision, such as automatic driving, unmanned aerial vehicle (UAV), robot and so on. And it has a wide range of use. With the development of image processing technology and the improvement of hardware miniaturization and processing speed, real-time depth measurement using dual cameras has become a reality. In this paper, an embedded AM5728 and the ordinary low-cost dual camera is used as the hardware platform. The related algorithms of dual camera calibration, image matching and depth calculation have been studied and implemented on the hardware platform, and hardware design and the rationality of the related algorithms of the system are tested. The experimental results show that the system can realize simultaneous acquisition of binocular images, switching of left and right video sources, display of depth image and depth range. For images with a resolution of 640 × 480, the processing speed of the system can be up to 25 fps. The experimental results show that the optimal measurement range of the system is from 0.5 to 1.5 meter, and the relative error of the distance measurement is less than 5%. Compared with the PC, ARM11 and DMCU hardware platforms, the embedded AM5728 hardware is good at meeting real-time depth measurement requirements in ensuring the image resolution.

  10. METHODS OF ASSESSING THE DEGREE OF DESTRUCTION OF RUBBER PRODUCTS USING COMPUTER VISION ALGORITHMS

    Directory of Open Access Journals (Sweden)

    A. A. Khvostov

    2015-01-01

    Full Text Available For technical inspection of rubber products are essential methods of improving video scopes analyzing the degree of destruction and aging of rubber in an aggressive environment. The main factor determining the degree of destruction of the rubber product, the degree of coverage is cracked, which can be described as the amount of the total area, perimeter cracks, geometric shapes and other parameters. In the process of creating a methodology for assessing the degree of destruction of rubber products arises the problem of the development of machine vision algorithm for estimating the degree of coverage of the sample fractures and fracture characterization. For the development of image processing algorithm performed experimental studies on the artificial aging of several samples of products that are made from different rubbers. In the course of the experiments it was obtained several samples of shots vulcanizates in real time. To achieve the goals initially made light stabilization of array images using Gaussian filter. Thereafter, for each image binarization operation is applied. To highlight the contours of the surface damage of the sample is used Canny algorithm. The detected contours are converted into an array of pixels. However, a crack may be allocated to several contours. Therefore, an algorithm was developed by combining contours criterion of minimum distance between them. At the end of the calculation is made of the morphological features of each contour (area, perimeter, length, width, angle of inclination, the At the end of the calculation is made of the morphological features of each contour (area, perimeter, length, width, angle of inclination, the Minkowski dimension. Show schedule obtained by the method parameters destruction of samples of rubber products. The developed method allows you to automate assessment of the degree of aging of rubber products in telemetry systems, to study the dynamics of the aging process of polymers to

  11. A Semisupervised Support Vector Machines Algorithm for BCI Systems

    Science.gov (United States)

    Qin, Jianzhao; Li, Yuanqing; Sun, Wei

    2007-01-01

    As an emerging technology, brain-computer interfaces (BCIs) bring us new communication interfaces which translate brain activities into control signals for devices like computers, robots, and so forth. In this study, we propose a semisupervised support vector machine (SVM) algorithm for brain-computer interface (BCI) systems, aiming at reducing the time-consuming training process. In this algorithm, we apply a semisupervised SVM for translating the features extracted from the electrical recordings of brain into control signals. This SVM classifier is built from a small labeled data set and a large unlabeled data set. Meanwhile, to reduce the time for training semisupervised SVM, we propose a batch-mode incremental learning method, which can also be easily applied to the online BCI systems. Additionally, it is suggested in many studies that common spatial pattern (CSP) is very effective in discriminating two different brain states. However, CSP needs a sufficient labeled data set. In order to overcome the drawback of CSP, we suggest a two-stage feature extraction method for the semisupervised learning algorithm. We apply our algorithm to two BCI experimental data sets. The offline data analysis results demonstrate the effectiveness of our algorithm. PMID:18368141

  12. Single Directional SMO Algorithm for Least Squares Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Xigao Shao

    2013-01-01

    Full Text Available Working set selection is a major step in decomposition methods for training least squares support vector machines (LS-SVMs. In this paper, a new technique for the selection of working set in sequential minimal optimization- (SMO- type decomposition methods is proposed. By the new method, we can select a single direction to achieve the convergence of the optimality condition. A simple asymptotic convergence proof for the new algorithm is given. Experimental comparisons demonstrate that the classification accuracy of the new method is not largely different from the existing methods, but the training speed is faster than existing ones.

  13. An explainable deep machine vision framework for plant stress phenotyping.

    Science.gov (United States)

    Ghosal, Sambuddha; Blystone, David; Singh, Asheesh K; Ganapathysubramanian, Baskar; Singh, Arti; Sarkar, Soumik

    2018-05-01

    Current approaches for accurate identification, classification, and quantification of biotic and abiotic stresses in crop research and production are predominantly visual and require specialized training. However, such techniques are hindered by subjectivity resulting from inter- and intrarater cognitive variability. This translates to erroneous decisions and a significant waste of resources. Here, we demonstrate a machine learning framework's ability to identify and classify a diverse set of foliar stresses in soybean [ Glycine max (L.) Merr.] with remarkable accuracy. We also present an explanation mechanism, using the top-K high-resolution feature maps that isolate the visual symptoms used to make predictions. This unsupervised identification of visual symptoms provides a quantitative measure of stress severity, allowing for identification (type of foliar stress), classification (low, medium, or high stress), and quantification (stress severity) in a single framework without detailed symptom annotation by experts. We reliably identified and classified several biotic (bacterial and fungal diseases) and abiotic (chemical injury and nutrient deficiency) stresses by learning from over 25,000 images. The learned model is robust to input image perturbations, demonstrating viability for high-throughput deployment. We also noticed that the learned model appears to be agnostic to species, seemingly demonstrating an ability of transfer learning. The availability of an explainable model that can consistently, rapidly, and accurately identify and quantify foliar stresses would have significant implications in scientific research, plant breeding, and crop production. The trained model could be deployed in mobile platforms (e.g., unmanned air vehicles and automated ground scouts) for rapid, large-scale scouting or as a mobile application for real-time detection of stress by farmers and researchers. Copyright © 2018 the Author(s). Published by PNAS.

  14. An explainable deep machine vision framework for plant stress phenotyping

    Science.gov (United States)

    Blystone, David; Ganapathysubramanian, Baskar; Singh, Arti; Sarkar, Soumik

    2018-01-01

    Current approaches for accurate identification, classification, and quantification of biotic and abiotic stresses in crop research and production are predominantly visual and require specialized training. However, such techniques are hindered by subjectivity resulting from inter- and intrarater cognitive variability. This translates to erroneous decisions and a significant waste of resources. Here, we demonstrate a machine learning framework’s ability to identify and classify a diverse set of foliar stresses in soybean [Glycine max (L.) Merr.] with remarkable accuracy. We also present an explanation mechanism, using the top-K high-resolution feature maps that isolate the visual symptoms used to make predictions. This unsupervised identification of visual symptoms provides a quantitative measure of stress severity, allowing for identification (type of foliar stress), classification (low, medium, or high stress), and quantification (stress severity) in a single framework without detailed symptom annotation by experts. We reliably identified and classified several biotic (bacterial and fungal diseases) and abiotic (chemical injury and nutrient deficiency) stresses by learning from over 25,000 images. The learned model is robust to input image perturbations, demonstrating viability for high-throughput deployment. We also noticed that the learned model appears to be agnostic to species, seemingly demonstrating an ability of transfer learning. The availability of an explainable model that can consistently, rapidly, and accurately identify and quantify foliar stresses would have significant implications in scientific research, plant breeding, and crop production. The trained model could be deployed in mobile platforms (e.g., unmanned air vehicles and automated ground scouts) for rapid, large-scale scouting or as a mobile application for real-time detection of stress by farmers and researchers. PMID:29666265

  15. A Comparison of the Effects of K-Anonymity on Machine Learning Algorithms

    OpenAIRE

    Hayden Wimmer; Loreen Powell

    2014-01-01

    While research has been conducted in machine learning algorithms and in privacy preserving in data mining (PPDM), a gap in the literature exists which combines the aforementioned areas to determine how PPDM affects common machine learning algorithms. The aim of this research is to narrow this literature gap by investigating how a common PPDM algorithm, K-Anonymity, affects common machine learning and data mining algorithms, namely neural networks, logistic regression, decision trees, and Baye...

  16. Machine learning based global particle indentification algorithms at LHCb experiment

    CERN Multimedia

    Derkach, Denis; Likhomanenko, Tatiana; Rogozhnikov, Aleksei; Ratnikov, Fedor

    2017-01-01

    One of the most important aspects of data processing at LHC experiments is the particle identification (PID) algorithm. In LHCb, several different sub-detector systems provide PID information: the Ring Imaging CHerenkov (RICH) detector, the hadronic and electromagnetic calorimeters, and the muon chambers. To improve charged particle identification, several neural networks including a deep architecture and gradient boosting have been applied to data. These new approaches provide higher identification efficiencies than existing implementations for all charged particle types. It is also necessary to achieve a flat dependency between efficiencies and spectator variables such as particle momentum, in order to reduce systematic uncertainties during later stages of data analysis. For this purpose, "flat” algorithms that guarantee the flatness property for efficiencies have also been developed. This talk presents this new approach based on machine learning and its performance.

  17. How the machine ‘thinks’: Understanding opacity in machine learning algorithms

    Directory of Open Access Journals (Sweden)

    Jenna Burrell

    2016-01-01

    Full Text Available This article considers the issue of opacity as a problem for socially consequential mechanisms of classification and ranking, such as spam filters, credit card fraud detection, search engines, news trends, market segmentation and advertising, insurance or loan qualification, and credit scoring. These mechanisms of classification all frequently rely on computational algorithms, and in many cases on machine learning algorithms to do this work. In this article, I draw a distinction between three forms of opacity: (1 opacity as intentional corporate or state secrecy, (2 opacity as technical illiteracy, and (3 an opacity that arises from the characteristics of machine learning algorithms and the scale required to apply them usefully. The analysis in this article gets inside the algorithms themselves. I cite existing literatures in computer science, known industry practices (as they are publicly presented, and do some testing and manipulation of code as a form of lightweight code audit. I argue that recognizing the distinct forms of opacity that may be coming into play in a given application is a key to determining which of a variety of technical and non-technical solutions could help to prevent harm.

  18. A low-cost machine vision system for the recognition and sorting of small parts

    Science.gov (United States)

    Barea, Gustavo; Surgenor, Brian W.; Chauhan, Vedang; Joshi, Keyur D.

    2018-04-01

    An automated machine vision-based system for the recognition and sorting of small parts was designed, assembled and tested. The system was developed to address a need to expose engineering students to the issues of machine vision and assembly automation technology, with readily available and relatively low-cost hardware and software. This paper outlines the design of the system and presents experimental performance results. Three different styles of plastic gears, together with three different styles of defective gears, were used to test the system. A pattern matching tool was used for part classification. Nine experiments were conducted to demonstrate the effects of changing various hardware and software parameters, including: conveyor speed, gear feed rate, classification, and identification score thresholds. It was found that the system could achieve a maximum system accuracy of 95% at a feed rate of 60 parts/min, for a given set of parameter settings. Future work will be looking at the effect of lighting.

  19. Intelligent Machine Vision for Automated Fence Intruder Detection Using Self-organizing Map

    OpenAIRE

    Veldin A. Talorete Jr.; Sherwin A Guirnaldo

    2017-01-01

    This paper presents an intelligent machine vision for automated fence intruder detection. A series of still captured images that contain fence events using Internet Protocol cameras was used as input data to the system. Two classifiers were used; the first is to classify human posture and the second one will classify intruder location. The system classifiers were implemented using Self-Organizing Map after the implementation of several image segmentation processes. The human posture classifie...

  20. Design and Assessment of a Machine Vision System for Automatic Vehicle Wheel Alignment

    Directory of Open Access Journals (Sweden)

    Rocco Furferi

    2013-05-01

    Full Text Available Abstract Wheel alignment, consisting of properly checking the wheel characteristic angles against vehicle manufacturers' specifications, is a crucial task in the automotive field since it prevents irregular tyre wear and affects vehicle handling and safety. In recent years, systems based on Machine Vision have been widely studied in order to automatically detect wheels' characteristic angles. In order to overcome the limitations of existing methodologies, due to measurement equipment being mounted onto the wheels, the present work deals with design and assessment of a 3D machine vision-based system for the contactless reconstruction of vehicle wheel geometry, with particular reference to characteristic planes. Such planes, properly referred to as a global coordinate system, are used for determining wheel angles. The effectiveness of the proposed method was tested against a set of measurements carried out using a commercial 3D scanner; the absolute average error in measuring toe and camber angles with the machine vision system resulted in full compatibility with the expected accuracy of wheel alignment systems.

  1. An Automatic Assembling System for Sealing Rings Based on Machine Vision

    Directory of Open Access Journals (Sweden)

    Mingyu Gao

    2017-01-01

    Full Text Available In order to grab and place the sealing rings of battery lid quickly and accurately, an automatic assembling system for sealing rings based on machine vision is developed in this paper. The whole system is composed of the light sources, cameras, industrial control units, and a 4-degree-of-freedom industrial robot. Specifically, the sealing rings are recognized and located automatically with the machine vision module. Then industrial robot is controlled for grabbing the sealing rings dynamically under the joint work of multiple control units and visual feedback. Furthermore, the coordinates of the fast-moving battery lid are tracked by the machine vision module. Finally the sealing rings are placed on the sealing ports of battery lid accurately and automatically. Experimental results demonstrate that the proposed system can grab the sealing rings and place them on the sealing port of the fast-moving battery lid successfully. More importantly, the proposed system can improve the efficiency of the battery production line obviously.

  2. Fuzzy classification for strawberry diseases-infection using machine vision and soft-computing techniques

    Science.gov (United States)

    Altıparmak, Hamit; Al Shahadat, Mohamad; Kiani, Ehsan; Dimililer, Kamil

    2018-04-01

    Robotic agriculture requires smart and doable techniques to substitute the human intelligence with machine intelligence. Strawberry is one of the important Mediterranean product and its productivity enhancement requires modern and machine-based methods. Whereas a human identifies the disease infected leaves by his eye, the machine should also be capable of vision-based disease identification. The objective of this paper is to practically verify the applicability of a new computer-vision method for discrimination between the healthy and disease infected strawberry leaves which does not require neural network or time consuming trainings. The proposed method was tested under outdoor lighting condition using a regular DLSR camera without any particular lens. Since the type and infection degree of disease is approximated a human brain a fuzzy decision maker classifies the leaves over the images captured on-site having the same properties of human vision. Optimizing the fuzzy parameters for a typical strawberry production area at a summer mid-day in Cyprus produced 96% accuracy for segmented iron deficiency and 93% accuracy for segmented using a typical human instant classification approximation as the benchmark holding higher accuracy than a human eye identifier. The fuzzy-base classifier provides approximate result for decision making on the leaf status as if it is healthy or not.

  3. Comparison of Three Smart Camera Architectures for Real-Time Machine Vision System

    Directory of Open Access Journals (Sweden)

    Abdul Waheed Malik

    2013-12-01

    Full Text Available This paper presents a machine vision system for real-time computation of distance and angle of a camera from a set of reference points located on a target board. Three different smart camera architectures were explored to compare performance parameters such as power consumption, frame speed and latency. Architecture 1 consists of hardware machine vision modules modeled at Register Transfer (RT level and a soft-core processor on a single FPGA chip. Architecture 2 is commercially available software based smart camera, Matrox Iris GT. Architecture 3 is a two-chip solution composed of hardware machine vision modules on FPGA and an external microcontroller. Results from a performance comparison show that Architecture 2 has higher latency and consumes much more power than Architecture 1 and 3. However, Architecture 2 benefits from an easy programming model. Smart camera system with FPGA and external microcontroller has lower latency and consumes less power as compared to single FPGA chip having hardware modules and soft-core processor.

  4. Developing operation algorithms for vision subsystems in autonomous mobile robots

    Science.gov (United States)

    Shikhman, M. V.; Shidlovskiy, S. V.

    2018-05-01

    The paper analyzes algorithms for selecting keypoints on the image for the subsequent automatic detection of people and obstacles. The algorithm is based on the histogram of oriented gradients and the support vector method. The combination of these methods allows successful selection of dynamic and static objects. The algorithm can be applied in various autonomous mobile robots.

  5. A comparative study of fast dense stereo vision algorithms

    NARCIS (Netherlands)

    Sunyoto, H.; Mark, W. van der; Gavrila, D.M.

    2004-01-01

    With recent hardware advances, real-time dense stereo vision becomes increasingly feasible for general-purpose processors. This has important benefits for the intelligent vehicles domain, alleviating object segmentation problems when sensing complex, cluttered traffic scenes. In this paper, we

  6. Vision Algorithm for the Solar Aspect System of the High Energy Replicated Optics to Explore the Sun Mission

    Science.gov (United States)

    Cramer, Alexander Krishnan

    2014-01-01

    This work covers the design and test of a machine vision algorithm for generating high- accuracy pitch and yaw pointing solutions relative to the sun on a high altitude balloon. It describes how images were constructed by focusing an image of the sun onto a plate printed with a pattern of small cross-shaped fiducial markers. Images of this plate taken with an off-the-shelf camera were processed to determine relative position of the balloon payload to the sun. The algorithm is broken into four problems: circle detection, fiducial detection, fiducial identification, and image registration. Circle detection is handled by an "Average Intersection" method, fiducial detection by a matched filter approach, and identification with an ad-hoc method based on the spacing between fiducials. Performance is verified on real test data where possible, but otherwise uses artificially generated data. Pointing knowledge is ultimately verified to meet the 20 arcsecond requirement.

  7. Biologically based machine vision: signal analysis of monopolar cells in the visual system of Musca domestica.

    Science.gov (United States)

    Newton, Jenny; Barrett, Steven F; Wilcox, Michael J; Popp, Stephanie

    2002-01-01

    Machine vision for navigational purposes is a rapidly growing field. Many abilities such as object recognition and target tracking rely on vision. Autonomous vehicles must be able to navigate in dynamic enviroments and simultaneously locate a target position. Traditional machine vision often fails to react in real time because of large computational requirements whereas the fly achieves complex orientation and navigation with a relatively small and simple brain. Understanding how the fly extracts visual information and how neurons encode and process information could lead us to a new approach for machine vision applications. Photoreceptors in the Musca domestica eye that share the same spatial information converge into a structure called the cartridge. The cartridge consists of the photoreceptor axon terminals and monopolar cells L1, L2, and L4. It is thought that L1 and L2 cells encode edge related information relative to a single cartridge. These cells are thought to be equivalent to vertebrate bipolar cells, producing contrast enhancement and reduction of information sent to L4. Monopolar cell L4 is thought to perform image segmentation on the information input from L1 and L2 and also enhance edge detection. A mesh of interconnected L4's would correlate the output from L1 and L2 cells of adjacent cartridges and provide a parallel network for segmenting an object's edges. The focus of this research is to excite photoreceptors of the common housefly, Musca domestica, with different visual patterns. The electrical response of monopolar cells L1, L2, and L4 will be recorded using intracellular recording techniques. Signal analysis will determine the neurocircuitry to detect and segment images.

  8. A bio-inspired apposition compound eye machine vision sensor system

    International Nuclear Information System (INIS)

    Davis, J D; Barrett, S F; Wright, C H G; Wilcox, M

    2009-01-01

    The Wyoming Information, Signal Processing, and Robotics Laboratory is developing a wide variety of bio-inspired vision sensors. We are interested in exploring the vision system of various insects and adapting some of their features toward the development of specialized vision sensors. We do not attempt to supplant traditional digital imaging techniques but rather develop sensor systems tailor made for the application at hand. We envision that many applications may require a hybrid approach using conventional digital imaging techniques enhanced with bio-inspired analogue sensors. In this specific project, we investigated the apposition compound eye and its characteristics commonly found in diurnal insects and certain species of arthropods. We developed and characterized an array of apposition compound eye-type sensors and tested them on an autonomous robotic vehicle. The robot exhibits the ability to follow a pre-defined target and avoid specified obstacles using a simple control algorithm.

  9. A genetic algorithm for preemptive scheduling of a single machine

    Directory of Open Access Journals (Sweden)

    Amir-Mohammad Golmohammadi

    2016-09-01

    Full Text Available This paper presents a mathematical model for scheduling of a single machine when there are preemptions in jobs. The primary objective of the study is to minimize different objectives such as earliness, tardiness and work in process. The proposed mathematical problem is considered as NP-Hard and the optimal solution is available for small scale problems. Therefore, a genetic algorithm (GA is developed to solve the problem for large-scale problems. The implementation of the proposed model is compared with GA for problems with up to 50 jobs using three methods of roulette wheel sampling, random sampling and competition sampling. The results have indicated that competition sampling has reached optimal solutions for small scale problems and it could obtain better near-optimal solutions in relatively lower running time compared with other sampling methods.

  10. Modeling the Swift Bat Trigger Algorithm with Machine Learning

    Science.gov (United States)

    Graff, Philip B.; Lien, Amy Y.; Baker, John G.; Sakamoto, Takanori

    2016-01-01

    To draw inferences about gamma-ray burst (GRB) source populations based on Swift observations, it is essential to understand the detection efficiency of the Swift burst alert telescope (BAT). This study considers the problem of modeling the Swift / BAT triggering algorithm for long GRBs, a computationally expensive procedure, and models it using machine learning algorithms. A large sample of simulated GRBs from Lien et al. is used to train various models: random forests, boosted decision trees (with AdaBoost), support vector machines, and artificial neural networks. The best models have accuracies of greater than or equal to 97 percent (less than or equal to 3 percent error), which is a significant improvement on a cut in GRB flux, which has an accuracy of 89.6 percent (10.4 percent error). These models are then used to measure the detection efficiency of Swift as a function of redshift z, which is used to perform Bayesian parameter estimation on the GRB rate distribution. We find a local GRB rate density of n (sub 0) approaching 0.48 (sup plus 0.41) (sub minus 0.23) per cubic gigaparsecs per year with power-law indices of n (sub 1) approaching 1.7 (sup plus 0.6) (sub minus 0.5) and n (sub 2) approaching minus 5.9 (sup plus 5.7) (sub minus 0.1) for GRBs above and below a break point of z (redshift) (sub 1) approaching 6.8 (sup plus 2.8) (sub minus 3.2). This methodology is able to improve upon earlier studies by more accurately modeling Swift detection and using this for fully Bayesian model fitting.

  11. Modeling the Swift BAT Trigger Algorithm with Machine Learning

    Science.gov (United States)

    Graff, Philip B.; Lien, Amy Y.; Baker, John G.; Sakamoto, Takanori

    2015-01-01

    To draw inferences about gamma-ray burst (GRB) source populations based on Swift observations, it is essential to understand the detection efficiency of the Swift burst alert telescope (BAT). This study considers the problem of modeling the Swift BAT triggering algorithm for long GRBs, a computationally expensive procedure, and models it using machine learning algorithms. A large sample of simulated GRBs from Lien et al. (2014) is used to train various models: random forests, boosted decision trees (with AdaBoost), support vector machines, and artificial neural networks. The best models have accuracies of approximately greater than 97% (approximately less than 3% error), which is a significant improvement on a cut in GRB flux which has an accuracy of 89:6% (10:4% error). These models are then used to measure the detection efficiency of Swift as a function of redshift z, which is used to perform Bayesian parameter estimation on the GRB rate distribution. We find a local GRB rate density of eta(sub 0) approximately 0.48(+0.41/-0.23) Gpc(exp -3) yr(exp -1) with power-law indices of eta(sub 1) approximately 1.7(+0.6/-0.5) and eta(sub 2) approximately -5.9(+5.7/-0.1) for GRBs above and below a break point of z(sub 1) approximately 6.8(+2.8/-3.2). This methodology is able to improve upon earlier studies by more accurately modeling Swift detection and using this for fully Bayesian model fitting. The code used in this is analysis is publicly available online.

  12. Overlay improvements using a real time machine learning algorithm

    Science.gov (United States)

    Schmitt-Weaver, Emil; Kubis, Michael; Henke, Wolfgang; Slotboom, Daan; Hoogenboom, Tom; Mulkens, Jan; Coogans, Martyn; ten Berge, Peter; Verkleij, Dick; van de Mast, Frank

    2014-04-01

    While semiconductor manufacturing is moving towards the 14nm node using immersion lithography, the overlay requirements are tightened to below 5nm. Next to improvements in the immersion scanner platform, enhancements in the overlay optimization and process control are needed to enable these low overlay numbers. Whereas conventional overlay control methods address wafer and lot variation autonomously with wafer pre exposure alignment metrology and post exposure overlay metrology, we see a need to reduce these variations by correlating more of the TWINSCAN system's sensor data directly to the post exposure YieldStar metrology in time. In this paper we will present the results of a study on applying a real time control algorithm based on machine learning technology. Machine learning methods use context and TWINSCAN system sensor data paired with post exposure YieldStar metrology to recognize generic behavior and train the control system to anticipate on this generic behavior. Specific for this study, the data concerns immersion scanner context, sensor data and on-wafer measured overlay data. By making the link between the scanner data and the wafer data we are able to establish a real time relationship. The result is an inline controller that accounts for small changes in scanner hardware performance in time while picking up subtle lot to lot and wafer to wafer deviations introduced by wafer processing.

  13. Effective and efficient optics inspection approach using machine learning algorithms

    International Nuclear Information System (INIS)

    Abdulla, G.; Kegelmeyer, L.; Liao, Z.; Carr, W.

    2010-01-01

    The Final Optics Damage Inspection (FODI) system automatically acquires and utilizes the Optics Inspection (OI) system to analyze images of the final optics at the National Ignition Facility (NIF). During each inspection cycle up to 1000 images acquired by FODI are examined by OI to identify and track damage sites on the optics. The process of tracking growing damage sites on the surface of an optic can be made more effective by identifying and removing signals associated with debris or reflections. The manual process to filter these false sites is daunting and time consuming. In this paper we discuss the use of machine learning tools and data mining techniques to help with this task. We describe the process to prepare a data set that can be used for training and identifying hardware reflections in the image data. In order to collect training data, the images are first automatically acquired and analyzed with existing software and then relevant features such as spatial, physical and luminosity measures are extracted for each site. A subset of these sites is 'truthed' or manually assigned a class to create training data. A supervised classification algorithm is used to test if the features can predict the class membership of new sites. A suite of self-configuring machine learning tools called 'Avatar Tools' is applied to classify all sites. To verify, we used 10-fold cross correlation and found the accuracy was above 99%. This substantially reduces the number of false alarms that would otherwise be sent for more extensive investigation.

  14. A New Approach to Spindle Radial Error Evaluation Using a Machine Vision System

    Directory of Open Access Journals (Sweden)

    Kavitha C.

    2017-03-01

    Full Text Available The spindle rotational accuracy is one of the important issues in a machine tool which affects the surface topography and dimensional accuracy of a workpiece. This paper presents a machine-vision-based approach to radial error measurement of a lathe spindle using a CMOS camera and a PC-based image processing system. In the present work, a precisely machined cylindrical master is mounted on the spindle as a datum surface and variations of its position are captured using the camera for evaluating runout of the spindle. The Circular Hough Transform (CHT is used to detect variations of the centre position of the master cylinder during spindle rotation at subpixel level from a sequence of images. Radial error values of the spindle are evaluated using the Fourier series analysis of the centre position of the master cylinder calculated with the least squares curve fitting technique. The experiments have been carried out on a lathe at different operating speeds and the spindle radial error estimation results are presented. The proposed method provides a simpler approach to on-machine estimation of the spindle radial error in machine tools.

  15. Two-Stage Electricity Demand Modeling Using Machine Learning Algorithms

    Directory of Open Access Journals (Sweden)

    Krzysztof Gajowniczek

    2017-10-01

    Full Text Available Forecasting of electricity demand has become one of the most important areas of research in the electric power industry, as it is a critical component of cost-efficient power system management and planning. In this context, accurate and robust load forecasting is supposed to play a key role in reducing generation costs, and deals with the reliability of the power system. However, due to demand peaks in the power system, forecasts are inaccurate and prone to high numbers of errors. In this paper, our contributions comprise a proposed data-mining scheme for demand modeling through peak detection, as well as the use of this information to feed the forecasting system. For this purpose, we have taken a different approach from that of time series forecasting, representing it as a two-stage pattern recognition problem. We have developed a peak classification model followed by a forecasting model to estimate an aggregated demand volume. We have utilized a set of machine learning algorithms to benefit from both accurate detection of the peaks and precise forecasts, as applied to the Polish power system. The key finding is that the algorithms can detect 96.3% of electricity peaks (load value equal to or above the 99th percentile of the load distribution and deliver accurate forecasts, with mean absolute percentage error (MAPE of 3.10% and resistant mean absolute percentage error (r-MAPE of 2.70% for the 24 h forecasting horizon.

  16. Spike sorting based upon machine learning algorithms (SOMA).

    Science.gov (United States)

    Horton, P M; Nicol, A U; Kendrick, K M; Feng, J F

    2007-02-15

    We have developed a spike sorting method, using a combination of various machine learning algorithms, to analyse electrophysiological data and automatically determine the number of sampled neurons from an individual electrode, and discriminate their activities. We discuss extensions to a standard unsupervised learning algorithm (Kohonen), as using a simple application of this technique would only identify a known number of clusters. Our extra techniques automatically identify the number of clusters within the dataset, and their sizes, thereby reducing the chance of misclassification. We also discuss a new pre-processing technique, which transforms the data into a higher dimensional feature space revealing separable clusters. Using principal component analysis (PCA) alone may not achieve this. Our new approach appends the features acquired using PCA with features describing the geometric shapes that constitute a spike waveform. To validate our new spike sorting approach, we have applied it to multi-electrode array datasets acquired from the rat olfactory bulb, and from the sheep infero-temporal cortex, and using simulated data. The SOMA sofware is available at http://www.sussex.ac.uk/Users/pmh20/spikes.

  17. Implementation of a Monte Carlo algorithm for neutron transport on a massively parallel SIMD machine

    International Nuclear Information System (INIS)

    Baker, R.S.

    1992-01-01

    We present some results from the recent adaptation of a vectorized Monte Carlo algorithm to a massively parallel architecture. The performance of the algorithm on a single processor Cray Y-MP and a Thinking Machine Corporations CM-2 and CM-200 is compared for several test problems. The results show that significant speedups are obtainable for vectorized Monte Carlo algorithms on massively parallel machines, even when the algorithms are applied to realistic problems which require extensive variance reduction. However, the architecture of the Connection Machine does place some limitations on the regime in which the Monte Carlo algorithm may be expected to perform well

  18. Implementation of a Monte Carlo algorithm for neutron transport on a massively parallel SIMD machine

    International Nuclear Information System (INIS)

    Baker, R.S.

    1993-01-01

    We present some results from the recent adaptation of a vectorized Monte Carlo algorithm to a massively parallel architecture. The performance of the algorithm on a single processor Cray Y-MP and a Thinking Machine Corporations CM-2 and CM-200 is compared for several test problems. The results show that significant speedups are obtainable for vectorized Monte Carlo algorithms on massively parallel machines, even when the algorithms are applied to realistic problems which require extensive variance reduction. However, the architecture of the Connection Machine does place some limitations on the regime in which the Monte Carlo algorithm may be expected to perform well. (orig.)

  19. Hybrid genetic algorithm for minimizing non productive machining ...

    African Journals Online (AJOL)

    Minimization of non-productive time of tool during machining for 2.5 D milling significantly reduces the machining cost. The tool gets retracted and repositioned several times in multi pocket jobs during rough machining which consumes 15 to 30% of total machining time depending on the complexity of job. The automatic ...

  20. Development of the Triple Theta assembly station with machine vision feedback

    International Nuclear Information System (INIS)

    Schmidt, Derek William

    2008-01-01

    Increased requirements for tighter tolerances on assembled target components in complex three-dimensional geometries with only days to assemble complete campaigns require the implementation of a computer-controlled high-precision assembly station. Over the last year, an 11-axis computer-controlled assembly station has been designed and built with custom software to handle the multiple coordinate systems and automatically calculate all relational positions. Preliminary development efforts have also been done to explore the benefit of a machine vision feedback module with a dual-camera viewing system to automate certain basic features like crosshair calibration, component leveling, and component centering.

  1. Tensor Voting A Perceptual Organization Approach to Computer Vision and Machine Learning

    CERN Document Server

    Mordohai, Philippos

    2006-01-01

    This lecture presents research on a general framework for perceptual organization that was conducted mainly at the Institute for Robotics and Intelligent Systems of the University of Southern California. It is not written as a historical recount of the work, since the sequence of the presentation is not in chronological order. It aims at presenting an approach to a wide range of problems in computer vision and machine learning that is data-driven, local and requires a minimal number of assumptions. The tensor voting framework combines these properties and provides a unified perceptual organiza

  2. Machine Vision based Micro-crack Inspection in Thin-film Solar Cell Panel

    Directory of Open Access Journals (Sweden)

    Zhang Yinong

    2014-09-01

    Full Text Available Thin film solar cell consists of various layers so the surface of solar cell shows heterogeneous textures. Because of this property the visual inspection of micro-crack is very difficult. In this paper, we propose the machine vision-based micro-crack detection scheme for thin film solar cell panel. In the proposed method, the crack edge detection is based on the application of diagonal-kernel and cross-kernel in parallel. Experimental results show that the proposed method has better performance of micro-crack detection than conventional anisotropic model based methods on a cross- kernel.

  3. Current Technologies and its Trends of Machine Vision in the Field of Security and Disaster Prevention

    Science.gov (United States)

    Hashimoto, Manabu; Fujino, Yozo

    Image sensing technologies are expected as useful and effective way to suppress damages by criminals and disasters in highly safe and relieved society. In this paper, we describe current important subjects, required functions, technical trends, and a couple of real examples of developed system. As for the video surveillance, recognition of human trajectory and human behavior using image processing techniques are introduced with real examples about the violence detection for elevators. In the field of facility monitoring technologies as civil engineering, useful machine vision applications such as automatic detection of concrete cracks on walls of a building or recognition of crowded people on bridge for effective guidance in emergency are shown.

  4. A neurite quality index and machine vision software for improved quantification of neurodegeneration.

    Science.gov (United States)

    Romero, Peggy; Miller, Ted; Garakani, Arman

    2009-12-01

    Current methods to assess neurodegradation in dorsal root ganglion cultures as a model for neurodegenerative diseases are imprecise and time-consuming. Here we describe two new methods to quantify neuroprotection in these cultures. The neurite quality index (NQI) builds upon earlier manual methods, incorporating additional morphological events to increase detection sensitivity for the detection of early degeneration events. Neurosight is a machine vision-based method that recapitulates many of the strengths of NQI while enabling high-throughput screening applications with decreased costs.

  5. The Intangible Assets Advantages in the Machine Vision Inspection of Thermoplastic Materials

    Science.gov (United States)

    Muntean, Diana; Răulea, Andreea Simina

    2017-12-01

    Innovation is not a simple concept but is the main source of success. It is more important to have the right people and mindsets in place than to have a perfectly crafted plan in order to make the most out of an idea or business. The aim of this paper is to emphasize the importance of intangible assets when it comes to machine vision inspection of thermoplastic materials pointing out some aspects related to knowledge based assets and their need for a success idea to be developed in a successful product.

  6. Application of generalized Hough transform for detecting sugar beet plant from weed using machine vision method

    Directory of Open Access Journals (Sweden)

    A Bakhshipour Ziaratgahi

    2017-05-01

    Full Text Available Introduction Sugar beet (Beta vulgaris L. as the second most important world’s sugar source after sugarcane is one of the major industrial crops. The presence of weeds in sugar beet fields, especially at early growth stages, results in a substantial decrease in the crop yield. It is very important to efficiently eliminate weeds at early growing stages. The first step of precision weed control is accurate detection of weeds location in the field. This operation can be performed by machine vision techniques. Hough transform is one of the shape feature extraction methods for object tracking in image processing which is basically used to identify lines or other geometrical shapes in an image. Generalized Hough transform (GHT is a modified version of the Hough transform used not only for geometrical forms, but also for detecting any arbitrary shape. This method is based on a pattern matching principle that uses a set of vectors of feature points (usually object edge points to a reference point to construct a pattern. By comparing this pattern with a set pattern, the desired shape is detected. The aim of this study was to identify the sugar beet plant from some common weeds in a field using the GHT. Materials and Methods Images required for this study were taken at the four-leaf stage of sugar beet as the beginning of the critical period of weed control. A shelter was used to avoid direct sunlight and prevent leaf shadows on each other. The obtained images were then introduced to the Image Processing Toolbox of MATLAB programming software for further processing. Green and Red color components were extracted from primary RGB images. In the first step, binary images were obtained by applying the optimal threshold on the G-R images. A comprehensive study of several sugar beet images revealed that there is a unique feature in sugar beet leaves which makes them differentiable from the weeds. The feature observed in all sugar beet plants at the four

  7. Developing robust arsenic awareness prediction models using machine learning algorithms.

    Science.gov (United States)

    Singh, Sushant K; Taylor, Robert W; Rahman, Mohammad Mahmudur; Pradhan, Biswajeet

    2018-04-01

    Arsenic awareness plays a vital role in ensuring the sustainability of arsenic mitigation technologies. Thus far, however, few studies have dealt with the sustainability of such technologies and its associated socioeconomic dimensions. As a result, arsenic awareness prediction has not yet been fully conceptualized. Accordingly, this study evaluated arsenic awareness among arsenic-affected communities in rural India, using a structured questionnaire to record socioeconomic, demographic, and other sociobehavioral factors with an eye to assessing their association with and influence on arsenic awareness. First a logistic regression model was applied and its results compared with those produced by six state-of-the-art machine-learning algorithms (Support Vector Machine [SVM], Kernel-SVM, Decision Tree [DT], k-Nearest Neighbor [k-NN], Naïve Bayes [NB], and Random Forests [RF]) as measured by their accuracy at predicting arsenic awareness. Most (63%) of the surveyed population was found to be arsenic-aware. Significant arsenic awareness predictors were divided into three types: (1) socioeconomic factors: caste, education level, and occupation; (2) water and sanitation behavior factors: number of family members involved in water collection, distance traveled and time spent for water collection, places for defecation, and materials used for handwashing after defecation; and (3) social capital and trust factors: presence of anganwadi and people's trust in other community members, NGOs, and private agencies. Moreover, individuals' having higher social network positively contributed to arsenic awareness in the communities. Results indicated that both the SVM and the RF algorithms outperformed at overall prediction of arsenic awareness-a nonlinear classification problem. Lower-caste, less educated, and unemployed members of the population were found to be the most vulnerable, requiring immediate arsenic mitigation. To this end, local social institutions and NGOs could play a

  8. Validation of vision-based obstacle detection algorithms for low-altitude helicopter flight

    Science.gov (United States)

    Suorsa, Raymond; Sridhar, Banavar

    1991-01-01

    A validation facility being used at the NASA Ames Research Center is described which is aimed at testing vision based obstacle detection and range estimation algorithms suitable for low level helicopter flight. The facility is capable of processing hundreds of frames of calibrated multicamera 6 degree-of-freedom motion image sequencies, generating calibrated multicamera laboratory images using convenient window-based software, and viewing range estimation results from different algorithms along with truth data using powerful window-based visualization software.

  9. Automatic optical detection and classification of marine animals around MHK converters using machine vision

    Energy Technology Data Exchange (ETDEWEB)

    Brunton, Steven [Univ. of Washington, Seattle, WA (United States)

    2018-01-15

    Optical systems provide valuable information for evaluating interactions and associations between organisms and MHK energy converters and for capturing potentially rare encounters between marine organisms and MHK device. The deluge of optical data from cabled monitoring packages makes expert review time-consuming and expensive. We propose algorithms and a processing framework to automatically extract events of interest from underwater video. The open-source software framework consists of background subtraction, filtering, feature extraction and hierarchical classification algorithms. This principle classification pipeline was validated on real-world data collected with an experimental underwater monitoring package. An event detection rate of 100% was achieved using robust principal components analysis (RPCA), Fourier feature extraction and a support vector machine (SVM) binary classifier. The detected events were then further classified into more complex classes – algae | invertebrate | vertebrate, one species | multiple species of fish, and interest rank. Greater than 80% accuracy was achieved using a combination of machine learning techniques.

  10. Real-time machine vision system using FPGA and soft-core processor

    Science.gov (United States)

    Malik, Abdul Waheed; Thörnberg, Benny; Meng, Xiaozhou; Imran, Muhammad

    2012-06-01

    This paper presents a machine vision system for real-time computation of distance and angle of a camera from reference points in the environment. Image pre-processing, component labeling and feature extraction modules were modeled at Register Transfer (RT) level and synthesized for implementation on field programmable gate arrays (FPGA). The extracted image component features were sent from the hardware modules to a soft-core processor, MicroBlaze, for computation of distance and angle. A CMOS imaging sensor operating at a clock frequency of 27MHz was used in our experiments to produce a video stream at the rate of 75 frames per second. Image component labeling and feature extraction modules were running in parallel having a total latency of 13ms. The MicroBlaze was interfaced with the component labeling and feature extraction modules through Fast Simplex Link (FSL). The latency for computing distance and angle of camera from the reference points was measured to be 2ms on the MicroBlaze, running at 100 MHz clock frequency. In this paper, we present the performance analysis, device utilization and power consumption for the designed system. The FPGA based machine vision system that we propose has high frame speed, low latency and a power consumption that is much lower compared to commercially available smart camera solutions.

  11. Inspecting a research reactor's control rod surface for pitting using a machine vision

    International Nuclear Information System (INIS)

    Tokuhiro, Akira T.; Vadakattu, Shreekanth

    2005-01-01

    Inspection for pits on the control rod is performed to study the degradation of the control rod material which helps estimating the service life of the control rod at UMR nuclear reactor (UMRR). This inspection task is visually inspected and recorded subjectively. The conventional visual inspection to identify pits on the control rod surface can be automated using machine vision technique. Since the in-service control rods were not available to capture images and measure number of pits and size of the pits, the applicability of machine vision method was applied on SAE 1018 steel coupons immersed in oxygen saturated de-ionized water at 30deg, 50deg and 70deg. Images were captured after each test cycle at different light intensity to reveal surface topography of the coupon surface and analyzed for number of pits and pit size using EPIX XCAP-Std software. The captured and analyzed images provided quantitative results for the steel coupons and demonstrated that the method can be applied for identifying pits on control rod surface in place of conventional visual inspection. (author)

  12. Feature recognition and detection for ancient architecture based on machine vision

    Science.gov (United States)

    Zou, Zheng; Wang, Niannian; Zhao, Peng; Zhao, Xuefeng

    2018-03-01

    Ancient architecture has a very high historical and artistic value. The ancient buildings have a wide variety of textures and decorative paintings, which contain a lot of historical meaning. Therefore, the research and statistics work of these different compositional and decorative features play an important role in the subsequent research. However, until recently, the statistics of those components are mainly by artificial method, which consumes a lot of labor and time, inefficiently. At present, as the strong support of big data and GPU accelerated training, machine vision with deep learning as the core has been rapidly developed and widely used in many fields. This paper proposes an idea to recognize and detect the textures, decorations and other features of ancient building based on machine vision. First, classify a large number of surface textures images of ancient building components manually as a set of samples. Then, using the convolution neural network to train the samples in order to get a classification detector. Finally verify its precision.

  13. Machine vision system: a tool for quality inspection of food and agricultural products.

    Science.gov (United States)

    Patel, Krishna Kumar; Kar, A; Jha, S N; Khan, M A

    2012-04-01

    Quality inspection of food and agricultural produce are difficult and labor intensive. Simultaneously, with increased expectations for food products of high quality and safety standards, the need for accurate, fast and objective quality determination of these characteristics in food products continues to grow. However, these operations generally in India are manual which is costly as well as unreliable because human decision in identifying quality factors such as appearance, flavor, nutrient, texture, etc., is inconsistent, subjective and slow. Machine vision provides one alternative for an automated, non-destructive and cost-effective technique to accomplish these requirements. This inspection approach based on image analysis and processing has found a variety of different applications in the food industry. Considerable research has highlighted its potential for the inspection and grading of fruits and vegetables, grain quality and characteristic examination and quality evaluation of other food products like bakery products, pizza, cheese, and noodles etc. The objective of this paper is to provide in depth introduction of machine vision system, its components and recent work reported on food and agricultural produce.

  14. Vision-Based Perception and Classification of Mosquitoes Using Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Masataka Fuchida

    2017-01-01

    Full Text Available The need for a novel automated mosquito perception and classification method is becoming increasingly essential in recent years, with steeply increasing number of mosquito-borne diseases and associated casualties. There exist remote sensing and GIS-based methods for mapping potential mosquito inhabitants and locations that are prone to mosquito-borne diseases, but these methods generally do not account for species-wise identification of mosquitoes in closed-perimeter regions. Traditional methods for mosquito classification involve highly manual processes requiring tedious sample collection and supervised laboratory analysis. In this research work, we present the design and experimental validation of an automated vision-based mosquito classification module that can deploy in closed-perimeter mosquito inhabitants. The module is capable of identifying mosquitoes from other bugs such as bees and flies by extracting the morphological features, followed by support vector machine-based classification. In addition, this paper presents the results of three variants of support vector machine classifier in the context of mosquito classification problem. This vision-based approach to the mosquito classification problem presents an efficient alternative to the conventional methods for mosquito surveillance, mapping and sample image collection. Experimental results involving classification between mosquitoes and a predefined set of other bugs using multiple classification strategies demonstrate the efficacy and validity of the proposed approach with a maximum recall of 98%.

  15. Computer vision algorithm for diabetic foot injury identification and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Castaneda M, C. L.; Solis S, L. O.; Martinez B, M. R.; Ortiz R, J. M.; Garza V, I.; Martinez F, M.; Castaneda M, R.; Vega C, H. R., E-mail: lsolis@uaz.edu.mx [Universidad Autonoma de Zacatecas, 98000 Zacatecas, Zac. (Mexico)

    2016-10-15

    Diabetic foot is one of the most devastating consequences related to diabetes. It is relevant because of its incidence and the elevated percentage of amputations and deaths that the disease implies. Given the fact that the existing tests and laboratories designed to diagnose it are limited and expensive, the most common evaluation is still based on signs and symptoms. This means that the specialist completes a questionnaire based solely on observation and an invasive wound measurement. Using the questionnaire, the physician issues a diagnosis. In the sense, the diagnosis relies only on the criteria and the specialists experience. For some variables such as the lesions area or their location, this dependency is not acceptable. Currently bio-engineering has played a key role on the diagnose of different chronic degenerative diseases. A timely diagnose has proven to be the best tool against diabetic foot. The diabetics foot clinical evaluation, increases the possibility to identify risks and further complications. The main goal of this paper is to present the development of an algorithm based on digital image processing techniques, which enables to optimize the results on the diabetics foot lesion evaluation. Using advanced techniques for object segmentation and adjusting the sensibility parameter, allows the correlation between the algorithms identified wounds and those observed by the physician. Using the developed algorithm it is possible to identify and assess the wounds, their size, and location, in a non-invasive way. (Author)

  16. Computer vision algorithm for diabetic foot injury identification and evaluation

    International Nuclear Information System (INIS)

    Castaneda M, C. L.; Solis S, L. O.; Martinez B, M. R.; Ortiz R, J. M.; Garza V, I.; Martinez F, M.; Castaneda M, R.; Vega C, H. R.

    2016-10-01

    Diabetic foot is one of the most devastating consequences related to diabetes. It is relevant because of its incidence and the elevated percentage of amputations and deaths that the disease implies. Given the fact that the existing tests and laboratories designed to diagnose it are limited and expensive, the most common evaluation is still based on signs and symptoms. This means that the specialist completes a questionnaire based solely on observation and an invasive wound measurement. Using the questionnaire, the physician issues a diagnosis. In the sense, the diagnosis relies only on the criteria and the specialists experience. For some variables such as the lesions area or their location, this dependency is not acceptable. Currently bio-engineering has played a key role on the diagnose of different chronic degenerative diseases. A timely diagnose has proven to be the best tool against diabetic foot. The diabetics foot clinical evaluation, increases the possibility to identify risks and further complications. The main goal of this paper is to present the development of an algorithm based on digital image processing techniques, which enables to optimize the results on the diabetics foot lesion evaluation. Using advanced techniques for object segmentation and adjusting the sensibility parameter, allows the correlation between the algorithms identified wounds and those observed by the physician. Using the developed algorithm it is possible to identify and assess the wounds, their size, and location, in a non-invasive way. (Author)

  17. Identification and location of catenary insulator in complex background based on machine vision

    Science.gov (United States)

    Yao, Xiaotong; Pan, Yingli; Liu, Li; Cheng, Xiao

    2018-04-01

    It is an important premise to locate insulator precisely for fault detection. Current location algorithms for insulator under catenary checking images are not accurate, a target recognition and localization method based on binocular vision combined with SURF features is proposed. First of all, because of the location of the insulator in complex environment, using SURF features to achieve the coarse positioning of target recognition; then Using binocular vision principle to calculate the 3D coordinates of the object which has been coarsely located, realization of target object recognition and fine location; Finally, Finally, the key is to preserve the 3D coordinate of the object's center of mass, transfer to the inspection robot to control the detection position of the robot. Experimental results demonstrate that the proposed method has better recognition efficiency and accuracy, can successfully identify the target and has a define application value.

  18. A Modified Method Combined with a Support Vector Machine and Bayesian Algorithms in Biological Information

    Directory of Open Access Journals (Sweden)

    Wen-Gang Zhou

    2015-06-01

    Full Text Available With the deep research of genomics and proteomics, the number of new protein sequences has expanded rapidly. With the obvious shortcomings of high cost and low efficiency of the traditional experimental method, the calculation method for protein localization prediction has attracted a lot of attention due to its convenience and low cost. In the machine learning techniques, neural network and support vector machine (SVM are often used as learning tools. Due to its complete theoretical framework, SVM has been widely applied. In this paper, we make an improvement on the existing machine learning algorithm of the support vector machine algorithm, and a new improved algorithm has been developed, combined with Bayesian algorithms. The proposed algorithm can improve calculation efficiency, and defects of the original algorithm are eliminated. According to the verification, the method has proved to be valid. At the same time, it can reduce calculation time and improve prediction efficiency.

  19. Analysis and application of two recursive parametric estimation algorithms for an asynchronous machine

    International Nuclear Information System (INIS)

    Damek, Nawel; Kamoun, Samira

    2011-01-01

    In this communication, two recursive parametric estimation algorithms are analyzed and applied to an squirrelcage asynchronous machine located at the research ''Unit of Automatic Control'' (UCA) at ENIS. The first algorithm which, use the transfer matrix mathematical model, is based on the gradient principle. The second algorithm, which use the state-space mathematical model, is based on the minimization of the estimation error. These algorithms are applied as a key technique to estimate asynchronous machine with unknown, but constant or timevarying parameters. Stator voltage and current are used as measured data. The proposed recursive parametric estimation algorithms are validated on the experimental data of an asynchronous machine under normal operating condition as full load. The results show that these algorithms can estimate effectively the machine parameters with reliability.

  20. Implementation of Automatic Focusing Algorithms for a Computer Vision System with Camera Control.

    Science.gov (United States)

    1983-08-15

    obtainable from real data, rather than relying on a stock database. Often, computer vision and image processing algorithms become subconsciously tuned to...two coils on the same mount structure. Since it was not possible to reprogram the binary system, we turned to the POPEYE system for both its grey

  1. Hardware-Efficient Design of Real-Time Profile Shape Matching Stereo Vision Algorithm on FPGA

    Directory of Open Access Journals (Sweden)

    Beau Tippetts

    2014-01-01

    Full Text Available A variety of platforms, such as micro-unmanned vehicles, are limited in the amount of computational hardware they can support due to weight and power constraints. An efficient stereo vision algorithm implemented on an FPGA would be able to minimize payload and power consumption in microunmanned vehicles, while providing 3D information and still leaving computational resources available for other processing tasks. This work presents a hardware design of the efficient profile shape matching stereo vision algorithm. Hardware resource usage is presented for the targeted micro-UV platform, Helio-copter, that uses the Xilinx Virtex 4 FX60 FPGA. Less than a fifth of the resources on this FGPA were used to produce dense disparity maps for image sizes up to 450 × 375, with the ability to scale up easily by increasing BRAM usage. A comparison is given of accuracy, speed performance, and resource usage of a census transform-based stereo vision FPGA implementation by Jin et al. Results show that the profile shape matching algorithm is an efficient real-time stereo vision algorithm for hardware implementation for resource limited systems such as microunmanned vehicles.

  2. Duality-based algorithms for scheduling on unrelated parallel machines

    NARCIS (Netherlands)

    van de Velde, S.L.; van de Velde, S.L.

    1993-01-01

    We consider the following parallel machine scheduling problem. Each of n independent jobs has to be scheduled on one of m unrelated parallel machines. The processing of job J[sub l] on machine Mi requires an uninterrupted period of positive length p[sub lj]. The objective is to find an assignment of

  3. Infrared machine vision system for the automatic detection of olive fruit quality.

    Science.gov (United States)

    Guzmán, Elena; Baeten, Vincent; Pierna, Juan Antonio Fernández; García-Mesa, José A

    2013-11-15

    External quality is an important factor in the extraction of olive oil and the marketing of olive fruits. The appearance and presence of external damage are factors that influence the quality of the oil extracted and the perception of consumers, determining the level of acceptance prior to purchase in the case of table olives. The aim of this paper is to report on artificial vision techniques developed for the online estimation of olive quality and to assess the effectiveness of these techniques in evaluating quality based on detecting external defects. This method of classifying olives according to the presence of defects is based on an infrared (IR) vision system. Images of defects were acquired using a digital monochrome camera with band-pass filters on near-infrared (NIR). The original images were processed using segmentation algorithms, edge detection and pixel value intensity to classify the whole fruit. The detection of the defect involved a pixel classification procedure based on nonparametric models of the healthy and defective areas of olives. Classification tests were performed on olives to assess the effectiveness of the proposed method. This research showed that the IR vision system is a useful technology for the automatic assessment of olives that has the potential for use in offline inspection and for online sorting for defects and the presence of surface damage, easily distinguishing those that do not meet minimum quality requirements. Crown Copyright © 2013 Published by Elsevier B.V. All rights reserved.

  4. Empirical Studies On Machine Learning Based Text Classification Algorithms

    OpenAIRE

    Shweta C. Dharmadhikari; Maya Ingle; Parag Kulkarni

    2011-01-01

    Automatic classification of text documents has become an important research issue now days. Properclassification of text documents requires information retrieval, machine learning and Natural languageprocessing (NLP) techniques. Our aim is to focus on important approaches to automatic textclassification based on machine learning techniques viz. supervised, unsupervised and semi supervised.In this paper we present a review of various text classification approaches under machine learningparadig...

  5. A machine vision system for automated non-invasive assessment of cell viability via dark field microscopy, wavelet feature selection and classification

    Directory of Open Access Journals (Sweden)

    Friehs Karl

    2008-10-01

    Full Text Available Abstract Background Cell viability is one of the basic properties indicating the physiological state of the cell, thus, it has long been one of the major considerations in biotechnological applications. Conventional methods for extracting information about cell viability usually need reagents to be applied on the targeted cells. These reagent-based techniques are reliable and versatile, however, some of them might be invasive and even toxic to the target cells. In support of automated noninvasive assessment of cell viability, a machine vision system has been developed. Results This system is based on supervised learning technique. It learns from images of certain kinds of cell populations and trains some classifiers. These trained classifiers are then employed to evaluate the images of given cell populations obtained via dark field microscopy. Wavelet decomposition is performed on the cell images. Energy and entropy are computed for each wavelet subimage as features. A feature selection algorithm is implemented to achieve better performance. Correlation between the results from the machine vision system and commonly accepted gold standards becomes stronger if wavelet features are utilized. The best performance is achieved with a selected subset of wavelet features. Conclusion The machine vision system based on dark field microscopy in conjugation with supervised machine learning and wavelet feature selection automates the cell viability assessment, and yields comparable results to commonly accepted methods. Wavelet features are found to be suitable to describe the discriminative properties of the live and dead cells in viability classification. According to the analysis, live cells exhibit morphologically more details and are intracellularly more organized than dead ones, which display more homogeneous and diffuse gray values throughout the cells. Feature selection increases the system's performance. The reason lies in the fact that feature

  6. Estimating Position of Mobile Robots From Omnidirectional Vision Using an Adaptive Algorithm.

    Science.gov (United States)

    Li, Luyang; Liu, Yun-Hui; Wang, Kai; Fang, Mu

    2015-08-01

    This paper presents a novel and simple adaptive algorithm for estimating the position of a mobile robot with high accuracy in an unknown and unstructured environment by fusing images of an omnidirectional vision system with measurements of odometry and inertial sensors. Based on a new derivation where the omnidirectional projection can be linearly parameterized by the positions of the robot and natural feature points, we propose a novel adaptive algorithm, which is similar to the Slotine-Li algorithm in model-based adaptive control, to estimate the robot's position by using the tracked feature points in image sequence, the robot's velocity, and orientation angles measured by odometry and inertial sensors. It is proved that the adaptive algorithm leads to global exponential convergence of the position estimation errors to zero. Simulations and real-world experiments are performed to demonstrate the performance of the proposed algorithm.

  7. Developing a machine vision system for simultaneous prediction of freshness indicators based on tilapia (Oreochromis niloticus) pupil and gill color during storage at 4°C.

    Science.gov (United States)

    Shi, Ce; Qian, Jianping; Han, Shuai; Fan, Beilei; Yang, Xinting; Wu, Xiaoming

    2018-03-15

    The study assessed the feasibility of developing a machine vision system based on pupil and gill color changes in tilapia for simultaneous prediction of total volatile basic nitrogen (TVB-N), thiobarbituric acid (TBA) and total viable counts (TVC) during storage at 4°C. The pupils and gills were chosen and color space conversion among RGB, HSI and L ∗ a ∗ b ∗ color spaces was performed automatically by an image processing algorithm. Multiple regression models were established by correlating pupil and gill color parameters with TVB-N, TVC and TBA (R 2 =0.989-0.999). However, assessment of freshness based on gill color is destructive and time-consuming because gill cover must be removed before images are captured. Finally, visualization maps of spoilage based on pupil color were achieved using image algorithms. The results show that assessment of tilapia pupil color parameters using machine vision can be used as a low-cost, on-line method for predicting freshness during 4°C storage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Fast and intuitive programming of adaptive laser cutting of lace enabled by machine vision

    Science.gov (United States)

    Vaamonde, Iago; Souto-López, Álvaro; García-Díaz, Antón

    2015-07-01

    A machine vision system has been developed, validated, and integrated in a commercial laser robot cell. It permits an offline graphical programming of laser cutting of lace. The user interface allows loading CAD designs and aligning them with images of lace pieces. Different thread widths are discriminated to generate proper cutting program templates. During online operation, the system aligns CAD models of pieces and lace images, pre-checks quality of lace cuts and adapts laser parameters to thread widths. For pieces detected with the required quality, the program template is adjusted by transforming the coordinates of every trajectory point. A low-cost lace feeding system was also developed for demonstration of full process automation.

  9. Nondestructive Detection of the Internalquality of Apple Using X-Ray and Machine Vision

    Science.gov (United States)

    Yang, Fuzeng; Yang, Liangliang; Yang, Qing; Kang, Likui

    The internal quality of apple is impossible to be detected by eyes in the procedure of sorting, which could reduce the apple’s quality reaching market. This paper illustrates an instrument using X-ray and machine vision. The following steps were introduced to process the X-ray image in order to determine the mould core apple. Firstly, lifting wavelet transform was used to get a low frequency image and three high frequency images. Secondly, we enhanced the low frequency image through image’s histogram equalization. Then, the edge of each apple's image was detected using canny operator. Finally, a threshold was set to clarify mould core and normal apple according to the different length of the apple core’s diameter. The experimental results show that this method could on-line detect the mould core apple with less time consuming, less than 0.03 seconds per apple, and the accuracy could reach 92%.

  10. Magnetic imaging and machine vision NDT for the on-line inspection of stainless steel strips

    International Nuclear Information System (INIS)

    Ricci, M; Ficola, A; Fravolini, M L; Battaglini, L; Palazzi, A; Burrascano, P; Valigi, P; Appolloni, L; Cervo, S; Rocchi, C

    2013-01-01

    An on-line inspection system for stainless steel strips has been developed on an annealing and pickling line at the Acciai Speciali Terni S.p.A. steel mill. Besides a machine vision apparatus, the system contextually exploits a magnetic imaging system designed and realized for the specific application. The main goal of the research is represented by the fusion of the information provided by the two apparatuses that can improve the detection and classification tasks by enlarging the set of detectable defects. In this paper, the development, the calibration and the characteristics of the magnetic imaging apparatus are detailed and experimental results obtained both in laboratory and in situ are reported. A comparative analysis of the performances of the two devices is also reported based on preliminary results and some conclusions and perspectives are drawn. (paper)

  11. A Novel Generic Ball Recognition Algorithm Based on Omnidirectional Vision for Soccer Robots

    Directory of Open Access Journals (Sweden)

    Hui Zhang

    2013-11-01

    Full Text Available It is significant for the final goal of RoboCup to realize the recognition of generic balls for soccer robots. In this paper, a novel generic ball recognition algorithm based on omnidirectional vision is proposed by combining the modified Haar-like features and AdaBoost learning algorithm. The algorithm is divided into offline training and online recognition. During the phase of offline training, numerous sub-images are acquired from various panoramic images, including generic balls, and then the modified Haar-like features are extracted from them and used as the input of the AdaBoost learning algorithm to obtain a classifier. During the phase of online recognition, and according to the imaging characteristics of our omnidirectional vision system, rectangular windows are defined to search for the generic ball along the rotary and radial directions in the panoramic image, and the learned classifier is used to judge whether a ball is included in the window. After the ball has been recognized globally, ball tracking is realized by integrating a ball velocity estimation algorithm to reduce the computational cost. The experimental results show that good performance can be achieved using our algorithm, and that the generic ball can be recognized and tracked effectively.

  12. Machine vision method for online surface inspection of easy open can ends

    Science.gov (United States)

    Mariño, Perfecto; Pastoriza, Vicente; Santamaría, Miguel

    2006-10-01

    Easy open can end manufacturing process in the food canning sector currently makes use of a manual, non-destructive testing procedure to guarantee can end repair coating quality. This surface inspection is based on a visual inspection made by human inspectors. Due to the high production rate (100 to 500 ends per minute) only a small part of each lot is verified (statistical sampling), then an automatic, online, inspection system, based on machine vision, has been developed to improve this quality control. The inspection system uses a fuzzy model to make the acceptance/rejection decision for each can end from the information obtained by the vision sensor. In this work, the inspection method is presented. This surface inspection system checks the total production, classifies the ends in agreement with an expert human inspector, supplies interpretability to the operators in order to find out the failure causes and reduce mean time to repair during failures, and allows to modify the minimum can end repair coating quality.

  13. A noninvasive technique for real-time detection of bruises in apple surface based on machine vision

    Science.gov (United States)

    Zhao, Juan; Peng, Yankun; Dhakal, Sagar; Zhang, Leilei; Sasao, Akira

    2013-05-01

    Apple is one of the highly consumed fruit item in daily life. However, due to its high damage potential and massive influence on taste and export, the quality of apple has to be detected before it reaches the consumer's hand. This study was aimed to develop a hardware and software unit for real-time detection of apple bruises based on machine vision technology. The hardware unit consisted of a light shield installed two monochrome cameras at different angles, LED light source to illuminate the sample, and sensors at the entrance of box to signal the positioning of sample. Graphical Users Interface (GUI) was developed in VS2010 platform to control the overall hardware and display the image processing result. The hardware-software system was developed to acquire the images of 3 samples from each camera and display the image processing result in real time basis. An image processing algorithm was developed in Opencv and C++ platform. The software is able to control the hardware system to classify the apple into two grades based on presence/absence of surface bruises with the size of 5mm. The experimental result is promising and the system with further modification can be applicable for industrial production in near future.

  14. A new accurate curvature matching and optimal tool based five-axis machining algorithm

    International Nuclear Information System (INIS)

    Lin, Than; Lee, Jae Woo; Bohez, Erik L. J.

    2009-01-01

    Free-form surfaces are widely used in CAD systems to describe the part surface. Today, the most advanced machining of free from surfaces is done in five-axis machining using a flat end mill cutter. However, five-axis machining requires complex algorithms for gouging avoidance, collision detection and powerful computer-aided manufacturing (CAM) systems to support various operations. An accurate and efficient method is proposed for five-axis CNC machining of free-form surfaces. The proposed algorithm selects the best tool and plans the tool path autonomously using curvature matching and integrated inverse kinematics of the machine tool. The new algorithm uses the real cutter contact tool path generated by the inverse kinematics and not the linearized piecewise real cutter location tool path

  15. Parallel algorithms for testing finite state machines:Generating UIO sequences

    OpenAIRE

    Hierons, RM; Turker, UC

    2016-01-01

    This paper describes an efficient parallel algorithm that uses many-core GPUs for automatically deriving Unique Input Output sequences (UIOs) from Finite State Machines. The proposed algorithm uses the global scope of the GPU's global memory through coalesced memory access and minimises the transfer between CPU and GPU memory. The results of experiments indicate that the proposed method yields considerably better results compared to a single core UIO construction algorithm. Our algorithm is s...

  16. Validating Machine Learning Algorithms for Twitter Data Against Established Measures of Suicidality.

    Science.gov (United States)

    Braithwaite, Scott R; Giraud-Carrier, Christophe; West, Josh; Barnes, Michael D; Hanson, Carl Lee

    2016-05-16

    One of the leading causes of death in the United States (US) is suicide and new methods of assessment are needed to track its risk in real time. Our objective is to validate the use of machine learning algorithms for Twitter data against empirically validated measures of suicidality in the US population. Using a machine learning algorithm, the Twitter feeds of 135 Mechanical Turk (MTurk) participants were compared with validated, self-report measures of suicide risk. Our findings show that people who are at high suicidal risk can be easily differentiated from those who are not by machine learning algorithms, which accurately identify the clinically significant suicidal rate in 92% of cases (sensitivity: 53%, specificity: 97%, positive predictive value: 75%, negative predictive value: 93%). Machine learning algorithms are efficient in differentiating people who are at a suicidal risk from those who are not. Evidence for suicidality can be measured in nonclinical populations using social media data.

  17. NETRA: A parallel architecture for integrated vision systems 2: Algorithms and performance evaluation

    Science.gov (United States)

    Choudhary, Alok N.; Patel, Janak H.; Ahuja, Narendra

    1989-01-01

    In part 1 architecture of NETRA is presented. A performance evaluation of NETRA using several common vision algorithms is also presented. Performance of algorithms when they are mapped on one cluster is described. It is shown that SIMD, MIMD, and systolic algorithms can be easily mapped onto processor clusters, and almost linear speedups are possible. For some algorithms, analytical performance results are compared with implementation performance results. It is observed that the analysis is very accurate. Performance analysis of parallel algorithms when mapped across clusters is presented. Mappings across clusters illustrate the importance and use of shared as well as distributed memory in achieving high performance. The parameters for evaluation are derived from the characteristics of the parallel algorithms, and these parameters are used to evaluate the alternative communication strategies in NETRA. Furthermore, the effect of communication interference from other processors in the system on the execution of an algorithm is studied. Using the analysis, performance of many algorithms with different characteristics is presented. It is observed that if communication speeds are matched with the computation speeds, good speedups are possible when algorithms are mapped across clusters.

  18. Data Fusion for a Vision-Radiological System: a Statistical Calibration Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Enqvist, Andreas; Koppal, Sanjeev; Riley, Phillip [University of Florida, Gainesville, FL 32611 (United States)

    2015-07-01

    Presented here is a fusion system based on simple, low-cost computer vision and radiological sensors for tracking of multiple objects and identifying potential radiological materials being transported or shipped. The main focus of this work is the development of calibration algorithms for characterizing the fused sensor system as a single entity. There is an apparent need for correcting for a scene deviation from the basic inverse distance-squared law governing the detection rates even when evaluating system calibration algorithms. In particular, the computer vision system enables a map of distance-dependence of the sources being tracked, to which the time-dependent radiological data can be incorporated by means of data fusion of the two sensors' output data. (authors)

  19. Data Fusion for a Vision-Radiological System: a Statistical Calibration Algorithm

    International Nuclear Information System (INIS)

    Enqvist, Andreas; Koppal, Sanjeev; Riley, Phillip

    2015-01-01

    Presented here is a fusion system based on simple, low-cost computer vision and radiological sensors for tracking of multiple objects and identifying potential radiological materials being transported or shipped. The main focus of this work is the development of calibration algorithms for characterizing the fused sensor system as a single entity. There is an apparent need for correcting for a scene deviation from the basic inverse distance-squared law governing the detection rates even when evaluating system calibration algorithms. In particular, the computer vision system enables a map of distance-dependence of the sources being tracked, to which the time-dependent radiological data can be incorporated by means of data fusion of the two sensors' output data. (authors)

  20. A Novel adaptative Discrete Cuckoo Search Algorithm for parameter optimization in computer vision

    Directory of Open Access Journals (Sweden)

    loubna benchikhi

    2017-10-01

    Full Text Available Computer vision applications require choosing operators and their parameters, in order to provide the best outcomes. Often, the users quarry on expert knowledge and must experiment many combinations to find manually the best one. As performance, time and accuracy are important, it is necessary to automate parameter optimization at least for crucial operators. In this paper, a novel approach based on an adaptive discrete cuckoo search algorithm (ADCS is proposed. It automates the process of algorithms’ setting and provides optimal parameters for vision applications. This work reconsiders a discretization problem to adapt the cuckoo search algorithm and presents the procedure of parameter optimization. Some experiments on real examples and comparisons to other metaheuristic-based approaches: particle swarm optimization (PSO, reinforcement learning (RL and ant colony optimization (ACO show the efficiency of this novel method.

  1. CAT-PUMA: CME Arrival Time Prediction Using Machine learning Algorithms

    Science.gov (United States)

    Liu, Jiajia; Ye, Yudong; Shen, Chenglong; Wang, Yuming; Erdélyi, Robert

    2018-04-01

    CAT-PUMA (CME Arrival Time Prediction Using Machine learning Algorithms) quickly and accurately predicts the arrival of Coronal Mass Ejections (CMEs) of CME arrival time. The software was trained via detailed analysis of CME features and solar wind parameters using 182 previously observed geo-effective partial-/full-halo CMEs and uses algorithms of the Support Vector Machine (SVM) to make its predictions, which can be made within minutes of providing the necessary input parameters of a CME.

  2. Experimental analysis of the performance of machine learning algorithms in the classification of navigation accident records

    Directory of Open Access Journals (Sweden)

    REIS, M V. S. de A.

    2017-06-01

    Full Text Available This paper aims to evaluate the use of machine learning techniques in a database of marine accidents. We analyzed and evaluated the main causes and types of marine accidents in the Northern Fluminense region. For this, machine learning techniques were used. The study showed that the modeling can be done in a satisfactory manner using different configurations of classification algorithms, varying the activation functions and training parameters. The SMO (Sequential Minimal Optimization algorithm showed the best performance result.

  3. Researches Regarding The Circular Interpolation Algorithms At CNC Laser Cutting Machines

    Science.gov (United States)

    Tîrnovean, Mircea Sorin

    2015-09-01

    This paper presents an integrated simulation approach for studying the circular interpolation regime of CNC laser cutting machines. The circular interpolation algorithm is studied, taking into consideration the numerical character of the system. A simulation diagram, which is able to generate the kinematic inputs for the feed drives of the CNC laser cutting machine is also presented.

  4. Characteristics of the Arcing Plasma Formation Effect in Spark-Assisted Chemical Engraving of Glass, Based on Machine Vision.

    Science.gov (United States)

    Ho, Chao-Ching; Wu, Dung-Sheng

    2018-03-22

    Spark-assisted chemical engraving (SACE) is a non-traditional machining technology that is used to machine electrically non-conducting materials including glass, ceramics, and quartz. The processing accuracy, machining efficiency, and reproducibility are the key factors in the SACE process. In the present study, a machine vision method is applied to monitor and estimate the status of a SACE-drilled hole in quartz glass. During the machining of quartz glass, the spring-fed tool electrode was pre-pressured on the quartz glass surface to feed the electrode that was in contact with the machining surface of the quartz glass. In situ image acquisition and analysis of the SACE drilling processes were used to analyze the captured image of the state of the spark discharge at the tip and sidewall of the electrode. The results indicated an association between the accumulative size of the SACE-induced spark area and deepness of the hole. The results indicated that the evaluated depths of the SACE-machined holes were a proportional function of the accumulative spark size with a high degree of correlation. The study proposes an innovative computer vision-based method to estimate the deepness and status of SACE-drilled holes in real time.

  5. Characteristics of the Arcing Plasma Formation Effect in Spark-Assisted Chemical Engraving of Glass, Based on Machine Vision

    Directory of Open Access Journals (Sweden)

    Chao-Ching Ho

    2018-03-01

    Full Text Available Spark-assisted chemical engraving (SACE is a non-traditional machining technology that is used to machine electrically non-conducting materials including glass, ceramics, and quartz. The processing accuracy, machining efficiency, and reproducibility are the key factors in the SACE process. In the present study, a machine vision method is applied to monitor and estimate the status of a SACE-drilled hole in quartz glass. During the machining of quartz glass, the spring-fed tool electrode was pre-pressured on the quartz glass surface to feed the electrode that was in contact with the machining surface of the quartz glass. In situ image acquisition and analysis of the SACE drilling processes were used to analyze the captured image of the state of the spark discharge at the tip and sidewall of the electrode. The results indicated an association between the accumulative size of the SACE-induced spark area and deepness of the hole. The results indicated that the evaluated depths of the SACE-machined holes were a proportional function of the accumulative spark size with a high degree of correlation. The study proposes an innovative computer vision-based method to estimate the deepness and status of SACE-drilled holes in real time.

  6. Data fusion for a vision-aided radiological detection system: Calibration algorithm performance

    Science.gov (United States)

    Stadnikia, Kelsey; Henderson, Kristofer; Martin, Allan; Riley, Phillip; Koppal, Sanjeev; Enqvist, Andreas

    2018-05-01

    In order to improve the ability to detect, locate, track and identify nuclear/radiological threats, the University of Florida nuclear detection community has teamed up with the 3D vision community to collaborate on a low cost data fusion system. The key is to develop an algorithm to fuse the data from multiple radiological and 3D vision sensors as one system. The system under development at the University of Florida is being assessed with various types of radiological detectors and widely available visual sensors. A series of experiments were devised utilizing two EJ-309 liquid organic scintillation detectors (one primary and one secondary), a Microsoft Kinect for Windows v2 sensor and a Velodyne HDL-32E High Definition LiDAR Sensor which is a highly sensitive vision sensor primarily used to generate data for self-driving cars. Each experiment consisted of 27 static measurements of a source arranged in a cube with three different distances in each dimension. The source used was Cf-252. The calibration algorithm developed is utilized to calibrate the relative 3D-location of the two different types of sensors without need to measure it by hand; thus, preventing operator manipulation and human errors. The algorithm can also account for the facility dependent deviation from ideal data fusion correlation. Use of the vision sensor to determine the location of a sensor would also limit the possible locations and it does not allow for room dependence (facility dependent deviation) to generate a detector pseudo-location to be used for data analysis later. Using manually measured source location data, our algorithm-predicted the offset detector location within an average of 20 cm calibration-difference to its actual location. Calibration-difference is the Euclidean distance from the algorithm predicted detector location to the measured detector location. The Kinect vision sensor data produced an average calibration-difference of 35 cm and the HDL-32E produced an average

  7. Design of an optimum computer vision-based automatic abalone (Haliotis discus hannai) grading algorithm.

    Science.gov (United States)

    Lee, Donggil; Lee, Kyounghoon; Kim, Seonghun; Yang, Yongsu

    2015-04-01

    An automatic abalone grading algorithm that estimates abalone weights on the basis of computer vision using 2D images is developed and tested. The algorithm overcomes the problems experienced by conventional abalone grading methods that utilize manual sorting and mechanical automatic grading. To design an optimal algorithm, a regression formula and R(2) value were investigated by performing a regression analysis for each of total length, body width, thickness, view area, and actual volume against abalone weights. The R(2) value between the actual volume and abalone weight was 0.999, showing a relatively high correlation. As a result, to easily estimate the actual volumes of abalones based on computer vision, the volumes were calculated under the assumption that abalone shapes are half-oblate ellipsoids, and a regression formula was derived to estimate the volumes of abalones through linear regression analysis between the calculated and actual volumes. The final automatic abalone grading algorithm is designed using the abalone volume estimation regression formula derived from test results, and the actual volumes and abalone weights regression formula. In the range of abalones weighting from 16.51 to 128.01 g, the results of evaluation of the performance of algorithm via cross-validation indicate root mean square and worst-case prediction errors of are 2.8 and ±8 g, respectively. © 2015 Institute of Food Technologists®

  8. Integral Images: Efficient Algorithms for Their Computation and Storage in Resource-Constrained Embedded Vision Systems.

    Science.gov (United States)

    Ehsan, Shoaib; Clark, Adrian F; Naveed ur Rehman; McDonald-Maier, Klaus D

    2015-07-10

    The integral image, an intermediate image representation, has found extensive use in multi-scale local feature detection algorithms, such as Speeded-Up Robust Features (SURF), allowing fast computation of rectangular features at constant speed, independent of filter size. For resource-constrained real-time embedded vision systems, computation and storage of integral image presents several design challenges due to strict timing and hardware limitations. Although calculation of the integral image only consists of simple addition operations, the total number of operations is large owing to the generally large size of image data. Recursive equations allow substantial decrease in the number of operations but require calculation in a serial fashion. This paper presents two new hardware algorithms that are based on the decomposition of these recursive equations, allowing calculation of up to four integral image values in a row-parallel way without significantly increasing the number of operations. An efficient design strategy is also proposed for a parallel integral image computation unit to reduce the size of the required internal memory (nearly 35% for common HD video). Addressing the storage problem of integral image in embedded vision systems, the paper presents two algorithms which allow substantial decrease (at least 44.44%) in the memory requirements. Finally, the paper provides a case study that highlights the utility of the proposed architectures in embedded vision systems.

  9. Integral Images: Efficient Algorithms for Their Computation and Storage in Resource-Constrained Embedded Vision Systems

    Directory of Open Access Journals (Sweden)

    Shoaib Ehsan

    2015-07-01

    Full Text Available The integral image, an intermediate image representation, has found extensive use in multi-scale local feature detection algorithms, such as Speeded-Up Robust Features (SURF, allowing fast computation of rectangular features at constant speed, independent of filter size. For resource-constrained real-time embedded vision systems, computation and storage of integral image presents several design challenges due to strict timing and hardware limitations. Although calculation of the integral image only consists of simple addition operations, the total number of operations is large owing to the generally large size of image data. Recursive equations allow substantial decrease in the number of operations but require calculation in a serial fashion. This paper presents two new hardware algorithms that are based on the decomposition of these recursive equations, allowing calculation of up to four integral image values in a row-parallel way without significantly increasing the number of operations. An efficient design strategy is also proposed for a parallel integral image computation unit to reduce the size of the required internal memory (nearly 35% for common HD video. Addressing the storage problem of integral image in embedded vision systems, the paper presents two algorithms which allow substantial decrease (at least 44.44% in the memory requirements. Finally, the paper provides a case study that highlights the utility of the proposed architectures in embedded vision systems.

  10. Evaluation of Two Robot Vision Control Algorithms Developed Based on N-R and EKG Methods for Slender Bar Placement

    Energy Technology Data Exchange (ETDEWEB)

    Son, Jae Kyung; Jang, Wan Shik; Hong, Sung Mun [Gwangju (Korea, Republic of)

    2013-04-15

    Many problems need to be solved before vision systems can actually be applied in industry, such as the precision of the kinematics model of the robot control algorithm based on visual information, active compensation of the camera's focal length and orientation during the movement of the robot, and understanding the mapping of the physical 3-D space into 2-D camera coordinates. An algorithm is proposed to enable robot to move actively even if the relative positions between the camera and the robot is unknown. To solve the correction problem, this study proposes vision system model with six camera parameters. To develop the robot vision control algorithm, the N-R and EKG methods are applied to the vision system model. Finally, the position accuracy and processing time of the two algorithms developed based based on the EKG and the N-R methods are compared experimentally by making the robot perform slender bar placement task.

  11. Evaluation of Two Robot Vision Control Algorithms Developed Based on N-R and EKG Methods for Slender Bar Placement

    International Nuclear Information System (INIS)

    Son, Jae Kyung; Jang, Wan Shik; Hong, Sung Mun

    2013-01-01

    Many problems need to be solved before vision systems can actually be applied in industry, such as the precision of the kinematics model of the robot control algorithm based on visual information, active compensation of the camera's focal length and orientation during the movement of the robot, and understanding the mapping of the physical 3-D space into 2-D camera coordinates. An algorithm is proposed to enable robot to move actively even if the relative positions between the camera and the robot is unknown. To solve the correction problem, this study proposes vision system model with six camera parameters. To develop the robot vision control algorithm, the N-R and EKG methods are applied to the vision system model. Finally, the position accuracy and processing time of the two algorithms developed based based on the EKG and the N-R methods are compared experimentally by making the robot perform slender bar placement task

  12. FPGA-based multisensor real-time machine vision for banknote printing

    Science.gov (United States)

    Li, Rui; Türke, Thomas; Schaede, Johannes; Willeke, Harald; Lohweg, Volker

    2009-02-01

    Automatic sheet inspection in banknote production has been used as a standard quality control tool for more than a decade. As more and more print techniques and new security features are established, total quality in bank note printing must be guaranteed. This aspect has a direct impact on the research and development for bank note inspection systems in general in the sense of technological sustainability. It is accepted, that print defects are generated not only by printing parameter changes, but also by mechanical machine parameter changes, which will change unnoticed in production. Therefore, a new concept for a multi-sensory adaptive learning and classification model based on Fuzzy-Pattern- Classifiers for data inspection and machine conditioning is proposed. A general aim is to improve the known inspection techniques and propose an inspection methodology that can ensure a comprehensive quality control of the printed substrates processed by printing presses, especially printing presses which are designed to process substrates used in the course of the production of banknotes, security documents and others. Therefore, the research and development work in this area necessitates a change in concept for banknote inspection in general. In this paper a new generation of FPGA (Field Programmable Gate Array) based real time inspection technology is presented, which allows not only colour inspection on banknote sheets, but has also the implementation flexibility for various inspection algorithms for security features, such as window threads, embedded threads, OVDs, watermarks, screen printing etc., and multi-sensory data processing. A variety of algorithms is described in the paper, which are designed for and implemented on FPGAs. The focus is based on algorithmic approaches.

  13. New Dandelion Algorithm Optimizes Extreme Learning Machine for Biomedical Classification Problems

    Directory of Open Access Journals (Sweden)

    Xiguang Li

    2017-01-01

    Full Text Available Inspired by the behavior of dandelion sowing, a new novel swarm intelligence algorithm, namely, dandelion algorithm (DA, is proposed for global optimization of complex functions in this paper. In DA, the dandelion population will be divided into two subpopulations, and different subpopulations will undergo different sowing behaviors. Moreover, another sowing method is designed to jump out of local optimum. In order to demonstrate the validation of DA, we compare the proposed algorithm with other existing algorithms, including bat algorithm, particle swarm optimization, and enhanced fireworks algorithm. Simulations show that the proposed algorithm seems much superior to other algorithms. At the same time, the proposed algorithm can be applied to optimize extreme learning machine (ELM for biomedical classification problems, and the effect is considerable. At last, we use different fusion methods to form different fusion classifiers, and the fusion classifiers can achieve higher accuracy and better stability to some extent.

  14. Development of a model of machine hand eye coordination and program specifications for a topological machine vision system

    Science.gov (United States)

    1972-01-01

    A unified approach to computer vision and manipulation is developed which is called choreographic vision. In the model, objects to be viewed by a projected robot in the Viking missions to Mars are seen as objects to be manipulated within choreographic contexts controlled by a multimoded remote, supervisory control system on Earth. A new theory of context relations is introduced as a basis for choreographic programming languages. A topological vision model is developed for recognizing objects by shape and contour. This model is integrated with a projected vision system consisting of a multiaperture image dissector TV camera and a ranging laser system. System program specifications integrate eye-hand coordination and topological vision functions and an aerospace multiprocessor implementation is described.

  15. Close coupling of pre- and post-processing vision stations using inexact algorithms

    Science.gov (United States)

    Shih, Chi-Hsien V.; Sherkat, Nasser; Thomas, Peter D.

    1996-02-01

    Work has been reported using lasers to cut deformable materials. Although the use of laser reduces material deformation, distortion due to mechanical feed misalignment persists. Changes in the lace patten are also caused by the release of tension in the lace structure as it is cut. To tackle the problem of distortion due to material flexibility, the 2VMethod together with the Piecewise Error Compensation Algorithm incorporating the inexact algorithms, i.e., fuzzy logic, neural networks and neural fuzzy technique, are developed. A spring mounted pen is used to emulate the distortion of the lace pattern caused by tactile cutting and feed misalignment. Using pre- and post-processing vision systems, it is possible to monitor the scalloping process and generate on-line information for the artificial intelligence engines. This overcomes the problems of lace distortion due to the trimming process. Applying the algorithms developed, the system can produce excellent results, much better than a human operator.

  16. THE USE OF COMPUTER VISION ALGORITHMS FOR AUTOMATIC ORIENTATION OF TERRESTRIAL LASER SCANNING DATA

    Directory of Open Access Journals (Sweden)

    J. S. Markiewicz

    2016-06-01

    Full Text Available The paper presents analysis of the orientation of terrestrial laser scanning (TLS data. In the proposed data processing methodology, point clouds are considered as panoramic images enriched by the depth map. Computer vision (CV algorithms are used for orientation, which are applied for testing the correctness of the detection of tie points and time of computations, and for assessing difficulties in their implementation. The BRISK, FASRT, MSER, SIFT, SURF, ASIFT and CenSurE algorithms are used to search for key-points. The source data are point clouds acquired using a Z+F 5006h terrestrial laser scanner on the ruins of Iłża Castle, Poland. Algorithms allowing combination of the photogrammetric and CV approaches are also presented.

  17. The Use of Computer Vision Algorithms for Automatic Orientation of Terrestrial Laser Scanning Data

    Science.gov (United States)

    Markiewicz, Jakub Stefan

    2016-06-01

    The paper presents analysis of the orientation of terrestrial laser scanning (TLS) data. In the proposed data processing methodology, point clouds are considered as panoramic images enriched by the depth map. Computer vision (CV) algorithms are used for orientation, which are applied for testing the correctness of the detection of tie points and time of computations, and for assessing difficulties in their implementation. The BRISK, FASRT, MSER, SIFT, SURF, ASIFT and CenSurE algorithms are used to search for key-points. The source data are point clouds acquired using a Z+F 5006h terrestrial laser scanner on the ruins of Iłża Castle, Poland. Algorithms allowing combination of the photogrammetric and CV approaches are also presented.

  18. Tomato grading system using machine vision technology and neuro-fuzzy networks (ANFIS

    Directory of Open Access Journals (Sweden)

    H Izadi

    2016-04-01

    Full Text Available Introduction: The quality of agricultural products is associated with their color, size and health, grading of fruits is regarded as an important step in post-harvest processing. In most cases, manual sorting inspections depends on available manpower, time consuming and their accuracy could not be guaranteed. Machine Vision is known to be a useful tool for external features measurement (e.g. size, shape, color and defects and in recent century, Machine Vision technology has been used for shape sorting. The main purpose of this study was to develop new method for tomato grading and sorting using Neuro-fuzzy system (ANFIS and to compare the accuracies of the ANFIS predicted results with those suggested by a human expert. Materials and Methods: In this study, a total of 300 image of tomatoes (Rev ground was randomly harvested, classified in 3 ripeness stage, 3 sizes and 2 health. The grading and sorting mechanism consisted of a lighting chamber (cloudy sky, lighting source and a digital camera connected to a computer. The images were recorded in a special chamber with an indirect radiation (cloudy sky with four florescent lampson each sides and camera lens was entire to lighting chamber by a hole which was only entranced to outer and covered by a camera lens. Three types of features were extracted from final images; Shap, color and texture. To receive these features, we need to have images both in color and binary format in procedure shown in Figure 1. For the first group; characteristics of the images were analysis that could offer information an surface area (S.A., maximum diameter (Dmax, minimum diameter (Dmin and average diameters. Considering to the importance of the color in acceptance of food quality by consumers, the following classification was conducted to estimate the apparent color of the tomato; 1. Classified as red (red > 90% 2. Classified as red light (red or bold pink 60-90% 3. Classified as pink (red 30-60% 4. Classified as Turning

  19. Progress in computer vision.

    Science.gov (United States)

    Jain, A. K.; Dorai, C.

    Computer vision has emerged as a challenging and important area of research, both as an engineering and a scientific discipline. The growing importance of computer vision is evident from the fact that it was identified as one of the "Grand Challenges" and also from its prominent role in the National Information Infrastructure. While the design of a general-purpose vision system continues to be elusive machine vision systems are being used successfully in specific application elusive, machine vision systems are being used successfully in specific application domains. Building a practical vision system requires a careful selection of appropriate sensors, extraction and integration of information from available cues in the sensed data, and evaluation of system robustness and performance. The authors discuss and demonstrate advantages of (1) multi-sensor fusion, (2) combination of features and classifiers, (3) integration of visual modules, and (IV) admissibility and goal-directed evaluation of vision algorithms. The requirements of several prominent real world applications such as biometry, document image analysis, image and video database retrieval, and automatic object model construction offer exciting problems and new opportunities to design and evaluate vision algorithms.

  20. Colour Model for Outdoor Machine Vision for Tropical Regions and its Comparison with the CIE Model

    Energy Technology Data Exchange (ETDEWEB)

    Sahragard, Nasrolah; Ramli, Abdul Rahman B [Institute of Advanced Technology, Universiti Putra Malaysia 43400 Serdang, Selangor (Malaysia); Marhaban, Mohammad Hamiruce [Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia 43400 Serdang, Selangor (Malaysia); Mansor, Shattri B, E-mail: sahragard@yahoo.com [Department of Civil Engineering, Faculty of Engineering, Universiti Putra Malaysia 43400 Serdang, Selangor (Malaysia)

    2011-02-15

    Accurate modeling of daylight and surface reflectance are very useful for most outdoor machine vision applications specifically those which are based on color recognition. Existing daylight CIE model has drawbacks that limit its ability to predict the color of incident light. These limitations include lack of considering ambient light, effects of light reflected off the ground, and context specific information. Previously developed color model is only tested for a few geographical places in North America and its accountability is under question for other places in the world. Besides, existing surface reflectance models are not easily applied to outdoor images. A reflectance model with combined diffuse and specular reflection in normalized HSV color space could be used to predict color. In this paper, a new daylight color model showing the color of daylight for a broad range of sky conditions is developed which will suit weather conditions of tropical places such as Malaysia. A comparison of this daylight color model and daylight CIE model will be discussed. The colors of matte and specular surfaces have been estimated by use of the developed color model and surface reflection function in this paper. The results are shown to be highly reliable.

  1. Yield Estimation of Sugar Beet Based on Plant Canopy Using Machine Vision Methods

    Directory of Open Access Journals (Sweden)

    S Latifaltojar

    2014-09-01

    Full Text Available Crop yield estimation is one of the most important parameters for information and resources management in precision agriculture. This information is employed for optimizing the field inputs for successive cultivations. In the present study, the feasibility of sugar beet yield estimation by means of machine vision was studied. For the field experiments stripped images were taken during the growth season with one month intervals. The image of horizontal view of plants canopy was prepared at the end of each month. At the end of growth season, beet roots were harvested and the correlation between the sugar beet canopy in each month of growth period and corresponding weight of the roots were investigated. Results showed that there was a strong correlation between the beet yield and green surface area of autumn cultivated sugar beets. The highest coefficient of determination was 0.85 at three months before harvest. In order to assess the accuracy of the final model, the second year of study was performed with the same methodology. The results depicted a strong relationship between the actual and estimated beet weights with R2=0.94. The model estimated beet yield with about 9 percent relative error. It is concluded that this method has appropriate potential for estimation of sugar beet yield based on band imaging prior to harvest

  2. Colour Model for Outdoor Machine Vision for Tropical Regions and its Comparison with the CIE Model

    Science.gov (United States)

    Sahragard, Nasrolah; Ramli, Abdul Rahman B.; Hamiruce Marhaban, Mohammad; Mansor, Shattri B.

    2011-02-01

    Accurate modeling of daylight and surface reflectance are very useful for most outdoor machine vision applications specifically those which are based on color recognition. Existing daylight CIE model has drawbacks that limit its ability to predict the color of incident light. These limitations include lack of considering ambient light, effects of light reflected off the ground, and context specific information. Previously developed color model is only tested for a few geographical places in North America and its accountability is under question for other places in the world. Besides, existing surface reflectance models are not easily applied to outdoor images. A reflectance model with combined diffuse and specular reflection in normalized HSV color space could be used to predict color. In this paper, a new daylight color model showing the color of daylight for a broad range of sky conditions is developed which will suit weather conditions of tropical places such as Malaysia. A comparison of this daylight color model and daylight CIE model will be discussed. The colors of matte and specular surfaces have been estimated by use of the developed color model and surface reflection function in this paper. The results are shown to be highly reliable.

  3. Colour Model for Outdoor Machine Vision for Tropical Regions and its Comparison with the CIE Model

    International Nuclear Information System (INIS)

    Sahragard, Nasrolah; Ramli, Abdul Rahman B; Marhaban, Mohammad Hamiruce; Mansor, Shattri B

    2011-01-01

    Accurate modeling of daylight and surface reflectance are very useful for most outdoor machine vision applications specifically those which are based on color recognition. Existing daylight CIE model has drawbacks that limit its ability to predict the color of incident light. These limitations include lack of considering ambient light, effects of light reflected off the ground, and context specific information. Previously developed color model is only tested for a few geographical places in North America and its accountability is under question for other places in the world. Besides, existing surface reflectance models are not easily applied to outdoor images. A reflectance model with combined diffuse and specular reflection in normalized HSV color space could be used to predict color. In this paper, a new daylight color model showing the color of daylight for a broad range of sky conditions is developed which will suit weather conditions of tropical places such as Malaysia. A comparison of this daylight color model and daylight CIE model will be discussed. The colors of matte and specular surfaces have been estimated by use of the developed color model and surface reflection function in this paper. The results are shown to be highly reliable.

  4. Intelligent Machine Vision for Automated Fence Intruder Detection Using Self-organizing Map

    Directory of Open Access Journals (Sweden)

    Veldin A. Talorete Jr.

    2017-03-01

    Full Text Available This paper presents an intelligent machine vision for automated fence intruder detection. A series of still captured images that contain fence events using Internet Protocol cameras was used as input data to the system. Two classifiers were used; the first is to classify human posture and the second one will classify intruder location. The system classifiers were implemented using Self-Organizing Map after the implementation of several image segmentation processes. The human posture classifier is in charge of classifying the detected subject’s posture patterns from subject’s silhouette. Moreover, the Intruder Localization Classifier is in charge of classifying the detected pattern’s location classifier will estimate the location of the intruder with respect to the fence using geometric feature from images as inputs. The system is capable of activating the alarm, display the actual image and depict the location of the intruder when an intruder is detected. In detecting intruder posture, the system’s success rate of 88%. Overall system accuracy for day-time intruder localization is 83% and an accuracy of 88% for night-time intruder localization

  5. Calibrators measurement system for headlamp tester of motor vehicle base on machine vision

    Science.gov (United States)

    Pan, Yue; Zhang, Fan; Xu, Xi-ping; Zheng, Zhe

    2014-09-01

    With the development of photoelectric detection technology, machine vision has a wider use in the field of industry. The paper mainly introduces auto lamps tester calibrator measuring system, of which CCD image sampling system is the core. Also, it shows the measuring principle of optical axial angle and light intensity, and proves the linear relationship between calibrator's facula illumination and image plane illumination. The paper provides an important specification of CCD imaging system. Image processing by MATLAB can get flare's geometric midpoint and average gray level. By fitting the statistics via the method of the least square, we can get regression equation of illumination and gray level. It analyzes the error of experimental result of measurement system, and gives the standard uncertainty of synthesis and the resource of optical axial angle. Optical axial angle's average measuring accuracy is controlled within 40''. The whole testing process uses digital means instead of artificial factors, which has higher accuracy, more repeatability and better mentality than any other measuring systems.

  6. Multisource Data Fusion Framework for Land Use/Land Cover Classification Using Machine Vision

    Directory of Open Access Journals (Sweden)

    Salman Qadri

    2017-01-01

    Full Text Available Data fusion is a powerful tool for the merging of multiple sources of information to produce a better output as compared to individual source. This study describes the data fusion of five land use/cover types, that is, bare land, fertile cultivated land, desert rangeland, green pasture, and Sutlej basin river land derived from remote sensing. A novel framework for multispectral and texture feature based data fusion is designed to identify the land use/land cover data types correctly. Multispectral data is obtained using a multispectral radiometer, while digital camera is used for image dataset. It has been observed that each image contained 229 texture features, while 30 optimized texture features data for each image has been obtained by joining together three features selection techniques, that is, Fisher, Probability of Error plus Average Correlation, and Mutual Information. This 30-optimized-texture-feature dataset is merged with five-spectral-feature dataset to build the fused dataset. A comparison is performed among texture, multispectral, and fused dataset using machine vision classifiers. It has been observed that fused dataset outperformed individually both datasets. The overall accuracy acquired using multilayer perceptron for texture data, multispectral data, and fused data was 96.67%, 97.60%, and 99.60%, respectively.

  7. Prediction of Employee Turnover in Organizations using Machine Learning Algorithms

    OpenAIRE

    Rohit Punnoose; Pankaj Ajit

    2016-01-01

    Employee turnover has been identified as a key issue for organizations because of its adverse impact on work place productivity and long term growth strategies. To solve this problem, organizations use machine learning techniques to predict employee turnover. Accurate predictions enable organizations to take action for retention or succession planning of employees. However, the data for this modeling problem comes from HR Information Systems (HRIS); these are typically under-funded compared t...

  8. Machine learning algorithms to classify spinal muscular atrophy subtypes.

    Science.gov (United States)

    Srivastava, Tuhin; Darras, Basil T; Wu, Jim S; Rutkove, Seward B

    2012-07-24

    The development of better biomarkers for disease assessment remains an ongoing effort across the spectrum of neurologic illnesses. One approach for refining biomarkers is based on the concept of machine learning, in which individual, unrelated biomarkers are simultaneously evaluated. In this cross-sectional study, we assess the possibility of using machine learning, incorporating both quantitative muscle ultrasound (QMU) and electrical impedance myography (EIM) data, for classification of muscles affected by spinal muscular atrophy (SMA). Twenty-one normal subjects, 15 subjects with SMA type 2, and 10 subjects with SMA type 3 underwent EIM and QMU measurements of unilateral biceps, wrist extensors, quadriceps, and tibialis anterior. EIM and QMU parameters were then applied in combination using a support vector machine (SVM), a type of machine learning, in an attempt to accurately categorize 165 individual muscles. For all 3 classification problems, normal vs SMA, normal vs SMA 3, and SMA 2 vs SMA 3, use of SVM provided the greatest accuracy in discrimination, surpassing both EIM and QMU individually. For example, the accuracy, as measured by the receiver operating characteristic area under the curve (ROC-AUC) for the SVM discriminating SMA 2 muscles from SMA 3 muscles was 0.928; in comparison, the ROC-AUCs for EIM and QMU parameters alone were only 0.877 (p < 0.05) and 0.627 (p < 0.05), respectively. Combining EIM and QMU data categorizes individual SMA-affected muscles with very high accuracy. Further investigation of this approach for classifying and for following the progression of neuromuscular illness is warranted.

  9. Parametric optimization of ultrasonic machining process using gravitational search and fireworks algorithms

    Directory of Open Access Journals (Sweden)

    Debkalpa Goswami

    2015-03-01

    Full Text Available Ultrasonic machining (USM is a mechanical material removal process used to erode holes and cavities in hard or brittle workpieces by using shaped tools, high-frequency mechanical motion and an abrasive slurry. Unlike other non-traditional machining processes, such as laser beam and electrical discharge machining, USM process does not thermally damage the workpiece or introduce significant levels of residual stress, which is important for survival of materials in service. For having enhanced machining performance and better machined job characteristics, it is often required to determine the optimal control parameter settings of an USM process. The earlier mathematical approaches for parametric optimization of USM processes have mostly yielded near optimal or sub-optimal solutions. In this paper, two almost unexplored non-conventional optimization techniques, i.e. gravitational search algorithm (GSA and fireworks algorithm (FWA are applied for parametric optimization of USM processes. The optimization performance of these two algorithms is compared with that of other popular population-based algorithms, and the effects of their algorithm parameters on the derived optimal solutions and computational speed are also investigated. It is observed that FWA provides the best optimal results for the considered USM processes.

  10. Comparison of Firefly algorithm and Artificial Immune System algorithm for lot streaming in -machine flow shop scheduling

    Directory of Open Access Journals (Sweden)

    G. Vijay Chakaravarthy

    2012-11-01

    Full Text Available Lot streaming is a technique used to split the processing of lots into several sublots (transfer batches to allow the overlapping of operations in a multistage manufacturing systems thereby shortening the production time (makespan. The objective of this paper is to minimize the makespan and total flow time of -job, -machine lot streaming problem in a flow shop with equal and variable size sublots and also to determine the optimal sublot size. In recent times researchers are concentrating and applying intelligent heuristics to solve flow shop problems with lot streaming. In this research, Firefly Algorithm (FA and Artificial Immune System (AIS algorithms are used to solve the problem. The results obtained by the proposed algorithms are also compared with the performance of other worked out traditional heuristics. The computational results shows that the identified algorithms are more efficient, effective and better than the algorithms already tested for this problem.

  11. Feature-Free Activity Classification of Inertial Sensor Data With Machine Vision Techniques: Method, Development, and Evaluation.

    Science.gov (United States)

    Dominguez Veiga, Jose Juan; O'Reilly, Martin; Whelan, Darragh; Caulfield, Brian; Ward, Tomas E

    2017-08-04

    Inertial sensors are one of the most commonly used sources of data for human activity recognition (HAR) and exercise detection (ED) tasks. The time series produced by these sensors are generally analyzed through numerical methods. Machine learning techniques such as random forests or support vector machines are popular in this field for classification efforts, but they need to be supported through the isolation of a potentially large number of additionally crafted features derived from the raw data. This feature preprocessing step can involve nontrivial digital signal processing (DSP) techniques. However, in many cases, the researchers interested in this type of activity recognition problems do not possess the necessary technical background for this feature-set development. The study aimed to present a novel application of established machine vision methods to provide interested researchers with an easier entry path into the HAR and ED fields. This can be achieved by removing the need for deep DSP skills through the use of transfer learning. This can be done by using a pretrained convolutional neural network (CNN) developed for machine vision purposes for exercise classification effort. The new method should simply require researchers to generate plots of the signals that they would like to build classifiers with, store them as images, and then place them in folders according to their training label before retraining the network. We applied a CNN, an established machine vision technique, to the task of ED. Tensorflow, a high-level framework for machine learning, was used to facilitate infrastructure needs. Simple time series plots generated directly from accelerometer and gyroscope signals are used to retrain an openly available neural network (Inception), originally developed for machine vision tasks. Data from 82 healthy volunteers, performing 5 different exercises while wearing a lumbar-worn inertial measurement unit (IMU), was collected. The ability of the

  12. Machine Learning Algorithms Outperform Conventional Regression Models in Predicting Development of Hepatocellular Carcinoma

    Science.gov (United States)

    Singal, Amit G.; Mukherjee, Ashin; Elmunzer, B. Joseph; Higgins, Peter DR; Lok, Anna S.; Zhu, Ji; Marrero, Jorge A; Waljee, Akbar K

    2015-01-01

    Background Predictive models for hepatocellular carcinoma (HCC) have been limited by modest accuracy and lack of validation. Machine learning algorithms offer a novel methodology, which may improve HCC risk prognostication among patients with cirrhosis. Our study's aim was to develop and compare predictive models for HCC development among cirrhotic patients, using conventional regression analysis and machine learning algorithms. Methods We enrolled 442 patients with Child A or B cirrhosis at the University of Michigan between January 2004 and September 2006 (UM cohort) and prospectively followed them until HCC development, liver transplantation, death, or study termination. Regression analysis and machine learning algorithms were used to construct predictive models for HCC development, which were tested on an independent validation cohort from the Hepatitis C Antiviral Long-term Treatment against Cirrhosis (HALT-C) Trial. Both models were also compared to the previously published HALT-C model. Discrimination was assessed using receiver operating characteristic curve analysis and diagnostic accuracy was assessed with net reclassification improvement and integrated discrimination improvement statistics. Results After a median follow-up of 3.5 years, 41 patients developed HCC. The UM regression model had a c-statistic of 0.61 (95%CI 0.56-0.67), whereas the machine learning algorithm had a c-statistic of 0.64 (95%CI 0.60–0.69) in the validation cohort. The machine learning algorithm had significantly better diagnostic accuracy as assessed by net reclassification improvement (pmachine learning algorithm (p=0.047). Conclusion Machine learning algorithms improve the accuracy of risk stratifying patients with cirrhosis and can be used to accurately identify patients at high-risk for developing HCC. PMID:24169273

  13. Surface roughness optimization in machining of AZ31 magnesium alloy using ABC algorithm

    Directory of Open Access Journals (Sweden)

    Abhijith

    2018-01-01

    Full Text Available Magnesium alloys serve as excellent substitutes for materials traditionally used for engine block heads in automobiles and gear housings in aircraft industries. AZ31 is a magnesium alloy finds its applications in orthopedic implants and cardiovascular stents. Surface roughness is an important parameter in the present manufacturing sector. In this work optimization techniques namely firefly algorithm (FA, particle swarm optimization (PSO and artificial bee colony algorithm (ABC which are based on swarm intelligence techniques, have been implemented to optimize the machining parameters namely cutting speed, feed rate and depth of cut in order to achieve minimum surface roughness. The parameter Ra has been considered for evaluating the surface roughness. Comparing the performance of ABC algorithm with FA and PSO algorithm, which is a widely used optimization algorithm in machining studies, the results conclude that ABC produces better optimization when compared to FA and PSO for optimizing surface roughness of AZ 31.

  14. Comparison between Genetic Algorithms and Particle Swarm Optimization Methods on Standard Test Functions and Machine Design

    DEFF Research Database (Denmark)

    Nica, Florin Valentin Traian; Ritchie, Ewen; Leban, Krisztina Monika

    2013-01-01

    , genetic algorithm and particle swarm are shortly presented in this paper. These two algorithms are tested to determine their performance on five different benchmark test functions. The algorithms are tested based on three requirements: precision of the result, number of iterations and calculation time....... Both algorithms are also tested on an analytical design process of a Transverse Flux Permanent Magnet Generator to observe their performances in an electrical machine design application.......Nowadays the requirements imposed by the industry and economy ask for better quality and performance while the price must be maintained in the same range. To achieve this goal optimization must be introduced in the design process. Two of the best known optimization algorithms for machine design...

  15. Research into the Architecture of CAD Based Robot Vision Systems

    Science.gov (United States)

    1988-02-09

    Vision 󈨚 and "Automatic Generation of Recognition Features for Com- puter Vision," Mudge, Turney and Volz, published in Robotica (1987). All of the...Occluded Parts," (T.N. Mudge, J.L. Turney, and R.A. Volz), Robotica , vol. 5, 1987, pp. 117-127. 5. "Vision Algorithms for Hypercube Machines," (T.N. Mudge

  16. Virtual machine consolidation enhancement using hybrid regression algorithms

    Directory of Open Access Journals (Sweden)

    Amany Abdelsamea

    2017-11-01

    Full Text Available Cloud computing data centers are growing rapidly in both number and capacity to meet the increasing demands for highly-responsive computing and massive storage. Such data centers consume enormous amounts of electrical energy resulting in high operating costs and carbon dioxide emissions. The reason for this extremely high energy consumption is not just the quantity of computing resources and the power inefficiency of hardware, but rather lies in the inefficient usage of these resources. VM consolidation involves live migration of VMs hence the capability of transferring a VM between physical servers with a close to zero down time. It is an effective way to improve the utilization of resources and increase energy efficiency in cloud data centers. VM consolidation consists of host overload/underload detection, VM selection and VM placement. Most of the current VM consolidation approaches apply either heuristic-based techniques, such as static utilization thresholds, decision-making based on statistical analysis of historical data; or simply periodic adaptation of the VM allocation. Most of those algorithms rely on CPU utilization only for host overload detection. In this paper we propose using hybrid factors to enhance VM consolidation. Specifically we developed a multiple regression algorithm that uses CPU utilization, memory utilization and bandwidth utilization for host overload detection. The proposed algorithm, Multiple Regression Host Overload Detection (MRHOD, significantly reduces energy consumption while ensuring a high level of adherence to Service Level Agreements (SLA since it gives a real indication of host utilization based on three parameters (CPU, Memory, Bandwidth utilizations instead of one parameter only (CPU utilization. Through simulations we show that our approach reduces power consumption by 6 times compared to single factor algorithms using random workload. Also using PlanetLab workload traces we show that MRHOD improves

  17. Empirical Investigation of Optimization Algorithms in Neural Machine Translation

    Directory of Open Access Journals (Sweden)

    Bahar Parnia

    2017-06-01

    Full Text Available Training neural networks is a non-convex and a high-dimensional optimization problem. In this paper, we provide a comparative study of the most popular stochastic optimization techniques used to train neural networks. We evaluate the methods in terms of convergence speed, translation quality, and training stability. In addition, we investigate combinations that seek to improve optimization in terms of these aspects. We train state-of-the-art attention-based models and apply them to perform neural machine translation. We demonstrate our results on two tasks: WMT 2016 En→Ro and WMT 2015 De→En.

  18. Using machine learning algorithms to guide rehabilitation planning for home care clients.

    Science.gov (United States)

    Zhu, Mu; Zhang, Zhanyang; Hirdes, John P; Stolee, Paul

    2007-12-20

    Targeting older clients for rehabilitation is a clinical challenge and a research priority. We investigate the potential of machine learning algorithms - Support Vector Machine (SVM) and K-Nearest Neighbors (KNN) - to guide rehabilitation planning for home care clients. This study is a secondary analysis of data on 24,724 longer-term clients from eight home care programs in Ontario. Data were collected with the RAI-HC assessment system, in which the Activities of Daily Living Clinical Assessment Protocol (ADLCAP) is used to identify clients with rehabilitation potential. For study purposes, a client is defined as having rehabilitation potential if there was: i) improvement in ADL functioning, or ii) discharge home. SVM and KNN results are compared with those obtained using the ADLCAP. For comparison, the machine learning algorithms use the same functional and health status indicators as the ADLCAP. The KNN and SVM algorithms achieved similar substantially improved performance over the ADLCAP, although false positive and false negative rates were still fairly high (FP > .18, FN > .34 versus FP > .29, FN. > .58 for ADLCAP). Results are used to suggest potential revisions to the ADLCAP. Machine learning algorithms achieved superior predictions than the current protocol. Machine learning results are less readily interpretable, but can also be used to guide development of improved clinical protocols.

  19. Behavioral Profiling of Scada Network Traffic Using Machine Learning Algorithms

    Science.gov (United States)

    2014-03-27

    Acquisition ( SCADA ) System Overview SCADA systems control and monitor processes for water distribution, oil and natural gas pipelines , electrical...the desire for remote control and monitoring of industrial processes. The ability to identify SCADA devices on a mixed traffic network with zero...optimal attribute subset, while maintaining the desired TPR of .99 for SCADA network traffic. The attributes and ML algorithms chosen for

  20. Classification of large-sized hyperspectral imagery using fast machine learning algorithms

    Science.gov (United States)

    Xia, Junshi; Yokoya, Naoto; Iwasaki, Akira

    2017-07-01

    We present a framework of fast machine learning algorithms in the context of large-sized hyperspectral images classification from the theoretical to a practical viewpoint. In particular, we assess the performance of random forest (RF), rotation forest (RoF), and extreme learning machine (ELM) and the ensembles of RF and ELM. These classifiers are applied to two large-sized hyperspectral images and compared to the support vector machines. To give the quantitative analysis, we pay attention to comparing these methods when working with high input dimensions and a limited/sufficient training set. Moreover, other important issues such as the computational cost and robustness against the noise are also discussed.

  1. Four wind speed multi-step forecasting models using extreme learning machines and signal decomposing algorithms

    International Nuclear Information System (INIS)

    Liu, Hui; Tian, Hong-qi; Li, Yan-fei

    2015-01-01

    Highlights: • A hybrid architecture is proposed for the wind speed forecasting. • Four algorithms are used for the wind speed multi-scale decomposition. • The extreme learning machines are employed for the wind speed forecasting. • All the proposed hybrid models can generate the accurate results. - Abstract: Realization of accurate wind speed forecasting is important to guarantee the safety of wind power utilization. In this paper, a new hybrid forecasting architecture is proposed to realize the wind speed accurate forecasting. In this architecture, four different hybrid models are presented by combining four signal decomposing algorithms (e.g., Wavelet Decomposition/Wavelet Packet Decomposition/Empirical Mode Decomposition/Fast Ensemble Empirical Mode Decomposition) and Extreme Learning Machines. The originality of the study is to investigate the promoted percentages of the Extreme Learning Machines by those mainstream signal decomposing algorithms in the multiple step wind speed forecasting. The results of two forecasting experiments indicate that: (1) the method of Extreme Learning Machines is suitable for the wind speed forecasting; (2) by utilizing the decomposing algorithms, all the proposed hybrid algorithms have better performance than the single Extreme Learning Machines; (3) in the comparisons of the decomposing algorithms in the proposed hybrid architecture, the Fast Ensemble Empirical Mode Decomposition has the best performance in the three-step forecasting results while the Wavelet Packet Decomposition has the best performance in the one and two step forecasting results. At the same time, the Wavelet Packet Decomposition and the Fast Ensemble Empirical Mode Decomposition are better than the Wavelet Decomposition and the Empirical Mode Decomposition in all the step predictions, respectively; and (4) the proposed algorithms are effective in the wind speed accurate predictions

  2. Optimisation of a machine learning algorithm in human locomotion using principal component and discriminant function analyses.

    Science.gov (United States)

    Bisele, Maria; Bencsik, Martin; Lewis, Martin G C; Barnett, Cleveland T

    2017-01-01

    Assessment methods in human locomotion often involve the description of normalised graphical profiles and/or the extraction of discrete variables. Whilst useful, these approaches may not represent the full complexity of gait data. Multivariate statistical methods, such as Principal Component Analysis (PCA) and Discriminant Function Analysis (DFA), have been adopted since they have the potential to overcome these data handling issues. The aim of the current study was to develop and optimise a specific machine learning algorithm for processing human locomotion data. Twenty participants ran at a self-selected speed across a 15m runway in barefoot and shod conditions. Ground reaction forces (BW) and kinematics were measured at 1000 Hz and 100 Hz, respectively from which joint angles (°), joint moments (N.m.kg-1) and joint powers (W.kg-1) for the hip, knee and ankle joints were calculated in all three anatomical planes. Using PCA and DFA, power spectra of the kinematic and kinetic variables were used as a training database for the development of a machine learning algorithm. All possible combinations of 10 out of 20 participants were explored to find the iteration of individuals that would optimise the machine learning algorithm. The results showed that the algorithm was able to successfully predict whether a participant ran shod or barefoot in 93.5% of cases. To the authors' knowledge, this is the first study to optimise the development of a machine learning algorithm.

  3. A High-Speed Vision-Based Sensor for Dynamic Vibration Analysis Using Fast Motion Extraction Algorithms

    Directory of Open Access Journals (Sweden)

    Dashan Zhang

    2016-04-01

    Full Text Available The development of image sensor and optics enables the application of vision-based techniques to the non-contact dynamic vibration analysis of large-scale structures. As an emerging technology, a vision-based approach allows for remote measuring and does not bring any additional mass to the measuring object compared with traditional contact measurements. In this study, a high-speed vision-based sensor system is developed to extract structure vibration signals in real time. A fast motion extraction algorithm is required for this system because the maximum sampling frequency of the charge-coupled device (CCD sensor can reach up to 1000 Hz. Two efficient subpixel level motion extraction algorithms, namely the modified Taylor approximation refinement algorithm and the localization refinement algorithm, are integrated into the proposed vision sensor. Quantitative analysis shows that both of the two modified algorithms are at least five times faster than conventional upsampled cross-correlation approaches and achieve satisfactory error performance. The practicability of the developed sensor is evaluated by an experiment in a laboratory environment and a field test. Experimental results indicate that the developed high-speed vision-based sensor system can extract accurate dynamic structure vibration signals by tracking either artificial targets or natural features.

  4. Machine-Learning Algorithms to Automate Morphological and Functional Assessments in 2D Echocardiography.

    Science.gov (United States)

    Narula, Sukrit; Shameer, Khader; Salem Omar, Alaa Mabrouk; Dudley, Joel T; Sengupta, Partho P

    2016-11-29

    Machine-learning models may aid cardiac phenotypic recognition by using features of cardiac tissue deformation. This study investigated the diagnostic value of a machine-learning framework that incorporates speckle-tracking echocardiographic data for automated discrimination of hypertrophic cardiomyopathy (HCM) from physiological hypertrophy seen in athletes (ATH). Expert-annotated speckle-tracking echocardiographic datasets obtained from 77 ATH and 62 HCM patients were used for developing an automated system. An ensemble machine-learning model with 3 different machine-learning algorithms (support vector machines, random forests, and artificial neural networks) was developed and a majority voting method was used for conclusive predictions with further K-fold cross-validation. Feature selection using an information gain (IG) algorithm revealed that volume was the best predictor for differentiating between HCM ands. ATH (IG = 0.24) followed by mid-left ventricular segmental (IG = 0.134) and average longitudinal strain (IG = 0.131). The ensemble machine-learning model showed increased sensitivity and specificity compared with early-to-late diastolic transmitral velocity ratio (p 13 mm. In this subgroup analysis, the automated model continued to show equal sensitivity, but increased specificity relative to early-to-late diastolic transmitral velocity ratio, e', and strain. Our results suggested that machine-learning algorithms can assist in the discrimination of physiological versus pathological patterns of hypertrophic remodeling. This effort represents a step toward the development of a real-time, machine-learning-based system for automated interpretation of echocardiographic images, which may help novice readers with limited experience. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  5. Application of Machine Learning Algorithms for the Query Performance Prediction

    Directory of Open Access Journals (Sweden)

    MILICEVIC, M.

    2015-08-01

    Full Text Available This paper analyzes the relationship between the system load/throughput and the query response time in a real Online transaction processing (OLTP system environment. Although OLTP systems are characterized by short transactions, which normally entail high availability and consistent short response times, the need for operational reporting may jeopardize these objectives. We suggest a new approach to performance prediction for concurrent database workloads, based on the system state vector which consists of 36 attributes. There is no bias to the importance of certain attributes, but the machine learning methods are used to determine which attributes better describe the behavior of the particular database server and how to model that system. During the learning phase, the system's profile is created using multiple reference queries, which are selected to represent frequent business processes. The possibility of the accurate response time prediction may be a foundation for automated decision-making for database (DB query scheduling. Possible applications of the proposed method include adaptive resource allocation, quality of service (QoS management or real-time dynamic query scheduling (e.g. estimation of the optimal moment for a complex query execution.

  6. Exploiting Support Vector Machine Algorithm to Break the Secret Key

    Directory of Open Access Journals (Sweden)

    S. Hou

    2018-04-01

    Full Text Available Template attacks (TA and support vector machine (SVM are two effective methods in side channel attacks (SCAs. Almost all studies on SVM in SCAs assume the required power traces are sufficient, which also implies the number of profiling traces belonging to each class is equivalent. Indeed, in the real attack scenario, there may not be enough power traces due to various restrictions. More specifically, the Hamming Weight of the S-Box output results in 9 binomial distributed classes, which significantly reduces the performance of SVM compared with the uniformly distributed classes. In this paper, the impact of the distribution of profiling traces on the performance of SVM is first explored in detail. And also, we conduct Synthetic Minority Oversampling TEchnique (SMOTE to solve the problem caused by the binomial distributed classes. By using SMOTE, the success rate of SVM is improved in the testing phase, and SVM requires fewer power traces to recover the key. Besides, TA is selected as a comparison. In contrast to what is perceived as common knowledge in unrestricted scenarios, our results indicate that SVM with proper parameters can significantly outperform TA.

  7. Performance Evaluation of Machine Learning Algorithms for Urban Pattern Recognition from Multi-spectral Satellite Images

    Directory of Open Access Journals (Sweden)

    Marc Wieland

    2014-03-01

    Full Text Available In this study, a classification and performance evaluation framework for the recognition of urban patterns in medium (Landsat ETM, TM and MSS and very high resolution (WorldView-2, Quickbird, Ikonos multi-spectral satellite images is presented. The study aims at exploring the potential of machine learning algorithms in the context of an object-based image analysis and to thoroughly test the algorithm’s performance under varying conditions to optimize their usage for urban pattern recognition tasks. Four classification algorithms, Normal Bayes, K Nearest Neighbors, Random Trees and Support Vector Machines, which represent different concepts in machine learning (probabilistic, nearest neighbor, tree-based, function-based, have been selected and implemented on a free and open-source basis. Particular focus is given to assess the generalization ability of machine learning algorithms and the transferability of trained learning machines between different image types and image scenes. Moreover, the influence of the number and choice of training data, the influence of the size and composition of the feature vector and the effect of image segmentation on the classification accuracy is evaluated.

  8. Classification and Diagnostic Output Prediction of Cancer Using Gene Expression Profiling and Supervised Machine Learning Algorithms

    DEFF Research Database (Denmark)

    Yoo, C.; Gernaey, Krist

    2008-01-01

    importance in the projection (VIP) information of the DPLS method. The power of the gene selection method and the proposed supervised hierarchical clustering method is illustrated on a three microarray data sets of leukemia, breast, and colon cancer. Supervised machine learning algorithms thus enable...

  9. Evaluation of machine learning algorithms for improved risk assessment for Down's syndrome.

    Science.gov (United States)

    Koivu, Aki; Korpimäki, Teemu; Kivelä, Petri; Pahikkala, Tapio; Sairanen, Mikko

    2018-05-04

    Prenatal screening generates a great amount of data that is used for predicting risk of various disorders. Prenatal risk assessment is based on multiple clinical variables and overall performance is defined by how well the risk algorithm is optimized for the population in question. This article evaluates machine learning algorithms to improve performance of first trimester screening of Down syndrome. Machine learning algorithms pose an adaptive alternative to develop better risk assessment models using the existing clinical variables. Two real-world data sets were used to experiment with multiple classification algorithms. Implemented models were tested with a third, real-world, data set and performance was compared to a predicate method, a commercial risk assessment software. Best performing deep neural network model gave an area under the curve of 0.96 and detection rate of 78% with 1% false positive rate with the test data. Support vector machine model gave area under the curve of 0.95 and detection rate of 61% with 1% false positive rate with the same test data. When compared with the predicate method, the best support vector machine model was slightly inferior, but an optimized deep neural network model was able to give higher detection rates with same false positive rate or similar detection rate but with markedly lower false positive rate. This finding could further improve the first trimester screening for Down syndrome, by using existing clinical variables and a large training data derived from a specific population. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Optimal Design of the Transverse Flux Machine Using a Fitted Genetic Algorithm with Real Parameters

    DEFF Research Database (Denmark)

    Argeseanu, Alin; Ritchie, Ewen; Leban, Krisztina Monika

    2012-01-01

    This paper applies a fitted genetic algorithm (GA) to the optimal design of transverse flux machine (TFM). The main goal is to provide a tool for the optimal design of TFM that is an easy to use. The GA optimizes the analytic basic design of two TFM topologies: the C-core and the U-core. First...

  11. Design, development and evaluation of an online grading system for peeled pistachios equipped with machine vision technology and support vector machine

    Directory of Open Access Journals (Sweden)

    Hosein Nouri-Ahmadabadi

    2017-12-01

    Full Text Available In this study, an intelligent system based on combined machine vision (MV and Support Vector Machine (SVM was developed for sorting of peeled pistachio kernels and shells. The system was composed of conveyor belt, lighting box, camera, processing unit and sorting unit. A color CCD camera was used to capture images. The images were digitalized by a capture card and transferred to a personal computer for further analysis. Initially, images were converted from RGB color space to HSV color ones. For segmentation of the acquired images, H-component in the HSV color space and Otsu thresholding method were applied. A feature vector containing 30 color features was extracted from the captured images. A feature selection method based on sensitivity analysis was carried out to select superior features. The selected features were presented to SVM classifier. Various SVM models having a different kernel function were developed and tested. The SVM model having cubic polynomial kernel function and 38 support vectors achieved the best accuracy (99.17% and then was selected to use in online decision-making unit of the system. By launching the online system, it was found that limiting factors of the system capacity were related to the hardware parts of the system (conveyor belt and pneumatic valves used in the sorting unit. The limiting factors led to a distance of 8 mm between the samples. The overall accuracy and capacity of the sorter were obtained 94.33% and 22.74 kg/h, respectively. Keywords: Pistachio kernel, Sorting, Machine vision, Sensitivity analysis, Support vector machine

  12. VirtualSpace: A vision of a machine-learned virtual space environment

    Science.gov (United States)

    Bortnik, J.; Sarno-Smith, L. K.; Chu, X.; Li, W.; Ma, Q.; Angelopoulos, V.; Thorne, R. M.

    2017-12-01

    Space borne instrumentation tends to come and go. A typical instrument will go through a phase of design and construction, be deployed on a spacecraft for several years while it collects data, and then be decommissioned and fade into obscurity. The data collected from that instrument will typically receive much attention while it is being collected, perhaps in the form of event studies, conjunctions with other instruments, or a few statistical surveys, but once the instrument or spacecraft is decommissioned, the data will be archived and receive progressively less attention with every passing year. This is the fate of all historical data, and will be the fate of data being collected by instruments even at the present time. But what if those instruments could come alive, and all be simultaneously present at any and every point in time and space? Imagine the scientific insights, and societal gains that could be achieved with a grand (virtual) heliophysical observatory that consists of every current and historical mission ever deployed? We propose that this is not just fantasy but is imminently doable with the data currently available, with the present computational resources, and with currently available algorithms. This project revitalizes existing data resources and lays the groundwork for incorporating data from every future mission to expand the scope and refine the resolution of the virtual observatory. We call this project VirtualSpace: a machine-learned virtual space environment.

  13. Conformal Interpolating Algorithm Based on Cubic NURBS in Aspheric Ultra-Precision Machining

    International Nuclear Information System (INIS)

    Li, C G; Zhang, Q R; Cao, C G; Zhao, S L

    2006-01-01

    Numeric control machining and on-line compensation for aspheric surface are key techniques in ultra-precision machining. In this paper, conformal cubic NURBS interpolating curve is applied to fit the character curve of aspheric surface. Its algorithm and process are also proposed and imitated by Matlab7.0 software. To evaluate the performance of the conformal cubic NURBS interpolation, we compare it with the linear interpolations. The result verifies this method can ensure smoothness of interpolating spline curve and preserve original shape characters. The surface quality interpolated by cubic NURBS is higher than by line. The algorithm is benefit to increasing the surface form precision of workpieces in ultra-precision machining

  14. Development and evaluation of a targeted orchard sprayer using machine vision technology

    Directory of Open Access Journals (Sweden)

    H Asaei

    2016-09-01

    Full Text Available Introduction In conventional methods of spraying in orchards, the amount of pesticide sprayed, is not targeted. The pesticide consumption data indicates that the application rate of pesticide in greenhouses and orchards is more than required. Less than 30% of pesticide sprayed actually reaches nursery canopies while the rest are lost and wasted. Nowadays, variable rate spray applicators using intelligent control systems can greatly reduce pesticide use and off-target contamination of environment in nurseries and orchards. In this research a prototype orchard sprayer based on machine vision technology was developed and evaluated. This sprayer performs real-time spraying based on the tree canopy structure and its greenness extent which improves the efficiency of spraying operation in orchards. Materials and Methods The equipment used in this study comprised of three main parts generally: 1- Mechanical Equipment 2- Data collection and image processing system 3- Electronic control system Two booms were designed to support the spray nozzles and to provide flexibility in directing the spray nozzles to the target. The boom comprised two parts, the vertical part and inclined part. The vertical part of the boom was used to spray one side of the trees during forward movement of the tractor and inclined part of the boom was designed to spray the upper half of the tree canopy. Three nozzles were considered on each boom. On the vertical part of the boom, two nozzles were placed, whereas one other nozzle was mounted on the inclined part of the boom. To achieve different tree heights, the vertical part of the boom was able to slide up and down. Labview (version 2011 was used for real time image processing. Images were captured through RGB cameras mounted on a horizontal bar attached on top of the tractor to take images separately for each side of the sprayer. Images were captured from the top of the canopies looking downward. The triggering signal for

  15. Energy-efficient algorithm for classification of states of wireless sensor network using machine learning methods

    Science.gov (United States)

    Yuldashev, M. N.; Vlasov, A. I.; Novikov, A. N.

    2018-05-01

    This paper focuses on the development of an energy-efficient algorithm for classification of states of a wireless sensor network using machine learning methods. The proposed algorithm reduces energy consumption by: 1) elimination of monitoring of parameters that do not affect the state of the sensor network, 2) reduction of communication sessions over the network (the data are transmitted only if their values can affect the state of the sensor network). The studies of the proposed algorithm have shown that at classification accuracy close to 100%, the number of communication sessions can be reduced by 80%.

  16. A method for classification of network traffic based on C5.0 Machine Learning Algorithm

    DEFF Research Database (Denmark)

    Bujlow, Tomasz; Riaz, M. Tahir; Pedersen, Jens Myrup

    2012-01-01

    current network traffic. To overcome the drawbacks of existing methods for traffic classification, usage of C5.0 Machine Learning Algorithm (MLA) was proposed. On the basis of statistical traffic information received from volunteers and C5.0 algorithm we constructed a boosted classifier, which was shown...... and classification, an algorithm for recognizing flow direction and the C5.0 itself. Classified applications include Skype, FTP, torrent, web browser traffic, web radio, interactive gaming and SSH. We performed subsequent tries using different sets of parameters and both training and classification options...

  17. Clustering and Candidate Motif Detection in Exosomal miRNAs by Application of Machine Learning Algorithms.

    Science.gov (United States)

    Gaur, Pallavi; Chaturvedi, Anoop

    2017-07-22

    The clustering pattern and motifs give immense information about any biological data. An application of machine learning algorithms for clustering and candidate motif detection in miRNAs derived from exosomes is depicted in this paper. Recent progress in the field of exosome research and more particularly regarding exosomal miRNAs has led much bioinformatic-based research to come into existence. The information on clustering pattern and candidate motifs in miRNAs of exosomal origin would help in analyzing existing, as well as newly discovered miRNAs within exosomes. Along with obtaining clustering pattern and candidate motifs in exosomal miRNAs, this work also elaborates the usefulness of the machine learning algorithms that can be efficiently used and executed on various programming languages/platforms. Data were clustered and sequence candidate motifs were detected successfully. The results were compared and validated with some available web tools such as 'BLASTN' and 'MEME suite'. The machine learning algorithms for aforementioned objectives were applied successfully. This work elaborated utility of machine learning algorithms and language platforms to achieve the tasks of clustering and candidate motif detection in exosomal miRNAs. With the information on mentioned objectives, deeper insight would be gained for analyses of newly discovered miRNAs in exosomes which are considered to be circulating biomarkers. In addition, the execution of machine learning algorithms on various language platforms gives more flexibility to users to try multiple iterations according to their requirements. This approach can be applied to other biological data-mining tasks as well.

  18. Characterization of robotics parallel algorithms and mapping onto a reconfigurable SIMD machine

    Science.gov (United States)

    Lee, C. S. G.; Lin, C. T.

    1989-01-01

    The kinematics, dynamics, Jacobian, and their corresponding inverse computations are six essential problems in the control of robot manipulators. Efficient parallel algorithms for these computations are discussed and analyzed. Their characteristics are identified and a scheme on the mapping of these algorithms to a reconfigurable parallel architecture is presented. Based on the characteristics including type of parallelism, degree of parallelism, uniformity of the operations, fundamental operations, data dependencies, and communication requirement, it is shown that most of the algorithms for robotic computations possess highly regular properties and some common structures, especially the linear recursive structure. Moreover, they are well-suited to be implemented on a single-instruction-stream multiple-data-stream (SIMD) computer with reconfigurable interconnection network. The model of a reconfigurable dual network SIMD machine with internal direct feedback is introduced. A systematic procedure internal direct feedback is introduced. A systematic procedure to map these computations to the proposed machine is presented. A new scheduling problem for SIMD machines is investigated and a heuristic algorithm, called neighborhood scheduling, that reorders the processing sequence of subtasks to reduce the communication time is described. Mapping results of a benchmark algorithm are illustrated and discussed.

  19. MIP Models and Hybrid Algorithms for Simultaneous Job Splitting and Scheduling on Unrelated Parallel Machines

    Science.gov (United States)

    Ozmutlu, H. Cenk

    2014-01-01

    We developed mixed integer programming (MIP) models and hybrid genetic-local search algorithms for the scheduling problem of unrelated parallel machines with job sequence and machine-dependent setup times and with job splitting property. The first contribution of this paper is to introduce novel algorithms which make splitting and scheduling simultaneously with variable number of subjobs. We proposed simple chromosome structure which is constituted by random key numbers in hybrid genetic-local search algorithm (GAspLA). Random key numbers are used frequently in genetic algorithms, but it creates additional difficulty when hybrid factors in local search are implemented. We developed algorithms that satisfy the adaptation of results of local search into the genetic algorithms with minimum relocation operation of genes' random key numbers. This is the second contribution of the paper. The third contribution of this paper is three developed new MIP models which are making splitting and scheduling simultaneously. The fourth contribution of this paper is implementation of the GAspLAMIP. This implementation let us verify the optimality of GAspLA for the studied combinations. The proposed methods are tested on a set of problems taken from the literature and the results validate the effectiveness of the proposed algorithms. PMID:24977204

  20. MIP models and hybrid algorithms for simultaneous job splitting and scheduling on unrelated parallel machines.

    Science.gov (United States)

    Eroglu, Duygu Yilmaz; Ozmutlu, H Cenk

    2014-01-01

    We developed mixed integer programming (MIP) models and hybrid genetic-local search algorithms for the scheduling problem of unrelated parallel machines with job sequence and machine-dependent setup times and with job splitting property. The first contribution of this paper is to introduce novel algorithms which make splitting and scheduling simultaneously with variable number of subjobs. We proposed simple chromosome structure which is constituted by random key numbers in hybrid genetic-local search algorithm (GAspLA). Random key numbers are used frequently in genetic algorithms, but it creates additional difficulty when hybrid factors in local search are implemented. We developed algorithms that satisfy the adaptation of results of local search into the genetic algorithms with minimum relocation operation of genes' random key numbers. This is the second contribution of the paper. The third contribution of this paper is three developed new MIP models which are making splitting and scheduling simultaneously. The fourth contribution of this paper is implementation of the GAspLAMIP. This implementation let us verify the optimality of GAspLA for the studied combinations. The proposed methods are tested on a set of problems taken from the literature and the results validate the effectiveness of the proposed algorithms.

  1. A Linked List-Based Algorithm for Blob Detection on Embedded Vision-Based Sensors

    Directory of Open Access Journals (Sweden)

    Ricardo Acevedo-Avila

    2016-05-01

    Full Text Available Blob detection is a common task in vision-based applications. Most existing algorithms are aimed at execution on general purpose computers; while very few can be adapted to the computing restrictions present in embedded platforms. This paper focuses on the design of an algorithm capable of real-time blob detection that minimizes system memory consumption. The proposed algorithm detects objects in one image scan; it is based on a linked-list data structure tree used to label blobs depending on their shape and node information. An example application showing the results of a blob detection co-processor has been built on a low-powered field programmable gate array hardware as a step towards developing a smart video surveillance system. The detection method is intended for general purpose application. As such, several test cases focused on character recognition are also examined. The results obtained present a fair trade-off between accuracy and memory requirements; and prove the validity of the proposed approach for real-time implementation on resource-constrained computing platforms.

  2. A Linked List-Based Algorithm for Blob Detection on Embedded Vision-Based Sensors.

    Science.gov (United States)

    Acevedo-Avila, Ricardo; Gonzalez-Mendoza, Miguel; Garcia-Garcia, Andres

    2016-05-28

    Blob detection is a common task in vision-based applications. Most existing algorithms are aimed at execution on general purpose computers; while very few can be adapted to the computing restrictions present in embedded platforms. This paper focuses on the design of an algorithm capable of real-time blob detection that minimizes system memory consumption. The proposed algorithm detects objects in one image scan; it is based on a linked-list data structure tree used to label blobs depending on their shape and node information. An example application showing the results of a blob detection co-processor has been built on a low-powered field programmable gate array hardware as a step towards developing a smart video surveillance system. The detection method is intended for general purpose application. As such, several test cases focused on character recognition are also examined. The results obtained present a fair trade-off between accuracy and memory requirements; and prove the validity of the proposed approach for real-time implementation on resource-constrained computing platforms.

  3. A Hybrid Genetic Algorithm to Minimize Total Tardiness for Unrelated Parallel Machine Scheduling with Precedence Constraints

    Directory of Open Access Journals (Sweden)

    Chunfeng Liu

    2013-01-01

    Full Text Available The paper presents a novel hybrid genetic algorithm (HGA for a deterministic scheduling problem where multiple jobs with arbitrary precedence constraints are processed on multiple unrelated parallel machines. The objective is to minimize total tardiness, since delays of the jobs may lead to punishment cost or cancellation of orders by the clients in many situations. A priority rule-based heuristic algorithm, which schedules a prior job on a prior machine according to the priority rule at each iteration, is suggested and embedded to the HGA for initial feasible schedules that can be improved in further stages. Computational experiments are conducted to show that the proposed HGA performs well with respect to accuracy and efficiency of solution for small-sized problems and gets better results than the conventional genetic algorithm within the same runtime for large-sized problems.

  4. ASSESSMENT OF PERFORMANCES OF VARIOUS MACHINE LEARNING ALGORITHMS DURING AUTOMATED EVALUATION OF DESCRIPTIVE ANSWERS

    Directory of Open Access Journals (Sweden)

    C. Sunil Kumar

    2014-07-01

    Full Text Available Automation of descriptive answers evaluation is the need of the hour because of the huge increase in the number of students enrolling each year in educational institutions and the limited staff available to spare their time for evaluations. In this paper, we use a machine learning workbench called LightSIDE to accomplish auto evaluation and scoring of descriptive answers. We attempted to identify the best supervised machine learning algorithm given a limited training set sample size scenario. We evaluated performances of Bayes, SVM, Logistic Regression, Random forests, Decision stump and Decision trees algorithms. We confirmed SVM as best performing algorithm based on quantitative measurements across accuracy, kappa, training speed and prediction accuracy with supplied test set.

  5. Combined spatial/angular domain decomposition SN algorithms for shared memory parallel machines

    International Nuclear Information System (INIS)

    Hunter, M.A.; Haghighat, A.

    1993-01-01

    Several parallel processing algorithms on the basis of spatial and angular domain decomposition methods are developed and incorporated into a two-dimensional discrete ordinates transport theory code. These algorithms divide the spatial and angular domains into independent subdomains so that the flux calculations within each subdomain can be processed simultaneously. Two spatial parallel algorithms (Block-Jacobi, red-black), one angular parallel algorithm (η-level), and their combinations are implemented on an eight processor CRAY Y-MP. Parallel performances of the algorithms are measured using a series of fixed source RZ geometry problems. Some of the results are also compared with those executed on an IBM 3090/600J machine. (orig.)

  6. Efficient Hybrid Genetic Based Multi Dimensional Host Load Aware Algorithm for Scheduling and Optimization of Virtual Machines

    OpenAIRE

    Thiruvenkadam, T; Karthikeyani, V

    2014-01-01

    Mapping the virtual machines to the physical machines cluster is called the VM placement. Placing the VM in the appropriate host is necessary for ensuring the effective resource utilization and minimizing the datacenter cost as well as power. Here we present an efficient hybrid genetic based host load aware algorithm for scheduling and optimization of virtual machines in a cluster of Physical hosts. We developed the algorithm based on two different methods, first initial VM packing is done by...

  7. Application of Computer Vision Methods and Algorithms in Documentation of Cultural Heritage

    Directory of Open Access Journals (Sweden)

    David Káňa

    2012-12-01

    Full Text Available The main task of this paper is to describe methods and algorithms used in computer vision for fully automatic reconstruction of exterior orientation in ordered and unordered sets of images captured by digital calibrated cameras without prior informations about camera positions or scene structure. Attention will be paid to the SIFT interest operator for finding key points clearly describing the image areas with respect to scale and rotation, so that these areas could be compared to the regions in other images. There will also be discussed methods of matching key points, calculation of the relative orientation and strategy of linking sub-models to estimate the parameters entering complex bundle adjustment. The paper also compares the results achieved with above system with the results obtained by standard photogrammetric methods in processing of project documentation for reconstruction of the Žinkovy castle.

  8. Machine Learning

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Machine learning, which builds on ideas in computer science, statistics, and optimization, focuses on developing algorithms to identify patterns and regularities in data, and using these learned patterns to make predictions on new observations. Boosted by its industrial and commercial applications, the field of machine learning is quickly evolving and expanding. Recent advances have seen great success in the realms of computer vision, natural language processing, and broadly in data science. Many of these techniques have already been applied in particle physics, for instance for particle identification, detector monitoring, and the optimization of computer resources. Modern machine learning approaches, such as deep learning, are only just beginning to be applied to the analysis of High Energy Physics data to approach more and more complex problems. These classes will review the framework behind machine learning and discuss recent developments in the field.

  9. Parallel algorithm for dominant points correspondences in robot binocular stereo vision

    Science.gov (United States)

    Al-Tammami, A.; Singh, B.

    1993-01-01

    This paper presents an algorithm to find the correspondences of points representing dominant feature in robot stereo vision. The algorithm consists of two main steps: dominant point extraction and dominant point matching. In the feature extraction phase, the algorithm utilizes the widely used Moravec Interest Operator and two other operators: the Prewitt Operator and a new operator called Gradient Angle Variance Operator. The Interest Operator in the Moravec algorithm was used to exclude featureless areas and simple edges which are oriented in the vertical, horizontal, and two diagonals. It was incorrectly detecting points on edges which are not on the four main directions (vertical, horizontal, and two diagonals). The new algorithm uses the Prewitt operator to exclude featureless areas, so that the Interest Operator is applied only on the edges to exclude simple edges and to leave interesting points. This modification speeds-up the extraction process by approximately 5 times. The Gradient Angle Variance (GAV), an operator which calculates the variance of the gradient angle in a window around the point under concern, is then applied on the interesting points to exclude the redundant ones and leave the actual dominant ones. The matching phase is performed after the extraction of the dominant points in both stereo images. The matching starts with dominant points in the left image and does a local search, looking for corresponding dominant points in the right image. The search is geometrically constrained the epipolar line of the parallel-axes stereo geometry and the maximum disparity of the application environment. If one dominant point in the right image lies in the search areas, then it is the corresponding point of the reference dominant point in the left image. A parameter provided by the GAV is thresholded and used as a rough similarity measure to select the corresponding dominant point if there is more than one point the search area. The correlation is used as

  10. Optimization of operating schedule of machines in granite industry using evolutionary algorithms

    International Nuclear Information System (INIS)

    Loganthurai, P.; Rajasekaran, V.; Gnanambal, K.

    2014-01-01

    Highlights: • Operating time of machines in granite industries was studied. • Operating time has been optimized using evolutionary algorithms such as PSO, DE. • The maximum demand has been reduced. • Hence the electricity cost of the industry and feeder stress have been reduced. - Abstract: Electrical energy consumption cost plays an important role in the production cost of any industry. The electrical energy consumption cost is calculated as two part tariff, the first part is maximum demand cost and the second part is energy consumption cost or unit cost (kW h). The maximum demand cost can be reduced without affecting the production. This paper focuses on the reduction of maximum demand by proper operating schedule of major equipments. For this analysis, various granite industries are considered. The major equipments in granite industries are cutting machine, polishing machine and compressor. To reduce the maximum demand, the operating time of polishing machine is rescheduled by optimization techniques such as Differential Evolution (DE) and particle swarm optimization (PSO). The maximum demand costs are calculated before and after rescheduling. The results show that if the machines are optimally operated, the cost is reduced. Both DE and PSO algorithms reduce the maximum demand cost at the same rate for all the granite industries. However, the optimum scheduling obtained by DE reduces the feeder power flow than the PSO scheduling

  11. Process planning optimization on turning machine tool using a hybrid genetic algorithm with local search approach

    Directory of Open Access Journals (Sweden)

    Yuliang Su

    2015-04-01

    Full Text Available A turning machine tool is a kind of new type of machine tool that is equipped with more than one spindle and turret. The distinctive simultaneous and parallel processing abilities of turning machine tool increase the complexity of process planning. The operations would not only be sequenced and satisfy precedence constraints, but also should be scheduled with multiple objectives such as minimizing machining cost, maximizing utilization of turning machine tool, and so on. To solve this problem, a hybrid genetic algorithm was proposed to generate optimal process plans based on a mixed 0-1 integer programming model. An operation precedence graph is used to represent precedence constraints and help generate a feasible initial population of hybrid genetic algorithm. Encoding strategy based on data structure was developed to represent process plans digitally in order to form the solution space. In addition, a local search approach for optimizing the assignments of available turrets would be added to incorporate scheduling with process planning. A real-world case is used to prove that the proposed approach could avoid infeasible solutions and effectively generate a global optimal process plan.

  12. TURING MACHINE AS UNIVERSAL ALGORITHM EXECUTOR AND ITS APPLICATION IN THE PROCESS OF HIGH-SCHOOL STUDENTS` ADVANCED STUDY OF ALGORITHMIZATION AND PROGRAMMING FUNDAMENTALS

    Directory of Open Access Journals (Sweden)

    Oleksandr B. Yashchyk

    2016-05-01

    Full Text Available The article discusses the importance of studying the notion of algorithm and its formal specification using Turing machines. In the article it was identified the basic hypothesis of the theory of algorithms for Turing as well as reviewed scientific research of modern scientists devoted to this issue and found the main principles of the Turing machine as an abstract mathematical model. The process of forming information competencies components, information culture and students` logical thinking development with the inclusion of the topic “Study and Application of Turing machine as Universal Algorithm Executor” in the course of Informatics was analyzed.

  13. A human-machine cooperation route planning method based on improved A* algorithm

    Science.gov (United States)

    Zhang, Zhengsheng; Cai, Chao

    2011-12-01

    To avoid the limitation of common route planning method to blindly pursue higher Machine Intelligence and autoimmunization, this paper presents a human-machine cooperation route planning method. The proposed method includes a new A* path searing strategy based on dynamic heuristic searching and a human cooperated decision strategy to prune searching area. It can overcome the shortage of A* algorithm to fall into a local long term searching. Experiments showed that this method can quickly plan a feasible route to meet the macro-policy thinking.

  14. Can We Train Machine Learning Methods to Outperform the High-dimensional Propensity Score Algorithm?

    Science.gov (United States)

    Karim, Mohammad Ehsanul; Pang, Menglan; Platt, Robert W

    2018-03-01

    The use of retrospective health care claims datasets is frequently criticized for the lack of complete information on potential confounders. Utilizing patient's health status-related information from claims datasets as surrogates or proxies for mismeasured and unobserved confounders, the high-dimensional propensity score algorithm enables us to reduce bias. Using a previously published cohort study of postmyocardial infarction statin use (1998-2012), we compare the performance of the algorithm with a number of popular machine learning approaches for confounder selection in high-dimensional covariate spaces: random forest, least absolute shrinkage and selection operator, and elastic net. Our results suggest that, when the data analysis is done with epidemiologic principles in mind, machine learning methods perform as well as the high-dimensional propensity score algorithm. Using a plasmode framework that mimicked the empirical data, we also showed that a hybrid of machine learning and high-dimensional propensity score algorithms generally perform slightly better than both in terms of mean squared error, when a bias-based analysis is used.

  15. Learning Algorithm of Boltzmann Machine Based on Spatial Monte Carlo Integration Method

    Directory of Open Access Journals (Sweden)

    Muneki Yasuda

    2018-04-01

    Full Text Available The machine learning techniques for Markov random fields are fundamental in various fields involving pattern recognition, image processing, sparse modeling, and earth science, and a Boltzmann machine is one of the most important models in Markov random fields. However, the inference and learning problems in the Boltzmann machine are NP-hard. The investigation of an effective learning algorithm for the Boltzmann machine is one of the most important challenges in the field of statistical machine learning. In this paper, we study Boltzmann machine learning based on the (first-order spatial Monte Carlo integration method, referred to as the 1-SMCI learning method, which was proposed in the author’s previous paper. In the first part of this paper, we compare the method with the maximum pseudo-likelihood estimation (MPLE method using a theoretical and a numerical approaches, and show the 1-SMCI learning method is more effective than the MPLE. In the latter part, we compare the 1-SMCI learning method with other effective methods, ratio matching and minimum probability flow, using a numerical experiment, and show the 1-SMCI learning method outperforms them.

  16. VISION development

    International Nuclear Information System (INIS)

    Hernandez, J.E.; Sherwood, R.J.; Whitman, S.R.

    1994-01-01

    VISION is a flexible and extensible object-oriented programming environment for prototyping computer-vision and pattern-recognition algorithms. This year's effort focused on three major areas: documentation, graphics, and support for new applications

  17. Discrete-State-Based Vision Navigation Control Algorithm for One Bipedal Robot

    Directory of Open Access Journals (Sweden)

    Dunwen Wei

    2015-01-01

    Full Text Available Navigation with the specific objective can be defined by specifying desired timed trajectory. The concept of desired direction field is proposed to deal with such navigation problem. To lay down a principled discussion of the accuracy and efficiency of navigation algorithms, strictly quantitative definitions of tracking error, actuator effect, and time efficiency are established. In this paper, one vision navigation control method based on desired direction field is proposed. This proposed method uses discrete image sequences to form discrete state space, which is especially suitable for bipedal walking robots with single camera walking on a free-barrier plane surface to track the specific objective without overshoot. The shortest path method (SPM is proposed to design such direction field with the highest time efficiency. However, one improved control method called canonical piecewise-linear function (PLF is proposed. In order to restrain the noise disturbance from the camera sensor, the band width control method is presented to significantly decrease the error influence. The robustness and efficiency of the proposed algorithm are illustrated through a number of computer simulations considering the error from camera sensor. Simulation results show that the robustness and efficiency can be balanced by choosing the proper controlling value of band width.

  18. Comparison of four machine learning algorithms for their applicability in satellite-based optical rainfall retrievals

    Science.gov (United States)

    Meyer, Hanna; Kühnlein, Meike; Appelhans, Tim; Nauss, Thomas

    2016-03-01

    Machine learning (ML) algorithms have successfully been demonstrated to be valuable tools in satellite-based rainfall retrievals which show the practicability of using ML algorithms when faced with high dimensional and complex data. Moreover, recent developments in parallel computing with ML present new possibilities for training and prediction speed and therefore make their usage in real-time systems feasible. This study compares four ML algorithms - random forests (RF), neural networks (NNET), averaged neural networks (AVNNET) and support vector machines (SVM) - for rainfall area detection and rainfall rate assignment using MSG SEVIRI data over Germany. Satellite-based proxies for cloud top height, cloud top temperature, cloud phase and cloud water path serve as predictor variables. The results indicate an overestimation of rainfall area delineation regardless of the ML algorithm (averaged bias = 1.8) but a high probability of detection ranging from 81% (SVM) to 85% (NNET). On a 24-hour basis, the performance of the rainfall rate assignment yielded R2 values between 0.39 (SVM) and 0.44 (AVNNET). Though the differences in the algorithms' performance were rather small, NNET and AVNNET were identified as the most suitable algorithms. On average, they demonstrated the best performance in rainfall area delineation as well as in rainfall rate assignment. NNET's computational speed is an additional advantage in work with large datasets such as in remote sensing based rainfall retrievals. However, since no single algorithm performed considerably better than the others we conclude that further research in providing suitable predictors for rainfall is of greater necessity than an optimization through the choice of the ML algorithm.

  19. An Improved Abstract State Machine Based Choreography Specification and Execution Algorithm for Semantic Web Services

    Directory of Open Access Journals (Sweden)

    Shahin Mehdipour Ataee

    2018-01-01

    Full Text Available We identify significant weaknesses in the original Abstract State Machine (ASM based choreography algorithm of Web Service Modeling Ontology (WSMO, which make it impractical for use in semantic web service choreography engines. We present an improved algorithm which rectifies the weaknesses of the original algorithm, as well as a practical, fully functional choreography engine implementation in Flora-2 based on the improved algorithm. Our improvements to the choreography algorithm include (i the linking of the initial state of the ASM to the precondition of the goal, (ii the introduction of the concept of a final state in the execution of the ASM and its linking to the postcondition of the goal, and (iii modification to the execution of the ASM so that it stops when the final state condition is satisfied by the current configuration of the machine. Our choreography engine takes as input semantic web service specifications written in the Flora-2 dialect of F-logic. Furthermore, we prove the equivalence of ASMs (evolving algebras and evolving ontologies in the sense that one can simulate the other, a first in literature. Finally, we present a visual editor which facilitates the design and deployment of our F-logic based web service and goal specifications.

  20. Optimizing Support Vector Machine Parameters with Genetic Algorithm for Credit Risk Assessment

    Science.gov (United States)

    Manurung, Jonson; Mawengkang, Herman; Zamzami, Elviawaty

    2017-12-01

    Support vector machine (SVM) is a popular classification method known to have strong generalization capabilities. SVM can solve the problem of classification and linear regression or nonlinear kernel which can be a learning algorithm for the ability of classification and regression. However, SVM also has a weakness that is difficult to determine the optimal parameter value. SVM calculates the best linear separator on the input feature space according to the training data. To classify data which are non-linearly separable, SVM uses kernel tricks to transform the data into a linearly separable data on a higher dimension feature space. The kernel trick using various kinds of kernel functions, such as : linear kernel, polynomial, radial base function (RBF) and sigmoid. Each function has parameters which affect the accuracy of SVM classification. To solve the problem genetic algorithms are proposed to be applied as the optimal parameter value search algorithm thus increasing the best classification accuracy on SVM. Data taken from UCI repository of machine learning database: Australian Credit Approval. The results show that the combination of SVM and genetic algorithms is effective in improving classification accuracy. Genetic algorithms has been shown to be effective in systematically finding optimal kernel parameters for SVM, instead of randomly selected kernel parameters. The best accuracy for data has been upgraded from kernel Linear: 85.12%, polynomial: 81.76%, RBF: 77.22% Sigmoid: 78.70%. However, for bigger data sizes, this method is not practical because it takes a lot of time.

  1. An Autonomous Connectivity Restoration Algorithm Based on Finite State Machine for Wireless Sensor-Actor Networks

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    2018-01-01

    Full Text Available With the development of autonomous unmanned intelligent systems, such as the unmanned boats, unmanned planes and autonomous underwater vehicles, studies on Wireless Sensor-Actor Networks (WSANs have attracted more attention. Network connectivity algorithms play an important role in data exchange, collaborative detection and information fusion. Due to the harsh application environment, abnormal nodes often appear, and the network connectivity will be prone to be lost. Network self-healing mechanisms have become critical for these systems. In order to decrease the movement overhead of the sensor-actor nodes, an autonomous connectivity restoration algorithm based on finite state machine is proposed. The idea is to identify whether a node is a critical node by using a finite state machine, and update the connected dominating set in a timely way. If an abnormal node is a critical node, the nearest non-critical node will be relocated to replace the abnormal node. In the case of multiple node abnormality, a regional network restoration algorithm is introduced. It is designed to reduce the overhead of node movements while restoration happens. Simulation results indicate the proposed algorithm has better performance on the total moving distance and the number of total relocated nodes compared with some other representative restoration algorithms.

  2. An Autonomous Connectivity Restoration Algorithm Based on Finite State Machine for Wireless Sensor-Actor Networks.

    Science.gov (United States)

    Zhang, Ying; Wang, Jun; Hao, Guan

    2018-01-08

    With the development of autonomous unmanned intelligent systems, such as the unmanned boats, unmanned planes and autonomous underwater vehicles, studies on Wireless Sensor-Actor Networks (WSANs) have attracted more attention. Network connectivity algorithms play an important role in data exchange, collaborative detection and information fusion. Due to the harsh application environment, abnormal nodes often appear, and the network connectivity will be prone to be lost. Network self-healing mechanisms have become critical for these systems. In order to decrease the movement overhead of the sensor-actor nodes, an autonomous connectivity restoration algorithm based on finite state machine is proposed. The idea is to identify whether a node is a critical node by using a finite state machine, and update the connected dominating set in a timely way. If an abnormal node is a critical node, the nearest non-critical node will be relocated to replace the abnormal node. In the case of multiple node abnormality, a regional network restoration algorithm is introduced. It is designed to reduce the overhead of node movements while restoration happens. Simulation results indicate the proposed algorithm has better performance on the total moving distance and the number of total relocated nodes compared with some other representative restoration algorithms.

  3. An Autonomous Connectivity Restoration Algorithm Based on Finite State Machine for Wireless Sensor-Actor Networks

    Science.gov (United States)

    Zhang, Ying; Wang, Jun; Hao, Guan

    2018-01-01

    With the development of autonomous unmanned intelligent systems, such as the unmanned boats, unmanned planes and autonomous underwater vehicles, studies on Wireless Sensor-Actor Networks (WSANs) have attracted more attention. Network connectivity algorithms play an important role in data exchange, collaborative detection and information fusion. Due to the harsh application environment, abnormal nodes often appear, and the network connectivity will be prone to be lost. Network self-healing mechanisms have become critical for these systems. In order to decrease the movement overhead of the sensor-actor nodes, an autonomous connectivity restoration algorithm based on finite state machine is proposed. The idea is to identify whether a node is a critical node by using a finite state machine, and update the connected dominating set in a timely way. If an abnormal node is a critical node, the nearest non-critical node will be relocated to replace the abnormal node. In the case of multiple node abnormality, a regional network restoration algorithm is introduced. It is designed to reduce the overhead of node movements while restoration happens. Simulation results indicate the proposed algorithm has better performance on the total moving distance and the number of total relocated nodes compared with some other representative restoration algorithms. PMID:29316702

  4. A novel hybrid genetic algorithm for optimal design of IPM machines for electric vehicle

    Science.gov (United States)

    Wang, Aimeng; Guo, Jiayu

    2017-12-01

    A novel hybrid genetic algorithm (HGA) is proposed to optimize the rotor structure of an IPM machine which is used in EV application. The finite element (FE) simulation results of the HGA design is compared with the genetic algorithm (GA) design and those before optimized. It is shown that the performance of the IPMSM is effectively improved by employing the GA and HGA, especially by HGA. Moreover, higher flux-weakening capability and less magnet usage are also obtained. Therefore, the validity of HGA method in IPMSM optimization design is verified.

  5. Cost Forecasting of Substation Projects Based on Cuckoo Search Algorithm and Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Dongxiao Niu

    2018-01-01

    Full Text Available Accurate prediction of substation project cost is helpful to improve the investment management and sustainability. It is also directly related to the economy of substation project. Ensemble Empirical Mode Decomposition (EEMD can decompose variables with non-stationary sequence signals into significant regularity and periodicity, which is helpful in improving the accuracy of prediction model. Adding the Gauss perturbation to the traditional Cuckoo Search (CS algorithm can improve the searching vigor and precision of CS algorithm. Thus, the parameters and kernel functions of Support Vector Machines (SVM model are optimized. By comparing the prediction results with other models, this model has higher prediction accuracy.

  6. Heuristic algorithms for solving of the tool routing problem for CNC cutting machines

    Science.gov (United States)

    Chentsov, P. A.; Petunin, A. A.; Sesekin, A. N.; Shipacheva, E. N.; Sholohov, A. E.

    2015-11-01

    The article is devoted to the problem of minimizing the path of the cutting tool to shape cutting machines began. This problem can be interpreted as a generalized traveling salesman problem. Earlier version of the dynamic programming method to solve this problem was developed. Unfortunately, this method allows to process an amount not exceeding thirty circuits. In this regard, the task of constructing quasi-optimal route becomes relevant. In this paper we propose options for quasi-optimal greedy algorithms. Comparison of the results of exact and approximate algorithms is given.

  7. Implementation of the Lanczos algorithm for the Hubbard model on the Connection Machine system

    International Nuclear Information System (INIS)

    Leung, P.W.; Oppenheimer, P.E.

    1992-01-01

    An implementation of the Lanczos algorithm for the exact diagonalization of the two dimensional Hubbard model on a 4x4 square lattice on the Connection Machine CM-2 system is described. The CM-2 is a massively parallel machine with distributed memory. The program is written in C/PARIS. This implementation minimizes memory usage by generating the matrix elements as needed instead of storing them. The Lanczos vectors are stored across the local memory of the processors. Using translational symmetry only, the dimension of the Hilbert space at half filling is more than 10 million. A speed of about 2.4 min per iteration is achieved on a 64K CM-2. This implementation is scalable. Running it on a bigger machine with more processors speeds up the process. The performance analysis of this implementation is shown and discuss its advantages and disadvantages are discussed

  8. Machine Learning Algorithms for $b$-Jet Tagging at the ATLAS Experiment

    CERN Document Server

    Paganini, Michela; The ATLAS collaboration

    2017-01-01

    The separation of $b$-quark initiated jets from those coming from lighter quark flavors ($b$-tagging) is a fundamental tool for the ATLAS physics program at the CERN Large Hadron Collider. The most powerful $b$-tagging algorithms combine information from low-level taggers, exploiting reconstructed track and vertex information, into machine learning classifiers. The potential of modern deep learning techniques is explored using simulated events, and compared to that achievable from more traditional classifiers such as boosted decision trees.

  9. Robust total energy demand estimation with a hybrid Variable Neighborhood Search – Extreme Learning Machine algorithm

    International Nuclear Information System (INIS)

    Sánchez-Oro, J.; Duarte, A.; Salcedo-Sanz, S.

    2016-01-01

    Highlights: • The total energy demand in Spain is estimated with a Variable Neighborhood algorithm. • Socio-economic variables are used, and one year ahead prediction horizon is considered. • Improvement of the prediction with an Extreme Learning Machine network is considered. • Experiments are carried out in real data for the case of Spain. - Abstract: Energy demand prediction is an important problem whose solution is evaluated by policy makers in order to take key decisions affecting the economy of a country. A number of previous approaches to improve the quality of this estimation have been proposed in the last decade, the majority of them applying different machine learning techniques. In this paper, the performance of a robust hybrid approach, composed of a Variable Neighborhood Search algorithm and a new class of neural network called Extreme Learning Machine, is discussed. The Variable Neighborhood Search algorithm is focused on obtaining the most relevant features among the set of initial ones, by including an exponential prediction model. While previous approaches consider that the number of macroeconomic variables used for prediction is a parameter of the algorithm (i.e., it is fixed a priori), the proposed Variable Neighborhood Search method optimizes both: the number of variables and the best ones. After this first step of feature selection, an Extreme Learning Machine network is applied to obtain the final energy demand prediction. Experiments in a real case of energy demand estimation in Spain show the excellent performance of the proposed approach. In particular, the whole method obtains an estimation of the energy demand with an error lower than 2%, even when considering the crisis years, which are a real challenge.

  10. Anomaly detection in wide area network mesh using two machine learning anomaly detection algorithms

    OpenAIRE

    Zhang, James; Vukotic, Ilija; Gardner, Robert

    2018-01-01

    Anomaly detection is the practice of identifying items or events that do not conform to an expected behavior or do not correlate with other items in a dataset. It has previously been applied to areas such as intrusion detection, system health monitoring, and fraud detection in credit card transactions. In this paper, we describe a new method for detecting anomalous behavior over network performance data, gathered by perfSONAR, using two machine learning algorithms: Boosted Decision Trees (BDT...

  11. Solar Flare Prediction Model with Three Machine-learning Algorithms using Ultraviolet Brightening and Vector Magnetograms

    Science.gov (United States)

    Nishizuka, N.; Sugiura, K.; Kubo, Y.; Den, M.; Watari, S.; Ishii, M.

    2017-02-01

    We developed a flare prediction model using machine learning, which is optimized to predict the maximum class of flares occurring in the following 24 hr. Machine learning is used to devise algorithms that can learn from and make decisions on a huge amount of data. We used solar observation data during the period 2010-2015, such as vector magnetograms, ultraviolet (UV) emission, and soft X-ray emission taken by the Solar Dynamics Observatory and the Geostationary Operational Environmental Satellite. We detected active regions (ARs) from the full-disk magnetogram, from which ˜60 features were extracted with their time differentials, including magnetic neutral lines, the current helicity, the UV brightening, and the flare history. After standardizing the feature database, we fully shuffled and randomly separated it into two for training and testing. To investigate which algorithm is best for flare prediction, we compared three machine-learning algorithms: the support vector machine, k-nearest neighbors (k-NN), and extremely randomized trees. The prediction score, the true skill statistic, was higher than 0.9 with a fully shuffled data set, which is higher than that for human forecasts. It was found that k-NN has the highest performance among the three algorithms. The ranking of the feature importance showed that previous flare activity is most effective, followed by the length of magnetic neutral lines, the unsigned magnetic flux, the area of UV brightening, and the time differentials of features over 24 hr, all of which are strongly correlated with the flux emergence dynamics in an AR.

  12. Solar Flare Prediction Model with Three Machine-learning Algorithms using Ultraviolet Brightening and Vector Magnetograms

    Energy Technology Data Exchange (ETDEWEB)

    Nishizuka, N.; Kubo, Y.; Den, M.; Watari, S.; Ishii, M. [Applied Electromagnetic Research Institute, National Institute of Information and Communications Technology, 4-2-1, Nukui-Kitamachi, Koganei, Tokyo 184-8795 (Japan); Sugiura, K., E-mail: nishizuka.naoto@nict.go.jp [Advanced Speech Translation Research and Development Promotion Center, National Institute of Information and Communications Technology (Japan)

    2017-02-01

    We developed a flare prediction model using machine learning, which is optimized to predict the maximum class of flares occurring in the following 24 hr. Machine learning is used to devise algorithms that can learn from and make decisions on a huge amount of data. We used solar observation data during the period 2010–2015, such as vector magnetograms, ultraviolet (UV) emission, and soft X-ray emission taken by the Solar Dynamics Observatory and the Geostationary Operational Environmental Satellite . We detected active regions (ARs) from the full-disk magnetogram, from which ∼60 features were extracted with their time differentials, including magnetic neutral lines, the current helicity, the UV brightening, and the flare history. After standardizing the feature database, we fully shuffled and randomly separated it into two for training and testing. To investigate which algorithm is best for flare prediction, we compared three machine-learning algorithms: the support vector machine, k-nearest neighbors (k-NN), and extremely randomized trees. The prediction score, the true skill statistic, was higher than 0.9 with a fully shuffled data set, which is higher than that for human forecasts. It was found that k-NN has the highest performance among the three algorithms. The ranking of the feature importance showed that previous flare activity is most effective, followed by the length of magnetic neutral lines, the unsigned magnetic flux, the area of UV brightening, and the time differentials of features over 24 hr, all of which are strongly correlated with the flux emergence dynamics in an AR.

  13. Solar Flare Prediction Model with Three Machine-learning Algorithms using Ultraviolet Brightening and Vector Magnetograms

    International Nuclear Information System (INIS)

    Nishizuka, N.; Kubo, Y.; Den, M.; Watari, S.; Ishii, M.; Sugiura, K.

    2017-01-01

    We developed a flare prediction model using machine learning, which is optimized to predict the maximum class of flares occurring in the following 24 hr. Machine learning is used to devise algorithms that can learn from and make decisions on a huge amount of data. We used solar observation data during the period 2010–2015, such as vector magnetograms, ultraviolet (UV) emission, and soft X-ray emission taken by the Solar Dynamics Observatory and the Geostationary Operational Environmental Satellite . We detected active regions (ARs) from the full-disk magnetogram, from which ∼60 features were extracted with their time differentials, including magnetic neutral lines, the current helicity, the UV brightening, and the flare history. After standardizing the feature database, we fully shuffled and randomly separated it into two for training and testing. To investigate which algorithm is best for flare prediction, we compared three machine-learning algorithms: the support vector machine, k-nearest neighbors (k-NN), and extremely randomized trees. The prediction score, the true skill statistic, was higher than 0.9 with a fully shuffled data set, which is higher than that for human forecasts. It was found that k-NN has the highest performance among the three algorithms. The ranking of the feature importance showed that previous flare activity is most effective, followed by the length of magnetic neutral lines, the unsigned magnetic flux, the area of UV brightening, and the time differentials of features over 24 hr, all of which are strongly correlated with the flux emergence dynamics in an AR.

  14. Machine learning algorithm accurately detects fMRI signature of vulnerability to major depression

    OpenAIRE

    Sato, Jo?o R.; Moll, Jorge; Green, Sophie; Deakin, John F.W.; Thomaz, Carlos E.; Zahn, Roland

    2015-01-01

    Standard functional magnetic resonance imaging (fMRI) analyses cannot assess the potential of a neuroimaging signature as a biomarker to predict individual vulnerability to major depression (MD). Here, we use machine learning for the first time to address this question. Using a recently identified neural signature of guilt-selective functional disconnection, the classification algorithm was able to distinguish remitted MD from control participants with 78.3% accuracy. This demonstrates the hi...

  15. Evaluation of machine learning algorithms for prediction of regions of high Reynolds averaged Navier Stokes uncertainty

    Science.gov (United States)

    Ling, J.; Templeton, J.

    2015-08-01

    Reynolds Averaged Navier Stokes (RANS) models are widely used in industry to predict fluid flows, despite their acknowledged deficiencies. Not only do RANS models often produce inaccurate flow predictions, but there are very limited diagnostics available to assess RANS accuracy for a given flow configuration. If experimental or higher fidelity simulation results are not available for RANS validation, there is no reliable method to evaluate RANS accuracy. This paper explores the potential of utilizing machine learning algorithms to identify regions of high RANS uncertainty. Three different machine learning algorithms were evaluated: support vector machines, Adaboost decision trees, and random forests. The algorithms were trained on a database of canonical flow configurations for which validated direct numerical simulation or large eddy simulation results were available, and were used to classify RANS results on a point-by-point basis as having either high or low uncertainty, based on the breakdown of specific RANS modeling assumptions. Classifiers were developed for three different basic RANS eddy viscosity model assumptions: the isotropy of the eddy viscosity, the linearity of the Boussinesq hypothesis, and the non-negativity of the eddy viscosity. It is shown that these classifiers are able to generalize to flows substantially different from those on which they were trained. Feature selection techniques, model evaluation, and extrapolation detection are discussed in the context of turbulence modeling applications.

  16. A Comparison Study of Machine Learning Based Algorithms for Fatigue Crack Growth Calculation.

    Science.gov (United States)

    Wang, Hongxun; Zhang, Weifang; Sun, Fuqiang; Zhang, Wei

    2017-05-18

    The relationships between the fatigue crack growth rate ( d a / d N ) and stress intensity factor range ( Δ K ) are not always linear even in the Paris region. The stress ratio effects on fatigue crack growth rate are diverse in different materials. However, most existing fatigue crack growth models cannot handle these nonlinearities appropriately. The machine learning method provides a flexible approach to the modeling of fatigue crack growth because of its excellent nonlinear approximation and multivariable learning ability. In this paper, a fatigue crack growth calculation method is proposed based on three different machine learning algorithms (MLAs): extreme learning machine (ELM), radial basis function network (RBFN) and genetic algorithms optimized back propagation network (GABP). The MLA based method is validated using testing data of different materials. The three MLAs are compared with each other as well as the classical two-parameter model ( K * approach). The results show that the predictions of MLAs are superior to those of K * approach in accuracy and effectiveness, and the ELM based algorithms show overall the best agreement with the experimental data out of the three MLAs, for its global optimization and extrapolation ability.

  17. A Finite State Machine Approach to Algorithmic Lateral Inhibition for Real-Time Motion Detection †

    Directory of Open Access Journals (Sweden)

    María T. López

    2018-05-01

    Full Text Available Many researchers have explored the relationship between recurrent neural networks and finite state machines. Finite state machines constitute the best-characterized computational model, whereas artificial neural networks have become a very successful tool for modeling and problem solving. The neurally-inspired lateral inhibition method, and its application to motion detection tasks, have been successfully implemented in recent years. In this paper, control knowledge of the algorithmic lateral inhibition (ALI method is described and applied by means of finite state machines, in which the state space is constituted from the set of distinguishable cases of accumulated charge in a local memory. The article describes an ALI implementation for a motion detection task. For the implementation, we have chosen to use one of the members of the 16-nm Kintex UltraScale+ family of Xilinx FPGAs. FPGAs provide the necessary accuracy, resolution, and precision to run neural algorithms alongside current sensor technologies. The results offered in this paper demonstrate that this implementation provides accurate object tracking performance on several datasets, obtaining a high F-score value (0.86 for the most complex sequence used. Moreover, it outperforms implementations of a complete ALI algorithm and a simplified version of the ALI algorithm—named “accumulative computation”—which was run about ten years ago, now reaching real-time processing times that were simply not achievable at that time for ALI.

  18. Supervised machine learning algorithms to diagnose stress for vehicle drivers based on physiological sensor signals.

    Science.gov (United States)

    Barua, Shaibal; Begum, Shahina; Ahmed, Mobyen Uddin

    2015-01-01

    Machine learning algorithms play an important role in computer science research. Recent advancement in sensor data collection in clinical sciences lead to a complex, heterogeneous data processing, and analysis for patient diagnosis and prognosis. Diagnosis and treatment of patients based on manual analysis of these sensor data are difficult and time consuming. Therefore, development of Knowledge-based systems to support clinicians in decision-making is important. However, it is necessary to perform experimental work to compare performances of different machine learning methods to help to select appropriate method for a specific characteristic of data sets. This paper compares classification performance of three popular machine learning methods i.e., case-based reasoning, neutral networks and support vector machine to diagnose stress of vehicle drivers using finger temperature and heart rate variability. The experimental results show that case-based reasoning outperforms other two methods in terms of classification accuracy. Case-based reasoning has achieved 80% and 86% accuracy to classify stress using finger temperature and heart rate variability. On contrary, both neural network and support vector machine have achieved less than 80% accuracy by using both physiological signals.

  19. Image registration algorithm for high-voltage electric power live line working robot based on binocular vision

    Science.gov (United States)

    Li, Chengqi; Ren, Zhigang; Yang, Bo; An, Qinghao; Yu, Xiangru; Li, Jinping

    2017-12-01

    In the process of dismounting and assembling the drop switch for the high-voltage electric power live line working (EPL2W) robot, one of the key problems is the precision of positioning for manipulators, gripper and the bolts used to fix drop switch. To solve it, we study the binocular vision system theory of the robot and the characteristic of dismounting and assembling drop switch. We propose a coarse-to-fine image registration algorithm based on image correlation, which can improve the positioning precision of manipulators and bolt significantly. The algorithm performs the following three steps: firstly, the target points are marked respectively in the right and left visions, and then the system judges whether the target point in right vision can satisfy the lowest registration accuracy by using the similarity of target points' backgrounds in right and left visions, this is a typical coarse-to-fine strategy; secondly, the system calculates the epipolar line, and then the regional sequence existing matching points is generated according to neighborhood of epipolar line, the optimal matching image is confirmed by calculating the similarity between template image in left vision and the region in regional sequence according to correlation matching; finally, the precise coordinates of target points in right and left visions are calculated according to the optimal matching image. The experiment results indicate that the positioning accuracy of image coordinate is within 2 pixels, the positioning accuracy in the world coordinate system is within 3 mm, the positioning accuracy of binocular vision satisfies the requirement dismounting and assembling the drop switch.

  20. Increased generalization capability of trainable COSFIRE filters with application to machine vision

    NARCIS (Netherlands)

    Azzopardi, George; Fernandez-Robles, Laura; Alegre, Enrique; Petkov, Nicolai

    2017-01-01

    The recently proposed trainable COSFIRE filters are highly effective in a wide range of computer vision applications, including object recognition, image classification, contour detection and retinal vessel segmentation. A COSFIRE filter is selective for a collection of contour parts in a certain

  1. Algorithm for determining two-periodic steady-states in AC machines directly in time domain

    Directory of Open Access Journals (Sweden)

    Sobczyk Tadeusz J.

    2016-09-01

    Full Text Available This paper describes an algorithm for finding steady states in AC machines for the cases of their two-periodic nature. The algorithm enables to specify the steady-state solution identified directly in time domain despite of the fact that two-periodic waveforms are not repeated in any finite time interval. The basis for such an algorithm is a discrete differential operator that specifies the temporary values of the derivative of the two-periodic function in the selected set of points on the basis of the values of that function in the same set of points. It allows to develop algebraic equations defining the steady state solution reached in a chosen point set for the nonlinear differential equations describing the AC machines when electrical and mechanical equations should be solved together. That set of those values allows determining the steady state solution at any time instant up to infinity. The algorithm described in this paper is competitive with respect to the one known in literature an approach based on the harmonic balance method operated in frequency domain.

  2. Machine learning algorithms for meteorological event classification in the coastal area using in-situ data

    Science.gov (United States)

    Sokolov, Anton; Gengembre, Cyril; Dmitriev, Egor; Delbarre, Hervé

    2017-04-01

    The problem is considered of classification of local atmospheric meteorological events in the coastal area such as sea breezes, fogs and storms. The in-situ meteorological data as wind speed and direction, temperature, humidity and turbulence are used as predictors. Local atmospheric events of 2013-2014 were analysed manually to train classification algorithms in the coastal area of English Channel in Dunkirk (France). Then, ultrasonic anemometer data and LIDAR wind profiler data were used as predictors. A few algorithms were applied to determine meteorological events by local data such as a decision tree, the nearest neighbour classifier, a support vector machine. The comparison of classification algorithms was carried out, the most important predictors for each event type were determined. It was shown that in more than 80 percent of the cases machine learning algorithms detect the meteorological class correctly. We expect that this methodology could be applied also to classify events by climatological in-situ data or by modelling data. It allows estimating frequencies of each event in perspective of climate change.

  3. Multi-machine power system stabilizers design using chaotic optimization algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Shayeghi, H., E-mail: hshayeghi@gmail.co [Technical Engineering Department, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of); Shayanfar, H.A. [Center of Excellence for Power System Automation and Operation, Electrical Engineering Department, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Jalilzadeh, S.; Safari, A. [Technical Engineering Department, Zanjan University, Zanjan (Iran, Islamic Republic of)

    2010-07-15

    In this paper, a multiobjective design of the multi-machine power system stabilizers (PSSs) using chaotic optimization algorithm (COA) is proposed. Chaotic optimization algorithms, which have the features of easy implementation, short execution time and robust mechanisms of escaping from the local optimum, is a promising tool for the engineering applications. The PSSs parameters tuning problem is converted to an optimization problem which is solved by a chaotic optimization algorithm based on Lozi map. Since chaotic mapping enjoys certainty, ergodicity and the stochastic property, the proposed chaotic optimization problem introduces chaos mapping using Lozi map chaotic sequences which increases its convergence rate and resulting precision. Two different objective functions are proposed in this study for the PSSs design problem. The first objective function is the eigenvalues based comprising the damping factor, and the damping ratio of the lightly damped electro-mechanical modes, while the second is the time domain-based multi-objective function. The robustness of the proposed COA-based PSSs (COAPSS) is verified on a multi-machine power system under different operating conditions and disturbances. The results of the proposed COAPSS are demonstrated through eigenvalue analysis, nonlinear time-domain simulation and some performance indices. In addition, the potential and superiority of the proposed method over the classical approach and genetic algorithm is demonstrated.

  4. AUTOCLASSIFICATION OF THE VARIABLE 3XMM SOURCES USING THE RANDOM FOREST MACHINE LEARNING ALGORITHM

    International Nuclear Information System (INIS)

    Farrell, Sean A.; Murphy, Tara; Lo, Kitty K.

    2015-01-01

    In the current era of large surveys and massive data sets, autoclassification of astrophysical sources using intelligent algorithms is becoming increasingly important. In this paper we present the catalog of variable sources in the Third XMM-Newton Serendipitous Source catalog (3XMM) autoclassified using the Random Forest machine learning algorithm. We used a sample of manually classified variable sources from the second data release of the XMM-Newton catalogs (2XMMi-DR2) to train the classifier, obtaining an accuracy of ∼92%. We also evaluated the effectiveness of identifying spurious detections using a sample of spurious sources, achieving an accuracy of ∼95%. Manual investigation of a random sample of classified sources confirmed these accuracy levels and showed that the Random Forest machine learning algorithm is highly effective at automatically classifying 3XMM sources. Here we present the catalog of classified 3XMM variable sources. We also present three previously unidentified unusual sources that were flagged as outlier sources by the algorithm: a new candidate supergiant fast X-ray transient, a 400 s X-ray pulsar, and an eclipsing 5 hr binary system coincident with a known Cepheid.

  5. Predicting the Occurrence of Haze Events in Southeast Asia using Machine Learning Algorithms

    Science.gov (United States)

    Lee, H. H.; Chulakadabba, A.; Tonks, A.; Yang, Z.; Wang, C.

    2017-12-01

    Severe local- and regional-scale air pollution episodes typically originate from 1) high emissions of air pollutants, 2) poor dispersion conditions, and 3) trans-boundary pollutant transport. Biomass burning activities have become more frequent in Southeast Asia, especially in Sumatra, Borneo, and the mainland Southeast. Trans-boundary transport of biomass burning aerosols often lead to air quality problems in the region. Furthermore, particulate pollutants from human activities besides biomass burning also play an important role in the air quality of Southeast Asia. Singapore, for example, has a dynamic industrial sector including chemical, electric and metallurgic industries, and is the region's major petroleum-refining center. In addition, natural gas and oil power plants, waste incinerators, active port traffic, and a major regional airport further complicate Singapore's air quality issues. In this study, we compare five Machine Learning algorithms: k-Nearest Neighbors, Linear Support Vector Machine, Decision Tree, Random Forest and Artificial Neural Network, to identify haze patterns and determine variable importance. The algorithms were trained using local atmospheric data (i.e. months, atmospheric conditions, wind direction and relative humidity) from three observation stations in Singapore (Changi, Seletar and Paya Labar). We find that the algorithms reveal the associations in data within and between the stations, and provide in-depth interpretation of the haze sources. The algorithms also allow us to predict the probability of haze episodes in Singapore and to determine the correlation between this probability and atmospheric conditions.

  6. Separation of pulsar signals from noise using supervised machine learning algorithms

    Science.gov (United States)

    Bethapudi, S.; Desai, S.

    2018-04-01

    We evaluate the performance of four different machine learning (ML) algorithms: an Artificial Neural Network Multi-Layer Perceptron (ANN MLP), Adaboost, Gradient Boosting Classifier (GBC), and XGBoost, for the separation of pulsars from radio frequency interference (RFI) and other sources of noise, using a dataset obtained from the post-processing of a pulsar search pipeline. This dataset was previously used for the cross-validation of the SPINN-based machine learning engine, obtained from the reprocessing of the HTRU-S survey data (Morello et al., 2014). We have used the Synthetic Minority Over-sampling Technique (SMOTE) to deal with high-class imbalance in the dataset. We report a variety of quality scores from all four of these algorithms on both the non-SMOTE and SMOTE datasets. For all the above ML methods, we report high accuracy and G-mean for both the non-SMOTE and SMOTE cases. We study the feature importances using Adaboost, GBC, and XGBoost and also from the minimum Redundancy Maximum Relevance approach to report algorithm-agnostic feature ranking. From these methods, we find that the signal to noise of the folded profile to be the best feature. We find that all the ML algorithms report FPRs about an order of magnitude lower than the corresponding FPRs obtained in Morello et al. (2014), for the same recall value.

  7. Depth analysis of mechanically machined flaws on steam generator tubings using multi-parameter algorithm

    International Nuclear Information System (INIS)

    Nam Gung, Chan; Lee, Yoon Sang; Hwang, Seong Sik; Kim, Hong Pyo

    2004-01-01

    The eddy current testing (ECT) is a nondestructive technique. It is used for evaluation of material's integrity, especially, steam generator (SG) tubing in nuclear plants, due to their rapid inspection, safe and easy operation. For depth measurement of defects, we prepared Electro Discharge Machined (EDM) notches that have several of defects and applied multi-parameter (MP) algorithm. It is a crack shape estimation program developed in Argonne National Laboratory (ANL). To evaluate the MP algorithm, we compared defect profile with fractography of the defects. In the following sections, we described the basic structure of a computer-aided data analysis algorithm used as means of more accurate and efficient processing of ECT data, and explained the specification of a standard calibration. Finally, we discussed the accuracy of estimated depth profile compared with conventional ECT method

  8. Automated Field-of-View, Illumination, and Recognition Algorithm Design of a Vision System for Pick-and-Place Considering Colour Information in Illumination and Images.

    Science.gov (United States)

    Chen, Yibing; Ogata, Taiki; Ueyama, Tsuyoshi; Takada, Toshiyuki; Ota, Jun

    2018-05-22

    Machine vision is playing an increasingly important role in industrial applications, and the automated design of image recognition systems has been a subject of intense research. This study has proposed a system for automatically designing the field-of-view (FOV) of a camera, the illumination strength and the parameters in a recognition algorithm. We formulated the design problem as an optimisation problem and used an experiment based on a hierarchical algorithm to solve it. The evaluation experiments using translucent plastics objects showed that the use of the proposed system resulted in an effective solution with a wide FOV, recognition of all objects and 0.32 mm and 0.4° maximal positional and angular errors when all the RGB (red, green and blue) for illumination and R channel image for recognition were used. Though all the RGB illumination and grey scale images also provided recognition of all the objects, only a narrow FOV was selected. Moreover, full recognition was not achieved by using only G illumination and a grey-scale image. The results showed that the proposed method can automatically design the FOV, illumination and parameters in the recognition algorithm and that tuning all the RGB illumination is desirable even when single-channel or grey-scale images are used for recognition.

  9. Optimum Layout for Sensors in Water Distribution Networks through Ant Colony Algorithm: A Dual Use Vision

    Directory of Open Access Journals (Sweden)

    Seyed Mehdi Miri

    2014-07-01

    Full Text Available The accidental or intentional entry of contaminants or self-deterioration of the water quality within the network itself can severely harm public health. Efficient water quality monitoring is one of the most important tools to guarantee a reliable potable water supply to consumers of drinking water distribution systems. Considering the high purchase, installation and maintenance cost of sensors in water distribution networks deploying two independent sensor networks within one distribution system is not only bounded by physical constraints but also is not a cost-effective approach. Therefore, need for combining different objectives and designing sensor network to simultaneity satisfying these objectives is felt. Sensors should comply with dual use benefits. Sensor locations and types should be integrated not only for achieving water security goals but also for accomplishing other water utility objectives, such as satisfying regulatory monitoring requirements or collecting information to solve water quality problems. In this study, a dual use vision for the sensor layout problem in the municipal water networks, is formulated and solved with the ant colony algorithm.

  10. Vision based nutrient deficiency classification in maize plants using multi class support vector machines

    Science.gov (United States)

    Leena, N.; Saju, K. K.

    2018-04-01

    Nutritional deficiencies in plants are a major concern for farmers as it affects productivity and thus profit. The work aims to classify nutritional deficiencies in maize plant in a non-destructive mannerusing image processing and machine learning techniques. The colored images of the leaves are analyzed and classified with multi-class support vector machine (SVM) method. Several images of maize leaves with known deficiencies like nitrogen, phosphorous and potassium (NPK) are used to train the SVM classifier prior to the classification of test images. The results show that the method was able to classify and identify nutritional deficiencies.

  11. Optimization process planning using hybrid genetic algorithm and intelligent search for job shop machining.

    Science.gov (United States)

    Salehi, Mojtaba; Bahreininejad, Ardeshir

    2011-08-01

    Optimization of process planning is considered as the key technology for computer-aided process planning which is a rather complex and difficult procedure. A good process plan of a part is built up based on two elements: (1) the optimized sequence of the operations of the part; and (2) the optimized selection of the machine, cutting tool and Tool Access Direction (TAD) for each operation. In the present work, the process planning is divided into preliminary planning, and secondary/detailed planning. In the preliminary stage, based on the analysis of order and clustering constraints as a compulsive constraint aggregation in operation sequencing and using an intelligent searching strategy, the feasible sequences are generated. Then, in the detailed planning stage, using the genetic algorithm which prunes the initial feasible sequences, the optimized operation sequence and the optimized selection of the machine, cutting tool and TAD for each operation based on optimization constraints as an additive constraint aggregation are obtained. The main contribution of this work is the optimization of sequence of the operations of the part, and optimization of machine selection, cutting tool and TAD for each operation using the intelligent search and genetic algorithm simultaneously.

  12. Bioinformatics algorithm based on a parallel implementation of a machine learning approach using transducers

    International Nuclear Information System (INIS)

    Roche-Lima, Abiel; Thulasiram, Ruppa K

    2012-01-01

    Finite automata, in which each transition is augmented with an output label in addition to the familiar input label, are considered finite-state transducers. Transducers have been used to analyze some fundamental issues in bioinformatics. Weighted finite-state transducers have been proposed to pairwise alignments of DNA and protein sequences; as well as to develop kernels for computational biology. Machine learning algorithms for conditional transducers have been implemented and used for DNA sequence analysis. Transducer learning algorithms are based on conditional probability computation. It is calculated by using techniques, such as pair-database creation, normalization (with Maximum-Likelihood normalization) and parameters optimization (with Expectation-Maximization - EM). These techniques are intrinsically costly for computation, even worse when are applied to bioinformatics, because the databases sizes are large. In this work, we describe a parallel implementation of an algorithm to learn conditional transducers using these techniques. The algorithm is oriented to bioinformatics applications, such as alignments, phylogenetic trees, and other genome evolution studies. Indeed, several experiences were developed using the parallel and sequential algorithm on Westgrid (specifically, on the Breeze cluster). As results, we obtain that our parallel algorithm is scalable, because execution times are reduced considerably when the data size parameter is increased. Another experience is developed by changing precision parameter. In this case, we obtain smaller execution times using the parallel algorithm. Finally, number of threads used to execute the parallel algorithm on the Breezy cluster is changed. In this last experience, we obtain as result that speedup is considerably increased when more threads are used; however there is a convergence for number of threads equal to or greater than 16.

  13. Classifying spatially heterogeneous wetland communities using machine learning algorithms and spectral and textural features.

    Science.gov (United States)

    Szantoi, Zoltan; Escobedo, Francisco J; Abd-Elrahman, Amr; Pearlstine, Leonard; Dewitt, Bon; Smith, Scot

    2015-05-01

    Mapping of wetlands (marsh vs. swamp vs. upland) is a common remote sensing application.Yet, discriminating between similar freshwater communities such as graminoid/sedge fromremotely sensed imagery is more difficult. Most of this activity has been performed using medium to low resolution imagery. There are only a few studies using highspatial resolutionimagery and machine learning image classification algorithms for mapping heterogeneouswetland plantcommunities. This study addresses this void by analyzing whether machine learning classifierssuch as decisiontrees (DT) and artificial neural networks (ANN) can accurately classify graminoid/sedgecommunities usinghigh resolution aerial imagery and image texture data in the Everglades National Park, Florida.In addition tospectral bands, the normalized difference vegetation index, and first- and second-order texturefeatures derivedfrom the near-infrared band were analyzed. Classifier accuracies were assessed using confusiontablesand the calculated kappa coefficients of the resulting maps. The results indicated that an ANN(multilayerperceptron based on backpropagation) algorithm produced a statistically significantly higheraccuracy(82.04%) than the DT (QUEST) algorithm (80.48%) or the maximum likelihood (80.56%)classifier (αtexture features.

  14. An Improved Genetic Algorithm for Single-Machine Inverse Scheduling Problem

    Directory of Open Access Journals (Sweden)

    Jianhui Mou

    2014-01-01

    Full Text Available The goal of the scheduling is to arrange operations on suitable machines with optimal sequence for corresponding objectives. In order to meet market requirements, scheduling systems must own enough flexibility against uncertain events. These events can change production status or processing parameters, even causing the original schedule to no longer be optimal or even to be infeasible. Traditional scheduling strategies, however, cannot cope with these cases. Therefore, a new idea of scheduling called inverse scheduling has been proposed. In this paper, the inverse scheduling with weighted completion time (SMISP is considered in a single-machine shop environment. In this paper, an improved genetic algorithm (IGA with a local searching strategy is proposed. To improve the performance of IGA, efficient encoding scheme, fitness evaluation mechanism, feasible initialization methods, and a local search procedure have been employed in the paper. Because of the local improving method, the proposed IGA can balance its exploration ability and exploitation ability. We adopt 27 instances to verify the effectiveness of the proposed algorithm. The experimental results illustrated that the proposed algorithm can generate satisfactory solutions. This approach also has been applied to solve the scheduling problem in the real Chinese shipyard and can bring some benefits.

  15. Prediction of insemination outcomes in Holstein dairy cattle using alternative machine learning algorithms.

    Science.gov (United States)

    Shahinfar, Saleh; Page, David; Guenther, Jerry; Cabrera, Victor; Fricke, Paul; Weigel, Kent

    2014-02-01

    When making the decision about whether or not to breed a given cow, knowledge about the expected outcome would have an economic impact on profitability of the breeding program and net income of the farm. The outcome of each breeding can be affected by many management and physiological features that vary between farms and interact with each other. Hence, the ability of machine learning algorithms to accommodate complex relationships in the data and missing values for explanatory variables makes these algorithms well suited for investigation of reproduction performance in dairy cattle. The objective of this study was to develop a user-friendly and intuitive on-farm tool to help farmers make reproduction management decisions. Several different machine learning algorithms were applied to predict the insemination outcomes of individual cows based on phenotypic and genotypic data. Data from 26 dairy farms in the Alta Genetics (Watertown, WI) Advantage Progeny Testing Program were used, representing a 10-yr period from 2000 to 2010. Health, reproduction, and production data were extracted from on-farm dairy management software, and estimated breeding values were downloaded from the US Department of Agriculture Agricultural Research Service Animal Improvement Programs Laboratory (Beltsville, MD) database. The edited data set consisted of 129,245 breeding records from primiparous Holstein cows and 195,128 breeding records from multiparous Holstein cows. Each data point in the final data set included 23 and 25 explanatory variables and 1 binary outcome for of 0.756 ± 0.005 and 0.736 ± 0.005 for primiparous and multiparous cows, respectively. The naïve Bayes algorithm, Bayesian network, and decision tree algorithms showed somewhat poorer classification performance. An information-based variable selection procedure identified herd average conception rate, incidence of ketosis, number of previous (failed) inseminations, days in milk at breeding, and mastitis as the most

  16. Volume Measurement Algorithm for Food Product with Irregular Shape using Computer Vision based on Monte Carlo Method

    Directory of Open Access Journals (Sweden)

    Joko Siswantoro

    2014-11-01

    Full Text Available Volume is one of important issues in the production and processing of food product. Traditionally, volume measurement can be performed using water displacement method based on Archimedes’ principle. Water displacement method is inaccurate and considered as destructive method. Computer vision offers an accurate and nondestructive method in measuring volume of food product. This paper proposes algorithm for volume measurement of irregular shape food product using computer vision based on Monte Carlo method. Five images of object were acquired from five different views and then processed to obtain the silhouettes of object. From the silhouettes of object, Monte Carlo method was performed to approximate the volume of object. The simulation result shows that the algorithm produced high accuracy and precision for volume measurement.

  17. Development of a Machine Learning Algorithm for the Surveillance of Autism Spectrum Disorder.

    Directory of Open Access Journals (Sweden)

    Matthew J Maenner

    Full Text Available The Autism and Developmental Disabilities Monitoring (ADDM Network conducts population-based surveillance of autism spectrum disorder (ASD among 8-year old children in multiple US sites. To classify ASD, trained clinicians review developmental evaluations collected from multiple health and education sources to determine whether the child meets the ASD surveillance case criteria. The number of evaluations collected has dramatically increased since the year 2000, challenging the resources and timeliness of the surveillance system. We developed and evaluated a machine learning approach to classify case status in ADDM using words and phrases contained in children's developmental evaluations. We trained a random forest classifier using data from the 2008 Georgia ADDM site which included 1,162 children with 5,396 evaluations (601 children met ADDM ASD criteria using standard ADDM methods. The classifier used the words and phrases from the evaluations to predict ASD case status. We evaluated its performance on the 2010 Georgia ADDM surveillance data (1,450 children with 9,811 evaluations; 754 children met ADDM ASD criteria. We also estimated ASD prevalence using predictions from the classification algorithm. Overall, the machine learning approach predicted ASD case statuses that were 86.5% concordant with the clinician-determined case statuses (84.0% sensitivity, 89.4% predictive value positive. The area under the resulting receiver-operating characteristic curve was 0.932. Algorithm-derived ASD "prevalence" was 1.46% compared to the published (clinician-determined estimate of 1.55%. Using only the text contained in developmental evaluations, a machine learning algorithm was able to discriminate between children that do and do not meet ASD surveillance criteria at one surveillance site.

  18. Machine Learning Algorithms for $b$-Jet Tagging at the ATLAS Experiment

    CERN Document Server

    Paganini, Michela; The ATLAS collaboration

    2017-01-01

    The separation of b-quark initiated jets from those coming from lighter quark flavours (b-tagging) is a fundamental tool for the ATLAS physics program at the CERN Large Hadron Collider. The most powerful b-tagging algorithms combine information from low-level taggers exploiting reconstructed track and vertex information using a multivariate classifier. The potential of modern Machine Learning techniques such as Recurrent Neural Networks and Deep Learning is explored using simulated events, and compared to that achievable from more traditional classifiers such as boosted decision trees.

  19. PMSVM: An Optimized Support Vector Machine Classification Algorithm Based on PCA and Multilevel Grid Search Methods

    Directory of Open Access Journals (Sweden)

    Yukai Yao

    2015-01-01

    Full Text Available We propose an optimized Support Vector Machine classifier, named PMSVM, in which System Normalization, PCA, and Multilevel Grid Search methods are comprehensively considered for data preprocessing and parameters optimization, respectively. The main goals of this study are to improve the classification efficiency and accuracy of SVM. Sensitivity, Specificity, Precision, and ROC curve, and so forth, are adopted to appraise the performances of PMSVM. Experimental results show that PMSVM has relatively better accuracy and remarkable higher efficiency compared with traditional SVM algorithms.

  20. Machine learning algorithm accurately detects fMRI signature of vulnerability to major depression.

    Science.gov (United States)

    Sato, João R; Moll, Jorge; Green, Sophie; Deakin, John F W; Thomaz, Carlos E; Zahn, Roland

    2015-08-30

    Standard functional magnetic resonance imaging (fMRI) analyses cannot assess the potential of a neuroimaging signature as a biomarker to predict individual vulnerability to major depression (MD). Here, we use machine learning for the first time to address this question. Using a recently identified neural signature of guilt-selective functional disconnection, the classification algorithm was able to distinguish remitted MD from control participants with 78.3% accuracy. This demonstrates the high potential of our fMRI signature as a biomarker of MD vulnerability. Crown Copyright © 2015. Published by Elsevier Ireland Ltd. All rights reserved.

  1. Simultaneous Scheduling of Jobs, AGVs and Tools Considering Tool Transfer Times in Multi Machine FMS By SOS Algorithm

    Science.gov (United States)

    Sivarami Reddy, N.; Ramamurthy, D. V., Dr.; Prahlada Rao, K., Dr.

    2017-08-01

    This article addresses simultaneous scheduling of machines, AGVs and tools where machines are allowed to share the tools considering transfer times of jobs and tools between machines, to generate best optimal sequences that minimize makespan in a multi-machine Flexible Manufacturing System (FMS). Performance of FMS is expected to improve by effective utilization of its resources, by proper integration and synchronization of their scheduling. Symbiotic Organisms Search (SOS) algorithm is a potent tool which is a better alternative for solving optimization problems like scheduling and proven itself. The proposed SOS algorithm is tested on 22 job sets with makespan as objective for scheduling of machines and tools where machines are allowed to share tools without considering transfer times of jobs and tools and the results are compared with the results of existing methods. The results show that the SOS has outperformed. The same SOS algorithm is used for simultaneous scheduling of machines, AGVs and tools where machines are allowed to share tools considering transfer times of jobs and tools to determine the best optimal sequences that minimize makespan.

  2. A fast sorting algorithm for a hypersonic rarefied flow particle simulation on the connection machine

    Science.gov (United States)

    Dagum, Leonardo

    1989-01-01

    The data parallel implementation of a particle simulation for hypersonic rarefied flow described by Dagum associates a single parallel data element with each particle in the simulation. The simulated space is divided into discrete regions called cells containing a variable and constantly changing number of particles. The implementation requires a global sort of the parallel data elements so as to arrange them in an order that allows immediate access to the information associated with cells in the simulation. Described here is a very fast algorithm for performing the necessary ranking of the parallel data elements. The performance of the new algorithm is compared with that of the microcoded instruction for ranking on the Connection Machine.

  3. Comparison of Multiobjective Evolutionary Algorithms for Operations Scheduling under Machine Availability Constraints

    Directory of Open Access Journals (Sweden)

    M. Frutos

    2013-01-01

    Full Text Available Many of the problems that arise in production systems can be handled with multiobjective techniques. One of those problems is that of scheduling operations subject to constraints on the availability of machines and buffer capacity. In this paper we analyze different Evolutionary multiobjective Algorithms (MOEAs for this kind of problems. We consider an experimental framework in which we schedule production operations for four real world Job-Shop contexts using three algorithms, NSGAII, SPEA2, and IBEA. Using two performance indexes, Hypervolume and R2, we found that SPEA2 and IBEA are the most efficient for the tasks at hand. On the other hand IBEA seems to be a better choice of tool since it yields more solutions in the approximate Pareto frontier.

  4. Heuristic and Exact Algorithms for the Two-Machine Just in Time Job Shop Scheduling Problem

    Directory of Open Access Journals (Sweden)

    Mohammed Al-Salem

    2016-01-01

    Full Text Available The problem addressed in this paper is the two-machine job shop scheduling problem when the objective is to minimize the total earliness and tardiness from a common due date (CDD for a set of jobs when their weights equal 1 (unweighted problem. This objective became very significant after the introduction of the Just in Time manufacturing approach. A procedure to determine whether the CDD is restricted or unrestricted is developed and a semirestricted CDD is defined. Algorithms are introduced to find the optimal solution when the CDD is unrestricted and semirestricted. When the CDD is restricted, which is a much harder problem, a heuristic algorithm is proposed to find approximate solutions. Through computational experiments, the heuristic algorithms’ performance is evaluated with problems up to 500 jobs.

  5. Machine learning based cloud mask algorithm driven by radiative transfer modeling

    Science.gov (United States)

    Chen, N.; Li, W.; Tanikawa, T.; Hori, M.; Shimada, R.; Stamnes, K. H.

    2017-12-01

    Cloud detection is a critically important first step required to derive many satellite data products. Traditional threshold based cloud mask algorithms require a complicated design process and fine tuning for each sensor, and have difficulty over snow/ice covered areas. With the advance of computational power and machine learning techniques, we have developed a new algorithm based on a neural network classifier driven by extensive radiative transfer modeling. Statistical validation results obtained by using collocated CALIOP and MODIS data show that its performance is consistent over different ecosystems and significantly better than the MODIS Cloud Mask (MOD35 C6) during the winter seasons over mid-latitude snow covered areas. Simulations using a reduced number of satellite channels also show satisfactory results, indicating its flexibility to be configured for different sensors.

  6. Synthetic Molecular Machines for Active Self-Assembly: Prototype Algorithms, Designs, and Experimental Study

    Science.gov (United States)

    Dabby, Nadine L.

    Computer science and electrical engineering have been the great success story of the twentieth century. The neat modularity and mapping of a language onto circuits has led to robots on Mars, desktop computers and smartphones. But these devices are not yet able to do some of the things that life takes for granted: repair a scratch, reproduce, regenerate, or grow exponentially fast--all while remaining functional. This thesis explores and develops algorithms, molecular implementations, and theoretical proofs in the context of "active self-assembly" of molecular systems. The long-term vision of active self-assembly is the theoretical and physical implementation of materials that are composed of reconfigurable units with the programmability and adaptability of biology's numerous molecular machines. En route to this goal, we must first find a way to overcome the memory limitations of molecular systems, and to discover the limits of complexity that can be achieved with individual molecules. One of the main thrusts in molecular programming is to use computer science as a tool for figuring out what can be achieved. While molecular systems that are Turing-complete have been demonstrated [Winfree, 1996], these systems still cannot achieve some of the feats biology has achieved. One might think that because a system is Turing-complete, capable of computing "anything," that it can do any arbitrary task. But while it can simulate any digital computational problem, there are many behaviors that are not "computations" in a classical sense, and cannot be directly implemented. Examples include exponential growth and molecular motion relative to a surface. Passive self-assembly systems cannot implement these behaviors because (a) molecular motion relative to a surface requires a source of fuel that is external to the system, and (b) passive systems are too slow to assemble exponentially-fast-growing structures. We call these behaviors "energetically incomplete" programmable

  7. A distributed parallel genetic algorithm of placement strategy for virtual machines deployment on cloud platform.

    Science.gov (United States)

    Dong, Yu-Shuang; Xu, Gao-Chao; Fu, Xiao-Dong

    2014-01-01

    The cloud platform provides various services to users. More and more cloud centers provide infrastructure as the main way of operating. To improve the utilization rate of the cloud center and to decrease the operating cost, the cloud center provides services according to requirements of users by sharding the resources with virtualization. Considering both QoS for users and cost saving for cloud computing providers, we try to maximize performance and minimize energy cost as well. In this paper, we propose a distributed parallel genetic algorithm (DPGA) of placement strategy for virtual machines deployment on cloud platform. It executes the genetic algorithm parallelly and distributedly on several selected physical hosts in the first stage. Then it continues to execute the genetic algorithm of the second stage with solutions obtained from the first stage as the initial population. The solution calculated by the genetic algorithm of the second stage is the optimal one of the proposed approach. The experimental results show that the proposed placement strategy of VM deployment can ensure QoS for users and it is more effective and more energy efficient than other placement strategies on the cloud platform.

  8. A Distributed Parallel Genetic Algorithm of Placement Strategy for Virtual Machines Deployment on Cloud Platform

    Directory of Open Access Journals (Sweden)

    Yu-Shuang Dong

    2014-01-01

    Full Text Available The cloud platform provides various services to users. More and more cloud centers provide infrastructure as the main way of operating. To improve the utilization rate of the cloud center and to decrease the operating cost, the cloud center provides services according to requirements of users by sharding the resources with virtualization. Considering both QoS for users and cost saving for cloud computing providers, we try to maximize performance and minimize energy cost as well. In this paper, we propose a distributed parallel genetic algorithm (DPGA of placement strategy for virtual machines deployment on cloud platform. It executes the genetic algorithm parallelly and distributedly on several selected physical hosts in the first stage. Then it continues to execute the genetic algorithm of the second stage with solutions obtained from the first stage as the initial population. The solution calculated by the genetic algorithm of the second stage is the optimal one of the proposed approach. The experimental results show that the proposed placement strategy of VM deployment can ensure QoS for users and it is more effective and more energy efficient than other placement strategies on the cloud platform.

  9. Development of yarn breakage detection software system based on machine vision

    Science.gov (United States)

    Wang, Wenyuan; Zhou, Ping; Lin, Xiangyu

    2017-10-01

    For questions spinning mills and yarn breakage cannot be detected in a timely manner, and save the cost of textile enterprises. This paper presents a software system based on computer vision for real-time detection of yarn breakage. The system and Windows8.1 system Tablet PC, cloud server to complete the yarn breakage detection and management. Running on the Tablet PC software system is designed to collect yarn and location information for analysis and processing. And will be processed after the information through the Wi-Fi and http protocol sent to the cloud server to store in the Microsoft SQL2008 database. In order to follow up on the yarn break information query and management. Finally sent to the local display on time display, and remind the operator to deal with broken yarn. The experimental results show that the system of missed test rate not more than 5%o, and no error detection.

  10. A Genetic Algorithm Based Support Vector Machine Model for Blood-Brain Barrier Penetration Prediction

    Directory of Open Access Journals (Sweden)

    Daqing Zhang

    2015-01-01

    Full Text Available Blood-brain barrier (BBB is a highly complex physical barrier determining what substances are allowed to enter the brain. Support vector machine (SVM is a kernel-based machine learning method that is widely used in QSAR study. For a successful SVM model, the kernel parameters for SVM and feature subset selection are the most important factors affecting prediction accuracy. In most studies, they are treated as two independent problems, but it has been proven that they could affect each other. We designed and implemented genetic algorithm (GA to optimize kernel parameters and feature subset selection for SVM regression and applied it to the BBB penetration prediction. The results show that our GA/SVM model is more accurate than other currently available log BB models. Therefore, to optimize both SVM parameters and feature subset simultaneously with genetic algorithm is a better approach than other methods that treat the two problems separately. Analysis of our log BB model suggests that carboxylic acid group, polar surface area (PSA/hydrogen-bonding ability, lipophilicity, and molecular charge play important role in BBB penetration. Among those properties relevant to BBB penetration, lipophilicity could enhance the BBB penetration while all the others are negatively correlated with BBB penetration.

  11. Development of Predictive QSAR Models of 4-Thiazolidinones Antitrypanosomal Activity using Modern Machine Learning Algorithms.

    Science.gov (United States)

    Kryshchyshyn, Anna; Devinyak, Oleg; Kaminskyy, Danylo; Grellier, Philippe; Lesyk, Roman

    2017-11-14

    This paper presents novel QSAR models for the prediction of antitrypanosomal activity among thiazolidines and related heterocycles. The performance of four machine learning algorithms: Random Forest regression, Stochastic gradient boosting, Multivariate adaptive regression splines and Gaussian processes regression have been studied in order to reach better levels of predictivity. The results for Random Forest and Gaussian processes regression are comparable and outperform other studied methods. The preliminary descriptor selection with Boruta method improved the outcome of machine learning methods. The two novel QSAR-models developed with Random Forest and Gaussian processes regression algorithms have good predictive ability, which was proved by the external evaluation of the test set with corresponding Q 2 ext =0.812 and Q 2 ext =0.830. The obtained models can be used further for in silico screening of virtual libraries in the same chemical domain in order to find new antitrypanosomal agents. Thorough analysis of descriptors influence in the QSAR models and interpretation of their chemical meaning allows to highlight a number of structure-activity relationships. The presence of phenyl rings with electron-withdrawing atoms or groups in para-position, increased number of aromatic rings, high branching but short chains, high HOMO energy, and the introduction of 1-substituted 2-indolyl fragment into the molecular structure have been recognized as trypanocidal activity prerequisites. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Short-Term Solar Forecasting Performance of Popular Machine Learning Algorithms: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Florita, Anthony R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Elgindy, Tarek [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hodge, Brian S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dobbs, Alex [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-03

    A framework for assessing the performance of short-term solar forecasting is presented in conjunction with a range of numerical results using global horizontal irradiation (GHI) from the open-source Surface Radiation Budget (SURFRAD) data network. A suite of popular machine learning algorithms is compared according to a set of statistically distinct metrics and benchmarked against the persistence-of-cloudiness forecast and a cloud motion forecast. Results show significant improvement compared to the benchmarks with trade-offs among the machine learning algorithms depending on the desired error metric. Training inputs include time series observations of GHI for a history of years, historical weather and atmospheric measurements, and corresponding date and time stamps such that training sensitivities might be inferred. Prediction outputs are GHI forecasts for 1, 2, 3, and 4 hours ahead of the issue time, and they are made for every month of the year for 7 locations. Photovoltaic power and energy outputs can then be made using the solar forecasts to better understand power system impacts.

  13. Open source machine-learning algorithms for the prediction of optimal cancer drug therapies.

    Science.gov (United States)

    Huang, Cai; Mezencev, Roman; McDonald, John F; Vannberg, Fredrik

    2017-01-01

    Precision medicine is a rapidly growing area of modern medical science and open source machine-learning codes promise to be a critical component for the successful development of standardized and automated analysis of patient data. One important goal of precision cancer medicine is the accurate prediction of optimal drug therapies from the genomic profiles of individual patient tumors. We introduce here an open source software platform that employs a highly versatile support vector machine (SVM) algorithm combined with a standard recursive feature elimination (RFE) approach to predict personalized drug responses from gene expression profiles. Drug specific models were built using gene expression and drug response data from the National Cancer Institute panel of 60 human cancer cell lines (NCI-60). The models are highly accurate in predicting the drug responsiveness of a variety of cancer cell lines including those comprising the recent NCI-DREAM Challenge. We demonstrate that predictive accuracy is optimized when the learning dataset utilizes all probe-set expression values from a diversity of cancer cell types without pre-filtering for genes generally considered to be "drivers" of cancer onset/progression. Application of our models to publically available ovarian cancer (OC) patient gene expression datasets generated predictions consistent with observed responses previously reported in the literature. By making our algorithm "open source", we hope to facilitate its testing in a variety of cancer types and contexts leading to community-driven improvements and refinements in subsequent applications.

  14. Automated Quality Assessment of Structural Magnetic Resonance Brain Images Based on a Supervised Machine Learning Algorithm

    Directory of Open Access Journals (Sweden)

    Ricardo Andres Pizarro

    2016-12-01

    Full Text Available High-resolution three-dimensional magnetic resonance imaging (3D-MRI is being increasingly used to delineate morphological changes underlying neuropsychiatric disorders. Unfortunately, artifacts frequently compromise the utility of 3D-MRI yielding irreproducible results, from both type I and type II errors. It is therefore critical to screen 3D-MRIs for artifacts before use. Currently, quality assessment involves slice-wise visual inspection of 3D-MRI volumes, a procedure that is both subjective and time consuming. Automating the quality rating of 3D-MRI could improve the efficiency and reproducibility of the procedure. The present study is one of the first efforts to apply a support vector machine (SVM algorithm in the quality assessment of structural brain images, using global and region of interest (ROI automated image quality features developed in-house. SVM is a supervised machine-learning algorithm that can predict the category of test datasets based on the knowledge acquired from a learning dataset. The performance (accuracy of the automated SVM approach was assessed, by comparing the SVM-predicted quality labels to investigator-determined quality labels. The accuracy for classifying 1457 3D-MRI volumes from our database using the SVM approach is around 80%. These results are promising and illustrate the possibility of using SVM as an automated quality assessment tool for 3D-MRI.

  15. Automated Quality Assessment of Structural Magnetic Resonance Brain Images Based on a Supervised Machine Learning Algorithm.

    Science.gov (United States)

    Pizarro, Ricardo A; Cheng, Xi; Barnett, Alan; Lemaitre, Herve; Verchinski, Beth A; Goldman, Aaron L; Xiao, Ena; Luo, Qian; Berman, Karen F; Callicott, Joseph H; Weinberger, Daniel R; Mattay, Venkata S

    2016-01-01

    High-resolution three-dimensional magnetic resonance imaging (3D-MRI) is being increasingly used to delineate morphological changes underlying neuropsychiatric disorders. Unfortunately, artifacts frequently compromise the utility of 3D-MRI yielding irreproducible results, from both type I and type II errors. It is therefore critical to screen 3D-MRIs for artifacts before use. Currently, quality assessment involves slice-wise visual inspection of 3D-MRI volumes, a procedure that is both subjective and time consuming. Automating the quality rating of 3D-MRI could improve the efficiency and reproducibility of the procedure. The present study is one of the first efforts to apply a support vector machine (SVM) algorithm in the quality assessment of structural brain images, using global and region of interest (ROI) automated image quality features developed in-house. SVM is a supervised machine-learning algorithm that can predict the category of test datasets based on the knowledge acquired from a learning dataset. The performance (accuracy) of the automated SVM approach was assessed, by comparing the SVM-predicted quality labels to investigator-determined quality labels. The accuracy for classifying 1457 3D-MRI volumes from our database using the SVM approach is around 80%. These results are promising and illustrate the possibility of using SVM as an automated quality assessment tool for 3D-MRI.

  16. Open source machine-learning algorithms for the prediction of optimal cancer drug therapies.

    Directory of Open Access Journals (Sweden)

    Cai Huang

    Full Text Available Precision medicine is a rapidly growing area of modern medical science and open source machine-learning codes promise to be a critical component for the successful development of standardized and automated analysis of patient data. One important goal of precision cancer medicine is the accurate prediction of optimal drug therapies from the genomic profiles of individual patient tumors. We introduce here an open source software platform that employs a highly versatile support vector machine (SVM algorithm combined with a standard recursive feature elimination (RFE approach to predict personalized drug responses from gene expression profiles. Drug specific models were built using gene expression and drug response data from the National Cancer Institute panel of 60 human cancer cell lines (NCI-60. The models are highly accurate in predicting the drug responsiveness of a variety of cancer cell lines including those comprising the recent NCI-DREAM Challenge. We demonstrate that predictive accuracy is optimized when the learning dataset utilizes all probe-set expression values from a diversity of cancer cell types without pre-filtering for genes generally considered to be "drivers" of cancer onset/progression. Application of our models to publically available ovarian cancer (OC patient gene expression datasets generated predictions consistent with observed responses previously reported in the literature. By making our algorithm "open source", we hope to facilitate its testing in a variety of cancer types and contexts leading to community-driven improvements and refinements in subsequent applications.

  17. Classification and authentication of unknown water samples using machine learning algorithms.

    Science.gov (United States)

    Kundu, Palash K; Panchariya, P C; Kundu, Madhusree

    2011-07-01

    This paper proposes the development of water sample classification and authentication, in real life which is based on machine learning algorithms. The proposed techniques used experimental measurements from a pulse voltametry method which is based on an electronic tongue (E-tongue) instrumentation system with silver and platinum electrodes. E-tongue include arrays of solid state ion sensors, transducers even of different types, data collectors and data analysis tools, all oriented to the classification of liquid samples and authentication of unknown liquid samples. The time series signal and the corresponding raw data represent the measurement from a multi-sensor system. The E-tongue system, implemented in a laboratory environment for 6 numbers of different ISI (Bureau of Indian standard) certified water samples (Aquafina, Bisleri, Kingfisher, Oasis, Dolphin, and McDowell) was the data source for developing two types of machine learning algorithms like classification and regression. A water data set consisting of 6 numbers of sample classes containing 4402 numbers of features were considered. A PCA (principal component analysis) based classification and authentication tool was developed in this study as the machine learning component of the E-tongue system. A proposed partial least squares (PLS) based classifier, which was dedicated as well; to authenticate a specific category of water sample evolved out as an integral part of the E-tongue instrumentation system. The developed PCA and PLS based E-tongue system emancipated an overall encouraging authentication percentage accuracy with their excellent performances for the aforesaid categories of water samples. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Machine learning algorithms for mode-of-action classification in toxicity assessment.

    Science.gov (United States)

    Zhang, Yile; Wong, Yau Shu; Deng, Jian; Anton, Cristina; Gabos, Stephan; Zhang, Weiping; Huang, Dorothy Yu; Jin, Can

    2016-01-01

    Real Time Cell Analysis (RTCA) technology is used to monitor cellular changes continuously over the entire exposure period. Combining with different testing concentrations, the profiles have potential in probing the mode of action (MOA) of the testing substances. In this paper, we present machine learning approaches for MOA assessment. Computational tools based on artificial neural network (ANN) and support vector machine (SVM) are developed to analyze the time-concentration response curves (TCRCs) of human cell lines responding to tested chemicals. The techniques are capable of learning data from given TCRCs with known MOA information and then making MOA classification for the unknown toxicity. A novel data processing step based on wavelet transform is introduced to extract important features from the original TCRC data. From the dose response curves, time interval leading to higher classification success rate can be selected as input to enhance the performance of the machine learning algorithm. This is particularly helpful when handling cases with limited and imbalanced data. The validation of the proposed method is demonstrated by the supervised learning algorithm applied to the exposure data of HepG2 cell line to 63 chemicals with 11 concentrations in each test case. Classification success rate in the range of 85 to 95 % are obtained using SVM for MOA classification with two clusters to cases up to four clusters. Wavelet transform is capable of capturing important features of TCRCs for MOA classification. The proposed SVM scheme incorporated with wavelet transform has a great potential for large scale MOA classification and high-through output chemical screening.

  19. A Novel Machine Vision System for the Inspection of Micro-Spray Nozzle

    Directory of Open Access Journals (Sweden)

    Kuo-Yi Huang

    2015-06-01

    Full Text Available In this study, we present an application of neural network and image processing techniques for detecting the defects of an internal micro-spray nozzle. The defect regions were segmented by Canny edge detection, a randomized algorithm for detecting circles and a circle inspection (CI algorithm. The gray level co-occurrence matrix (GLCM was further used to evaluate the texture features of the segmented region. These texture features (contrast, entropy, energy, color features (mean and variance of gray level and geometric features (distance variance, mean diameter and diameter ratio were used in the classification procedures. A back-propagation neural network classifier was employed to detect the defects of micro-spray nozzles. The methodology presented herein effectively works for detecting micro-spray nozzle defects to an accuracy of 90.71%.

  20. Detection of small surface defects using DCT based enhancement approach in machine vision systems

    Science.gov (United States)

    He, Fuqiang; Wang, Wen; Chen, Zichen

    2005-12-01

    Utilizing DCT based enhancement approach, an improved small defect detection algorithm for real-time leather surface inspection was developed. A two-stage decomposition procedure was proposed to extract an odd-odd frequency matrix after a digital image has been transformed to DCT domain. Then, the reverse cumulative sum algorithm was proposed to detect the transition points of the gentle curves plotted from the odd-odd frequency matrix. The best radius of the cutting sector was computed in terms of the transition points and the high-pass filtering operation was implemented. The filtered image was then inversed and transformed back to the spatial domain. Finally, the restored image was segmented by an entropy method and some defect features are calculated. Experimental results show the proposed small defect detection method can reach the small defect detection rate by 94%.

  1. Application of machine vision in inspecting stem and shape of fruits

    Science.gov (United States)

    Ying, Yibin; Jing, Hansong; Tao, Yang; Jin, Juanqin; Ibarra, Juan G.; Chen, Zhikuan

    2000-12-01

    The shape and the condition of stem are important features in classification of Huanghua pears. As the commonly used thinning and erosion-dilation algorithm in judging the presence of the stem is too slow, a new fast algorithm was put forward. Compared with other part of the pear, the stem is obviously thin and long, with the help of various sized templates, the judgment of whether the stem is present was easily made, meanwhile the stem head and the intersection point of stem bottom and pear were labeled. Furthermore, after the slopes of the tangential line of stem head and tangential line of stem bottom were found, the included angle of these two lines was calculated. It was found that the included angle of the broken stem was obviously different from that of the good stem. After the analysis of 53 pictures of pears, the accuracy to judge whether the stem is present is 100% and whether the stem is good reaches 93%. Also, the algorithm is of robustness and can be made invariant to translation and rotation Meanwhile, the method to describe the shape of irregular fruits was studied. Fourier transformation and inverse Fourier transformation pair were adopted to describe the shape of Huanghua pears, and the algorithm for shape identification, which was based on artificial neural network, was developed. The first sixteen harmonic components of the Fourier descriptor were enough to represent the primary shape of pear, and the identification accuracy could reach 90% by applying the Fourier descriptor in combination with artificial neural network.

  2. Automatic Recognition Method for Optical Measuring Instruments Based on Machine Vision

    Institute of Scientific and Technical Information of China (English)

    SONG Le; LIN Yuchi; HAO Liguo

    2008-01-01

    Based on a comprehensive study of various algorithms, the automatic recognition of traditional ocular optical measuring instruments is realized. Taking a universal tools microscope (UTM) lens view image as an example, a 2-layer automatic recognition model for data reading is established after adopting a series of pre-processing algorithms. This model is an optimal combination of the correlation-based template matching method and a concurrent back propagation (BP) neural network. Multiple complementary feature extraction is used in generating the eigenvectors of the concurrent network. In order to improve fault-tolerance capacity, rotation invariant features based on Zernike moments are extracted from digit characters and a 4-dimensional group of the outline features is also obtained. Moreover, the operating time and reading accuracy can be adjusted dynamically by setting the threshold value. The experimental result indicates that the newly developed algorithm has optimal recognition precision and working speed. The average reading ratio can achieve 97.23%. The recognition method can automatically obtain the results of optical measuring instruments rapidly and stably without modifying their original structure, which meets the application requirements.

  3. Fast and flexible 3D object recognition solutions for machine vision applications

    Science.gov (United States)

    Effenberger, Ira; Kühnle, Jens; Verl, Alexander

    2013-03-01

    In automation and handling engineering, supplying work pieces between different stages along the production process chain is of special interest. Often the parts are stored unordered in bins or lattice boxes and hence have to be separated and ordered for feeding purposes. An alternative to complex and spacious mechanical systems such as bowl feeders or conveyor belts, which are typically adapted to the parts' geometry, is using a robot to grip the work pieces out of a bin or from a belt. Such applications are in need of reliable and precise computer-aided object detection and localization systems. For a restricted range of parts, there exists a variety of 2D image processing algorithms that solve the recognition problem. However, these methods are often not well suited for the localization of randomly stored parts. In this paper we present a fast and flexible 3D object recognizer that localizes objects by identifying primitive features within the objects. Since technical work pieces typically consist to a substantial degree of geometric primitives such as planes, cylinders and cones, such features usually carry enough information in order to determine the position of the entire object. Our algorithms use 3D best-fitting combined with an intelligent data pre-processing step. The capability and performance of this approach is shown by applying the algorithms to real data sets of different industrial test parts in a prototypical bin picking demonstration system.

  4. A calibration system for measuring 3D ground truth for validation and error analysis of robot vision algorithms

    Science.gov (United States)

    Stolkin, R.; Greig, A.; Gilby, J.

    2006-10-01

    An important task in robot vision is that of determining the position, orientation and trajectory of a moving camera relative to an observed object or scene. Many such visual tracking algorithms have been proposed in the computer vision, artificial intelligence and robotics literature over the past 30 years. However, it is seldom possible to explicitly measure the accuracy of these algorithms, since the ground-truth camera positions and orientations at each frame in a video sequence are not available for comparison with the outputs of the proposed vision systems. A method is presented for generating real visual test data with complete underlying ground truth. The method enables the production of long video sequences, filmed along complicated six-degree-of-freedom trajectories, featuring a variety of objects and scenes, for which complete ground-truth data are known including the camera position and orientation at every image frame, intrinsic camera calibration data, a lens distortion model and models of the viewed objects. This work encounters a fundamental measurement problem—how to evaluate the accuracy of measured ground truth data, which is itself intended for validation of other estimated data. Several approaches for reasoning about these accuracies are described.

  5. Deviation from Trajectory Detection in Vision based Robotic Navigation using SURF and Subsequent Restoration by Dynamic Auto Correction Algorithm

    Directory of Open Access Journals (Sweden)

    Ray Debraj

    2015-01-01

    Full Text Available Speeded Up Robust Feature (SURF is used to position a robot with respect to an environment and aid in vision-based robotic navigation. During the course of navigation irregularities in the terrain, especially in an outdoor environment may deviate a robot from the track. Another reason for deviation can be unequal speed of the left and right robot wheels. Hence it is essential to detect such deviations and perform corrective operations to bring the robot back to the track. In this paper we propose a novel algorithm that uses image matching using SURF to detect deviation of a robot from the trajectory and subsequent restoration by corrective operations. This algorithm is executed in parallel to positioning and navigation algorithms by distributing tasks among different CPU cores using Open Multi-Processing (OpenMP API.

  6. The use of open and machine vision technologies for development of gesture recognition intelligent systems

    Science.gov (United States)

    Cherkasov, Kirill V.; Gavrilova, Irina V.; Chernova, Elena V.; Dokolin, Andrey S.

    2018-05-01

    The article is devoted to reflection of separate aspects of intellectual system gesture recognition development. The peculiarity of the system is its intellectual block which completely based on open technologies: OpenCV library and Microsoft Cognitive Toolkit (CNTK) platform. The article presents the rationale for the choice of such set of tools, as well as the functional scheme of the system and the hierarchy of its modules. Experiments have shown that the system correctly recognizes about 85% of images received from sensors. The authors assume that the improvement of the algorithmic block of the system will increase the accuracy of gesture recognition up to 95%.

  7. GPR identification of voids inside concrete based on the support vector machine algorithm

    International Nuclear Information System (INIS)

    Xie, Xiongyao; Li, Pan; Qin, Hui; Liu, Lanbo; Nobes, David C

    2013-01-01

    Voids inside reinforced concrete, which affect structural safety, are identified from ground penetrating radar (GPR) images using a completely automatic method based on the support vector machine (SVM) algorithm. The entire process can be characterized into four steps: (1) the original SVM model is built by training synthetic GPR data generated by finite difference time domain simulation and after data preprocessing, segmentation and feature extraction. (2) The classification accuracy of different kernel functions is compared with the cross-validation method and the penalty factor (c) of the SVM and the coefficient (σ2) of kernel functions are optimized by using the grid algorithm and the genetic algorithm. (3) To test the success of classification, this model is then verified and validated by applying it to another set of synthetic GPR data. The result shows a high success rate for classification. (4) This original classifier model is finally applied to a set of real GPR data to identify and classify voids. The result is less than ideal when compared with its application to synthetic data before the original model is improved. In general, this study shows that the SVM exhibits promising performance in the GPR identification of voids inside reinforced concrete. Nevertheless, the recognition of shape and distribution of voids may need further improvement. (paper)

  8. Parameters selection in gene selection using Gaussian kernel support vector machines by genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In microarray-based cancer classification, gene selection is an important issue owing to the large number of variables and small number of samples as well as its non-linearity. It is difficult to get satisfying results by using conventional linear statistical methods. Recursive feature elimination based on support vector machine (SVM RFE) is an effective algorithm for gene selection and cancer classification, which are integrated into a consistent framework. In this paper, we propose a new method to select parameters of the aforementioned algorithm implemented with Gaussian kernel SVMs as better alternatives to the common practice of selecting the apparently best parameters by using a genetic algorithm to search for a couple of optimal parameter. Fast implementation issues for this method are also discussed for pragmatic reasons. The proposed method was tested on two representative hereditary breast cancer and acute leukaemia datasets. The experimental results indicate that the proposed method performs well in selecting genes and achieves high classification accuracies with these genes.

  9. A Support Vector Machine Hydrometeor Classification Algorithm for Dual-Polarization Radar

    Directory of Open Access Journals (Sweden)

    Nicoletta Roberto

    2017-07-01

    Full Text Available An algorithm based on a support vector machine (SVM is proposed for hydrometeor classification. The training phase is driven by the output of a fuzzy logic hydrometeor classification algorithm, i.e., the most popular approach for hydrometer classification algorithms used for ground-based weather radar. The performance of SVM is evaluated by resorting to a weather scenario, generated by a weather model; the corresponding radar measurements are obtained by simulation and by comparing results of SVM classification with those obtained by a fuzzy logic classifier. Results based on the weather model and simulations show a higher accuracy of the SVM classification. Objective comparison of the two classifiers applied to real radar data shows that SVM classification maps are spatially more homogenous (textural indices, energy, and homogeneity increases by 21% and 12% respectively and do not present non-classified data. The improvements found by SVM classifier, even though it is applied pixel-by-pixel, can be attributed to its ability to learn from the entire hyperspace of radar measurements and to the accurate training. The reliability of results and higher computing performance make SVM attractive for some challenging tasks such as its implementation in Decision Support Systems for helping pilots to make optimal decisions about changes inthe flight route caused by unexpected adverse weather.

  10. A Novel Classification Algorithm Based on Incremental Semi-Supervised Support Vector Machine.

    Directory of Open Access Journals (Sweden)

    Fei Gao

    Full Text Available For current computational intelligence techniques, a major challenge is how to learn new concepts in changing environment. Traditional learning schemes could not adequately address this problem due to a lack of dynamic data selection mechanism. In this paper, inspired by human learning process, a novel classification algorithm based on incremental semi-supervised support vector machine (SVM is proposed. Through the analysis of prediction confidence of samples and data distribution in a changing environment, a "soft-start" approach, a data selection mechanism and a data cleaning mechanism are designed, which complete the construction of our incremental semi-supervised learning system. Noticeably, with the ingenious design procedure of our proposed algorithm, the computation complexity is reduced effectively. In addition, for the possible appearance of some new labeled samples in the learning process, a detailed analysis is also carried out. The results show that our algorithm does not rely on the model of sample distribution, has an extremely low rate of introducing wrong semi-labeled samples and can effectively make use of the unlabeled samples to enrich the knowledge system of classifier and improve the accuracy rate. Moreover, our method also has outstanding generalization performance and the ability to overcome the concept drift in a changing environment.

  11. The Three Pillars of Machine Programming

    OpenAIRE

    Gottschlich, Justin; Solar-Lezama, Armando; Tatbul, Nesime; Carbin, Michael; Rinard, Martin; Barzilay, Regina; Amarasinghe, Saman; Tenenbaum, Joshua B; Mattson, Tim

    2018-01-01

    In this position paper, we describe our vision of the future of machine programming through a categorical examination of three pillars of research. Those pillars are: (i) intention, (ii) invention, and(iii) adaptation. Intention emphasizes advancements in the human-to-computer and computer-to-machine-learning interfaces. Invention emphasizes the creation or refinement of algorithms or core hardware and software building blocks through machine learning (ML). Adaptation emphasizes advances in t...

  12. Computer vision and machine learning for robust phenotyping in genome-wide studies.

    Science.gov (United States)

    Zhang, Jiaoping; Naik, Hsiang Sing; Assefa, Teshale; Sarkar, Soumik; Reddy, R V Chowda; Singh, Arti; Ganapathysubramanian, Baskar; Singh, Asheesh K

    2017-03-08

    Traditional evaluation of crop biotic and abiotic stresses are time-consuming and labor-intensive limiting the ability to dissect the genetic basis of quantitative traits. A machine learning (ML)-enabled image-phenotyping pipeline for the genetic studies of abiotic stress iron deficiency chlorosis (IDC) of soybean is reported. IDC classification and severity for an association panel of 461 diverse plant-introduction accessions was evaluated using an end-to-end phenotyping workflow. The workflow consisted of a multi-stage procedure including: (1) optimized protocols for consistent image capture across plant canopies, (2) canopy identification and registration from cluttered backgrounds, (3) extraction of domain expert informed features from the processed images to accurately represent IDC expression, and (4) supervised ML-based classifiers that linked the automatically extracted features with expert-rating equivalent IDC scores. ML-generated phenotypic data were subsequently utilized for the genome-wide association study and genomic prediction. The results illustrate the reliability and advantage of ML-enabled image-phenotyping pipeline by identifying previously reported locus and a novel locus harboring a gene homolog involved in iron acquisition. This study demonstrates a promising path for integrating the phenotyping pipeline into genomic prediction, and provides a systematic framework enabling robust and quicker phenotyping through ground-based systems.

  13. Intelligent simulated annealing algorithm applied to the optimization of the main magnet for magnetic resonance imaging machine

    International Nuclear Information System (INIS)

    Sanchez Lopez, Hector

    2001-01-01

    This work describes an alternative algorithm of Simulated Annealing applied to the design of the main magnet for a Magnetic Resonance Imaging machine. The algorithm uses a probabilistic radial base neuronal network to classify the possible solutions, before the objective function evaluation. This procedure allows reducing up to 50% the number of iterations required by simulated annealing to achieve the global maximum, when compared with the SA algorithm. The algorithm was applied to design a 0.1050 Tesla four coil resistive magnet, which produces a magnetic field 2.13 times more uniform than the solution given by SA. (author)

  14. A modified genetic algorithm for time and cost optimization of an additive manufacturing single-machine scheduling

    Directory of Open Access Journals (Sweden)

    M. Fera

    2018-09-01

    Full Text Available Additive Manufacturing (AM is a process of joining materials to make objects from 3D model data, usually layer by layer, as opposed to subtractive manufacturing methodologies. Selective Laser Melting, commercially known as Direct Metal Laser Sintering (DMLS®, is the most diffused additive process in today’s manufacturing industry. Introduction of a DMLS® machine in a production department has remarkable effects not only on industrial design but also on production planning, for example, on machine scheduling. Scheduling for a traditional single machine can employ consolidated models. Scheduling of an AM machine presents new issues because it must consider the capability of producing different geometries, simultaneously. The aim of this paper is to provide a mathematical model for an AM/SLM machine scheduling. The complexity of the model is NP-HARD, so possible solutions must be found by metaheuristic algorithms, e.g., Genetic Algorithms. Genetic Algorithms solve sequential optimization problems by handling vectors; in the present paper, we must modify them to handle a matrix. The effectiveness of the proposed algorithms will be tested on a test case formed by a 30 Part Number production plan with a high variability in complexity, distinct due dates and low production volumes.

  15. Application of machine learning algorithms to the study of noise artifacts in gravitational-wave data

    Science.gov (United States)

    Biswas, Rahul; Blackburn, Lindy; Cao, Junwei; Essick, Reed; Hodge, Kari Alison; Katsavounidis, Erotokritos; Kim, Kyungmin; Kim, Young-Min; Le Bigot, Eric-Olivier; Lee, Chang-Hwan; Oh, John J.; Oh, Sang Hoon; Son, Edwin J.; Tao, Ye; Vaulin, Ruslan; Wang, Xiaoge

    2013-09-01

    The sensitivity of searches for astrophysical transients in data from the Laser Interferometer Gravitational-wave Observatory (LIGO) is generally limited by the presence of transient, non-Gaussian noise artifacts, which occur at a high enough rate such that accidental coincidence across multiple detectors is non-negligible. These “glitches” can easily be mistaken for transient gravitational-wave signals, and their robust identification and removal will help any search for astrophysical gravitational waves. We apply machine-learning algorithms (MLAs) to the problem, using data from auxiliary channels within the LIGO detectors that monitor degrees of freedom unaffected by astrophysical signals. Noise sources may produce artifacts in these auxiliary channels as well as the gravitational-wave channel. The number of auxiliary-channel parameters describing these disturbances may also be extremely large; high dimensionality is an area where MLAs are particularly well suited. We demonstrate the feasibility and applicability of three different MLAs: artificial neural networks, support vector machines, and random forests. These classifiers identify and remove a substantial fraction of the glitches present in two different data sets: four weeks of LIGO’s fourth science run and one week of LIGO’s sixth science run. We observe that all three algorithms agree on which events are glitches to within 10% for the sixth-science-run data, and support this by showing that the different optimization criteria used by each classifier generate the same decision surface, based on a likelihood-ratio statistic. Furthermore, we find that all classifiers obtain similar performance to the benchmark algorithm, the ordered veto list, which is optimized to detect pairwise correlations between transients in LIGO auxiliary channels and glitches in the gravitational-wave data. This suggests that most of the useful information currently extracted from the auxiliary channels is already described

  16. Support vector machines and evolutionary algorithms for classification single or together?

    CERN Document Server

    Stoean, Catalin

    2014-01-01

    When discussing classification, support vector machines are known to be a capable and efficient technique to learn and predict with high accuracy within a quick time frame. Yet, their black box means to do so make the practical users quite circumspect about relying on it, without much understanding of the how and why of its predictions. The question raised in this book is how can this ‘masked hero’ be made more comprehensible and friendly to the public: provide a surrogate model for its hidden optimization engine, replace the method completely or appoint a more friendly approach to tag along and offer the much desired explanations? Evolutionary algorithms can do all these and this book presents such possibilities of achieving high accuracy, comprehensibility, reasonable runtime as well as unconstrained performance.

  17. A Distributed Algorithm for the Cluster-Based Outlier Detection Using Unsupervised Extreme Learning Machines

    Directory of Open Access Journals (Sweden)

    Xite Wang

    2017-01-01

    Full Text Available Outlier detection is an important data mining task, whose target is to find the abnormal or atypical objects from a given dataset. The techniques for detecting outliers have a lot of applications, such as credit card fraud detection and environment monitoring. Our previous work proposed the Cluster-Based (CB outlier and gave a centralized method using unsupervised extreme learning machines to compute CB outliers. In this paper, we propose a new distributed algorithm for the CB outlier detection (DACB. On the master node, we collect a small number of points from the slave nodes to obtain a threshold. On each slave node, we design a new filtering method that can use the threshold to efficiently speed up the computation. Furthermore, we also propose a ranking method to optimize the order of cluster scanning. At last, the effectiveness and efficiency of the proposed approaches are verified through a plenty of simulation experiments.

  18. Screw Remaining Life Prediction Based on Quantum Genetic Algorithm and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Xiaochen Zhang

    2017-01-01

    Full Text Available To predict the remaining life of ball screw, a screw remaining life prediction method based on quantum genetic algorithm (QGA and support vector machine (SVM is proposed. A screw accelerated test bench is introduced. Accelerometers are installed to monitor the performance degradation of ball screw. Combined with wavelet packet decomposition and isometric mapping (Isomap, the sensitive feature vectors are obtained and stored in database. Meanwhile, the sensitive feature vectors are randomly chosen from the database and constitute training samples and testing samples. Then the optimal kernel function parameter and penalty factor of SVM are searched with the method of QGA. Finally, the training samples are used to train optimized SVM while testing samples are adopted to test the prediction accuracy of the trained SVM so the screw remaining life prediction model can be got. The experiment results show that the screw remaining life prediction model could effectively predict screw remaining life.

  19. Study on excitation and fluorescence spectrums of Japanese citruses to construct machine vision systems for acquiring fluorescent images

    Science.gov (United States)

    Momin, Md. Abdul; Kondo, Naoshi; Kuramoto, Makoto; Ogawa, Yuichi; Shigi, Tomoo

    2011-06-01

    Research was conducted to acquire knowledge of the ultraviolet and visible spectrums from 300 -800 nm of some common varieties of Japanese citrus, to investigate the best wave-lengths for fluorescence excitation and the resulting fluorescence wave-lengths and to provide a scientific background for the best quality fluorescent imaging technique for detecting surface defects of citrus. A Hitachi U-4000 PC-based microprocessor controlled spectrophotometer was used to measure the absorption spectrum and a Hitachi F-4500 spectrophotometer was used for the fluorescence and excitation spectrums. We analyzed the spectrums and the selected varieties of citrus were categorized into four groups of known fluorescence level, namely strong, medium, weak and no fluorescence.The level of fluorescence of each variety was also examined by using machine vision system. We found that around 340-380 nm LEDs or UV lamps are appropriate as lighting devices for acquiring the best quality fluorescent image of the citrus varieties to examine their fluorescence intensity. Therefore an image acquisition device was constructed with three different lighting panels with UV LED at peak 365 nm, Blacklight blue lamps (BLB) peak at 350 nm and UV-B lamps at peak 306 nm. The results from fluorescent images also revealed that the findings of the measured spectrums worked properly and can be used for practical applications such as for detecting rotten, injured or damaged parts of a wide variety of citrus.

  20. An improved method of early diagnosis of smoking-induced respiratory changes using machine learning algorithms.

    Science.gov (United States)

    Amaral, Jorge L M; Lopes, Agnaldo J; Jansen, José M; Faria, Alvaro C D; Melo, Pedro L

    2013-12-01

    The purpose of this study was to develop an automatic classifier to increase the accuracy of the forced oscillation technique (FOT) for diagnosing early respiratory abnormalities in smoking patients. The data consisted of FOT parameters obtained from 56 volunteers, 28 healthy and 28 smokers with low tobacco consumption. Many supervised learning techniques were investigated, including logistic linear classifiers, k nearest neighbor (KNN), neural networks and support vector machines (SVM). To evaluate performance, the ROC curve of the most accurate parameter was established as baseline. To determine the best input features and classifier parameters, we used genetic algorithms and a 10-fold cross-validation using the average area under the ROC curve (AUC). In the first experiment, the original FOT parameters were used as input. We observed a significant improvement in accuracy (KNN=0.89 and SVM=0.87) compared with the baseline (0.77). The second experiment performed a feature selection on the original FOT parameters. This selection did not cause any significant improvement in accuracy, but it was useful in identifying more adequate FOT parameters. In the third experiment, we performed a feature selection on the cross products of the FOT parameters. This selection resulted in a further increase in AUC (KNN=SVM=0.91), which allows for high diagnostic accuracy. In conclusion, machine learning classifiers can help identify early smoking-induced respiratory alterations. The use of FOT cross products and the search for the best features and classifier parameters can markedly improve the performance of machine learning classifiers. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. A New Tool for CME Arrival Time Prediction using Machine Learning Algorithms: CAT-PUMA

    Science.gov (United States)

    Liu, Jiajia; Ye, Yudong; Shen, Chenglong; Wang, Yuming; Erdélyi, Robert

    2018-03-01

    Coronal mass ejections (CMEs) are arguably the most violent eruptions in the solar system. CMEs can cause severe disturbances in interplanetary space and can even affect human activities in many aspects, causing damage to infrastructure and loss of revenue. Fast and accurate prediction of CME arrival time is vital to minimize the disruption that CMEs may cause when interacting with geospace. In this paper, we propose a new approach for partial-/full halo CME Arrival Time Prediction Using Machine learning Algorithms (CAT-PUMA). Via detailed analysis of the CME features and solar-wind parameters, we build a prediction engine taking advantage of 182 previously observed geo-effective partial-/full halo CMEs and using algorithms of the Support Vector Machine. We demonstrate that CAT-PUMA is accurate and fast. In particular, predictions made after applying CAT-PUMA to a test set unknown to the engine show a mean absolute prediction error of ∼5.9 hr within the CME arrival time, with 54% of the predictions having absolute errors less than 5.9 hr. Comparisons with other models reveal that CAT-PUMA has a more accurate prediction for 77% of the events investigated that can be carried out very quickly, i.e., within minutes of providing the necessary input parameters of a CME. A practical guide containing the CAT-PUMA engine and the source code of two examples are available in the Appendix, allowing the community to perform their own applications for prediction using CAT-PUMA.

  2. Application of Machine Learning Algorithms to the Study of Noise Artifacts in Gravitational-Wave Data

    Science.gov (United States)

    Biswas, Rahul; Blackburn, Lindy L.; Cao, Junwei; Essick, Reed; Hodge, Kari Alison; Katsavounidis, Erotokritos; Kim, Kyungmin; Young-Min, Kim; Le Bigot, Eric-Olivier; Lee, Chang-Hwan; hide

    2014-01-01

    The sensitivity of searches for astrophysical transients in data from the Laser Interferometer Gravitationalwave Observatory (LIGO) is generally limited by the presence of transient, non-Gaussian noise artifacts, which occur at a high-enough rate such that accidental coincidence across multiple detectors is non-negligible. Furthermore, non-Gaussian noise artifacts typically dominate over the background contributed from stationary noise. These "glitches" can easily be confused for transient gravitational-wave signals, and their robust identification and removal will help any search for astrophysical gravitational-waves. We apply Machine Learning Algorithms (MLAs) to the problem, using data from auxiliary channels within the LIGO detectors that monitor degrees of freedom unaffected by astrophysical signals. Terrestrial noise sources may manifest characteristic disturbances in these auxiliary channels, inducing non-trivial correlations with glitches in the gravitational-wave data. The number of auxiliary-channel parameters describing these disturbances may also be extremely large; high dimensionality is an area where MLAs are particularly well-suited. We demonstrate the feasibility and applicability of three very different MLAs: Artificial Neural Networks, Support Vector Machines, and Random Forests. These classifiers identify and remove a substantial fraction of the glitches present in two very different data sets: four weeks of LIGO's fourth science run and one week of LIGO's sixth science run. We observe that all three algorithms agree on which events are glitches to within 10% for the sixth science run data, and support this by showing that the different optimization criteria used by each classifier generate the same decision surface, based on a likelihood-ratio statistic. Furthermore, we find that all classifiers obtain similar limiting performance, suggesting that most of the useful information currently contained in the auxiliary channel parameters we extract

  3. Machine learning algorithms for the creation of clinical healthcare enterprise systems

    Science.gov (United States)

    Mandal, Indrajit

    2017-10-01

    Clinical recommender systems are increasingly becoming popular for improving modern healthcare systems. Enterprise systems are persuasively used for creating effective nurse care plans to provide nurse training, clinical recommendations and clinical quality control. A novel design of a reliable clinical recommender system based on multiple classifier system (MCS) is implemented. A hybrid machine learning (ML) ensemble based on random subspace method and random forest is presented. The performance accuracy and robustness of proposed enterprise architecture are quantitatively estimated to be above 99% and 97%, respectively (above 95% confidence interval). The study then extends to experimental analysis of the clinical recommender system with respect to the noisy data environment. The ranking of items in nurse care plan is demonstrated using machine learning algorithms (MLAs) to overcome the drawback of the traditional association rule method. The promising experimental results are compared against the sate-of-the-art approaches to highlight the advancement in recommendation technology. The proposed recommender system is experimentally validated using five benchmark clinical data to reinforce the research findings.

  4. The Construction of Support Vector Machine Classifier Using the Firefly Algorithm

    Directory of Open Access Journals (Sweden)

    Chih-Feng Chao

    2015-01-01

    Full Text Available The setting of parameters in the support vector machines (SVMs is very important with regard to its accuracy and efficiency. In this paper, we employ the firefly algorithm to train all parameters of the SVM simultaneously, including the penalty parameter, smoothness parameter, and Lagrangian multiplier. The proposed method is called the firefly-based SVM (firefly-SVM. This tool is not considered the feature selection, because the SVM, together with feature selection, is not suitable for the application in a multiclass classification, especially for the one-against-all multiclass SVM. In experiments, binary and multiclass classifications are explored. In the experiments on binary classification, ten of the benchmark data sets of the University of California, Irvine (UCI, machine learning repository are used; additionally the firefly-SVM is applied to the multiclass diagnosis of ultrasonic supraspinatus images. The classification performance of firefly-SVM is also compared to the original LIBSVM method associated with the grid search method and the particle swarm optimization based SVM (PSO-SVM. The experimental results advocate the use of firefly-SVM to classify pattern classifications for maximum accuracy.

  5. Field tests and machine learning approaches for refining algorithms and correlations of driver's model parameters.

    Science.gov (United States)

    Tango, Fabio; Minin, Luca; Tesauri, Francesco; Montanari, Roberto

    2010-03-01

    This paper describes the field tests on a driving simulator carried out to validate the algorithms and the correlations of dynamic parameters, specifically driving task demand and drivers' distraction, able to predict drivers' intentions. These parameters belong to the driver's model developed by AIDE (Adaptive Integrated Driver-vehicle InterfacE) European Integrated Project. Drivers' behavioural data have been collected from the simulator tests to model and validate these parameters using machine learning techniques, specifically the adaptive neuro fuzzy inference systems (ANFIS) and the artificial neural network (ANN). Two models of task demand and distraction have been developed, one for each adopted technique. The paper provides an overview of the driver's model, the description of the task demand and distraction modelling and the tests conducted for the validation of these parameters. A test comparing predicted and expected outcomes of the modelled parameters for each machine learning technique has been carried out: for distraction, in particular, promising results (low prediction errors) have been obtained by adopting an artificial neural network.

  6. Developing Novel Machine Learning Algorithms to Improve Sedentary Assessment for Youth Health Enhancement.

    Science.gov (United States)

    Golla, Gowtham Kumar; Carlson, Jordan A; Huan, Jun; Kerr, Jacqueline; Mitchell, Tarrah; Borner, Kelsey

    2016-10-01

    Sedentary behavior of youth is an important determinant of health. However, better measures are needed to improve understanding of this relationship and the mechanisms at play, as well as to evaluate health promotion interventions. Wearable accelerometers are considered as the standard for assessing physical activity in research, but do not perform well for assessing posture (i.e., sitting vs. standing), a critical component of sedentary behavior. The machine learning algorithms that we propose for assessing sedentary behavior will allow us to re-examine existing accelerometer data to better understand the association between sedentary time and health in various populations. We collected two datasets, a laboratory-controlled dataset and a free-living dataset. We trained machine learning classifiers separately on each dataset and compared performance across datasets. The classifiers predict five postures: sit, stand, sit-stand, stand-sit, and stand\\walk. We compared a manually constructed Hidden Markov model (HMM) with an automated HMM from existing software. The manually constructed HMM gave more F1-Macro score on both datasets.

  7. Semi-supervised prediction of gene regulatory networks using machine learning algorithms.

    Science.gov (United States)

    Patel, Nihir; Wang, Jason T L

    2015-10-01

    Use of computational methods to predict gene regulatory networks (GRNs) from gene expression data is a challenging task. Many studies have been conducted using unsupervised methods to fulfill the task; however, such methods usually yield low prediction accuracies due to the lack of training data. In this article, we propose semi-supervised methods for GRN prediction by utilizing two machine learning algorithms, namely, support vector machines (SVM) and random forests (RF). The semi-supervised methods make use of unlabelled data for training. We investigated inductive and transductive learning approaches, both of which adopt an iterative procedure to obtain reliable negative training data from the unlabelled data. We then applied our semi-supervised methods to gene expression data of Escherichia coli and Saccharomyces cerevisiae, and evaluated the performance of our methods using the expression data. Our analysis indicated that the transductive learning approach outperformed the inductive learning approach for both organisms. However, there was no conclusive difference identified in the performance of SVM and RF. Experimental results also showed that the proposed semi-supervised methods performed better than existing supervised methods for both organisms.

  8. Machine Vision System for Characterizing the Electric Field for the 225 Ra EDM Experiment

    Science.gov (United States)

    Sanchez, Andrew

    2017-09-01

    If an atom or fundamental particle possesses an electric dipole moment (EDM), that would imply time-reversal violation. At our current capability, if an EDM is detected in such a particle, that would suggest the discovery of beyond the standard model (BSM) physics. The unique structure of 225 Ra makes its atomic EDM favorable in the BSM search. An upgraded Ra-EDM apparatus will increase experimental sensitivity and the target electric field of 150 kV/cm will more than double the electric field used in previous experiments. To determine the electric field, the potential difference and electrode separation distance must be known. The optical method I have developed is a high-precision, non-invasive technique to measure electrode separation without making contact with the sensitive electrode surfaces. A digital camera utilizes a bi-telecentric lens to reduce parallax error and produce constant magnification throughout the optical system, regardless of object distance. A monochrome LED backlight enhances sharpness of the electrode profile, reducing uncertainty in edge determination and gap width. A program utilizing an edge detection algorithm allows precise, repeatable measurement of the gap width to within 1% and measurement of the relative angle of the electrodes. This work (SAM, Ra EDM) is supported by Michigan State University. This work (REU Program) is supported by U.S. National Science Foundation under Grant Number #1559866.

  9. Online analysis of coal on a conveyor belt by use of machine vision and kernel methods

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, C.; Jemwa, G.T.; van Dyk, J.C.; Keyser, M.J.; van Heerden, J.H.P. [University of Stellenbosch, Stellenbosch (South Africa). Dept. of Process Engineering

    2010-07-01

    The objective of this project is to explore the use of image analysis to quantify the amount of fines (6mm) present for different coal samples under conditions simulating the coal on conveyor belts similar to those being used by Sasol for gasification purposes. Quantification of the fines will be deemed particularly successful, if the fines mass fraction, as determined by sieve analysis, is possible to be predicted with an error of less than 10%. In this article, kernel-based methods to estimate particle size ranges on a pilot-scale conveyor belt as well as edge detection algorithms are considered. Preliminary results have shown that the fines fraction in the coal on the conveyor belt could be estimated with a median error of approximately 24.1%. This analysis was based on a relatively small number of sieve samples (18 in total) and needs to be validated by more samples. More samples would also facilitate better calibration and may lead to improved estimates of the sieve fines fractions. Similarly, better results may also be possible by using different approaches to image acquisition and analysis. Most of the error in the fines estimates can be attributed to sampling and to fines that were randomly obscured by the top layer (of larger particles) of coal on the belt. Sampling errors occurred as a result of some breakage of the coal between the sieve analyses and the acquisition of the images. The percentage of the fines obscured by the top layer of the coal probably caused most of the variation in the estimated mass of fines, but this needs to be validated experimentally. Preliminary studies have indicated that some variation in the lighting conditions have a small influence on the reliability of the estimates of the coal fines fractions and that consistent lighting conditions are more important than optimal lighting conditions.

  10. Automated Detection of Branch Shaking Locations for Robotic Cherry Harvesting Using Machine Vision

    Directory of Open Access Journals (Sweden)

    Suraj Amatya

    2017-10-01

    Full Text Available Automation in cherry harvesting is essential to reduce the demand for seasonal labor for cherry picking and reduce the cost of production. The mechanical shaking of tree branches is one of the widely studied and used techniques for harvesting small tree fruit crops like cherries. To automate the branch shaking operation, different methods of detecting branches and cherries in full foliage canopies of the cherry tree have been developed previously. The next step in this process is the localization of shaking positions in the detected tree branches for mechanical shaking. In this study, a method of locating shaking positions for automated cherry harvesting was developed based on branch and cherry pixel locations determined using RGB images and 3D camera images. First, branch and cherry regions were located in 2D RGB images. Depth information provided by a 3D camera was then mapped on to the RGB images using a standard stereo calibration method. The overall root mean square error in estimating the distance to desired shaking points was 0.064 m. Cherry trees trained in two different canopy architectures, Y-trellis and vertical trellis systems, were used in this study. Harvesting testing was carried out by shaking tree branches at the locations selected by the algorithm. For the Y-trellis system, the maximum fruit removal efficiency of 92.9% was achieved using up to five shaking events per branch. However, maximum fruit removal efficiency for the vertical trellis system was 86.6% with up to four shakings per branch. However, it was found that only three shakings per branch would achieve a fruit removal percentage of 92.3% and 86.4% in Y and vertical trellis systems respectively.

  11. Fast fourier algorithms in spectral computation and analysis of vibrating machines

    International Nuclear Information System (INIS)

    Farooq, U.; Hafeez, T.; Khan, M.Z.; Amir, M.

    2001-01-01

    In this work we have discussed Fourier and its history series, relationships among various Fourier mappings, Fourier coefficients, transforms, inverse transforms, integrals, analyses, discrete and fast algorithms for data processing and analysis of vibrating systems. The evaluation of magnitude of the source signal at transmission time, related coefficient matrix, intensity, and magnitude at the receiving end (stations). Matrix computation of Fourier transform has been explained, and applications are presented. The fast Fourier transforms, new computational scheme. have been tested with an example. The work also includes digital programs for obtaining the frequency contents of time function. It has been explained that how the fast Fourier algorithms (FFT) has decreased computational work by several order of magnitudes and split the spectrum of a signal into two (even and odd modes) at every successive step. That fast quantitative processing for discrete Fourier transforms' computations as well as signal splitting and combination provides an efficient. and reliable tool for spectral analyses. Fourier series decompose the given variable into a sum of oscillatory functions each having a specific frequency. These frequencies, with their corresponding amplitude and phase angles, constitute the frequency contents of the original time functions. These fast processing achievements, signals decomposition and combination may be carried out by the principle of superposition and convolution for, even, signals of different frequencies. Considerable information about a machine or a structure can be derived from variable speed and frequency tests. (author)

  12. Applications of machine-learning algorithms for infrared colour selection of Galactic Wolf-Rayet stars

    Science.gov (United States)

    Morello, Giuseppe; Morris, P. W.; Van Dyk, S. D.; Marston, A. P.; Mauerhan, J. C.

    2018-01-01

    We have investigated and applied machine-learning algorithms for infrared colour selection of Galactic Wolf-Rayet (WR) candidates. Objects taken from the Spitzer Galactic Legacy Infrared Midplane Survey Extraordinaire (GLIMPSE) catalogue of the infrared objects in the Galactic plane can be classified into different stellar populations based on the colours inferred from their broad-band photometric magnitudes [J, H and Ks from 2 Micron All Sky Survey (2MASS), and the four Spitzer/IRAC bands]. The algorithms tested in this pilot study are variants of the k-nearest neighbours approach, which is ideal for exploratory studies of classification problems where interrelations between variables and classes are complicated. The aims of this study are (1) to provide an automated tool to select reliable WR candidates and potentially other classes of objects, (2) to measure the efficiency of infrared colour selection at performing these tasks and (3) to lay the groundwork for statistically inferring the total number of WR stars in our Galaxy. We report the performance results obtained over a set of known objects and selected candidates for which we have carried out follow-up spectroscopic observations, and confirm the discovery of four new WR stars.

  13. Feature Selection and Parameter Optimization of Support Vector Machines Based on Modified Artificial Fish Swarm Algorithms

    Directory of Open Access Journals (Sweden)

    Kuan-Cheng Lin

    2015-01-01

    Full Text Available Rapid advances in information and communication technology have made ubiquitous computing and the Internet of Things popular and practicable. These applications create enormous volumes of data, which are available for analysis and classification as an aid to decision-making. Among the classification methods used to deal with big data, feature selection has proven particularly effective. One common approach involves searching through a subset of the features that are the most relevant to the topic or represent the most accurate description of the dataset. Unfortunately, searching through this kind of subset is a combinatorial problem that can be very time consuming. Meaheuristic algorithms are commonly used to facilitate the selection of features. The artificial fish swarm algorithm (AFSA employs the intelligence underlying fish swarming behavior as a means to overcome optimization of combinatorial problems. AFSA has proven highly successful in a diversity of applications; however, there remain shortcomings, such as the likelihood of falling into a local optimum and a lack of multiplicity. This study proposes a modified AFSA (MAFSA to improve feature selection and parameter optimization for support vector machine classifiers. Experiment results demonstrate the superiority of MAFSA in classification accuracy using subsets with fewer features for given UCI datasets, compared to the original FASA.

  14. Machine Learning Algorithms for prediction of regions of high Reynolds Averaged Navier Stokes Uncertainty

    Science.gov (United States)

    Mishra, Aashwin; Iaccarino, Gianluca

    2017-11-01

    In spite of their deficiencies, RANS models represent the workhorse for industrial investigations into turbulent flows. In this context, it is essential to provide diagnostic measures to assess the quality of RANS predictions. To this end, the primary step is to identify feature importances amongst massive sets of potentially descriptive and discriminative flow features. This aids the physical interpretability of the resultant discrepancy model and its extensibility to similar problems. Recent investigations have utilized approaches such as Random Forests, Support Vector Machines and the Least Absolute Shrinkage and Selection Operator for feature selection. With examples, we exhibit how such methods may not be suitable for turbulent flow datasets. The underlying rationale, such as the correlation bias and the required conditions for the success of penalized algorithms, are discussed with illustrative examples. Finally, we provide alternate approaches using convex combinations of regularized regression approaches and randomized sub-sampling in combination with feature selection algorithms, to infer model structure from data. This research was supported by the Defense Advanced Research Projects Agency under the Enabling Quantification of Uncertainty in Physical Systems (EQUiPS) project (technical monitor: Dr Fariba Fahroo).

  15. Water quality of Danube Delta systems: ecological status and prediction using machine-learning algorithms.

    Science.gov (United States)

    Stoica, C; Camejo, J; Banciu, A; Nita-Lazar, M; Paun, I; Cristofor, S; Pacheco, O R; Guevara, M

    2016-01-01

    Environmental issues have a worldwide impact on water bodies, including the Danube Delta, the largest European wetland. The Water Framework Directive (2000/60/EC) implementation operates toward solving environmental issues from European and national level. As a consequence, the water quality and the biocenosis structure was altered, especially the composition of the macro invertebrate community which is closely related to habitat and substrate heterogeneity. This study aims to assess the ecological status of Southern Branch of the Danube Delta, Saint Gheorghe, using benthic fauna and a computational method as an alternative for monitoring the water quality in real time. The analysis of spatial and temporal variability of unicriterial and multicriterial indices were used to assess the current status of aquatic systems. In addition, chemical status was characterized. Coliform bacteria and several chemical parameters were used to feed machine-learning (ML) algorithms to simulate a real-time classification method. Overall, the assessment of the water bodies indicated a moderate ecological status based on the biological quality elements or a good ecological status based on chemical and ML algorithms criteria.

  16. Man/machine interface algorithm for advanced delayed-neutron signal characterization system

    International Nuclear Information System (INIS)

    Gross, K.C.

    1985-01-01

    The present failed-element rupture detector (FERD) at Experimental Breeder Reactor II (EBR-II) consists of a single bank of delayed-neutron (DN) detectors at a fixed transit time from the core. Plans are currently under way to upgrade the FERD in 1986 and provide advanced DN signal characterization capability that is embodied in an equivalent-recoil-area (ERA) meter. The new configuration will make available to the operator a wealth of quantitative diagnostic information related to the condition and dynamic evolution of a fuel breach. The diagnostic parameters will include a continuous reading of the ERA value for the breach; the transit time, T/sub tr/, for DN emitters traveling from the core to the FERD; and the isotopic holdup time, T/sub h/, for the source. To enhance the processing, interpretation, and display of these parameters to the reactor operator, a man/machine interface (MMI) algorithm has been developed to run in the background on EBR-II's data acquisition system (DAS). The purpose of this paper is to describe the features and implementation of this newly developed MMI algorithm

  17. Adaptive Digital Watermarking Scheme Based on Support Vector Machines and Optimized Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Xiaoyi Zhou

    2018-01-01

    Full Text Available Digital watermarking is an effective solution to the problem of copyright protection, thus maintaining the security of digital products in the network. An improved scheme to increase the robustness of embedded information on the basis of discrete cosine transform (DCT domain is proposed in this study. The embedding process consisted of two main procedures. Firstly, the embedding intensity with support vector machines (SVMs was adaptively strengthened by training 1600 image blocks which are of different texture and luminance. Secondly, the embedding position with the optimized genetic algorithm (GA was selected. To optimize GA, the best individual in the first place of each generation directly went into the next generation, and the best individual in the second position participated in the crossover and the mutation process. The transparency reaches 40.5 when GA’s generation number is 200. A case study was conducted on a 256 × 256 standard Lena image with the proposed method. After various attacks (such as cropping, JPEG compression, Gaussian low-pass filtering (3,0.5, histogram equalization, and contrast increasing (0.5,0.6 on the watermarked image, the extracted watermark was compared with the original one. Results demonstrate that the watermark can be effectively recovered after these attacks. Even though the algorithm is weak against rotation attacks, it provides high quality in imperceptibility and robustness and hence it is a successful candidate for implementing novel image watermarking scheme meeting real timelines.

  18. Algorithm for detecting violations of traffic rules based on computer vision approaches

    Directory of Open Access Journals (Sweden)

    Ibadov Samir

    2017-01-01

    Full Text Available We propose a new algorithm for automatic detect violations of traffic rules for improving the people safety on the unregulated pedestrian crossing. The algorithm uses multi-step proceedings. They are zebra detection, cars detection, and pedestrian detection. For car detection, we use faster R-CNN deep learning tool. The algorithm shows promising results in the detection violations of traffic rules.

  19. An Innovative 3D Ultrasonic Actuator with Multidegree of Freedom for Machine Vision and Robot Guidance Industrial Applications Using a Single Vibration Ring Transducer

    Directory of Open Access Journals (Sweden)

    M. Shafik

    2013-07-01

    Full Text Available This paper presents an innovative 3D piezoelectric ultrasonic actuator using a single flexural vibration ring transducer, for machine vision and robot guidance industrial applications. The proposed actuator is principally aiming to overcome the visual spotlight focus angle of digital visual data capture transducer, digital cameras and enhance the machine vision system ability to perceive and move in 3D. The actuator Design, structures, working principles and finite element analysis are discussed in this paper. A prototype of the actuator was fabricated. Experimental tests and measurements showed the ability of the developed prototype to provide 3D motions of Multidegree of freedom, with typical speed of movement equal to 35 revolutions per minute, a resolution of less than 5μm and maximum load of 3.5 Newton. These initial characteristics illustrate, the potential of the developed 3D micro actuator to gear the spotlight focus angle issue of digital visual data capture transducers and possible improvement that such technology could bring to the machine vision and robot guidance industrial applications.

  20. Comparing deep neural network and other machine learning algorithms for stroke prediction in a large-scale population-based electronic medical claims database.

    Science.gov (United States)

    Chen-Ying Hung; Wei-Chen Chen; Po-Tsun Lai; Ching-Heng Lin; Chi-Chun Lee

    2017-07-01

    Electronic medical claims (EMCs) can be used to accurately predict the occurrence of a variety of diseases, which can contribute to precise medical interventions. While there is a growing interest in the application of machine learning (ML) techniques to address clinical problems, the use of deep-learning in healthcare have just gained attention recently. Deep learning, such as deep neural network (DNN), has achieved impressive results in the areas of speech recognition, computer vision, and natural language processing in recent years. However, deep learning is often difficult to comprehend due to the complexities in its framework. Furthermore, this method has not yet been demonstrated to achieve a better performance comparing to other conventional ML algorithms in disease prediction tasks using EMCs. In this study, we utilize a large population-based EMC database of around 800,000 patients to compare DNN with three other ML approaches for predicting 5-year stroke occurrence. The result shows that DNN and gradient boosting decision tree (GBDT) can result in similarly high prediction accuracies that are better compared to logistic regression (LR) and support vector machine (SVM) approaches. Meanwhile, DNN achieves optimal results by using lesser amounts of patient data when comparing to GBDT method.

  1. Exploiting machine learning algorithms for tree species classification in a semiarid woodland using RapidEye image

    CSIR Research Space (South Africa)

    Adelabu, S

    2013-11-01

    Full Text Available in semiarid environments. In this study, we examined the suitability of 5-band RapidEye satellite data for the classification of five tree species in mopane woodland of Botswana using machine leaning algorithms with limited training samples. We performed...

  2. Toward a Progress Indicator for Machine Learning Model Building and Data Mining Algorithm Execution: A Position Paper

    Science.gov (United States)

    Luo, Gang

    2017-01-01

    For user-friendliness, many software systems offer progress indicators for long-duration tasks. A typical progress indicator continuously estimates the remaining task execution time as well as the portion of the task that has been finished. Building a machine learning model often takes a long time, but no existing machine learning software supplies a non-trivial progress indicator. Similarly, running a data mining algorithm often takes a long time, but no existing data mining software provides a nontrivial progress indicator. In this article, we consider the problem of offering progress indicators for machine learning model building and data mining algorithm execution. We discuss the goals and challenges intrinsic to this problem. Then we describe an initial framework for implementing such progress indicators and two advanced, potential uses of them, with the goal of inspiring future research on this topic. PMID:29177022

  3. Machine Learning Algorithms For Predicting the Instability Timescales of Compact Planetary Systems

    Science.gov (United States)

    Tamayo, Daniel; Ali-Dib, Mohamad; Cloutier, Ryan; Huang, Chelsea; Van Laerhoven, Christa L.; Leblanc, Rejean; Menou, Kristen; Murray, Norman; Obertas, Alysa; Paradise, Adiv; Petrovich, Cristobal; Rachkov, Aleksandar; Rein, Hanno; Silburt, Ari; Tacik, Nick; Valencia, Diana

    2016-10-01

    The Kepler mission has uncovered hundreds of compact multi-planet systems. The dynamical pathways to instability in these compact systems and their associated timescales are not well understood theoretically. However, long-term stability is often used as a constraint to narrow down the space of orbital solutions from the transit data. This requires a large suite of N-body integrations that can each take several weeks to complete. This computational bottleneck is therefore an important limitation in our ability to characterize compact multi-planet systems.From suites of numerical simulations, previous studies have fit simple scaling relations between the instability timescale and various system parameters. However, the numerically simulated systems can deviate strongly from these empirical fits.We present a new approach to the problem using machine learning algorithms that have enjoyed success across a broad range of high-dimensional industry applications. In particular, we have generated large training sets of direct N-body integrations of synthetic compact planetary systems to train several regression models (support vector machine, gradient boost) that predict the instability timescale. We find that ensembling these models predicts the instability timescale of planetary systems better than previous approaches using the simple scaling relations mentioned above.Finally, we will discuss how these models provide a powerful tool for not only understanding the current Kepler multi-planet sample, but also for characterizing and shaping the radial-velocity follow-up strategies of multi-planet systems from the upcoming Transiting Exoplanet Survey Satellite (TESS) mission, given its shorter observation baselines.

  4. Short communication: Prediction of retention pay-off using a machine learning algorithm.

    Science.gov (United States)

    Shahinfar, Saleh; Kalantari, Afshin S; Cabrera, Victor; Weigel, Kent

    2014-05-01

    Replacement decisions have a major effect on dairy farm profitability. Dynamic programming (DP) has been widely studied to find the optimal replacement policies in dairy cattle. However, DP models are computationally intensive and might not be practical for daily decision making. Hence, the ability of applying machine learning on a prerun DP model to provide fast and accurate predictions of nonlinear and intercorrelated variables makes it an ideal methodology. Milk class (1 to 5), lactation number (1 to 9), month in milk (1 to 20), and month of pregnancy (0 to 9) were used to describe all cows in a herd in a DP model. Twenty-seven scenarios based on all combinations of 3 levels (base, 20% above, and 20% below) of milk production, milk price, and replacement cost were solved with the DP model, resulting in a data set of 122,716 records, each with a calculated retention pay-off (RPO). Then, a machine learning model tree algorithm was used to mimic the evaluated RPO with DP. The correlation coefficient factor was used to observe the concordance of RPO evaluated by DP and RPO predicted by the model tree. The obtained correlation coefficient was 0.991, with a corresponding value of 0.11 for relative absolute error. At least 100 instances were required per model constraint, resulting in 204 total equations (models). When these models were used for binary classification of positive and negative RPO, error rates were 1% false negatives and 9% false positives. Applying this trained model from simulated data for prediction of RPO for 102 actual replacement records from the University of Wisconsin-Madison dairy herd resulted in a 0.994 correlation with 0.10 relative absolute error rate. Overall results showed that model tree has a potential to be used in conjunction with DP to assist farmers in their replacement decisions. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Assessing the Performance of a Machine Learning Algorithm in Identifying Bubbles in Dust Emission

    Science.gov (United States)

    Xu, Duo; Offner, Stella S. R.

    2017-12-01

    Stellar feedback created by radiation and winds from massive stars plays a significant role in both physical and chemical evolution of molecular clouds. This energy and momentum leaves an identifiable signature (“bubbles”) that affects the dynamics and structure of the cloud. Most bubble searches are performed “by eye,” which is usually time-consuming, subjective, and difficult to calibrate. Automatic classifications based on machine learning make it possible to perform systematic, quantifiable, and repeatable searches for bubbles. We employ a previously developed machine learning algorithm, Brut, and quantitatively evaluate its performance in identifying bubbles using synthetic dust observations. We adopt magnetohydrodynamics simulations, which model stellar winds launching within turbulent molecular clouds, as an input to generate synthetic images. We use a publicly available three-dimensional dust continuum Monte Carlo radiative transfer code, HYPERION, to generate synthetic images of bubbles in three Spitzer bands (4.5, 8, and 24 μm). We designate half of our synthetic bubbles as a training set, which we use to train Brut along with citizen-science data from the Milky Way Project (MWP). We then assess Brut’s accuracy using the remaining synthetic observations. We find that Brut’s performance after retraining increases significantly, and it is able to identify yellow bubbles, which are likely associated with B-type stars. Brut continues to perform well on previously identified high-score bubbles, and over 10% of the MWP bubbles are reclassified as high-confidence bubbles, which were previously marginal or ambiguous detections in the MWP data. We also investigate the influence of the size of the training set, dust model, evolutionary stage, and background noise on bubble identification.

  6. Meta-heuristic algorithms for parallel identical machines scheduling problem with weighted late work criterion and common due date.

    Science.gov (United States)

    Xu, Zhenzhen; Zou, Yongxing; Kong, Xiangjie

    2015-01-01

    To our knowledge, this paper investigates the first application of meta-heuristic algorithms to tackle the parallel machines scheduling problem with weighted late work criterion and common due date ([Formula: see text]). Late work criterion is one of the performance measures of scheduling problems which considers the length of late parts of particular jobs when evaluating the quality of scheduling. Since this problem is known to be NP-hard, three meta-heuristic algorithms, namely ant colony system, genetic algorithm, and simulated annealing are designed and implemented, respectively. We also propose a novel algorithm named LDF (largest density first) which is improved from LPT (longest processing time first). The computational experiments compared these meta-heuristic algorithms with LDF, LPT and LS (list scheduling), and the experimental results show that SA performs the best in most cases. However, LDF is better than SA in some conditions, moreover, the running time of LDF is much shorter than SA.

  7. Human vision-based algorithm to hide defective pixels in LCDs

    Science.gov (United States)

    Kimpe, Tom; Coulier, Stefaan; Van Hoey, Gert

    2006-02-01

    Producing displays without pixel defects or repairing defective pixels is technically not possible at this moment. This paper presents a new approach to solve this problem: defects are made invisible for the user by using image processing algorithms based on characteristics of the human eye. The performance of this new algorithm has been evaluated using two different methods. First of all the theoretical response of the human eye was analyzed on a series of images and this before and after applying the defective pixel compensation algorithm. These results show that indeed it is possible to mask a defective pixel. A second method was to perform a psycho-visual test where users were asked whether or not a defective pixel could be perceived. The results of these user tests also confirm the value of the new algorithm. Our "defective pixel correction" algorithm can be implemented very efficiently and cost-effectively as pixel-dataprocessing algorithms inside the display in for instance an FPGA, a DSP or a microprocessor. The described techniques are also valid for both monochrome and color displays ranging from high-quality medical displays to consumer LCDTV applications.

  8. A study on low-cost, high-accuracy, and real-time stereo vision algorithms for UAV power line inspection

    Science.gov (United States)

    Wang, Hongyu; Zhang, Baomin; Zhao, Xun; Li, Cong; Lu, Cunyue

    2018-04-01

    Conventional stereo vision algorithms suffer from high levels of hardware resource utilization due to algorithm complexity, or poor levels of accuracy caused by inadequacies in the matching algorithm. To address these issues, we have proposed a stereo range-finding technique that produces an excellent balance between cost, matching accuracy and real-time performance, for power line inspection using UAV. This was achieved through the introduction of a special image preprocessing algorithm and a weighted local stereo matching algorithm, as well as the design of a corresponding hardware architecture. Stereo vision systems based on this technique have a lower level of resource usage and also a higher level of matching accuracy following hardware acceleration. To validate the effectiveness of our technique, a stereo vision system based on our improved algorithms were implemented using the Spartan 6 FPGA. In comparative experiments, it was shown that the system using the improved algorithms outperformed the system based on the unimproved algorithms, in terms of resource utilization and matching accuracy. In particular, Block RAM usage was reduced by 19%, and the improved system was also able to output range-finding data in real time.

  9. Estimation Algorithm of Machine Operational Intention by Bayes Filtering with Self-Organizing Map

    Directory of Open Access Journals (Sweden)

    Satoshi Suzuki

    2012-01-01

    Full Text Available We present an intention estimator algorithm that can deal with dynamic change of the environment in a man-machine system and will be able to be utilized for an autarkical human-assisting system. In the algorithm, state transition relation of intentions is formed using a self-organizing map (SOM from the measured data of the operation and environmental variables with the reference intention sequence. The operational intention modes are identified by stochastic computation using a Bayesian particle filter with the trained SOM. This method enables to omit the troublesome process to specify types of information which should be used to build the estimator. Applying the proposed method to the remote operation task, the estimator's behavior was analyzed, the pros and cons of the method were investigated, and ways for the improvement were discussed. As a result, it was confirmed that the estimator can identify the intention modes at 44–94 percent concordance ratios against normal intention modes whose periods can be found by about 70 percent of members of human analysts. On the other hand, it was found that human analysts' discrimination which was used as canonical data for validation differed depending on difference of intention modes. Specifically, an investigation of intentions pattern discriminated by eight analysts showed that the estimator could not identify the same modes that human analysts could not discriminate. And, in the analysis of the multiple different intentions, it was found that the estimator could identify the same type of intention modes to human-discriminated ones as well as 62–73 percent when the first and second dominant intention modes were considered.

  10. A bidirectional brain-machine interface algorithm that approximates arbitrary force-fields.

    Directory of Open Access Journals (Sweden)

    Alessandro Vato

    Full Text Available We examine bidirectional brain-machine interfaces that control external devices in a closed loop by decoding motor cortical activity to command the device and by encoding the state of the device by delivering electrical stimuli to sensory areas. Although it is possible to design this artificial sensory-motor interaction while maintaining two independent channels of communication, here we propose a rule that closes the loop between flows of sensory and motor information in a way that approximates a desired dynamical policy expressed as a field of forces acting upon the controlled external device. We previously developed a first implementation of this approach based on linear decoding of neural activity recorded from the motor cortex into a set of forces (a force field applied to a point mass, and on encoding of position of the point mass into patterns of electrical stimuli delivered to somatosensory areas. However, this previous algorithm had the limitation that it only worked in situations when the position-to-force map to be implemented is invertible. Here we overcome this limitation by developing a new non-linear form of the bidirectional interface that can approximate a virtually unlimited family of continuous fields. The new algorithm bases both the encoding of position information and the decoding of motor cortical activity on an explicit map between spike trains and the state space of the device computed with Multi-Dimensional-Scaling. We present a detailed computational analysis of the performance of the interface and a validation of its robustness by using synthetic neural responses in a simulated sensory-motor loop.

  11. A dynamic programming–enhanced simulated annealing algorithm for solving bi-objective cell formation problem with duplicate machines

    Directory of Open Access Journals (Sweden)

    Mohammad Mohammadi

    2015-04-01

    Full Text Available Cell formation process is one of the first and the most important steps in designing cellular manufacturing systems. It consists of identifying part families according to the similarities in the design, shape, and presses of parts and dedicating machines to each part family based on the operations required by the parts. In this study, a hybrid method based on a combination of simulated annealing algorithm and dynamic programming was developed to solve a bi-objective cell formation problem with duplicate machines. In the proposed hybrid method, each solution was represented as a permutation of parts, which is created by simulated annealing algorithm, and dynamic programming was used to partition this permutation into part families and determine the number of machines in each cell such that the total dissimilarity between the parts and the total machine investment cost are minimized. The performance of the algorithm was evaluated by performing numerical experiments in different sizes. Our computational experiments indicated that the results were very encouraging in terms of computational time and solution quality.

  12. Learning Algorithms for Audio and Video Processing: Independent Component Analysis and Support Vector Machine Based Approaches

    National Research Council Canada - National Science Library

    Qi, Yuan

    2000-01-01

    In this thesis, we propose two new machine learning schemes, a subband-based Independent Component Analysis scheme and a hybrid Independent Component Analysis/Support Vector Machine scheme, and apply...

  13. Cognitive Development Optimization Algorithm Based Support Vector Machines for Determining Diabetes

    Directory of Open Access Journals (Sweden)

    Utku Kose

    2016-03-01

    Full Text Available The definition, diagnosis and classification of Diabetes Mellitus and its complications are very important. First of all, the World Health Organization (WHO and other societies, as well as scientists have done lots of studies regarding this subject. One of the most important research interests of this subject is the computer supported decision systems for diagnosing diabetes. In such systems, Artificial Intelligence techniques are often used for several disease diagnostics to streamline the diagnostic process in daily routine and avoid misdiagnosis. In this study, a diabetes diagnosis system, which is formed via both Support Vector Machines (SVM and Cognitive Development Optimization Algorithm (CoDOA has been proposed. Along the training of SVM, CoDOA was used for determining the sigma parameter of the Gauss (RBF kernel function, and eventually, a classification process was made over the diabetes data set, which is related to Pima Indians. The proposed approach offers an alternative solution to the field of Artificial Intelligence-based diabetes diagnosis, and contributes to the related literature on diagnosis processes.

  14. A Pathological Brain Detection System based on Extreme Learning Machine Optimized by Bat Algorithm.

    Science.gov (United States)

    Lu, Siyuan; Qiu, Xin; Shi, Jianping; Li, Na; Lu, Zhi-Hai; Chen, Peng; Yang, Meng-Meng; Liu, Fang-Yuan; Jia, Wen-Juan; Zhang, Yudong

    2017-01-01

    It is beneficial to classify brain images as healthy or pathological automatically, because 3D brain images can generate so much information which is time consuming and tedious for manual analysis. Among various 3D brain imaging techniques, magnetic resonance (MR) imaging is the most suitable for brain, and it is now widely applied in hospitals, because it is helpful in the four ways of diagnosis, prognosis, pre-surgical, and postsurgical procedures. There are automatic detection methods; however they suffer from low accuracy. Therefore, we proposed a novel approach which employed 2D discrete wavelet transform (DWT), and calculated the entropies of the subbands as features. Then, a bat algorithm optimized extreme learning machine (BA-ELM) was trained to identify pathological brains from healthy controls. A 10x10-fold cross validation was performed to evaluate the out-of-sample performance. The method achieved a sensitivity of 99.04%, a specificity of 93.89%, and an overall accuracy of 98.33% over 132 MR brain images. The experimental results suggest that the proposed approach is accurate and robust in pathological brain detection. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. The Application of Machine Learning Algorithms for Text Mining based on Sentiment Analysis Approach

    Directory of Open Access Journals (Sweden)

    Reza Samizade

    2018-06-01

    Full Text Available Classification of the cyber texts and comments into two categories of positive and negative sentiment among social media users is of high importance in the research are related to text mining. In this research, we applied supervised classification methods to classify Persian texts based on sentiment in cyber space. The result of this research is in a form of a system that can decide whether a comment which is published in cyber space such as social networks is considered positive or negative. The comments that are published in Persian movie and movie review websites from 1392 to 1395 are considered as the data set for this research. A part of these data are considered as training and others are considered as testing data. Prior to implementing the algorithms, pre-processing activities such as tokenizing, removing stop words, and n-germs process were applied on the texts. Naïve Bayes, Neural Networks and support vector machine were used for text classification in this study. Out of sample tests showed that there is no evidence indicating that the accuracy of SVM approach is statistically higher than Naïve Bayes or that the accuracy of Naïve Bayes is not statistically higher than NN approach. However, the researchers can conclude that the accuracy of the classification using SVM approach is statistically higher than the accuracy of NN approach in 5% confidence level.

  16. Identification of Differentially Expressed Genes between Original Breast Cancer and Xenograft Using Machine Learning Algorithms

    Directory of Open Access Journals (Sweden)

    Deling Wang

    2018-03-01

    Full Text Available Breast cancer is one of the most common malignancies in women. Patient-derived tumor xenograft (PDX model is a cutting-edge approach for drug research on breast cancer. However, PDX still exhibits differences from original human tumors, thereby challenging the molecular understanding of tumorigenesis. In particular, gene expression changes after tissues are transplanted from human to mouse model. In this study, we propose a novel computational method by incorporating several machine learning algorithms, including Monte Carlo feature selection (MCFS, random forest (RF, and rough set-based rule learning, to identify genes with significant expression differences between PDX and original human tumors. First, 831 breast tumors, including 657 PDX and 174 human tumors, were collected. Based on MCFS and RF, 32 genes were then identified to be informative for the prediction of PDX and human tumors and can be used to construct a prediction model. The prediction model exhibits a Matthews coefficient correlation value of 0.777. Seven interpretable interactions within the informative gene were detected based on the rough set-based rule learning. Furthermore, the seven interpretable interactions can be well supported by previous experimental studies. Our study not only presents a method for identifying informative genes with differential expression but also provides insights into the mechanism through which gene expression changes after being transplanted from human tumor into mouse model. This work would be helpful for research and drug development for breast cancer.

  17. Identification of Differentially Expressed Genes between Original Breast Cancer and Xenograft Using Machine Learning Algorithms.

    Science.gov (United States)

    Wang, Deling; Li, Jia-Rui; Zhang, Yu-Hang; Chen, Lei; Huang, Tao; Cai, Yu-Dong

    2018-03-12

    Breast cancer is one of the most common malignancies in women. Patient-derived tumor xenograft (PDX) model is a cutting-edge approach for drug research on breast cancer. However, PDX still exhibits differences from original human tumors, thereby challenging the molecular understanding of tumorigenesis. In particular, gene expression changes after tissues are transplanted from human to mouse model. In this study, we propose a novel computational method by incorporating several machine learning algorithms, including Monte Carlo feature selection (MCFS), random forest (RF), and rough set-based rule learning, to identify genes with significant expression differences between PDX and original human tumors. First, 831 breast tumors, including 657 PDX and 174 human tumors, were collected. Based on MCFS and RF, 32 genes were then identified to be informative for the prediction of PDX and human tumors and can be used to construct a prediction model. The prediction model exhibits a Matthews coefficient correlation value of 0.777. Seven interpretable interactions within the informative gene were detected based on the rough set-based rule learning. Furthermore, the seven interpretable interactions can be well supported by previous experimental studies. Our study not only presents a method for identifying informative genes with differential expression but also provides insights into the mechanism through which gene expression changes after being transplanted from human tumor into mouse model. This work would be helpful for research and drug development for breast cancer.

  18. Application of Classification Algorithm of Machine Learning and Buffer Analysis in Torism Regional Planning

    Science.gov (United States)

    Zhang, T. H.; Ji, H. W.; Hu, Y.; Ye, Q.; Lin, Y.

    2018-04-01

    Remote Sensing (RS) and Geography Information System (GIS) technologies are widely used in ecological analysis and regional planning. With the advantages of large scale monitoring, combination of point and area, multiple time-phases and repeated observation, they are suitable for monitoring and analysis of environmental information in a large range. In this study, support vector machine (SVM) classification algorithm is used to monitor the land use and land cover change (LUCC), and then to perform the ecological evaluation for Chaohu lake tourism area quantitatively. The automatic classification and the quantitative spatial-temporal analysis for the Chaohu Lake basin are realized by the analysis of multi-temporal and multispectral satellite images, DEM data and slope information data. Furthermore, the ecological buffer zone analysis is also studied to set up the buffer width for each catchment area surrounding Chaohu Lake. The results of LUCC monitoring from 1992 to 2015 has shown obvious affections by human activities. Since the construction of the Chaohu Lake basin is in the crucial stage of the rapid development of urbanization, the application of RS and GIS technique can effectively provide scientific basis for land use planning, ecological management, environmental protection and tourism resources development in the Chaohu Lake Basin.

  19. Testing of machinability of mould steel 40CrMnMo7 using genetic algorithm

    OpenAIRE

    Stoić, Antun; Cukor, Goran; Kopač, Janez

    2015-01-01

    This paper deals with testing of hard materials machinability by high speed turning process and influence of cutting parameters on machinability rates. Todetermine machinability rates, surface roughness, tool wear and cutting force components were measured. In accordance with expected influence of certain parameter on machinability, experiments were designed and performed todetermine mathematical models of the measured values over full response range. Obtained mathematical models were used fo...

  20. An evaluation of scanpath-comparison and machine-learning classification algorithms used to study the dynamics of analogy making.

    Science.gov (United States)

    French, Robert M; Glady, Yannick; Thibaut, Jean-Pierre

    2017-08-01

    In recent years, eyetracking has begun to be used to study the dynamics of analogy making. Numerous scanpath-comparison algorithms and machine-learning techniques are available that can be applied to the raw eyetracking data. We show how scanpath-comparison algorithms, combined with multidimensional scaling and a classification algorithm, can be used to resolve an outstanding question in analogy making-namely, whether or not children's and adults' strategies in solving analogy problems are different. (They are.) We show which of these scanpath-comparison algorithms is best suited to the kinds of analogy problems that have formed the basis of much analogy-making research over the years. Furthermore, we use machine-learning classification algorithms to examine the item-to-item saccade vectors making up these scanpaths. We show which of these algorithms best predicts, from very early on in a trial, on the basis of the frequency of various item-to-item saccades, whether a child or an adult is doing the problem. This type of analysis can also be used to predict, on the basis of the item-to-item saccade dynamics in the first third of a trial, whether or not a problem will be solved correctly.

  1. Genetic Algorithms for Optimization of Machine-learning Models and their Applications in Bioinformatics

    KAUST Repository

    Magana-Mora, Arturo

    2017-04-29

    Machine-learning (ML) techniques have been widely applied to solve different problems in biology. However, biological data are large and complex, which often result in extremely intricate ML models. Frequently, these models may have a poor performance or may be computationally unfeasible. This study presents a set of novel computational methods and focuses on the application of genetic algorithms (GAs) for the simplification and optimization of ML models and their applications to biological problems. The dissertation addresses the following three challenges. The first is to develop a generalizable classification methodology able to systematically derive competitive models despite the complexity and nature of the data. Although several algorithms for the induction of classification models have been proposed, the algorithms are data dependent. Consequently, we developed OmniGA, a novel and generalizable framework that uses different classification models in a treeXlike decision structure, along with a parallel GA for the optimization of the OmniGA structure. Results show that OmniGA consistently outperformed existing commonly used classification models. The second challenge is the prediction of translation initiation sites (TIS) in plants genomic DNA. We performed a statistical analysis of the genomic DNA and proposed a new set of discriminant features for this problem. We developed a wrapper method based on GAs for selecting an optimal feature subset, which, in conjunction with a classification model, produced the most accurate framework for the recognition of TIS in plants. Finally, results demonstrate that despite the evolutionary distance between different plants, our approach successfully identified conserved genomic elements that may serve as the starting point for the development of a generic model for prediction of TIS in eukaryotic organisms. Finally, the third challenge is the accurate prediction of polyadenylation signals in human genomic DNA. To achieve

  2. MODIS-Based Estimation of Terrestrial Latent Heat Flux over North America Using Three Machine Learning Algorithms

    Directory of Open Access Journals (Sweden)

    Xuanyu Wang

    2017-12-01

    Full Text Available Terrestrial latent heat flux (LE is a key component of the global terrestrial water, energy, and carbon exchanges. Accurate estimation of LE from moderate resolution imaging spectroradiometer (MODIS data remains a major challenge. In this study, we estimated the daily LE for different plant functional types (PFTs across North America using three machine learning algorithms: artificial neural network (ANN; support vector machines (SVM; and, multivariate adaptive regression spline (MARS driven by MODIS and Modern Era Retrospective Analysis for Research and Applications (MERRA meteorology data. These three predictive algorithms, which were trained and validated using observed LE over the period 2000–2007, all proved to be accurate. However, ANN outperformed the other two algorithms for the majority of the tested configurations for most PFTs and was the only method that arrived at 80% precision for LE estimation. We also applied three machine learning algorithms for MODIS data and MERRA meteorology to map the average annual terrestrial LE of North America during 2002–2004 using a spatial resolution of 0.05°, which proved to be useful for estimating the long-term LE over North America.

  3. Online grading method for tissue culture seedlings ofSpathiphyllum floribundum based on machine vision%基于机器视觉的白掌组培苗在线分级方法

    Institute of Scientific and Technical Information of China (English)

    杨意; 初麒; 杨艳丽; 张祥接; 徐祥朋; 辜松

    2016-01-01

    would decreased significantly. In our study, first, we grabbed the image of young plant under the natural state, and studied the relationship of actual parameters ofSpathiphyllum floribundum tissue culture seedlings and the parameters of the image ofSpathiphyllum floribundum tissue culture seedlings. By analyzing that leaf area of tissue culture seedlings image between actual leaf area and projection area of tissue culture seedlings, there was a linear relationship, and the regression coefficientR2 was 0.9344. It was time-consuming to measure diameter on ground by machine vision considering plants diversity, uncertain position and rotation angle. By analyzing, the relationship between projection area and diameter on ground we found that actual diameter on ground had a polynomial function with projection area, and the regression coefficientR2 was 0.9067. We also found that correlation of projection area and actual seedling height of tissue culture was insignificant. Ultimately, we reached the conclusion that the tissue culture seedlings can be graded by projection area and seedling height of the young plant image. The second task of this paper was to use machine vision to realize automatic grading algorithms according to the above conclusions. Considering the influence of shadow, a color image matching algorithm was executed for extracting projection area. Using the color of leaf, stem and root as a template, projection area could be intact segmented from background when darker was equal to 0.4, highlight was equal to 1.5 and hue was equal to 2.0. Based on the functional relationship between leaf area and projection area, leaf area could be calculated directly. The same procedure may be easily adapted to obtain diameter on ground. The ultimate positions of tissue culture seedling is stochastic in the field of camera view, thus the main difficulty for seedling height depended on how the measurement position was accurately determined. In this article, we adopted the method

  4. A Matlab-Based Testbed for Integration, Evaluation and Comparison of Heterogeneous Stereo Vision Matching Algorithms

    Directory of Open Access Journals (Sweden)

    Raul Correal

    2016-11-01

    Full Text Available Stereo matching is a heavily researched area with a prolific published literature and a broad spectrum of heterogeneous algorithms available in diverse programming languages. This paper presents a Matlab-based testbed that aims to centralize and standardize this variety of both current and prospective stereo matching approaches. The proposed testbed aims to facilitate the application of stereo-based methods to real situations. It allows for configuring and executing algorithms, as well as comparing results, in a fast, easy and friendly setting. Algorithms can be combined so that a series of processes can be chained and executed consecutively, using the output of a process as input for the next; some additional filtering and image processing techniques have been included within the testbed for this purpose. A use case is included to illustrate how these processes are sequenced and its effect on the results for real applications. The testbed has been conceived as a collaborative and incremental open-source project, where its code is accessible and modifiable, with the objective of receiving contributions and releasing future versions to include new algorithms and features. It is currently available online for the research community.

  5. From geospatial observations of ocean currents to causal predictors of spatio-economic activity using computer vision and machine learning

    Science.gov (United States)

    Popescu, Florin; Ayache, Stephane; Escalera, Sergio; Baró Solé, Xavier; Capponi, Cecile; Panciatici, Patrick; Guyon, Isabelle

    2016-04-01

    The big data transformation currently revolutionizing science and industry forges novel possibilities in multi-modal analysis scarcely imaginable only a decade ago. One of the important economic and industrial problems that stand to benefit from the recent expansion of data availability and computational prowess is the prediction of electricity demand and renewable energy generation. Both are correlates of human activity: spatiotemporal energy consumption patterns in society are a factor of both demand (weather dependent) and supply, which determine cost - a relation expected to strengthen along with increasing renewable energy dependence. One of the main drivers of European weather patterns is the activity of the Atlantic Ocean and in particular its dominant Northern Hemisphere current: the Gulf Stream. We choose this particular current as a test case in part due to larger amount of relevant data and scientific literature available for refinement of analysis techniques. This data richness is due not only to its economic importance but also to its size being clearly visible in radar and infrared satellite imagery, which makes it easier to detect using Computer Vision (CV). The power of CV techniques makes basic analysis thus developed scalable to other smaller and less known, but still influential, currents, which are not just curves on a map, but complex, evolving, moving branching trees in 3D projected onto a 2D image. We investigate means of extracting, from several image modalities (including recently available Copernicus radar and earlier Infrared satellites), a parameterized representation of the state of the Gulf Stream and its environment that is useful as feature space representation in a machine learning context, in this case with the EC's H2020-sponsored 'See.4C' project, in the context of which data scientists may find novel predictors of spatiotemporal energy flow. Although automated extractors of Gulf Stream position exist, they differ in methodology

  6. Comparison of supervised machine learning algorithms for waterborne pathogen detection using mobile phone fluorescence microscopy

    Science.gov (United States)

    Ceylan Koydemir, Hatice; Feng, Steve; Liang, Kyle; Nadkarni, Rohan; Benien, Parul; Ozcan, Aydogan

    2017-06-01

    Giardia lamblia is a waterborne parasite that affects millions of people every year worldwide, causing a diarrheal illness known as giardiasis. Timely detection of the presence of the cysts of this parasite in drinking water is important to prevent the spread of the disease, especially in resource-limited settings. Here we provide extended experimental testing and evaluation of the performance and repeatability of a field-portable and cost-effective microscopy platform for automated detection and counting of Giardia cysts in water samples, including tap water, non-potable water, and pond water. This compact platform is based on our previous work, and is composed of a smartphone-based fluorescence microscope, a disposable sample processing cassette, and a custom-developed smartphone application. Our mobile phone microscope has a large field of view of 0.8 cm2 and weighs only 180 g, excluding the phone. A custom-developed smartphone application provides a user-friendly graphical interface, guiding the users to capture a fluorescence image of the sample filter membrane and analyze it automatically at our servers using an image processing algorithm and training data, consisting of >30,000 images of cysts and >100,000 images of other fluorescent particles that are captured, including, e.g. dust. The total time that it takes from sample preparation to automated cyst counting is less than an hour for each 10 ml of water sample that is tested. We compared the sensitivity and the specificity of our platform using multiple supervised classification models, including support vector machines and nearest neighbors, and demonstrated that a bootstrap aggregating (i.e. bagging) approach using raw image file format provides the best performance for automated detection of Giardia cysts. We evaluated the performance of this machine learning enabled pathogen detection device with water samples taken from different sources (e.g. tap water, non-potable water, pond water) and achieved a

  7. Comparison of supervised machine learning algorithms for waterborne pathogen detection using mobile phone fluorescence microscopy

    KAUST Repository

    Ceylan Koydemir, Hatice

    2017-06-14

    Giardia lamblia is a waterborne parasite that affects millions of people every year worldwide, causing a diarrheal illness known as giardiasis. Timely detection of the presence of the cysts of this parasite in drinking water is important to prevent the spread of the disease, especially in resource-limited settings. Here we provide extended experimental testing and evaluation of the performance and repeatability of a field-portable and cost-effective microscopy platform for automated detection and counting of Giardia cysts in water samples, including tap water, non-potable water, and pond water. This compact platform is based on our previous work, and is composed of a smartphone-based fluorescence microscope, a disposable sample processing cassette, and a custom-developed smartphone application. Our mobile phone microscope has a large field of view of ~0.8 cm2 and weighs only ~180 g, excluding the phone. A custom-developed smartphone application provides a user-friendly graphical interface, guiding the users to capture a fluorescence image of the sample filter membrane and analyze it automatically at our servers using an image processing algorithm and training data, consisting of >30,000 images of cysts and >100,000 images of other fluorescent particles that are captured, including, e.g. dust. The total time that it takes from sample preparation to automated cyst counting is less than an hour for each 10 ml of water sample that is tested. We compared the sensitivity and the specificity of our platform using multiple supervised classification models, including support vector machines and nearest neighbors, and demonstrated that a bootstrap aggregating (i.e. bagging) approach using raw image file format provides the best performance for automated detection of Giardia cysts. We evaluated the performance of this machine learning enabled pathogen detection device with water samples taken from different sources (e.g. tap water, non-potable water, pond water) and achieved

  8. Comparison of supervised machine learning algorithms for waterborne pathogen detection using mobile phone fluorescence microscopy

    Directory of Open Access Journals (Sweden)

    Ceylan Koydemir Hatice

    2017-06-01

    Full Text Available Giardia lamblia is a waterborne parasite that affects millions of people every year worldwide, causing a diarrheal illness known as giardiasis. Timely detection of the presence of the cysts of this parasite in drinking water is important to prevent the spread of the disease, especially in resource-limited settings. Here we provide extended experimental testing and evaluation of the performance and repeatability of a field-portable and cost-effective microscopy platform for automated detection and counting of Giardia cysts in water samples, including tap water, non-potable water, and pond water. This compact platform is based on our previous work, and is composed of a smartphone-based fluorescence microscope, a disposable sample processing cassette, and a custom-developed smartphone application. Our mobile phone microscope has a large field of view of ~0.8 cm2 and weighs only ~180 g, excluding the phone. A custom-developed smartphone application provides a user-friendly graphical interface, guiding the users to capture a fluorescence image of the sample filter membrane and analyze it automatically at our servers using an image processing algorithm and training data, consisting of >30,000 images of cysts and >100,000 images of other fluorescent particles that are captured, including, e.g. dust. The total time that it takes from sample preparation to automated cyst counting is less than an hour for each 10 ml of water sample that is tested. We compared the sensitivity and the specificity of our platform using multiple supervised classification models, including support vector machines and nearest neighbors, and demonstrated that a bootstrap aggregating (i.e. bagging approach using raw image file format provides the best performance for automated detection of Giardia cysts. We evaluated the performance of this machine learning enabled pathogen detection device with water samples taken from different sources (e.g. tap water, non-potable water, pond

  9. Comparison of supervised machine learning algorithms for waterborne pathogen detection using mobile phone fluorescence microscopy

    KAUST Repository

    Ceylan Koydemir, Hatice; Feng, Steve; Liang, Kyle; Nadkarni, Rohan; Benien, Parul; Ozcan, Aydogan

    2017-01-01

    Giardia lamblia is a waterborne parasite that affects millions of people every year worldwide, causing a diarrheal illness known as giardiasis. Timely detection of the presence of the cysts of this parasite in drinking water is important to prevent the spread of the disease, especially in resource-limited settings. Here we provide extended experimental testing and evaluation of the performance and repeatability of a field-portable and cost-effective microscopy platform for automated detection and counting of Giardia cysts in water samples, including tap water, non-potable water, and pond water. This compact platform is based on our previous work, and is composed of a smartphone-based fluorescence microscope, a disposable sample processing cassette, and a custom-developed smartphone application. Our mobile phone microscope has a large field of view of ~0.8 cm2 and weighs only ~180 g, excluding the phone. A custom-developed smartphone application provides a user-friendly graphical interface, guiding the users to capture a fluorescence image of the sample filter membrane and analyze it automatically at our servers using an image processing algorithm and training data, consisting of >30,000 images of cysts and >100,000 images of other fluorescent particles that are captured, including, e.g. dust. The total time that it takes from sample preparation to automated cyst counting is less than an hour for each 10 ml of water sample that is tested. We compared the sensitivity and the specificity of our platform using multiple supervised classification models, including support vector machines and nearest neighbors, and demonstrated that a bootstrap aggregating (i.e. bagging) approach using raw image file format provides the best performance for automated detection of Giardia cysts. We evaluated the performance of this machine learning enabled pathogen detection device with water samples taken from different sources (e.g. tap water, non-potable water, pond water) and achieved

  10. Electric Load Forecasting Based on a Least Squares Support Vector Machine with Fuzzy Time Series and Global Harmony Search Algorithm

    Directory of Open Access Journals (Sweden)

    Yan Hong Chen

    2016-01-01

    Full Text Available This paper proposes a new electric load forecasting model by hybridizing the fuzzy time series (FTS and global harmony search algorithm (GHSA with least squares support vector machines (LSSVM, namely GHSA-FTS-LSSVM model. Firstly, the fuzzy c-means clustering (FCS algorithm is used to calculate the clustering center of each cluster. Secondly, the LSSVM is applied to model the resultant series, which is optimized by GHSA. Finally, a real-world example is adopted to test the performance of the proposed model. In this investigation, the proposed model is verified using experimental datasets from the Guangdong Province Industrial Development Database, and results are compared against autoregressive integrated moving average (ARIMA model and other algorithms hybridized with LSSVM including genetic algorithm (GA, particle swarm optimization (PSO, harmony search, and so on. The forecasting results indicate that the proposed GHSA-FTS-LSSVM model effectively generates more accurate predictive results.

  11. Rule Extraction Based on Extreme Learning Machine and an Improved Ant-Miner Algorithm for Transient Stability Assessment.

    Science.gov (United States)

    Li, Yang; Li, Guoqing; Wang, Zhenhao

    2015-01-01

    In order to overcome the problems of poor understandability of the pattern recognition-based transient stability assessment (PRTSA) methods, a new rule extraction method based on extreme learning machine (ELM) and an improved Ant-miner (IAM) algorithm is presented in this paper. First, the basic principles of ELM and Ant-miner algorithm are respectively introduced. Then, based on the selected optimal feature subset, an example sample set is generated by the trained ELM-based PRTSA model. And finally, a set of classification rules are obtained by IAM algorithm to replace the original ELM network. The novelty of this proposal is that transient stability rules are extracted from an example sample set generated by the trained ELM-based transient stability assessment model by using IAM algorithm. The effectiveness of the proposed method is shown by the application results on the New England 39-bus power system and a practical power system--the southern power system of Hebei province.

  12. A High-Speed Target-Free Vision-Based Sensor for Bus Rapid Transit Viaduct Vibration Measurements Using CMT and ORB Algorithms

    Directory of Open Access Journals (Sweden)

    Qijun Hu

    2017-06-01

    Full Text Available Bus Rapid Transit (BRT has become an increasing source of concern for public transportation of modern cities. Traditional contact sensing techniques during the process of health monitoring of BRT viaducts cannot overcome the deficiency that the normal free-flow of traffic would be blocked. Advances in computer vision technology provide a new line of thought for solving this problem. In this study, a high-speed target-free vision-based sensor is proposed to measure the vibration of structures without interrupting traffic. An improved keypoints matching algorithm based on consensus-based matching and tracking (CMT object tracking algorithm is adopted and further developed together with oriented brief (ORB keypoints detection algorithm for practicable and effective tracking of objects. Moreover, by synthesizing the existing scaling factor calculation methods, more rational approaches to reducing errors are implemented. The performance of the vision-based sensor is evaluated through a series of laboratory tests. Experimental tests with different target types, frequencies, amplitudes and motion patterns are conducted. The performance of the method is satisfactory, which indicates that the vision sensor can extract accurate structure vibration signals by tracking either artificial or natural targets. Field tests further demonstrate that the vision sensor is both practicable and reliable.

  13. Use of a machine learning algorithm to classify expertise: analysis of hand motion patterns during a simulated surgical task.

    Science.gov (United States)

    Watson, Robert A

    2014-08-01

    To test the hypothesis that machine learning algorithms increase the predictive power to classify surgical expertise using surgeons' hand motion patterns. In 2012 at the University of North Carolina at Chapel Hill, 14 surgical attendings and 10 first- and second-year surgical residents each performed two bench model venous anastomoses. During the simulated tasks, the participants wore an inertial measurement unit on the dorsum of their dominant (right) hand to capture their hand motion patterns. The pattern from each bench model task performed was preprocessed into a symbolic time series and labeled as expert (attending) or novice (resident). The labeled hand motion patterns were processed and used to train a Support Vector Machine (SVM) classification algorithm. The trained algorithm was then tested for discriminative/predictive power against unlabeled (blinded) hand motion patterns from tasks not used in the training. The Lempel-Ziv (LZ) complexity metric was also measured from each hand motion pattern, with an optimal threshold calculated to separately classify the patterns. The LZ metric classified unlabeled (blinded) hand motion patterns into expert and novice groups with an accuracy of 70% (sensitivity 64%, specificity 80%). The SVM algorithm had an accuracy of 83% (sensitivity 86%, specificity 80%). The results confirmed the hypothesis. The SVM algorithm increased the predictive power to classify blinded surgical hand motion patterns into expert versus novice groups. With further development, the system used in this study could become a viable tool for low-cost, objective assessment of procedural proficiency in a competency-based curriculum.

  14. A model for Intelligent Random Access Memory architecture (IRAM) cellular automata algorithms on the Associative String Processing machine (ASTRA)

    CERN Document Server

    Rohrbach, F; Vesztergombi, G

    1997-01-01

    In the near future, the computer performance will be completely determined by how long it takes to access memory. There are bottle-necks in memory latency and memory-to processor interface bandwidth. The IRAM initiative could be the answer by putting Processor-In-Memory (PIM). Starting from the massively parallel processing concept, one reached a similar conclusion. The MPPC (Massively Parallel Processing Collaboration) project and the 8K processor ASTRA machine (Associative String Test bench for Research \\& Applications) developed at CERN \\cite{kuala} can be regarded as a forerunner of the IRAM concept. The computing power of the ASTRA machine, regarded as an IRAM with 64 one-bit processors on a 64$\\times$64 bit-matrix memory chip machine, has been demonstrated by running statistical physics algorithms: one-dimensional stochastic cellular automata, as a simple model for dynamical phase transitions. As a relevant result for physics, the damage spreading of this model has been investigated.

  15. Algorithm & SoC design for automotive vision systems for smart safe driving system

    CERN Document Server

    Shin, Hyunchul

    2014-01-01

    An emerging trend in the automobile industry is its convergence with information technology (IT). Indeed, it has been estimated that almost 90% of new automobile technologies involve IT in some form. Smart driving technologies that improve safety as well as green fuel technologies are quite representative of the convergence between IT and automobiles. The smart driving technologies include three key elements: sensing of driving environments, detection of objects and potential hazards, and the generation of driving control signals including warning signals. Although radar-based systems are primarily used for sensing the driving environments, the camera has gained importance in advanced driver assistance systems(ADAS). This book covers system-on-a-chip (SoC) designs—including both algorithms and hardware—related with image sensing and object detection by using the camera for smart driving systems. It introduces a variety of algorithms such as lens correction, super resolution, image enhancement, and object ...

  16. A historical perspective of algorithmic lateral inhibition and accumulative computation in computer vision

    OpenAIRE

    Delgado García, Ana E.; Carmona, Enrique; Fernández Caballero, Antonio; López Bonal, María Teresa

    2011-01-01

    Certainly, one of the prominent ideas of Professor José Mira was that it is absolutely mandatory to specify the mechanisms and/or processes underlying each task and inference mentioned in an architecture in order to make operational that architecture. The conjecture of the last fifteen years of joint research has been that any bottom-up organization may be made operational using two biologically inspired methods called ?algorithmic lateral inhibition?, a generalization of lateral inhibition a...

  17. A Robust Vision-based Runway Detection and Tracking Algorithm for Automatic UAV Landing

    KAUST Repository

    Abu Jbara, Khaled F.

    2015-05-01

    This work presents a novel real-time algorithm for runway detection and tracking applied to the automatic takeoff and landing of Unmanned Aerial Vehicles (UAVs). The algorithm is based on a combination of segmentation based region competition and the minimization of a specific energy function to detect and identify the runway edges from streaming video data. The resulting video-based runway position estimates are updated using a Kalman Filter, which can integrate other sensory information such as position and attitude angle estimates to allow a more robust tracking of the runway under turbulence. We illustrate the performance of the proposed lane detection and tracking scheme on various experimental UAV flights conducted by the Saudi Aerospace Research Center. Results show an accurate tracking of the runway edges during the landing phase under various lighting conditions. Also, it suggests that such positional estimates would greatly improve the positional accuracy of the UAV during takeoff and landing phases. The robustness of the proposed algorithm is further validated using Hardware in the Loop simulations with diverse takeoff and landing videos generated using a commercial flight simulator.

  18. Automated beam placement for breast radiotherapy using a support vector machine based algorithm

    International Nuclear Information System (INIS)

    Zhao Xuan; Kong, Dewen; Jozsef, Gabor; Chang, Jenghwa; Wong, Edward K.; Formenti, Silvia C.; Wang Yao

    2012-01-01

    Purpose: To develop an automated beam placement technique for whole breast radiotherapy using tangential beams. We seek to find optimal parameters for tangential beams to cover the whole ipsilateral breast (WB) and minimize the dose to the organs at risk (OARs). Methods: A support vector machine (SVM) based method is proposed to determine the optimal posterior plane of the tangential beams. Relative significances of including/avoiding the volumes of interests are incorporated into the cost function of the SVM. After finding the optimal 3-D plane that separates the whole breast (WB) and the included clinical target volumes (CTVs) from the OARs, the gantry angle, collimator angle, and posterior jaw size of the tangential beams are derived from the separating plane equation. Dosimetric measures of the treatment plans determined by the automated method are compared with those obtained by applying manual beam placement by the physicians. The method can be further extended to use multileaf collimator (MLC) blocking by optimizing posterior MLC positions. Results: The plans for 36 patients (23 prone- and 13 supine-treated) with left breast cancer were analyzed. Our algorithm reduced the volume of the heart that receives >500 cGy dose (V5) from 2.7 to 1.7 cm 3 (p = 0.058) on average and the volume of the ipsilateral lung that receives >1000 cGy dose (V10) from 55.2 to 40.7 cm 3 (p = 0.0013). The dose coverage as measured by volume receiving >95% of the prescription dose (V95%) of the WB without a 5 mm superficial layer decreases by only 0.74% (p = 0.0002) and the V95% for the tumor bed with 1.5 cm margin remains unchanged. Conclusions: This study has demonstrated the feasibility of using a SVM-based algorithm to determine optimal beam placement without a physician's intervention. The proposed method reduced the dose to OARs, especially for supine treated patients, without any relevant degradation of dose homogeneity and coverage in general.

  19. Comparison of machine-learning algorithms to build a predictive model for detecting undiagnosed diabetes - ELSA-Brasil: accuracy study.

    Science.gov (United States)

    Olivera, André Rodrigues; Roesler, Valter; Iochpe, Cirano; Schmidt, Maria Inês; Vigo, Álvaro; Barreto, Sandhi Maria; Duncan, Bruce Bartholow

    2017-01-01

    Type 2 diabetes is a chronic disease associated with a wide range of serious health complications that have a major impact on overall health. The aims here were to develop and validate predictive models for detecting undiagnosed diabetes using data from the Longitudinal Study of Adult Health (ELSA-Brasil) and to compare the performance of different machine-learning algorithms in this task. Comparison of machine-learning algorithms to develop predictive models using data from ELSA-Brasil. After selecting a subset of 27 candidate variables from the literature, models were built and validated in four sequential steps: (i) parameter tuning with tenfold cross-validation, repeated three times; (ii) automatic variable selection using forward selection, a wrapper strategy with four different machine-learning algorithms and tenfold cross-validation (repeated three times), to evaluate each subset of variables; (iii) error estimation of model parameters with tenfold cross-validation, repeated ten times; and (iv) generalization testing on an independent dataset. The models were created with the following machine-learning algorithms: logistic regression, artificial neural network, naïve Bayes, K-nearest neighbor and random forest. The best models were created using artificial neural networks and logistic regression. -These achieved mean areas under the curve of, respectively, 75.24% and 74.98% in the error estimation step and 74.17% and 74.41% in the generalization testing step. Most of the predictive models produced similar results, and demonstrated the feasibility of identifying individuals with highest probability of having undiagnosed diabetes, through easily-obtained clinical data.

  20. Phytoplankton global mapping from space with a support vector machine algorithm

    Science.gov (United States)

    de Boissieu, Florian; Menkes, Christophe; Dupouy, Cécile; Rodier, Martin; Bonnet, Sophie; Mangeas, Morgan; Frouin, Robert J.

    2014-11-01

    In recent years great progress has been made in global mapping of phytoplankton from space. Two main trends have emerged, the recognition of phytoplankton functional types (PFT) based on reflectance normalized to chlorophyll-a concentration, and the recognition of phytoplankton size class (PSC) based on the relationship between cell size and chlorophyll-a concentration. However, PFTs and PSCs are not decorrelated, and one approach can complement the other in a recognition task. In this paper, we explore the recognition of several dominant PFTs by combining reflectance anomalies, chlorophyll-a concentration and other environmental parameters, such as sea surface temperature and wind speed. Remote sensing pixels are labeled thanks to coincident in-situ pigment data from GeP&CO, NOMAD and MAREDAT datasets, covering various oceanographic environments. The recognition is made with a supervised Support Vector Machine classifier trained on the labeled pixels. This algorithm enables a non-linear separation of the classes in the input space and is especially adapted for small training datasets as available here. Moreover, it provides a class probability estimate, allowing one to enhance the robustness of the classification results through the choice of a minimum probability threshold. A greedy feature selection associated to a 10-fold cross-validation procedure is applied to select the most discriminative input features and evaluate the classification performance. The best classifiers are finally applied on daily remote sensing datasets (SeaWIFS, MODISA) and the resulting dominant PFT maps are compared with other studies. Several conclusions are drawn: (1) the feature selection highlights the weight of temperature, chlorophyll-a and wind speed variables in phytoplankton recognition; (2) the classifiers show good results and dominant PFT maps in agreement with phytoplankton distribution knowledge; (3) classification on MODISA data seems to perform better than on SeaWIFS data

  1. Evaluation of Empirical and Machine Learning Algorithms for Estimation of Coastal Water Quality Parameters

    Directory of Open Access Journals (Sweden)

    Majid Nazeer

    2017-11-01

    Full Text Available Coastal waters are one of the most vulnerable resources that require effective monitoring programs. One of the key factors for effective coastal monitoring is the use of remote sensing technologies that significantly capture the spatiotemporal variability of coastal waters. Optical properties of coastal waters are strongly linked to components, such as colored dissolved organic matter (CDOM, chlorophyll-a (Chl-a, and suspended solids (SS concentrations, which are essential for the survival of a coastal ecosystem and usually independent of each other. Thus, developing effective remote sensing models to estimate these important water components based on optical properties of coastal waters is mandatory for a successful coastal monitoring program. This study attempted to evaluate the performance of empirical predictive models (EPM and neural networks (NN-based algorithms to estimate Chl-a and SS concentrations, in the coastal area of Hong Kong. Remotely-sensed data over a 13-year period was used to develop regional and local models to estimate Chl-a and SS over the entire Hong Kong waters and for each water class within the study area, respectively. The accuracy of regional models derived from EPM and NN in estimating Chl-a and SS was 83%, 93%, 78%, and 97%, respectively, whereas the accuracy of local models in estimating Chl-a and SS ranged from 60–94% and 81–94%, respectively. Both the regional and local NN models exhibited a higher performance than those models derived from empirical analysis. Thus, this study suggests using machine learning methods (i.e., NN for the more accurate and efficient routine monitoring of coastal water quality parameters (i.e., Chl-a and SS concentrations over the complex coastal area of Hong Kong and other similar coastal environments.

  2. Automated analysis of retinal imaging using machine learning techniques for computer vision [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Jeffrey De Fauw

    2017-06-01

    Full Text Available There are almost two million people in the United Kingdom living with sight loss, including around 360,000 people who are registered as blind or partially sighted. Sight threatening diseases, such as diabetic retinopathy and age related macular degeneration have contributed to the 40% increase in outpatient attendances in the last decade but are amenable to early detection and monitoring. With early and appropriate intervention, blindness may be prevented in many cases. Ophthalmic imaging provides a way to diagnose and objectively assess the progression of a number of pathologies including neovascular (“wet” age-related macular degeneration (wet AMD and diabetic retinopathy. Two methods of imaging are commonly used: digital photographs of the fundus (the ‘back’ of the eye and Optical Coherence Tomography (OCT, a modality that uses light waves in a similar way to how ultrasound uses sound waves. Changes in population demographics and expectations and the changing pattern of chronic diseases creates a rising demand for such imaging. Meanwhile, interrogation of such images is time consuming, costly, and prone to human error. The application of novel analysis methods may provide a solution to these challenges. This research will focus on applying novel machine learning algorithms to automatic analysis of both digital fundus photographs and OCT in Moorfields Eye Hospital NHS Foundation Trust patients. Through analysis of the images used in ophthalmology, along with relevant clinical and demographic information, DeepMind Health will investigate the feasibility of automated grading of digital fundus photographs and OCT and provide novel quantitative measures for specific disease features and for monitoring the therapeutic success.

  3. Automated analysis of retinal imaging using machine learning techniques for computer vision [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Jeffrey De Fauw

    2016-07-01

    Full Text Available There are almost two million people in the United Kingdom living with sight loss, including around 360,000 people who are registered as blind or partially sighted. Sight threatening diseases, such as diabetic retinopathy and age related macular degeneration have contributed to the 40% increase in outpatient attendances in the last decade but are amenable to early detection and monitoring. With early and appropriate intervention, blindness may be prevented in many cases.   Ophthalmic imaging provides a way to diagnose and objectively assess the progression of a number of pathologies including neovascular (“wet” age-related macular degeneration (wet AMD and diabetic retinopathy. Two methods of imaging are commonly used: digital photographs of the fundus (the ‘back’ of the eye and Optical Coherence Tomography (OCT, a modality that uses light waves in a similar way to how ultrasound uses sound waves. Changes in population demographics and expectations and the changing pattern of chronic diseases creates a rising demand for such imaging. Meanwhile, interrogation of such images is time consuming, costly, and prone to human error. The application of novel analysis methods may provide a solution to these challenges.   This research will focus on applying novel machine learning algorithms to automatic analysis of both digital fundus photographs and OCT in Moorfields Eye Hospital NHS Foundation Trust patients.   Through analysis of the images used in ophthalmology, along with relevant clinical and demographic information, Google DeepMind Health will investigate the feasibility of automated grading of digital fundus photographs and OCT and provide novel quantitative measures for specific disease features and for monitoring the therapeutic success.

  4. SOLAR FLARE PREDICTION USING SDO/HMI VECTOR MAGNETIC FIELD DATA WITH A MACHINE-LEARNING ALGORITHM

    International Nuclear Information System (INIS)

    Bobra, M. G.; Couvidat, S.

    2015-01-01

    We attempt to forecast M- and X-class solar flares using a machine-learning algorithm, called support vector machine (SVM), and four years of data from the Solar Dynamics Observatory's Helioseismic and Magnetic Imager, the first instrument to continuously map the full-disk photospheric vector magnetic field from space. Most flare forecasting efforts described in the literature use either line-of-sight magnetograms or a relatively small number of ground-based vector magnetograms. This is the first time a large data set of vector magnetograms has been used to forecast solar flares. We build a catalog of flaring and non-flaring active regions sampled from a database of 2071 active regions, comprised of 1.5 million active region patches of vector magnetic field data, and characterize each active region by 25 parameters. We then train and test the machine-learning algorithm and we estimate its performances using forecast verification metrics with an emphasis on the true skill statistic (TSS). We obtain relatively high TSS scores and overall predictive abilities. We surmise that this is partly due to fine-tuning the SVM for this purpose and also to an advantageous set of features that can only be calculated from vector magnetic field data. We also apply a feature selection algorithm to determine which of our 25 features are useful for discriminating between flaring and non-flaring active regions and conclude that only a handful are needed for good predictive abilities

  5. A vision-based fall detection algorithm of human in indoor environment

    Science.gov (United States)

    Liu, Hao; Guo, Yongcai

    2017-02-01

    Elderly care becomes more and more prominent in China as the population is aging fast and the number of aging population is large. Falls, as one of the biggest challenges in elderly guardianship system, have a serious impact on both physical health and mental health of the aged. Based on feature descriptors, such as aspect ratio of human silhouette, velocity of mass center, moving distance of head and angle of the ultimate posture, a novel vision-based fall detection method was proposed in this paper. A fast median method of background modeling with three frames was also suggested. Compared with the conventional bounding box and ellipse method, the novel fall detection technique is not only applicable for recognizing the fall behaviors end of lying down but also suitable for detecting the fall behaviors end of kneeling down and sitting down. In addition, numerous experiment results showed that the method had a good performance in recognition accuracy on the premise of not adding the cost of time.

  6. An automatic colour-based computer vision algorithm for tracking the position of piglets

    Energy Technology Data Exchange (ETDEWEB)

    Navarro-Jover, J. M.; Alcaniz-Raya, M.; Gomez, V.; Balasch, S.; Moreno, J. R.; Grau-Colomer, V.; Torres, A.

    2009-07-01

    Artificial vision is a powerful observation tool for research in the field of livestock production. So, based on the search and recognition of colour spots in images, a digital image processing system which permits the detection of the position of piglets in a farrowing pen, was developed. To this end, 24,000 images were captured over five takes (days), with a five-second interval between every other image. The nine piglets in a litter were marked on their backs and sides with different coloured spray paints each one, placed at a considerable distance on the RGB space. The programme requires the user to introduce the colour patterns to be found, and the output is an ASCII file with the positions (column X, lineY) for each of these marks within the image analysed. This information may be extremely useful for further applications in the study of animal behaviour and welfare parameters (huddling, activity, suckling, etc.). The software programme initially segments the image in the RGB colour space to separate the colour marks from the rest of the image, and then recognises the colour patterns, using another colour space [B/(R+G+B), (G-R), (B-G)] more suitable for this purpose. This additional colour space was obtained testing different colour combinations derived from R, G and B. The statistical evaluation of the programmes performance revealed an overall 72.5% in piglet detection, 89.1% of this total being correctly detected. (Author) 33 refs.

  7. Robot Vision Library

    Science.gov (United States)

    Howard, Andrew B.; Ansar, Adnan I.; Litwin, Todd E.; Goldberg, Steven B.

    2009-01-01

    The JPL Robot Vision Library (JPLV) provides real-time robot vision algorithms for developers who are not vision specialists. The package includes algorithms for stereo ranging, visual odometry and unsurveyed camera calibration, and has unique support for very wideangle lenses

  8. A Comparison of Supervised Machine Learning Algorithms and Feature Vectors for MS Lesion Segmentation Using Multimodal Structural MRI

    Science.gov (United States)

    Sweeney, Elizabeth M.; Vogelstein, Joshua T.; Cuzzocreo, Jennifer L.; Calabresi, Peter A.; Reich, Daniel S.; Crainiceanu, Ciprian M.; Shinohara, Russell T.

    2014-01-01

    Machine learning is a popular method for mining and analyzing large collections of medical data. We focus on a particular problem from medical research, supervised multiple sclerosis (MS) lesion segmentation in structural magnetic resonance imaging (MRI). We examine the extent to which the choice of machine learning or classification algorithm and feature extraction function impacts the performance of lesion segmentation methods. As quantitative measures derived from structural MRI are important clinical tools for research into the pathophysiology and natural history of MS, the development of automated lesion segmentation methods is an active research field. Yet, little is known about what drives performance of these methods. We evaluate the performance of automated MS lesion segmentation methods, which consist of a supervised classification algorithm composed with a feature extraction function. These feature extraction functions act on the observed T1-weighted (T1-w), T2-weighted (T2-w) and fluid-attenuated inversion recovery (FLAIR) MRI voxel intensities. Each MRI study has a manual lesion segmentation that we use to train and validate the supervised classification algorithms. Our main finding is that the differences in predictive performance are due more to differences in the feature vectors, rather than the machine learning or classification algorithms. Features that incorporate information from neighboring voxels in the brain were found to increase performance substantially. For lesion segmentation, we conclude that it is better to use simple, interpretable, and fast algorithms, such as logistic regression, linear discriminant analysis, and quadratic discriminant analysis, and to develop the features to improve performance. PMID:24781953

  9. Prediction of breast cancer risk using a machine learning approach embedded with a locality preserving projection algorithm

    Science.gov (United States)

    Heidari, Morteza; Zargari Khuzani, Abolfazl; Hollingsworth, Alan B.; Danala, Gopichandh; Mirniaharikandehei, Seyedehnafiseh; Qiu, Yuchen; Liu, Hong; Zheng, Bin

    2018-02-01

    In order to automatically identify a set of effective mammographic image features and build an optimal breast cancer risk stratification model, this study aims to investigate advantages of applying a machine learning approach embedded with a locally preserving projection (LPP) based feature combination and regeneration algorithm to predict short-term breast cancer risk. A dataset involving negative mammograms acquired from 500 women was assembled. This dataset was divided into two age-matched classes of 250 high risk cases in which cancer was detected in the next subsequent mammography screening and 250 low risk cases, which remained negative. First, a computer-aided image processing scheme was applied to segment fibro-glandular tissue depicted on mammograms and initially compute 44 features related to the bilateral asymmetry of mammographic tissue density distribution between left and right breasts. Next, a multi-feature fusion based machine learning classifier was built to predict the risk of cancer detection in the next mammography screening. A leave-one-case-out (LOCO) cross-validation method was applied to train and test the machine learning classifier embedded with a LLP algorithm, which generated a new operational vector with 4 features using a maximal variance approach in each LOCO process. Results showed a 9.7% increase in risk prediction accuracy when using this LPP-embedded machine learning approach. An increased trend of adjusted odds ratios was also detected in which odds ratios increased from 1.0 to 11.2. This study demonstrated that applying the LPP algorithm effectively reduced feature dimensionality, and yielded higher and potentially more robust performance in predicting short-term breast cancer risk.

  10. A Machine-Learning Algorithm Toward Color Analysis for Chronic Liver Disease Classification, Employing Ultrasound Shear Wave Elastography.

    Science.gov (United States)

    Gatos, Ilias; Tsantis, Stavros; Spiliopoulos, Stavros; Karnabatidis, Dimitris; Theotokas, Ioannis; Zoumpoulis, Pavlos; Loupas, Thanasis; Hazle, John D; Kagadis, George C

    2017-09-01

    The purpose of the present study was to employ a computer-aided diagnosis system that classifies chronic liver disease (CLD) using ultrasound shear wave elastography (SWE) imaging, with a stiffness value-clustering and machine-learning algorithm. A clinical data set of 126 patients (56 healthy controls, 70 with CLD) was analyzed. First, an RGB-to-stiffness inverse mapping technique was employed. A five-cluster segmentation was then performed associating corresponding different-color regions with certain stiffness value ranges acquired from the SWE manufacturer-provided color bar. Subsequently, 35 features (7 for each cluster), indicative of physical characteristics existing within the SWE image, were extracted. A stepwise regression analysis toward feature reduction was used to derive a reduced feature subset that was fed into the support vector machine classification algorithm to classify CLD from healthy cases. The highest accuracy in classification of healthy to CLD subject discrimination from the support vector machine model was 87.3% with sensitivity and specificity values of 93.5% and 81.2%, respectively. Receiver operating characteristic curve analysis gave an area under the curve value of 0.87 (confidence interval: 0.77-0.92). A machine-learning algorithm that quantifies color information in terms of stiffness values from SWE images and discriminates CLD from healthy cases is introduced. New objective parameters and criteria for CLD diagnosis employing SWE images provided by the present study can be considered an important step toward color-based interpretation, and could assist radiologists' diagnostic performance on a daily basis after being installed in a PC and employed retrospectively, immediately after the examination. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  11. Supervised Machine Learning Algorithms Can Classify Open-Text Feedback of Doctor Performance With Human-Level Accuracy

    Science.gov (United States)

    2017-01-01

    Background Machine learning techniques may be an effective and efficient way to classify open-text reports on doctor’s activity for the purposes of quality assurance, safety, and continuing professional development. Objective The objective of the study was to evaluate the accuracy of machine learning algorithms trained to classify open-text reports of doctor performance and to assess the potential for classifications to identify significant differences in doctors’ professional performance in the United Kingdom. Methods We used 1636 open-text comments (34,283 words) relating to the performance of 548 doctors collected from a survey of clinicians’ colleagues using the General Medical Council Colleague Questionnaire (GMC-CQ). We coded 77.75% (1272/1636) of the comments into 5 global themes (innovation, interpersonal skills, popularity, professionalism, and respect) using a qualitative framework. We trained 8 machine learning algorithms to classify comments and assessed their performance using several training samples. We evaluated doctor performance using the GMC-CQ and compared scores between doctors with different classifications using t tests. Results Individual algorithm performance was high (range F score=.68 to .83). Interrater agreement between the algorithms and the human coder was highest for codes relating to “popular” (recall=.97), “innovator” (recall=.98), and “respected” (recall=.87) codes and was lower for the “interpersonal” (recall=.80) and “professional” (recall=.82) codes. A 10-fold cross-validation demonstrated similar performance in each analysis. When combined together into an ensemble of multiple algorithms, mean human-computer interrater agreement was .88. Comments that were classified as “respected,” “professional,” and “interpersonal” related to higher doctor scores on the GMC-CQ compared with comments that were not classified (P.05). Conclusions Machine learning algorithms can classify open-text feedback

  12. Supervised Machine Learning Algorithms Can Classify Open-Text Feedback of Doctor Performance With Human-Level Accuracy.

    Science.gov (United States)

    Gibbons, Chris; Richards, Suzanne; Valderas, Jose Maria; Campbell, John

    2017-03-15

    Machine learning techniques may be an effective and efficient way to classify open-text reports on doctor's activity for the purposes of quality assurance, safety, and continuing professional development. The objective of the study was to evaluate the accuracy of machine learning algorithms trained to classify open-text reports of doctor performance and to assess the potential for classifications to identify significant differences in doctors' professional performance in the United Kingdom. We used 1636 open-text comments (34,283 words) relating to the performance of 548 doctors collected from a survey of clinicians' colleagues using the General Medical Council Colleague Questionnaire (GMC-CQ). We coded 77.75% (1272/1636) of the comments into 5 global themes (innovation, interpersonal skills, popularity, professionalism, and respect) using a qualitative framework. We trained 8 machine learning algorithms to classify comments and assessed their performance using several training samples. We evaluated doctor performance using the GMC-CQ and compared scores between doctors with different classifications using t tests. Individual algorithm performance was high (range F score=.68 to .83). Interrater agreement between the algorithms and the human coder was highest for codes relating to "popular" (recall=.97), "innovator" (recall=.98), and "respected" (recall=.87) codes and was lower for the "interpersonal" (recall=.80) and "professional" (recall=.82) codes. A 10-fold cross-validation demonstrated similar performance in each analysis. When combined together into an ensemble of multiple algorithms, mean human-computer interrater agreement was .88. Comments that were classified as "respected," "professional," and "interpersonal" related to higher doctor scores on the GMC-CQ compared with comments that were not classified (P.05). Machine learning algorithms can classify open-text feedback of doctor performance into multiple themes derived by human raters with high

  13. Gradual Reduction in Sodium Content in Cooked Ham, with Corresponding Change in Sensorial Properties Measured by Sensory Evaluation and a Multimodal Machine Vision System.

    Directory of Open Access Journals (Sweden)

    Kirsti Greiff

    Full Text Available The European diet today generally contains too much sodium (Na(+. A partial substitution of NaCl by KCl has shown to be a promising method for reducing sodium content. The aim of this work was to investigate the sensorial changes of cooked ham with reduced sodium content. Traditional sensorial evaluation and objective multimodal machine vision were used. The salt content in the hams was decreased from 3.4% to 1.4%, and 25% of the Na(+ was replaced by K(+. The salt reduction had highest influence on the sensory attributes salty taste, after taste, tenderness, hardness and color hue. The multimodal machine vision system showed changes in lightness, as a function of reduced salt content. Compared to the reference ham (3.4% salt, a replacement of Na(+-ions by K(+-ions of 25% gave no significant changes in WHC, moisture, pH, expressed moisture, the sensory profile attributes or the surface lightness and shininess. A further reduction of salt down to 1.7-1.4% salt, led to a decrease in WHC and an increase in expressible moisture.

  14. Gradual Reduction in Sodium Content in Cooked Ham, with Corresponding Change in Sensorial Properties Measured by Sensory Evaluation and a Multimodal Machine Vision System.

    Science.gov (United States)

    Greiff, Kirsti; Mathiassen, John Reidar; Misimi, Ekrem; Hersleth, Margrethe; Aursand, Ida G

    2015-01-01

    The European diet today generally contains too much sodium (Na(+)). A partial substitution of NaCl by KCl has shown to be a promising method for reducing sodium content. The aim of this work was to investigate the sensorial changes of cooked ham with reduced sodium content. Traditional sensorial evaluation and objective multimodal machine vision were used. The salt content in the hams was decreased from 3.4% to 1.4%, and 25% of the Na(+) was replaced by K(+). The salt reduction had highest influence on the sensory attributes salty taste, after taste, tenderness, hardness and color hue. The multimodal machine vision system showed changes in lightness, as a function of reduced salt content. Compared to the reference ham (3.4% salt), a replacement of Na(+)-ions by K(+)-ions of 25% gave no significant changes in WHC, moisture, pH, expressed moisture, the sensory profile attributes or the surface lightness and shininess. A further reduction of salt down to 1.7-1.4% salt, led to a decrease in WHC and an increase in expressible moisture.

  15. Parameterization of typhoon-induced ocean cooling using temperature equation and machine learning algorithms: an example of typhoon Soulik (2013)

    Science.gov (United States)

    Wei, Jun; Jiang, Guo-Qing; Liu, Xin

    2017-09-01

    This study proposed three algorithms that can potentially be used to provide sea surface temperature (SST) conditions for typhoon prediction models. Different from traditional data assimilation approaches, which provide prescribed initial/boundary conditions, our proposed algorithms aim to resolve a flow-dependent SST feedback between growing typhoons and oceans in the future time. Two of these algorithms are based on linear temperature equations (TE-based), and the other is based on an innovative technique involving machine learning (ML-based). The algorithms are then implemented into a Weather Research and Forecasting model for the simulation of typhoon to assess their effectiveness, and the results show significant improvement in simulated storm intensities by including ocean cooling feedback. The TE-based algorithm I considers wind-induced ocean vertical mixing and upwelling processes only, and thus obtained a synoptic and relatively smooth sea surface temperature cooling. The TE-based algorithm II incorporates not only typhoon winds but also ocean information, and thus resolves more cooling features. The ML-based algorithm is based on a neural network, consisting of multiple layers of input variables and neurons, and produces the best estimate of the cooling structure, in terms of its amplitude and position. Sensitivity analysis indicated that the typhoon-induced ocean cooling is a nonlinear process involving interactions of multiple atmospheric and oceanic variables. Therefore, with an appropriate selection of input variables and neuron sizes, the ML-based algorithm appears to be more efficient in prognosing the typhoon-induced ocean cooling and in predicting typhoon intensity than those algorithms based on linear regression methods.

  16. Applying a machine learning model using a locally preserving projection based feature regeneration algorithm to predict breast cancer risk

    Science.gov (United States)

    Heidari, Morteza; Zargari Khuzani, Abolfazl; Danala, Gopichandh; Mirniaharikandehei, Seyedehnafiseh; Qian, Wei; Zheng, Bin

    2018-03-01

    Both conventional and deep machine learning has been used to develop decision-support tools applied in medical imaging informatics. In order to take advantages of both conventional and deep learning approach, this study aims to investigate feasibility of applying a locally preserving projection (LPP) based feature regeneration algorithm to build a new machine learning classifier model to predict short-term breast cancer risk. First, a computer-aided image processing scheme was used to segment and quantify breast fibro-glandular tissue volume. Next, initially computed 44 image features related to the bilateral mammographic tissue density asymmetry were extracted. Then, an LLP-based feature combination method was applied to regenerate a new operational feature vector using a maximal variance approach. Last, a k-nearest neighborhood (KNN) algorithm based machine learning classifier using the LPP-generated new feature vectors was developed to predict breast cancer risk. A testing dataset involving negative mammograms acquired from 500 women was used. Among them, 250 were positive and 250 remained negative in the next subsequent mammography screening. Applying to this dataset, LLP-generated feature vector reduced the number of features from 44 to 4. Using a leave-onecase-out validation method, area under ROC curve produced by the KNN classifier significantly increased from 0.62 to 0.68 (p breast cancer detected in the next subsequent mammography screening.

  17. A Machine Learning Regression scheme to design a FR-Image Quality Assessment Algorithm

    OpenAIRE

    Charrier , Christophe; Lezoray , Olivier; Lebrun , Gilles

    2012-01-01

    International audience; A crucial step in image compression is the evaluation of its performance, and more precisely available ways to measure the quality of compressed images. In this paper, a machine learning expert, providing a quality score is proposed. This quality measure is based on a learned classification process in order to respect that of human observers. The proposed method namely Machine Learning-based Image Quality Measurment (MLIQM) first classifies the quality using multi Supp...

  18. Structural Damage Detection using Frequency Response Function Index and Surrogate Model Based on Optimized Extreme Learning Machine Algorithm

    Directory of Open Access Journals (Sweden)

    R. Ghiasi

    2017-09-01

    Full Text Available Utilizing surrogate models based on artificial intelligence methods for detecting structural damages has attracted the attention of many researchers in recent decades. In this study, a new kernel based on Littlewood-Paley Wavelet (LPW is proposed for Extreme Learning Machine (ELM algorithm to improve the accuracy of detecting multiple damages in structural systems.  ELM is used as metamodel (surrogate model of exact finite element analysis of structures in order to efficiently reduce the computational cost through updating process. In the proposed two-step method, first a damage index, based on Frequency Response Function (FRF of the structure, is used to identify the location of damages. In the second step, the severity of damages in identified elements is detected using ELM. In order to evaluate the efficacy of ELM, the results obtained from the proposed kernel were compared with other kernels proposed for ELM as well as Least Square Support Vector Machine algorithm. The solved numerical problems indicated that ELM algorithm accuracy in detecting structural damages is increased drastically in case of using LPW kernel.

  19. Boosting foundations and algorithms

    CERN Document Server

    Schapire, Robert E

    2012-01-01

    Boosting is an approach to machine learning based on the idea of creating a highly accurate predictor by combining many weak and inaccurate "rules of thumb." A remarkably rich theory has evolved around boosting, with connections to a range of topics, including statistics, game theory, convex optimization, and information geometry. Boosting algorithms have also enjoyed practical success in such fields as biology, vision, and speech processing. At various times in its history, boosting has been perceived as mysterious, controversial, even paradoxical.

  20. Prediction of Cancer Proteins by Integrating Protein Interaction, Domain Frequency, and Domain Interaction Data Using Machine Learning Algorithms

    Directory of Open Access Journals (Sweden)

    Chien-Hung Huang

    2015-01-01

    Full Text Available Many proteins are known to be associated with cancer diseases. It is quite often that their precise functional role in disease pathogenesis remains unclear. A strategy to gain a better understanding of the function of these proteins is to make use of a combination of different aspects of proteomics data types. In this study, we extended Aragues’s method by employing the protein-protein interaction (PPI data, domain-domain interaction (DDI data, weighted domain frequency score (DFS, and cancer linker degree (CLD data to predict cancer proteins. Performances were benchmarked based on three kinds of experiments as follows: (I using individual algorithm, (II combining algorithms, and (III combining the same classification types of algorithms. When compared with Aragues’s method, our proposed methods, that is, machine learning algorithm and voting with the majority, are significantly superior in all seven performance measures. We demonstrated the accuracy of the proposed method on two independent datasets. The best algorithm can achieve a hit ratio of 89.4% and 72.8% for lung cancer dataset and lung cancer microarray study, respectively. It is anticipated that the current research could help understand disease mechanisms and diagnosis.

  1. Annual Electric Load Forecasting by a Least Squares Support Vector Machine with a Fruit Fly Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Bao Wang

    2012-11-01

    Full Text Available The accuracy of annual electric load forecasting plays an important role in the economic and social benefits of electric power systems. The least squares support vector machine (LSSVM has been proven to offer strong potential in forecasting issues, particularly by employing an appropriate meta-heuristic algorithm to determine the values of its two parameters. However, these meta-heuristic algorithms have the drawbacks of being hard to understand and reaching the global optimal solution slowly. As a novel meta-heuristic and evolutionary algorithm, the fruit fly optimization algorithm (FOA has the advantages of being easy to understand and fast convergence to the global optimal solution. Therefore, to improve the forecasting performance, this paper proposes a LSSVM-based annual electric load forecasting model that uses FOA to automatically determine the appropriate values of the two parameters for the LSSVM model. By taking the annual electricity consumption of China as an instance, the computational result shows that the LSSVM combined with FOA (LSSVM-FOA outperforms other alternative methods, namely single LSSVM, LSSVM combined with coupled simulated annealing algorithm (LSSVM-CSA, generalized regression neural network (GRNN and regression model.

  2. Cognitive Machine-Learning Algorithm for Cardiac Imaging: A Pilot Study for Differentiating Constrictive Pericarditis From Restrictive Cardiomyopathy.

    Science.gov (United States)

    Sengupta, Partho P; Huang, Yen-Min; Bansal, Manish; Ashrafi, Ali; Fisher, Matt; Shameer, Khader; Gall, Walt; Dudley, Joel T

    2016-06-01

    Associating a patient's profile with the memories of prototypical patients built through previous repeat clinical experience is a key process in clinical judgment. We hypothesized that a similar process using a cognitive computing tool would be well suited for learning and recalling multidimensional attributes of speckle tracking echocardiography data sets derived from patients with known constrictive pericarditis and restrictive cardiomyopathy. Clinical and echocardiographic data of 50 patients with constrictive pericarditis and 44 with restrictive cardiomyopathy were used for developing an associative memory classifier-based machine-learning algorithm. The speckle tracking echocardiography data were normalized in reference to 47 controls with no structural heart disease, and the diagnostic area under the receiver operating characteristic curve of the associative memory classifier was evaluated for differentiating constrictive pericarditis from restrictive cardiomyopathy. Using only speckle tracking echocardiography variables, associative memory classifier achieved a diagnostic area under the curve of 89.2%, which improved to 96.2% with addition of 4 echocardiographic variables. In comparison, the area under the curve of early diastolic mitral annular velocity and left ventricular longitudinal strain were 82.1% and 63.7%, respectively. Furthermore, the associative memory classifier demonstrated greater accuracy and shorter learning curves than other machine-learning approaches, with accuracy asymptotically approaching 90% after a training fraction of 0.3 and remaining flat at higher training fractions. This study demonstrates feasibility of a cognitive machine-learning approach for learning and recalling patterns observed during echocardiographic evaluations. Incorporation of machine-learning algorithms in cardiac imaging may aid standardized assessments and support the quality of interpretations, particularly for novice readers with limited experience. © 2016

  3. A Cognitive Machine Learning Algorithm for Cardiac Imaging: A Pilot Study for Differentiating Constrictive Pericarditis from Restrictive Cardiomyopathy

    Science.gov (United States)

    Sengupta, Partho P.; Huang, Yen-Min; Bansal, Manish; Ashrafi, Ali; Fisher, Matt; Shameer, Khader; Gall, Walt; Dudley, Joel T

    2016-01-01

    Background Associating a patient’s profile with the memories of prototypical patients built through previous repeat clinical experience is a key process in clinical judgment. We hypothesized that a similar process using a cognitive computing tool would be well suited for learning and recalling multidimensional attributes of speckle tracking echocardiography (STE) data sets derived from patients with known constrictive pericarditis (CP) and restrictive cardiomyopathy (RCM). Methods and Results Clinical and echocardiographic data of 50 patients with CP and 44 with RCM were used for developing an associative memory classifier (AMC) based machine learning algorithm. The STE data was normalized in reference to 47 controls with no structural heart disease, and the diagnostic area under the receiver operating characteristic curve (AUC) of the AMC was evaluated for differentiating CP from RCM. Using only STE variables, AMC achieved a diagnostic AUC of 89·2%, which improved to 96·2% with addition of 4 echocardiographic variables. In comparison, the AUC of early diastolic mitral annular velocity and left ventricular longitudinal strain were 82.1% and 63·7%, respectively. Furthermore, AMC demonstrated greater accuracy and shorter learning curves than other machine learning approaches with accuracy asymptotically approaching 90% after a training fraction of 0·3 and remaining flat at higher training fractions. Conclusions This study demonstrates feasibility of a cognitive machine learning approach for learning and recalling patterns observed during echocardiographic evaluations. Incorporation of machine learning algorithms in cardiac imaging may aid standardized assessments and support the quality of interpretations, particularly for novice readers with limited experience. PMID:27266599

  4. A Scalable Neuro-inspired Robot Controller Integrating a Machine Learning Algorithm and a Spiking Cerebellar-like Network

    DEFF Research Database (Denmark)

    Baira Ojeda, Ismael; Tolu, Silvia; Lund, Henrik Hautop

    2017-01-01

    Combining Fable robot, a modular robot, with a neuroinspired controller, we present the proof of principle of a system that can scale to several neurally controlled compliant modules. The motor control and learning of a robot module are carried out by a Unit Learning Machine (ULM) that embeds...... the Locally Weighted Projection Regression algorithm (LWPR) and a spiking cerebellar-like microcircuit. The LWPR guarantees both an optimized representation of the input space and the learning of the dynamic internal model (IM) of the robot. However, the cerebellar-like sub-circuit integrates LWPR input...

  5. Computation and parallel implementation for early vision

    Science.gov (United States)

    Gualtieri, J. Anthony

    1990-01-01

    The problem of early vision is to transform one or more retinal illuminance images-pixel arrays-to image representations built out of such primitive visual features such as edges, regions, disparities, and clusters. These transformed representations form the input to later vision stages that perform higher level vision tasks including matching and recognition. Researchers developed algorithms for: (1) edge finding in the scale space formulation; (2) correlation methods for computing matches between pairs of images; and (3) clustering of data by neural networks. These algorithms are formulated for parallel implementation of SIMD machines, such as the Massively Parallel Processor, a 128 x 128 array processor with 1024 bits of local memory per processor. For some cases, researchers can show speedups of three orders of magnitude over serial implementations.

  6. A Torque Error Compensation Algorithm for Surface Mounted Permanent Magnet Synchronous Machines with Respect to Magnet Temperature Variations

    Directory of Open Access Journals (Sweden)

    Chang-Seok Park

    2017-09-01

    Full Text Available This paper presents a torque error compensation algorithm for a surface mounted permanent magnet synchronous machine (SPMSM through real time permanent magnet (PM flux linkage estimation at various temperature conditions from medium to rated speed. As known, the PM flux linkage in SPMSMs varies with the thermal conditions. Since a maximum torque per ampere look up table, a control method used for copper loss minimization, is developed based on estimated PM flux linkage, variation of PM flux linkage results in undesired torque development of SPMSM drives. In this paper, PM flux linkage is estimated through a stator flux linkage observer and the torque error is compensated in real time using the estimated PM flux linkage. In this paper, the proposed torque error compensation algorithm is verified in simulation and experiment.

  7. A Single-Machine Two-Agent Scheduling Problem by a Branch-and-Bound and Three Simulated Annealing Algorithms

    Directory of Open Access Journals (Sweden)

    Shangchia Liu

    2015-01-01

    Full Text Available In the field of distributed decision making, different agents share a common processing resource, and each agent wants to minimize a cost function depending on its jobs only. These issues arise in different application contexts, including real-time systems, integrated service networks, industrial districts, and telecommunication systems. Motivated by its importance on practical applications, we consider two-agent scheduling on a single machine where the objective is to minimize the total completion time of the jobs of the first agent with the restriction that an upper bound is allowed the total completion time of the jobs for the second agent. For solving the proposed problem, a branch-and-bound and three simulated annealing algorithms are developed for the optimal solution, respectively. In addition, the extensive computational experiments are also conducted to test the performance of the algorithms.

  8. Icing Forecasting of High Voltage Transmission Line Using Weighted Least Square Support Vector Machine with Fireworks Algorithm for Feature Selection

    Directory of Open Access Journals (Sweden)

    Tiannan Ma

    2016-12-01

    Full Text Available Accurate forecasting of icing thickness has great significance for ensuring the security and stability of the power grid. In order to improve the forecasting accuracy, this paper proposes an icing forecasting system based on the fireworks algorithm and weighted least square support vector machine (W-LSSVM. The method of the fireworks algorithm is employed to select the proper input features with the purpose of eliminating redundant influence. In addition, the aim of the W-LSSVM model is to train and test the historical data-set with the selected features. The capability of this proposed icing forecasting model and framework is tested through simulation experiments using real-world icing data from the monitoring center of the key laboratory of anti-ice disaster, Hunan, South China. The results show that the proposed W-LSSVM-FA method has a higher prediction accuracy and it may be a promising alternative for icing thickness forecasting.

  9. Multispectral imaging burn wound tissue classification system: a comparison of test accuracies between several common machine learning algorithms

    Science.gov (United States)

    Squiers, John J.; Li, Weizhi; King, Darlene R.; Mo, Weirong; Zhang, Xu; Lu, Yang; Sellke, Eric W.; Fan, Wensheng; DiMaio, J. Michael; Thatcher, Jeffrey E.

    2016-03-01

    The clinical judgment of expert burn surgeons is currently the standard on which diagnostic and therapeutic decisionmaking regarding burn injuries is based. Multispectral imaging (MSI) has the potential to increase the accuracy of burn depth assessment and the intraoperative identification of viable wound bed during surgical debridement of burn injuries. A highly accurate classification model must be developed using machine-learning techniques in order to translate MSI data into clinically-relevant information. An animal burn model was developed to build an MSI training database and to study the burn tissue classification ability of several models trained via common machine-learning algorithms. The algorithms tested, from least to most complex, were: K-nearest neighbors (KNN), decision tree (DT), linear discriminant analysis (LDA), weighted linear discriminant analysis (W-LDA), quadratic discriminant analysis (QDA), ensemble linear discriminant analysis (EN-LDA), ensemble K-nearest neighbors (EN-KNN), and ensemble decision tree (EN-DT). After the ground-truth database of six tissue types (healthy skin, wound bed, blood, hyperemia, partial injury, full injury) was generated by histopathological analysis, we used 10-fold cross validation to compare the algorithms' performances based on their accuracies in classifying data against the ground truth, and each algorithm was tested 100 times. The mean test accuracy of the algorithms were KNN 68.3%, DT 61.5%, LDA 70.5%, W-LDA 68.1%, QDA 68.9%, EN-LDA 56.8%, EN-KNN 49.7%, and EN-DT 36.5%. LDA had the highest test accuracy, reflecting the bias-variance tradeoff over the range of complexities inherent to the algorithms tested. Several algorithms were able to match the current standard in burn tissue classification, the clinical judgment of expert burn surgeons. These results will guide further development of an MSI burn tissue classification system. Given that there are few surgeons and facilities specializing in burn care

  10. Mathematical Modeling and a Hybrid NSGA-II Algorithm for Process Planning Problem Considering Machining Cost and Carbon Emission

    Directory of Open Access Journals (Sweden)

    Jin Huang

    2017-09-01

    Full Text Available Process planning is an important function in a manufacturing system; it specifies the manufacturing requirements and details for the shop floor to convert a part from raw material to the finished form. However, considering only economical criterion with technological constraints is not enough in sustainable manufacturing practice; formerly, criteria about low carbon emission awareness have seldom been taken into account in process planning optimization. In this paper, a mathematical model that considers both machining costs reduction as well as carbon emission reduction is established for the process planning problem. However, due to various flexibilities together with complex precedence constraints between operations, the process planning problem is a non-deterministic polynomial-time (NP hard problem. Aiming at the distinctive feature of the multi-objectives process planning optimization, we then developed a hybrid non-dominated sorting genetic algorithm (NSGA-II to tackle this problem. A local search method that considers both the total cost criterion and the carbon emission criterion are introduced into the proposed algorithm to avoid being trapped into local optima. Moreover, the technique for order preference by similarity to an ideal solution (TOPSIS method is also adopted to determine the best solution from the Pareto front. Experiments have been conducted using Kim’s benchmark. Computational results show that process plan schemes with low carbon emission can be captured, and, more importantly, the proposed hybrid NSGA-II algorithm can obtain more promising optimal Pareto front than the plain NSGA-II algorithm. Meanwhile, according to the computational results of Kim’s benchmark, we find that both of the total machining cost and carbon emission are roughly proportional to the number of operations, and a process plan with less operation may be more satisfactory. This study will draw references for the further research on green

  11. Classification of HTTP traffic based on C5.0 Machine Learning Algorithm

    DEFF Research Database (Denmark)

    Bujlow, Tomasz; Riaz, Tahir; Pedersen, Jens Myrup

    2012-01-01

    streaming through third-party plugins, etc. This paper suggests and evaluates two approaches to distinguish various types of HTTP traffic based on the content: distributed among volunteers' machines and centralized running in the core of the network. We also assess the accuracy of the centralized classifier...

  12. In vitro molecular machine learning algorithm via symmetric internal loops of DNA.

    Science.gov (United States)

    Lee, Ji-Hoon; Lee, Seung Hwan; Baek, Christina; Chun, Hyosun; Ryu, Je-Hwan; Kim, Jin-Woo; Deaton, Russell; Zhang, Byoung-Tak

    2017-08-01

    Programmable biomolecules, such as DNA strands, deoxyribozymes, and restriction enzymes, have been used to solve computational problems, construct large-scale logic circuits, and program simple molecular games. Although studies have shown the potential of molecular computing, the capability of computational learning with DNA molecules, i.e., molecular machine learning, has yet to be experimentally verified. Here, we present a novel molecular learning in vitro model in which symmetric internal loops of double-stranded DNA are exploited to measure the differences between training instances, thus enabling the molecules to learn from small errors. The model was evaluated on a data set of twenty dialogue sentences obtained from the television shows Friends and Prison Break. The wet DNA-computing experiments confirmed that the molecular learning machine was able to generalize the dialogue patterns of each show and successfully identify the show from which the sentences originated. The molecular machine learning model described here opens the way for solving machine learning problems in computer science and biology using in vitro molecular computing with the data encoded in DNA molecules. Copyright © 2017. Published by Elsevier B.V.

  13. Computer vision for an autonomous mobile robot

    CSIR Research Space (South Africa)

    Withey, Daniel J

    2015-10-01

    Full Text Available Computer vision systems are essential for practical, autonomous, mobile robots – machines that employ artificial intelligence and control their own motion within an environment. As with biological systems, computer vision systems include the vision...

  14. FAIR principles and the IEDB: short-term improvements and a long-term vision of OBO-foundry mediated machine-actionable interoperability

    Science.gov (United States)

    Vita, Randi; Overton, James A; Mungall, Christopher J; Sette, Alessandro

    2018-01-01

    Abstract The Immune Epitope Database (IEDB), at www.iedb.org, has the mission to make published experimental data relating to the recognition of immune epitopes easily available to the scientific public. By presenting curated data in a searchable database, we have liberated it from the tables and figures of journal articles, making it more accessible and usable by immunologists. Recently, the principles of Findability, Accessibility, Interoperability and Reusability have been formulated as goals that data repositories should meet to enhance the usefulness of their data holdings. We here examine how the IEDB complies with these principles and identify broad areas of success, but also areas for improvement. We describe short-term improvements to the IEDB that are being implemented now, as well as a long-term vision of true ‘machine-actionable interoperability’, which we believe will require community agreement on standardization of knowledge representation that can be built on top of the shared use of ontologies. PMID:29688354

  15. Prediction of Antimicrobial Peptides Based on Sequence Alignment and Support Vector Machine-Pairwise Algorithm Utilizing LZ-Complexity

    Directory of Open Access Journals (Sweden)

    Xin Yi Ng

    2015-01-01

    Full Text Available This study concerns an attempt to establish a new method for predicting antimicrobial peptides (AMPs which are important to the immune system. Recently, researchers are interested in designing alternative drugs based on AMPs because they have found that a large number of bacterial strains have become resistant to available antibiotics. However, researchers have encountered obstacles in the AMPs designing process as experiments to extract AMPs from protein sequences are costly and require a long set-up time. Therefore, a computational tool for AMPs prediction is needed to resolve this problem. In this study, an integrated algorithm is newly introduced to predict AMPs by integrating sequence alignment and support vector machine- (SVM- LZ complexity pairwise algorithm. It was observed that, when all sequences in the training set are used, the sensitivity of the proposed algorithm is 95.28% in jackknife test and 87.59% in independent test, while the sensitivity obtained for jackknife test and independent test is 88.74% and 78.70%, respectively, when only the sequences that has less than 70% similarity are used. Applying the proposed algorithm may allow researchers to effectively predict AMPs from unknown protein peptide sequences with higher sensitivity.

  16. Rule Extraction Based on Extreme Learning Machine and an Improved Ant-Miner Algorithm for Transient Stability Assessment.

    Directory of Open Access Journals (Sweden)

    Yang Li

    Full Text Available In order to overcome the problems of poor understandability of the pattern recognition-based transient stability assessment (PRTSA methods, a new rule extraction method based on extreme learning machine (ELM and an improved Ant-miner (IAM algorithm is presented in this paper. First, the basic principles of ELM and Ant-miner algorithm are respectively introduced. Then, based on the selected optimal feature subset, an example sample set is generated by the trained ELM-based PRTSA model. And finally, a set of classification rules are obtained by IAM algorithm to replace the original ELM network. The novelty of this proposal is that transient stability rules are extracted from an example sample set generated by the trained ELM-based transient stability assessment model by using IAM algorithm. The effectiveness of the proposed method is shown by the application results on the New England 39-bus power system and a practical power system--the southern power system of Hebei province.

  17. Induction machine bearing faults detection based on a multi-dimensional MUSIC algorithm and maximum likelihood estimation.

    Science.gov (United States)

    Elbouchikhi, Elhoussin; Choqueuse, Vincent; Benbouzid, Mohamed

    2016-07-01

    Condition monitoring of electric drives is of paramount importance since it contributes to enhance the system reliability and availability. Moreover, the knowledge about the fault mode behavior is extremely important in order to improve system protection and fault-tolerant control. Fault detection and diagnosis in squirrel cage induction machines based on motor current signature analysis (MCSA) has been widely investigated. Several high resolution spectral estimation techniques have been developed and used to detect induction machine abnormal operating conditions. This paper focuses on the application of MCSA for the detection of abnormal mechanical conditions that may lead to induction machines failure. In fact, this paper is devoted to the detection of single-point defects in bearings based on parametric spectral estimation. A multi-dimensional MUSIC (MD MUSIC) algorithm has been developed for bearing faults detection based on bearing faults characteristic frequencies. This method has been used to estimate the fundamental frequency and the fault related frequency. Then, an amplitude estimator of the fault characteristic frequencies has been proposed and fault indicator has been derived for fault severity measurement. The proposed bearing faults detection approach is assessed using simulated stator currents data, issued from a coupled electromagnetic circuits approach for air-gap eccentricity emulating bearing faults. Then, experimental data are used for validation purposes. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Support Vector Machines Trained with Evolutionary Algorithms Employing Kernel Adatron for Large Scale Classification of Protein Structures.

    Science.gov (United States)

    Arana-Daniel, Nancy; Gallegos, Alberto A; López-Franco, Carlos; Alanís, Alma Y; Morales, Jacob; López-Franco, Adriana

    2016-01-01

    With the increasing power of computers, the amount of data that can be processed in small periods of time has grown exponentially, as has the importance of classifying large-scale data efficiently. Support vector machines have shown good results classifying large amounts of high-dimensional data, such as data generated by protein structure prediction, spam recognition, medical diagnosis, optical character recognition and text classification, etc. Most state of the art approaches for large-scale learning use traditional optimization methods, such as quadratic programming or gradient descent, which makes the use of evolutionary algorithms for training support vector machines an area to be explored. The present paper proposes an approach that is simple to implement based on evolutionary algorithms and Kernel-Adatron for solving large-scale classification problems, focusing on protein structure prediction. The functional properties of proteins depend upon their three-dimensional structures. Knowing the structures of proteins is crucial for biology and can lead to improvements in areas such as medicine, agriculture and biofuels.

  19. Predicting Post-Translational Modifications from Local Sequence Fragments Using Machine Learning Algorithms: Overview and Best Practices.

    Science.gov (United States)

    Tatjewski, Marcin; Kierczak, Marcin; Plewczynski, Dariusz

    2017-01-01

    Here, we present two perspectives on the task of predicting post translational modifications (PTMs) from local sequence fragments using machine learning algorithms. The first is the description of the fundamental steps required to construct a PTM predictor from the very beginning. These steps include data gathering, feature extraction, or machine-learning classifier selection. The second part of our work contains the detailed discussion of more advanced problems which are encountered in PTM prediction task. Probably the most challenging issues which we have covered here are: (1) how to address the training data class imbalance problem (we also present statistics describing the problem); (2) how to properly set up cross-validation folds with an approach which takes into account the homology of protein data records, to address this problem we present our folds-over-clusters algorithm; and (3) how to efficiently reach for new sources of learning features. Presented techniques and notes resulted from intense studies in the field, performed by our and other groups, and can be useful both for researchers beginning in the field of PTM prediction and for those who want to extend the repertoire of their research techniques.

  20. Monitoring mangrove biomass change in Vietnam using SPOT images and an object-based approach combined with machine learning algorithms

    Science.gov (United States)

    Pham, Lien T. H.; Brabyn, Lars

    2017-06-01

    Mangrove forests are well-known for their provision of ecosystem services and capacity to reduce carbon dioxide concentrations in the atmosphere. Mapping and quantifying mangrove biomass is useful for the effective management of these forests and maximizing their ecosystem service performance. The objectives of this research were to model, map, and analyse the biomass change between 2000 and 2011 of mangrove forests in the Cangio region in Vietnam. SPOT 4 and 5 images were used in conjunction with object-based image analysis and machine learning algorithms. The study area included natural and planted mangroves of diverse species. After image preparation, three different mangrove associations were identified using two levels of image segmentation followed by a Support Vector Machine classifier and a range of spectral, texture and GIS information for classification. The overall classification accuracy for the 2000 and 2011 images were 77.1% and 82.9%, respectively. Random Forest regression algorithms were then used for modelling and mapping biomass. The model that integrated spectral, vegetation association type, texture, and vegetation indices obtained the highest accuracy (R2adj = 0.73). Among the different variables, vegetation association type was the most important variable identified by the Random Forest model. Based on the biomass maps generated from the Random Forest, total biomass in the Cangio mangrove forest increased by 820,136 tons over this period, although this change varied between the three different mangrove associations.