WorldWideScience

Sample records for machine vision advances

  1. Boosting Economic Growth Through Advanced Machine Vision

    OpenAIRE

    MAAD, Soha; GARBAYA, Samir; AYADI, Nizar; BOUAKAZ, Saida

    2012-01-01

    In this chapter, we overview the potential of machine vision and related technologies in various application domains of critical importance for economic growth and prospect. Considered domains include healthcare, energy and environment, finance, and industrial innovation. Visibility technologies considered encompass augmented and virtual reality, 3D technologies, and media content authoring tools and technologies. We overview the main challenges facing the application domains and discuss the ...

  2. Machine Vision Handbook

    CERN Document Server

    2012-01-01

    The automation of visual inspection is becoming more and more important in modern industry as a consistent, reliable means of judging the quality of raw materials and manufactured goods . The Machine Vision Handbook  equips the reader with the practical details required to engineer integrated mechanical-optical-electronic-software systems. Machine vision is first set in the context of basic information on light, natural vision, colour sensing and optics. The physical apparatus required for mechanized image capture – lenses, cameras, scanners and light sources – are discussed followed by detailed treatment of various image-processing methods including an introduction to the QT image processing system. QT is unique to this book, and provides an example of a practical machine vision system along with extensive libraries of useful commands, functions and images which can be implemented by the reader. The main text of the book is completed by studies of a wide variety of applications of machine vision in insp...

  3. Recent advances in the development and transfer of machine vision technologies for space

    Science.gov (United States)

    Defigueiredo, Rui J. P.; Pendleton, Thomas

    1991-01-01

    Recent work concerned with real-time machine vision is briefly reviewed. This work includes methodologies and techniques for optimal illumination, shape-from-shading of general (non-Lambertian) 3D surfaces, laser vision devices and technology, high level vision, sensor fusion, real-time computing, artificial neural network design and use, and motion estimation. Two new methods that are currently being developed for object recognition in clutter and for 3D attitude tracking based on line correspondence are discussed.

  4. Understanding and applying machine vision

    CERN Document Server

    Zeuch, Nello

    2000-01-01

    A discussion of applications of machine vision technology in the semiconductor, electronic, automotive, wood, food, pharmaceutical, printing, and container industries. It describes systems that enable projects to move forward swiftly and efficiently, and focuses on the nuances of the engineering and system integration of machine vision technology.

  5. Machine Learning for Robotic Vision

    OpenAIRE

    Drummond, Tom

    2018-01-01

    Machine learning is a crucial enabling technology for robotics, in particular for unlocking the capabilities afforded by visual sensing. This talk will present research within Prof Drummond’s lab that explores how machine learning can be developed and used within the context of Robotic Vision.

  6. Machine vision theory, algorithms, practicalities

    CERN Document Server

    Davies, E R

    2005-01-01

    In the last 40 years, machine vision has evolved into a mature field embracing a wide range of applications including surveillance, automated inspection, robot assembly, vehicle guidance, traffic monitoring and control, signature verification, biometric measurement, and analysis of remotely sensed images. While researchers and industry specialists continue to document their work in this area, it has become increasingly difficult for professionals and graduate students to understand the essential theory and practicalities well enough to design their own algorithms and systems. This book directl

  7. Computer vision and machine learning for archaeology

    NARCIS (Netherlands)

    van der Maaten, L.J.P.; Boon, P.; Lange, G.; Paijmans, J.J.; Postma, E.

    2006-01-01

    Until now, computer vision and machine learning techniques barely contributed to the archaeological domain. The use of these techniques can support archaeologists in their assessment and classification of archaeological finds. The paper illustrates the use of computer vision techniques for

  8. Computer and machine vision theory, algorithms, practicalities

    CERN Document Server

    Davies, E R

    2012-01-01

    Computer and Machine Vision: Theory, Algorithms, Practicalities (previously entitled Machine Vision) clearly and systematically presents the basic methodology of computer and machine vision, covering the essential elements of the theory while emphasizing algorithmic and practical design constraints. This fully revised fourth edition has brought in more of the concepts and applications of computer vision, making it a very comprehensive and up-to-date tutorial text suitable for graduate students, researchers and R&D engineers working in this vibrant subject. Key features include: Practical examples and case studies give the 'ins and outs' of developing real-world vision systems, giving engineers the realities of implementing the principles in practice New chapters containing case studies on surveillance and driver assistance systems give practical methods on these cutting-edge applications in computer vision Necessary mathematics and essential theory are made approachable by careful explanations and well-il...

  9. Machinability of advanced materials

    CERN Document Server

    Davim, J Paulo

    2014-01-01

    Machinability of Advanced Materials addresses the level of difficulty involved in machining a material, or multiple materials, with the appropriate tooling and cutting parameters.  A variety of factors determine a material's machinability, including tool life rate, cutting forces and power consumption, surface integrity, limiting rate of metal removal, and chip shape. These topics, among others, and multiple examples comprise this research resource for engineering students, academics, and practitioners.

  10. Optics, illumination, and image sensing for machine vision II

    International Nuclear Information System (INIS)

    Svetkoff, D.J.

    1987-01-01

    These proceedings collect papers on the general subject of machine vision. Topics include illumination and viewing systems, x-ray imaging, automatic SMT inspection with x-ray vision, and 3-D sensing for machine vision

  11. Automatic turbot fish cutting using machine vision

    OpenAIRE

    Martín Rodríguez, Fernando; Barral Martínez, Mónica

    2015-01-01

    This paper is about the design of an automated machine to cut turbot fish specimens. Machine vision is a key part of this project as it is used to compute a cutting curve for specimen’s head. This task is impossible to be carried out by mechanical means. Machine vision is used to detect head boundary and a robot is used to cut the head. Afterwards mechanical systems are used to slice fish to get an easy presentation for end consumer (as fish fillets than can be easily marketed ...

  12. Trends and developments in industrial machine vision: 2013

    Science.gov (United States)

    Niel, Kurt; Heinzl, Christoph

    2014-03-01

    When following current advancements and implementations in the field of machine vision there seems to be no borders for future developments: Calculating power constantly increases, and new ideas are spreading and previously challenging approaches are introduced in to mass market. Within the past decades these advances have had dramatic impacts on our lives. Consumer electronics, e.g. computers or telephones, which once occupied large volumes, now fit in the palm of a hand. To note just a few examples e.g. face recognition was adopted by the consumer market, 3D capturing became cheap, due to the huge community SW-coding got easier using sophisticated development platforms. However, still there is a remaining gap between consumer and industrial applications. While the first ones have to be entertaining, the second have to be reliable. Recent studies (e.g. VDMA [1], Germany) show a moderately increasing market for machine vision in industry. Asking industry regarding their needs the main challenges for industrial machine vision are simple usage and reliability for the process, quick support, full automation, self/easy adjustment at changing process parameters, "forget it in the line". Furthermore a big challenge is to support quality control: Nowadays the operator has to accurately define the tested features for checking the probes. There is an upcoming development also to let automated machine vision applications find out essential parameters in a more abstract level (top down). In this work we focus on three current and future topics for industrial machine vision: Metrology supporting automation, quality control (inline/atline/offline) as well as visualization and analysis of datasets with steadily growing sizes. Finally the general trend of the pixel orientated towards object orientated evaluation is addressed. We do not directly address the field of robotics taking advances from machine vision. This is actually a fast changing area which is worth an own

  13. Machine learning and computer vision approaches for phenotypic profiling.

    Science.gov (United States)

    Grys, Ben T; Lo, Dara S; Sahin, Nil; Kraus, Oren Z; Morris, Quaid; Boone, Charles; Andrews, Brenda J

    2017-01-02

    With recent advances in high-throughput, automated microscopy, there has been an increased demand for effective computational strategies to analyze large-scale, image-based data. To this end, computer vision approaches have been applied to cell segmentation and feature extraction, whereas machine-learning approaches have been developed to aid in phenotypic classification and clustering of data acquired from biological images. Here, we provide an overview of the commonly used computer vision and machine-learning methods for generating and categorizing phenotypic profiles, highlighting the general biological utility of each approach. © 2017 Grys et al.

  14. Machine vision systems using machine learning for industrial product inspection

    Science.gov (United States)

    Lu, Yi; Chen, Tie Q.; Chen, Jie; Zhang, Jian; Tisler, Anthony

    2002-02-01

    Machine vision inspection requires efficient processing time and accurate results. In this paper, we present a machine vision inspection architecture, SMV (Smart Machine Vision). SMV decomposes a machine vision inspection problem into two stages, Learning Inspection Features (LIF), and On-Line Inspection (OLI). The LIF is designed to learn visual inspection features from design data and/or from inspection products. During the OLI stage, the inspection system uses the knowledge learnt by the LIF component to inspect the visual features of products. In this paper we will present two machine vision inspection systems developed under the SMV architecture for two different types of products, Printed Circuit Board (PCB) and Vacuum Florescent Displaying (VFD) boards. In the VFD board inspection system, the LIF component learns inspection features from a VFD board and its displaying patterns. In the PCB board inspection system, the LIF learns the inspection features from the CAD file of a PCB board. In both systems, the LIF component also incorporates interactive learning to make the inspection system more powerful and efficient. The VFD system has been deployed successfully in three different manufacturing companies and the PCB inspection system is the process of being deployed in a manufacturing plant.

  15. Advanced SLARette delivery machine

    International Nuclear Information System (INIS)

    Bodner, R.R.

    1995-01-01

    SLARette 1 equipment, comprising of a SLARette Delivery Machine, SLAR Tools, SLAR power supplies and SLAR Inspection Systems was designed, developed and manufactured to service fuel channels of CANDU 6 stations during the regular yearly station outages. The Mark 2 SLARette Delivery Machine uses a Push Tube system to provide the axial and rotary movements of the SLAR Tool. The Push Tubes are operated remotely but must be attached and removed manually. Since this operation is performed at the Reactor face, there is radiation dose involved for the workers. An Advanced SLARette Delivery Machine which incorporates a computer controlled telescoping Ram in the place of the Push Tubes has been recently designed and manufactured. Utilization of the Advanced SLARette Delivery Machine significantly reduces the amount of radiation dose picked up by the workers because the need to have workers at the face of the Reactor during the SLARette operation is greatly reduced. This paper describes the design, development and manufacturing process utilized to produce the Advanced SLARette Delivery Machine and the experience gained during the Gentilly-2 NGS Spring outage. (author)

  16. Development of Moire machine vision

    Science.gov (United States)

    Harding, Kevin G.

    1987-10-01

    Three dimensional perception is essential to the development of versatile robotics systems in order to handle complex manufacturing tasks in future factories and in providing high accuracy measurements needed in flexible manufacturing and quality control. A program is described which will develop the potential of Moire techniques to provide this capability in vision systems and automated measurements, and demonstrate artificial intelligence (AI) techniques to take advantage of the strengths of Moire sensing. Moire techniques provide a means of optically manipulating the complex visual data in a three dimensional scene into a form which can be easily and quickly analyzed by computers. This type of optical data manipulation provides high productivity through integrated automation, producing a high quality product while reducing computer and mechanical manipulation requirements and thereby the cost and time of production. This nondestructive evaluation is developed to be able to make full field range measurement and three dimensional scene analysis.

  17. Manifold learning in machine vision and robotics

    Science.gov (United States)

    Bernstein, Alexander

    2017-02-01

    Smart algorithms are used in Machine vision and Robotics to organize or extract high-level information from the available data. Nowadays, Machine learning is an essential and ubiquitous tool to automate extraction patterns or regularities from data (images in Machine vision; camera, laser, and sonar sensors data in Robotics) in order to solve various subject-oriented tasks such as understanding and classification of images content, navigation of mobile autonomous robot in uncertain environments, robot manipulation in medical robotics and computer-assisted surgery, and other. Usually such data have high dimensionality, however, due to various dependencies between their components and constraints caused by physical reasons, all "feasible and usable data" occupy only a very small part in high dimensional "observation space" with smaller intrinsic dimensionality. Generally accepted model of such data is manifold model in accordance with which the data lie on or near an unknown manifold (surface) of lower dimensionality embedded in an ambient high dimensional observation space; real-world high-dimensional data obtained from "natural" sources meet, as a rule, this model. The use of Manifold learning technique in Machine vision and Robotics, which discovers a low-dimensional structure of high dimensional data and results in effective algorithms for solving of a large number of various subject-oriented tasks, is the content of the conference plenary speech some topics of which are in the paper.

  18. Machine Learning Techniques in Clinical Vision Sciences.

    Science.gov (United States)

    Caixinha, Miguel; Nunes, Sandrina

    2017-01-01

    This review presents and discusses the contribution of machine learning techniques for diagnosis and disease monitoring in the context of clinical vision science. Many ocular diseases leading to blindness can be halted or delayed when detected and treated at its earliest stages. With the recent developments in diagnostic devices, imaging and genomics, new sources of data for early disease detection and patients' management are now available. Machine learning techniques emerged in the biomedical sciences as clinical decision-support techniques to improve sensitivity and specificity of disease detection and monitoring, increasing objectively the clinical decision-making process. This manuscript presents a review in multimodal ocular disease diagnosis and monitoring based on machine learning approaches. In the first section, the technical issues related to the different machine learning approaches will be present. Machine learning techniques are used to automatically recognize complex patterns in a given dataset. These techniques allows creating homogeneous groups (unsupervised learning), or creating a classifier predicting group membership of new cases (supervised learning), when a group label is available for each case. To ensure a good performance of the machine learning techniques in a given dataset, all possible sources of bias should be removed or minimized. For that, the representativeness of the input dataset for the true population should be confirmed, the noise should be removed, the missing data should be treated and the data dimensionally (i.e., the number of parameters/features and the number of cases in the dataset) should be adjusted. The application of machine learning techniques in ocular disease diagnosis and monitoring will be presented and discussed in the second section of this manuscript. To show the clinical benefits of machine learning in clinical vision sciences, several examples will be presented in glaucoma, age-related macular degeneration

  19. Deep learning: Using machine learning to study biological vision

    OpenAIRE

    Majaj, Najib; Pelli, Denis

    2017-01-01

    Today most vision-science presentations mention machine learning. Many neuroscientists use machine learning to decode neural responses. Many perception scientists try to understand recognition by living organisms. To them, machine learning offers a reference of attainable performance based on learned stimuli. This brief overview of the use of machine learning in biological vision touches on its strengths, weaknesses, milestones, controversies, and current directions.

  20. Machine vision and mechatronics in practice

    CERN Document Server

    Brett, Peter

    2015-01-01

    The contributions for this book have been gathered over several years from conferences held in the series of Mechatronics and Machine Vision in Practice, the latest of which was held in Ankara, Turkey. The essential aspect is that they concern practical applications rather than the derivation of mere theory, though simulations and visualization are important components. The topics range from mining, with its heavy engineering, to the delicate machining of holes in the human skull or robots for surgery on human flesh. Mobile robots continue to be a hot topic, both from the need for navigation and for the task of stabilization of unmanned aerial vehicles. The swinging of a spray rig is damped, while machine vision is used for the control of heating in an asphalt-laying machine.  Manipulators are featured, both for general tasks and in the form of grasping fingers. A robot arm is proposed for adding to the mobility scooter of the elderly. Can EEG signals be a means to control a robot? Can face recognition be ac...

  1. Learning surface molecular structures via machine vision

    Science.gov (United States)

    Ziatdinov, Maxim; Maksov, Artem; Kalinin, Sergei V.

    2017-08-01

    Recent advances in high resolution scanning transmission electron and scanning probe microscopies have allowed researchers to perform measurements of materials structural parameters and functional properties in real space with a picometre precision. In many technologically relevant atomic and/or molecular systems, however, the information of interest is distributed spatially in a non-uniform manner and may have a complex multi-dimensional nature. One of the critical issues, therefore, lies in being able to accurately identify (`read out') all the individual building blocks in different atomic/molecular architectures, as well as more complex patterns that these blocks may form, on a scale of hundreds and thousands of individual atomic/molecular units. Here we employ machine vision to read and recognize complex molecular assemblies on surfaces. Specifically, we combine Markov random field model and convolutional neural networks to classify structural and rotational states of all individual building blocks in molecular assembly on the metallic surface visualized in high-resolution scanning tunneling microscopy measurements. We show how the obtained full decoding of the system allows us to directly construct a pair density function—a centerpiece in analysis of disorder-property relationship paradigm—as well as to analyze spatial correlations between multiple order parameters at the nanoscale, and elucidate reaction pathway involving molecular conformation changes. The method represents a significant shift in our way of analyzing atomic and/or molecular resolved microscopic images and can be applied to variety of other microscopic measurements of structural, electronic, and magnetic orders in different condensed matter systems.

  2. Advances in embedded computer vision

    CERN Document Server

    Kisacanin, Branislav

    2014-01-01

    This illuminating collection offers a fresh look at the very latest advances in the field of embedded computer vision. Emerging areas covered by this comprehensive text/reference include the embedded realization of 3D vision technologies for a variety of applications, such as stereo cameras on mobile devices. Recent trends towards the development of small unmanned aerial vehicles (UAVs) with embedded image and video processing algorithms are also examined. The authoritative insights range from historical perspectives to future developments, reviewing embedded implementation, tools, technolog

  3. Machine Vision Implementation in Rapid PCB Prototyping

    Directory of Open Access Journals (Sweden)

    Yosafat Surya Murijanto

    2012-03-01

    Full Text Available Image processing, the heart of machine vision, has proven itself to be an essential part of the industries today. Its application has opened new doorways, making more concepts in manufacturing processes viable. This paper presents an application of machine vision in designing a module with the ability to extract drills and route coordinates from an un-mounted or mounted printed circuit board (PCB. The algorithm comprises pre-capturing processes, image segmentation and filtering, edge and contour detection, coordinate extraction, and G-code creation. OpenCV libraries and Qt IDE are the main tools used. Throughout some testing and experiments, it is concluded that the algorithm is able to deliver acceptable results. The drilling and routing coordinate extraction algorithm can extract in average 90% and 82% of the whole drills and routes available on the scanned PCB in a total processing time of less than 3 seconds. This is achievable through proper lighting condition, good PCB surface condition and good webcam quality. 

  4. Machine-vision based optofluidic cell sorting

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Bañas, Andrew

    the available light and creating 2D or 3D beam distributions aimed at the positions of the detected cells. Furthermore, the beam shaping freedom provided by GPC can allow optimizations in the beam’s propagation and its interaction with the laser catapulted and sorted cells....... machine vision1. This approach is gentler, less invasive and more economical compared to conventional FACS-systems. As cells are less responsive to plastic or glass objects commonly used in the optical manipulation literature2, and since laser safety would be an issue in clinical use, we develop efficient...... approaches in utilizing lasers and light modulation devices. The Generalized Phase Contrast (GPC) method3-9 that can be used for efficiently illuminating spatial light modulators10 or creating well-defined contiguous optical traps11 is supplemented by diffractive techniques capable of integrating...

  5. A Machine Vision System for Automatically Grading Hardwood Lumber - (Proceedings)

    Science.gov (United States)

    Richard W. Conners; Tai-Hoon Cho; Chong T. Ng; Thomas H. Drayer; Joe G. Tront; Philip A. Araman; Robert L. Brisbon

    1990-01-01

    Any automatic system for grading hardwood lumber can conceptually be divided into two components. One of these is a machine vision system for locating and identifying grading defects. The other is an automatic grading program that accepts as input the output of the machine vision system and, based on these data, determines the grade of a board. The progress that has...

  6. Machine Vision Tests for Spent Fuel Scrap Characteristics

    International Nuclear Information System (INIS)

    BERGER, W.W.

    2000-01-01

    The purpose of this work is to perform a feasibility test of a Machine Vision system for potential use at the Hanford K basins during spent nuclear fuel (SNF) operations. This report documents the testing performed to establish functionality of the system including quantitative assessment of results. Fauske and Associates, Inc., which has been intimately involved in development of the SNF safety basis, has teamed with Agris-Schoen Vision Systems, experts in robotics, tele-robotics, and Machine Vision, for this work

  7. Advances in Machine Technology.

    Science.gov (United States)

    Clark, William R; Villa, Gianluca; Neri, Mauro; Ronco, Claudio

    2018-01-01

    Continuous renal replacement therapy (CRRT) machines have evolved into devices specifically designed for critically ill over the past 40 years. In this chapter, a brief history of this evolution is first provided, with emphasis on the manner in which changes have been made to address the specific needs of the critically ill patient with acute kidney injury. Subsequently, specific examples of technology developments for CRRT machines are discussed, including the user interface, pumps, pressure monitoring, safety features, and anticoagulation capabilities. © 2018 S. Karger AG, Basel.

  8. Machine Vision Systems for Processing Hardwood Lumber and Logs

    Science.gov (United States)

    Philip A. Araman; Daniel L. Schmoldt; Tai-Hoon Cho; Dongping Zhu; Richard W. Conners; D. Earl Kline

    1992-01-01

    Machine vision and automated processing systems are under development at Virginia Tech University with support and cooperation from the USDA Forest Service. Our goals are to help U.S. hardwood producers automate, reduce costs, increase product volume and value recovery, and market higher value, more accurately graded and described products. Any vision system is...

  9. Vision Based Autonomous Robotic Control for Advanced Inspection and Repair

    Science.gov (United States)

    Wehner, Walter S.

    2014-01-01

    The advanced inspection system is an autonomous control and analysis system that improves the inspection and remediation operations for ground and surface systems. It uses optical imaging technology with intelligent computer vision algorithms to analyze physical features of the real-world environment to make decisions and learn from experience. The advanced inspection system plans to control a robotic manipulator arm, an unmanned ground vehicle and cameras remotely, automatically and autonomously. There are many computer vision, image processing and machine learning techniques available as open source for using vision as a sensory feedback in decision-making and autonomous robotic movement. My responsibilities for the advanced inspection system are to create a software architecture that integrates and provides a framework for all the different subsystem components; identify open-source algorithms and techniques; and integrate robot hardware.

  10. Applications of AI, machine vision and robotics

    CERN Document Server

    Boyer, Kim; Bunke, H

    1995-01-01

    This text features a broad array of research efforts in computer vision including low level processing, perceptual organization, object recognition and active vision. The volume's nine papers specifically report on topics such as sensor confidence, low level feature extraction schemes, non-parametric multi-scale curve smoothing, integration of geometric and non-geometric attributes for object recognition, design criteria for a four degree-of-freedom robot head, a real-time vision system based on control of visual attention and a behavior-based active eye vision system. The scope of the book pr

  11. Integration of USB and firewire cameras in machine vision applications

    Science.gov (United States)

    Smith, Timothy E.; Britton, Douglas F.; Daley, Wayne D.; Carey, Richard

    1999-08-01

    Digital cameras have been around for many years, but a new breed of consumer market cameras is hitting the main stream. By using these devices, system designers and integrators will be well posited to take advantage of technological advances developed to support multimedia and imaging applications on the PC platform. Having these new cameras on the consumer market means lower cost, but it does not necessarily guarantee ease of integration. There are many issues that need to be accounted for like image quality, maintainable frame rates, image size and resolution, supported operating system, and ease of software integration. This paper will describe briefly a couple of the consumer digital standards, and then discuss some of the advantages and pitfalls of integrating both USB and Firewire cameras into computer/machine vision applications.

  12. Detection of Watermelon Seeds Exterior Quality based on Machine Vision

    OpenAIRE

    Xiai Chen; Ling Wang; Wenquan Chen; Yanfeng Gao

    2013-01-01

    To investigate the detection of watermelon seeds exterior quality, a machine vision system based on least square support vector machine was developed. Appearance characteristics of watermelon seeds included area, perimeter, roughness, minimum enclosing rectangle and solidity were calculated by image analysis after image preprocess.The broken seeds, normal seeds and high-quality seeds were distinguished by least square support vector machine optimized by genetic algorithm. Compared to the grid...

  13. Robot vision for nuclear advanced robot

    International Nuclear Information System (INIS)

    Nakayama, Ryoichi; Okano, Hideharu; Kuno, Yoshinori; Miyazawa, Tatsuo; Shimada, Hideo; Okada, Satoshi; Kawamura, Astuo

    1991-01-01

    This paper describes Robot Vision and Operation System for Nuclear Advanced Robot. This Robot Vision consists of robot position detection, obstacle detection and object recognition. With these vision techniques, a mobile robot can make a path and move autonomously along the planned path. The authors implemented the above robot vision system on the 'Advanced Robot for Nuclear Power Plant' and tested in an environment mocked up as nuclear power plant facilities. Since the operation system for this robot consists of operator's console and a large stereo monitor, this system can be easily operated by one person. Experimental tests were made using the Advanced Robot (nuclear robot). Results indicate that the proposed operation system is very useful, and can be operate by only person. (author)

  14. Binary pressure-sensitive paint measurements using miniaturised, colour, machine vision cameras

    Science.gov (United States)

    Quinn, Mark Kenneth

    2018-05-01

    Recent advances in machine vision technology and capability have led to machine vision cameras becoming applicable for scientific imaging. This study aims to demonstrate the applicability of machine vision colour cameras for the measurement of dual-component pressure-sensitive paint (PSP). The presence of a second luminophore component in the PSP mixture significantly reduces its inherent temperature sensitivity, increasing its applicability at low speeds. All of the devices tested are smaller than the cooled CCD cameras traditionally used and most are of significantly lower cost, thereby increasing the accessibility of such technology and techniques. Comparisons between three machine vision cameras, a three CCD camera, and a commercially available specialist PSP camera are made on a range of parameters, and a detailed PSP calibration is conducted in a static calibration chamber. The findings demonstrate that colour machine vision cameras can be used for quantitative, dual-component, pressure measurements. These results give rise to the possibility of performing on-board dual-component PSP measurements in wind tunnels or on real flight/road vehicles.

  15. Ethical, environmental and social issues for machine vision in manufacturing industry

    Science.gov (United States)

    Batchelor, Bruce G.; Whelan, Paul F.

    1995-10-01

    Some of the ethical, environmental and social issues relating to the design and use of machine vision systems in manufacturing industry are highlighted. The authors' aim is to emphasize some of the more important issues, and raise general awareness of the need to consider the potential advantages and hazards of machine vision technology. However, in a short article like this, it is impossible to cover the subject comprehensively. This paper should therefore be seen as a discussion document, which it is hoped will provoke more detailed consideration of these very important issues. It follows from an article presented at last year's workshop. Five major topics are discussed: (1) The impact of machine vision systems on the environment; (2) The implications of machine vision for product and factory safety, the health and well-being of employees; (3) The importance of intellectual integrity in a field requiring a careful balance of advanced ideas and technologies; (4) Commercial and managerial integrity; and (5) The impact of machine visions technology on employment prospects, particularly for people with low skill levels.

  16. X-ray machine vision and computed tomography

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    This survey examines how 2-D x-ray machine vision and 3-D computed tomography will be used in industry in the 1988-1995 timeframe. Specific applications are described and rank-ordered in importance. The types of companies selling and using 2-D and 3-D systems are profiled, and markets are forecast for 1988 to 1995. It is known that many machine vision and automation companies are now considering entering this field. This report looks at the potential pitfalls and whether recent market problems similar to those recently experienced by the machine vision industry will likely occur in this field. FTS will publish approximately 100 other surveys in 1988 on emerging technology in the fields of AI, manufacturing, computers, sensors, photonics, energy, bioengineering, and materials

  17. Building Artificial Vision Systems with Machine Learning

    Energy Technology Data Exchange (ETDEWEB)

    LeCun, Yann [New York University

    2011-02-23

    Three questions pose the next challenge for Artificial Intelligence (AI), robotics, and neuroscience. How do we learn perception (e.g. vision)? How do we learn representations of the perceptual world? How do we learn visual categories from just a few examples?

  18. Handbook of 3D machine vision optical metrology and imaging

    CERN Document Server

    Zhang, Song

    2013-01-01

    With the ongoing release of 3D movies and the emergence of 3D TVs, 3D imaging technologies have penetrated our daily lives. Yet choosing from the numerous 3D vision methods available can be frustrating for scientists and engineers, especially without a comprehensive resource to consult. Filling this gap, Handbook of 3D Machine Vision: Optical Metrology and Imaging gives an extensive, in-depth look at the most popular 3D imaging techniques. It focuses on noninvasive, noncontact optical methods (optical metrology and imaging). The handbook begins with the well-studied method of stereo vision and

  19. Machine vision for a selective broccoli harvesting robot

    NARCIS (Netherlands)

    Blok, Pieter M.; Barth, Ruud; Berg, Van Den Wim

    2016-01-01

    The selective hand-harvest of fresh market broccoli is labor-intensive and comprises about 35% of the total production costs. This research was conducted to determine whether machine vision can be used to detect broccoli heads, as a first step in the development of a fully autonomous selective

  20. Design and construction of automatic sorting station with machine vision

    Directory of Open Access Journals (Sweden)

    Oscar D. Velasco-Delgado

    2014-01-01

    Full Text Available This article presents the design, construction and testing of an automatic product sorting system in belt conveyor with machine vision that integrates Free and Open Source Software technology and Allen Bradley commercial equipment. Requirements are defined to determine features such as: mechanics of manufacturing station, an app of product sorting with machine vision and for automation system. For the app of machine vision a library is used for optical digital image processing Open CV, for the mechanical design of the manufacturing station is used the CAD tool Solid Edge and for the design and implementation of automation ISA standards are used along with an automation engineering project methodology integrating a PLC, an inverter, a Panel View and a DeviceNet Network. Performance tests are shown by classifying bottles and PVC pieces in four established types, the behavior of the integrated system is checked so as the efficiency of the same. The processing time on machine vision is 0.290 s on average for a piece of PVC, a capacity of 206 accessories per minute, for bottles was obtained a processing time of 0.267 s, a capacity of 224 bottles per minute. A maximum mechanical performance is obtained with 32 products per minute (1920 products/hour with the conveyor to 22 cm/s and 40 cm of distance between products obtaining an average error of 0.8%.

  1. Machine Vision Technology for the Forest Products Industry

    Science.gov (United States)

    Richard W. Conners; D.Earl Kline; Philip A. Araman; Thomas T. Drayer

    1997-01-01

    From forest to finished product, wood is moved from one processing stage to the next, subject to the decisions of individuals along the way. While this process has worked for hundreds of years, the technology exists today to provide more complete information to the decision makers. Virginia Tech has developed this technology, creating a machine vision prototype for...

  2. Machine-Vision Systems Selection for Agricultural Vehicles: A Guide

    Directory of Open Access Journals (Sweden)

    Gonzalo Pajares

    2016-11-01

    Full Text Available Machine vision systems are becoming increasingly common onboard agricultural vehicles (autonomous and non-autonomous for different tasks. This paper provides guidelines for selecting machine-vision systems for optimum performance, considering the adverse conditions on these outdoor environments with high variability on the illumination, irregular terrain conditions or different plant growth states, among others. In this regard, three main topics have been conveniently addressed for the best selection: (a spectral bands (visible and infrared; (b imaging sensors and optical systems (including intrinsic parameters and (c geometric visual system arrangement (considering extrinsic parameters and stereovision systems. A general overview, with detailed description and technical support, is provided for each topic with illustrative examples focused on specific applications in agriculture, although they could be applied in different contexts other than agricultural. A case study is provided as a result of research in the RHEA (Robot Fleets for Highly Effective Agriculture and Forestry Management project for effective weed control in maize fields (wide-rows crops, funded by the European Union, where the machine vision system onboard the autonomous vehicles was the most important part of the full perception system, where machine vision was the most relevant. Details and results about crop row detection, weed patches identification, autonomous vehicle guidance and obstacle detection are provided together with a review of methods and approaches on these topics.

  3. Advances in independent component analysis and learning machines

    CERN Document Server

    Bingham, Ella; Laaksonen, Jorma; Lampinen, Jouko

    2015-01-01

    In honour of Professor Erkki Oja, one of the pioneers of Independent Component Analysis (ICA), this book reviews key advances in the theory and application of ICA, as well as its influence on signal processing, pattern recognition, machine learning, and data mining. Examples of topics which have developed from the advances of ICA, which are covered in the book are: A unifying probabilistic model for PCA and ICA Optimization methods for matrix decompositions Insights into the FastICA algorithmUnsupervised deep learning Machine vision and image retrieval A review of developments in the t

  4. Advanced Machining Toolpath for Low Distortion

    Science.gov (United States)

    2017-02-28

    Advanced Machining Toolpath for Low Distortion FINAL STATUS REPORT Prepared by Brian Becker R&D Technology Manager Third Wave Systems, Inc... Machining Toolpath for Low Distortion December 2016 Contract No.: W911W6-16-P-0044 2 Table of Contents 1.0 EXECUTIVE SUMMARY...2 2.1 Task 1: Collect Details of Machining Lab to Support

  5. Machine vision based quality inspection of flat glass products

    Science.gov (United States)

    Zauner, G.; Schagerl, M.

    2014-03-01

    This application paper presents a machine vision solution for the quality inspection of flat glass products. A contact image sensor (CIS) is used to generate digital images of the glass surfaces. The presented machine vision based quality inspection at the end of the production line aims to classify five different glass defect types. The defect images are usually characterized by very little `image structure', i.e. homogeneous regions without distinct image texture. Additionally, these defect images usually consist of only a few pixels. At the same time the appearance of certain defect classes can be very diverse (e.g. water drops). We used simple state-of-the-art image features like histogram-based features (std. deviation, curtosis, skewness), geometric features (form factor/elongation, eccentricity, Hu-moments) and texture features (grey level run length matrix, co-occurrence matrix) to extract defect information. The main contribution of this work now lies in the systematic evaluation of various machine learning algorithms to identify appropriate classification approaches for this specific class of images. In this way, the following machine learning algorithms were compared: decision tree (J48), random forest, JRip rules, naive Bayes, Support Vector Machine (multi class), neural network (multilayer perceptron) and k-Nearest Neighbour. We used a representative image database of 2300 defect images and applied cross validation for evaluation purposes.

  6. Recent advances in intelligent machine technologies

    International Nuclear Information System (INIS)

    Bartholet, T.G.

    1987-01-01

    Further developments in intelligent machine technologies have recently been accomplished under sponsorship by the Department of Energy (DOE), the Electric Power Research Institute (EPRI), the U.S. Army and NASA. This paper describes these developments and presents actual results achieved and demonstrated. These projects encompass new developments in manipulators, vision and walking machines. Continuing developments will add increasing degrees of autonomy as appropriate to applications in the fields of nuclear power, space, defense and industrial or commercial marketplaces

  7. Robot path planning using expert systems and machine vision

    Science.gov (United States)

    Malone, Denis E.; Friedrich, Werner E.

    1992-02-01

    This paper describes a system developed for the robotic processing of naturally variable products. In order to plan the robot motion path it was necessary to use a sensor system, in this case a machine vision system, to observe the variations occurring in workpieces and interpret this with a knowledge based expert system. The knowledge base was acquired by carrying out an in-depth study of the product using examination procedures not available in the robotic workplace and relates the nature of the required path to the information obtainable from the machine vision system. The practical application of this system to the processing of fish fillets is described and used to illustrate the techniques.

  8. A machine vision system for the calibration of digital thermometers

    International Nuclear Information System (INIS)

    Vázquez-Fernández, Esteban; Dacal-Nieto, Angel; González-Jorge, Higinio; Alvarez-Valado, Victor; Martín, Fernando; Formella, Arno

    2009-01-01

    Automation is a key point in many industrial tasks such as calibration and metrology. In this context, machine vision has shown to be a useful tool for automation support, especially when there is no other option available. A system for the calibration of portable measurement devices has been developed. The system uses machine vision to obtain the numerical values shown by displays. A new approach based on human perception of digits, which works in parallel with other more classical classifiers, has been created. The results show the benefits of the system in terms of its usability and robustness, obtaining a success rate higher than 99% in display recognition. The system saves time and effort, and offers the possibility of scheduling calibration tasks without excessive attention by the laboratory technicians

  9. Machine vision automated visual inspection theory, practice and applications

    CERN Document Server

    Beyerer, Jürgen; Frese, Christian

    2016-01-01

    The book offers a thorough introduction to machine vision. It is organized in two parts. The first part covers the image acquisition, which is the crucial component of most automated visual inspection systems. All important methods are described in great detail and are presented with a reasoned structure. The second part deals with the modeling and processing of image signals and pays particular regard to methods, which are relevant for automated visual inspection.

  10. Software architecture for time-constrained machine vision applications

    Science.gov (United States)

    Usamentiaga, Rubén; Molleda, Julio; García, Daniel F.; Bulnes, Francisco G.

    2013-01-01

    Real-time image and video processing applications require skilled architects, and recent trends in the hardware platform make the design and implementation of these applications increasingly complex. Many frameworks and libraries have been proposed or commercialized to simplify the design and tuning of real-time image processing applications. However, they tend to lack flexibility, because they are normally oriented toward particular types of applications, or they impose specific data processing models such as the pipeline. Other issues include large memory footprints, difficulty for reuse, and inefficient execution on multicore processors. We present a novel software architecture for time-constrained machine vision applications that addresses these issues. The architecture is divided into three layers. The platform abstraction layer provides a high-level application programming interface for the rest of the architecture. The messaging layer provides a message-passing interface based on a dynamic publish/subscribe pattern. A topic-based filtering in which messages are published to topics is used to route the messages from the publishers to the subscribers interested in a particular type of message. The application layer provides a repository for reusable application modules designed for machine vision applications. These modules, which include acquisition, visualization, communication, user interface, and data processing, take advantage of the power of well-known libraries such as OpenCV, Intel IPP, or CUDA. Finally, the proposed architecture is applied to a real machine vision application: a jam detector for steel pickling lines.

  11. Machine vision inspection of lace using a neural network

    Science.gov (United States)

    Sanby, Christopher; Norton-Wayne, Leonard

    1995-03-01

    Lace is particularly difficult to inspect using machine vision since it comprises a fine and complex pattern of threads which must be verified, on line and in real time. Small distortions in the pattern are unavoidable. This paper describes instrumentation for inspecting lace actually on the knitting machine. A CCD linescan camera synchronized to machine motions grabs an image of the lace. Differences between this lace image and a perfect prototype image are detected by comparison methods, thresholding techniques, and finally, a neural network (to distinguish real defects from false alarms). Though produced originally in a laboratory on SUN Sparc work-stations, the processing has subsequently been implemented on a 50 Mhz 486 PC-look-alike. Successful operation has been demonstrated in a factory, but over a restricted width. Full width coverage awaits provision of faster processing.

  12. Using a vision cognitive algorithm to schedule virtual machines

    Directory of Open Access Journals (Sweden)

    Zhao Jiaqi

    2014-09-01

    Full Text Available Scheduling virtual machines is a major research topic for cloud computing, because it directly influences the performance, the operation cost and the quality of services. A large cloud center is normally equipped with several hundred thousand physical machines. The mission of the scheduler is to select the best one to host a virtual machine. This is an NPhard global optimization problem with grand challenges for researchers. This work studies the Virtual Machine (VM scheduling problem on the cloud. Our primary concern with VM scheduling is the energy consumption, because the largest part of a cloud center operation cost goes to the kilowatts used. We designed a scheduling algorithm that allocates an incoming virtual machine instance on the host machine, which results in the lowest energy consumption of the entire system. More specifically, we developed a new algorithm, called vision cognition, to solve the global optimization problem. This algorithm is inspired by the observation of how human eyes see directly the smallest/largest item without comparing them pairwisely. We theoretically proved that the algorithm works correctly and converges fast. Practically, we validated the novel algorithm, together with the scheduling concept, using a simulation approach. The adopted cloud simulator models different cloud infrastructures with various properties and detailed runtime information that can usually not be acquired from real clouds. The experimental results demonstrate the benefit of our approach in terms of reducing the cloud center energy consumption

  13. Machine vision system for measuring conifer seedling morphology

    Science.gov (United States)

    Rigney, Michael P.; Kranzler, Glenn A.

    1995-01-01

    A PC-based machine vision system providing rapid measurement of bare-root tree seedling morphological features has been designed. The system uses backlighting and a 2048-pixel line- scan camera to acquire images with transverse resolutions as high as 0.05 mm for precise measurement of stem diameter. Individual seedlings are manually loaded on a conveyor belt and inspected by the vision system in less than 0.25 seconds. Designed for quality control and morphological data acquisition by nursery personnel, the system provides a user-friendly, menu-driven graphical interface. The system automatically locates the seedling root collar and measures stem diameter, shoot height, sturdiness ratio, root mass length, projected shoot and root area, shoot-root area ratio, and percent fine roots. Sample statistics are computed for each measured feature. Measurements for each seedling may be stored for later analysis. Feature measurements may be compared with multi-class quality criteria to determine sample quality or to perform multi-class sorting. Statistical summary and classification reports may be printed to facilitate the communication of quality concerns with grading personnel. Tests were conducted at a commercial forest nursery to evaluate measurement precision. Four quality control personnel measured root collar diameter, stem height, and root mass length on each of 200 conifer seedlings. The same seedlings were inspected four times by the machine vision system. Machine stem diameter measurement precision was four times greater than that of manual measurements. Machine and manual measurements had comparable precision for shoot height and root mass length.

  14. Nontraditional machining processes research advances

    CERN Document Server

    2013-01-01

    Nontraditional machining employs processes that remove material by various methods involving thermal, electrical, chemical and mechanical energy or even combinations of these. Nontraditional Machining Processes covers recent research and development in techniques and processes which focus on achieving high accuracies and good surface finishes, parts machined without burrs or residual stresses especially with materials that cannot be machined by conventional methods. With applications to the automotive, aircraft and mould and die industries, Nontraditional Machining Processes explores different aspects and processes through dedicated chapters. The seven chapters explore recent research into a range of topics including laser assisted manufacturing, abrasive water jet milling and hybrid processes. Students and researchers will find the practical examples and new processes useful for both reference and for developing further processes. Industry professionals and materials engineers will also find Nontraditional M...

  15. Practical guide to machine vision software an introduction with LabVIEW

    CERN Document Server

    Kwon, Kye-Si

    2014-01-01

    For both students and engineers in R&D, this book explains machine vision in a concise, hands-on way, using the Vision Development Module of the LabView software by National Instruments. Following a short introduction to the basics of machine vision and the technical procedures of image acquisition, the book goes on to guide readers in the use of the various software functions of LabView's machine vision module. It covers typical machine vision tasks, including particle analysis, edge detection, pattern and shape matching, dimension measurements as well as optical character recognition, enabli

  16. Machine learning, computer vision, and probabilistic models in jet physics

    CERN Multimedia

    CERN. Geneva; NACHMAN, Ben

    2015-01-01

    In this talk we present recent developments in the application of machine learning, computer vision, and probabilistic models to the analysis and interpretation of LHC events. First, we will introduce the concept of jet-images and computer vision techniques for jet tagging. Jet images enabled the connection between jet substructure and tagging with the fields of computer vision and image processing for the first time, improving the performance to identify highly boosted W bosons with respect to state-of-the-art methods, and providing a new way to visualize the discriminant features of different classes of jets, adding a new capability to understand the physics within jets and to design more powerful jet tagging methods. Second, we will present Fuzzy jets: a new paradigm for jet clustering using machine learning methods. Fuzzy jets view jet clustering as an unsupervised learning task and incorporate a probabilistic assignment of particles to jets to learn new features of the jet structure. In particular, we wi...

  17. Machine vision system for automated detection of stained pistachio nuts

    Science.gov (United States)

    Pearson, Tom C.

    1995-01-01

    A machine vision system was developed to separate stained pistachio nuts, which comprise of about 5% of the California crop, from unstained nuts. The system may be used to reduce labor involved with manual grading or to remove aflatoxin contaminated product from low grade process streams. The system was tested on two different pistachio process streams: the bi- chromatic color sorter reject stream and the small nut shelling stock stream. The system had a minimum overall error rate of 14% for the bi-chromatic sorter reject stream and 15% for the small shelling stock stream.

  18. Development of machine vision system for PHWR fuel pellet inspection

    Energy Technology Data Exchange (ETDEWEB)

    Kamalesh Kumar, B.; Reddy, K.S.; Lakshminarayana, A.; Sastry, V.S.; Ramana Rao, A.V. [Nuclear Fuel Complex, Hyderabad, Andhra Pradesh (India); Joshi, M.; Deshpande, P.; Navathe, C.P.; Jayaraj, R.N. [Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh (India)

    2008-07-01

    Nuclear Fuel Complex, a constituent of Department of Atomic Energy; India is responsible for manufacturing nuclear fuel in India . Over a million Uranium-di-oxide pellets fabricated per annum need visual inspection . In order to overcome the limitations of human based visual inspection, NFC has undertaken the development of machine vision system. The development involved designing various subsystems viz. mechanical and control subsystem for handling and rotation of fuel pellets, lighting subsystem for illumination, image acquisition system, and image processing system and integration. This paper brings out details of various subsystems and results obtained from the trials conducted. (author)

  19. Traditional machining processes research advances

    CERN Document Server

    2015-01-01

    This book collects several examples of research in machining processes. Chapter 1 provides information on polycrystalline diamond tool material and its emerging applications. Chapter 2 is dedicated to the analysis of orthogonal cutting experiments using diamond-coated tools with force and temperature measurements. Chapter 3 describes the estimation of cutting forces and tool wear using modified mechanistic models in high performance turning. Chapter 4 contains information on cutting under gas shields for industrial applications. Chapter 5 is dedicated to the machinability of magnesium and its alloys. Chapter 6 provides information on grinding science. Finally, chapter 7 is dedicated to flexible integration of shape and functional modelling of machine tool spindles in a design framework.    

  20. The systematic development of a machine vision based milking robot

    NARCIS (Netherlands)

    Gouws, J.

    1993-01-01

    Agriculture involves unique interactions between man, machines, and various elements from nature. Therefore the implementation of advanced technology in agriculture holds different challenges than in other sectors of the economy. This dissertation stems from research into the application of

  1. INFIBRA: machine vision inspection of acrylic fiber production

    Science.gov (United States)

    Davies, Roger; Correia, Bento A. B.; Contreiras, Jose; Carvalho, Fernando D.

    1998-10-01

    This paper describes the implementation of INFIBRA, a machine vision system for the inspection of acrylic fiber production lines. The system was developed by INETI under a contract from Fisipe, Fibras Sinteticas de Portugal, S.A. At Fisipe there are ten production lines in continuous operation, each approximately 40 m in length. A team of operators used to perform periodic manual visual inspection of each line in conditions of high ambient temperature and humidity. It is not surprising that failures in the manual inspection process occurred with some frequency, with consequences that ranged from reduced fiber quality to production stoppages. The INFIBRA system architecture is a specialization of a generic, modular machine vision architecture based on a network of Personal Computers (PCs), each equipped with a low cost frame grabber. Each production line has a dedicated PC that performs automatic inspection, using specially designed metrology algorithms, via four video cameras located at key positions on the line. The cameras are mounted inside custom-built, hermetically sealed water-cooled housings to protect them from the unfriendly environment. The ten PCs, one for each production line, communicate with a central PC via a standard Ethernet connection. The operator controls all aspects of the inspection process, from configuration through to handling alarms, via a simple graphical interface on the central PC. At any time the operator can also view on the central PC's screen the live image from any one of the 40 cameras employed by the system.

  2. Intelligent Machine Vision Based Modeling and Positioning System in Sand Casting Process

    Directory of Open Access Journals (Sweden)

    Shahid Ikramullah Butt

    2017-01-01

    Full Text Available Advanced vision solutions enable manufacturers in the technology sector to reconcile both competitive and regulatory concerns and address the need for immaculate fault detection and quality assurance. The modern manufacturing has completely shifted from the manual inspections to the machine assisted vision inspection methodology. Furthermore, the research outcomes in industrial automation have revolutionized the whole product development strategy. The purpose of this research paper is to introduce a new scheme of automation in the sand casting process by means of machine vision based technology for mold positioning. Automation has been achieved by developing a novel system in which casting molds of different sizes, having different pouring cup location and radius, position themselves in front of the induction furnace such that the center of pouring cup comes directly beneath the pouring point of furnace. The coordinates of the center of pouring cup are found by using computer vision algorithms. The output is then transferred to a microcontroller which controls the alignment mechanism on which the mold is placed at the optimum location.

  3. Diamond turning on advanced machine tool prototypes

    International Nuclear Information System (INIS)

    Arnold, J.B.; Steger, P.J.

    1975-01-01

    Specular-quality metal mirrors are being machined for use in laser optical systems. The fabrication process incorporates special quality diamond tools and specially constructed turning machines. The machines are controlled by advanced control techniques and are housed in an environmentally controlled laboratory to insure ultimate machine stability and positional accuracy. The materials from which these mirrors are primarily produced are the softer face-center-cubic structure metals, such as gold, silver, copper, and aluminum. Mirror manufacturing by the single-point diamond machining process is in an early stage of development, but it is anticipated that this method will become the most economical way for producing high-quality metal mirrors. (U.S.)

  4. A survey of camera error sources in machine vision systems

    Science.gov (United States)

    Jatko, W. B.

    In machine vision applications, such as an automated inspection line, television cameras are commonly used to record scene intensity in a computer memory or frame buffer. Scene data from the image sensor can then be analyzed with a wide variety of feature-detection techniques. Many algorithms found in textbooks on image processing make the implicit simplifying assumption of an ideal input image with clearly defined edges and uniform illumination. The ideal image model is helpful to aid the student in understanding the principles of operation, but when these algorithms are blindly applied to real-world images the results can be unsatisfactory. This paper examines some common measurement errors found in camera sensors and their underlying causes, and possible methods of error compensation. The role of the camera in a typical image-processing system is discussed, with emphasis on the origination of signal distortions. The effects of such things as lighting, optics, and sensor characteristics are considered.

  5. A Machine Vision System for Automatically Grading Hardwood Lumber - (Industrial Metrology)

    Science.gov (United States)

    Richard W. Conners; Tai-Hoon Cho; Chong T. Ng; Thomas T. Drayer; Philip A. Araman; Robert L. Brisbon

    1992-01-01

    Any automatic system for grading hardwood lumber can conceptually be divided into two components. One of these is a machine vision system for locating and identifying grading defects. The other is an automatic grading program that accepts as input the output of the machine vision system and, based on these data, determines the grade of a board. The progress that has...

  6. Advanced manufacturing technologies modern machining, advanced joining, sustainable manufacturing

    CERN Document Server

    2017-01-01

    This book provides details and collective information on working principle, process mechanism, salient features, and unique applications of various advanced manufacturing techniques and processes belong. The book is divided in three sessions covering modern machining methods, advanced repair and joining techniques and, finally, sustainable manufacturing. The latest trends and research aspects of those fields are highlighted.

  7. Stereoscopic Machine-Vision System Using Projected Circles

    Science.gov (United States)

    Mackey, Jeffrey R.

    2010-01-01

    A machine-vision system capable of detecting obstacles large enough to damage or trap a robotic vehicle is undergoing development. The system includes (1) a pattern generator that projects concentric circles of laser light forward onto the terrain, (2) a stereoscopic pair of cameras that are aimed forward to acquire images of the circles, (3) a frame grabber and digitizer for acquiring image data from the cameras, and (4) a single-board computer that processes the data. The system is being developed as a prototype of machine- vision systems to enable robotic vehicles ( rovers ) on remote planets to avoid craters, large rocks, and other terrain features that could capture or damage the vehicles. Potential terrestrial applications of systems like this one could include terrain mapping, collision avoidance, navigation of robotic vehicles, mining, and robotic rescue. This system is based partly on the same principles as those of a prior stereoscopic machine-vision system in which the cameras acquire images of a single stripe of laser light that is swept forward across the terrain. However, this system is designed to afford improvements over some of the undesirable features of the prior system, including the need for a pan-and-tilt mechanism to aim the laser to generate the swept stripe, ambiguities in interpretation of the single-stripe image, the time needed to sweep the stripe across the terrain and process the data from many images acquired during that time, and difficulty of calibration because of the narrowness of the stripe. In this system, the pattern generator does not contain any moving parts and need not be mounted on a pan-and-tilt mechanism: the pattern of concentric circles is projected steadily in the forward direction. The system calibrates itself by use of data acquired during projection of the concentric-circle pattern onto a known target representing flat ground. The calibration- target image data are stored in the computer memory for use as a

  8. Machine-vision-based identification of broken inserts in edge profile milling heads

    NARCIS (Netherlands)

    Fernandez Robles, Laura; Azzopardi, George; Alegre, Enrique; Petkov, Nicolai

    This paper presents a reliable machine vision system to automatically detect inserts and determine if they are broken. Unlike the machining operations studied in the literature, we are dealing with edge milling head tools for aggressive machining of thick plates (up to 12 centimetres) in a single

  9. The Employment Effects of High-Technology: A Case Study of Machine Vision. Research Report No. 86-19.

    Science.gov (United States)

    Chen, Kan; Stafford, Frank P.

    A case study of machine vision was conducted to identify and analyze the employment effects of high technology in general. (Machine vision is the automatic acquisition and analysis of an image to obtain desired information for use in controlling an industrial activity, such as the visual sensor system that gives eyes to a robot.) Machine vision as…

  10. Accuracy of locating circular features using machine vision

    Science.gov (United States)

    Sklair, Cheryl W.; Hoff, William A.; Gatrell, Lance B.

    1992-03-01

    The ability to automatically locate objects using vision is a key technology for flexible, intelligent robotic operations. The vision task is facilitated by placing optical targets or markings in advance on the objects to be located. A number of researchers have advocated the use of circular target features as the features that can be most accurately located. This paper describes extensive analysis on circle centroid accuracy using both simulations and laboratory measurements. The work was part of an effort to design a video positioning sensor for NASA's Flight Telerobotic Servicer that would meet accuracy requirements. We have analyzed the main contributors to centroid error and have classified them into the following: (1) spatial quantization errors, (2) errors due to signal noise and random timing errors, (3) surface tilt errors, and (4) errors in modeling camera geometry. It is possible to compensate for the errors in (3) given an estimate of the tilt angle, and the errors from (4) by calibrating the intrinsic camera attributes. The errors in (1) and (2) cannot be compensated for, but they can be measured and their effects reduced somewhat. To characterize these error sources, we measured centroid repeatability under various conditions, including synchronization method, signal-to-noise ratio, and frequency attenuation. Although these results are specific to our video system and equipment, they provide a reference point that should be a characteristic of typical CCD cameras and digitization equipment.

  11. Considerations for implementing machine vision for detecting watercore in apples

    Science.gov (United States)

    Upchurch, Bruce L.; Throop, James A.

    1993-05-01

    Watercore in apples is a physiological disorder that affects the internal quality of the fruit. Growers can experience serious economic losses due to internal breakdown of the apple if watercored apples are placed unknowingly into long term storage. Economic losses can also occur if watercore is detected and the entire `lot' is downgraded; however, a gain can be obtained if watercored fruit is segregated and marketed as a premium apple soon after harvest. Watercore is characterized by the accumulation of fluid around the vascular bundles replacing air spaces between cells. This fluid reduces the light scattering properties of the apple. Using machine vision to measure the amount of light transmitted through the apple, watercored apples were segregated according to the severity of damage. However, the success of the method was dependent upon two factors. First, the sensitivity of the camera dictated the classes of watercore that could be detected. A highly sensitive camera could separate the less severe classes at the expense of not distinguishing between the more severe classes. A second factor which is common to most quality attributes in perishable commodities is the elapsed time after harvest at which the measurement was made. At the end of the study, light transmission levels decreased to undetectable levels with the initial camera settings for all watercore classes.

  12. A method of size inspection for fruit with machine vision

    Science.gov (United States)

    Rao, Xiuqin; Ying, Yibin

    2005-11-01

    A real time machine vision system for fruit quality inspection was developed, which consists of rollers, an encoder, a lighting chamber, a TMS-7DSP CCD camera (PULNIX Inc.), a computer (P4 1.8G, 128M) and a set of grading controller. An image was binary, and the edge was detected with line-scanned based digit image description, and the MER was applied to detected size of the fruit, but failed. The reason for the result was that the test point with MER was different from which was done with vernier caliper. An improved method was developed, which was called as software vernier caliper. A line between weight O of the fruit and a point A on the edge was drawn, and then the crossed point between line OA and the edge was calculated, which was noted as B, a point C between AB was selected, and the point D on the other side was searched by a way to make CD was vertical to AB, by move the point C between point A and B, A new point D was searched. The maximum length of CD was recorded as an extremum value. By move point A from start to the half point on the edge, a serial of CD was gotten. 80 navel oranges were tested, the maximum error of the diameter was less than 1mm.

  13. Man-machine interface requirements - advanced technology

    Science.gov (United States)

    Remington, R. W.; Wiener, E. L.

    1984-01-01

    Research issues and areas are identified where increased understanding of the human operator and the interaction between the operator and the avionics could lead to improvements in the performance of current and proposed helicopters. Both current and advanced helicopter systems and avionics are considered. Areas critical to man-machine interface requirements include: (1) artificial intelligence; (2) visual displays; (3) voice technology; (4) cockpit integration; and (5) pilot work loads and performance.

  14. Fire protection for launch facilities using machine vision fire detection

    Science.gov (United States)

    Schwartz, Douglas B.

    1993-02-01

    Fire protection of critical space assets, including launch and fueling facilities and manned flight hardware, demands automatic sensors for continuous monitoring, and in certain high-threat areas, fast-reacting automatic suppression systems. Perhaps the most essential characteristic for these fire detection and suppression systems is high reliability; in other words, fire detectors should alarm only on actual fires and not be falsely activated by extraneous sources. Existing types of fire detectors have been greatly improved in the past decade; however, fundamental limitations of their method of operation leaves open a significant possibility of false alarms and restricts their usefulness. At the Civil Engineering Laboratory at Tyndall Air Force Base in Florida, a new type of fire detector is under development which 'sees' a fire visually, like a human being, and makes a reliable decision based on known visual characteristics of flames. Hardware prototypes of the Machine Vision (MV) Fire Detection System have undergone live fire tests and demonstrated extremely high accuracy in discriminating actual fires from false alarm sources. In fact, this technology promises to virtually eliminate false activations. This detector could be used to monitor fueling facilities, launch towers, clean rooms, and other high-value and high-risk areas. Applications can extend to space station and in-flight shuttle operations as well; fiber optics and remote camera heads enable the system to see around obstructed areas and crew compartments. The capability of the technology to distinguish fires means that fire detection can be provided even during maintenance operations, such as welding.

  15. Machining, joining and modifications of advanced materials

    CERN Document Server

    Altenbach, Holm

    2016-01-01

    This book presents the latest advances in mechanical and materials engineering applied to the machining, joining and modification of modern engineering materials. The contributions cover the classical fields of casting, forming and injection moulding as representative manufacturing methods, whereas additive manufacturing methods (rapid prototyping and laser sintering) are treated as more innovative and recent technologies that are paving the way for the manufacturing of shapes and features that traditional methods are unable to deliver. The book also explores water jet cutting as an innovative cutting technology that avoids the heat build-up typical of classical mechanical cutting. It introduces readers to laser cutting as an alternative technology for the separation of materials, and to classical bonding and friction stir welding approaches in the context of joining technologies. In many cases, forming and machining technologies require additional post-treatment to achieve the required level of surface quali...

  16. Using a vision cognitive algorithm to schedule virtual machines

    OpenAIRE

    Zhao Jiaqi; Mhedheb Yousri; Tao Jie; Jrad Foued; Liu Qinghuai; Streit Achim

    2014-01-01

    Scheduling virtual machines is a major research topic for cloud computing, because it directly influences the performance, the operation cost and the quality of services. A large cloud center is normally equipped with several hundred thousand physical machines. The mission of the scheduler is to select the best one to host a virtual machine. This is an NPhard global optimization problem with grand challenges for researchers. This work studies the Virtual Machine (VM) scheduling problem on the...

  17. Advanced robot vision system for nuclear power plants

    International Nuclear Information System (INIS)

    Onoguchi, Kazunori; Kawamura, Atsuro; Nakayama, Ryoichi.

    1991-01-01

    We have developed a robot vision system for advanced robots used in nuclear power plants, under a contract with the Agency of Industrial Science and Technology of the Ministry of International Trade and Industry. This work is part of the large-scale 'advanced robot technology' project. The robot vision system consists of self-location measurement, obstacle detection, and object recognition subsystems, which are activated by a total control subsystem. This paper presents details of these subsystems and the experimental results obtained. (author)

  18. Advanced Machine learning Algorithm Application for Rotating Machine Health Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kanemoto, Shigeru; Watanabe, Masaya [The University of Aizu, Aizuwakamatsu (Japan); Yusa, Noritaka [Tohoku University, Sendai (Japan)

    2014-08-15

    The present paper tries to evaluate the applicability of conventional sound analysis techniques and modern machine learning algorithms to rotating machine health monitoring. These techniques include support vector machine, deep leaning neural network, etc. The inner ring defect and misalignment anomaly sound data measured by a rotating machine mockup test facility are used to verify the above various kinds of algorithms. Although we cannot find remarkable difference of anomaly discrimination performance, some methods give us the very interesting eigen patterns corresponding to normal and abnormal states. These results will be useful for future more sensitive and robust anomaly monitoring technology.

  19. Advanced Machine learning Algorithm Application for Rotating Machine Health Monitoring

    International Nuclear Information System (INIS)

    Kanemoto, Shigeru; Watanabe, Masaya; Yusa, Noritaka

    2014-01-01

    The present paper tries to evaluate the applicability of conventional sound analysis techniques and modern machine learning algorithms to rotating machine health monitoring. These techniques include support vector machine, deep leaning neural network, etc. The inner ring defect and misalignment anomaly sound data measured by a rotating machine mockup test facility are used to verify the above various kinds of algorithms. Although we cannot find remarkable difference of anomaly discrimination performance, some methods give us the very interesting eigen patterns corresponding to normal and abnormal states. These results will be useful for future more sensitive and robust anomaly monitoring technology

  20. Protyping machine vision software on the World Wide Web

    Science.gov (United States)

    Karantalis, George; Batchelor, Bruce G.

    1998-10-01

    Interactive image processing is a proven technique for analyzing industrial vision applications and building prototype systems. Several of the previous implementations have used dedicated hardware to perform the image processing, with a top layer of software providing a convenient user interface. More recently, self-contained software packages have been devised and these run on a standard computer. The advent of the Java programming language has made it possible to write platform-independent software, operating over the Internet, or a company-wide Intranet. Thus, there arises the possibility of designing at least some shop-floor inspection/control systems, without the vision engineer ever entering the factories where they will be used. It successful, this project will have a major impact on the productivity of vision systems designers.

  1. Computer vision and machine learning with RGB-D sensors

    CERN Document Server

    Shao, Ling; Kohli, Pushmeet

    2014-01-01

    This book presents an interdisciplinary selection of cutting-edge research on RGB-D based computer vision. Features: discusses the calibration of color and depth cameras, the reduction of noise on depth maps and methods for capturing human performance in 3D; reviews a selection of applications which use RGB-D information to reconstruct human figures, evaluate energy consumption and obtain accurate action classification; presents an approach for 3D object retrieval and for the reconstruction of gas flow from multiple Kinect cameras; describes an RGB-D computer vision system designed to assist t

  2. Toward The Robot Eye: Isomorphic Representation For Machine Vision

    Science.gov (United States)

    Schenker, Paul S.

    1981-10-01

    This paper surveys some issues confronting the conception of models for general purpose vision systems. We draw parallels to requirements of human performance under visual transformations naturally occurring in the ecological environment. We argue that successful real world vision systems require a strong component of analogical reasoning. We propose a course of investigation into appropriate models, and illustrate some of these proposals by a simple example. Our study emphasizes the potential importance of isomorphic representations - models of image and scene which embed a metric of their respective spaces, and whose topological structure facilitates identification of scene descriptors that are invariant under viewing transformations.

  3. Miniaturisation of Pressure-Sensitive Paint Measurement Systems Using Low-Cost, Miniaturised Machine Vision Cameras

    Directory of Open Access Journals (Sweden)

    Mark Kenneth Quinn

    2017-07-01

    Full Text Available Measurements of pressure-sensitive paint (PSP have been performed using new or non-scientific imaging technology based on machine vision tools. Machine vision camera systems are typically used for automated inspection or process monitoring. Such devices offer the benefits of lower cost and reduced size compared with typically scientific-grade cameras; however, their optical qualities and suitability have yet to be determined. This research intends to show relevant imaging characteristics and also show the applicability of such imaging technology for PSP. Details of camera performance are benchmarked and compared to standard scientific imaging equipment and subsequent PSP tests are conducted using a static calibration chamber. The findings demonstrate that machine vision technology can be used for PSP measurements, opening up the possibility of performing measurements on-board small-scale model such as those used for wind tunnel testing or measurements in confined spaces with limited optical access.

  4. Miniaturisation of Pressure-Sensitive Paint Measurement Systems Using Low-Cost, Miniaturised Machine Vision Cameras.

    Science.gov (United States)

    Quinn, Mark Kenneth; Spinosa, Emanuele; Roberts, David A

    2017-07-25

    Measurements of pressure-sensitive paint (PSP) have been performed using new or non-scientific imaging technology based on machine vision tools. Machine vision camera systems are typically used for automated inspection or process monitoring. Such devices offer the benefits of lower cost and reduced size compared with typically scientific-grade cameras; however, their optical qualities and suitability have yet to be determined. This research intends to show relevant imaging characteristics and also show the applicability of such imaging technology for PSP. Details of camera performance are benchmarked and compared to standard scientific imaging equipment and subsequent PSP tests are conducted using a static calibration chamber. The findings demonstrate that machine vision technology can be used for PSP measurements, opening up the possibility of performing measurements on-board small-scale model such as those used for wind tunnel testing or measurements in confined spaces with limited optical access.

  5. A two-level real-time vision machine combining coarse and fine grained parallelism

    DEFF Research Database (Denmark)

    Jensen, Lars Baunegaard With; Kjær-Nielsen, Anders; Pauwels, Karl

    2010-01-01

    In this paper, we describe a real-time vision machine having a stereo camera as input generating visual information on two different levels of abstraction. The system provides visual low-level and mid-level information in terms of dense stereo and optical flow, egomotion, indicating areas...... a factor 90 and a reduction of latency of a factor 26 compared to processing on a single CPU--core. Since the vision machine provides generic visual information it can be used in many contexts. Currently it is used in a driver assistance context as well as in two robotic applications....

  6. Machine vision applications for physical security, quality assurance and personnel dosimetry

    International Nuclear Information System (INIS)

    Kar, S.; Shrikhande, S.V.; Suresh Babu, R.M.

    2016-01-01

    Machine vision is the technology used to provide imaging-based solutions to variety of applications, relevant to nuclear facilities and other industries. It uses computerized image analysis for automatic inspection, process control, object sorting, parts assembly, human identity authentication, and so on. In this article we discuss the in-house developed machine vision systems at EISD, BARC for three specific areas: Biometric recognition for physical security, visual inspection for QA of fuel pellets, and fast neutron personnel dosimetry. The advantages in using these systems include objective decision making, reduced man-rem, operational consistency, and capability of statistical quantitative analysis. (author)

  7. Machine vision system for remote inspection in hazardous environments

    International Nuclear Information System (INIS)

    Mukherjee, J.K.; Krishna, K.Y.V.; Wadnerkar, A.

    2011-01-01

    Visual Inspection of radioactive components need remote inspection systems for human safety and equipment (CCD imagers) protection from radiation. Elaborate view transport optics is required to deliver images at safe areas while maintaining fidelity of image data. Automation of the system requires robots to operate such equipment. A robotized periscope has been developed to meet the challenge of remote safe viewing and vision based inspection. (author)

  8. Advanced Electrical Machines and Machine-Based Systems for Electric and Hybrid Vehicles

    OpenAIRE

    Ming Cheng; Le Sun; Giuseppe Buja; Lihua Song

    2015-01-01

    The paper presents a number of advanced solutions on electric machines and machine-based systems for the powertrain of electric vehicles (EVs). Two types of systems are considered, namely the drive systems designated to the EV propulsion and the power split devices utilized in the popular series-parallel hybrid electric vehicle architecture. After reviewing the main requirements for the electric drive systems, the paper illustrates advanced electric machine topologies, including a stator perm...

  9. Using Machine Learning to Advance Personality Assessment and Theory.

    Science.gov (United States)

    Bleidorn, Wiebke; Hopwood, Christopher James

    2018-05-01

    Machine learning has led to important advances in society. One of the most exciting applications of machine learning in psychological science has been the development of assessment tools that can powerfully predict human behavior and personality traits. Thus far, machine learning approaches to personality assessment have focused on the associations between social media and other digital records with established personality measures. The goal of this article is to expand the potential of machine learning approaches to personality assessment by embedding it in a more comprehensive construct validation framework. We review recent applications of machine learning to personality assessment, place machine learning research in the broader context of fundamental principles of construct validation, and provide recommendations for how to use machine learning to advance our understanding of personality.

  10. A Multiple Sensor Machine Vision System for Automatic Hardwood Feature Detection

    Science.gov (United States)

    D. Earl Kline; Richard W. Conners; Daniel L. Schmoldt; Philip A. Araman; Robert L. Brisbin

    1993-01-01

    A multiple sensor machine vision prototype is being developed to scan full size hardwood lumber at industrial speeds for automatically detecting features such as knots holes, wane, stain, splits, checks, and color. The prototype integrates a multiple sensor imaging system, a materials handling system, a computer system, and application software. The prototype provides...

  11. Machine vision-based high-resolution weed mapping and patch-sprayer performance simulation

    NARCIS (Netherlands)

    Tang, L.; Tian, L.F.; Steward, B.L.

    1999-01-01

    An experimental machine vision-based patch-sprayer was developed. This sprayer was primarily designed to do real-time weed density estimation and variable herbicide application rate control. However, the sprayer also had the capability to do high-resolution weed mapping if proper mapping techniques

  12. Distance based control system for machine vision-based selective spraying

    NARCIS (Netherlands)

    Steward, B.L.; Tian, L.F.; Tang, L.

    2002-01-01

    For effective operation of a selective sprayer with real-time local weed sensing, herbicides must be delivered, accurately to weed targets in the field. With a machine vision-based selective spraying system, acquiring sequential images and switching nozzles on and off at the correct locations are

  13. Performance of Color Camera Machine Vision in Automated Furniture Rough Mill Systems

    Science.gov (United States)

    D. Earl Kline; Agus Widoyoko; Janice K. Wiedenbeck; Philip A. Araman

    1998-01-01

    The objective of this study was to evaluate the performance of color camera machine vision for lumber processing in a furniture rough mill. The study used 134 red oak boards to compare the performance of automated gang-rip-first rough mill yield based on a prototype color camera lumber inspection system developed at Virginia Tech with both estimated optimum rough mill...

  14. Gall mite inspection on dormant black currant buds using machine vision

    DEFF Research Database (Denmark)

    Nielsen, M. R.; Stigaard Laursen, Morten; Jonassen, M. S.

    2013-01-01

    This paper presents a novel machine vision-based approach detecting and mapping gall mite infection in dormant buds on black currant bushes. A vehicle was fitted with four cameras and RTK-GPS. Results compared automatic detection to human decisions based on the images, and by mapping the results...

  15. Reflections on the Development of a Machine Vision Technology for the Forest Products

    Science.gov (United States)

    Richard W. Conners; D.Earl Kline; Philip A. Araman; Robert L. Brisbon

    1992-01-01

    The authors have approximately 25 years experience in developing machine vision technology for the forest products industry. Based on this experience this paper will attempt to realistically predict what the future holds for this technology. In particular, this paper will attempt to describe some of the benefits this technology will offer, describe how the technology...

  16. Investigation into the use of smartphone as a machine vision device for engineering metrology and flaw detection, with focus on drilling

    Science.gov (United States)

    Razdan, Vikram; Bateman, Richard

    2015-05-01

    This study investigates the use of a Smartphone and its camera vision capabilities in Engineering metrology and flaw detection, with a view to develop a low cost alternative to Machine vision systems which are out of range for small scale manufacturers. A Smartphone has to provide a similar level of accuracy as Machine Vision devices like Smart cameras. The objective set out was to develop an App on an Android Smartphone, incorporating advanced Computer vision algorithms written in java code. The App could then be used for recording measurements of Twist Drill bits and hole geometry, and analysing the results for accuracy. A detailed literature review was carried out for in-depth study of Machine vision systems and their capabilities, including a comparison between the HTC One X Android Smartphone and the Teledyne Dalsa BOA Smart camera. A review of the existing metrology Apps in the market was also undertaken. In addition, the drilling operation was evaluated to establish key measurement parameters of a twist Drill bit, especially flank wear and diameter. The methodology covers software development of the Android App, including the use of image processing algorithms like Gaussian Blur, Sobel and Canny available from OpenCV software library, as well as designing and developing the experimental set-up for carrying out the measurements. The results obtained from the experimental set-up were analysed for geometry of Twist Drill bits and holes, including diametrical measurements and flaw detection. The results show that Smartphones like the HTC One X have the processing power and the camera capability to carry out metrological tasks, although dimensional accuracy achievable from the Smartphone App is below the level provided by Machine vision devices like Smart cameras. A Smartphone with mechanical attachments, capable of image processing and having a reasonable level of accuracy in dimensional measurement, has the potential to become a handy low-cost Machine vision

  17. 3D Machine Vision and Additive Manufacturing: Concurrent Product and Process Development

    International Nuclear Information System (INIS)

    Ilyas, Ismet P

    2013-01-01

    The manufacturing environment rapidly changes in turbulence fashion. Digital manufacturing (DM) plays a significant role and one of the key strategies in setting up vision and strategic planning toward the knowledge based manufacturing. An approach of combining 3D machine vision (3D-MV) and an Additive Manufacturing (AM) may finally be finding its niche in manufacturing. This paper briefly overviews the integration of the 3D machine vision and AM in concurrent product and process development, the challenges and opportunities, the implementation of the 3D-MV and AM at POLMAN Bandung in accelerating product design and process development, and discusses a direct deployment of this approach on a real case from our industrial partners that have placed this as one of the very important and strategic approach in research as well as product/prototype development. The strategic aspects and needs of this combination approach in research, design and development are main concerns of the presentation.

  18. The use of holographic and diffractive optics for optimized machine vision illumination for critical dimension inspection

    Science.gov (United States)

    Lizotte, Todd E.; Ohar, Orest

    2004-02-01

    Illuminators used in machine vision applications typically produce non-uniform illumination onto the targeted surface being observed, causing a variety of problems with machine vision alignment or measurement. In most circumstances the light source is broad spectrum, leading to further problems with image quality when viewed through a CCD camera. Configured with a simple light bulb and a mirrored reflector and/or frosted glass plates, these general illuminators are appropriate for only macro applications. Over the last 5 years newer illuminators have hit the market including circular or rectangular arrays of high intensity light emitting diodes. These diode arrays are used to create monochromatic flood illumination of a surface that is to be inspected. The problem with these illumination techniques is that most of the light does not illuminate the desired areas, but broadly spreads across the surface, or when integrated with diffuser elements, tend to create similar shadowing effects to the broad spectrum light sources. In many cases a user will try to increase the performance of these illuminators by adding several of these assemblies together, increasing the intensity or by moving the illumination source closer or farther from the surface being inspected. In this case these non-uniform techniques can lead to machine vision errors, where the computer machine vision may read false information, such as interpreting non-uniform lighting or shadowing effects as defects. This paper will cover a technique involving the use of holographic / diffractive hybrid optical elements that are integrated into standard and customized light sources used in the machine vision industry. The bulk of the paper will describe the function and fabrication of the holographic/diffractive optics and how they can be tailored to improve illuminator design. Further information will be provided a specific design and examples of it in operation will be disclosed.

  19. Characteristics of the Arcing Plasma Formation Effect in Spark-Assisted Chemical Engraving of Glass, Based on Machine Vision

    OpenAIRE

    Chao-Ching Ho; Dung-Sheng Wu

    2018-01-01

    Spark-assisted chemical engraving (SACE) is a non-traditional machining technology that is used to machine electrically non-conducting materials including glass, ceramics, and quartz. The processing accuracy, machining efficiency, and reproducibility are the key factors in the SACE process. In the present study, a machine vision method is applied to monitor and estimate the status of a SACE-drilled hole in quartz glass. During the machining of quartz glass, the spring-fed tool electrode was p...

  20. A System of Driving Fatigue Detection Based on Machine Vision and Its Application on Smart Device

    Directory of Open Access Journals (Sweden)

    Wanzeng Kong

    2015-01-01

    Full Text Available Driving fatigue is one of the most important factors in traffic accidents. In this paper, we proposed an improved strategy and practical system to detect driving fatigue based on machine vision and Adaboost algorithm. Kinds of face and eye classifiers are well trained by Adaboost algorithm in advance. The proposed strategy firstly detects face efficiently by classifiers of front face and deflected face. Then, candidate region of eye is determined according to geometric distribution of facial organs. Finally, trained classifiers of open eyes and closed eyes are used to detect eyes in the candidate region quickly and accurately. The indexes which consist of PERCLOS and duration of closed-state are extracted in video frames real time. Moreover, the system is transplanted into smart device, that is, smartphone or tablet, due to its own camera and powerful calculation performance. Practical tests demonstrated that the proposed system can detect driver fatigue with real time and high accuracy. As the system has been planted into portable smart device, it could be widely used for driving fatigue detection in daily life.

  1. Automatic pellet density checking machine using vision technique

    International Nuclear Information System (INIS)

    Kumar, Suman; Raju, Y.S.; Raj Kumar, J.V.; Sairam, S.; Sheela; Hemantha Rao, G.V.S.

    2012-01-01

    Uranium di-oxide powder prepared through chemical process is converted to green pellets through the powder metallurgy route of precompaction and final compaction operations. These green pellets are kept in a molybdenum boat, which consists of a molybdenum base and a shroud. The boats are passed through the high temperature sintering furnaces to achieve required density of pellets. At present MIL standard 105 E is followed for measuring density of sintered pellets in the boat. As per AQL 2.5 of MIL standard, five pellets are collected from each boat, which contains approximately 800 nos of pellets. The densities of these collected pellets are measured. If anyone pellet density is less than the required value, the entire boat of pellets are rejected and sent back for dissolution for further processing. An Automatic Pellet Density Checking Machine (APDCM) was developed to salvage the acceptable density pellets from the rejected boat of pellets

  2. Detection of Two Types of Weed through Machine Vision System: Improving Site-Specific Spraying

    Directory of Open Access Journals (Sweden)

    S Sabzi

    2018-03-01

    Full Text Available Introduction With increase in world population, one of the approaches to provide food is using site-specific management system or so-called precision farming. In this management system, management of crop production inputs such as fertilizers, lime, herbicides, seed, etc. is done based on farm location features, with the aim of reducing waste, increasing revenues and maintaining environmental quality. Precision farming involves various aspects and is applicable on farm fields at all stages of tillage, planting, and harvesting. Today, in line with precision farming purposes, and to control weeds, pests, and diseases, all the efforts of specialists in precision farming is to reduce the amount of chemical substances in products. Although herbicides improve the quality and quantity of agricultural production, the possibility of applying inappropriately and unreasonably is very high. If the dose is too low, weed control is not performed correctly. Otherwise, If the dosage is too high, herbicides can be toxic for crops, can be transferred to soil and stay in it for a long time, and can penetrate to groundwater. By applying herbicides to variable rate, the potential for significant cost savings and reduced environmental damage to the products and environment will be possible. It is evident that in large-scale modern agriculture, individual management of each plant without using some advanced technologies is not possible. using machine vision systems is one of precision farming techniques to identify weeds. This study aimed to detect three plant such as Centaurea depressa M.B, Malvaneglecta and Potato plant using machine vision system. Materials and Methods In order to train algorithm of designed machine vision system, a platform that moved with the speed of 10.34 was used for shooting of Marfona potato fields. This platform was consisted of a chassis, camera (DFK23GM021,CMOS, 120 f/s, Made in Germany, and a processor system equipped with Matlab 2015

  3. Express quality control of chicken eggs by machine vision

    Science.gov (United States)

    Gorbunova, Elena V.; Chertov, Aleksandr N.; Peretyagin, Vladimir S.; Korotaev, Valery V.; Arbuzova, Evgeniia A.

    2017-06-01

    The urgency of the task of analyzing the foodstuffs quality is determined by the strategy for the formation of a healthy lifestyle and the rational nutrition of the world population. This applies to products, such as chicken eggs. In particular, it is necessary to control the chicken eggs quality at the farm production prior to incubation in order to eliminate the possible hereditary diseases, as well as high embryonic mortality and a sharp decrease in the quality of the bred young. Up to this day, in the market there are no objective instruments of contactless express quality control as analytical equipment that allow the high-precision quality examination of the chicken eggs, which is determined by the color parameters of the eggshell (color uniformity) and yolk of eggs, and by the presence in the eggshell of various defects (cracks, growths, wrinkles, dirty). All mentioned features are usually evaluated only visually (subjectively) with the help of normalized color standards and ovoscopes. Therefore, this work is devoted to the investigation of the application opportunities of contactless express control method with the help of technical vision to implement the chicken eggs' quality analysis. As a result of the studies, a prototype with the appropriate software was proposed. Experimental studies of this equipment on a representative sample of eggs from chickens of different breeds have been carried out (the total number of analyzed samples exceeds 300 pieces). The correctness of the color analysis was verified by spectrophotometric studies of the surface of the eggshell.

  4. Machine Vision-Based Measurement Systems for Fruit and Vegetable Quality Control in Postharvest.

    Science.gov (United States)

    Blasco, José; Munera, Sandra; Aleixos, Nuria; Cubero, Sergio; Molto, Enrique

    Individual items of any agricultural commodity are different from each other in terms of colour, shape or size. Furthermore, as they are living thing, they change their quality attributes over time, thereby making the development of accurate automatic inspection machines a challenging task. Machine vision-based systems and new optical technologies make it feasible to create non-destructive control and monitoring tools for quality assessment to ensure adequate accomplishment of food standards. Such systems are much faster than any manual non-destructive examination of fruit and vegetable quality, thus allowing the whole production to be inspected with objective and repeatable criteria. Moreover, current technology makes it possible to inspect the fruit in spectral ranges beyond the sensibility of the human eye, for instance in the ultraviolet and near-infrared regions. Machine vision-based applications require the use of multiple technologies and knowledge, ranging from those related to image acquisition (illumination, cameras, etc.) to the development of algorithms for spectral image analysis. Machine vision-based systems for inspecting fruit and vegetables are targeted towards different purposes, from in-line sorting into commercial categories to the detection of contaminants or the distribution of specific chemical compounds on the product's surface. This chapter summarises the current state of the art in these techniques, starting with systems based on colour images for the inspection of conventional colour, shape or external defects and then goes on to consider recent developments in spectral image analysis for internal quality assessment or contaminant detection.

  5. SAD-Based Stereo Vision Machine on a System-on-Programmable-Chip (SoPC)

    Science.gov (United States)

    Zhang, Xiang; Chen, Zhangwei

    2013-01-01

    This paper, proposes a novel solution for a stereo vision machine based on the System-on-Programmable-Chip (SoPC) architecture. The SOPC technology provides great convenience for accessing many hardware devices such as DDRII, SSRAM, Flash, etc., by IP reuse. The system hardware is implemented in a single FPGA chip involving a 32-bit Nios II microprocessor, which is a configurable soft IP core in charge of managing the image buffer and users' configuration data. The Sum of Absolute Differences (SAD) algorithm is used for dense disparity map computation. The circuits of the algorithmic module are modeled by the Matlab-based DSP Builder. With a set of configuration interfaces, the machine can process many different sizes of stereo pair images. The maximum image size is up to 512 K pixels. This machine is designed to focus on real time stereo vision applications. The stereo vision machine offers good performance and high efficiency in real time. Considering a hardware FPGA clock of 90 MHz, 23 frames of 640 × 480 disparity maps can be obtained in one second with 5 × 5 matching window and maximum 64 disparity pixels. PMID:23459385

  6. Advanced Electrical Machines and Machine-Based Systems for Electric and Hybrid Vehicles

    Directory of Open Access Journals (Sweden)

    Ming Cheng

    2015-09-01

    Full Text Available The paper presents a number of advanced solutions on electric machines and machine-based systems for the powertrain of electric vehicles (EVs. Two types of systems are considered, namely the drive systems designated to the EV propulsion and the power split devices utilized in the popular series-parallel hybrid electric vehicle architecture. After reviewing the main requirements for the electric drive systems, the paper illustrates advanced electric machine topologies, including a stator permanent magnet (stator-PM motor, a hybrid-excitation motor, a flux memory motor and a redundant motor structure. Then, it illustrates advanced electric drive systems, such as the magnetic-geared in-wheel drive and the integrated starter generator (ISG. Finally, three machine-based implementations of the power split devices are expounded, built up around the dual-rotor PM machine, the dual-stator PM brushless machine and the magnetic-geared dual-rotor machine. As a conclusion, the development trends in the field of electric machines and machine-based systems for EVs are summarized.

  7. An explainable deep machine vision framework for plant stress phenotyping.

    Science.gov (United States)

    Ghosal, Sambuddha; Blystone, David; Singh, Asheesh K; Ganapathysubramanian, Baskar; Singh, Arti; Sarkar, Soumik

    2018-05-01

    Current approaches for accurate identification, classification, and quantification of biotic and abiotic stresses in crop research and production are predominantly visual and require specialized training. However, such techniques are hindered by subjectivity resulting from inter- and intrarater cognitive variability. This translates to erroneous decisions and a significant waste of resources. Here, we demonstrate a machine learning framework's ability to identify and classify a diverse set of foliar stresses in soybean [ Glycine max (L.) Merr.] with remarkable accuracy. We also present an explanation mechanism, using the top-K high-resolution feature maps that isolate the visual symptoms used to make predictions. This unsupervised identification of visual symptoms provides a quantitative measure of stress severity, allowing for identification (type of foliar stress), classification (low, medium, or high stress), and quantification (stress severity) in a single framework without detailed symptom annotation by experts. We reliably identified and classified several biotic (bacterial and fungal diseases) and abiotic (chemical injury and nutrient deficiency) stresses by learning from over 25,000 images. The learned model is robust to input image perturbations, demonstrating viability for high-throughput deployment. We also noticed that the learned model appears to be agnostic to species, seemingly demonstrating an ability of transfer learning. The availability of an explainable model that can consistently, rapidly, and accurately identify and quantify foliar stresses would have significant implications in scientific research, plant breeding, and crop production. The trained model could be deployed in mobile platforms (e.g., unmanned air vehicles and automated ground scouts) for rapid, large-scale scouting or as a mobile application for real-time detection of stress by farmers and researchers. Copyright © 2018 the Author(s). Published by PNAS.

  8. An explainable deep machine vision framework for plant stress phenotyping

    Science.gov (United States)

    Blystone, David; Ganapathysubramanian, Baskar; Singh, Arti; Sarkar, Soumik

    2018-01-01

    Current approaches for accurate identification, classification, and quantification of biotic and abiotic stresses in crop research and production are predominantly visual and require specialized training. However, such techniques are hindered by subjectivity resulting from inter- and intrarater cognitive variability. This translates to erroneous decisions and a significant waste of resources. Here, we demonstrate a machine learning framework’s ability to identify and classify a diverse set of foliar stresses in soybean [Glycine max (L.) Merr.] with remarkable accuracy. We also present an explanation mechanism, using the top-K high-resolution feature maps that isolate the visual symptoms used to make predictions. This unsupervised identification of visual symptoms provides a quantitative measure of stress severity, allowing for identification (type of foliar stress), classification (low, medium, or high stress), and quantification (stress severity) in a single framework without detailed symptom annotation by experts. We reliably identified and classified several biotic (bacterial and fungal diseases) and abiotic (chemical injury and nutrient deficiency) stresses by learning from over 25,000 images. The learned model is robust to input image perturbations, demonstrating viability for high-throughput deployment. We also noticed that the learned model appears to be agnostic to species, seemingly demonstrating an ability of transfer learning. The availability of an explainable model that can consistently, rapidly, and accurately identify and quantify foliar stresses would have significant implications in scientific research, plant breeding, and crop production. The trained model could be deployed in mobile platforms (e.g., unmanned air vehicles and automated ground scouts) for rapid, large-scale scouting or as a mobile application for real-time detection of stress by farmers and researchers. PMID:29666265

  9. Quality Evaluation for Appearance of Needle Green Tea Based on Machine Vision and Process Parameters

    DEFF Research Database (Denmark)

    Dong, Chunwang; Zhu, Hongkai; Zhou, Xiaofen

    2017-01-01

    ), extreme learning machine (ELM) and strong predictor integration algorithm (ELM-AdaBoost). The comparison of the results showed that the ELM-AdaBoost model based on image characteristics had the best performance (RPD was more than 2). Its predictive performance was superior to other models, with smaller......, and modeling faster (0.014~0.281 s). AdaBoost method, which was a hybrid integrated algorithm, can further promote the accuracy and generalization capability of the model. The above conclusions indicated that it was feasible to evaluate the quality of appearance of needle green tea based on machine vision...

  10. Recent Advances in Predictive (Machine) Learning

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, J

    2004-01-24

    Prediction involves estimating the unknown value of an attribute of a system under study given the values of other measured attributes. In prediction (machine) learning the prediction rule is derived from data consisting of previously solved cases. Most methods for predictive learning were originated many years ago at the dawn of the computer age. Recently two new techniques have emerged that have revitalized the field. These are support vector machines and boosted decision trees. This paper provides an introduction to these two new methods tracing their respective ancestral roots to standard kernel methods and ordinary decision trees.

  11. Automatic Quality Inspection of Percussion Cap Mass Production by Means of 3D Machine Vision and Machine Learning Techniques

    Science.gov (United States)

    Tellaeche, A.; Arana, R.; Ibarguren, A.; Martínez-Otzeta, J. M.

    The exhaustive quality control is becoming very important in the world's globalized market. One of these examples where quality control becomes critical is the percussion cap mass production. These elements must achieve a minimum tolerance deviation in their fabrication. This paper outlines a machine vision development using a 3D camera for the inspection of the whole production of percussion caps. This system presents multiple problems, such as metallic reflections in the percussion caps, high speed movement of the system and mechanical errors and irregularities in percussion cap placement. Due to these problems, it is impossible to solve the problem by traditional image processing methods, and hence, machine learning algorithms have been tested to provide a feasible classification of the possible errors present in the percussion caps.

  12. A low-cost machine vision system for the recognition and sorting of small parts

    Science.gov (United States)

    Barea, Gustavo; Surgenor, Brian W.; Chauhan, Vedang; Joshi, Keyur D.

    2018-04-01

    An automated machine vision-based system for the recognition and sorting of small parts was designed, assembled and tested. The system was developed to address a need to expose engineering students to the issues of machine vision and assembly automation technology, with readily available and relatively low-cost hardware and software. This paper outlines the design of the system and presents experimental performance results. Three different styles of plastic gears, together with three different styles of defective gears, were used to test the system. A pattern matching tool was used for part classification. Nine experiments were conducted to demonstrate the effects of changing various hardware and software parameters, including: conveyor speed, gear feed rate, classification, and identification score thresholds. It was found that the system could achieve a maximum system accuracy of 95% at a feed rate of 60 parts/min, for a given set of parameter settings. Future work will be looking at the effect of lighting.

  13. Intelligent Machine Vision for Automated Fence Intruder Detection Using Self-organizing Map

    OpenAIRE

    Veldin A. Talorete Jr.; Sherwin A Guirnaldo

    2017-01-01

    This paper presents an intelligent machine vision for automated fence intruder detection. A series of still captured images that contain fence events using Internet Protocol cameras was used as input data to the system. Two classifiers were used; the first is to classify human posture and the second one will classify intruder location. The system classifiers were implemented using Self-Organizing Map after the implementation of several image segmentation processes. The human posture classifie...

  14. A new method of machine vision reprocessing based on cellular neural networks

    International Nuclear Information System (INIS)

    Jianhua, W.; Liping, Z.; Fenfang, Z.; Guojian, H.

    1996-01-01

    This paper proposed a method of image preprocessing in machine vision based on Cellular Neural Network (CNN). CNN is introduced to design image smoothing, image recovering, image boundary detecting and other image preprocessing problems. The proposed methods are so simple that the speed of algorithms are increased greatly to suit the needs of real-time image processing. The experimental results show a satisfactory reply

  15. Principles of image processing in machine vision systems for the color analysis of minerals

    Science.gov (United States)

    Petukhova, Daria B.; Gorbunova, Elena V.; Chertov, Aleksandr N.; Korotaev, Valery V.

    2014-09-01

    At the moment color sorting method is one of promising methods of mineral raw materials enrichment. This method is based on registration of color differences between images of analyzed objects. As is generally known the problem with delimitation of close color tints when sorting low-contrast minerals is one of the main disadvantages of color sorting method. It is can be related with wrong choice of a color model and incomplete image processing in machine vision system for realizing color sorting algorithm. Another problem is a necessity of image processing features reconfiguration when changing the type of analyzed minerals. This is due to the fact that optical properties of mineral samples vary from one mineral deposit to another. Therefore searching for values of image processing features is non-trivial task. And this task doesn't always have an acceptable solution. In addition there are no uniform guidelines for determining criteria of mineral samples separation. It is assumed that the process of image processing features reconfiguration had to be made by machine learning. But in practice it's carried out by adjusting the operating parameters which are satisfactory for one specific enrichment task. This approach usually leads to the fact that machine vision system unable to estimate rapidly the concentration rate of analyzed mineral ore by using color sorting method. This paper presents the results of research aimed at addressing mentioned shortcomings in image processing organization for machine vision systems which are used to color sorting of mineral samples. The principles of color analysis for low-contrast minerals by using machine vision systems are also studied. In addition, a special processing algorithm for color images of mineral samples is developed. Mentioned algorithm allows you to determine automatically the criteria of mineral samples separation based on an analysis of representative mineral samples. Experimental studies of the proposed algorithm

  16. Design and Assessment of a Machine Vision System for Automatic Vehicle Wheel Alignment

    Directory of Open Access Journals (Sweden)

    Rocco Furferi

    2013-05-01

    Full Text Available Abstract Wheel alignment, consisting of properly checking the wheel characteristic angles against vehicle manufacturers' specifications, is a crucial task in the automotive field since it prevents irregular tyre wear and affects vehicle handling and safety. In recent years, systems based on Machine Vision have been widely studied in order to automatically detect wheels' characteristic angles. In order to overcome the limitations of existing methodologies, due to measurement equipment being mounted onto the wheels, the present work deals with design and assessment of a 3D machine vision-based system for the contactless reconstruction of vehicle wheel geometry, with particular reference to characteristic planes. Such planes, properly referred to as a global coordinate system, are used for determining wheel angles. The effectiveness of the proposed method was tested against a set of measurements carried out using a commercial 3D scanner; the absolute average error in measuring toe and camber angles with the machine vision system resulted in full compatibility with the expected accuracy of wheel alignment systems.

  17. An Automatic Assembling System for Sealing Rings Based on Machine Vision

    Directory of Open Access Journals (Sweden)

    Mingyu Gao

    2017-01-01

    Full Text Available In order to grab and place the sealing rings of battery lid quickly and accurately, an automatic assembling system for sealing rings based on machine vision is developed in this paper. The whole system is composed of the light sources, cameras, industrial control units, and a 4-degree-of-freedom industrial robot. Specifically, the sealing rings are recognized and located automatically with the machine vision module. Then industrial robot is controlled for grabbing the sealing rings dynamically under the joint work of multiple control units and visual feedback. Furthermore, the coordinates of the fast-moving battery lid are tracked by the machine vision module. Finally the sealing rings are placed on the sealing ports of battery lid accurately and automatically. Experimental results demonstrate that the proposed system can grab the sealing rings and place them on the sealing port of the fast-moving battery lid successfully. More importantly, the proposed system can improve the efficiency of the battery production line obviously.

  18. Fuzzy classification for strawberry diseases-infection using machine vision and soft-computing techniques

    Science.gov (United States)

    Altıparmak, Hamit; Al Shahadat, Mohamad; Kiani, Ehsan; Dimililer, Kamil

    2018-04-01

    Robotic agriculture requires smart and doable techniques to substitute the human intelligence with machine intelligence. Strawberry is one of the important Mediterranean product and its productivity enhancement requires modern and machine-based methods. Whereas a human identifies the disease infected leaves by his eye, the machine should also be capable of vision-based disease identification. The objective of this paper is to practically verify the applicability of a new computer-vision method for discrimination between the healthy and disease infected strawberry leaves which does not require neural network or time consuming trainings. The proposed method was tested under outdoor lighting condition using a regular DLSR camera without any particular lens. Since the type and infection degree of disease is approximated a human brain a fuzzy decision maker classifies the leaves over the images captured on-site having the same properties of human vision. Optimizing the fuzzy parameters for a typical strawberry production area at a summer mid-day in Cyprus produced 96% accuracy for segmented iron deficiency and 93% accuracy for segmented using a typical human instant classification approximation as the benchmark holding higher accuracy than a human eye identifier. The fuzzy-base classifier provides approximate result for decision making on the leaf status as if it is healthy or not.

  19. Comparison of Three Smart Camera Architectures for Real-Time Machine Vision System

    Directory of Open Access Journals (Sweden)

    Abdul Waheed Malik

    2013-12-01

    Full Text Available This paper presents a machine vision system for real-time computation of distance and angle of a camera from a set of reference points located on a target board. Three different smart camera architectures were explored to compare performance parameters such as power consumption, frame speed and latency. Architecture 1 consists of hardware machine vision modules modeled at Register Transfer (RT level and a soft-core processor on a single FPGA chip. Architecture 2 is commercially available software based smart camera, Matrox Iris GT. Architecture 3 is a two-chip solution composed of hardware machine vision modules on FPGA and an external microcontroller. Results from a performance comparison show that Architecture 2 has higher latency and consumes much more power than Architecture 1 and 3. However, Architecture 2 benefits from an easy programming model. Smart camera system with FPGA and external microcontroller has lower latency and consumes less power as compared to single FPGA chip having hardware modules and soft-core processor.

  20. Biologically based machine vision: signal analysis of monopolar cells in the visual system of Musca domestica.

    Science.gov (United States)

    Newton, Jenny; Barrett, Steven F; Wilcox, Michael J; Popp, Stephanie

    2002-01-01

    Machine vision for navigational purposes is a rapidly growing field. Many abilities such as object recognition and target tracking rely on vision. Autonomous vehicles must be able to navigate in dynamic enviroments and simultaneously locate a target position. Traditional machine vision often fails to react in real time because of large computational requirements whereas the fly achieves complex orientation and navigation with a relatively small and simple brain. Understanding how the fly extracts visual information and how neurons encode and process information could lead us to a new approach for machine vision applications. Photoreceptors in the Musca domestica eye that share the same spatial information converge into a structure called the cartridge. The cartridge consists of the photoreceptor axon terminals and monopolar cells L1, L2, and L4. It is thought that L1 and L2 cells encode edge related information relative to a single cartridge. These cells are thought to be equivalent to vertebrate bipolar cells, producing contrast enhancement and reduction of information sent to L4. Monopolar cell L4 is thought to perform image segmentation on the information input from L1 and L2 and also enhance edge detection. A mesh of interconnected L4's would correlate the output from L1 and L2 cells of adjacent cartridges and provide a parallel network for segmenting an object's edges. The focus of this research is to excite photoreceptors of the common housefly, Musca domestica, with different visual patterns. The electrical response of monopolar cells L1, L2, and L4 will be recorded using intracellular recording techniques. Signal analysis will determine the neurocircuitry to detect and segment images.

  1. Machine Vision and Advanced Image Processing in Remote Sensing

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg

    This paper describes the multivariate alteration detection (MAD) transformation which is based on the established canonical correlation analysis. It also proposes post-processing of the change detected by the MAD variates by means of maximum autocorrelation factor (MAF) analysis. As opposed to mo...

  2. Nonhuman Primate Studies to Advance Vision Science and Prevent Blindness.

    Science.gov (United States)

    Mustari, Michael J

    2017-12-01

    Most primate behavior is dependent on high acuity vision. Optimal visual performance in primates depends heavily upon frontally placed eyes, retinal specializations, and binocular vision. To see an object clearly its image must be placed on or near the fovea of each eye. The oculomotor system is responsible for maintaining precise eye alignment during fixation and generating eye movements to track moving targets. The visual system of nonhuman primates has a similar anatomical organization and functional capability to that of humans. This allows results obtained in nonhuman primates to be applied to humans. The visual and oculomotor systems of primates are immature at birth and sensitive to the quality of binocular visual and eye movement experience during the first months of life. Disruption of postnatal experience can lead to problems in eye alignment (strabismus), amblyopia, unsteady gaze (nystagmus), and defective eye movements. Recent studies in nonhuman primates have begun to discover the neural mechanisms associated with these conditions. In addition, genetic defects that target the retina can lead to blindness. A variety of approaches including gene therapy, stem cell treatment, neuroprosthetics, and optogenetics are currently being used to restore function associated with retinal diseases. Nonhuman primates often provide the best animal model for advancing fundamental knowledge and developing new treatments and cures for blinding diseases. © The Author(s) 2017. Published by Oxford University Press on behalf of the National Academy of Sciences. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. A New Approach to Spindle Radial Error Evaluation Using a Machine Vision System

    Directory of Open Access Journals (Sweden)

    Kavitha C.

    2017-03-01

    Full Text Available The spindle rotational accuracy is one of the important issues in a machine tool which affects the surface topography and dimensional accuracy of a workpiece. This paper presents a machine-vision-based approach to radial error measurement of a lathe spindle using a CMOS camera and a PC-based image processing system. In the present work, a precisely machined cylindrical master is mounted on the spindle as a datum surface and variations of its position are captured using the camera for evaluating runout of the spindle. The Circular Hough Transform (CHT is used to detect variations of the centre position of the master cylinder during spindle rotation at subpixel level from a sequence of images. Radial error values of the spindle are evaluated using the Fourier series analysis of the centre position of the master cylinder calculated with the least squares curve fitting technique. The experiments have been carried out on a lathe at different operating speeds and the spindle radial error estimation results are presented. The proposed method provides a simpler approach to on-machine estimation of the spindle radial error in machine tools.

  4. Extreme Learning Machine and Moving Least Square Regression Based Solar Panel Vision Inspection

    Directory of Open Access Journals (Sweden)

    Heng Liu

    2017-01-01

    Full Text Available In recent years, learning based machine intelligence has aroused a lot of attention across science and engineering. Particularly in the field of automatic industry inspection, the machine learning based vision inspection plays a more and more important role in defect identification and feature extraction. Through learning from image samples, many features of industry objects, such as shapes, positions, and orientations angles, can be obtained and then can be well utilized to determine whether there is defect or not. However, the robustness and the quickness are not easily achieved in such inspection way. In this work, for solar panel vision inspection, we present an extreme learning machine (ELM and moving least square regression based approach to identify solder joint defect and detect the panel position. Firstly, histogram peaks distribution (HPD and fractional calculus are applied for image preprocessing. Then an ELM-based defective solder joints identification is discussed in detail. Finally, moving least square regression (MLSR algorithm is introduced for solar panel position determination. Experimental results and comparisons show that the proposed ELM and MLSR based inspection method is efficient not only in detection accuracy but also in processing speed.

  5. Computer Vision and Machine Learning for Autonomous Characterization of AM Powder Feedstocks

    Science.gov (United States)

    DeCost, Brian L.; Jain, Harshvardhan; Rollett, Anthony D.; Holm, Elizabeth A.

    2017-03-01

    By applying computer vision and machine learning methods, we develop a system to characterize powder feedstock materials for metal additive manufacturing (AM). Feature detection and description algorithms are applied to create a microstructural scale image representation that can be used to cluster, compare, and analyze powder micrographs. When applied to eight commercial feedstock powders, the system classifies powder images into the correct material systems with greater than 95% accuracy. The system also identifies both representative and atypical powder images. These results suggest the possibility of measuring variations in powders as a function of processing history, relating microstructural features of powders to properties relevant to their performance in AM processes, and defining objective material standards based on visual images. A significant advantage of the computer vision approach is that it is autonomous, objective, and repeatable.

  6. ATCA for Machines-- Advanced Telecommunications Computing Architecture

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, R.S.; /SLAC

    2008-04-22

    The Advanced Telecommunications Computing Architecture is a new industry open standard for electronics instrument modules and shelves being evaluated for the International Linear Collider (ILC). It is the first industrial standard designed for High Availability (HA). ILC availability simulations have shown clearly that the capabilities of ATCA are needed in order to achieve acceptable integrated luminosity. The ATCA architecture looks attractive for beam instruments and detector applications as well. This paper provides an overview of ongoing R&D including application of HA principles to power electronics systems.

  7. ATCA for Machines-- Advanced Telecommunications Computing Architecture

    International Nuclear Information System (INIS)

    Larsen, R

    2008-01-01

    The Advanced Telecommunications Computing Architecture is a new industry open standard for electronics instrument modules and shelves being evaluated for the International Linear Collider (ILC). It is the first industrial standard designed for High Availability (HA). ILC availability simulations have shown clearly that the capabilities of ATCA are needed in order to achieve acceptable integrated luminosity. The ATCA architecture looks attractive for beam instruments and detector applications as well. This paper provides an overview of ongoing R and D including application of HA principles to power electronics systems

  8. Development of the Triple Theta assembly station with machine vision feedback

    International Nuclear Information System (INIS)

    Schmidt, Derek William

    2008-01-01

    Increased requirements for tighter tolerances on assembled target components in complex three-dimensional geometries with only days to assemble complete campaigns require the implementation of a computer-controlled high-precision assembly station. Over the last year, an 11-axis computer-controlled assembly station has been designed and built with custom software to handle the multiple coordinate systems and automatically calculate all relational positions. Preliminary development efforts have also been done to explore the benefit of a machine vision feedback module with a dual-camera viewing system to automate certain basic features like crosshair calibration, component leveling, and component centering.

  9. Tensor Voting A Perceptual Organization Approach to Computer Vision and Machine Learning

    CERN Document Server

    Mordohai, Philippos

    2006-01-01

    This lecture presents research on a general framework for perceptual organization that was conducted mainly at the Institute for Robotics and Intelligent Systems of the University of Southern California. It is not written as a historical recount of the work, since the sequence of the presentation is not in chronological order. It aims at presenting an approach to a wide range of problems in computer vision and machine learning that is data-driven, local and requires a minimal number of assumptions. The tensor voting framework combines these properties and provides a unified perceptual organiza

  10. Machine Vision based Micro-crack Inspection in Thin-film Solar Cell Panel

    Directory of Open Access Journals (Sweden)

    Zhang Yinong

    2014-09-01

    Full Text Available Thin film solar cell consists of various layers so the surface of solar cell shows heterogeneous textures. Because of this property the visual inspection of micro-crack is very difficult. In this paper, we propose the machine vision-based micro-crack detection scheme for thin film solar cell panel. In the proposed method, the crack edge detection is based on the application of diagonal-kernel and cross-kernel in parallel. Experimental results show that the proposed method has better performance of micro-crack detection than conventional anisotropic model based methods on a cross- kernel.

  11. Current Technologies and its Trends of Machine Vision in the Field of Security and Disaster Prevention

    Science.gov (United States)

    Hashimoto, Manabu; Fujino, Yozo

    Image sensing technologies are expected as useful and effective way to suppress damages by criminals and disasters in highly safe and relieved society. In this paper, we describe current important subjects, required functions, technical trends, and a couple of real examples of developed system. As for the video surveillance, recognition of human trajectory and human behavior using image processing techniques are introduced with real examples about the violence detection for elevators. In the field of facility monitoring technologies as civil engineering, useful machine vision applications such as automatic detection of concrete cracks on walls of a building or recognition of crowded people on bridge for effective guidance in emergency are shown.

  12. A neurite quality index and machine vision software for improved quantification of neurodegeneration.

    Science.gov (United States)

    Romero, Peggy; Miller, Ted; Garakani, Arman

    2009-12-01

    Current methods to assess neurodegradation in dorsal root ganglion cultures as a model for neurodegenerative diseases are imprecise and time-consuming. Here we describe two new methods to quantify neuroprotection in these cultures. The neurite quality index (NQI) builds upon earlier manual methods, incorporating additional morphological events to increase detection sensitivity for the detection of early degeneration events. Neurosight is a machine vision-based method that recapitulates many of the strengths of NQI while enabling high-throughput screening applications with decreased costs.

  13. The Intangible Assets Advantages in the Machine Vision Inspection of Thermoplastic Materials

    Science.gov (United States)

    Muntean, Diana; Răulea, Andreea Simina

    2017-12-01

    Innovation is not a simple concept but is the main source of success. It is more important to have the right people and mindsets in place than to have a perfectly crafted plan in order to make the most out of an idea or business. The aim of this paper is to emphasize the importance of intangible assets when it comes to machine vision inspection of thermoplastic materials pointing out some aspects related to knowledge based assets and their need for a success idea to be developed in a successful product.

  14. ADVANCED DESIGN SOLUTIONS FOR HIGH-PRECISION WOODWORKING MACHINES

    Directory of Open Access Journals (Sweden)

    Giuseppe Lucisano

    2016-03-01

    Full Text Available With the aim at performing the highest precision during woodworking, a mix of alternative approaches, fruitfully integrated in a common design strategy, is essential. This paper represents an overview of technical solutions, recently developed by authors, in design of machine tools and their final effects on manufacturing. The most advanced solutions in machine design are reported side by side with common practices or little everyday expedients. These design actions are directly or indirectly related to the rational use of materials, sometimes very uncommon, as in the case of magnetorheological fluids chosen to implement an active control in speed and force on the electro-spindle, and permitting to improve the quality of wood machining. Other actions are less unusual, as in the case of the adoption of innovative anti-vibration supports for basement. Tradition or innovation, all these technical solutions contribute to the final result: the highest precision in wood machining.

  15. Advances in Machine Learning and Data Mining for Astronomy

    Science.gov (United States)

    Way, Michael J.; Scargle, Jeffrey D.; Ali, Kamal M.; Srivastava, Ashok N.

    2012-03-01

    Advances in Machine Learning and Data Mining for Astronomy documents numerous successful collaborations among computer scientists, statisticians, and astronomers who illustrate the application of state-of-the-art machine learning and data mining techniques in astronomy. Due to the massive amount and complexity of data in most scientific disciplines, the material discussed in this text transcends traditional boundaries between various areas in the sciences and computer science. The book's introductory part provides context to issues in the astronomical sciences that are also important to health, social, and physical sciences, particularly probabilistic and statistical aspects of classification and cluster analysis. The next part describes a number of astrophysics case studies that leverage a range of machine learning and data mining technologies. In the last part, developers of algorithms and practitioners of machine learning and data mining show how these tools and techniques are used in astronomical applications. With contributions from leading astronomers and computer scientists, this book is a practical guide to many of the most important developments in machine learning, data mining, and statistics. It explores how these advances can solve current and future problems in astronomy and looks at how they could lead to the creation of entirely new algorithms within the data mining community.

  16. Real-time machine vision system using FPGA and soft-core processor

    Science.gov (United States)

    Malik, Abdul Waheed; Thörnberg, Benny; Meng, Xiaozhou; Imran, Muhammad

    2012-06-01

    This paper presents a machine vision system for real-time computation of distance and angle of a camera from reference points in the environment. Image pre-processing, component labeling and feature extraction modules were modeled at Register Transfer (RT) level and synthesized for implementation on field programmable gate arrays (FPGA). The extracted image component features were sent from the hardware modules to a soft-core processor, MicroBlaze, for computation of distance and angle. A CMOS imaging sensor operating at a clock frequency of 27MHz was used in our experiments to produce a video stream at the rate of 75 frames per second. Image component labeling and feature extraction modules were running in parallel having a total latency of 13ms. The MicroBlaze was interfaced with the component labeling and feature extraction modules through Fast Simplex Link (FSL). The latency for computing distance and angle of camera from the reference points was measured to be 2ms on the MicroBlaze, running at 100 MHz clock frequency. In this paper, we present the performance analysis, device utilization and power consumption for the designed system. The FPGA based machine vision system that we propose has high frame speed, low latency and a power consumption that is much lower compared to commercially available smart camera solutions.

  17. Inspecting a research reactor's control rod surface for pitting using a machine vision

    International Nuclear Information System (INIS)

    Tokuhiro, Akira T.; Vadakattu, Shreekanth

    2005-01-01

    Inspection for pits on the control rod is performed to study the degradation of the control rod material which helps estimating the service life of the control rod at UMR nuclear reactor (UMRR). This inspection task is visually inspected and recorded subjectively. The conventional visual inspection to identify pits on the control rod surface can be automated using machine vision technique. Since the in-service control rods were not available to capture images and measure number of pits and size of the pits, the applicability of machine vision method was applied on SAE 1018 steel coupons immersed in oxygen saturated de-ionized water at 30deg, 50deg and 70deg. Images were captured after each test cycle at different light intensity to reveal surface topography of the coupon surface and analyzed for number of pits and pit size using EPIX XCAP-Std software. The captured and analyzed images provided quantitative results for the steel coupons and demonstrated that the method can be applied for identifying pits on control rod surface in place of conventional visual inspection. (author)

  18. Feature recognition and detection for ancient architecture based on machine vision

    Science.gov (United States)

    Zou, Zheng; Wang, Niannian; Zhao, Peng; Zhao, Xuefeng

    2018-03-01

    Ancient architecture has a very high historical and artistic value. The ancient buildings have a wide variety of textures and decorative paintings, which contain a lot of historical meaning. Therefore, the research and statistics work of these different compositional and decorative features play an important role in the subsequent research. However, until recently, the statistics of those components are mainly by artificial method, which consumes a lot of labor and time, inefficiently. At present, as the strong support of big data and GPU accelerated training, machine vision with deep learning as the core has been rapidly developed and widely used in many fields. This paper proposes an idea to recognize and detect the textures, decorations and other features of ancient building based on machine vision. First, classify a large number of surface textures images of ancient building components manually as a set of samples. Then, using the convolution neural network to train the samples in order to get a classification detector. Finally verify its precision.

  19. Broiler weight estimation based on machine vision and artificial neural network.

    Science.gov (United States)

    Amraei, S; Abdanan Mehdizadeh, S; Salari, S

    2017-04-01

    1. Machine vision and artificial neural network (ANN) procedures were used to estimate live body weight of broiler chickens in 30 1-d-old broiler chickens reared for 42 d. 2. Imaging was performed two times daily. To localise chickens within the pen, an ellipse fitting algorithm was used and the chickens' head and tail removed using the Chan-Vese method. 3. The correlations between the body weight and 6 physical extracted features indicated that there were strong correlations between body weight and the 5 features including area, perimeter, convex area, major and minor axis length. 5. According to statistical analysis there was no significant difference between morning and afternoon data over 42 d. 6. In an attempt to improve the accuracy of live weight approximation different ANN techniques, including Bayesian regulation, Levenberg-Marquardt, Scaled conjugate gradient and gradient descent were used. Bayesian regulation with R 2 value of 0.98 was the best network for prediction of broiler weight. 7. The accuracy of the machine vision technique was examined and most errors were less than 50 g.

  20. Machine vision system: a tool for quality inspection of food and agricultural products.

    Science.gov (United States)

    Patel, Krishna Kumar; Kar, A; Jha, S N; Khan, M A

    2012-04-01

    Quality inspection of food and agricultural produce are difficult and labor intensive. Simultaneously, with increased expectations for food products of high quality and safety standards, the need for accurate, fast and objective quality determination of these characteristics in food products continues to grow. However, these operations generally in India are manual which is costly as well as unreliable because human decision in identifying quality factors such as appearance, flavor, nutrient, texture, etc., is inconsistent, subjective and slow. Machine vision provides one alternative for an automated, non-destructive and cost-effective technique to accomplish these requirements. This inspection approach based on image analysis and processing has found a variety of different applications in the food industry. Considerable research has highlighted its potential for the inspection and grading of fruits and vegetables, grain quality and characteristic examination and quality evaluation of other food products like bakery products, pizza, cheese, and noodles etc. The objective of this paper is to provide in depth introduction of machine vision system, its components and recent work reported on food and agricultural produce.

  1. Applications of color machine vision in the agricultural and food industries

    Science.gov (United States)

    Zhang, Min; Ludas, Laszlo I.; Morgan, Mark T.; Krutz, Gary W.; Precetti, Cyrille J.

    1999-01-01

    Color is an important factor in Agricultural and the Food Industry. Agricultural or prepared food products are often grade by producers and consumers using color parameters. Color is used to estimate maturity, sort produce for defects, but also perform genetic screenings or make an aesthetic judgement. The task of sorting produce following a color scale is very complex, requires special illumination and training. Also, this task cannot be performed for long durations without fatigue and loss of accuracy. This paper describes a machine vision system designed to perform color classification in real-time. Applications for sorting a variety of agricultural products are included: e.g. seeds, meat, baked goods, plant and wood.FIrst the theory of color classification of agricultural and biological materials is introduced. Then, some tools for classifier development are presented. Finally, the implementation of the algorithm on real-time image processing hardware and example applications for industry is described. This paper also presented an image analysis algorithm and a prototype machine vision system which was developed for industry. This system will automatically locate the surface of some plants using digital camera and predict information such as size, potential value and type of this plant. The algorithm developed will be feasible for real-time identification in an industrial environment.

  2. Vision-Based Perception and Classification of Mosquitoes Using Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Masataka Fuchida

    2017-01-01

    Full Text Available The need for a novel automated mosquito perception and classification method is becoming increasingly essential in recent years, with steeply increasing number of mosquito-borne diseases and associated casualties. There exist remote sensing and GIS-based methods for mapping potential mosquito inhabitants and locations that are prone to mosquito-borne diseases, but these methods generally do not account for species-wise identification of mosquitoes in closed-perimeter regions. Traditional methods for mosquito classification involve highly manual processes requiring tedious sample collection and supervised laboratory analysis. In this research work, we present the design and experimental validation of an automated vision-based mosquito classification module that can deploy in closed-perimeter mosquito inhabitants. The module is capable of identifying mosquitoes from other bugs such as bees and flies by extracting the morphological features, followed by support vector machine-based classification. In addition, this paper presents the results of three variants of support vector machine classifier in the context of mosquito classification problem. This vision-based approach to the mosquito classification problem presents an efficient alternative to the conventional methods for mosquito surveillance, mapping and sample image collection. Experimental results involving classification between mosquitoes and a predefined set of other bugs using multiple classification strategies demonstrate the efficacy and validity of the proposed approach with a maximum recall of 98%.

  3. Advances in machine learning and data mining for astronomy

    CERN Document Server

    Way, Michael J

    2012-01-01

    Advances in Machine Learning and Data Mining for Astronomy documents numerous successful collaborations among computer scientists, statisticians, and astronomers who illustrate the application of state-of-the-art machine learning and data mining techniques in astronomy. Due to the massive amount and complexity of data in most scientific disciplines, the material discussed in this text transcends traditional boundaries between various areas in the sciences and computer science. The book's introductory part provides context to issues in the astronomical sciences that are also important to health

  4. Structural Analysis of Advanced Refueling Machine of APR1400

    International Nuclear Information System (INIS)

    Cho, J. R.; Kim, Y. H.; Park, B. T.; Park, J. B.; Jung, J. H.

    2007-01-01

    The Refueling Machine (RM) consists of two structural parts of bridge and trolley. The bridge structure is approximately 8.5 m long and 5 m wide and is primarily composed of two deep wide flange sections spanning the rector area at the operating level. The trolley is mounted on wheels that roll on the rails of the bridge. Vertical movements of trolley and bridge are restricted by guide rollers. In this paper, dynamic and structural analyses based on the earthquake spectrum are carried out to verify the structural integrity of advanced refueling machine. It is done by 3-dimensional finite element analysis using ANSYS software

  5. Man-machine interface builders at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Anderson, M.D.

    1991-01-01

    Argonne National Laboratory is constructing a 7-GeV Advanced Photon Source for use as a synchrotron radiation source in basic and applied research. The controls and computing environment for this accelerator complex includes graphical operator interfaces to the machine based on Motif, X11, and PHIGS/PEX. Construction and operation of the control system for this accelerator relies upon interactive interface builder and diagram/editor type tools, as well as a run-time environment for the constructed displays which communicate with the physical machine via network connections. This paper discusses our experience with several commercial CUI builders, the inadequacies found in these, motivation for the development of an application- specific builder, and design and implementation strategies employed in the development of our own Man-Machine Interface builder. 5 refs

  6. Scaling up liquid state machines to predict over address events from dynamic vision sensors.

    Science.gov (United States)

    Kaiser, Jacques; Stal, Rainer; Subramoney, Anand; Roennau, Arne; Dillmann, Rüdiger

    2017-09-01

    Short-term visual prediction is important both in biology and robotics. It allows us to anticipate upcoming states of the environment and therefore plan more efficiently. In theoretical neuroscience, liquid state machines have been proposed as a biologically inspired method to perform asynchronous prediction without a model. However, they have so far only been demonstrated in simulation or small scale pre-processed camera images. In this paper, we use a liquid state machine to predict over the whole  [Formula: see text]  event stream provided by a real dynamic vision sensor (DVS, or silicon retina). Thanks to the event-based nature of the DVS, the liquid is constantly fed with data when an object is in motion, fully embracing the asynchronicity of spiking neural networks. We propose a smooth continuous representation of the event stream for the short-term visual prediction task. Moreover, compared to previous works (2002 Neural Comput. 2525 282-93 and Burgsteiner H et al 2007 Appl. Intell. 26 99-109), we scale the input dimensionality that the liquid operates on by two order of magnitudes. We also expose the current limits of our method by running experiments in a challenging environment where multiple objects are in motion. This paper is a step towards integrating biologically inspired algorithms derived in theoretical neuroscience to real world robotic setups. We believe that liquid state machines could complement current prediction algorithms used in robotics, especially when dealing with asynchronous sensors.

  7. Basic researches for advancement of man-machine systems

    International Nuclear Information System (INIS)

    Yoshikawa, Hidekazu

    1994-01-01

    The historical development of plant instrumentation and control system accompanying the introduction of automation is shown by the example of nuclear power plants. It is explained, and the change in the role of operators in the man-machine system is mentioned. Human errors are the serious problem in various fields, and automation resolves it. But complex systems also caused various disasters due to the relation of men and machines. The problem of human factors in high risk system automation is considered as the heightening of reliability and the reduction of burden on workers by decreasing human participation, and the increase of the risk of large accidents due to the lowering of reliability of human elements and the strengthening of the training of workers. Human model and the framework of human error analysis, the development of the system for man-machine system design and information analysis and evaluation, the significance of physiological index measurement and the perspective of the application, the analysis of the behavior of subjects in the abnormality diagnosis experiment using a plant simulator, and the development to the research on mutual adaptation interface are discussed. In this paper, the problem of human factors in system safety, that technical advancement brings about is examined, and the basic research on the advancement of man-machine systems by the author is reported. (K.I.)

  8. Augmentation of Cognition and Perception Through Advanced Synthetic Vision Technology

    Science.gov (United States)

    Prinzel, Lawrence J., III; Kramer, Lynda J.; Bailey, Randall E.; Arthur, Jarvis J.; Williams, Steve P.; McNabb, Jennifer

    2005-01-01

    Synthetic Vision System technology augments reality and creates a virtual visual meteorological condition that extends a pilot's cognitive and perceptual capabilities during flight operations when outside visibility is restricted. The paper describes the NASA Synthetic Vision System for commercial aviation with an emphasis on how the technology achieves Augmented Cognition objectives.

  9. Fast and intuitive programming of adaptive laser cutting of lace enabled by machine vision

    Science.gov (United States)

    Vaamonde, Iago; Souto-López, Álvaro; García-Díaz, Antón

    2015-07-01

    A machine vision system has been developed, validated, and integrated in a commercial laser robot cell. It permits an offline graphical programming of laser cutting of lace. The user interface allows loading CAD designs and aligning them with images of lace pieces. Different thread widths are discriminated to generate proper cutting program templates. During online operation, the system aligns CAD models of pieces and lace images, pre-checks quality of lace cuts and adapts laser parameters to thread widths. For pieces detected with the required quality, the program template is adjusted by transforming the coordinates of every trajectory point. A low-cost lace feeding system was also developed for demonstration of full process automation.

  10. Nondestructive Detection of the Internalquality of Apple Using X-Ray and Machine Vision

    Science.gov (United States)

    Yang, Fuzeng; Yang, Liangliang; Yang, Qing; Kang, Likui

    The internal quality of apple is impossible to be detected by eyes in the procedure of sorting, which could reduce the apple’s quality reaching market. This paper illustrates an instrument using X-ray and machine vision. The following steps were introduced to process the X-ray image in order to determine the mould core apple. Firstly, lifting wavelet transform was used to get a low frequency image and three high frequency images. Secondly, we enhanced the low frequency image through image’s histogram equalization. Then, the edge of each apple's image was detected using canny operator. Finally, a threshold was set to clarify mould core and normal apple according to the different length of the apple core’s diameter. The experimental results show that this method could on-line detect the mould core apple with less time consuming, less than 0.03 seconds per apple, and the accuracy could reach 92%.

  11. Magnetic imaging and machine vision NDT for the on-line inspection of stainless steel strips

    International Nuclear Information System (INIS)

    Ricci, M; Ficola, A; Fravolini, M L; Battaglini, L; Palazzi, A; Burrascano, P; Valigi, P; Appolloni, L; Cervo, S; Rocchi, C

    2013-01-01

    An on-line inspection system for stainless steel strips has been developed on an annealing and pickling line at the Acciai Speciali Terni S.p.A. steel mill. Besides a machine vision apparatus, the system contextually exploits a magnetic imaging system designed and realized for the specific application. The main goal of the research is represented by the fusion of the information provided by the two apparatuses that can improve the detection and classification tasks by enlarging the set of detectable defects. In this paper, the development, the calibration and the characteristics of the magnetic imaging apparatus are detailed and experimental results obtained both in laboratory and in situ are reported. A comparative analysis of the performances of the two devices is also reported based on preliminary results and some conclusions and perspectives are drawn. (paper)

  12. A real-time surface inspection system for precision steel balls based on machine vision

    Science.gov (United States)

    Chen, Yi-Ji; Tsai, Jhy-Cherng; Hsu, Ya-Chen

    2016-07-01

    Precision steel balls are one of the most fundament components for motion and power transmission parts and they are widely used in industrial machinery and the automotive industry. As precision balls are crucial for the quality of these products, there is an urgent need to develop a fast and robust system for inspecting defects of precision steel balls. In this paper, a real-time system for inspecting surface defects of precision steel balls is developed based on machine vision. The developed system integrates a dual-lighting system, an unfolding mechanism and inspection algorithms for real-time signal processing and defect detection. The developed system is tested under feeding speeds of 4 pcs s-1 with a detection rate of 99.94% and an error rate of 0.10%. The minimum detectable surface flaw area is 0.01 mm2, which meets the requirement for inspecting ISO grade 100 precision steel balls.

  13. Potential application of machine vision technology to saffron (Crocus sativus L.) quality characterization.

    Science.gov (United States)

    Kiani, Sajad; Minaei, Saeid

    2016-12-01

    Saffron quality characterization is an important issue in the food industry and of interest to the consumers. This paper proposes an expert system based on the application of machine vision technology for characterization of saffron and shows how it can be employed in practical usage. There is a correlation between saffron color and its geographic location of production and some chemical attributes which could be properly used for characterization of saffron quality and freshness. This may be accomplished by employing image processing techniques coupled with multivariate data analysis for quantification of saffron properties. Expert algorithms can be made available for prediction of saffron characteristics such as color as well as for product classification. Copyright © 2016. Published by Elsevier Ltd.

  14. Machine vision method for online surface inspection of easy open can ends

    Science.gov (United States)

    Mariño, Perfecto; Pastoriza, Vicente; Santamaría, Miguel

    2006-10-01

    Easy open can end manufacturing process in the food canning sector currently makes use of a manual, non-destructive testing procedure to guarantee can end repair coating quality. This surface inspection is based on a visual inspection made by human inspectors. Due to the high production rate (100 to 500 ends per minute) only a small part of each lot is verified (statistical sampling), then an automatic, online, inspection system, based on machine vision, has been developed to improve this quality control. The inspection system uses a fuzzy model to make the acceptance/rejection decision for each can end from the information obtained by the vision sensor. In this work, the inspection method is presented. This surface inspection system checks the total production, classifies the ends in agreement with an expert human inspector, supplies interpretability to the operators in order to find out the failure causes and reduce mean time to repair during failures, and allows to modify the minimum can end repair coating quality.

  15. Selection of parameters for advanced machining processes using firefly algorithm

    Directory of Open Access Journals (Sweden)

    Rajkamal Shukla

    2017-02-01

    Full Text Available Advanced machining processes (AMPs are widely utilized in industries for machining complex geometries and intricate profiles. In this paper, two significant processes such as electric discharge machining (EDM and abrasive water jet machining (AWJM are considered to get the optimum values of responses for the given range of process parameters. The firefly algorithm (FA is attempted to the considered processes to obtain optimized parameters and the results obtained are compared with the results given by previous researchers. The variation of process parameters with respect to the responses are plotted to confirm the optimum results obtained using FA. In EDM process, the performance parameter “MRR” is increased from 159.70 gm/min to 181.6723 gm/min, while “Ra” and “REWR” are decreased from 6.21 μm to 3.6767 μm and 6.21% to 6.324 × 10−5% respectively. In AWJM process, the value of the “kerf” and “Ra” are decreased from 0.858 mm to 0.3704 mm and 5.41 mm to 4.443 mm respectively. In both the processes, the obtained results show a significant improvement in the responses.

  16. Characteristics of the Arcing Plasma Formation Effect in Spark-Assisted Chemical Engraving of Glass, Based on Machine Vision.

    Science.gov (United States)

    Ho, Chao-Ching; Wu, Dung-Sheng

    2018-03-22

    Spark-assisted chemical engraving (SACE) is a non-traditional machining technology that is used to machine electrically non-conducting materials including glass, ceramics, and quartz. The processing accuracy, machining efficiency, and reproducibility are the key factors in the SACE process. In the present study, a machine vision method is applied to monitor and estimate the status of a SACE-drilled hole in quartz glass. During the machining of quartz glass, the spring-fed tool electrode was pre-pressured on the quartz glass surface to feed the electrode that was in contact with the machining surface of the quartz glass. In situ image acquisition and analysis of the SACE drilling processes were used to analyze the captured image of the state of the spark discharge at the tip and sidewall of the electrode. The results indicated an association between the accumulative size of the SACE-induced spark area and deepness of the hole. The results indicated that the evaluated depths of the SACE-machined holes were a proportional function of the accumulative spark size with a high degree of correlation. The study proposes an innovative computer vision-based method to estimate the deepness and status of SACE-drilled holes in real time.

  17. Characteristics of the Arcing Plasma Formation Effect in Spark-Assisted Chemical Engraving of Glass, Based on Machine Vision

    Directory of Open Access Journals (Sweden)

    Chao-Ching Ho

    2018-03-01

    Full Text Available Spark-assisted chemical engraving (SACE is a non-traditional machining technology that is used to machine electrically non-conducting materials including glass, ceramics, and quartz. The processing accuracy, machining efficiency, and reproducibility are the key factors in the SACE process. In the present study, a machine vision method is applied to monitor and estimate the status of a SACE-drilled hole in quartz glass. During the machining of quartz glass, the spring-fed tool electrode was pre-pressured on the quartz glass surface to feed the electrode that was in contact with the machining surface of the quartz glass. In situ image acquisition and analysis of the SACE drilling processes were used to analyze the captured image of the state of the spark discharge at the tip and sidewall of the electrode. The results indicated an association between the accumulative size of the SACE-induced spark area and deepness of the hole. The results indicated that the evaluated depths of the SACE-machined holes were a proportional function of the accumulative spark size with a high degree of correlation. The study proposes an innovative computer vision-based method to estimate the deepness and status of SACE-drilled holes in real time.

  18. Electrical discharge machining of carbon nanomaterials in air: machining characteristics and the advanced field emission applications

    International Nuclear Information System (INIS)

    Ok, Jong Girl; Kim, Bo Hyun; Chung, Do Kwan; Sung, Woo Yong; Lee, Seung Min; Lee, Se Won; Kim, Wal Jun; Park, Jin Woo; Chu, Chong Nam; Kim, Yong Hyup

    2008-01-01

    A reliable and precise machining process, electrical discharge machining (EDM), was investigated in depth as a novel method for the engineering of carbon nanomaterials. The machining characteristics of EDM applied to carbon nanomaterials 'in air' were systematically examined using scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), energy-dispersive x-ray spectroscopy (EDS), x-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. The EDM process turned out to 'melt' carbon nanomaterials with the thermal energy generated by electrical discharge, which makes both the materially and geometrically unrestricted machining of nanomaterials possible. Since the EDM process conducted in air requires neither direct contact nor chemical agents, it protects the carbon nanomaterial workpieces against physical damage and unnecessary contamination. From this EDM method, several advanced field emission applications including 'top-down' patterning and the creative lateral comb-type triode device were derived, while our previously reported study on emission uniformity enhancement by the EDM method was also referenced. The EDM method has great potential as a clean, effective and practical way to utilize carbon nanomaterials for various uses

  19. Support vector machines applications

    CERN Document Server

    Guo, Guodong

    2014-01-01

    Support vector machines (SVM) have both a solid mathematical background and good performance in practical applications. This book focuses on the recent advances and applications of the SVM in different areas, such as image processing, medical practice, computer vision, pattern recognition, machine learning, applied statistics, business intelligence, and artificial intelligence. The aim of this book is to create a comprehensive source on support vector machine applications, especially some recent advances.

  20. Acoustic monitoring of rotating machine by advanced signal processing technology

    International Nuclear Information System (INIS)

    Kanemoto, Shigeru

    2010-01-01

    The acoustic data remotely measured by hand held type microphones are investigated for monitoring and diagnosing the rotational machine integrity in nuclear power plants. The plant operator's patrol monitoring is one of the important activities for condition monitoring. However, remotely measured sound has some difficulties to be considered for precise diagnosis or quantitative judgment of rotating machine anomaly, since the measurement sensitivity is different in each measurement, and also, the sensitivity deteriorates in comparison with an attached type sensor. Hence, in the present study, several advanced signal processing methods are examined and compared in order to find optimum anomaly monitoring technology from the viewpoints of both sensitivity and robustness of performance. The dimension of pre-processed signal feature patterns are reduced into two-dimensional space for the visualization by using the standard principal component analysis (PCA) or the kernel based PCA. Then, the normal state is classified by using probabilistic neural network (PNN) or support vector data description (SVDD). By using the mockup test facility of rotating machine, it is shown that the appropriate combination of the above algorithms gives sensitive and robust anomaly monitoring performance. (author)

  1. Human friendly man-machine system with advanced media technology

    International Nuclear Information System (INIS)

    Ogino, Takamichi; Sasaki, Kazunori

    1993-01-01

    This paper deals with the methodology to implement the man-machine system (MMS) with enhanced human friendliness for nuclear power plants. The relevant technologies are investigated from the two view points: One is integrated multi-media usage for user-computer interface and the other cognitive engineering for user-task interaction. Promising MMS design methodologies, concepts, and their limitations are discussed. To overcome uncertain factors found in human behaviors or individual differences in performance and preference of operators, a design appproach to natural and flexible man-computer interactive environment is proposed by intergrated use of not only cognitive and psychological knowledge but also advanced media technology. Multi-media operator support system under development is shown as an example to evaluate the effectiveness of the new approach and future advancement is prospected. (orig.)

  2. Advanced man-machine system for nuclear power plants

    International Nuclear Information System (INIS)

    Masui, Takao; Naito, Norio; Kato, Kanji.

    1990-01-01

    Recent development of artificial intelligence(AI) seems to offer new possibility to strengthen the performance of the operator support system. From this point of view, a national project of Advanced Man-Machine System Development for Nuclear Power Plant (MMS-NPP) has been carried out since 1984 as 8-year project. This project aims at establishing advanced operator support functions which support operators in their knowledge-based behaviors and smoother interface with the system. This paper describes the role of MMS-NPP, the support functions and the main feature of the MMS-NPP detailed design with its focus placed on the realization methods using AI technology of the support functions for BWR and PWR plants. (author)

  3. Development of a model of machine hand eye coordination and program specifications for a topological machine vision system

    Science.gov (United States)

    1972-01-01

    A unified approach to computer vision and manipulation is developed which is called choreographic vision. In the model, objects to be viewed by a projected robot in the Viking missions to Mars are seen as objects to be manipulated within choreographic contexts controlled by a multimoded remote, supervisory control system on Earth. A new theory of context relations is introduced as a basis for choreographic programming languages. A topological vision model is developed for recognizing objects by shape and contour. This model is integrated with a projected vision system consisting of a multiaperture image dissector TV camera and a ranging laser system. System program specifications integrate eye-hand coordination and topological vision functions and an aerospace multiprocessor implementation is described.

  4. Tomato grading system using machine vision technology and neuro-fuzzy networks (ANFIS

    Directory of Open Access Journals (Sweden)

    H Izadi

    2016-04-01

    Full Text Available Introduction: The quality of agricultural products is associated with their color, size and health, grading of fruits is regarded as an important step in post-harvest processing. In most cases, manual sorting inspections depends on available manpower, time consuming and their accuracy could not be guaranteed. Machine Vision is known to be a useful tool for external features measurement (e.g. size, shape, color and defects and in recent century, Machine Vision technology has been used for shape sorting. The main purpose of this study was to develop new method for tomato grading and sorting using Neuro-fuzzy system (ANFIS and to compare the accuracies of the ANFIS predicted results with those suggested by a human expert. Materials and Methods: In this study, a total of 300 image of tomatoes (Rev ground was randomly harvested, classified in 3 ripeness stage, 3 sizes and 2 health. The grading and sorting mechanism consisted of a lighting chamber (cloudy sky, lighting source and a digital camera connected to a computer. The images were recorded in a special chamber with an indirect radiation (cloudy sky with four florescent lampson each sides and camera lens was entire to lighting chamber by a hole which was only entranced to outer and covered by a camera lens. Three types of features were extracted from final images; Shap, color and texture. To receive these features, we need to have images both in color and binary format in procedure shown in Figure 1. For the first group; characteristics of the images were analysis that could offer information an surface area (S.A., maximum diameter (Dmax, minimum diameter (Dmin and average diameters. Considering to the importance of the color in acceptance of food quality by consumers, the following classification was conducted to estimate the apparent color of the tomato; 1. Classified as red (red > 90% 2. Classified as red light (red or bold pink 60-90% 3. Classified as pink (red 30-60% 4. Classified as Turning

  5. Integrating Symbolic and Statistical Methods for Testing Intelligent Systems Applications to Machine Learning and Computer Vision

    Energy Technology Data Exchange (ETDEWEB)

    Jha, Sumit Kumar [University of Central Florida, Orlando; Pullum, Laura L [ORNL; Ramanathan, Arvind [ORNL

    2016-01-01

    Embedded intelligent systems ranging from tiny im- plantable biomedical devices to large swarms of autonomous un- manned aerial systems are becoming pervasive in our daily lives. While we depend on the flawless functioning of such intelligent systems, and often take their behavioral correctness and safety for granted, it is notoriously difficult to generate test cases that expose subtle errors in the implementations of machine learning algorithms. Hence, the validation of intelligent systems is usually achieved by studying their behavior on representative data sets, using methods such as cross-validation and bootstrapping.In this paper, we present a new testing methodology for studying the correctness of intelligent systems. Our approach uses symbolic decision procedures coupled with statistical hypothesis testing to. We also use our algorithm to analyze the robustness of a human detection algorithm built using the OpenCV open-source computer vision library. We show that the human detection implementation can fail to detect humans in perturbed video frames even when the perturbations are so small that the corresponding frames look identical to the naked eye.

  6. Colour Model for Outdoor Machine Vision for Tropical Regions and its Comparison with the CIE Model

    Energy Technology Data Exchange (ETDEWEB)

    Sahragard, Nasrolah; Ramli, Abdul Rahman B [Institute of Advanced Technology, Universiti Putra Malaysia 43400 Serdang, Selangor (Malaysia); Marhaban, Mohammad Hamiruce [Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia 43400 Serdang, Selangor (Malaysia); Mansor, Shattri B, E-mail: sahragard@yahoo.com [Department of Civil Engineering, Faculty of Engineering, Universiti Putra Malaysia 43400 Serdang, Selangor (Malaysia)

    2011-02-15

    Accurate modeling of daylight and surface reflectance are very useful for most outdoor machine vision applications specifically those which are based on color recognition. Existing daylight CIE model has drawbacks that limit its ability to predict the color of incident light. These limitations include lack of considering ambient light, effects of light reflected off the ground, and context specific information. Previously developed color model is only tested for a few geographical places in North America and its accountability is under question for other places in the world. Besides, existing surface reflectance models are not easily applied to outdoor images. A reflectance model with combined diffuse and specular reflection in normalized HSV color space could be used to predict color. In this paper, a new daylight color model showing the color of daylight for a broad range of sky conditions is developed which will suit weather conditions of tropical places such as Malaysia. A comparison of this daylight color model and daylight CIE model will be discussed. The colors of matte and specular surfaces have been estimated by use of the developed color model and surface reflection function in this paper. The results are shown to be highly reliable.

  7. Yield Estimation of Sugar Beet Based on Plant Canopy Using Machine Vision Methods

    Directory of Open Access Journals (Sweden)

    S Latifaltojar

    2014-09-01

    Full Text Available Crop yield estimation is one of the most important parameters for information and resources management in precision agriculture. This information is employed for optimizing the field inputs for successive cultivations. In the present study, the feasibility of sugar beet yield estimation by means of machine vision was studied. For the field experiments stripped images were taken during the growth season with one month intervals. The image of horizontal view of plants canopy was prepared at the end of each month. At the end of growth season, beet roots were harvested and the correlation between the sugar beet canopy in each month of growth period and corresponding weight of the roots were investigated. Results showed that there was a strong correlation between the beet yield and green surface area of autumn cultivated sugar beets. The highest coefficient of determination was 0.85 at three months before harvest. In order to assess the accuracy of the final model, the second year of study was performed with the same methodology. The results depicted a strong relationship between the actual and estimated beet weights with R2=0.94. The model estimated beet yield with about 9 percent relative error. It is concluded that this method has appropriate potential for estimation of sugar beet yield based on band imaging prior to harvest

  8. Colour Model for Outdoor Machine Vision for Tropical Regions and its Comparison with the CIE Model

    Science.gov (United States)

    Sahragard, Nasrolah; Ramli, Abdul Rahman B.; Hamiruce Marhaban, Mohammad; Mansor, Shattri B.

    2011-02-01

    Accurate modeling of daylight and surface reflectance are very useful for most outdoor machine vision applications specifically those which are based on color recognition. Existing daylight CIE model has drawbacks that limit its ability to predict the color of incident light. These limitations include lack of considering ambient light, effects of light reflected off the ground, and context specific information. Previously developed color model is only tested for a few geographical places in North America and its accountability is under question for other places in the world. Besides, existing surface reflectance models are not easily applied to outdoor images. A reflectance model with combined diffuse and specular reflection in normalized HSV color space could be used to predict color. In this paper, a new daylight color model showing the color of daylight for a broad range of sky conditions is developed which will suit weather conditions of tropical places such as Malaysia. A comparison of this daylight color model and daylight CIE model will be discussed. The colors of matte and specular surfaces have been estimated by use of the developed color model and surface reflection function in this paper. The results are shown to be highly reliable.

  9. Colour Model for Outdoor Machine Vision for Tropical Regions and its Comparison with the CIE Model

    International Nuclear Information System (INIS)

    Sahragard, Nasrolah; Ramli, Abdul Rahman B; Marhaban, Mohammad Hamiruce; Mansor, Shattri B

    2011-01-01

    Accurate modeling of daylight and surface reflectance are very useful for most outdoor machine vision applications specifically those which are based on color recognition. Existing daylight CIE model has drawbacks that limit its ability to predict the color of incident light. These limitations include lack of considering ambient light, effects of light reflected off the ground, and context specific information. Previously developed color model is only tested for a few geographical places in North America and its accountability is under question for other places in the world. Besides, existing surface reflectance models are not easily applied to outdoor images. A reflectance model with combined diffuse and specular reflection in normalized HSV color space could be used to predict color. In this paper, a new daylight color model showing the color of daylight for a broad range of sky conditions is developed which will suit weather conditions of tropical places such as Malaysia. A comparison of this daylight color model and daylight CIE model will be discussed. The colors of matte and specular surfaces have been estimated by use of the developed color model and surface reflection function in this paper. The results are shown to be highly reliable.

  10. Automatic detection and counting of cattle in UAV imagery based on machine vision technology (Conference Presentation)

    Science.gov (United States)

    Rahnemoonfar, Maryam; Foster, Jamie; Starek, Michael J.

    2017-05-01

    Beef production is the main agricultural industry in Texas, and livestock are managed in pasture and rangeland which are usually huge in size, and are not easily accessible by vehicles. The current research method for livestock location identification and counting is visual observation which is very time consuming and costly. For animals on large tracts of land, manned aircraft may be necessary to count animals which is noisy and disturbs the animals, and may introduce a source of error in counts. Such manual approaches are expensive, slow and labor intensive. In this paper we study the combination of small unmanned aerial vehicle (sUAV) and machine vision technology as a valuable solution to manual animal surveying. A fixed-wing UAV fitted with GPS and digital RGB camera for photogrammetry was flown at the Welder Wildlife Foundation in Sinton, TX. Over 600 acres were flown with four UAS flights and individual photographs used to develop orthomosaic imagery. To detect animals in UAV imagery, a fully automatic technique was developed based on spatial and spectral characteristics of objects. This automatic technique can even detect small animals that are partially occluded by bushes. Experimental results in comparison to ground-truth show the effectiveness of our algorithm.

  11. Intelligent Machine Vision for Automated Fence Intruder Detection Using Self-organizing Map

    Directory of Open Access Journals (Sweden)

    Veldin A. Talorete Jr.

    2017-03-01

    Full Text Available This paper presents an intelligent machine vision for automated fence intruder detection. A series of still captured images that contain fence events using Internet Protocol cameras was used as input data to the system. Two classifiers were used; the first is to classify human posture and the second one will classify intruder location. The system classifiers were implemented using Self-Organizing Map after the implementation of several image segmentation processes. The human posture classifier is in charge of classifying the detected subject’s posture patterns from subject’s silhouette. Moreover, the Intruder Localization Classifier is in charge of classifying the detected pattern’s location classifier will estimate the location of the intruder with respect to the fence using geometric feature from images as inputs. The system is capable of activating the alarm, display the actual image and depict the location of the intruder when an intruder is detected. In detecting intruder posture, the system’s success rate of 88%. Overall system accuracy for day-time intruder localization is 83% and an accuracy of 88% for night-time intruder localization

  12. Calibrators measurement system for headlamp tester of motor vehicle base on machine vision

    Science.gov (United States)

    Pan, Yue; Zhang, Fan; Xu, Xi-ping; Zheng, Zhe

    2014-09-01

    With the development of photoelectric detection technology, machine vision has a wider use in the field of industry. The paper mainly introduces auto lamps tester calibrator measuring system, of which CCD image sampling system is the core. Also, it shows the measuring principle of optical axial angle and light intensity, and proves the linear relationship between calibrator's facula illumination and image plane illumination. The paper provides an important specification of CCD imaging system. Image processing by MATLAB can get flare's geometric midpoint and average gray level. By fitting the statistics via the method of the least square, we can get regression equation of illumination and gray level. It analyzes the error of experimental result of measurement system, and gives the standard uncertainty of synthesis and the resource of optical axial angle. Optical axial angle's average measuring accuracy is controlled within 40''. The whole testing process uses digital means instead of artificial factors, which has higher accuracy, more repeatability and better mentality than any other measuring systems.

  13. Multisource Data Fusion Framework for Land Use/Land Cover Classification Using Machine Vision

    Directory of Open Access Journals (Sweden)

    Salman Qadri

    2017-01-01

    Full Text Available Data fusion is a powerful tool for the merging of multiple sources of information to produce a better output as compared to individual source. This study describes the data fusion of five land use/cover types, that is, bare land, fertile cultivated land, desert rangeland, green pasture, and Sutlej basin river land derived from remote sensing. A novel framework for multispectral and texture feature based data fusion is designed to identify the land use/land cover data types correctly. Multispectral data is obtained using a multispectral radiometer, while digital camera is used for image dataset. It has been observed that each image contained 229 texture features, while 30 optimized texture features data for each image has been obtained by joining together three features selection techniques, that is, Fisher, Probability of Error plus Average Correlation, and Mutual Information. This 30-optimized-texture-feature dataset is merged with five-spectral-feature dataset to build the fused dataset. A comparison is performed among texture, multispectral, and fused dataset using machine vision classifiers. It has been observed that fused dataset outperformed individually both datasets. The overall accuracy acquired using multilayer perceptron for texture data, multispectral data, and fused data was 96.67%, 97.60%, and 99.60%, respectively.

  14. Feature-Free Activity Classification of Inertial Sensor Data With Machine Vision Techniques: Method, Development, and Evaluation.

    Science.gov (United States)

    Dominguez Veiga, Jose Juan; O'Reilly, Martin; Whelan, Darragh; Caulfield, Brian; Ward, Tomas E

    2017-08-04

    Inertial sensors are one of the most commonly used sources of data for human activity recognition (HAR) and exercise detection (ED) tasks. The time series produced by these sensors are generally analyzed through numerical methods. Machine learning techniques such as random forests or support vector machines are popular in this field for classification efforts, but they need to be supported through the isolation of a potentially large number of additionally crafted features derived from the raw data. This feature preprocessing step can involve nontrivial digital signal processing (DSP) techniques. However, in many cases, the researchers interested in this type of activity recognition problems do not possess the necessary technical background for this feature-set development. The study aimed to present a novel application of established machine vision methods to provide interested researchers with an easier entry path into the HAR and ED fields. This can be achieved by removing the need for deep DSP skills through the use of transfer learning. This can be done by using a pretrained convolutional neural network (CNN) developed for machine vision purposes for exercise classification effort. The new method should simply require researchers to generate plots of the signals that they would like to build classifiers with, store them as images, and then place them in folders according to their training label before retraining the network. We applied a CNN, an established machine vision technique, to the task of ED. Tensorflow, a high-level framework for machine learning, was used to facilitate infrastructure needs. Simple time series plots generated directly from accelerometer and gyroscope signals are used to retrain an openly available neural network (Inception), originally developed for machine vision tasks. Data from 82 healthy volunteers, performing 5 different exercises while wearing a lumbar-worn inertial measurement unit (IMU), was collected. The ability of the

  15. Embedded Platforms for Computer Vision-based Advanced Driver Assistance Systems: a Survey

    OpenAIRE

    Velez, Gorka; Otaegui, Oihana

    2015-01-01

    Computer Vision, either alone or combined with other technologies such as radar or Lidar, is one of the key technologies used in Advanced Driver Assistance Systems (ADAS). Its role understanding and analysing the driving scene is of great importance as it can be noted by the number of ADAS applications that use this technology. However, porting a vision algorithm to an embedded automotive system is still very challenging, as there must be a trade-off between several design requisites. Further...

  16. Advanced Machine Learning Emulators of Radiative Transfer Models

    Science.gov (United States)

    Camps-Valls, G.; Verrelst, J.; Martino, L.; Vicent, J.

    2017-12-01

    Physically-based model inversion methodologies are based on physical laws and established cause-effect relationships. A plethora of remote sensing applications rely on the physical inversion of a Radiative Transfer Model (RTM), which lead to physically meaningful bio-geo-physical parameter estimates. The process is however computationally expensive, needs expert knowledge for both the selection of the RTM, its parametrization and the the look-up table generation, as well as its inversion. Mimicking complex codes with statistical nonlinear machine learning algorithms has become the natural alternative very recently. Emulators are statistical constructs able to approximate the RTM, although at a fraction of the computational cost, providing an estimation of uncertainty, and estimations of the gradient or finite integral forms. We review the field and recent advances of emulation of RTMs with machine learning models. We posit Gaussian processes (GPs) as the proper framework to tackle the problem. Furthermore, we introduce an automatic methodology to construct emulators for costly RTMs. The Automatic Gaussian Process Emulator (AGAPE) methodology combines the interpolation capabilities of GPs with the accurate design of an acquisition function that favours sampling in low density regions and flatness of the interpolation function. We illustrate the good capabilities of our emulators in toy examples, leaf and canopy levels PROSPECT and PROSAIL RTMs, and for the construction of an optimal look-up-table for atmospheric correction based on MODTRAN5.

  17. Advanced man-machine interaction. Fundamentals and implementation

    Energy Technology Data Exchange (ETDEWEB)

    Kraiss, K.F. (ed.) [Aachen Technische Hochschule (Germany). Lehrstuhl fuer Technische Informatik und Computerwissenschaften

    2006-07-01

    Man-machine interaction is the gateway providing access to functions and services, which, due to the ever increasing complexity of smart systems, threatens to become a bottleneck. This book therefore introduces not only advanced interfacing concepts, but also gives insight into the related theoretical background.This refers mainly to the realization of video-based multimodal interaction via gesture, mimics, and speech, but also to interacting with virtual object in virtual environments, cooperating with local or remote robots, and user assistance. While most publications in the field of human factors engineering focus on interface design, this book puts special emphasis on implementation aspects. To this end it is accompanied by software development environments for image processing, classification, and virtual environment implementation. In addition a test data base is included for gestures, head pose, facial expressions, full-body person recognition, and people tracking. These data are used for the examples throughout the book, but are also meant to encourage the reader to start experimentation on his own. Thus the book may serve as a self-contained introduction both for researchers and developers of man-machine interfaces. It may also be used for graduate-level university courses. (orig.)

  18. Recent Advances in Technologies Required for a ``Salad Machine''

    Science.gov (United States)

    Kliss, M.; Heyenga, A. G.; Hoehn, A.; Stodieck, L. S.

    Future long duration, manned space flight missions will require life support systems that minimize resupply requirements and ultimately approach self-sufficiency in space. Bioregenerative life support systems are a promising approach, but they are far from mature. Early in the development of the NASA Controlled Ecological Life Support System Program, the idea of onboard cultivation of salad-type vegetables for crew consumption was proposed as a first step away from the total reliance on resupply for food in space. Since that time, significant advances in space-based plant growth hardware have occurred, and considerable flight experience has been gained. This paper revisits the ``Salad Machine'' concept and describes recent developments in subsystem technologies for both plant root and shoot environments that are directly relevant to the development of such a facility

  19. Vision and Displays for Military and Security Applications The Advanced Deployable Day/Night Simulation Project

    CERN Document Server

    Niall, Keith K

    2010-01-01

    Vision and Displays for Military and Security Applications presents recent advances in projection technologies and associated simulation technologies for military and security applications. Specifically, this book covers night vision simulation, semi-automated methods in photogrammetry, and the development and evaluation of high-resolution laser projection technologies for simulation. Topics covered include: advances in high-resolution projection, advances in image generation, geographic modeling, and LIDAR imaging, as well as human factors research for daylight simulation and for night vision devices. This title is ideal for optical engineers, simulator users and manufacturers, geomatics specialists, human factors researchers, and for engineers working with high-resolution display systems. It describes leading-edge methods for human factors research, and it describes the manufacture and evaluation of ultra-high resolution displays to provide unprecedented pixel density in visual simulation.

  20. Color machine vision system for process control in the ceramics industry

    Science.gov (United States)

    Penaranda Marques, Jose A.; Briones, Leoncio; Florez, Julian

    1997-08-01

    This paper is focused on the design of a machine vision system to solve a problem found in the manufacturing process of high quality polished porcelain tiles. This consists of sorting the tiles according to the criteria 'same appearance to the human eye' or in other words, by color and visual texture. In 1994 this problem was tackled and led to a prototype which became fully operational at production scale in a manufacturing plant, named Porcelanatto, S.A. The system has evolved and has been adapted to meet the particular needs of this manufacturing company. Among the main issues that have been improved, it is worth pointing out: (1) improvement to discern subtle variations in color or texture, which are the main features of the visual appearance; (2) inspection time reduction, as a result of algorithm optimization and the increasing computing power. Thus, 100 percent of the production can be inspected, reaching a maximum of 120 tiles/sec.; (3) adaptation to the different types and models of tiles manufactured. The tiles vary not only in their visible patterns but also in dimensions, formats, thickness and allowances. In this sense, one major problem has been reaching an optimal compromise: The system must be sensitive enough to discern subtle variations in color, but at the same time insensitive thickness variations in the tiles. The following parts have been used to build the system: RGB color line scan camera, 12 bits per channel, PCI frame grabber, PC, fiber optic based illumination and the algorithm which will be explained in section 4.

  1. Design, development and evaluation of an online grading system for peeled pistachios equipped with machine vision technology and support vector machine

    Directory of Open Access Journals (Sweden)

    Hosein Nouri-Ahmadabadi

    2017-12-01

    Full Text Available In this study, an intelligent system based on combined machine vision (MV and Support Vector Machine (SVM was developed for sorting of peeled pistachio kernels and shells. The system was composed of conveyor belt, lighting box, camera, processing unit and sorting unit. A color CCD camera was used to capture images. The images were digitalized by a capture card and transferred to a personal computer for further analysis. Initially, images were converted from RGB color space to HSV color ones. For segmentation of the acquired images, H-component in the HSV color space and Otsu thresholding method were applied. A feature vector containing 30 color features was extracted from the captured images. A feature selection method based on sensitivity analysis was carried out to select superior features. The selected features were presented to SVM classifier. Various SVM models having a different kernel function were developed and tested. The SVM model having cubic polynomial kernel function and 38 support vectors achieved the best accuracy (99.17% and then was selected to use in online decision-making unit of the system. By launching the online system, it was found that limiting factors of the system capacity were related to the hardware parts of the system (conveyor belt and pneumatic valves used in the sorting unit. The limiting factors led to a distance of 8 mm between the samples. The overall accuracy and capacity of the sorter were obtained 94.33% and 22.74 kg/h, respectively. Keywords: Pistachio kernel, Sorting, Machine vision, Sensitivity analysis, Support vector machine

  2. Development and evaluation of a targeted orchard sprayer using machine vision technology

    Directory of Open Access Journals (Sweden)

    H Asaei

    2016-09-01

    Full Text Available Introduction In conventional methods of spraying in orchards, the amount of pesticide sprayed, is not targeted. The pesticide consumption data indicates that the application rate of pesticide in greenhouses and orchards is more than required. Less than 30% of pesticide sprayed actually reaches nursery canopies while the rest are lost and wasted. Nowadays, variable rate spray applicators using intelligent control systems can greatly reduce pesticide use and off-target contamination of environment in nurseries and orchards. In this research a prototype orchard sprayer based on machine vision technology was developed and evaluated. This sprayer performs real-time spraying based on the tree canopy structure and its greenness extent which improves the efficiency of spraying operation in orchards. Materials and Methods The equipment used in this study comprised of three main parts generally: 1- Mechanical Equipment 2- Data collection and image processing system 3- Electronic control system Two booms were designed to support the spray nozzles and to provide flexibility in directing the spray nozzles to the target. The boom comprised two parts, the vertical part and inclined part. The vertical part of the boom was used to spray one side of the trees during forward movement of the tractor and inclined part of the boom was designed to spray the upper half of the tree canopy. Three nozzles were considered on each boom. On the vertical part of the boom, two nozzles were placed, whereas one other nozzle was mounted on the inclined part of the boom. To achieve different tree heights, the vertical part of the boom was able to slide up and down. Labview (version 2011 was used for real time image processing. Images were captured through RGB cameras mounted on a horizontal bar attached on top of the tractor to take images separately for each side of the sprayer. Images were captured from the top of the canopies looking downward. The triggering signal for

  3. Machine Shop Suggested Job and Task Sheets. Part II. 21 Advanced Jobs.

    Science.gov (United States)

    Texas A and M Univ., College Station. Vocational Instructional Services.

    This volume consists of advanced job and task sheets adaptable for use in the regular vocational industrial education programs for the training of machinists and machine shop operators. Twenty-one advanced machine shop job sheets are included. Some or all of this material is provided for each job: an introductory sheet with aim, checking…

  4. Autonomous vision in space, based on Advanced Stellar Compass platform

    DEFF Research Database (Denmark)

    Jørgensen, John Leif; Eisenman, Allan R.; Liebe, Carl Christian

    1996-01-01

    The Ørsted Star Imager, comprises the functionality of an Advanced Stellar Compass (ASC). I.e. it is able to, autonomously solve "the lost in space" attitude problem, as well as determine the attitude with high precision in the matter of seconds. The autonomy makes for a high capability for error......) Complex Object surface tracking (e.g. space docking, planetary terrain tracking). All the above topics, has been realized in the past. Either by open loop, or by man-in-loop systems. By implementing these methods or function in the onboard autonomy, a superior system performance could be acheived by means...

  5. Future vision of advanced telecommunication networks for electric utilities; Denki jigyo ni okeru joho tsushin network no shorai vision

    Energy Technology Data Exchange (ETDEWEB)

    Tonaru, S.; Ono, K.; Sakai, S.; Kawai, Y.; Tsuboi, A. [Central Research Institute of Electric Power Industry, Tokyo (Japan); Manabe, S. [Shikoku Electric Power Co., Inc., Kagawa (Japan); Miki, Y. [Kansai Electric Power Co. Inc., Osaka (Japan)

    1995-06-01

    The vision of an advanced information system is proposed to cope with the future social demand and business environmental change in electric utilities. At the large turning point such as drastic reconsideration of Electricity Utilities Industry Law, further improvement of efficiency and cost reduction are requested as well as business innovation such as proposal of a new business policy. For that purpose utilization of information and its technology is indispensable, and use of multimedia and common information in organization are the future direction for improving information basis. Consequently, free information networks without any limitation due to person and media are necessary, and the following are important: high-speed, high-frequency band, digital, easily connectable and multimedia transmission lines, and cost reduction and high reliability of networks. Based on innovation of information networks and the clear principle on advanced information system, development of new applications by multimedia technologies, diffusion of communication terminals, and promotion of standardization are essential. 60 refs., 30 figs., 5 tabs.

  6. A bio-inspired apposition compound eye machine vision sensor system

    International Nuclear Information System (INIS)

    Davis, J D; Barrett, S F; Wright, C H G; Wilcox, M

    2009-01-01

    The Wyoming Information, Signal Processing, and Robotics Laboratory is developing a wide variety of bio-inspired vision sensors. We are interested in exploring the vision system of various insects and adapting some of their features toward the development of specialized vision sensors. We do not attempt to supplant traditional digital imaging techniques but rather develop sensor systems tailor made for the application at hand. We envision that many applications may require a hybrid approach using conventional digital imaging techniques enhanced with bio-inspired analogue sensors. In this specific project, we investigated the apposition compound eye and its characteristics commonly found in diurnal insects and certain species of arthropods. We developed and characterized an array of apposition compound eye-type sensors and tested them on an autonomous robotic vehicle. The robot exhibits the ability to follow a pre-defined target and avoid specified obstacles using a simple control algorithm.

  7. Machine Learning

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Machine learning, which builds on ideas in computer science, statistics, and optimization, focuses on developing algorithms to identify patterns and regularities in data, and using these learned patterns to make predictions on new observations. Boosted by its industrial and commercial applications, the field of machine learning is quickly evolving and expanding. Recent advances have seen great success in the realms of computer vision, natural language processing, and broadly in data science. Many of these techniques have already been applied in particle physics, for instance for particle identification, detector monitoring, and the optimization of computer resources. Modern machine learning approaches, such as deep learning, are only just beginning to be applied to the analysis of High Energy Physics data to approach more and more complex problems. These classes will review the framework behind machine learning and discuss recent developments in the field.

  8. A Survey of Advances in Vision-Based Human Motion Capture and Analysis

    DEFF Research Database (Denmark)

    Moeslund, Thomas B.; Hilton, Adrian; Krüger, Volker

    2006-01-01

    This survey reviews advances in human motion capture and analysis from 2000 to 2006, following a previous survey of papers up to 2000 Human motion capture continues to be an increasingly active research area in computer vision with over 350 publications over this period. A number of significant...... actions and behavior. This survey reviews recent trends in video based human capture and analysis, as well as discussing open problems for future research to achieve automatic visual analysis of human movement....

  9. International Workshop on Advanced Dynamics and Model Based Control of Structures and Machines

    CERN Document Server

    Belyaev, Alexander; Krommer, Michael

    2017-01-01

    The papers in this volume present and discuss the frontiers in the mechanics of controlled machines and structures. They are based on papers presented at the International Workshop on Advanced Dynamics and Model Based Control of Structures and Machines held in Vienna in September 2015. The workshop continues a series of international workshops held in Linz (2008) and St. Petersburg (2010).

  10. Investigations on the performance of ultrasonic drilling process with special reference to precision machining of advanced ceramics

    International Nuclear Information System (INIS)

    Adithan, M.; Laroiya, S.C.

    1997-01-01

    Advanced ceramics are assuming an important role in modern industrial technology. The applications and advantages of using advanced ceramics are many. There are several reasons why we should go in for machining of advanced ceramics after their compacting and sintering. These are discussed in this paper. However, precision machining of advanced ceramics must be economical. Critical technological issues to be addressed in cost effective machining of ceramics include design of machine tools, tooling arrangements, improved yield and precision, relationship of part dimensions and finish specifications to functional performance, and on-line inspection. Considering the above ultrasonic drilling is an important process used for the precision machining of advanced ceramics. Extensive studies on tool wear occurring in the ultrasonic machining of advanced ceramics have been carried out. In addition, production accuracy of holes drilled, surface finish obtained and surface integrity aspects in the machining of advanced ceramics have also been investigated. Some specific findings with reference to surface integrity are: a) there were no cracks or micro-cracks developed during or after ultrasonic machining of advanced ceramics, b) while machining Hexoloy alpha silicon carbide a recast layer is formed as a result of ultrasonic machining. This is attributed to the viscous heating resulting from high energy impacts during ultrasonic machining. While machining all other types of ceramics no such formation of recast layer was observed, and , c) there is no change in the microstructure of the advanced ceramics as a result of ultrasonic machining

  11. Increased generalization capability of trainable COSFIRE filters with application to machine vision

    NARCIS (Netherlands)

    Azzopardi, George; Fernandez-Robles, Laura; Alegre, Enrique; Petkov, Nicolai

    2017-01-01

    The recently proposed trainable COSFIRE filters are highly effective in a wide range of computer vision applications, including object recognition, image classification, contour detection and retinal vessel segmentation. A COSFIRE filter is selective for a collection of contour parts in a certain

  12. Application of generalized Hough transform for detecting sugar beet plant from weed using machine vision method

    Directory of Open Access Journals (Sweden)

    A Bakhshipour Ziaratgahi

    2017-05-01

    Full Text Available Introduction Sugar beet (Beta vulgaris L. as the second most important world’s sugar source after sugarcane is one of the major industrial crops. The presence of weeds in sugar beet fields, especially at early growth stages, results in a substantial decrease in the crop yield. It is very important to efficiently eliminate weeds at early growing stages. The first step of precision weed control is accurate detection of weeds location in the field. This operation can be performed by machine vision techniques. Hough transform is one of the shape feature extraction methods for object tracking in image processing which is basically used to identify lines or other geometrical shapes in an image. Generalized Hough transform (GHT is a modified version of the Hough transform used not only for geometrical forms, but also for detecting any arbitrary shape. This method is based on a pattern matching principle that uses a set of vectors of feature points (usually object edge points to a reference point to construct a pattern. By comparing this pattern with a set pattern, the desired shape is detected. The aim of this study was to identify the sugar beet plant from some common weeds in a field using the GHT. Materials and Methods Images required for this study were taken at the four-leaf stage of sugar beet as the beginning of the critical period of weed control. A shelter was used to avoid direct sunlight and prevent leaf shadows on each other. The obtained images were then introduced to the Image Processing Toolbox of MATLAB programming software for further processing. Green and Red color components were extracted from primary RGB images. In the first step, binary images were obtained by applying the optimal threshold on the G-R images. A comprehensive study of several sugar beet images revealed that there is a unique feature in sugar beet leaves which makes them differentiable from the weeds. The feature observed in all sugar beet plants at the four

  13. Advances Towards Synthetic Machines at the Molecular and Nanoscale Level

    Directory of Open Access Journals (Sweden)

    Kristina Konstas

    2010-06-01

    Full Text Available The fabrication of increasingly smaller machines to the nanometer scale can be achieved by either a “top-down” or “bottom-up” approach. While the former is reaching its limits of resolution, the latter is showing promise for the assembly of molecular components, in a comparable approach to natural systems, to produce functioning ensembles in a controlled and predetermined manner. In this review we focus on recent progress in molecular systems that act as molecular machine prototypes such as switches, motors, vehicles and logic operators.

  14. Identification and location of catenary insulator in complex background based on machine vision

    Science.gov (United States)

    Yao, Xiaotong; Pan, Yingli; Liu, Li; Cheng, Xiao

    2018-04-01

    It is an important premise to locate insulator precisely for fault detection. Current location algorithms for insulator under catenary checking images are not accurate, a target recognition and localization method based on binocular vision combined with SURF features is proposed. First of all, because of the location of the insulator in complex environment, using SURF features to achieve the coarse positioning of target recognition; then Using binocular vision principle to calculate the 3D coordinates of the object which has been coarsely located, realization of target object recognition and fine location; Finally, Finally, the key is to preserve the 3D coordinate of the object's center of mass, transfer to the inspection robot to control the detection position of the robot. Experimental results demonstrate that the proposed method has better recognition efficiency and accuracy, can successfully identify the target and has a define application value.

  15. Vision based nutrient deficiency classification in maize plants using multi class support vector machines

    Science.gov (United States)

    Leena, N.; Saju, K. K.

    2018-04-01

    Nutritional deficiencies in plants are a major concern for farmers as it affects productivity and thus profit. The work aims to classify nutritional deficiencies in maize plant in a non-destructive mannerusing image processing and machine learning techniques. The colored images of the leaves are analyzed and classified with multi-class support vector machine (SVM) method. Several images of maize leaves with known deficiencies like nitrogen, phosphorous and potassium (NPK) are used to train the SVM classifier prior to the classification of test images. The results show that the method was able to classify and identify nutritional deficiencies.

  16. Infrared machine vision system for the automatic detection of olive fruit quality.

    Science.gov (United States)

    Guzmán, Elena; Baeten, Vincent; Pierna, Juan Antonio Fernández; García-Mesa, José A

    2013-11-15

    External quality is an important factor in the extraction of olive oil and the marketing of olive fruits. The appearance and presence of external damage are factors that influence the quality of the oil extracted and the perception of consumers, determining the level of acceptance prior to purchase in the case of table olives. The aim of this paper is to report on artificial vision techniques developed for the online estimation of olive quality and to assess the effectiveness of these techniques in evaluating quality based on detecting external defects. This method of classifying olives according to the presence of defects is based on an infrared (IR) vision system. Images of defects were acquired using a digital monochrome camera with band-pass filters on near-infrared (NIR). The original images were processed using segmentation algorithms, edge detection and pixel value intensity to classify the whole fruit. The detection of the defect involved a pixel classification procedure based on nonparametric models of the healthy and defective areas of olives. Classification tests were performed on olives to assess the effectiveness of the proposed method. This research showed that the IR vision system is a useful technology for the automatic assessment of olives that has the potential for use in offline inspection and for online sorting for defects and the presence of surface damage, easily distinguishing those that do not meet minimum quality requirements. Crown Copyright © 2013 Published by Elsevier B.V. All rights reserved.

  17. Advances in precision machining and moulding technology bring design opportunities.

    Science.gov (United States)

    Glendening, Paul

    2008-09-01

    Machining of materials for medical applications has moved to a new level of precision. In parallel with this, moulding technology has improved through the increased use of sensors in moulds, enhanced design simulation and processes such as micromoulding. This article examines the opportunities offered by these developments and includes examples of mass produced parts that demonstrate the new capabilities useful to product designers.

  18. Recent advances in transient imaging: A computer graphics and vision perspective

    Directory of Open Access Journals (Sweden)

    Adrian Jarabo

    2017-03-01

    Full Text Available Transient imaging has recently made a huge impact in the computer graphics and computer vision fields. By capturing, reconstructing, or simulating light transport at extreme temporal resolutions, researchers have proposed novel techniques to show movies of light in motion, see around corners, detect objects in highly-scattering media, or infer material properties from a distance, to name a few. The key idea is to leverage the wealth of information in the temporal domain at the pico or nanosecond resolution, information usually lost during the capture-time temporal integration. This paper presents recent advances in this field of transient imaging from a graphics and vision perspective, including capture techniques, analysis, applications and simulation. Keywords: Transient imaging, Ultrafast imaging, Time-of-flight

  19. Cognitive radio and networking for heterogeneous wireless networks recent advances and visions for the future

    CERN Document Server

    Cattoni, Andrea; Fiorina, Jocelyn; Bader, Faouzi; Nardis, Luca

    2015-01-01

    This book, written by leading experts from academia and industry, offers a condensed overview on hot topics among the Cognitive Radios and Networks scientific and industrial communities (including those considered within the framework of the European COST Action IC0902) and presents exciting visions for the future. Examples of the subjects considered include the design of new filter bank-based air interfaces for spectrum sharing, medium access control design protocols, the design of cloud-based radio access networks, an evolutionary vision for the development and deployment of cognitive TCP/IP, and regulations relevant to the development of a spectrum sharing market. The concluding chapter comprises a practical, hands-on tutorial for those interested in developing their own research test beds. By focusing on the most recent advances and future avenues, this book will assist researchers in understanding the current issues and solutions in Cognitive Radios and Networks designs.

  20. Abrasives and Grinding Machines; Machine Shop Work--Advanced: 9557.02.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    The course outline has been prepared as a guide to assist the instructor in systematically planning and presenting a variety of meaningful lessons to facilitate the necessary training for the machine shop student. The material contained in the outline is designed to enable the student to learn the manipulative skills and related knowledge…

  1. Vision 20/20: Automation and advanced computing in clinical radiation oncology

    International Nuclear Information System (INIS)

    Moore, Kevin L.; Moiseenko, Vitali; Kagadis, George C.; McNutt, Todd R.; Mutic, Sasa

    2014-01-01

    This Vision 20/20 paper considers what computational advances are likely to be implemented in clinical radiation oncology in the coming years and how the adoption of these changes might alter the practice of radiotherapy. Four main areas of likely advancement are explored: cloud computing, aggregate data analyses, parallel computation, and automation. As these developments promise both new opportunities and new risks to clinicians and patients alike, the potential benefits are weighed against the hazards associated with each advance, with special considerations regarding patient safety under new computational platforms and methodologies. While the concerns of patient safety are legitimate, the authors contend that progress toward next-generation clinical informatics systems will bring about extremely valuable developments in quality improvement initiatives, clinical efficiency, outcomes analyses, data sharing, and adaptive radiotherapy

  2. Vision 20/20: Automation and advanced computing in clinical radiation oncology

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Kevin L., E-mail: kevinmoore@ucsd.edu; Moiseenko, Vitali [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California 92093 (United States); Kagadis, George C. [Department of Medical Physics, School of Medicine, University of Patras, Rion, GR 26504 (Greece); McNutt, Todd R. [Department of Radiation Oncology and Molecular Radiation Science, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21231 (United States); Mutic, Sasa [Department of Radiation Oncology, Washington University in St. Louis, St. Louis, Missouri 63110 (United States)

    2014-01-15

    This Vision 20/20 paper considers what computational advances are likely to be implemented in clinical radiation oncology in the coming years and how the adoption of these changes might alter the practice of radiotherapy. Four main areas of likely advancement are explored: cloud computing, aggregate data analyses, parallel computation, and automation. As these developments promise both new opportunities and new risks to clinicians and patients alike, the potential benefits are weighed against the hazards associated with each advance, with special considerations regarding patient safety under new computational platforms and methodologies. While the concerns of patient safety are legitimate, the authors contend that progress toward next-generation clinical informatics systems will bring about extremely valuable developments in quality improvement initiatives, clinical efficiency, outcomes analyses, data sharing, and adaptive radiotherapy.

  3. Vision 20/20: Automation and advanced computing in clinical radiation oncology.

    Science.gov (United States)

    Moore, Kevin L; Kagadis, George C; McNutt, Todd R; Moiseenko, Vitali; Mutic, Sasa

    2014-01-01

    This Vision 20/20 paper considers what computational advances are likely to be implemented in clinical radiation oncology in the coming years and how the adoption of these changes might alter the practice of radiotherapy. Four main areas of likely advancement are explored: cloud computing, aggregate data analyses, parallel computation, and automation. As these developments promise both new opportunities and new risks to clinicians and patients alike, the potential benefits are weighed against the hazards associated with each advance, with special considerations regarding patient safety under new computational platforms and methodologies. While the concerns of patient safety are legitimate, the authors contend that progress toward next-generation clinical informatics systems will bring about extremely valuable developments in quality improvement initiatives, clinical efficiency, outcomes analyses, data sharing, and adaptive radiotherapy.

  4. Automatic optical detection and classification of marine animals around MHK converters using machine vision

    Energy Technology Data Exchange (ETDEWEB)

    Brunton, Steven [Univ. of Washington, Seattle, WA (United States)

    2018-01-15

    Optical systems provide valuable information for evaluating interactions and associations between organisms and MHK energy converters and for capturing potentially rare encounters between marine organisms and MHK device. The deluge of optical data from cabled monitoring packages makes expert review time-consuming and expensive. We propose algorithms and a processing framework to automatically extract events of interest from underwater video. The open-source software framework consists of background subtraction, filtering, feature extraction and hierarchical classification algorithms. This principle classification pipeline was validated on real-world data collected with an experimental underwater monitoring package. An event detection rate of 100% was achieved using robust principal components analysis (RPCA), Fourier feature extraction and a support vector machine (SVM) binary classifier. The detected events were then further classified into more complex classes – algae | invertebrate | vertebrate, one species | multiple species of fish, and interest rank. Greater than 80% accuracy was achieved using a combination of machine learning techniques.

  5. The Three Pillars of Machine Programming

    OpenAIRE

    Gottschlich, Justin; Solar-Lezama, Armando; Tatbul, Nesime; Carbin, Michael; Rinard, Martin; Barzilay, Regina; Amarasinghe, Saman; Tenenbaum, Joshua B; Mattson, Tim

    2018-01-01

    In this position paper, we describe our vision of the future of machine programming through a categorical examination of three pillars of research. Those pillars are: (i) intention, (ii) invention, and(iii) adaptation. Intention emphasizes advancements in the human-to-computer and computer-to-machine-learning interfaces. Invention emphasizes the creation or refinement of algorithms or core hardware and software building blocks through machine learning (ML). Adaptation emphasizes advances in t...

  6. Development of yarn breakage detection software system based on machine vision

    Science.gov (United States)

    Wang, Wenyuan; Zhou, Ping; Lin, Xiangyu

    2017-10-01

    For questions spinning mills and yarn breakage cannot be detected in a timely manner, and save the cost of textile enterprises. This paper presents a software system based on computer vision for real-time detection of yarn breakage. The system and Windows8.1 system Tablet PC, cloud server to complete the yarn breakage detection and management. Running on the Tablet PC software system is designed to collect yarn and location information for analysis and processing. And will be processed after the information through the Wi-Fi and http protocol sent to the cloud server to store in the Microsoft SQL2008 database. In order to follow up on the yarn break information query and management. Finally sent to the local display on time display, and remind the operator to deal with broken yarn. The experimental results show that the system of missed test rate not more than 5%o, and no error detection.

  7. Low temperature wetting and cleanup of alkali metal-advanced electrical machine systems

    International Nuclear Information System (INIS)

    Gass, W.R.; Witkowski, R.E.; Burrow, G.C.

    1980-01-01

    Advanced homopolar electrical machines employing high electrical current density, liquid metal sliprings for current transfer utilize NaK/sub 78/ (78 w/o potassium, 22 w/o sodium) for the conducting fluid. Experiments have been performed to improve alkali metal/oxide clean-up procedures. Studies have also confirmed chemical and materials compatibility between barium doped NaK/sub 78/ and typical machine structural materials. 4 refs

  8. Advanced methods in NDE using machine learning approaches

    Science.gov (United States)

    Wunderlich, Christian; Tschöpe, Constanze; Duckhorn, Frank

    2018-04-01

    Machine learning (ML) methods and algorithms have been applied recently with great success in quality control and predictive maintenance. Its goal to build new and/or leverage existing algorithms to learn from training data and give accurate predictions, or to find patterns, particularly with new and unseen similar data, fits perfectly to Non-Destructive Evaluation. The advantages of ML in NDE are obvious in such tasks as pattern recognition in acoustic signals or automated processing of images from X-ray, Ultrasonics or optical methods. Fraunhofer IKTS is using machine learning algorithms in acoustic signal analysis. The approach had been applied to such a variety of tasks in quality assessment. The principal approach is based on acoustic signal processing with a primary and secondary analysis step followed by a cognitive system to create model data. Already in the second analysis steps unsupervised learning algorithms as principal component analysis are used to simplify data structures. In the cognitive part of the software further unsupervised and supervised learning algorithms will be trained. Later the sensor signals from unknown samples can be recognized and classified automatically by the algorithms trained before. Recently the IKTS team was able to transfer the software for signal processing and pattern recognition to a small printed circuit board (PCB). Still, algorithms will be trained on an ordinary PC; however, trained algorithms run on the Digital Signal Processor and the FPGA chip. The identical approach will be used for pattern recognition in image analysis of OCT pictures. Some key requirements have to be fulfilled, however. A sufficiently large set of training data, a high signal-to-noise ratio, and an optimized and exact fixation of components are required. The automated testing can be done subsequently by the machine. By integrating the test data of many components along the value chain further optimization including lifetime and durability

  9. Motorcycle That See: Multifocal Stereo Vision Sensor for Advanced Safety Systems in Tilting Vehicles

    Directory of Open Access Journals (Sweden)

    Gustavo Gil

    2018-01-01

    Full Text Available Advanced driver assistance systems, ADAS, have shown the possibility to anticipate crash accidents and effectively assist road users in critical traffic situations. This is not the case for motorcyclists, in fact ADAS for motorcycles are still barely developed. Our aim was to study a camera-based sensor for the application of preventive safety in tilting vehicles. We identified two road conflict situations for which automotive remote sensors installed in a tilting vehicle are likely to fail in the identification of critical obstacles. Accordingly, we set two experiments conducted in real traffic conditions to test our stereo vision sensor. Our promising results support the application of this type of sensors for advanced motorcycle safety applications.

  10. Motorcycles that See: Multifocal Stereo Vision Sensor for Advanced Safety Systems in Tilting Vehicles

    Science.gov (United States)

    2018-01-01

    Advanced driver assistance systems, ADAS, have shown the possibility to anticipate crash accidents and effectively assist road users in critical traffic situations. This is not the case for motorcyclists, in fact ADAS for motorcycles are still barely developed. Our aim was to study a camera-based sensor for the application of preventive safety in tilting vehicles. We identified two road conflict situations for which automotive remote sensors installed in a tilting vehicle are likely to fail in the identification of critical obstacles. Accordingly, we set two experiments conducted in real traffic conditions to test our stereo vision sensor. Our promising results support the application of this type of sensors for advanced motorcycle safety applications. PMID:29351267

  11. Motorcycle That See: Multifocal Stereo Vision Sensor for Advanced Safety Systems in Tilting Vehicles.

    Science.gov (United States)

    Gil, Gustavo; Savino, Giovanni; Piantini, Simone; Pierini, Marco

    2018-01-19

    Advanced driver assistance systems, ADAS, have shown the possibility to anticipate crash accidents and effectively assist road users in critical traffic situations. This is not the case for motorcyclists, in fact ADAS for motorcycles are still barely developed. Our aim was to study a camera-based sensor for the application of preventive safety in tilting vehicles. We identified two road conflict situations for which automotive remote sensors installed in a tilting vehicle are likely to fail in the identification of critical obstacles. Accordingly, we set two experiments conducted in real traffic conditions to test our stereo vision sensor. Our promising results support the application of this type of sensors for advanced motorcycle safety applications.

  12. Objective quality of vision in presbyopic and non-presbyopic patients after pseudoaccommodative advanced surface ablation.

    Science.gov (United States)

    Cantú, Roberto; Rosales, Marco A; Tepichín, Eduardo; Curioca, Andrée; Montes, Víctor; Ramirez-Zavaleta, J Gustavo

    2005-01-01

    To analyze the objective quality of vision at 6 months postoperatively after pseudoaccommodative (presbyopic) advanced surface ablation (PASA). The study comprised 62 eyes of 35 patients with 6-month follow-up that underwent primary or secondary treatments using PASA. Pre- and postoperative results of distance and near uncorrected visual acuity (UCVA), spherical aberration (coefficient of the Z12 Zernike polynomial), and the asphericity (Q) index were reviewed. The corresponding wavefront maps (total, low, and high order aberrations) and the corresponding point spread function and modulation transfer function (MTF) were also calculated. Our results show that PASA improves distance and near mean UCVA, increases negative spherical aberration and negative asphericity index, and improves the corresponding MTF. Pseudoaccommodative advanced surface ablation is a promising approach for the surgical correction of presbyopia with distance refractive error (myopia and hyperopia with or without astigmatism). This PASA technique could theoretically be used in non-presbyopic patients with refractive error or post cataract patients with monofocal intraocular lenses. The increase in negative spherical aberration and asphericity/eccentricity index seems to increase the depth of focus of the eye, improving the near vision and compensating the age-related lens changes. Rather than creating a multifocal cornea, PASA appears to create an improved aspheric (prolate) ablation profile.

  13. Computational vision

    CERN Document Server

    Wechsler, Harry

    1990-01-01

    The book is suitable for advanced courses in computer vision and image processing. In addition to providing an overall view of computational vision, it contains extensive material on topics that are not usually covered in computer vision texts (including parallel distributed processing and neural networks) and considers many real applications.

  14. Steady State Advanced Tokamak (SSAT): The mission and the machine

    International Nuclear Information System (INIS)

    Thomassen, K.; Goldston, R.; Nevins, B.; Neilson, H.; Shannon, T.; Montgomery, B.

    1992-03-01

    Extending the tokamak concept to the steady state regime and pursuing advances in tokamak physics are important and complementary steps for the magnetic fusion energy program. The required transition away from inductive current drive will provide exciting opportunities for advances in tokamak physics, as well as important impetus to drive advances in fusion technology. Recognizing this, the Fusion Policy Advisory Committee and the US National Energy Strategy identified the development of steady state tokamak physics and technology, and improvements in the tokamak concept, as vital elements in the magnetic fusion energy development plan. Both called for the construction of a steady state tokamak facility to address these plan elements. Advances in physics that produce better confinement and higher pressure limits are required for a similar unit size reactor. Regimes with largely self-driven plasma current are required to permit a steady-state tokamak reactor with acceptable recirculating power. Reliable techniques of disruption control will be needed to achieve the availability goals of an economic reactor. Thus the central role of this new tokamak facility is to point the way to a more attractive demonstration reactor (DEMO) than the present data base would support. To meet the challenges, we propose a new ''Steady State Advanced Tokamak'' (SSAT) facility that would develop and demonstrate optimized steady state tokamak operating mode. While other tokamaks in the world program employ superconducting toroidal field coils, SSAT would be the first major tokamak to operate with a fully superconducting coil set in the elongated, divertor geometry planned for ITER and DEMO

  15. FPGA-based multisensor real-time machine vision for banknote printing

    Science.gov (United States)

    Li, Rui; Türke, Thomas; Schaede, Johannes; Willeke, Harald; Lohweg, Volker

    2009-02-01

    Automatic sheet inspection in banknote production has been used as a standard quality control tool for more than a decade. As more and more print techniques and new security features are established, total quality in bank note printing must be guaranteed. This aspect has a direct impact on the research and development for bank note inspection systems in general in the sense of technological sustainability. It is accepted, that print defects are generated not only by printing parameter changes, but also by mechanical machine parameter changes, which will change unnoticed in production. Therefore, a new concept for a multi-sensory adaptive learning and classification model based on Fuzzy-Pattern- Classifiers for data inspection and machine conditioning is proposed. A general aim is to improve the known inspection techniques and propose an inspection methodology that can ensure a comprehensive quality control of the printed substrates processed by printing presses, especially printing presses which are designed to process substrates used in the course of the production of banknotes, security documents and others. Therefore, the research and development work in this area necessitates a change in concept for banknote inspection in general. In this paper a new generation of FPGA (Field Programmable Gate Array) based real time inspection technology is presented, which allows not only colour inspection on banknote sheets, but has also the implementation flexibility for various inspection algorithms for security features, such as window threads, embedded threads, OVDs, watermarks, screen printing etc., and multi-sensory data processing. A variety of algorithms is described in the paper, which are designed for and implemented on FPGAs. The focus is based on algorithmic approaches.

  16. Robot vision

    International Nuclear Information System (INIS)

    Hall, E.L.

    1984-01-01

    Almost all industrial robots use internal sensors such as shaft encoders which measure rotary position, or tachometers which measure velocity, to control their motions. Most controllers also provide interface capabilities so that signals from conveyors, machine tools, and the robot itself may be used to accomplish a task. However, advanced external sensors, such as visual sensors, can provide a much greater degree of adaptability for robot control as well as add automatic inspection capabilities to the industrial robot. Visual and other sensors are now being used in fundamental operations such as material processing with immediate inspection, material handling with adaption, arc welding, and complex assembly tasks. A new industry of robot vision has emerged. The application of these systems is an area of great potential

  17. Recent Advances in Conotoxin Classification by Using Machine Learning Methods.

    Science.gov (United States)

    Dao, Fu-Ying; Yang, Hui; Su, Zhen-Dong; Yang, Wuritu; Wu, Yun; Hui, Ding; Chen, Wei; Tang, Hua; Lin, Hao

    2017-06-25

    Conotoxins are disulfide-rich small peptides, which are invaluable peptides that target ion channel and neuronal receptors. Conotoxins have been demonstrated as potent pharmaceuticals in the treatment of a series of diseases, such as Alzheimer's disease, Parkinson's disease, and epilepsy. In addition, conotoxins are also ideal molecular templates for the development of new drug lead compounds and play important roles in neurobiological research as well. Thus, the accurate identification of conotoxin types will provide key clues for the biological research and clinical medicine. Generally, conotoxin types are confirmed when their sequence, structure, and function are experimentally validated. However, it is time-consuming and costly to acquire the structure and function information by using biochemical experiments. Therefore, it is important to develop computational tools for efficiently and effectively recognizing conotoxin types based on sequence information. In this work, we reviewed the current progress in computational identification of conotoxins in the following aspects: (i) construction of benchmark dataset; (ii) strategies for extracting sequence features; (iii) feature selection techniques; (iv) machine learning methods for classifying conotoxins; (v) the results obtained by these methods and the published tools; and (vi) future perspectives on conotoxin classification. The paper provides the basis for in-depth study of conotoxins and drug therapy research.

  18. VirtualSpace: A vision of a machine-learned virtual space environment

    Science.gov (United States)

    Bortnik, J.; Sarno-Smith, L. K.; Chu, X.; Li, W.; Ma, Q.; Angelopoulos, V.; Thorne, R. M.

    2017-12-01

    Space borne instrumentation tends to come and go. A typical instrument will go through a phase of design and construction, be deployed on a spacecraft for several years while it collects data, and then be decommissioned and fade into obscurity. The data collected from that instrument will typically receive much attention while it is being collected, perhaps in the form of event studies, conjunctions with other instruments, or a few statistical surveys, but once the instrument or spacecraft is decommissioned, the data will be archived and receive progressively less attention with every passing year. This is the fate of all historical data, and will be the fate of data being collected by instruments even at the present time. But what if those instruments could come alive, and all be simultaneously present at any and every point in time and space? Imagine the scientific insights, and societal gains that could be achieved with a grand (virtual) heliophysical observatory that consists of every current and historical mission ever deployed? We propose that this is not just fantasy but is imminently doable with the data currently available, with the present computational resources, and with currently available algorithms. This project revitalizes existing data resources and lays the groundwork for incorporating data from every future mission to expand the scope and refine the resolution of the virtual observatory. We call this project VirtualSpace: a machine-learned virtual space environment.

  19. Computer vision and machine learning for robust phenotyping in genome-wide studies.

    Science.gov (United States)

    Zhang, Jiaoping; Naik, Hsiang Sing; Assefa, Teshale; Sarkar, Soumik; Reddy, R V Chowda; Singh, Arti; Ganapathysubramanian, Baskar; Singh, Asheesh K

    2017-03-08

    Traditional evaluation of crop biotic and abiotic stresses are time-consuming and labor-intensive limiting the ability to dissect the genetic basis of quantitative traits. A machine learning (ML)-enabled image-phenotyping pipeline for the genetic studies of abiotic stress iron deficiency chlorosis (IDC) of soybean is reported. IDC classification and severity for an association panel of 461 diverse plant-introduction accessions was evaluated using an end-to-end phenotyping workflow. The workflow consisted of a multi-stage procedure including: (1) optimized protocols for consistent image capture across plant canopies, (2) canopy identification and registration from cluttered backgrounds, (3) extraction of domain expert informed features from the processed images to accurately represent IDC expression, and (4) supervised ML-based classifiers that linked the automatically extracted features with expert-rating equivalent IDC scores. ML-generated phenotypic data were subsequently utilized for the genome-wide association study and genomic prediction. The results illustrate the reliability and advantage of ML-enabled image-phenotyping pipeline by identifying previously reported locus and a novel locus harboring a gene homolog involved in iron acquisition. This study demonstrates a promising path for integrating the phenotyping pipeline into genomic prediction, and provides a systematic framework enabling robust and quicker phenotyping through ground-based systems.

  20. Advanced human machine interaction for an image interpretation workstation

    Science.gov (United States)

    Maier, S.; Martin, M.; van de Camp, F.; Peinsipp-Byma, E.; Beyerer, J.

    2016-05-01

    In recent years, many new interaction technologies have been developed that enhance the usability of computer systems and allow for novel types of interaction. The areas of application for these technologies have mostly been in gaming and entertainment. However, in professional environments, there are especially demanding tasks that would greatly benefit from improved human machine interfaces as well as an overall improved user experience. We, therefore, envisioned and built an image-interpretation-workstation of the future, a multi-monitor workplace comprised of four screens. Each screen is dedicated to a complex software product such as a geo-information system to provide geographic context, an image annotation tool, software to generate standardized reports and a tool to aid in the identification of objects. Using self-developed systems for hand tracking, pointing gestures and head pose estimation in addition to touchscreens, face identification, and speech recognition systems we created a novel approach to this complex task. For example, head pose information is used to save the position of the mouse cursor on the currently focused screen and to restore it as soon as the same screen is focused again while hand gestures allow for intuitive manipulation of 3d objects in mid-air. While the primary focus is on the task of image interpretation, all of the technologies involved provide generic ways of efficiently interacting with a multi-screen setup and could be utilized in other fields as well. In preliminary experiments, we received promising feedback from users in the military and started to tailor the functionality to their needs

  1. Science based integrated approach to advanced nuclear fuel development - vision, approach, and overview

    Energy Technology Data Exchange (ETDEWEB)

    Unal, Cetin [Los Alamos National Laboratory; Pasamehmetoglu, Kemal [IDAHO NATIONAL LAB; Carmack, Jon [IDAHO NATIONAL LAB

    2010-01-01

    Advancing the performance of Light Water Reactors, Advanced Nuclear Fuel Cycles, and Advanced Rcactors, such as the Next Generation Nuclear Power Plants, requires enhancing our fundamental understanding of fuel and materials behavior under irradiation. The capability to accurately model the nuclear fuel systems is critical. In order to understand specific aspects of the nuclear fuel, fully coupled fuel simulation codes are required to achieve licensing of specific nuclear fuel designs for operation. The backbone of these codes, models, and simulations is a fundamental understanding and predictive capability for simulating the phase and microstructural behavior of the nuclear fuel system materials and matrices. The purpose of this paper is to identify the modeling and simulation approach in order to deliver predictive tools for advanced fuels development. The coordination between experimental nuclear fuel design, development technical experts, and computational fuel modeling and simulation technical experts is a critical aspect of the approach and naturally leads to an integrated, goal-oriented science-based R & D approach and strengthens both the experimental and computational efforts. The Advanced Fuels Campaign (AFC) and Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Integrated Performance and Safety Code (IPSC) are working together to determine experimental data and modeling needs. The primary objective of the NEAMS fuels IPSC project is to deliver a coupled, three-dimensional, predictive computational platform for modeling the fabrication and both normal and abnormal operation of nuclear fuel pins and assemblies, applicable to both existing and future reactor fuel designs. The science based program is pursuing the development of an integrated multi-scale and multi-physics modeling and simulation platform for nuclear fuels. This overview paper discusses the vision, goals and approaches how to develop and implement the new approach.

  2. Science based integrated approach to advanced nuclear fuel development - vision, approach, and overview

    International Nuclear Information System (INIS)

    Unal, Cetin; Pasamehmetoglu, Kemal; Carmack, Jon

    2010-01-01

    Advancing the performance of Light Water Reactors, Advanced Nuclear Fuel Cycles, and Advanced Rcactors, such as the Next Generation Nuclear Power Plants, requires enhancing our fundamental understanding of fuel and materials behavior under irradiation. The capability to accurately model the nuclear fuel systems is critical. In order to understand specific aspects of the nuclear fuel, fully coupled fuel simulation codes are required to achieve licensing of specific nuclear fuel designs for operation. The backbone of these codes, models, and simulations is a fundamental understanding and predictive capability for simulating the phase and microstructural behavior of the nuclear fuel system materials and matrices. The purpose of this paper is to identify the modeling and simulation approach in order to deliver predictive tools for advanced fuels development. The coordination between experimental nuclear fuel design, development technical experts, and computational fuel modeling and simulation technical experts is a critical aspect of the approach and naturally leads to an integrated, goal-oriented science-based R and D approach and strengthens both the experimental and computational efforts. The Advanced Fuels Campaign (AFC) and Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Integrated Performance and Safety Code (IPSC) are working together to determine experimental data and modeling needs. The primary objective of the NEAMS fuels IPSC project is to deliver a coupled, three-dimensional, predictive computational platform for modeling the fabrication and both normal and abnormal operation of nuclear fuel pins and assemblies, applicable to both existing and future reactor fuel designs. The science based program is pursuing the development of an integrated multi-scale and multi-physics modeling and simulation platform for nuclear fuels. This overview paper discusses the vision, goals and approaches how to develop and implement the new approach.

  3. Machine vision for high-precision volume measurement applied to levitated containerless material processing

    International Nuclear Information System (INIS)

    Bradshaw, R.C.; Schmidt, D.P.; Rogers, J.R.; Kelton, K.F.; Hyers, R.W.

    2005-01-01

    By combining the best practices in optical dilatometry with numerical methods, a high-speed and high-precision technique has been developed to measure the volume of levitated, containerlessly processed samples with subpixel resolution. Containerless processing provides the ability to study highly reactive materials without the possibility of contamination affecting thermophysical properties. Levitation is a common technique used to isolate a sample as it is being processed. Noncontact optical measurement of thermophysical properties is very important as traditional measuring methods cannot be used. Modern, digitally recorded images require advanced numerical routines to recover the subpixel locations of sample edges and, in turn, produce high-precision measurements

  4. Study on excitation and fluorescence spectrums of Japanese citruses to construct machine vision systems for acquiring fluorescent images

    Science.gov (United States)

    Momin, Md. Abdul; Kondo, Naoshi; Kuramoto, Makoto; Ogawa, Yuichi; Shigi, Tomoo

    2011-06-01

    Research was conducted to acquire knowledge of the ultraviolet and visible spectrums from 300 -800 nm of some common varieties of Japanese citrus, to investigate the best wave-lengths for fluorescence excitation and the resulting fluorescence wave-lengths and to provide a scientific background for the best quality fluorescent imaging technique for detecting surface defects of citrus. A Hitachi U-4000 PC-based microprocessor controlled spectrophotometer was used to measure the absorption spectrum and a Hitachi F-4500 spectrophotometer was used for the fluorescence and excitation spectrums. We analyzed the spectrums and the selected varieties of citrus were categorized into four groups of known fluorescence level, namely strong, medium, weak and no fluorescence.The level of fluorescence of each variety was also examined by using machine vision system. We found that around 340-380 nm LEDs or UV lamps are appropriate as lighting devices for acquiring the best quality fluorescent image of the citrus varieties to examine their fluorescence intensity. Therefore an image acquisition device was constructed with three different lighting panels with UV LED at peak 365 nm, Blacklight blue lamps (BLB) peak at 350 nm and UV-B lamps at peak 306 nm. The results from fluorescent images also revealed that the findings of the measured spectrums worked properly and can be used for practical applications such as for detecting rotten, injured or damaged parts of a wide variety of citrus.

  5. A noninvasive technique for real-time detection of bruises in apple surface based on machine vision

    Science.gov (United States)

    Zhao, Juan; Peng, Yankun; Dhakal, Sagar; Zhang, Leilei; Sasao, Akira

    2013-05-01

    Apple is one of the highly consumed fruit item in daily life. However, due to its high damage potential and massive influence on taste and export, the quality of apple has to be detected before it reaches the consumer's hand. This study was aimed to develop a hardware and software unit for real-time detection of apple bruises based on machine vision technology. The hardware unit consisted of a light shield installed two monochrome cameras at different angles, LED light source to illuminate the sample, and sensors at the entrance of box to signal the positioning of sample. Graphical Users Interface (GUI) was developed in VS2010 platform to control the overall hardware and display the image processing result. The hardware-software system was developed to acquire the images of 3 samples from each camera and display the image processing result in real time basis. An image processing algorithm was developed in Opencv and C++ platform. The software is able to control the hardware system to classify the apple into two grades based on presence/absence of surface bruises with the size of 5mm. The experimental result is promising and the system with further modification can be applicable for industrial production in near future.

  6. Advanced induction machine model in phase coordinates for wind turbine applications

    DEFF Research Database (Denmark)

    Fajardo, L.A.; Iov, F.; Hansen, Anca Daniela

    2007-01-01

    In this paper an advanced phase coordinates squirrel cage induction machine model with time varying electrical parameters affected by magnetic saturation and rotor deep bar effects, is presented. The model uses standard data sheet for characterization of the electrical parameters, it is developed...

  7. Advances in understanding the molecular basis of the first steps in color vision

    Science.gov (United States)

    Hofmann, Lukas; Palczewski, Krzysztof

    2015-01-01

    Serving as one of our primary environmental inputs, vision is the most sophisticated sensory system in humans. Here, we present recent findings derived from energetics, genetics and physiology that provide a more advanced understanding of color perception in mammals. Energetics of cis–trans isomerization of 11-cis-retinal accounts for color perception in the narrow region of the electromagnetic spectrum and how human eyes can absorb light in the near infrared (IR) range. Structural homology models of visual pigments reveal complex interactions of the protein moieties with the light sensitive chromophore 11-cis-retinal and that certain color blinding mutations impair secondary structural elements of these G protein-coupled receptors (GPCRs). Finally, we identify unsolved critical aspects of color tuning that require future investigation. PMID:26187035

  8. An Innovative 3D Ultrasonic Actuator with Multidegree of Freedom for Machine Vision and Robot Guidance Industrial Applications Using a Single Vibration Ring Transducer

    Directory of Open Access Journals (Sweden)

    M. Shafik

    2013-07-01

    Full Text Available This paper presents an innovative 3D piezoelectric ultrasonic actuator using a single flexural vibration ring transducer, for machine vision and robot guidance industrial applications. The proposed actuator is principally aiming to overcome the visual spotlight focus angle of digital visual data capture transducer, digital cameras and enhance the machine vision system ability to perceive and move in 3D. The actuator Design, structures, working principles and finite element analysis are discussed in this paper. A prototype of the actuator was fabricated. Experimental tests and measurements showed the ability of the developed prototype to provide 3D motions of Multidegree of freedom, with typical speed of movement equal to 35 revolutions per minute, a resolution of less than 5μm and maximum load of 3.5 Newton. These initial characteristics illustrate, the potential of the developed 3D micro actuator to gear the spotlight focus angle issue of digital visual data capture transducers and possible improvement that such technology could bring to the machine vision and robot guidance industrial applications.

  9. A machine vision system for automated non-invasive assessment of cell viability via dark field microscopy, wavelet feature selection and classification

    Directory of Open Access Journals (Sweden)

    Friehs Karl

    2008-10-01

    Full Text Available Abstract Background Cell viability is one of the basic properties indicating the physiological state of the cell, thus, it has long been one of the major considerations in biotechnological applications. Conventional methods for extracting information about cell viability usually need reagents to be applied on the targeted cells. These reagent-based techniques are reliable and versatile, however, some of them might be invasive and even toxic to the target cells. In support of automated noninvasive assessment of cell viability, a machine vision system has been developed. Results This system is based on supervised learning technique. It learns from images of certain kinds of cell populations and trains some classifiers. These trained classifiers are then employed to evaluate the images of given cell populations obtained via dark field microscopy. Wavelet decomposition is performed on the cell images. Energy and entropy are computed for each wavelet subimage as features. A feature selection algorithm is implemented to achieve better performance. Correlation between the results from the machine vision system and commonly accepted gold standards becomes stronger if wavelet features are utilized. The best performance is achieved with a selected subset of wavelet features. Conclusion The machine vision system based on dark field microscopy in conjugation with supervised machine learning and wavelet feature selection automates the cell viability assessment, and yields comparable results to commonly accepted methods. Wavelet features are found to be suitable to describe the discriminative properties of the live and dead cells in viability classification. According to the analysis, live cells exhibit morphologically more details and are intracellularly more organized than dead ones, which display more homogeneous and diffuse gray values throughout the cells. Feature selection increases the system's performance. The reason lies in the fact that feature

  10. Advances in automatic detection of tulip breaking Virus (TBV) using machine vision

    NARCIS (Netherlands)

    Polder, G.; Heijden, van der G.W.A.M.; Doorn, van J.; Baltissen, A.H.M.C.

    2014-01-01

    Tulip breaking virus (TBV) causes severe economic losses in flower bulbs in the Netherlands. To prevent further spread by aphids, infected plants must be removed from the field as soon as possible. Until now screening is done by visual inspection in the field. As the availability of human experts is

  11. Towards Discrimination of Plant Species by Machine Vision: Advanced Statistical Analysis of Chlorophyll Fluorescence Transients

    Czech Academy of Sciences Publication Activity Database

    Mishra, Kumud

    2009-01-01

    Roč. 5, č. 19 (2009), s. 905-913 ISSN 1053-0509 Institutional research plan: CEZ:AV0Z60870520 Keywords : ARTIFICIAL NEURAL-NETWORKS * FEATURE-SELECTION * WEED DETECTION Subject RIV: CE - Biochemistry Impact factor: 2.017, year: 2009

  12. Advancing Control for Shield Tunneling Machine by Backstepping Design with LuGre Friction Model

    Directory of Open Access Journals (Sweden)

    Haibo Xie

    2014-01-01

    Full Text Available Shield tunneling machine is widely applied for underground tunnel construction. The shield machine is a complex machine with large momentum and ultralow advancing speed. The working condition underground is rather complicated and unpredictable, and brings big trouble in controlling the advancing speed. This paper focused on the advancing motion control on desired tunnel axis. A three-state dynamic model was established with considering unknown front face earth pressure force and unknown friction force. LuGre friction model was introduced to describe the friction force. Backstepping design was then proposed to make tracking error converge to zero. To have a comparison study, controller without LuGre model was designed. Tracking simulations of speed regulations and simulations when front face earth pressure changed were carried out to show the transient performances of the proposed controller. The results indicated that the controller had good tracking performance even under changing geological conditions. Experiments of speed regulations were carried out to have validations of the controllers.

  13. Review of technological advancements in calibration systems for laser vision correction

    Science.gov (United States)

    Arba-Mosquera, Samuel; Vinciguerra, Paolo; Verma, Shwetabh

    2018-02-01

    Using PubMed and our internal database, we extensively reviewed the literature on the technological advancements in calibration systems, with a motive to present an account of the development history, and latest developments in calibration systems used in refractive surgery laser systems. As a second motive, we explored the clinical impact of the error introduced due to the roughness in ablation and its corresponding effect on system calibration. The inclusion criterion for this review was strict relevance to the clinical questions under research. The existing calibration methods, including various plastic models, are highly affected by various factors involved in refractive surgery, such as temperature, airflow, and hydration. Surface roughness plays an important role in accurate measurement of ablation performance on calibration materials. The ratio of ablation efficiency between the human cornea and calibration material is very critical and highly dependent on the laser beam characteristics and test conditions. Objective evaluation of the calibration data and corresponding adjustment of the laser systems at regular intervals are essential for the continuing success and further improvements in outcomes of laser vision correction procedures.

  14. Parallel Algorithm for GPU Processing; for use in High Speed Machine Vision Sensing of Cotton Lint Trash

    Directory of Open Access Journals (Sweden)

    Mathew G. Pelletier

    2008-02-01

    Full Text Available One of the main hurdles standing in the way of optimal cleaning of cotton lint isthe lack of sensing systems that can react fast enough to provide the control system withreal-time information as to the level of trash contamination of the cotton lint. This researchexamines the use of programmable graphic processing units (GPU as an alternative to thePC’s traditional use of the central processing unit (CPU. The use of the GPU, as analternative computation platform, allowed for the machine vision system to gain asignificant improvement in processing time. By improving the processing time, thisresearch seeks to address the lack of availability of rapid trash sensing systems and thusalleviate a situation in which the current systems view the cotton lint either well before, orafter, the cotton is cleaned. This extended lag/lead time that is currently imposed on thecotton trash cleaning control systems, is what is responsible for system operators utilizing avery large dead-band safety buffer in order to ensure that the cotton lint is not undercleaned.Unfortunately, the utilization of a large dead-band buffer results in the majority ofthe cotton lint being over-cleaned which in turn causes lint fiber-damage as well assignificant losses of the valuable lint due to the excessive use of cleaning machinery. Thisresearch estimates that upwards of a 30% reduction in lint loss could be gained through theuse of a tightly coupled trash sensor to the cleaning machinery control systems. Thisresearch seeks to improve processing times through the development of a new algorithm forcotton trash sensing that allows for implementation on a highly parallel architecture.Additionally, by moving the new parallel algorithm onto an alternative computing platform,the graphic processing unit “GPU”, for processing of the cotton trash images, a speed up ofover 6.5 times, over optimized code running on the PC’s central processing

  15. From geospatial observations of ocean currents to causal predictors of spatio-economic activity using computer vision and machine learning

    Science.gov (United States)

    Popescu, Florin; Ayache, Stephane; Escalera, Sergio; Baró Solé, Xavier; Capponi, Cecile; Panciatici, Patrick; Guyon, Isabelle

    2016-04-01

    The big data transformation currently revolutionizing science and industry forges novel possibilities in multi-modal analysis scarcely imaginable only a decade ago. One of the important economic and industrial problems that stand to benefit from the recent expansion of data availability and computational prowess is the prediction of electricity demand and renewable energy generation. Both are correlates of human activity: spatiotemporal energy consumption patterns in society are a factor of both demand (weather dependent) and supply, which determine cost - a relation expected to strengthen along with increasing renewable energy dependence. One of the main drivers of European weather patterns is the activity of the Atlantic Ocean and in particular its dominant Northern Hemisphere current: the Gulf Stream. We choose this particular current as a test case in part due to larger amount of relevant data and scientific literature available for refinement of analysis techniques. This data richness is due not only to its economic importance but also to its size being clearly visible in radar and infrared satellite imagery, which makes it easier to detect using Computer Vision (CV). The power of CV techniques makes basic analysis thus developed scalable to other smaller and less known, but still influential, currents, which are not just curves on a map, but complex, evolving, moving branching trees in 3D projected onto a 2D image. We investigate means of extracting, from several image modalities (including recently available Copernicus radar and earlier Infrared satellites), a parameterized representation of the state of the Gulf Stream and its environment that is useful as feature space representation in a machine learning context, in this case with the EC's H2020-sponsored 'See.4C' project, in the context of which data scientists may find novel predictors of spatiotemporal energy flow. Although automated extractors of Gulf Stream position exist, they differ in methodology

  16. DOE FreedomCAR and vehicle technologies program advanced power electronic and electrical machines annual review report

    Energy Technology Data Exchange (ETDEWEB)

    Olszewski, Mitch [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2006-10-11

    This report is a summary of the Review Panel at the FY06 DOE FreedomCAR and Vehicle Technologies (FCVT) Annual Review of Advanced Power Electronics and Electric Machine (APEEM) research activities held on August 15-17, 2006.

  17. MITI project on advanced man-machine system for nuclear power plants

    International Nuclear Information System (INIS)

    Kato, Kanji; Watanabe, Takao; Hayakawa, Hiroyasu; Naito, Norio; Masui, Takao; Ogino, Takamichi.

    1988-01-01

    A computerized operator support system (COSS) against abnormal plant conditions was developed as a five-year project from 1980 to 1984, under the sponsorship of the Ministry of International Trade and Industry. The main purpose of the COSS development was to implement the lessons learned from the Three Mile Island accident. The main nuclear industries in Japan participated in the project. The design concept of the operator support functions and the method to implement it were established, and the prototype systems of the COSS for BWR and PWR plants were developed. After the completion of the COSS development, the above participant group once again joined for the work on an advanced man-machine system for nuclear power plants (MMS-NPP). This eight-year project aims at realizing an advanced operator support system by applying artificial intelligence, especially knowledge engineering, and sophisticated man-machine interface devices. Its main objectives are shown. This system configuration, operating method decision system, man-machine communication system, operation and maintenance support functions and so on are described. (Kako, I.)

  18. A study on advanced man-machine interface system for autonomous nuclear power plants

    International Nuclear Information System (INIS)

    Matsuoka, Takeshi; Numano, Masayoshi; Fukuto, Junji; Sugasawa, Shinobu; Miyazaki, Keiko; Someya, Minoru; Haraki, Nobuo

    1994-01-01

    A man-machine interface(MMI) system of an autonomous nuclear power plant has an advanced function compared with that of the present nuclear power plants. The MMI has a function model of a plant state, and updates and revises this function model by itself. This paper describes the concept of autonomous nuclear power plants, a plant simulator of an autonomous power plant, a contracted function model of a plant state, three-dimensional color graphic display of a plant state, and an event-tree like expression for plant states. (author)

  19. Developing a machine vision system for simultaneous prediction of freshness indicators based on tilapia (Oreochromis niloticus) pupil and gill color during storage at 4°C.

    Science.gov (United States)

    Shi, Ce; Qian, Jianping; Han, Shuai; Fan, Beilei; Yang, Xinting; Wu, Xiaoming

    2018-03-15

    The study assessed the feasibility of developing a machine vision system based on pupil and gill color changes in tilapia for simultaneous prediction of total volatile basic nitrogen (TVB-N), thiobarbituric acid (TBA) and total viable counts (TVC) during storage at 4°C. The pupils and gills were chosen and color space conversion among RGB, HSI and L ∗ a ∗ b ∗ color spaces was performed automatically by an image processing algorithm. Multiple regression models were established by correlating pupil and gill color parameters with TVB-N, TVC and TBA (R 2 =0.989-0.999). However, assessment of freshness based on gill color is destructive and time-consuming because gill cover must be removed before images are captured. Finally, visualization maps of spoilage based on pupil color were achieved using image algorithms. The results show that assessment of tilapia pupil color parameters using machine vision can be used as a low-cost, on-line method for predicting freshness during 4°C storage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Gradual Reduction in Sodium Content in Cooked Ham, with Corresponding Change in Sensorial Properties Measured by Sensory Evaluation and a Multimodal Machine Vision System.

    Directory of Open Access Journals (Sweden)

    Kirsti Greiff

    Full Text Available The European diet today generally contains too much sodium (Na(+. A partial substitution of NaCl by KCl has shown to be a promising method for reducing sodium content. The aim of this work was to investigate the sensorial changes of cooked ham with reduced sodium content. Traditional sensorial evaluation and objective multimodal machine vision were used. The salt content in the hams was decreased from 3.4% to 1.4%, and 25% of the Na(+ was replaced by K(+. The salt reduction had highest influence on the sensory attributes salty taste, after taste, tenderness, hardness and color hue. The multimodal machine vision system showed changes in lightness, as a function of reduced salt content. Compared to the reference ham (3.4% salt, a replacement of Na(+-ions by K(+-ions of 25% gave no significant changes in WHC, moisture, pH, expressed moisture, the sensory profile attributes or the surface lightness and shininess. A further reduction of salt down to 1.7-1.4% salt, led to a decrease in WHC and an increase in expressible moisture.

  1. Gradual Reduction in Sodium Content in Cooked Ham, with Corresponding Change in Sensorial Properties Measured by Sensory Evaluation and a Multimodal Machine Vision System.

    Science.gov (United States)

    Greiff, Kirsti; Mathiassen, John Reidar; Misimi, Ekrem; Hersleth, Margrethe; Aursand, Ida G

    2015-01-01

    The European diet today generally contains too much sodium (Na(+)). A partial substitution of NaCl by KCl has shown to be a promising method for reducing sodium content. The aim of this work was to investigate the sensorial changes of cooked ham with reduced sodium content. Traditional sensorial evaluation and objective multimodal machine vision were used. The salt content in the hams was decreased from 3.4% to 1.4%, and 25% of the Na(+) was replaced by K(+). The salt reduction had highest influence on the sensory attributes salty taste, after taste, tenderness, hardness and color hue. The multimodal machine vision system showed changes in lightness, as a function of reduced salt content. Compared to the reference ham (3.4% salt), a replacement of Na(+)-ions by K(+)-ions of 25% gave no significant changes in WHC, moisture, pH, expressed moisture, the sensory profile attributes or the surface lightness and shininess. A further reduction of salt down to 1.7-1.4% salt, led to a decrease in WHC and an increase in expressible moisture.

  2. Advanced man-machine interface systems and advanced information management systems programs

    International Nuclear Information System (INIS)

    Naser, J.; Gray, S.; Machiels, A.

    1997-01-01

    The Advanced Light Water Reactor (ALWR) Program started in the early 1980's. This work involves the development and NRC review of the ALWR Utility Requirements Documents, the development and design certification of ALWR designs, the analysis of the Early Site Permit process, and the First-of-a-Kind Engineering for two of the ALWR plant designs. ALWRs will embody modern proven technology. However, technologies expected to be used in these plants are changing very rapidly so that additional capabilities will become available that will be beneficial for future plants. To remain competitive on a life-cycle basis in the future, the ALWR must take advantage of the best and most modem technologies available. 1 ref

  3. A fluidics comparison of Alcon Infiniti, Bausch & Lomb Stellaris, and Advanced Medical Optics Signature phacoemulsification machines.

    Science.gov (United States)

    Georgescu, Dan; Kuo, Annie F; Kinard, Krista I; Olson, Randall J

    2008-06-01

    To compare three phacoemulsification machines for measurement accuracy and postocclusion surge (POS) in human cadaver eyes. In vitro comparisons of machine accuracy and POS. Tip vacuum and flow were compared with machine indicated vacuum and flow. All machines were placed in two human cadaver eyes and POS was determined. Vacuum (% of actual) was 101.9% +/- 1.7% for Infiniti (Alcon, Fort Worth, Texas, USA), 93.2% +/- 3.9% for Stellaris (Bausch & Lomb, Rochester, New York, USA), and 107.8% +/- 4.6% for Signature (Advanced Medical Optics, Santa, Ana, California, USA; P Infiniti, 53.5 +/- 0.0 ml/minute and 179.8 +/- 0.9 mm Hg for Stellaris, and 58.5 +/- 0.0 ml/minute and 115.1 +/- 2.3 mm Hg for Signature (P Infiniti, 0.16 +/- 0.06 mm for Stellaris, and 0.13 +/- 0.04 mm for Signature at 550 mm Hg, 60 cm bottle height, 45 ml/minute flow with 19-gauge tips (P Infiniti vs Stellaris and Signature). POS in an 81-year-old eye was 1.51 +/- 0.22 mm for Infiniti, 0.83 +/- 0.06 mm for Stellaris, 0.67 +/- 0.01 mm for Signature at 400 mm Hg vacuum, 70 cm bottle height, 40 ml/minute flow with 19-gauge tips (P Infiniti and Stellaris were similar. Minimizing POS and vacuum to maintain flow potentially are important in avoiding ocular damage and surgical complications.

  4. A Vision of Quantitative Imaging Technology for Validation of Advanced Flight Technologies

    Science.gov (United States)

    Horvath, Thomas J.; Kerns, Robert V.; Jones, Kenneth M.; Grinstead, Jay H.; Schwartz, Richard J.; Gibson, David M.; Taylor, Jeff C.; Tack, Steve; Dantowitz, Ronald F.

    2011-01-01

    Flight-testing is traditionally an expensive but critical element in the development and ultimate validation and certification of technologies destined for future operational capabilities. Measurements obtained in relevant flight environments also provide unique opportunities to observe flow phenomenon that are often beyond the capabilities of ground testing facilities and computational tools to simulate or duplicate. However, the challenges of minimizing vehicle weight and internal complexity as well as instrumentation bandwidth limitations often restrict the ability to make high-density, in-situ measurements with discrete sensors. Remote imaging offers a potential opportunity to noninvasively obtain such flight data in a complementary fashion. The NASA Hypersonic Thermodynamic Infrared Measurements Project has demonstrated such a capability to obtain calibrated thermal imagery on a hypersonic vehicle in flight. Through the application of existing and accessible technologies, the acreage surface temperature of the Shuttle lower surface was measured during reentry. Future hypersonic cruise vehicles, launcher configurations and reentry vehicles will, however, challenge current remote imaging capability. As NASA embarks on the design and deployment of a new Space Launch System architecture for access beyond earth orbit (and the commercial sector focused on low earth orbit), an opportunity exists to implement an imagery system and its supporting infrastructure that provides sufficient flexibility to incorporate changing technology to address the future needs of the flight test community. A long term vision is offered that supports the application of advanced multi-waveband sensing technology to aid in the development of future aerospace systems and critical technologies to enable highly responsive vehicle operations across the aerospace continuum, spanning launch, reusable space access and global reach. Motivations for development of an Agency level imagery

  5. [Surgical treatment of advanced retinopathy of prematurity--last chance for vision. Report 2. Analysis of functional results].

    Science.gov (United States)

    Baranov, A V; Troianovskiĭ, R L

    2012-01-01

    Functional results of staged surgical treatment of advanced retinopathy of prematurity (ROP) are analyzed between 2005 and 2010 in ophthalmologic department of city children's hospital ( St. Petersburg). A total of 154 children (303 eyes) were operated. The assessment of visual functions was performed using proposed original method. Subject vision was achieved in 65% of 20 eyes (6,6%) with 4B stage ROP. Fair anatomic results were achieved in 131 eyes of children with 5 stage ROP (283 eyes), light perception was preserved in 52 eyes (39,7%), capability to distinguish large objects appeared in 40 eyes (30,5%) and subject vision developed in 39 eyes (29,8%). Correlation between visual functions and environmental conditions was found, in particular presence or absence of long-term period of training in color and individual objects distinguishing. In a group of children training resulted in achievement of fair functions (subject vision, capability to distinguish large objects) in 81,2% of patients, where as in a group without training the same capabilities developed in 31,8% of cases only. Functional outcomes were also found to depend on CNS condition and time of surgery.

  6. Technology Roadmap Instrumentation, Control, and Human-Machine Interface to Support DOE Advanced Nuclear Energy Programs

    Energy Technology Data Exchange (ETDEWEB)

    Donald D Dudenhoeffer; Burce P Hallbert

    2007-03-01

    Instrumentation, Controls, and Human-Machine Interface (ICHMI) technologies are essential to ensuring delivery and effective operation of optimized advanced Generation IV (Gen IV) nuclear energy systems. In 1996, the Watts Bar I nuclear power plant in Tennessee was the last U.S. nuclear power plant to go on line. It was, in fact, built based on pre-1990 technology. Since this last U.S. nuclear power plant was designed, there have been major advances in the field of ICHMI systems. Computer technology employed in other industries has advanced dramatically, and computing systems are now replaced every few years as they become functionally obsolete. Functional obsolescence occurs when newer, more functional technology replaces or supersedes an existing technology, even though an existing technology may well be in working order.Although ICHMI architectures are comprised of much of the same technology, they have not been updated nearly as often in the nuclear power industry. For example, some newer Personal Digital Assistants (PDAs) or handheld computers may, in fact, have more functionality than the 1996 computer control system at the Watts Bar I plant. This illustrates the need to transition and upgrade current nuclear power plant ICHMI technologies.

  7. Parametric study of an absorption refrigeration machine using advanced exergy analysis

    International Nuclear Information System (INIS)

    Gong, Sunyoung; Goni Boulama, Kiari

    2014-01-01

    An advanced exergy analysis of a water–lithium bromide absorption refrigeration machine was conducted. For each component of the machine, the proposed analysis quantified the irreversibility that can be avoided and the irreversibility that is unavoidable. It also identified the irreversibility originating from inefficiencies within the component and the irreversibility that does not originate from the operation of the considered component. It was observed that the desorber and absorber concentrated most of the exergy destruction. Furthermore, the exergy destruction at these components was found to be dominantly endogenous and unavoidable. A parametrical study has been presented discussing the sensitivity of the different performance indicators to the temperature at which the heat source is available, the temperature of the refrigerated environment, and the temperature of the cooling medium used at the condenser and absorber. It was observed that the endogenous avoidable exergy destruction at the desorber, i.e. the portion of the desorber irreversibility that could be avoided by improving the design and operation of the desorber, decreased when the heat source or the temperature at which the cooling effect was generated increased, and it decreased when the heat sink temperature increased. The endogenous avoidable exergy destruction at the absorber displayed the same variations, though it was observed to be less affected by the heat source temperature. Contrary to the aforementioned two components, the exergy destruction at the evaporator and condenser were dominantly endogenous and avoidable, with little sensitivity to the cycle operating parameters. - Highlights: • Endogenous, exogenous, avoidable and unavoidable irreversibilities were calculated for a water–LiBr absorption machine. • Overall, desorber and absorber concentrated most of the exergy destruction of the cycle. • The exergy destruction was mainly endogenous and unavoidable for the desorber and

  8. Advances in three-dimensional field analysis and evaluation of performance parameters of electrical machines

    Science.gov (United States)

    Sivasubramaniam, Kiruba

    This thesis makes advances in three dimensional finite element analysis of electrical machines and the quantification of their parameters and performance. The principal objectives of the thesis are: (1)the development of a stable and accurate method of nonlinear three-dimensional field computation and application to electrical machinery and devices; and (2)improvement in the accuracy of determination of performance parameters, particularly forces and torque computed from finite elements. Contributions are made in two general areas: a more efficient formulation for three dimensional finite element analysis which saves time and improves accuracy, and new post-processing techniques to calculate flux density values from a given finite element solution. A novel three-dimensional magnetostatic solution based on a modified scalar potential method is implemented. This method has significant advantages over the traditional total scalar, reduced scalar or vector potential methods. The new method is applied to a 3D geometry of an iron core inductor and a permanent magnet motor. The results obtained are compared with those obtained from traditional methods, in terms of accuracy and speed of computation. A technique which has been observed to improve force computation in two dimensional analysis using a local solution of Laplace's equation in the airgap of machines is investigated and a similar method is implemented in the three dimensional analysis of electromagnetic devices. A new integral formulation to improve force calculation from a smoother flux-density profile is also explored and implemented. Comparisons are made and conclusions drawn as to how much improvement is obtained and at what cost. This thesis also demonstrates the use of finite element analysis to analyze torque ripples due to rotor eccentricity in permanent magnet BLDC motors. A new method for analyzing torque harmonics based on data obtained from a time stepping finite element analysis of the machine is

  9. Computer vision for an autonomous mobile robot

    CSIR Research Space (South Africa)

    Withey, Daniel J

    2015-10-01

    Full Text Available Computer vision systems are essential for practical, autonomous, mobile robots – machines that employ artificial intelligence and control their own motion within an environment. As with biological systems, computer vision systems include the vision...

  10. FAIR principles and the IEDB: short-term improvements and a long-term vision of OBO-foundry mediated machine-actionable interoperability

    Science.gov (United States)

    Vita, Randi; Overton, James A; Mungall, Christopher J; Sette, Alessandro

    2018-01-01

    Abstract The Immune Epitope Database (IEDB), at www.iedb.org, has the mission to make published experimental data relating to the recognition of immune epitopes easily available to the scientific public. By presenting curated data in a searchable database, we have liberated it from the tables and figures of journal articles, making it more accessible and usable by immunologists. Recently, the principles of Findability, Accessibility, Interoperability and Reusability have been formulated as goals that data repositories should meet to enhance the usefulness of their data holdings. We here examine how the IEDB complies with these principles and identify broad areas of success, but also areas for improvement. We describe short-term improvements to the IEDB that are being implemented now, as well as a long-term vision of true ‘machine-actionable interoperability’, which we believe will require community agreement on standardization of knowledge representation that can be built on top of the shared use of ontologies. PMID:29688354

  11. Electrochemical advanced oxidation processes as decentralized water treatment technologies to remediate domestic washing machine effluents.

    Science.gov (United States)

    Dos Santos, Alexsandro Jhones; Costa, Emily Cintia Tossi de Araújo; da Silva, Djalma Ribeiro; Garcia-Segura, Sergi; Martínez-Huitle, Carlos Alberto

    2018-03-01

    Water scarcity is one of the major concerns worldwide. In order to secure this appreciated natural resource, management and development of water treatment technologies are mandatory. One feasible alternative is the consideration of water recycling/reuse at the household scale. Here, the treatment of actual washing machine effluent by electrochemical advanced oxidation processes was considered. Electrochemical oxidation and electro-Fenton technologies can be applied as decentralized small-scale water treatment devices. Therefore, efficient decolorization and total organic abatement have been followed. The results demonstrate the promising performance of solar photoelectro-Fenton process, where complete color and organic removal was attained after 240 min of treatment under optimum conditions by applying a current density of 66.6 mA cm -2 . Thus, electrochemical technologies emerge as promising water-sustainable approaches.

  12. A hospital's teamwork and CQI advance shared vision, interdependence among top managers. Interview by Paula Eubanks.

    Science.gov (United States)

    Biltz, J; Mild, L

    1992-09-20

    As quality improvement programs are initiated in growing numbers of hospitals, senior executives in those hospitals find themselves addressing a range of issues: team building, leadership and interpersonal interaction. CEO Jim Biltz and nurse executive Linda Mild of 760-bed HCA Wesley Medical Center, Wichita, KS, tell Hospitals Staff Editor Paula Eubanks how their participative management style and the hospital's continuous quality improvement (CQI) initiative have fostered new levels of teamwork and shared vision among the institution's top managers.

  13. Simulation of the «COSMONAUT-ROBOT» System Interaction on the Lunar Surface Based on Methods of Machine Vision and Computer Graphics

    Science.gov (United States)

    Kryuchkov, B. I.; Usov, V. M.; Chertopolokhov, V. A.; Ronzhin, A. L.; Karpov, A. A.

    2017-05-01

    Extravehicular activity (EVA) on the lunar surface, necessary for the future exploration of the Moon, involves extensive use of robots. One of the factors of safe EVA is a proper interaction between cosmonauts and robots in extreme environments. This requires a simple and natural man-machine interface, e.g. multimodal contactless interface based on recognition of gestures and cosmonaut's poses. When travelling in the "Follow Me" mode (master/slave), a robot uses onboard tools for tracking cosmonaut's position and movements, and on the basis of these data builds its itinerary. The interaction in the system "cosmonaut-robot" on the lunar surface is significantly different from that on the Earth surface. For example, a man, dressed in a space suit, has limited fine motor skills. In addition, EVA is quite tiring for the cosmonauts, and a tired human being less accurately performs movements and often makes mistakes. All this leads to new requirements for the convenient use of the man-machine interface designed for EVA. To improve the reliability and stability of human-robot communication it is necessary to provide options for duplicating commands at the task stages and gesture recognition. New tools and techniques for space missions must be examined at the first stage of works in laboratory conditions, and then in field tests (proof tests at the site of application). The article analyzes the methods of detection and tracking of movements and gesture recognition of the cosmonaut during EVA, which can be used for the design of human-machine interface. A scenario for testing these methods by constructing a virtual environment simulating EVA on the lunar surface is proposed. Simulation involves environment visualization and modeling of the use of the "vision" of the robot to track a moving cosmonaut dressed in a spacesuit.

  14. Human-machine communication for educational systems design : NATO Advanced Study Institute proceedings, Eindhoven August 16-26, 1993

    NARCIS (Netherlands)

    Janse, M.D.; Harrington, T.L.

    1994-01-01

    This book contains the papers presented at the NATO Advanced Study Institute (ASI) on the Basics of Man-Machine Communication for the Design of Educational Systems, held August 16-26, 1993 in Eindhoven, The Netherlands. The ASI addressed the state of the art in the design of educational systems with

  15. Advanced Electrochemical Machining (ECM) for tungsten surface micro-structuring in blanket applications

    Energy Technology Data Exchange (ETDEWEB)

    Holstein, Nils, E-mail: nils.holstein@kit.edu [Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Baden-Württemberg (Germany); Krauss, Wolfgang; Konys, Jürgen [Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Baden-Württemberg (Germany); Heuer, Simon; Weber, Thomas [Research Center Jülich, Institute of Energy- and Climate Research – Plasma Physics (IEK-4), D-52425 Jülich (Germany)

    2016-11-01

    Highlights: • Electrochemical Machining is an appropriate tool for tungsten shaping. • Progress in shaping achieved by combination of ECM with advanced micro-lithography. • Application in First Wall for connection of plasma facing material to breeder blanket. • Successful development of adhesion promotors by ECM for plasma spraying interlayers. • Microstructure electrochemical manufacturing of tungsten in sizes of 100 μm achieved. - Abstract: Plasma facing components for fusion applications must have to exhibit long-term stability under extreme physical conditions, and therefore any material imperfections caused by mechanical and/or thermal stresses in the shaping processes cannot be tolerated due to a high risk of possible technical failures under fusion conditions. To avoid such defects, the method of Electrochemical Machining (ECM) enables a complete defect-free processing of removal of tungsten material during the desired shaping, also for high penetration depths. Furthermore, supported by lithographic mask pretreatment, three-dimensional distinct geometric structures can be positive-imaged via the directional galvanic dissolution applying M-ECM process into the tungsten bulk material. New required applications for tungsten components, e.g. as adhesion promotors in W-surfaces to enable sure grip and bonding of thick plasma-spraying layers for blanket components, will define the way of further miniaturization of well-established millimeter dimensioned M-ECM shaping processes to dimensions of 100 μm and furthermore down to 50 μm. Besides current M-ECM limits the article describes inevitable needs of further developments for mask resists, mask materials and the resulting ECM parameters, to reach the needed accuracy in tungsten microstructure. The achieved progress and observed correlations of processing parameters will be manifested by produced demonstrators made by the new “μM”-ECM process.

  16. Advanced Electrochemical Machining (ECM) for tungsten surface micro-structuring in blanket applications

    International Nuclear Information System (INIS)

    Holstein, Nils; Krauss, Wolfgang; Konys, Jürgen; Heuer, Simon; Weber, Thomas

    2016-01-01

    Highlights: • Electrochemical Machining is an appropriate tool for tungsten shaping. • Progress in shaping achieved by combination of ECM with advanced micro-lithography. • Application in First Wall for connection of plasma facing material to breeder blanket. • Successful development of adhesion promotors by ECM for plasma spraying interlayers. • Microstructure electrochemical manufacturing of tungsten in sizes of 100 μm achieved. - Abstract: Plasma facing components for fusion applications must have to exhibit long-term stability under extreme physical conditions, and therefore any material imperfections caused by mechanical and/or thermal stresses in the shaping processes cannot be tolerated due to a high risk of possible technical failures under fusion conditions. To avoid such defects, the method of Electrochemical Machining (ECM) enables a complete defect-free processing of removal of tungsten material during the desired shaping, also for high penetration depths. Furthermore, supported by lithographic mask pretreatment, three-dimensional distinct geometric structures can be positive-imaged via the directional galvanic dissolution applying M-ECM process into the tungsten bulk material. New required applications for tungsten components, e.g. as adhesion promotors in W-surfaces to enable sure grip and bonding of thick plasma-spraying layers for blanket components, will define the way of further miniaturization of well-established millimeter dimensioned M-ECM shaping processes to dimensions of 100 μm and furthermore down to 50 μm. Besides current M-ECM limits the article describes inevitable needs of further developments for mask resists, mask materials and the resulting ECM parameters, to reach the needed accuracy in tungsten microstructure. The achieved progress and observed correlations of processing parameters will be manifested by produced demonstrators made by the new “μM”-ECM process.

  17. Advancing pharmaceuticals and patient safety in Saudi Arabia: A 2030 vision initiative

    Directory of Open Access Journals (Sweden)

    Tariq M. Alhawassi

    2018-01-01

    Full Text Available Low-quality medicines deliver sub-optimal clinical outcomes and waste precious health resources. It is important to ensure that public funds are spent on healthcare technologies that meet national regulatory bodies such as the Saudi Food and Drug Authority (SFDA, quality standards for safety, efficacy, and quality. Medicines quality is a complicated combination of pre-market regulatory specifications, appropriate sourcing of ingredients (active pharmaceutical ingredient (API, excipients, etc., manufacturing processes, healthcare ecosystem communications, and regular and robust pharmacovigilance practices. A recent conference in Riyadh, sponsored by King Saud University, sought to discuss these issues and develop specific policy recommendations for the Saudi 2030 Vision plan. This and other efforts will require more and more creative educational programs for physicians, pharmacists, hospitals, and patients, and, most importantly evolving regulations on quality standards and oversight by Saudi health authorities.

  18. Assessment of Beer Quality Based on a Robotic Pourer, Computer Vision, and Machine Learning Algorithms Using Commercial Beers.

    Science.gov (United States)

    Gonzalez Viejo, Claudia; Fuentes, Sigfredo; Torrico, Damir D; Howell, Kate; Dunshea, Frank R

    2018-05-01

    Sensory attributes of beer are directly linked to perceived foam-related parameters and beer color. The aim of this study was to develop an objective predictive model using machine learning modeling to assess the intensity levels of sensory descriptors in beer using the physical measurements of color and foam-related parameters. A robotic pourer (RoboBEER), was used to obtain 15 color and foam-related parameters from 22 different commercial beer samples. A sensory session using quantitative descriptive analysis (QDA ® ) with trained panelists was conducted to assess the intensity of 10 beer descriptors. Results showed that the principal component analysis explained 64% of data variability with correlations found between foam-related descriptors from sensory and RoboBEER such as the positive and significant correlation between carbon dioxide and carbonation mouthfeel (R = 0.62), correlation of viscosity to sensory, and maximum volume of foam and total lifetime of foam (R = 0.75, R = 0.77, respectively). Using the RoboBEER parameters as inputs, an artificial neural network (ANN) regression model showed high correlation (R = 0.91) to predict the intensity levels of 10 related sensory descriptors such as yeast, grains and hops aromas, hops flavor, bitter, sour and sweet tastes, viscosity, carbonation, and astringency. This paper is a novel approach for food science using machine modeling techniques that could contribute significantly to rapid screenings of food and brewage products for the food industry and the implementation of Artificial Intelligence (AI). The use of RoboBEER to assess beer quality showed to be a reliable, objective, accurate, and less time-consuming method to predict sensory descriptors compared to trained sensory panels. Hence, this method could be useful as a rapid screening procedure to evaluate beer quality at the end of the production line for industry applications. © 2018 Institute of Food Technologists®.

  19. Status of the Space-Rated Lithium-Ion Battery Advanced Development Project in Support of the Exploration Vision

    Science.gov (United States)

    Miller, Thomas

    2007-01-01

    The NASA Glenn Research Center (GRC), along with the Goddard Space Flight Center (GSFC), Jet Propulsion Laboratory (JPL), Johnson Space Center (JSC), Marshall Space Flight Center (MSFC), and industry partners, is leading a space-rated lithium-ion advanced development battery effort to support the vision for Exploration. This effort addresses the lithium-ion battery portion of the Energy Storage Project under the Exploration Technology Development Program. Key discussions focus on the lithium-ion cell component development activities, a common lithium-ion battery module, test and demonstration of charge/discharge cycle life performance and safety characterization. A review of the space-rated lithium-ion battery project will be presented highlighting the technical accomplishments during the past year.

  20. Innovative grinding wheel design for cost-effective machining of advanced ceramics. Phase I, final report

    Energy Technology Data Exchange (ETDEWEB)

    Licht, R.H.; Ramanath, S.; Simpson, M.; Lilley, E.

    1996-02-01

    Norton Company successfully completed the 16-month Phase I technical effort to define requirements, design, develop, and evaluate a next-generation grinding wheel for cost-effective cylindrical grinding of advanced ceramics. This program was a cooperative effort involving three Norton groups representing a superabrasive grinding wheel manufacturer, a diamond film manufacturing division and a ceramic research center. The program was divided into two technical tasks, Task 1, Analysis of Required Grinding Wheel Characteristics, and Task 2, Design and Prototype Development. In Task 1 we performed a parallel path approach with Superabrasive metal-bond development and the higher technical risk, CVD diamond wheel development. For the Superabrasive approach, Task 1 included bond wear and strength tests to engineer bond-wear characteristics. This task culminated in a small-wheel screening test plunge grinding sialon disks. In Task 2, an improved Superabrasive metal-bond specification for low-cost machining of ceramics in external cylindrical grinding mode was identified. The experimental wheel successfully ground three types of advanced ceramics without the need for wheel dressing. The spindle power consumed by this wheel during test grinding of NC-520 sialon is as much as to 30% lower compared to a standard resin bonded wheel with 100 diamond concentration. The wheel wear with this improved metal bond was an order of magnitude lower than the resin-bonded wheel, which would significantly reduce ceramic grinding costs through fewer wheel changes for retruing and replacements. Evaluation of ceramic specimens from both Tasks 1 and 2 tests for all three ceramic materials did not show evidence of unusual grinding damage. The novel CVD-diamond-wheel approach was incorporated in this program as part of Task 1. The important factors affecting the grinding performance of diamond wheels made by CVD coating preforms were determined.

  1. Man/machine interface algorithm for advanced delayed-neutron signal characterization system

    International Nuclear Information System (INIS)

    Gross, K.C.

    1985-01-01

    The present failed-element rupture detector (FERD) at Experimental Breeder Reactor II (EBR-II) consists of a single bank of delayed-neutron (DN) detectors at a fixed transit time from the core. Plans are currently under way to upgrade the FERD in 1986 and provide advanced DN signal characterization capability that is embodied in an equivalent-recoil-area (ERA) meter. The new configuration will make available to the operator a wealth of quantitative diagnostic information related to the condition and dynamic evolution of a fuel breach. The diagnostic parameters will include a continuous reading of the ERA value for the breach; the transit time, T/sub tr/, for DN emitters traveling from the core to the FERD; and the isotopic holdup time, T/sub h/, for the source. To enhance the processing, interpretation, and display of these parameters to the reactor operator, a man/machine interface (MMI) algorithm has been developed to run in the background on EBR-II's data acquisition system (DAS). The purpose of this paper is to describe the features and implementation of this newly developed MMI algorithm

  2. Gravity Spy: integrating advanced LIGO detector characterization, machine learning, and citizen science

    Science.gov (United States)

    Zevin, M; Coughlin, S; Bahaadini, S; Besler, E; Rohani, N; Allen, S; Cabero, M; Crowston, K; Katsaggelos, A K; Larson, S L; Lee, T K; Lintott, C; Littenberg, T B; Lundgren, A; Østerlund, C; Smith, J R; Trouille, L; Kalogera, V

    2018-01-01

    With the first direct detection of gravitational waves, the advanced laser interferometer gravitational-wave observatory (LIGO) has initiated a new field of astronomy by providing an alternative means of sensing the universe. The extreme sensitivity required to make such detections is achieved through exquisite isolation of all sensitive components of LIGO from non-gravitational-wave disturbances. Nonetheless, LIGO is still susceptible to a variety of instrumental and environmental sources of noise that contaminate the data. Of particular concern are noise features known as glitches, which are transient and non-Gaussian in their nature, and occur at a high enough rate so that accidental coincidence between the two LIGO detectors is non-negligible. Glitches come in a wide range of time-frequency-amplitude morphologies, with new morphologies appearing as the detector evolves. Since they can obscure or mimic true gravitational-wave signals, a robust characterization of glitches is paramount in the effort to achieve the gravitational-wave detection rates that are predicted by the design sensitivity of LIGO. This proves a daunting task for members of the LIGO Scientific Collaboration alone due to the sheer amount of data. In this paper we describe an innovative project that combines crowdsourcing with machine learning to aid in the challenging task of categorizing all of the glitches recorded by the LIGO detectors. Through the Zooniverse platform, we engage and recruit volunteers from the public to categorize images of time-frequency representations of glitches into pre-identified morphological classes and to discover new classes that appear as the detectors evolve. In addition, machine learning algorithms are used to categorize images after being trained on human-classified examples of the morphological classes. Leveraging the strengths of both classification methods, we create a combined method with the aim of improving the efficiency and accuracy of each individual

  3. Gravity Spy: integrating advanced LIGO detector characterization, machine learning, and citizen science

    International Nuclear Information System (INIS)

    Zevin, M; Coughlin, S; Larson, S L; Trouille, L; Kalogera, V; Bahaadini, S; Besler, E; Rohani, N; Katsaggelos, A K; Allen, S; Cabero, M; Lundgren, A; Crowston, K; Østerlund, C; Lee, T K; Lintott, C; Littenberg, T B; Smith, J R

    2017-01-01

    With the first direct detection of gravitational waves, the advanced laser interferometer gravitational-wave observatory (LIGO) has initiated a new field of astronomy by providing an alternative means of sensing the universe. The extreme sensitivity required to make such detections is achieved through exquisite isolation of all sensitive components of LIGO from non-gravitational-wave disturbances. Nonetheless, LIGO is still susceptible to a variety of instrumental and environmental sources of noise that contaminate the data. Of particular concern are noise features known as glitches , which are transient and non-Gaussian in their nature, and occur at a high enough rate so that accidental coincidence between the two LIGO detectors is non-negligible. Glitches come in a wide range of time-frequency-amplitude morphologies, with new morphologies appearing as the detector evolves. Since they can obscure or mimic true gravitational-wave signals, a robust characterization of glitches is paramount in the effort to achieve the gravitational-wave detection rates that are predicted by the design sensitivity of LIGO. This proves a daunting task for members of the LIGO Scientific Collaboration alone due to the sheer amount of data. In this paper we describe an innovative project that combines crowdsourcing with machine learning to aid in the challenging task of categorizing all of the glitches recorded by the LIGO detectors. Through the Zooniverse platform, we engage and recruit volunteers from the public to categorize images of time-frequency representations of glitches into pre-identified morphological classes and to discover new classes that appear as the detectors evolve. In addition, machine learning algorithms are used to categorize images after being trained on human-classified examples of the morphological classes. Leveraging the strengths of both classification methods, we create a combined method with the aim of improving the efficiency and accuracy of each individual

  4. Advances in real-time millimeter-wave imaging radiometers for avionic synthetic vision

    Science.gov (United States)

    Lovberg, John A.; Chou, Ri-Chee; Martin, Christopher A.; Galliano, Joseph A., Jr.

    1995-06-01

    Millimeter-wave imaging has advantages over conventional visible or infrared imaging for many applications because millimeter-wave signals can travel through fog, snow, dust, and clouds with much less attenuation than infrared or visible light waves. Additionally, passive imaging systems avoid many problems associated with active radar imaging systems, such as radar clutter, glint, and multi-path return. ThermoTrex Corporation previously reported on its development of a passive imaging radiometer that uses an array of frequency-scanned antennas coupled to a multichannel acousto-optic spectrum analyzer (Bragg-cell) to form visible images of a scene through the acquisition of thermal blackbody radiation in the millimeter-wave spectrum. The output from the Bragg cell is imaged by a standard video camera and passed to a computer for normalization and display at real-time frame rates. An application of this system is its incorporation as part of an enhanced vision system to provide pilots with a synthetic view of a runway in fog and during other adverse weather conditions. Ongoing improvements to a 94 GHz imaging system and examples of recent images taken with this system will be presented. Additionally, the development of dielectric antennas and an electro- optic-based processor for improved system performance, and the development of an `ultra- compact' 220 GHz imaging system will be discussed.

  5. Automated analysis of retinal imaging using machine learning techniques for computer vision [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Jeffrey De Fauw

    2017-06-01

    Full Text Available There are almost two million people in the United Kingdom living with sight loss, including around 360,000 people who are registered as blind or partially sighted. Sight threatening diseases, such as diabetic retinopathy and age related macular degeneration have contributed to the 40% increase in outpatient attendances in the last decade but are amenable to early detection and monitoring. With early and appropriate intervention, blindness may be prevented in many cases. Ophthalmic imaging provides a way to diagnose and objectively assess the progression of a number of pathologies including neovascular (“wet” age-related macular degeneration (wet AMD and diabetic retinopathy. Two methods of imaging are commonly used: digital photographs of the fundus (the ‘back’ of the eye and Optical Coherence Tomography (OCT, a modality that uses light waves in a similar way to how ultrasound uses sound waves. Changes in population demographics and expectations and the changing pattern of chronic diseases creates a rising demand for such imaging. Meanwhile, interrogation of such images is time consuming, costly, and prone to human error. The application of novel analysis methods may provide a solution to these challenges. This research will focus on applying novel machine learning algorithms to automatic analysis of both digital fundus photographs and OCT in Moorfields Eye Hospital NHS Foundation Trust patients. Through analysis of the images used in ophthalmology, along with relevant clinical and demographic information, DeepMind Health will investigate the feasibility of automated grading of digital fundus photographs and OCT and provide novel quantitative measures for specific disease features and for monitoring the therapeutic success.

  6. Automated analysis of retinal imaging using machine learning techniques for computer vision [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Jeffrey De Fauw

    2016-07-01

    Full Text Available There are almost two million people in the United Kingdom living with sight loss, including around 360,000 people who are registered as blind or partially sighted. Sight threatening diseases, such as diabetic retinopathy and age related macular degeneration have contributed to the 40% increase in outpatient attendances in the last decade but are amenable to early detection and monitoring. With early and appropriate intervention, blindness may be prevented in many cases.   Ophthalmic imaging provides a way to diagnose and objectively assess the progression of a number of pathologies including neovascular (“wet” age-related macular degeneration (wet AMD and diabetic retinopathy. Two methods of imaging are commonly used: digital photographs of the fundus (the ‘back’ of the eye and Optical Coherence Tomography (OCT, a modality that uses light waves in a similar way to how ultrasound uses sound waves. Changes in population demographics and expectations and the changing pattern of chronic diseases creates a rising demand for such imaging. Meanwhile, interrogation of such images is time consuming, costly, and prone to human error. The application of novel analysis methods may provide a solution to these challenges.   This research will focus on applying novel machine learning algorithms to automatic analysis of both digital fundus photographs and OCT in Moorfields Eye Hospital NHS Foundation Trust patients.   Through analysis of the images used in ophthalmology, along with relevant clinical and demographic information, Google DeepMind Health will investigate the feasibility of automated grading of digital fundus photographs and OCT and provide novel quantitative measures for specific disease features and for monitoring the therapeutic success.

  7. Liquid lens: advances in adaptive optics

    Science.gov (United States)

    Casey, Shawn Patrick

    2010-12-01

    'Liquid lens' technologies promise significant advancements in machine vision and optical communications systems. Adaptations for machine vision, human vision correction, and optical communications are used to exemplify the versatile nature of this technology. Utilization of liquid lens elements allows the cost effective implementation of optical velocity measurement. The project consists of a custom image processor, camera, and interface. The images are passed into customized pattern recognition and optical character recognition algorithms. A single camera would be used for both speed detection and object recognition.

  8. The Advanced Modeling, Simulation and Analysis Capability Roadmap Vision for Engineering

    Science.gov (United States)

    Zang, Thomas; Lieber, Mike; Norton, Charles; Fucik, Karen

    2006-01-01

    This paper summarizes a subset of the Advanced Modeling Simulation and Analysis (AMSA) Capability Roadmap that was developed for NASA in 2005. The AMSA Capability Roadmap Team was chartered to "To identify what is needed to enhance NASA's capabilities to produce leading-edge exploration and science missions by improving engineering system development, operations, and science understanding through broad application of advanced modeling, simulation and analysis techniques." The AMSA roadmap stressed the need for integration, not just within the science, engineering and operations domains themselves, but also across these domains. Here we discuss the roadmap element pertaining to integration within the engineering domain, with a particular focus on implications for future observatory missions. The AMSA products supporting the system engineering function are mission information, bounds on information quality, and system validation guidance. The Engineering roadmap element contains 5 sub-elements: (1) Large-Scale Systems Models, (2) Anomalous Behavior Models, (3) advanced Uncertainty Models, (4) Virtual Testing Models, and (5) space-based Robotics Manufacture and Servicing Models.

  9. Comparison of Advanced Machine Learning Tools for Disruption Prediction and Disruption Studies

    Czech Academy of Sciences Publication Activity Database

    Odstrčil, Michal; Murari, A.; Mlynář, Jan

    2013-01-01

    Roč. 41, č. 7 (2013), s. 1751-1759 ISSN 0093-3813 R&D Projects: GA ČR GAP205/10/2055 Institutional support: RVO:61389021 Keywords : Learning Machines * Support Vector Machines * Neural Network * ASDEX Upgrade * JET * Disruption mitigation * Tokamaks * ITER Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.950, year: 2013

  10. Advancing Research in Second Language Writing through Computational Tools and Machine Learning Techniques: A Research Agenda

    Science.gov (United States)

    Crossley, Scott A.

    2013-01-01

    This paper provides an agenda for replication studies focusing on second language (L2) writing and the use of natural language processing (NLP) tools and machine learning algorithms. Specifically, it introduces a range of the available NLP tools and machine learning algorithms and demonstrates how these could be used to replicate seminal studies…

  11. Development of an advanced human-machine interface for next generation nuclear power plants

    International Nuclear Information System (INIS)

    Chang, Soon Heung; Choi, Seong Soo; Park, Jin Kyun; Heo, Gyunyoung; Kim, Han Gon

    1999-01-01

    An advanced human-machine interface (HMI) has been developed to enhance the safety and availability of a nuclear power plant (NPP) by improving operational reliability. The key elements of the proposed HMI are the large display panels which present synopsis of plant status and the compact, computer-based work stations for monitoring, control and protection functions. The work station consists of four consoles such as a dynamic alarm console (DAC), a system information console (SIC), a computerized operating-procedure console (COC), and a safety system information console (SSIC). The DAC provides clean alarm pictures, in which information overlapping is excluded and alarm impacts are discriminated, for quick situation awareness. The SIC supports a normal operation by offering all necessary system information and control functions over non-safety systems. In addition, it is closely linked to the other consoles in order to automatically display related system information according to situations of the DAC and the COC. The COC aids operators with proper operating procedures during normal plant startup and shutdown or after a plant trip, and it also reduces their physical/mental burden through soft automation. The SSIC continuously displays safety system status and enables operators to control safety systems. The proposed HMI has been evaluated using the checklists that are extracted from various human factors guidelines. From the evaluation results, it can be concluded that the HMI is so designed as to address the human factors issues reasonably. After sufficient validation, the concept and the design features of the proposed HMI will be reflected in the design of the main control room of the Korean Next Generation Reactor (KNGR)

  12. A study on dynamic evaluation methods for human-machine interfaces in advanced control rooms

    International Nuclear Information System (INIS)

    Park, Jin Kyun

    1998-02-01

    Extensive efforts have been performed to reveal factors that largely affect to the safety of nuclear power plants (NPPs). Among them, human factors were known as a dominant cause of a severe accident, such as Three Mile Island and Chernobyl accidents. Thus a lot of efforts to resolve human factors related problems have been spent, and one of these efforts is an advanced control room (ACR) design to enhance human performance and the safety of NPPs. There are two important trends in the design of ACRs. The first one is increasing automation level, and the second one is the development of computer based compact workstations for control room operations including intelligent operator aid systems. However, several problems have been reported when another factors are not properly incorporated into the design of ACRs. Among them, one of the most important factors that significantly affect to operator performance is the design of human machine interfaces (HMIs). Thus, HMI evaluation should be emphasized to ensure appropriateness of HMI designs and the safety of NPPs. In general, two kinds of evaluations have been frequently used to assess appropriateness of the proposed HMI design. The one is the static evaluation and the other is the dynamic evaluation. Here, the static evaluation is the one based on guidelines that are extracted from various researches on HMI designs. And the dynamic evaluation generally attempts to evaluate and predict human performance through a model that can describe cognitive behaviors of human or interactions between HMIs and human. However, the static evaluation seems to be inappropriate because it can't properly capture context of task environment that strongly affects to human performance. In addition, in case of dynamic evaluations, development of a model that can sufficiently describe interactions or cognitive behaviors of human operators is very arduous and laborious. To overcome these problems, dynamic evaluation methods that can

  13. Advanced Machine Learning for Classification, Regression, and Generation in Jet Physics

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    There is a deep connection between machine learning and jet physics - after all, jets are defined by unsupervised learning algorithms. Jet physics has been a driving force for studying modern machine learning in high energy physics. Domain specific challenges require new techniques to make full use of the algorithms. A key focus is on understanding how and what the algorithms learn. Modern machine learning techniques for jet physics are demonstrated for classification, regression, and generation. In addition to providing powerful baseline performance, we show how to train complex models directly on data and to generate sparse stacked images with non-uniform granularity.

  14. Integrated Real-Virtuality System and Environments for Advanced Control System Developers and Machines Builders

    OpenAIRE

    Hussein, Mohamed

    2008-01-01

    The pace of technological change is increasing and sophisticated customer driven markets are forcing rapid machine evolution, increasing complexity and quality, and faster response. To survive and thrive in these markets, machine builders/suppliers require absolute customer and market orientation, focusing on .. rapid provision of solutions rather than products. Their production systems will need to accommodate unpredictable changes while maintaining financial and operational efficiency with ...

  15. Intelligent Human Machine Interface Design for Advanced Product Life Cycle Management Systems

    OpenAIRE

    Ahmed, Zeeshan

    2010-01-01

    Designing and implementing an intelligent and user friendly human machine interface for any kind of software or hardware oriented application is always be a challenging task for the designers and developers because it is very difficult to understand the psychology of the user, nature of the work and best suit of the environment. This research paper is basically about to propose an intelligent, flexible and user friendly machine interface for Product Life Cycle Management products or PDM Syste...

  16. Advances in Patient Classification for Traditional Chinese Medicine: A Machine Learning Perspective

    Directory of Open Access Journals (Sweden)

    Changbo Zhao

    2015-01-01

    data analyzed by different computational methods, we present the overview for four subfields of TCM diagnosis, respectively. For each subfield, we design a rectangular reference list with applications in the horizontal direction and machine learning algorithms in the longitudinal direction. According to the current development of objective TCM diagnosis for patient classification, a discussion of the research issues around machine learning techniques with applications to TCM diagnosis is given to facilitate the further research for TCM patient classification.

  17. Iris recognition and what is next? Iris diagnosis: a new challenging topic for machine vision from image acquisition to image interpretation

    Science.gov (United States)

    Perner, Petra

    2017-03-01

    Molecular image-based techniques are widely used in medicine to detect specific diseases. Look diagnosis is an important issue but also the analysis of the eye plays an important role in order to detect specific diseases. These topics are important topics in medicine and the standardization of these topics by an automatic system can be a new challenging field for machine vision. Compared to iris recognition has the iris diagnosis much more higher demands for the image acquisition and interpretation of the iris. One understands by iris diagnosis (Iridology) the investigation and analysis of the colored part of the eye, the iris, to discover factors, which play an important role for the prevention and treatment of illnesses, but also for the preservation of an optimum health. An automatic system would pave the way for a much wider use of the iris diagnosis for the diagnosis of illnesses and for the purpose of individual health protection. With this paper, we describe our work towards an automatic iris diagnosis system. We describe the image acquisition and the problems with it. Different ways are explained for image acquisition and image preprocessing. We describe the image analysis method for the detection of the iris. The meta-model for image interpretation is given. Based on this model we show the many tasks for image analysis that range from different image-object feature analysis, spatial image analysis to color image analysis. Our first results for the recognition of the iris are given. We describe how detecting the pupil and not wanted lamp spots. We explain how to recognize orange blue spots in the iris and match them against the topological map of the iris. Finally, we give an outlook for further work.

  18. Visual acuity and contrast sensitivity are two important factors affecting vision-related quality of life in advanced age-related macular degeneration.

    Science.gov (United States)

    Roh, Miin; Selivanova, Alexandra; Shin, Hyun Joon; Miller, Joan W; Jackson, Mary Lou

    2018-01-01

    Vision loss from age-related macular degeneration (AMD) has a profound effect on vision-related quality of life (VRQoL). The pupose of this study is to identify clinical factors associated with VRQoL using the Rasch- calibrated NEI VFQ-25 scales in bilateral advanced AMD patients. We retrospectively reviewed 47 patients (mean age 83.2 years) with bilateral advanced AMD. Clinical assessment included age, gender, type of AMD, high contrast visual acuity (VA), history of medical conditions, contrast sensitivity (CS), central visual field loss, report of Charles Bonnet Syndrome, current treatment for AMD and Rasch-calibrated NEI VFQ-25 visual function and socioemotional function scales. The NEI VFQ visual function scale includes items of general vision, peripheral vision, distance vision and near vision-related activity while the socioemotional function scale includes items of vision related-social functioning, role difficulties, dependency, and mental health. Multiple regression analysis (structural regression model) was performed using fixed item parameters obtained from the one-parameter item response theory model. Multivariate analysis showed that high contrast VA and CS were two factors influencing VRQoL visual function scale (β = -0.25, 95% CI-0.37 to -0.12, p<0.001 and β = 0.35, 95% CI 0.25 to 0.46, p<0.001) and socioemontional functioning scale (β = -0.2, 95% CI -0.37 to -0.03, p = 0.023, and β = 0.3, 95% CI 0.18 to 0.43, p = 0.001). Central visual field loss was not assoicated with either VRQoL visual or socioemontional functioning scale (β = -0.08, 95% CI-0.28 to 0.12,p = 0.44 and β = -0.09, 95% CI -0.03 to 0.16, p = 0.50, respectively). In patients with vision impairment secondary to bilateral advanced AMD, high contrast VA and CS are two important factors affecting VRQoL.

  19. Visual acuity and contrast sensitivity are two important factors affecting vision-related quality of life in advanced age-related macular degeneration

    Science.gov (United States)

    Selivanova, Alexandra; Shin, Hyun Joon; Miller, Joan W.; Jackson, Mary Lou

    2018-01-01

    Purpose Vision loss from age-related macular degeneration (AMD) has a profound effect on vision-related quality of life (VRQoL). The pupose of this study is to identify clinical factors associated with VRQoL using the Rasch- calibrated NEI VFQ-25 scales in bilateral advanced AMD patients. Methods We retrospectively reviewed 47 patients (mean age 83.2 years) with bilateral advanced AMD. Clinical assessment included age, gender, type of AMD, high contrast visual acuity (VA), history of medical conditions, contrast sensitivity (CS), central visual field loss, report of Charles Bonnet Syndrome, current treatment for AMD and Rasch-calibrated NEI VFQ-25 visual function and socioemotional function scales. The NEI VFQ visual function scale includes items of general vision, peripheral vision, distance vision and near vision-related activity while the socioemotional function scale includes items of vision related-social functioning, role difficulties, dependency, and mental health. Multiple regression analysis (structural regression model) was performed using fixed item parameters obtained from the one-parameter item response theory model. Results Multivariate analysis showed that high contrast VA and CS were two factors influencing VRQoL visual function scale (β = -0.25, 95% CI-0.37 to -0.12, p<0.001 and β = 0.35, 95% CI 0.25 to 0.46, p<0.001) and socioemontional functioning scale (β = -0.2, 95% CI -0.37 to -0.03, p = 0.023, and β = 0.3, 95% CI 0.18 to 0.43, p = 0.001). Central visual field loss was not assoicated with either VRQoL visual or socioemontional functioning scale (β = -0.08, 95% CI-0.28 to 0.12,p = 0.44 and β = -0.09, 95% CI -0.03 to 0.16, p = 0.50, respectively). Conclusion In patients with vision impairment secondary to bilateral advanced AMD, high contrast VA and CS are two important factors affecting VRQoL. PMID:29746512

  20. Advanced Model of Squirrel Cage Induction Machine for Broken Rotor Bars Fault Using Multi Indicators

    Directory of Open Access Journals (Sweden)

    Ilias Ouachtouk

    2016-01-01

    Full Text Available Squirrel cage induction machine are the most commonly used electrical drives, but like any other machine, they are vulnerable to faults. Among the widespread failures of the induction machine there are rotor faults. This paper focuses on the detection of broken rotor bars fault using multi-indicator. However, diagnostics of asynchronous machine rotor faults can be accomplished by analysing the anomalies of machine local variable such as torque, magnetic flux, stator current and neutral voltage signature analysis. The aim of this research is to summarize the existing models and to develop new models of squirrel cage induction motors with consideration of the neutral voltage and to study the effect of broken rotor bars on the different electrical quantities such as the park currents, torque, stator currents and neutral voltage. The performance of the model was assessed by comparing the simulation and experimental results. The obtained results show the effectiveness of the model, and allow detection and diagnosis of these defects.

  1. Detecting epileptic seizure with different feature extracting strategies using robust machine learning classification techniques by applying advance parameter optimization approach.

    Science.gov (United States)

    Hussain, Lal

    2018-06-01

    Epilepsy is a neurological disorder produced due to abnormal excitability of neurons in the brain. The research reveals that brain activity is monitored through electroencephalogram (EEG) of patients suffered from seizure to detect the epileptic seizure. The performance of EEG detection based epilepsy require feature extracting strategies. In this research, we have extracted varying features extracting strategies based on time and frequency domain characteristics, nonlinear, wavelet based entropy and few statistical features. A deeper study was undertaken using novel machine learning classifiers by considering multiple factors. The support vector machine kernels are evaluated based on multiclass kernel and box constraint level. Likewise, for K-nearest neighbors (KNN), we computed the different distance metrics, Neighbor weights and Neighbors. Similarly, the decision trees we tuned the paramours based on maximum splits and split criteria and ensemble classifiers are evaluated based on different ensemble methods and learning rate. For training/testing tenfold Cross validation was employed and performance was evaluated in form of TPR, NPR, PPV, accuracy and AUC. In this research, a deeper analysis approach was performed using diverse features extracting strategies using robust machine learning classifiers with more advanced optimal options. Support Vector Machine linear kernel and KNN with City block distance metric give the overall highest accuracy of 99.5% which was higher than using the default parameters for these classifiers. Moreover, highest separation (AUC = 0.9991, 0.9990) were obtained at different kernel scales using SVM. Additionally, the K-nearest neighbors with inverse squared distance weight give higher performance at different Neighbors. Moreover, to distinguish the postictal heart rate oscillations from epileptic ictal subjects, and highest performance of 100% was obtained using different machine learning classifiers.

  2. Progress in computer vision.

    Science.gov (United States)

    Jain, A. K.; Dorai, C.

    Computer vision has emerged as a challenging and important area of research, both as an engineering and a scientific discipline. The growing importance of computer vision is evident from the fact that it was identified as one of the "Grand Challenges" and also from its prominent role in the National Information Infrastructure. While the design of a general-purpose vision system continues to be elusive machine vision systems are being used successfully in specific application elusive, machine vision systems are being used successfully in specific application domains. Building a practical vision system requires a careful selection of appropriate sensors, extraction and integration of information from available cues in the sensed data, and evaluation of system robustness and performance. The authors discuss and demonstrate advantages of (1) multi-sensor fusion, (2) combination of features and classifiers, (3) integration of visual modules, and (IV) admissibility and goal-directed evaluation of vision algorithms. The requirements of several prominent real world applications such as biometry, document image analysis, image and video database retrieval, and automatic object model construction offer exciting problems and new opportunities to design and evaluate vision algorithms.

  3. Advanced characterization of carrier profiles in germanium using micro-machined contact probes

    DEFF Research Database (Denmark)

    Clarysse, T.; Konttinen, M.; Parmentier, B.

    2012-01-01

    of new concepts based on micro machined, closely spaced contact probes (10 μm pitch). When using four probes to perform sheet resistance measurements, a quantitative carrier profile extraction based on the evolution of the sheet resistance versus depth along a beveled surface is obtained. Considering...... the properties of both approaches on Al+ implants in germanium with different anneal treatments....

  4. Intrusion detection system using Online Sequence Extreme Learning Machine (OS-ELM) in advanced metering infrastructure of smart grid.

    Science.gov (United States)

    Li, Yuancheng; Qiu, Rixuan; Jing, Sitong

    2018-01-01

    Advanced Metering Infrastructure (AMI) realizes a two-way communication of electricity data through by interconnecting with a computer network as the core component of the smart grid. Meanwhile, it brings many new security threats and the traditional intrusion detection method can't satisfy the security requirements of AMI. In this paper, an intrusion detection system based on Online Sequence Extreme Learning Machine (OS-ELM) is established, which is used to detecting the attack in AMI and carrying out the comparative analysis with other algorithms. Simulation results show that, compared with other intrusion detection methods, intrusion detection method based on OS-ELM is more superior in detection speed and accuracy.

  5. Optoelectronic vision

    Science.gov (United States)

    Ren, Chunye; Parel, Jean-Marie A.

    1993-06-01

    Scientists have searched every discipline to find effective methods of treating blindness, such as using aids based on conversion of the optical image, to auditory or tactile stimuli. However, the limited performance of such equipment and difficulties in training patients have seriously hampered practical applications. A great edification has been given by the discovery of Foerster (1929) and Krause & Schum (1931), who found that the electrical stimulation of the visual cortex evokes the perception of a small spot of light called `phosphene' in both blind and sighted subjects. According to this principle, it is possible to invite artificial vision by using stimulation with electrodes placed on the vision neural system, thereby developing a prosthesis for the blind that might be of value in reading and mobility. In fact, a number of investigators have already exploited this phenomena to produce a functional visual prosthesis, bringing about great advances in this area.

  6. Advanced Cell Classifier: User-Friendly Machine-Learning-Based Software for Discovering Phenotypes in High-Content Imaging Data.

    Science.gov (United States)

    Piccinini, Filippo; Balassa, Tamas; Szkalisity, Abel; Molnar, Csaba; Paavolainen, Lassi; Kujala, Kaisa; Buzas, Krisztina; Sarazova, Marie; Pietiainen, Vilja; Kutay, Ulrike; Smith, Kevin; Horvath, Peter

    2017-06-28

    High-content, imaging-based screens now routinely generate data on a scale that precludes manual verification and interrogation. Software applying machine learning has become an essential tool to automate analysis, but these methods require annotated examples to learn from. Efficiently exploring large datasets to find relevant examples remains a challenging bottleneck. Here, we present Advanced Cell Classifier (ACC), a graphical software package for phenotypic analysis that addresses these difficulties. ACC applies machine-learning and image-analysis methods to high-content data generated by large-scale, cell-based experiments. It features methods to mine microscopic image data, discover new phenotypes, and improve recognition performance. We demonstrate that these features substantially expedite the training process, successfully uncover rare phenotypes, and improve the accuracy of the analysis. ACC is extensively documented, designed to be user-friendly for researchers without machine-learning expertise, and distributed as a free open-source tool at www.cellclassifier.org. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Developments in medical image processing and computational vision

    CERN Document Server

    Jorge, Renato

    2015-01-01

    This book presents novel and advanced topics in Medical Image Processing and Computational Vision in order to solidify knowledge in the related fields and define their key stakeholders. It contains extended versions of selected papers presented in VipIMAGE 2013 – IV International ECCOMAS Thematic Conference on Computational Vision and Medical Image, which took place in Funchal, Madeira, Portugal, 14-16 October 2013.  The twenty-two chapters were written by invited experts of international recognition and address important issues in medical image processing and computational vision, including: 3D vision, 3D visualization, colour quantisation, continuum mechanics, data fusion, data mining, face recognition, GPU parallelisation, image acquisition and reconstruction, image and video analysis, image clustering, image registration, image restoring, image segmentation, machine learning, modelling and simulation, object detection, object recognition, object tracking, optical flow, pattern recognition, pose estimat...

  8. Advanced stability control of multi-machine power system by vips apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, A [Tokyo Univ., Tokyo (Japan). Dept. of Electrical Engineering; Sekine, Y [Science Univ. of Tokyo, Tokyo (Japan). Dept. of Electrical Engineering

    1994-12-31

    New technology such as synchronized switching and power electronics will make it possible to change the configuration of transmission network, the impedances of transmission lines and the phase angles of voltage in the future power systems. This paper presents a comprehensive power system damping control by power electronics based variable impedance apparatus such as variable series capacitor and high speed phase shifter and also shows a novel switching-over control of transmission lines by synchronized switching for the first awing stability and damping enhancement. The control scheme discussed in this paper is based on an energy function of multi-machine power system and its time derivative. Its effectiveness is demonstrated by digital simulations and eigenvalue analysis in multi-machine test systems. It is demonstrated that multiple switching of transmission lines improves damping in the post-fault conditions. (author) 13 refs., 24 figs., 5 tabs.

  9. Promoting Probabilistic Programming System (PPS) Development in Probabilistic Programming for Advancing Machine Learning (PPAML)

    Science.gov (United States)

    2018-03-01

    invested in the future developments of PPSs. 3.0 METHODS , ASSUMPTIONS, AND PROCEDURES Section 3 describes the methods for each of the primary areas of...approaches for solving machine learning problems of interest to defense, science , and the economy. Within DoD, there are different needs for ...Datasets include social network data and vaccination statistics . Those data have different characteristics (e.g., percentages for CDC regional

  10. Machine learning and statistical methods for the prediction of maximal oxygen uptake: recent advances

    Directory of Open Access Journals (Sweden)

    Abut F

    2015-08-01

    Full Text Available Fatih Abut, Mehmet Fatih AkayDepartment of Computer Engineering, Çukurova University, Adana, TurkeyAbstract: Maximal oxygen uptake (VO2max indicates how many milliliters of oxygen the body can consume in a state of intense exercise per minute. VO2max plays an important role in both sport and medical sciences for different purposes, such as indicating the endurance capacity of athletes or serving as a metric in estimating the disease risk of a person. In general, the direct measurement of VO2max provides the most accurate assessment of aerobic power. However, despite a high level of accuracy, practical limitations associated with the direct measurement of VO2max, such as the requirement of expensive and sophisticated laboratory equipment or trained staff, have led to the development of various regression models for predicting VO2max. Consequently, a lot of studies have been conducted in the last years to predict VO2max of various target audiences, ranging from soccer athletes, nonexpert swimmers, cross-country skiers to healthy-fit adults, teenagers, and children. Numerous prediction models have been developed using different sets of predictor variables and a variety of machine learning and statistical methods, including support vector machine, multilayer perceptron, general regression neural network, and multiple linear regression. The purpose of this study is to give a detailed overview about the data-driven modeling studies for the prediction of VO2max conducted in recent years and to compare the performance of various VO2max prediction models reported in related literature in terms of two well-known metrics, namely, multiple correlation coefficient (R and standard error of estimate. The survey results reveal that with respect to regression methods used to develop prediction models, support vector machine, in general, shows better performance than other methods, whereas multiple linear regression exhibits the worst performance

  11. Advances in Patient Classification for Traditional Chinese Medicine: A Machine Learning Perspective

    Science.gov (United States)

    Zhao, Changbo; Li, Guo-Zheng; Wang, Chengjun; Niu, Jinling

    2015-01-01

    As a complementary and alternative medicine in medical field, traditional Chinese medicine (TCM) has drawn great attention in the domestic field and overseas. In practice, TCM provides a quite distinct methodology to patient diagnosis and treatment compared to western medicine (WM). Syndrome (ZHENG or pattern) is differentiated by a set of symptoms and signs examined from an individual by four main diagnostic methods: inspection, auscultation and olfaction, interrogation, and palpation which reflects the pathological and physiological changes of disease occurrence and development. Patient classification is to divide patients into several classes based on different criteria. In this paper, from the machine learning perspective, a survey on patient classification issue will be summarized on three major aspects of TCM: sign classification, syndrome differentiation, and disease classification. With the consideration of different diagnostic data analyzed by different computational methods, we present the overview for four subfields of TCM diagnosis, respectively. For each subfield, we design a rectangular reference list with applications in the horizontal direction and machine learning algorithms in the longitudinal direction. According to the current development of objective TCM diagnosis for patient classification, a discussion of the research issues around machine learning techniques with applications to TCM diagnosis is given to facilitate the further research for TCM patient classification. PMID:26246834

  12. Advances in Patient Classification for Traditional Chinese Medicine: A Machine Learning Perspective.

    Science.gov (United States)

    Zhao, Changbo; Li, Guo-Zheng; Wang, Chengjun; Niu, Jinling

    2015-01-01

    As a complementary and alternative medicine in medical field, traditional Chinese medicine (TCM) has drawn great attention in the domestic field and overseas. In practice, TCM provides a quite distinct methodology to patient diagnosis and treatment compared to western medicine (WM). Syndrome (ZHENG or pattern) is differentiated by a set of symptoms and signs examined from an individual by four main diagnostic methods: inspection, auscultation and olfaction, interrogation, and palpation which reflects the pathological and physiological changes of disease occurrence and development. Patient classification is to divide patients into several classes based on different criteria. In this paper, from the machine learning perspective, a survey on patient classification issue will be summarized on three major aspects of TCM: sign classification, syndrome differentiation, and disease classification. With the consideration of different diagnostic data analyzed by different computational methods, we present the overview for four subfields of TCM diagnosis, respectively. For each subfield, we design a rectangular reference list with applications in the horizontal direction and machine learning algorithms in the longitudinal direction. According to the current development of objective TCM diagnosis for patient classification, a discussion of the research issues around machine learning techniques with applications to TCM diagnosis is given to facilitate the further research for TCM patient classification.

  13. Riemannian computing in computer vision

    CERN Document Server

    Srivastava, Anuj

    2016-01-01

    This book presents a comprehensive treatise on Riemannian geometric computations and related statistical inferences in several computer vision problems. This edited volume includes chapter contributions from leading figures in the field of computer vision who are applying Riemannian geometric approaches in problems such as face recognition, activity recognition, object detection, biomedical image analysis, and structure-from-motion. Some of the mathematical entities that necessitate a geometric analysis include rotation matrices (e.g. in modeling camera motion), stick figures (e.g. for activity recognition), subspace comparisons (e.g. in face recognition), symmetric positive-definite matrices (e.g. in diffusion tensor imaging), and function-spaces (e.g. in studying shapes of closed contours).   ·         Illustrates Riemannian computing theory on applications in computer vision, machine learning, and robotics ·         Emphasis on algorithmic advances that will allow re-application in other...

  14. Low Vision

    Science.gov (United States)

    ... USAJobs Home » Statistics and Data » Low Vision Listen Low Vision Low Vision Defined: Low Vision is defined as the best- ... Ethnicity 2010 U.S. Age-Specific Prevalence Rates for Low Vision by Age, and Race/Ethnicity Table for 2010 ...

  15. An open-source solution for advanced imaging flow cytometry data analysis using machine learning.

    Science.gov (United States)

    Hennig, Holger; Rees, Paul; Blasi, Thomas; Kamentsky, Lee; Hung, Jane; Dao, David; Carpenter, Anne E; Filby, Andrew

    2017-01-01

    Imaging flow cytometry (IFC) enables the high throughput collection of morphological and spatial information from hundreds of thousands of single cells. This high content, information rich image data can in theory resolve important biological differences among complex, often heterogeneous biological samples. However, data analysis is often performed in a highly manual and subjective manner using very limited image analysis techniques in combination with conventional flow cytometry gating strategies. This approach is not scalable to the hundreds of available image-based features per cell and thus makes use of only a fraction of the spatial and morphometric information. As a result, the quality, reproducibility and rigour of results are limited by the skill, experience and ingenuity of the data analyst. Here, we describe a pipeline using open-source software that leverages the rich information in digital imagery using machine learning algorithms. Compensated and corrected raw image files (.rif) data files from an imaging flow cytometer (the proprietary .cif file format) are imported into the open-source software CellProfiler, where an image processing pipeline identifies cells and subcellular compartments allowing hundreds of morphological features to be measured. This high-dimensional data can then be analysed using cutting-edge machine learning and clustering approaches using "user-friendly" platforms such as CellProfiler Analyst. Researchers can train an automated cell classifier to recognize different cell types, cell cycle phases, drug treatment/control conditions, etc., using supervised machine learning. This workflow should enable the scientific community to leverage the full analytical power of IFC-derived data sets. It will help to reveal otherwise unappreciated populations of cells based on features that may be hidden to the human eye that include subtle measured differences in label free detection channels such as bright-field and dark-field imagery

  16. Machine learning and statistical methods for the prediction of maximal oxygen uptake: recent advances.

    Science.gov (United States)

    Abut, Fatih; Akay, Mehmet Fatih

    2015-01-01

    Maximal oxygen uptake (VO2max) indicates how many milliliters of oxygen the body can consume in a state of intense exercise per minute. VO2max plays an important role in both sport and medical sciences for different purposes, such as indicating the endurance capacity of athletes or serving as a metric in estimating the disease risk of a person. In general, the direct measurement of VO2max provides the most accurate assessment of aerobic power. However, despite a high level of accuracy, practical limitations associated with the direct measurement of VO2max, such as the requirement of expensive and sophisticated laboratory equipment or trained staff, have led to the development of various regression models for predicting VO2max. Consequently, a lot of studies have been conducted in the last years to predict VO2max of various target audiences, ranging from soccer athletes, nonexpert swimmers, cross-country skiers to healthy-fit adults, teenagers, and children. Numerous prediction models have been developed using different sets of predictor variables and a variety of machine learning and statistical methods, including support vector machine, multilayer perceptron, general regression neural network, and multiple linear regression. The purpose of this study is to give a detailed overview about the data-driven modeling studies for the prediction of VO2max conducted in recent years and to compare the performance of various VO2max prediction models reported in related literature in terms of two well-known metrics, namely, multiple correlation coefficient (R) and standard error of estimate. The survey results reveal that with respect to regression methods used to develop prediction models, support vector machine, in general, shows better performance than other methods, whereas multiple linear regression exhibits the worst performance.

  17. Advanced Integrated Multi-Sensor Surveillance (AIMS. Operator Machine Interface (OMI) Definition Study

    National Research Council Canada - National Science Library

    Baker, Kevin; Youngson, Gord

    2007-01-01

    To enhance the capability of airborne search and rescue (SAR) and surveillance, particularly at night and in poor weather, a multi sensor electro optical imaging system, the Advanced Integrated Multi sensor Surveillance (AIMS...

  18. Advances in and prospects for development of high-temperature superconductor rotating machines at Siemens

    International Nuclear Information System (INIS)

    Neumueller, H W; Nick, W; Wacker, B; Frank, M; Nerowski, G; Frauenhofer, J; Rzadki, W; Hartig, R

    2006-01-01

    We report on the successful manufacture and testing of the Siemens 400 kVA HTS synchronous motor, which has been in operation for over 3 years, and on the progress of the 4 MVA synchronous motor/generator, which has been manufactured and is now in a phase of extended testing. Furthermore, the benefits of HTS machines will be discussed with emphasis on applications in ships. The development of future marketable products will be strongly dependent on the progress of secondary technologies, such as wire performance and efficient cost-effective refrigerators

  19. Machine Tool Advanced Skills Technology (MAST). Common Ground: Toward a Standards-Based Training System for the U.S. Machine Tool and Metal Related Industries. Volume 11: Computer-Aided Manufacturing & Advanced CNC, of a 15-Volume Set of Skill Standards and Curriculum Training Materials for the Precision Manufacturing Industry.

    Science.gov (United States)

    Texas State Technical Coll., Waco.

    This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…

  20. INSA: Vision and Activities

    International Nuclear Information System (INIS)

    Choe, Kwan-Kyoo

    2013-01-01

    INSA vision: Contribution to the world peace via advanced and excellent nuclear nonproliferation and security education and training; Objectives: Provide practical education and training programs; Raise internationally-recognized experts; Improve awareness about nuclear nonproliferation and security

  1. Advances in industrial biopharmaceutical batch process monitoring: Machine-learning methods for small data problems.

    Science.gov (United States)

    Tulsyan, Aditya; Garvin, Christopher; Ündey, Cenk

    2018-04-06

    Biopharmaceutical manufacturing comprises of multiple distinct processing steps that require effective and efficient monitoring of many variables simultaneously in real-time. The state-of-the-art real-time multivariate statistical batch process monitoring (BPM) platforms have been in use in recent years to ensure comprehensive monitoring is in place as a complementary tool for continued process verification to detect weak signals. This article addresses a longstanding, industry-wide problem in BPM, referred to as the "Low-N" problem, wherein a product has a limited production history. The current best industrial practice to address the Low-N problem is to switch from a multivariate to a univariate BPM, until sufficient product history is available to build and deploy a multivariate BPM platform. Every batch run without a robust multivariate BPM platform poses risk of not detecting potential weak signals developing in the process that might have an impact on process and product performance. In this article, we propose an approach to solve the Low-N problem by generating an arbitrarily large number of in silico batches through a combination of hardware exploitation and machine-learning methods. To the best of authors' knowledge, this is the first article to provide a solution to the Low-N problem in biopharmaceutical manufacturing using machine-learning methods. Several industrial case studies from bulk drug substance manufacturing are presented to demonstrate the efficacy of the proposed approach for BPM under various Low-N scenarios. © 2018 Wiley Periodicals, Inc.

  2. Recent machine learning advancements in sensor-based mobility analysis: Deep learning for Parkinson's disease assessment.

    Science.gov (United States)

    Eskofier, Bjoern M; Lee, Sunghoon I; Daneault, Jean-Francois; Golabchi, Fatemeh N; Ferreira-Carvalho, Gabriela; Vergara-Diaz, Gloria; Sapienza, Stefano; Costante, Gianluca; Klucken, Jochen; Kautz, Thomas; Bonato, Paolo

    2016-08-01

    The development of wearable sensors has opened the door for long-term assessment of movement disorders. However, there is still a need for developing methods suitable to monitor motor symptoms in and outside the clinic. The purpose of this paper was to investigate deep learning as a method for this monitoring. Deep learning recently broke records in speech and image classification, but it has not been fully investigated as a potential approach to analyze wearable sensor data. We collected data from ten patients with idiopathic Parkinson's disease using inertial measurement units. Several motor tasks were expert-labeled and used for classification. We specifically focused on the detection of bradykinesia. For this, we compared standard machine learning pipelines with deep learning based on convolutional neural networks. Our results showed that deep learning outperformed other state-of-the-art machine learning algorithms by at least 4.6 % in terms of classification rate. We contribute a discussion of the advantages and disadvantages of deep learning for sensor-based movement assessment and conclude that deep learning is a promising method for this field.

  3. Lambda Vision

    Science.gov (United States)

    Czajkowski, Michael

    2014-06-01

    There is an explosion in the quantity and quality of IMINT data being captured in Intelligence Surveillance and Reconnaissance (ISR) today. While automated exploitation techniques involving computer vision are arriving, only a few architectures can manage both the storage and bandwidth of large volumes of IMINT data and also present results to analysts quickly. Lockheed Martin Advanced Technology Laboratories (ATL) has been actively researching in the area of applying Big Data cloud computing techniques to computer vision applications. This paper presents the results of this work in adopting a Lambda Architecture to process and disseminate IMINT data using computer vision algorithms. The approach embodies an end-to-end solution by processing IMINT data from sensors to serving information products quickly to analysts, independent of the size of the data. The solution lies in dividing up the architecture into a speed layer for low-latent processing and a batch layer for higher quality answers at the expense of time, but in a robust and fault-tolerant way. This approach was evaluated using a large corpus of IMINT data collected by a C-130 Shadow Harvest sensor over Afghanistan from 2010 through 2012. The evaluation data corpus included full motion video from both narrow and wide area field-of-views. The evaluation was done on a scaled-out cloud infrastructure that is similar in composition to those found in the Intelligence Community. The paper shows experimental results to prove the scalability of the architecture and precision of its results using a computer vision algorithm designed to identify man-made objects in sparse data terrain.

  4. Innovative grinding wheel design for cost-effective machining of advanced ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Licht, R.H.; Kuo, P.; Liu, S.; Murphy, D.; Picone, J.W.; Ramanath, S.

    2000-05-01

    This Final Report covers the Phase II Innovative Grinding Wheel (IGW) program in which Norton Company successfully developed a novel grinding wheel for cost-effective cylindrical grinding of advanced ceramics. In 1995, Norton Company successfully completed the 16-month Phase I technical effort to define requirements, design, develop, and evaluate a next-generation grinding wheel for cost-effective cylindrical grinding of advanced ceramics using small prototype wheels. The Phase II program was initiated to scale-up the new superabrasive wheel specification to larger diameters, 305-mm to 406-mm, required for most production grinding of cylindrical ceramic parts, and to perform in-house and independent validation grinding tests.

  5. Technology Roadmap on Instrumentation, Control, and Human-Machine Interface to Support DOE Advanced Nuclear Energy Programs

    International Nuclear Information System (INIS)

    Donald D Dudenhoeffer; Burce P Hallbert

    2007-01-01

    Instrumentation, Controls, and Human-Machine Interface (ICHMI) technologies are essential to ensuring delivery and effective operation of optimized advanced Generation IV (Gen IV) nuclear energy systems. In 1996, the Watts Bar I nuclear power plant in Tennessee was the last U.S. nuclear power plant to go on line. It was, in fact, built based on pre-1990 technology. Since this last U.S. nuclear power plant was designed, there have been major advances in the field of ICHMI systems. Computer technology employed in other industries has advanced dramatically, and computing systems are now replaced every few years as they become functionally obsolete. Functional obsolescence occurs when newer, more functional technology replaces or supersedes an existing technology, even though an existing technology may well be in working order. Although ICHMI architectures are comprised of much of the same technology, they have not been updated nearly as often in the nuclear power industry. For example, some newer Personal Digital Assistants (PDAs) or handheld computers may, in fact, have more functionality than the 1996 computer control system at the Watts Bar I plant. This illustrates the need to transition and upgrade current nuclear power plant ICHMI technologies

  6. Vision Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Vision Lab personnel perform research, development, testing and evaluation of eye protection and vision performance. The lab maintains and continues to develop...

  7. Intrusion detection system using Online Sequence Extreme Learning Machine (OS-ELM in advanced metering infrastructure of smart grid.

    Directory of Open Access Journals (Sweden)

    Yuancheng Li

    Full Text Available Advanced Metering Infrastructure (AMI realizes a two-way communication of electricity data through by interconnecting with a computer network as the core component of the smart grid. Meanwhile, it brings many new security threats and the traditional intrusion detection method can't satisfy the security requirements of AMI. In this paper, an intrusion detection system based on Online Sequence Extreme Learning Machine (OS-ELM is established, which is used to detecting the attack in AMI and carrying out the comparative analysis with other algorithms. Simulation results show that, compared with other intrusion detection methods, intrusion detection method based on OS-ELM is more superior in detection speed and accuracy.

  8. A memory-array architecture for computer vision

    Energy Technology Data Exchange (ETDEWEB)

    Balsara, P.T.

    1989-01-01

    With the fast advances in the area of computer vision and robotics there is a growing need for machines that can understand images at a very high speed. A conventional von Neumann computer is not suited for this purpose because it takes a tremendous amount of time to solve most typical image processing problems. Exploiting the inherent parallelism present in various vision tasks can significantly reduce the processing time. Fortunately, parallelism is increasingly affordable as hardware gets cheaper. Thus it is now imperative to study computer vision in a parallel processing framework. The author should first design a computational structure which is well suited for a wide range of vision tasks and then develop parallel algorithms which can run efficiently on this structure. Recent advances in VLSI technology have led to several proposals for parallel architectures for computer vision. In this thesis he demonstrates that a memory array architecture with efficient local and global communication capabilities can be used for high speed execution of a wide range of computer vision tasks. This architecture, called the Access Constrained Memory Array Architecture (ACMAA), is efficient for VLSI implementation because of its modular structure, simple interconnect and limited global control. Several parallel vision algorithms have been designed for this architecture. The choice of vision problems demonstrates the versatility of ACMAA for a wide range of vision tasks. These algorithms were simulated on a high level ACMAA simulator running on the Intel iPSC/2 hypercube, a parallel architecture. The results of this simulation are compared with those of sequential algorithms running on a single hypercube node. Details of the ACMAA processor architecture are also presented.

  9. Basic design principles of colorimetric vision systems

    Science.gov (United States)

    Mumzhiu, Alex M.

    1998-10-01

    Color measurement is an important part of overall production quality control in textile, coating, plastics, food, paper and other industries. The color measurement instruments such as colorimeters and spectrophotometers, used for production quality control have many limitations. In many applications they cannot be used for a variety of reasons and have to be replaced with human operators. Machine vision has great potential for color measurement. The components for color machine vision systems, such as broadcast quality 3-CCD cameras, fast and inexpensive PCI frame grabbers, and sophisticated image processing software packages are available. However the machine vision industry has only started to approach the color domain. The few color machine vision systems on the market, produced by the largest machine vision manufacturers have very limited capabilities. A lack of understanding that a vision based color measurement system could fail if it ignores the basic principles of colorimetry is the main reason for the slow progress of color vision systems. the purpose of this paper is to clarify how color measurement principles have to be applied to vision systems and how the electro-optical design features of colorimeters have to be modified in order to implement them for vision systems. The subject of this presentation far exceeds the limitations of a journal paper so only the most important aspects will be discussed. An overview of the major areas of applications for colorimetric vision system will be discussed. Finally, the reasons why some customers are happy with their vision systems and some are not will be analyzed.

  10. Anomaly Detection in Log Data using Graph Databases and Machine Learning to Defend Advanced Persistent Threats

    OpenAIRE

    Schindler, Timo

    2018-01-01

    Advanced Persistent Threats (APTs) are a main impendence in cyber security of computer networks. In 2015, a successful breach remains undetected 146 days on average, reported by [Fi16].With our work we demonstrate a feasible and fast way to analyse real world log data to detect breaches or breach attempts. By adapting well-known kill chain mechanisms and a combine of a time series database and an abstracted graph approach, it is possible to create flexible attack profiles. Using this approach...

  11. Acquisition of Cooperative Small Unmanned Aerial Systems for Advancing Man Machine Interface Research

    Science.gov (United States)

    2016-08-24

    Airborne Cross Runway Departure/Landing Scenario Figure 7 Illustration of a participant looking at the 10Hz or 15Hz flickering visual stimulus in a...Figure 5 An illustration using a formation of UAVs for Direction of Arrival (DOA) mitigation of spoofing signals Spoofer Antenna array based on a...this project is to research and develop robust and jamming-resistant receivers including advanced interference mitigation algorithms and network

  12. Development of new plant monitoring and control system with advanced man-machine interfaces NUCAMM-80

    International Nuclear Information System (INIS)

    Sato, Hideyuki; Joge, Toshio; Miyake, Masao; Kishi, Shoichi

    1981-01-01

    BWR type nuclear power stations are the typical plants adopting central monitoring system in view of the size of the scale of system and the prevention of radiation exposure. Central control boards became large as much informations and many operating tools are concentrated on them. Recently, the unit capacity has increased, and the safety has been strengthened, therefore more improvement of the man-machine interface is required concerning the monitoring of plant operation. Hitachi Ltd. developed the central monitoring and control system for nuclear power stations ''NUCAMM-80'', concentrating related fundamental techniques such as the collection of plant informations, the expansion of automatic operation, the ergonomic re-evaluation of the arrangement of panels and subsystems, and the effective use of functional hardwares such as controlling computers and cathode ray tubes, for the purposes of improving the reliability of plant operation and the rate of operation, the reduction of the burden of operators and drastic labor saving. The fundamental policy of the development, the construction of the system, panel layout and the collection of informations, the development of the system for plant automation, the development of plant diagnosis and prevention systems, computer system and the merits of this system are described. (Kako, I.)

  13. Advanced Digitization Techniques in Retrieval of Mechanism and Machine Science Resources

    Science.gov (United States)

    Lovasz, E.-Ch.; Gruescu, C. M.; Ciupe, V.; Carabas, I.; Margineanu, D.; Maniu, I.; Dehelean, N.

    The European project thinkMOTION works on the purpose of retrieving all-times content regarding mechanisms and machine science by means of creating a digital library, accessible to a broad public through the portal Europeana. DMG-Lib is intended to display the development in the field, from its very beginning up to now days. There is a large range of significant objects available, physically very heterogeneous and needing all to be digitized. The paper presents the workflow, the equipments and specific techniques used in digitization of documents featuring very different characteristics (size, texture, color, degree of preservation, resolution and so on). Once the workflow established on very detailed steps, the development of the workstation is treated. Special equipments designed and assembled at Universitatea "Politehnica" Timisoara are presented. A large series of software applications, including original programs, work for digitization itself, processing of images, management of files, automatic optoelectronic control of capture, storage of information in different stages of processing. An illustrating example is explained, showing the steps followed in order to obtain a clear, high-resolution image from an old original document (very valuable as a historical proof but very poor in quality regarding clarity, contrast and resolution).

  14. Development of advanced human-machine system for plant operation and maintenance

    International Nuclear Information System (INIS)

    Wu, Wei; Ohi, Tadashi; Yoshikawa, Hidekazu; Sawaragi, Tetsuo; Kitamura, Masaharu; Furuta, Kazuo; Gofuku, Akio; Ito, Koji

    2004-01-01

    With the worldwide deregulation of the power industry, and the aging of the nuclear power plants (NPPs), concerns are growing over the reliability and safety of the NPPs, because the regulation of man power may lower the current high level of reliability and safety. In this paper, a concept of overall integrated plant management mechanism is proposed, in order to meet the requirements of cutting costs of NPPs and the requirements of maintaining or increasing safety and reliability. The concept is called as satellite operation maintenance center (SOMC). SOMC integrates the operation and maintenance activities of several NPP units by utilizing advanced information technologies to support cooperation activities between workers allocated at SOMC and the field workers. As for the operation activities, a framework called as Advanced Operation System (AOS) is proposed in this paper. AOS consists of three support sub-systems: dynamic operation permission system(DyOPS), supervisor information presentation system using interface agent, and crew performance evaluation system. As for the maintenance activities, a framework called as Ubiquitous-Computing-based Maintenance support System (UCMS) is proposed next. Two case studies are described, in order to show the way of how UCMS support field workers to do maintenance tasks efficiently, safely, and infallibly as well. Finally, a prospect of SOMC is shown in order to explain the way of how the technology elements developed in this project could be integrated as a whole one system to support maintenance activities of NPPs in the future. (author)

  15. Pathogenesis-based treatments in primary Sjogren's syndrome using artificial intelligence and advanced machine learning techniques: a systematic literature review.

    Science.gov (United States)

    Foulquier, Nathan; Redou, Pascal; Le Gal, Christophe; Rouvière, Bénédicte; Pers, Jacques-Olivier; Saraux, Alain

    2018-05-17

    Big data analysis has become a common way to extract information from complex and large datasets among most scientific domains. This approach is now used to study large cohorts of patients in medicine. This work is a review of publications that have used artificial intelligence and advanced machine learning techniques to study physio pathogenesis-based treatments in pSS. A systematic literature review retrieved all articles reporting on the use of advanced statistical analysis applied to the study of systemic autoimmune diseases (SADs) over the last decade. An automatic bibliography screening method has been developed to perform this task. The program called BIBOT was designed to fetch and analyze articles from the pubmed database using a list of keywords and Natural Language Processing approaches. The evolution of trends in statistical approaches, sizes of cohorts and number of publications over this period were also computed in the process. In all, 44077 abstracts were screened and 1017 publications were analyzed. The mean number of selected articles was 101.0 (S.D. 19.16) by year, but increased significantly over the time (from 74 articles in 2008 to 138 in 2017). Among them only 12 focused on pSS but none of them emphasized on the aspect of pathogenesis-based treatments. To conclude, medicine progressively enters the era of big data analysis and artificial intelligence, but these approaches are not yet used to describe pSS-specific pathogenesis-based treatment. Nevertheless, large multicentre studies are investigating this aspect with advanced algorithmic tools on large cohorts of SADs patients.

  16. Vision Guided Intelligent Robot Design And Experiments

    Science.gov (United States)

    Slutzky, G. D.; Hall, E. L.

    1988-02-01

    The concept of an intelligent robot is an important topic combining sensors, manipulators, and artificial intelligence to design a useful machine. Vision systems, tactile sensors, proximity switches and other sensors provide the elements necessary for simple game playing as well as industrial applications. These sensors permit adaption to a changing environment. The AI techniques permit advanced forms of decision making, adaptive responses, and learning while the manipulator provides the ability to perform various tasks. Computer languages such as LISP and OPS5, have been utilized to achieve expert systems approaches in solving real world problems. The purpose of this paper is to describe several examples of visually guided intelligent robots including both stationary and mobile robots. Demonstrations will be presented of a system for constructing and solving a popular peg game, a robot lawn mower, and a box stacking robot. The experience gained from these and other systems provide insight into what may be realistically expected from the next generation of intelligent machines.

  17. Machining with abrasives

    CERN Document Server

    Jackson, Mark J

    2011-01-01

    Abrasive machining is key to obtaining the desired geometry and surface quality in manufacturing. This book discusses the fundamentals and advances in the abrasive machining processes. It provides a complete overview of developing areas in the field.

  18. Humans and machines in space: The vision, the challenge, the payoff; Proceedings of the 29th Goddard Memorial Symposium, Washington, Mar. 14, 15, 1991

    Science.gov (United States)

    Johnson, Bradley; May, Gayle L.; Korn, Paula

    The present conference discusses the currently envisioned goals of human-machine systems in spacecraft environments, prospects for human exploration of the solar system, and plausible methods for meeting human needs in space. Also discussed are the problems of human-machine interaction in long-duration space flights, remote medical systems for space exploration, the use of virtual reality for planetary exploration, the alliance between U.S. Antarctic and space programs, and the economic and educational impacts of the U.S. space program.

  19. Advanced measurement and analysis of surface textures produced by micro-machining processes

    International Nuclear Information System (INIS)

    Bordatchev, Evgueni V; Hafiz, Abdullah M K

    2014-01-01

    Surface texture of a part or a product has significant effects on its functionality, physical-mechanical properties and visual appearance. In particular for miniature products, the implication of surface quality becomes critical owing to the presence of geometrical features with micro/nano-scale dimensions. Qualitative and quantitative assessments of surface texture are carried out predominantly by profile parameters, which are often insufficient to address the contribution of constituent spatial components with varied amplitudes and wavelengths. In this context, this article presents a novel approach for advanced measurement and analysis of profile average roughness (R a ) and its spatial distribution at different wavelength intervals. The applicability of the proposed approach was verified for three different surface topographies prepared by grinding, laser micro-polishing and micro-milling processes. From the measurement and analysis results, R a (λ) spatial distribution was found to be an effective measure of revealing the contributions of various spatial components within specific wavelength intervals towards formation of the entire surface profile. In addition, the approach was extended to the measurement and analysis of areal average roughness S a (λ) spatial distribution within different wavelength intervals. Besides, the proposed method was demonstrated to be a useful technique in developing a functional correlation between a manufacturing process and its corresponding surface profile. (paper)

  20. Data management and communication networks for Man-Machine Interface System in Korea Advanced Liquid MEtal Reactor : its functionality and design requirements

    International Nuclear Information System (INIS)

    Cha, Kyung Ho; Park, Gun Ok; Suh, Sang Moon; Kim, Jang Yeol; Kwon, Kee Choon

    1998-01-01

    The DAta management and Communication NETworks(DACONET), which it is designed as a subsystem for Man-Machine Interface System of Korea Advanced LIquid MEtal Reactor(KALIMER MMIS) and advanced design concept is approached, is described. The DACONET has its roles of providing the real-time data transmission and communication paths between MMIS systems, providing the quality data for protection, monitoring and control of KALIMER and logging the static and dynamic behavioral data during KALIMER operation. The DACONET is characterized as the distributed real-time system architecture with high performance. Future direction, in which advanced technology is being continually applied to Man-Machine Interface System development and communication networks of KALIMER MMIS

  1. Data management and communication networks for Man-Machine Interface System in Korea Advanced Liquid MEtal Reactor : its functionality and design requirements

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Kyung Ho; Park, Gun Ok; Suh, Sang Moon; Kim, Jang Yeol; Kwon, Kee Choon [KAERI, Taejon (Korea, Republic of)

    1998-05-01

    The DAta management and Communication NETworks(DACONET), which it is designed as a subsystem for Man-Machine Interface System of Korea Advanced LIquid MEtal Reactor(KALIMER MMIS) and advanced design concept is approached, is described. The DACONET has its roles of providing the real-time data transmission and communication paths between MMIS systems, providing the quality data for protection, monitoring and control of KALIMER and logging the static and dynamic behavioral data during KALIMER operation. The DACONET is characterized as the distributed real-time system architecture with high performance. Future direction, in which advanced technology is being continually applied to Man-Machine Interface System development and communication networks of KALIMER MMIS.

  2. Data management and communication networks for man-machine interface system in Korea Advanced LIquid MEtal Reactor : Its functionality and design requirements

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Kyung Ho; Park, Gun Ok; Suh, Sang Moon; Kim, Jang Yeol; Kwon, Kee Choon [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-12-31

    The DAta management and COmmunication NETworks(DACONET), which it is designed as a subsystem for Man-Machine Interface System of Korea Advanced LIquid MEtal Reactor (KALIMER MMIS) and advanced design concept is approached, is described. The DACONET has its roles of providing the real-time data transmission and communication paths between MMIS systems, providing the quality data for protection, monitoring and control of KALIMER and logging the static and dynamic behavioral data during KALIMER operation. The DACONET is characterized as the distributed real-time system architecture with high performance. Future direction, in which advanced technology is being continually applied to Man-Machine Interface System development of Nuclear Power Plants, will be considered for designing data management and communication networks of KALIMER MMIS. 9 refs., 1 fig. (Author)

  3. Data management and communication networks for man-machine interface system in Korea Advanced LIquid MEtal Reactor : Its functionality and design requirements

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Kyung Ho; Park, Gun Ok; Suh, Sang Moon; Kim, Jang Yeol; Kwon, Kee Choon [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    The DAta management and COmmunication NETworks(DACONET), which it is designed as a subsystem for Man-Machine Interface System of Korea Advanced LIquid MEtal Reactor (KALIMER MMIS) and advanced design concept is approached, is described. The DACONET has its roles of providing the real-time data transmission and communication paths between MMIS systems, providing the quality data for protection, monitoring and control of KALIMER and logging the static and dynamic behavioral data during KALIMER operation. The DACONET is characterized as the distributed real-time system architecture with high performance. Future direction, in which advanced technology is being continually applied to Man-Machine Interface System development of Nuclear Power Plants, will be considered for designing data management and communication networks of KALIMER MMIS. 9 refs., 1 fig. (Author)

  4. Online grading method for tissue culture seedlings ofSpathiphyllum floribundum based on machine vision%基于机器视觉的白掌组培苗在线分级方法

    Institute of Scientific and Technical Information of China (English)

    杨意; 初麒; 杨艳丽; 张祥接; 徐祥朋; 辜松

    2016-01-01

    白掌在观叶类花卉中占有很大比例,其育苗多采用组织栽培法,且组培苗生产具有规模化。为提高成苗出苗品质,需要在组培苗炼苗前对其分级,而目前常用分级法不能有效解决自然状态下水平放置的白掌组培苗存在的叶片扭曲和重叠问题,因此该文提出一种基于机器视觉实现白掌组培苗在线分级的方法,通过对自然状态下水平放置的白掌组培苗的叶片面积、苗高、地径以及投影面积的分析,得到其投影面积与叶片面积呈线性关系,相关度为0.9344;投影面积与地径呈多项式函数关系,相关性为0.9067,故确定组培苗投影面积和苗高为实际生产中的分级指标。该文采用基于颜色模板匹配算法测量组培苗投影面积,得到的叶片面积和地径与实际叶片面积和地径的变异系数相对误差分别为0.35%和7.95%;利用最小外接矩形法(MBR,minimum bounding rectangle)测量苗高,得到的苗高和实际苗高变异系数相对误差为1.44%。通过整机分级试验发现在输送间距为0.25 m,输送速度为0.5 m/s,分级级别为3级的条件下,该分级装置的分级成功率可达96%,对应生产率为7200株/h。%At present, most of young plants ofSpathiphyllum floribundum are breeding by the technique of tissue culture. Due to absence of grading machine specially designed for primary-growth plants that is small, irregular and young, the grading of tissue culture seedlings are normally handled manually. In this paper, we proposed an automated online grading method for Spathiphyllum floribundum tissue culture seedlings based on the technique of machine vision. SinceSpathiphyllum floribundum is a foliage flower, the leaf area is one of the most important parameters in grading, along with seedling height and diameter. Direct measurement not only would do damage to young plant because of its tenderness, but also the manpower productivity

  5. Development of an Advanced Aidman Vision Screener (AVS) for selective assessment of outer and inner laser induced retinal injury

    Science.gov (United States)

    Boye, Michael W.; Zwick, Harry; Stuck, Bruce E.; Edsall, Peter R.; Akers, Andre

    2007-02-01

    The need for tools that can assist in evaluating visual function is an essential and a growing requirement as lasers on the modern battlefield mature and proliferate. The requirement for rapid and sensitive vision assessment under field conditions produced the USAMRD Aidman Vision Screener (AVS), designed to be used as a field diagnostic tool for assessing laser induced retinal damage. In this paper, we describe additions to the AVS designed to provide a more sensitive assessment of laser induced retinal dysfunction. The AVS incorporates spectral LogMar Acuity targets without and with neural opponent chromatic backgrounds. Thus, it provides the capability of detecting selective photoreceptor damage and its functional consequences at the level of both the outer and inner retina. Modifications to the original achromatic AVS have been implemented to detect selective cone system dysfunction by providing LogMar acuity Landolt rings associated with the peak spectral absorption regions of the S (short), M (middle), and L (long) wavelength cone photoreceptor systems. Evaluation of inner retinal dysfunction associated with selective outer cone damage employs LogMar spectral acuity charts with backgrounds that are neurally opponent. Thus, the AVS provides the capability to assess the effect of selective cone dysfunction on the normal neural balance at the level of the inner retinal interactions. Test and opponent background spectra have been optimized by using color space metrics. A minimal number of three AVS evaluations will be utilized to provide an estimate of false alarm level.

  6. Analysis of machining and machine tools

    CERN Document Server

    Liang, Steven Y

    2016-01-01

    This book delivers the fundamental science and mechanics of machining and machine tools by presenting systematic and quantitative knowledge in the form of process mechanics and physics. It gives readers a solid command of machining science and engineering, and familiarizes them with the geometry and functionality requirements of creating parts and components in today’s markets. The authors address traditional machining topics, such as: single and multiple point cutting processes grinding components accuracy and metrology shear stress in cutting cutting temperature and analysis chatter They also address non-traditional machining, such as: electrical discharge machining electrochemical machining laser and electron beam machining A chapter on biomedical machining is also included. This book is appropriate for advanced undergraduate and graduate mechani cal engineering students, manufacturing engineers, and researchers. Each chapter contains examples, exercises and their solutions, and homework problems that re...

  7. VISION development

    International Nuclear Information System (INIS)

    Hernandez, J.E.; Sherwood, R.J.; Whitman, S.R.

    1994-01-01

    VISION is a flexible and extensible object-oriented programming environment for prototyping computer-vision and pattern-recognition algorithms. This year's effort focused on three major areas: documentation, graphics, and support for new applications

  8. The reported incidence of man-machine interface issues in Army aviators using the Aviator's Night Vision System (ANVIS) in a combat theatre

    Science.gov (United States)

    Hiatt, Keith L.; Rash, Clarence E.

    2011-06-01

    Background: Army Aviators rely on the ANVIS for night operations. Human factors literature notes that the ANVIS man-machine interface results in reports of visual and spinal complaints. This is the first study that has looked at these issues in the much harsher combat environment. Last year, the authors reported on the statistically significant (pEnduring Freedom (OEF). Results: 82 Aircrew (representing an aggregate of >89,000 flight hours of which >22,000 were with ANVIS) participated. Analysis demonstrated high complaints of almost all levels of back and neck pain. Additionally, the use of body armor and other Aviation Life Support Equipment (ALSE) caused significant ergonomic complaints when used with ANVIS. Conclusions: ANVIS use in a combat environment resulted in higher and different types of reports of spinal symptoms and other man-machine interface issues over what was previously reported. Data from this study may be more operationally relevant than that of the peacetime literature as it is derived from actual combat and not from training flights, and it may have important implications about making combat predictions based on performance in training scenarios. Notably, Aircrew remarked that they could not execute the mission without ANVIS and ALSE and accepted the degraded ergonomic environment.

  9. Living with vision loss

    Science.gov (United States)

    Diabetes - vision loss; Retinopathy - vision loss; Low vision; Blindness - vision loss ... of visual aids. Some options include: Magnifiers High power reading glasses Devices that make it easier to ...

  10. BIG DATA ANALYTICS AND PRECISION ANIMAL AGRICULTURE SYMPOSIUM: Machine learning and data mining advance predictive big data analysis in precision animal agriculture.

    Science.gov (United States)

    Morota, Gota; Ventura, Ricardo V; Silva, Fabyano F; Koyama, Masanori; Fernando, Samodha C

    2018-04-14

    Precision animal agriculture is poised to rise to prominence in the livestock enterprise in the domains of management, production, welfare, sustainability, health surveillance, and environmental footprint. Considerable progress has been made in the use of tools to routinely monitor and collect information from animals and farms in a less laborious manner than before. These efforts have enabled the animal sciences to embark on information technology-driven discoveries to improve animal agriculture. However, the growing amount and complexity of data generated by fully automated, high-throughput data recording or phenotyping platforms, including digital images, sensor and sound data, unmanned systems, and information obtained from real-time noninvasive computer vision, pose challenges to the successful implementation of precision animal agriculture. The emerging fields of machine learning and data mining are expected to be instrumental in helping meet the daunting challenges facing global agriculture. Yet, their impact and potential in "big data" analysis have not been adequately appreciated in the animal science community, where this recognition has remained only fragmentary. To address such knowledge gaps, this article outlines a framework for machine learning and data mining and offers a glimpse into how they can be applied to solve pressing problems in animal sciences.

  11. Micro Vision

    OpenAIRE

    Ohba, Kohtaro; Ohara, Kenichi

    2007-01-01

    In the field of the micro vision, there are few researches compared with macro environment. However, applying to the study result for macro computer vision technique, you can measure and observe the micro environment. Moreover, based on the effects of micro environment, it is possible to discovery the new theories and new techniques.

  12. Hungarian contribution to the Global Soil Organic Carbon Map (GSOC17) using advanced machine learning algorithms and geostatistics

    Science.gov (United States)

    Szatmári, Gábor; Laborczi, Annamária; Takács, Katalin; Pásztor, László

    2017-04-01

    The knowledge about soil organic carbon (SOC) baselines and changes, and the detection of vulnerable hot spots for SOC losses and gains under climate change and changed land management is still fairly limited. Thus Global Soil Partnership (GSP) has been requested to develop a global SOC mapping campaign by 2017. GSPs concept builds on official national data sets, therefore, a bottom-up (country-driven) approach is pursued. The elaborated Hungarian methodology suits the general specifications of GSOC17 provided by GSP. The input data for GSOC17@HU mapping approach has involved legacy soil data bases, as well as proper environmental covariates related to the main soil forming factors, such as climate, organisms, relief and parent material. Nowadays, digital soil mapping (DSM) highly relies on the assumption that soil properties of interest can be modelled as a sum of a deterministic and stochastic component, which can be treated and modelled separately. We also adopted this assumption in our methodology. In practice, multiple regression techniques are commonly used to model the deterministic part. However, this global (and usually linear) models commonly oversimplify the often complex and non-linear relationship, which has a crucial effect on the resulted soil maps. Thus, we integrated machine learning algorithms (namely random forest and quantile regression forest) in the elaborated methodology, supposing then to be more suitable for the problem in hand. This approach has enable us to model the GSOC17 soil properties in that complex and non-linear forms as the soil itself. Furthermore, it has enable us to model and assess the uncertainty of the results, which is highly relevant in decision making. The applied methodology has used geostatistical approach to model the stochastic part of the spatial variability of the soil properties of interest. We created GSOC17@HU map with 1 km grid resolution according to the GSPs specifications. The map contributes to the GSPs

  13. UNDERSTANDING AND PREVENTING COMPUTER VISION SYNDROME

    OpenAIRE

    REDDY SC; LOH KY

    2008-01-01

    The invention of computer and advancement in information technology has revolutionized and benefited the society but at the same time has caused symptoms related to its usage such as ocular sprain, irritation, redness, dryness, blurred vision and double vision. This cluster of symptoms is known as computer vision syndrome which is characterized by the visual symptoms which result from interaction with computer display or its environment. Three major mechanisms that lead to computer vision syn...

  14. Machine medical ethics

    CERN Document Server

    Pontier, Matthijs

    2015-01-01

    The essays in this book, written by researchers from both humanities and sciences, describe various theoretical and experimental approaches to adding medical ethics to a machine in medical settings. Medical machines are in close proximity with human beings, and getting closer: with patients who are in vulnerable states of health, who have disabilities of various kinds, with the very young or very old, and with medical professionals. In such contexts, machines are undertaking important medical tasks that require emotional sensitivity, knowledge of medical codes, human dignity, and privacy. As machine technology advances, ethical concerns become more urgent: should medical machines be programmed to follow a code of medical ethics? What theory or theories should constrain medical machine conduct? What design features are required? Should machines share responsibility with humans for the ethical consequences of medical actions? How ought clinical relationships involving machines to be modeled? Is a capacity for e...

  15. Interoperability Strategic Vision

    Energy Technology Data Exchange (ETDEWEB)

    Widergren, Steven E.; Knight, Mark R.; Melton, Ronald B.; Narang, David; Martin, Maurice; Nordman, Bruce; Khandekar, Aditya; Hardy, Keith S.

    2018-02-28

    The Interoperability Strategic Vision whitepaper aims to promote a common understanding of the meaning and characteristics of interoperability and to provide a strategy to advance the state of interoperability as applied to integration challenges facing grid modernization. This includes addressing the quality of integrating devices and systems and the discipline to improve the process of successfully integrating these components as business models and information technology improve over time. The strategic vision for interoperability described in this document applies throughout the electric energy generation, delivery, and end-use supply chain. Its scope includes interactive technologies and business processes from bulk energy levels to lower voltage level equipment and the millions of appliances that are becoming equipped with processing power and communication interfaces. A transformational aspect of a vision for interoperability in the future electric system is the coordinated operation of intelligent devices and systems at the edges of grid infrastructure. This challenge offers an example for addressing interoperability concerns throughout the electric system.

  16. Quantum machine learning.

    Science.gov (United States)

    Biamonte, Jacob; Wittek, Peter; Pancotti, Nicola; Rebentrost, Patrick; Wiebe, Nathan; Lloyd, Seth

    2017-09-13

    Fuelled by increasing computer power and algorithmic advances, machine learning techniques have become powerful tools for finding patterns in data. Quantum systems produce atypical patterns that classical systems are thought not to produce efficiently, so it is reasonable to postulate that quantum computers may outperform classical computers on machine learning tasks. The field of quantum machine learning explores how to devise and implement quantum software that could enable machine learning that is faster than that of classical computers. Recent work has produced quantum algorithms that could act as the building blocks of machine learning programs, but the hardware and software challenges are still considerable.

  17. Research into the Architecture of CAD Based Robot Vision Systems

    Science.gov (United States)

    1988-02-09

    Vision 󈨚 and "Automatic Generation of Recognition Features for Com- puter Vision," Mudge, Turney and Volz, published in Robotica (1987). All of the...Occluded Parts," (T.N. Mudge, J.L. Turney, and R.A. Volz), Robotica , vol. 5, 1987, pp. 117-127. 5. "Vision Algorithms for Hypercube Machines," (T.N. Mudge

  18. MLBCD: a machine learning tool for big clinical data.

    Science.gov (United States)

    Luo, Gang

    2015-01-01

    Predictive modeling is fundamental for extracting value from large clinical data sets, or "big clinical data," advancing clinical research, and improving healthcare. Machine learning is a powerful approach to predictive modeling. Two factors make machine learning challenging for healthcare researchers. First, before training a machine learning model, the values of one or more model parameters called hyper-parameters must typically be specified. Due to their inexperience with machine learning, it is hard for healthcare researchers to choose an appropriate algorithm and hyper-parameter values. Second, many clinical data are stored in a special format. These data must be iteratively transformed into the relational table format before conducting predictive modeling. This transformation is time-consuming and requires computing expertise. This paper presents our vision for and design of MLBCD (Machine Learning for Big Clinical Data), a new software system aiming to address these challenges and facilitate building machine learning predictive models using big clinical data. The paper describes MLBCD's design in detail. By making machine learning accessible to healthcare researchers, MLBCD will open the use of big clinical data and increase the ability to foster biomedical discovery and improve care.

  19. Classification of caesarean section and normal vaginal deliveries using foetal heart rate signals and advanced machine learning algorithms.

    Science.gov (United States)

    Fergus, Paul; Hussain, Abir; Al-Jumeily, Dhiya; Huang, De-Shuang; Bouguila, Nizar

    2017-07-06

    Visual inspection of cardiotocography traces by obstetricians and midwives is the gold standard for monitoring the wellbeing of the foetus during antenatal care. However, inter- and intra-observer variability is high with only a 30% positive predictive value for the classification of pathological outcomes. This has a significant negative impact on the perinatal foetus and often results in cardio-pulmonary arrest, brain and vital organ damage, cerebral palsy, hearing, visual and cognitive defects and in severe cases, death. This paper shows that using machine learning and foetal heart rate signals provides direct information about the foetal state and helps to filter the subjective opinions of medical practitioners when used as a decision support tool. The primary aim is to provide a proof-of-concept that demonstrates how machine learning can be used to objectively determine when medical intervention, such as caesarean section, is required and help avoid preventable perinatal deaths. This is evidenced using an open dataset that comprises 506 controls (normal virginal deliveries) and 46 cases (caesarean due to pH ≤ 7.20-acidosis, n = 18; pH > 7.20 and pH machine-learning algorithms are trained, and validated, using binary classifier performance measures. The findings show that deep learning classification achieves sensitivity = 94%, specificity = 91%, Area under the curve = 99%, F-score = 100%, and mean square error = 1%. The results demonstrate that machine learning significantly improves the efficiency for the detection of caesarean section and normal vaginal deliveries using foetal heart rate signals compared with obstetrician and midwife predictions and systems reported in previous studies.

  20. Instrumentation and control and human machine interface science and technology road-map in support of advanced reactors and fuel programs in the U.S

    International Nuclear Information System (INIS)

    Miller, D. W.; Arndt, S. A.; Bond, L. J.; Dudenhoeffer, D.; Hallbert, B.; Holcomb, D. E.; Wood, R. T.; Naser, J. A.; O'Hara, J.; Quinn, E. L.

    2006-01-01

    The purpose of this paper is to provide an overview of the current status of the Instrumentation, Control and Human Machine Interface (ICHMI) Science and Technology road-map being developed to address the major challenges in this technical area for the Gen IV and other U.S. Dept. of Energy (DOE) initiatives that support future deployments of nuclear energy systems. Reliable, capable ICHMI systems will be necessary for the advanced nuclear plants to be economically competitive. ICHMI enables measurement, control, protection, monitoring, and maintenance for processes and components. Through improvements in the technologies and demonstration of their use to facilitate licensing, ICHMI can contribute to the reduction of plant operations and maintenance costs while helping to ensure high plant availability. The impact of ICHMI can be achieved through effective use of the technologies to improve operational efficiency and optimize use of human resources. However, current licensing experience with digital I and C systems has provided lessons learned concerning the difficulties that can be encountered when introducing advanced technologies with expanded capabilities. Thus, in the development of advanced nuclear power designs, it will be important to address both the technical foundations of ICHMI systems as well as their licensing considerations. The ICHMI road-map will identify the necessary research, development and demonstration activities that are essential to facilitate necessary technology advancement and resolve outstanding issues. (authors)

  1. Instrumentation and control and human machine interface science and technology Road-map in support of advanced reactors and fuel programs in the U.S

    International Nuclear Information System (INIS)

    Miller, D. W.; Arndt, S. A.; Dudenhoeffer, D.; Hallbert, B.; Bond, L. J.; Holcomb, D. E.; Wood, R. T.; Naser, J. A.; O'Hara, J.; Quinn, E. L.

    2008-01-01

    The purpose of this paper is to provide an overview of the current status of the Instrumentation, Control and Human Machine Interface (ICHMI) Science and Technology Road-map (Reference xi) that was developed to address the major challenges in this technical area for the Gen IV and other U.S. Department of Energy (DOE) initiatives that support future deployments of nuclear energy systems. Reliable, capable ICHMI systems will be necessary for the advanced nuclear plants to be economically competitive. ICHMI enables measurement, control, protection, monitoring, and maintenance for processes and components. Through improvements in the technologies and demonstration of their use to facilitate licensing, ICHMI can contribute to the reduction of plant operations and maintenance costs while helping to ensure high plant availability. The impact of ICHMI can be achieved through effective use of the technologies to improve operational efficiency and optimize use of human resources. However, current licensing experience with digital I and C systems has provided lessons learned concerning the difficulties that can be encountered when introducing advanced technologies with expanded capabilities. Thus, in the development of advanced nuclear power designs, it will be important to address both the technical foundations of ICHMI systems and their licensing considerations. The ICHMI Road-map will identify the necessary research, development and demonstration activities that are essential to facilitate necessary technology advancement and resolve outstanding issues. (authors)

  2. Pre-Operative Prediction of Advanced Prostatic Cancer Using Clinical Decision Support Systems: Accuracy Comparison between Support Vector Machine and Artificial Neural Network

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Youn; Moon, Sung Kyoung; Hwang, Sung Il; Sung, Chang Kyu; Cho, Jeong Yeon; Kim, Seung Hyup; Lee, Hak Jong [Seoul National University College of Medicine, Seoul (Korea, Republic of); Jung, Dae Chul [National Cancer Center, Ilsan (Korea, Republic of); Lee, Ji Won [Kangwon National University College of Medicine, Chuncheon (Korea, Republic of)

    2011-10-15

    The purpose of the current study was to develop support vector machine (SVM) and artificial neural network (ANN) models for the pre-operative prediction of advanced prostate cancer by using the parameters acquired from transrectal ultrasound (TRUS)-guided prostate biopsies, and to compare the accuracies between the two models. Five hundred thirty-two consecutive patients who underwent prostate biopsies and prostatectomies for prostate cancer were divided into the training and test groups (n = 300 versus n 232). From the data in the training group, two clinical decision support systems (CDSSs-[SVM and ANN]) were constructed with input (age, prostate specific antigen level, digital rectal examination, and five biopsy parameters) and output data (the probability for advanced prostate cancer [> pT3a]). From the data of the test group, the accuracy of output data was evaluated. The areas under the receiver operating characteristic (ROC) curve (AUC) were calculated to summarize the overall performances, and a comparison of the ROC curves was performed (p < 0.05). The AUC of SVM and ANN is 0.805 and 0.719, respectively (p = 0.020), in the pre-operative prediction of advanced prostate cancer. Te performance of SVM is superior to ANN in the pre-operative prediction of advanced prostate cancer.

  3. Instrumentation and Control and Human Machine Interface Science and Technology Roadmap in Support of Advanced Reactors and Fuel Programs in the U.S

    International Nuclear Information System (INIS)

    Miller, Don W.; Arndt, Steven A.; Dudenhoeffer, Donald D.; Hallbert, Bruce P.; Bond, Leonard J.; Holcomb, David E.; Wood, Richard T.; Naser, Joseph A.; O'Hara, John M.; Quinn, Edward L.

    2008-01-01

    The purpose of this paper is to provide an overview of the current status of the Instrumentation, Control and Human Machine Interface (ICHMI) Science and Technology Roadmap (Reference xi) that was developed to address the major challenges in this technical area for the Gen IV and other U.S. Department of Energy (DOE) initiatives that support future deployments of nuclear energy systems. Reliable, capable ICHMI systems will be necessary for the advanced nuclear plants to be economically competitive. ICHMI enables measurement, control, protection, monitoring, and maintenance for processes and components. Through improvements in the technologies and demonstration of their use to facilitate licensing, ICHMI can contribute to the reduction of plant operations and maintenance costs while helping to ensure high plant availability. The impact of ICHMI can be achieved through effective use of the technologies to improve operational efficiency and optimize use of human resources. However, current licensing experience with digital I and C systems has provided lessons learned concerning the difficulties that can be encountered when introducing advanced technologies with expanded capabilities. Thus, in the development of advanced nuclear power designs, it will be important to address both the technical foundations of ICHMI systems and their licensing considerations. The ICHMI roadmap will identify the necessary research, development and demonstration activities that are essential to facilitate necessary technology advancement and resolve outstanding issues

  4. Machining of titanium alloys

    CERN Document Server

    2014-01-01

    This book presents a collection of examples illustrating the resent research advances in the machining of titanium alloys. These materials have excellent strength and fracture toughness as well as low density and good corrosion resistance; however, machinability is still poor due to their low thermal conductivity and high chemical reactivity with cutting tool materials. This book presents solutions to enhance machinability in titanium-based alloys and serves as a useful reference to professionals and researchers in aerospace, automotive and biomedical fields.

  5. Advanced topics in computer vision

    CERN Document Server

    Farinella, Giovanni Maria; Cipolla, Roberto

    2013-01-01

    This book presents a broad selection of cutting-edge research, covering both theoretical and practical aspects of reconstruction, registration, and recognition. The text provides an overview of challenging areas and descriptions of novel algorithms. Features: investigates visual features, trajectory features, and stereo matching; reviews the main challenges of semi-supervised object recognition, and a novel method for human action categorization; presents a framework for the visual localization of MAVs, and for the use of moment constraints in convex shape optimization; examines solutions to t

  6. Industrial vision

    DEFF Research Database (Denmark)

    Knudsen, Ole

    1998-01-01

    This dissertation is concerned with the introduction of vision-based application s in the ship building industry. The industrial research project is divided into a natural seq uence of developments, from basic theoretical projective image generation via CAD and subpixel analysis to a description...... is present ed, and the variability of the parameters is examined and described. The concept of using CAD together with vision information is based on the fact that all items processed at OSS have an associated complete 3D CAD model that is accessible at all production states. This concept gives numerous...... possibilities for using vision in applications which otherwise would be very difficult to automate. The requirement for low tolerances in production is, despite the huge dimensions of the items involved, extreme. This fact makes great demands on the ability to do robust sub pixel estimation. A new method based...

  7. Introduction to AC machine design

    CERN Document Server

    Lipo, Thomas A

    2018-01-01

    AC electrical machine design is a key skill set for developing competitive electric motors and generators for applications in industry, aerospace, and defense. This book presents a thorough treatment of AC machine design, starting from basic electromagnetic principles and continuing through the various design aspects of an induction machine. Introduction to AC Machine Design includes one chapter each on the design of permanent magnet machines, synchronous machines, and thermal design. It also offers a basic treatment of the use of finite elements to compute the magnetic field within a machine without interfering with the initial comprehension of the core subject matter. Based on the author's notes, as well as after years of classroom instruction, Introduction to AC Machine Design: * Brings to light more advanced principles of machine design--not just the basic principles of AC and DC machine behavior * Introduces electrical machine design to neophytes while also being a resource for experienced designers * ...

  8. Reinforcement learning in computer vision

    Science.gov (United States)

    Bernstein, A. V.; Burnaev, E. V.

    2018-04-01

    Nowadays, machine learning has become one of the basic technologies used in solving various computer vision tasks such as feature detection, image segmentation, object recognition and tracking. In many applications, various complex systems such as robots are equipped with visual sensors from which they learn state of surrounding environment by solving corresponding computer vision tasks. Solutions of these tasks are used for making decisions about possible future actions. It is not surprising that when solving computer vision tasks we should take into account special aspects of their subsequent application in model-based predictive control. Reinforcement learning is one of modern machine learning technologies in which learning is carried out through interaction with the environment. In recent years, Reinforcement learning has been used both for solving such applied tasks as processing and analysis of visual information, and for solving specific computer vision problems such as filtering, extracting image features, localizing objects in scenes, and many others. The paper describes shortly the Reinforcement learning technology and its use for solving computer vision problems.

  9. 2015 Enterprise Strategic Vision

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-08-01

    This document aligns with the Department of Energy Strategic Plan for 2014-2018 and provides a framework for integrating our missions and direction for pursuing DOE’s strategic goals. The vision is a guide to advancing world-class science and engineering, supporting our people, modernizing our infrastructure, and developing a management culture that operates a safe and secure enterprise in an efficient manner.

  10. Shear machines

    International Nuclear Information System (INIS)

    Astill, M.; Sunderland, A.; Waine, M.G.

    1980-01-01

    A shear machine for irradiated nuclear fuel elements has a replaceable shear assembly comprising a fuel element support block, a shear blade support and a clamp assembly which hold the fuel element to be sheared in contact with the support block. A first clamp member contacts the fuel element remote from the shear blade and a second clamp member contacts the fuel element adjacent the shear blade and is advanced towards the support block during shearing to compensate for any compression of the fuel element caused by the shear blade (U.K.)

  11. Remediating radium contaminated legacy sites: Advances made through machine learning in routine monitoring of “hot” particles

    Energy Technology Data Exchange (ETDEWEB)

    Varley, Adam, E-mail: a.l.varley@stir.ac.uk [Department of Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA (United Kingdom); Tyler, Andrew, E-mail: a.n.tyler@stir.ac.uk [Department of Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA (United Kingdom); Smith, Leslie, E-mail: l.s.smith@cs.stir.ac.uk [Department of Computing Science and Mathematics, University of Stirling, Stirling FK9 4LA (United Kingdom); Dale, Paul, E-mail: paul.dale@sepa.org.uk [Scottish Environmental Protection Agency, Radioactive Substances, Strathallan House, Castle Business Park, Stirling FK9 4TZ (United Kingdom); Davies, Mike, E-mail: Mike.Davies@nuvia.co.uk [Nuvia Limited, The Library, Eight Street, Harwell Oxford, Didcot, Oxfordshire OX11 0RL (United Kingdom)

    2015-07-15

    The extensive use of radium during the 20th century for industrial, military and pharmaceutical purposes has led to a large number of contaminated legacy sites across Europe and North America. Sites that pose a high risk to the general public can present expensive and long-term remediation projects. Often the most pragmatic remediation approach is through routine monitoring operating gamma-ray detectors to identify, in real-time, the signal from the most hazardous heterogeneous contamination (hot particles); thus facilitating their removal and safe disposal. However, current detection systems do not fully utilise all spectral information resulting in low detection rates and ultimately an increased risk to the human health. The aim of this study was to establish an optimised detector-algorithm combination. To achieve this, field data was collected using two handheld detectors (sodium iodide and lanthanum bromide) and a number of Monte Carlo simulated hot particles were randomly injected into the field data. This allowed for the detection rate of conventional deterministic (gross counts) and machine learning (neural networks and support vector machines) algorithms to be assessed. The results demonstrated that a Neural Network operated on a sodium iodide detector provided the best detection capability. Compared to deterministic approaches, this optimised detection system could detect a hot particle on average 10 cm deeper into the soil column or with half of the activity at the same depth. It was also found that noise presented by internal contamination restricted lanthanum bromide for this application. - Highlights: • Land contaminated with radium is hazardous to human health. • Routine monitoring permits identification and removal of radioactive hot particles. • Current alarm algorithms do not provide reliable hot particle detection. • Spectral processing using Machine Learning significantly improves detection.

  12. Remediating radium contaminated legacy sites: Advances made through machine learning in routine monitoring of “hot” particles

    International Nuclear Information System (INIS)

    Varley, Adam; Tyler, Andrew; Smith, Leslie; Dale, Paul; Davies, Mike

    2015-01-01

    The extensive use of radium during the 20th century for industrial, military and pharmaceutical purposes has led to a large number of contaminated legacy sites across Europe and North America. Sites that pose a high risk to the general public can present expensive and long-term remediation projects. Often the most pragmatic remediation approach is through routine monitoring operating gamma-ray detectors to identify, in real-time, the signal from the most hazardous heterogeneous contamination (hot particles); thus facilitating their removal and safe disposal. However, current detection systems do not fully utilise all spectral information resulting in low detection rates and ultimately an increased risk to the human health. The aim of this study was to establish an optimised detector-algorithm combination. To achieve this, field data was collected using two handheld detectors (sodium iodide and lanthanum bromide) and a number of Monte Carlo simulated hot particles were randomly injected into the field data. This allowed for the detection rate of conventional deterministic (gross counts) and machine learning (neural networks and support vector machines) algorithms to be assessed. The results demonstrated that a Neural Network operated on a sodium iodide detector provided the best detection capability. Compared to deterministic approaches, this optimised detection system could detect a hot particle on average 10 cm deeper into the soil column or with half of the activity at the same depth. It was also found that noise presented by internal contamination restricted lanthanum bromide for this application. - Highlights: • Land contaminated with radium is hazardous to human health. • Routine monitoring permits identification and removal of radioactive hot particles. • Current alarm algorithms do not provide reliable hot particle detection. • Spectral processing using Machine Learning significantly improves detection

  13. Bio-inspired vision

    International Nuclear Information System (INIS)

    Posch, C

    2012-01-01

    Nature still outperforms the most powerful computers in routine functions involving perception, sensing and actuation like vision, audition, and motion control, and is, most strikingly, orders of magnitude more energy-efficient than its artificial competitors. The reasons for the superior performance of biological systems are subject to diverse investigations, but it is clear that the form of hardware and the style of computation in nervous systems are fundamentally different from what is used in artificial synchronous information processing systems. Very generally speaking, biological neural systems rely on a large number of relatively simple, slow and unreliable processing elements and obtain performance and robustness from a massively parallel principle of operation and a high level of redundancy where the failure of single elements usually does not induce any observable system performance degradation. In the late 1980's, Carver Mead demonstrated that silicon VLSI technology can be employed in implementing ''neuromorphic'' circuits that mimic neural functions and fabricating building blocks that work like their biological role models. Neuromorphic systems, as the biological systems they model, are adaptive, fault-tolerant and scalable, and process information using energy-efficient, asynchronous, event-driven methods. In this paper, some basics of neuromorphic electronic engineering and its impact on recent developments in optical sensing and artificial vision are presented. It is demonstrated that bio-inspired vision systems have the potential to outperform conventional, frame-based vision acquisition and processing systems in many application fields and to establish new benchmarks in terms of redundancy suppression/data compression, dynamic range, temporal resolution and power efficiency to realize advanced functionality like 3D vision, object tracking, motor control, visual feedback loops, etc. in real-time. It is argued that future artificial vision systems

  14. Agrarian Visions.

    Science.gov (United States)

    Theobald, Paul

    A new feature in "Country Teacher,""Agrarian Visions" reminds rural teachers that they can do something about rural decline. Like to populism of the 1890s, the "new populism" advocates rural living. Current attempts to address rural decline are contrary to agrarianism because: (1) telecommunications experts seek to…

  15. Fractured Visions

    DEFF Research Database (Denmark)

    Bonde, Inger Ellekilde

    2016-01-01

    In the post-war period a heterogeneous group of photographers articulate a new photographic approach to the city as motive in a photographic language that combines intense formalism with subjective vision. This paper analyses the photobook Fragments of a City published in 1960 by Danish photograp...

  16. Embodied Visions

    DEFF Research Database (Denmark)

    Grodal, Torben Kragh

    Embodied Visions presents a groundbreaking analysis of film through the lens of bioculturalism, revealing how human biology as well as human culture determine how films are made and experienced. Throughout the book the author uses the breakthroughs of modern brain science to explain general featu...

  17. Vision Screening

    Science.gov (United States)

    ... an efficient and cost-effective method to identify children with visual impairment or eye conditions that are likely to lead ... main goal of vision screening is to identify children who have or are at ... visual impairment unless treated in early childhood. Other problems that ...

  18. Identification of Fungi by Machine Vision

    DEFF Research Database (Denmark)

    Dørge, Thorsten Carlheim; Carstensen, Jens Michael

    1999-01-01

    This paper presents some methods for identification and classification of fungal colonies into species solely by means of digital image analysis without any additinal chemical analysis needed. The methods described are completly automated hence objective once a digital image of the fungus has bee...

  19. Close range photogrammetry and machine vision

    CERN Document Server

    Atkinson, KB

    1996-01-01

    This book presents the methodology, algorithms, techniques and equipment necessary to achieve real time digital photogrammetric solutions, together with contemporary examples of close range photogrammetry.

  20. Machine vision inspection of railroad track

    Science.gov (United States)

    2011-01-10

    North American Railways and the United States Department of Transportation : (US DOT) Federal Railroad Administration (FRA) require periodic inspection of railway : infrastructure to ensure the safety of railway operation. This inspection is a critic...

  1. Web-based Java application to advanced JT-60 Man-Machine Interfacing System for remote experiments

    International Nuclear Information System (INIS)

    Totsuka, Toshiyuki; Suzuki, Yoshio; Sakata, Shinya; Oshima, Takayuki; Iba, Katsuyuki

    2008-01-01

    Since remote participation in ITER experiments is planned, it is expected to demonstrate that the JT-60SA experiment is controlled from a Japanese remote experiment center located in Rokkasho-mura, Aomori-ken, Japan as a part of the ITER-BA project. Functions required for this experiment are monitoring of the discharge sequence status, handling of the discharge parameter, checking of experiment data, and monitoring of plant data, all of which are included in the existing JT-60 Man-Machine Interfacing System (MMIF). The MMIF is now only available to on-site users at the Naka site due to network safety. The motivation for remote MMIF is prompted by the issue of developing and achieving compatibility with network safety. The Java language has been chosen to implement this task. This paper deals with details of the JT-60 MMIF for the remote experiment that has evolved using the Java language

  2. Advancing the large-scale CCS database for metabolomics and lipidomics at the machine-learning era.

    Science.gov (United States)

    Zhou, Zhiwei; Tu, Jia; Zhu, Zheng-Jiang

    2018-02-01

    Metabolomics and lipidomics aim to comprehensively measure the dynamic changes of all metabolites and lipids that are present in biological systems. The use of ion mobility-mass spectrometry (IM-MS) for metabolomics and lipidomics has facilitated the separation and the identification of metabolites and lipids in complex biological samples. The collision cross-section (CCS) value derived from IM-MS is a valuable physiochemical property for the unambiguous identification of metabolites and lipids. However, CCS values obtained from experimental measurement and computational modeling are limited available, which significantly restricts the application of IM-MS. In this review, we will discuss the recently developed machine-learning based prediction approach, which could efficiently generate precise CCS databases in a large scale. We will also highlight the applications of CCS databases to support metabolomics and lipidomics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Induction machine handbook

    CERN Document Server

    Boldea, Ion

    2002-01-01

    Often called the workhorse of industry, the advent of power electronics and advances in digital control are transforming the induction motor into the racehorse of industrial motion control. Now, the classic texts on induction machines are nearly three decades old, while more recent books on electric motors lack the necessary depth and detail on induction machines.The Induction Machine Handbook fills industry's long-standing need for a comprehensive treatise embracing the many intricate facets of induction machine analysis and design. Moving gradually from simple to complex and from standard to

  4. Advanced CNC and CAM Series. Educational Resources for the Machine Tool Industry. Course Syllabi, Instructor's Handbook [and] Student Laboratory Manual.

    Science.gov (United States)

    Texas State Technical Coll. System, Waco.

    This package consists of course syllabi, an instructor's handbook, and student laboratory manual for a 1-year vocational training program to prepare students for entry-level positions as advanced computer numerical control (CNC) and computer-assisted manufacturing (CAM) technicians.. The program was developed through a modification of the DACUM…

  5. Machining of Metal Matrix Composites

    CERN Document Server

    2012-01-01

    Machining of Metal Matrix Composites provides the fundamentals and recent advances in the study of machining of metal matrix composites (MMCs). Each chapter is written by an international expert in this important field of research. Machining of Metal Matrix Composites gives the reader information on machining of MMCs with a special emphasis on aluminium matrix composites. Chapter 1 provides the mechanics and modelling of chip formation for traditional machining processes. Chapter 2 is dedicated to surface integrity when machining MMCs. Chapter 3 describes the machinability aspects of MMCs. Chapter 4 contains information on traditional machining processes and Chapter 5 is dedicated to the grinding of MMCs. Chapter 6 describes the dry cutting of MMCs with SiC particulate reinforcement. Finally, Chapter 7 is dedicated to computational methods and optimization in the machining of MMCs. Machining of Metal Matrix Composites can serve as a useful reference for academics, manufacturing and materials researchers, manu...

  6. Quantificação da falha na madeira em juntas coladas utilizando técnicas de visão artificial Measuring wood failure percentage using a machine vision system

    Directory of Open Access Journals (Sweden)

    Christovão Pereira Abrahão

    2003-02-01

    Full Text Available Com o emprego de adesivos pode-se obter um grande número de produtos derivados da madeira. Para confecção industrial de produtos de madeira colada, normas reconhecidas internacionalmente exigem que a adesão da madeira seja testada segundo procedimentos padronizados e que nos resultados destes testes seja reportado, além da resistência das juntas, o porcentual de falha na madeira. Para avaliação da falha a norma ASTM D5266-99 recomenda o emprego de uma rede de quadrículas traçada sobre um material transparente. Contudo, esta avaliação, além de demandar muito tempo, ainda é realizada com muita subjetividade. A hipótese do presente trabalho é que se pode quantificar a falha na madeira com um sistema de visão artificial, tornando o procedimento mais rápido e menos sujeito à subjetividade. Foram testados dois tipos de algoritmos de limiarização automática em imagens adquiridas com digitalizadores de mesa. Concluiu-se que a falha na madeira pode ser quantificada por limiarização automática em substituição ao método convencional das quadrículas. Os algoritmos testados apresentaram erro médio absoluto menor que 3% em relação ao sistema convencional da rede quadriculada.It is possible to obtain several products by glueing wood. Internationally approved standards require wood adhesion to be tested according to standardized procedures, including in the results, shear stress and wood failure percentages. In order to estimate wood failure percentage, the ASTM D5266-99 standard suggests the use of a grid template printed on a transparent sheet. However, this evaluation is not only time-consuming but also subjective. This work developed and tested an algorithm to quantify the flawed wood areas by using a machine vision system, a faster and less subjective procedure. Two types of automatic threshold algorithms were tested. The glued wood samples were scanned after the shear tests under compression. It was concluded that automatic

  7. Low Vision Research at the Schepens Eye Research Institute

    National Research Council Canada - National Science Library

    D'Amore, Patricia

    2003-01-01

    This research proposal, Low Vision at the Schepens Eye Research Institute, is a collaborative effort on the part of four Investigators at the Institute whose goal is to advance the studies on low vision...

  8. Visions and visioning in foresight activities

    DEFF Research Database (Denmark)

    Jørgensen, Michael Søgaard; Grosu, Dan

    2007-01-01

    The paper discusses the roles of visioning processes and visions in foresight activities and in societal discourses and changes parallel to or following foresight activities. The overall topic can be characterised as the dynamics and mechanisms that make visions and visioning processes work...... or not work. The theoretical part of the paper presents an actor-network theory approach to the analyses of visions and visioning processes, where the shaping of the visions and the visioning and what has made them work or not work is analysed. The empirical part is based on analyses of the roles of visions...... and visioning processes in a number of foresight processes from different societal contexts. The analyses have been carried out as part of the work in the COST A22 network on foresight. A vision is here understood as a description of a desirable or preferable future, compared to a scenario which is understood...

  9. Pleiades Visions

    Science.gov (United States)

    Whitehouse, M.

    2016-01-01

    Pleiades Visions (2012) is my new musical composition for organ that takes inspiration from traditional lore and music associated with the Pleiades (Seven Sisters) star cluster from Australian Aboriginal, Native American, and Native Hawaiian cultures. It is based on my doctoral dissertation research incorporating techniques from the fields of ethnomusicology and cultural astronomy; this research likely represents a new area of inquiry for both fields. This large-scale work employs the organ's vast sonic resources to evoke the majesty of the night sky and the expansive landscapes of the homelands of the above-mentioned peoples. Other important themes in Pleiades Visions are those of place, origins, cosmology, and the creation of the world.

  10. A Vision for the future

    OpenAIRE

    Moloney, David; Deniz, Oscar

    2015-01-01

    For the past 40 years, computer scientists and engineers have been building technology that has allowed machine vision to be used in high value applications from factory automation to Mars rovers. However, until now the availability of computational power has limited the application of these technologies to niches with a strong enough need to overcome the cost and power hurdles. This is changing rapidly as the computational means have now become available to bring computer visi...

  11. Quantum vision in three dimensions

    Science.gov (United States)

    Roth, Yehuda

    We present four models for describing a 3-D vision. Similar to the mirror scenario, our models allow 3-D vision with no need for additional accessories such as stereoscopic glasses or a hologram film. These four models are based on brain interpretation rather than pure objective encryption. We consider the observer "subjective" selection of a measuring device and the corresponding quantum collapse into one of his selected states, as a tool for interpreting reality in according to the observer concepts. This is the basic concept of our study and it is introduced in the first model. Other models suggests "soften" versions that might be much easier to implement. Our quantum interpretation approach contribute to the following fields. In technology the proposed models can be implemented into real devices, allowing 3-D vision without additional accessories. Artificial intelligence: In the desire to create a machine that exchange information by using human terminologies, our interpretation approach seems to be appropriate.

  12. Virtual Vision

    Science.gov (United States)

    Terzopoulos, Demetri; Qureshi, Faisal Z.

    Computer vision and sensor networks researchers are increasingly motivated to investigate complex multi-camera sensing and control issues that arise in the automatic visual surveillance of extensive, highly populated public spaces such as airports and train stations. However, they often encounter serious impediments to deploying and experimenting with large-scale physical camera networks in such real-world environments. We propose an alternative approach called "Virtual Vision", which facilitates this type of research through the virtual reality simulation of populated urban spaces, camera sensor networks, and computer vision on commodity computers. We demonstrate the usefulness of our approach by developing two highly automated surveillance systems comprising passive and active pan/tilt/zoom cameras that are deployed in a virtual train station environment populated by autonomous, lifelike virtual pedestrians. The easily reconfigurable virtual cameras distributed in this environment generate synthetic video feeds that emulate those acquired by real surveillance cameras monitoring public spaces. The novel multi-camera control strategies that we describe enable the cameras to collaborate in persistently observing pedestrians of interest and in acquiring close-up videos of pedestrians in designated areas.

  13. International Conference on Computational Vision and Robotics

    CERN Document Server

    2015-01-01

    Computer Vision and Robotic is one of the most challenging areas of 21st century. Its application ranges from Agriculture to Medicine, Household applications to Humanoid, Deep-sea-application to Space application, and Industry applications to Man-less-plant. Today’s technologies demand to produce intelligent machine, which are enabling applications in various domains and services. Robotics is one such area which encompasses number of technology in it and its application is widespread. Computational vision or Machine vision is one of the most challenging tools for the robot to make it intelligent.   This volume covers chapters from various areas of Computational Vision such as Image and Video Coding and Analysis, Image Watermarking, Noise Reduction and Cancellation, Block Matching and Motion Estimation, Tracking of Deformable Object using Steerable Pyramid Wavelet Transformation, Medical Image Fusion, CT and MRI Image Fusion based on Stationary Wavelet Transform. The book also covers articles from applicati...

  14. Mathematic model of three-phase induction machine connected to advanced inverter for traction system for electric trolley

    Directory of Open Access Journals (Sweden)

    LIVIU S. BOCÎI

    2013-06-01

    Full Text Available This paper establishes a mathematical model of induction machine connected to a frequency inverter necessary to adjust the electric motor drive. The mathematical model based on the Park's theory allows the analysis of the whole spectrum (electric car – frequency inverter to drive the electric trolley bus made on ASTRA Bus Arad (Romania. To remove higher order harmonics, the PWM waveform of supply voltage is used, set in the general case. Operating characteristics of electric motor drive are set to sub-nominal frequency (f Bele 2007.Este documento estabelece um modelo matemático de máquina de indução conectado a um inversor de frequência necessário para ajustar o motor de acionamento elétrico. O modelo matemático baseado na Teoria de Park permite a análise de todo o espectro (carro elétrico com inversor de frequência para dirigir o ônibus elétrico feito em ASTRA Bus Arad (Romênia. Para remover harmônicas de ordem mais alta, a forma de onda da tensão de alimentação PWM é utilizado, definido no caso geral. Características de funcionamento do motor de acionamento elétrico são definidas para frequência sub-nominal (f

  15. Aquatic Toxic Analysis by Monitoring Fish Behavior Using Computer Vision: A Recent Progress

    Directory of Open Access Journals (Sweden)

    Chunlei Xia

    2018-01-01

    Full Text Available Video tracking based biological early warning system achieved a great progress with advanced computer vision and machine learning methods. Ability of video tracking of multiple biological organisms has been largely improved in recent years. Video based behavioral monitoring has become a common tool for acquiring quantified behavioral data for aquatic risk assessment. Investigation of behavioral responses under chemical and environmental stress has been boosted by rapidly developed machine learning and artificial intelligence. In this paper, we introduce the fundamental of video tracking and present the pioneer works in precise tracking of a group of individuals in 2D and 3D space. Technical and practical issues suffered in video tracking are explained. Subsequently, the toxic analysis based on fish behavioral data is summarized. Frequently used computational methods and machine learning are explained with their applications in aquatic toxicity detection and abnormal pattern analysis. Finally, advantages of recent developed deep learning approach in toxic prediction are presented.

  16. Understanding and preventing computer vision syndrome.

    Science.gov (United States)

    Loh, Ky; Redd, Sc

    2008-01-01

    The invention of computer and advancement in information technology has revolutionized and benefited the society but at the same time has caused symptoms related to its usage such as ocular sprain, irritation, redness, dryness, blurred vision and double vision. This cluster of symptoms is known as computer vision syndrome which is characterized by the visual symptoms which result from interaction with computer display or its environment. Three major mechanisms that lead to computer vision syndrome are extraocular mechanism, accommodative mechanism and ocular surface mechanism. The visual effects of the computer such as brightness, resolution, glare and quality all are known factors that contribute to computer vision syndrome. Prevention is the most important strategy in managing computer vision syndrome. Modification in the ergonomics of the working environment, patient education and proper eye care are crucial in managing computer vision syndrome.

  17. UNDERSTANDING AND PREVENTING COMPUTER VISION SYNDROME

    Directory of Open Access Journals (Sweden)

    REDDY SC

    2008-01-01

    Full Text Available The invention of computer and advancement in information technology has revolutionized and benefited the society but at the same time has caused symptoms related to its usage such as ocular sprain, irritation, redness, dryness, blurred vision and double vision. This cluster of symptoms is known as computer vision syndrome which is characterized by the visual symptoms which result from interaction with computer display or its environment. Three major mechanisms that lead to computer vision syndrome are extraocular mechanism, accommodative mechanism and ocular surface mechanism. The visual effects of the computer such as brightness, resolution, glare and quality all are known factors that contribute to computer vision syndrome. Prevention is the most important strategy in managing computer vision syndrome. Modification in the ergonomics of the working environment, patient education and proper eye care are crucial in managing computer vision syndrome.

  18. Design of rotating electrical machines

    CERN Document Server

    Pyrhonen , Juha; Hrabovcova , Valeria

    2013-01-01

    In one complete volume, this essential reference presents an in-depth overview of the theoretical principles and techniques of electrical machine design. This timely new edition offers up-to-date theory and guidelines for the design of electrical machines, taking into account recent advances in permanent magnet machines as well as synchronous reluctance machines. New coverage includes: Brand new material on the ecological impact of the motors, covering the eco-design principles of rotating electrical machinesAn expanded section on the design of permanent magnet synchronous machines, now repo

  19. Machine Shop Grinding Machines.

    Science.gov (United States)

    Dunn, James

    This curriculum manual is one in a series of machine shop curriculum manuals intended for use in full-time secondary and postsecondary classes, as well as part-time adult classes. The curriculum can also be adapted to open-entry, open-exit programs. Its purpose is to equip students with basic knowledge and skills that will enable them to enter the…

  20. Advancing of Land Surface Temperature Retrieval Using Extreme Learning Machine and Spatio-Temporal Adaptive Data Fusion Algorithm

    Directory of Open Access Journals (Sweden)

    Yang Bai

    2015-04-01

    Full Text Available As a critical variable to characterize the biophysical processes in ecological environment, and as a key indicator in the surface energy balance, evapotranspiration and urban heat islands, Land Surface Temperature (LST retrieved from Thermal Infra-Red (TIR images at both high temporal and spatial resolution is in urgent need. However, due to the limitations of the existing satellite sensors, there is no earth observation which can obtain TIR at detailed spatial- and temporal-resolution simultaneously. Thus, several attempts of image fusion by blending the TIR data from high temporal resolution sensor with data from high spatial resolution sensor have been studied. This paper presents a novel data fusion method by integrating image fusion and spatio-temporal fusion techniques, for deriving LST datasets at 30 m spatial resolution from daily MODIS image and Landsat ETM+ images. The Landsat ETM+ TIR data were firstly enhanced based on extreme learning machine (ELM algorithm using neural network regression model, from 60 m to 30 m resolution. Then, the MODIS LST and enhanced Landsat ETM+ TIR data were fused by Spatio-temporal Adaptive Data Fusion Algorithm for Temperature mapping (SADFAT in order to derive high resolution synthetic data. The synthetic images were evaluated for both testing and simulated satellite images. The average difference (AD and absolute average difference (AAD are smaller than 1.7 K, where the correlation coefficient (CC and root-mean-square error (RMSE are 0.755 and 1.824, respectively, showing that the proposed method enhances the spatial resolution of the predicted LST images and preserves the spectral information at the same time.

  1. Information Society Visions in the Nordic Countries

    DEFF Research Database (Denmark)

    Henten, Anders; Kristensen, Thomas Myrup

    2000-01-01

    This paper analyses the information society visions put forward by the governments/administrations of the Nordic countries and compares them to the visions advanced at the EU-level. The paper suggests that the information society visions constitute a kind of common ideology for almost the whole...... political spectrum although it is characterised by a high degree of neo-liberal thinking. It is further argued that there is no distinctly Nordic model for an information society....

  2. Computer Vision for Timber Harvesting

    DEFF Research Database (Denmark)

    Dahl, Anders Lindbjerg

    The goal of this thesis is to investigate computer vision methods for timber harvesting operations. The background for developing computer vision for timber harvesting is to document origin of timber and to collect qualitative and quantitative parameters concerning the timber for efficient harvest...... segments. The purpose of image segmentation is to make the basis for more advanced computer vision methods like object recognition and classification. Our second method concerns image classification and we present a method where we classify small timber samples to tree species based on Active Appearance...... to the development of the logTracker system the described methods have a general applicability making them useful for many other computer vision problems....

  3. Trend of advanced technology of micromachines in the USA; Beikoku ni okeru micro machine sentan gijutsu doko chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    In this research, the data of advanced technology of micromachines in the USA have been searched, collected, and arranged from the US patent information, technical journal information, and newspaper and general journal information. According to demand, the main undertaking information was interviewed from well-informed persons. The data were compiled as advanced technology trend of micromachines in the USA. Sensors are remarkably predominant in the elemental technology. There are also important topics in the fields of actuators, motors, lenses, devices, and structures. On the other hand, materials, etchings, packages, motive powers, and softwares are also important elemental technology in spite of their less information. From the viewpoint of usage, detection systems are remarkably predominant. Then, robots, processing systems, optics, analysis systems, motive power systems, medical systems, and acoustic systems are also important. From the viewpoint of industrial sector, the environmental items are predominant. Automobiles, medical treatments, and information communications follow the above. When new relationships to the secondary usage and tertiary usage are not found, it would be rather hard to express such a technology development trend more clearly.

  4. SU-F-R-17: Advancing Glioblastoma Multiforme (GBM) Recurrence Detection with MRI Image Texture Feature Extraction and Machine Learning

    Energy Technology Data Exchange (ETDEWEB)

    Yu, V; Ruan, D; Nguyen, D; Kaprealian, T; Chin, R; Sheng, K [UCLA School of Medicine, Los Angeles, CA (United States)

    2016-06-15

    Purpose: To test the potential of early Glioblastoma Multiforme (GBM) recurrence detection utilizing image texture pattern analysis in serial MR images post primary treatment intervention. Methods: MR image-sets of six time points prior to the confirmed recurrence diagnosis of a GBM patient were included in this study, with each time point containing T1 pre-contrast, T1 post-contrast, T2-Flair, and T2-TSE images. Eight Gray-level co-occurrence matrix (GLCM) texture features including Contrast, Correlation, Dissimilarity, Energy, Entropy, Homogeneity, Sum-Average, and Variance were calculated from all images, resulting in a total of 32 features at each time point. A confirmed recurrent volume was contoured, along with an adjacent non-recurrent region-of-interest (ROI) and both volumes were propagated to all prior time points via deformable image registration. A support vector machine (SVM) with radial-basis-function kernels was trained on the latest time point prior to the confirmed recurrence to construct a model for recurrence classification. The SVM model was then applied to all prior time points and the volumes classified as recurrence were obtained. Results: An increase in classified volume was observed over time as expected. The size of classified recurrence maintained at a stable level of approximately 0.1 cm{sup 3} up to 272 days prior to confirmation. Noticeable volume increase to 0.44 cm{sup 3} was demonstrated at 96 days prior, followed by significant increase to 1.57 cm{sup 3} at 42 days prior. Visualization of the classified volume shows the merging of recurrence-susceptible region as the volume change became noticeable. Conclusion: Image texture pattern analysis in serial MR images appears to be sensitive to detecting the recurrent GBM a long time before the recurrence is confirmed by a radiologist. The early detection may improve the efficacy of targeted intervention including radiosurgery. More patient cases will be included to create a generalizable

  5. Tensors in image processing and computer vision

    CERN Document Server

    De Luis García, Rodrigo; Tao, Dacheng; Li, Xuelong

    2009-01-01

    Tensor signal processing is an emerging field with important applications to computer vision and image processing. This book presents the developments in this branch of signal processing, offering research and discussions by experts in the area. It is suitable for advanced students working in the area of computer vision and image processing.

  6. Smartphones as image processing systems for prosthetic vision.

    Science.gov (United States)

    Zapf, Marc P; Matteucci, Paul B; Lovell, Nigel H; Suaning, Gregg J

    2013-01-01

    The feasibility of implants for prosthetic vision has been demonstrated by research and commercial organizations. In most devices, an essential forerunner to the internal stimulation circuit is an external electronics solution for capturing, processing and relaying image information as well as extracting useful features from the scene surrounding the patient. The capabilities and multitude of image processing algorithms that can be performed by the device in real-time plays a major part in the final quality of the prosthetic vision. It is therefore optimal to use powerful hardware yet to avoid bulky, straining solutions. Recent publications have reported of portable single-board computers fast enough for computationally intensive image processing. Following the rapid evolution of commercial, ultra-portable ARM (Advanced RISC machine) mobile devices, the authors investigated the feasibility of modern smartphones running complex face detection as external processing devices for vision implants. The role of dedicated graphics processors in speeding up computation was evaluated while performing a demanding noise reduction algorithm (image denoising). The time required for face detection was found to decrease by 95% from 2.5 year old to recent devices. In denoising, graphics acceleration played a major role, speeding up denoising by a factor of 18. These results demonstrate that the technology has matured sufficiently to be considered as a valid external electronics platform for visual prosthetic research.

  7. Theory and practice in machining systems

    CERN Document Server

    Ito, Yoshimi

    2017-01-01

    This book describes machining technology from a wider perspective by considering it within the machining space. Machining technology is one of the metal removal activities that occur at the machining point within the machining space. The machining space consists of structural configuration entities, e.g., the main spindle, the turret head and attachments such the chuck and mandrel, and also the form-generating movement of the machine tool itself. The book describes fundamental topics, including the form-generating movement of the machine tool and the important roles of the attachments, before moving on to consider the supply of raw materials into the machining space, and the discharge of swarf from it, and then machining technology itself. Building on the latest research findings “Theory and Practice in Machining System” discusses current challenges in machining. Thus, with the inclusion of introductory and advanced topics, the book can be used as a guide and survey of machining technology for students an...

  8. Automated cutting in the food industry using computer vision

    KAUST Repository

    Daley, Wayne D R; Arif, Omar

    2012-01-01

    , mostly because of a lack of knowledge of the physical characteristic of the individual products. Machine vision has helped to address some of these shortcomings but underperforms in many situations. Developments in sensors, software and processing power

  9. Low Vision FAQs

    Science.gov (United States)

    ... de los Ojos Cómo hablarle a su oculista Low Vision FAQs What is low vision? Low vision is a visual impairment, not correctable ... person’s ability to perform everyday activities. What causes low vision? Low vision can result from a variety of ...

  10. Pediatric Low Vision

    Science.gov (United States)

    ... Asked Questions Español Condiciones Chinese Conditions Pediatric Low Vision What is Low Vision? Partial vision loss that cannot be corrected causes ... and play. What are the signs of Low Vision? Some signs of low vision include difficulty recognizing ...

  11. Mechanical design of machine components

    CERN Document Server

    Ugural, Ansel C

    2015-01-01

    Mechanical Design of Machine Components, Second Edition strikes a balance between theory and application, and prepares students for more advanced study or professional practice. It outlines the basic concepts in the design and analysis of machine elements using traditional methods, based on the principles of mechanics of materials. The text combines the theory needed to gain insight into mechanics with numerical methods in design. It presents real-world engineering applications, and reveals the link between basic mechanics and the specific design of machine components and machines. Divided into three parts, this revised text presents basic background topics, deals with failure prevention in a variety of machine elements and covers applications in design of machine components as well as entire machines. Optional sections treating special and advanced topics are also included.Key Features of the Second Edition:Incorporates material that has been completely updated with new chapters, problems, practical examples...

  12. Physics Based Vision Systems for Robotic Manipulation

    Data.gov (United States)

    National Aeronautics and Space Administration — With the increase of robotic manipulation tasks (TA4.3), specifically dexterous manipulation tasks (TA4.3.2), more advanced computer vision algorithms will be...

  13. Vision Screening

    Science.gov (United States)

    1993-01-01

    The Visi Screen OSS-C, marketed by Vision Research Corporation, incorporates image processing technology originally developed by Marshall Space Flight Center. Its advantage in eye screening is speed. Because it requires no response from a subject, it can be used to detect eye problems in very young children. An electronic flash from a 35 millimeter camera sends light into a child's eyes, which is reflected back to the camera lens. The photorefractor then analyzes the retinal reflexes generated and produces an image of the child's eyes, which enables a trained observer to identify any defects. The device is used by pediatricians, day care centers and civic organizations that concentrate on children with special needs.

  14. Color vision test

    Science.gov (United States)

    ... present from birth) color vision problems: Achromatopsia -- complete color blindness , seeing only shades of gray Deuteranopia -- difficulty telling ... Vision test - color; Ishihara color vision test Images Color blindness tests References Bowling B. Hereditary fundus dystrophies. In: ...

  15. Impairments to Vision

    Science.gov (United States)

    ... an external Non-Government web site. Impairments to Vision Normal Vision Diabetic Retinopathy Age-related Macular Degeneration In this ... pictures, fixate on the nose to simulate the vision loss. In diabetic retinopathy, the blood vessels in ...

  16. Sustainable machining

    CERN Document Server

    2017-01-01

    This book provides an overview on current sustainable machining. Its chapters cover the concept in economic, social and environmental dimensions. It provides the reader with proper ways to handle several pollutants produced during the machining process. The book is useful on both undergraduate and postgraduate levels and it is of interest to all those working with manufacturing and machining technology.

  17. Real-time vision systems

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.; Hernandez, J.E.; Lu, Shin-yee [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    Many industrial and defence applications require an ability to make instantaneous decisions based on sensor input of a time varying process. Such systems are referred to as `real-time systems` because they process and act on data as it occurs in time. When a vision sensor is used in a real-time system, the processing demands can be quite substantial, with typical data rates of 10-20 million samples per second. A real-time Machine Vision Laboratory (MVL) was established in FY94 to extend our years of experience in developing computer vision algorithms to include the development and implementation of real-time vision systems. The laboratory is equipped with a variety of hardware components, including Datacube image acquisition and processing boards, a Sun workstation, and several different types of CCD cameras, including monochrome and color area cameras and analog and digital line-scan cameras. The equipment is reconfigurable for prototyping different applications. This facility has been used to support several programs at LLNL, including O Division`s Peacemaker and Deadeye Projects as well as the CRADA with the U.S. Textile Industry, CAFE (Computer Aided Fabric Inspection). To date, we have successfully demonstrated several real-time applications: bullet tracking, stereo tracking and ranging, and web inspection. This work has been documented in the ongoing development of a real-time software library.

  18. LHC 2008 lectures "Une nouvelle vision du monde"

    CERN Multimedia

    2008-01-01

    The history of the science of the Universe and the science of matter have been marked by a small number of "revolutions" that have turned our understanding of the infinitesimally large and the infinitesimally small on its head. New ways of looking at the world have come about sometimes through conceptual advances and sometimes through innovations in scientific instrumentation. How do things stand at the beginning of the 21st century? Will today’s large-scale machine projects like the LHC and gravitational wave detectors pave the way for a new scientific revolution? Thursday, 15 May 2008 at 8.00 p.m. Une nouvelle vision du monde Jean-Pierre Luminet, Research Director at the CNRS The Globe, first floor No specialist knowledge required. Entrance free. To reserve call + 41 (0) 22 767 76 76 http://www.cern.ch/globe

  19. Vision and the Nobel Prize.

    Science.gov (United States)

    Morais, Fábio Barreto

    2018-04-01

    The Nobel Prize is the world's foremost honor for scientific advances in medicine and other areas. Founded by Alfred Nobel, the prizes have been awarded annually since 1901. We reviewed the literature on persons who have won or competed for this prize in subjects related to vision and ophthalmology. The topics were divided into vision physiology, diagnostic and therapeutic methods, disease mechanism, and miscellaneous categories. Allvar Gullstrand is the only ophthalmologist to win a Nobel Prize; he is also the only one to receive it for work in ophthalmology. Other ophthalmologists that have been nominated were Hjalmar Schiötz (tonometer), Karl Koller (topical anesthesia), and Jules Gonin (retinal detachment). Other scientists have won the prize for eye-related research: Ragnar Granit, Haldan Hartline and George Wald (chemistry and physiology of vision), and David Hubel and Torsten Wiesel (processing in the visual system). Peter Medawar is the only person born in Brazil to have won the Nobel Prize.

  20. What Is Low Vision?

    Science.gov (United States)

    ... Your Rights Training Resources Workplace Technology CareerConnect Stories Working as a Senior with Vision Loss For Seniors Age-Related Vision ... Changes Health and Aging Retirement Living Continuing to Work as a Senior with Vision Loss Get Connected About VisionAware Join ...

  1. Machine learning with R cookbook

    CERN Document Server

    Chiu, Yu-Wei

    2015-01-01

    If you want to learn how to use R for machine learning and gain insights from your data, then this book is ideal for you. Regardless of your level of experience, this book covers the basics of applying R to machine learning through to advanced techniques. While it is helpful if you are familiar with basic programming or machine learning concepts, you do not require prior experience to benefit from this book.

  2. Soft computing in machine learning

    CERN Document Server

    Park, Jooyoung; Inoue, Atsushi

    2014-01-01

    As users or consumers are now demanding smarter devices, intelligent systems are revolutionizing by utilizing machine learning. Machine learning as part of intelligent systems is already one of the most critical components in everyday tools ranging from search engines and credit card fraud detection to stock market analysis. You can train machines to perform some things, so that they can automatically detect, diagnose, and solve a variety of problems. The intelligent systems have made rapid progress in developing the state of the art in machine learning based on smart and deep perception. Using machine learning, the intelligent systems make widely applications in automated speech recognition, natural language processing, medical diagnosis, bioinformatics, and robot locomotion. This book aims at introducing how to treat a substantial amount of data, to teach machines and to improve decision making models. And this book specializes in the developments of advanced intelligent systems through machine learning. It...

  3. Tunnel vision.

    Science.gov (United States)

    Valenzuela, Terence; Mosier, Jarrod; Sakles, John

    2013-01-01

    Since 2000, many studies of advanced emergency airway management have appeared in the medical literature. Although most described patients in the operating room, intensive care unit or emergency department, studies of video laryngoscopy in the field are in progress and beginning to appear in the literature. Video laryngoscopy provides better views of the glottis, and it permits more successful intubations with fewer attempts. Price reductions as more devices, some specifically intended for EMS, enter the market will lower the entry costs for adoption. It is my prediction that in five years, video laryngoscopy will be the method of choice for endotracheal intubation in the field.

  4. Vision Systems with the Human in the Loop

    Science.gov (United States)

    Bauckhage, Christian; Hanheide, Marc; Wrede, Sebastian; Käster, Thomas; Pfeiffer, Michael; Sagerer, Gerhard

    2005-12-01

    The emerging cognitive vision paradigm deals with vision systems that apply machine learning and automatic reasoning in order to learn from what they perceive. Cognitive vision systems can rate the relevance and consistency of newly acquired knowledge, they can adapt to their environment and thus will exhibit high robustness. This contribution presents vision systems that aim at flexibility and robustness. One is tailored for content-based image retrieval, the others are cognitive vision systems that constitute prototypes of visual active memories which evaluate, gather, and integrate contextual knowledge for visual analysis. All three systems are designed to interact with human users. After we will have discussed adaptive content-based image retrieval and object and action recognition in an office environment, the issue of assessing cognitive systems will be raised. Experiences from psychologically evaluated human-machine interactions will be reported and the promising potential of psychologically-based usability experiments will be stressed.

  5. Vision Systems with the Human in the Loop

    Directory of Open Access Journals (Sweden)

    Bauckhage Christian

    2005-01-01

    Full Text Available The emerging cognitive vision paradigm deals with vision systems that apply machine learning and automatic reasoning in order to learn from what they perceive. Cognitive vision systems can rate the relevance and consistency of newly acquired knowledge, they can adapt to their environment and thus will exhibit high robustness. This contribution presents vision systems that aim at flexibility and robustness. One is tailored for content-based image retrieval, the others are cognitive vision systems that constitute prototypes of visual active memories which evaluate, gather, and integrate contextual knowledge for visual analysis. All three systems are designed to interact with human users. After we will have discussed adaptive content-based image retrieval and object and action recognition in an office environment, the issue of assessing cognitive systems will be raised. Experiences from psychologically evaluated human-machine interactions will be reported and the promising potential of psychologically-based usability experiments will be stressed.

  6. Making molecular machines work

    NARCIS (Netherlands)

    Browne, Wesley R.; Feringa, Ben L.

    2006-01-01

    In this review we chart recent advances in what is at once an old and very new field of endeavour the achievement of control of motion at the molecular level including solid-state and surface-mounted rotors, and its natural progression to the development of synthetic molecular machines. Besides a

  7. Coherent laser vision system

    International Nuclear Information System (INIS)

    Sebastion, R.L.

    1995-01-01

    The Coherent Laser Vision System (CLVS) is being developed to provide precision real-time 3D world views to support site characterization and robotic operations and during facilities Decontamination and Decommissioning. Autonomous or semiautonomous robotic operations requires an accurate, up-to-date 3D world view. Existing technologies for real-time 3D imaging, such as AM laser radar, have limited accuracy at significant ranges and have variability in range estimates caused by lighting or surface shading. Recent advances in fiber optic component technology and digital processing components have enabled the development of a new 3D vision system based upon a fiber optic FMCW coherent laser radar. The approach includes a compact scanner with no-moving parts capable of randomly addressing all pixels. The system maintains the immunity to lighting and surface shading conditions which is characteristic to coherent laser radar. The random pixel addressability allows concentration of scanning and processing on the active areas of a scene, as is done by the human eye-brain system

  8. Coherent laser vision system

    Energy Technology Data Exchange (ETDEWEB)

    Sebastion, R.L. [Coleman Research Corp., Springfield, VA (United States)

    1995-10-01

    The Coherent Laser Vision System (CLVS) is being developed to provide precision real-time 3D world views to support site characterization and robotic operations and during facilities Decontamination and Decommissioning. Autonomous or semiautonomous robotic operations requires an accurate, up-to-date 3D world view. Existing technologies for real-time 3D imaging, such as AM laser radar, have limited accuracy at significant ranges and have variability in range estimates caused by lighting or surface shading. Recent advances in fiber optic component technology and digital processing components have enabled the development of a new 3D vision system based upon a fiber optic FMCW coherent laser radar. The approach includes a compact scanner with no-moving parts capable of randomly addressing all pixels. The system maintains the immunity to lighting and surface shading conditions which is characteristic to coherent laser radar. The random pixel addressability allows concentration of scanning and processing on the active areas of a scene, as is done by the human eye-brain system.

  9. TURING MACHINE AS UNIVERSAL ALGORITHM EXECUTOR AND ITS APPLICATION IN THE PROCESS OF HIGH-SCHOOL STUDENTS` ADVANCED STUDY OF ALGORITHMIZATION AND PROGRAMMING FUNDAMENTALS

    Directory of Open Access Journals (Sweden)

    Oleksandr B. Yashchyk

    2016-05-01

    Full Text Available The article discusses the importance of studying the notion of algorithm and its formal specification using Turing machines. In the article it was identified the basic hypothesis of the theory of algorithms for Turing as well as reviewed scientific research of modern scientists devoted to this issue and found the main principles of the Turing machine as an abstract mathematical model. The process of forming information competencies components, information culture and students` logical thinking development with the inclusion of the topic “Study and Application of Turing machine as Universal Algorithm Executor” in the course of Informatics was analyzed.

  10. New development in robot vision

    CERN Document Server

    Behal, Aman; Chung, Chi-Kit

    2015-01-01

    The field of robotic vision has advanced dramatically recently with the development of new range sensors.  Tremendous progress has been made resulting in significant impact on areas such as robotic navigation, scene/environment understanding, and visual learning. This edited book provides a solid and diversified reference source for some of the most recent important advancements in the field of robotic vision. The book starts with articles that describe new techniques to understand scenes from 2D/3D data such as estimation of planar structures, recognition of multiple objects in the scene using different kinds of features as well as their spatial and semantic relationships, generation of 3D object models, approach to recognize partially occluded objects, etc. Novel techniques are introduced to improve 3D perception accuracy with other sensors such as a gyroscope, positioning accuracy with a visual servoing based alignment strategy for microassembly, and increasing object recognition reliability using related...

  11. Simple machines

    CERN Document Server

    Graybill, George

    2007-01-01

    Just how simple are simple machines? With our ready-to-use resource, they are simple to teach and easy to learn! Chocked full of information and activities, we begin with a look at force, motion and work, and examples of simple machines in daily life are given. With this background, we move on to different kinds of simple machines including: Levers, Inclined Planes, Wedges, Screws, Pulleys, and Wheels and Axles. An exploration of some compound machines follows, such as the can opener. Our resource is a real time-saver as all the reading passages, student activities are provided. Presented in s

  12. Artificial Vision, New Visual Modalities and Neuroadaptation

    Directory of Open Access Journals (Sweden)

    Hilmi Or

    2012-01-01

    Full Text Available To study the descriptions from which artificial vision derives, to explore the new visual modalities resulting from eye surgeries and diseases, and to gain awareness of the use of machine vision systems for both enhancement of visual perception and better understanding of neuroadaptation. Science could not define until today what vision is. However, some optical-based systems and definitions have been established considering some factors for the formation of seeing. The best known system includes Gabor filter and Gabor patch which work on edge perception, describing the visual perception in the best known way. These systems are used today in industry and technology of machines, robots and computers to provide their "seeing". These definitions are used beyond the machinery in humans for neuroadaptation in new visual modalities after some eye surgeries or to improve the quality of some already known visual modalities. Beside this, “the blindsight” -which was not known to exist until 35 years ago - can be stimulated with visual exercises. Gabor system is a description of visual perception definable in machine vision as well as in human visual perception. This system is used today in robotic vision. There are new visual modalities which arise after some eye surgeries or with the use of some visual optical devices. Also, blindsight is a different visual modality starting to be defined even though the exact etiology is not known. In all the new visual modalities, new vision stimulating therapies using the Gabor systems can be applied. (Turk J Oph thal mol 2012; 42: 61-5

  13. Vision systems for scientific and engineering applications

    International Nuclear Information System (INIS)

    Chadda, V.K.

    2009-01-01

    Human performance can get degraded due to boredom, distraction and fatigue in vision-related tasks such as measurement, counting etc. Vision based techniques are increasingly being employed in many scientific and engineering applications. Notable advances in this field are emerging from continuing improvements in the fields of sensors and related technologies, and advances in computer hardware and software. Automation utilizing vision-based systems can perform repetitive tasks faster and more accurately, with greater consistency over time than humans. Electronics and Instrumentation Services Division has developed vision-based systems for several applications to perform tasks such as precision alignment, biometric access control, measurement, counting etc. This paper describes in brief four such applications. (author)

  14. Face machines

    Energy Technology Data Exchange (ETDEWEB)

    Hindle, D.

    1999-06-01

    The article surveys latest equipment available from the world`s manufacturers of a range of machines for tunnelling. These are grouped under headings: excavators; impact hammers; road headers; and shields and tunnel boring machines. Products of thirty manufacturers are referred to. Addresses and fax numbers of companies are supplied. 5 tabs., 13 photos.

  15. Electric machine

    Science.gov (United States)

    El-Refaie, Ayman Mohamed Fawzi [Niskayuna, NY; Reddy, Patel Bhageerath [Madison, WI

    2012-07-17

    An interior permanent magnet electric machine is disclosed. The interior permanent magnet electric machine comprises a rotor comprising a plurality of radially placed magnets each having a proximal end and a distal end, wherein each magnet comprises a plurality of magnetic segments and at least one magnetic segment towards the distal end comprises a high resistivity magnetic material.

  16. Machine Learning.

    Science.gov (United States)

    Kirrane, Diane E.

    1990-01-01

    As scientists seek to develop machines that can "learn," that is, solve problems by imitating the human brain, a gold mine of information on the processes of human learning is being discovered, expert systems are being improved, and human-machine interactions are being enhanced. (SK)

  17. Nonplanar machines

    International Nuclear Information System (INIS)

    Ritson, D.

    1989-05-01

    This talk examines methods available to minimize, but never entirely eliminate, degradation of machine performance caused by terrain following. Breaking of planar machine symmetry for engineering convenience and/or monetary savings must be balanced against small performance degradation, and can only be decided on a case-by-case basis. 5 refs

  18. ASCI's Vision for supercomputing future

    International Nuclear Information System (INIS)

    Nowak, N.D.

    2003-01-01

    The full text of publication follows. Advanced Simulation and Computing (ASC, formerly Accelerated Strategic Computing Initiative [ASCI]) was established in 1995 to help Defense Programs shift from test-based confidence to simulation-based confidence. Specifically, ASC is a focused and balanced program that is accelerating the development of simulation capabilities needed to analyze and predict the performance, safety, and reliability of nuclear weapons and certify their functionality - far exceeding what might have been achieved in the absence of a focused initiative. To realize its vision, ASC is creating simulation and proto-typing capabilities, based on advanced weapon codes and high-performance computing

  19. Low Vision Tips

    Science.gov (United States)

    ... this page: https://medlineplus.gov/lowvision.html MedlinePlus: Low Vision Tips We are sorry. MedlinePlus no longer maintains the For Low Vision Users page. You will still find health resources ...

  20. Chemicals Industry Vision

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1996-12-01

    Chemical industry leaders articulated a long-term vision for the industry, its markets, and its technology in the groundbreaking 1996 document Technology Vision 2020 - The U.S. Chemical Industry. (PDF 310 KB).

  1. Fundamentals and advances in the development of remote welding fabrication systems

    Science.gov (United States)

    Agapakis, J. E.; Masubuchi, K.; Von Alt, C.

    1986-01-01

    Operational and man-machine issues for welding underwater, in outer space, and at other remote sites are investigated, and recent process developments are described. Probable remote welding missions are classified, and the essential characteristics of fundamental remote welding tasks are analyzed. Various possible operational modes for remote welding fabrication are identified, and appropriate roles for humans and machines are suggested. Human operator performance in remote welding fabrication tasks is discussed, and recent advances in the development of remote welding systems are described, including packaged welding systems, stud welding systems, remotely operated welding systems, and vision-aided remote robotic welding and autonomous welding systems.

  2. Robot Vision Library

    Science.gov (United States)

    Howard, Andrew B.; Ansar, Adnan I.; Litwin, Todd E.; Goldberg, Steven B.

    2009-01-01

    The JPL Robot Vision Library (JPLV) provides real-time robot vision algorithms for developers who are not vision specialists. The package includes algorithms for stereo ranging, visual odometry and unsurveyed camera calibration, and has unique support for very wideangle lenses

  3. The Machine within the Machine

    CERN Multimedia

    Katarina Anthony

    2014-01-01

    Although Virtual Machines are widespread across CERN, you probably won't have heard of them unless you work for an experiment. Virtual machines - known as VMs - allow you to create a separate machine within your own, allowing you to run Linux on your Mac, or Windows on your Linux - whatever combination you need.   Using a CERN Virtual Machine, a Linux analysis software runs on a Macbook. When it comes to LHC data, one of the primary issues collaborations face is the diversity of computing environments among collaborators spread across the world. What if an institute cannot run the analysis software because they use different operating systems? "That's where the CernVM project comes in," says Gerardo Ganis, PH-SFT staff member and leader of the CernVM project. "We were able to respond to experimentalists' concerns by providing a virtual machine package that could be used to run experiment software. This way, no matter what hardware they have ...

  4. Automated fuel fabrication- a vision comes true

    International Nuclear Information System (INIS)

    Hemantha Rao, G.V.S.; Prakash, M.S.; Setty, C.R.P.; Gupta, U.C.

    1997-01-01

    When New Uranium Fuel Assembly Project at Nuclear Fuel Complex (NFC) begins production, its operator will have equipment provided with intramachine handling systems working automatically by pressing a single button. Additionally simple low cost inter machine handling systems will further help in critical areas. All these inter and intra machine handling systems will result in improved reliability, productivity and quality. The fault diagnostics, mimics and real time data acquisition systems make the plant more operator friendly. The paper deals with the experience starting from layout, selection of product carriers, different handling systems, the latest technology and the integration of which made the vision on automation in fuel fabrication come true. (author)

  5. Machine translation

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, M

    1982-04-01

    Each language has its own structure. In translating one language into another one, language attributes and grammatical interpretation must be defined in an unambiguous form. In order to parse a sentence, it is necessary to recognize its structure. A so-called context-free grammar can help in this respect for machine translation and machine-aided translation. Problems to be solved in studying machine translation are taken up in the paper, which discusses subjects for semantics and for syntactic analysis and translation software. 14 references.

  6. Advance on the technology of assembly and disassembly of a head frame with four legs and the machine-assembled head frame

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Youzong; Cao Baozhen [Ministry of Coal Industry (China). Geological Exploration Machinery Factory

    1996-12-31

    According to the meditation of assembling headframes from upper to lower instead of that from lower to upper, the authors created successfully a new type of machine for assembling and disassembling headframes as well as a type of machine-assembled headframe. The new type of headframe not only has the merits of old type of headframe with four legs, but also can keep people away from dangers of working in high space and save the workers much labour. The new technology has good effect on raising productive efficiency. 2 figs.

  7. Trends in extreme learning machines: a review.

    Science.gov (United States)

    Huang, Gao; Huang, Guang-Bin; Song, Shiji; You, Keyou

    2015-01-01

    Extreme learning machine (ELM) has gained increasing interest from various research fields recently. In this review, we aim to report the current state of the theoretical research and practical advances on this subject. We first give an overview of ELM from the theoretical perspective, including the interpolation theory, universal approximation capability, and generalization ability. Then we focus on the various improvements made to ELM which further improve its stability, sparsity and accuracy under general or specific conditions. Apart from classification and regression, ELM has recently been extended for clustering, feature selection, representational learning and many other learning tasks. These newly emerging algorithms greatly expand the applications of ELM. From implementation aspect, hardware implementation and parallel computation techniques have substantially sped up the training of ELM, making it feasible for big data processing and real-time reasoning. Due to its remarkable efficiency, simplicity, and impressive generalization performance, ELM have been applied in a variety of domains, such as biomedical engineering, computer vision, system identification, and control and robotics. In this review, we try to provide a comprehensive view of these advances in ELM together with its future perspectives.

  8. Introduction: Minds, Bodies, Machines

    Directory of Open Access Journals (Sweden)

    Deirdre Coleman

    2008-10-01

    Full Text Available This issue of 19 brings together a selection of essays from an interdisciplinary conference on 'Minds, Bodies, Machines' convened last year by Birkbeck's Centre for Nineteenth-Century Studies, University of London, in partnership with the English programme, University of Melbourne and software developers Constraint Technologies International (CTI. The conference explored the relationship between minds, bodies and machines in the long nineteenth century, with a view to understanding the history of our technology-driven, post-human visions. It is in the nineteenth century that the relationship between the human and the machine under post-industrial capitalism becomes a pervasive theme. From Blake on the mills of the mind by which we are enslaved, to Carlyle's and Arnold's denunciation of the machinery of modern life, from Dickens's sooty fictional locomotive Mr Pancks, who 'snorted and sniffed and puffed and blew, like a little labouring steam-engine', and 'shot out […]cinders of principles, as if it were done by mechanical revolvency', to the alienated historical body of the late-nineteenth-century factory worker under Taylorization, whose movements and gestures were timed, regulated and rationalised to maximize efficiency; we find a cultural preoccupation with the mechanisation of the nineteenth-century human body that uncannily resonates with modern dreams and anxieties around technologies of the human.

  9. Chatter and machine tools

    CERN Document Server

    Stone, Brian

    2014-01-01

    Focussing on occurrences of unstable vibrations, or Chatter, in machine tools, this book gives important insights into how to eliminate chatter with associated improvements in product quality, surface finish and tool wear. Covering a wide range of machining processes, including turning, drilling, milling and grinding, the author uses his research expertise and practical knowledge of vibration problems to provide solutions supported by experimental evidence of their effectiveness. In addition, this book contains links to supplementary animation programs that help readers to visualise the ideas detailed in the text. Advancing knowledge in chatter avoidance and suggesting areas for new innovations, Chatter and Machine Tools serves as a handbook for those desiring to achieve significant reductions in noise, longer tool and grinding wheel life and improved product finish.

  10. A child's vision.

    Science.gov (United States)

    Nye, Christina

    2014-06-01

    Implementing standard vision screening techniques in the primary care practice is the most effective means to detect children with potential vision problems at an age when the vision loss may be treatable. A critical period of vision development occurs in the first few weeks of life; thus, it is imperative that serious problems are detected at this time. Although it is not possible to quantitate an infant's vision, evaluating ocular health appropriately can mean the difference between sight and blindness and, in the case of retinoblastoma, life or death. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Machine Translation

    Indian Academy of Sciences (India)

    Research Mt System Example: The 'Janus' Translating Phone Project. The Janus ... based on laptops, and simultaneous translation of two speakers in a dialogue. For more ..... The current focus in MT research is on using machine learning.

  12. Computation and parallel implementation for early vision

    Science.gov (United States)

    Gualtieri, J. Anthony

    1990-01-01

    The problem of early vision is to transform one or more retinal illuminance images-pixel arrays-to image representations built out of such primitive visual features such as edges, regions, disparities, and clusters. These transformed representations form the input to later vision stages that perform higher level vision tasks including matching and recognition. Researchers developed algorithms for: (1) edge finding in the scale space formulation; (2) correlation methods for computing matches between pairs of images; and (3) clustering of data by neural networks. These algorithms are formulated for parallel implementation of SIMD machines, such as the Massively Parallel Processor, a 128 x 128 array processor with 1024 bits of local memory per processor. For some cases, researchers can show speedups of three orders of magnitude over serial implementations.

  13. Deep Learning for Computer Vision: A Brief Review

    Science.gov (United States)

    Doulamis, Nikolaos; Doulamis, Anastasios; Protopapadakis, Eftychios

    2018-01-01

    Over the last years deep learning methods have been shown to outperform previous state-of-the-art machine learning techniques in several fields, with computer vision being one of the most prominent cases. This review paper provides a brief overview of some of the most significant deep learning schemes used in computer vision problems, that is, Convolutional Neural Networks, Deep Boltzmann Machines and Deep Belief Networks, and Stacked Denoising Autoencoders. A brief account of their history, structure, advantages, and limitations is given, followed by a description of their applications in various computer vision tasks, such as object detection, face recognition, action and activity recognition, and human pose estimation. Finally, a brief overview is given of future directions in designing deep learning schemes for computer vision problems and the challenges involved therein. PMID:29487619

  14. Deep Learning for Computer Vision: A Brief Review

    Directory of Open Access Journals (Sweden)

    Athanasios Voulodimos

    2018-01-01

    Full Text Available Over the last years deep learning methods have been shown to outperform previous state-of-the-art machine learning techniques in several fields, with computer vision being one of the most prominent cases. This review paper provides a brief overview of some of the most significant deep learning schemes used in computer vision problems, that is, Convolutional Neural Networks, Deep Boltzmann Machines and Deep Belief Networks, and Stacked Denoising Autoencoders. A brief account of their history, structure, advantages, and limitations is given, followed by a description of their applications in various computer vision tasks, such as object detection, face recognition, action and activity recognition, and human pose estimation. Finally, a brief overview is given of future directions in designing deep learning schemes for computer vision problems and the challenges involved therein.

  15. Deep Learning for Computer Vision: A Brief Review.

    Science.gov (United States)

    Voulodimos, Athanasios; Doulamis, Nikolaos; Doulamis, Anastasios; Protopapadakis, Eftychios

    2018-01-01

    Over the last years deep learning methods have been shown to outperform previous state-of-the-art machine learning techniques in several fields, with computer vision being one of the most prominent cases. This review paper provides a brief overview of some of the most significant deep learning schemes used in computer vision problems, that is, Convolutional Neural Networks, Deep Boltzmann Machines and Deep Belief Networks, and Stacked Denoising Autoencoders. A brief account of their history, structure, advantages, and limitations is given, followed by a description of their applications in various computer vision tasks, such as object detection, face recognition, action and activity recognition, and human pose estimation. Finally, a brief overview is given of future directions in designing deep learning schemes for computer vision problems and the challenges involved therein.

  16. Vision Assessment and Prescription of Low Vision Devices

    OpenAIRE

    Keeffe, Jill

    2004-01-01

    Assessment of vision and prescription of low vision devices are part of a comprehensive low vision service. Other components of the service include training the person affected by low vision in use of vision and other senses, mobility, activities of daily living, and support for education, employment or leisure activities. Specialist vision rehabilitation agencies have services to provide access to information (libraries) and activity centres for groups of people with impaired vision.

  17. Rotary Ultrasonic Machining of Poly-Crystalline Cubic Boron Nitride

    Directory of Open Access Journals (Sweden)

    Kuruc Marcel

    2014-12-01

    Full Text Available Poly-crystalline cubic boron nitride (PCBN is one of the hardest material. Generally, so hard materials could not be machined by conventional machining methods. Therefore, for this purpose, advanced machining methods have been designed. Rotary ultrasonic machining (RUM is included among them. RUM is based on abrasive removing mechanism of ultrasonic vibrating diamond particles, which are bonded on active part of rotating tool. It is suitable especially for machining hard and brittle materials (such as glass and ceramics. This contribution investigates this advanced machining method during machining of PCBN.

  18. An active role for machine learning in drug development

    Science.gov (United States)

    Murphy, Robert F.

    2014-01-01

    Due to the complexity of biological systems, cutting-edge machine-learning methods will be critical for future drug development. In particular, machine-vision methods to extract detailed information from imaging assays and active-learning methods to guide experimentation will be required to overcome the dimensionality problem in drug development. PMID:21587249

  19. Convolutional neural network guided blue crab knuckle detection for autonomous crab meat picking machine

    Science.gov (United States)

    Wang, Dongyi; Vinson, Robert; Holmes, Maxwell; Seibel, Gary; Tao, Yang

    2018-04-01

    The Atlantic blue crab is among the highest-valued seafood found in the American Eastern Seaboard. Currently, the crab processing industry is highly dependent on manual labor. However, there is great potential for vision-guided intelligent machines to automate the meat picking process. Studies show that the back-fin knuckles are robust features containing information about a crab's size, orientation, and the position of the crab's meat compartments. Our studies also make it clear that detecting the knuckles reliably in images is challenging due to the knuckle's small size, anomalous shape, and similarity to joints in the legs and claws. An accurate and reliable computer vision algorithm was proposed to detect the crab's back-fin knuckles in digital images. Convolutional neural networks (CNNs) can localize rough knuckle positions with 97.67% accuracy, transforming a global detection problem into a local detection problem. Compared to the rough localization based on human experience or other machine learning classification methods, the CNN shows the best localization results. In the rough knuckle position, a k-means clustering method is able to further extract the exact knuckle positions based on the back-fin knuckle color features. The exact knuckle position can help us to generate a crab cutline in XY plane using a template matching method. This is a pioneering research project in crab image analysis and offers advanced machine intelligence for automated crab processing.

  20. Machine Protection

    International Nuclear Information System (INIS)

    Zerlauth, Markus; Schmidt, Rüdiger; Wenninger, Jörg

    2012-01-01

    The present architecture of the machine protection system is being recalled and the performance of the associated systems during the 2011 run will be briefly summarized. An analysis of the causes of beam dumps as well as an assessment of the dependability of the machine protection systems (MPS) itself is being presented. Emphasis will be given to events that risked exposing parts of the machine to damage. Further improvements and mitigations of potential holes in the protection systems will be evaluated along with their impact on the 2012 run. The role of rMPP during the various operational phases (commissioning, intensity ramp up, MDs...) will be discussed along with a proposal for the intensity ramp up for the start of beam operation in 2012

  1. Machine Learning

    Energy Technology Data Exchange (ETDEWEB)

    Chikkagoudar, Satish; Chatterjee, Samrat; Thomas, Dennis G.; Carroll, Thomas E.; Muller, George

    2017-04-21

    The absence of a robust and unified theory of cyber dynamics presents challenges and opportunities for using machine learning based data-driven approaches to further the understanding of the behavior of such complex systems. Analysts can also use machine learning approaches to gain operational insights. In order to be operationally beneficial, cybersecurity machine learning based models need to have the ability to: (1) represent a real-world system, (2) infer system properties, and (3) learn and adapt based on expert knowledge and observations. Probabilistic models and Probabilistic graphical models provide these necessary properties and are further explored in this chapter. Bayesian Networks and Hidden Markov Models are introduced as an example of a widely used data driven classification/modeling strategy.

  2. Machine Protection

    CERN Document Server

    Zerlauth, Markus; Wenninger, Jörg

    2012-01-01

    The present architecture of the machine protection system is being recalled and the performance of the associated systems during the 2011 run will be briefly summarized. An analysis of the causes of beam dumps as well as an assessment of the dependability of the machine protection systems (MPS) itself is being presented. Emphasis will be given to events that risked exposing parts of the machine to damage. Further improvements and mitigations of potential holes in the protection systems will be evaluated along with their impact on the 2012 run. The role of rMPP during the various operational phases (commissioning, intensity ramp up, MDs...) will be discussed along with a proposal for the intensity ramp up for the start of beam operation in 2012.

  3. Machine Protection

    Energy Technology Data Exchange (ETDEWEB)

    Zerlauth, Markus; Schmidt, Rüdiger; Wenninger, Jörg [European Organization for Nuclear Research, Geneva (Switzerland)

    2012-07-01

    The present architecture of the machine protection system is being recalled and the performance of the associated systems during the 2011 run will be briefly summarized. An analysis of the causes of beam dumps as well as an assessment of the dependability of the machine protection systems (MPS) itself is being presented. Emphasis will be given to events that risked exposing parts of the machine to damage. Further improvements and mitigations of potential holes in the protection systems will be evaluated along with their impact on the 2012 run. The role of rMPP during the various operational phases (commissioning, intensity ramp up, MDs...) will be discussed along with a proposal for the intensity ramp up for the start of beam operation in 2012.

  4. Machine learning and medical imaging

    CERN Document Server

    Shen, Dinggang; Sabuncu, Mert

    2016-01-01

    Machine Learning and Medical Imaging presents state-of- the-art machine learning methods in medical image analysis. It first summarizes cutting-edge machine learning algorithms in medical imaging, including not only classical probabilistic modeling and learning methods, but also recent breakthroughs in deep learning, sparse representation/coding, and big data hashing. In the second part leading research groups around the world present a wide spectrum of machine learning methods with application to different medical imaging modalities, clinical domains, and organs. The biomedical imaging modalities include ultrasound, magnetic resonance imaging (MRI), computed tomography (CT), histology, and microscopy images. The targeted organs span the lung, liver, brain, and prostate, while there is also a treatment of examining genetic associations. Machine Learning and Medical Imaging is an ideal reference for medical imaging researchers, industry scientists and engineers, advanced undergraduate and graduate students, a...

  5. FPGA Vision Data Architecture

    Science.gov (United States)

    Morfopoulos, Arin C.; Pham, Thang D.

    2013-01-01

    JPL has produced a series of FPGA (field programmable gate array) vision algorithms that were written with custom interfaces to get data in and out of each vision module. Each module has unique requirements on the data interface, and further vision modules are continually being developed, each with their own custom interfaces. Each memory module had also been designed for direct access to memory or to another memory module.

  6. Some examples of image warping for low vision prosthesis

    Science.gov (United States)

    Juday, Richard D.; Loshin, David S.

    1988-01-01

    NASA has developed an image processor, the Programmable Remapper, for certain functions in machine vision. The Remapper performs a highly arbitrary geometric warping of an image at video rate. It might ultimately be shrunk to a size and cost that could allow its use in a low-vision prosthesis. Coordinate warpings have been developed for retinitis pigmentosa (tunnel vision) and for maculapathy (loss of central field) that are intended to make best use of the patient's remaining viable retina. The rationales and mathematics are presented for some warpings that we will try in clinical studies using the Remapper's prototype.

  7. Teletherapy machine

    International Nuclear Information System (INIS)

    Panyam, Vinatha S.; Rakshit, Sougata; Kulkarni, M.S.; Pradeepkumar, K.S.

    2017-01-01

    Radiation Standards Section (RSS), RSSD, BARC is the national metrology institute for ionizing radiation. RSS develops and maintains radiation standards for X-ray, beta, gamma and neutron radiations. In radiation dosimetry, traceability, accuracy and consistency of radiation measurements is very important especially in radiotherapy where the success of patient treatment is dependent on the accuracy of the dose delivered to the tumour. Cobalt teletherapy machines have been used in the treatment of cancer since the early 1950s and India had its first cobalt teletherapy machine installed at the Cancer Institute, Chennai in 1956

  8. Vision-based interaction

    CERN Document Server

    Turk, Matthew

    2013-01-01

    In its early years, the field of computer vision was largely motivated by researchers seeking computational models of biological vision and solutions to practical problems in manufacturing, defense, and medicine. For the past two decades or so, there has been an increasing interest in computer vision as an input modality in the context of human-computer interaction. Such vision-based interaction can endow interactive systems with visual capabilities similar to those important to human-human interaction, in order to perceive non-verbal cues and incorporate this information in applications such

  9. OpenVX-based Python Framework for real-time cross platform acceleration of embedded computer vision applications

    Directory of Open Access Journals (Sweden)

    Ori Heimlich

    2016-11-01

    Full Text Available Embedded real-time vision applications are being rapidly deployed in a large realm of consumer electronics, ranging from automotive safety to surveillance systems. However, the relatively limited computational power of embedded platforms is considered as a bottleneck for many vision applications, necessitating optimization. OpenVX is a standardized interface, released in late 2014, in an attempt to provide both system and kernel level optimization to vision applications. With OpenVX, Vision processing are modeled with coarse-grained data flow graphs, which can be optimized and accelerated by the platform implementer. Current full implementations of OpenVX are given in the programming language C, which does not support advanced programming paradigms such as object-oriented, imperative and functional programming, nor does it have runtime or type-checking. Here we present a python-based full Implementation of OpenVX, which eliminates much of the discrepancies between the object-oriented paradigm used by many modern applications and the native C implementations. Our open-source implementation can be used for rapid development of OpenVX applications in embedded platforms. Demonstration includes static and real-time image acquisition and processing using a Raspberry Pi and a GoPro camera. Code is given as supplementary information. Code project and linked deployable virtual machine are located on GitHub: https://github.com/NBEL-lab/PythonOpenVX.

  10. Machine Learning an algorithmic perspective

    CERN Document Server

    Marsland, Stephen

    2009-01-01

    Traditional books on machine learning can be divided into two groups - those aimed at advanced undergraduates or early postgraduates with reasonable mathematical knowledge and those that are primers on how to code algorithms. The field is ready for a text that not only demonstrates how to use the algorithms that make up machine learning methods, but also provides the background needed to understand how and why these algorithms work. Machine Learning: An Algorithmic Perspective is that text.Theory Backed up by Practical ExamplesThe book covers neural networks, graphical models, reinforcement le

  11. Fully automatic CNC machining production system

    Directory of Open Access Journals (Sweden)

    Lee Jeng-Dao

    2017-01-01

    Full Text Available Customized manufacturing is increasing years by years. The consumption habits change has been cause the shorter of product life cycle. Therefore, many countries view industry 4.0 as a target to achieve more efficient and more flexible automated production. To develop an automatic loading and unloading CNC machining system via vision inspection is the first step in industrial upgrading. CNC controller is adopted as the main controller to command to the robot, conveyor, and other equipment in this study. Moreover, machine vision systems are used to detect position of material on the conveyor and the edge of the machining material. In addition, Open CNC and SCADA software will be utilized to make real-time monitor, remote system of control, alarm email notification, and parameters collection. Furthermore, RFID has been added to employee classification and management. The machine handshaking has been successfully proposed to achieve automatic vision detect, edge tracing measurement, machining and system parameters collection for data analysis to accomplish industrial automation system integration with real-time monitor.

  12. Early vision and focal attention

    Science.gov (United States)

    Julesz, Bela

    1991-07-01

    At the thirty-year anniversary of the introduction of the technique of computer-generated random-dot stereograms and random-dot cinematograms into psychology, the impact of the technique on brain research and on the study of artificial intelligence is reviewed. The main finding-that stereoscopic depth perception (stereopsis), motion perception, and preattentive texture discrimination are basically bottom-up processes, which occur without the help of the top-down processes of cognition and semantic memory-greatly simplifies the study of these processes of early vision and permits the linking of human perception with monkey neurophysiology. Particularly interesting are the unexpected findings that stereopsis (assumed to be local) is a global process, while texture discrimination (assumed to be a global process, governed by statistics) is local, based on some conspicuous local features (textons). It is shown that the top-down process of "shape (depth) from shading" does not affect stereopsis, and some of the models of machine vision are evaluated. The asymmetry effect of human texture discrimination is discussed, together with recent nonlinear spatial filter models and a novel extension of the texton theory that can cope with the asymmetry problem. This didactic review attempts to introduce the physicist to the field of psychobiology and its problems-including metascientific problems of brain research, problems of scientific creativity, the state of artificial intelligence research (including connectionist neural networks) aimed at modeling brain activity, and the fundamental role of focal attention in mental events.

  13. Computer vision in control systems

    CERN Document Server

    Jain, Lakhmi

    2015-01-01

    Volume 1 : This book is focused on the recent advances in computer vision methodologies and technical solutions using conventional and intelligent paradigms. The Contributions include: ·         Morphological Image Analysis for Computer Vision Applications. ·         Methods for Detecting of Structural Changes in Computer Vision Systems. ·         Hierarchical Adaptive KL-based Transform: Algorithms and Applications. ·         Automatic Estimation for Parameters of Image Projective Transforms Based on Object-invariant Cores. ·         A Way of Energy Analysis for Image and Video Sequence Processing. ·         Optimal Measurement of Visual Motion Across Spatial and Temporal Scales. ·         Scene Analysis Using Morphological Mathematics and Fuzzy Logic. ·         Digital Video Stabilization in Static and Dynamic Scenes. ·         Implementation of Hadamard Matrices for Image Processing. ·         A Generalized Criterion ...

  14. Machine testning

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo

    This document is used in connection with a laboratory exercise of 3 hours duration as a part of the course GEOMETRICAL METROLOGY AND MACHINE TESTING. The exercise includes a series of tests carried out by the student on a conventional and a numerically controled lathe, respectively. This document...

  15. A computer architecture for intelligent machines

    Science.gov (United States)

    Lefebvre, D. R.; Saridis, G. N.

    1992-01-01

    The theory of intelligent machines proposes a hierarchical organization for the functions of an autonomous robot based on the principle of increasing precision with decreasing intelligence. An analytic formulation of this theory using information-theoretic measures of uncertainty for each level of the intelligent machine has been developed. The authors present a computer architecture that implements the lower two levels of the intelligent machine. The architecture supports an event-driven programming paradigm that is independent of the underlying computer architecture and operating system. Execution-level controllers for motion and vision systems are briefly addressed, as well as the Petri net transducer software used to implement coordination-level functions. A case study illustrates how this computer architecture integrates real-time and higher-level control of manipulator and vision systems.

  16. Machine rates for selected forest harvesting machines

    Science.gov (United States)

    R.W. Brinker; J. Kinard; Robert Rummer; B. Lanford

    2002-01-01

    Very little new literature has been published on the subject of machine rates and machine cost analysis since 1989 when the Alabama Agricultural Experiment Station Circular 296, Machine Rates for Selected Forest Harvesting Machines, was originally published. Many machines discussed in the original publication have undergone substantial changes in various aspects, not...

  17. Study of on-machine error identification and compensation methods for micro machine tools

    International Nuclear Information System (INIS)

    Wang, Shih-Ming; Yu, Han-Jen; Lee, Chun-Yi; Chiu, Hung-Sheng

    2016-01-01

    Micro machining plays an important role in the manufacturing of miniature products which are made of various materials with complex 3D shapes and tight machining tolerance. To further improve the accuracy of a micro machining process without increasing the manufacturing cost of a micro machine tool, an effective machining error measurement method and a software-based compensation method are essential. To avoid introducing additional errors caused by the re-installment of the workpiece, the measurement and compensation method should be on-machine conducted. In addition, because the contour of a miniature workpiece machined with a micro machining process is very tiny, the measurement method should be non-contact. By integrating the image re-constructive method, camera pixel correction, coordinate transformation, the error identification algorithm, and trajectory auto-correction method, a vision-based error measurement and compensation method that can on-machine inspect the micro machining errors and automatically generate an error-corrected numerical control (NC) program for error compensation was developed in this study. With the use of the Canny edge detection algorithm and camera pixel calibration, the edges of the contour of a machined workpiece were identified and used to re-construct the actual contour of the work piece. The actual contour was then mapped to the theoretical contour to identify the actual cutting points and compute the machining errors. With the use of a moving matching window and calculation of the similarity between the actual and theoretical contour, the errors between the actual cutting points and theoretical cutting points were calculated and used to correct the NC program. With the use of the error-corrected NC program, the accuracy of a micro machining process can be effectively improved. To prove the feasibility and effectiveness of the proposed methods, micro-milling experiments on a micro machine tool were conducted, and the results

  18. 5-axes modular CNC machining center

    Directory of Open Access Journals (Sweden)

    Breaz Radu-Eugen

    2017-01-01

    Full Text Available The paper presents the development of a 5-axes CNC machining center. The main goal of the machine was to provide the students a practical layout for training in advanced CAM techniques. The mechanical structure of the machine was built in a modular way by a specialized company, which also implemented the CNC controller. The authors of this paper developed the geometric and kinematic model of the CNC machining center and the post-processor, in order to use the machine in a CAM environment.

  19. Operational Based Vision Assessment Automated Vision Test Collection User Guide

    Science.gov (United States)

    2017-05-15

    AFRL-SA-WP-SR-2017-0012 Operational Based Vision Assessment Automated Vision Test Collection User Guide Elizabeth Shoda, Alex...June 2015 – May 2017 4. TITLE AND SUBTITLE Operational Based Vision Assessment Automated Vision Test Collection User Guide 5a. CONTRACT NUMBER... automated vision tests , or AVT. Development of the AVT was required to support threshold-level vision testing capability needed to investigate the

  20. Jane Addams’ Social Vision

    DEFF Research Database (Denmark)

    Villadsen, Kaspar

    2018-01-01

    resonated with key tenets of social gospel theology, which imbued her texts with an overarching vision of humanity’s progressive history. It is suggested that Addams’ vision of a major transition in industrial society, one involving a BChristian renaissance^ and individuals’ transformation into Bsocialized...

  1. Computer vision for sports

    DEFF Research Database (Denmark)

    Thomas, Graham; Gade, Rikke; Moeslund, Thomas B.

    2017-01-01

    fixed to players or equipment is generally not possible. This provides a rich set of opportunities for the application of computer vision techniques to help the competitors, coaches and audience. This paper discusses a selection of current commercial applications that use computer vision for sports...

  2. Copenhagen Energy Vision

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Rasmus Søgaard; Connolly, David

    The short-term goal for The City of Copenhagen is a CO2 neutral energy supply by the year 2025, and the long-term vision for Denmark is a 100% renewable energy (RE) supply by the year 2050. In this project, it is concluded that Copenhagen plays a key role in this transition. The long-term vision...

  3. Modeling foveal vision

    NARCIS (Netherlands)

    Florack, L.M.J.; Sgallari, F.; Murli, A.; Paragios, N.

    2007-01-01

    geometric model is proposed for an artificial foveal vision system, and its plausibility in the context of biological vision is explored. The model is based on an isotropic, scale invariant two-form that describes the spatial layout of receptive fields in the the visual sensorium (in the biological

  4. Light Vision Color

    Science.gov (United States)

    Valberg, Arne

    2005-04-01

    Light Vision Color takes a well-balanced, interdisciplinary approach to our most important sensory system. The book successfully combines basics in vision sciences with recent developments from different areas such as neuroscience, biophysics, sensory psychology and philosophy. Originally published in 1998 this edition has been extensively revised and updated to include new chapters on clinical problems and eye diseases, low vision rehabilitation and the basic molecular biology and genetics of colour vision. Takes a broad interdisciplinary approach combining basics in vision sciences with the most recent developments in the area Includes an extensive list of technical terms and explanations to encourage student understanding Successfully brings together the most important areas of the subject in to one volume

  5. Panoramic stereo sphere vision

    Science.gov (United States)

    Feng, Weijia; Zhang, Baofeng; Röning, Juha; Zong, Xiaoning; Yi, Tian

    2013-01-01

    Conventional stereo vision systems have a small field of view (FOV) which limits their usefulness for certain applications. While panorama vision is able to "see" in all directions of the observation space, scene depth information is missed because of the mapping from 3D reference coordinates to 2D panoramic image. In this paper, we present an innovative vision system which builds by a special combined fish-eye lenses module, and is capable of producing 3D coordinate information from the whole global observation space and acquiring no blind area 360°×360° panoramic image simultaneously just using single vision equipment with one time static shooting. It is called Panoramic Stereo Sphere Vision (PSSV). We proposed the geometric model, mathematic model and parameters calibration method in this paper. Specifically, video surveillance, robotic autonomous navigation, virtual reality, driving assistance, multiple maneuvering target tracking, automatic mapping of environments and attitude estimation are some of the applications which will benefit from PSSV.

  6. Robotic refueling machine

    International Nuclear Information System (INIS)

    Challberg, R.C.; Jones, C.R.

    1996-01-01

    One of the longest critical path operations performed during the outage is removing and replacing the fuel. A design is currently under development for a refueling machine which would allow faster, fully automated operation and would also allow the handling of two fuel assemblies at the same time. This design is different from current designs, (a) because of its lighter weight, making increased acceleration and speed possible, (b) because of its control system which makes locating the fuel assembly more dependable and faster, and (c) because of its dual handling system allowing simultaneous fuel movements. The new design uses two robotic arms to span a designated area of the vessel and the fuel storage area. Attached to the end of each robotic arm is a lightweight telescoping mast with a pendant attached to the end of each mast. The pendant acts as the base unit, allowing attachment of any number of end effectors depending on the servicing or inspection operation. Housed within the pendant are two television cameras used for the positioning control system. The control system is adapted from the robotics field using the technology known as machine vision, which provides both object and character recognition techniques to enable relative position control rather than absolute position control as in past designs. The pendant also contains thrusters that are used for fast, short distance, precise positioning. The new refueling machine system design is capable of a complete off load and reload of an 872 element core in about 5.3 days compared to 13 days for a conventional system

  7. Machinability of a Stainless Steel by Electrochemical Discharge Microdrilling

    International Nuclear Information System (INIS)

    Coteata, Margareta; Pop, Nicolae; Slatineanu, Laurentiu; Schulze, Hans-Peter; Besliu, Irina

    2011-01-01

    Due to the chemical elements included in their structure for ensuring an increased resistance to the environment action, the stainless steels are characterized by a low machinability when classical machining methods are applied. For this reason, sometimes non-traditional machining methods are applied, one of these being the electrochemical discharge machining. To obtain microholes and to evaluate the machinability by electrochemical discharge microdrilling, test pieces of stainless steel were used for experimental research. The electrolyte was an aqueous solution of sodium silicate with different densities. A complete factorial plan was designed to highlight the influence of some input variables on the sizes of the considered machinability indexes (electrode tool wear, material removal rate, depth of the machined hole). By mathematically processing of experimental data, empirical functions were established both for stainless steel and carbon steel. Graphical representations were used to obtain more suggestive vision concerning the influence exerted by the considered input variables on the size of the machinability indexes.

  8. Advancing STEM Education: A 2020 Vision

    Science.gov (United States)

    Bybee, Rodger W.

    2010-01-01

    STEM (an acronym for science, technology, engineering and mathematics) had its origins in the 1990s at the National Science Foundation (NSF) and has been used as a generic label for any event, policy, program, or practice that involves one or several of the STEM disciplines. However, a recent survey on the "perception of STEM" found that most…

  9. Experiences Using an Open Source Software Library to Teach Computer Vision Subjects

    Science.gov (United States)

    Cazorla, Miguel; Viejo, Diego

    2015-01-01

    Machine vision is an important subject in computer science and engineering degrees. For laboratory experimentation, it is desirable to have a complete and easy-to-use tool. In this work we present a Java library, oriented to teaching computer vision. We have designed and built the library from the scratch with emphasis on readability and…

  10. The Effects of the Personal Armor System for Ground Troops (PASGT) and the Advanced Combat Helmet (ACH) with and without PVS-14 Night Vision Goggles (NVG) on Neck Biomechanics During Dismounted Soldier Movements

    National Research Council Canada - National Science Library

    LaFiandra, Michael; Harman, Everett; Cornelius, Nancy; Frykman, Peter; Gutekunst, David; Nelson, Gabe

    2007-01-01

    Kevlar helmets provide the soldier with basic ballistic and impact protection. However, the helmet has recently become a mounting platform for devices such as night-vision goggles, drop down displays, weapon-aiming systems, etc...

  11. Electric machines

    CERN Document Server

    Gross, Charles A

    2006-01-01

    BASIC ELECTROMAGNETIC CONCEPTSBasic Magnetic ConceptsMagnetically Linear Systems: Magnetic CircuitsVoltage, Current, and Magnetic Field InteractionsMagnetic Properties of MaterialsNonlinear Magnetic Circuit AnalysisPermanent MagnetsSuperconducting MagnetsThe Fundamental Translational EM MachineThe Fundamental Rotational EM MachineMultiwinding EM SystemsLeakage FluxThe Concept of Ratings in EM SystemsSummaryProblemsTRANSFORMERSThe Ideal n-Winding TransformerTransformer Ratings and Per-Unit ScalingThe Nonideal Three-Winding TransformerThe Nonideal Two-Winding TransformerTransformer Efficiency and Voltage RegulationPractical ConsiderationsThe AutotransformerOperation of Transformers in Three-Phase EnvironmentsSequence Circuit Models for Three-Phase Transformer AnalysisHarmonics in TransformersSummaryProblemsBASIC MECHANICAL CONSIDERATIONSSome General PerspectivesEfficiencyLoad Torque-Speed CharacteristicsMass Polar Moment of InertiaGearingOperating ModesTranslational SystemsA Comprehensive Example: The ElevatorP...

  12. Charging machine

    International Nuclear Information System (INIS)

    Medlin, J.B.

    1976-01-01

    A charging machine for loading fuel slugs into the process tubes of a nuclear reactor includes a tubular housing connected to the process tube, a charging trough connected to the other end of the tubular housing, a device for loading the charging trough with a group of fuel slugs, means for equalizing the coolant pressure in the charging trough with the pressure in the process tubes, means for pushing the group of fuel slugs into the process tube and a latch and a seal engaging the last object in the group of fuel slugs to prevent the fuel slugs from being ejected from the process tube when the pusher is removed and to prevent pressure liquid from entering the charging machine. 3 claims, 11 drawing figures

  13. Genesis machines

    CERN Document Server

    Amos, Martyn

    2014-01-01

    Silicon chips are out. Today's scientists are using real, wet, squishy, living biology to build the next generation of computers. Cells, gels and DNA strands are the 'wetware' of the twenty-first century. Much smaller and more intelligent, these organic computers open up revolutionary possibilities. Tracing the history of computing and revealing a brave new world to come, Genesis Machines describes how this new technology will change the way we think not just about computers - but about life itself.

  14. Archetypal Analysis for Machine Learning

    DEFF Research Database (Denmark)

    Mørup, Morten; Hansen, Lars Kai

    2010-01-01

    Archetypal analysis (AA) proposed by Cutler and Breiman in [1] estimates the principal convex hull of a data set. As such AA favors features that constitute representative ’corners’ of the data, i.e. distinct aspects or archetypes. We will show that AA enjoys the interpretability of clustering - ...... for K-means [2]. We demonstrate that the AA model is relevant for feature extraction and dimensional reduction for a large variety of machine learning problems taken from computer vision, neuroimaging, text mining and collaborative filtering....

  15. Stereo Vision Inside Tire

    Science.gov (United States)

    2015-08-21

    1 Stereo Vision Inside Tire P.S. Els C.M. Becker University of Pretoria W911NF-14-1-0590 Final...Stereo Vision Inside Tire 5a. CONTRACT NUMBER W911NF-14-1-0590 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Prof PS Els CM...on the development of a stereo vision system that can be mounted inside a rolling tire , known as T2-CAM for Tire -Terrain CAMera. The T2-CAM system

  16. Machine learning a probabilistic perspective

    CERN Document Server

    Murphy, Kevin P

    2012-01-01

    Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach. The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic method...

  17. Component Pin Recognition Using Algorithms Based on Machine Learning

    Science.gov (United States)

    Xiao, Yang; Hu, Hong; Liu, Ze; Xu, Jiangchang

    2018-04-01

    The purpose of machine vision for a plug-in machine is to improve the machine’s stability and accuracy, and recognition of the component pin is an important part of the vision. This paper focuses on component pin recognition using three different techniques. The first technique involves traditional image processing using the core algorithm for binary large object (BLOB) analysis. The second technique uses the histogram of oriented gradients (HOG), to experimentally compare the effect of the support vector machine (SVM) and the adaptive boosting machine (AdaBoost) learning meta-algorithm classifiers. The third technique is the use of an in-depth learning method known as convolution neural network (CNN), which involves identifying the pin by comparing a sample to its training. The main purpose of the research presented in this paper is to increase the knowledge of learning methods used in the plug-in machine industry in order to achieve better results.

  18. Artificial vision in nuclear fuel fabrication

    International Nuclear Information System (INIS)

    Dorado, P.

    2007-01-01

    The development of artificial vision techniques opens a door to the optimization of industrial processes which the nuclear industry cannot miss out on. Backing these techniques represents a revolution in security and reliability in the manufacturing of a highly technological products as in nuclear fuel. Enusa Industrias Avanzadas S. A. has successfully developed and implemented the first automatic inspection equipment for pellets by artificial vision in the European nuclear industry which is nowadays qualified and is already developing the second generation of this machine. There are many possible applications for the techniques of artificial vision in the fuel manufacturing processes. Among the practices developed by Enusa Industrias Avanzadas are, besides the pellets inspection, the rod sealing drills detection and positioning in the BWR products and the sealing drills inspection in the PWR fuel. The use of artificial vision in the arduous and precise processes of full inspection will allow the absence of human error, the increase of control in the mentioned procedures, the reduction of doses received by the personnel, a higher reliability of the whole of the operations and an improvement in manufacturing costs. (Author)

  19. The role of vision processing in prosthetic vision.

    Science.gov (United States)

    Barnes, Nick; He, Xuming; McCarthy, Chris; Horne, Lachlan; Kim, Junae; Scott, Adele; Lieby, Paulette

    2012-01-01

    Prosthetic vision provides vision which is reduced in resolution and dynamic range compared to normal human vision. This comes about both due to residual damage to the visual system from the condition that caused vision loss, and due to limitations of current technology. However, even with limitations, prosthetic vision may still be able to support functional performance which is sufficient for tasks which are key to restoring independent living and quality of life. Here vision processing can play a key role, ensuring that information which is critical to the performance of key tasks is available within the capability of the available prosthetic vision. In this paper, we frame vision processing for prosthetic vision, highlight some key areas which present problems in terms of quality of life, and present examples where vision processing can help achieve better outcomes.

  20. delta-vision

    Data.gov (United States)

    California Natural Resource Agency — Delta Vision is intended to identify a strategy for managing the Sacramento-San Joaquin Delta as a sustainable ecosystem that would continue to support environmental...

  1. Computer Vision Syndrome.

    Science.gov (United States)

    Randolph, Susan A

    2017-07-01

    With the increased use of electronic devices with visual displays, computer vision syndrome is becoming a major public health issue. Improving the visual status of workers using computers results in greater productivity in the workplace and improved visual comfort.

  2. Representational Machines

    DEFF Research Database (Denmark)

    Photography not only represents space. Space is produced photographically. Since its inception in the 19th century, photography has brought to light a vast array of represented subjects. Always situated in some spatial order, photographic representations have been operatively underpinned by social...... to the enterprises of the medium. This is the subject of Representational Machines: How photography enlists the workings of institutional technologies in search of establishing new iconic and social spaces. Together, the contributions to this edited volume span historical epochs, social environments, technological...... possibilities, and genre distinctions. Presenting several distinct ways of producing space photographically, this book opens a new and important field of inquiry for photography research....

  3. Knowledge Translation in Rehabilitation: A Shared Vision.

    Science.gov (United States)

    Moore, Jennifer L; Shikako-Thomas, Keiko; Backus, Deborah

    2017-07-01

    Advances in rehabilitation provide the infrastructure for research and clinical data to improve care and patient outcomes. However, gaps between research and practice are prevalent. Knowledge translation (KT) aims to decrease the gap between research and its clinical use. This special communication summarizes KT-related proceedings from the 2016 IV STEP conference, describes current KT in rehabilitation science, and provides suggestions for its application in clinical care. We propose a vision for rehabilitation clinical practice and research that includes the development, adaptation, and implementation of evidence-based practice recommendations, which will contribute to a learning health care system. A clinical research culture that supports this vision and methods to engage key stakeholders to innovate rehabilitation science and practice are described. Through implementation of this vision, we can lead an evolution in rehabilitation practice to ultimately prevent disabilities, predict better outcomes, exploit plasticity, and promote participation.

  4. Man-machine design integration

    Energy Technology Data Exchange (ETDEWEB)

    Carrera, J.P. [Westinghouse Electric Corp., Monroeville, PA (United States). Nuclear Technology Div.; Haentjens, J. [Westinghouse Electric Corp., Brussels (Belgium). Nuclear Technology Div.

    1995-12-31

    The presentation overviews the bases for Man-Machine Interface (MMI) designs that are part of three other presentations during the same conference: Advanced Alarm Management System, Functional Displays and System for Emergency Procedure Execution Monitoring. The MMD group history, team and goals are summarized to give some context to the core of the MMD philosophy and integration. (10 refs., 5 figs.).

  5. Biofeedback for Better Vision

    Science.gov (United States)

    1990-01-01

    Biofeedtrac, Inc.'s Accommotrac Vision Trainer, invented by Dr. Joseph Trachtman, is based on vision research performed by Ames Research Center and a special optometer developed for the Ames program by Stanford Research Institute. In the United States, about 150 million people are myopes (nearsighted), who tend to overfocus when they look at distant objects causing blurry distant vision, or hyperopes (farsighted), whose vision blurs when they look at close objects because they tend to underfocus. The Accommotrac system is an optical/electronic system used by a doctor as an aid in teaching a patient how to contract and relax the ciliary body, the focusing muscle. The key is biofeedback, wherein the patient learns to control a bodily process or function he is not normally aware of. Trachtman claims a 90 percent success rate for correcting, improving or stopping focusing problems. The Vision Trainer has also proved effective in treating other eye problems such as eye oscillation, cross eyes, and lazy eye and in professional sports to improve athletes' peripheral vision and reaction time.

  6. Electricity of machine tool

    International Nuclear Information System (INIS)

    Gijeon media editorial department

    1977-10-01

    This book is divided into three parts. The first part deals with electricity machine, which can taints from generator to motor, motor a power source of machine tool, electricity machine for machine tool such as switch in main circuit, automatic machine, a knife switch and pushing button, snap switch, protection device, timer, solenoid, and rectifier. The second part handles wiring diagram. This concludes basic electricity circuit of machine tool, electricity wiring diagram in your machine like milling machine, planer and grinding machine. The third part introduces fault diagnosis of machine, which gives the practical solution according to fault diagnosis and the diagnostic method with voltage and resistance measurement by tester.

  7. Environmentally Friendly Machining

    CERN Document Server

    Dixit, U S; Davim, J Paulo

    2012-01-01

    Environment-Friendly Machining provides an in-depth overview of environmentally-friendly machining processes, covering numerous different types of machining in order to identify which practice is the most environmentally sustainable. The book discusses three systems at length: machining with minimal cutting fluid, air-cooled machining and dry machining. Also covered is a way to conserve energy during machining processes, along with useful data and detailed descriptions for developing and utilizing the most efficient modern machining tools. Researchers and engineers looking for sustainable machining solutions will find Environment-Friendly Machining to be a useful volume.

  8. Machine Protection

    CERN Document Server

    Schmidt, R

    2014-01-01

    The protection of accelerator equipment is as old as accelerator technology and was for many years related to high-power equipment. Examples are the protection of powering equipment from overheating (magnets, power converters, high-current cables), of superconducting magnets from damage after a quench and of klystrons. The protection of equipment from beam accidents is more recent. It is related to the increasing beam power of high-power proton accelerators such as ISIS, SNS, ESS and the PSI cyclotron, to the emission of synchrotron light by electron–positron accelerators and FELs, and to the increase of energy stored in the beam (in particular for hadron colliders such as LHC). Designing a machine protection system requires an excellent understanding of accelerator physics and operation to anticipate possible failures that could lead to damage. Machine protection includes beam and equipment monitoring, a system to safely stop beam operation (e.g. dumping the beam or stopping the beam at low energy) and an ...

  9. Machine Learning in Medicine.

    Science.gov (United States)

    Deo, Rahul C

    2015-11-17

    Spurred by advances in processing power, memory, storage, and an unprecedented wealth of data, computers are being asked to tackle increasingly complex learning tasks, often with astonishing success. Computers have now mastered a popular variant of poker, learned the laws of physics from experimental data, and become experts in video games - tasks that would have been deemed impossible not too long ago. In parallel, the number of companies centered on applying complex data analysis to varying industries has exploded, and it is thus unsurprising that some analytic companies are turning attention to problems in health care. The purpose of this review is to explore what problems in medicine might benefit from such learning approaches and use examples from the literature to introduce basic concepts in machine learning. It is important to note that seemingly large enough medical data sets and adequate learning algorithms have been available for many decades, and yet, although there are thousands of papers applying machine learning algorithms to medical data, very few have contributed meaningfully to clinical care. This lack of impact stands in stark contrast to the enormous relevance of machine learning to many other industries. Thus, part of my effort will be to identify what obstacles there may be to changing the practice of medicine through statistical learning approaches, and discuss how these might be overcome. © 2015 American Heart Association, Inc.

  10. Machine Learning in Medicine

    Science.gov (United States)

    Deo, Rahul C.

    2015-01-01

    Spurred by advances in processing power, memory, storage, and an unprecedented wealth of data, computers are being asked to tackle increasingly complex learning tasks, often with astonishing success. Computers have now mastered a popular variant of poker, learned the laws of physics from experimental data, and become experts in video games – tasks which would have been deemed impossible not too long ago. In parallel, the number of companies centered on applying complex data analysis to varying industries has exploded, and it is thus unsurprising that some analytic companies are turning attention to problems in healthcare. The purpose of this review is to explore what problems in medicine might benefit from such learning approaches and use examples from the literature to introduce basic concepts in machine learning. It is important to note that seemingly large enough medical data sets and adequate learning algorithms have been available for many decades – and yet, although there are thousands of papers applying machine learning algorithms to medical data, very few have contributed meaningfully to clinical care. This lack of impact stands in stark contrast to the enormous relevance of machine learning to many other industries. Thus part of my effort will be to identify what obstacles there may be to changing the practice of medicine through statistical learning approaches, and discuss how these might be overcome. PMID:26572668

  11. Intelligent vision in the nuclear industry

    International Nuclear Information System (INIS)

    Luna, F.

    1983-01-01

    General Electric has developed an intelligent microprocessor-based machine vision system that is character font independent and is capable of reading characters that may be variably defined as a result of dirt, misalignment, or scratches incurred during processing. This system, the Alphavision System, was developed at the GE fuel fabrication facility in Wilmington, North Carolina, and has been used to read serial numbers on fuel rods. This paper describes the system and considerations for its use and suggests some potential applications in nuclear materials item accountability

  12. VIRTUAL MODELING OF A NUMERICAL CONTROL MACHINE TOOL USED FOR COMPLEX MACHINING OPERATIONS

    Directory of Open Access Journals (Sweden)

    POPESCU Adrian

    2015-11-01

    Full Text Available This paper presents the 3D virtual model of the numerical control machine Modustar 100, in terms of machine elements. This is a CNC machine of modular construction, all components allowing the assembly in various configurations. The paper focused on the design of the subassemblies specific to the axes numerically controlled by means of CATIA v5, which contained different drive kinematic chains of different translation modules that ensures translation on X, Y and Z axis. Machine tool development for high speed and highly precise cutting demands employment of advanced simulation techniques witch it reflect on cost of total development of the machine.

  13. A Practical Solution Using A New Approach To Robot Vision

    Science.gov (United States)

    Hudson, David L.

    1984-01-01

    all of his own software to test, analyze and process the vision application. The second and most common approach was to contract with the vision equipment vendor for the development and installation of a turnkey inspection or manufacturing system. The robot user and his company paid a premium for their vision system in an effort to assure the success of the system. Since 1981, emphasis on robotics has skyrocketed. New groups have been formed in many manufacturing companies with the charter to learn about, test and initially apply new robot and automation technologies. Machine vision is one of new technologies being tested and applied. This focused interest has created a need for a robot vision system that makes it easy for manufacturing engineers to learn about, test, and implement a robot vision application. A newly developed vision system addresses those needs. Vision Development System (VDS) is a complete hardware and software product for the development and testing of robot vision applications. A complimentary, low cost Target Application System (TASK) runs the application program developed with the VDS. An actual robot vision application that demonstrates inspection and pre-assembly for keyboard manufacturing is used to illustrate the VDS/TASK approach.

  14. Advanced method used for hypertension’s risk factors stratification: support ‎vector machines and gravitational search algorithm

    Directory of Open Access Journals (Sweden)

    Alireza Khosravi

    2015-12-01

    Full Text Available BACKGROUND: The aim of this study is to present an objective method based on support vector machines (SVMs and gravitational search algorithm (GSA which is initially utilized for recognition the pattern among risk factors and hypertension (HTN to stratify and analysis HTN’s risk factors in an Iranian urban population. METHODS: This community-based and cross-sectional research has been designed based on the probabilistic sample of residents of Isfahan, Iran, aged 19 years or over from 2001 to 2007. One of the household members was randomly selected from different age groups. Selected individuals were invited to a predefined health center to be educated on how to collect 24-hour urine sample as well as learning about topographic parameters and blood pressure measurement. The data from both the estimated and measured blood pressure [for both systolic blood pressure (SBP and diastolic blood pressure (DBP] demonstrated that optimized SVMs have a highest estimation potential. RESULTS: This result was particularly more evident when SVMs performance is evaluated with regression and generalized linear modeling (GLM as common methods. Blood pressure risk factors impact analysis shows that age has the highest impact level on SBP while it falls second on the impact level ranking on DBP. The results also showed that body mass index (BMI falls first on the impact level ranking on DBP while have a lower impact on SBP. CONCLUSION: Our analysis suggests that salt intake could efficiently influence both DBP and SBP with greater impact level on SBP. Therefore, controlling salt intake may lead to not only control of HTN but also its prevention.

  15. Computer Vision Malaria Diagnostic Systems—Progress and Prospects

    Directory of Open Access Journals (Sweden)

    Joseph Joel Pollak

    2017-08-01

    Full Text Available Accurate malaria diagnosis is critical to prevent malaria fatalities, curb overuse of antimalarial drugs, and promote appropriate management of other causes of fever. While several diagnostic tests exist, the need for a rapid and highly accurate malaria assay remains. Microscopy and rapid diagnostic tests are the main diagnostic modalities available, yet they can demonstrate poor performance and accuracy. Automated microscopy platforms have the potential to significantly improve and standardize malaria diagnosis. Based on image recognition and machine learning algorithms, these systems maintain the benefits of light microscopy and provide improvements such as quicker scanning time, greater scanning area, and increased consistency brought by automation. While these applications have been in development for over a decade, recently several commercial platforms have emerged. In this review, we discuss the most advanced computer vision malaria diagnostic technologies and investigate several of their features which are central to field use. Additionally, we discuss the technological and policy barriers to implementing these technologies in low-resource settings world-wide.

  16. ARM-based visual processing system for prosthetic vision.

    Science.gov (United States)

    Matteucci, Paul B; Byrnes-Preston, Philip; Chen, Spencer C; Lovell, Nigel H; Suaning, Gregg J

    2011-01-01

    A growing number of prosthetic devices have been shown to provide visual perception to the profoundly blind through electrical neural stimulation. These first-generation devices offer promising outcomes to those affected by degenerative disorders such as retinitis pigmentosa. Although prosthetic approaches vary in their placement of the stimulating array (visual cortex, optic-nerve, epi-retinal surface, sub-retinal surface, supra-choroidal space, etc.), most of the solutions incorporate an externally-worn device to acquire and process video to provide the implant with instructions on how to deliver electrical stimulation to the patient, in order to elicit phosphenized vision. With the significant increase in availability and performance of low power-consumption smart phone and personal device processors, the authors investigated the use of a commercially available ARM (Advanced RISC Machine) device as an externally-worn processing unit for a prosthetic neural stimulator for the retina. A 400 MHz Samsung S3C2440A ARM920T single-board computer was programmed to extract 98 values from a 1.3 Megapixel OV9650 CMOS camera using impulse, regional averaging and Gaussian sampling algorithms. Power consumption and speed of video processing were compared to results obtained to similar reported devices. The results show that by using code optimization, the system is capable of driving a 98 channel implantable device for the restoration of visual percepts to the blind.

  17. Cognitive Comparative Advantage and the Organization of Work: Lessons from Herbert Simon's Vision of the Future

    OpenAIRE

    Richard N. Langlois

    2002-01-01

    In a marvelous but somewhat neglected paper, 'The Corporation: Will It Be Managed by Machines?' Herbert Simon articulated from the perspective of 1960 his vision of what we now call the New Economy the machine-aided system of production and management of the late twentieth century. Simon's analysis sprang from what I term the principle of cognitive comparative advantage: one has to understand the quite different cognitive structures of humans and machines (including computers) in order to exp...

  18. Computer vision syndrome: A review.

    Science.gov (United States)

    Gowrisankaran, Sowjanya; Sheedy, James E

    2015-01-01

    Computer vision syndrome (CVS) is a collection of symptoms related to prolonged work at a computer display. This article reviews the current knowledge about the symptoms, related factors and treatment modalities for CVS. Relevant literature on CVS published during the past 65 years was analyzed. Symptoms reported by computer users are classified into internal ocular symptoms (strain and ache), external ocular symptoms (dryness, irritation, burning), visual symptoms (blur, double vision) and musculoskeletal symptoms (neck and shoulder pain). The major factors associated with CVS are either environmental (improper lighting, display position and viewing distance) and/or dependent on the user's visual abilities (uncorrected refractive error, oculomotor disorders and tear film abnormalities). Although the factors associated with CVS have been identified the physiological mechanisms that underlie CVS are not completely understood. Additionally, advances in technology have led to the increased use of hand-held devices, which might impose somewhat different visual challenges compared to desktop displays. Further research is required to better understand the physiological mechanisms underlying CVS and symptoms associated with the use of hand-held and stereoscopic displays.

  19. Machine Protection

    International Nuclear Information System (INIS)

    Schmidt, R

    2014-01-01

    The protection of accelerator equipment is as old as accelerator technology and was for many years related to high-power equipment. Examples are the protection of powering equipment from overheating (magnets, power converters, high-current cables), of superconducting magnets from damage after a quench and of klystrons. The protection of equipment from beam accidents is more recent. It is related to the increasing beam power of high-power proton accelerators such as ISIS, SNS, ESS and the PSI cyclotron, to the emission of synchrotron light by electron–positron accelerators and FELs, and to the increase of energy stored in the beam (in particular for hadron colliders such as LHC). Designing a machine protection system requires an excellent understanding of accelerator physics and operation to anticipate possible failures that could lead to damage. Machine protection includes beam and equipment monitoring, a system to safely stop beam operation (e.g. dumping the beam or stopping the beam at low energy) and an interlock system providing the glue between these systems. The most recent accelerator, the LHC, will operate with about 3 × 10 14 protons per beam, corresponding to an energy stored in each beam of 360 MJ. This energy can cause massive damage to accelerator equipment in case of uncontrolled beam loss, and a single accident damaging vital parts of the accelerator could interrupt operation for years. This article provides an overview of the requirements for protection of accelerator equipment and introduces the various protection systems. Examples are mainly from LHC, SNS and ESS

  20. Mineral mining machines

    Energy Technology Data Exchange (ETDEWEB)

    Mc Gaw, B H

    1984-01-01

    A machine for mining minerals is patented. It is a cutter loader with a drum actuating element of the worm type equipped with a multitude of cutting teeth reinforced with tungsten carbide. A feature of the patented machine is that all of the cutting teeth and holders on the drum have the identical design. This is achieved through selecting a slant angle for the cutting teeth which is the mean between the slant angle of the conventional radial teeth and the slant angle of the advance teeth. This, in turn, is provided thanks to the corresponding slant of the holders relative to the drum and (or) the slant of the cutting part of the teeth relative to their stems. Thus, the advance teeth projecting beyond the surface of the drum on the face side and providing upper and lateral clearances have the same angle of attack as the radial teeth, that is, from 20 to 35 degrees. A series of modifications of the cutting teeth is patented. One of the designs allows the cutting tooth to occupy a varying position relative to the drum, from the conventional vertical to an inverted, axially projecting position. In the last case the tooth in the extraction process provides the upper and lateral clearances for the drum on the face side. Among the different modifications of the cutting teeth, a design is proposed which provides for the presence of a stem which is shaped like a truncated cone. This particular stem is designed for use jointly with a wedge which unfastens the teeth and is placed in a holder. The latter is completed in a transverse slot thanks to which the rear end of the stem is compressed, which simplifies replacement of a tooth. Channels are provided in the patented machine for feeding water to the worm spiral, the holders and the cutting teeth themselves in order to deal with dust.