WorldWideScience

Sample records for machine stress rating

  1. A real-time phenotyping framework using machine learning for plant stress severity rating in soybean.

    Science.gov (United States)

    Naik, Hsiang Sing; Zhang, Jiaoping; Lofquist, Alec; Assefa, Teshale; Sarkar, Soumik; Ackerman, David; Singh, Arti; Singh, Asheesh K; Ganapathysubramanian, Baskar

    2017-01-01

    Phenotyping is a critical component of plant research. Accurate and precise trait collection, when integrated with genetic tools, can greatly accelerate the rate of genetic gain in crop improvement. However, efficient and automatic phenotyping of traits across large populations is a challenge; which is further exacerbated by the necessity of sampling multiple environments and growing replicated trials. A promising approach is to leverage current advances in imaging technology, data analytics and machine learning to enable automated and fast phenotyping and subsequent decision support. In this context, the workflow for phenotyping (image capture → data storage and curation → trait extraction → machine learning/classification → models/apps for decision support) has to be carefully designed and efficiently executed to minimize resource usage and maximize utility. We illustrate such an end-to-end phenotyping workflow for the case of plant stress severity phenotyping in soybean, with a specific focus on the rapid and automatic assessment of iron deficiency chlorosis (IDC) severity on thousands of field plots. We showcase this analytics framework by extracting IDC features from a set of ~4500 unique canopies representing a diverse germplasm base that have different levels of IDC, and subsequently training a variety of classification models to predict plant stress severity. The best classifier is then deployed as a smartphone app for rapid and real time severity rating in the field. We investigated 10 different classification approaches, with the best classifier being a hierarchical classifier with a mean per-class accuracy of ~96%. We construct a phenotypically meaningful 'population canopy graph', connecting the automatically extracted canopy trait features with plant stress severity rating. We incorporated this image capture → image processing → classification workflow into a smartphone app that enables automated real-time evaluation of IDC

  2. Measurements for stresses in machine components

    CERN Document Server

    Yakovlev, V F

    1964-01-01

    Measurements for Stresses in Machine Components focuses on the state of stress and strain of components and members, which determines the service life and strength of machines and structures. This book is divided into four chapters. Chapter I describes the physical basis of several methods of measuring strains, which includes strain gauges, photoelasticity, X-ray diffraction, brittle coatings, and dividing grids. The basic concepts of the electric strain gauge method for measuring stresses inside machine components are covered in Chapter II. Chapter III elaborates on the results of experim

  3. FLOW STRESS MODEL FOR HARD MACHINING OF AISI H13 WORK TOOL STEEL

    Institute of Scientific and Technical Information of China (English)

    H. Yan; J. Hua; R. Shivpuri

    2005-01-01

    An approach is presented to characterize the stress response of workpiece in hard machining,accounted for the effect of the initial workpiece hardness, temperature, strain and strain rate on flow stress. AISI H13 work tool steel was chosen to verify this methodology. The proposed flow stress model demonstrates a good agreement with data collected from published experiments.Therefore, the proposed model can be used to predict the corresponding flow stress-strain response of AISI H13 work tool steel with variation of the initial workpiece hardness in hard machining.

  4. Development of Flow Stress of AISI H13 Die Steel in Hard Machining

    Institute of Scientific and Technical Information of China (English)

    YAN Hong; QIAN Guohua; HU Qiang

    2007-01-01

    An approach was presented to characterize the stress response of workpiece in hard machining, accounting for the effect of the initial workpiece hardness in addition to temperature, strain and strain rate on flow stress in this paper. AISI H13 die steel was chosen to verify this methodology. The proposed flow stress model demonstrates a good agreement with experimental data. Therefore, the proposed model can be used to predict the corresponding flow stress-strain response of AISI H13 die steel with variation of the initial workpiece hardness in hard machining.

  5. Emergent response allocation and outcome ratings in slot machine gambling.

    Science.gov (United States)

    Dymond, Simon; McCann, Kate; Griffiths, Joanne; Cox, Amanda; Crocker, Victoria

    2012-03-01

    The present study describes a contemporary behavior-analytic model of emergent simulated slot machine gambling. Three laboratory experiments investigated the conditions under which stimuli correlated with different slot machine payout probabilities come to have new, emergent functions without those functions being trained directly. After a successful test for verbal relations (A1-B1-C1 and A2-B2-C2), gamblers and nongamblers were exposed to a task in which high- and low-payout probability functions were established for two slot machines labeled with members of the derived relations (B1 and B2). In Experiment 1, participants provided ratings and chose between concurrently presented slot machines labeled with indirectly related stimuli (C1 and C2). In Experiments 2 and 3, participants made ratings and chose under conditions of nonreinforcement and matched payout probabilities, respectively. Across all three experiments, it was predicted that participants would make more selections of, and give higher liking ratings to, the slot machine indirectly related to the trained high-payout probability machine (C2) than the slot machine indirectly related to the trained low-payout probability machine (C1). Findings supported these predictions. The implications for behavior-analytic research on gambling and the development of verbally based interventions for disordered gambling are discussed.

  6. Measurement of seedling growth rate by machine vision

    Science.gov (United States)

    Howarth, M. Scott; Stanwood, Phillip C.

    1993-05-01

    Seed vigor and germination tests have traditionally been used to determine deterioration of seed samples. Vigor tests describe the seed potential to emerge and produce a mature crop under certain field conditions and one measure is seedling growth rate. A machine vision system was developed to measure root growth rate over the entire germination period. The machine vision measurement technique was compared to the manual growth rate technique. The vision system provided similar growth rate measurements as compared to the manual growth rate technique. The average error between the system and a manual measurement was -0.13 for the lettuce test and -0.07 for the sorghum test. This technique also provided an accurate representation of the growth rate as well as percent germination.

  7. Machine cost analysis using the traditional machine-rate method and ChargeOut!

    Science.gov (United States)

    E. M. (Ted). Bilek

    2009-01-01

    Forestry operations require ever more use of expensive capital equipment. Mechanization is frequently necessary to perform cost-effective and safe operations. Increased capital should mean more sophisticated capital costing methodologies. However the machine rate method, which is the costing methodology most frequently used, dates back to 1942. CHARGEOUT!, a recently...

  8. Occupational stress and heart rate variability

    National Research Council Canada - National Science Library

    Martin Rauber; Marjan Bilban; Radovan Starc

    2015-01-01

    Brief description of the article: This article considers heart rate variability as a measurable parameter of stress reaction and present recent studies that examined the impact of occupational stress on heart rate variability...

  9. Stress wave analysis: applied to rotating machines; Stress wave analysis: aplicado a maquinas rotativas

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Paulo Garcia de [Invensys Brasil Ltda., Sao Paulo, SP (Brazil)

    2009-11-01

    Stress wave analysis is the technology of data analysis (stress profile - ultrasound spectrum) collected by high-frequency acoustic sensors. Monitoring and analysis of rotating equipment, is a crucial element in predictive maintenance and condition based maintenance projects and, in a broader context, of performance management and optimization of assets. This article discusses the application of stress wave analysis to rotating machines in the context of assets optimization and CBM. (author)

  10. Forecasting daily and monthly exchange rates with machine learning techniques

    OpenAIRE

    Papadimitriou, Theophilos; Gogas, Periklis; Plakandaras, Vasilios

    2013-01-01

    We combine signal processing to machine learning methodologies by introducing a hybrid Ensemble Empirical Mode Decomposition (EEMD), Multivariate Adaptive Regression Splines (MARS) and Support Vector Regression (SVR) model in order to forecast the monthly and daily Euro (EUR)/United States Dollar (USD), USD/Japanese Yen (JPY), Australian Dollar (AUD)/Norwegian Krone (NOK), New Zealand Dollar (NZD)/Brazilian Real (BRL) and South African Rand (ZAR)/Philippine Peso (PHP) exchange rates. After th...

  11. Maximizing production rates of the Linde Hampson machine

    Science.gov (United States)

    Maytal, B.-Z.

    2006-01-01

    In contrast to the ideal case of unlimited size recuperator, any real Linde-Hampson machine of finite size recuperator can be optimized to reach the extreme rates of performance. The group of cryocoolers sharing the same size recuperator is optimized in a closed form by determining the corresponding flow rate which maximizes its rate of cold production. For a similar group of liquefiers an optimal flow rate is derived to maximize the rate of production of liquid cryogen. The group of cryocoolers sharing a constant and given flow rate is optimized by shortening the recuperator for reaching a maximum compactness measured by the cooling power per unit size of the recuperator. The optimum conditions are developed for nitrogen and argon. The relevance of this analysis is discussed in the context of practice of fast cooldown Joule-Thomson cryocooling.

  12. Measurements of Creep Internal Stress Based on Constant Strain Rate and Its Application to Engineering

    Institute of Scientific and Technical Information of China (English)

    TAO Wen-liang; WEI Tao

    2006-01-01

    This research is carried out on the basis of Constant Strain Rate(CSR) to measure creep internal stress. Measurements of creep internal stress are conducted on the material test machine by using the CSR method. A mathematical model of creep internal stress is also proposed and its application is presented in this paper.

  13. Estimating stress heterogeneity from aftershock rate

    CERN Document Server

    Helmstetter, A; Helmstetter, Agnes; Shaw, Bruce E.

    2005-01-01

    We estimate the rate of aftershocks triggered by a heterogeneous stress change, using the rate-and-state model of Dieterich [1994]. We show than an exponential stress distribution P(\\tau)~ exp(-\\tau/\\tau_0) gives an Omori law decay of aftershocks with time ~1/t^p, with an exponent p=1-A\\sigma_n/\\tau_0, where A is a parameter of the rate-and-state friction law, and \\sigma_n the normal stress. Omori exponent p thus decreases if the stress "heterogeneity" \\tau_0 decreases. We also invert the stress distribution P(\\tau) from the seismicity rate R(t), assuming that the stress does not change with time. We apply this method to a synthetic stress map, using the (modified) scale invariant "k^2" slip model [Herrero and Bernard, 1994]. We generate synthetic aftershock catalogs from this stress change. The seismicity rate on the rupture area shows a huge increase at short times, even if the stress decreases on average. This stochastic slip model gives a Gaussian stress distribution, but nevertheless produces an aftersho...

  14. ChargeOut! : discounted cash flow compared with traditional machine-rate analysis

    Science.gov (United States)

    Ted Bilek

    2008-01-01

    ChargeOut!, a discounted cash-flow methodology in spreadsheet format for analyzing machine costs, is compared with traditional machine-rate methodologies. Four machine-rate models are compared and a common data set representative of logging skidders’ costs is used to illustrate the differences between ChargeOut! and the machine-rate methods. The study found that the...

  15. Flute growth rate of plasma jet in mirror machine

    Science.gov (United States)

    Be'ery, I.; Seemann, O.; Goldstein, G.; Fisher, A.; Ron, A.

    2014-02-01

    The evolution of flute instability in a cold, high-density hydrogen plasma jet, injected into a mirror machine, is studied. The experiment was designed to minimize the interaction of the plasma with the walls, thus bringing it close to the ideal magnetic Rayleigh-Taylor instability conditions. The modal growth rate was measured in various settings to demonstrate the effects of the finite Larmor radius, Bohm diffusion, conductive limiter, biased limiter and neutral background gas. In this paper we will demonstrate that lowering the magnetic field increases stability, as does the insertion of a conducting ring. However, if the ring is biased, the stability is reduced due to inhomogeneous coupling between the plasma and the limiter. It was also found that heavy background gas dramatically reduces the flute instability growth rate.

  16. Optimization of machining and vibration parameters for residual stresses minimization in ultrasonic assisted turning of 4340 hardened steel.

    Science.gov (United States)

    Sharma, Varun; Pandey, Pulak M

    2016-08-01

    The residual stresses generated in the machined work piece have detrimental effect on fatigue life, corrosion resistance and tribological properties. However, the effect of cutting and vibration parameters on residual stresses in Ultrasonic Assisted Turning (UAT) has not been dealt with. The present paper highlights the effect of feed rate, depth of cut, cutting velocity and percentage intensity of ultrasonic power on residual stress generation. XRD analysis has been carried out to measure the residual stress while turning 4340 hardened steel using UAT. The experiments were performed based on response surface methodology to develop statistical model for residual stress. The outcome of ANOVA revealed that percentage intensity and feed rate significantly affect the residual stress generation. The significant interactions between process parameters have also been presented tin order to understand the thermo-mechanical mechanism responsible for residual stress generation.

  17. Modeling of the flow stress for AISI H13 Tool Steel during Hard Machining Processes

    Science.gov (United States)

    Umbrello, Domenico; Rizzuti, Stefania; Outeiro, José C.; Shivpuri, Rajiv

    2007-04-01

    In general, the flow stress models used in computer simulation of machining processes are a function of effective strain, effective strain rate and temperature developed during the cutting process. However, these models do not adequately describe the material behavior in hard machining, where a range of material hardness between 45 and 60 HRC are used. Thus, depending on the specific material hardness different material models must be used in modeling the cutting process. This paper describes the development of a hardness-based flow stress and fracture models for the AISI H13 tool steel, which can be applied for range of material hardness mentioned above. These models were implemented in a non-isothermal viscoplastic numerical model to simulate the machining process for AISI H13 with various hardness values and applying different cutting regime parameters. Predicted results are validated by comparing them with experimental results found in the literature. They are found to predict reasonably well the cutting forces as well as the change in chip morphology from continuous to segmented chip as the material hardness change.

  18. Strain rate effects in stress corrosion cracking

    Energy Technology Data Exchange (ETDEWEB)

    Parkins, R.N. (Newcastle upon Tyne Univ. (UK). Dept. of Metallurgy and Engineering Materials)

    1990-03-01

    Slow strain rate testing (SSRT) was initially developed as a rapid, ad hoc laboratory method for assessing the propensity for metals an environments to promote stress corrosion cracking. It is now clear, however, that there are good theoretical reasons why strain rate, as opposed to stress per se, will often be the controlling parameter in determining whether or not cracks are nucleated and, if so, are propagated. The synergistic effects of the time dependence of corrosion-related reactions and microplastic strain provide the basis for mechanistic understanding of stress corrosion cracking in high-pressure pipelines and other structures. However, while this may be readily comprehended in the context of laboratory slow strain tests, its extension to service situations may be less apparent. Laboratory work involving realistic stressing conditions, including low-frequency cyclic loading, shows that strain or creep rates give good correlation with thresholds for cracking and with crack growth kinetics.

  19. High Metal Removal Rate Process for Machining Difficult Materials

    Energy Technology Data Exchange (ETDEWEB)

    Bates, Robert; McConnell, Elizabeth

    2016-06-29

    Machining methods across many industries generally require multiple operations to machine and process advanced materials, features with micron precision, and complex shapes. The resulting multiple machining platforms can significantly affect manufacturing cycle time and the precision of the final parts, with a resultant increase in cost and energy consumption. Ultrafast lasers represent a transformative and disruptive technology that removes material with micron precision and in a single step manufacturing process. Such precision results from athermal ablation without modification or damage to the remaining material which is the key differentiator between ultrafast laser technologies and traditional laser technologies or mechanical processes. Athermal ablation without modification or damage to the material eliminates post-processing or multiple manufacturing steps. Combined with the appropriate technology to control the motion of the work piece, ultrafast lasers are excellent candidates to provide breakthrough machining capability for difficult-to-machine materials. At the project onset in early 2012, the project team recognized that substantial effort was necessary to improve the application of ultrafast laser and precise motion control technologies (for micromachining difficult-to-machine materials) to further the aggregate throughput and yield improvements over conventional machining methods. The project described in this report advanced these leading-edge technologies thru the development and verification of two platforms: a hybrid enhanced laser chassis and a multi-application testbed.

  20. UTILITY OF THE METHOD T.H.M. (MACHINE - HOUR - RATE PRODUCTION CENTURY PROCESS AUTOMATION

    Directory of Open Access Journals (Sweden)

    Cristina-Otilia, ȚENOVICI

    2014-11-01

    Full Text Available The method T.H.M. (machine - hour - rate gives greater accuracy in the factories or departments, where production is largely by machinery. In the specialty literature, the notion of price - the time - the car is defined as "œa rate calculated by dividing the budgeted or estimated overhead or labour and overhead cost attributable to a machine or group of similar machines by the appropriate number of machine hours. The hours may be the number of hours for which the machine or group is expected to be operated, the number of hours which would relate to normal working for the factory, or full capacity". In a highly mechanised cost centre, majority of the overhead expenses are incurred on account of using the machine, such as, depreciation, power, repairs and maintenance, insurance, etc. This method is currently offering the most equitable basis for absorption of overheads in machine intensive cost centres.

  1. Discussion of material rotation and stress rate

    Energy Technology Data Exchange (ETDEWEB)

    Dienes, J.K.

    1985-10-01

    Characterization of material behavior can be divided into two parts, the analysis of deformation and the underlying physics, though these are intimately related. A significant advance in the analysis of deformation was made when the polar decomposition theorem was introduced, making it possible to separate large deformations into a stretch and a rotation. Consequences of the theorem affect the way rate processes should be characterized. In particular, rate of material rotation is different from vorticity, and the stress rate for finite strains is different from the usual stress rate of Zaremba, Jaumann, and Noll. It is convenient to define a strain rate that is different from the stretching that is the symmetric part of the velocity gradient. These concepts are described in detail in a 1979 paper. Various criticisms of that paper have appeared in the Journal of Applied Mechanics, which are discussed herein. To illustrate the distinction, it is shown that the rate of rotation in a classical vortex does not vanish, though the vorticity is zero. It is also shown that the rate of material rotation recently computed by Nemat-Nasser, which involves an eigenvalue expansion, is equivalent to the one given in the 1979 paper, which makes use of matrix inversion, and it asseverated that the matrix inversion approach is computationally more efficient. 17 refs.

  2. The effects of machine parameters on residual stress determined using micro-Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sparks, R.G.; Enloe, W.S.; Paesler, M.A.

    1988-12-01

    The effects of machine parameters on residual stresses in single point diamond turned silicon and germanium have been investigated using micro-Raman spectroscopy. Residual stresses were sampled across ductile feed cuts in < 100 > silicon and germanium which were single point diamond turned using a variety of feed rates, rake angles and clearance angles. High spatial resolution micro-Raman spectra (1{mu}m spot) were obtained in regions of ductile cutting where no visible surface damage was present. The use of both 514-5nm and 488.0nm excitation wavelengths, by virtue of their differing characteristic penetration depths in the materials, allowed determinations of stress profiles as a function of depth into the sample. Previous discussions have demonstrated that such Raman spectra will exhibit asymmetrically broadened peaks which are characteristic of the superposition of a continuum of Raman scatterers from the various depths probed. Depth profiles of residual stress were obtained using computer deconvolution of the resulting asymmetrically broadened raman spectra.

  3. From scientific instrument to industrial machine : Coping with architectural stress in embedded systems

    NARCIS (Netherlands)

    Doornbos, R.; Loo, S. van

    2012-01-01

    Architectural stress is the inability of a system design to respond to new market demands. It is an important yet often concealed issue in high tech systems. In From scientific instrument to industrial machine, we look at the phenomenon of architectural stress in embedded systems in the context of a

  4. The effect of stress inoculation training on self-reported stress, observer's rating of stress, heart rate and gymnastics performance.

    Science.gov (United States)

    Mace, R D; Carroll, D

    1989-01-01

    Eighteen volunteer female subjects received preliminary instruction in a simple gymnastics bench sequence. They were then given a pre-intervention test on a bench at ground level. Self-reported distress, an independent observer's ratings of distress and heart rates were monitored immediately prior to performance of the sequence. Performances were also videotaped and formally scored by a qualified gymnastics judge. Subjects were then randomly assigned to a stress inoculation training group or a 'no stress management' training control group. Stress inoculation group subjects then received seven sessions of training in relaxation, imagery and making self-statements in order to develop a set of coping skills. Control group subjects also received seven training sessions during which they practised a series of coordination exercises, but no psychological stress management training was given to this group. All subjects were then re-tested on the bench sequence but this time at a height of 1.52 m. Self-reported stress, observer's ratings of distress and heart rate were recorded as before. Performance was again videotaped for scoring. The stress inoculation group reported significantly less stress prior to the test on the elevated beam than the control group. However, the groups did not differ in terms of heart rate. Further, the stress inoculation group performed reliably better than the control group on the elevated bench.

  5. Polarized light reveals stress in machined laminated plastics

    Science.gov (United States)

    Frankowski, J.

    1967-01-01

    Polarized light applied to drilled laminated plastic components exposes to the human eye the locked-in stresses that will result in fractures and delaminations when the soldering procedure takes place. This technique detects stresses early in the production cycle before appreciable man-hours are invested in an item destined for rejection.

  6. Surface Finish and Residual Stresses Induced by Orthogonal Dry Machining of AA7075-T651.

    Science.gov (United States)

    Jomaa, Walid; Songmene, Victor; Bocher, Philippe

    2014-02-28

    The surface finish was extensively studied in usual machining processes (turning, milling, and drilling). For these processes, the surface finish is strongly influenced by the cutting feed and the tool nose radius. However, a basic understanding of tool/surface finish interaction and residual stress generation has been lacking. This paper aims to investigate the surface finish and residual stresses under the orthogonal cutting since it can provide this information by avoiding the effect of the tool nose radius. The orthogonal machining of AA7075-T651 alloy through a series of cutting experiments was performed under dry conditions. Surface finish was studied using height and amplitude distribution roughness parameters. SEM and EDS were used to analyze surface damage and built-up edge (BUE) formation. An analysis of the surface topography showed that the surface roughness was sensitive to changes in cutting parameters. It was found that the formation of BUE and the interaction between the tool edge and the iron-rich intermetallic particles play a determinant role in controlling the surface finish during dry orthogonal machining of the AA7075-T651 alloy. Hoop stress was predominantly compressive on the surface and tended to be tensile with increased cutting speed. The reverse occurred for the surface axial stress. The smaller the cutting feed, the greater is the effect of cutting speed on both axial and hoop stresses. By controlling the cutting speed and feed, it is possible to generate a benchmark residual stress state and good surface finish using dry machining.

  7. Prediction and Optimization of Residual Stresses on Machined Surface and Sub-Surface in MQL Turning

    Science.gov (United States)

    Ji, Xia; Zou, Pan; Li, Beizhi; Rajora, Manik; Shao, Yamin; Liang, Steven Y.

    Residual stress in the machined surface and subsurface is affected by materials, machining conditions, and tool geometry and can affect the component life and service quality significantly. Empirical or numerical experiments are commonly used for determining residual stresses but these are very expensive. There has been an increase in the utilization of minimum quantity lubrication (MQL) in recent years in order to reduce the cost and tool/part handling efforts, while its effect on machined part residual stress, although important, has not been explored. This paper presents a hybrid neural network that is trained using Simulated Annealing (SA) and Levenberg-Marquardt Algorithm (LM) in order to predict the values of residual stresses in cutting and radial direction on the surface and within the work piece after the MQL face turning process. Once the ANN has successfully been trained, an optimization procedure, using Genetic Algorithm (GA), is applied in order to find the best cutting conditions in order to minimize the surface tensile residual stresses and maximize the compressive residual stresses within the work piece. The optimization results show that the usage of MQL decreases the surface tensile residual stresses and increases the compressive residual stresses within the work piece.

  8. Machine-Thermal Coupling Stresses Analysis of the Fin-Type Structural Thermoelectric Generator

    Science.gov (United States)

    Zhang, Zheng; Yue, Hao; Chen, Dongbo; Qin, Delei; Chen, Zijian

    2017-02-01

    The design structure and heat-transfer mechanism of a thermoelectric generator (TEG) determine its body temperature state. Thermal stress and thermal deformation generated by the temperature variation directly affect the stress state of thermoelectric modules (TEMs). Therefore, the rated temperature and pressing force of TEMs are important parameters in TEG design. Here, the relationships between structural of a fin-type TEG (FTEG) and these parameters are studied by modeling and "machine-thermal" coupling simulation. An indirect calculation method is adopted in the coupling simulation. First, numerical heat transfer calculations of a three-dimensional FTEG model are conducted according to an orthogonal simulation table. The influences of structural parameters for heat transfer in the channel and outer fin temperature distribution are analyzed. The optimal structural parameters are obtained and used to simulate temperature field of the outer fins. Second, taking the thermal calculation results as the initial condition, the thermal-solid coupling calculation is adopted. The thermal stresses of outer fin, mechanical force of spring-angle pressing mechanism, and clamping force on a TEM are analyzed. The simulation results show that the heat transfer area of the inner fin and the physical parameters of the metal materials are the keys to determining the FTEG temperature field. The pressing mechanism's mechanical force can be reduced by reducing the outer fin angle. In addition, a corrugated cooling water pipe, which has cooling and spring functionality, is conducive to establishing an adaptable clamping force to avoid the TEMs being crushed by the thermal stresses in the body.

  9. Forecasting the NOK/USD Exchange Rate with Machine Learning Techniques

    OpenAIRE

    Theophilos Papadimitriou; Periklis Gogas; Vasilios Plakandaras

    2013-01-01

    In this paper, we approximate the empirical findings of Papadamou and Markopoulos (2012) on the NOK/USD exchange rate under a Machine Learning (ML) framework. By applying Support Vector Regression (SVR) on a general monetary exchange rate model and a Dynamic Evolving Neuro-Fuzzy Inference System (DENFIS) to extract model structure, we test for the validity of popular monetary exchange rate models. We reach to mixed results since the coefficient sign of interest rate differential is in favor o...

  10. Stability Assessment of a System Comprising a Single Machine and Inverter with Scalable Ratings

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Brian B [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lin, Yashen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gevorgian, Vahan [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-28

    From the inception of power systems, synchronous machines have acted as the foundation of large-scale electrical infrastructures and their physical properties have formed the cornerstone of system operations. However, power electronics interfaces are playing a growing role as they are the primary interface for several types of renewable energy sources and storage technologies. As the role of power electronics in systems continues to grow, it is crucial to investigate the properties of bulk power systems in low inertia settings. In this paper, we assess the properties of coupled machine-inverter systems by studying an elementary system comprised of a synchronous generator, three-phase inverter, and a load. Furthermore, the inverter model is formulated such that its power rating can be scaled continuously across power levels while preserving its closed-loop response. Accordingly, the properties of the machine-inverter system can be assessed for varying ratios of machine-to-inverter power ratings and, hence, differing levels of inertia. After linearizing the model and assessing its eigenvalues, we show that system stability is highly dependent on the interaction between the inverter current controller and machine exciter, thus uncovering a key concern with mixed machine-inverter systems and motivating the need for next-generation grid-stabilizing inverter controls.

  11. Reducing U2R and R2L category false negative rates with support vector machines

    Directory of Open Access Journals (Sweden)

    Maček Nemanja

    2014-01-01

    Full Text Available The KDD Cup '99 is commonly used dataset for training and testing IDS machine learning algorithms. Some of the major downsides of the dataset are the distribution and the proportions of U2R and R2L instances, which represent the most dangerous attack types, as well as the existence of R2L attack instances identical to normal traffic. This enforces minor category detection complexity and causes problems while building a machine learning model capable of detecting these attacks with sufficiently low false negative rate. This paper presents a new support vector machine based intrusion detection system that classifies unknown data instances according both to the feature values and weight factors that represent importance of features towards the classification. Increased detection rate and significantly decreased false negative rate for U2R and R2L categories, that have a very few instances in the training set, have been empirically proven.

  12. Surface Finish and Residual Stresses Induced by Orthogonal Dry Machining of AA7075-T651

    Directory of Open Access Journals (Sweden)

    Walid Jomaa

    2014-02-01

    Full Text Available The surface finish was extensively studied in usual machining processes (turning, milling, and drilling. For these processes, the surface finish is strongly influenced by the cutting feed and the tool nose radius. However, a basic understanding of tool/surface finish interaction and residual stress generation has been lacking. This paper aims to investigate the surface finish and residual stresses under the orthogonal cutting since it can provide this information by avoiding the effect of the tool nose radius. The orthogonal machining of AA7075-T651 alloy through a series of cutting experiments was performed under dry conditions. Surface finish was studied using height and amplitude distribution roughness parameters. SEM and EDS were used to analyze surface damage and built-up edge (BUE formation. An analysis of the surface topography showed that the surface roughness was sensitive to changes in cutting parameters. It was found that the formation of BUE and the interaction between the tool edge and the iron-rich intermetallic particles play a determinant role in controlling the surface finish during dry orthogonal machining of the AA7075-T651 alloy. Hoop stress was predominantly compressive on the surface and tended to be tensile with increased cutting speed. The reverse occurred for the surface axial stress. The smaller the cutting feed, the greater is the effect of cutting speed on both axial and hoop stresses. By controlling the cutting speed and feed, it is possible to generate a benchmark residual stress state and good surface finish using dry machining.

  13. Stress analysis of biomass fuel molding machine piston type stamping forming cone

    Directory of Open Access Journals (Sweden)

    Wu Gaofeng

    2015-01-01

    Full Text Available It is established the ram biomass straw machine as the analysis object in this paper,the molding machine cones of stress in the forming process of the analysis of the system. We used pottery instead of Wear-resistant cast iron for improving the performance of forming sleeve. The structure of the forming sleeve was analyzed with the mechanical module of a soft named Pro/engineer in this paper. The result indicated that the program was feasible. With the sensitivity analysis we identified the suitable angle for the sleeve.

  14. Machine learning-based differential network analysis: a study of stress-responsive transcriptomes in Arabidopsis.

    Science.gov (United States)

    Ma, Chuang; Xin, Mingming; Feldmann, Kenneth A; Wang, Xiangfeng

    2014-02-01

    Machine learning (ML) is an intelligent data mining technique that builds a prediction model based on the learning of prior knowledge to recognize patterns in large-scale data sets. We present an ML-based methodology for transcriptome analysis via comparison of gene coexpression networks, implemented as an R package called machine learning-based differential network analysis (mlDNA) and apply this method to reanalyze a set of abiotic stress expression data in Arabidopsis thaliana. The mlDNA first used a ML-based filtering process to remove nonexpressed, constitutively expressed, or non-stress-responsive "noninformative" genes prior to network construction, through learning the patterns of 32 expression characteristics of known stress-related genes. The retained "informative" genes were subsequently analyzed by ML-based network comparison to predict candidate stress-related genes showing expression and network differences between control and stress networks, based on 33 network topological characteristics. Comparative evaluation of the network-centric and gene-centric analytic methods showed that mlDNA substantially outperformed traditional statistical testing-based differential expression analysis at identifying stress-related genes, with markedly improved prediction accuracy. To experimentally validate the mlDNA predictions, we selected 89 candidates out of the 1784 predicted salt stress-related genes with available SALK T-DNA mutagenesis lines for phenotypic screening and identified two previously unreported genes, mutants of which showed salt-sensitive phenotypes.

  15. From scientific instrument to industrial machine coping with architectural stress in embedded systems

    CERN Document Server

    Doornbos, Richard

    2012-01-01

    Architectural stress is the inability of a system design to respond to new market demands. It is an important yet often concealed issue in high tech systems. In From scientific instrument to industrial machine, we look at the phenomenon of architectural stress in embedded systems in the context of a transmission electron microscope system built by FEI Company. Traditionally, transmission electron microscopes are manually operated scientific instruments, but they also have enormous potential for use in industrial applications. However, this new market has quite different characteristics. There are strong demands for cost-effective analysis, accurate and precise measurements, and ease-of-use. These demands can be translated into new system qualities, e.g. reliability, predictability and high throughput, as well as new functions, e.g. automation of electron microscopic analyses, automated focusing and positioning functions. From scientific instrument to industrial machine takes a pragmatic approach to the proble...

  16. Adaptation of feed rate for 3-axis CNC high-speed machining

    Institute of Scientific and Technical Information of China (English)

    ZHANG De-li; ZHOU Lai-shui

    2009-01-01

    To improve the efficiency of CNC machining, assumptive transit circular arc is used to contour two adjacent moves together on the corner to make smooth paths. The radius of transit circular arc can be adjusted with contour accuracy, and the feed rate on the corner can be controlled through limiting the maximum feed rate of transit circular arc segment. A look-ahead algorithm for a series of moves is proposed for speed adjustment in advance, which avoids the occurrence of overload of cutting tool on the corner and reduces the servo track error of parts on the corner or of circular arc move. Equivalent trapezoidal velocity profile is used to analyze the speed of S-curve velocity profile and work out its accurate interpolation, which overcomes the disadvantage of looking up table to calculate feed rate approximately, hence high accuracy and fine surface quality can be obtained while the machining speed is high. The proposed methods can meet the requirements of real-time analysis of high-speed machining. The presented algorithm is effective and has been adopted by CNC system of newly developed high-speed milling machine.

  17. Loading Rate for Modulus of Rupture Test

    Institute of Scientific and Technical Information of China (English)

    QUMing; ZHANGYong-fang

    1996-01-01

    Relationship among load rate,strain rate and stress rate for modulus of ruptue test,the way of applying load with stress rate using both hydraulic compression testing machine and nechanical compression testing machine have been described.The test results are identical with selected strain rate loading and stress rate loading.

  18. Stability of machining induced residual stresses in Inconel 718 under quasi-static loading at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Madariaga, A., E-mail: amadariaga@mondragon.edu [Mechanical and Industrial Production Department, Faculty of Engineering, Mondragon Unibertsitatea, Loramendi 4, Mondragon 20500 Gipuzkoa (Spain); Esnaola, J.A.; Arrazola, P.J. [Mechanical and Industrial Production Department, Faculty of Engineering, Mondragon Unibertsitatea, Loramendi 4, Mondragon 20500 Gipuzkoa (Spain); Ruiz-Hervias, J.; Muñoz, P. [Departamento Ciencia de Materiales, ETSI Caminos, Universidad Politécnica de Madrid, c/Profesor Aranguren s/n, Madrid 28040 (Spain); Ostolaza, K. [Materials and Processes Technology Department, ITP S.A., Parque Tecnológico, Edificio 300, 48170 Zamudio (Spain)

    2015-01-03

    Tensile residual stresses are very often generated on the surface when machining nickel alloys. In order to determine their influence on the final mechanical behaviour of the component residual stress stability should be considered. In the present work the evolution of surface residual stresses induced by machining in Inconel 718 under static loading at room temperature was studied experimentally and numerically. An Inconel 718 disc was face turned employing industrial working conditions and specimens for tensile tests were extracted from the disc. Surface residual stresses were measured by X-ray diffraction for initial state and after applying different loads over the material's yield stress. Then, a finite element model based on the surface–core approach was fitted to experimental results and the study was extended to analyse the influence of load level, degree of work-hardening and initial surface conditions. For the studied case, initial tensile surface residual stress (776 MPa) became even more tensile when applying loads higher than the material yield stress, but a shift was observed at the highest applied load (1350 MPa) and initial residual stress was relaxed about 170 MPa. This particular behaviour is associated to the modified stress–strain properties of the machined affected surface layer which was strongly work-hardened. Moreover, if the work-hardened properties are not considered in the finite element model results differ substantially from experiments. Surface residual stress stability also depends on the initial surface residual stress, but the degree of work-hardening induced by the machining process must be considered as well. If the difference between the yield stress of the surface and the yield stress of the core is lower than the initial surface residual stress, the surface begins yielding first and consequently the surface residual stress is decreased. In contrast, if the difference between the yield stress of the surface and the

  19. Development of Estimating Equation of Machine Operational Skill by Utilizing Eye Movement Measurement and Analysis of Stress and Fatigue

    Directory of Open Access Journals (Sweden)

    Satoshi Suzuki

    2013-01-01

    Full Text Available For an establishment of a skill evaluation method for human support systems, development of an estimating equation of the machine operational skill is presented. Factors of the eye movement such as frequency, velocity, and moving distance of saccade were computed using the developed eye gaze measurement system, and the eye movement features were determined from these factors. The estimating equation was derived through an outlier test (to eliminate nonstandard data and a principal component analysis (to find dominant components. Using a cooperative carrying task (cc-task simulator, the eye movement and operational data of the machine operators were recorded, and effectiveness of the derived estimating equation was investigated. As a result, it was confirmed that the estimating equation was effective strongly against actual simple skill levels (r=0.56–0.84. In addition, effects of internal condition such as fatigue and stress on the estimating equation were analyzed. Using heart rate (HR and coefficient of variation of R-R interval (Cvrri. Correlation analysis between these biosignal indexes and the estimating equation of operational skill found that the equation reflected effects of stress and fatigue, although the equation could estimate the skill level adequately.

  20. Carbon Nanotube Growth Rate Regression using Support Vector Machines and Artificial Neural Networks

    Science.gov (United States)

    2014-03-27

    rates are realized by this faster search. 1.3 Assumptions The machine learning approach used for extracting optimal growth parameters assumes the catalyst...and high strength polymers. [25] All carbon to carbon bonds are filled in a CNT so they are chemically inert and stable in acids, bases and solvents ...research in maximizing CNT length. SWNTs of 18.5 cm in length were obtained by using an ethanol precursor and an iron molybdenum catalyst [10]. Also, by

  1. Physics-informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data

    Science.gov (United States)

    Wang, Jian-Xun; Wu, Jin-Long; Xiao, Heng

    2017-03-01

    Turbulence modeling is a critical component in numerical simulations of industrial flows based on Reynolds-averaged Navier-Stokes (RANS) equations. However, after decades of efforts in the turbulence modeling community, universally applicable RANS models with predictive capabilities are still lacking. Large discrepancies in the RANS-modeled Reynolds stresses are the main source that limits the predictive accuracy of RANS models. Identifying these discrepancies is of significance to possibly improve the RANS modeling. In this work, we propose a data-driven, physics-informed machine learning approach for reconstructing discrepancies in RANS modeled Reynolds stresses. The discrepancies are formulated as functions of the mean flow features. By using a modern machine learning technique based on random forests, the discrepancy functions are trained by existing direct numerical simulation (DNS) databases and then used to predict Reynolds stress discrepancies in different flows where data are not available. The proposed method is evaluated by two classes of flows: (1) fully developed turbulent flows in a square duct at various Reynolds numbers and (2) flows with massive separations. In separated flows, two training flow scenarios of increasing difficulties are considered: (1) the flow in the same periodic hills geometry yet at a lower Reynolds number and (2) the flow in a different hill geometry with a similar recirculation zone. Excellent predictive performances were observed in both scenarios, demonstrating the merits of the proposed method.

  2. a Study of Stress Relaxation Rate in Un-Irradiated and Neutron-Irradiated Stainless Steel

    Science.gov (United States)

    Ghauri, I. M.; Afzal, Naveed; Zyrek, N. A.

    Stress relaxation rate in un-irradiated and neutron-irradiated 303 stainless steel was investigated at room temperature. The specimens were exposed to 100 mC, Ra-Be neutron source of continuous energy 2-12 MeV for a period ranging from 4 to 16 days. The tensile deformation of the specimens was carried out using a Universal Testing Machine at 300 K. During the deformation, straining was frequently interrupted by arresting the cross head to observe stress relaxation at fixed load. Stress relaxation rate, s, was found to be stress dependent i.e. it increased with increasing stress levels σ0 both in un-irradiated and irradiated specimens, however the rate was lower in irradiated specimens than those of un-irradiated ones. A further decrease in s was observed with increase in exposure time. The experiential decrease in the relaxation rate in irradiated specimens is ascribed to strong interaction of glide dislocations with radiation induced defects. The activation energy for the movement of dislocations was found to be higher in irradiated specimens as compared with the un-irradiated ones.

  3. Identical parallel machine scheduling with nonlinear deterioration and multiple rate modifying activities

    Directory of Open Access Journals (Sweden)

    Ömer Öztürkoğlu

    2017-07-01

    Full Text Available This study focuses on identical parallel machine scheduling of jobs with deteriorating processing times and rate-modifying activities. We consider non linearly increasing processing times of jobs based on their position assignment. Rate modifying activities are also considered to recover the increase in processing times of jobs due to deterioration. We also propose heuristics algorithms that rely on ant colony optimization and simulated annealing algorithms to solve the problem with multiple RMAs in a reasonable amount of time. Finally, we show that ant colony optimization algorithm generates close optimal solutions and superior results than simulated annealing algorithm.

  4. Technique to reduce the shaft torque stress at an induction machine

    Directory of Open Access Journals (Sweden)

    Adrian Tulbure

    2005-10-01

    Full Text Available For the active attenuation at load stress in the drive shaft, the control system should receive as input signal the instantaneous shaft torque value. In this context an intelligent observer for shaft tongue of mains operatea induction machine, which is able to responding by variation of LIF (Load Input Function[1] must be developed. Extensive computer simulation prove the effectiveness of the proposed solution. In order to obtain a practical validation, the stimulated regulator has been designed and tested in the Institute of Electrical Engineering in Clausthal/Germany [2]. This paper contains following parts: Developing the mathematical model, Practical realisation, Simulations and measurements, Evaluating the control solutions and Conclusions.

  5. Investigations on the critical feed rate guaranteeing the effectiveness of rotary ultrasonic machining.

    Science.gov (United States)

    Wang, Jianjian; Feng, Pingfa; Zhang, Jianfu; Cai, Wanchong; Shen, Hao

    2017-02-01

    Rotary ultrasonic machining (RUM) is a well-known and efficient method for manufacturing holes in brittle materials. RUM is characterized by improved material removal rates, reduced cutting forces and reduced edge chipping sizes at the hole exit. The aim of this study is to investigate the critical feed rate to guarantee the effectiveness of RUM. Experimental results on quartz glass and sapphire specimens show that when the feed rate exceeds a critical value, the cutting force increases abruptly, accompanied by a significant decrease of ultrasonic amplitude. An analytical model for the prediction of critical feed rates is presented, based on indentation fracture mechanic and the theory of impact of vibrating systems. This model establishes the theoretical relationships between the critical feed rate, idling resonant ultrasonic amplitude and spindle speed. The results predicted by the analytical model were in good agreement with the experimental results.

  6. Effect of wire EDM conditions on generation of residual stresses in machining of aluminum 2014 T6 alloy

    Directory of Open Access Journals (Sweden)

    Pujari Srinivasa Rao

    2016-06-01

    Full Text Available Wire electrical discharge machining (EDM possesses many advantages over the conventional manufacturing process. Hence, this process was used for machining of all conductive materials; especially, nowadays this is the most common process for machining of aerospace aluminum alloys. This process produces complex shapes in aluminum alloys with extremely tight tolerances in a single setup. But, for good surface integrity and longer service life, the residual stresses generated on the components should be as low as possible and it depends on the setting of process parameters and the material to be machined. In wire EDM, much of the work was concentrated on Titanium alloys, Inconel alloys and various types of steels and partly on aluminum alloys. The present investigation was a parametric analysis of wire EDM parameters on residual stresses in the machining of aluminum alloy using Taguchi method. The results obtained had shown a wide range of residual stresses from 8.2 to 405.6 MPa. It also influenced the formation of various intermetallics such as AlCu and AlCu3. Microscopic examination revealed absence of surface cracks on aluminum surface at all the machining conditions. Here, an attempt was made to compare the results of aluminum alloy with the available machined data for other metals.

  7. Acute stress affects heart rate variability during sleep

    National Research Council Canada - National Science Library

    Hall, Martica; Vasko, Raymond; Buysse, Daniel; Ombao, Hernando; Chen, Qingxia; Cashmere, J David; Kupfer, David; Thayer, Julian F

    2004-01-01

    .... In this study, we used autoregressive spectral analysis of the electrocardiogram (EKG) interbeat interval sequence to characterize stress-related changes in heart rate variability during sleep in 59 healthy men and women. Participants (N = 59...

  8. Machine Learning: How Much Does It Tell about Protein Folding Rates?

    Directory of Open Access Journals (Sweden)

    Marc Corrales

    Full Text Available The prediction of protein folding rates is a necessary step towards understanding the principles of protein folding. Due to the increasing amount of experimental data, numerous protein folding models and predictors of protein folding rates have been developed in the last decade. The problem has also attracted the attention of scientists from computational fields, which led to the publication of several machine learning-based models to predict the rate of protein folding. Some of them claim to predict the logarithm of protein folding rate with an accuracy greater than 90%. However, there are reasons to believe that such claims are exaggerated due to large fluctuations and overfitting of the estimates. When we confronted three selected published models with new data, we found a much lower predictive power than reported in the original publications. Overly optimistic predictive powers appear from violations of the basic principles of machine-learning. We highlight common misconceptions in the studies claiming excessive predictive power and propose to use learning curves as a safeguard against those mistakes. As an example, we show that the current amount of experimental data is insufficient to build a linear predictor of logarithms of folding rates based on protein amino acid composition.

  9. Effects of social stress on heart rate and heart rate variability in growing pigs

    NARCIS (Netherlands)

    de Jong, IC; Sgoifo, A; Lambooij, E; Korte, SM; Blokhuis, HJ; Koolhaas, JM

    2000-01-01

    The effects of social stress on heart rate, heart rate variability and the occurrence of cardiac arrhythmias were studied in 12 growing pigs. Social stress was induced during a good competition test with a pen mate, and subsequently during a resident-intruder test with an unacquainted pig in which t

  10. Effects of social stress on heart rate and heart rate variability in growing pigs

    NARCIS (Netherlands)

    de Jong, IC; Sgoifo, A; Lambooij, E; Korte, SM; Blokhuis, HJ; Koolhaas, JM

    2000-01-01

    The effects of social stress on heart rate, heart rate variability and the occurrence of cardiac arrhythmias were studied in 12 growing pigs. Social stress was induced during a good competition test with a pen mate, and subsequently during a resident-intruder test with an unacquainted pig in which t

  11. Effects of social stress on heart rate and heart rate variability in growing pigs

    NARCIS (Netherlands)

    de Jong, IC; Sgoifo, A; Lambooij, E; Korte, SM; Blokhuis, HJ; Koolhaas, JM

    The effects of social stress on heart rate, heart rate variability and the occurrence of cardiac arrhythmias were studied in 12 growing pigs. Social stress was induced during a good competition test with a pen mate, and subsequently during a resident-intruder test with an unacquainted pig in which

  12. Evaluation of Metabolic Stress between Jumping at Different Cadences on the Digi-Jump Machine.

    Science.gov (United States)

    Lyons, Thomas S; Navalta, James W; Callahan, Zachary J

    The American College of Sports Medicine (ACSM) recommends that healthy adults achieve a minimum of thirty minutes of moderate intensity aerobic exercise five days per week. While cycling, walking, and jogging are commonly observed methods of achieving these recommendations, another option may be repetitive jumping. The purpose of this study was to examine the metabolic responses between repetitive jumping at a cadence of 120 jumps per minute (JPMs) vs. 100 JPMs when utilizing the Digi-Jump machine. Twenty-eight subjects completed two jumping trials, one at 120 JPMs and one at 100 JPMs. Subjects jumped until volitional exhaustion, or for a maximum of fifteen minutes. Oxygen uptake (VO2), heart rate (HR), respiratory exchange ratio (RER), and rating of perceived exertion (RPE) were assessed each minute of each exercise trial. RPE was differentiated, in that subjects reported perceived exertion of their total body, their upper-leg, and their lower leg. Results of this study indicated that there was no significant difference between the two trials for VO2, HR, or total body RPE. Differences were reported between trials for peak and average RER, with the 120 JPM trial eliciting a lower RER for both (peak: 1.08 ± .087 vs. 1.17 ± .1 p=.000; average: .99 ± .076 vs. 1.04 ± .098 p=.002), peak upper leg RPE (120: 15.29 ± 3.89 vs. 100: 16.75 ± 2.52 p=.022), and average lower leg RPE (120: 15.04 ± 2.55 vs. 100: 13.94 ± 2.02 p=.019). Also, there was a significant difference in exercise duration between the trials, with subjects able to exercise longer during the 120 JPM trial (12.4 ± 3.42 mins vs. 9.68 ± 4.31 mins p=.000). These data indicate that while the physiological stress may not be different between the two trials as indicated by VO2 and HR, the 120 JPM trial appears less strenuous as evidenced by RER values and by subjects' ability to exercise longer at that cadence.

  13. Stress, strain rate and anisotropy in Kyushu, Japan

    Science.gov (United States)

    Savage, M. K.; Aoki, Y.; Unglert, K.; Ohkura, T.; Umakoshi, K.; Shimizu, H.; Iguchi, M.; Tameguri, T.; Ohminato, T.; Mori, J.

    2016-04-01

    Seismic anisotropy, the directional dependence of wave speeds, may be caused by stress-oriented cracks or by strain-oriented minerals, yet few studies have quantitatively compared anisotropy to stress and strain over large regions. Here we compare crustal stress and strain rates on the Island of Kyushu, Japan, as measured from inversions of focal mechanisms, GPS and shear wave splitting. Over 85,000 shear wave splitting measurements from local and regional earthquakes are obtained from the NIED network between 2004 and 2012, and on Aso, Sakurajima, Kirishima and Unzen volcano networks. Strain rate measurements are made from the Japanese Geonet stations. JMA-determined S arrival times processed with the MFAST shear wave splitting code measure fast polarisations (Φ), related to the orientation of the anisotropic medium and time delays (dt), related to the path length and the percent anisotropy. We apply the TESSA 2-D delay time tomography and spatial averaging code to the highest quality events, which have nearly vertical incidence angles, separating the 3455 shallow (depth = 40 km) earthquakes. Using square grids with 30 km sides for all the inversions, the best correlations are observed between splitting from shallow earthquakes and stress. Axes of maximum horizontal stress (SHmax) and Φ correlate with a coefficient c of 0.56, significant at the 99% confidence level. Their mean difference is 31.9°. Axes of maximum compressional strain rate and SHmax are also well aligned, with an average difference of 28°, but they do not correlate with each other, meaning that where they differ, the difference is not systematic. Anisotropy strength is negatively correlated with the stress ratio parameter determined from focal mechanism inversion (c = - 0.64; significant at the 99% confidence level). The anisotropy and stress results are consistent with stress-aligned microcracks in the crust in a dominantly strike-slip regime. Eigenvalues of maximum horizontal strain rate

  14. Stress State and Stress Rate Dependencies of Stiffness of Soft Clays

    Science.gov (United States)

    Teachavorasinskun, Supot

    The influence of the stress anisotropy imposed during consolidation on the stiffness of soft Bangkok clays was explored using the triaxial equipment. Several testing conditions were imposed on the samples to examine the effects of stress state as well as the rate of loading. It was found the stiffness at moderate strain levels was almost independent to the stress state; i.e., the deviator stress level. On the contrary, the rate of stress application played a very important role. The faster the rate of stress application, the higher the values of the stiffness at moderate strains. Nevertheless, a simple empirical equation can be given based on the test results to represent the influence of rate of application on the stiffness of soft clay.

  15. Socioeconomic status and stress rate during pregnancy in Iran.

    Science.gov (United States)

    Shishehgar, Sara; Dolatian, Mahrokh; Majd, Hamid Alavi; Bakhtiary, Maryam

    2014-04-22

    Stress during pregnancy can have serious adverse outcomes on the mother, the fetus, newborn, children and even adolescents. Socioeconomic status has been recognized as a predictor of stress amongst pregnant women. The first aim of this study was to investigate the role of socioeconomic status in pregnancy stress rates. The second aim was to examine the most important items of socioeconomic status including monthly family income, husband occupational status as well as mother's educational level and their influence on the rate of maternal stress. This study was cross-sectional research and was conducted on 210 pregnant women in three trimesters of pregnancy who attended Shahryar hospital for prenatal care between August-October 2012. They completed two questionnaires of Socioeconomic Status and Specific Pregnancy Stress. Collected data were analyzed by SPSS version 19 including T-test, one-way ANOVA and Spearman correlation. In this study, we considered family income, education and husbands' occupations as the most important variables which may influence perceived stress during pregnancy. The mean age of women was 27±4.8 years. The final result showed that there is no significant relationship between SES and pregnancy stress level (P > 0.05), while we found a significant relationship, as well as indirect correlation between husbands' occupational status and pregnancy stress (P pregnancy stress levels or not.

  16. Evaluating machine learning algorithms estimating tremor severity ratings on the Bain-Findley scale

    Science.gov (United States)

    Yohanandan, Shivanthan A. C.; Jones, Mary; Peppard, Richard; Tan, Joy L.; McDermott, Hugh J.; Perera, Thushara

    2016-12-01

    Tremor is a debilitating symptom of some movement disorders. Effective treatment, such as deep brain stimulation (DBS), is contingent upon frequent clinical assessments using instruments such as the Bain-Findley tremor rating scale (BTRS). Many patients, however, do not have access to frequent clinical assessments. Wearable devices have been developed to provide patients with access to frequent objective assessments outside the clinic via telemedicine. Nevertheless, the information they report is not in the form of BTRS ratings. One way to transform this information into BTRS ratings is through linear regression models (LRMs). Another, potentially more accurate method is through machine learning classifiers (MLCs). This study aims to compare MLCs and LRMs, and identify the most accurate model that can transform objective tremor information into tremor severity ratings on the BTRS. Nine participants with upper limb tremor had their DBS stimulation amplitude varied while they performed clinical upper-extremity exercises. Tremor features were acquired using the tremor biomechanics analysis laboratory (TREMBAL). Movement disorder specialists rated tremor severity on the BTRS from video recordings. Seven MLCs and 6 LRMs transformed TREMBAL features into tremor severity ratings on the BTRS using the specialists’ ratings as training data. The weighted Cohen’s kappa ({κ\\text{w}} ) defined the models’ rating accuracy. This study shows that the Random Forest MLC was the most accurate model ({κ\\text{w}}   =  0.81) at transforming tremor information into BTRS ratings, thereby improving the clinical interpretation of tremor information obtained from wearable devices.

  17. Investigation of the Effects of Machining Parameters on Material Removal Rate in Abrasive Waterjet Turning

    Directory of Open Access Journals (Sweden)

    Iman Zohourkari

    2014-05-01

    Full Text Available The effects of the main operational machining parameters on the material removal rate (MRR in abrasive waterjet turning (AWJT are presented in this paper using a statistical approach. The five most common machining parameters such as water pressure, abrasive mass flow rate, cutting head traverse speed, workpiece rotational speed, and depth of cut have been put into a five-level central composite rotatable experimental design (CCRD. The main effects of parameters and the interaction among them were analyzed by means of the analysis of variance (ANOVA and the response surfaces for MRR were obtained fitting a second-order polynomial function. It has been found that depth of cut and cutting head traverse speed are the most influential parameters, whereas the rotational speed is insignificant. In addition, the investigations show that interactions between traverse speed and pressure, abrasive mass flow rate and depth of cut, and pressure and depth of cut are significant on MRR. This result advances the AWJT state of the art. A complete model discussion has been reported drawing interesting considerations on the AWJT process characterising phenomena, where parameters interactions play a fundamental role.

  18. Joint Machine Learning and Game Theory for Rate Control in High Efficiency Video Coding.

    Science.gov (United States)

    Gao, Wei; Kwong, Sam; Jia, Yuheng

    2017-08-25

    In this paper, a joint machine learning and game theory modeling (MLGT) framework is proposed for inter frame coding tree unit (CTU) level bit allocation and rate control (RC) optimization in High Efficiency Video Coding (HEVC). First, a support vector machine (SVM) based multi-classification scheme is proposed to improve the prediction accuracy of CTU-level Rate-Distortion (R-D) model. The legacy "chicken-and-egg" dilemma in video coding is proposed to be overcome by the learning-based R-D model. Second, a mixed R-D model based cooperative bargaining game theory is proposed for bit allocation optimization, where the convexity of the mixed R-D model based utility function is proved, and Nash bargaining solution (NBS) is achieved by the proposed iterative solution search method. The minimum utility is adjusted by the reference coding distortion and frame-level Quantization parameter (QP) change. Lastly, intra frame QP and inter frame adaptive bit ratios are adjusted to make inter frames have more bit resources to maintain smooth quality and bit consumption in the bargaining game optimization. Experimental results demonstrate that the proposed MLGT based RC method can achieve much better R-D performances, quality smoothness, bit rate accuracy, buffer control results and subjective visual quality than the other state-of-the-art one-pass RC methods, and the achieved R-D performances are very close to the performance limits from the FixedQP method.

  19. Aftershock decay, productivity, and stress rates in Hawaii: Indicators of temperature and stress from magma sources

    Science.gov (United States)

    Klein, Fred W.; Wright, Tom; Nakata, Jennifer

    2006-01-01

    We examined dozens of aftershock sequences in Hawaii in terms of Gutenberg-Richter and modified Omori law parameters. We studied p, the rate of aftershock decay; Ap, the aftershock productivity, defined as the observed divided by the expected number of aftershocks; and c, the time delay when aftershock rates begin to fall. We found that for earthquakes shallower than 20 km, p values >1.2 are near active magma centers. We associate this high decay rate with higher temperatures and faster stress relaxation near magma reservoirs. Deep earthquakes near Kilauea's inferred magma transport path show a range of p values, suggesting the absence of a large, deep magma reservoir. Aftershock productivity is >4.0 for flank earthquakes known to be triggered by intrusions but is normal (0.25 to 4.0) for isolated main shocks. We infer that continuing, post-main shock stress from the intrusion adds to the main shock's stress step and causes higher Ap. High Ap in other zones suggests less obvious intrusions and pulsing magma pressure near Kilauea's feeding conduit. We calculate stress rates and stress rate changes from pre-main shock and aftershock rates. Stress rate increased after many intrusions but decreased after large M7–8 earthquakes. Stress rates are highest in the seismically active volcano flanks and lowest in areas far from volcanic centers. We found sequences triggered by intrusions tend to have high Ap, high (>0.10 day) c values, a stress rate increase, and sometimes a peak in aftershock rate hours after the main shock. We interpret these values as indicating continuing intrusive stress after the main shock.

  20. Heart rate variability (HRV): an indicator of stress

    Science.gov (United States)

    Kaur, Balvinder; Durek, Joseph J.; O'Kane, Barbara L.; Tran, Nhien; Moses, Sophia; Luthra, Megha; Ikonomidou, Vasiliki N.

    2014-05-01

    Heart rate variability (HRV) can be an important indicator of several conditions that affect the autonomic nervous system, including traumatic brain injury, post-traumatic stress disorder and peripheral neuropathy [3], [4], [10] & [11]. Recent work has shown that some of the HRV features can potentially be used for distinguishing a subject's normal mental state from a stressed one [4], [13] & [14]. In all of these past works, although processing is done in both frequency and time domains, few classification algorithms have been explored for classifying normal from stressed RRintervals. In this paper we used 30 s intervals from the Electrocardiogram (ECG) time series collected during normal and stressed conditions, produced by means of a modified version of the Trier social stress test, to compute HRV-driven features and subsequently applied a set of classification algorithms to distinguish stressed from normal conditions. To classify RR-intervals, we explored classification algorithms that are commonly used for medical applications, namely 1) logistic regression (LR) [16] and 2) linear discriminant analysis (LDA) [6]. Classification performance for various levels of stress over the entire test was quantified using precision, accuracy, sensitivity and specificity measures. Results from both classifiers were then compared to find an optimal classifier and HRV features for stress detection. This work, performed under an IRB-approved protocol, not only provides a method for developing models and classifiers based on human data, but also provides a foundation for a stress indicator tool based on HRV. Further, these classification tools will not only benefit many civilian applications for detecting stress, but also security and military applications for screening such as: border patrol, stress detection for deception [3],[17], and wounded-warrior triage [12].

  1. Ventilation rates indicate stress-coping styles in Nile tilapia

    Indian Academy of Sciences (India)

    Rodrigo E Barreto; Gilson L Volpato

    2011-12-01

    Behavioural responses to stress can form distinct profiles in a wide range of animals: proactive and reactive profiles or coping styles. Stress responsiveness can also differentiate between the behavioural profiles. The tendency to regain feed intake following transfer to a novel social-isolation tank (the speed of acclimation) can discriminate between proactive or reactive profiles. Consequently, differential stress responsiveness can be linked to this feeding behaviour trait. This study shows that ventilation rates of Nile tilapia, Oreochromis niloticus (L.), correlate with the rate of feeding resumption, following transfer to a novel social-isolation aquarium. Therefore, ventilation rate (VR) indicates coping styles; consequently, VR is a proxy for the way fish will deal with environmental challenges.

  2. Scale Factor Determination of Micro-Machined Angular Rate Sensors Without a Turntable

    Institute of Scientific and Technical Information of China (English)

    Gaisser Alexander; GAO Zhongyu; ZHOU Bin; ZHANG Rong; CHEN Zhiyong

    2006-01-01

    This paper presents a digital readout system to detect small capacitive signals of a micro-machined angular rate sensor. The flexible parameter adjustment ability and the computation speed of the digital signal processor were used to develop a new calibration procedure to determine the scale factor of a gyroscope without a turntable. The force of gravity was used to deflect the movable masses in the sensor, which resulted in a corresponding angular rate input. The gyroscope scale factor was then measured without a turntable. Test results show a maximum deviation of about 1.2% with respect to the scale factor determined on a turntable with the accuracy independent of the manufacturing process and property variations. The calibration method in combination with the improved readout electronics can minimize the calibration procedure and, thus, reduce the manufacturing costs.

  3. Determination of the Thermal Expansion Coefficient of Concrete at Early Ages by Using Temperature-stress Testing Machine

    Institute of Scientific and Technical Information of China (English)

    HUO Kaicheng; SHUI Zhonghe; LI Yue

    2006-01-01

    By using the uptodate temperatuer-stress testing machine, the thermal expansion coefficient of concrete at early ages was studied and indicative conclusions were achieved: temperature rising due to hydration heat is not directly correlated with cracking, but the temperature and stress evolution process should be taken into consideration in the same time. Proper chemical admixtures and mineral compositions can improve the mechanical properties of concrete such as thermal expansion coefficient, which is very indicative in practice.

  4. Volitional Control of Heart Rate During Exercise Stress.

    Science.gov (United States)

    LeFevers, Victoria A.

    Thirty five volunteer college women were divided into three groups to determine if heart rate could be conditioned instrumentally and lowered during exercise stress on the treadmill. The three groups were a) experimental group I, 15 subjects who received instrumental conditioning with visual feedback; b) instrumental group II, 9 subjects who…

  5. TEM sample preparation by femtosecond laser machining and ion milling for high-rate TEM straining experiments.

    Science.gov (United States)

    Voisin, Thomas; Grapes, Michael D; Zhang, Yong; Lorenzo, Nicholas; Ligda, Jonathan; Schuster, Brian; Weihs, Timothy P

    2016-12-05

    To model mechanical properties of metals at high strain rates, it is important to visualize and understand their deformation at the nanoscale. Unlike post mortem Transmission Electron Microscopy (TEM), which allows one to analyze defects within samples before or after deformation, in situ TEM is a powerful tool that enables imaging and recording of deformation and the associated defect motion during mechanical loading. Unfortunately, all current in situ TEM mechanical testing techniques are limited to quasi-static strain rates. In this context, we are developing a new test technique that utilizes a rapid straining stage and the Dynamic TEM (DTEM) at the Lawrence Livermore National Laboratory (LLNL). The new straining stage can load samples in tension at strain rates as high as 4×10(3)/s using two piezoelectric actuators operating in bending while the DTEM at LLNL can image in movie mode with a time resolution as short as 70ns. Given the piezoelectric actuators are limited in force, speed, and displacement, we have developed a method for fabricating TEM samples with small cross-sectional areas to increase the applied stresses and short gage lengths to raise the applied strain rates and to limit the areas of deformation. In this paper, we present our effort to fabricate such samples from bulk materials. The new sample preparation procedure combines femtosecond laser machining and ion milling to obtain 300µm wide samples with control of both the size and location of the electron transparent area, as well as the gage cross-section and length.

  6. Pain Intensity Recognition Rates via Biopotential Feature Patterns with Support Vector Machines.

    Directory of Open Access Journals (Sweden)

    Sascha Gruss

    Full Text Available The clinically used methods of pain diagnosis do not allow for objective and robust measurement, and physicians must rely on the patient's report on the pain sensation. Verbal scales, visual analog scales (VAS or numeric rating scales (NRS count among the most common tools, which are restricted to patients with normal mental abilities. There also exist instruments for pain assessment in people with verbal and / or cognitive impairments and instruments for pain assessment in people who are sedated and automated ventilated. However, all these diagnostic methods either have limited reliability and validity or are very time-consuming. In contrast, biopotentials can be automatically analyzed with machine learning algorithms to provide a surrogate measure of pain intensity.In this context, we created a database of biopotentials to advance an automated pain recognition system, determine its theoretical testing quality, and optimize its performance. Eighty-five participants were subjected to painful heat stimuli (baseline, pain threshold, two intermediate thresholds, and pain tolerance threshold under controlled conditions and the signals of electromyography, skin conductance level, and electrocardiography were collected. A total of 159 features were extracted from the mathematical groupings of amplitude, frequency, stationarity, entropy, linearity, variability, and similarity.We achieved classification rates of 90.94% for baseline vs. pain tolerance threshold and 79.29% for baseline vs. pain threshold. The most selected pain features stemmed from the amplitude and similarity group and were derived from facial electromyography.The machine learning measurement of pain in patients could provide valuable information for a clinical team and thus support the treatment assessment.

  7. ONBOARD MONITORING OF ENGINE OIL RESOURCE WORKING-OUT RATE IN WHEELED AND CATERPILLAR MACHINES

    Directory of Open Access Journals (Sweden)

    Yu. D. Karpievich

    2014-01-01

    Full Text Available An engine oil is capable reliably and longtime to perform specified functions only in the case when its properties correspond to those thermal, mechanical and chemical impacts to which the oil is subjected in the engine. Compatibility of the engine design, its uprate and oil properties is one of the main conditions for provision of high operational reliability. Type and properties of fuel, quality of an engine oil, engine type, its design, its health, its operational regime and conditions and a number of other factors influence on intensity of oil contamination in the operated engine. Oil quality is deteriorated due to accumulation of incomplete combustion products in it and this process is associated with the engine's health. This leads to reduction of viscosity, deterioration of lubrication ability, troubles in fluid friction mode. Combustion products have rather high amount of aggressive corrosive oxides.Service-life of engine oil prior to its change is determined not only by automobile mileage or tractor operating time but also by the period of time within which this work has been carried out. Corrosion processes are speeding up, protective processes are worsening, oil ageing is accelerating when vehicles have short daily and small mileages. So it is necessary to change oil at least annually.A new method for onboard monitoring of engine oil resource working-out rate in wheeled and caterpillar machines has been developed in the paper. Usage of fuel expended volume by engine while determining engine oil resource working-out rate makes it possible timely to assess a residual resource of the engine oil and also predict the date of its change at any operational period of wheeled and caterpillar machines.

  8. Response surface modelling of tool electrode wear rate and material removal rate in micro electrical discharge machining of Inconel 718

    DEFF Research Database (Denmark)

    Puthumana, Govindan

    2017-01-01

    conductivity and high strength causing it extremely difficult tomachine. Micro-Electrical Discharge Machining (Micro-EDM) is a non-conventional method that has a potential toovercome these restrictions for machining of Inconel 718. Response Surface Method (RSM) was used for modelling thetool Electrode Wear...

  9. ChargeOut! : determining machine and capital equipment charge-out rates using discounted cash-flow analysis

    Science.gov (United States)

    E.M. (Ted) Bilek

    2007-01-01

    The model ChargeOut! was developed to determine charge-out rates or rates of return for machines and capital equipment. This paper introduces a costing methodology and applies it to a piece of capital equipment. Although designed for the forest industry, the methodology is readily transferable to other sectors. Based on discounted cash-flow analysis, ChargeOut!...

  10. Stress Detection Using Low Cost Heart Rate Sensors

    Directory of Open Access Journals (Sweden)

    Mario Salai

    2016-01-01

    Full Text Available The automated detection of stress is a central problem for ambient assisted living solutions. The paper presents the concepts and results of two studies targeted at stress detection with a low cost heart rate sensor, a chest belt. In the device validation study (n=5, we compared heart rate data and other features from the belt to those measured by a gold standard device to assess the reliability of the sensor. With simple synchronization and data cleaning algorithm, we were able to select highly (>97% correlated, low average error (2.2% data segments of considerable length from the chest data for further processing. The protocol for the clinical study (n=46 included a relax phase followed by a phase with provoked mental stress, 10 minutes each. We developed a simple method for the detection of the stress using only three time-domain features of the heart rate signal. The method produced accuracy of 74.6%, sensitivity of 75.0%, and specificity of 74.2%, which is impressive compared to the performance of two state-of-the-art methods run on the same data. Since the proposed method uses only time-domain features, it can be efficiently implemented on mobile devices.

  11. Single Machine Problem with Multi-Rate-Modifying Activities under a Time-Dependent Deterioration

    Directory of Open Access Journals (Sweden)

    M. Huang

    2013-01-01

    Full Text Available The single machine scheduling problem with multi-rate-modifying activities under a time-dependent deterioration to minimize makespan is studied. After examining the characteristics of the problem, a number of properties and a lower bound are proposed. A branch and bound algorithm and a heuristic algorithm are used in the solution, and two special cases are also examined. The computational experiments show that, for the situation with a rate-modifying activity, the proposed branch and bound algorithm can solve situations with 50 jobs within a reasonable time, and the heuristic algorithm can obtain the near-optimal solution with an error percentage less than 0.053 in a very short time. In situations with multi-rate-modifying activities, the proposed branch and bound algorithm can solve the case with 15 jobs within a reasonable time, and the heuristic algorithm can obtain the near-optimal with an error percentage less than 0.070 in a very short time. The branch and bound algorithm and the heuristic algorithm are both shown to be efficient and effective.

  12. Reducing Deadline Miss Rate for Grid Workloads running in Virtual Machines: a deadline-aware and adaptive approach

    CERN Document Server

    Khalid, Omer; Anthony, Richard; Petridis, Miltos

    2011-01-01

    This thesis explores three major areas of research; integration of virutalization into sci- entific grid infrastructures, evaluation of the virtualization overhead on HPC grid job’s performance, and optimization of job execution times to increase their throughput by reducing job deadline miss rate. Integration of the virtualization into the grid to deploy on-demand virtual machines for jobs in a way that is transparent to the end users and have minimum impact on the existing system poses a significant challenge. This involves the creation of virtual machines, decompression of the operating system image, adapting the virtual environ- ment to satisfy software requirements of the job, constant update of the job state once it’s running with out modifying batch system or existing grid middleware, and finally bringing the host machine back to a consistent state. To facilitate this research, an existing and in production pilot job framework has been modified to deploy virtual machines on demand on the grid using...

  13. Physics-Informed Machine Learning for Predictive Turbulence Modeling: Using Data to Improve RANS Modeled Reynolds Stresses

    CERN Document Server

    Wang, Jian-Xun; Xiao, Heng

    2016-01-01

    Turbulence modeling is a critical component in numerical simulations of industrial flows based on Reynolds-averaged Navier-Stokes (RANS) equations. However, after decades of efforts in the turbulence modeling community, universally applicable RANS models with predictive capabilities are still lacking. Recently, data-driven methods have been proposed as a promising alternative to the traditional approaches of turbulence model development. In this work we propose a data-driven, physics-informed machine learning approach for predicting discrepancies in RANS modeled Reynolds stresses. The discrepancies are formulated as functions of the mean flow features. By using a modern machine learning technique based on random forests, the discrepancy functions are first trained with benchmark flow data and then used to predict Reynolds stresses discrepancies in new flows. The method is used to predict the Reynolds stresses in the flow over periodic hills by using two training flow scenarios of increasing difficulties: (1) ...

  14. Residual stresses generated in F-522 steel by different machining processes; Tensiones residuales generadas en acero F-522 por distintos tipos de mecanizado

    Energy Technology Data Exchange (ETDEWEB)

    Gracia-Navas, V.; Ferreres, I.; Maranon, J. A.; Garcia-Rosales, C.; Gil-Sevillano, J.

    2005-07-01

    Machining operations induce plastic deformation and heat generation in the near surface area of the machined part, giving rise to residual stresses. Depending on their magnitude and sign, these stresses can be detrimental or beneficial to the service life of the part. The final stress state depends on the machining process applied, as well as on the machining parameters. Therefore, the establishment of adequate machining guidelines requires the measurement of the residual stresses generated both at the surface and inside the material. in this work, the residual stresses generated in F-522 steel by two hard turning (conventional and laser assisted) and two grinding (production and finishing) processes were measured by X-ray diffraction. Additionally, depth profiles of the volume fraction of retained austenite, microstructure and nano hardness were obtained in order to correlate those results with the residual stress state obtained for each machining process. It has been observed that turning generates tensile stresses in the surface while grinding causes compressive stresses. Below the surface grinding generates weak tensile or nearly null stresses whereas turning generates strong compressive stresses. These results show that the optimum mechanising process (disregarding economical considerations) implies the combination of turning plus elimination of a small thickness by final grinding. (Author) 19 refs.

  15. Studies on the Material Removal Rate of Al-SiC Composites Machined by Powder- Mixed EDM Technique

    Directory of Open Access Journals (Sweden)

    G P Anuraag

    2016-04-01

    Full Text Available The metal-matrix composites are preferred due to their high hardness, light weight, flexibility, high strength, simplicity and ease of applicability which make them potentially valuable in every industrious area like motor vehicles industries, mechanical tools manufacturing industries, structural applications and aerospace industries. Electro-discharge machining is a non-conventional machining process which uses short electrical discharges to machine any material of any hardness and strength levels provided that they are electrically conductive. In this paper, an attempt was made to find the machinability of aluminium metal matrix composite using powder mixed electric discharge machining (PMEDM. The aluminium matrix was reinforced with different percentages of silicon carbide (3%, 9% & 15% to form the composites using stir casting process. The Characteristic Material removal rate (MRR was studied while varying the process parameters of discharge time (TON, peak current (I and concentration of SiC in work material (C according to the face cantered central composite design for a constant voltage of 40 volts. The Electric Discharge Machining of the composites was carried out using a copper electrode of Ø6mm and kerosene mixed with aluminium powder was used as dielectric fluid.

  16. Machine learning methods to predict child posttraumatic stress: a proof of concept study.

    Science.gov (United States)

    Saxe, Glenn N; Ma, Sisi; Ren, Jiwen; Aliferis, Constantin

    2017-07-10

    The care of traumatized children would benefit significantly from accurate predictive models for Posttraumatic Stress Disorder (PTSD), using information available around the time of trauma. Machine Learning (ML) computational methods have yielded strong results in recent applications across many diseases and data types, yet they have not been previously applied to childhood PTSD. Since these methods have not been applied to this complex and debilitating disorder, there is a great deal that remains to be learned about their application. The first step is to prove the concept: Can ML methods - as applied in other fields - produce predictive classification models for childhood PTSD? Additionally, we seek to determine if specific variables can be identified - from the aforementioned predictive classification models - with putative causal relations to PTSD. ML predictive classification methods - with causal discovery feature selection - were applied to a data set of 163 children hospitalized with an injury and PTSD was determined three months after hospital discharge. At the time of hospitalization, 105 risk factor variables were collected spanning a range of biopsychosocial domains. Seven percent of subjects had a high level of PTSD symptoms. A predictive classification model was discovered with significant predictive accuracy. A predictive model constructed based on subsets of potentially causally relevant features achieves similar predictivity compared to the best predictive model constructed with all variables. Causal Discovery feature selection methods identified 58 variables of which 10 were identified as most stable. In this first proof-of-concept application of ML methods to predict childhood Posttraumatic Stress we were able to determine both predictive classification models for childhood PTSD and identify several causal variables. This set of techniques has great potential for enhancing the methodological toolkit in the field and future studies should seek to

  17. Effect of Electric Discharge Machining on Material Removal Rate and White Layer Composition

    Directory of Open Access Journals (Sweden)

    SHAHID MEHMOOD

    2017-01-01

    Full Text Available In this study the MRR (Material Removal Rate of the aerospace grade (2024 T6 aluminum alloy 2024 T6 has been determined with copper electrode and kerosene oil is used as dielectric liquid. Discharge energy is controlled by electric current while keeping Pulse-ON time and Pulse-OFF time as constant. The characteristics of the EDMed (Electric Discharge Machined surface are discussed. The sub-surface defect due to arcing has been explained. As the surface material of tool electrode and workpiece melts simultaneously and there are chances of the contamination of both surfaces by the contents of each other. Therefore, the EDS (Energy Dispersive Spectroscopy of the white layer and base material of the workpiece was performed by SEM (Scanning Electron Microscope at the discharge currents of 3, 6 and 12 amperes. It was conformed that the contamination of the surface of the workpiece material occurred by carbon, copper and oxygen contents. The quantitative analysis of these contents with respect to the discharge current has been presented in this paper.

  18. The Effect of Heat Treatment on Residual Stress and Machining Distortions in Advanced Nickel Base Disk Alloys

    Science.gov (United States)

    Gayda, John

    2001-01-01

    This paper describes an extension of NASA's AST and IDPAT Programs which sought to predict the effect of stabilization heat treatments on residual stress and subsequent machining distortions in the advanced disk alloy, ME-209. Simple "pancake" forgings of ME-209 were produced and given four heat treats: 2075F(SUBSOLVUS)/OIL QUENCH/NO AGE; 2075F/OIL QUENCH/1400F@8HR;2075F/OIL QUENCH/1550F@3HR/l400F@8HR; and 2160F(SUPERSOLVUS)/OIL QUENCH/1550F@3HR/ 1400F@8HR. The forgings were then measured to obtain surface profiles in the heat treated condition. A simple machining plan consisting of face cuts from the top surface followed by measurements of the surface profile opposite the cut were made. This data provided warpage maps which were compared with analytical results. The analysis followed the IDPAT methodology and utilized a 2-D axisymmetric, viscoplastic FEA code. The analytical results accurately tracked the experimental data for each of the four heat treatments. The 1550F stabilization heat treatment was found to significantly reduce residual stresses and subsequent machining distortions for fine grain (subsolvus) ME209, while coarse grain (supersolvus) ME209 would require additional time or higher stabilization temperatures to attain the same degree of stress relief.

  19. State sales tax rates for soft drinks and snacks sold through grocery stores and vending machines, 2007.

    Science.gov (United States)

    Chriqui, Jamie F; Eidson, Shelby S; Bates, Hannalori; Kowalczyk, Shelly; Chaloupka, Frank J

    2008-07-01

    Junk food consumption is associated with rising obesity rates in the United States. While a "junk food" specific tax is a potential public health intervention, a majority of states already impose sales taxes on certain junk food and soft drinks. This study reviews the state sales tax variance for soft drinks and selected snack products sold through grocery stores and vending machines as of January 2007. Sales taxes vary by state, intended retail location (grocery store vs. vending machine), and product. Vended snacks and soft drinks are taxed at a higher rate than grocery items and other food products, generally, indicative of a "disfavored" tax status attributed to vended items. Soft drinks, candy, and gum are taxed at higher rates than are other items examined. Similar tax schemes in other countries and the potential implications of these findings relative to the relationship between price and consumption are discussed.

  20. A seminumerical finite-element postprocessing torque ripple analysis technique for synchronous electric machines utilizing the air-gap Maxwell stress tensor.

    OpenAIRE

    Spargo, C.M.; Mecrow, B.C.; Widmer, J.D.

    2014-01-01

    A novel method to calculate the harmonic torque components in synchronous machines is presented. Harmonic torque components create a torque ripple, which is undesirable in many applications. This torque ripple is a major cause of acoustic noise and vibration and can limit the machine's application range. A seminumerical method is developed to calculate and analyze harmonic torque components based on Maxwell stress tensor theory. Development of the Maxwell stress expressions leads to a simple ...

  1. Engineering of surface microstructure transformations using high rate severe plastic deformation in machining

    Science.gov (United States)

    Abolghasem, Sepideh

    Engineering surface structures especially at the nanometer length-scales can enable fundamentally new multifunctional property combinations, including tunable physical, mechanical, electrochemical and biological responses. Emerging manufacturing paradigms involving Severe Plastic Deformation (SPD), for manipulating final microstructure of the surfaces are unfortunately limited by poorly elucidated process-structure-performance linkages, which are characterized by three central variables of plasticity: strain, strain-rate and temperature that determine the resulting Ultrafine Grained (UFG) microstructure. The challenge of UFG surface engineering, design and manufacturing can be overcome if and only if the mappings between the central variables and the final microstructure are delineated. The objective of the proposed document is to first envision a phase-space, whose axes are parameterized in terms of the central variables of SPD. Then, each point can correspond to a unique microstructure, characterized by its location on this map. If the parametrization and the population of the datasets are accurately defined, then the mapping is bijective where: i) realizing microstructure designs can be reduced to simply one of tuning process parameters falling within the map s desired subspaces. And, inversely, ii) microstructure prediction is directly possible by merely relating the measured/calculated thermomechanics at each point in the deformation zone to the corresponding spot on the maps. However, the analytic approach to establish this map first requires extensive datasets, where the microstructures are accurately measured for a known set of strain, strain-rate and temperature of applied SPD. Although such datasets do not exist, even after the empirical data is accumulated, there is a lack of formalized statistical outlines in relating microstructural characteristic to the process parameters in order to build the mapping framework. Addressing these gaps has led to this

  2. Development and Validation of Students' Stress Rating Scale (SSRS)

    Science.gov (United States)

    Balamurugan, M.; Kumaran, D.

    2008-01-01

    Each and every person is under the grip of stress. Starting from a two-year infant to an adult, stress takes an entry in different forms but it alters the normal functioning of a person. One cannot eliminate stress but can reduce stress in their life. The stressors are normative demands and critical life events. Normative stressors include…

  3. A bound for the convergence rate of parallel tempering for sampling restricted Boltzmann machines

    DEFF Research Database (Denmark)

    Fischer, Asja; Igel, Christian

    2015-01-01

    Abstract Sampling from restricted Boltzmann machines (RBMs) is done by Markov chain Monte Carlo (MCMC) methods. The faster the convergence of the Markov chain, the more efficiently can high quality samples be obtained. This is also important for robust training of RBMs, which usually relies...

  4. Underlay of low-rate machine-type D2D links on downlink cellular links

    DEFF Research Database (Denmark)

    Pratas, Nuno K.; Popovski, Petar

    2014-01-01

    Wireless cellular networks feature two emerging technological trends: direct Device-to-Device (D2D) communications and Machine-Type Communications (MTC). MTC devices (MTDs) pose new challenges to the cellular network, such as low transmission power and massive access that can lead to overload...

  5. Absence of earthquake correlation with Earth tides: An indication of high preseismic fault stress rate

    Science.gov (United States)

    Vidale, J.E.; Agnew, D.C.; Johnston, M.J.S.; Oppenheimer, D.H.

    1998-01-01

    Because the rate of stress change from the Earth tides exceeds that from tectonic stress accumulation, tidal triggering of earthquakes would be expected if the final hours of loading of the fault were at the tectonic rate and if rupture began soon after the achievement of a critical stress level. We analyze the tidal stresses and stress rates on the fault planes and at the times of 13,042 earthquakes which are so close to the San Andreas and Calaveras faults in California that we may take the fault plane to be known. We find that the stresses and stress rates from Earth tides at the times of earthquakes are distributed in the same way as tidal stresses and stress rates at random times. While the rate of earthquakes when the tidal stress promotes failure is 2% higher than when the stress does not, this difference in rate is not statistically significant. This lack of tidal triggering implies that preseismic stress rates in the nucleation zones of earthquakes are at least 0.15 bar/h just preceding seismic failure, much above the long-term tectonic stress rate of 10-4 bar/h.

  6. Two computational approaches for Monte Carlo based shutdown dose rate calculation with applications to the JET fusion machine

    Energy Technology Data Exchange (ETDEWEB)

    Petrizzi, L.; Batistoni, P.; Migliori, S. [Associazione EURATOM ENEA sulla Fusione, Frascati (Roma) (Italy); Chen, Y.; Fischer, U.; Pereslavtsev, P. [Association FZK-EURATOM Forschungszentrum Karlsruhe (Germany); Loughlin, M. [EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxfordshire, OX (United Kingdom); Secco, A. [Nice Srl Via Serra 33 Camerano Casasco AT (Italy)

    2003-07-01

    In deuterium-deuterium (D-D) and deuterium-tritium (D-T) fusion plasmas neutrons are produced causing activation of JET machine components. For safe operation and maintenance it is important to be able to predict the induced activation and the resulting shut down dose rates. This requires a suitable system of codes which is capable of simulating both the neutron induced material activation during operation and the decay gamma radiation transport after shut-down in the proper 3-D geometry. Two methodologies to calculate the dose rate in fusion devices have been developed recently and applied to fusion machines, both using the MCNP Monte Carlo code. FZK has developed a more classical approach, the rigorous 2-step (R2S) system in which MCNP is coupled to the FISPACT inventory code with an automated routing. ENEA, in collaboration with the ITER Team, has developed an alternative approach, the direct 1 step method (D1S). Neutron and decay gamma transport are handled in one single MCNP run, using an ad hoc cross section library. The intention was to tightly couple the neutron induced production of a radio-isotope and the emission of its decay gammas for an accurate spatial distribution and a reliable calculated statistical error. The two methods have been used by the two Associations to calculate the dose rate in five positions of JET machine, two inside the vacuum chamber and three outside, at cooling times between 1 second and 1 year after shutdown. The same MCNP model and irradiation conditions have been assumed. The exercise has been proposed and financed in the frame of the Fusion Technological Program of the JET machine. The scope is to supply the designers with the most reliable tool and data to calculate the dose rate on fusion machines. Results showed that there is a good agreement: the differences range between 5-35%. The next step to be considered in 2003 will be an exercise in which the comparison will be done with dose-rate data from JET taken during and

  7. A Three-Stage Optimization Algorithm for the Stochastic Parallel Machine Scheduling Problem with Adjustable Production Rates

    Directory of Open Access Journals (Sweden)

    Rui Zhang

    2013-01-01

    Full Text Available We consider a parallel machine scheduling problem with random processing/setup times and adjustable production rates. The objective functions to be minimized consist of two parts; the first part is related with the due date performance (i.e., the tardiness of the jobs, while the second part is related with the setting of machine speeds. Therefore, the decision variables include both the production schedule (sequences of jobs and the production rate of each machine. The optimization process, however, is significantly complicated by the stochastic factors in the manufacturing system. To address the difficulty, a simulation-based three-stage optimization framework is presented in this paper for high-quality robust solutions to the integrated scheduling problem. The first stage (crude optimization is featured by the ordinal optimization theory, the second stage (finer optimization is implemented with a metaheuristic called differential evolution, and the third stage (fine-tuning is characterized by a perturbation-based local search. Finally, computational experiments are conducted to verify the effectiveness of the proposed approach. Sensitivity analysis and practical implications are also discussed.

  8. Experimental and theoretical study of the laser micro-machining of glass using high-repetition-rate ultrafast laser

    Science.gov (United States)

    Yashkir, Yuri; Liu, Qiang

    2006-04-01

    We present a systematic study of the ultrafast laser micro-machining of glass using a Ti:Spp laser with moderate pulse energy (<5 μJ) at a high repetition rate (50 kHz). Optimal conditions were identified for high resolution surface laser etching, and via drilling. Several practical applications were developed: glass templates for micro fluid diffraction devices, phase gratings for excimer laser projection techniques, micro fluid vertical channel-connectors, etc. It is demonstrated that the interaction of ultrafast laser pulses with glass combines several different processes (direct ablation, explosive material ejection, and thermal material modification). A dynamic numerical model was developed for this process. It was successfully used for modelling of laser micro-machining with arbitrary 3D translations of the target.

  9. Classification of caesarean section and normal vaginal deliveries using foetal heart rate signals and advanced machine learning algorithms.

    Science.gov (United States)

    Fergus, Paul; Hussain, Abir; Al-Jumeily, Dhiya; Huang, De-Shuang; Bouguila, Nizar

    2017-07-06

    Visual inspection of cardiotocography traces by obstetricians and midwives is the gold standard for monitoring the wellbeing of the foetus during antenatal care. However, inter- and intra-observer variability is high with only a 30% positive predictive value for the classification of pathological outcomes. This has a significant negative impact on the perinatal foetus and often results in cardio-pulmonary arrest, brain and vital organ damage, cerebral palsy, hearing, visual and cognitive defects and in severe cases, death. This paper shows that using machine learning and foetal heart rate signals provides direct information about the foetal state and helps to filter the subjective opinions of medical practitioners when used as a decision support tool. The primary aim is to provide a proof-of-concept that demonstrates how machine learning can be used to objectively determine when medical intervention, such as caesarean section, is required and help avoid preventable perinatal deaths. This is evidenced using an open dataset that comprises 506 controls (normal virginal deliveries) and 46 cases (caesarean due to pH ≤ 7.20-acidosis, n = 18; pH > 7.20 and pH machine-learning algorithms are trained, and validated, using binary classifier performance measures. The findings show that deep learning classification achieves sensitivity = 94%, specificity = 91%, Area under the curve = 99%, F-score = 100%, and mean square error = 1%. The results demonstrate that machine learning significantly improves the efficiency for the detection of caesarean section and normal vaginal deliveries using foetal heart rate signals compared with obstetrician and midwife predictions and systems reported in previous studies.

  10. Acute short-term mental stress does not influence salivary flow rate dynamics.

    Directory of Open Access Journals (Sweden)

    Ella A Naumova

    Full Text Available BACKGROUND: Results of studies that address the influence of stress on salivary flow rate and composition are controversial. The aim of this study was to reveal the influence of stress vulnerability and different phases of stress reactivity on the unstimulated and stimulated salivary flow rate. We examined that acute mental stress does not change the salivary flow rate. In addition, we also examined the salivary cortisol and protein level in relation to acute mental stress stimuli. METHODS: Saliva of male subjects was collected for five minutes before, immediately, 10, 30 and 120 min after toothbrushing. Before toothbrushing, the subjects were exposed to acute stress in the form of a 2 min public speech. Salivary flow rate and total protein was measured. The physiological stress marker cortisol was analyzed using enzyme-linked immunosorbent assay. To determine the subjects' psychological stress reaction, the State-Trait-Anxiety Inventory State questionnaire (STAI data were obtained. The subjects were divided into stress subgroup (S1 (psychological reactivity, stress subgroup (S2 (psychological and physiological reactivity and a control group. The area under the curve for salivarycortisol concentration and STAI-State scores were calculated. All data underwent statistical analysis using one-way analysis of variance. RESULTS: Immediately after stress exposure, all participants exhibited a psychological stress reaction. Stress exposure did not change the salivary flow rate. Only 69% of the subjects continued to display a physiological stress reaction 20 minutes after the public talk. There was no significant change in the salivary flow rate during the psychological and the physiological stress reaction phases relative to the baseline. CONCLUSIONS: Acute stress has no impact on the salivary flow rate; however, there may be other responses through salivary proteins that are increased with the acute stress stimuli. Future studies are needed to examine

  11. X-ray residual stress analysis on machined and tempered HPSN-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Immelmann, S.; Welle, E.; Reimers, W. [Hahn-Meitner-Institut Berlin GmbH (Germany)

    1997-11-15

    The residual stress state induced by grinding and tempering of hot pressed silicon nitride (HPSN) samples is studied by X-ray diffraction. The results reveal that the residual stress values at the surface of the samples as well as their gradient within the penetration depth of the X-rays depend on the sintering aid and thus, on the glassy phase content of the HPSN. Tempering of the ground HPSN reduces the residual stress values due to microplastic deformation, whereas an oxidation of the glassy phase leads to the formation of compressive residual stresses. (orig.) 35 refs.

  12. Characterization of residual stresses in heat treated Ti-6Al-4V forgings by machining induced distortion

    Science.gov (United States)

    Regener, B.; Krempaszky, C.; Werner, E.

    2010-06-01

    To provide a solid base for improved material exploitation in dimensioning calculations it is necessary to determine the stress state in the part prior to service loading. In order to achieve higher material strength at elevated temperatures, the surface temperature gradient with respect to time has to be sufficiently high during heat treatment. This results in non-negligable residual stresses that can reduce the allowable load level upon which yielding occurs. For titanium alloys there are two common heat treatments, namely solution treatment and mill annealing. The latter one is the method of choice within the presented project. Mill annealing is utilized in order to significantly reduce the residual stresses in the parts without loosing much of the improved strength at elevated temperatures. Quantification of residual stresses is done by solving an inverse problem. From the measurement of distortion, induced by dividing the investigated part, the residual stress state can be calculated via analytical modeling or correlation with finite element models. To assure a minimum perturbation of the residual stress state during specimen production, dividing of the part is accomplished by electric discharge machining. The parts of interest are v-shaped prisms with a length of approximatly 450 mm and a thickness in the cross sectional area from about 20 mm to 45 mm. Figure 1(a) shows the forged part and 1(b) the dimensions of the cross section in millimeters as well as the material properties considered in the finite element model. The heat exchange between the part and the environment is modelled as heat transfer by convection superimposed with heat radiation. Since the parts are exposed to air during forging and heat treatment, the surface develops a strongly adhesive oxide layer, the so called alpha-case. After forging the parts are cooled in air and heat treated at a temperature of 720° C for a duration of 120 min. Subsequent air cooling and removing the alpha-case by

  13. Characterization of residual stresses in heat treated Ti-6Al-4V forgings by machining induced distortion

    Directory of Open Access Journals (Sweden)

    Werner E.

    2010-06-01

    Full Text Available To provide a solid base for improved material exploitation in dimensioning calculations it is necessary to determine the stress state in the part prior to service loading. In order to achieve higher material strength at elevated temperatures, the surface temperature gradient with respect to time has to be sufficiently high during heat treatment. This results in non-negligable residual stresses that can reduce the allowable load level upon which yielding occurs. For titanium alloys there are two common heat treatments, namely solution treatment and mill annealing. The latter one is the method of choice within the presented project. Mill annealing is utilized in order to significantly reduce the residual stresses in the parts without loosing much of the improved strength at elevated temperatures. Quantification of residual stresses is done by solving an inverse problem. From the measurement of distortion, induced by dividing the investigated part, the residual stress state can be calculated via analytical modeling or correlation with finite element models. To assure a minimum perturbation of the residual stress state during specimen production, dividing of the part is accomplished by electric discharge machining. The parts of interest are v-shaped prisms with a length of approximatly 450 mm and a thickness in the cross sectional area from about 20 mm to 45 mm. Figure 1(a shows the forged part and 1(b the dimensions of the cross section in millimeters as well as the material properties considered in the finite element model. The heat exchange between the part and the environment is modelled as heat transfer by convection superimposed with heat radiation. Since the parts are exposed to air during forging and heat treatment, the surface develops a strongly adhesive oxide layer, the so called alpha-case. After forging the parts are cooled in air and heat treated at a temperature of 720° C for a duration of 120 min. Subsequent air cooling and

  14. Diamond Tool Specific Wear Rate Assessment in Granite Machining by Means of Knoop Micro-Hardness and Process Parameters

    Science.gov (United States)

    Goktan, R. M.; Gunes Yılmaz, N.

    2017-09-01

    The present study was undertaken to investigate the potential usability of Knoop micro-hardness, both as a single parameter and in combination with operational parameters, for sawblade specific wear rate (SWR) assessment in the machining of ornamental granites. The sawing tests were performed on different commercially available granite varieties by using a fully instrumented side-cutting machine. During the sawing tests, two fundamental productivity parameters, namely the workpiece feed rate and cutting depth, were varied at different levels. The good correspondence observed between the measured Knoop hardness and SWR values for different operational conditions indicates that it has the potential to be used as a rock material property that can be employed in preliminary wear estimations of diamond sawblades. Also, a multiple regression model directed to SWR prediction was developed which takes into account the Knoop hardness, cutting depth and workpiece feed rate. The relative contribution of each independent variable in the prediction of SWR was determined by using test statistics. The prediction accuracy of the established model was checked against new observations. The strong prediction performance of the model suggests that its framework may be applied to other granites and operational conditions for quantifying or differentiating the relative wear performance of diamond sawblades.

  15. Rate Constants for Fine-structure Excitations in O-H Collisions with Error Bars Obtained by Machine Learning

    Science.gov (United States)

    Vieira, Daniel; Krems, Roman V.

    2017-02-01

    We present an approach using a combination of coupled channel scattering calculations with a machine-learning technique based on Gaussian Process regression to determine the sensitivity of the rate constants for non-adiabatic transitions in inelastic atomic collisions to variations of the underlying adiabatic interaction potentials. Using this approach, we improve the previous computations of the rate constants for the fine-structure transitions in collisions of O({}3{P}j) with atomic H. We compute the error bars of the rate constants corresponding to 20% variations of the ab initio potentials and show that this method can be used to determine which of the individual adiabatic potentials are more or less important for the outcome of different fine-structure changing collisions.

  16. SU-E-T-116: Analysis of Patient Specific VMAT QA Passing Rates with Delta4 for Matched Machines

    Energy Technology Data Exchange (ETDEWEB)

    Keller, J; Hardin, M; Giaddui, T; Kremmel, E; Peng, C; Doyle, L; Yu, Y; Harrison, A [Thomas Jefferson University, Philadelphia, PA (United States)

    2015-06-15

    specified beam conformance across machines does not ensure equivalent patient specific QA pass rates. Gamma differences are statistically significant in three of the four comparisons for two pairs of vendor matched machines.

  17. Analysis of machining and machine tools

    CERN Document Server

    Liang, Steven Y

    2016-01-01

    This book delivers the fundamental science and mechanics of machining and machine tools by presenting systematic and quantitative knowledge in the form of process mechanics and physics. It gives readers a solid command of machining science and engineering, and familiarizes them with the geometry and functionality requirements of creating parts and components in today’s markets. The authors address traditional machining topics, such as: single and multiple point cutting processes grinding components accuracy and metrology shear stress in cutting cutting temperature and analysis chatter They also address non-traditional machining, such as: electrical discharge machining electrochemical machining laser and electron beam machining A chapter on biomedical machining is also included. This book is appropriate for advanced undergraduate and graduate mechani cal engineering students, manufacturing engineers, and researchers. Each chapter contains examples, exercises and their solutions, and homework problems that re...

  18. [Prediction model of net photosynthetic rate of ginseng under forest based on optimized parameters support vector machine].

    Science.gov (United States)

    Wu, Hai-wei; Yu, Hai-ye; Zhang, Lei

    2011-05-01

    Using K-fold cross validation method and two support vector machine functions, four kernel functions, grid-search, genetic algorithm and particle swarm optimization, the authors constructed the support vector machine model of the best penalty parameter c and the best correlation coefficient. Using information granulation technology, the authors constructed P particle and epsilon particle about those factors affecting net photosynthetic rate, and reduced these dimensions of the determinant. P particle includes the percent of visible spectrum ingredients. Epsilon particle includes leaf temperature, scattering radiation, air temperature, and so on. It is possible to obtain the best correlation coefficient among photosynthetic effective radiation, visible spectrum and individual net photosynthetic rate by this technology. The authors constructed the training set and the forecasting set including photosynthetic effective radiation, P particle and epsilon particle. The result shows that epsilon-SVR-RBF-genetic algorithm model, nu-SVR-linear-grid-search model and nu-SVR-RBF-genetic algorithm model obtain the correlation coefficient of up to 97% about the forecasting set including photosynthetic effective radiation and P particle. The penalty parameter c of nu-SVR-linear-grid-search model is the minimum, so the model's generalization ability is the best. The authors forecasted the forecasting set including photosynthetic effective radiation, P particle and epsilon particle by the model, and the correlation coefficient is up to 96%.

  19. Utilizing partial least square and support vector machine for TBM penetration rate prediction in hard rock conditions

    Institute of Scientific and Technical Information of China (English)

    高栗; 李夕兵

    2015-01-01

    Rate of penetration (ROP) of a tunnel boring machine (TBM) in a rock environment is generally a key parameter for the successful accomplishment of a tunneling project. The objectives of this work are to compare the accuracy of prediction models employing partial least squares (PLS) regression and support vector machine (SVM) regression technique for modeling the penetration rate of TBM. To develop the proposed models, the database that is composed of intact rock properties including uniaxial compressive strength (UCS), Brazilian tensile strength (BTS), and peak slope index (PSI), and also rock mass properties including distance between planes of weakness (DPW) and the alpha angle (α) are input as dependent variables and the measured ROP is chosen as an independent variable. Two hundred sets of data are collected from Queens Water Tunnel and Karaj−Tehran water transfer tunnel TBM project. The accuracy of the prediction models is measured by the coefficient of determination (R2) and root mean squares error (RMSE) between predicted and observed yield employing 10-fold cross-validation schemes. The R2 and RMSE of prediction are 0.8183 and 0.1807 for SVMR method, and 0.9999 and 0.0011 for PLS method, respectively. Comparison between the values of statistical parameters reveals the superiority of the PLSR model over SVMR one.

  20. Heart rate variability response to mental arithmetic stress in patients with schizophrenia Autonomic response to stress in schizophrenia

    NARCIS (Netherlands)

    Castro, Mariana N.; Vigo, Daniel E.; Weidema, Hylke; Fahrer, Rodolfo D.; Chu, Elvina M.; De Achaval, Delfina; Nogues, Martin; Leiguarda, Ramon C.; Cardinali, Daniel P.; Guinjoan, Salvador N.

    2008-01-01

    Background: The vulnerability-stress hypothesis is an established model of schizophrenia symptom formation. We sought to characterise the pattern of the cardiac autonomic response to mental arithmetic stress in patients with stable schizophrenia. Methods: We performed heart rate variability (HRV) an

  1. Heart rate variability response to mental arithmetic stress in patients with schizophrenia Autonomic response to stress in schizophrenia

    NARCIS (Netherlands)

    Castro, Mariana N.; Vigo, Daniel E.; Weidema, Hylke; Fahrer, Rodolfo D.; Chu, Elvina M.; De Achaval, Delfina; Nogues, Martin; Leiguarda, Ramon C.; Cardinali, Daniel P.; Guinjoan, Salvador N.

    2008-01-01

    Background: The vulnerability-stress hypothesis is an established model of schizophrenia symptom formation. We sought to characterise the pattern of the cardiac autonomic response to mental arithmetic stress in patients with stable schizophrenia. Methods: We performed heart rate variability (HRV) an

  2. Observed Multi-Decade DD and DT Z-Pinch Fusion Rate Scaling in 5 Dense Plasma Focus Fusion Machines

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, E. C. [National Security Technologies, LLC; Lowe, D. R. [National Security Technologies, LLC; O' Brien, R. [University of Nevada, Las Vegas; Meehan, B. T. [National Security Technologies, LLC

    2013-06-18

    Dense Plasma Focus (DPF) machines are in use worldwide or a wide variety of applications; one of these is to produce intense, short bursts of fusion via r-Z pinch heating and compression of a working gas. We have designed and constructed a series of these, ranging from portable to a maximum energy storage capacity of 2 MJ. Fusion rates from 5 DPF pulsed fusion generators have been measured in a single laboratory using calibrated activation detectors. Measured rates range from ~ 1015 to more than 1019 fusions per second have been measured. Fusion rates from the intense short (20 – 50 ns) periods of production were inferred from measurement of neutron production using both calibrated activation detectors and scintillator-PMT neutron time of flight (NTOF) detectors. The NTOF detectors are arranged to measure neutrons versus time over flight paths of 30 Meters. Fusion rate scaling versus energy and current will be discussed. Data showing observed fusion cutoff at D-D fusion yield levels of approximately 1*1012, and corresponding tube currents of ~ 3 MA will be shown. Energy asymmetry of product neutrons will also be discussed. Data from the NTOF lines of sight have been used to measure energy asymmetries of the fusion neutrons. From this, center of mass energies for the D(d,n)3He reaction are inferred. A novel re-entrant chamber that allows extremely high single pulse neutron doses (> 109 neutrons/cm2 in 50 ns) to be supplied to samples will be described. Machine characteristics and detector types will be discussed.

  3. Heart rate variability in relation to stress in the Asian elephant (Elephas maximus)

    Science.gov (United States)

    Vézina-Audette, Raphaël; Herry, Christophe; Burns, Patrick; Frasch, Martin; Chave, Emmanuelle; Theoret, Christine

    2016-01-01

    This study describes a safe, reliable, and accessible means to measure heart rate (HR) and HR variability (HRV) and evaluates the use of HRV as a physiological correlate of stress in the Asian elephant. A probabilistic model indicates that HRV measurements may adequately distinguish between stressed and non-stressed elephants. PMID:26933266

  4. Inclusion of Respiratory Frequency Information in Heart Rate Variability Analysis for Stress Assessment.

    Science.gov (United States)

    Hernando, Alberto; Lazaro, Jesus; Gil, Eduardo; Arza, Adriana; Garzon, Jorge Mario; Lopez-Anton, Raul; de la Camara, Concepcion; Laguna, Pablo; Aguilo, Jordi; Bailon, Raquel

    2016-07-01

    Respiratory rate and heart rate variability (HRV) are studied as stress markers in a database of young healthy volunteers subjected to acute emotional stress, induced by a modification of the Trier Social Stress Test. First, instantaneous frequency domain HRV parameters are computed using time-frequency analysis in the classical bands. Then, the respiratory rate is estimated and this information is included in HRV analysis in two ways: 1) redefining the high-frequency (HF) band to be centered at respiratory frequency; 2) excluding from the analysis those instants where respiratory frequency falls within the low-frequency (LF) band. Classical frequency domain HRV indices scarcely show statistical differences during stress. However, when including respiratory frequency information in HRV analysis, the normalized LF power as well as the LF/HF ratio significantly increase during stress ( p-value 0.05 according to the Wilcoxon test), revealing higher sympathetic dominance. The LF power increases during stress, only being significantly different in a stress anticipation stage, while the HF power decreases during stress, only being significantly different during the stress task demanding attention. Our results support that joint analysis of respiration and HRV obtains a more reliable characterization of autonomic nervous response to stress. In addition, the respiratory rate is observed to be higher and less stable during stress than during relax ( p-value 0.05 according to the Wilcoxon test) being the most discriminative index for stress stratification (AUC = 88.2 % ).

  5. Effects of stress on heart rate complexity--a comparison between short-term and chronic stress.

    Science.gov (United States)

    Schubert, C; Lambertz, M; Nelesen, R A; Bardwell, W; Choi, J-B; Dimsdale, J E

    2009-03-01

    This study examined chronic and short-term stress effects on heart rate variability (HRV), comparing time, frequency and phase domain (complexity) measures in 50 healthy adults. The hassles frequency subscale of the combined hassles and uplifts scale (CHUS) was used to measure chronic stress. Short-term stressor reactivity was assessed with a speech task. HRV measures were determined via surface electrocardiogram (ECG). Because respiration rate decreased during the speech task (prate changes on the effects of interest. A series of repeated-measures analyses of covariance (ANCOVA) with Bonferroni adjustment revealed that short-term stress decreased HR D2 (calculated via the pointwise correlation dimension PD2) (pshort-term stress. Partial correlation adjusting for respiration rate showed that HR D2 was associated with chronic stress (r=-.35, p=.019). Differential effects of chronic and short-term stress were observed on several HRV measures. HR D2 decreased under both stress conditions reflecting lowered functionality of the cardiac pacemaker. The results confirm the importance of complexity metrics in modern stress research on HRV.

  6. Effect of hole geometry and Electric-Discharge Machining (EDM) on airflow rates through small diameter holes in turbine blade material

    Science.gov (United States)

    Hippensteele, S. A.; Cochran, R. P.

    1980-01-01

    The effects of two design parameters, electrode diameter and hole angle, and two machine parameters, electrode current and current-on time, on air flow rates through small-diameter (0.257 to 0.462 mm) electric-discharge-machined holes were measured. The holes were machined individually in rows of 14 each through 1.6 mm thick IN-100 strips. The data showed linear increase in air flow rate with increases in electrode cross sectional area and current-on time and little change with changes in hole angle and electrode current. The average flow-rate deviation (from the mean flow rate for a given row) decreased linearly with electrode diameter and increased with hole angle. Burn time and finished hole diameter were also measured.

  7. Modeling of Residual Stress and Machining Distortion in Aerospace Components (PREPRINT)

    Science.gov (United States)

    2010-03-01

    Quenched Superalloy Turbine Disc : Measurements and Modeling,” Metallurgical And Materials Transactions A Volume 37a, February 2006, 459. 7. D. Dye, K.T...order to produce a change in microstructure (e.g., phase transformation, recrystallization). Nickel base superalloy disks used in aircraft...nickel base superalloys . This step completes the transformation to a desired microstructure and 3 properties with the added benefit of stress relaxation

  8. High Classification Rates for Continuous Cow Activity Recognition using Low-cost GPS Positioning Sensors and Standard Machine Learning Techniques

    DEFF Research Database (Denmark)

    Godsk, Torben; Kjærgaard, Mikkel Baun

    2011-01-01

    In precision livestock farming, spotting cows in need of extra attention due to health or welfare issues are essential, since the time a farmer can devote to each animal is decreasing due to growing herd sizes and increasing efficiency demands. Often, the symptoms of health and welfare state...... activities. By preprocessing the raw cow position data, we obtain high classification rates using standard machine learning techniques to recognize cow activities. Our objectives were to (i) determine to what degree it is possible to robustly recognize cow activities from GPS positioning data, using low......-cost GPS receivers; and (ii) determine which types of activities can be classified, and what robustness to expect within the different classes. To provide data for this study low-cost GPS receivers were mounted on 14 dairy cows on grass for a day while they were observed from a distance...

  9. Utilisation of Modeling, Stress Analysis, Kinematics Optimisation, and Hypothetical Estimation of Lifetime in the Design Process of Mobile Working Machines

    Science.gov (United States)

    Izrael, Gregor; Bukoveczky, Juraj; Gulan, Ladislav

    2011-12-01

    The contribution deals with several methods used in the construction process such as model creation, verification of technical parameters of the machine, and life estimation of the selected modules. Determination of life cycle for mobile working machines, and their carrying modules respectively by investigation and subsequent processing of results gained by service measurements. Machine life claimed by a producer is only relative, because life of these machines depends not only on the way of work on that particular machine but also the state of material which is manipulated by the machine and in great extent the operator, their observance of security regulations, and prescribed working conditions.

  10. Data-Derived Coulomb Stress Rate Uncertainties of the San Andreas Fault System

    Science.gov (United States)

    Smith-Konter, B. R.; Solis, T.; Sandwell, D. T.

    2008-12-01

    Interseismic stress rates of the San Andreas Fault System (SAFS), derived from the present-day geodetic network spanning the North American-Pacific plate boundary, range from 0.5 - 7 MPa/100yrs and vary as a function of fault locking depth, slip rate, and fault geometry. Calculations of accumulated stress over several earthquake cycles, consistent with coseismic stress drops of ~3-7 MPa, also largely depend on the rupture history of a fault over the past few thousand years. However, uncertainties in paleoseismic slip history, combined with ongoing discrepancies in geologic/geodetic slip rates and variable locking depths throughout the earthquake cycle, can introduce uncertainties in stress rate and in present-day stress accumulation calculations. For example, a number of recent geodetic studies have challenged geologic slip rates along the SAFS, varying by as much as 25% of the total slip budget; geodetically determined locking depths, while within the bounds of seismicity, typically have uncertainties that range from 0.5 - 5 km; uncertainties in paleoseismic chronologies can span several decades, with slip uncertainties on the order of a few meters. Here we assess the importance of paleoseismic accuracy, variations in slip rates, and basic stress model components using a 3-D semi-analytic time-dependent deformation model of the SAFS. We perform a sensitivity analysis of Coulomb stress rate and present-day accumulated stress with respect to the six primary parameters of our model: slip rate, locking depth, mantle viscosity, elastic plate thickness, coefficient of friction, and slip history. In each case, we calculate a stress derivative with respect to a parameter over the estimated range of uncertainty, as well as any tradeoffs in parameters. Our results suggest that a 25% variation, or exchange, of slip rates between the primary SAFS and faults of the Eastern California Shear Zone (ECSZ) yields a respective decrease (SAFS) and increase (ECSZ) of stress rate by

  11. Parenting stress and external stressors as predictors of maternal ratings of child adjustment.

    Science.gov (United States)

    Ostberg, Monica; Hagekull, Berit

    2013-06-01

    This study sought to disentangle the effects of different kinds of stress on maternal ratings of child externalizing and internalizing problems, social inhibition, and social competence, with a primary focus on parenting stress. The relations were explored in a sample consisting of mothers of 436 children (Mage  = 7 years) in Sweden. Half the sample had had early clinical contacts during infancy due to child regulation problems, and the rest were mothers without known such early contacts. Demographic factors, family stressors, and parenting stress were examined in stress - adjustment models. Family stressors were clinical contact during infancy, current child and parent health problems, recent negative life events, and insufficient social support. Parenting stress as a mediator of the effect of other stressors on rated child adjustment was tested as was social support as a moderator of the effect of parenting stress on adjustment. The results showed that a higher parenting stress level was associated with maternal ratings of more externalizing and internalizing behaviors, more social inhibition, and lower social competence. Other family stressors and background variables were also found to be of importance, mainly for externalizing and internalizing problems and to some extent for social competence. Social inhibition had a unique relation to parenting stress only. Parenting stress mediated effects of other stressors in twelve models, whereas social support had no moderating effect on the link between parenting stress and child adjustment. Thus, parenting stress seems to be an important overarching construct. Clinical implications are proposed.

  12. Stress-induced martensitic transformation in metastable austenitic stainless steels: Effect on fatigue crack growth rate

    Science.gov (United States)

    Khan, Z.; Ahmed, M.

    1996-04-01

    This paper addresses the influence of cyclic stress-induced martensitic transformation on fatigue crack growth rates in metastable austenitic stainless steels. At low applied stress and mean stress values in AISI type 301 stainless steel, fatigue crack growth rate is substantially retarded due to a cyclic stress-induced γ-α' and γ-ɛ martensitic transformation occurring at the crack-tip plastic zone. It is suggested that the transformation products produce a compressive residual stress at the tip of the fatigue crack, which essentially lowers the effective stress intensity and hence retards the fatigue crack growth rate. At high applied stress or mean stress values, fatigue crack growth rates in AISI type 301 steels become almost equal to those of stable AISI type 302 alloy. As the amount of transformed products increases (with an increase in applied or mean stress), the strain-hardening effect brought about by the transformed martensite phase appears to accelerate fatigue crack growth, offsetting the contribution from the compressive residual stress produced by the positive volume change of γ → α' or ɛ transformation.

  13. Modeling baroreflex regulation of heart rate during orthostatic stress

    DEFF Research Database (Denmark)

    Olufsen, Mette; Tran, Hien T.; Ottesen, Johnny T.

    2006-01-01

    . The model uses blood pressure measured in the finger as an input to model heart rate dynamics in response to changes in baroreceptor nerve firing rate, sympathetic and parasympathetic responses, vestibulo-sympathetic reflex, and concentrations of norepinephrine and acetylcholine. We formulate an inverse...

  14. A novel concept of measuring mass flow rates using flow induced stresses

    Indian Academy of Sciences (India)

    P I Jagad; B P Puranik; A W Date

    2015-08-01

    Measurement of mass flow rate is important for automatic control of the mass flow rate in many industries such as semiconductor manufacturing and chemical industry (for supply of catalyst to a reaction). In the present work, a new concept for direct measurement of mass flow rates which does not depend on the volumetric flow rate measurement and obviates the need for the knowledge of density is proposed from the measurement of the flow induced stresses in a substrate. The concept is formulated by establishing the relationship between the mass flow rate and the stress in the substrate. To this end, the flow field and the stress field in the substrate are evaluated simultaneously using a numerical procedure and the necessary correlations are derived. A least squares based procedure is used to derive the mass flow rate from the correlations as a function of the stress in the substrate.

  15. Anger responses to psychosocial stress predict heart rate and cortisol stress responses in men but not women.

    Science.gov (United States)

    Lupis, Sarah B; Lerman, Michelle; Wolf, Jutta M

    2014-11-01

    While previous research has suggested that anger and fear responses to stress are linked to distinct sympathetic nervous system (SNS) stress responses, little is known about how these emotions predict hypothalamus-pituitary-adrenal (HPA) axis reactivity. Further, earlier research primarily relied on retrospective self-report of emotion. The current study aimed at addressing both issues in male and female individuals by assessing the role of anger and fear in predicting heart rate and cortisol stress responses using both self-report and facial coding analysis to assess emotion responses. We exposed 32 healthy students (18 female; 19.6±1.7 yr) to an acute psychosocial stress paradigm (TSST) and measured heart rate and salivary cortisol levels throughout the protocol. Anger and fear before and after stress exposure was assessed by self-report, and video recordings of the TSST were assessed by a certified facial coder to determine emotion expression (FACS). Self-reported emotions and emotion expressions did not correlate (all p>.23). Increases in self-reported fear predicted blunted cortisol responses in men (β=0.41, p=.04). Also for men, longer durations of anger expression predicted exaggerated cortisol responses (β=0.67 p=.004), and more anger incidences predicted exaggerated cortisol and heart rate responses (β=0.51, p=.033; β=0.46, p=.066, resp.). Anger and fear did not predict SNS or HPA activity for females (all p>.23). The current differential self-report and facial coding findings support the use of multiple modes of emotion assessment. Particularly, FACS but not self-report revealed a robust anger-stress association that could have important downstream health effects for men. For women, future research may clarify the role of other emotions, such as self-conscious expressions of shame, for physiological stress responses. A better understanding of the emotion-stress link may contribute to behavioral interventions targeting health-promoting ways of

  16. Study of residual stresses generated in machining of AISI 4340 steel; Estudo das tensoes residuais geradas na usinagem de aco AISI 4340

    Energy Technology Data Exchange (ETDEWEB)

    Reis, W.P. dos; Fonseca, M.P. Cindra; Serrao, L.F.; Chuvas, T.C.; Oliveira, L.C., E-mail: mcindra@vm.uff.b [Universidade Federal Fluminense (PGMEC/UFF), Niteroi, RJ (Brazil). Dept. de Engenharia Mecanica

    2010-07-01

    Among the mechanical construction steels, AISI 4340 has good harden ability, while combining high strength with toughness and good fatigue strength, making it excellent for application in the metalworking industry, where it can work at different levels and types of requests. Residual stresses are generated in almost all processes of mechanical manufacturing. In this study, the residual stresses generated in different machining processes and heat treatment hardening of AISI 4340 were analyzed by X-ray diffraction, by the sen{sup 2} {psi} method, using Cr{kappa}{beta} radiation and compared. All samples, except for turned and cut by EDM, presented compressive residual stresses in the surface with various magnitudes. (author)

  17. Research on the influence of machining introduced sub-surface defects and residue stress upon the mechanical properties of single crystal copper

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Large scale molecular dynamics simulations of nanomachining and stretching of single crystal copper are performed to analyze the machining process’ influence on the material’s mechanical properties. The simulation results show that the machining process will introduce interfacial defects inside the specimen and enhance the compressive stress beneath the surface. Gener- ally speaking, interfacial defects lead to the decrease of the strength limit, while residue compressive stress can enhance the elastic limit and even the strength limit. Various machining parameters are adopted to investigate their influence on the me- chanical behavior of machined specimen. Lower cutting speed and smaller cutting depth lead to less defects and greater residue compressive stress, which brings about better mechanical properties. The elastic limit increases by 36.8% under the cutting depth of 0.73 nm and decreases by 21.1% under the cutting depth of 1.46 nm. The strength limit increases by 7.7% under the cutting speed of 100 m/s and decreases by 28.2% under the cutting speed of 300 m/s.

  18. Rate-and-State Southern California Earthquake Forecasts: Resolving Stress Singularities

    Science.gov (United States)

    Strader, A. E.; Jackson, D. D.

    2014-12-01

    In previous studies, we pseudo-prospectively evaluated time-dependent Coulomb stress earthquake forecasts, based on rate-and-state friction (Toda and Enescu, 2011 and Dieterich, 1996), against an ETAS null hypothesis (Zhuang et al., 2002). At the 95% confidence interval, we found that the stress-based forecast failed to outperform the ETAS forecast during the first eight weeks following the 10/16/1999 Hector Mine earthquake, in both earthquake number and spatial distribution. The rate-and-state forecast was most effective in forecasting far-field events (earthquakes occurring at least 50km away from modeled active faults). Near active faults, where most aftershocks occurred, stress singularities arising from modeled fault section boundaries obscured the Coulomb stress field. In addition to yielding physically unrealistic stress quantities, the stress singularities arising from the slip model often failed to indicate potential fault asperity locations inferred from aftershock distributions. Here, we test the effects of these stress singularities on the rate-and-state forecast's effectiveness, as well as mitigate stress uncertainties near active faults. We decrease the area significantly impacted by stress singularities by increasing the number of fault patches and introducing tapered slip at fault section boundaries, representing displacement as a high-resolution step function. Using recent seismicity distributions to relocate fault asperities, we also invert seismicity for a fault displacement model with higher resolution than the original slip distribution, where areas of positive static Coulomb stress change coincide with earthquake locations.

  19. Effects of Yoga on Stress, Stress Adaption, and Heart Rate Variability Among Mental Health Professionals--A Randomized Controlled Trial.

    Science.gov (United States)

    Lin, Shu-Ling; Huang, Ching-Ya; Shiu, Shau-Ping; Yeh, Shu-Hui

    2015-08-01

    Mental health professionals experiencing work-related stress may experience burn out, leading to a negative impact on their organization and patients. The aim of this study was to examine the effects of yoga classes on work-related stress, stress adaptation, and autonomic nerve activity among mental health professionals. A randomized controlled trial was used, which compared the outcomes between the experimental (e.g., yoga program) and the control groups (e.g., no yoga exercise) for 12 weeks. Work-related stress and stress adaptation were assessed before and after the program. Heart rate variability (HRV) was measured at baseline, midpoint through the weekly yoga classes (6 weeks), and postintervention (after 12 weeks of yoga classes). The results showed that the mental health professionals in the yoga group experienced a significant reduction in work-related stress (t = -6.225, p yoga and control groups, we found the yoga group significantly decreased work-related stress (t = -3.216, p = .002), but there was no significant change in stress adaptation (p = .084). While controlling for the pretest scores of work-related stress, participants in yoga, but not the control group, revealed a significant increase in autonomic nerve activity at midpoint (6 weeks) test (t = -2.799, p = .007), and at posttest (12 weeks; t = -2.099, p = .040). Because mental health professionals experienced a reduction in work-related stress and an increase in autonomic nerve activity in a weekly yoga program for 12 weeks, clinicians, administrators, and educators should offer yoga classes as a strategy to help health professionals reduce their work-related stress and balance autonomic nerve activities. © 2015 The Authors. Worldviews on Evidence-Based Nursing published by Wiley Periodicals, Inc. on behalf of Society for Worldviews on Evidence-Based Nursing.

  20. 预应力硬态切削加工中残余应力的数值模拟%Simulation of Residual Stress States in Pre-stress Hard Machining

    Institute of Scientific and Technical Information of China (English)

    彭锐涛; 叶邦彦; 唐新姿; 尹美

    2007-01-01

    航空轴承外圈的疲劳裂纹分析表明,套圈表面的残余压应力分布致使轴承表面接触疲劳寿命降低.预应力切削是一种能主动控制加工表面的残余应力状态的方法,它是通过预先给工件施加一个弹性范围内的张应力后再进行切削加工.针对预应力硬态切削的特点,建立了切削模拟的三维热力耦合模型;分析研究了材料本构方程、任意拉格朗日-欧拉方法以及刀屑接触面的摩擦模型等切削模拟中的关键技术.最后,通过切削实验和有限元模拟,比较和分析了预应力硬态切削对加工表面应力状态的影响,证明了预应力切削方法能在加工表面产生残余压应力,从而提高加工表面的接触疲劳寿命.%The analysis on fatigue cracks of the outer race of aero-bearing shows that the distribution of residual tensile stress on race surface could reduce its contact fatigue life. The method of pre-stress hard machining, which is a process that imposes a tensile stress to work piece within elastic limit beforehand and then exerts machining,can actively control the residual stress states of machined surface. Based on the characteristics of pre-stress hard machining, a 3D coupled thermo-mechanical model is constructed. Several key numerical techniques, such as the constitutive equation of material, the Arbitrary Lagrangian Eulerian (ALE) method and the friction law along the chip-tool interface have been analyzed and implemented. In the end, through combining cutting experiments and numerical simulations, the residual stress states of machined surface in pre-stress hard machining are compared and analyzed. Simulation and experiment results indicate that this method can acquire residual compressive stress on machined surface and prolong the contact fatigue life.

  1. A novel machine learning-enabled framework for instantaneous heart rate monitoring from motion-artifact-corrupted electrocardiogram signals.

    Science.gov (United States)

    Zhang, Qingxue; Zhou, Dian; Zeng, Xuan

    2016-11-01

    This paper proposes a novel machine learning-enabled framework to robustly monitor the instantaneous heart rate (IHR) from wrist-electrocardiography (ECG) signals continuously and heavily corrupted by random motion artifacts in wearable applications. The framework includes two stages, i.e. heartbeat identification and refinement, respectively. In the first stage, an adaptive threshold-based auto-segmentation approach is proposed to select out heartbeat candidates, including the real heartbeats and large amounts of motion-artifact-induced interferential spikes. Then twenty-six features are extracted for each candidate in time, spatial, frequency and statistical domains, and evaluated by a spare support vector machine (SVM) to select out ten critical features which can effectively reveal residual heartbeat information. Afterwards, an SVM model, created on the training data using the selected feature set, is applied to find high confident heartbeats from a large number of candidates in the testing data. In the second stage, the SVM classification results are further refined by two steps: (1) a rule-based classifier with two attributes named 'continuity check' and 'locality check' for outlier (false positives) removal, and (2) a heartbeat interpolation strategy for missing-heartbeat (false negatives) recovery. The framework is evaluated on a wrist-ECG dataset acquired by a semi-customized platform and also a public dataset. When the signal-to-noise ratio is as low as  -7 dB, the mean absolute error of the estimated IHR is 1.4 beats per minute (BPM) and the root mean square error is 6.5 BPM. The proposed framework greatly outperforms well-established approaches, demonstrating that it can effectively identify the heartbeats from ECG signals continuously corrupted by intense motion artifacts and robustly estimate the IHR. This study is expected to contribute to robust long-term wearable IHR monitoring for pervasive heart health and fitness management.

  2. Uniqueness of rate-dependency, creep and stress relaxation behaviors for soft clays

    Institute of Scientific and Technical Information of China (English)

    朱启银; 尹振宇; 徐长节; 殷建华; 夏小和

    2015-01-01

    This work focuses on the uniqueness of rate-dependency, creep and stress relaxation behaviors for soft clays under one-dimensional condition. An elasto-viscoplastic model is briefly introduced based on the rate-dependency of preconsolidation pressure. By comparing the rate-dependency formulation with the creep based formulation, the relationship between rate-dependency and creep behaviors is firstly described. The rate-dependency based formulation is then extended to derive an analytical solution for the stress relaxation behavior with defining a stress relaxation coefficient. Based on this, the relationship between the rate-dependency coefficient and the stress relaxation coefficient is derived. Therefore, the uniqueness between behaviors of rate-dependency, creep and stress relaxation with their key parameters is obtained. The uniqueness is finally validated by comparing the simulated rate-dependency of preconsolidation pressure, the estimated values of secondary compression coefficient and simulations of stress relaxation tests with test results on both reconstituted Illite and Berthierville clay.

  3. Physical activity, mindfulness meditation, or heart rate variability biofeedback for stress reduction: a randomized controlled trial

    OpenAIRE

    Zwan, van der, G.; Vente, de, W.; Huizink, A.C.; Bögels, S.M.; Bruin,, Henk

    2015-01-01

    In contemporary western societies stress is highly prevalent, therefore the need for stress-reducing methods is great. This randomized controlled trial compared the efficacy of self-help physical activity (PA), mindfulness meditation (MM), and heart rate variability biofeedback (HRV-BF) in reducing stress and its related symptoms. We randomly allocated 126 participants to PA, MM, or HRV-BF upon enrollment, of whom 76 agreed to participate. The interventions consisted of psycho-education and a...

  4. Prediction of material removal rate and surface roughness for wire electrical discharge machining of nickel using response surface methodology

    Directory of Open Access Journals (Sweden)

    Thangam Chinnadurai

    2016-12-01

    Full Text Available This study focuses on investigating the effects of process parameters, namely, Peak current (Ip, Pulse on time (Ton, Pulse off time (Toff, Water pressure (Wp, Wire feed rate (Wf, Wire tension (Wt, Servo voltage (Sv and Servo feed setting (Sfs, on the Material Removal Rate (MRR and Surface Roughness (SR for Wire electrical discharge machining (Wire-EDM of nickel using Taguchi method. Response Surface Methodology (RSM is adopted to evolve mathematical relationships between the wire cutting process parameters and the output variables of the weld joint to determine the welding input parameters that lead to the desired optimal wire cutting quality. Besides, using response surface plots, the interaction effects of process parameters on the responses are analyzed and discussed. The statistical software Mini-tab is used to establish the design and to obtain the regression equations. The developed mathematical models are tested by analysis-of-variance (ANOVA method to check their appropriateness and suitability. Finally, a comparison is made between measured and calculated results, which are in good agreement. This indicates that the developed models can predict the responses accurately and precisely within the limits of cutting parameter being used.

  5. Stress Wave E-Rating of Structural Timber—Size and Moisture Content Effects

    Science.gov (United States)

    Xiping Wang

    2013-01-01

    The objectives of this study were to investigate the influence of cross sectional size and moisture content on stress wave properties of structural timber in various sizes and evaluate the feasibility of using stress wave method to E-rate timber in green conditions. Four different sizes of Douglas-fir (Pseudotsuga menziesii) square timbers were...

  6. STATISTICAL INFERENCE OF WEIBULL DISTRIBUTION FOR TAMPERED FAILURE RATE MODEL IN PROGRESSIVE STRESS ACCELERATED LIFE TESTING

    Institute of Scientific and Technical Information of China (English)

    WANG Ronghua; FEI Heliang

    2004-01-01

    In this note, the tampered failure rate model is generalized from the step-stress accelerated life testing setting to the progressive stress accelerated life testing for the first time. For the parametric setting where the scale parameter satisfying the equation of the inverse power law is Weibull, maximum likelihood estimation is investigated.

  7. Physical activity, mindfulness meditation, or heart rate variability biofeedback for stress reduction: a randomized controlled trial

    NARCIS (Netherlands)

    van der Zwan, J.E.; de Vente, W.; Huizink, A.C.; Bögels, S.M.; de Bruin, E.I.

    2015-01-01

    In contemporary western societies stress is highly prevalent, therefore the need for stress-reducing methods is great. This randomized controlled trial compared the efficacy of self-help physical activity (PA), mindfulness meditation (MM), and heart rate variability biofeedback (HRV-BF) in reducing

  8. Physical activity, mindfulness meditation, or heart rate variability biofeedback for stress reduction: a randomized controlled trial

    NARCIS (Netherlands)

    Zwan, van der J.E.; Vente, de W.; Huizink, A.C.; Bögels, S.M.; Bruin, de E.I.

    2015-01-01

    In contemporary western societies stress is highly prevalent, therefore the need for stress-reducing methods is great. This randomized controlled trial compared the efficacy of self-help physical activity (PA), mindfulness meditation (MM), and heart rate variability biofeedback (HRV-BF) in reducing

  9. Nonlinear Heart Rate Variability features for real-life stress detection. Case study: students under stress due to university examination.

    Science.gov (United States)

    Melillo, Paolo; Bracale, Marcello; Pecchia, Leandro

    2011-11-07

    This study investigates the variations of Heart Rate Variability (HRV) due to a real-life stressor and proposes a classifier based on nonlinear features of HRV for automatic stress detection. 42 students volunteered to participate to the study about HRV and stress. For each student, two recordings were performed: one during an on-going university examination, assumed as a real-life stressor, and one after holidays. Nonlinear analysis of HRV was performed by using Poincaré Plot, Approximate Entropy, Correlation dimension, Detrended Fluctuation Analysis, Recurrence Plot. For statistical comparison, we adopted the Wilcoxon Signed Rank test and for development of a classifier we adopted the Linear Discriminant Analysis (LDA). Almost all HRV features measuring heart rate complexity were significantly decreased in the stress session. LDA generated a simple classifier based on the two Poincaré Plot parameters and Approximate Entropy, which enables stress detection with a total classification accuracy, a sensitivity and a specificity rate of 90%, 86%, and 95% respectively. The results of the current study suggest that nonlinear HRV analysis using short term ECG recording could be effective in automatically detecting real-life stress condition, such as a university examination.

  10. Nonlinear Heart Rate Variability features for real-life stress detection. Case study: students under stress due to university examination

    Directory of Open Access Journals (Sweden)

    Melillo Paolo

    2011-11-01

    Full Text Available Abstract Background This study investigates the variations of Heart Rate Variability (HRV due to a real-life stressor and proposes a classifier based on nonlinear features of HRV for automatic stress detection. Methods 42 students volunteered to participate to the study about HRV and stress. For each student, two recordings were performed: one during an on-going university examination, assumed as a real-life stressor, and one after holidays. Nonlinear analysis of HRV was performed by using Poincaré Plot, Approximate Entropy, Correlation dimension, Detrended Fluctuation Analysis, Recurrence Plot. For statistical comparison, we adopted the Wilcoxon Signed Rank test and for development of a classifier we adopted the Linear Discriminant Analysis (LDA. Results Almost all HRV features measuring heart rate complexity were significantly decreased in the stress session. LDA generated a simple classifier based on the two Poincaré Plot parameters and Approximate Entropy, which enables stress detection with a total classification accuracy, a sensitivity and a specificity rate of 90%, 86%, and 95% respectively. Conclusions The results of the current study suggest that nonlinear HRV analysis using short term ECG recording could be effective in automatically detecting real-life stress condition, such as a university examination.

  11. The Relation of Arm Exercise Peak Heart Rate to Stress Test Results and Outcome

    National Research Council Canada - National Science Library

    Xian, Hong; Liu, Weijian; Marshall, Cynthia; Chandiramani, Pooja; Bainter, Emily; Martin, III, Wade H

    2016-01-01

    PURPOSEArm exercise is an alternative to pharmacologic stress testing for >50% of patients unable to perform treadmill exercise but no data exist regarding the effect of attained peak arm exercise heart rate on test sensitivity...

  12. Thermal-stress effects on enhanced low-dose-rate sensitivity of linear bipolar circuits

    Energy Technology Data Exchange (ETDEWEB)

    SHANEYFELT,MARTY R.; SCHWANK,JAMES R.; WITCZAK,STEVEN C.; RIEWE,LEONARD CHARLES; WINOKUR,PETER S.; HASH,GERALD L.; PEASE,R.L.; FLEETWOOD,D.M.

    2000-02-17

    Thermal-stress effects are shown to have a significant impact on the enhanced low-dose-rate sensitivity of linear bipolar circuits. Implications of these results on hardness assurance testing and mechanisms are discussed.

  13. Inverse strain rate effect on cyclic stress response in annealed Zircaloy-2

    Energy Technology Data Exchange (ETDEWEB)

    Sudhakar Rao, G.; Verma, Preeti [Center of Advanced Study, Department of Metallurgical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Chakravartty, J.K. [Mechanical Metallurgy Group, Bhabha Atomic Research Center, Trombay 400 085, Mumbai (India); Nudurupati, Saibaba [Nuclear Fuel Complex, Hyderabad 500 062 (India); Mahobia, G.S.; Santhi Srinivas, N.C. [Center of Advanced Study, Department of Metallurgical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Singh, Vakil, E-mail: vsingh.met@itbhu.ac.in [Center of Advanced Study, Department of Metallurgical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India)

    2015-02-15

    Low cycle fatigue behavior of annealed Zircaloy-2 was investigated at 300 and 400 °C at different strain amplitudes and strain rates of 10{sup −2}, 10{sup −3}, and 10{sup −4} s{sup −1}. Cyclic stress response showed initial hardening with decreasing rate of hardening, followed by linear cyclic hardening and finally secondary hardening with increasing rate of hardening for low strain amplitudes at both the temperatures. The rate as well the degree of linear hardening and secondary hardening decreased with decrease in strain rate at 300 °C, however, there was inverse effect of strain rate on cyclic stress response at 400 °C and cyclic stress was increased with decrease in strain rate. The fatigue life decreased with decrease in strain rate at both the temperatures. The occurrence of linear cyclic hardening, inverse effect of strain rate on cyclic stress response and deterioration in fatigue life with decrease in strain rate may be attributed to dynamic strain aging phenomena resulting from enhanced interaction of dislocations with solutes. Fracture surfaces revealed distinct striations, secondary cracking, and oxidation with decrease in strain rate. Deformation substructure showed parallel dislocation lines and dislocation band structure at 300 °C. Persistent slip band wall structure and development of fine Corduroy structure was observed at 400 °C.

  14. Dynamic tensile testing for determining the stress-strain curve at different strain rate

    OpenAIRE

    Mansilla, A; Regidor, A.; García, D.; Negro, A

    2001-01-01

    A detailed discussion of high strain-rate tensile testing is presented. A comparative analysis of different ways to measure stress and strain is made. The experimental stress-strain curves have been suitably interpreted to distinguish between the real behaviour of the material and the influence of the testing methodology itself. A special two sections flat specimen design was performed through FEA computer modelling. The mechanical properties as function of strain rate were experimentally obt...

  15. Heart rate response to post-learning stress predicts memory consolidation.

    Science.gov (United States)

    Larra, Mauro F; Schulz, André; Schilling, Thomas M; Ferreira de Sá, Diana S; Best, Daniel; Kozik, Bartlomiej; Schächinger, Hartmut

    2014-03-01

    Stressful experiences are often well remembered, an effect that has been explained by beta-adrenergic influences on memory consolidation. Here, we studied the impact of stress induced heart rate (HR) responses on memory consolidation in a post-learning stress paradigm. 206 male and female participants saw 52 happy and angry faces immediately before being exposed to the Cold Pressor Test or a non-stressful control procedure. Memory for the faces and their respective expression was tested twice, after 30 min and on the next day. High HR responders (in comparison to low HR responders as well as to the non-stressful control group) showed enhanced recognition memory one day after learning. Our results show that beta-adrenergic activation elicited shortly after learning enhances memory consolidation and that the stress induced HR response is a predictor for this effect. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Voltage stress effects on microcircuit accelerated life test failure rates

    Science.gov (United States)

    Johnson, G. M.

    1976-01-01

    The applicability of Arrhenius and Eyring reaction rate models for describing microcircuit aging characteristics as a function of junction temperature and applied voltage was evaluated. The results of a matrix of accelerated life tests with a single metal oxide semiconductor microcircuit operated at six different combinations of temperature and voltage were used to evaluate the models. A total of 450 devices from two different lots were tested at ambient temperatures between 200 C and 250 C and applied voltages between 5 Vdc and 15 Vdc. A statistical analysis of the surface related failure data resulted in bimodal failure distributions comprising two lognormal distributions; a 'freak' distribution observed early in time, and a 'main' distribution observed later in time. The Arrhenius model was shown to provide a good description of device aging as a function of temperature at a fixed voltage. The Eyring model also appeared to provide a reasonable description of main distribution device aging as a function of temperature and voltage. Circuit diagrams are shown.

  17. Dobutamine stress echo is superior to exercise stress testing in achieving target heart rate among patients on beta blockers.

    Science.gov (United States)

    Sabbath, Adam; Pack, Michael; Markiewicz, Richard; John, Jooby; Gaballa, Mohamed; Goldman, Steven; Thai, Hoang

    2005-01-01

    Published guidelines recommend continuing beta-adrenergic receptor blockade in patients undergoing stress testing. We evaluated the role of pharmacological versus exercise stress testing in achieving target heart rate (THR) among patients on beta-adrenergic blockade. We compared data from 140 patients who underwent dobutamine stress echo (DSE) and 143 patients who underwent exercise treadmill testing (ETT). In both groups, beta-adrenergic blocker was continued at the time of stress testing. Overall, patients undergoing DSE achieved THR more frequently than ETT. With beta-adrenergic blockade, DSE patients met THR more frequently than ETT patients (p < 0.001). Without beta-adrenergic blockade, there was no difference between either modality in achieving THR. In both DSE and ETT patients, absence of beta-adrenergic blockade increased the odds of achieving THR [odds ratio (OR): 2.46, p = 0.042 and OR: 7.44, p < 0.001, respectively]. Atropine use with DSE increased the odds of achieving THR (OR: 3.76, p = 0.006). In conclusion, pharmacological stress testing appears to be superior to exercise stress testing in achieving THR among patients on beta-adrenergic blockade.

  18. Structure/property relations of aluminum under varying rates and stress states

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, Matthew T [Los Alamos National Laboratory; Horstemeyer, Mark F [MISSISSIPPI STATE UNIV; Whittington, Wilburn R [MISSISSIPPI STATE UNIV; Solanki, Kiran N [MISSISSIPPI STATE UNIV.

    2010-11-19

    In this work we analyze the plasticity, damage, and fracture characteristics of three different processed aluminum alloys (rolled 5083-H13, cast A356-T6, and extruded 6061-T6) under varying stress states (tension, compression, and torsion) and strain rates (0.001/, 1/s., and 1000/s). The stress state difference had more of a flow stress effect than the applied strain rates for those given in this study (0.001/sec up to 1000/sec). The stress state and strain rate also had a profound effect on the damage evolution of each aluminum alloy. Tension and torsional straining gave much greater damage nucleation rates than compression. Although the damage of all three alloys was found to be void nucleation dominated, the A356-T6 and 5083-H131 aluminum alloys incurred void damage via micron scale particles where the 6061-T6 aluminum alloy incurred void damage from two scales, micron-scale particles and nanoscale precipitates. Having two length scales of particles that participated in the damage evolution made the 6061-T6 incur a strain rate sensitive damage rate that was different than the other two aluminum alloys. Under tension, as the strain rate increased, the 6061-T6 aluminum alloy's void nucleation rate decreased, but the A356-T6 and 5083-H131 aluminum alloys void nucleation rate increased.

  19. Neighborhood blight, stress, and health: a walking trial of urban greening and ambulatory heart rate

    Science.gov (United States)

    Eugenia C. South; Michelle C. Kondo; Rose A. Cheney; Charles C. Branas

    2015-01-01

    We measured dynamic stress responses using ambulatory heart rate monitoring as participants in Philadelphia, Pennsylvania walked past vacant lots before and after a greening remediation treatment of randomly selected lots. Being in view of a greened vacant lot decreased heart rate significantly more than did being in view of a nongreened vacant lot or not in view of...

  20. Dysarthria Associated with Traumatic Brain Injury: Speaking Rate and Emphatic Stress

    Science.gov (United States)

    Wang, Y.T.; Kent, R.D.; Duffy, J.R.; Thomas, J.E.

    2005-01-01

    Prosodic abnormality is common in the dysarthria associated with traumatic brain injury (TBI), and adjustments of speaking rate and emphatic stress are often used as steps in treating the speech disorder in patients with TBI-induced dysarthria. However, studies to date do not present a clear and detailed picture of how speaking rate and emphatic…

  1. Cognitive function, stress hormones, heart rate and nutritional status during simulated captivity in military survival training.

    Science.gov (United States)

    Lieberman, Harris R; Farina, Emily K; Caldwell, John; Williams, Kelly W; Thompson, Lauren A; Niro, Philip J; Grohmann, Kyle A; McClung, James P

    2016-10-15

    Stress influences numerous psychological and physiological processes, and its effects have practical implications in a variety of professions and real-world activities. However, few studies have concurrently assessed multiple behavioral, hormonal, nutritional and heart-rate responses of humans to acute, severe stress. This investigation simultaneously assessed cognitive, affective, hormonal, and heart-rate responses induced by an intensely stressful real-world environment designed to simulate wartime captivity. Sixty males were evaluated during and immediately following participation in U.S. Army Survival, Evasion, Resistance, and Escape (SERE) school, three weeks of intense but standardized training for Soldiers at risk of capture. Simulated captivity and intense mock interrogations degraded grammatical reasoning (pnutritional status and heart rate are simultaneously altered, and each of these subsequently recovers at different rates. Published by Elsevier Inc.

  2. Effects of far infrared rays irradiated from ceramic material (BIOCERAMIC) on psychological stress-conditioned elevated heart rate, blood pressure, and oxidative stress-suppressed cardiac contractility.

    Science.gov (United States)

    Leung, Ting-Kai; Chen, Chien-Ho; Tsai, Shih-Ying; Hsiao, George; Lee, Chi-Ming

    2012-10-31

    The present study examined the effects of BIOCERAMIC on psychological stress-conditioned elevated heart rate, blood pressure and oxidative stress-suppressed cardiac contractility using in vivo and in vitro animal models. We investigated the effects of BIOCERAMIC on the in vivo cardiovascular hemodynamic parameters of rats by monitoring their heart rates, systolic blood pressure, mean blood pressure and diastolic blood pressure. Thereafter, we assayed its effects on the heart rate in an isolated frog heart with and without adrenaline stimulation, and on cardiac contractility under oxidative stress. BIOCERAMIC caused significant decreases in heart rates and systolic and mean blood pressure in the stress-conditioned heart rate rat models (P heart with and without adrenaline stimulation (P < 0.05), and normalized cardiac contractility under oxidative stress (P < 0.05). BIOCERAMIC may, therefore, normalize the effects of psychological stress and oxidative stress conditions.

  3. Detection of Driver Drowsiness Using Wavelet Analysis of Heart Rate Variability and a Support Vector Machine Classifier

    Directory of Open Access Journals (Sweden)

    Gang Li

    2013-12-01

    Full Text Available Driving while fatigued is just as dangerous as drunk driving and may result in car accidents. Heart rate variability (HRV analysis has been studied recently for the detection of driver drowsiness. However, the detection reliability has been lower than anticipated, because the HRV signals of drivers were always regarded as stationary signals. The wavelet transform method is a method for analyzing non-stationary signals. The aim of this study is to classify alert and drowsy driving events using the wavelet transform of HRV signals over short time periods and to compare the classification performance of this method with the conventional method that uses fast Fourier transform (FFT-based features. Based on the standard shortest duration for FFT-based short-term HRV evaluation, the wavelet decomposition is performed on 2-min HRV samples, as well as 1-min and 3-min samples for reference purposes. A receiver operation curve (ROC analysis and a support vector machine (SVM classifier are used for feature selection and classification, respectively. The ROC analysis results show that the wavelet-based method performs better than the FFT-based method regardless of the duration of the HRV sample that is used. Finally, based on the real-time requirements for driver drowsiness detection, the SVM classifier is trained using eighty FFT and wavelet-based features that are extracted from 1-min HRV signals from four subjects. The averaged leave-one-out (LOO classification performance using wavelet-based feature is 95% accuracy, 95% sensitivity, and 95% specificity. This is better than the FFT-based results that have 68.8% accuracy, 62.5% sensitivity, and 75% specificity. In addition, the proposed hardware platform is inexpensive and easy-to-use.

  4. Mechanical Behavior of Methane Infiltrated Coal: the Roles of Gas Desorption, Stress Level and Loading Rate

    Science.gov (United States)

    Wang, Shugang; Elsworth, Derek; Liu, Jishan

    2013-09-01

    We report laboratory experiments to investigate the role of gas desorption, stress level and loading rate on the mechanical behavior of methane infiltrated coal. Two suites of experiments are carried out. The first suite of experiments is conducted on coal (Lower Kittanning seam, West Virginia) at a confining stress of 2 MPa and methane pore pressures in the fracture of 1 MPa to examine the role of gas desorption. These include three undrained (hydraulically closed) experiments with different pore pressure distributions in the coal, namely, overpressured, normally pressured and underpressured, and one specimen under drained condition. Based on the experimental results, we find quantitative evidence that gas desorption weakens coal through two mechanisms: (1) reducing effective stress controlled by the ratio of gas desorption rate over the drainage rate, and (2) crushing coal due to the internal gas energy release controlled by gas composition, pressure and content. The second suite of experiments is conducted on coal (Upper B seam, Colorado) at confining stresses of 2 and 4 MPa, with pore pressures of 1 and 3 MPa, under underpressured and drained condition with three different loading rates to study the role of stress level and loading rate. We find that the Biot coefficient of coal specimens is coal. This study has important implications for the stability of underground coal seams.

  5. Common QTL Affect the Rate of Tomato Seed Germination under Different Stress and Nonstress Conditions

    OpenAIRE

    Foolad, Majid R.; Subbiah, Prakash; Zhang, Liping

    2007-01-01

    The purpose of this study was to determine whether the rates of tomato seed germination under different stress and nonstress conditions were under common genetic controls by examining quantitative trait loci (QTL) affecting such traits. Seeds of BC1 progeny of a cross between a slow-germinating tomato breeding line and a rapid-germinating tomato wild accession were evaluated for germination under nonstress as well as cold, salt, and drought stress conditions. In each treatment, the most rapid...

  6. Detecting Safety Zone Drill Process Parameters for Uncoated HSS Twist Drill in Machining GFRP Composites by Integrating Wear Rate and Wear Transition Mapping

    Directory of Open Access Journals (Sweden)

    Sathish Rao Udupi

    2016-01-01

    Full Text Available The previous research investigations informed that the tool wear of any machining operation could be minimized by controlling the machining factors such as speed, feed, geometry, and type of cutting tool. Hence the present research paper aims at controlling the process parameters to minimize the drill tool wear, during the machining of Glass Fiber Reinforced Polymer (GFRP composites. Experiments were carried out to find the tool wear rate and a wear mechanism map of uncoated High Speed Steel (HSS drill of 10 mm diameter was developed for the drilling of GFRP composite laminates. The surface micrograph images on the drill land surface displayed dominant wear mechanisms induced on HSS drill during machining of GFRP and they were found to be adhesive wear, adhesive and abrasive wear, abrasive wear, and diffusion and fatigue wear. A “safety wear zone” was identified on the wear mechanism map, where the minimum tool wear of the HSS drill occurs. From the safety zone boundaries, it was inferred that the drill spindle speed should be set between 1200 and 1590 rpm and feed rate must be set within a range of 0.10–0.16 mm/rev for GFRP work and HSS tool combination to enhance the service life of 10 mm HSS drills and to minimize the tool wear.

  7. Relationship between obesity, negative affect and basal heart rate in predicting heart rate reactivity to psychological stress among adolescents.

    Science.gov (United States)

    Park, Andres E; Huynh, Pauline; Schell, Anne M; Baker, Laura A

    2015-08-01

    Reduced cardiovascular responses to psychological stressors have been found to be associated with both obesity and negative affect in adults, but have been less well studied in children and adolescent populations. These findings have most often been interpreted as reflecting reduced sympathetic nervous system response, perhaps associated with heightened baseline sympathetic activation among the obese and those manifesting negative affect. However, obesity and negative affect may themselves be correlated, raising the question of whether they both independently affect cardiovascular reactivity. The present study thus examined the separate effects of obesity and negative affect on both cardiovascular and skin conductance responses to stress (e.g., during a serial subtraction math task) in adolescents, while controlling for baseline levels of autonomic activity during rest. Both obesity and negative affect had independent and negative associations with cardiovascular reactivity, such that reduced stress responses were apparent for obese adolescents and those with high levels of negative affect. In contrast, neither obesity nor negative affect was related to skin conductance responses to stress, implicating specifically noradrenergic mechanisms rather than sympathetic mechanisms generally as being deficient. Moreover, baseline heart rate was unrelated to obesity in this sample, which suggests that heightened baseline of sympathetic activity is not necessary for the reduced cardiovascular reactivity to stress. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Flow rate dependency of critical wall shear stress in a radial-flow cell

    DEFF Research Database (Denmark)

    Detry, J.G.; Jensen, Bo Boye Busk; Sindic, M.

    2009-01-01

    of a water or ethanol suspension of starch granules on the surfaces. Depending on the substrate and on the suspending liquid, the aggregates differed in size and shape. Aggregate removal was studied at two flow rates. At the lower flow rate (Re-inlet = 955), the values of critical wall shear stress......In the present work, a radial-flow cell was used to study the removal of starch particle aggregates from several solid substrates (glass, stainless steel, polystyrene and PTFE) in order to determine the critical wall shear stress value for each case. The particle aggregates were formed by aspersion...... for the different surfaces suggested that capillary forces were, for all of them, playing an important role in aggregate adhesion since aqueous based aggregates were always more difficult to remove. At the higher flow rate (Re-inlet = 2016) the critical wall shear stress increased as a result of the change...

  9. Effect of exercise on heart-rate response to mental stress in teenagers.

    Science.gov (United States)

    Costin, Alex; Costin, Nathaniel; Cohen, Peter; Eisenach, Carson; Marchlinski, Francis

    2013-08-01

    We sought to determine if an exercise programme of moderate aerobic intensity would decrease the heart-rate response to mental stress in teenagers with normal hearts. Mental stress testing (50 arithmetic problems) was performed in student volunteers before and after a 5-week period of rigorous aerobic exercise training of 2.5 h for 5 days/week. In the baseline state, the mental stress test increased the heart rate by an average of 20 ± 12 bpm to its observed peak at 30 s of testing (p Exercise training had a significant effect on the maximum heart rate (106 ± 19 vs. 89 ± 13 bpm, p increase in heart rate with mental stress (20 ± 12 pre vs. 9 ± 15 bpm post training, p heart response consistent with a marked neurohormonal effect. This response is effectively blunted by a 5-week moderately intensive exercise programme. These results should encourage endorsement of a regular exercise programme as an important lifestyle modification for improving maladaptive responses to stress.

  10. Stress corrosion-controlled rates of mode I fracture propagation in calcareous bedrock

    Science.gov (United States)

    Voigtlaender, Anne; Leith, Kerry; Krautblatter, Michael

    2014-05-01

    Surface bedrock on natural rock slopes is subject to constant and cyclic environmental stresses (wind, water, wave, ice, seismic or gravitational). Studies indicate that these stresses range up to several hundred kPa, generally too low to cause macroscopic changes in intact rock, although clear evidence of fracture generation, crack propagation and weathering of bedrock illustrates the effect of environmental stresses at the Earth's surface. We suggest that material degradation and its extent, is likely to be controlled by the rate of stress corrosion cracking (SCC). Stress corrosion is a fluid-material reaction, where fluids preferentially react with strained atomic bonds at the tip of developing fractures. Stress corrosion in ferrous and siliceous materials is often accepted as the fracture propagation and degradation rate-controlling process where materials are subject to stresses and fluids. Although evidence for chemical weathering in propagating bedrock fractures is clear in natural environments, the physical system and quantification of stress corrosion in natural rocks is yet to be addressed. Here, we present preliminary data on the relationship between stresses at levels commonly present on natural rock slopes, and material damage resulting from stress corrosion under constant or cyclic tensile loading. We undertake single notch three-point bending tests (SNBT) on fresh calcareous bedrock specimens (1100x100x100mm) over a two-month period. Two beams containing an artificial notch are stressed to 75% of their ultimate strength, and a constant supply of weak acid is applied at the notch tip to enhance chemical reactions. A third, unloaded, beam is also exposed to weak acid in order to elucidate the contribution of stress corrosion cracking to the material degradation. Stresses at the tip of propagating cracks affect the kinetics of the chemical reaction in the specimen exposed to both loading and corrosion, leading to an increase in degradation, and greater

  11. Prediction of flow stress of 7017 aluminium alloy under high strain rate compression at elevated temperatures

    Institute of Scientific and Technical Information of China (English)

    Ravindranadh BOBBILI; B. RAMAKRISHNA; V. MADHU; A.K. GOGIA

    2015-01-01

    An artificial neural network (ANN) constitutive model and JohnsoneCook (JeC) model were developed for 7017 aluminium alloy based on high strain rate data generated from split Hopkinson pressure bar (SHPB) experiments at various temperatures. A neural network configuration consists of both training and validation, which is effectively employed to predict flow stress. Temperature, strain rate and strain are considered as inputs, whereas flow stress is taken as output of the neural network. A comparative study on JohnsoneCook (JeC) model and neural network model was performed. It was observed that the developed neural network model could predict flow stress under various strain rates and tem-peratures. The experimental stressestrain data obtained from high strain rate compression tests using SHPB over a range of temperatures (25?e300 ?C), strains (0.05e0.3) and strain rates (1500e4500 s?1) were employed to formulate JeC model to predict the flow stress behaviour of 7017 aluminium alloy under high strain rate loading. The JeC model and the back-propagation ANN model were developed to predict the flow stress of 7017 aluminium alloy under high strain rates, and their predictability was evaluated in terms of correlation coefficient (R) and average absolute relative error (AARE). R and AARE for the J-C model are found to be 0.8461 and 10.624%, respectively, while R and AARE for the ANN model are 0.9995 and 2.58%, respectively. The predictions of ANN model are observed to be in consistent with the experimental data for all strain rates and temperatures.

  12. Effect of speaking rate and contrastive stress on formant dynamics and vowel perception.

    Science.gov (United States)

    Pitermann, M

    2000-06-01

    Vowel formants play an important role in speech theories and applications; however, the same formant values measured for the steady-state part of a vowel can correspond to different vowel categories. Experimental evidence indicates that dynamic information can also contribute to vowel characterization. Hence, dynamically modeling formant transitions may lead to quantitatively testable predictions in vowel categorization. Because the articulatory strategy used to manage different speaking rates and contrastive stress may depend on speaker and situation, the parameter values of a dynamic formant model may vary with speaking rate and stress. In most experiments speaking rate is rarely controlled, only two or three rates are tested, and most corpora contain just a few repetitions of each item. As a consequence, the dependence of dynamic models on those factors is difficult to gauge. This article presents a study of 2300 [iai] or [i epsilon i] stimuli produced by two speakers at nine or ten speaking rates in a carrier sentence for two contrastive stress patterns. The corpus was perceptually evaluated by naive listeners. Formant frequencies were measured during the steady-state parts of the stimuli, and the formant transitions were dynamically and kinematically modeled. The results indicate that (1) the corpus was characterized by a contextual assimilation instead of a centralization effect; (2) dynamic or kinematic modeling was equivalent as far as the analysis of the model parameters was concerned; (3) the dependence of the model parameter estimates on speaking rate and stress suggests that the formant transitions were sharper for high speaking rate, but no consistent trend was found for contrastive stress; (4) the formant frequencies measured in the steady-state parts of the vowels were sufficient to explain the perceptual results while the dynamic parameters of the models were not.

  13. Physical activity, mindfulness meditation, or heart rate variability biofeedback for stress reduction: a randomized controlled trial.

    Science.gov (United States)

    van der Zwan, Judith Esi; de Vente, Wieke; Huizink, Anja C; Bögels, Susan M; de Bruin, Esther I

    2015-12-01

    In contemporary western societies stress is highly prevalent, therefore the need for stress-reducing methods is great. This randomized controlled trial compared the efficacy of self-help physical activity (PA), mindfulness meditation (MM), and heart rate variability biofeedback (HRV-BF) in reducing stress and its related symptoms. We randomly allocated 126 participants to PA, MM, or HRV-BF upon enrollment, of whom 76 agreed to participate. The interventions consisted of psycho-education and an introduction to the specific intervention techniques and 5 weeks of daily exercises at home. The PA exercises consisted of a vigorous-intensity activity of free choice. The MM exercises consisted of guided mindfulness meditation. The HRV-BF exercises consisted of slow breathing with a heart rate variability biofeedback device. Participants received daily reminders for their exercises and were contacted weekly to monitor their progress. They completed questionnaires prior to, directly after, and 6 weeks after the intervention. Results indicated an overall beneficial effect consisting of reduced stress, anxiety and depressive symptoms, and improved psychological well-being and sleep quality. No significant between-intervention effect was found, suggesting that PA, MM, and HRV-BF are equally effective in reducing stress and its related symptoms. These self-help interventions provide easily accessible help for people with stress complaints.

  14. Constraining friction, dilatancy and effective stress with earthquake rates in the deep crust

    Science.gov (United States)

    Beeler, N. M.; Thomas, A.; Burgmann, R.; Shelly, D. R.

    2015-12-01

    Similar to their behavior on the deep extent of some subduction zones, families of recurring low-frequency earthquakes (LFE) within zones of non-volcanic tremor on the San Andreas fault in central California show strong sensitivity to stresses induced by the tides. Taking all of the LFE families collectively, LFEs occur at all levels of the daily tidal stress, and are in phase with the very small, ~200 Pa, shear stress amplitudes while being uncorrelated with the ~2 kPa tidal normal stresses. Following previous work we assume LFE sources are small, persistent regions that repeatedly fail during shear within a much larger scale, otherwise aseismically creeping fault zone and that the correlation of LFE occurrence reflects modulation of the fault creep rate by the tidal stresses. We examine the predictions of laboratory-observed rate-dependent dilatancy associated with frictional slip. The effect of dilatancy hardening is to damp the slip rate, so high dilatancy under undrained pore pressure reduces modulation of slip rate by the tides. The undrained end-member model produces: 1) no sensitivity to the tidal normal stress, as first suggested in this context by Hawthorne and Rubin [2010], and 2) fault creep rate in phase with the tidal shear stress. Room temperature laboratory-observed values of the dilatancy and friction coefficients for talc, an extremely weak and weakly dilatant material, under-predict the observed San Andreas modulation at least by an order of magnitude owing to too much dilatancy. This may reflect a temperature dependence of the dilatancy and friction coefficients, both of which are expected to be zero at the brittle-ductile transition. The observed tidal modulation constrains the product of the friction and dilatancy coefficients to be at most 5 x 10-7 in the LFE source region, an order of magnitude smaller than observed at room temperature for talc. Alternatively, considering the predictions of a purely rate-dependent talc friction would

  15. Dehydration stress associated variations in rectal temperature, pulse and respiration rate of Marwari sheep

    Directory of Open Access Journals (Sweden)

    Saini, B. S.

    2013-04-01

    Full Text Available The present investigation was carried out in adult female Marwari sheep to evaluate the dehydration stress associated variations in rectal temperature, pulse and respiration rate. The whole experiment was divided into control, thirst and drinking periods. The thirst period was of 5 days to find out the dehydration stress. The control mean values of rectal temperature (oF, pulse rate (min -1 and respiration rate (min -1 were 101.1 ± 0.198, 65.667 ± 2.028 and 25.167 ± 1.515 in the morning and 101.567 ± 0.174, 71.333 ± 1.229 and 27.833 ± 1.83 in the evening, respectively. With the advancement of thirst period the mean values of rectal temperature and pulse rate gradually increased while that of respiration rate increased first and then decreased. After drinking the mean values gradually decreased and on hour 72 of drinking, they differed non significantly (P>0.05 from their respective control values. Changes in rectal temperature, pulse rate and respiration rate indicated the adaptability of the animals to increased thirst periods.Dehydration due to thirst period provoked physiological mechanisms in the body in a manner that helped the animals to survive. Although dehydration was a stress to the animals, but the changes brought about by five days of dehydration were reversible.

  16. Effect of UVA Fluence Rate on Indicators of Oxidative Stress in Human Dermal Fibroblasts

    Directory of Open Access Journals (Sweden)

    James D. Hoerter, Christopher S. Ward, Kyle D. Bale, Admasu N. Gizachew, Rachelle Graham, Jaclyn Reynolds, Melanie E. Ward, Chesca Choi, Jean-Leonard Kagabo, Michael Sauer, Tara Kuipers, Timothy Hotchkiss, Nate Banner, Renee A. Chellson, Theresa Ohaeri, L

    2008-01-01

    Full Text Available During the course of a day human skin is exposed to solar UV radiation that fluctuates in fluence rate within the UVA (290-315 nm and UVB (315-400 nm spectrum. Variables affecting the fluence rate reaching skin cells include differences in UVA and UVB penetrating ability, presence or absence of sunscreens, atmospheric conditions, and season and geographical location where the exposure occurs. Our study determined the effect of UVA fluence rate in solar-simulated (SSR and tanning-bed radiation (TBR on four indicators of oxidative stress---protein oxidation, glutathione, heme oxygenase-1, and reactive oxygen species--in human dermal fibroblasts after receiving equivalent UVA and UVB doses. Our results show that the higher UVA fluence rate in TBR increases the level of all four indicators of oxidative stress. In sequential exposures when cells are exposed first to SSR, the lower UVA fluence rate in SSR induces a protective response that protects against oxidative stress following a second exposure to a higher UVA fluence rate. Our studies underscore the important role of UVA fluence rate in determining how human skin cells respond to a given dose of radiation containing both UVA and UVB radiation.

  17. Steady thermal stress and strain rates in a rotating circular cylinder under steady state temperature

    Directory of Open Access Journals (Sweden)

    Pankaj Thakur

    2014-01-01

    Full Text Available Thermal stress and strain rates in a thick walled rotating cylinder under steady state temperature has been derived by using Seth’s transition theory. For elastic-plastic stage, it is seen that with the increase of temperature, the cylinder having smaller radii ratios requires lesser angular velocity to become fully plastic as compared to cylinder having higher radii ratios The circumferential stress becomes larger and larger with the increase in temperature. With increase in thickness ratio stresses must be decrease. For the creep stage, it is seen that circumferential stresses for incompressible materials maximum at the internal surface as compared to compressible material, which increase with the increase in temperature and measure n.

  18. Automatic stress-relieving music recommendation system based on photoplethysmography-derived heart rate variability analysis.

    Science.gov (United States)

    Shin, Il-Hyung; Cha, Jaepyeong; Cheon, Gyeong Woo; Lee, Choonghee; Lee, Seung Yup; Yoon, Hyung-Jin; Kim, Hee Chan

    2014-01-01

    This paper presents an automatic stress-relieving music recommendation system (ASMRS) for individual music listeners. The ASMRS uses a portable, wireless photoplethysmography module with a finger-type sensor, and a program that translates heartbeat signals from the sensor to the stress index. The sympathovagal balance index (SVI) was calculated from heart rate variability to assess the user's stress levels while listening to music. Twenty-two healthy volunteers participated in the experiment. The results have shown that the participants' SVI values are highly correlated with their prespecified music preferences. The sensitivity and specificity of the favorable music classification also improved as the number of music repetitions increased to 20 times. Based on the SVI values, the system automatically recommends favorable music lists to relieve stress for individuals.

  19. Rate dependent rheological stress-strain behavior of porous nanocrystalline materials

    Institute of Scientific and Technical Information of China (English)

    李慧; 周剑秋

    2008-01-01

    To completely understand the rate-dependent stress-strain behavior of the porous nanocrystalline materials,it is necessary to formulate a constitutive model that can reflect the complicated experimentally observed stress-strain relations of nanocrystalline materials.The nanocrystalline materials consisting grain interior and grain boundary are considered as viscoplastic and porous materials for the reasons that their mechanical deformation is commonly governed by both dislocation glide and diffusion,and pores commonly exist in the nanocrystalline materials.A constitutive law of the unified theory reflecting the stress-strain relations was established and verified by experimental data of bulk nanocrystalline Ni prepared by hydrogen direct current arc plasma evaporation method and hot compression.The effect of the evolution of porosity on stress-strain relations was taken into account to make that the predicted results can keep good agreements with the corresponding experimental results.

  20. Research on impacts of mechanical vibrations on the production machine to its rate of change of technical state

    Directory of Open Access Journals (Sweden)

    Štefánia Salokyová

    2016-06-01

    Full Text Available The article observes the amount of vibration on the bearing house of a turning lathe selected in advance through the change of the revolutions per minute and the thickness of the removed material in frontal type of lathe processing. Increase in mechanical vibration values depending on the value of nominal thickness of splinter was observed during changing technological parameters of the drilling process as a consequence of rotation speed of the motor. The vibration acceleration amplitude course changes depending on the frequencies are evaluated together for 400, 800 and 1200 motor r/min. A piezoelectric sensor of the type 4507B-004 from the Brüel & Kjaer Company was used for monitoring the frequency analysis of the vibration, which was attached to the bearing house of the lathe TOS SV 18RB. The vibration signal measured during the processing and during the time period is transformed through the means of a quick Fourier transformation to the frequency spectrum in the range of 3.0–10.0 kHz. Measured values of vibration acceleration amplitude were processed and evaluated by the SignalExpress software. Graphical abstract Unwanted vibration in machine tools like lathe is one of the main problems as it affects the quality of the machined parts and tool life and creates noise during machining operation. Bearings are of paramount importance to almost all forms of rotating machinery and are the most common among machine elements. The article describes in more detail the issue of vibrations created when machining the material by lathe turning. It also includes execution, experiment evaluation in this field, and comparison of measured vibrations’ acceleration amplitude values according to the standards.

  1. Digestibility and rate of passage by lambs of water-stressed alfalfa.

    Science.gov (United States)

    Undersander, D J; Cole, N A; Naylor, C H

    1987-06-01

    Two lamb digestion experiments were conducted to evaluate the effect of alfalfa [Medicago sativa (L.)] grown under varying levels of water deficiency (stress) on the rate of passage and digestibility of various fibrous components. Experiment 1 consisted of a randomized complete block design in which 12 Suffolk X Hampshire crossbred wethers averaging 40 kg were fed alfalfa hay grown at three (10, 15 or 20 cm water/ha) levels of water per harvest. Experiment 2 consisted of a switchback design in which four Hampshire wethers averaging 45 kg were fed alfalfa hay grown at two (5 or 20 cm/ha) levels of water per harvest. Forage yields ranged from 1,420 (10 cm/ha in Exp. 1) to 4,200 (20 cm/ha in Exp. 2) kg/ha. In both experiments, water stress reduced cell wall constituents (neutral detergent fiber), acid detergent fiber, lignin and cellulose content of the alfalfa hay. Organic matter digestibility was decreased when the percentage of leaves fell below 60% at the highest yield. Digestibility of N and the rate of NDF digestibility were not affected by water stress. The second experiment additionally included nutrient balance and rate of passage measurements. Greater (P less than .10) amounts of N and P were absorbed from water-stressed than nonstressed hay. Ruminal retention time of particulate markers tended (P less than .10) to increase with greater water stress. The results of this study are interpreted to indicate that while moderate water stress may have little effect on in vivo digestibility of alfalfa, severe stress may reduce digestibility of fibrous fractions and total organic matter.

  2. REGULATING THE PSYCHOSOMATIC HEART RATE DISORDERS THROUGH THE USE OF ANTI-STRESS MASSAGE

    Directory of Open Access Journals (Sweden)

    Doina MÂRZA-DĂNILĂ

    2016-09-01

    Full Text Available The symptoms of the so-called functional cardiovascular disorders, in which emotional factors can have an etiological importance, is diverse, comprising tachycardia, anxiety palpitations, various forms of arrhythmia and neurocirculatory asthenia. No matter the causes, they can be related to one's lifestyle, personality and one's own way of perceiving everyday stress and reacting to it. Considering that anti-stress massage can help to achieve mental and physical relaxation in subjects and change their perception of the events they experience, and through this, regulate the psychosomatic heart rate disorders, diminish chronic fatigue and depression and, as such, can help prevent the emergence of the Karōshi syndrome, 19 sessions were applied to 4 subjects, over the course of 4 months. Their results, compared to the ones from other 4 subjects, proved that anti-stress massage has helped to gradually regulate the heart rate of the subjects on which it was applied.

  3. Respiration Rate Predictive Equation and Effective Heat Stress Relief Ways for Hanwoo Steers

    OpenAIRE

    Gutierrez, Winson-Montanez; Oh, Taek-Kuen; Kim, Dong-Hyeok; Lee, Jin-Ju; Kim, Suk; Min, Wong; Lee, Seung-Joo; Kim, Byeong-Woo; Chang, Hong-Hee; Chikushi, Jiro

    2012-01-01

    Normalizing respiration rate in heat–stress challenged cattle during summer season is very important. In this study, we investigated the contribution of different thermal factors such as skin temperature, dew–point temperature, solar radiation, dry–bulb temperature and wind speed on its influence to the respiration rate dynamics of 45 Hanwoo steers in 2010. Secondly, the heat insulation efficiencies of the three kinds of roofing materials such as sandwich panel (SP), master panel (MP), and fi...

  4. Role of perfusion medium, oxygen and rheology for endoplasmic reticulum stress-induced cell death after hypothermic machine preservation of the liver.

    Science.gov (United States)

    Manekeller, Steffen; Schuppius, Andrea; Stegemann, Judith; Hirner, Andreas; Minor, Thomas

    2008-02-01

    Recently, the endoplasmic reticulum (ER) has been disclosed as subcellular target reactive to ischaemia/reperfusion and possibly influenced by hypothermic machine preservation. Here, the respective role of perfusate, perfusion itself, and the effect of continuous oxygenation to trigger ER-stress in the graft should be investigated. Livers were retrieved 30 min after cardiac arrest of male Wistar rats and preserved by cold storage (CS) in histidine-tryptophan-ketoglutarate (HTK) for 18 h at 4 degrees C. Other organs were subjected to aerobic conditions either by oxygenated machine perfusion with HTK (MP-HTK) or Belzer solution (MP-Belzer) at 4 degrees C or by venous insufflation of gaseous oxygen during cold storage (VSOP). Viability of livers was evaluated upon reperfusion in vitro according to previously validated techniques for 120 min at 37 degrees C. Oxygenation during preservation (MP-HTK, MP-Belzer or VSOP) concordantly improved functional recovery (bile flow, ammonia clearance), reduced parenchymal enzyme leakage and histological signs of necrosis and significantly attenuated mitochondrial induction of apoptosis (cleavage of caspase 9) compared to CS. However, MP with either medium produced about 500% elevated protein expression of CHOP/GADD153, suggesting pro-apoptotic ER-stress responses, paralleled by a significant elevation of caspase-12 enzyme activity compared to CS or VSOP. Although MP also promoted a slight (20%) induction of the cytoprotective ER-protein Bax inhibitor protein (BI-1), prevailing of proapoptotic reactions was seen by increased cleavage of caspase-3 and poly (ADP-Ribase)-polymerase (PARP) in both MP-groups. Endoplasmic stress activation is conjectured a specific side effect of long-term machine preservation irrespective of the medium, actually promoting cellular apoptosis via activation of caspase-12. The simple insufflation of gaseous O2 may be considered a feasible alternative, apparently indifferent to the endoplasmic reticulum.

  5. FreezeFramer: A prototype tool to monitor stress and heart rate variability.

    Science.gov (United States)

    Chatterjee, Samir; Hilton, Brian; Li, Haiqing; Hassan, Taimur; Tulu, Bengisu; McCraty, Rollin

    2007-10-11

    This paper describes the design, architecture, and implementation of a software application, FreezeFramer, developed to help individuals manage stress. The application measures heart rate variability through a finger or earlobe clip-on sensor that reads pulse information. While a detailed subjective evaluation is on going, system performance analyses are reported here.

  6. Speaking Rate Affects the Perception of Duration as a Suprasegmental Lexical-Stress Cue

    Science.gov (United States)

    Reinisch, Eva; Jesse, Alexandra; McQueen, James M.

    2011-01-01

    Three categorization experiments investigated whether the speaking rate of a preceding sentence influences durational cues to the perception of suprasegmental lexical-stress patterns. Dutch two-syllable word fragments had to be judged as coming from one of two longer words that matched the fragment segmentally but differed in lexical stress…

  7. A longitudinal study in youth of heart rate variability at rest and in response to stress

    NARCIS (Netherlands)

    Li, Zhibin; Snieder, Harold; Su, Shaoyong; Ding, Xiuhua; Thayer, Julian F.; Treiber, Frank A.; Wang, Xiaoling

    2009-01-01

    Background: Few longitudinal studies have examined ethnic and sex differences, predictors and tracking stabilities of heart rate variability (HRV) at rest and in response to stress in youths and young adults. Methods: Two evaluations were performed approximately 1.5 years apart on 399 youths and you

  8. Stress relaxation of entangled polystyrene solution after constant-rate, uniaxial elongation

    DEFF Research Database (Denmark)

    Matsumiya, Yumi; Masubuchi, Yuichi; Watanabe, Hiroshi

    For an entangled solution of linear polystyrene (PS 545k; M = 545k) in dibutyl phthalate (DBP), the stress relaxation after constant-rate uniaxial elongation was examined with an extensional viscosity fixture mounted on ARES (TA Instruments). The PS concentration, c = 52 wt%, was chosen in a way...

  9. Heart Rate, Stress, and Occupational Noise Exposure among Electronic Waste Recycling Workers

    National Research Council Canada - National Science Library

    Burns, Katrina N; Sun, Kan; Fobil, Julius N; Neitzel, Richard L

    2016-01-01

    .... The occupational health hazards of e-waste recycling have not been adequately explored. We performed a cross-sectional study of noise exposures, heart rate, and perceived stress among e-waste recycling workers at a large e-waste site in Accra, Ghana...

  10. Genetic influences on heart rate variability at rest and during stress

    NARCIS (Netherlands)

    Wang, Xiaoling; Ding, Xiuhua; Su, Shaoyong; Li, Zhibin; Riese, Harriette; Thayer, Julian F.; Treiber, Frank; Snieder, Harold

    2009-01-01

    We tested whether the heritability of heart rate variability (HRV) under stress is different from rest and its dependency on ethnicity or gender. HRV indexed by root mean square of successive differences (RMSSD) and high-frequency (HF) power was measured at rest and during 3 stressors in 427 Europea

  11. Heart Rate, Stress, and Occupational Noise Exposure among ElectronicWaste Recycling Workers

    National Research Council Canada - National Science Library

    Katrina N Burns; Kan Sun; Julius N Fobil; Richard L Neitzel

    2016-01-01

    .... The occupational health hazards of e-waste recycling have not been adequately explored. We performed a cross-sectional study of noise exposures, heart rate, and perceived stress among e-waste recycling workers at a large e-waste site in Accra, Ghana...

  12. Compressive Strength of Hydrostatic-Stress-Sensitive Materials at High Strain-Rates

    Institute of Scientific and Technical Information of China (English)

    LI Q M; LU Y B

    2008-01-01

    Many engineering materials demonstrate dynamic enhancement of their compressive strength with the increase of strain-rate.which have been included in material models to improve the reliability of numerical Simulations of the material and structural responses Under impact and biasl tcads,The strain-rate effects on the dynamic Compressive strength of a range of engineering materials which behave in hydrostatic-stress-sensitive manner were investigated.It is concluded that the dynamic enhancement of the compressive strength of a hydrostatic-stress-sensitive material may include inertia-induced lateral confinement effects,which,as a non-strain-rate factor,may greatly enhance the compressive strength of these materials.Some empirical formulae based on the dynamic stress-strain measurements over-predict the strain-rate effects on the compressive strength of these hydrostatic-stress-sensitive materials,and thus may over-estimate the structural resistance to impact and blast lgads.leading fo non-conservative design of protective structures.

  13. Speaking rate affects the perception of duration as a suprasegmental lexical-stress cue

    NARCIS (Netherlands)

    Reinisch, E.; Jesse, A.; McQueen, J.M.

    2011-01-01

    Three categorization experiments investigated whether the speaking rate of a preceding sentence influences durational cues to the perception of suprasegmental lexical-stress patterns. Dutch two-syllable word fragments had to be judged as coming from one of two longer words that matched the fragment

  14. Stress relaxation of entangled polystyrene solution after constant-rate, uniaxial elongation

    DEFF Research Database (Denmark)

    Matsumiya, Yumi; Masubuchi, Yuichi; Watanabe, Hiroshi;

    For an entangled solution of linear polystyrene (PS 545k; M = 545k) in dibutyl phthalate (DBP), the stress relaxation after constant-rate uniaxial elongation was examined with an extensional viscosity fixture mounted on ARES (TA Instruments). The PS concentration, c = 52 wt%, was chosen in a way...

  15. Recognition of Facial Emotions among Maltreated Children with High Rates of Post-Traumatic Stress Disorder

    Science.gov (United States)

    Masten, Carrie L.; Guyer, Amanda E.; Hodgdon, Hilary B.; McClure, Erin B.; Charney, Dennis S.; Ernst, Monique; Kaufman, Joan; Pine, Daniel S.; Monk, Christopher S.

    2008-01-01

    Objective: The purpose of this study is to examine processing of facial emotions in a sample of maltreated children showing high rates of post-traumatic stress disorder (PTSD). Maltreatment during childhood has been associated independently with both atypical processing of emotion and the development of PTSD. However, research has provided little…

  16. Self-esteem, stress and self-rated health in family planning clinic patients

    Directory of Open Access Journals (Sweden)

    Young Rodney

    2004-06-01

    Full Text Available Abstract Background The independent effects of stress on the health of primary care patients might be different for different types of clinic populations. This study examines these relationships in a low-income female population of patients attending a family planning clinic. Methods This study investigated the relevance of different sources of personal stress and social support to self-rated health, adjusting for mental health, health behavior and demographic characteristics of subjects. Five hundred women who attended family planning clinics were surveyed and 345 completed the form for a response rate of 72 percent. Results Multiple logistic regression analysis revealed that liking oneself was related to good self-rated health (Odds ratio = 7.11, but stress or support from children, parents, friends, churches or spouses were not significant. White non-Hispanic and non-white non-Hispanic respondents had lower odds of reporting good self-rated health than Hispanic respondents (odds ratios were 2.87 and 2.81, respectively. Exercising five or more days per week also was related to good self-rated health. Smoking 20 or more cigarettes per day, and obese III were negatively related to good self-rated health (odds ratios were .19 and .22, respectively with corresponding p-values equal to .0043 and .0332. Conclusions Among younger low-income women, addressing low self-esteem might improve health status.

  17. Self-esteem, stress and self-rated health in family planning clinic patients.

    Science.gov (United States)

    Rohrer, James E; Young, Rodney

    2004-06-03

    The independent effects of stress on the health of primary care patients might be different for different types of clinic populations. This study examines these relationships in a low-income female population of patients attending a family planning clinic. This study investigated the relevance of different sources of personal stress and social support to self-rated health, adjusting for mental health, health behavior and demographic characteristics of subjects. Five hundred women who attended family planning clinics were surveyed and 345 completed the form for a response rate of 72 percent. Multiple logistic regression analysis revealed that liking oneself was related to good self-rated health (Odds ratio = 7.11), but stress or support from children, parents, friends, churches or spouses were not significant. White non-Hispanic and non-white non-Hispanic respondents had lower odds of reporting good self-rated health than Hispanic respondents (odds ratios were 2.87 and 2.81, respectively). Exercising five or more days per week also was related to good self-rated health. Smoking 20 or more cigarettes per day, and obese III were negatively related to good self-rated health (odds ratios were.19 and.22, respectively with corresponding p-values equal to.0043 and.0332). Among younger low-income women, addressing low self-esteem might improve health status.

  18. When Machines Design Machines!

    DEFF Research Database (Denmark)

    2011-01-01

    Until recently we were the sole designers, alone in the driving seat making all the decisions. But, we have created a world of complexity way beyond human ability to understand, control, and govern. Machines now do more trades than humans on stock markets, they control our power, water, gas...... and food supplies, manage our elevators, microclimates, automobiles and transport systems, and manufacture almost everything. It should come as no surprise that machines are now designing machines. The chips that power our computers and mobile phones, the robots and commercial processing plants on which we...... depend, all are now largely designed by machines. So what of us - will be totally usurped, or are we looking at a new symbiosis with human and artificial intelligences combined to realise the best outcomes possible. In most respects we have no choice! Human abilities alone cannot solve any of the major...

  19. Identification of quantitative trait loci for the dead leaf rate and the seedling dead rate under alkaline stress in rice

    Institute of Scientific and Technical Information of China (English)

    Dongling Qi; Guizhen Guo; Myung-chul Lee; Junguo Zhang; Guilan Cao; Sanyuan Zhang; Seok-cheol Suh; Qingyang Zhou; Longzhi Han

    2008-01-01

    The quantitative trait loci (QTLs) for the dead leaf rate (DLR) and the dead seedling rate (DSR) at the different rice growing periods after transplanting under alkaline stress were identified using an F2:3 population, which included 200 individuals and lines derived from a cross betweea two japonica rice cultivars Gaochan 106 and Changbai 9 with microsatellite markers. The DLR detected at 20 days to 62 days after transplanting under alkaline stress showed continuous normal or near normal distributions in F3 lines, which was the quantita-tive trait controlled by multiple genes. The DSR showed a continuous distribution with 3 or 4 peaks and was the quantitative trait con-trolled by main and multiple genes when rice was grown for 62 days after transplanting under alkaline stress. Thirteen QTLs associated with DLR were detected at 20 days to 62 days after transplanting under alkaline stress. Among these, qDLR9-2 located in RM5786-RMI60 on chromosome 9 was detected at 34 days, 41 days, 48 days, 55 days, and 62 days, respectively; qDLR4 located in RM3524-RM3866 on chromosome 4 was detected at 34 days, 41 days, and 48 days, respectively; qDLR7-1 located in RM3859-RM320 on chromosome 7 was detected at 20 days and 27 days; and qDLR6-2 in RM1340-RM5957 on chromosome 6 was detected at 55 days and 62 days, respectively. The alleles of both qDLR9-2 and qDLR4 were derived from alkaline sensitive parent "Gaochan 106". The alleles of both qDLR7-1 and qDLR6-2 were from alkaline tolerant parent Changbai 9. These geue actions showed dominance and over dominance primarily. Six QTLs associated with DSR were detected at 62 days after transplanting under alkaline stress. Among these, qDSR6-2 and qDSR8 were located in RM1340-RM5957 on chromosome 6 and in RM3752-RM404 on chromosome 8, respectively, which were asso-ciated with DSR and accounted for 20.32% and 18.86% of the observed phenotypic variation, respectively; qDSR11-2 and qDSR11-3 were located in RM536-RM479 and RM2596-RM286 on

  20. Machinability of advanced materials

    CERN Document Server

    Davim, J Paulo

    2014-01-01

    Machinability of Advanced Materials addresses the level of difficulty involved in machining a material, or multiple materials, with the appropriate tooling and cutting parameters.  A variety of factors determine a material's machinability, including tool life rate, cutting forces and power consumption, surface integrity, limiting rate of metal removal, and chip shape. These topics, among others, and multiple examples comprise this research resource for engineering students, academics, and practitioners.

  1. Stress Recovery Effects of High- and Low-Frequency Amplified Music on Heart Rate Variability

    Directory of Open Access Journals (Sweden)

    Yoshie Nakajima

    2016-01-01

    Full Text Available Sounds can induce autonomic responses in listeners. However, the modulatory effect of specific frequency components of music is not fully understood. Here, we examined the role of the frequency component of music on autonomic responses. Specifically, we presented music that had been amplified in the high- or low-frequency domains. Twelve healthy women listened to white noise, a stress-inducing noise, and then one of three versions of a piece of music: original, low-, or high-frequency amplified. To measure autonomic response, we calculated the high-frequency normalized unit (HFnu, low-frequency normalized unit, and the LF/HF ratio from the heart rate using electrocardiography. We defined the stress recovery ratio as the value obtained after participants listened to music following scratching noise, normalized by the value obtained after participants listened to white noise after the stress noise, in terms of the HFnu, low-frequency normalized unit, LF/HF ratio, and heart rate. Results indicated that high-frequency amplified music had the highest HFnu of the three versions. The stress recovery ratio of HFnu under the high-frequency amplified stimulus was significantly larger than that under the low-frequency stimulus. Our results suggest that the high-frequency component of music plays a greater role in stress relief than low-frequency components.

  2. Stress-strain characteristics of materials at high strain rates. Part II. Experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Ripperger, E. A. [Texas. Univ., Austin, TX (US). Structural Mechanics Research Lab.

    1958-08-29

    These two reports were issued separately, but are cataloged as a unit. A photoelectric method for measuring displacements during high-velocity impacts is described. The theory of the system is discussed in detail, and a prototype system which was built and tested is described. The performance of the prototype system is evaluated by comparing the results which it gives with results obtained by other methods of measurement. The system was found capable of a resolution of at least 0.01 inches. static and dynamic stress-strain characteristics of seven high polymers, polyethylene, teflon, nylon, tenite M, tenite H, polystyrene, and saran, plus three metals, lead, copper, and aluminum, are described and compared by means of stress-strain curves and photographs. Data are also presented which show qualitatively the effects produced on stress-strain characteristics by specimen configuration, temperature, and impact velocity. It is shown that there is a definite strain-rate effect for all these materials except polystyrene. The effect is one of an apparent stiffening of the material with increasing strain rate, which is similar to the effect produced by lowering the temperature. The stress-strain measurements are examined critically, inconsistencies are pointed out, and possible sources of error suggested. Values of yield stress, modulus of elasticity and energy absorption for all materials (except copper and aluminum), specimen configurations, temperatures, and impact velocities included in the investigation are tabulated.

  3. Heart rate during conflicts predicts post-conflict stress-related behavior in greylag geese.

    Directory of Open Access Journals (Sweden)

    Claudia A F Wascher

    Full Text Available BACKGROUND: Social stressors are known to be among the most potent stressors in group-living animals. This is not only manifested in individual physiology (heart rate, glucocorticoids, but also in how individuals behave directly after a conflict. Certain 'stress-related behaviors' such as autopreening, body shaking, scratching and vigilance have been suggested to indicate an individual's emotional state. Such behaviors may also alleviate stress, but the behavioral context and physiological basis of those behaviors is still poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: We recorded beat-to-beat heart rates (HR of 22 greylag geese in response to agonistic encounters using fully implanted sensor-transmitter packages. Additionally, for 143 major events we analyzed the behavior shown by our focal animals in the first two minutes after an interaction. Our results show that the HR during encounters and characteristics of the interaction predicted the frequency and duration of behaviors shown after a conflict. CONCLUSIONS/SIGNIFICANCE: To our knowledge this is the first study to quantify the physiological and behavioral responses to single agonistic encounters and to link this to post conflict behavior. Our results demonstrate that 'stress-related behaviors' are flexibly modulated by the characteristics of the preceding aggressive interaction and reflect the individual's emotional strain, which is linked to autonomic arousal. We found no support for the stress-alleviating hypothesis, but we propose that stress-related behaviors may play a role in communication with other group members, particularly with pair-partners.

  4. Relaxation training assisted by heart rate variability biofeedback: Implication for a military predeployment stress inoculation protocol.

    Science.gov (United States)

    Lewis, Gregory F; Hourani, Laurel; Tueller, Stephen; Kizakevich, Paul; Bryant, Stephanie; Weimer, Belinda; Strange, Laura

    2015-09-01

    Decreased heart rate variability (HRV) is associated with posttraumatic stress disorder (PTSD) and depression symptoms, but PTSD's effects on the autonomic stress response and the potential influence of HRV biofeedback in stress relaxation training on improving PTSD symptoms are not well understood. The objective of this study was to examine the impact of a predeployment stress inoculation training (PRESTINT) protocol on physiologic measures of HRV in a large sample of the military population randomly assigned to experimental HRV biofeedback-assisted relaxation training versus a control condition. PRESTINT altered the parasympathetic regulation of cardiac activity, with experimental subjects exhibiting greater HRV, that is, less arousal, during a posttraining combat simulation designed to heighten arousal. Autonomic reactivity was also found to be related to PTSD and self-reported use of mental health services. Future PRESTINT training could be appropriate for efficiently teaching self-help skills to reduce the psychological harm following trauma exposure by increasing the capacity for parasympathetically modulated reactions to stress and providing a coping tool (i.e., relaxation method) for use following a stressful situation.

  5. Evaluation of Stress Response During Mesiodens Extraction Under General Anesthesia Using Heart Rate Variability.

    Science.gov (United States)

    Hwang, Hye-Won; Hyun, Hong-Keun; Kim, Young-Jae; Kim, Jung-Wook; Shin, Teo Jeon

    2017-05-01

    Stress related to dental treatment can be associated with negative outcomes. Heart rate variability (HRV) is an objective measurement of autonomic nervous system activity. Therefore, HRV was used to identify autonomic nervous system reactions during mesiodens extraction under general anesthesia in children. Electrocardiography was performed with customized software during treatment. HRV parameters were analyzed according to time and frequency domains during each dental procedure (local anesthesia, incision, flap, bone removal, extraction of mesiodens, and suturing). The relations of HRV parameters to age also were determined. Total autonomic nervous system activity decreased markedly after local anesthesia injection. Depending on the responses of sympathetic nerve activity, patients were categorized in a stress group and a nonstress group. The ratio of low-frequency power (LF) to high-frequency power (HF), an indication of sympathetic and parasympathetic balance, increased in the stress group after incision and flap formation. Conversely, the LF/HF ratio decreased during treatment in the nonstress group. However, HR, widely used to evaluate stress responses, did not change statistically during mesiodens extraction in either group. HRV parameters did not differ statistically according to age. The internal stress related to mesiodens extraction can be evaluated more objectively with HRV parameters than with conventional methods. Sympathetic nerve activity in the stress group differed from that in the nonstress group during the treatment procedures. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  6. Subcritical crack growth in oxide and non-oxide ceramics using the Constant Stress Rate Test

    Directory of Open Access Journals (Sweden)

    Agnieszka Wojteczko

    2015-12-01

    Full Text Available Fracture toughness is one of the most important parameters for ceramics description. In some cases, material failure occurs at lower stresses than described by KIc parameter. In these terms, determination of fracture toughness only, proves to be insufficient. This may be due to environmental factors, such as humidity, which might cause subcritical crack propagation in a material. Therefore, it is very important to estimate crack growth velocities to predict lifetime of ceramics used under specific conditions. Constant Stress Rate Test is an indirect method of subcritical crack growth parameters estimation. Calculations are made by using strength data, thus avoiding crack measurement. The expansion of flaws causes reduction of material strength. If subcritical crack growth phenomenon occurs, critical value of crack lengths increases with decreasing stress rate due to longer time for flaw to grow before the critical crack propagation at KIc takes place. Subcritical crack growth phenomenon is particularly dangerous for oxide ceramics due to chemical interactions occurring as a result of exposure to humidity. This paper presents results of Constant Stress Rate Test performed for alumina, zirconia, silicon carbide and silicon nitride in order to demonstrate the differences in subcritical crack propagation phenomenon course.

  7. Stress and strain rate analysis of the FT4 Powder Rheometer

    Directory of Open Access Journals (Sweden)

    Hare Colin

    2017-01-01

    Full Text Available The Freeman FT4 Powder Rheometer has been reported to describe well the powder flow behaviour in instances where other techniques fail. We use DEM to simulate the FT4 operation for slightly cohesive large glass beads at a range of strain rates. The curved impeller is shown to be beneficial in comparison to a flat blade as the variation of shear stress across the blade is reduced. The shear stress in front of the blade correlates well with flow energy (which the device measures for a range of tip speeds and is shown to increase approximately linearly with tip speed when operating beyond the quasi-static regime.

  8. Hardening in Two-Phase Materials. II. Plastic Strain and Mean Stress Hardening Rate

    DEFF Research Database (Denmark)

    Lilholt, Hans

    1977-01-01

    The strain parameters which are relevant in a tensile experiment, are analysed and related to the geometry of deformation and to the mean stress of two-phase materials. The hardening rate of the mean stress with respect to plastic strain is found to be useful in comparison between experiments and...... and theories, and it allows theories to be probed over a range of strains. Previous experiments on the fibre-reinforced material of copper-tungsten are analysed in relation to the geometry of deformation....

  9. Effect of cold work on the growth rates of stress corrosion cracks in structural materials of nuclear systems

    Energy Technology Data Exchange (ETDEWEB)

    Magdowski, R.; Speidel, M.O. [Swiss Federal Inst. of Tech., Zurich (Switzerland). Inst. of Metallurgy

    1996-10-01

    The growth rates of stress corrosion cracks in austenitic stainless steels and nickel base alloy 600 exposed to simulated boiling water reactor coolant were measured by fracture mechanics testing techniques. Cold work may increase the crack growth rates up to one hundred times. In both, the annealed condition and the cold worked condition, the stress corrosion crack growth rates are independent of stress intensity over a wide K-range and crack growth rates correlate well with yield strength and hardness. In the annealed condition the fracture path is intergranular, but higher degrees of cold work introduce higher proportions of transgranular stress corrosion cracking.

  10. Inverting for Shear Stress Rate on the Northern Cascadia Megathrust Using Geodetic Data

    Science.gov (United States)

    Bruhat, L.; Segall, P.; Bradley, A. M.

    2014-12-01

    Past physics-based models of slow slip events (SSE) have shown that, when averaged over many SSE cycles, the shear stress within the SSE zone remains roughly constant. Stress accumulates between SSE, and then is released during slow slip events. However, the predicted long-term deformation rates from such models, assuming the plate boundary is locked to the top of the ETS zone, do not fit well GPS velocities and uplift rates determined from leveling and tide-gauge data. These physics-based models particularly misfit the vertical rates. At the same time, previous kinematic inversions display a gap between the down-dip limit of the locked region and the top of the ETS zone. Our inversions of geodetic data for fault slip rates exhibit a steeper slip-rate profile at the top of the ETS zone, relative to the constant shear stress model, as well as creep up dip of the ETS zone. We explore physics-based models with velocity-strengthening regions of different length up dip the ETS zone, i.e. within the "gap" identified in kinematic inversions. However, this still does not match the observations well. We therefore try a new approach: we invert for shear stress rates on the megathrust that best fit the data. We show that a small decrease in shear stress within the top of the ETS zone, reaching 5 kPa/year at a depth of ~ 30 km, is required to fit the data. Possible explanations for this include a slow decrease in normal stress with time, possibly due to an increase in pore pressure, or a reduction in fault friction. We explore these hypotheses, using 2D quasi-dynamic simulations with rate-and-state friction and isothermal v-cutoff models for generating slow slip events. The potential for creep above the top of the ETS zone has important implications for the mechanical relationship between deep slow slip and dynamic events in the locked region.

  11. Effect of the crown design and interface lute parameters on the stress-state of a machined crown-tooth system: a finite element analysis.

    Science.gov (United States)

    Shahrbaf, Shirin; vanNoort, Richard; Mirzakouchaki, Behnam; Ghassemieh, Elaheh; Martin, Nicolas

    2013-08-01

    The effect of preparation design and the physical properties of the interface lute on the restored machined ceramic crown-tooth complex are poorly understood. The aim of this work was to determine, by means of three-dimensional finite element analysis (3D FEA) the effect of the tooth preparation design and the elastic modulus of the cement on the stress state of the cemented machined ceramic crown-tooth complex. The three-dimensional structure of human premolar teeth, restored with adhesively cemented machined ceramic crowns, was digitized with a micro-CT scanner. An accurate, high resolution, digital replica model of a restored tooth was created. Two preparation designs, with different occlusal morphologies, were modeled with cements of 3 different elastic moduli. Interactive medical image processing software (mimics and professional CAD modeling software) was used to create sophisticated digital models that included the supporting structures; periodontal ligament and alveolar bone. The generated models were imported into an FEA software program (hypermesh version 10.0, Altair Engineering Inc.) with all degrees of freedom constrained at the outer surface of the supporting cortical bone of the crown-tooth complex. Five different elastic moduli values were given to the adhesive cement interface 1.8GPa, 4GPa, 8GPa, 18.3GPa and 40GPa; the four lower values are representative of currently used cementing lutes and 40GPa is set as an extreme high value. The stress distribution under simulated applied loads was determined. The preparation design demonstrated an effect on the stress state of the restored tooth system. The cement elastic modulus affected the stress state in the cement and dentin structures but not in the crown, the pulp, the periodontal ligament or the cancellous and cortical bone. The results of this study suggest that both the choice of the preparation design and the cement elastic modulus can affect the stress state within the restored crown

  12. Measuring water-borne cortisol in Poecilia latipinna:is the process stressful, can stress be minimized and is cortisol correlated with sex steroid release rates?

    Science.gov (United States)

    Gabor, C R; Contreras, A

    2012-09-01

    The stress of water-borne hormone collection process was examined in sailfin mollies Poecilia latipinna. Baseline release rates of the stress hormone cortisol were measured and minimum confinement time for water sampling was evaluated for a standard 60 min v. a 30 min protocol. A 30 min hormone collection period reflects release rates over 60 min. Potential stress response to confinement in the beaker for the water-borne collection process was tested over 4 days. There was no evidence of stress due to the collection methods, as cortisol release rates did not differ significantly across four sequential days of handling for P. latipinna. Males and females did not differ significantly in baseline cortisol release rates. Baseline cortisol release rates from fish immediately after being collected in the field were also not significantly different than those in the 4 day confinement experiment. After exposure to a novel environment, however, P. latipinna mounted a stress response. Stress may also affect sex steroids and behaviour but cortisol release rates were not significantly correlated with sex steroids [11-ketotestosterone (KT), testosterone, or oestradiol], or mating attempts. The correlation between water-borne release rates and plasma steroid levels was validated for both cortisol and KT. Finally, normalizing cortisol release rates using standard length in lieu of mass is viable and accurate. Water-borne hormone assays are a valuable tool for investigating questions concerning the role of hormones in mediating stress responses and reproductive behaviours in P. latipinna and other livebearing fishes.

  13. Dynamic Stress Measurement and Analysis for the Top-cutter Machine of Cotton%棉花打顶机动应力测试及分析

    Institute of Scientific and Technical Information of China (English)

    徐春梅; 王春耀

    2016-01-01

    应用动态应变测试方法对某棉花打顶机机架和工作部件进行实地动应力测试,通过数据处理以及数据分析,得到了机架及工作部件在工作条件下的应力状态,还进行了主轴强度校核和疲劳分析,为改进车架的设计提供了必要的依据。%The dynamic strain measurement method was used to measure the stress of top⁃cutter machine of cotton under its work⁃ing state in workplace. With data processing and analysis, the stress conditions of the framing and the working parts could be obtained. And the measurement result could be used to analyze the axle’ s fatigue strength and check whether it was safe or not. It provided inte⁃grant basis for the further design of the machine.

  14. Common QTL Affect the Rate of Tomato Seed Germination under Different Stress and Nonstress Conditions

    Science.gov (United States)

    Foolad, Majid R.; Subbiah, Prakash; Zhang, Liping

    2007-01-01

    The purpose of this study was to determine whether the rates of tomato seed germination under different stress and nonstress conditions were under common genetic controls by examining quantitative trait loci (QTL) affecting such traits. Seeds of BC1 progeny of a cross between a slow-germinating tomato breeding line and a rapid-germinating tomato wild accession were evaluated for germination under nonstress as well as cold, salt, and drought stress conditions. In each treatment, the most rapidly-germinating seeds were selected, grown to maturity, and subjected to molecular marker analysis. A selective genotyping approach detected between 6 and 9 QTL affecting germination rate under each of the four conditions, with a total of 14 QTL identified. Ten QTL affected germination rate under 2 or 3 conditions, which were considered germination-related common QTL. Four QTL affected germination rate only in one treatment, which were considered germination-related, condition-specific QTL . The results indicated that mostly the same QTL affected seed germination under different stress and nonstress conditions, supporting a previous suggestion that similar physiological mechanisms contribute to rapid seed germination under different conditions. Marker-assisted selection for the common QTL may result in progeny with rapid seed germinability under different conditions. PMID:18317505

  15. Common QTL affect the rate of tomato seed germination under different stress and nonstress conditions.

    Science.gov (United States)

    Foolad, Majid R; Subbiah, Prakash; Zhang, Liping

    2007-01-01

    The purpose of this study was to determine whether the rates of tomato seed germination under different stress and nonstress conditions were under common genetic controls by examining quantitative trait loci (QTL) affecting such traits. Seeds of BC(1) progeny of a cross between a slow-germinating tomato breeding line and a rapid-germinating tomato wild accession were evaluated for germination under nonstress as well as cold, salt, and drought stress conditions. In each treatment, the most rapidly-germinating seeds were selected, grown to maturity, and subjected to molecular marker analysis. A selective genotyping approach detected between 6 and 9 QTL affecting germination rate under each of the four conditions, with a total of 14 QTL identified. Ten QTL affected germination rate under 2 or 3 conditions, which were considered germination-related common QTL. Four QTL affected germination rate only in one treatment, which were considered germination-related, condition-specific QTL . The results indicated that mostly the same QTL affected seed germination under different stress and nonstress conditions, supporting a previous suggestion that similar physiological mechanisms contribute to rapid seed germination under different conditions. Marker-assisted selection for the common QTL may result in progeny with rapid seed germinability under different conditions.

  16. Heart Rate, Stress, and Occupational Noise Exposure among Electronic Waste Recycling Workers

    Directory of Open Access Journals (Sweden)

    Katrina N. Burns

    2016-01-01

    Full Text Available Electronic waste (e-waste is a growing occupational and environmental health issue around the globe. E-waste recycling is a green industry of emerging importance, especially in low-and middle-income countries where much of this recycling work is performed, and where many people’s livelihoods depend on this work. The occupational health hazards of e-waste recycling have not been adequately explored. We performed a cross-sectional study of noise exposures, heart rate, and perceived stress among e-waste recycling workers at a large e-waste site in Accra, Ghana. We interviewed 57 workers and continuously monitored their individual noise exposures and heart rates for up to 24 h. More than 40% of workers had noise exposures that exceeded recommended occupational (85 dBA and community (70 dBA noise exposure limits, and self-reported hearing difficulties were common. Workers also had moderate to high levels of perceived stress as measured via Cohen’s Perceived Stress Scale, and reported a variety of symptoms that could indicate cardiovascular disease. Noise exposures were moderately and significantly correlated with heart rate (Spearman’s ρ 0.46, p < 0.001. A mixed effects linear regression model indicated that a 1 dB increase in noise exposure was associated with a 0.17 increase in heart rate (p-value = 0.01 even after controlling for work activities, age, smoking, perceived stress, and unfavorable physical working conditions. These findings suggest that occupational and non-occupational noise exposure is associated with elevations in average heart rate, which may in turn predict potential cardiovascular damage.

  17. Heart Rate, Stress, and Occupational Noise Exposure among Electronic Waste Recycling Workers.

    Science.gov (United States)

    Burns, Katrina N; Sun, Kan; Fobil, Julius N; Neitzel, Richard L

    2016-01-19

    Electronic waste (e-waste) is a growing occupational and environmental health issue around the globe. E-waste recycling is a green industry of emerging importance, especially in low-and middle-income countries where much of this recycling work is performed, and where many people's livelihoods depend on this work. The occupational health hazards of e-waste recycling have not been adequately explored. We performed a cross-sectional study of noise exposures, heart rate, and perceived stress among e-waste recycling workers at a large e-waste site in Accra, Ghana. We interviewed 57 workers and continuously monitored their individual noise exposures and heart rates for up to 24 h. More than 40% of workers had noise exposures that exceeded recommended occupational (85 dBA) and community (70 dBA) noise exposure limits, and self-reported hearing difficulties were common. Workers also had moderate to high levels of perceived stress as measured via Cohen's Perceived Stress Scale, and reported a variety of symptoms that could indicate cardiovascular disease. Noise exposures were moderately and significantly correlated with heart rate (Spearman's ρ 0.46, p < 0.001). A mixed effects linear regression model indicated that a 1 dB increase in noise exposure was associated with a 0.17 increase in heart rate (p-value = 0.01) even after controlling for work activities, age, smoking, perceived stress, and unfavorable physical working conditions. These findings suggest that occupational and non-occupational noise exposure is associated with elevations in average heart rate, which may in turn predict potential cardiovascular damage.

  18. Heart Rate Variability as an Indicator of Chronic Stress Caused by Lameness in Dairy Cows.

    Directory of Open Access Journals (Sweden)

    Levente Kovács

    Full Text Available Most experimental studies on animal stress physiology have focused on acute stress, while chronic stress, which is also encountered in intensive dairy cattle farming--e.g. in case of lameness--, has received little attention. We investigated heart rate (HR and heart rate variability (HRV as indicators of the autonomic nervous system activity and fecal glucocorticoid concentrations as the indicator of the hypothalamic-pituitary-adrenal axis activity in lame (with locomotion scores 4 and 5; n = 51 and non-lame (with locomotion scores 1 and 2; n = 52 Holstein-Friesian cows. Data recorded during the periods of undisturbed lying--representing baseline cardiac activity--were involved in the analysis. Besides linear analysis methods of the cardiac inter-beat interval (time-domain geometric, frequency domain and Poincaré analyses non-linear HRV parameters were also evaluated. With the exception of standard deviation 1 (SD1, all HRV indices were affected by lameness. Heart rate was lower in lame cows than in non-lame ones. Vagal tone parameters were higher in lame cows than in non-lame animals, while indices of the sympathovagal balance reflected on a decreased sympathetic activity in lame cows. All geometric and non-linear HRV measures were lower in lame cows compared to non-lame ones suggesting that chronic stress influenced linear and non-linear characteristics of cardiac function. Lameness had no effect on fecal glucocorticoid concentrations. Our results demonstrate that HRV analysis is a reliable method in the assessment of chronic stress, however, it requires further studies to fully understand the elevated parasympathetic and decreased sympathetic tone in lame animals.

  19. Use of heart rate variability in monitoring stress and recovery in judo athletes.

    Science.gov (United States)

    Morales, José; Alamo, Juan M; García-Massó, Xavier; Buscà, Bernat; López, Jose L; Serra-Añó, Pilar; González, Luís-Millán

    2014-07-01

    The main objective of this study was to examine the effect of different judo training loads on heart rate variability (HRV) measurements, to determine if they can be used as valid indicators in monitoring stress and recovery in judo athletes. Fourteen male national-standard judo athletes were randomly divided into 2 groups, and each group followed a different type of training, namely, a high training load (HTL) and a moderate training load program (MTL). Data collection included HRV measurements, a Recovery Stress Questionnaire for athletes (RESTQ-SPORT), and strength measurements, 4 weeks before and after the training program. The HTL group had lower square root of the mean squared difference of successive RR intervals, very low frequency, high frequency, short-term variability, short-range scaling exponents, general recovery, sport-specific recovery, general stress, maximum strength, maximum power, and higher low/high frequency ratio at posttest compared with pretest (p ≤ 0.05). The HTL group showed lower short-range and long-range scaling exponents, general recovery, sport-specific recovery, and higher general stress than the MTL group in posttest measurements (p ≤ 0.05). In conclusion, judo athletes enrolled in an HTL program showed an imbalance of the autonomic nervous system with decreased vagal modulation, together with a decrease in strength parameters, higher markers for stress, and a lower perception of recovery.

  20. Aftershock triggering by postseismic stresses: A study based on Coulomb rate-and-state models

    Science.gov (United States)

    Cattania, Camilla; Hainzl, Sebastian; Wang, Lifeng; Enescu, Bogdan; Roth, Frank

    2015-04-01

    The spatiotemporal clustering of earthquakes is a feature of medium- and short-term seismicity, indicating that earthquakes interact. However, controversy exists about the physical mechanism behind aftershock triggering: static stress transfer and reloading by postseismic processes have been proposed as explanations. In this work, we use a Coulomb rate-and-state model to study the role of coseismic and postseismic stress changes on aftershocks and focus on two processes: creep on the main shock fault plane (afterslip) and secondary aftershock triggering by previous aftershocks. We model the seismic response to Coulomb stress changes using the Dieterich constitutive law and focus on two events: the Parkfield, Mw = 6.0, and the Tohoku, Mw = 9.0, earthquakes. We find that modeling secondary triggering systematically improves the maximum log likelihood fit of the sequences. The effect of afterslip is more subtle and difficult to assess for near-fault events, where model errors are largest. More robust conclusions can be drawn for off-fault aftershocks: following the Tohoku earthquake, afterslip promotes shallow crustal seismicity in the Fukushima region. Simple geometrical considerations indicate that afterslip-induced stress changes may have been significant on trench parallel crustal fault systems following several of the largest recorded subduction earthquakes. Moreover, the time dependence of afterslip strongly enhances its triggering potential: seismicity triggered by an instantaneous stress change decays more quickly than seismicity triggered by gradual loading, and as a result we find afterslip to be particularly important between few weeks and few months after the main shock.

  1. Heart rate complexity: A novel approach to assessing cardiac stress reactivity.

    Science.gov (United States)

    Brindle, Ryan C; Ginty, Annie T; Phillips, Anna C; Fisher, James P; McIntyre, David; Carroll, Douglas

    2016-04-01

    Correlation dimension (D2), a measure of heart rate (HR) complexity, has been shown to decrease in response to acute mental stress and relate to adverse cardiovascular health. However, the relationship between stress-induced changes in D2 and HR has yet to be established. The present studies aimed to assess this relationship systematically while controlling for changes in respiration and autonomic activity. In Study 1 (N = 25) D2 decreased during stress and predicted HR reactivity even after adjusting for changes in respiration rate, and cardiac vagal tone. This result was replicated in Study 2 (N = 162) and extended by including a measure of cardiac sympathetic activity; correlation dimension remained an independent predictor of HR reactivity in a hierarchical linear model containing measures of cardiac parasympathetic and sympathetic activity and their interaction. These results suggest that correlation dimension may provide additional information regarding cardiac stress reactivity above that provided by traditional measures of cardiac autonomic function. © 2015 Society for Psychophysiological Research.

  2. Differential effects on test stress on the heart rates of extraverts and introverts.

    Science.gov (United States)

    Hinton, J W; Craske, B

    1977-03-01

    A mental arithmetic task was administered to 39 subjects under conditions which imposed social stress. Using the relaxed state to provide a baseline, changes in heart rate and finger blood volume pulse were recorded. The subjects were divided to obtain groups with extreme scores on Eysenck's PEN scales, and the groups were compared on the two psychophysiological measures. Contrary to Eysenck's theory of Autonomic Lability as the neurological basis of N, the high N scoring group was not differentiated from the low N group by change in level of sympathetic activity as indicated by blood volume pulse, while, on the heart-rate measure, introverts showed a large increase and extraverts considerably less: there was no overlap between groups (p less than 0.001). It was concluded that extraverts exhibit greater parasympathetic activity relative to sympathetic arousal under this stress condition.

  3. Heart Rate Variability Biofeedback Intervention for Reduction of Psychological Stress During the Early Postpartum Period

    OpenAIRE

    Kudo, Naoko; Shinohara, Hitomi; KODAMA, Hideya

    2014-01-01

    This study examined the effectiveness of heart rate variability (HRV) biofeedback intervention for reduction of psychological stress in women in the early postpartum period. On postpartum day 4, 55 healthy subjects received a brief explanation about HRV biofeedback using a portable device. Among them, 25 mothers who agreed to implement HRV biofeedback at home were grouped as the biofeedback group, and other 30 mothers were grouped as the control group. At 1 month postpartum, there was a signi...

  4. Self-Rated Mental Stress and Exercise Training Response in Healthy Subjects

    Directory of Open Access Journals (Sweden)

    Pirita S Ruuska

    2012-03-01

    Full Text Available Purpose: Individual responses to aerobic training vary from almost none to a 40 % increase in aerobic fitness in healthy subjects. We hypothesized that the baseline self-rated mental stress may influence to the training response. Methods: The study population included 44 healthy sedentary subjects (22 women and 14 controls. The laboratory controlled training period was 2 weeks, including 5 sessions a week at an intensity of 75 % of the maximum heart rate (HR for 40 min/session. Self-rated mental stress was assessed by inquiry prior to the training period from 1 (low psychological resources and a lot of stressors in my life to 10 (high psychological resources and no stressors in my life, respectively. Results: Mean peak oxygen uptake (Vo2peak increased from 34±7 to 37±7 ml•kg-1•min-1 in training group (p<0.001 and did not change in control group (from 36±6 to 36±6 ml•kg-1•min-1. Among the training group, the self-rated stress at the baseline condition correlated with the change in fitness after training intervention, e.g. with the change in maximal power (r=0.45, p=0.002, W/kg and with the change in Vo2peak (r=0.32, p=0.039, ml•kg-1•min-1. The self-rated stress at the baseline correlated with the change in fitness in both female and male e.g. r=0.44, p=0.039 and r=0.43, p=0.045 for W/kg in female and male, respectively. Conclusion: As a novel finding the baseline self-rated mental stress is associated with the individual training response among healthy females and males after highly controlled aerobic training intervention. The changes in fitness were very low or absent in the subjects who experience their psychological resources low and a lot of stressors in their life at the beginning of aerobic training intervention.

  5. Growth rate, protein:RNA ratio and stoichiometric homeostasis of submerged macrophytes under eutrophication stress

    Directory of Open Access Journals (Sweden)

    Xing W.

    2016-01-01

    Full Text Available Growth rate hypothesis (GRH and stoichiometric homeostasis of photoautotrophs have always been questioned. However, little is known about GRH and stoichiometric homeostasis of aquatic plants, especially submerged macrophytes. Therefore, we aim to test the GRH and explore stoichiometric homeostasis of four freshwater submerged macrophytes under eutrophication stress. At the single species level and the multi-species level, N:P ratios of Potamogeton maackianus, Myriophyllum spicatum, Vallisneria natans and Ceratophyllum demersum had no consistent trends with growth rates. However, protein:RNA ratios of P. maackianus, M. spicatum and V. natans all correlated negatively with growth rates, demonstrating GRH can apply to freshwater submerged macrophytes, even though they are threatening by eutrophication stress. Protein:RNA ratios positively correlated with N:P ratios in culture media and tissues in submerged macrophytes except in P. maackianus (30d, suggesting effects of varying N:P ratios in culture media on protein:RNA ratios are basically in concert with tissue N:P ratios under short-time eutrophication stress. Stoichiometric homeostasis coefficients (HN:P indicated submerged macrophytes have weak homeostasis. Stoichiometric homeostasis of V. natans was stronger than those of P. maackianus, M. spicatum and C. demersum. The differences in GRH and homeostasis of the four submerged macrophytes may be due to species traits.

  6. A test case of the deformation rate analysis (DRA) stress measurement method

    Energy Technology Data Exchange (ETDEWEB)

    Dight, P.; Hsieh, A. [Australian Centre for Geomechanics, Univ. of WA, Crawley (Australia); Johansson, E. [Saanio and Riekkola Oy, Helsinki (Finland); Hudson, J.A. [Rock Engineering Consultants (United Kingdom); Kemppainen, K.

    2012-01-15

    As part of Posiva's site and ONKALO investigations, the in situ rock stress has been measured by a variety of techniques, including hydraulic fracturing, overcoring, and convergence measurements. All these techniques involve direct measurements in a drillhole or at the rock surface. An alternative method is to test drillhole core in a way that enables estimation of the magnitudes and orientations of the in situ rock stress. The Kaiser Effect (KE) and Deformation Rate Analysis (DRA) are two ways to do this. In the work reported here, a 'blind' DRA test was conducted on core obtained from the POSE (Posiva's Olkiluoto Spalling Experiment) niche in the ONKALO. The term 'blind' means that the two first authors of this report, who conducted the tests at the Australian Centre for Geomechanics, did not know the depths below surface at which the cores had been obtained. The results of this DRA Test Case are presented, together with an explanation of the DRA procedure. Also, additional information that would help in such DRA testing and associated analysis is explained. One of the problems in comparing the DRA results with the known Olkiluoto stress field is that the latter is highly variable across the site, as experienced by the previous in situ stress measurements and as predicted by numerical analysis. The variability is mainly caused by the presence of the large brittle deformation zones which perturb the local stress state. However, this variability reduces with depth and the stress field becomes more stable at the {approx} 350 m at which the drillhole cores were obtained. Another compounding difficulty is that the stress quantity, being a second order tensor, requires six independent components for its specification. In other words, comparison of the DRA results and the known stress field requires comparison of six different quantities. In terms of the major principal stress orientation, the DRA results predict an orientation completely

  7. Target heart rate to determine the normal value of coronary flow reserve during dobutamine stress echocardiography

    Directory of Open Access Journals (Sweden)

    Rousse Maria G

    2011-04-01

    Full Text Available Abstract Background The determination of coronary flow reserve (CFR is an essential concept at the moment of decision-making in ischemic heart disease. There are several direct and indirect tests to evaluate this parameter. In this sense, dobutamine stress echocardiography is one of the pharmacological method most commonly used worldwide. It has been previously demonstrated that CFR can be determined by this technique. Despite our wide experience with dobutamine stress echocardiography, we ignored the necessary heart rate to consider sufficient the test for the analysis of CFR. For this reason, our main goal was to determine the velocity of coronary flow in each stage of dobutamine stress echocardiography and the heart rate value necessary to double the baseline values of coronary flow velocity in the territory of the left anterior descending (LAD coronary artery. Methods A total of 33 consecutive patients were analyzed. The patients included had low risk for coronary artery disease. All the participants underwent dobutamine stress echocardiography and coronary artery flow velocity was evaluated in the distal segment of LAD coronary artery using transthoracic color-Doppler echocardiography. Results The feasibility of determining CFR in the territory of the LAD during dobutamine stress echocardiography was high: 31/33 patients (94%. Mean CFR was 2.67 at de end of dobutamine test. There was an excellent concordance between delta HR (difference between baseline HR and maximum HR and the increase in the CFR (correlation coefficient 0.84. In this sense, we found that when HR increased by 50 beats, CFR was ≥ 2 (CI 93-99.2%. In addition, 96.4% of patients reached a CFR ≥ 2 (IC 91.1 - 99% at 75% of their predicted maximum heart rate. Conclusions We found that the feasibility of dobutamine stress echocardiography to determine CFR in the territory of the LAD coronary artery was high. In this study, it was necessary to achieve a difference of 50 bpm

  8. Creep Strain and Strain Rate Response of 2219 Al Alloy at High Stress Levels

    Science.gov (United States)

    Taminger, Karen M. B.; Wagner, John A.; Lisagor, W. Barry

    1998-01-01

    As a result of high localized plastic deformation experienced during proof testing in an International Space Station connecting module, a study was undertaken to determine the deformation response of a 2219-T851 roll forging. After prestraining 2219-T851 Al specimens to simulate strains observed during the proof testing, creep tests were conducted in the temperature range from ambient temperature to 107 C (225 F) at stress levels approaching the ultimate tensile strength of 2219-T851 Al. Strain-time histories and strain rate responses were examined. The strain rate response was extremely high initially, but decayed rapidly, spanning as much as five orders of magnitude during primary creep. Select specimens were subjected to incremental step loading and exhibited initial creep rates of similar magnitude for each load step. Although the creep rates decreased quickly at all loads, the creep rates dropped faster and reached lower strain rate levels for lower applied loads. The initial creep rate and creep rate decay associated with primary creep were similar for specimens with and without prestrain; however, prestraining (strain hardening) the specimens, as in the aforementioned proof test, resulted in significantly longer creep life.

  9. Excessive heart rate response to orthostatic stress in postural tachycardia syndrome is not caused by anxiety.

    Science.gov (United States)

    Masuki, Shizue; Eisenach, John H; Johnson, Christopher P; Dietz, Niki M; Benrud-Larson, Lisa M; Schrage, William G; Curry, Timothy B; Sandroni, Paola; Low, Phillip A; Joyner, Michael J

    2007-03-01

    Postural tachycardia syndrome (POTS) is characterized by excessive increases in heart rate (HR) without hypotension during orthostasis. The relationship between the tachycardia and anxiety is uncertain. Therefore, we tested whether the HR response to orthostatic stress in POTS is primarily related to psychological factors. POTS patients (n = 14) and healthy controls (n = 10) underwent graded venous pooling with lower body negative pressure (LBNP) to -40 mmHg while wearing deflated antishock trousers. "Sham" venous pooling was performed by 1) trouser inflation to 5 mmHg during LBNP and 2) vacuum pump activation without LBNP. HR responses to mental stress were also measured in both groups, and a questionnaire was used to measure psychological parameters. During LBNP, HR in POTS patients increased 39 +/- 5 beats/min vs. 19 +/- 3 beats/min in control subjects at -40 mmHg (P inflation markedly blunted the HR responses in the patients (9 +/- 2 beats/min) and controls (2 +/- 1 beats/min), and there was no HR increase during vacuum application without LBNP in either group. HR responses during mental stress were not different in the patients and controls (18 +/- 2 vs. 19 +/- 1 beats/min; P > 0.6). Anxiety, somatic vigilance, and catastrophic cognitions were significantly higher in the patients (P 0.1). These results suggest that the HR response to orthostatic stress in POTS patients is not caused by anxiety but that it is a physiological response that maintains arterial pressure during venous pooling.

  10. Strain rate dependence of the flow stress and work hardening of {gamma}`

    Energy Technology Data Exchange (ETDEWEB)

    Ezz, S.S. [Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH (United Kingdom); Sun, Y.Q. [Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH (United Kingdom); Hirsch, P.B. [Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH (United Kingdom)

    1995-02-15

    The strain rate ({epsilon}) sensitivity of the flow stress ({tau}), {beta}=({delta}{tau}/{delta} ln{epsilon}), of crystals of {gamma}` in the temperature (T) range of the yield stress anomaly obeys a Cottrell-Stokes law when plotted against {tau}{sub h}={tau}-{tau}{sub y}, where {tau}{sub y} is the yield stress at 0.01% strain. The slopes are approximately 1%, decrease with increasing T and are approximately independent of orientation. {tau}{sub h} is due to work hardening and depends on the prestrain {epsilon}, {epsilon} and T. Transmission electron microscopy observations suggest that at 2% strain at 600 K and 720 K, {tau}{sub h} and {beta} are mainly controlled by forest obstacles. At 600 K, the forest consists largely of [101] dislocations on the (010) cross slip plane threading the (111) planes and generated by bowing of the [101] primary screws (Kear-Wilsdorf locks). At 720 K, the forest is non-uniform and consists of [101] on (010), primary cube [110] on (001) and secondary octahedral slip dislocations. At room temperature, the strength of the obstacles is weaker and it is suggested that they are mainly jogs on edge dislocations generated by cross slip of screw segments. At 2% strain, fine slip on (010) and (001) contributes increasingly to strain with increasing T and this correlates with the decrease in the work-hardening rate. ((orig.))

  11. Evaluation of the ductile-to-brittle transition temperature of a silicon steel under various strain rate conditions with a servo-hydraulic high speed testing machine

    Science.gov (United States)

    Kwon, Junbeom; Huh, Hoon; Kim, Jae-song

    2017-07-01

    This paper is concerned with the construction of an empirical model of the Ductile-to-Brittle Transition Temperature (DBTT) for 3.4% silicon steel based on tensile test results at strain rates ranging from 0.001 s‒1 to 100 s‒1. Dynamic tensile tests are conducted using an in-house servo hydraulic tensile test machine at strain rates of 1 s‒1, 10 s‒1, and 100 s‒1 and quasi-static tensile tests are conducted using Instron 4206 at strain rates of 0.001 s‒1 and 0.01 s‒1 with an environmental chamber. Fracture elongations are measured by a DIC method during all tests using the high-speed camera for accurate measurement. The DBTT of 3.4% silicon steel is presented in terms of fracture strain with the variation of the temperature and the strain rate. It is demonstrated from the test results that the DBTT increases as the strain rate increases. An empirical model of the DBTT is constructed in terms of strain rate, temperature and fracture elongation. The parameters of the empirical model are calculated from experimental results obtained at various temperatures and strain rates.

  12. Fatty acids from high rate algal pond's microalgal biomass and osmotic stress effects.

    Science.gov (United States)

    Drira, Neila; Dhouibi, Nedra; Hammami, Saoussen; Piras, Alessandra; Rosa, Antonella; Porcedda, Silvia; Dhaouadi, Hatem

    2017-11-01

    The extraction of oil from a wild microalgae biomass collected from a domestic wastewater treatment facility's high rate algal pond (HRAP) was investigated. An experiment plan was used to determine the most efficient extraction method, the optimal temperature, time and solvent system based on total lipids yield. Microwave-assisted extraction was the most efficient method whether in n-hexane or in a mixture of chloroform/methanol compared to Soxhlet, homogenization, and ultrasounds assisted extractions. This same wild biomass was cultivated in a photobioreactor (PBR) and the effect of osmotic stress was studied. The lipids extraction yield after 3days of stress increased by more than four folds without any significant loss of biomass, however, the quality of extracted total lipids in terms of saturated, monounsaturated and polyunsaturated fatty acids was not affected by salinity change in the culture medium. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Stress effect on conception rate in Nellore cows submmited to fixed time artificial insemination. Preliminary results

    Directory of Open Access Journals (Sweden)

    Fábio Luis Nogueira Natal

    2013-12-01

    Full Text Available In beef cattle, fixed time artificial insemination (FTAI provides a method to inseminate large numbers of females in a specific time, which result in economical gains due, among others, to a more uniform calf crop. However, FTAI requires frequent manipulation of animals in order to inject hormones and for clinical examination. Consequently, animals seemed stressed in less or higher extent at the time of insemination. This can be a problem because it has been demonstrated that application of an acute stress treatment (electric shock, confinement, restraint and rotation twice a day during the follicular phase of the oestrous cycle prevents the pre-ovulatory LH surge. This study aimed to evaluate if FTAI efficiency of Nellore cows is affected by the degree of stress observed at time of AI. Nellore cows (n=92 were treated (Day 0 with a progesterone intravaginal devise (Primer®, Tecnopec, São Paulo, Brazil containing 1 g of progesterone and injected with estradiol benzoate (2mg EB, Estrogin, AUSA, Brazil. Primer was removed on Day 8 (08:00 AM and administered one injection of cloprostenol (125 mcg, Prolise®, Tecnopec, São Paulo, Brazil. Twenty-four hours later, cows received 2 mg EB and insemination (semen from one sire was done on the afternoon (14:00 to 16:00 PM of day 10. At time of FTAI, the stress condition was classified as 1 (low, 2 (moderate or 3 (high according the reactivity of cows to enter in the squeeze chute and apparent nervous behavior. Pregnancy status was evaluated by transrectal ultrasound on day 40 after FTAI. Data were analyzed by Chi-square test. Cows with moderate or high degree of stress had lower conception rate than low stressed cows (P<0.01. These results suggest that cow temperament must be considered in the planning of FTAI programs. Studies are in progress in order to measure hormonal parameters (cortisol and Alpha amylase that better reflects the “fight-or-flight” response to immediate stressors in order to

  14. Stress-associated cardiovascular reaction masks heart rate dependence on physical load in mice.

    Science.gov (United States)

    Andreev-Andrievskiy, A A; Popova, A S; Borovik, A S; Dolgov, O N; Tsvirkun, D V; Custaud, M; Vinogradova, O L

    2014-06-10

    When tested on the treadmill mice do not display a graded increase of heart rate (HR), but rather a sharp shift of cardiovascular indices to high levels at the onset of locomotion. We hypothesized that under test conditions cardiovascular reaction to physical load in mice is masked with stress-associated HR increase. To test this hypothesis we monitored mean arterial pressure (MAP) and heart rate in C57BL/6 mice after exposure to stressful stimuli, during spontaneous locomotion in the open-field test, treadmill running or running in a wheel installed in the home cage. Mice were treated with β1-adrenoblocker atenolol (2mg/kg ip, A), cholinolytic ipratropium bromide (2mg/kg ip, I), combination of blockers (A+I), anxiolytic diazepam (5mg/kg ip, D) or saline (control trials, SAL). MAP and HR in mice increased sharply after handling, despite 3weeks of habituation to the procedure. Under stressful conditions of open field test cardiovascular parameters in mice were elevated and did not depend on movement speed. HR values did not differ in I and SAL groups and were reduced with A or A+I. HR was lower at rest in D pretreated mice. In the treadmill test HR increase over speeds of 6, 12 and 18m/min was roughly 1/7-1/10 of HR increase observed after placing the mice on the treadmill. HR could not be increased with cholinolytic (I), but was reduced after sympatholytic (A) or A+I treatment. Anxiolytic (D) reduced heart rate at lower speeds of movement and its overall effect was to unmask the dependency of HR on running speed. During voluntary running in non-stressful conditions of the home cage HR in mice linearly increased with increasing running speeds. We conclude that in test situations cardiovascular reactions in mice are governed predominantly by stress-associated sympathetic activation, rendering efforts to evaluate HR and MAP reactions to workload unreliable. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Strain rate and shear stress at the grain scale generated during near equilibrium antigorite dehydration

    Science.gov (United States)

    Padrón-Navarta, José Alberto; Tommasi, Andréa; Garrido, Carlos J.; Mainprice, David; Clément, Maxime

    2016-04-01

    Dehydration reactions are an outstanding case of mineral replacement reactions because they produce a significant transient fluid-filled porosity. Because fluids are present, these reactions occur by interface-coupled dissolution-precipitation. Under poorly drained conditions corresponding to foliated metamorphic rocks, they generate fluid pressure gradients that evolve in time and space eventually controlling fluid migration [1]. Despite the general agreement on this fact, we still lack of a precise knowledge of the complex coupling between the stresses generated during the reaction and the timescales for mineral growth and how they ultimate control the rate of fluid migration. Constraining these rates is challenge because the timescales of the feedback between fluid flow and mineral growth rates at near equilibrium are beyond the current experimental capabilities. For instance, numerical simulations suggest that the draining times of a dehydration front by compaction are in the order of 10-100 ky [1] difficult to translate into experimental strain rates. On the other hand, the natural record of dehydration reaction might potentially provide unique constrains on this feedback, but we need to identify microstructures related to compaction and quantify them. Features interpreted as due to compaction have been identified in a microstructural study [2] of the first stages of the antigorite dehydration at high-pressure conditions in Cerro del Almirez, Spain (ca. 1.6-1.9 GPa and 630-710 ° C). Compaction features can be mostly observed in the metamorphic enstatite in the form of (1) gradual crystallographic misorientation (up to 16°) of prismatic crystals due to buckling, (3) localized orthoenstatite(Pbca)/low clinoenstatite (P21/c) inversion (confirmed optically and by means of Electron Backscattered Diffraction) and (4) brittle fracturing of prismatic enstatite wrapped by plastically deformed chlorite. The coexistence of enstatite buckling and clinoenstatite lamellae

  16. Medical students' subjective ratings of stress levels and awareness of student support services about mental health.

    Science.gov (United States)

    Walter, Garry; Soh, Nerissa Li-Wey; Norgren Jaconelli, Sanna; Lampe, Lisa; Malhi, Gin S; Hunt, Glenn

    2013-06-01

    To descriptively assess medical students' concerns for their mental and emotional state, perceived need to conceal mental problems, perceived level of support at university, knowledge and use of student support services, and experience of stresses of daily life. From March to September 2011, medical students at an Australian university were invited to complete an anonymous online survey. 475 responses were received. Students rated study and examinations (48.9%), financial concerns (38.1%), isolation (19.4%) and relationship concerns (19.2%) as very or extremely stressful issues. Knowledge of available support services was high, with 90.8% indicating they were aware of the university's medical centre. Treatment rates were modest (31.7%). Students' concerns about their mental state were generally low, but one in five strongly felt they needed to conceal their emotional problems. Despite widespread awareness of appropriate support services, a large proportion of students felt they needed to conceal mental and emotional problems. Overall treatment rates for students who were greatly concerned about their mental and emotional state appeared modest, and, although comparable with those of similarly aged community populations, may reflect undertreatment. It would be appropriate for universities to address stressors identified by students. Strategies for encouraging distressed students to obtain appropriate assessment and treatment should also be explored. Those students who do seek healthcare are most likely to see a primary care physician, suggesting an important screening role for these health professionals.

  17. Associations of acute stress and overnight heart rate with feed efficiency in beef heifers.

    Science.gov (United States)

    Munro, J C; Schenkel, F S; Physick-Sheard, P W; Fontoura, A B P; Miller, S P; Tennessen, T; Montanholi, Y R

    2017-03-01

    Proxies have the potential to accelerate feed efficiency (residual feed intake (RFI); kg dry matter/day) improvement, assisting with the reduction of beef cattle feed costs and environmental impact. Heart rate (HR) (beats per minute (BPM)) is associated with feed efficiency and influenced by autonomic activity and peripheral metabolism, suggesting HR could be used as a proxy for feed efficiency. Objectives were to assess associations between overnight HR, lying patterns and RFI, and between acute stress HR and RFI. Heifer calves (n=107; 408±28 days of age, 341±42.2 kg) and yearling heifers (n=36; 604±92 days of age, 539±52.2 kg) were exposed to a performance test to determine productive performance. Overnight HR (electrode based) and lying patterns (accelerometer based) were monitored on a subgroup of heifer calves (n=40; 20 lowest RFI; 20 highest RFI). In the 10-min acute stress assessment, all heifers were individually exposed to the opening and closing of an umbrella and HR before (HRBEF), in response to (HRMAX), after (HRAFT) and change (HRCHG; HRAFT-HRBEF) as a result of exposure were determined. Using polynomial regression, rate of HR decrease pre-exposure (β 1) and rates of HR increase (β 2) and decrease (β 3, β 4) post-exposure were determined. Heifer calves in the overnight assessment were classified into equal RFI groups (low RFI; high RFI) and HR means were treated as repeated measures and compared using multiple regression. In the acute stress assessment, heifers were classified within cattle category into equal RFI groups (low RFI; high RFI) and means and polynomial regression parameters were compared using multiple regression. Low-RFI heifer calves had a lower overnight HR (69.2 v. 72.6 BPM), similar HR change from lying to standing intervals (8.9 v. 9.2 BPM) and similar time lying (61.1% v. 64.5%) compared with high-RFI heifer calves. Low-RFI heifer calves had a higher absolute HRMAX (162.9 v. 145.7 BPM) and β 2 (-0.34 v. -0.20) than high

  18. Effects of water stress and high temperature on photosynthetic rates of two species of Prosopis.

    Science.gov (United States)

    Delatorre, Jose; Pinto, Manuel; Cardemil, Liliana

    2008-08-21

    The main aim of this research was to compare the photosynthetic responses of two species of Prosopis, Prosopis chilensis (algarrobo) and Prosopis tamarugo (tamarugo) subjected to heat and water stress, to determine how heat shock or water deficit, either individually or combined, affect the photosynthesis of these two species. The photosynthetic rates expressed as a function of photon flow density (PFD) were determined by the O(2) liberated, in seedlings of tamarugo and algarrobo subjected to two water potentials: -0.3 MPa and -2.5 MPa and to three temperatures: 25 degrees C, 35 degrees C and 40 degrees C. Light response curves were constructed to obtain light compensation and light saturation points, maximum photosynthetic rates, quantum yields and dark respiration rates. The photochemical efficiency as the F(v)/F(m) ratio and the amount of RUBISCO were also determined under heat shock, water deficit, and under the combined action of both stress. Photosynthetic rates at a light intensity higher than 500 micromole photons m(-2)s(-1) were not significantly different (P>0.05) between species when measured at 25 degrees C under the same water potential. The maximum photosynthetic rates decreased with temperature in both species and with water deficit in algarrobo. At 40 degrees C and -2.5 MPa, the photosynthetic rate of algarrobo fell to 72% of that of tamarugo. The quantum yield decreased in algarrobo with temperature and water deficit and it was reduced by 50% when the conditions were 40 degrees C and -2.5 MPa. Dark respiration increased by 62% respect to the control at 40 degrees C in tamarugo while remained unchanged in algarrobo. The photochemical efficiency decreased with both, high temperature and water deficit, without differences between species. RUBISCO content increased in algarrobo 35 degrees C. Water deficit reduced the amount of RUBISCO in both species. The results of this work support the conclusion that in both Prosopis species, the interaction between

  19. Measurement of heart rate variability and stress evaluation by using microwave reflectometric vital signal sensing

    Science.gov (United States)

    Nagae, Daisuke; Mase, Atsushi

    2010-09-01

    In this paper, we present two robust signal processing techniques for stress evaluation using a microwave reflectometric cardiopulmonary sensing instrument. These techniques enable the heart rate variability (HRV) to be recovered from measurements of body-surface dynamic motion, which is subsequently used for the stress evaluation. Specifically, two novel elements are introduced: one is a reconfiguration of the HRV from the cross-correlation function between a measurement signal and a template signal which is constructed by averaging periodic component over a measurement time. The other is a reconstruction of the HRV from the time variation of the heartbeat frequency; this is evaluated by a repetition of the maximum entropy method. These two signal processing techniques accomplish the reconstruction of the HRV, though they are completely different algorithms. For validations of our model, an experimental setup is presented and several sets of experimental data are analyzed using the two proposed signal processing techniques, which are subsequently used for the stress evaluation. The results presented herein are consistent with electrocardiogram data.

  20. Self-Steem and changes in heart rate during laboratory-based stress

    Directory of Open Access Journals (Sweden)

    Brian M. Hughes

    2003-01-01

    Full Text Available The relationship between self-esteem (SE, type of stressor, and fluctuations in heart rate was assessed in a sample of 59 college students (40 females, 19 males; with a mean age of 23.98 years (SEM = 1.0. SE was measured using the Rosenberg Self-Esteem Scale. The study assessed whether SE buffers the cardiovascular response to stress by comparing responses to two types of stressor: mental arithmetic and verbal memory. As predicted, an SE x stressor interaction was found (p = 0.039. High-SE participants found both stressors moderately stressful but low-SE participants found the mental arithmetic task particularly stressful. This is consistent with the view that mental arithmetic elicits a specific fear that exceeds that associated with other domains of performance. The present study suggests that such fear affects low-SE participants more strongly than high-SE participants. The interaction was statistically independent of potential physiological contaminants such as gender, age, smoking, and caffeine consumption.

  1. Machining strategy choice: performance VIEWER

    CERN Document Server

    Tapie, Laurent; Anselmetti, Bernard

    2009-01-01

    Nowadays high speed machining (HSM) machine tool combines productivity and part quality. So mould and die maker invested in HSM. Die and mould features are more and more complex shaped. Thus, it is difficult to choose the best machining strategy according to part shape. Geometrical analysis of machining features is not sufficient to make an optimal choice. Some research show that security, technical, functional and economical constrains must be taken into account to elaborate a machining strategy. During complex shape machining, production system limits induce feed rate decreases, thus loss of productivity, in some part areas. In this paper we propose to analyse these areas by estimating tool path quality. First we perform experiments on HSM machine tool to determine trajectory impact on machine tool behaviour. Then, we extract critical criteria and establish models of performance loss. Our work is focused on machine tool kinematical performance and numerical controller unit calculation capacity. We implement...

  2. Tag-based Heart Rate Measurements of Harbor Porpoises During Normal and Noise-exposed Dives to Study Stress Responses

    Science.gov (United States)

    2014-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Tag-based Heart Rate Measurements of Harbor Porpoises...The typical mammalian startle or stress response to an acoustic stressor is increased heart rate, cardiac output and ventilation rate (Graham 1979...routinely experience. Here we propose to examine the dive heart rate, ventilation rate and activity in both captive and wild porpoise to better understand

  3. Differences in stress-related ratings between research center and home environments in dementia caregivers using ecological momentary assessment.

    Science.gov (United States)

    Fonareva, Irina; Amen, Alexandra M; Ellingson, Roger M; Oken, Barry S

    2012-01-01

    Clinicians and researchers working with dementia caregivers typically assess caregiver stress in a clinic or research center, but caregivers' stress is rooted at home where they provide care. This study aimed to compare ratings of stress-related measures obtained in research settings and in the home using ecological momentary assessment (EMA). EMA of 18 caregivers (mean age 66.4 years ±7.8; 89% females) and 23 non-caregivers (mean age 66.4 years ±7.9; 87% females) was implemented using a personal digital assistant. Subjects rated their perceived stress, fatigue, coping with current situation, mindfulness, and situational demand once in the research center and again at 3-4 semi-random points during a day at home. The data from several assessments conducted at home were averaged for statistical analyses and compared with the data collected in the research center. The testing environment had a differential effect on caregivers and non-caregivers for the ratings of perceived stress (p caregivers rated their perceived stress as higher than non-caregivers (p = 0.02). Overall, caregivers reported higher perceived stress at home than in the research center (p = 0.02), and non-caregivers reported greater situational demand in the research center than at home (p natural environment provides a more sensitive measure of stress-related outcomes. EMA provides a convenient way to gather data when evaluating dementia caregivers.

  4. Imbalance of heterologous protein folding and disulfide bond formation rates yields runaway oxidative stress

    Directory of Open Access Journals (Sweden)

    Tyo Keith EJ

    2012-03-01

    Full Text Available Abstract Background The protein secretory pathway must process a wide assortment of native proteins for eukaryotic cells to function. As well, recombinant protein secretion is used extensively to produce many biologics and industrial enzymes. Therefore, secretory pathway dysfunction can be highly detrimental to the cell and can drastically inhibit product titers in biochemical production. Because the secretory pathway is a highly-integrated, multi-organelle system, dysfunction can happen at many levels and dissecting the root cause can be challenging. In this study, we apply a systems biology approach to analyze secretory pathway dysfunctions resulting from heterologous production of a small protein (insulin precursor or a larger protein (α-amylase. Results HAC1-dependent and independent dysfunctions and cellular responses were apparent across multiple datasets. In particular, processes involving (a degradation of protein/recycling amino acids, (b overall transcription/translation repression, and (c oxidative stress were broadly associated with secretory stress. Conclusions Apparent runaway oxidative stress due to radical production observed here and elsewhere can be explained by a futile cycle of disulfide formation and breaking that consumes reduced glutathione and produces reactive oxygen species. The futile cycle is dominating when protein folding rates are low relative to disulfide bond formation rates. While not strictly conclusive with the present data, this insight does provide a molecular interpretation to an, until now, largely empirical understanding of optimizing heterologous protein secretion. This molecular insight has direct implications on engineering a broad range of recombinant proteins for secretion and provides potential hypotheses for the root causes of several secretory-associated diseases.

  5. Increased rate of acceleration on Pine Island Glacier strongly coupled to changes in gravitational driving stress

    Directory of Open Access Journals (Sweden)

    J. B. T. Scott

    2009-05-01

    Full Text Available Pine Island Glacier, Antarctica, has been undergoing several related changes for at least two decades; these include acceleration, thinning and grounding line retreat. During the first major ground-based study between 2006 and 2008, GPS receivers were used to monitor ice flow from 55 km to 171 km inland, along the central flowline. At four sites both acceleration and thinning rates over the last two years exceeded rates observed at any other time over the last two decades. At the downstream site acceleration was 6.4% over 2007 and thinning was 3.5±0.5 ma−1. Acceleration and thinning have spread rapidly inland with the acceleration 171 km inland at 4.1% over 2007, greater than any measured annual flow increase along the whole glacier prior to 2006. Increases in surface slope, and hence gravitational driving stress, correlate well with the acceleration and no sustained change in longitudinal stress gradient is needed to explain the force balance. There is no indication that the glacier is approaching a new steady state.

  6. Do physiological and pathological stresses produce different changes in heart rate variability?

    Directory of Open Access Journals (Sweden)

    Andrea eBravi

    2013-07-01

    Full Text Available Although physiological (e.g. exercise and pathological (e.g. infection stress affecting the cardiovascular system have both been documented to be associated with a reduction in overall heart rate variability (HRV, it remains unclear if loss of HRV is ubiquitously similar across different domains of variability analysis or if distinct patterns of altered HRV exist depending on the stressor. Using Continuous Individualized Multiorgan Variability Analysis (CIMVATM software, heart rate (HR and four selected measures of variability were measured over time (windowed analysis from two datasets, a set (n=13 of patients who developed systemic infection (i.e. sepsis after bone marrow transplant, and a matched set of healthy subjects undergoing physical exercise under controlled conditions. HR and the four HRV measures showed similar trends in both sepsis and exercise. The comparison through Wilcoxon sign-rank test of the levels of variability at baseline and during the stress (i.e. exercise or after days of sepsis development showed similar changes, except for LF/HF, ratio of power at low and high frequencies (associated with sympathovagal modulation, which was affected by exercise but did not show any change during sepsis. Furthermore, HRV measures during sepsis showed a lower level of correlation with each other, as compared to HRV during exercise. In conclusion, this exploratory study highlights similar responses during both exercise and infection, with differences in terms of correlation and inter-subject fluctuations, whose physiologic significance merits further investigation.

  7. Heart rate reduction with ivabradine promotes shear stress-dependent anti-inflammatory mechanisms in arteries.

    Science.gov (United States)

    Luong, Le; Duckles, Hayley; Schenkel, Torsten; Mahmoud, Marwa; Tremoleda, Jordi L; Wylezinska-Arridge, Marzena; Ali, Majid; Bowden, Neil P; Villa-Uriol, Mari-Cruz; van der Heiden, Kim; Xing, Ruoyu; Gijsen, Frank J; Wentzel, Jolanda; Lawrie, Allan; Feng, Shuang; Arnold, Nadine; Gsell, Willy; Lungu, Angela; Hose, Rodney; Spencer, Tim; Halliday, Ian; Ridger, Victoria; Evans, Paul C

    2016-07-04

    Blood flow generates wall shear stress (WSS) which alters endothelial cell (EC) function. Low WSS promotes vascular inflammation and atherosclerosis whereas high uniform WSS is protective. Ivabradine decreases heart rate leading to altered haemodynamics. Besides its cardio-protective effects, ivabradine protects arteries from inflammation and atherosclerosis via unknown mechanisms. We hypothesised that ivabradine protects arteries by increasing WSS to reduce vascular inflammation. Hypercholesterolaemic mice were treated with ivabradine for seven weeks in drinking water or remained untreated as a control. En face immunostaining demonstrated that treatment with ivabradine reduced the expression of pro-inflammatory VCAM-1 (pivabradine alters EC physiology indirectly via modulation of flow because treatment with ivabradine had no effect in ligated carotid arteries in vivo, and did not influence the basal or TNFα-induced expression of inflammatory (VCAM-1, MCP-1) or protective (eNOS, HMOX1, KLF2, KLF4) genes in cultured EC. We therefore considered whether ivabradine can alter WSS which is a regulator of EC inflammatory activation. Computational fluid dynamics demonstrated that ivabradine treatment reduced heart rate by 20 % and enhanced WSS in the aorta. In conclusion, ivabradine treatment altered haemodynamics in the murine aorta by increasing the magnitude of shear stress. This was accompanied by induction of eNOS and suppression of VCAM-1, whereas ivabradine did not alter EC that could not respond to flow. Thus ivabradine protects arteries by altering local mechanical conditions to trigger an anti-inflammatory response.

  8. Machine Translation

    Institute of Scientific and Technical Information of China (English)

    张严心

    2015-01-01

    As a kind of ancillary translation tool, Machine Translation has been paid increasing attention to and received different kinds of study by a great deal of researchers and scholars for a long time. To know the definition of Machine Translation and to analyse its benefits and problems are significant for translators in order to make good use of Machine Translation, and helpful to develop and consummate Machine Translation Systems in the future.

  9. Machinability evaluation of machinable ceramics with fuzzy theory

    Institute of Scientific and Technical Information of China (English)

    YU Ai-bing; ZHONG Li-jun; TAN Ye-fa

    2005-01-01

    The property parameters and machining output parameters were selected for machinability evaluation of machinable ceramics. Based on fuzzy evaluation theory, two-stage fuzzy evaluation approach was applied to consider these parameters. Two-stage fuzzy comprehensive evaluation model was proposed to evaluate machinability of machinable ceramic materials. Ce-ZrO2/CePO4 composites were fabricated and machined for evaluation of machinable ceramics. Material removal rates and specific normal grinding forces were measured. The parameters concerned with machinability were selected as alternative set. Five grades were chosen for the machinability evaluation of machnable ceramics. Machinability grades of machinable ceramics were determined through fuzzy operation. Ductile marks are observed on Ce-ZrO2/CePO4 machined surface. Five prepared Ce-ZrO2/CePO4 composites are classified as three machinability grades according to the fuzzy comprehensive evaluation results. The machinability grades of Ce-ZrO2/CePO4 composites are concerned with CePO4 content.

  10. Sustainable machining

    CERN Document Server

    2017-01-01

    This book provides an overview on current sustainable machining. Its chapters cover the concept in economic, social and environmental dimensions. It provides the reader with proper ways to handle several pollutants produced during the machining process. The book is useful on both undergraduate and postgraduate levels and it is of interest to all those working with manufacturing and machining technology.

  11. Blood pressure and heart rate during stress in children born small for gestational age.

    Science.gov (United States)

    Pirojsakul, Kwanchai; Thanapinyo, Apinya; Nuntnarumit, Pracha

    2017-06-01

    Increased sympathetic nervous system activity has been proposed as a potential mechanism for the blood pressure (BP) elevation seen in individuals born small for gestational age (SGA). This study was carried out to detect the changes in BP and heart rate (HR) in children born SGA during exposure to stress and to assess for changes in urinary catecholamine excretion. Nineteen children aged 6-14 years born SGA and 17 age- and gender-matched healthy controls were included in the study. The stress test included a mathematical test and venipuncture. BP and HR were monitored during the test. Spot urine samples were collected at baseline and after the stress test to determine dopamine, epinephrine and norepinephrine levels. At baseline, there was no difference in BP and HR between the SGA and control groups, but mean urinary norepinephrine levels were slightly higher in the SGA group (55.7 ± 16.1 vs. 43.4 ± 3.8 mcg/gCr; P = 0.10). Compared to the control group, mean maximal HR increase was higher in the SGA group (31.3 ± 3.1 vs. 19.2 ± 3.8%; P = 0.008), and mean duration of maximal HR to baseline HR was longer (186 ± 23 vs. 97 ± 13 s, respectively; P = 0.003). There was a significant negative correlation between birth weight and maximal HR increase (r = -0.497, P = 0.003). Children born SGA showed significantly greater increases in HR and significantly longer periods of tachycardia during exposure to stress than did healthy controls. The rise in HR was inversely correlated with birth weight. These findings suggest that children born SGA have a greater increase in sympathetic response when exposed to stress than do healthy individuals.

  12. Blood pressure and heart rate during orthostatic stress and walking with continuous postoperative thoracic epidural bupivacaine/morphine

    DEFF Research Database (Denmark)

    Møiniche, S; Hjortsø, N C; Blemmer, T

    1993-01-01

    and during mobilisation was superior compared to systemic morphine and NSAID. There were no significant differences between groups in haemodynamic responses (BP and heart rate) during rest, orthostatic stress and after walking assessed before, 24 and 48 h after operation except for a clinically unimportant...... lower heart rate (approximately 10 bpm) 48 h after surgery at rest and during orthostatic stress in the epidural group. There was no significant difference between groups in number of patients with a reduction > 20 mmHg (2.7 kPa) in systolic blood pressure during orthostatic stress (two in each group...

  13. Rotating electrical machines part 4: methods for determining synchronous machine quantities from tests

    CERN Document Server

    International Electrotechnical Commission. Geneva

    1985-01-01

    Applies to three-phase synchronous machines of 1 kVA rating and larger with rated frequency of not more than 400 Hz and not less than 15 Hz. An appendix gives unconfirmed test methods for determining synchronous machine quantities. Notes: 1 -Tests are not applicable to synchronous machines such as permanent magnet field machines, inductor type machines, etc. 2 -They also apply to brushless machines, but certain variations exist and special precautions should be taken.

  14. Impact of flow rates in a cardiac cycle on correlations between advanced human carotid plaque progression and mechanical flow shear stress and plaque wall stress

    Directory of Open Access Journals (Sweden)

    Ferguson Marina

    2011-07-01

    Full Text Available Abstract Background Mechanical stresses are known to play important roles in atherosclerotic plaque initiation, progression and rupture. It has been well-accepted that atherosclerosis initiation and early progression correlate negatively with flow wall shear stresses (FSS. However, mechanisms governing advanced plaque progression are not well understood. Method In vivo serial MRI data (patient follow-up were acquired from 14 patients after informed consent. Each patient had 2-4 scans (scan interval: 18 months. Thirty-two scan pairs (baseline and follow-up scans were formed with slices matched for model construction and analysis. Each scan pair had 4-10 matched slices which gave 400-1000 data points for analysis (100 points per slice on lumen. Point-wise plaque progression was defined as the wall thickness increase (WTI at each data point. 3D computational models with fluid-structure interactions were constructed based on in vivo serial MRI data to extract flow shear stress and plaque wall stress (PWS on all data points to quantify correlations between plaque progression and mechanical stresses (FSS and PWS. FSS and PWS data corresponding to both maximum and minimum flow rates in a cardiac cycle were used to investigate the impact of flow rates on those correlations. Results Using follow-up scans and maximum flow rates, 19 out of 32 scan pairs showed a significant positive correlation between WTI and FSS (positive/negative/no significance correlation ratio = 19/9/4, and 26 out of 32 scan pairs showed a significant negative correlation between WTI and PWS (correlation ratio = 2/26/4. Corresponding to minimum flow rates, the correlation ratio for WTI vs. FSS and WTI vs. PWS were (20/7/5 and (2/26/4, respectively. Using baseline scans, the correlation ratios for WTI vs. FSS were (10/12/10 and (9/13/10 for maximum and minimum flow rates, respectively. The correlation ratios for WTI vs. PWS were the same (18/5/9, corresponding to maximum and minimum

  15. Impact of flow rates in a cardiac cycle on correlations between advanced human carotid plaque progression and mechanical flow shear stress and plaque wall stress.

    Science.gov (United States)

    Yang, Chun; Canton, Gador; Yuan, Chun; Ferguson, Marina; Hatsukami, Thomas S; Tang, Dalin

    2011-07-19

    Mechanical stresses are known to play important roles in atherosclerotic plaque initiation, progression and rupture. It has been well-accepted that atherosclerosis initiation and early progression correlate negatively with flow wall shear stresses (FSS). However, mechanisms governing advanced plaque progression are not well understood. In vivo serial MRI data (patient follow-up) were acquired from 14 patients after informed consent. Each patient had 2-4 scans (scan interval: 18 months). Thirty-two scan pairs (baseline and follow-up scans) were formed with slices matched for model construction and analysis. Each scan pair had 4-10 matched slices which gave 400-1000 data points for analysis (100 points per slice on lumen). Point-wise plaque progression was defined as the wall thickness increase (WTI) at each data point. 3D computational models with fluid-structure interactions were constructed based on in vivo serial MRI data to extract flow shear stress and plaque wall stress (PWS) on all data points to quantify correlations between plaque progression and mechanical stresses (FSS and PWS). FSS and PWS data corresponding to both maximum and minimum flow rates in a cardiac cycle were used to investigate the impact of flow rates on those correlations. Using follow-up scans and maximum flow rates, 19 out of 32 scan pairs showed a significant positive correlation between WTI and FSS (positive/negative/no significance correlation ratio = 19/9/4), and 26 out of 32 scan pairs showed a significant negative correlation between WTI and PWS (correlation ratio = 2/26/4). Corresponding to minimum flow rates, the correlation ratio for WTI vs. FSS and WTI vs. PWS were (20/7/5) and (2/26/4), respectively. Using baseline scans, the correlation ratios for WTI vs. FSS were (10/12/10) and (9/13/10) for maximum and minimum flow rates, respectively. The correlation ratios for WTI vs. PWS were the same (18/5/9), corresponding to maximum and minimum flow rates. Flow shear stress

  16. Shifting gears: Thermodynamics of genetic information storage suggest stress-dependence of mutation rate, which can accelerate adaptation

    CERN Document Server

    Hilbert, Lennart

    2011-01-01

    Background: Acceleration of adaptation dynamics by stress-induced hypermutation has been found experimentally. Evolved evolvability is a prominent explanation. We investigate a more generally applicable explanation by a physical constraint. Methods and Results: A generic thermodynamical analysis of genetic information storage obviates physical constraints on the integrity of genetic information. The capability to employ metabolic resources is found as a major determinant of mutation probability in stored genetic information. Incorporation into a non-recombinant, asexual adaptation toy model predicts cases of markedly accelerated adaptation, driven by a transient increase of mutation rate. No change in the mutation rate as a genetic trait is required. The mutation rate of one and the same genotype varies dependent on stress level. Implications: Stress-dependent mutation rates are physically necessary and challenge a condition-independent genotype to mutation rate mapping. This holds implications for evolutiona...

  17. Tag-based Heart Rate Measurements of Harbor Porpoises During Normal and Noise-exposed Dives to Study Stress Responses

    Science.gov (United States)

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Tag-based Heart Rate Measurements of Harbor Porpoises...acoustic stressor is increased heart rate , cardiac output and ventilation rate (Graham 1979), all which are contrary to the typical marine mammal dive...nitrogen management and can provide information on the level of stress the animals routinely experience. Here we examine the dive heart rate

  18. Machinability studies on INCONEL 718

    Science.gov (United States)

    Xavior, M. Anthony; Patil, Mahesh; Maiti, Abheek; Raj, Mrinal; Lohia, Nitesh

    2016-09-01

    The main objective of proposed work is to determine the influence of controllable parameters on machining characteristics of Inconel-718 and to achieve the optimum parameters for sustainable and efficient turning. Understanding the consequences of advanced tool materials together with higher cutting speeds on the formation of residual stresses and therefore the underlying mechanisms of small structural alteration within the subterranean layer thereby becomes terribly crucial for predicting product quality and more optimizing the machining conditions. Controllable cutting parameters such as cutting velocity, feed rate and depth of cut were selected at different level for experimentations in accordance with the Taguchi L9 array method using Minimum Quantity Lubrication (MQL) cutting condition and three different tools namely PVD TiAlN carbide, Cubic boron nitride and ceramic. Extensive study is done on the resulting surface roughness, surface subsurface hardness, tool wear and chip morphology. The results obtained from each of the tool were thoroughly analyzed and finally the optimized parameters are obtained for efficient machining of Inconel 718.

  19. Heart rate variability (HRV) and posttraumatic stress disorder (PTSD): a pilot study.

    Science.gov (United States)

    Tan, Gabriel; Dao, Tam K; Farmer, Lorie; Sutherland, Roy John; Gevirtz, Richard

    2011-03-01

    Exposure to combat experiences is associated with increased risk of developing Post Traumatic Stress Disorder. Prolonged exposure therapy and cognitive processing therapy have garnered a significant amount of empirical support for PTSD treatment; however, they are not universally effective with some patients continuing to struggle with residual PTSD symptoms. Heart rate variability (HRV) is a measure of the autonomic nervous system functioning and reflects an individual's ability to adaptively cope with stress. A pilot study was undertaken to determine if veterans with PTSD (as measured by the Clinician-Administered PTSD Scale and the PTSD Checklist) would show significantly different HRV prior to an intervention at baseline compared to controls; specifically, to determine whether the HRV among veterans with PTSD is more depressed than that among veterans without PTSD. The study also aimed at assessing the feasibility, acceptability, and potential efficacy of providing HRV biofeedback as a treatment for PTSD. The findings suggest that implementing an HRV biofeedback as a treatment for PTSD is effective, feasible, and acceptable for veterans. Veterans with combat-related PTSD displayed significantly depressed HRV as compared to subjects without PTSD. When the veterans with PTSD were randomly assigned to receive either HRV biofeedback plus treatment as usual (TAU) or just TAU, the results indicated that HRV biofeedback significantly increased the HRV while reducing symptoms of PTSD. However, the TAU had no significant effect on either HRV or symptom reduction. A larger randomized control trial to validate these findings appears warranted.

  20. Fetal Heart Rate Analysis for Automatic Detection of Perinatal Hypoxia Using Normalized Compression Distance and Machine Learning

    Science.gov (United States)

    Barquero-Pérez, Óscar; Santiago-Mozos, Ricardo; Lillo-Castellano, José M.; García-Viruete, Beatriz; Goya-Esteban, Rebeca; Caamaño, Antonio J.; Rojo-Álvarez, José L.; Martín-Caballero, Carlos

    2017-01-01

    Accurate identification of Perinatal Hypoxia from visual inspection of Fetal Heart Rate (FHR) has been shown to have limitations. An automated signal processing method for this purpose needs to deal with time series of different lengths, recording interruptions, and poor quality signal conditions. We propose a new method, robust to those issues, for automated detection of perinatal hypoxia by analyzing the FHR during labor. Our system consists of several stages: (a) time series segmentation; (b) feature extraction from FHR signals, including raw time series, moments, and usual heart rate variability indices; (c) similarity calculation with Normalized Compression Distance, which is the key element for dealing with FHR time series; and (d) a simple classification algorithm for providing the hypoxia detection. We analyzed the proposed system using a database with 32 fetal records (15 controls). Time and frequency domain and moment features had similar performance identifying fetuses with hypoxia. The final system, using the third central moment of the FHR, yielded 92% sensitivity and 85% specificity at 3 h before delivery. Best predictions were obtained in time intervals more distant from delivery, i.e., 4–3 h and 3–2 h.

  1. Risky business: trauma exposure and rate of posttraumatic stress disorder in African American children and adolescents.

    Science.gov (United States)

    Hunt, Kristin L; Martens, Patricia M; Belcher, Harolyn M E

    2011-06-01

    Demographics, parental risk factors, and experiencing interpersonal trauma (domestic violence, community violence, and physical and sexual abuse) are related to childhood posttraumatic stress disorder (PTSD). Little is known about these factors and the risk of PTSD in African American children. This study examined associations between PTSD symptoms and gender, age, parent mental illness, parent substance abuse, and interpersonal trauma in African American children. Participants were 257 children and adolescents, ages 8-17 years (M = 11.7, SD = 2.5), who received outpatient mental health treatment. Being female and witnessing domestic violence was associated with more PTSD symptoms. Exposure to community violence and physical abuse increased the odds of clinically significant PTSD symptomatology by more than 2 times. The rate of PTSD (16%) was lower in the current study than in other same-age study populations (25%-40%). Risk factors and identification strategies for PTSD are discussed.

  2. The Effects of Maternal Opium Abuse on Fetal Heart Rate using Non-Stress Test

    Science.gov (United States)

    Keikha, Fatemeh; Vahdani, Fahimeh Ghotbizadeh; Latifi, Sahar

    2016-01-01

    Background: Opium is one of the most commonly abused opiates in developing countries including Iran. Considering the importance of maternal health on the newborn, we aimed to assess the effect of opium abuse on fetal heart rate (FHR) characteristics in a sample of pregnant women in Zahedan, Southeast Iran. Methods: This cross-sectional study was done on 100 pregnant women referring to Ali-Ibn-Abi Talib Hospital in Zahedan, during 2011-2013. The participants were divided into two groups comprising of opium abusers and healthy individuals. The participants received 500cc intravenous fluid containing dextrose and then non-stress test results were recorded for 20 minutes. Results: We found no significant difference between the two groups with respect to their demographic characteristics. Fetal movements, variability, acceleration, and reactivity were significantly higher among addicted women (Pabusers compared with the healthy women. Abnormal variability or oscillations of addicted mothers (Pabuser group, mothers addicted to opium need specific prenatal care. PMID:27853327

  3. Excessive heart rate increase during mild mental stress in preparation for exercise predicts sudden death in the general population.

    Science.gov (United States)

    Jouven, Xavier; Schwartz, Peter J; Escolano, Sylvie; Straczek, Céline; Tafflet, Muriel; Desnos, Michel; Empana, Jean Philippe; Ducimetière, Pierre

    2009-07-01

    The aim of this study involves the early identification, among apparently healthy individuals, of those at high risk for sudden cardiac death. We tested the hypothesis that individuals who respond to mild mental stress in preparation for exercise test with the largest heart rate increases might be at highest risk. Data from 7746 civil servants participating in the Paris Prospective Study I, followed-up for 23 years, allowed to compare heart rate changes between rest and mild mental stress (preparation prior to an exercise test) between subjects who suffered sudden cardiac death (n = 81), non-sudden (n = 129) coronary death, or death from any cause (n = 1306). The mean heart rate increase during mild mental stress was 8.9 +/- 10.8 b.p.m. Risk of sudden cardiac death increased progressively with heart rate increase during mental stress and the relative risk of the third vs. the first tertile was 2.09 (95% confidence interval, 1.13-3.86) after adjustment for confounders. This relationship was not observed for non-sudden coronary death. An important heart rate increase produced by a mild mental stress predicts long-term risk for sudden cardiac death. Heart rate changes before an exercise test may provide a simple tool for risk stratification.

  4. Studying the Relationship between Rate of Organizational Socialization and Rate of Employees Conformity (Group Stress, Kind of Character, Individualism Culture and Pluralism Culture) in Nehbandan Executive Systems

    OpenAIRE

    Mohammad Ziaadini; Marzieh Hashemi

    2013-01-01

    This research basically aims to study the relationship between rate of organizational socialization and rate of employees’ conformity (group stress, kind of character, individualism culture and pluralism culture) in Nehbandan executive systems. Statistical society of this research includes 70 newcomer employees in Nehbandan government offices and centers and sample size was regarded equal to statistical society. Instruments of collecting data are two questionnaires of socialization and confor...

  5. Diastolic time – frequency relation in the stress echo lab: filling timing and flow at different heart rates

    Directory of Open Access Journals (Sweden)

    Faita Francesco

    2008-04-01

    Full Text Available Abstract A cutaneous force-frequency relation recording system based on first heart sound amplitude vibrations has been recently validated. Second heart sound can be simultaneously recorded in order to quantify both systole and diastole duration. Aims 1- To assess the feasibility and extra-value of operator-independent, force sensor-based, diastolic time recording during stress. Methods We enrolled 161 patients referred for stress echocardiography (exercise 115, dipyridamole 40, pacing 6 patients. The sensor was fastened in the precordial region by a standard ECG electrode. The acceleration signal was converted into digital and recorded together with ECG signal. Both systolic and diastolic times were acquired continuously during stress and were displayed by plotting times vs. heart rate. Diastolic filling rate was calculated as echo-measured mitral filling volume/sensor-monitored diastolic time. Results Diastolic time decreased during stress more markedly than systolic time. At peak stress 62 of the 161 pts showed reversal of the systolic/diastolic ratio with the duration of systole longer than diastole. In the exercise group, at 100 bpm HR, systolic/diastolic time ratio was lower in the 17 controls (0.74 ± 0.12 than in patients (0.86 ± 0.10, p Diastolic filling rate increased from 101 ± 36 (rest to 219 ± 92 ml/m2* s-1 at peak stress (p Conclusion Cardiological systolic and diastolic duration can be monitored during stress by using an acceleration force sensor. Simultaneous calculation of stroke volume allows monitoring diastolic filling rate. Stress-induced "systolic-diastolic mismatch" can be easily quantified and is associated to several cardiac diseases, possibly expanding the spectrum of information obtainable during stress.

  6. Pattern of stress change and its effect on seismicity rate caused by M_s8.0 Wenchuan earthquake

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We use five published source models to calculate the Coulomb failure stress changes induced by the Ms8.0 Wenchuan earthquake, and analyze the association between stress changes and the subsequent earthquakes. Based on the analysis of uncertainties resulting from source models, we determine the stress changes on nearby faults caused by the Wenchuan earthquake. Moreover, we focus on the seismicity rate change as a function of time on every fault under the influence of stress changes. The results indicate that the spatial distributions of aftershocks correlate well with the regions where stress is calculated to increase using the related models. The largest lobes of dropped stress lie in the west and east sides of source fault. The largest lobes of increased failure stress close to southern and northern ends of the source fault extend into the whole source failure plane. In addition, another region of increased stress lies in the Wenchuan-Yingxiu zone close to the southern segment of source fault, where a large number of aftershocks have occurred. And subsequent earthquakes seem to extend to even more remote distances; therefore, this area also has a high risk of seismic hazard. We find that the positive stress changes on nearby faults imposed by the Wenchuan earthquake produce an encouraging effect on seismicity rate. The effect is most significant on the Pengxian-Guanxian fault and Qingchuan fault, the value of seismicity rate maintains two times greater than the value before the mainshock for the next hundred years on these faults, and the time needed for the aftershock rate to recover to the pre-mainshock seismicity rate can reach up to 800-900 yr. The influence is not significant on the western Qinling fault, the Longquanshan fault, the Xianshuihe fault, the Yulongxi fault, the Anninghe fault, the Minjiang fault, and the Aba fault. Compared with the seismicity rate on these faults before the mainshock, the aftershock rate is raised by less than two times, and the

  7. Measuring stress level of dairy cows during milking using by geometric indices of heart rate variability

    Directory of Open Access Journals (Sweden)

    Levente Kovács

    2013-05-01

    Full Text Available AbstractHeart rate (HR and heart rate variability (HRV were investigated in cows (n=32, age: 3.86 years, milk production: 35±2.5 kg, DIM: 150±15 milked in a parallel milking parlour. Geometric parameters of HRV (SD1 and SD2 were calculated using Poincare graphs. HRV indices of resting 1 h after midday milking (reference period were compared to those measured during the different phases of the evening milking (driving; in the holding pen; udder preparation; milking; after milking in the milking stall. There was no difference between the reference period and the different phases of milking in animal welfare terms. During the reference period SD2 (198.5 ms was significantly higher (p<0.05 than every other measured period suggesting an increasing parasympathetic tone after milking. This parasympathetic predominance decreased with time of the day (1.5 h after milking. SD2 was significantly affected by parity, by the breeding bull (p<0.01 and by milk production (p<0.05. SD2 was notably higher (102.8 ms in multiparous cows than in primiparous cows (p<0.017; α=0.005 during resting and milking. Results suggested that a conventional milking process is not really stressful for cows. Primiparous cows were more susceptible of milking process than multiparous ones. SD2 is a good marker of vagus activity and affected by several independent factors.

  8. Stress corrosion cracking of alloy 600 using the constant strain rate test

    Energy Technology Data Exchange (ETDEWEB)

    Bulischeck, T. S.; van Rooyen, D.

    1980-01-01

    The most recent corrosion problems experienced in nuclear steam generators tubed with Inconel alloy 600 is a phenomenon labeled ''denting''. Denting has been found in various degrees of severity in many operating pressurized water reactors. Laboratory investigations have shown that Inconel 600 exhibits intergranular SCC when subjected to high stresses and exposed to deoxygenated water at elevated temperatures. A research project was initiated at Brookhaven National Laboratory in an attempt to improve the qualitative and quantitative understanding of factors influencing SCC in high temperature service-related environments. An effort is also being made to develop an accelerated test method which could be used to predict the service life of tubes which have been deformed or are actively denting. Several heats of commercial Inconel 600 tubing were procured for testing in deaerated pure and primary water at temperatures from 290 to 365/sup 0/C. U-bend type specimens were used to determine crack initiation times which may be expected for tubes where denting has occurred but is arrested and provide baseline data for judging the accelerating effects of the slow strain rate method. Constant extension rate tests were employed to determine the crack velocities experienced in the crack propagation stage and predict failure times of tubes which are actively denting. 8 refs., 17 figs., 5 tabs.

  9. Simple machines

    CERN Document Server

    Graybill, George

    2007-01-01

    Just how simple are simple machines? With our ready-to-use resource, they are simple to teach and easy to learn! Chocked full of information and activities, we begin with a look at force, motion and work, and examples of simple machines in daily life are given. With this background, we move on to different kinds of simple machines including: Levers, Inclined Planes, Wedges, Screws, Pulleys, and Wheels and Axles. An exploration of some compound machines follows, such as the can opener. Our resource is a real time-saver as all the reading passages, student activities are provided. Presented in s

  10. Utilization of machine learning for prediction of post-traumatic stress: a re-examination of cortisol in the prediction and pathways to non-remitting PTSD

    Science.gov (United States)

    Galatzer-Levy, I R; Ma, S; Statnikov, A; Yehuda, R; Shalev, A Y

    2017-01-01

    To date, studies of biological risk factors have revealed inconsistent relationships with subsequent post-traumatic stress disorder (PTSD). The inconsistent signal may reflect the use of data analytic tools that are ill equipped for modeling the complex interactions between biological and environmental factors that underlay post-traumatic psychopathology. Further, using symptom-based diagnostic status as the group outcome overlooks the inherent heterogeneity of PTSD, potentially contributing to failures to replicate. To examine the potential yield of novel analytic tools, we reanalyzed data from a large longitudinal study of individuals identified following trauma in the general emergency room (ER) that failed to find a linear association between cortisol response to traumatic events and subsequent PTSD. First, latent growth mixture modeling empirically identified trajectories of post-traumatic symptoms, which then were used as the study outcome. Next, support vector machines with feature selection identified sets of features with stable predictive accuracy and built robust classifiers of trajectory membership (area under the receiver operator characteristic curve (AUC)=0.82 (95% confidence interval (CI)=0.80–0.85)) that combined clinical, neuroendocrine, psychophysiological and demographic information. Finally, graph induction algorithms revealed a unique path from childhood trauma via lower cortisol during ER admission, to non-remitting PTSD. Traditional general linear modeling methods then confirmed the newly revealed association, thereby delineating a specific target population for early endocrine interventions. Advanced computational approaches offer innovative ways for uncovering clinically significant, non-shared biological signals in heterogeneous samples. PMID:28323285

  11. Changes of the rats’ heart rate variability caused by chlorpromazine modulation of central noradrenergic neurotransmission during prolonged stress

    Directory of Open Access Journals (Sweden)

    O. Z. Мelnikova

    2012-03-01

    Full Text Available It’s established that under the prolonged stress there were changes of geometric and spectral indices of the rats’ heart rate variability (HRV, manifestations of which depended on duration of stressful factors acting and represented the stress reaction development from the stage of anxiety to the exhaustion phase. Application of chlorpromazine at the beginning and against the background of stress blocked the central alpha adrenoceptors and contributed to renewal of the most HRV indices into the limits of control values at the end of experiment. The results of research show that the modulation of functional state of central noradrenergic system plays a great role in the changes of HRV during prolonged stress.

  12. Courtship Song Does Not Increase the Rate of Adaptation to a Thermally Stressful Environment in a Drosophila melanogaster Laboratory Population

    Science.gov (United States)

    Cabral, Larry G.; Holland, Brett

    2014-01-01

    Courtship song in D. melanogaster contributes substantially to male mating success through female selection. We used experimental evolution to test whether this display trait is maintained through adaptive female selection because it indicates heritable male quality for thermal stress tolerance. We used non-displaying, outbred populations of D. melanogaster (nub1) mutants and measured their rate of adaptation to a new, thermally stressful environment, relative to wild-type control populations that retained courtship song. This design retains sexually selected conflict in both treatments. Thermal stress should select across genomes for newly beneficial alleles, increasing the available genetic and phenotypic variation and, therefore, the magnitude of female benefit derived from courtship song. Following introduction to the thermally stressful environment, net reproductive rate decreased 50% over four generations, and then increased 19% over the following 16 generations. There were no differences between the treatments. Possible explanations for these results are discussed. PMID:25365209

  13. Courtship song does not increase the rate of adaptation to a thermally stressful environment in a Drosophila melanogaster laboratory population.

    Directory of Open Access Journals (Sweden)

    Larry G Cabral

    Full Text Available Courtship song in D. melanogaster contributes substantially to male mating success through female selection. We used experimental evolution to test whether this display trait is maintained through adaptive female selection because it indicates heritable male quality for thermal stress tolerance. We used non-displaying, outbred populations of D. melanogaster (nub1 mutants and measured their rate of adaptation to a new, thermally stressful environment, relative to wild-type control populations that retained courtship song. This design retains sexually selected conflict in both treatments. Thermal stress should select across genomes for newly beneficial alleles, increasing the available genetic and phenotypic variation and, therefore, the magnitude of female benefit derived from courtship song. Following introduction to the thermally stressful environment, net reproductive rate decreased 50% over four generations, and then increased 19% over the following 16 generations. There were no differences between the treatments. Possible explanations for these results are discussed.

  14. Prevalence rate of post-traumatic stress disorders (PTSD and other psychological disorders among Saudi firefighters

    Directory of Open Access Journals (Sweden)

    Mohammed Alghamd

    2013-08-01

    Full Text Available Background: Firefighters have a high probability of being exposed to a variety of traumatic events. Potentially traumatic events can occur during a single rescue such as: providing aid to seriously injured or helpless victims. Moreover, firefighters who are injured in the line of duty may have to retire as a consequence of their injury. The psychological cost of this exposure may increase the risk of long-term problems, such as post-traumatic stress disorder (PTSD symptoms, depression, and anxiety. Objective: The purpose of this study was to investigate the prevalence of PTSD symptoms, depression, anxiety, and assess related variables such as coping strategies and social support among Saudi firefighters. Method: Two hundred firefighters completed the Fire-fighter Trauma History Screen (FTHS to measure the number of traumatic events, Screen for Post-traumatic Stress Symptoms (SPTSS scale to assess the prevalence of PTSD symptoms, Hospital Anxiety and Depression Scales (HADS to assess depression and anxiety, Brief Cope (BC scale to measure coping strategies used, and Social Support scale was used to evaluate the firefighter's support received. Results: The results showed that 84% (169/200 of firefighters were exposed to at least one traumatic event. The result presented that 57% (96/169 of exposure firefighters fully met the DSM-IV criteria for PTSD with high levels of depression and anxiety; 39% (66/169 partially met the PTSD criteria. However, only 4% participants have not met the PTSD criteria. The results also revealed that adaptive coping strategies and higher perceived social support was associated with lower levels of PTSD. Conclusion: The high prevalence rate of PTSD related to the type and severity of the traumatic events and years of experience in the job. Accordingly, many firefighters were severely affected by their experiences, and we should be developing methods to help them.

  15. The relationship between aggression rates and drugs abuse among posttraumatic stress disorder patients

    Directory of Open Access Journals (Sweden)

    Faezeh Tatari

    2013-11-01

    Full Text Available Background: Posttraumatic stress disorder (PTSD is a stress disorder, whose prevalence was 2-15%. PTSD is associated with mood, anxiety, personality and substance use disorders (SUD. The substance user patients with PTSD have more problems, and severity of symptoms is more than non-substance users with PTSD patients. These patients may be nervous, aggressive, and restless and their function will be affected in many aspects. The aim of this study was to determine the relationship between aggression levels and substances use among PTSD patients. Methods: Among patients with PTSD referred to Kermanshah Farabi Hospital in 2011,182 cases were selected and their aggression levels were assessed by Buss & Perry Aggression Questionnaire. The aggression levels in PTSD patients with and without SUD were compared. Result: The highest frequencies were in middle-aged (81.1%, males (91.8%, married (77.5% and poor economic status (63.2% patients. Substances using was higher among married patients and the most abused substances was opium. Substances consumption was higher among patients with lower socioeconomic status and opium and amphetamines were the most abused substance. Most PTSD types were related to after-war events (70.3%. Mean of total aggression was higher in SUD. Rate of total aggression was higher in patients using opium. Conclusion: Compared to those without PTSD, individuals with this disorder are more likely to have aggression. Patients with concurrent PTSD and SUD suffer from more severe complaints and show worse treatment outcomes compared with patients with either disorder alone.

  16. Stress level in wild harbour porpoises (Phocoena phocoena) during satellite tagging measured by respiration, heart rate and cortisol

    DEFF Research Database (Denmark)

    Eskesen, Ida Grønborg; Teilmann, J.; Geertsen, B. M.

    2009-01-01

    analysed from blood samples. Differences in heart rates, respiration rates and cortisol levels before and during the tagging events were investigated. An overall significant decrease Of 31.5% in respiration rate was found during the tagging event period, while mature porpoises respired significantly more...... and lowering it into the water seem to stabilize a stressed animal. Therefore, general precaution and individual judgement based on experience is essential when handling wild harbour porpoises....

  17. Rate of Dehydration and Cumulative Desiccation Stress Interacted to Modulate Desiccation Tolerance of Recalcitrant Cocoa and Ginkgo Embryonic Tissues1

    Science.gov (United States)

    Liang, Yongheng; Sun, Wendell Q.

    2002-01-01

    Rate of dehydration greatly affects desiccation tolerance of recalcitrant seeds. This effect is presumably related to two different stress vectors: direct mechanical or physical stress because of the loss of water and physicochemical damage of tissues as a result of metabolic alterations during drying. The present study proposed a new theoretic approach to represent these two types of stresses and investigated how seed tissues responded differently to two stress vectors, using the models of isolated cocoa (Theobroma cacao) and ginkgo (Ginkgo biloba) embryonic tissues dehydrated under various drying conditions. This approach used the differential change in axis water potential (ΔΨ/Δt) to quantify rate of dehydration and the intensity of direct physical stress experienced by embryonic tissues during desiccation. Physicochemical effect of drying was expressed by cumulative desiccation stress [∫\\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\pagestyle{empty} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\mathrm{_{o}^{t}}}\\end{equation*}\\end{document}f(ψ,t)], a function of both the rate and time of dehydration. Rapid dehydration increased the sensitivity of embryonic tissues to desiccation as indicated by high critical water contents, below which desiccation damage occurred. Cumulative desiccation stress increased sharply under slow drying conditions, which was also detrimental to embryonic tissues. This quantitative analysis of the stress-time-response relationship helps to understand the physiological basis for the existence of an optimal dehydration rate, with which maximum desiccation tolerance could be achieved. The established numerical analysis model will prove valuable for the design of experiments that aim to elucidate biochemical and physiological mechanisms of desiccation tolerance. PMID:11950981

  18. Nickel-regulated heart rate variability: The roles of oxidative stress and inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, Hsiao-Chi, E-mail: r92841005@ntu.edu.tw [School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan (China); Hsueh, Tzu-Wei, E-mail: r95841015@ntu.edu.tw [Institute of Occupational Medicine and Industrial Hygiene, Department of Public Health, National Taiwan University, Taipei, Taiwan (China); Chang, Chuen-Chau, E-mail: nekota@tmu.edu.tw [Department of Anaesthesiology, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan (China); Hwang, Jing-Shiang, E-mail: jshwang@stat.sinica.edu.tw [Institute of Statistical Science, Academia Sinica, Taipei, Taiwan (China); Chuang, Kai-Jen, E-mail: kjc@tmu.edu.tw [Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Yan, Yuan-Horng, E-mail: d97841006@ntu.edu.tw [Institute of Occupational Medicine and Industrial Hygiene, Department of Public Health, National Taiwan University, Taipei, Taiwan (China); Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City, Taiwan (China); Cheng, Tsun-Jen, E-mail: tcheng@ntu.edu.tw [Institute of Occupational Medicine and Industrial Hygiene, Department of Public Health, National Taiwan University, Taipei, Taiwan (China); Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan (China)

    2013-01-15

    Heart rate variability (HRV) has been reported to be a putative marker of cardiac autonomic imbalance caused by exposure to ambient particulate matter (PM). Our objective in this study was to determine the effects on HRV from exposure to nickel, an important chemical component of ambient PM that results in oxidative stress and inflammation. HRV data were collected for 72 h before lung exposure (baseline) and 72 h after intratracheal exposure (response) to nickel sulphate (NiSO{sub 4}; 526 μg) in Wistar Kyoto (WKY) and spontaneously hypertensive (SH) rats. The antioxidant N-acetyl-L-cysteine (NAC) and the anti-inflammatory celecoxib were intraperitoneally injected to examine post-exposure oxidative and inflammatory responses. Self-controlled experiments examined the effects of NiSO{sub 4} exposure on average normal-to-normal intervals (ANN), natural logarithm-transformed standard deviation of the normal-to-normal intervals (LnSDNN) and root mean square of successive differences of adjacent normal-to-normal intervals (LnRMSSD); the resulting data were sequentially analysed using the generalised estimating equation model. HRV effects on NiSO{sub 4}-exposed SH rats were greater than those on NiSO{sub 4}-exposed WKY rats. After adjusted the HRV responses in the WKY rats as control, ANN and LnRMSSD were found to be quadratically increased over 72 h after exposure to NiSO{sub 4}. Both NAC and celecoxib mitigated the NiSO{sub 4}-induced alterations in HRV during the exposure period. The results suggest that concurrent Ni-induced oxidative stress and inflammatory responses play important roles in regulating HRV. These findings help bridge the gap between epidemiological and clinical studies on the plausible mechanisms of the cardiovascular consequences induced by chemical components in ambient PM. -- Highlights: ► To determine the effects on HRV from exposure to nickel. ► ANN and LnRMSSD were found to be quadratically increased after exposure to Ni. ► NAC and

  19. Development and validation of a Thai stressful life events rating scale for patients with a diagnosis of schizophrenic methamphetamine abuse

    Directory of Open Access Journals (Sweden)

    Ek-uma Imkome

    2017-04-01

    Full Text Available This study aimed to psychometrically test a Thai Stressful Life Events Rating Scale (TSLERS. Factor analysis was done on data collected from 313 patients with schizophrenia and methamphetamine abuse in Thailand from April to May, 2015. Results identified the following problems impacting physical and mental health: social relationship and social concerns, money, family life, life security, and career. Evaluation of the psychometric scale properties demonstrated acceptable validity and reliability. TSLERS provided scientific and empirical data about stressful life events of patients with schizophrenia and methamphetamine abuse, and was suitable for stress detection and suggesting further innovations.

  20. Differential Targeting of Hsp70 Heat Shock Proteins HSPA6 and HSPA1A with Components of a Protein Disaggregation/Refolding Machine in Differentiated Human Neuronal Cells following Thermal Stress

    Directory of Open Access Journals (Sweden)

    Ian R. Brown

    2017-04-01

    Full Text Available Heat shock proteins (Hsps co-operate in multi-protein machines that counter protein misfolding and aggregation and involve DNAJ (Hsp40, HSPA (Hsp70, and HSPH (Hsp105α. The HSPA family is a multigene family composed of inducible and constitutively expressed members. Inducible HSPA6 (Hsp70B' is found in the human genome but not in the genomes of mouse and rat. To advance knowledge of this little studied HSPA member, the targeting of HSPA6 to stress-sensitive neuronal sites with components of a disaggregation/refolding machine was investigated following thermal stress. HSPA6 targeted the periphery of nuclear speckles (perispeckles that have been characterized as sites of transcription. However, HSPA6 did not co-localize at perispeckles with DNAJB1 (Hsp40-1 or HSPH1 (Hsp105α. At 3 h after heat shock, HSPA6 co-localized with these members of the disaggregation/refolding machine at the granular component (GC of the nucleolus. Inducible HSPA1A (Hsp70-1 and constitutively expressed HSPA8 (Hsc70 co-localized at nuclear speckles with components of the machine immediately after heat shock, and at the GC layer of the nucleolus at 1 h with DNAJA1 and BAG-1. These results suggest that HSPA6 exhibits targeting features that are not apparent for HSPA1A and HSPA8.

  1. Electric machine

    Science.gov (United States)

    El-Refaie, Ayman Mohamed Fawzi [Niskayuna, NY; Reddy, Patel Bhageerath [Madison, WI

    2012-07-17

    An interior permanent magnet electric machine is disclosed. The interior permanent magnet electric machine comprises a rotor comprising a plurality of radially placed magnets each having a proximal end and a distal end, wherein each magnet comprises a plurality of magnetic segments and at least one magnetic segment towards the distal end comprises a high resistivity magnetic material.

  2. Investigation of Surfaces after Non Conventional Machining

    Science.gov (United States)

    Micietova, Anna; Neslusan, Miroslav; Cillikova, Maria

    2016-12-01

    This paper deals with analysis of surface integrity of steel after electro discharge machining (EDM), water jet machining, (WJM) laser beam machining (LBM) and plasma beam machining (PBM). The paper discusses surface integrity expressed in surface roughness, sample precision expressed in perpendicularity deviation as well as stress state. This study also demonstrates influence of the various non-conventional methods on structure transformations and reports about sensitivity of the different non-conventional methods of machining with regard to variable thickness of machined samples.

  3. Effects of different kinds of couple interaction on cortisol and heart rate responses to stress in women.

    Science.gov (United States)

    Ditzen, Beate; Neumann, Inga D; Bodenmann, Guy; von Dawans, Bernadette; Turner, Rebecca A; Ehlert, Ulrike; Heinrichs, Markus

    2007-06-01

    In animal studies, positive social interaction and physical contact play a preeminent role in the control of behavioral and neuroendocrine responses to stress. The aim of this study was to determine whether specific kinds of couple interaction reduce hypothalamic-pituitary-adrenal (HPA) and autonomic responses to psychosocial stress in women. Sixty-seven women, aged 20-37 years, who had been married or cohabiting with a male partner for at least 12 months at the time of the study, were exposed to a standardized psychosocial laboratory stressor (Trier Social Stress Test). Participants were randomly assigned to three study groups differing in the type of a 10-min period of social interaction with their partner prior to stress: n=25 with no partner interaction, n=22 with verbal social support, and n=20 with physical contact (standardized neck and shoulder massage). Salivary free cortisol levels, plasma levels of oxytocin, heart rate, and psychological responses to stress were compared among the three study groups. Women with positive physical partner contact before stress exhibited significantly lower cortisol and heart rate responses to stress but no different plasma oxytocin levels compared to women who received social support or no social interaction. Verbal social support alone was not associated with reduced stress responsiveness. Our results are in line with previous human studies indicating reduced responsiveness to verbal social support by a spouse in women. More importantly, these findings imply a direct protective effect of touch on stress-related neurobiological systems as a possible underlying mechanism of health beneficial effects of positive couple interaction.

  4. 盾构掘进速度及非正常停机对地面沉降的影响%Influences of shield advance rate and abnormal machine halt on tunnelling-induced ground surface settlements

    Institute of Scientific and Technical Information of China (English)

    林存刚; 吴世明; 张忠苗; 刘俊伟; 李宗梁

    2012-01-01

    Shield tunnelling in soft soils inevitably disturbs the surrounding environment and induces ground surface settlements. The serviceability and safety of the structures in the vicinity can be jeopardized in case that excess settlements are observed. A comprehensive understanding of the influencing factors of shield tunnelling induced ground settlements and an accurate settlement prediction are of great importance for minimizing the environment impacts of shield tunnelling. Taking the load of the shield into account, the Mindlin's solution is introduced to calculate the additional stress in soils beneath the shield, and the layer-wise summation method is applied to calculate the final one-dimensional consolidation settlement. The duration of additional stress in soils relies on the shield advance rate and its halt time, and the corresponding consolidation settlement can be calculated using the Terzaghi's one-dimensional consolidation theory. Finally, the relationship between consolidation settlements and ground surface settlements is established by Peck equation. The theory is verified by in-situ monitored ground surface settlements in construction of Hangzhou Qing-chun Road cross-river tunnel in China. These studies show that the shield advance rate and machine halt duration have a significant impact on the ground surface settlements, and the increase in shield advance rate and decrease in machine halt duration favors the settlement control.%软土中盾构隧道施工不可避免地扰动周围地层,进而引起地面沉降,沉降过大时将危及邻近建(构)筑物的正常使用和结构安全.全面理解盾构隧道施工引起的地面沉降的影响因素及对沉降的准确预测,对于减少施工环境危害十分重要.考虑盾构压重后,引入Mindlin解计算盾构下卧土层中的附加应力,采用单向压缩分层总和法计算盾构下卧土层的总固结沉降,由盾构掘进速度及停机时间确定附加应力作用时间后,应用

  5. Infusion of glucose and lipids at physiological rates causes acute endoplasmic reticulum stress in rat liver.

    Science.gov (United States)

    Boden, Guenther; Song, Weiwei; Duan, Xunbao; Cheung, Peter; Kresge, Karen; Barrero, Carlos; Merali, Salim

    2011-07-01

    Endoplasmic reticulum (ER) stress has recently been implicated as a cause for obesity-related insulin resistance; however, what causes ER stress in obesity has remained uncertain. Here, we have tested the hypothesis that macronutrients can cause acute (ER) stress in rat liver. Examined were the effects of intravenously infused glucose and/or lipids on proximal ER stress sensor activation (PERK, eIF2-α, ATF4, Xbox protein 1 (XBP1s)), unfolded protein response (UPR) proteins (GRP78, calnexin, calreticulin, protein disulphide isomerase (PDI), stress kinases (JNK, p38 MAPK) and insulin signaling (insulin/receptor substrate (IRS) 1/2 associated phosphoinositol-3-kinase (PI3K)) in rat liver. Glucose and/or lipid infusions, ranging from 23.8 to 69.5 kJ/4 h (equivalent to between ~17% and ~50% of normal daily energy intake), activated the proximal ER stress sensor PERK and ATF6 increased the protein abundance of calnexin, calreticulin and PDI and increased two GRP78 isoforms. Glucose and glucose plus lipid infusions induced comparable degrees of ER stress, but only infusions containing lipid activated stress kinases (JNK and p38 MAPK) and inhibited insulin signaling (PI3K). In summary, physiologic amounts of both glucose and lipids acutely increased ER stress in livers 12-h fasted rats and dependent on the presence of fat, caused insulin resistance. We conclude that this type of acute ER stress is likely to occur during normal daily nutrient intake.

  6. DSM-5 posttraumatic stress disorder: factor structure and rates of diagnosis.

    Science.gov (United States)

    Gentes, Emily L; Dennis, Paul A; Kimbrel, Nathan A; Rissling, Michelle B; Beckham, Jean C; Calhoun, Patrick S

    2014-12-01

    Posttraumatic stress disorder (PTSD) is a significant problem among Iraq/Afghanistan-era veterans. To date, however, there has been only limited research on how the recent changes in DSM-5 influence the prevalence and factor structure of PTSD. To address this key issue, the present research used a modified version of a gold-standard clinical interview to assess PTSD among a large sample of Iraq/Afghanistan-era veterans (N = 414). Thirty-seven percent of the sample met DSM-5 criteria for PTSD compared to a rate of 38% when DSM-IV diagnostic criteria were used. Differences in rates of diagnosis between DSM-IV and DSM-5 were primarily attributable to changes to Criterion A and the separation of the "avoidance" and "numbing" symptoms into separate clusters. Confirmatory factor analysis (CFA) was used to compare the fit of the previous 3-factor DSM-IV model of PTSD to the 4-factor model specified in DSM-5, a 4-factor "dysphoria" model, and a 5-factor model. CFA demonstrated that the 5-factor model (re-experiencing, active avoidance, emotional numbing, dysphoric arousal, anxious arousal) provided the best overall fit to the data, although substantial support was also found for the 4-factor DSM-5 model. Low factor loadings were noted for two of the symptoms in the DSM-5 model (psychogenic amnesia and reckless/self-destructive behavior), raising questions regarding the adequacy of fit between these symptoms and the other core features of PTSD. Overall, findings suggest the DSM-5 model of PTSD is an improvement over the previous DSM-IV model of PTSD, but still may not represent the true underlying factor structure of PTSD.

  7. Exposure to Discrimination and Heart Rate Variability Reactivity to Acute Stress among Women with Diabetes.

    Science.gov (United States)

    Wagner, Julie; Lampert, Rachel; Tennen, Howard; Feinn, Richard

    2015-08-01

    Exposure to racial discrimination has been linked to physiological reactivity. This study investigated self-reported exposure to racial discrimination and parasympathetic [high-frequency heart rate variability (HF-HRV)] and sympathetic (norepinephrine and cortisol) activity at baseline and then again after acute laboratory stress. Lifetime exposure to racial discrimination was measured with the Schedule of Racist Events scale. Thirty-two women (16 Black and 16 White) with type 2 diabetes performed a public speaking stressor. Beat-to-beat intervals were recorded on electrocardiograph recorders, and HF-HRV was calculated using spectral analysis and natural log transformed. Norepinephrine and cortisol were measured in blood. Higher discrimination predicted lower stressor HF-HRV, even after controlling for baseline HF-HRV. When race, age, A1c and baseline systolic blood pressure were also controlled, racial discrimination remained a significant independent predictor of stressor HF-HRV. There was no association between lifetime discrimination and sympathetic markers. In conclusion, preliminary data suggest that among women with type 2 diabetes mellitus (T2DM), exposure to racial discrimination is adversely associated with parasympathetic, but not sympathetic, reactivity. Copyright © 2013 John Wiley & Sons, Ltd.

  8. Heart rate variability biofeedback intervention for reduction of psychological stress during the early postpartum period.

    Science.gov (United States)

    Kudo, Naoko; Shinohara, Hitomi; Kodama, Hideya

    2014-12-01

    This study examined the effectiveness of heart rate variability (HRV) biofeedback intervention for reduction of psychological stress in women in the early postpartum period. On postpartum day 4, 55 healthy subjects received a brief explanation about HRV biofeedback using a portable device. Among them, 25 mothers who agreed to implement HRV biofeedback at home were grouped as the biofeedback group, and other 30 mothers were grouped as the control group. At 1 month postpartum, there was a significant decrease in total Edinburgh Postnatal Depression Scale score (P biofeedback group; this change was brought about mainly by decreases in items related to anxiety or difficulty sleeping. There was also a significant increase in standard deviation of the normal heartbeat interval (P biofeedback group after adjusting for potential covariates. In conclusion, postpartum women who implemented HRV biofeedback after delivery were relatively free from anxiety and complained less of difficulties sleeping at 1 month postpartum. Although the positive effects of HRV biofeedback may be partly attributable to intervention effects, due to its clinical outcome, HRV biofeedback appears to be recommendable for many postpartum women as a feasible health-promoting measure after childbirth.

  9. Soluble carbohydrate allocation to roots, photosynthetic rate of leaves, and nitrate assimilation as affected by nitrogen stress and irradiance

    Science.gov (United States)

    Henry, L. T.; Raper, C. D. Jr

    1991-01-01

    Upon resupply of exogenous nitrogen to nitrogen-stressed plants, uptake rate of nitrogen is enhanced relative to nonstressed plants. Absorption of nitrogen presumably is dependent on availability of carbohydrates in the roots. A buildup in soluble carbohydrates thus should occur in roots of nitrogen-stressed plants, and upon resupply of exogenous nitrogen the increased uptake rate should be accompanied by a rapid decline in carbohydrates to prestress levels. To evaluate this relationship, three sets of tobacco plants growing in a complete hydroponic solution containing 1.0 mM NO3- were either continued in the complete solution for 21 d, transferred to a minus-nitrogen solution for 21 d, or transferred to a minus-nitrogen solution for 8-9 d and then returned to the 1.0 mM NO3- solution. These nitrogen treatments were imposed upon plants growing at photosynthetic photon flux densities of 700 and 350 micromoles m-2 s-1. Soluble carbohydrate levels in roots increased during onset of nitrogen stress to levels that were fourfold greater than in roots of non-stressed plants. Following resupply of external nitrogen, a rapid resumption of nitrogen uptake was accompanied by a decline in soluble carbohydrates in roots to levels characteristic of nonstressed plants. This pattern of soluble carbohydrate levels in roots during onset of and recovery from nitrogen stress occurred at both irradiance levels. The response of net photosynthetic rate to nitrogen stress could be expressed as a nonlinear function of concentration of reduced nitrogen in leaves. The net photosynthetic rate at a given concentration of reduced nitrogen, however, averaged 10% less at the lower than at the higher irradiance. The decline in net photosynthetic rate per unit of reduced nitrogen in leaves at the lower irradiance was accompanied by an increase in the nitrate fraction of total nitrogen in leaves from 20% at the higher irradiance to 38% at the lower irradiance.

  10. Stress Alters the Discriminative Stimulus and Response Rate Effects of Cocaine Differentially in Lewis and Fischer Inbred Rats

    Directory of Open Access Journals (Sweden)

    Therese A. Kosten

    2012-03-01

    Full Text Available Stress enhances the behavioral effects of cocaine, perhaps via hypothalamic-pituitary-adrenal (HPA axis activity. Yet, compared to Fischer 344 (F344 rats, Lewis rats have hyporesponsive HPA axis function and more readily acquire cocaine self-administration. We hypothesized that stress would differentially affect cocaine behaviors in these strains. The effects of three stressors on the discriminative stimulus and response rate effects of cocaine were investigated. Rats of both strains were trained to discriminate cocaine (10 mg/kg from saline using a two-lever, food-reinforced (FR10 procedure. Immediately prior to cumulative dose (1, 3, 10 mg/kg cocaine test sessions, rats were restrained for 15-min, had 15-min of footshock in a distinct context, or were placed in the shock-paired context. Another set of F344 and Lewis rats were tested similarly except they received vehicle injections to test if stress substituted for cocaine. Most vehicle-tested rats failed to respond after stressor exposures. Among cocaine-tested rats, restraint stress enhanced cocaine’s discriminative stimulus effects in F344 rats. Shock and shock-context increased response rates in Lewis rats. Stress-induced increases in corticosterone levels showed strain differences but did not correlate with behavior. These data suggest that the behavioral effects of cocaine can be differentially affected by stress in a strain-selective manner.

  11. The Machine within the Machine

    CERN Multimedia

    Katarina Anthony

    2014-01-01

    Although Virtual Machines are widespread across CERN, you probably won't have heard of them unless you work for an experiment. Virtual machines - known as VMs - allow you to create a separate machine within your own, allowing you to run Linux on your Mac, or Windows on your Linux - whatever combination you need.   Using a CERN Virtual Machine, a Linux analysis software runs on a Macbook. When it comes to LHC data, one of the primary issues collaborations face is the diversity of computing environments among collaborators spread across the world. What if an institute cannot run the analysis software because they use different operating systems? "That's where the CernVM project comes in," says Gerardo Ganis, PH-SFT staff member and leader of the CernVM project. "We were able to respond to experimentalists' concerns by providing a virtual machine package that could be used to run experiment software. This way, no matter what hardware they have ...

  12. Immunoreactive cortisone in droppings reflect stress levels, diet and growth rate of gull-billed tern chicks.

    Science.gov (United States)

    Albano, Noelia; Santiago-Quesada, Francisco; Masero, José A; Sánchez-Guzmán, Juan M; Möstl, Erich

    2015-03-01

    Blood levels of corticosterone have been traditionally analyzed to assess stress levels in birds; however, measuring steroid hormone metabolites in feces and droppings has gained much interest as a noninvasive technique successfully used for such purposed in vertebrates. Diet may affect these fecal metabolite levels (e.g., due to nutritional stress), however, this variable has not been taken into account in studies with chicks despite the great dietary flexibility of many avian species. In this study, we addressed for the first time this key issue and validated the technique in wild gull-billed tern chicks (Gelochelidon nilotica). Several enzyme immunoassays were used to determine the most appropriate test to measure the stress response. Subsequently, we performed an experiment in captivity to assess adrenocortical activity in gull-billed tern chicks fed with two diets: piscivorous vs. insectivorous. Finally, the relation between the chicks' growth rate and excreted immunoreactive glucocorticoid metabolites (EGMs) was also evaluated. We found the immunoreactive cortisone metabolites to be a good index of stress (as being an index of adrenocortical reactivity) in chicks of this species. Fish-fed chicks had higher levels of cortisone metabolites when comparing both concentration and total daily excreted metabolites. Within each treatment diet, cortisone metabolite levels and growth rates were negatively correlated. These findings suggest that the diet should be considered when using this technique for comparative purposes and highlight the trade-off between stress levels and chicks growth rates. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. [Effects of drought stress and nitrogen fertilization rate on the accumulation of osmolytes in Jatropha curcas seedlings].

    Science.gov (United States)

    Yin, Li; Liu, Yong-An; Xie, Cai-Yong; Jiang, Xue; Wang, Yong-Jie; Li, Yin-Hua; Yan, Zhen; Hu, Ting-Xing

    2012-03-01

    A pot experiment with controlled water supply was conducted to study the effects of different drought stress degree (80% FC, 60% FC, 40% FC, and 20% FC) and nitrogen fertilization rate (0 g x pot(-1), 1.2 g x pot(-1), 3.6 g x pot(-1), and 6.0 g x pot(-1)) on the accumulation of osmolytes in different organs of Jatropha curcas seedlings. Under drought stress, the soluble protei and free proline in seedling shoots and roots and the soluble sugar in seedling shoots had a great accumulation, and the free proline content in seedling leaves had a great increase with increasing drought stress degree. Also under drought stress, the Na+, Ca2+, and Mg2+ all highly accumulated in seedling various organs, while K only accumulated greatly in shoots but slightly in leaves and roots. The effects of nitrogen fertilization on the accumulation of osmolytes in seedlings depended on drought stress degree and nitrogen fertilization rate. At 80% FC and 60% FC, increasing nitrogen fertilization rate could markedly promote the accumulation of osmolytes in the organs of J. curcas seedlings; at 40% FC, applying 6.0 g x pot(-1) weakened the promotion effect on the osmolytes accumulation; whereas at 20%, applying 1.2 g x pot(-1) made the plants have a higher capability in osmoregulation, but applying 3.6 g x pot(-1) and 6.0 g x pot(-1) had less promotion effect, and even, inhibited osmolytes accumulation.

  14. Effectiveness of emWave biofeedback in improving heart rate variability reactivity to and recovery from stress.

    Science.gov (United States)

    Whited, Amanda; Larkin, Kevin T; Whited, Matthew

    2014-06-01

    The current study examined the efficacy of heart rate variability (HRV) biofeedback using emWave, a publicly available biofeedback device, to determine whether training affected physiological tone and stress responses. Twenty-seven individuals aged 18-30 years were randomized to a treatment or no-treatment control group. Treatment participants underwent 4-8 sessions of emWave intervention, and all participants attended pre-treatment and post-treatment assessment sessions during which acute stressors were administered. Physiological data were collected at rest, during stress, and following stress. emWave treatment did not confer changes in tonic measures of HRV or in HRV recovery following stress. However, treatment participants exhibited higher parasympathetic responses (i.e., pNN50) during stress presentations at the post-treatment session than their control counterparts. No treatment effects were evident on self-reported measures of stress, psychological symptoms, or affect. Overall, results from the current study suggest that the emWave may confer some limited treatment effects by increasing HRV during exposure to stress. Additional development and testing of the emWave treatment protocol is necessary before it can be recommended for regular use in clinical settings, including the determination of what physiological changes are clinically meaningful during HRV biofeedback training.

  15. Effect of stress ratio and frequency on fatigue crack growth rate of 2618 aluminium alloy silicon carbide metal matrix composite

    Indian Academy of Sciences (India)

    Nirbhay Singh; Ram Khelawan; G N Mathur

    2001-04-01

    Effect of stress ratio and frequency on the fatigue crack propagation of 2618 aluminium alloy–silicon carbide composite were investigated at ambient temperature. With the first set of specimens, the fatigue crack growth rates were studied at three frequencies of 1 Hz, 5 Hz and 10 Hz at a stress ratio of 0.1 whereas the effects of stress ratios of 0.1, 0.25 and 0.50 were studied with the second set of specimens. The study showed that the fatigue crack propagation behaviour of this metal matrix composite was influenced to an appreciable extent by the stress ratio, but not by the fatigue frequencies used in this investigation.

  16. Constraints on fault slip rates of the southern California plate boundary from GPS velocity and stress inversions

    Science.gov (United States)

    Becker, T.W.; Hardebeck, J.L.; Anderson, G.

    2005-01-01

    We use Global Positioning System (GPS) velocities and stress orientations inferred from seismicity to invert for the distribution of slip on faults in the southern California plate-boundary region. Of particular interest is how long-term slip rates are partitioned between the Indio segment of the San Andreas fault (SAF), the San Jacinto fault (SJF) and the San Bernardino segment of the SAE We use two new sets of constraints to address this problem. The first is geodetic velocities from the Southern California Earthquake Center's (SCEC) Crustal Motion Map (version 3 by Shen et al.), which includes significantly more data than previous models. The second is a regional model of stress-field orientations at seismogenic depths, as determined from earthquake focal mechanisms. While GPS data have been used in similar studies before, this is the first application of stress-field observations to this problem. We construct a simplified model of the southern California fault system, and estimate the interseismic surface velocities using a backslip approach with purely elastic strain accumulation, following Meade et al. In addition, we model the stress orientations at seismogenic depths, assuming that crustal stress results from the loading of active faults. The geodetically derived stressing rates are found to be aligned with the stress orientations from seismicity. We therefore proceed to invert simultaneously GPS and stress observations for slip rates of the faults in our network. We find that the regional patterns of crustal deformation as imaged by both data sets can be explained by our model, and that joint inversions lead to better constrained slip rates. In our preferred model, the SJF accommodates ???15 mm yr-1 and the Indio segment of the SAF ???23 mm yr-1 of right-lateral motion, accompanied by a low slip rate on the San Bernardino segment of the SAF 'Anomalous' fault segments such as around the 1992 Mw = 7.3 Landers surface rupture can be detected. There, observed

  17. Stress

    Science.gov (United States)

    ... diabetes. Shopdiabetes.org: Your Stress-Free System for Family Dinners! - 2017-03-book-oclock-scramble.html Shopdiabetes.org Your Stress-Free System for Family Dinners! A year of delicious meals to help prevent ...

  18. Stress

    Science.gov (United States)

    ... sudden negative change, such as losing a job, divorce, or illness Traumatic stress, which happens when you ... stress, so you can avoid more serious health effects. NIH: National Institute of Mental Health

  19. Influence of heat stress on arterial baroreflex control of heart rate in the baboon.

    Science.gov (United States)

    Gorman, A J; Proppe, D W

    1982-07-01

    The influence of environmental heat stress on the arterial baroreflex control of heart rate (HR) was studied in eight conscious, chronically instrumented baboons. Inflations of balloon occluders around the inferior vena cava (IVC) and thoracic descending aorta (DA) were used to produce acute, graded changes in mean arterial blood pressure (MABP) in 5 mm Hg intervals ranging from +/- 5 to +/- 25 mm Hg. After determination of the HR responses to changes in MABP in the normothermic baboon (blood temperature less than or equal to 37.6 degrees C), the animal was subjected to environmental heating to produce hyperthermia. When blood temperature reached approximately 39.5 degrees C, HR responses to graded DA and IVC occlusions were again determined. During hyperthermia, the HR sensitivity (delta HR/ delta MABP) to MABP changes was markedly diminished for reductions in MABP and significantly enhanced for increases in MABP. To determine whether these alterations in the HR response to changes in MABP were due to an alteration of the baroreflex control of HR, full, sigmoid-shaped HR-MABP curves for both the normothermic and hyperthermic states were constructed and characterized by total HR range, estimated slope of the steep portion of the curve, and MABP at the midpoint of the HR range (BP50). During hyperthermia (1) the whole HR-MABP curve shifted significantly upward by 35-40 beats/min, (2) total HR range, the estimated slope, and BP50 did not change, and (3) the control point (pre-occlusion HR-MABP value) curves were also constructed during either beta-adrenergic blockade or cholinergic (Ch)-receptor blockade in the normothermic and hyperthermic state. Similar to that seen for the unblocked heart, the whole HR-MABP curves were also shifted upward during hyperthermia in this group of baboons with no alteration in the total HR range, the estimated slope, or BP50. The upward shift in the HR-MABP curve during Ch-receptor blockade, unlike during beta-receptor blockade, was

  20. Excess heart rate and systolic blood pressure during psychological stress in relation to metabolic demand in adolescents

    Science.gov (United States)

    Cardiovascular responses during exercise are matched to the increased metabolic demand, but this may not be the case during psychological stress. No studies to date have tested this hypothesis in youth. Fifty-four youth, ages 13-16 years completed two visits. Heart rate (HR), systolic blood pressu...

  1. Prevalence rate, predictors and long-term course of probable posttraumatic stress disorder after major trauma: A prospective cohort study

    NARCIS (Netherlands)

    J.A. Haagsma (Juanita); A.N. Ringburg (Akkie); E.M.M. van Lieshout (Esther); E.F. van Beeck (Ed); P. Patka (Peter); I.B. Schipper (Inger); S. Polinder (Suzanne)

    2012-01-01

    textabstractBackground: Among trauma patients relatively high prevalence rates of posttraumatic stress disorder (PTSD) have been found. To identify opportunities for prevention and early treatment, predictors and course of PTSD need to be investigated. Long-term follow-up studies of injury patients

  2. The Effect of Stress and Speech Rate on Vowel Coarticulation in Catalan Vowel-Consonant-Vowel Sequences

    Science.gov (United States)

    Recasens, Daniel

    2015-01-01

    Purpose: The goal of this study was to ascertain the effect of changes in stress and speech rate on vowel coarticulation in vowel-consonant-vowel sequences. Method: Data on second formant coarticulatory effects as a function of changing /i/ versus /a/ were collected for five Catalan speakers' productions of vowel-consonant-vowel sequences with the…

  3. Classification of acute stress using linear and non-linear heart rate variability analysis derived from sternal ECG

    DEFF Research Database (Denmark)

    Tanev, George; Saadi, Dorthe Bodholt; Hoppe, Karsten

    2014-01-01

    features from electrocardiograms (ECG) acquired by the wireless wearable ePatch® recorder. The highest recognition rates were acquired for the neutral stage (90%), the acute stress stage (80%) and the baseline stage (80%) by sample entropy, detrended fluctuation analysis and normalized high frequency...

  4. Problem of technological inheritance in machine engineering

    Science.gov (United States)

    Blumenstein, Valery; Rakhimyanov, Kharis; Heifetz, Mikhail; Kleptzov, Alexander

    2016-01-01

    This article demonstrates the importance of the research study with regard to the technological inheritance of the properties, which characterize the surface layer, at different stages of a part's life cycle. It looks back at the major achievements and gives the findings relating to the technological inheritance of the parameters of the surface layer strength and quality as well as to how they affect the performance properties of machine parts. It demonstrates that high rates of machine engineering development, occurrence of new materials and more complicated machine operation environment require a shorter period for design-to-manufacture facility by reducing experiments and increasing design work. That, in its turn, generates the necessity in more complex but also more accurate models of metal behavior under stressing. It is especially critical for strengthening treatment. Among them are the models developed within the mechanics of technological inheritance. It is assumed that at the stages of a part's life cycle deformation accumulates on a continuous basis and the plasticity reserve of the metal, which the surface layer is made of, depletes. The research study of technological inheritance and the discovery of physical patterns of the evolution and degradation of the structures in a thin surface layer, which occur during machining and operational stressing of parts made from existing and unique including nanopatterned metals, is a crucial scientific challenge. This leads to the acquisition of new knowledge in the plasticity of state-of-the-art metals in the conditions of complex non monotonous stressing and to the development of efficient integrated and combined methods of technological impact.

  5. Strain-rate and temperature dependence of yield stress of amorphous solids via self-learning metabasin escape algorithm

    CERN Document Server

    Cao, Penghui; Park, Harold S

    2014-01-01

    A general self-learning metabasin escape (SLME) algorithm~\\citep{caoPRE2012} is coupled in this work with continuous shear deformations to probe the yield stress as a function of strain rate and temperature for a binary Lennard-Jones (LJ) amorphous solid. The approach is shown to match the results of classical molecular dynamics (MD) at high strain rates where the MD results are valid, but, importantly, is able to access experimental strain rates that are about ten orders of magnitude slower than MD. In doing so, we find in agreement with previous experimental studies that a substantial decrease in yield stress is observed with decreasing strain rate. At room temperature and laboratory strain rates, the activation volume associated with yield is found to contain about 10 LJ particles, while the yield stress is as sensitive to a $1.5\\%T_{\\rm g}$ increase in temperature as it is to a one order of magnitude decrease in strain rate. Moreover, our SLME results suggest the SLME and extrapolated results from MD simu...

  6. Machine Learning

    CERN Document Server

    CERN. Geneva

    2017-01-01

    Machine learning, which builds on ideas in computer science, statistics, and optimization, focuses on developing algorithms to identify patterns and regularities in data, and using these learned patterns to make predictions on new observations. Boosted by its industrial and commercial applications, the field of machine learning is quickly evolving and expanding. Recent advances have seen great success in the realms of computer vision, natural language processing, and broadly in data science. Many of these techniques have already been applied in particle physics, for instance for particle identification, detector monitoring, and the optimization of computer resources. Modern machine learning approaches, such as deep learning, are only just beginning to be applied to the analysis of High Energy Physics data to approach more and more complex problems. These classes will review the framework behind machine learning and discuss recent developments in the field.

  7. Design of a Cocoa Pod Splitting Machine

    Directory of Open Access Journals (Sweden)

    Adetunde, I.A

    2010-10-01

    Full Text Available This study outlines the design of a very efficient, highly productive, cost- effective, ergonomic and environmentally friendly cocoa splitting machine that will be used by cocoa Farmers world - wide to increase and boost productivity and enhance the quality of coca products to the highest possible level devoid of any hazards, dangers or perils. This machine can be manufactured from locally available scraps and assembled and maintained at a relatively low cost. The knives which do the splitting are actuated by simple hydraulic mechanisms devoid any major stresses, forces or moments acting on them. These mechanisms are powered by simple low - powered lobe positive displacement or hydrostatic hydraulic pumps of power rating of 87.5 kW (65.625 Hp. The machine can be assembled and/or disassembled easily and quickly, and, therefore can be owned patronized by a group of cocoa farmers who can easily bear the low cost of maintenance of the already relative cheap machine.

  8. Increased classical endoplasmic reticulum stress is sufficient to reduce chondrocyte proliferation rate in the growth plate and decrease bone growth.

    Directory of Open Access Journals (Sweden)

    Louise H W Kung

    Full Text Available Mutations in genes encoding cartilage oligomeric matrix protein and matrilin-3 cause a spectrum of chondrodysplasias called multiple epiphyseal dysplasia (MED and pseudoachondroplasia (PSACH. The majority of these diseases feature classical endoplasmic reticulum (ER stress and activation of the unfolded protein response (UPR as a result of misfolding of the mutant protein. However, the importance and the pathological contribution of ER stress in the disease pathogenesis are unknown. The aim of this study was to investigate the generic role of ER stress and the UPR in the pathogenesis of these diseases. A transgenic mouse line (ColIITgcog was generated using the collagen II promoter to drive expression of an ER stress-inducing protein (Tgcog in chondrocytes. The skeletal and histological phenotypes of these ColIITgcog mice were characterised. The expression and intracellular retention of Tgcog induced ER stress and activated the UPR as characterised by increased BiP expression, phosphorylation of eIF2α and spliced Xbp1. ColIITgcog mice exhibited decreased long bone growth and decreased chondrocyte proliferation rate. However, there was no disruption of chondrocyte morphology or growth plate architecture and perturbations in apoptosis were not apparent. Our data demonstrate that the targeted induction of ER stress in chondrocytes was sufficient to reduce the rate of bone growth, a key clinical feature associated with MED and PSACH, in the absence of any growth plate dysplasia. This study establishes that classical ER stress is a pathogenic factor that contributes to the disease mechanism of MED and PSACH. However, not all the pathological features of MED and PSACH were recapitulated, suggesting that a combination of intra- and extra-cellular factors are likely to be responsible for the disease pathology as a whole.

  9. Expansion and photosynthetic rate of leaves of soybean plants during onset of and recovery from nitrogen stress

    Science.gov (United States)

    Tolley-Henry, L.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1986-01-01

    This study reports on the effects of nitrogen stress and restoration of nitrogen availability after a period of stress on expansion and photosynthetic rate of soybean leaves of differing maturity. We hypothesized that nitrogen resupply would lead to additional accumulation of reduced nitrogen in the leaves and, ultimately, resumption of leaf initiation and expansion and photosynthetic activity. In continuously nitrogen-stressed plants, expansion of middle trifoliolates of main-stem trifoliates and leaf area at full expansion were severely restricted. Leaves showing the greatest effects were initiated after removal of nitrogen. When the reduced nitrogen concentration in mature leaves of continuously stressed plants fell below 9 mg dm-2, the photosynthetic rate per unit leaf decreased rapidly, reaching a minimum of ca. 6-8 mg dm-2 h-1. The older mature leaves tended to abscise at this point, while the youngest leaves remained on the plant and continued to photosynthesize slowly. When nitrogen was resupplied, leaf expansion and final leaf area increased. Leaf initiation was also stimulated as reduced nitrogen levels rose in the leaves. Photosynthetic rates of the oldest and youngest pair of mature leaves returned to values comparable to those of similar-aged leaves of nonstressed soybean plants.

  10. Effect of Noradrenergic Neurotoxin DSP-4 and Maprotiline on Heart Rate Spectral Components in Stressed and Resting Rats.

    Science.gov (United States)

    Kur'yanova, E V; Zhukova, Yu D; Teplyi, D L

    2017-07-01

    The effects of intraperitoneal DSP-4 (N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine, a noradrenergic neurotoxin) and maprotiline (an inhibitor of norepinephrine reuptake in synapses) on spectral components of heart rhythm variability were examined in outbred male and female rats treated with these agents in daily doses of 10 mg/kg for 3 days. At rest, DSP-4 elevated LF and VLF spectral components in male and female rats. Maprotiline elevated LF and VLF components in males at rest, increased HR and reduced all spectral components in resting females. Stress against the background of DSP-4 treatment sharply increased heart rate and reduced the powers of all spectral components (especially LF and VLF components). In maprotiline-treated rats, stress increased the powers of LF and VLF components. Thus, the central noradrenergic system participates in the formation of LF and VLF spectral components of heart rate variability at rest and especially during stressful stimulation, which can determine the phasic character of changes in the heart rate variability observed in stressed organism.

  11. The Effect of Vitamin E on the Survival Rate of unc-13 Caenorhabditis elegans mutants under Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Jessica Porcelan

    2012-01-01

    Full Text Available Caenorhabditis elegans unc-13 mutants express decreased neuronal activity and thus are a good model strain for examining defective nervous systems. These unc-13 mutants as well as wild type N2 strains, show rapid mortality when under oxidative stress. However, the antioxidant vitamin E may prolong survival in unc-13 mutant and N2 strains under oxidative stress. The addition of vitamin E to organisms under oxidative stress has a protective effect in both N2 and unc-13 C. elegans strains. Interestingly, vitamin E resulted in a greater increase in survival rate in N2 worms than with unc-13 mutant worms. While both strains displayed lower mortality rates with the addition of vitamin E, this finding suggests that vitamin E more efficiently increases survival rates of C. elegans with typical nervous system function. The efficacy of vitamin E implies that use of antioxidants may lessen the damage caused by oxidative stress in both N2 and mutant worms.

  12. Machinability of Stellite 6 hardfacing

    Science.gov (United States)

    Benghersallah, M.; Boulanouar, L.; Le Coz, G.; Devillez, A.; Dudzinski, D.

    2010-06-01

    This paper reports some experimental findings concerning the machinability at high cutting speed of nickel-base weld-deposited hardfacings for the manufacture of hot tooling. The forging work involves extreme impacts, forces, stresses and temperatures. Thus, mould dies must be extremely resistant. The aim of the project is to create a rapid prototyping process answering to forging conditions integrating a Stellite 6 hardfacing deposed PTA process. This study talks about the dry machining of the hardfacing, using a two tips machining tool and a high speed milling machine equipped by a power consumption recorder Wattpilote. The aim is to show the machinability of the hardfacing, measuring the power and the tip wear by optical microscope and white light interferometer, using different strategies and cutting conditions.

  13. Machinability of Stellite 6 hardfacing

    Directory of Open Access Journals (Sweden)

    Dudzinski D.

    2010-06-01

    Full Text Available This paper reports some experimental findings concerning the machinability at high cutting speed of nickel-base weld-deposited hardfacings for the manufacture of hot tooling. The forging work involves extreme impacts, forces, stresses and temperatures. Thus, mould dies must be extremely resistant. The aim of the project is to create a rapid prototyping process answering to forging conditions integrating a Stellite 6 hardfacing deposed PTA process. This study talks about the dry machining of the hardfacing, using a two tips machining tool and a high speed milling machine equipped by a power consumption recorder Wattpilote. The aim is to show the machinability of the hardfacing, measuring the power and the tip wear by optical microscope and white light interferometer, using different strategies and cutting conditions.

  14. Nontraditional machining processes research advances

    CERN Document Server

    2013-01-01

    Nontraditional machining employs processes that remove material by various methods involving thermal, electrical, chemical and mechanical energy or even combinations of these. Nontraditional Machining Processes covers recent research and development in techniques and processes which focus on achieving high accuracies and good surface finishes, parts machined without burrs or residual stresses especially with materials that cannot be machined by conventional methods. With applications to the automotive, aircraft and mould and die industries, Nontraditional Machining Processes explores different aspects and processes through dedicated chapters. The seven chapters explore recent research into a range of topics including laser assisted manufacturing, abrasive water jet milling and hybrid processes. Students and researchers will find the practical examples and new processes useful for both reference and for developing further processes. Industry professionals and materials engineers will also find Nontraditional M...

  15. Development of synchronized, autonomous, and self-regulated oscillations in transpiration rate of a whole tomato plant under water stress.

    Science.gov (United States)

    Wallach, Rony; Da-Costa, Noam; Raviv, Michael; Moshelion, Menachem

    2010-07-01

    Plants respond to many environmental changes by rapidly adjusting their hydraulic conductivity and transpiration rate, thereby optimizing water-use efficiency and preventing damage due to low water potential. A multiple-load-cell apparatus, time-series analysis of the measured data, and residual low-pass filtering methods were used to monitor continuously and analyse transpiration of potted tomato plants (Solanum lycopersicum cv. Ailsa Craig) grown in a temperature-controlled greenhouse during well-irrigated and drought periods. A time derivative of the filtered residual time series yielded oscillatory behaviour of the whole plant's transpiration (WPT) rate. A subsequent cross-correlation analysis between the WPT oscillatory pattern and wet-wick evaporation rates (vertical cotton fabric, 0.14 m(2) partly submerged in water in a container placed on an adjacent load cell) revealed that autonomous oscillations in WPT rate develop under a continuous increase in water stress, whereas these oscillations correspond with the fluctuations in evaporation rate when water is fully available. The relative amplitude of these autonomous oscillations increased with water stress as transpiration rate decreased. These results support the recent finding that an increase in xylem tension triggers hydraulic signals that spread instantaneously via the plant vascular system and control leaf conductance. The regulatory role of synchronized oscillations in WPT rate in eliminating critical xylem tension points and preventing embolism is discussed.

  16. The Effect of Domestic and Economic Stress on Suicide Rates in Canada and the United States.

    Science.gov (United States)

    Leenaars, Antoon A.; And Others

    1993-01-01

    Analyzed rates of birth, divorce, marriage, and unemployment in Canada and United States in comparison to rates of suicide from 1950 to 1985. Found no association between marriage and suicide in Canada, in U.S. marriage had protective effect. Divorce rates were associated positively and birth rates associated negatively with suicide in both…

  17. Evaluating the controls of shear stress, sediment supply, alluvial cover, and channel morphology on experimental bedrock incision rate

    Science.gov (United States)

    Johnson, Joel P. L.; Whipple, Kelin X.

    2010-06-01

    We explored the dependence of experimental bedrock erosion rate on shear stress, bed load sediment flux, alluvial bed cover, and evolving channel morphology. We isolated these variables experimentally by systematically varying gravel sediment flux Qs and water discharge Qw in a laboratory flume, gradually abrading weak concrete "bedrock." All else held constant, we found that (1) erosion rate was insensitive to flume-averaged shear stress, (2) erosion rate increased linearly with sediment flux, (3) erosion rate decreased linearly with the extent of alluvial bed cover, and (4) the spatial distribution of bed cover was sensitive to local bed topography, but the extent of cover increased with Qs/Qt (where Qt is flume-averaged transport capacity) once critical values of bed roughness and sediment flux were exceeded. Starting from a planar geometry, erosion increased bed roughness due to feedbacks between preferential sediment transport through interconnected topographic lows, focused erosion along these zones of preferential bed load transport, and local shear stresses that depended on the evolving bed morphology. Finally, continued growth of bed roughness was inhibited by imposed variability in discharge and sediment flux, due to changes in spatial patterns of alluvial deposition and impact wear. Erosion was preferentially focused at lower bed elevations when the bed was cover-free, but was focused at higher bed elevations when static alluvial cover filled topographic lows. Natural variations in discharge and sediment flux may thus stabilize and limit the growth of roughness in bedrock channels due to the effects of partial bed cover.

  18. Research on the residual stress of glass ceramic based on rotary ultrasonic drilling

    Science.gov (United States)

    Sun, Lipeng; Jin, Yuzhu; Chen, Jianhua

    2016-10-01

    In the process of machining, the glass ceramic is easy to crack and damage, etc. And the residual stress in the machined surface may cause the crack to different extent in the later stage. Some may even affect the performance of the product. The residual stress of rotary ultrasonic drilling and mechanical processing is compared in different machining parameters (spindle speed, feed rate). The effects of processing parameters and methods are researched, in order to reduce the residual stress in the mechanical processing of glass ceramic, and provide guidance for the actual processing.

  19. Effect of a multidisciplinary stress treatment programme on the return to work rate for persons with work-related stress. A non-randomized controlled study from a stress clinic

    DEFF Research Database (Denmark)

    Netterstrøm, Bo; Bech, Per

    2010-01-01

    Medicine) completed a stress treatment programme consisted of the following:1) Identification of relevant stressors. 2. Changing the coping strategies of the participants. 3. Evaluating/changes in participant workload and tasks. 4. Relaxation techniques. 5. Physical exercise. 6. Psychiatric evaluation when...... was to test the effect of a multidisciplinary stress treatment programme on the return to work (RTW) rate in persons with work-related stress and establish predictive factors for this outcome. METHODS: During a two-year period 63 out of 73 referrals to the Stress Clinic (a section of a Clinic of Occupational...... indicated by depression test score.On average each patient attended six one-hour sessions over the course of four months.A group of 34 employees referred to the Clinic of Occupational Medicine by their general practitioners served as a control group. Each participant had a one-hour consultation at baseline...

  20. Machine Learning

    Energy Technology Data Exchange (ETDEWEB)

    Chikkagoudar, Satish; Chatterjee, Samrat; Thomas, Dennis G.; Carroll, Thomas E.; Muller, George

    2017-04-21

    The absence of a robust and unified theory of cyber dynamics presents challenges and opportunities for using machine learning based data-driven approaches to further the understanding of the behavior of such complex systems. Analysts can also use machine learning approaches to gain operational insights. In order to be operationally beneficial, cybersecurity machine learning based models need to have the ability to: (1) represent a real-world system, (2) infer system properties, and (3) learn and adapt based on expert knowledge and observations. Probabilistic models and Probabilistic graphical models provide these necessary properties and are further explored in this chapter. Bayesian Networks and Hidden Markov Models are introduced as an example of a widely used data driven classification/modeling strategy.

  1. Neural network modeling to evaluate the dynamic flow stress of high strength armor steels under high strain rate compression

    Institute of Scientific and Technical Information of China (English)

    Ravindranadh BOBBILI; V. MADHU; A.K. GOGIA

    2014-01-01

    An artificial neural network (ANN) constitutive model is developed for high strength armor steel tempered at 500 ?C, 600 ?C and 650 ?C based on high strain rate data generated from split Hopkinson pressure bar (SHPB) experiments. A new neural network configuration consisting of both training and validation is effectively employed to predict flow stress. Tempering temperature, strain rate and strain are considered as inputs, whereas flow stress is taken as output of the neural network. A comparative study on JohnsoneCook (JeC) model and neural network model is performed. It was observed that the developed neural network model could predict flow stress under various strain rates and tempering temperatures. The experimental stressestrain data obtained from high strain rate compression tests using SHPB, over a range of tempering temperatures (500e650 ?C), strains (0.05e0.2) and strain rates (1000e5500/s) are employed to formulate JeC model to predict the high strain rate deformation behavior of high strength armor steels. The J-C model and the back-propagation ANN model were developed to predict the high strain rate deformation behavior of high strength armor steel and their predictability is evaluated in terms of correlation coefficient (R) and average absolute relative error (AARE). R and AARE for the JeC model are found to be 0.7461 and 27.624%, respectively, while R and AARE for the ANN model are 0.9995 and 2.58%, respectively. It was observed that the predictions by ANN model are in consistence with the experimental data for all tempering temperatures.

  2. Auricular Acupressure to Improve Menstrual Pain and Menstrual Distress and Heart Rate Variability for Primary Dysmenorrhea in Youth with Stress

    Directory of Open Access Journals (Sweden)

    Yu-Jen Wang

    2013-01-01

    Full Text Available Background. Dysmenorrhea and accompanying symptoms can have a negative impact on academic achievement, physical activity and functioning, and quality of life. Unfortunately, stress increases the sensitivity and severity of pain, activating sympathetic responses while inhibiting parasympathetic responses. Objective. This study used objective, physiological measurements to evaluate the effects of auricular acupressure on menstrual pain and menstrual distress in young college students with primary dysmenorrhea across two menstrual cycles. The aim was to determine if significant differences could be detected between the intervention and follow-up phases after controlling life stress. Design. A one-group experimental research design was used, and repeated measurements and followups were done. Thirty-two women completed questionnaires and physiological parameters were measured. Results. Significant differences between the intervention and follow-up phases were found for high frequency (HF and blood pressure on day 1 and no significant differences in menstrual pain and menstrual distress, heart rate variability, low frequency (LF, LF/HF ratio, or heart rate. Conclusion. Auricular acupressure effectively increases parasympathetic activity to maintain autonomic function homeostasis in young women with primary dysmenorrhea and may have a value in alleviating menstrual pain and menstrual distress in a high-stress life. Future studies should consider stress, stimulus dose of auricular acupressure, severity of menstrual pain, and a longitudinal research design.

  3. A parallel code to calculate rate-state seismicity evolution induced by time dependent, heterogeneous Coulomb stress changes

    Science.gov (United States)

    Cattania, C.; Khalid, F.

    2016-09-01

    The estimation of space and time-dependent earthquake probabilities, including aftershock sequences, has received increased attention in recent years, and Operational Earthquake Forecasting systems are currently being implemented in various countries. Physics based earthquake forecasting models compute time dependent earthquake rates based on Coulomb stress changes, coupled with seismicity evolution laws derived from rate-state friction. While early implementations of such models typically performed poorly compared to statistical models, recent studies indicate that significant performance improvements can be achieved by considering the spatial heterogeneity of the stress field and secondary sources of stress. However, the major drawback of these methods is a rapid increase in computational costs. Here we present a code to calculate seismicity induced by time dependent stress changes. An important feature of the code is the possibility to include aleatoric uncertainties due to the existence of multiple receiver faults and to the finite grid size, as well as epistemic uncertainties due to the choice of input slip model. To compensate for the growth in computational requirements, we have parallelized the code for shared memory systems (using OpenMP) and distributed memory systems (using MPI). Performance tests indicate that these parallelization strategies lead to a significant speedup for problems with different degrees of complexity, ranging from those which can be solved on standard multicore desktop computers, to those requiring a small cluster, to a large simulation that can be run using up to 1500 cores.

  4. The Effects of Different Electrode Types for Obtaining Surface Machining Shape on Shape Memory Alloy Using Electrochemical Machining

    Science.gov (United States)

    Choi, S. G.; Kim, S. H.; Choi, W. K.; Moon, G. C.; Lee, E. S.

    2017-06-01

    Shape memory alloy (SMA) is important material used for the medicine and aerospace industry due to its characteristics called the shape memory effect, which involves the recovery of deformed alloy to its original state through the application of temperature or stress. Consumers in modern society demand stability in parts. Electrochemical machining is one of the methods for obtained these stabilities in parts requirements. These parts of shape memory alloy require fine patterns in some applications. In order to machine a fine pattern, the electrochemical machining method is suitable. For precision electrochemical machining using different shape electrodes, the current density should be controlled precisely. And electrode shape is required for precise electrochemical machining. It is possible to obtain precise square holes on the SMA if the insulation layer controlled the unnecessary current between electrode and workpiece. If it is adjusting the unnecessary current to obtain the desired shape, it will be a great contribution to the medical industry and the aerospace industry. It is possible to process a desired shape to the shape memory alloy by micro controlling the unnecessary current. In case of the square electrode without insulation layer, it derives inexact square holes due to the unnecessary current. The results using the insulated electrode in only side show precise square holes. The removal rate improved in case of insulated electrode than others because insulation layer concentrate the applied current to the machining zone.

  5. Specific Growth Rate Determines the Sensitivity of Escherichia coli to Lactic Acid Stress: Implications for Predictive Microbiology

    Directory of Open Access Journals (Sweden)

    Roland Lindqvist

    2014-01-01

    Full Text Available This study tested the hypothesis that sensitivity of Escherichia coli to lactic acid at concentrations relevant for fermented sausages (pH 4.6, 150 mM lactic acid, aw=0.92, temperature = 20 or 27°C increases with increasing growth rate. For E. coli strain 683 cultured in TSB in chemostat or batch, subsequent inactivation rates when exposed to lactic acid stress increased with increasing growth rate at harvest. A linear relationship between growth rate at harvest and inactivation rate was found to describe both batch and chemostat cultures. The maximum difference in T90, the estimated times for a one-log reduction, was 10 hours between bacteria harvested during the first 3 hours of batch culture, that is, at different growth rates. A 10-hour difference in T90 would correspond to measuring inactivation at 33°C or 45°C instead of 37°C based on relationships between temperature and inactivation. At similar harvest growth rates, inactivation rates were lower for bacteria cultured at 37°C than at 15–20°C. As demonstrated for E. coli 683, culture conditions leading to variable growth rates may contribute to variable lactic acid inactivation rates. Findings emphasize the use and reporting of standardised culture conditions and can have implications for the interpretation of data when developing inactivation models.

  6. Slow Crack Growth of Brittle Materials With Exponential Crack-Velocity Formulation. Part 2; Constant Stress Rate Experiments

    Science.gov (United States)

    Choi, Sung R.; Nemeth, Noel N.; Gyekenyesi, John P.

    2002-01-01

    The previously determined life prediction analysis based on an exponential crack-velocity formulation was examined using a variety of experimental data on glass and advanced structural ceramics in constant stress rate and preload testing at ambient and elevated temperatures. The data fit to the relation of strength versus the log of the stress rate was very reasonable for most of the materials. Also, the preloading technique was determined equally applicable to the case of slow-crack-growth (SCG) parameter n greater than 30 for both the power-law and exponential formulations. The major limitation in the exponential crack-velocity formulation, however, was that the inert strength of a material must be known a priori to evaluate the important SCG parameter n, a significant drawback as compared with the conventional power-law crack-velocity formulation.

  7. Evaluation of primary water stress corrosion cracking growth rates by using the extended finite element method

    Directory of Open Access Journals (Sweden)

    Sung-Jun Lee

    2015-12-01

    Conclusion: Reliable CGR curves were obtained without complex environmental facilities or a high degree of experimental effort. The proposed method may be used to assess the PWSCC resistance of nuclear components subjected to high residual stresses such as those resulting from dissimilar metal welding parts.

  8. Ministries Design Exchange Rate Stress Test for Labor-Intensive Industries

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    @@ China's Ministry of Commerce(MOFCOM)and the Ministry of Industry and Information Technology(MIIT)have designed a stress-test for China's labor-intensive industries,aiming to determine the effect of Yuan appreciation on the textile garment,shoe-making and toy industry.

  9. Laser machining of explosives

    Science.gov (United States)

    Perry, Michael D.; Stuart, Brent C.; Banks, Paul S.; Myers, Booth R.; Sefcik, Joseph A.

    2000-01-01

    The invention consists of a method for machining (cutting, drilling, sculpting) of explosives (e.g., TNT, TATB, PETN, RDX, etc.). By using pulses of a duration in the range of 5 femtoseconds to 50 picoseconds, extremely precise and rapid machining can be achieved with essentially no heat or shock affected zone. In this method, material is removed by a nonthermal mechanism. A combination of multiphoton and collisional ionization creates a critical density plasma in a time scale much shorter than electron kinetic energy is transferred to the lattice. The resulting plasma is far from thermal equilibrium. The material is in essence converted from its initial solid-state directly into a fully ionized plasma on a time scale too short for thermal equilibrium to be established with the lattice. As a result, there is negligible heat conduction beyond the region removed resulting in negligible thermal stress or shock to the material beyond a few microns from the laser machined surface. Hydrodynamic expansion of the plasma eliminates the need for any ancillary techniques to remove material and produces extremely high quality machined surfaces. There is no detonation or deflagration of the explosive in the process and the material which is removed is rendered inert.

  10. Machine testning

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo

    This document is used in connection with a laboratory exercise of 3 hours duration as a part of the course GEOMETRICAL METROLOGY AND MACHINE TESTING. The exercise includes a series of tests carried out by the student on a conventional and a numerically controled lathe, respectively. This document...

  11. Representational Machines

    DEFF Research Database (Denmark)

    Petersson, Dag; Dahlgren, Anna; Vestberg, Nina Lager

    to the enterprises of the medium. This is the subject of Representational Machines: How photography enlists the workings of institutional technologies in search of establishing new iconic and social spaces. Together, the contributions to this edited volume span historical epochs, social environments, technological...

  12. Integrated approach to advanced machining

    Energy Technology Data Exchange (ETDEWEB)

    LeSar, R.A.; Bourke, M.A.M.; Rangaswamy, P.; Day, R.D.; Hatch, D.J.

    1997-08-01

    The residual stress state induced by machining in a Ti alloy as function of cutting tool sharpness and depth of cut was predicted and measured. Residual stresses were greater for the dull tool than for the sharp tool. XRD was used to measure the residual stress state of the material; these measurements revealed that the hoop stress increased with depth of cut; however the radial stress decreased with depth of cut. An elastic-plastic model provided a possible explanation for this behavior in that, for small depths of cut, the tool makes multiple passes through the damage subsurface layer. This causes both residual stress components to increase, but the radial stress increases by a much greater amount than the hoop stress.

  13. Stress

    DEFF Research Database (Denmark)

    Keller, Hanne Dauer

    2015-01-01

    Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb.......Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb....

  14. Stress

    DEFF Research Database (Denmark)

    Keller, Hanne Dauer

    2015-01-01

    Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb.......Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb....

  15. Crash simulation of hybrid structures considering the stress and strain rate dependent material behavior of thermoplastic materials

    Science.gov (United States)

    Hopmann, Ch.; Schöngart, M.; Weber, M.; Klein, J.

    2015-05-01

    Thermoplastic materials are more and more used as a light weight replacement for metal, especially in the automotive industry. Since these materials do not provide the mechanical properties, which are required to manufacture supporting elements like an auto body or a cross bearer, plastics are combined with metals in so called hybrid structures. Normally, the plastics components are joined to the metal structures using different technologies like welding or screwing. Very often, the hybrid structures are made of flat metal parts, which are stiffened by a reinforcement structure made of thermoplastic materials. The loads on these structures are very often impulsive, for example in the crash situation of an automobile. Due to the large stiffness variation of metal and thermoplastic materials, complex states of stress and very high local strain rates occur in the contact zone under impact conditions. Since the mechanical behavior of thermoplastic materials is highly dependent on these types of load, the crash failure of metal plastic hybrid parts is very complex. The problem is that the normally used strain rate dependent elastic/plastic material models are not capable to simulate the mechanical behavior of thermoplastic materials depended on the state of stress. As part of a research project, a method to simulate the mechanical behavior of hybrid structures under impact conditions is developed at the IKV. For this purpose, a specimen for the measurement of mechanical properties dependet on the state of stress and a method for the strain rate depended characterization of thermoplastic materials were developed. In the second step impact testing is performed. A hybrid structure made from a metal sheet and a reinforcement structure of a Polybutylenterephthalat Polycarbonate blend is tested under impact conditions. The measured stress and strain rate depended material data are used to simulate the mechanical behavior of the hybrid structure under highly dynamic load with

  16. Stress Recovery Effects of High- and Low-Frequency Amplified Music on Heart Rate Variability

    OpenAIRE

    2016-01-01

    Sounds can induce autonomic responses in listeners. However, the modulatory effect of specific frequency components of music is not fully understood. Here, we examined the role of the frequency component of music on autonomic responses. Specifically, we presented music that had been amplified in the high- or low-frequency domains. Twelve healthy women listened to white noise, a stress-inducing noise, and then one of three versions of a piece of music: original, low-, or high-frequency amplifi...

  17. AMF Inoculation Enhances Growth and Improves the Nutrient Uptake Rates of Transplanted, Salt-Stressed Tomato Seedlings

    Directory of Open Access Journals (Sweden)

    Astrit Balliu

    2015-12-01

    Full Text Available The study aimed to investigate the effects of commercially available AMF inoculate (Glomus sp. mixture on the growth and the nutrient acquisition in tomato (Solanumlycopersicum L. plants directly after transplanting and under different levels of salinity. Inoculated (AMF+ and non-inoculated (AMF− tomato plants were subjected to three levels of NaCl salinity (0, 50, and 100 mM·NaCl. Seven days after transplanting, plants were analyzed for dry matter and RGR of whole plants and root systems. Leaf tissue was analyzed for mineral concentration before and after transplanting; leaf nutrient content and relative uptake rates (RUR were calculated. AMF inoculation did not affect plant dry matter or RGR under fresh water-irrigation. The growth rate of AMF−plants did significantly decline under both moderate (77% and severe (61% salt stress compared to the fresh water-irrigated controls, while the decline was much less (88% and 75%,respectivelyand statistically non-significant in salt-stressed AMF+ plants. Interestingly, root system dry matter of AMF+ plants (0.098 g plant–1 remained significantly greater under severe soil salinity compared to non-inoculated seedlings (0.082 g plant–1. The relative uptake rates of N, P, Mg, Ca, Mn, and Fe were enhanced in inoculated tomato seedlings and remained higher under (moderate salt stress compared to AMF− plants This study suggests that inoculation with commercial AMF during nursery establishment contributes to alleviation of salt stress by maintaining a favorable nutrient profile. Therefore, nursery inoculation seems to be a viable solution to attenuate the effects of increasing soil salinity levels, especially in greenhouses with low natural abundance of AMF spores.

  18. Relationship Between Diurnal Changes of Net Photosynthetic Rate and Influencing Factors in Rice under Saline Sodic Stress

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The net photosynthetic rate of flag leaves and influencing factors under saline sodic soil conditions were investigated at the full heading stage of rice.The net photosynthetic rate of rice leaves showed a double-peak curve in a day in both non-saline sodic and saline sodic soil treatments.The first peak of the net photosynthetic rate appeared at 9:00-10:00 and 9:00 in the saline sodic and non-saline sodic soil treatments,respectively,whereas the second peak both at 14:00.The midday depression of the net photosynthetic rate always appeared regardless of non-saline sodic or saline sodic soil conditions.In addition,the net photosynthetic rate significantly decreased in all day under saline sodic conditions compared with that under non-saline sodic conditions.Some differences were observed in correlation characters between the net photosynthetic rate and all influencing factors during 9:00-13:00.Under non-saline sodic conditions,the diurnal changes of the net photosynthetic rate in a day were mainly caused by stomatal conductance,and the limitation value and the stomatal factors served as determinants;whereas under saline soclic stress,the diurnal changes of the net photosynthetic rate in a day were mainly caused by non stomatal factors including light intensity and air temperature.

  19. Soil erosion rates caused by wind and saltating sand stresses in a wind tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Ligotke, M.W.

    1993-02-01

    Wind erosion tests were performed in a wind tunnel in support of the development of long-term protective barriers to cap stabilized waste sites at the Hanford Site. Controlled wind and saltating sand erosive stresses were applied to physical models of barrier surface layers to simulate worst-case eolian erosive stresses. The goal of these tests was to provide information useful to the design and evaluation of the surface layer composition of an arid-region waste site barrier concept that incorporates a deep fine-soil reservoir. A surface layer composition is needed that will form an armor resistant to eolian erosion during periods of extreme dry climatic conditions, especially when such conditions result in the elimination or reduction of vegetation by water deprivation or wildfire. Because of the life span required of Hanford waste barriers, it is important that additional work follow these wind tunnel studies. A modeling effort is planned to aid the interpretation of test results with respect to the suitability of pea gravel to protect the finite-soil reservoir during long periods of climatic stress. It is additionally recommended that wind tunnel tests be continued and field data be obtained at prototype or actual barrier sites. Results wig contribute to barrier design efforts and provide confidence in the design of long-term waste site caps for and regions.

  20. Combined heart rate variability and dynamic measures for quantitatively characterizing the cardiac stress status during cycling exercise.

    Science.gov (United States)

    Chen, Szi-Wen; Liaw, Jiunn-Woei; Chang, Ya-Ju; Chuang, Li-Ling; Chien, Chun-Tse

    2015-08-01

    In this study, we aimed to seek for different ways of measuring cardiac stress in terms of heart rate variability (HRV) and heart rate (HR) dynamics, and to develop a novel index that can effectively summarize the information reflected by these measures to continuously and quantitatively characterize the cardiac stress status during physical exercise. Standard deviation, spectral measure of HRV as well as a nonlinear detrended fluctuation analysis (DFA) based fractal-like behavior measure of HR dynamics were all evaluated on the RR time series derived from windowed electrocardiogram (ECG) data for the subjects undergoing cycling exercise. We recruited eleven young healthy subjects in our tests. Each subject was asked to maintain a fixed speed under a constant load during the pedaling test. We obtained the running estimates of the standard deviation of the normal-to-normal interval (SDNN), the high-fidelity power spectral density (PSD) of HRV, and the DFA scaling exponent α, respectively. A trend analysis and a multivariate linear regression analysis of these measures were then performed. Numerical experimental results produced by our analyses showed that a decrease in both SDNN and α was seen during the cycling exercise, while there was no significant correlation between the standard lower frequency to higher frequency (LF-to-HF) spectral power ratio of HRV and the exercise intensity. In addition, while the SDNN and α were both negatively correlated with the Borg rating of perceived exertion (RPE) scale value, it seemed that the LF-to-HF power ratio might not have substantial impact on the Borg value, suggesting that the SDNN and α may be further used as features to detect the cardiac stress status during the physical exercise. We further approached this detection problem by applying a linear discriminant analysis (LDA) to both feature candidates for the task of cardiac stress stratification. As a result, a time-varying parameter, referred to as the cardiac

  1. Adding machine and calculating machine

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In 1642 the French mathematician Blaise Pascal(1623-1662) invented a machine;.that could add and subtract. It had.wheels that each had: 1 to 10 marked off along its circumference. When the wheel at the right, representing units, made one complete circle, it engaged the wheel to its left, represents tens, and moved it forward one notch.

  2. Growth rate analysis and protein identification of Kappaphycus alvarezii (Rhodophyta, Gigartinales under pH induced stress culture

    Directory of Open Access Journals (Sweden)

    Mian Zi Tee

    2015-11-01

    Full Text Available Environmental pH is one of the factors contributing to abiotic stress which in turn influences the growth and development of macroalgae. This study was conducted in order to assess the growth and physiological changes in Kappaphycus alvarezii under different pH conditions: pHs 6, ∼8.4 (control and 9. K. alvarezii explants exhibited a difference in the daily growth rate (DGR among the different pH treatments (p ≤ 0.05. The highest DGR was observed in control culture with pH ∼8.4 followed by alkaline (pH 9 and acidic (pH 6 induced stress cultures. Protein expression profile was generated from different pH induced K. alvarezii cultures using sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE followed by protein identification and analysis using matrix-assisted laser desorption/ionization time-of-flight mass spectrometer (MALDI-TOF-MS and Mascot software. Ribulose bisphosphate carboxylase (Rubisco large chain was identified to be up-regulated under acidic (pH 6 condition during the second and fourth week of culture. The findings indicated that Rubisco can be employed as a biomarker for pH induced abiotic stress. Further study on the association between the expression levels of Rubisco large chain and their underlying mechanisms under pH stress conditions is recommended.

  3. Effects of heart rate variability biofeedback in subjects with stress-related chronic neck pain: a pilot study.

    Science.gov (United States)

    Hallman, David M; Olsson, Erik M G; von Schéele, Bo; Melin, Lennart; Lyskov, Eugene

    2011-06-01

    Recent studies focusing on autonomic nervous system (ANS) dysfunctions, together with theoretical pathophysiological models of musculoskeletal disorders, indicate the involvement of ANS regulation in development and maintenance of chronic muscle pain. Research has demonstrated the effectiveness of heart rate variability (HRV) biofeedback (BF) in increasing HRV and reducing the symptoms of different disorders characterized by ANS aberration. The study investigated the effects of resonance frequency HRV BF on autonomic regulation and perceived health, pain, stress and disability in 24 subjects with stress-related chronic neck-shoulder pain. Twelve subjects participated in 10 weekly sessions of resonant HRV BF and were compared to a control group. Subjective reports and HRV measures during relaxation and in response to a standardized stress protocol were assessed for both groups pre- and post-intervention. Group × time interactions revealed a significantly stronger increase over time in perceived health (SF-36) for the treatment group, including vitality, bodily pain and social functioning. Interactions were also seen for HRV during relaxation and reactivity to stress. The present pilot study indicates improvement in perceived health over a 10 week intervention with HRV-biofeedback in subjects with chronic neck-pain. Increased resting HRV as well as enhanced reactivity to hand grip and cold pressor tests might reflect beneficial effects on ANS regulation, and suggest that this intervention protocol is suitable for a larger controlled trial.

  4. The presence of a dog attenuates cortisol and heart rate in the Trier Social Stress Test compared to human friends.

    Science.gov (United States)

    Polheber, John P; Matchock, Robert L

    2014-10-01

    Limited research has addressed how social support in the form of a pet can affect both sympathetic and hypothalamic-pituitary-adrenal reactivity in response to a psychological challenge. The present study examined the effects of social support on salivary cortisol and heart rate (HR). Forty-eight participants were randomly assigned to three different conditions (human friend, novel dog, or control). All participants completed the Trier Social Stress Test and provided cortisol, HR, and State-Trait Anxiety Inventory measures. For participants paired with a dog, overall cortisol levels were attenuated throughout the experimental procedure, and HR was attenuated during the Trier Social Stress Test. For all groups, state anxiety increased after the Trier Social Stress Test, and HR during the Trier Social Stress Test was a predictor of cortisol. These results suggest that short-term exposure to a novel dog in an unfamiliar setting can be beneficial. They also suggest a possible mechanism for the beneficial effect associated with affiliation with pets.

  5. Research on flow stress of spray formed 70Si30Al ahoy under hot compression deformation

    Institute of Scientific and Technical Information of China (English)

    WEI Yanguang; XIONG Baiqing; ZHANG Yong'an; LIU Hongwei; ZHU Baohong; WANG feng

    2006-01-01

    The flow stress of spray formed 70Si30Al alloy was studied by hot compression on a Gleeble-1500 test machine.The experimental results indicated that the flow stress depends on the strain rate and the deformation temperature. The flow stress increases with an increase in strain rate at a given deformation temperature. The flow stress decreases with the deformation temperature increasing at a given strain rate. The relational expression among the flow stress, the strain rate, and the deformation temperature satisfies the Arrhenius equation. The deformation activation energy of 70Si30Al alloy during hot deformation is 866.27 kJ/mol from the Arrhenius equation.

  6. Stressful working conditions and poor self-rated health among financial services employees

    Directory of Open Access Journals (Sweden)

    Luiz Sérgio Silva

    2012-06-01

    Full Text Available OBJECTIVE: To assess the association between exposure to adverse psychosocial working conditions and poor self-rated health among bank employees. METHODS: A cross-sectional study including a sample of 2,054 employees of a government bank was conducted in 2008. Self-rated health was assessed by a single question: "In general, would you say your health is (...." Exposure to adverse psychosocial working conditions was evaluated by the effort-reward imbalance model and the demand-control model. Information on other independent variables was obtained through a self-administered semi-structured questionnaire. A multiple logistic regression analysis was performed and odds ratio calculated to assess independent associations between adverse psychosocial working conditions and poor self-rated health. RESULTS: The overall prevalence of poor self-rated health was 9%, with no significant gender difference. Exposure to high demand and low control environment at work was associated with poor self-rated health. Employees with high effort-reward imbalance and overcommitment also reported poor self-rated health, with a dose-response relationship. Social support at work was inversely related to poor self-rated health, with a dose-response relationship. CONCLUSIONS: Exposure to adverse psychosocial work factors assessed based on the effort-reward imbalance model and the demand-control model is independently associated with poor self-rated health among the workers studied.

  7. Classification of acute stress using linear and non-linear heart rate variability analysis derived from sternal ECG.

    Science.gov (United States)

    Tanev, George; Saadi, Dorthe B; Hoppe, Karsten; Sorensen, Helge B D

    2014-01-01

    Chronic stress detection is an important factor in predicting and reducing the risk of cardiovascular disease. This work is a pilot study with a focus on developing a method for detecting short-term psychophysiological changes through heart rate variability (HRV) features. The purpose of this pilot study is to establish and to gain insight on a set of features that could be used to detect psychophysiological changes that occur during chronic stress. This study elicited four different types of arousal by images, sounds, mental tasks and rest, and classified them using linear and non-linear HRV features from electrocardiograms (ECG) acquired by the wireless wearable ePatch® recorder. The highest recognition rates were acquired for the neutral stage (90%), the acute stress stage (80%) and the baseline stage (80%) by sample entropy, detrended fluctuation analysis and normalized high frequency features. Standardizing non-linear HRV features for each subject was found to be an important factor for the improvement of the classification results.

  8. Promoter engineering of the Saccharomyces cerevisiae RIM15 gene for improvement of alcoholic fermentation rates under stress conditions.

    Science.gov (United States)

    Watanabe, Daisuke; Kaneko, Akie; Sugimoto, Yukiko; Ohnuki, Shinsuke; Takagi, Hiroshi; Ohya, Yoshikazu

    2017-02-01

    A loss-of-function mutation in the RIM15 gene, which encodes a Greatwall-like protein kinase, is one of the major causes of the high alcoholic fermentation rates in Saccharomyces cerevisiae sake strains closely related to Kyokai no. 7 (K7). However, impairment of Rim15p may not be beneficial under more severe fermentation conditions, such as in the late fermentation stage, as it negatively affects stress responses. To balance stress tolerance and fermentation performance, we inserted the promoter of a gluconeogenic gene, PCK1, into the 5'-untranslated region (5'-UTR) of the RIM15 gene in a laboratory strain to achieve repression of RIM15 gene expression in the glucose-rich early stage with its induction in the stressful late stage of alcoholic fermentation. The promoter-engineered strain exhibited a fermentation rate comparable to that of the RIM15-deleted strain with no decrease in cell viability. The engineered strain achieved better alcoholic fermentation performance than the RIM15-deleted strain under repetitive and high-glucose fermentation conditions. These data demonstrated the validity of promoter engineering of the RIM15 gene that governs inhibitory control of alcoholic fermentation. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. Application of Support Vector Machine in the Prediction of Fatigue Stress Concentration Factor%基于支持矢量机的疲劳应力集中系数预测模型研究

    Institute of Scientific and Technical Information of China (English)

    侯哲哲; 杜彦良; 赵维刚

    2012-01-01

    Fatigue stress concentration factors as fatigue limit of material fatigue resistance not only reflected the extent of fatigue stress concentration but also reflected for notch sensitive degree. The newly developed technical support vector machine(SVM) into the domain of fatigue stress concentration factor is introduced. Support vector machine theory is introduced, LIBSVM is used, and RBF is chosen as kernel function to build a mode. The input parameters are tensile strength, yield strength, fatigue strength, stress concentration factor, notch root radius, samples size and notch fatigue limit; Fatigue stress concentration factor is output. The calculations of SVM model, experimental formula Neural and Peterson are compared. The results show that the relative maximum predicting error is 0.7% under the condition of using a small quantity of samples to build the mathematical model. The accuracy and applicability for the present model are thus verified.%疲劳应力集中系数作为材料疲劳抗力指标的疲劳极限,不仅反映了疲劳应力集中的程度,还反映了材料对缺口的敏感程度,将近年来飞速发展的支持矢量机(Support vector machine,SVM)应用于疲劳应力集中系数的研究.介绍支持矢量机的基本原理,利用LIBSVM,选择高斯型径向基函数(Radial basis function,RBF)作为核函数,建立以材料的抗拉强度、屈服强度、光棒疲劳强度、理论应力集中系数、缺口根部半径、试样尺寸及缺口疲劳极限作为输入值,疲劳应力集中系数为输出值的模型,从而对疲劳应力集中系数进行分析和预测.同时,SVM模型与经验公式Neuber式和Peterson式的计算值进行比较.结果表明,在小样本条件下,应用SVM技术构建的数学模型,模型的拟合相对误差小于7.4%,从而证明该SVM模型的准确性和适用性.

  10. Genesis machines

    CERN Document Server

    Amos, Martyn

    2014-01-01

    Silicon chips are out. Today's scientists are using real, wet, squishy, living biology to build the next generation of computers. Cells, gels and DNA strands are the 'wetware' of the twenty-first century. Much smaller and more intelligent, these organic computers open up revolutionary possibilities. Tracing the history of computing and revealing a brave new world to come, Genesis Machines describes how this new technology will change the way we think not just about computers - but about life itself.

  11. Stress

    OpenAIRE

    Jensen, Line Skov; Lova, Lotte; Hansen, Zandra Kulikovsky; Schønemann, Emilie; Larsen, Line Lyngby; Colberg Olsen, Maria Sophia; Juhl, Nadja; Magnussen, Bogi Roin

    2012-01-01

    Stress er en tilstand som er meget omdiskuteret i samfundet, og dette besværliggør i en vis grad konkretiseringen af mulige løsningsforslag i bestræbelsen på at forebygge den såkaldte folkesygdom. Hovedkonklusionen er, at selv om der bliver gjort meget for at forebygge, er der ikke meget der aktivt kan sættes i værk for at reducere antallet af stressramte, før en fælles forståelse af stressårsager og effektiv stresshåndtering er fremlagt. Problemformuleringen er besvaret gennem en undersø...

  12. Effects of work stress on work-related rumination, restful sleep, and nocturnal heart rate variability experienced on workdays and weekends.

    Science.gov (United States)

    Vahle-Hinz, Tim; Bamberg, Eva; Dettmers, Jan; Friedrich, Niklas; Keller, Monika

    2014-04-01

    The present study reports the lagged effects of work stress on work-related rumination, restful sleep, and nocturnal heart rate variability experienced during both workdays and weekends. Fifty employees participated in a diary study. Multilevel and regression analyses revealed a significant relationship between work stress measured at the end of a workday, work-related rumination measured during the evening, and restful sleep measured the following morning. Work stress, measured as the mean of 2 consecutive workdays, was substantially but not significantly related to restful sleep on weekends. Work stress was unrelated to nocturnal heart rate variability. Work-related rumination was related to restful sleep on weekends but not on workdays. Additionally, work-related rumination on weekends was positively related to nocturnal heart rate variability during the night between Saturday and Sunday. No mediation effects of work stress on restful sleep or nocturnal heart rate variability via work-related rumination were confirmed.

  13. Perceived stress, heart rate, and blood pressure among adolescents with family members deployed in Operation Iraqi Freedom.

    Science.gov (United States)

    Barnes, Vernon A; Davis, Harry; Treiber, Frank A

    2007-01-01

    This study compared the impact of the 2003 Operation Iraqi Freedom on heart rate (HR) and blood pressure (BP) and self-reported stress levels among three groups of self-categorized adolescents: (1) military dependents with family members deployed; (2) military dependents with no family members deployed; (3) civilian dependents. At the onset and end of the "major hostilities" of Operation Iraqi Freedom, 121 adolescents (mean age = 15.8 +/- 1.1 years) completed questionnaires evaluating the psychological impact of the war and were evaluated for HR and BP. The military deployed dependents exhibited significantly higher HR than other groups at both evaluations (both p < 0.04). Ethnicity by group interactions indicated that European American-deployed dependents had higher stress scores at both time points (p < 0.02). Military dependent European Americans exhibited higher systolic BP compared to the other groups on the second evaluation (p < 0.03).

  14. Ductile failure of steel HY80 under high strain rates and triaxial stress states, experimental results and damage description

    Science.gov (United States)

    Abdel-Malek, S.; Halle, Th.; Meyer, L. W.

    2003-09-01

    Ductile fracture investigations are an important part in current research. The simulation of fracture by means of numerical codes needs precise material data that may be reached from accurate mechanical testing. In order to predict failure processes, the stress state history as a function of strain development has to be known. In this work tensile tests on HY80 steel were performed under quasistatic and high strain rate loading conditions at room temperature using smooth and notched specimens. The force-time and displacement-time behaviour was measured during testing. Additionally, scanning electron microscopy was used to investigate the fractured surfaces. Furthermore, different models were applied to describe the failure process. FE-calculations were used to receive the stress state in the material in the region of the notch as a function of strain development.

  15. Accelerated Growth Rate and Increased Drought Stress Resilience of the Model Grass Brachypodium distachyon Colonized by Bacillus subtilis B26.

    Directory of Open Access Journals (Sweden)

    François Gagné-Bourque

    Full Text Available Plant growth-promoting bacteria (PGB induce positive effects in plants, for instance, increased growth and reduced abiotic stresses susceptibility. The mechanisms by which these bacteria impact the host plant are numerous, diverse and often specific. Here, we studied the agronomical, molecular and biochemical effects of the endophytic PGB Bacillus subtilis B26 on the full life cycle of Brachypodium distachyon Bd21, an established model species for functional genomics in cereal crops and temperate grasses. Inoculation of Brachypodium with B. subtilis strain B26 increased root and shoot weights, accelerated growth rate and seed yield as compared to control plants. B. subtilis strain B26 efficiently colonized the plant and was recovered from roots, stems and blades as well as seeds of Brachypodium, indicating that the bacterium is able to migrate, spread systemically inside the plant, establish itself in the aerial plant tissues and organs, and is vertically transmitted to seeds. The presence of B. subtilis strain B26 in the seed led to systemic colonization of the next generation of Brachypodium plants. Inoculated Brachypodium seedlings and mature plants exposed to acute and chronic drought stress minimized the phenotypic effect of drought compared to plants not harbouring the bacterium. Protection from the inhibitory effects of drought by the bacterium was linked to upregulation of the drought-response genes, DREB2B-like, DHN3-like and LEA-14-A-like and modulation of the DNA methylation genes, MET1B-like, CMT3-like and DRM2-like, that regulate the process. Additionally, total soluble sugars and starch contents increased in stressed inoculated plants, a biochemical indication of drought tolerance. In conclusion, we show a single inoculation of Brachypodium with a PGB affected the whole growth cycle of the plant, accelerating its growth rates, shortening its vegetative period, and alleviating drought stress effects. These effects are relevant to

  16. Accelerated Growth Rate and Increased Drought Stress Resilience of the Model Grass Brachypodium distachyon Colonized by Bacillus subtilis B26

    Science.gov (United States)

    Charron, Jean-Benoit; Vali, Hojatollah; Bertrand, Annick; Jabaji, Suha

    2015-01-01

    Plant growth-promoting bacteria (PGB) induce positive effects in plants, for instance, increased growth and reduced abiotic stresses susceptibility. The mechanisms by which these bacteria impact the host plant are numerous, diverse and often specific. Here, we studied the agronomical, molecular and biochemical effects of the endophytic PGB Bacillus subtilis B26 on the full life cycle of Brachypodium distachyon Bd21, an established model species for functional genomics in cereal crops and temperate grasses. Inoculation of Brachypodium with B. subtilis strain B26 increased root and shoot weights, accelerated growth rate and seed yield as compared to control plants. B. subtilis strain B26 efficiently colonized the plant and was recovered from roots, stems and blades as well as seeds of Brachypodium, indicating that the bacterium is able to migrate, spread systemically inside the plant, establish itself in the aerial plant tissues and organs, and is vertically transmitted to seeds. The presence of B. subtilis strain B26 in the seed led to systemic colonization of the next generation of Brachypodium plants. Inoculated Brachypodium seedlings and mature plants exposed to acute and chronic drought stress minimized the phenotypic effect of drought compared to plants not harbouring the bacterium. Protection from the inhibitory effects of drought by the bacterium was linked to upregulation of the drought-response genes, DREB2B-like, DHN3-like and LEA-14-A-like and modulation of the DNA methylation genes, MET1B-like, CMT3-like and DRM2-like, that regulate the process. Additionally, total soluble sugars and starch contents increased in stressed inoculated plants, a biochemical indication of drought tolerance. In conclusion, we show a single inoculation of Brachypodium with a PGB affected the whole growth cycle of the plant, accelerating its growth rates, shortening its vegetative period, and alleviating drought stress effects. These effects are relevant to grasses and cereal

  17. Prediction of flow stress of 7017 aluminium alloy under high strain rate compression at elevated temperatures

    National Research Council Canada - National Science Library

    Bobbili, Ravindranadh; Ramakrishna, B; Madhu, V; Gogia, A.K

    2015-01-01

    An artificial neural network (ANN) constitutive model and Johnson–Cook (J–C) model were developed for 7017 aluminium alloy based on high strain rate data generated from split Hopkinson pressure bar (SHPB...

  18. Role of Mechanical Stress in Regulating Airway Surface Hydration and Mucus Clearance Rates

    Science.gov (United States)

    Button, Brian; Boucher, Richard C.

    2008-01-01

    Effective clearance of mucus is a critical innate airway defense mechanism, and under appropriate conditions, can be stimulated to enhance clearance of inhaled pathogens. It has become increasingly clear that extracellular nucleotides (ATP and UTP) and nucleosides (adenosine) are important regulators of mucus clearance in the airways as a result of their ability to stimulate fluid secretion, mucus hydration, and cilia beat frequency (CBF). One ubiquitous mechanism to stimulate ATP release is through external mechanical stress. This article addresses the role of physiologically-relevant mechanical forces in the lung and their effects on regulating mucociliary clearance (MCC). The effects of mechanical forces on the stimulating ATP release, fluid secretion, CBF, and MCC are discussed. Also discussed is evidence suggesting that airway hydration and stimulation of MCC by stress-mediated ATP release may play a role in several therapeutic strategies directed at improving mucus clearance in patients with obstructive lung diseases, including cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD). PMID:18585484

  19. [Effects of lead stress on net photosynthetic rate, SPAD value and ginsenoside production in Ginseng (Panax ginseng)].

    Science.gov (United States)

    Liang, Yao; Jiang, Xiao-Li; Yang, Fen-Tuan; Cao, Qing-Jun; Li, Gang

    2014-08-01

    The paper aimed to evaluate the effects of lead stress on photosynthetic performance and ginsenoside content in ginseng (Panax ginseng). To accomplish this, three years old ginseng were cultivated in pot and in phytotron with different concentrations of lead, ranging from 0 to 1000 mg x kg(-1) soil for a whole growth period (about 150 days). The photosynthetic parameters in leaves and ginsenoside content in roots of ginseng were determined in green fruit stage and before withering stage, respectively. In comparison with the control, net photosynthetic rate and SPAD value in ginseng leaves cultivated with 100 and 250 mg x kg(-1) of lead changed insignificantly, however, ginseng supplied with 500 and 1 000 mg x kg(-1) of lead showed a noticeably decline in the net rate of photosynthesis and SPAD value (P ginseng roots cultivated with 100 mg x kg(-1) of lead showed insignificantly change compared to the control, but the content increased remarkably in treatments supplied with 250, 500, 1 000 mg x kg(-1) of lead (P ginsengs exposed to 1000 mg x kg(-1) of lead. The net photosynthetic rate and SPAD value in leaves of ginseng both showed significantly negative linear correlations with lead stress level (P ginseng leaves, but benefits for accumulation of secondary metabolism (total content of ginsenoside) in ginseng root.

  20. The OzT8 locus in rice protects leaf carbon assimilation rate and photosynthetic capacity under ozone stress.

    Science.gov (United States)

    Chen, Charles P; Frei, Michael; Wissuwa, Matthias

    2011-07-01

    Tropospheric ozone (O₃) is a phytotoxic air pollutant whose current background concentrations in parts of East Asia have caused estimated rice yield losses of up to 20%; currently, however, little is known about the mechanisms of O₃ tolerance in rice. We previously identified a quantitative trait locus (QTL) in rice called OzT8, which was associated with relative dry weight under ozone stress. The photosynthetic response in SL46, a Nipponbare (NB)-Kasalath chromosome segment substitution line (SL) containing the OzT8 locus, was compared to the parent NB in multiple ozone fumigation experiments (100 ppb, 8 h d⁻¹, 23 d). By day 23, SL46 showed significantly less reduction of photosynthetic capacity compared to NB; the maximum carboxylation rate of ribulose 1·5-bisphosphate carboxylase/oxygenase (Rubisco) decreased by 24% in SL46 compared to 49% in NB, and the maximum electron transport rate decreased by 16 and 39%, respectively. The midday carbon assimilation rates also showed a similar trend, but there was no genotypic difference in stomatal conductance. These results indicate that the OzT8 locus confers ozone tolerance via biochemical acclimation, not avoidance, making it a potentially valuable target for breeding of ozone tolerance into future rice lines. The sequence of photosynthetic response of rice to ozone stress and related tolerance factors are also discussed.

  1. Invariability of rate dependences of normalized flow stress in niobium and molybdenum under conditions of shock compression

    Science.gov (United States)

    Zaretsky, E. B.; Kanel, G. I.

    2016-09-01

    The evolution of elastic-plastic shock waves has been studied in pure molybdenum and niobium at normal and elevated temperatures over propagation distances ranging from 0.03 to 5 mm. The experiments revealed that annealing of the metals substantially increases their Hugoniot elastic limits and, to a lesser degree, their spall strengths. Variations in the resistance of both the metals to fracture in tension with the test temperature can be described as modest. Measuring the decay of the elastic precursor waves with a propagation distance in the two metals has allowed a determining of the relationships between a flow stress τ and an initial plastic strain rate γ˙ p . It was found that, at the plastic strain rates greater than 3 ÷4 ×104s-1 , the temperature sensitivity of the transient values of τ is much lower than that at the strain rates below this range. The τ(γ˙ p ) data normalized on shear moduli of the metals have been approximated by simple functions that, despite substantial differences between the moduli and yield stresses, were found to be virtually identical for the two metals.

  2. Tool wear of a single-crystal diamond tool in nano-groove machining of a quartz glass plate

    Science.gov (United States)

    Yoshino, Masahiko; Nakajima, Satoshi; Terano, Motoki

    2015-12-01

    Tool wear characteristics of a diamond tool in ductile mode machining are presented in this paper. Nano-groove machining of a quartz glass plate was conducted to examine the tool wear rate of a single-crystal diamond tool. Effects of lubrication on the tool wear rate were also evaluated. A numerical simulation technique was developed to evaluate the tool temperature and normal stress acting on the wear surface. From the simulation results it was found that the tool temperature does not increase during the machining experiment. It is also demonstrated that tool wear is attributed to the abrasive wear mechanism, but the effect of the adhesion wear mechanism is minor in nano-groove machining. It is found that the tool wear rate is reduced by using water or kerosene as a lubricant.

  3. Rectal temperatures, respiratory rates, production, and reproduction performances of crossbred Girolando cows under heat stress in northeastern Brazil

    Science.gov (United States)

    da Costa, Antônio Nélson Lima; Feitosa, José Valmir; Montezuma, Péricles Afonso; de Souza, Priscila Teixeira; de Araújo, Airton Alencar

    2015-11-01

    This study compared the two breed groups of Girolando (½ Holstein ½ Gyr vs. ¾ Holstein ¼ Gyr) through analysis of the percentages (stressed or non-stressed cows) of rectal temperature (RT), respiratory rate (RR) and pregnancy rate (PR), and means of production and reproduction parameters to determine the group best suited to rearing in semiarid tropical climate. The experiment was conducted at the farm, in the municipality of Umirim, State of Ceará, Brazil. Two hundred and forty cows were used in a 2 × 2 factorial study; 120 of each group were kept under an intensive system during wet and dry seasons. The environmental parameters obtained were relative humidity (RH), air temperature (AT), and the temperature and humidity index (THI). Pregnancy diagnosis (PD) was determined by ultrasonography 30 days after artificial insemination (AI). The milk production of each cow was recorded with automated milkings in the farm. The variables were expressed as mean and standard error, evaluated by ANOVA at 5 % probability using the GLM procedure of SAS. Chi-square test at 5 % probability was applied to data of RT, RR, pregnancy rate (PR), and the number of AIs to obtain pregnancy. The majority of ½ Holstein cows showed mean values of RT and RR within the normal range in both periods and shifts. Most animals of the ¾ Holstein group exhibited the RR means above normal during the afternoon in the rainy and dry periods and RT means above normal during the afternoon in the dry period. After analyses, ½ Holstein crossbred cows are more capable of thermoregulating than ¾ Holstein cows under conditions of thermal stress, and the dry period was more impacting for bovine physiology with significant changes in physiological parameters, even for the first breed group. Knowledge of breed groups adapted to climatic conditions of northeastern Brazil can directly assist cattle farmers in selecting animals best adapted for forming herds.

  4. Effect of a multidisciplinary stress treatment programme on the return to work rate for persons with work-related stress. A non-randomized controlled study from a stress clinic

    Directory of Open Access Journals (Sweden)

    Bech Per

    2010-11-01

    Full Text Available Abstract Background In recent years an increasing number of patients have been referred to the medical sector with stress symptoms. Moreover, these conditions imply increased sickness absence. This indicates a need for treatment programmes in general medical practice. The aim of this study was to test the effect of a multidisciplinary stress treatment programme on the return to work (RTW rate in persons with work-related stress and establish predictive factors for this outcome. Methods During a two-year period 63 out of 73 referrals to the Stress Clinic (a section of a Clinic of Occupational Medicine completed a stress treatment programme consisted of the following: 1 Identification of relevant stressors. 2. Changing the coping strategies of the participants. 3. Evaluating/changes in participant workload and tasks. 4. Relaxation techniques. 5. Physical exercise. 6. Psychiatric evaluation when indicated by depression test score. On average each patient attended six one-hour sessions over the course of four months. A group of 34 employees referred to the Clinic of Occupational Medicine by their general practitioners served as a control group. Each participant had a one-hour consultation at baseline and after four months. A specialist in occupational medicine carried out all sessions. Return To Work (RTW, defined as having a job and not being on sick leave at the census, was used as outcome measure four months after baseline, and after one and two years. Results The level of sick leave in the stress treatment group dropped from 52% to 16% during the first four months of follow-up and remained stable. In the control group, the reduction in sick leave was significantly smaller, ranging from 48% at baseline to 27% after four months and 24% after one year. No statistically significant difference between the two groups was observed after one and two years. Age below 50 years and being a manager increased the odds ratio for RTW after one and two years

  5. Novel Method for Measuring the Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters Based on Artificial Neural Networks and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Zhijian Liu

    2015-08-01

    Full Text Available The determinations of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, the direct determination requires complex detection devices and a series of standard experiments, which also wastes too much time and manpower. To address this problem, we propose machine learning models including artificial neural networks (ANNs and support vector machines (SVM to predict the heat collection rate and heat loss coefficient without a direct determination. Parameters that can be easily obtained by “portable test instruments” were set as independent variables, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, final temperature and angle between tubes and ground, while the heat collection rate and heat loss coefficient determined by the detection device were set as dependent variables respectively. Nine hundred fifteen samples from in-service water-in-glass evacuated tube solar water heaters were used for training and testing the models. Results show that the multilayer feed-forward neural network (MLFN with 3 nodes is the best model for the prediction of heat collection rate and the general regression neural network (GRNN is the best model for the prediction of heat loss coefficient due to their low root mean square (RMS errors, short training times, and high prediction accuracies (under the tolerances of 30%, 20%, and 10%, respectively.

  6. Simulating Turing machines on Maurer machines

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2008-01-01

    In a previous paper, we used Maurer machines to model and analyse micro-architectures. In the current paper, we investigate the connections between Turing machines and Maurer machines with the purpose to gain an insight into computability issues relating to Maurer machines. We introduce ways to

  7. A theoretical model for Reynolds-stress and dissipation-rate budgets in near-wall region

    Institute of Scientific and Technical Information of China (English)

    陆利蓬; 陈矛章

    2000-01-01

    A 3-D wave model for the turbulent coherent structures in near-wall region is proposed. The transport nature of the Reynolds stresses and dissipation rate of the turbulence kinetic energy are shown via computation based on the theoretical model. The mean velocity profile is also computed by using the same theoretical model. The theoretical results are in good agreement with those found from DNS, indicating that the theoretical model proposed can correctly describe the physical mechanism of turbulence in near wail region and it thus possibly opens a new way for turbulence modeling in this region.

  8. A theoretical model for Reynolds-stress and dissipation-rate budgets in near-wall region

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A 3-D wave model for the turbulent coherent structures in near-wall region is proposed. The transport nature of the Reynolds stresses and dissipation rate of the turbulence kinetic energy are shown via computation based on the theoretical model. The mean velocity profile is also computed by using the same theoretical model. The theoretical results are in good agreement with those found from DNS, indicating that the theoretical model proposed can correctly describe the physical mechanism of turbulence in near wall region and it thus possibly opens a new way for turbulence modeling in this region.

  9. Environmentally Friendly Machining

    CERN Document Server

    Dixit, U S; Davim, J Paulo

    2012-01-01

    Environment-Friendly Machining provides an in-depth overview of environmentally-friendly machining processes, covering numerous different types of machining in order to identify which practice is the most environmentally sustainable. The book discusses three systems at length: machining with minimal cutting fluid, air-cooled machining and dry machining. Also covered is a way to conserve energy during machining processes, along with useful data and detailed descriptions for developing and utilizing the most efficient modern machining tools. Researchers and engineers looking for sustainable machining solutions will find Environment-Friendly Machining to be a useful volume.

  10. Relationship between Parenting Stress and Ratings of Executive Functioning in Children with ADHD

    Science.gov (United States)

    Joyner, Krystle B.; Silver, Cheryl H.; Stavinoha, Peter L.

    2009-01-01

    Executive functioning is important to assess in children with attention deficit/hyperactivity disorder (ADHD). Parent report is used to obtain information about a child's executive functioning; however, parent report can be influenced by many factors. This study's hypothesis was that higher ratings of children's executive dysfunction are…

  11. Investigations into the relationship of post-stress metabolic rates and growth of fishes

    Science.gov (United States)

    The objective of this study was to determine if respirometry indices of fish following a stressor correspond with growth. On four occasions over a period of one month, oxygen consumption rates of 16 hybrid striped bass families were measured following a standardized handling stressor. Groups of 10...

  12. Moment rate scaling for earthquakes 3.3 ≤ M ≤ 5.3 with implications for stress drop

    Science.gov (United States)

    Archuleta, Ralph J.; Ji, Chen

    2016-12-01

    We have determined a scalable apparent moment rate function (aMRF) that correctly predicts the peak ground acceleration (PGA), peak ground velocity (PGV), local magnitude, and the ratio of PGA/PGV for earthquakes 3.3 ≤ M ≤ 5.3. Using the NGA-West2 database for 3.0 ≤ M ≤ 7.7, we find a break in scaling of LogPGA and LogPGV versus M around M 5.3 with nearly linear scaling for LogPGA and LogPGV for 3.3 ≤ M ≤ 5.3. Temporal parameters tp and td—related to rise time and total duration—control the aMRF. Both scale with seismic moment. The Fourier amplitude spectrum of the aMRF has two corners between which the spectrum decays f- 1. Significant attenuation along the raypath results in a Brune-like spectrum with one corner fC. Assuming that fC ≅ 1/td, the aMRF predicts non-self-similar scaling M0∝fC3.3 and weak stress drop scaling Δσ∝M00.091. This aMRF can explain why stress drop is different from the stress parameter used to predict high-frequency ground motion.

  13. Machine Transliteration

    CERN Document Server

    Knight, K; Knight, Kevin; Graehl, Jonathan

    1997-01-01

    It is challenging to translate names and technical terms across languages with different alphabets and sound inventories. These items are commonly transliterated, i.e., replaced with approximate phonetic equivalents. For example, "computer" in English comes out as "konpyuutaa" in Japanese. Translating such items from Japanese back to English is even more challenging, and of practical interest, as transliterated items make up the bulk of text phrases not found in bilingual dictionaries. We describe and evaluate a method for performing backwards transliterations by machine. This method uses a generative model, incorporating several distinct stages in the transliteration process.

  14. Studying the Relationship between Rate of Organizational Socialization and Rate of Employees Conformity (Group Stress, Kind of Character, Individualism Culture and Pluralism Culture in Nehbandan Executive Systems

    Directory of Open Access Journals (Sweden)

    Mohammad Ziaadini

    2013-01-01

    Full Text Available This research basically aims to study the relationship between rate of organizational socialization and rate of employees’ conformity (group stress, kind of character, individualism culture and pluralism culture in Nehbandan executive systems. Statistical society of this research includes 70 newcomer employees in Nehbandan government offices and centers and sample size was regarded equal to statistical society. Instruments of collecting data are two questionnaires of socialization and conformity, in which validity and reliability of socialization was considered 85% and 96% and validity and reliability of conformity questionnaire as 90% and 73% respectively. In order to describe and analyze collected data by questionnaire, several tables of frequency distribution, tables, average, Pierson correlation test, Spearman test and…. were used. All statistical analysis was done by computer and SPSS software. Analysis of data explains this fact that:There is increasing scores of being sociable which contains corporate of learning, coordination, evolution and compatibility. Increasing scores of being alike shows a direct relationship between both variables. The results show that there is a meaningful relationship between being sociable and being alike among employees in Nehbandan executive systems. Increase in being sociable will cause an increase in being alike.

  15. Self-Rated Mental Health: Screening for Depression and Posttraumatic Stress Disorder Among Women Exposed to Perinatal Intimate Partner Violence.

    Science.gov (United States)

    Kastello, Jennifer C; Jacobsen, Kathryn H; Gaffney, Kathleen F; Kodadek, Marie P; Bullock, Linda C; Sharps, Phyllis W

    2015-11-01

    The purpose of the current study was to evaluate the validity of a single-item, self-rated mental health (SRMH) measure in the identification of women at risk for depression and posttraumatic stress disorder (PTSD). Baseline data of 239 low-income women participating in an intimate partner violence (IPV) intervention study were analyzed. PTSD was measured with the Davidson Trauma Scale. Risk for depression was determined using the Edinburgh Postnatal Depression Scale. SRMH was assessed with a single item asking participants to rate their mental health at the time of the baseline interview. Single-item measures can be an efficient way to increase the proportion of patients screened for mental health disorders. Although SRMH is not a strong indicator of PTSD, it may be useful in identifying pregnant women who are at increased risk for depression and need further comprehensive assessment in the clinical setting. Future research examining the use of SRMH among high-risk populations is needed.

  16. Methodological framework for heart rate variability analysis during exercise: application to running and cycling stress testing.

    Science.gov (United States)

    Hernando, David; Hernando, Alberto; Casajús, Jose A; Laguna, Pablo; Garatachea, Nuria; Bailón, Raquel

    2017-09-26

    Standard methodologies of heart rate variability analysis and physiological interpretation as a marker of autonomic nervous system condition have been largely published at rest, but not so much during exercise. A methodological framework for heart rate variability (HRV) analysis during exercise is proposed, which deals with the non-stationary nature of HRV during exercise, includes respiratory information, and identifies and corrects spectral components related to cardiolocomotor coupling (CC). This is applied to 23 male subjects who underwent different tests: maximal and submaximal, running and cycling; where the ECG, respiratory frequency and oxygen consumption were simultaneously recorded. High-frequency (HF) power results largely modified from estimations with the standard fixed band to those obtained with the proposed methodology. For medium and high levels of exercise and recovery, HF power results in a 20 to 40% increase. When cycling, HF power increases around 40% with respect to running, while CC power is around 20% stronger in running.

  17. In situ characterization of charge rate dependent stress and structure changes in V2O5 cathode prepared by atomic layer deposition

    Science.gov (United States)

    Jung, Hyun; Gerasopoulos, Konstantinos; Talin, A. Alec; Ghodssi, Reza

    2017-02-01

    The insertion/extraction of lithium into/from various host materials is the basic process by which lithium-ion batteries reversible store charge. This process is generally accompanied by strain in the host material, inducing stress which can lead to capacity loss. Therefore, understanding of both the structural changes and the associated stress - investigated almost exclusively separate to date - is a critical factor for developing high-performance batteries. Here, we report an in situ method, which utilizes Raman spectroscopy in parallel with optical interferometry to study effects of varying charging rates (C-rates) on the structure and stress in a V2O5 thin film cathode. Abrupt stress changes at specific crystal phase transitions in the Lisbnd Vsbnd O system are observed and the magnitude of the stress changes with the amount of lithium inserted into the electrode are correlated. A linear increase in the stress as a function of x in LixV2O5 is observed, indicating that C-rate does not directly contribute to larger intercalation stress. However, a more rapid increase in disorder within the LixV2O5 layers is correlated with higher C-rate. Ultimately, these experiments demonstrate how the simultaneous stress/Raman in situ approach can be utilized as a characterization platform for investigating various critical factors affecting lithium-ion battery performance.

  18. Introduction to the theory of flow machines

    CERN Document Server

    Betz, Albert

    1966-01-01

    Introduction to the Theory of Flow Machines details the fundamental processes and the relations that have a significant influence in the operating mechanism of flow machines. The book first covers the general consideration in flow machines, such as pressure, stress, and cavitation. In the second chapter, the text deals with ducts; this chapter discusses the general remarks, types of flow, and mixing process. Next, the book tackles the types of cascades, along with its concerns. The closing chapter covers the flow machine and its components, such as turbine, wheels, engines, and propellers. The

  19. Machine Protection

    CERN Document Server

    Schmidt, R

    2014-01-01

    The protection of accelerator equipment is as old as accelerator technology and was for many years related to high-power equipment. Examples are the protection of powering equipment from overheating (magnets, power converters, high-current cables), of superconducting magnets from damage after a quench and of klystrons. The protection of equipment from beam accidents is more recent. It is related to the increasing beam power of high-power proton accelerators such as ISIS, SNS, ESS and the PSI cyclotron, to the emission of synchrotron light by electron–positron accelerators and FELs, and to the increase of energy stored in the beam (in particular for hadron colliders such as LHC). Designing a machine protection system requires an excellent understanding of accelerator physics and operation to anticipate possible failures that could lead to damage. Machine protection includes beam and equipment monitoring, a system to safely stop beam operation (e.g. dumping the beam or stopping the beam at low energy) and an ...

  20. Non-Invasive Assessment of the Interrelationships of Diet, Pregnancy Rate, Group Composition, and Physiological and Nutritional Stress of Barren-Ground Caribou in Late Winter: e0127586

    National Research Council Canada - National Science Library

    Kyle Joly; Samuel K Wasser; Rebecca Booth

    2015-01-01

    .... We used microhistological analyses and hormone levels in feces to determine sex-specific late-winter diets, pregnancy rates, group composition, and endocrine-based measures of physiological and nutritional stress...

  1. Non-Invasive Assessment of the Interrelationships of Diet, Pregnancy Rate, Group Composition, and Physiological and Nutritional Stress of Barren-Ground Caribou in Late Winter

    National Research Council Canada - National Science Library

    Joly, Kyle; Wasser, Samuel K; Booth, Rebecca

    2015-01-01

    .... We used microhistological analyses and hormone levels in feces to determine sex-specific late-winter diets, pregnancy rates, group composition, and endocrine-based measures of physiological and nutritional stress...

  2. Experimental Results of High Pressure and High Strain Rate Tantalum Flow Stress on Omega and NIF

    Science.gov (United States)

    Park, Hye-Sook; Arsenlis, A.; Barton, N.; Benedetti, L.; Huntington, C.; McNaney, J.; Orlikowski, D.; Prisbrey, S.; Remington, B.; Rudd, R.; Swift, D.; Weber, S.; Wehrenberg, C.; Comley, A.

    2015-11-01

    Understanding the high pressure, high strain rate plastic deformation dynamics of materials is an area of research of high interest to planetary formation dynamics, meteor impact dynamics, and inertial confinement fusion designs. Developing predictive theoretical and computational descriptions of such systems, however, has been a difficult undertaking. We have performed many experiments on Omega, LCLS and NIF to test Ta strength models at high pressures (~ up to 4 Mbar), high strain rates (~ 107 s-1) and high strains (>30%) under ramped compression conditions using Rayleigh-Taylor and Richtmyer-Meshkov instability properties. These experiments use plasma drive to ramp compress the sample to higher pressure without shock-melting. We also studied lattice level strength mechanisms under shocked compression using a diffraction-based technique. Our studies show that the strength mechanisms from macro to micro scales are different from the traditional strength model predictions and that they are loading path dependent. We will report the experimental results. Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA273.

  3. Dietary-Induced Chronic Hypothyroidism Negatively Affects Rat Follicular Development and Ovulation Rate and Is Associated with Oxidative Stress.

    Science.gov (United States)

    Meng, Li; Rijntjes, Eddy; Swarts, Hans; Bunschoten, Annelies; van der Stelt, Inge; Keijer, Jaap; Teerds, Katja

    2016-04-01

    The long-term effects of chronic hypothyroidism on ovarian follicular development in adulthood are not well known. Using a rat model of chronic diet-induced hypothyroidism initiated in the fetal period, we investigated the effects of prolonged reduced plasma thyroid hormone concentrations on the ovarian follicular reserve and ovulation rate in prepubertal (12-day-old) and adult (64-day-old and 120-day-old) rats. Besides, antioxidant gene expression, mitochondrial density and the occurrence of oxidative stress were analyzed. Our results show that continuous hypothyroidism results in lower preantral and antral follicle numbers in adulthood, accompanied by a higher percentage of atretic follicles, when compared to euthyroid age-matched controls. Not surprisingly, ovulation rate was lower in the hypothyroid rats. At the age of 120 days, the mRNA and protein content of superoxide dismutase 1 (SOD1) were significantly increased while catalase (CAT) mRNA and protein content was significantly decreased, suggesting a disturbed antioxidant defense capacity of ovarian cells in the hypothyroid animals. This was supported by a significant reduction in the expression of peroxiredoxin 3 ( ITALIC! Prdx3), thioredoxin reductase 1 ( ITALIC! Txnrd1), and uncoupling protein 2 ( ITALIC! Ucp2) and a downward trend in glutathione peroxidase 3 ( ITALIC! Gpx3) and glutathione S-transferase mu 2 ( ITALIC! Gstm2) expression. These changes in gene expression were likely responsible for the increased immunostaining of the oxidative stress marker 4-hydroxynonenal. Together these results suggest that chronic hypothyroidism initiated in the fetal/neonatal period results in a decreased ovulation rate associated with a disturbance of the antioxidant defense system in the ovary.

  4. The effect of hypoxia and exercise on heart rate variability, immune response, and orthostatic stress.

    Science.gov (United States)

    Koelwyn, G J; Wong, L E; Kennedy, M D; Eves, N D

    2013-02-01

    Hypoxia with exercise is commonly used to enhance physiological adaptation in athletes, but may prolong recovery between training bouts. To investigate this, heart rate variability (HRV), systemic immune response, and response to an orthostatic challenge were measured following exercise in hypoxia and air. Eleven trained men performed a 10-km cycling time trial breathing hypoxia (16.5 ± 0.5% O(2)) or air. HRV and the heart rate response to an orthostatic challenge were measured for 3 days before and after each trial, while venous blood samples were collected pre-, 0, 2, and 24 h post-exercise. Hypoxia had no significant effect compared with air. Subgroup analysis of those who had a drop in oxyhemoglobin saturation (SpO(2)) > 10% between hypoxia and air compared with those who did not, demonstrated a significantly altered HRV response (△HFnu: -2.1 ± 0.9 vs 8.6 ± 9.3, △LFnu: 2.1 ± 1.0 vs -8.6 ± 9.4) at 24 h post-exercise and increased circulating monocytes (1.3 ± 0.2 vs 0.8 ± 0.2 × 10(9) /L) immediately post-hypoxic exercise. Exercise and hypoxia did not change HRV or the systemic immune response to exercise. However, those who had a greater desaturation during hypoxic exercise had an attenuate recovery 24 h post-exercise and may be more susceptible to accumulating fatigue with subsequent training bouts. © 2012 John Wiley & Sons A/S.

  5. Two features of the uniaxial compression of a glassy epoxy resin: the yield stress rate-dependence and the volumetric instability

    Science.gov (United States)

    Bardella, Lorenzo; Belleri, Andrea

    2011-08-01

    We report the results of uniaxial compressive tests on a DGEBA epoxy resin at room temperature, well below its glass transition. We first focus on the strength, defined as the stress value corresponding to either a maximum or a flattening of the stress-strain curve, which, for this polymer, may be taken to be coincident with the yield stress, as often assumed for many thermosets. Within the strain rate range (1.E-6 s-1, 2.E-3 s-1) we confirm the linear trend relating the logarithm of the strain rate to the yield stress, as already been observed by other investigators even for the same epoxy resin; instead, at strain rates below dot{\\varepsilon} 0 ≈ 1.E{-}6 s^{-1}, we found a negligible rate-dependence, as our data indicate a lowest limit of the yield stress, of about 87 MPa. On the basis of these results, we propose how to extend to the viscoplastic regime of deformation a nonlinear viscoelastic model previously put forward. Secondarily, within the viscoelastic range, at a stress level significantly lower than the yield stress, our measurements show a mild volumetric instability, allowed by the free lateral expansion, not ascribable to any macroscopic structural effect; such a behaviour has never been reported in the literature, to the best of our knowledge.

  6. Rates of trauma spectrum disorders and risks of posttraumatic stress disorder in a sample of orphaned and widowed genocide survivors

    Directory of Open Access Journals (Sweden)

    Susanne Schaal

    2011-06-01

    Full Text Available During the Rwandan genocide of 1994, nearly one million people were killed within a period of 3 months.The objectives of this study were to investigate the levels of trauma exposure and the rates of mental health disorders and to describe risk factors of posttraumatic stress reactions in Rwandan widows and orphans who had been exposed to the genocide.Trained local psychologists interviewed orphans (n=206 and widows (n=194. We used the PSS-I to assess posttraumatic stress disorder (PTSD, the Hopkins Symptom Checklist to assess depression and anxiety symptoms, and the M.I.N.I. to assess risk of suicidality.Subjects reported having been exposed to a high number of different types of traumatic events with a mean of 11 for both groups. Widows displayed more severe mental health problems than orphans: 41% of the widows (compared to 29% of the orphans met symptom criteria for PTSD and a substantial proportion of widows suffered from clinically significant depression (48% versus 34% and anxiety symptoms (59% versus 42% even 13 years after the genocide. Over one-third of respondents of both groups were classified as suicidal (38% versus 39%. Regression analysis indicated that PTSD severity was predicted mainly by cumulative exposure to traumatic stressors and by poor physical health status. In contrast, the importance given to religious/spiritual beliefs and economic variables did not correlate with symptoms of PTSD.While a significant portion of widows and orphans continues to display severe posttraumatic stress reactions, widows seem to constitute a particularly vulnerable survivor group. Our results point to the chronicity of mental health problems in this population and show that PTSD may endure over time if not addressed by clinical intervention. Possible implications of poor mental health and the need for psychological intervention are discussed.

  7. Larval growth rate and sex determine resource allocation and stress responsiveness across life stages in juvenile frogs.

    Science.gov (United States)

    Warne, Robin W; Crespi, Erica J

    2015-03-01

    The extent to which interactions between environmental stressors and phenotypic variation during larval life stages impose carry-over effects on adult phenotypes in wildlife are not clear. Using semi-natural mesocosms, we examined how chronically low food availability and size-specific phenotypes in larval amphibians interact and carry over to influence frog growth, resource allocation, endocrine activity and survival. We tagged three cohorts of larvae that differed in body size and developmental stage at 3 weeks after hatching, and tracked them through 10 weeks after metamorphosis in high and low food conditions. We found that growth and development rates during the early tadpole stage not only affected metamorphic rates, but also shaped resource allocation and stress responsiveness in frogs: the slowest growing larvae from low-food mesocosms exhibited a suppressed glucocorticoid response to a handling stressor; reduced growth rate and fat storage as frogs. We also show for the first time that larval developmental trajectories varied with sex, where females developed faster than males especially in food-restricted conditions. Last, while larval food restriction profoundly affected body size in larvae and frogs, time to metamorphosis was highly constrained, which suggests that the physiology and development of this ephemeral pond-breeding amphibian is adapted for rapid metamorphosis despite large potential variation in nutrient availability. Taken together, these results suggest that larval phenotypic variation significantly influences multiple dimensions of post-metamorphic physiology and resource allocation, which likely affect overall performance.

  8. Effects of strain rate and elevated temperature on compressive flow stress and absorbed energy of polyimide foam

    Directory of Open Access Journals (Sweden)

    Horikawa K.

    2012-08-01

    Full Text Available In this study, at first, the effect of strain rate on the strength and the absorbed energy of polyimide foam was experimentally examined by carrying out a series of compression tests at various strain rates, from 10−3 to 103 s−1. This polyimide foam has open cell structure with small cell size of 0.3 ∼ 0.6 mm. In the measurement of impact load, a special load cell with a small part for sensing load was adopted. For the measurement of the displacement, a high-speed camera was used. It was found that the flow stress of polyimide foam and the absorbed energy up to a strain of 0.4 increased with the increase of the strain rates. Secondly, the effect of ambient temperature on the strength and absorbed energy of polyimide foam was also investigated by using a sprit Hopkinson pressure bar apparatus and testing at elevated temperatures of 100 and 200 ∘C. With the increase of temperature, the strength and absorbed energy decreased and the effect is smaller in dynamic tests than static tests.

  9. A fluid response: Alpha-amylase reactions to acute laboratory stress are related to sample timing and saliva flow rate.

    Science.gov (United States)

    Nagy, Tamás; van Lien, René; Willemsen, Gonneke; Proctor, Gordon; Efting, Marieke; Fülöp, Márta; Bárdos, György; Veerman, Enno C I; Bosch, Jos A

    2015-07-01

    Salivary alpha-amylase (sAA) is used as a sympathetic (SNS) stress marker, though its release is likely co-determined by SNS and parasympathetic (PNS) activation. The SNS and PNS show asynchronous changes during acute stressors, and sAA responses may thus vary with sample timing. Thirty-four participants underwent an eight-minute memory task (MT) and cold pressor task (CPT). Cardiovascular SNS (pre-ejection period, blood pressure) and PNS (heart rate variability) activity were monitored continuously. Unstimulated saliva was collected repeatedly during and after each laboratory stressor, and sAA concentration (U/ml) and secretion (U/minute) determined. Both stressors increased anxiety. The MT caused an immediate and continued cardiac SNS activation, but sAA concentration increased at task cessation only (+54%); i.e., when there was SNS-PNS co-activation. During the MT sAA secretion even decreased (-35%) in conjunction with flow rate and vagal tone. The CPT robustly increased blood pressure but not sAA. In summary, sAA fluctuations did not parallel changes in cardiac SNS activity or anxiety. sAA responses seem contingent on sample timing and flow rate, likely involving both SNS and PNS influences. Verification using other stressors and contexts seems warranted.

  10. Stress corrosion study of PH13-8Mo stainless steel using the Slow Strain Rate Technique

    Science.gov (United States)

    Torres, Pablo D.

    1989-01-01

    The need for a fast and reliable method to study stress corrosion in metals has caused increased interest in the Slow Strain Rate Technique (SSRT) during the last few decades. PH13-8MoH950 and H1000 round tensile specimens were studied by this method. Percent reduction-in-area, time-to-failure, elongation at fracture, and fracture energy were used to express the loss in ductility, which has been used to indicate susceptibility to stress corrosion cracking (SCC). Results from a 3.5 percent salt solution (corrosive medium) were compared to those in air (inert medium). A tendency to early failure was found when testing in the vicinity of 1.0 x 10(-6) mm/mm/sec in the 3.5 percent salt solution. PH13-8Mo H1000 was found to be less likely to suffer SCC than PH13-8Mo H950. This program showed that the SSRT is promising for the SCC characterization of metals and results can be obtained in much shorter times (18 hr for PH steels) than those required using conventional techniques.

  11. Thermal-mechanical modeling of laser ablation hybrid machining

    Science.gov (United States)

    Matin, Mohammad Kaiser

    2001-08-01

    Hard, brittle and wear-resistant materials like ceramics pose a problem when being machined using conventional machining processes. Machining ceramics even with a diamond cutting tool is very difficult and costly. Near net-shape processes, like laser evaporation, produce micro-cracks that require extra finishing. Thus it is anticipated that ceramic machining will have to continue to be explored with new-sprung techniques before ceramic materials become commonplace. This numerical investigation results from the numerical simulations of the thermal and mechanical modeling of simultaneous material removal from hard-to-machine materials using both laser ablation and conventional tool cutting utilizing the finite element method. The model is formulated using a two dimensional, planar, computational domain. The process simulation acronymed, LAHM (Laser Ablation Hybrid Machining), uses laser energy for two purposes. The first purpose is to remove the material by ablation. The second purpose is to heat the unremoved material that lies below the ablated material in order to ``soften'' it. The softened material is then simultaneously removed by conventional machining processes. The complete solution determines the temperature distribution and stress contours within the material and tracks the moving boundary that occurs due to material ablation. The temperature distribution is used to determine the distance below the phase change surface where sufficient ``softening'' has occurred, so that a cutting tool may be used to remove additional material. The model incorporated for tracking the ablative surface does not assume an isothermal melt phase (e.g. Stefan problem) for laser ablation. Both surface absorption and volume absorption of laser energy as function of depth have been considered in the models. LAHM, from the thermal and mechanical point of view is a complex machining process involving large deformations at high strain rates, thermal effects of the laser, removal of

  12. Energy Release Rate in hydraulic fracture: can we neglect an impact of the hydraulically induced shear stress?

    CERN Document Server

    Wrobel, Michal; Piccolroaz, Andrea

    2016-01-01

    A novel hydraulic fracture (HF) formulation is introduced which accounts for the hydraulically induced shear stress at the crack faces. It utilizes a general form of the elasticity operator alongside a revised fracture propagation condition based on the critical value of the energy release rate. It is shown that the revised formulation describes the underlying physics of HF in a more accurate way and is in agreement with the asymptotic behaviour of the linear elastic fracture mechanics. A number of numerical simulations by means of the universal HF algorithm previously developed in Wrobel & Mishuris (2015) are performed in order to: i) compare the modified HF formulation with its classic counterpart and ii) investigate the peculiarities of the former. Computational advantages of the revised HF model are demonstrated. Asymptotic estimations of the main solution elements are provided for the cases of small and large toughness. The modified formulation opens new ways to analyse the physical phenomenon of HF ...

  13. Influence of the crack propagation rate in the obtaining opening and closing stress intensity factor by finite element method

    Directory of Open Access Journals (Sweden)

    Luiz Carlos H. Ricardo

    2016-03-01

    Full Text Available Crack propagation simulation began with the development of the finite element method; the analyses were conducted to obtain a basic understanding of the crack growth. Today structural and materials engineers develop structures and materials properties using this technique as criterion design. The aim of this paper is to verify the effect of different crack propagation rates in determination of crack opening and closing stress of an ASTM specimen under a standard suspension spectrum loading from FD&E SAE Keyhole Specimen Test Load Histories by finite element analysis. The crack propagation simulation was based on release nodes at the minimum loads to minimize convergence problems. To understand the crack propagation processes under variable amplitude loading, retardation effects are discussed.

  14. Automation of printing machine

    OpenAIRE

    Sušil, David

    2016-01-01

    Bachelor thesis is focused on the automation of the printing machine and comparing the two types of printing machines. The first chapter deals with the history of printing, typesettings, printing techniques and various kinds of bookbinding. The second chapter describes the difference between sheet-fed printing machines and offset printing machines, the difference between two representatives of rotary machines, technological process of the products on these machines, the description of the mac...

  15. Skin blood flow and local temperature independently modify sweat rate during passive heat stress in humans.

    Science.gov (United States)

    Wingo, Jonathan E; Low, David A; Keller, David M; Brothers, R Matthew; Shibasaki, Manabu; Crandall, Craig G

    2010-11-01

    Sweat rate (SR) is reduced in locally cooled skin, which may result from decreased temperature and/or parallel reductions in skin blood flow. The purpose of this study was to test the hypotheses that decreased skin blood flow and decreased local temperature each independently attenuate sweating. In protocols I and II, eight subjects rested supine while wearing a water-perfused suit for the control of whole body skin and internal temperatures. While 34°C water perfused the suit, four microdialysis membranes were placed in posterior forearm skin not covered by the suit to manipulate skin blood flow using vasoactive agents. Each site was instrumented for control of local temperature and measurement of local SR (capacitance hygrometry) and skin blood flow (laser-Doppler flowmetry). In protocol I, two sites received norepinephrine to reduce skin blood flow, while two sites received Ringer solution (control). All sites were maintained at 34°C. In protocol II, all sites received 28 mM sodium nitroprusside to equalize skin blood flow between sites before local cooling to 20°C (2 sites) or maintenance at 34°C (2 sites). In both protocols, individuals were then passively heated to increase core temperature ~1°C. Both decreased skin blood flow and decreased local temperature attenuated the slope of the SR to mean body temperature relationship (2.0 ± 1.2 vs. 1.0 ± 0.7 mg·cm(-2)·min(-1)·°C(-1) for the effect of decreased skin blood flow, P = 0.01; 1.2 ± 0.9 vs. 0.07 ± 0.05 mg·cm(-2)·min(-1)·°C(-1) for the effect of decreased local temperature, P = 0.02). Furthermore, local cooling delayed the onset of sweating (mean body temperature of 37.5 ± 0.4 vs. 37.6 ± 0.4°C, P = 0.03). These data demonstrate that local cooling attenuates sweating by independent effects of decreased skin blood flow and decreased local skin temperature.

  16. Single Bacteria as Turing Machines

    Science.gov (United States)

    Bos, Julia; Zang, Qiucen; Vyawahare, Saurabh; Austin, Robert

    2014-03-01

    In Allan Turing's famous 1950 paper on Computing Machinery and Intelligence, he started with the provocative statement: ``I propose to consider the question, `Can machines think?' This should begin with definitions of the meaning of the terms `machine' and `think'.'' In our own work on exploring the way that organisms respond to stress and evolve, it seems at times as if they come to remarkably fast solutions to problems, indicating some sort of very clever computational machinery. I'll discuss how it would appear that bacteria can indeed create a form of a Turing Machine, the first example of a computer, and how they might use this algorithm to do rapid evolution to solve a genomics problem.

  17. Plug into 'the modernizing machine'!

    DEFF Research Database (Denmark)

    Krejsler, John B.

    2013-01-01

    ‘The modernizing machine’ codes individual bodies, things and symbols with images from New Public Management, neoliberal and Knowledge Economy discourses. Drawing on Deleuze & Guattari’s concept of machines, this article explores how ‘the modernizing machine’ produces neo-liberal modernization...... of the public sector. Taking its point of departure in Danish university reform, the article explores how the university is transformed by this desiring-producing machine. ‘The modernizing machine’ wrestles with the so-called ‘democratic-Humboldtian machine’. The University Act of 2003 and the host of reforms...... bodies and minds simultaneously produce academic subjectivities by plugging into these transformative machinic forces and are produced as they are traversed by them. What is experienced as stressful closures vis-à-vis new opportunities depends to a great extent upon how these producing...

  18. Refrigerated cutting tools improve machining of superalloys

    Science.gov (United States)

    Dudley, G. M.

    1971-01-01

    Freon-12 applied to tool cutting edge evaporates quickly, leaves no residue, and permits higher cutting rate than with conventional coolants. This technique increases cutting rate on Rene-41 threefold and improves finish of machined surface.

  19. A study of the Coulomb stress and seismicity rate changes induced by the 2008 Mw 7.9 Wenchuan earthquake, SW China

    Science.gov (United States)

    Hu, Junhua; Fu, Li-Yun; Sun, Weijia; Zhang, Yan

    2017-03-01

    Correlations between the calculated Coulomb stress changes and observed seismicity rate changes after the Wenchuan earthquake are investigated in this article. Three improvements are made in the calculation of static stress change, including employing a dislocation method with triangular elements rather than traditional rectangular elements, setting up a more realistic source-slip model and a more complete receiver fault model, and resolving stress changes on assumed receiver faults with spatially variable focal mechanisms based on well-determined focal mechanisms at different calculation points. The recorded aftershocks are mapped for comparison with the spatial distribution of stress changes. The results indicate that the Wenchuan earthquake encourages not only three major fault systems (the East Kunlun, south of Xianshuihe and west of Qinling Southern Frontal) but also several other regions including Tazang, north of Min Jiang, north of Pingwu-Qingchuan and west of Chongqing. In particular, the eastern segment of Longriba is shown to be quite dangerous with dramatic stress increase. The influence of depth and frictional coefficient is analyzed. The depth of calculation beyond the depth range of the source model will make a significant difference to the stress-change map and thus cannot be neglected. Many aftershocks occurring in the stress shadow zone near the main rupture can be attributed to dynamic stress triggering and the fractal structure of the main fault. The observed seismicity rate changes are compared with the static stress changes. The results show that high background seismicity rates will amplify the effect of stress change. The observed seismicity rate changes support the forecast rate of 10-year seismicity after the Wenchuan earthquake based on the rate- and state-dependent friction model. Coulomb stresses increase on the focal mechanisms away from the main rupture, which demonstrates the influence of the Wenchuan earthquake over a wide range

  20. Effects of strain rate, mixing ratio, and stress-strain definition on the mechanical behavior of the polydimethylsiloxane (PDMS) material as related to its biological applications.

    Science.gov (United States)

    Khanafer, Khalil; Duprey, Ambroise; Schlicht, Marty; Berguer, Ramon

    2009-04-01

    Tensile tests on Polydimethylsiloxane (PDMS) materials were conducted to illustrate the effects of mixing ratio, definition of the stress-strain curve, and the strain rate on the elastic modulus and stress-strain curve. PDMS specimens were prepared according to the ASTM standards for elastic materials. Our results indicate that the physiological elastic modulus depends strongly on the definition of the stress-strain curve, mixing ratio, and the strain rate. For various mixing ratios and strain rates, true stress-strain definition results in higher stress and elastic modulus compared with engineering stress-strain and true stress-engineering strain definitions. The elastic modulus increases as the mixing ratio increases up-to 9:1 ratio after which the elastic modulus begins to decrease even as the mixing ratio continues to increase. The results presented in this study will be helpful to assist the design of in vitro experiments to mimic blood flow in arteries and to understand the complex interaction between blood flow and the walls of arteries using PDMS elastomer.

  1. The effect of light level, CO2 flow rate, and anesthesia on the stress response of mice during CO2 euthanasia.

    Science.gov (United States)

    Powell, Karin; Ethun, Kelly; Taylor, Douglas K

    2016-09-21

    Euthanasia protocols are designed to mitigate the stress experienced by animals, and an environment that induces minimal stress helps achieve that goal. A protocol that is efficient and practical in a typical animal research facility is also important. Light intensity, isoflurane, and CO2 flow rate were studied for their impact on the stress response of mice during CO2 euthanasia. Behavior was observed and scored during euthanasia and serum corticosterone was measured immediately after death. Unsurprisingly, animals euthanized with a high-flow rate of CO2 became unconscious in the least amount of time, while animals euthanized with a low-flow rate required the most time to reach unconsciousness. There was a significant increase in anxious behaviors in animals in the isoflurane group (F1,12 = 6.67, P = 0.024), the high-flow rate CO2 group (F1,12 = 10.24, P = 0.007), and bright chamber group (F1,12 = 7.27, P = 0.019). Serum corticosterone was highest in the isoflurane group (124.72 ± 83.98 ng/ml), however there was no significant difference in corticosterone levels observed for the other study variables of light and flow-rate. A darkened chamber and low CO2 flow rates help to decrease stress experienced during CO2 euthanasia, while the use of isoflurane was observed to increase the stress response during euthanasia.

  2. Machine musicianship

    Science.gov (United States)

    Rowe, Robert

    2002-05-01

    The training of musicians begins by teaching basic musical concepts, a collection of knowledge commonly known as musicianship. Computer programs designed to implement musical skills (e.g., to make sense of what they hear, perform music expressively, or compose convincing pieces) can similarly benefit from access to a fundamental level of musicianship. Recent research in music cognition, artificial intelligence, and music theory has produced a repertoire of techniques that can make the behavior of computer programs more musical. Many of these were presented in a recently published book/CD-ROM entitled Machine Musicianship. For use in interactive music systems, we are interested in those which are fast enough to run in real time and that need only make reference to the material as it appears in sequence. This talk will review several applications that are able to identify the tonal center of musical material during performance. Beyond this specific task, the design of real-time algorithmic listening through the concurrent operation of several connected analyzers is examined. The presentation includes discussion of a library of C++ objects that can be combined to perform interactive listening and a demonstration of their capability.

  3. Stress states and moment rates of a two-asperity fault in the presence of viscoelastic relaxation

    Directory of Open Access Journals (Sweden)

    M. Dragoni

    2015-02-01

    Full Text Available A fault containing two asperities with different strengths is considered. The fault is embedded in a viscoelastic shear zone, subject to a constant strain rate by the motions of adjacent tectonic plates. The fault is modelled as a discrete dynamical system where the average values of stress, friction and slip on each asperity are considered. The state of the fault is described by three variables: the slip deficits of the asperities and the viscoelastic deformation. The system has four dynamic modes, for which the analytical solutions are calculated. The relationship between the state of the fault before a seismic event and the sequence of slipping modes in the event is enlightened. Since the moment rate depends on the number and sequence of slipping modes, the knowledge of the source function of an earthquake constrains the orbit of the system in the phase space. If the source functions of a larger number of consecutive earthquakes were known, the orbit could be constrained more and more and its evolution could be predicted with a smaller uncertainty. The model is applied to the 1964 Alaska earthquake, which was the effect of the failure of two asperities and for which a remarkable postseismic relaxation has been observed in the subsequent decades. The evolution of the system after the 1964 event depends on the state from which the event was originated, that is constrained by the observed moment rate. The possible durations of the interseismic interval and the possible moment rates of the next earthquake are calculated as functions of the initial state.

  4. Machinability of Green Powder Metallurgy Components: Part II. Sintered Properties of Components Machined in Green State

    Science.gov (United States)

    Robert-Perron, Etienne; Blais, Carl; Pelletier, Sylvain; Thomas, Yannig

    2007-06-01

    The green machining process is virtually a must if the powder metallurgy (PM) industries are to solve the lower machining performances associated with PM components. This process is known for lowering the rate of tool wear. Recent improvements in binder/lubricant technologies have led to high-green-strength systems that enable green machining. Combined with the optimized cutting parameters determined in Part I of the study, the green machining of PM components seems to be a viable process for fabricating high performance parts on large scale and complete other shaping processes. This second part of our study presents a comparison between the machining behaviors and the sintered properties of components machined prior to or after sintering. The results show that the radial crush strength measured on rings machined in their green state is equal to that of parts machined after sintering.

  5. Strain rate dependence of the flow stress and work hardening of single crystals of Ni{sub 3}(Al,Hf)B

    Energy Technology Data Exchange (ETDEWEB)

    Ezz, S.S.; Sun, Y.Q.; Hirsch, P.B. [Univ. of Oxford (United Kingdom). Dept. of Materials

    1995-07-01

    The strain rate sensitivity {beta} of the flow stress {tau} is associated with work hardening and {beta} = ({delta}{tau}/{delta}ln {dot {var_epsilon}}) is proportional to the work hardening increment {tau}{sub h} = {tau} {minus} {tau}{sub y}, where {tau}{sub y} is the strain rate independent yield stress. The temperature dependence of {beta}/{tau}{sub h} reflects changes in the rate controlling mechanism. At intermediate and high temperatures, the hardening correlates with the density of [{bar 1}01] dislocations on (010). The nature of the local obstacles at room temperature is not established.

  6. Characterization of Machine Variability and Progressive Heat Treatment in Selective Laser Melting of Inconel 718

    Science.gov (United States)

    Prater, Tracie; Tilson, Will; Jones, Zack

    2015-01-01

    The absence of an economy of scale in spaceflight hardware makes additive manufacturing an immensely attractive option for propulsion components. As additive manufacturing techniques are increasingly adopted by government and industry to produce propulsion hardware in human-rated systems, significant development efforts are needed to establish these methods as reliable alternatives to conventional subtractive manufacturing. One of the critical challenges facing powder bed fusion techniques in this application is variability between machines used to perform builds. Even with implementation of robust process controls, it is possible for two machines operating at identical parameters with equivalent base materials to produce specimens with slightly different material properties. The machine variability study presented here evaluates 60 specimens of identical geometry built using the same parameters. 30 samples were produced on machine 1 (M1) and the other 30 samples were built on machine 2 (M2). Each of the 30-sample sets were further subdivided into three subsets (with 10 specimens in each subset) to assess the effect of progressive heat treatment on machine variability. The three categories for post-processing were: stress relief, stress relief followed by hot isostatic press (HIP), and stress relief followed by HIP followed by heat treatment per AMS 5664. Each specimen (a round, smooth tensile) was mechanically tested per ASTM E8. Two formal statistical techniques, hypothesis testing for equivalency of means and one-way analysis of variance (ANOVA), were applied to characterize the impact of machine variability and heat treatment on six material properties: tensile stress, yield stress, modulus of elasticity, fracture elongation, and reduction of area. This work represents the type of development effort that is critical as NASA, academia, and the industrial base work collaboratively to establish a path to certification for additively manufactured parts. For future

  7. Post traumatic stress symptoms and heart rate variability in Bihar flood survivors following yoga: a randomized controlled study

    Directory of Open Access Journals (Sweden)

    Joshi Meesha

    2010-03-01

    Full Text Available Abstract Background An earlier study showed that a week of yoga practice was useful in stress management after a natural calamity. Due to heavy rain and a rift on the banks of the Kosi river, in the state of Bihar in north India, there were floods with loss of life and property. A week of yoga practice was given to the survivors a month after the event and the effect was assessed. Methods Twenty-two volunteers (group average age ± S.D, 31.5 ± 7.5 years; all of them were males were randomly assigned to two groups, yoga and a non-yoga wait-list control group. The yoga group practiced yoga for an hour daily while the control group continued with their routine activities. Both groups' heart rate variability, breath rate, and four symptoms of emotional distress using visual analog scales, were assessed on the first and eighth day of the program. Results There was a significant decrease in sadness in the yoga group (p Conclusions A week of yoga can reduce feelings of sadness and possibly prevent an increase in anxiety in flood survivors a month after the calamity. Trial Registration Clinical Trials Registry of India: CTRI/2009/091/000285

  8. Rates of evolution in stress-related genes are associated with habitat preference in two Cardamine lineages

    Directory of Open Access Journals (Sweden)

    Ometto Lino

    2012-01-01

    Full Text Available Abstract Background Elucidating the selective and neutral forces underlying molecular evolution is fundamental to understanding the genetic basis of adaptation. Plants have evolved a suite of adaptive responses to cope with variable environmental conditions, but relatively little is known about which genes are involved in such responses. Here we studied molecular evolution on a genome-wide scale in two species of Cardamine with distinct habitat preferences: C. resedifolia, found at high altitudes, and C. impatiens, found at low altitudes. Our analyses focussed on genes that are involved in stress responses to two factors that differentiate the high- and low-altitude habitats, namely temperature and irradiation. Results High-throughput sequencing was used to obtain gene sequences from C. resedifolia and C. impatiens. Using the available A. thaliana gene sequences and annotation, we identified nearly 3,000 triplets of putative orthologues, including genes involved in cold response, photosynthesis or in general stress responses. By comparing estimated rates of molecular substitution, codon usage, and gene expression in these species with those of Arabidopsis, we were able to evaluate the role of positive and relaxed selection in driving the evolution of Cardamine genes. Our analyses revealed a statistically significant higher rate of molecular substitution in C. resedifolia than in C. impatiens, compatible with more efficient positive selection in the former. Conversely, the genome-wide level of selective pressure is compatible with more relaxed selection in C. impatiens. Moreover, levels of selective pressure were heterogeneous between functional classes and between species, with cold responsive genes evolving particularly fast in C. resedifolia, but not in C. impatiens. Conclusions Overall, our comparative genomic analyses revealed that differences in effective population size might contribute to the differences in the rate of protein evolution

  9. Electrical machines mathematical fundamentals of machine topologies

    CERN Document Server

    Gerling, Dieter

    2015-01-01

    Electrical Machines and Drives play a powerful role in industry with an ever increasing importance. This fact requires the understanding of machine and drive principles by engineers of many different disciplines. Therefore, this book is intended to give a comprehensive deduction of these principles. Special attention is given to the precise mathematical derivation of the necessary formulae to calculate machines and drives and to the discussion of simplifications (if applied) with the associated limits. The book shows how the different machine topologies can be deduced from general fundamentals, and how they are linked together. This book addresses graduate students, researchers, and developers of Electrical Machines and Drives, who are interested in getting knowledge about the principles of machine and drive operation and in detecting the mathematical and engineering specialties of the different machine and drive topologies together with their mutual links. The detailed - but nevertheless compact - mat...

  10. Analysis of the Rotary Ultrasonic Machining Mechanism

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Ultrasonic machining (USM) is considered as an effective method for machining hard and brittle materials such as glass, engineering ceramics, semiconductors, diamonds, metal composites and so on. However, the low material removal rate due to using abrasive slurry limits further application of USM. Rotary ultrasonic machining (rotary USM) superimposes rotational movement on the tool head that vibrates at ultrasonic frequency (20 kHz) simultaneously. The tool is made of mild steel coated or bonded with diamon...

  11. Design, development and demonstration of an improved bird washing machine.

    Science.gov (United States)

    Rajabi, H; Monsef, H; Moghadami, M; Zare, M; Armandei, A

    2014-07-01

    Since oil was first extracted, pollution of the seas and oceans or adjacent coasts has been an obstacle for the oil industry and environmental activists. The major concern is oil discharge into the water which may lead to birds' affliction or death, besides putting marine life in jeopardy. This paper presents the first description of the design and implementation of a new bird washing machine that can be utilized for cleaning of oil-coated birds with the minimum of stress. The machine is equipped with a pneumatic system comprised of 19 moving nozzles which evenly cover the bird's body and is designed to be used in contaminated environments where a vast number of birds are affected. Experimental trials show an improvement in operation efficiency compared to other methods in a reduction in washing time, energy consumption and a decrease in fatality rate of washed birds.

  12. Evaluation of Process Performance for Sustainable Hard Machining

    Science.gov (United States)

    Rotella, Giovanna; Umbrello, Domenico; , Oscar W. Dillon, Jr.; Jawahir, I. S.

    This paper aims to evaluate the sustainability performance of machining operation of through-hardening steel, AISI 52100, taking into account the impact of the material removal process in its various aspects. Experiments were performed for dry and cryogenic cutting conditions using chamfered cubic boron nitride (CBN) tool inserts at varying cutting conditions (cutting speed and feed rate). Cutting forces, mechanical power, tool wear, white layer thickness, surface roughness and residual stresses were investigated in order to evaluate the effects of extreme in-process cooling on the machined surface. The results indicate that cryogenic cooling has the potential to be used for surface integrity enhancement for improved product life and more sustainable functional performance.

  13. Laser machining of advanced materials

    CERN Document Server

    Dahotre, Narendra B

    2011-01-01

    Advanced materialsIntroductionApplicationsStructural ceramicsBiomaterials CompositesIntermetallicsMachining of advanced materials IntroductionFabrication techniquesMechanical machiningChemical Machining (CM)Electrical machiningRadiation machining Hybrid machiningLaser machiningIntroductionAbsorption of laser energy and multiple reflectionsThermal effectsLaser machining of structural ceramicsIntrodu

  14. Left Ventricular Wall Stress-Mass-Heart Rate Product and Cardiovascular Events in Treated Hypertensive Patients: LIFE Study.

    Science.gov (United States)

    Devereux, Richard B; Bang, Casper N; Roman, Mary J; Palmieri, Vittorio; Boman, Kurt; Gerdts, Eva; Nieminen, Markku S; Papademetriou, Vasilios; Wachtell, Kristian; Hille, Darcy A; Dahlöf, Björn

    2015-11-01

    In the Losartan Intervention for End Point Reduction in Hypertension (LIFE) study, 4.8 years' losartan- versus atenolol-based antihypertensive treatment reduced left ventricular hypertrophy and cardiovascular end points, including cardiovascular death and stroke. However, there was no difference in myocardial infarction (MI), possibly related to greater reduction in myocardial oxygen demand by atenolol-based treatment. Myocardial oxygen demand was assessed indirectly by the left ventricular mass×wall stress×heart rate (triple product) in 905 LIFE participants. The triple product was included as time-varying covariate in Cox models assessing predictors of the LIFE primary composite end point (cardiovascular death, MI, or stroke), its individual components, and all-cause mortality. At baseline, the triple product in both treatment groups was, compared with normal adults, elevated in 70% of patients. During randomized treatment, the triple product was reduced more by atenolol, with prevalences of elevated triple product of 39% versus 51% on losartan (both P≤0.001). In Cox regression analyses adjusting for age, smoking, diabetes mellitus, and prior stroke, MI, and heart failure, 1 SD lower triple product was associated with 23% (95% confidence interval 13%-32%) fewer composite end points, 31% (18%-41%) less cardiovascular mortality, 30% (15%-41%) lower MI, and 22% (11%-33%) lower all-cause mortality (all P≤0.001), without association with stroke (P=0.34). Although losartan-based therapy reduced ventricular mass more, greater heart rate reduction with atenolol resulted in larger reduction of the triple product. Lower triple product during antihypertensive treatment was strongly, independently associated with lower rates of the LIFE primary composite end point, cardiovascular death, and MI, but not stroke.

  15. Methodology to evaluate the crack growth rate by stress corrosion cracking in dissimilar metals weld in simulated environment of PWR nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Paula, Raphael G.; Figueiredo, Celia A.; Rabelo, Emerson G., E-mail: raphaelmecanica@gmail.com, E-mail: caf@cdtn.br, E-mail: egr@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    Inconel alloys weld metal is widely used to join dissimilar metals in nuclear reactors applications. It was recently observed failures of weld components in plants, which have triggered an international effort to determine reliable data on the stress corrosion cracking behavior of this material in reactor environment. The objective of this work is to develop a methodology to determine the crack growth rate caused by stress corrosion in Inconel alloy 182, using the specimen (Compact Tensile) in simulated PWR environment. (author)

  16. The deleuzian abstract machines

    DEFF Research Database (Denmark)

    Werner Petersen, Erik

    2005-01-01

    production. In Kafka: Toward a Minor Literature, Deleuze and Guatari gave the most comprehensive explanation to the abstract machine in the work of art. Like the war-machines of Virilio, the Kafka-machine operates in three gears or speeds. Furthermore, the machine is connected to spatial diagrams...

  17. The impact of long-term water stress on relative growth rate and morphology of needles and shoots of Metasequoia glyptostroboides seedlings: research toward identifying mechanistic models.

    Science.gov (United States)

    Zhang, Yanxiang; Equiza, Maria Alejandra; Zheng, Quanshui; Tyree, Melvin T

    2011-09-01

    Leaf morphology in the upper canopy of trees tends to be different from that lower down. The effect of long-term water stress on leaf growth and morphology was studied in seedlings of Metasequoia glyptostroboides to understand how tree height might affect leaf morphology in larger trees. Tree height increases water stress on growing leaves through increased hydraulic resistance to water flow and increased gravitational potential, hence we assume that water stress imposed by soil dehydration will have an effect equivalent to stress induced by height. Seedlings were subjected to well-watered and two constant levels of long-term water stress treatments. Drought treatment significantly reduced final needle count, area and mass per area (leaf mass area, LMA) and increased needle density. Needles from water-stressed plants had lower maximum volumetric elastic modulus (ε(max)), osmotic potential at full turgor (Ψ¹⁰⁰(π)) (and at zero turgor (Ψ⁰(π)) (than those from well-watered plants. Palisade and spongy mesophyll cell size and upper epidermal cell size decreased significantly in drought treatments. Needle relative growth rate, needle length and cell sizes were linear functions of the daily average water potential at the time of leaf growth (r² 0.88-0.999). We conclude that water stress alone does mimic the direction and magnitude of changes in leaf morphology observed in tall trees. The results are discussed in terms of various models for leaf growth rate. Copyright © Physiologia Plantarum 2011.

  18. Effect of machining fluid on the process performance of wire electrical discharge machining of nanocomposite ceramic

    Directory of Open Access Journals (Sweden)

    Zhang Chengmao

    2015-01-01

    Full Text Available Wire electric discharge machining (WEDM promise to be effective and economical techniques for the production of tools and parts from conducting ceramic blanks. However, the manufacturing of nanocomposite ceramics blanks with these processes is a long and costly process. This paper presents a new process of machining nanocomposite ceramics using WEDM. WEDM uses water based emulsion, polyvinyl alcohol and distilled water as the machining fluid. Machining fluid is a primary factor that affects the material removal rate and surface quality of WEDM. The effects of emulsion concentration, polyvinyl alcohol concentration and distilled water of the machining fluid on the process performance have been investigated.

  19. Modeling of Kashmir Aftershock Decay Based on Static Coulomb Stress Changes and Laboratory-Derived Rate-and-State Dependent Friction Law

    Science.gov (United States)

    Javed, F.; Hainzl, S.; Aoudia, A.; Qaisar, M.

    2016-05-01

    We model the spatial and temporal evolution of October 8, 2005 Kashmir earthquake's aftershock activity using the rate-and-state dependent friction model incorporating uncertainties in computed coseismic stress perturbations. We estimated the best possible value for frictional resistance " Aσ n", background seismicity rate " r" and coefficient of stress variation "CV" using maximum log-likelihood method. For the whole Kashmir earthquake sequence, we measure a frictional resistance Aσ n ~ 0.0185 MPa, r ~ 20 M3.7+ events/year and CV = 0.94 ± 0.01. The spatial and temporal forecasted seismicity rate of modeled aftershocks fits well with the spatial and temporal distribution of observed aftershocks that occurred in the regions with positive static stress changes as well as in the apparent stress shadow region. To quantify the effect of secondary aftershock triggering, we have re-run the estimations for 100 stochastically declustered catalogs showing that the effect of aftershock-induced secondary stress changes is obviously minor compared to the overall uncertainties, and that the stress variability related to uncertain slip model inversions and receiver mechanisms remains the major factor to provide a reasonable data fit.

  20. Effects of a multidisciplinary stress treatment programme on patient return to work rate and symptom reduction: results from a randomised, wait-list controlled trial.

    Science.gov (United States)

    Netterstrøm, Bo; Friebel, Lene; Ladegaard, Yun

    2013-01-01

    To evaluate the efficacy of a multidisciplinary stress treatment programme. General practitioners referred 198 employed patients on sick leave with symptoms of persistent work-related stress. Using a waitlisted randomised controlled trial design, the participants were randomly divided into the following three groups: the intervention group (IG, 69 participants); treatment-as-usual control group (TAUCG, 71 participants), which received 12 consultations with a psychologist, and the waitlisted control group (WLCG, 58 participants). The stress treatment intervention consisted of nine 1-hour sessions conducted over 3 months. The goals of the sessions were the following: (1) identifying relevant stressors; (2) changing the participant's coping strategies; (3) adjusting the participant's workload and tasks, and (4) improving workplace dialogue. Each participant also attended a mindfulness-based stress reduction (MBSR) course for 2 h a week over 8 weeks. The IG and TAUCG showed significantly greater symptom level (Symptom Check List 92) reductions compared to the WLCG. Regarding the return to work (RTW) rate, 67% of participants in the IG returned to full-time work after treatment, which was a significantly higher rate than in the TAUCG (36%) and WLCG (24%). Significantly more participants in the IG (97%) increased their working hours during treatment compared with the participants in the control groups, TAUCG (71%) and WLCG (64%). The stress treatment programme--a combination of work place-focused psychotherapy and MBSR--significantly reduced stress symptom levels and increased RTW rates compared with the WLCG and TAUCG. Copyright © 2013 S. Karger AG, Basel.

  1. Effect of Machining Parameters on Surface Integrity in Machining Nimonic C-263 Super Alloy Using Whisker-Reinforced Ceramic Insert

    Science.gov (United States)

    Ezilarasan, C.; Senthil kumar, V. S.; Velayudham, A.

    2013-06-01

    Whisker-reinforced ceramic inserts were used to conduct turning trials on nimonic C-263 super alloy to study the effect of different combinations of cutting parameters on surface integrity (roughness, microhardness, and residual stress) by employing energy dispersive spectroscopy, scanning electron microscopy, x-ray diffraction, and Vicker's microhardness test. Abrasion, adhesion and diffusion were found to be the main tool wear mechanisms in turning nimonic C-263 alloy. Based on characterization of surface roughness, a combination of 190 m/min cutting speed and 0.102 mm/rev feed rate was found to be the critical condition for turning nimonic C-263 alloy. Microhardness varied between 550 and 690 HV at the feed rates of 0.102-0.143 mm/rev for a cutting speed of 250 m/min after 9 min of turning. A tensile residual stress of 725-850 MPa on the machined surface was recorded at the preceding combination of cutting parameters. Cutting speed and cutting time had a dominant effect on the magnitude of the residual stress. No evidence of thermal relaxation and reduction in the degree of work hardening was noted during machining at high cutting speed.

  2. Residual Stresses in 21-6-9 Stainless Steel Warm Forgings

    Energy Technology Data Exchange (ETDEWEB)

    Everhart, Wesley A.; Lee, Jordan D.; Broecker, Daniel J.; Bartow, John P.; McQueen, Jamie M.; Switzner, Nathan T.; Neidt, Tod M.; Sisneros, Thomas A.; Brown, Donald W.

    2012-11-14

    Forging residual stresses are detrimental to the production and performance of derived machined parts due to machining distortions, corrosion drivers and fatigue crack drivers. Residual strains in a 21-6-9 stainless steel warm High Energy Rate Forging (HERF) were measured via neutron diffraction. The finite element analysis (FEA) method was used to predict the residual stresses that occur during forging and water quenching. The experimentally measured residual strains were used to calibrate simulations of the three-dimensional residual stress state of the forging. ABAQUS simulation tools predicted residual strains that tend to match with experimental results when varying yield strength is considered.

  3. Knitting Force Measurement on Flat Knitting Machines

    Directory of Open Access Journals (Sweden)

    A. Fouda

    2014-01-01

    Full Text Available Knittability can be defined as the ability of yarns to run on knitting machines without problems. Knittability can be achieved when less stress is applied on the knitting machine parts by the knitting yarns. This paper presents a novel measuring system for the knitting force needed to perform knitting yarns on flat knitting machine based on data acquisition system (DAS. The proposed system is used to measure the knitting force at different machine settings and different properties of the knitting yarns to determine the optimal production conditions. For this reason, three types of knitted fabric structures (single jersey, Rib 1 × 1, and full cardigan with three different loop lengths and five different twists of ply yarn were produced. The obtained results showed the optimal yarn ply twist factor (αe which gave minimum knitting force (less stress on needles or knitting yarns at different loop lengths for each structure.

  4. Design of an electrochemical micromachining machine

    OpenAIRE

    Spieser, A; Ivanov, A.

    2014-01-01

    Electrochemical micromachining (μECM) is a non-conventional machining process based on the phenomenon of electrolysis. μECM became an attractive area of research due to the fact that this process does not create any defective layer after machining and that there is a growing demand for better surface integrity on different micro applications including microfluidics systems, stress-free drilled holes in automotive and aerospace manufacturing with complex shapes, etc. This work presents the des...

  5. Electrical-Discharge Machining With Additional Axis

    Science.gov (United States)

    Malinzak, Roger M.; Booth, Gary N.

    1991-01-01

    Proposed electrical-discharge-machining (EDM) apparatus uses moveable vertical wire as electrode. Wire positionable horizontally along one axis as it slides vertically past workpiece. Workpiece indexed in rotation about horizontal axis. Because of symmetry of parts, process used to make two such parts at a time by defining boundary between them. Advantages: cost of material reduced, imparts less residual stress to workpiece, and less time spent machining each part when parts produced in such symmetrical pairs.

  6. Estimation of Rate of Strain Magnitude and Average Viscosity in Turbulent Flow of Shear Thinning and Yield Stress Fluids

    Science.gov (United States)

    Sawko, Robert; Thompson, Chris P.

    2010-09-01

    This paper presents a series of numerical simulations of non-Newtonian fluids in high Reynolds number flows in circular pipes. The fluids studied in the computations have shear-thinning and yield stress properties. Turbulence is described using the Reynolds-Averaged Navier-Stokes (RANS) equations with the Boussinesq eddy viscosity hypothesis. The evaluation of standard, two-equation models led to some observations regarding the order of magnitude as well as probabilistic information about the rate of strain. We argue that an accurate estimate of the rate of strain tensor is essential in capturing important flow features. It is first recognised that an apparent viscosity comprises two flow dependant components: one originating from rheology and the other from the turbulence model. To establish the relative significance of the terms involved, an order of magnitude analysis has been performed. The main observation supporting further discussion is that in high Reynolds number regimes the magnitudes of fluctuating rates of strain and fluctuating vorticity dominate the magnitudes of their respective averages. Since these quantities are included in the rheological law, the values of viscosity obtained from the fluctuating and mean velocity fields are different. Validation against Direct Numerical Simulation data shows at least an order of magnitude discrepancy in some regions of the flow. Moreover, the predictions of the probabilistic analysis show a favourable agreement with statistics computed from DNS data. A variety of experimental, as well as computational data has been collected. Data come from the latest experiments by Escudier et al. [1], DNS from Rudman et al. [2] and zeroth-order turbulence models of Pinho [3]. The fluid rheologies are described by standard power-law and Herschel-Bulkley models which make them suitable for steady state calculations of shear flows. Suitable regularisations are utilised to secure numerical stability. Two new models have been

  7. A Modified Eyring Equation for Modeling Yield and Flow Stresses of Metals at Strain Rates Ranging from 10−5 to 5 × 104 s−1

    Directory of Open Access Journals (Sweden)

    Ramzi Othman

    2015-01-01

    Full Text Available In several industrial applications, metallic structures are facing impact loads. Therefore, there is an important need for developing constitutive equations which take into account the strain rate sensitivity of their mechanical properties. The Johnson-Cook equation was widely used to model the strain rate sensitivity of metals. However, it implies that the yield and flow stresses are linearly increasing in terms of the logarithm of strain rate. This is only true up to a threshold strain rate. In this work, a three-constant constitutive equation, assuming an apparent activation volume which decreases as the strain rate increases, is applied here for some metals. It is shown that this equation fits well the experimental yield and flow stresses for a very wide range of strain rates, including quasi-static, high, and very high strain rates (from 10−5 to 5 × 104 s−1. This is the first time that a constitutive equation is showed to be able to fit the yield stress over a so large strain rate range while using only three material constants.

  8. Utility of Vital Signs, Heart-rate Variability and Complexity, and Machine Learning for Identifying the Need for Life-saving Interventions in Trauma Patients

    Science.gov (United States)

    2014-08-01

    nurses nor an electronic monitor provides accurate measurements of respiratory rate in triage . Ann Emerg Med 45:68Y76, 2005. 13. Batchinsky AI, Cooke...WVSMVWireless Vital Signs Monitor INTRODUCTION Capture of high-frequency (HF) data for real-time triage and assessment of trauma patients is now a viable...to assess battlefield injuries (automated triage ) (2, 6). Although the last few decades have witnessed an emergence of various CDS systems and studies

  9. Prediction of compounds activity in nuclear receptor signaling and stress pathway assays using machine learning algorithms and low dimensional molecular descriptors

    Directory of Open Access Journals (Sweden)

    Filip eStefaniak

    2015-12-01

    Full Text Available Toxicity evaluation of newly synthesized or used compounds is one of the main challenges during product development in many areas of industry. For example, toxicity is the second reason - after lack of efficacy - for failure in preclinical and clinical studies of drug candidates. To avoid attrition at the late stage of the drug development process, the toxicity analyses are employed at the early stages of a discovery pipeline, along with activity and selectivity enhancing. Although many assays for screening in vitro toxicity are available, their massive application is not always time and cost effective. Thus the need for fast and reliable in silico tools, which can be used not only for toxicity prediction of existing compounds, but also for prioritization of compounds planned for synthesis or acquisition. Here I present the benchmark results of the combination of various attribute selection methods and machine learning algorithms and their application to the data sets of the Tox21 Data Challenge. The best performing method: Best First for attribute selection with the Rotation Forest/ADTree classifier offers good accuracy for most tested cases. For 11 out of 12 targets, the AUROC value for the final evaluation set was ≥0.72, while for three targets the AUROC value was ≥ 0.80, with the average AUROC being 0.784±0.069. The use of two-dimensional descriptors sets enables fast screening and compound prioritization even for a very large database. Open source tools used in this project make the presented approach widely available and encourage the community to further improve the presented scheme.

  10. Continuous In-The-Field Measurement of Heart Rate: Correlates of Drug Use, Craving, Stress, and Mood in Polydrug Users

    Science.gov (United States)

    Kennedy, Ashley P.; Epstein, David H.; Jobes, Michelle L.; Agage, Daniel; Tyburski, Matthew; Phillips, Karran A.; Ali, Amin Ahsan; Bari, Rummana; Hossain, Syed Monowar; Hovsepian, Karen; Rahman, Md. Mahbubur; Ertin, Emre; Kumar, Santosh; Preston, Kenzie L.

    2015-01-01

    Background Ambulatory physiological monitoring could clarify antecedents and consequences of drug use and could contribute to a sensor-triggered mobile intervention that automatically detects behaviorally risky situations. Our goal was to show that such monitoring is feasible and can produce meaningful data. Methods We assessed heart rate (HR) with AutoSense, a suite of biosensors that wirelessly transmits data to a smartphone, for up to four weeks in 40 polydrug users in opioid-agonist maintenance as they went about their daily lives. Participants also self-reported drug use, mood, and activities on electronic diaries. We compared HR with self-report using multilevel modeling (SAS Proc Mixed). Results Compliance with AutoSense was good; the data yield from the wireless electrocardiographs was 85.7%. HR was higher when participants reported cocaine use than when they reported heroin use (F(2,9) = 250.3, p<.0001) and was also higher as a function of the dose of cocaine reported (F(1,8) = 207.7, p<.0001). HR was higher when participants reported craving heroin (F(1,16)=230.9, p<.0001) or cocaine (F(1,14)=157.2, p<.0001) than when they reported of not craving. HR was lower (p<.05) in randomly prompted entries in which participants reported feeling relaxed, feeling happy, or watching TV, and was higher when they reported feeling stressed, being hassled, or walking. Conclusions High-yield, high-quality heart-rate data can be obtained from drug users in their natural environment as they go about their daily lives, and the resultant data robustly reflect episodes of cocaine and heroin use and other mental and behavioral events of interest. PMID:25920802

  11. Active chatter control in a milling machine

    Energy Technology Data Exchange (ETDEWEB)

    Dohner, J.L.; Hinnerichs, T.D.; Lauffer, J.P. [and others

    1997-08-01

    The use of active feedback compensation to mitigate cutting instabilities in an advanced milling machine is discussed in this paper. A linear structural model delineating dynamics significant to the onset of cutting instabilities was combined with a nonlinear cutting model to form a dynamic depiction of an existing milling machine. The model was validated with experimental data. Modifications made to an existing machine model were used to predict alterations in dynamics due to the integration of active feedback compensation. From simulations, subcomponent requirements were evaluated and cutting enhancements were predicted. Active compensation was shown to enable more than double the metal removal rate over conventional milling machines. 25 refs., 10 figs., 1 tab.

  12. Rates and predictors of mental stress in Rwanda: investigating the impact of gender, persecution, readiness to reconcile and religiosity via a structural equation model.

    Science.gov (United States)

    Heim, Lale; Schaal, Susanne

    2014-01-01

    As a consequence of the 1994 Rwandan genocide, prevalences of mental disorders are elevated in Rwanda. More knowledge about determinants of mental stress can help to improve mental health services and treatment in the east-central African country. The present study aimed to investigate actual rates of mental stress (posttraumatic stress disorder, syndromal depression and syndromal anxiety) in Rwanda and to examine if gender, persecution during the genocide, readiness to reconcile as well as importance given to religiosity and quality of religiosity are predictors of mental stress. The study comprised a community sample of N = 200 Rwandans from Rwanda's capital Kigali, who experienced the Rwandan genocide. By conducting structured interviews, ten local Master level psychologists examined types of potentially lifetime traumatic events, symptoms of posttraumatic stress disorder (PTSD), depression and anxiety, readiness to reconcile and religiosity. Applying non-recursive structural equation modeling (SEM), the associations between gender, persecution, readiness to reconcile, religiosity and mental stress were investigated. Respondents had experienced an average number of 11.38 types of potentially lifetime traumatic events. Of the total sample, 11% met diagnostic criteria for PTSD, 19% presented with syndromal depression and 23% with syndromal anxiety. Female sex, persecution and readiness to reconcile were significant predictors of mental stress. Twofold association was found between centrality of religion (which captures the importance given to religiosity) and mental stress, showing, that higher mental stress provokes a higher centrality and that higher centrality reduces mental stress. The variables positive and negative religious functioning (which determine the quality of religiosity) respectively had an indirect negative and positive effect on mental stress. Study results provide evidence that rates of mental stress are still elevated in Rwanda and that

  13. Theoretical prediction of energy release rate for interface crack initiation by thermal stress in environmental barrier coatings for ceramics

    Science.gov (United States)

    Kawai, E.; Umeno, Y.

    2017-05-01

    As weight reduction of turbines for aircraft engines is demanded to improve fuel consumption and curb emission of carbon dioxide, silicon carbide (SiC) fiber reinforced SiC matrix composites (SiC/SiC) are drawing enormous attention as high-pressure turbine materials. For preventing degradation of SiC/SiC, environmental barrier coatings (EBC) for ceramics are deposited on the composites. The purpose of this study is to establish theoretical guidelines for structural design which ensures the mechanical reliability of EBC. We conducted finite element method (FEM) analysis to calculate energy release rates (ERRs) for interface crack initiation due to thermal stress in EBC consisting of Si-based bond coat, Mullite and Ytterbium (Yb)-silicate layers on a SiC/SiC substrate. In the FEM analysis, the thickness of one EBC layer was changed from 25 μm to 200 μm while the thicknesses of the other layers were fixed at 25 μm, 50 μm and 100 μm. We compared ERRs obtained by the FEM analysis and a simple theory for interface crack in a single-layered structure where ERR is estimated as nominal strain energy in the coating layers multiplied by a constant factor (independent of layer thicknesses). We found that, unlike the case of single-layered structures, the multiplication factor is no longer a constant but is determined by the combination of consisting coating layer thicknesses.

  14. Spectrum Assignment Algorithm for Cognitive Machine-to-Machine Networks

    Directory of Open Access Journals (Sweden)

    Soheil Rostami

    2016-01-01

    Full Text Available A novel aggregation-based spectrum assignment algorithm for Cognitive Machine-To-Machine (CM2M networks is proposed. The introduced algorithm takes practical constraints including interference to the Licensed Users (LUs, co-channel interference (CCI among CM2M devices, and Maximum Aggregation Span (MAS into consideration. Simulation results show clearly that the proposed algorithm outperforms State-Of-The-Art (SOTA algorithms in terms of spectrum utilisation and network capacity. Furthermore, the convergence analysis of the proposed algorithm verifies its high convergence rate.

  15. Observed Rates of Lower Extremity Stress Fractures After Implementation of the Army Physical Readiness Training Program at JBSA Fort Sam Houston.

    Science.gov (United States)

    Chalupa, Robyn L; Aberle, Curtis; Johnson, Anthony E

    2016-01-01

    Millions of dollars are lost each year to the US military in medical discharges from injuries sustained in the initial training of recruits. Most medical discharges in recruits are related to musculoskeletal overuse injuries, including stress fractures. Any strategies that can reduce injury rates are also likely to reduce rates of medical discharge. This study evaluated the Army Physical Readiness Training (PRT) program which was established to provide a method of physical fitness training that would reduce the number of preventable injuries. We conducted a retrospective study to evaluate the number of lower extremity stress fractures that were diagnosed in the 6 months prior to and 6 months following the implementation of the PRT program. Electronic medical records were queried for specific diagnoses of stress fractures to the pelvis, femoral neck, femoral shaft, tibia, fibula, tarsals and metatarsals. The observed number of diagnoses in each time period were compared using the χ² method. Decrease was shown not only in the overall occurrence of stress fractures, but specifically in the occurrence of stress fractures of the femoral neck, femoral shaft, and tarsals. Our study was able to show a correlation between the PRT program and a decrease in the observed occurrence of lower extremity stress fractures.

  16. Experimental Investigation of Machining Parameters in Drilling Operation Using Conventional and CNC Machines on Titanium Alloy

    Directory of Open Access Journals (Sweden)

    B.Suresh kumar

    2014-05-01

    Full Text Available Titanium alloy is one of the newer materials in manufacturing industries due to its high strength to weight ratio and corrosion resistance properties. Making a hole on this component is very difficult task due to its poor machinability. Hence, the machining parameter investigation on titanium alloy material is very important for predicting the drilling performance characteristics. In addition, the modern manufacturing industries are used the conventional drilling machine and CNC drilling machines for making a hole. In the sense, the main aim of this work is to investigate the machining parameters on vibration, thrust force, torque, machining time, burr dimension, tool wear and surface roughness occurrences when drilling titanium alloy with conventional and CNC machines. The effects of spindle speed and feed rate on these responses were reported.

  17. Non-Invasive Assessment of the Interrelationships of Diet, Pregnancy Rate, Group Composition, and Physiological and Nutritional Stress of Barren-Ground Caribou in Late Winter.

    Science.gov (United States)

    Joly, Kyle; Wasser, Samuel K; Booth, Rebecca

    2015-01-01

    The winter diet of barren-ground caribou may affect adult survival, timing of parturition, neonatal survival, and postpartum mass. We used microhistological analyses and hormone levels in feces to determine sex-specific late-winter diets, pregnancy rates, group composition, and endocrine-based measures of physiological and nutritional stress. Lichens, which are highly digestible but contain little protein, dominated the diet (> 68%) but were less prevalent in the diets of pregnant females as compared to non-pregnant females and males. The amount of lichens in the diets of pregnant females decreased at higher latitudes and as winter progressed. Pregnancy rates (82.1%, 95% CI = 76.0 - 88.1%) of adult cows were within the expected range for a declining herd, while pregnancy status was not associated with lichen abundance in the diet. Most groups (80%) were of mixed sex. Male: female ratios (62:100) were not skewed enough to affect the decline. Levels of hormones indicating nutritional stress were detected in areas of low habitat quality and at higher latitudes. Levels of hormones indicated that physiological stress was greatest for pregnant cows, which faced the increasing demands of gestation in late winter. These fecal-based measures of diet and stress provided contextual information for the potential mechanisms of the ongoing decline. Non-invasive techniques, such as monitoring diets, pregnancy rates, sex ratios and stress levels from fecal samples, will become increasingly important as monitoring tools as the industrial footprint continues to expand in the Arctic.

  18. Machine tool structures

    CERN Document Server

    Koenigsberger, F

    1970-01-01

    Machine Tool Structures, Volume 1 deals with fundamental theories and calculation methods for machine tool structures. Experimental investigations into stiffness are discussed, along with the application of the results to the design of machine tool structures. Topics covered range from static and dynamic stiffness to chatter in metal cutting, stability in machine tools, and deformations of machine tool structures. This volume is divided into three sections and opens with a discussion on stiffness specifications and the effect of stiffness on the behavior of the machine under forced vibration c

  19. Influence of Cutting Parameters and Tool Wear on the Surface Integrity of Cobalt-Based Stellite 6 Alloy When Machined Under a Dry Cutting Environment

    Science.gov (United States)

    Yingfei, Ge; de Escalona, Patricia Muñoz; Galloway, Alexander

    2016-11-01

    The efficiency of a machining process can be measured by evaluating the quality of the machined surface and the tool wear rate. The research reported herein is mainly focused on the effect of cutting parameters and tool wear on the machined surface defects, surface roughness, deformation layer and residual stresses when dry milling Stellite 6, deposited by overlay on a carbon steel surface. The results showed that under the selected cutting conditions, abrasion, diffusion, peeling, chipping and breakage were the main tool wear mechanisms presented. Also the feed rate was the primary factor affecting the tool wear with an influence of 83%. With regard to the influence of cutting parameters on the surface roughness, the primary factors were feed rate and cutting speed with 57 and 38%, respectively. In addition, in general, as tool wear increased, the surface roughness increased and the deformation layer was found to be influenced more by the cutting parameters rather than the tool wear. Compressive residual stresses were observed in the un-machined surface, and when machining longer than 5 min, residual stress changed 100% from compression to tension. Finally, results showed that micro-crack initiation was the main mechanism for chip formation.

  20. Risk-factors for stress-related absence among health care employees: a bio-psychosocial perspective. Associations between self-rated health, working conditions and biological stress hormones

    Directory of Open Access Journals (Sweden)

    Ann-Sophie Hansson

    2006-12-01

    Full Text Available

    Background: Stress is a major cause of sickness absence and the health care sector appears to be especially at risk. This cross sectional study aimed to identify the risk factors for absence due to self-reported stress among health care employees. Methods: 225 health care employees were categorized into two groups based on presence or not of self-rated sickness absence for stress. Questionnaire data and stress sensitive hormones measurements were used.

    Results: Employees with stress related sick leave experienced worse health, poorer work satisfaction as well as worse social and home situations than those employees without stress-related sick leave. No-significant differences were identified regarding stress-sensitive hormones. The risk for employees, not satisfied at work, of becoming absent due to stress was approximately three fold compared to those who reported being satisfied (OR 2.8, 95% confidence interval; (CI 1.3 - 5.9. For those not satisfied with their social situation, the risk for sickness absence appeared to be somewhat higher (OR 3.2; CI 1.2 - 8.6. Individual factors such as recovery potential and meaning of life as well as work related factors such as skill development and work tempo predicted employee’ s work satisfaction.

    Conclusions: Based on cross sectional data, work-site and individual factors as well as social situations appear to increase the risk for absence due to stress among health care employees. Lower recovery potential, higher work tempo and poor leadership appeared to be related to the high degree of work related exhaustion experienced by employees.

  1. Implementation of an Associative Flow Rule Including Hydrostatic Stress Effects Into the High Strain Rate Deformation Analysis of Polymer Matrix Composites

    Science.gov (United States)

    Goldberg, Robert K.; Roberts, Gary D.; Gilat, Amos

    2003-01-01

    A previously developed analytical formulation has been modified in order to more accurately account for the effects of hydrostatic stresses on the nonlinear, strain rate dependent deformation of polymer matrix composites. State variable constitutive equations originally developed for metals have been modified in order to model the nonlinear, strain rate dependent deformation of polymeric materials. To account for the effects of hydrostatic stresses, which are significant in polymers, the classical J2 plasticity theory definitions of effective stress and effective inelastic strain, along with the equations used to compute the components of the inelastic strain rate tensor, are appropriately modified. To verify the revised formulation, the shear and tensile deformation of two representative polymers are computed across a wide range of strain rates. Results computed using the developed constitutive equations correlate well with experimental data. The polymer constitutive equations are implemented within a strength of materials based micromechanics method to predict the nonlinear, strain rate dependent deformation of polymer matrix composites. The composite mechanics are verified by analyzing the deformation of a representative polymer matrix composite for several fiber orientation angles across a variety of strain rates. The computed values compare well to experimentally obtained results.

  2. 四位配料机料仓及支架的应力分析%Stress Analysis of Material Silo and Frame Rack for Four Positioned Batching Machine

    Institute of Scientific and Technical Information of China (English)

    赵文英; 戚晓利; 冯建有; 唐润秋; 李芃; 汪敏

    2012-01-01

    以KQ系列四位配料机作为研究对象,参照贮仓散体力学方面的经典Janssen理论,推导出用于计算配料机储料仓粉体法向静压力分布的解析公式;利用SolidWorks软件建立四位配料机的三维整体模型,并导入ANSYS施加当量载荷和相关约束后进行求解.计算结果表明,四位配料机除计量吊耳处米赛斯应力较大,超过了材料的屈服极限外,其余部件均满足设计要求.本研究为四位配料机储料仓的优化设计提供了理论依据,具有一定的参考价值.%A KQ scries 4-positioned batching machine was taken as the study object by referring to classic Janssen theory of mechanics of granular media in the silo to have deduced interpretive formulas to be used to compute normal static pressure distribution of granular media in the batcher's silo. We utilized SolidWorks software to have constructed a 3-D integral model for the 4-positioned batcher while gathering ANSYS to apply an equivalent load and relevant constraints thereto for a solution. Computation results tells desirable stresses as the design requires except for high von Mises stress at the measuring pivots of the 4-positioned batcher that exceeds yield limits of the material. Therefore, the study can provide theoretical bases for designing 4-positioned batcher silo in the future in terms of optimized design for the purpose, thus having got a certain value of reference.

  3. Aerosols generated during beryllium machining.

    Science.gov (United States)

    Martyny, J W; Hoover, M D; Mroz, M M; Ellis, K; Maier, L A; Sheff, K L; Newman, L S

    2000-01-01

    Some beryllium processes, especially machining, are associated with an increased risk of beryllium sensitization and disease. Little is known about exposure characteristics contributing to risk, such as particle size. This study examined the characteristics of beryllium machining exposures under actual working conditions. Stationary samples, using eight-stage Lovelace Multijet Cascade Impactors, were taken at the process point of operation and at the closest point that the worker would routinely approach. Paired samples were collected at the operator's breathing zone by using a Marple Personal Cascade Impactor and a 35-mm closed-faced cassette. More than 50% of the beryllium machining particles in the breathing zone were less than 10 microns in aerodynamic diameter. This small particle size may result in beryllium deposition into the deepest portion of the lung and may explain elevated rates of sensitization among beryllium machinists.

  4. Product of heart rate and first heart sound amplitude as an index of myocardial metabolic stress during graded exercise.

    Science.gov (United States)

    Tanaka, Hiroaki; Matsuda, Takuro; Tobina, Takuro; Yamada, Yousuke; Yamagishi, Tamiharu; Sakai, Hideaki; Obara, Shigeru; Higaki, Yasuki; Kiyonaga, Akira; Brubaker, Peter H

    2013-01-01

    The double product (DP) breakpoint of heart rate (HR) and systolic blood pressure has been identified as coincident with anaerobic threshold (AT), but there are no simple methods for measuring cardiac metabolic stress (CMS) during an exercise test. It was hypothesized that the DP of HR and the amplitude of the first heart sound (AHS1) (DP-AHS1) would reflect CMS, and thus, the breakpoint in the DP-AHS1 (DPBP-AHS1) could be an alternative method for determining AT. Subjects (age range, 18-73 years) were recruited to perform a graded exercise test on a cycle ergometer with continuous monitoring of DP-AHS1, with left ventricular pressure (LVP; experiment 1, Ex1), plasma catecholamine and blood lactate (experiment 2, Ex2) and gas exchange (experiment 3, Ex3). Ex1: in all subjects there was a strong correlation between AHS1 and LVdP/dtmax (r=0.94-0.98), and between the DP-AHS1 and the triple product of HR, LVdP/dtmax, and max LVP (r=0.98-0.99). Ex2: DP-AHS1 was strongly correlated with adrenaline (r=0.97-1.00) and lactate (r=0.96-1.00) levels in all subjects. Ex3: there was a strong correlation between DPBP-AHS1, AT and maximum oxygen consumption. The present simple measure of DP-AHS1 can reflect plasma adrenaline and lactate levels during graded exercise testing. Further, DPBP-AHS1 is a surrogate marker of AT and a good index of functional aerobic capacity.

  5. Iron Oxide Nanoparticle Agglomeration Influences Dose-Rates and Modulates Oxidative Stress Mediated Dose-Response Profiles In Vitro

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Gaurav; Kodali, Vamsi K.; Gaffrey, Matthew J.; Wang, Wei; Minard, Kevin R.; Karin, Norman J.; Teeguarden, Justin G.; Thrall, Brian D.

    2013-07-31

    Spontaneous agglomeration of engineered nanoparticles (ENPs) is a common problem in cell culture media which can confound interpretation of in vitro nanotoxicity studies. The authors created stable agglomerates of iron oxide nanoparticles (IONPs) in conventional culture medium, which varied in hydrodynamic size (276 nm-1.5 μm) but were composed of identical primary particles with similar surface potentials and protein coatings. Studies using C10 lung epithelial cells show that the dose rate effects of agglomeration can be substantial, varying by over an order of magnitude difference in cellular dose in some cases. Quantification by magnetic particle detection showed that small agglomerates of carboxylated IONPs induced greater cytotoxicity and redox-regulated gene expression when compared with large agglomerates on an equivalent total cellular IONP mass dose basis, whereas agglomerates of amine-modified IONPs failed to induce cytotoxicity or redox-regulated gene expression despite delivery of similar cellular doses. Dosimetry modelling and experimental measurements reveal that on a delivered surface area basis, large and small agglomerates of carboxylated IONPs have similar inherent potency for the generation of ROS, induction of stress-related genes and eventual cytotoxicity. The results suggest that reactive moieties on the agglomerate surface are more efficient in catalysing cellular ROS production than molecules buried within the agglomerate core. Because of the dynamic, size and density-dependent nature of ENP delivery to cells in vitro, the biological consequences of agglomeration are not discernible from static measures of exposure concentration (μg/ml) alone, highlighting the central importance of integrated physical characterisation and quantitative dosimetry for in vitro studies. The combined experimental and computational approach provides a quantitative framework for evaluating relationships between the biocompatibility of nanoparticles and their

  6. The study on force, surface integrity, tool life and chip on laser assisted machining of inconel 718 using Nd:YAG laser source.

    Science.gov (United States)

    Venkatesan, K

    2017-07-01

    Inconel 718, a high-temperature alloy, is a promising material for high-performance aerospace gas turbine engines components. However, the machining of the alloy is difficult owing to immense shear strength, rapid work hardening rate during turning, and less thermal conductivity. Hence, like ceramics and composites, the machining of this alloy is considered as difficult-to-turn materials. Laser assisted turning method has become a promising solution in recent years to lessen cutting stress when materials that are considered difficult-to-turn, such as Inconel 718 is employed. This study investigated the influence of input variables of laser assisted machining on the machinability aspect of the Inconel 718. The comparison of machining characteristics has been carried out to analyze the process benefits with the variation of laser machining variables. The laser assisted machining variables are cutting speeds of 60-150 m/min, feed rates of 0.05-0.125 mm/rev with a laser power between 1200 W and 1300 W. The various output characteristics such as force, roughness, tool life and geometrical characteristic of chip are investigated and compared with conventional machining without application of laser power. From experimental results, at a laser power of 1200 W, laser assisted turning outperforms conventional machining by 2.10 times lessening in cutting force, 46% reduction in surface roughness as well as 66% improvement in tool life when compared that of conventional machining. Compared to conventional machining, with the application of laser, the cutting speed of carbide tool has increased to a cutting condition of 150 m/min, 0.125 mm/rev. Microstructural analysis shows that no damage of the subsurface of the workpiece.

  7. The study on force, surface integrity, tool life and chip on laser assisted machining of inconel 718 using Nd:YAG laser source

    Directory of Open Access Journals (Sweden)

    K. Venkatesan

    2017-07-01

    Full Text Available Inconel 718, a high-temperature alloy, is a promising material for high-performance aerospace gas turbine engines components. However, the machining of the alloy is difficult owing to immense shear strength, rapid work hardening rate during turning, and less thermal conductivity. Hence, like ceramics and composites, the machining of this alloy is considered as difficult-to-turn materials. Laser assisted turning method has become a promising solution in recent years to lessen cutting stress when materials that are considered difficult-to-turn, such as Inconel 718 is employed. This study investigated the influence of input variables of laser assisted machining on the machinability aspect of the Inconel 718. The comparison of machining characteristics has been carried out to analyze the process benefits with the variation of laser machining variables. The laser assisted machining variables are cutting speeds of 60–150 m/min, feed rates of 0.05–0.125 mm/rev with a laser power between 1200 W and 1300 W. The various output characteristics such as force, roughness, tool life and geometrical characteristic of chip are investigated and compared with conventional machining without application of laser power. From experimental results, at a laser power of 1200 W, laser assisted turning outperforms conventional machining by 2.10 times lessening in cutting force, 46% reduction in surface roughness as well as 66% improvement in tool life when compared that of conventional machining. Compared to conventional machining, with the application of laser, the cutting speed of carbide tool has increased to a cutting condition of 150 m/min, 0.125 mm/rev. Microstructural analysis shows that no damage of the subsurface of the workpiece.

  8. Design of Demining Machines

    CERN Document Server

    Mikulic, Dinko

    2013-01-01

    In constant effort to eliminate mine danger, international mine action community has been developing safety, efficiency and cost-effectiveness of clearance methods. Demining machines have become necessary when conducting humanitarian demining where the mechanization of demining provides greater safety and productivity. Design of Demining Machines describes the development and testing of modern demining machines in humanitarian demining.   Relevant data for design of demining machines are included to explain the machinery implemented and some innovative and inspiring development solutions. Development technologies, companies and projects are discussed to provide a comprehensive estimate of the effects of various design factors and to proper selection of optimal parameters for designing the demining machines.   Covering the dynamic processes occurring in machine assemblies and their components to a broader understanding of demining machine as a whole, Design of Demining Machines is primarily tailored as a tex...

  9. Applied machining technology

    CERN Document Server

    Tschätsch, Heinz

    2010-01-01

    Machining and cutting technologies are still crucial for many manufacturing processes. This reference presents all important machining processes in a comprehensive and coherent way. It includes many examples of concrete calculations, problems and solutions.

  10. Machining with abrasives

    CERN Document Server

    Jackson, Mark J

    2011-01-01

    Abrasive machining is key to obtaining the desired geometry and surface quality in manufacturing. This book discusses the fundamentals and advances in the abrasive machining processes. It provides a complete overview of developing areas in the field.

  11. Women, Men, and Machines.

    Science.gov (United States)

    Form, William; McMillen, David Byron

    1983-01-01

    Data from the first national study of technological change show that proportionately more women than men operate machines, are more exposed to machines that have alienating effects, and suffer more from the negative effects of technological change. (Author/SSH)

  12. Machine medical ethics

    CERN Document Server

    Pontier, Matthijs

    2015-01-01

    The essays in this book, written by researchers from both humanities and sciences, describe various theoretical and experimental approaches to adding medical ethics to a machine in medical settings. Medical machines are in close proximity with human beings, and getting closer: with patients who are in vulnerable states of health, who have disabilities of various kinds, with the very young or very old, and with medical professionals. In such contexts, machines are undertaking important medical tasks that require emotional sensitivity, knowledge of medical codes, human dignity, and privacy. As machine technology advances, ethical concerns become more urgent: should medical machines be programmed to follow a code of medical ethics? What theory or theories should constrain medical machine conduct? What design features are required? Should machines share responsibility with humans for the ethical consequences of medical actions? How ought clinical relationships involving machines to be modeled? Is a capacity for e...

  13. Brain versus Machine Control.

    Directory of Open Access Journals (Sweden)

    Jose M Carmena

    2004-12-01

    Full Text Available Dr. Octopus, the villain of the movie "Spiderman 2", is a fusion of man and machine. Neuroscientist Jose Carmena examines the facts behind this fictional account of a brain- machine interface

  14. A Universal Reactive Machine

    DEFF Research Database (Denmark)

    Andersen, Henrik Reif; Mørk, Simon; Sørensen, Morten U.

    1997-01-01

    Turing showed the existence of a model universal for the set of Turing machines in the sense that given an encoding of any Turing machine asinput the universal Turing machine simulates it. We introduce the concept of universality for reactive systems and construct a CCS processuniversal...

  15. Atypical reactivity of heart rate variability to stress and depression across development: Systematic review of the literature and directions for future research.

    Science.gov (United States)

    Hamilton, Jessica L; Alloy, Lauren B

    2016-12-01

    Heart rate variability has received growing attention in the depression literature, with several recent meta-analyses indicating that lower resting heart rate variability is associated with depression. However, the role of fluctuations in heart rate variability (or reactivity) in response to stress in depression remains less clear. The present review provides a systematic examination of the literature on heart rate variability reactivity to a laboratory-induced stressor task and depression, including 26 studies of reactivity in heart rate variability and clinical depression, remitted (or history of) depression, and subthreshold depression (or symptom-level depression) among adults, adolescents, and children. In addition to reviewing the findings of these studies, methodological considerations and conceptual gaps in the literature are addressed. We conclude by highlighting the importance of investigating the potential transactional relationship between heart rate variability reactivity and depression and possible mechanisms underlying this relationship. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. The Effect of Drought Stress on Grain Yield and Oil Rate and Protein Percentage of Four Varieties Castor in Climatic Conditions of Damghan

    Directory of Open Access Journals (Sweden)

    Gh. Laei

    2012-08-01

    Full Text Available In this study theeffect ofdrought stress was investigated on grain yield and oil rate and protein percentage of four varieties of castor in the climatic conditions of Damghan. The experiment was done in the research farm of Damghan Islamic Azad University(Iranin 2011 assplit plots in a randomized complete block design with three replications. The main plots of drought stress were 5, 10 and15 days and another factor included four varities of castor ( one-flower, two- flower, local and red-flower which were performed in stable density of fivebushes per cultured square meter. Therefore, after gremination, the amount of irrigation water was recorded using volumetric meters. The traits evaluated included oil rate,seed protein percentage, andgrainyield. The results show that two-flower variety with 1241 kg per hectare on 5-day drought stress has the most grain yield. Most oil rate was observed in two-flower variety on 5 day drought stress with 496.4 kg/ha.

  17. Relations Among Mothers' Parenting Strategies, Parenting Stress, Psychological Well-Being, and Ratings of Preschool Child Competence

    OpenAIRE

    Morrison, Teri

    2000-01-01

    This study utilized archival data collected from mothers of 82 Head Start children. Relations among the following were examined: a number of parenting strategies taken from the "Home Survey" subscale of the American Guidance Services (AGS) Early Screening Profiles "Home-Health Questionnaire"; parenting stress (the Parenting Stress Index- Short Form or PSI-SF); scores in two dimensions of psychological well-being (the Center for Epidemiological Studies Measure of Depression or CES-D, and the P...

  18. Modeling the Effects of a Normal-Stress-Dependent State Variable, Within the Rate- and State-Dependent Friction Framework, at Stepovers and Dip-Slip Faults

    Science.gov (United States)

    Ryan, Kenny J.; Oglesby, David D.

    2017-03-01

    The development of the rate- and state-dependent friction framework (Dieterich Appl Geophys 116:790-806, 1978; J Geophys Res 84, 2161-2168, 1979; Ruina Friction laws and instabilities: a quasistatic analysis of some dry friction behavior, Ph.D. Thesis, Brown Univ., Providence, R.I., 1980; J Geophys Res 88:10359-10370, 1983) includes the dependence of friction coefficient on normal stress (Linker and Dieterich J Geophys Res 97:4923-4940, 1992); however, a direct dependence of the friction law on time-varying normal stress in dynamic stepover and dip-slip fault models has not yet been extensively explored. Using rate- and state-dependent friction laws and a 2-D dynamic finite element code (Barall J Int 178, 845-859, 2009), we investigate the effect of the Linker-Dieterich dependence of state variable on normal stress at stepovers and dip-slip faults, where normal stress should not be constant with time (e.g., Harris and Day J Geophys Res 98:4461-4472, 1993; Nielsen Geophys Res Lett 25:125-128, 1998). Specifically, we use the relation d ψ/d t = -( α/ σ)(d σ/d t) from Linker and Dieterich (J Geophys Res 97:4923-4940, 1992), in which a change in normal stress leads to a change in state variable of the opposite sign. We investigate a range of values for alpha, which scales the impact of the normal stress change on state, from 0 to 0.5 (laboratory values range from 0.2 to 0.56). For stepovers, we find that adding normal-stress dependence to the state variable delays or stops re-nucleation on the secondary fault segment when compared to normal-stress-independent state evolution. This inhibition of jumping rupture is due to the fact that re-nucleation along the secondary segment occurs in areas of decreased normal stress in both compressional and dilational stepovers. However, the magnitude of such an effect differs between dilational and compressional systems. Additionally, it is well known that the asymmetric geometry of reverse and normal faults can lead to greater

  19. Training Restricted Boltzmann Machines

    DEFF Research Database (Denmark)

    Fischer, Asja

    Restricted Boltzmann machines (RBMs) are probabilistic graphical models that can also be interpreted as stochastic neural networks. Training RBMs is known to be challenging. Computing the likelihood of the model parameters or its gradient is in general computationally intensive. Thus, training...... relies on sampling based approximations of the log-likelihood gradient. I will present an empirical and theoretical analysis of the bias of these approximations and show that the approximation error can lead to a distortion of the learning process. The bias decreases with increasing mixing rate...... of the applied sampling procedure and I will introduce a transition operator that leads to faster mixing. Finally, a different parametrisation of RBMs will be discussed that leads to better learning results and more robustness against changes in the data representation....

  20. Asynchronized synchronous machines

    CERN Document Server

    Botvinnik, M M

    1964-01-01

    Asynchronized Synchronous Machines focuses on the theoretical research on asynchronized synchronous (AS) machines, which are "hybrids” of synchronous and induction machines that can operate with slip. Topics covered in this book include the initial equations; vector diagram of an AS machine; regulation in cases of deviation from the law of full compensation; parameters of the excitation system; and schematic diagram of an excitation regulator. The possible applications of AS machines and its calculations in certain cases are also discussed. This publication is beneficial for students and indiv

  1. Quantum machine learning.

    Science.gov (United States)

    Biamonte, Jacob; Wittek, Peter; Pancotti, Nicola; Rebentrost, Patrick; Wiebe, Nathan; Lloyd, Seth

    2017-09-13

    Fuelled by increasing computer power and algorithmic advances, machine learning techniques have become powerful tools for finding patterns in data. Quantum systems produce atypical patterns that classical systems are thought not to produce efficiently, so it is reasonable to postulate that quantum computers may outperform classical computers on machine learning tasks. The field of quantum machine learning explores how to devise and implement quantum software that could enable machine learning that is faster than that of classical computers. Recent work has produced quantum algorithms that could act as the building blocks of machine learning programs, but the hardware and software challenges are still considerable.

  2. Precision machine design

    CERN Document Server

    Slocum, Alexander H

    1992-01-01

    This book is a comprehensive engineering exploration of all the aspects of precision machine design - both component and system design considerations for precision machines. It addresses both theoretical analysis and practical implementation providing many real-world design case studies as well as numerous examples of existing components and their characteristics. Fast becoming a classic, this book includes examples of analysis techniques, along with the philosophy of the solution method. It explores the physics of errors in machines and how such knowledge can be used to build an error budget for a machine, how error budgets can be used to design more accurate machines.

  3. Impact of seeding rate, seeding date, rate and method of phosphorus application in faba bean (Vicia faba L. minor in the absence of moisture stress

    Directory of Open Access Journals (Sweden)

    Turk M.A.

    2002-01-01

    Full Text Available Field experiments were conducted during the winter seasons of 1998-1999, 1999-2000 and 2000-2001 at the semi-arid region in north of Jordan, to study the effect of seeding dates (14 January, 28 January and 12 February, seeding rates (50, 75 and 100 plants per metre, phosphorus levels (0, 17.5, 35.0 and 52.5 kg P per ha and two methods of P placement (banding and broadcast. Seeding rate, seeding date, and rate of phosphorus had a significant effect on most of the measured traits and the yield determinates. Method of phosphorus application had only a significant effect on seed yield and seed weight per plant. In general high yields were obtained by early seeding (14 January, high seeding rate (100-plant per square metre, and P application (52.5 kg P per ha drilled with the seed after cultivation (banded.

  4. Good self-rated health is related to psychosocial resources and a strong cortisol response to acute stress: the LiVicordia study of middle-aged men.

    Science.gov (United States)

    Kristenson, Margareta; Olsson, Anders G; Kucinskiene, Zita

    2005-01-01

    Self-rated health (SRH) is a strong predictor for disease and death. The relations among SRH, psychosocial factors, and cortisol dynamics were tested using pooled data from the LiVicordia study of 50-year-old men in Lithuania (n = 94) and Sweden (n = 89), controlling for effect of residence. SRH was assessed by "How would you assess your own health?" A standardized laboratory stress test included measures of cortisol in serum and saliva. Good SRH related to high scale scores of decision latitude, social support at work, coping, self-esteem, and sense of coherence; to low scores of overcommitment (all p stress (r = .27, p = .001). Findings that good SRH related to favorable psychosocial characteristics and to a dynamic cortisol stress response indicate a possible explanation for observed lower risk for disease and death in this state.

  5. Vernonia cinerea Less. supplementation and strenuous exercise reduce smoking rate: relation to oxidative stress status and beta-endorphin release in active smokers

    Directory of Open Access Journals (Sweden)

    Yankai Araya

    2010-05-01

    Full Text Available Abstract Purpose The aim of this study was to evaluate the effects of Vernonia cinerea Less. (VC supplementation and exercise on oxidative stress biomarkers, beta-endorphin release, and the rate of cigarette smoking. Methods Volunteer smokers were randomly divided into four groups: group 1: VC supplement; group 2: exercise with VC supplement; group 3: exercise; and group 4: control. VC was prepared by wash and dry techniques and taken orally before smoking, matching the frequency of strenuous exercise (three times weekly. Before and after a two month period, exhaled carbon monoxide (CO, blood oxidative stress (malondialdehyde [MDA], nitric oxide [NOx], protein hydroperoxide [PrOOH] and total antioxidant capacity [TAC], beta-endorphin and smoking rate were measured, and statistically analyzed. Results In Group 1, MDA, PrOOH, and NOx significantly decreased, whereas TAC increased (p 0.05. In Group 3, MDA, PrOOH, NOx, TAC, and beta-endorphin levels increased significantly (p 0.05. All groups had lower levels of CO after the intervention. The smoking rate for light cigarette decreased in group 2(62.7%, 1(59.52%, 3 (53.57% and 4(14.04%, whereas in self-rolled cigarettes it decreased in group 1 (54.47%, 3 (42.30%, 2 (40% and 4 (9.2%. Conclusion Supplementation with Vernonia cinerea Less and exercise provided benefit related to reduced smoking rate, which may be related to oxidaive stress and beta-endorphine levels.

  6. Moderating laboratory adaptation with the use of a heart-rate variability biofeedback device (StressEraser).

    Science.gov (United States)

    Ebben, Matthew R; Kurbatov, Vadim; Pollak, Charles P

    2009-12-01

    Difficulty sleeping is a common problem with laboratory polysomnograms. This affects both polysomnograms that are used as a clinical tool to investigate sleep pathology or as an outcome variable in research. The goal of this study was to use a handheld biofeedback device (StressEraser) to improve sleep quality in the laboratory. Ten subjects without a history of sleep disorders were randomly assigned to either a StressEraser or no-treatment control condition. A sleep disturbance scale derived from sleep efficiency, REM latency, minutes of stage 1 sleep, and wake after sleep onset was created to evaluate the differences between these groups. Subjects in the StressEraser group had significantly lower scores on the sleep disturbance scale compared to the no-treatment control group (p = 0.003). Sleep latency was not improved. In conclusion, the StressEraser significantly improved sleep quality compared to a no-treatment control group. This suggests that the StressEraser may be an effective tool to help reduce the first-night effect in nighttime laboratory sleep studies.

  7. The prognostic value of heart rate response during vasodilator stress myocardial perfusion imaging in patients with end-stage renal disease undergoing renal transplantation.

    Science.gov (United States)

    AlJaroudi, Wael; Anokwute, Chiedozie; Fughhi, Ibtihaj; Campagnoli, Tania; Wassouf, Marwan; Vij, Aviral; Kharouta, Michael; Appis, Andrew; Ali, Amjad; Doukky, Rami

    2017-09-18

    In asymptomatic end-stage renal disease (ESRD) patients undergoing vasodilator stress myocardial perfusion imaging (MPI) prior to renal transplantation (RT), the impact of pre-transplant heart rate response (HRR) to vasodilator stress on post-RT outcomes is unknown. We analyzed a retrospective cohort of asymptomatic patients with ESRD who underwent a vasodilator stress SPECT-MPI and subsequently received RT. Blunted HRR was defined as HRR <28% for regadenoson stress and <20% for adenosine stress. The primary endpoint was major adverse cardiac events (MACE), defined as cardiac death or myocardial infarction. Clinical risk was assessed using the sum of risk factors set forth by the AHA/ACCF consensus statement on the assessment of RT candidates. Among 352 subjects, 140 had an abnormal pre-transplant HRR. During a mean follow-up of 3.2 ± 2.0 years, 85 (24%) MACEs were observed. Blunted HRR was associated with increased MACE risk (hazard ratio 1.72; 95% confidence interval 1.12-2.63, P = 0.013), and remained significant after adjustment for gender, sum of AHA/ACCF risk factors, summed stress score, baseline heart rate, and β-blocker use. HRR was predictive of MACE in patients with normal MPI and irrespective of clinical risk. Blunted HRR was associated with a significant increase in post-operative (30-day) MACE risk (17.9% vs 8.5%; P = 0.009). In asymptomatic ESRD patients being evaluated for RT, a blunted pre-transplant HRR was predictive of post-RT MACE. HRR may be a valuable tool in the risk assessment of RT candidates.

  8. 基于m-相依序列的学习机器相对一致收敛的界%Bounds on the Rate of Relative Uniform Convergence for Learning Machine with m-dependent Processes

    Institute of Scientific and Technical Information of China (English)

    王华丽

    2011-01-01

    The generalization performance is the main purpose of machine learning theoretical research.To study the generalization ability with the dependent observations in this paper,we extend the results to the case where the i.i.d.sequence replaced by m-dependent processes.We derive the bounds on the rate of relative uniform convergence of the empirical risks to their expected risks,and improve current results with m-dependent processes.We also establish the bound that describes the generalization ability of ERM(Empirical risk minimization)algorithm with m-dependent processes.%为了研究m-相依序列下学习机器的推广性能,把基于独立同分布的结果推广到m-相依序列,建立采用ERM算法的学习机器的经验风险到它的期望风险相对一致收敛速率的界.并对m-相依序列现有的结论进行改进,得到了m-相依序列下,采用经验风险最小化算法学习机器的推广性能的界.

  9. Effect of strain rate and stress triaxiality on tensile behavior of Titanium alloy Ti-10-2-3 at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Bobbili, Ravindranadh, E-mail: ravindranadh@dmrl.drdo.in; Madhu, Vemuri

    2016-06-14

    In this study, Split hopkinson tension bar (SHTB) has been employed to investigate the dynamic tensile flow behavior of Ti-10-2-3 alloy at high strain rates and elevated temperatures. The combined effect of stress triaxiality, strain rate and temperature and on the tensile behavior of the alloy was evaluated. Johnson-Cook (J-C) constitutive and fracture models were developed based on high strain rate tensile data. A modified Johnson–Cook model was established and proved to have high accuracy. A comparative assessment has been done to confirm the accuracy of modified J–C model based on finite element method (FEM). The improved model provides better description on the influence of equivalent plastic strain rate and temperature on the plastic flow. The simulation results proved to be in good agreement with the experimental data. The fracture surfaces of specimens tested under various strain rates and temperatures were studied under scanning electron microscopy (SEM).

  10. Non-Invasive Assessment of the Interrelationships of Diet, Pregnancy Rate, Group Composition, and Physiological and Nutritional Stress of Barren-Ground Caribou in Late Winter.

    Directory of Open Access Journals (Sweden)

    Kyle Joly

    Full Text Available The winter diet of barren-ground caribou may affect adult survival, timing of parturition, neonatal survival, and postpartum mass. We used microhistological analyses and hormone levels in feces to determine sex-specific late-winter diets, pregnancy rates, group composition, and endocrine-based measures of physiological and nutritional stress. Lichens, which are highly digestible but contain little protein, dominated the diet (> 68% but were less prevalent in the diets of pregnant females as compared to non-pregnant females and males. The amount of lichens in the diets of pregnant females decreased at higher latitudes and as winter progressed. Pregnancy rates (82.1%, 95% CI = 76.0 - 88.1% of adult cows were within the expected range for a declining herd, while pregnancy status was not associated with lichen abundance in the diet. Most groups (80% were of mixed sex. Male: female ratios (62:100 were not skewed enough to affect the decline. Levels of hormones indicating nutritional stress were detected in areas of low habitat quality and at higher latitudes. Levels of hormones indicated that physiological stress was greatest for pregnant cows, which faced the increasing demands of gestation in late winter. These fecal-based measures of diet and stress provided contextual information for the potential mechanisms of the ongoing decline. Non-invasive techniques, such as monitoring diets, pregnancy rates, sex ratios and stress levels from fecal samples, will become increasingly important as monitoring tools as the industrial footprint continues to expand in the Arctic.

  11. Experimental Investigation of process parameters influence on machining Inconel 800 in the Electrical Spark Eroding Machine

    Science.gov (United States)

    Karunakaran, K.; Chandrasekaran, M.

    2016-11-01

    The Electrical Spark Eroding Machining is an entrenched sophisticated machining process for producing complex geometry with close tolerances in hard materials like super alloy which are extremely difficult-to-machine by using conventional machining processes. It is sometimes offered as a better alternative or sometimes as an only alternative for generating accurate 3D complex shapes of macro, micro and nano-features in such difficult-to-machine materials among other advanced machining processes. The accomplishment of such challenging task by use of Electrical Spark Eroding Machining or Electrical Discharge Machining (EDM) is depending upon selection of apt process parameters. This paper is about analyzing the influencing of parameter in electrical eroding machining for Inconel 800 with electrolytic copper as a tool. The experimental runs were performed with various input conditions to process Inconel 800 nickel based super alloy for analyzing the response of material removal rate, surface roughness and tool wear rate. These are the measures of performance of individual experimental value of parameters such as pulse on time, Pulse off time, peak current. Taguchi full factorial Design by using Minitab release 14 software was employed to meet the manufacture requirements of preparing process parameter selection card for Inconel 800 jobs. The individual parameter's contribution towards surface roughness was observed from 13.68% to 64.66%.

  12. Correlation and quantitative trait loci analyses of total chlorophyll content and photosynthetic rate of rice (Oryza sativa) under water stress and well-watered conditions.

    Science.gov (United States)

    Hu, Song-Ping; Zhou, Ying; Zhang, Lin; Zhu, Xiu-Dong; Li, Lin; Luo, Li-Jun; Liu, Guo-Lan; Zhou, Qing-Ming

    2009-09-01

    In order to explore the relevant molecular genetic mechanisms of photosynthetic rate (PR) and chlorophyll content (CC) in rice (Oryza sativa L.), we conducted a series of related experiments using a population of recombinant inbred lines (Zhenshan97B x IRAT109). We found a significant correlation between CC and PR (R= 0.19**) in well-watered conditions, but no significant correlation during water stress (r= 0.08). We detected 13 main quantitative trait loci (QTLs) located on chromosomes 1, 2, 3, 4, 5, 6, and 10, which were associated with CC, including six QTLs located on chromosomes 1, 2, 3, 4, and 5 during water stress, and seven QTLs located on chromosomes 2, 3, 4, 6, and 10 in well-watered conditions. These QTLs explained 47.39% of phenotypic variation during water stress and 56.19% in well-watered conditions. We detected four main QTLs associated with PR; three of them (qPR2, qPR10, qPR11) were located on chromosomes 2, 10, and 11 during water stress, and one (qPR10) was located on chromosome 10 in well-watered conditions. These QTLs explained 34.37% and 18.41% of the phenotypic variation in water stress and well-watered conditions, respectively. In total, CC was largely controlled by main QTLs, and PR was mainly controlled by epistatic QTL pairs.

  13. Effect of yoga on short-term heart rate variability measure as a stress index in subjunior cyclists: a pilot study.

    Science.gov (United States)

    Patil, Satish G; Mullur, Lata M; Khodnapur, Jyoti P; Dhanakshirur, Gopal B; Aithala, Manjunatha R

    2013-01-01

    Subjunior athletes experience mental stress due to pressure from the coach, teachers and parents for better performance. Stress, if remains for longer period and not managed appropriately can leads to negative physical, mental and cognitive impact on children. The present study was aimed to evaluate the effect of integrated yoga module on heart rate variability (HRV) measure as a stress index in subjunior cyclists. Fast furrier transform technique of frequency domain method was used for the analysis of HRV. We have found a significant increase in high frequency (HF) component by 14.64% (P yoga group. In the control group, there was decrease in the HF component and, no significant difference in the LF component of HRV spectrum and LF/HF ratio. The results show that yoga practice decreases sympathetic activity and causes a shift in the autonomic balance towards parasympathetic dominance indicating a reduction in stress. In conclusion, yoga practice helps to reduce stress by optimizing the autonomic functions. So, it is suggested to incorporate yoga module as a regular feature to keep subjunior athletes both mentally and physically fit.

  14. Orientation dependence of the yield stress and work-hardening rate of Ni{sub 3}Ge at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Starenchenko, V.A.; Kozlov, E.V. [Tomsk State University of Architecture and Building, Department of Physics, 634003 Tomsk, sq. Solyanaya 2 (Russian Federation); Solov' eva, Yu.V. [Tomsk State University of Architecture and Building, Department of Physics, 634003 Tomsk, sq. Solyanaya 2 (Russian Federation)], E-mail: j_sol@mail.ru; Abzaev, Yu.A.; Koneva, N.A. [Tomsk State University of Architecture and Building, Department of Physics, 634003 Tomsk, sq. Solyanaya 2 (Russian Federation)

    2008-06-15

    The orientation dependence of the yield stress anomaly of Ni{sub 3}Ge single crystals with the L1{sub 2} structure was investigated by compression. The measurements were carried out in the 4.2-1000 K temperature interval for three single crystal orientations, [0 0 1], [1-bar39] and [2-bar34]. The dislocation structure was studied by transmission electron microscopy. Quantitative measurements of different parameters of the dislocation structure were carried out. The total dislocation density, {rho}, was determined for different temperatures at various strains up to sample fracture. The temperature dependencies of the friction stress and the dislocation-dislocation interaction parameter were also obtained.

  15. Machine-to-machine communications architectures, technology, standards, and applications

    CERN Document Server

    Misic, Vojislav B

    2014-01-01

    With the number of machine-to-machine (M2M)-enabled devices projected to reach 20 to 50 billion by 2020, there is a critical need to understand the demands imposed by such systems. Machine-to-Machine Communications: Architectures, Technology, Standards, and Applications offers rigorous treatment of the many facets of M2M communication, including its integration with current technology.Presenting the work of a different group of international experts in each chapter, the book begins by supplying an overview of M2M technology. It considers proposed standards, cutting-edge applications, architectures, and traffic modeling and includes case studies that highlight the differences between traditional and M2M communications technology.Details a practical scheme for the forward error correction code designInvestigates the effectiveness of the IEEE 802.15.4 low data rate wireless personal area network standard for use in M2M communicationsIdentifies algorithms that will ensure functionality, performance, reliability, ...

  16. Perspex machine: VII. The universal perspex machine

    Science.gov (United States)

    Anderson, James A. D. W.

    2006-01-01

    The perspex machine arose from the unification of projective geometry with the Turing machine. It uses a total arithmetic, called transreal arithmetic, that contains real arithmetic and allows division by zero. Transreal arithmetic is redefined here. The new arithmetic has both a positive and a negative infinity which lie at the extremes of the number line, and a number nullity that lies off the number line. We prove that nullity, 0/0, is a number. Hence a number may have one of four signs: negative, zero, positive, or nullity. It is, therefore, impossible to encode the sign of a number in one bit, as floating-point arithmetic attempts to do, resulting in the difficulty of having both positive and negative zeros and NaNs. Transrational arithmetic is consistent with Cantor arithmetic. In an extension to real arithmetic, the product of zero, an infinity, or nullity with its reciprocal is nullity, not unity. This avoids the usual contradictions that follow from allowing division by zero. Transreal arithmetic has a fixed algebraic structure and does not admit options as IEEE, floating-point arithmetic does. Most significantly, nullity has a simple semantics that is related to zero. Zero means "no value" and nullity means "no information." We argue that nullity is as useful to a manufactured computer as zero is to a human computer. The perspex machine is intended to offer one solution to the mind-body problem by showing how the computable aspects of mind and, perhaps, the whole of mind relates to the geometrical aspects of body and, perhaps, the whole of body. We review some of Turing's writings and show that he held the view that his machine has spatial properties. In particular, that it has the property of being a 7D lattice of compact spaces. Thus, we read Turing as believing that his machine relates computation to geometrical bodies. We simplify the perspex machine by substituting an augmented Euclidean geometry for projective geometry. This leads to a general

  17. The impact of sound in modern multiline video slot machine play.

    Science.gov (United States)

    Dixon, Mike J; Harrigan, Kevin A; Santesso, Diane L; Graydon, Candice; Fugelsang, Jonathan A; Collins, Karen

    2014-12-01

    Slot machine wins and losses have distinctive, measurable, physiological effects on players. The contributing factors to these effects remain under-explored. We believe that sound is one of these key contributing factors. Sound plays an important role in reinforcement, and thus on arousal level and stress response of players. It is the use of sound for positive reinforcement in particular that we believe influences the player. In the current study, we investigate the role that sound plays in psychophysical responses to slot machine play. A total of 96 gamblers played a slot machine simulator with and without sound being paired with reinforcement. Skin conductance responses and heart rate, as well as subjective judgments about the gambling experience were examined. The results showed that the sound influenced the arousal of participants both psychophysically and psychologically. The sound also influenced players' preferences, with the majority of players preferring to play slot machines that were accompanied by winning sounds. The sounds also caused players to significantly overestimate the number of times they won while playing the slot machine.

  18. Machine Process Capability Information Through Six Sigma

    Energy Technology Data Exchange (ETDEWEB)

    Lackner, M.F.

    1998-03-13

    A project investigating details concerning machine process capability information and its accessibility has been conducted. The thesis of the project proposed designing a part (denoted as a machine capability workpiece) based on the major machining features of a given machine. Parts are machined and measured to gather representative production, short-term variation. The information is utilized to predict the expected defect rate, expressed in terms of a composite sigma level process capability index, for a production part. Presently, decisions concerning process planning, particularly what machine will statistically produce the minimum amount of defects based on machined features and associated tolerances, are rarely made. Six sigma tools and methodology were employed to conduct this investigation at AlliedSignal FM and T. Tools such as the thought process map, factor relationship diagrams, and components of variance were used. This study is progressing toward completion. This research study was an example of how machine process capability information may be gathered for milling planar faces (horizontal) and slot features. The planning method used to determine where and how to gather variation for the part to be designed is known as factor relationship diagramming. Components-of-variation is then applied to the gathered data to arrive at the contributing level of variation illustrated within the factor relationship diagram. The idea of using this capability information beyond process planning to the other business enterprise operations is proposed.

  19. Variability of Heart Rate in Primitive Horses and Their Relatives as an Indicator of Stress Level, Behavioural Conduct Towards Humans and Adaptation to Living in Wild

    OpenAIRE

    Pluta Michał; Osiński Zbigniew

    2014-01-01

    The aim of the study was to evaluate the possibility of using heart rate (HR) as a metric parameter that can be used for the characterisation of behaviour of primitive horses and their relatives, related to reactions to the stress resulting from the contact with humans and adaptation to living in various conditions, including natural environment. This characterisation served the authors to expand the knowledge of such behaviour of primitive horses, and to assess the impact of the environmenta...

  20. Different sympathovagal modulation of heart rate during social and nonsocial stress episodes in wild-type rats

    NARCIS (Netherlands)

    Sgoifo, A; Koolhaas, JM; Musso, E; De Boer, SF

    1999-01-01

    The acute consequences of a social aversive stimulus (defeat) on the autonomic control upon the electrical activity of the heart were measured and compared to those observed in three nonsocial stress paradigms, namely restraint, shock-probe test, and swimming. Electrocardiograms were recorded from r

  1. A fluid response: alpha-amylase reactions to acute laboratory stress are related to sample timing and saliva flow rate

    NARCIS (Netherlands)

    Nagy, T.; van Lien, R.; Willemsen, G.; Proctor, G.; Effting, M.; Fülöp, M.; Bárdos, G.; Veerman, E.C.I.; Bosch, J.A.

    2015-01-01

    Salivary alpha-amylase (sAA) is used as a sympathetic (SNS) stress marker, though its release is likely co-determined by SNS and parasympathetic (PNS) activation. The SNS and PNS show asynchronous changes during acute stressors, and sAA responses may thus vary with sample timing. Thirty-four

  2. Role of boron nutrient in nodules growth and nitrogen fixation rates in soybean genotypes under water stress conditions

    Science.gov (United States)

    Although boron has a stimulatory effect on nodule growth and nitrogen fixation, mechanisms of how boron affects nodules growth and nitrogen fixation, especially under water stress, are still unknown. The stimulatory effect of boron (B) on nodules and nitrogen fixation (NF) is influenced by biotic (s...

  3. Prospective Cohort Study of Stress, Life Satisfaction, Self-Rated Health, Insomnia, and Suicide Death in Japan

    Science.gov (United States)

    Fujino, Yoshihisa; Mizoue, Tetsuya; Tokui, Noritaka; Yoshimura, Takesumi

    2005-01-01

    The association between many psychosocial factors and risk of suicide was examined. A cohort was conducted over 14 years of follow up among the general population (15,597 people) in Japan. A baseline survey of psychosocial characteristics was conducted by self-administrated questionnaire. The relative risks of occasional emotional stress,…

  4. Prognostic Value of Coronary Flow Reserve Obtained on Dobutamine Stress Echocardiography and its Correlation with Target Heart Rate.

    Science.gov (United States)

    Abreu, José Sebastião de; Rocha, Eduardo Arrais; Machado, Isadora Sucupira; Parahyba, Isabelle O; Rocha, Thais Brito; Paes, Fernando José Villar Nogueira; Diogenes, Tereza Cristina Pinheiro; Abreu, Marília Esther Benevides de; Farias, Ana Gardenia Liberato Ponte; Carneiro, Marcia Maria; Paes, José Nogueira

    2017-05-01

    Normal coronary flow velocity reserve (CFVR) (≥ 2) obtained in the left anterior descending coronary artery (LAD) from transthoracic echocardiography is associated with a good prognosis, but there is no study correlating CFVR with submaximal target heart rate (HR). To evaluate the prognostic value of CFVR obtained in the LAD of patients with preserved (>50%) left ventricular ejection fraction (LVEF) who completed a dobutamine stress echocardiography (DSE), considering target HR. Prospective study of patients with preserved LVEF and CFVR obtained in the LAD who completed DSE. In Group I (GI = 31), normal CFVR was obtained before achieving target HR, and, in Group II (GII = 28), after that. Group III (G III=24) reached target HR, but CFVR was abnormal. Death, acute coronary insufficiency, coronary intervention, coronary angiography without further intervention, and hospitalization were considered events. In 28 ± 4 months, there were 18 (21.6%) events: 6% (2/31) in GI, 18% (5/28) in GII, and 46% (11/24) in GIII. There were 4 (4.8%) deaths, 6 (7.2%) coronary interventions and 8 (9.6%) coronary angiographies without further intervention. In event-free survival by regression analysis, GIII had more events than GI (p 50%) e ecocardiograma sob estresse com dobutamina (EED) concluído, considerando a FC alvo submáxima. studo prospectivo de pacientes com FEVE preservada e RVFC obtida na ADA durante EED concluído. No Grupo I (GI=31), a RVFC adequada foi obtida antes de se atingir a FC alvo, e no Grupo II (G II=28), após. O Grupo III (G III=24) atingiu a FC alvo, mas a RVFC foi inadequada. Foram considerados eventos: óbito, insuficiência coronariana aguda, intervenção coronariana, coronariografia sem intervenção subsequente e internamento hospitalar. Em 28 ± 4 meses, ocorreram 18 (21,6%) eventos, sendo 6% (2/31) no GI, 18% (5/28) no GII e 46% (11/24) no GIII. Foram 4 (4,8%) óbitos, 6 (7,2%) intervenções coronarianas e 8 (9,6%) coronariografias sem interven

  5. Numerical Investigation of Influence of In-Situ Stress Ratio, Injection Rate and Fluid Viscosity on Hydraulic Fracture Propagation Using a Distinct Element Approach

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2016-02-01

    Full Text Available Numerical simulation is very useful for understanding the hydraulic fracturing mechanism. In this paper, we simulate the hydraulic fracturing using the distinct element approach, to investigate the effect of some critical parameters on hydraulic fracturing characteristics. The breakdown pressure obtained by the distinct element approach is consistent with the analytical solution. This indicates that the distinct element approach is feasible on modeling the hydraulic fracturing. We independently examine the influence of in-situ stress ratio, injection rate and fluid viscosity on hydraulic fracturing. We further emphasize the relationship between these three factors and their contributions to the hydraulic fracturing. With the increase of stress ratio, the fracture aperture increases almost linearly; with the increase of injection rate and fluid viscosity, the fracture aperture and breakdown pressure increase obviously. A low value of product of injection rate and fluid viscosity (i.e., Qμ will lead to narrow fracture aperture, low breakdown pressure, and complex or dispersional hydraulic fractures. A high value of Qμ would lead wide fracture aperture, high breakdown pressure, and simple hydraulic fractures (e.g., straight or wing shape. With low viscosity fluid, the hydraulic fracture geometry is not sensitive to stress ratio, and thus becomes a complex fracture network.

  6. Galaxy Classification using Machine Learning

    Science.gov (United States)

    Fowler, Lucas; Schawinski, Kevin; Brandt, Ben-Elias; widmer, Nicole

    2017-01-01

    We present our current research into the use of machine learning to classify galaxy imaging data with various convolutional neural network configurations in TensorFlow. We are investigating how five-band Sloan Digital Sky Survey imaging data can be used to train on physical properties such as redshift, star formation rate, mass and morphology. We also investigate the performance of artificially redshifted images in recovering physical properties as image quality degrades.

  7. The use of slow strain rate technique for studying stress corrosion cracking of an advanced silver-bearing aluminum-lithium alloy

    Science.gov (United States)

    Frefer, Abdulbaset Ali; Abosdell, Alajale M.; Raddad, Bashir S.

    2013-12-01

    In the present study, stress corrosion cracking (SCC) behavior of naturally aged advanced silver-bearing Al-Li alloy in NaCl solution was investigated using slow strain rate test (SSRT) method. The SSRT's were conducted at different strain rates and applied potentials at room temperature. The results were discussed based on percent reductions in tensile elongation in a SCC-causing environment over those in air tended to express the SCC susceptbility of the alloy under study at T3. The SCC behavior of the alloy was also discussed based on the microstructural and fractographic examinations.

  8. The use of slow strain rate technique for studying stress corrosion cracking of an advanced silver-bearing aluminum-lithium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Frefer, Abdulbaset Ali; Raddad, Bashir S. [Department of Mechanical and Industrial Engineering/Tripoli University, Tripoli (Libya); Abosdell, Alajale M. [Department of Mechanical Engineering/Mergeb University, Garaboli (Libya)

    2013-12-16

    In the present study, stress corrosion cracking (SCC) behavior of naturally aged advanced silver-bearing Al-Li alloy in NaCl solution was investigated using slow strain rate test (SSRT) method. The SSRT’s were conducted at different strain rates and applied potentials at room temperature. The results were discussed based on percent reductions in tensile elongation in a SCC-causing environment over those in air tended to express the SCC susceptbility of the alloy under study at T3. The SCC behavior of the alloy was also discussed based on the microstructural and fractographic examinations.

  9. High Strain Rate Characterisation of Composite Materials

    DEFF Research Database (Denmark)

    Eriksen, Rasmus Normann Wilken

    The high strain rate characterisation of FRP materials present the experimenter with a new set of challenges in obtaining valid experimental data. These challenges were addressed in this work with basis in classic wave theory. The stress equilibrium process for linear elastic materials, as fibre...... a linear elastic specimen to reach a state of constant strain rate before fracture. This was in contrast to ductile materials, which are widely tested with for the High-speed servohydraulic test machine. The development of the analysis and the interpretation of the results, were based on the experience...

  10. Effects of exogenous 5-aminolevulinic acid on photosynthesis, stomatal conductance, transpiration rate, and PIP gene expression of tomato seedlings subject to salinity stress.

    Science.gov (United States)

    Zhao, Y Y; Yan, F; Hu, L P; Zhou, X T; Zou, Z R; Cui, L R

    2015-06-11

    The effects of exogenous 5-aminolevulinic acid (ALA) on photosynthesis, plant growth, and the expression of two aquaporin genes in tomato seedlings under control and salinity conditions were investigated. Exogenous ALA application significantly improved net photosynthetic rate (Pn), total chlorophyll content, and plant biomass accumulation of tomato seedlings under salinity stress. As revealed by real-time PCR analyses, after treatment with ALA alone, expression of both LePIP1 and LePIP2 in the two tomato cultivars was up-regulated at 2 h and subsequently decreased to normal levels. Under salinity stress, transcript levels of LePIP1 in both leaves and roots of salt-sensitive cultivars (cv. Zhongza No.9) increased significantly and were considerably higher than in cultivars exposed to ALA alone. In contrast, the expression levels of LePIP1 and LePIP2 in cvs. Jinpeng No.1 cultivars were slightly lower under salinity stress than under ALA treatment. In addition, transcript levels of both LePIP1 and LePIP2 in the roots of Jinpeng No. 1 cultivars were considerably lower than those in the roots of Zhongza No. 9 cultivars under salinity stress, regardless of ALA supplementation, implying that Jinpeng No. 1 cultivars had a better capacity to maintain membrane intrinsic protein stability. Further, ALA application distinctly counteracted the up- or down-regulation of LePIP1 and LePIP2 in both cultivars under salinity stress, in accordance with the improvements instomatal conductance, transpiration rate, and Pn of tomato leaves. The results presented here indicate that ALA controls aquaporin expression, thus, presumably ALA regulates water homeostasis and enhances salt tolerance of tomato seedlings.

  11. Pattern recognition & machine learning

    CERN Document Server

    Anzai, Y

    1992-01-01

    This is the first text to provide a unified and self-contained introduction to visual pattern recognition and machine learning. It is useful as a general introduction to artifical intelligence and knowledge engineering, and no previous knowledge of pattern recognition or machine learning is necessary. Basic for various pattern recognition and machine learning methods. Translated from Japanese, the book also features chapter exercises, keywords, and summaries.

  12. Support vector machines applications

    CERN Document Server

    Guo, Guodong

    2014-01-01

    Support vector machines (SVM) have both a solid mathematical background and good performance in practical applications. This book focuses on the recent advances and applications of the SVM in different areas, such as image processing, medical practice, computer vision, pattern recognition, machine learning, applied statistics, business intelligence, and artificial intelligence. The aim of this book is to create a comprehensive source on support vector machine applications, especially some recent advances.

  13. Machining of titanium alloys

    CERN Document Server

    2014-01-01

    This book presents a collection of examples illustrating the resent research advances in the machining of titanium alloys. These materials have excellent strength and fracture toughness as well as low density and good corrosion resistance; however, machinability is still poor due to their low thermal conductivity and high chemical reactivity with cutting tool materials. This book presents solutions to enhance machinability in titanium-based alloys and serves as a useful reference to professionals and researchers in aerospace, automotive and biomedical fields.

  14. Carbon nanofillers for machining insulating ceramics

    Directory of Open Access Journals (Sweden)

    Olivier Malek

    2011-10-01

    Full Text Available The implementation of ceramics in emerging applications is principally limited by the final machining process necessary for producing microcomponents with complex geometries. The addition of carbon nanotubes greatly enhances the electrical properties of insulating ceramics allowing electrical discharge machining to be used to manufacture intricate parts. Meanwhile other properties of the ceramic may be either preserved or even improved. For the first time, a silicon nitride/carbon nanotubes microgear is electrically discharge machined with a remarkably high material removal rate, low surface roughness, and low tool wear. This offers unprecedented opportunities for the manufacture of complicated ceramic parts by adding carbon nanotubes for new engineering and biomedical applications.

  15. Rotating electrical machines

    CERN Document Server

    Le Doeuff, René

    2013-01-01

    In this book a general matrix-based approach to modeling electrical machines is promulgated. The model uses instantaneous quantities for key variables and enables the user to easily take into account associations between rotating machines and static converters (such as in variable speed drives).   General equations of electromechanical energy conversion are established early in the treatment of the topic and then applied to synchronous, induction and DC machines. The primary characteristics of these machines are established for steady state behavior as well as for variable speed scenarios. I

  16. Chaotic Boltzmann machines.

    Science.gov (United States)

    Suzuki, Hideyuki; Imura, Jun-ichi; Horio, Yoshihiko; Aihara, Kazuyuki

    2013-01-01

    The chaotic Boltzmann machine proposed in this paper is a chaotic pseudo-billiard system that works as a Boltzmann machine. Chaotic Boltzmann machines are shown numerically to have computing abilities comparable to conventional (stochastic) Boltzmann machines. Since no randomness is required, efficient hardware implementation is expected. Moreover, the ferromagnetic phase transition of the Ising model is shown to be characterised by the largest Lyapunov exponent of the proposed system. In general, a method to relate probabilistic models to nonlinear dynamics by derandomising Gibbs sampling is presented.

  17. Tribology in machine design

    CERN Document Server

    Stolarski, Tadeusz

    1999-01-01

    ""Tribology in Machine Design is strongly recommended for machine designers, and engineers and scientists interested in tribology. It should be in the engineering library of companies producing mechanical equipment.""Applied Mechanics ReviewTribology in Machine Design explains the role of tribology in the design of machine elements. It shows how algorithms developed from the basic principles of tribology can be used in a range of practical applications within mechanical devices and systems.The computer offers today's designer the possibility of greater stringen

  18. Debugging the virtual machine

    Energy Technology Data Exchange (ETDEWEB)

    Miller, P.; Pizzi, R.

    1994-09-02

    A computer program is really nothing more than a virtual machine built to perform a task. The program`s source code expresses abstract constructs using low level language features. When a virtual machine breaks, it can be very difficult to debug because typical debuggers provide only low level machine implementation in formation to the software engineer. We believe that the debugging task can be simplified by introducing aspects of the abstract design into the source code. We introduce OODIE, an object-oriented language extension that allows programmers to specify a virtual debugging environment which includes the design and abstract data types of the virtual machine.

  19. Electrical machines & drives

    CERN Document Server

    Hammond, P

    1985-01-01

    Containing approximately 200 problems (100 worked), the text covers a wide range of topics concerning electrical machines, placing particular emphasis upon electrical-machine drive applications. The theory is concisely reviewed and focuses on features common to all machine types. The problems are arranged in order of increasing levels of complexity and discussions of the solutions are included where appropriate to illustrate the engineering implications. This second edition includes an important new chapter on mathematical and computer simulation of machine systems and revised discussions o

  20. Machine learning with R

    CERN Document Server

    Lantz, Brett

    2013-01-01

    Written as a tutorial to explore and understand the power of R for machine learning. This practical guide that covers all of the need to know topics in a very systematic way. For each machine learning approach, each step in the process is detailed, from preparing the data for analysis to evaluating the results. These steps will build the knowledge you need to apply them to your own data science tasks.Intended for those who want to learn how to use R's machine learning capabilities and gain insight from your data. Perhaps you already know a bit about machine learning, but have never used R; or

  1. Induction machine handbook

    CERN Document Server

    Boldea, Ion

    2002-01-01

    Often called the workhorse of industry, the advent of power electronics and advances in digital control are transforming the induction motor into the racehorse of industrial motion control. Now, the classic texts on induction machines are nearly three decades old, while more recent books on electric motors lack the necessary depth and detail on induction machines.The Induction Machine Handbook fills industry's long-standing need for a comprehensive treatise embracing the many intricate facets of induction machine analysis and design. Moving gradually from simple to complex and from standard to

  2. Microstructural Analysis of Machined Surface Integrity in Drilling a Titanium Alloy

    Science.gov (United States)

    Varote, Nilesh; Joshi, Suhas S.

    2017-08-01

    Severe mechanical deformation coupled with high heat generation prevails during drilling. Establishing correlations between microstructure and surface integrity has always been a challenge, which is the main focus of this work. High-speed drilling experiments were performed by varying speed, feed rate and machining environments (dry and wet). The changes in microhardness, residual stresses and microstructure on the drilled surfaces were analyzed. A dominant mechanical deformation is found to lower grain size and increase grain boundary misorientation angle, whereas under a dominant thermal deformation higher grain size and lower grain boundary misorientation angle was evident. In dry drilling, a combined effect of temperature and mechanical deformation, the deformed and then recrystallized grains are observed to have < {0001} \\rangle orientation. The drilling parameters that increase strain rate aggravate machining-affected zone, whereas heat accumulation increases heat-affected zone, only in dry drilling. An empirical model for predicting grain size has been developed.

  3. Reluctance Machine for a Hollow Cylinder Flywheel

    Directory of Open Access Journals (Sweden)

    Magnus Hedlund

    2017-03-01

    Full Text Available A hollow cylinder flywheel rotor with a novel outer rotor switched reluctance machine (SRM mounted on the interior rim is presented, with measurements, numerical analysis and analytical models. Practical experiences from the construction process are also discussed. The flywheel rotor does not have a shaft and spokes and is predicted to store 181 Wh / kg at ultimate tensile strength (UTS according to simulations. The novel SRM is an axial flux machine, chosen due to its robustness and tolerance for high strain. The computed maximum tip speed of the motor at UTS is 1050 m / s . A small-scale proof-of-concept electric machine prototype has been constructed, and the machine inductance has been estimated from measurements of voltage and current and compared against results from analytical models and finite element analysis (FEA. The prototype measurements were used to simulate operation during maximal speed for a comparison towards other high-speed electric machines, in terms of tip speed and power. The mechanical design of the flywheel was performed with an analytical formulation assuming planar stress in concentric shells of orthotropic (unidirectionally circumferentially wound carbon composites. The analytical approach was verified with 3D FEA in terms of stress and strain.

  4. Measurements of emission rates of hydrocarbons from sunflower as a function of temperature, light intensity and stress (ozone levels); Bestimmung von Emissionsraten pflanzlicher Kohlenwasserstoffe bei Sonnenblumen in Abhaengigkeit von Temperatur, Lichtintensitaet und Stress, insbesondere von der Belastung mit Ozon

    Energy Technology Data Exchange (ETDEWEB)

    Schuh, G.; Wildt, J.; Kley, D.

    1996-08-01

    The emission rates of isoprene, mono- and sesquiterpenes from sunflower (Helianthus annuus L. cv. giganteus) were determined in an environmental chamber, a continuously stirred tank reactor. {alpha}-pinene, {beta}-caryophyllene and two oxygenated compounds were emitted. The emission rates of all terpenes increased exponentially with temperature. Substance specific differences of the rate of increase of the emission rates were observed. For all substances the dependence of their emission rates on temperature increased with increasing light intensity. Increasing lightflux resulted in an increase of the emission rates for all substances. The raise of emission rates with lightflux was dependent on temperature and increased with increasing temperature. During periods without plant stress the emission rates exhibited a good correlation with the rate of transpiration as well as with the rate of net photosynthesis. Sunflowers emitted higher amounts of terpenes when they were stressed by mechanical, wounding and ozone treatment as well as nutrient- or water deficiency. The emission rates increased by a factor of 5-300. Exposure with ozone had an effect on hydrocarbon emission rates with a delay-time. 3-4 h after exposure with 25-120 ppb ozone the emission rates increased by factor of 5-100. This increase was only observed on the first day of exposure. Nutrient deficiency resulted in an increase of emission rates by a factor of 10-300. In situations of mechanical, wounding and ozone stress, substance specific changes in the emission spectrum were observed. A model was developed to explain the observed phenomena. The main pathway of ozone loss in the chamber is caused by the uptake through the stomata of the plants. However, up to 50% of the ozone loss must be explained by other processes indirectly caused by the plants. (orig./MG) [Deutsch] In Laborversuchen wurden Emissionsraten biogener Kohlenwasserstoffe von Sonnenblumen gemessen. Die groessten Emissionsraten wiesen die

  5. A chaotic agricultural machines production growth model

    OpenAIRE

    Jablanović, Vesna D.

    2011-01-01

    Chaos theory, as a set of ideas, explains the structure in aperiodic, unpredictable dynamic systems. The basic aim of this paper is to provide a relatively simple agricultural machines production growth model that is capable of generating stable equilibrium, cycles, or chaos. A key hypothesis of this work is based on the idea that the coefficient π = 1 + α plays a crucial role in explaining local stability of the agricultural machines production, where α is an autonomous growth rate of the ag...

  6. Computer aided diagnosis for mental health care : On the clinical validation of sensitive machines

    NARCIS (Netherlands)

    Sluis, F. van der; Dijkstra, T.; Broek, E.L. van den

    2012-01-01

    This study explores the feasibility of sensitive machines; that is, machines with empathic abilities, at least to some extent. A signal processing and machine learning pipeline is presented that is used to analyze data from two studies in which 25 Post-Traumatic Stress Disorder (PTSD) patients parti

  7. Computer aided diagnosis for mental health care : On the clinical validation of sensitive machines

    NARCIS (Netherlands)

    Sluis, F. van der; Dijkstra, T.; Broek, E.L. van den

    2012-01-01

    This study explores the feasibility of sensitive machines; that is, machines with empathic abilities, at least to some extent. A signal processing and machine learning pipeline is presented that is used to analyze data from two studies in which 25 Post-Traumatic Stress Disorder (PTSD) patients

  8. Computer aided diagnosis for mental health care : On the clinical validation of sensitive machines

    NARCIS (Netherlands)

    Sluis, F. van der; Dijkstra, T.; Broek, E.L. van den

    2012-01-01

    This study explores the feasibility of sensitive machines; that is, machines with empathic abilities, at least to some extent. A signal processing and machine learning pipeline is presented that is used to analyze data from two studies in which 25 Post-Traumatic Stress Disorder (PTSD) patients parti

  9. Virtual machine vs Real Machine: Security Systems

    Directory of Open Access Journals (Sweden)

    Dr. C. Suresh Gnana Das

    2009-08-01

    Full Text Available This paper argues that the operating system and applications currently running on a real machine should relocate into a virtual machine. This structure enables services to be added below the operating system and to do so without trusting or modifying the operating system or applications. To demonstrate the usefulness of this structure, we describe three services that take advantage of it: secure logging, intrusion prevention and detection, and environment migration. In particular, we can provide services below the guest operating system without trusting or modifying it. We believe providing services at this layer are especially useful for enhancing security and mobility. This position paper describes the general benefits and challenges that arise from running most applications in a virtual machine, and then describes some example services and alternative ways to provide those services.

  10. Aerobic exercise acutely prevents the endothelial dysfunction induced by mental stress among subjects with metabolic syndrome: the role of shear rate.

    Science.gov (United States)

    Sales, Allan R K; Fernandes, Igor A; Rocha, Natália G; Costa, Lucas S; Rocha, Helena N M; Mattos, João D M; Vianna, Lauro C; Silva, Bruno M; Nóbrega, Antonio C L

    2014-04-01

    Mental stress induces transient endothelial dysfunction, which is an important finding for subjects at cardiometabolic risk. Thus, we tested whether aerobic exercise prevents this dysfunction among subjects with metabolic syndrome (MetS) and whether an increase in shear rate during exercise plays a role in this phenomenon. Subjects with MetS participated in two protocols. In protocol 1 (n = 16), endothelial function was assessed using brachial artery flow-mediated dilation (FMD). Subjects then underwent a mental stress test followed by either 40 min of leg cycling or rest across two randomized sessions. FMD was assessed again at 30 and 60 min after exercise or rest, with a second mental stress test in between. Mental stress reduced FMD at 30 and 60 min after the rest session (baseline: 7.7 ± 0.4%, 30 min: 5.4 ± 0.5%, and 60 min: 3.9 ± 0.5%, P exercise prevented this reduction (baseline: 7.5 ± 0.4%, 30 min: 7.2 ± 0.7%, and 60 min: 8.7 ± 0.8%, P > 0.05 vs. baseline). Protocol 2 (n = 5) was similar to protocol 1 except that the first period of mental stress was followed by either exercise in which the brachial artery shear rate was attenuated via forearm cuff inflation or exercise without a cuff. Noncuffed exercise prevented the reduction in FMD (baseline: 7.5 ± 0.7%, 30 min: 7.0 ± 0.7%, and 60 min: 8.7 ± 0.8%, P > 0.05 vs. baseline), whereas cuffed exercise failed to prevent this reduction (baseline: 7.5 ± 0.6%, 30 min: 5.4 ± 0.8%, and 60 min: 4.1 ± 0.9%, P exercise prevented mental stress-induced endothelial dysfunction among subjects with MetS, and an increase in shear rate during exercise mediated this effect.

  11. Forecasting Exchange Rate Based on Chaos Particle Swarm Optimization—Wavelet Support Vector Machine%基于混沌粒子群优化小波支持向量机的汇率预测

    Institute of Scientific and Technical Information of China (English)

    廖淑娇; 冯晓霞; 刘家彬

    2012-01-01

    目前,支持向量机( SVM)常用的参数寻优方法存在易陷入局部极值的缺点,而其常用的核函数的逼近精度也有待提高.基于混沌映射的遍历性与随机性和小波变换的局部分析与特征提取能力,提出了一种混沌粒子群优化小波支持向量机(CPSO-WSVM)的算法,并应用它构建汇率预测模型.实验结果表明,相比传统的粒子群优化高斯核SVM(PSO-GSVM)的算法,CPSO-WSVM算法大大提高了预测的精度和效率,应用效果好.%Nowadays, the common parameter optimization methods of support vector machine ( SVM ) are easy to lapse into local extremum, and the approximation accuracy of its frequently-used kernel functions also needs to be improved. Based on the ergodicity and stochastic property of chaos mapping as well as the local analysis and feature extraction abilities of wavelet transform, an algorithm is presented which is named as chaos particle swarm optimization wavelet SVM (CPSO-WSVM). This algorithm is used to construct exchange rate forecasting model. The experimental results show that CPSO-WSVM method has good application effect, which obtains much higher forecasting precision and efficiency than the traditional particle swarm optimization-Gaussian kernel SVM ( PSO-GS-VM).

  12. Drought stress release increased growth rate but did not affect levels of storage carbohydrates in Scots pine trees

    Science.gov (United States)

    Schönbeck, Leonie; Gessler, Arthur; Rigling, Andreas; Schaub, Marcus; Li, Mai-He

    2017-04-01

    For trees, energy storage in the form of non-structural carbohydrates (NSCs) plays an important role for survival and growth, especially during stress events such as drought. It is hypothesized, that tree individuals that experience long-term drought stress use up larger amounts of NSCs than trees that do not experience drought. Consequently, such drought-induced depletion might lead to a decrease in tree vigor and carbon starvation, a mechanism that is subject of intensive debates in recent literature. Hence, if carbon starvation is occurring during drought, drought stress release should again increase NSC concentrations. A long-term (13 years) irrigation experiment is being conducted in the Pfyn forest, the largest Pinus sylvestris dominated forest in Switzerland, located in the dry inner-Alpine Swiss Rhone valley (average precipitation 600 mm/year, with frequent dry spells). Water addition ( 600 mm/year) is executed every year during the growing season between April and October. Tree height, stem diameter and crown transparency are being measured since 2003. In February, July and October 2015, roots, stem sapwood and needles were harvested from 30 irrigated and 30 control trees and 5 different crown transparency classes. Shoot length, needle morphology, soluble sugars, starch concentrations, needle δ13C and δ15N were measured. Shoot and stem growth were higher in irrigated trees than in control trees. Growth decreased with increasing crown transparency in both treatments. Only in July, needle starch levels were higher in irrigated trees than in control trees but there was no treatment effect for wood and root starch concentrations. Tissue starch and sugar levels were negatively correlated with crown transparency, particularly in the roots (p<0.001), independent of the treatment. Needle δ13C values were higher in the control trees than in the irrigated trees, where needle δ13C values were positively correlated with increasing transparency (p<0.01). Annual

  13. Laser-assisted machining of difficult-to-machine materials

    Energy Technology Data Exchange (ETDEWEB)

    Incropera, F.P.; Rozzi, J.C.; Pfefferkorn, F.E.; Lei, S.; Shin, Y.C.

    1999-07-01

    Laser-assisted machining (LAM) is a hybrid process for which a difficult-to-machine material, such as a ceramic or super alloy, is irradiated by a laser source prior to material removal by a cutting tool. The process has the potential to significantly increase material removal rates, as well as to improve the geometry and properties of the finished work piece. Features and limitations of theoretical and experimental procedures for determining the transient thermal response of a work piece during LAM are described, and representative results are presented for laser-assisted turning of sintered silicon nitride. Significant physical trends are revealed by the calculations, as are guidelines for the selection of appropriate operating conditions.

  14. Associative Flow Rule Used to Include Hydrostatic Stress Effects in Analysis of Strain-Rate-Dependent Deformation of Polymer Matrix Composites

    Science.gov (United States)

    Goldberg, Robert K.; Roberts, Gary D.

    2004-01-01

    designing reliable composite engine cases that are lighter than the metal cases in current use. The types of polymer matrix composites that are likely to be used in such an application have a deformation response that is nonlinear and that varies with strain rate. The nonlinearity and the strain-rate dependence of the composite response are due primarily to the matrix constituent. Therefore, in developing material models to be used in the design of impact-resistant composite engine cases, the deformation of the polymer matrix must be correctly analyzed. However, unlike in metals, the nonlinear response of polymers depends on the hydrostatic stresses, which must be accounted for within an analytical model. By applying micromechanics techniques along with given fiber properties, one can also determine the effects of the hydrostatic stresses in the polymer on the overall composite deformation response. First efforts to account for the hydrostatic stress effects in the composite deformation applied purely empirical methods that relied on composite-level data. In later efforts, to allow polymer properties to be characterized solely on the basis of polymer data, researchers at the NASA Glenn Research Center developed equations to model the polymers that were based on a non-associative flow rule, and efforts to use these equations to simulate the deformation of representative polymer materials were reasonably successful. However, these equations were found to have difficulty in correctly analyzing the multiaxial stress states found in the polymer matrix constituent of a composite material. To correct these difficulties, and to allow for the accurate simulation of the nonlinear strain-rate-dependent deformation analysis of polymer matrix composites, in the efforts reported here Glenn researchers reformulated the polymer constitutive equations from basic principles using the concept of an associative flow rule. These revised equations were characterized and validated in an

  15. High-dose rate iridium-192 brachytherapy with flexible applicator. A trial toward decrease of stress during treatment and improvement of quality of life

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Keiji; Kasahara, Kotaro; Karashima, Takashi; Inoue, Yuichiro; Kariya, Shinji; Inomata, Taisuke; Yoshida, Shoji; Shuin, Taro [Kochi Medical School, Nankoku (Japan)

    2001-07-01

    We tried to improve the materials and methods of high-dose rate Iridium-192 brachytherapy for localized prostate cancer and evaluated the stress during the treatment in 20 patients with whom the therapy was performed. Rigid applicators made of stainless steel of 1.6 mm in diameter were indwelt with a template as usual for 30 hours in 14 patients (group A). Flexible applicators made of polyoxymethylene rosin (POM) of 2.0 mm in diameter were indwelt without a template for 30 hours after the applicator insertion in 6 patients (group B). We made inquiries about lumbago, inconvenience and necessity of assistant help and sleep in the course of therapy, and urinary incontinence and erectile function after the course of therapy as the QOL. The stress during the course of therapy in the patients of group B was obviously less than that of group A. There were no significant differences in urinary incontinence and erectile function after the course of therapy between group A and B. In this study, our trial successfully reduced the stress during the course of therapy in the patients with localized prostate cancer in the course of high-dose rate Iridium-192 brachytherapy. (author)

  16. Interaction of heat production, strain rate and stress power in a plastically deforming body under tensile test

    Science.gov (United States)

    Paglietti, A.

    1982-01-01

    At high strain rates the heat produced by plastic deformation can give rise to a rate dependent response even if the material has rate independent constitutive equations. This effect has to be evaluated when interpreting a material test, or else it could erroneously be ascribed to viscosity. A general thermodynamic theory of tensile testing of elastic-plastic materials is given in this paper; it is valid for large strain at finite strain rates. It enables discovery of the parameters governing the thermodynamic strain rate effect, provides a method for proper interpretation of the results of the tests of dynamic plasticity, and suggests a way of planning experiments in order to detect the real contribution of viscosity.

  17. Interaction of heat production, strain rate and stress power in a plastically deforming body under tensile test

    Science.gov (United States)

    Paglietti, A.

    1982-01-01

    At high strain rates the heat produced by plastic deformation can give rise to a rate dependent response even if the material has rate independent constitutive equations. This effect has to be evaluated when interpreting a material test, or else it could erroneously be ascribed to viscosity. A general thermodynamic theory of tensile testing of elastic-plastic materials is given in this paper; it is valid for large strain at finite strain rates. It enables discovery of the parameters governing the thermodynamic strain rate effect, provides a method for proper interpretation of the results of the tests of dynamic plasticity, and suggests a way of planning experiments in order to detect the real contribution of viscosity.

  18. Research and application of kernel extreme learning machine in flotation recovery rate%核极限学习机在浮选回收率中的研究与应用

    Institute of Scientific and Technical Information of China (English)

    王欢; 徐鑫; 鲁鹏云; 张军; 彭文娟

    2016-01-01

    浮选回收率是浮选过程中重要的生产指标。需要通过人工检测得到的浮选回收率,可知性具有较大的时间延迟,使工人不能及时有效地对生产做出相应控制调整。由于浮选过程相当复杂,变量维数高、关联性强、噪声大、检测信号不完备等因素,难以建立较精确的回收率预测模型。然而,人工智能与机器学习技术能在机理不清楚、信息不完备的情况下,对复杂系统建立基于数据驱动的经验模型。因此,本文为提高回收率检测的及时性、有效性,在分析浮选过程相关因素影响的基础上,提出基于核极限学习机建立浮选回收率的预测模型。仿真实验结果表明,该建模方法可有效辨识浮选过程中,输入数据与回收率测量值之间的非线性关系,且具有更高的预测精度与训练性能。%The flotation recovery rate is an important index in the process of flotation .The flotation recovery rate is obtained by manual detection ,which has a large time delay ,so that workers can not effectively control the production to make the corresponding adjustment .Due to the complexity of the flotation process ,the high variable dimension ,strong correlation ,large noise and incomplete detection signal , it is difficult to establish a more accurate prediction model of recovery rate .However ,artificial intelligence and machine learning technology can establish based on data driven model of complex system in the case of unknown mechanism and incomplete information .Therefore ,in order to improve the efficiency and effectiveness of the detection of the recovery rate ,this paper proposes a prediction model based on the establishment of the flotation recovery rate based on the analysis of the factors affecting the flotation process .The simulation results show that the proposed method can effectively identify the nonlinear relationship between the input data and the recovery rate ,and

  19. Laser Machining of Melt Infiltrated Ceramic Matrix Composite

    Science.gov (United States)

    Jarmon, D. C.; Ojard, G.; Brewer, D.

    2012-01-01

    As interest grows in considering the use of ceramic matrix composites for critical components, the effects of different machining techniques, and the resulting machined surfaces, on strength need to be understood. This work presents the characterization of a Melt Infiltrated SiC/SiC composite material system machined by different methods. While a range of machining approaches were initially considered, only diamond grinding and laser machining were investigated on a series of tensile coupons. The coupons were tested for residual tensile strength, after a stressed steam exposure cycle. The data clearly differentiated the laser machined coupons as having better capability for the samples tested. These results, along with micro-structural characterization, will be presented.

  20. Correlation of Fatigue Crack Growth Rate at Different Stress Ratios for Quenched and Tempered Steels and Other Alloys

    Science.gov (United States)

    1994-01-01

    steels HY80 and HYI30 ( HY80 is almost identical to QIN) were examined by Kwun and Fine (24] in laboratory air and... HY80 . HY130 and 4140 steels : threshold and mid delta-K range. Fatigue Engng Mater. Struct. 3. 367-382. DTC TAB ...............By t .... t. ..... . . ........... .. ... . Distributi,tlo I Availability Coc~es ___~Avail 8’od Ior fii Ds s c LA_ ...8217SERS DIFFIT STRESS RATIOS FOR QUENCiED AND TEWME STEELS ANO OTHER ALLMS 6 AULTOR I M ROBERTSON 7 FAoMIN ORG NAmWsAs•S DEFENCE SCIENCE