WorldWideScience

Sample records for machine measured oxygen

  1. Coordinate measuring machines

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo

    This document is used in connection with three exercises of 2 hours duration as a part of the course GEOMETRICAL METROLOGY AND MACHINE TESTING. The exercises concern three aspects of coordinate measuring: 1) Measuring and verification of tolerances on coordinate measuring machines, 2) Traceability...

  2. Diamond Measuring Machine

    Energy Technology Data Exchange (ETDEWEB)

    Krstulic, J.F.

    2000-01-27

    The fundamental goal of this project was to develop additional capabilities to the diamond measuring prototype, work out technical difficulties associated with the original device, and perform automated measurements which are accurate and repeatable. For this project, FM and T was responsible for the overall system design, edge extraction, and defect extraction and identification. AccuGem provided a lab and computer equipment in Lawrence, 3D modeling, industry expertise, and sets of diamonds for testing. The system executive software which controls stone positioning, lighting, focusing, report generation, and data acquisition was written in Microsoft Visual Basic 6, while data analysis and modeling were compiled in C/C++ DLLs. All scanning parameters and extracted data are stored in a central database and available for automated analysis and reporting. The Phase 1 study showed that data can be extracted and measured from diamond scans, but most of the information had to be manually extracted. In this Phase 2 project, all data required for geometric modeling and defect identification were automatically extracted and passed to a 3D modeling module for analysis. Algorithms were developed which automatically adjusted both light levels and stone focus positioning for each diamond-under-test. After a diamond is analyzed and measurements are completed, a report is printed for the customer which shows carat weight, summarizes stone geometry information, lists defects and their size, displays a picture of the diamond, and shows a plot of defects on a top view drawing of the stone. Initial emphasis of defect extraction was on identification of feathers, pinpoints, and crystals. Defects were plotted color-coded by industry standards for inclusions (red), blemishes (green), and unknown defects (blue). Diamonds with a wide variety of cut quality, size, and number of defects were tested in the machine. Edge extraction, defect extraction, and modeling code were tested for

  3. Measuring tissue oxygenation

    Science.gov (United States)

    Soyemi, Olusola O. (Inventor); Soller, Babs R. (Inventor); Yang, Ye (Inventor)

    2009-01-01

    Methods and systems for calculating tissue oxygenation, e.g., oxygen saturation, in a target tissue are disclosed. In some embodiments, the methods include: (a) directing incident radiation to a target tissue and determining reflectance spectra of the target tissue by measuring intensities of reflected radiation from the target tissue at a plurality of radiation wavelengths; (b) correcting the measured intensities of the reflectance spectra to reduce contributions thereto from skin and fat layers through which the incident radiation propagates; (c) determining oxygen saturation in the target tissue based on the corrected reflectance spectra; and (d) outputting the determined value of oxygen saturation.

  4. Oxygen measurements to improve singlet oxygen dosimetry

    Science.gov (United States)

    Kim, Michele M.; Penjweini, Rozhin; Ong, Yi Hong; Finlay, Jarod C.; Zhu, Timothy C.

    2017-02-01

    Photodynamic therapy (PDT) involves interactions between the three main components of light fluence, photosensitizer concentration, and oxygenation. Currently, singlet oxygen explicit dosimetry (SOED) has focused on the first two of these components. The macroscopic model to calculate reacted singlet oxygen has previously involved a fixed initial ground state oxygen concentration. A phosphorescence-based oxygen probe was used to measure ground state oxygen concentration throughout treatments for mice bearing radioactively induced fibroscarcoma tumors. Photofrin-, BPD-, and HPPH-mediated PDT was performed on mice. Model-calculated oxygen and measured oxygen was compared to evaluate the macroscopic model as well as the photochemical parameters involved. Oxygen measurements at various depths were compared to calculated values. Furthermore, we explored the use of noninvasive diffuse correlation spectroscopy (DCS) to measure tumor blood flow changes in response to PDT to improve the model calculation of reacted singlet oxygen. Mice were monitored after treatment to see the effect of oxygenation on long-term recurrence-free survival as well as the efficacy of using reacted singlet oxygen as a predictive measure of outcome. Measurement of oxygenation during treatment helps to improve SOED as well as confirm the photochemical parameters involved in the macroscopic model. Use of DCS in predicting oxygenation changes was also investigated.

  5. Strategies for measuring machine consciousness

    OpenAIRE

    2009-01-01

    The accurate measurement of the level of consciousness of a creature remains a major scientific challenge, nevertheless a number of new accounts that attempt to address this problem have been proposed recently. In this paper we analyze the principles of these new measures of consciousness along with other classical approaches focusing on their applicability to Machine Consciousness (MC). Furthermore, we propose a set of requirements of what we think a suitable measure for MC should be, discus...

  6. Straightness measurement of large machine guideways

    Directory of Open Access Journals (Sweden)

    W. Ptaszyñski

    2011-10-01

    Full Text Available This paper shows the guideway types of large machines and describes problems with their straightness measurement. A short description of straightness measurement methods and the results of investigation in straightness of 10 meter long guideways of a CNC machine by means of the XL-10 Renishaw interferometer are also presented.

  7. Measurements for stresses in machine components

    CERN Document Server

    Yakovlev, V F

    1964-01-01

    Measurements for Stresses in Machine Components focuses on the state of stress and strain of components and members, which determines the service life and strength of machines and structures. This book is divided into four chapters. Chapter I describes the physical basis of several methods of measuring strains, which includes strain gauges, photoelasticity, X-ray diffraction, brittle coatings, and dividing grids. The basic concepts of the electric strain gauge method for measuring stresses inside machine components are covered in Chapter II. Chapter III elaborates on the results of experim

  8. Self-Calibrating Surface Measuring Machine

    Science.gov (United States)

    Greenleaf, Allen H.

    1983-04-01

    A new kind of surface-measuring machine has been developed under government contract at Itek Optical Systems, a Division of Itek Corporation, to assist in the fabrication of large, highly aspheric optical elements. The machine uses four steerable distance-measuring interferometers at the corners of a tetrahedron to measure the positions of a retroreflective target placed at various locations against the surface being measured. Using four interferometers gives redundant information so that, from a set of measurement data, the dimensions of the machine as well as the coordinates of the measurement points can be determined. The machine is, therefore, self-calibrating and does not require a structure made to high accuracy. A wood-structured prototype of this machine was made whose key components are a simple form of air bearing steering mirror, a wide-angle cat's eye retroreflector used as the movable target, and tracking sensors and servos to provide automatic tracking of the cat's eye by the four laser beams. The data are taken and analyzed by computer. The output is given in terms of error relative to an equation of the desired surface. In tests of this machine, measurements of a 0.7 m diameter mirror blank have been made with an accuracy on the order of 0.2µm rms.

  9. Cutting temperature measurement and material machinability

    Directory of Open Access Journals (Sweden)

    Nedić Bogdan P.

    2014-01-01

    Full Text Available Cutting temperature is very important parameter of cutting process. Around 90% of heat generated during cutting process is then away by sawdust, and the rest is transferred to the tool and workpiece. In this research cutting temperature was measured with artificial thermocouples and question of investigation of metal machinability from aspect of cutting temperature was analyzed. For investigation of material machinability during turning artificial thermocouple was placed just below the cutting top of insert, and for drilling thermocouples were placed through screw holes on the face surface. In this way was obtained simple, reliable, economic and accurate method for investigation of cutting machinability.

  10. Knitting Force Measurement on Flat Knitting Machines

    Directory of Open Access Journals (Sweden)

    A. Fouda

    2014-01-01

    Full Text Available Knittability can be defined as the ability of yarns to run on knitting machines without problems. Knittability can be achieved when less stress is applied on the knitting machine parts by the knitting yarns. This paper presents a novel measuring system for the knitting force needed to perform knitting yarns on flat knitting machine based on data acquisition system (DAS. The proposed system is used to measure the knitting force at different machine settings and different properties of the knitting yarns to determine the optimal production conditions. For this reason, three types of knitted fabric structures (single jersey, Rib 1 × 1, and full cardigan with three different loop lengths and five different twists of ply yarn were produced. The obtained results showed the optimal yarn ply twist factor (αe which gave minimum knitting force (less stress on needles or knitting yarns at different loop lengths for each structure.

  11. Integration of Machining and Measuring Processes Using On-Machine Measurement Technology

    Institute of Scientific and Technical Information of China (English)

    Myeong; Woo; Cho; Tae; Il; Seo; Dong; Sam; Park

    2002-01-01

    This paper presents an integration methodology for ma chining and measuring processes using OMM (On-Machine Measurement) technology b ased on CAD/CAM/CAI integration concept. OMM uses a CNC machining center as a me asuring station by changing the tools into measuring probes such as touch-type, laser and vision. Although the measurement accuracy is not good compared to tha t of the CMM (Coordinate Measuring Machine), there are distinctive advantages us ing OMM in real situation. In this paper, two topics a...

  12. Machine learning and statistical methods for the prediction of maximal oxygen uptake: recent advances

    Directory of Open Access Journals (Sweden)

    Abut F

    2015-08-01

    Full Text Available Fatih Abut, Mehmet Fatih AkayDepartment of Computer Engineering, Çukurova University, Adana, TurkeyAbstract: Maximal oxygen uptake (VO2max indicates how many milliliters of oxygen the body can consume in a state of intense exercise per minute. VO2max plays an important role in both sport and medical sciences for different purposes, such as indicating the endurance capacity of athletes or serving as a metric in estimating the disease risk of a person. In general, the direct measurement of VO2max provides the most accurate assessment of aerobic power. However, despite a high level of accuracy, practical limitations associated with the direct measurement of VO2max, such as the requirement of expensive and sophisticated laboratory equipment or trained staff, have led to the development of various regression models for predicting VO2max. Consequently, a lot of studies have been conducted in the last years to predict VO2max of various target audiences, ranging from soccer athletes, nonexpert swimmers, cross-country skiers to healthy-fit adults, teenagers, and children. Numerous prediction models have been developed using different sets of predictor variables and a variety of machine learning and statistical methods, including support vector machine, multilayer perceptron, general regression neural network, and multiple linear regression. The purpose of this study is to give a detailed overview about the data-driven modeling studies for the prediction of VO2max conducted in recent years and to compare the performance of various VO2max prediction models reported in related literature in terms of two well-known metrics, namely, multiple correlation coefficient (R and standard error of estimate. The survey results reveal that with respect to regression methods used to develop prediction models, support vector machine, in general, shows better performance than other methods, whereas multiple linear regression exhibits the worst performance

  13. Shell Measuring Machine. History and Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Birchler, Wilbur D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fresquez, Philip R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2000-06-01

    Commercialization of the Ring Rotacon Shell Measuring Machine project is a CRADA (NO. LA98C10358) between The University of California (Los Alamos National Laboratory) and Moore Tool Company, Bridgeport, CT. The actual work started on this CRADA in December of 1998. Several meetings were held with the interested parties (Los Alamos, Oak Ridge, Moore Tool, and the University of North Carolina). The results of these meetings were that the original Ring Rotacon did not measure up to the requirements of the Department of Energy and private industry, and a new configuration was investigated. This new configuration (Shell Measuring Machine [SMM]) much better fits the needs of all parties. The work accomplished on the Shell Measuring Machine in FY 99 includes the following; Specifications for size and weight were developed; Performance error budgets were established; Designs were developed; Analyses were performed (stiffness and natural frequency); Existing part designs were compared to the working SMM volume; Peer reviews were conducted; Controller requirements were studied; Fixture requirements were evaluated; and Machine motions were analyzed. The consensus of the Peer Review Committee was that the new configuration has the potential to satisfy the shell inspection needs of Department of Energy as well as several commercial customers. They recommended that more analyses be performed on error budgets, structural stiffness, natural frequency, and thermal effects and that operational processes be developed. Several design issues need to be addressed. They are the type of bearings utilized to support the tables (air bearings or mechanical roller type bearings), the selection of the probes, the design of the probe sliding mechanisms, and the design of the upper table positioning mechanism. Each item has several possible solutions, and more work is required to obtain the best design. This report includes the background and technical objectives; minutes of the working

  14. 9th Conference on Coordinate Measuring Machines

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Dorph, Pernille

    2001-01-01

    termination of the second lifetime cycle of the club. This conference treates the traceability of geometrical measurements with particular reference to those obtained using coordinate measuring machines. A number of on-going activities and new achievements in coordinate metrology are presented by European......This one-day conference on coordinate measuring machines is the 9th in a row of conferences organised in connection with the Danish CMM Club, a users’ group regarding CMMs that has existed in Denmark since 1994. The Danish CMM Club was founded by the Department of Manufacturing Engineering...... and Management in connection with a Nordic project concerned with creation of a network in coordinate metrology in Denmark, Finland, Norway and Sweden. A major activity of the project was an industrial comparison of 62 CMMs in the Scandinavian Coutries. Since it’s start in 1994, the Danish CMM Club has held six...

  15. Learning from Distributions via Support Measure Machines

    CERN Document Server

    Muandet, Krikamol; Fukumizu, Kenji; Dinuzzo, Francesco

    2012-01-01

    This paper presents a kernel-based discriminative learning framework on probability measures. Rather than relying on large collections of vectorial training examples, our framework learns using a collection of probability distributions that have been constructed to meaningfully represent training data. By representing these probability distributions as mean embeddings in the reproducing kernel Hilbert space (RKHS), we are able to apply many standard kernel-based learning techniques in straightforward fashion. To accomplish this, we construct a generalization of the support vector machine (SVM) called a support measure machine (SMM). Our analyses of SMMs provides several insights into their relationship to traditional SVMs. Based on such insights, we propose a flexible SVM (Flex-SVM) that places different kernel functions on each training example. Experimental results on both synthetic and real-world data demonstrate the effectiveness of our proposed framework.

  16. The Measurement of Dissolved Oxygen

    Science.gov (United States)

    Thistlethwayte, D.; And Others

    1974-01-01

    Describes an experiment in environmental chemistry which serves to determine the dissolved oxygen concentration in both fresh and saline water. Applications of the method at the undergraduate and secondary school levels are recommended. (CC)

  17. Measure Transformer Semantics for Bayesian Machine Learning

    Science.gov (United States)

    Borgström, Johannes; Gordon, Andrew D.; Greenberg, Michael; Margetson, James; van Gael, Jurgen

    The Bayesian approach to machine learning amounts to inferring posterior distributions of random variables from a probabilistic model of how the variables are related (that is, a prior distribution) and a set of observations of variables. There is a trend in machine learning towards expressing Bayesian models as probabilistic programs. As a foundation for this kind of programming, we propose a core functional calculus with primitives for sampling prior distributions and observing variables. We define combinators for measure transformers, based on theorems in measure theory, and use these to give a rigorous semantics to our core calculus. The original features of our semantics include its support for discrete, continuous, and hybrid measures, and, in particular, for observations of zero-probability events. We compile our core language to a small imperative language that has a straightforward semantics via factor graphs, data structures that enable many efficient inference algorithms. We use an existing inference engine for efficient approximate inference of posterior marginal distributions, treating thousands of observations per second for large instances of realistic models.

  18. Machine learning and statistical methods for the prediction of maximal oxygen uptake: recent advances.

    Science.gov (United States)

    Abut, Fatih; Akay, Mehmet Fatih

    2015-01-01

    Maximal oxygen uptake (VO2max) indicates how many milliliters of oxygen the body can consume in a state of intense exercise per minute. VO2max plays an important role in both sport and medical sciences for different purposes, such as indicating the endurance capacity of athletes or serving as a metric in estimating the disease risk of a person. In general, the direct measurement of VO2max provides the most accurate assessment of aerobic power. However, despite a high level of accuracy, practical limitations associated with the direct measurement of VO2max, such as the requirement of expensive and sophisticated laboratory equipment or trained staff, have led to the development of various regression models for predicting VO2max. Consequently, a lot of studies have been conducted in the last years to predict VO2max of various target audiences, ranging from soccer athletes, nonexpert swimmers, cross-country skiers to healthy-fit adults, teenagers, and children. Numerous prediction models have been developed using different sets of predictor variables and a variety of machine learning and statistical methods, including support vector machine, multilayer perceptron, general regression neural network, and multiple linear regression. The purpose of this study is to give a detailed overview about the data-driven modeling studies for the prediction of VO2max conducted in recent years and to compare the performance of various VO2max prediction models reported in related literature in terms of two well-known metrics, namely, multiple correlation coefficient (R) and standard error of estimate. The survey results reveal that with respect to regression methods used to develop prediction models, support vector machine, in general, shows better performance than other methods, whereas multiple linear regression exhibits the worst performance.

  19. Measurement of Threads by Scanning on Coordinate Measuring Machines

    DEFF Research Database (Denmark)

    Carmignato, Simone; Savio, Enrico; De Chiffre, Leonardo

    2003-01-01

    This paper presents the latest developments on a new method for the calibration of thread gauges by scanning of thread profiles on coordinate measuring machines. The method is compared with other traditional techniques for discussion of advantages and harmonisation of measuring results. Investiga......This paper presents the latest developments on a new method for the calibration of thread gauges by scanning of thread profiles on coordinate measuring machines. The method is compared with other traditional techniques for discussion of advantages and harmonisation of measuring results....... Investigations and tests are conducted on elements of the procedure for reduction of both the measuring uncertainty and the procedure duration. Further developments to extend the method to threads of different sizes and geometries are presented....

  20. Oxygen activity measurements in simulated converter matte

    CSIR Research Space (South Africa)

    Tshilombo, KG

    2007-01-01

    Full Text Available to the composition of the gas atmosphere over the melt. The measured oxygen activity was generally close to that predicted by FactSage calculations. This indicates that such oxygen activity measurements could be useful to monitor iron removal during converting...

  1. Compensation strategy for machining optical freeform surfaces by the combined on- and off-machine measurement.

    Science.gov (United States)

    Zhang, Xiaodong; Zeng, Zhen; Liu, Xianlei; Fang, Fengzhou

    2015-09-21

    Freeform surface is promising to be the next generation optics, however it needs high form accuracy for excellent performance. The closed-loop of fabrication-measurement-compensation is necessary for the improvement of the form accuracy. It is difficult to do an off-machine measurement during the freeform machining because the remounting inaccuracy can result in significant form deviations. On the other side, on-machine measurement may hides the systematic errors of the machine because the measuring device is placed in situ on the machine. This study proposes a new compensation strategy based on the combination of on-machine and off-machine measurement. The freeform surface is measured in off-machine mode with nanometric accuracy, and the on-machine probe achieves accurate relative position between the workpiece and machine after remounting. The compensation cutting path is generated according to the calculated relative position and shape errors to avoid employing extra manual adjustment or highly accurate reference-feature fixture. Experimental results verified the effectiveness of the proposed method.

  2. Characterization of machining quality attributes based on spindle probe, coordinate measuring machine, and surface roughness data

    Directory of Open Access Journals (Sweden)

    Tzu-Liang Bill Tseng

    2014-04-01

    Full Text Available This study investigates the effects of machining parameters as they relate to the quality characteristics of machined features. Two most important quality characteristics are set as the dimensional accuracy and the surface roughness. Before any newly acquired machine tool is put to use for production, it is important to test the machine in a systematic way to find out how different parameter settings affect machining quality. The empirical verification was made by conducting a Design of Experiment (DOE with 3 levels and 3 factors on a state-of-the-art Cincinnati Hawk Arrow 750 Vertical Machining Center (VMC. Data analysis revealed that the significant factor was the Hardness of the material and the significant interaction effect was the Hardness + Feed for dimensional accuracy, while the significant factor was Speed for surface roughness. Since the equally important thing is the capability of the instruments from which the quality characteristics are being measured, a comparison was made between the VMC touch probe readings and the measurements from a Mitutoyo coordinate measuring machine (CMM on bore diameters. A machine mounted touch probe has gained a wide acceptance in recent years, as it is more suitable for the modern manufacturing environment. The data vindicated that the VMC touch probe has the capability that is suitable for the production environment. The test results can be incorporated in the process plan to help maintain the machining quality in the subsequent runs.

  3. SUPPORT VECTOR MACHINE METHOD FOR PREDICTING INVESTMENT MEASURES

    Directory of Open Access Journals (Sweden)

    Olga V. Kitova

    2016-01-01

    Full Text Available Possibilities of applying intelligent machine learning technique based on support vectors for predicting investment measures are considered in the article. The base features of support vector method over traditional econometric techniques for improving the forecast quality are described. Computer modeling results in terms of tuning support vector machine models developed with programming language Python for predicting some investment measures are shown.

  4. Are they animals or machines? Measuring dehumanization.

    Science.gov (United States)

    Martínez, Rocío; Rodríguez-Bailón, Rosa; Moya, Miguel

    2012-11-01

    The present research deals with two forms of dehumanization: 1) denying uniquely human attributes to others (seeing them as animals); 2) denying human nature to others (seeing them as machines or automata). Studies 1 and 2 explored these two forms of dehumanization, analyzing whether people associated their ingroup more with human-related words (vs. animal- vs. machine-related words) than two different outgroups. A paper and pencil procedure was used to find out which words were associated with the surnames of the ingroup (Spaniards) or the outgroup (Germans, Gypsies). Results showed that participants were more ready to link ingroup than outgroup surnames to human words. They also linked more Gypsy surnames to animal-related words and German surnames with machine-related words. Studies 3 and 4 used the Implicit Association Test to analyze the same ideas and replicated the results of Studies 1 and 2.

  5. NORMATIVE MEASUREMENTS OF NOISE AT CNC MACHINES WORK STATIONS

    Directory of Open Access Journals (Sweden)

    Dariusz Mika

    2016-06-01

    Full Text Available Minimisation of noise at a workstation is among fundamental tasks for maintaining safety at work, both in terms of health (the auditory system in particular as well as work comfort. Thus, it is very important to systematically monitor noise levels by carrying out reliable measurements at a workstation. The method of performing noise measurements at workstations of specific machines is normalised so the results of such measurements for different machines is comparable. This paper presents noise measurements for DMC 635 numerically controlled milling machine, performed in accordance with PN ISO 230-5:2002 norm. The results showed that the level of noise at the operator’s workstation significantly exceeds the norm at certain machining parameters. The results of tests are concluded as detailed recommendation for the CNC machine tool operator to use hearing protection when at work.

  6. EUV measurement of ionospheric oxygen ions

    Science.gov (United States)

    Nakasaka, Y.; Yamazaki, A.; Yoshikawa, I.; Tashiro, S.; Miyake, W.; Nakamura, M.

    2001-12-01

    We have measured the OII emission from the F-layer ionosphere by the sounding rocket SS-520-2, which was launched from the Svalbard Rocket Experiment Site, Ny Aalesund in Norway, last December. This was the first in situ EUV observation of the ionospheric Oxygen ions. Oxygen ion is the main component of the ionospheric F layer. We have studied the oxygen ions distribution in the ionosphere by means of optical observation. Oxygen ions resonantly scatter the solar OII(83.4nm) line. We have built an extreme ultraviolet (XUV) scanner, which is sensitive to the OII 83.4-nm emission and contamination free from the Lyman-alpha line, especially for the sounding rocket SS-520-2. The rocket flew along the magnetospheric cusp region, and 600 sec after the launch it reached its apex at 1108 km in altitude, and its total operation time was 1100sec. In the downleg of the flight, below 350 km in altitude (900-1100sec after the launch), XUV observed very high intensity (200~300 Rayleigh) of OII emissions from the ionospheric F layer. We have estimated the column density of the oxygen ion along the XUV_fs line-of-sight from the measured OII intensity. In this presentation, we will discuss the density profile of the oxygen ions in the ionospheric F region, i.e., the dependence on the altitude, longitude and latitude. We will compare the obtained distribution with the model of the ionosphere.

  7. Rapid mapping of volumetric machine errors using distance measurements

    Energy Technology Data Exchange (ETDEWEB)

    Krulewich, D.A.

    1998-04-01

    This paper describes a relatively inexpensive, fast, and easy to execute approach to maping the volumetric errors of a machine tool, coordinate measuring machine, or robot. An error map is used to characterize a machine or to improve its accuracy by compensating for the systematic errors. The method consists of three steps: (1) models the relationship between volumetric error and the current state of the machine, (2) acquiring error data based on distance measurements throughout the work volume; and (3)fitting the error model using the nonlinear equation for the distance. The error model is formulated from the kinematic relationship among the six degrees of freedom of error an each moving axis. Expressing each parametric error as function of position each is combined to predict the error between the functional point and workpiece, also as a function of position. A series of distances between several fixed base locations and various functional points in the work volume is measured using a Laser Ball Bar (LBB). Each measured distance is a non-linear function dependent on the commanded location of the machine, the machine error, and the location of the base locations. Using the error model, the non-linear equation is solved producing a fit for the error model Also note that, given approximate distances between each pair of base locations, the exact base locations in the machine coordinate system determined during the non-linear filling procedure. Furthermore, with the use of 2048 more than three base locations, bias error in the measuring instrument can be removed The volumetric errors of three-axis commercial machining center have been mapped using this procedure. In this study, only errors associated with the nominal position of the machine were considered Other errors such as thermally induced and load induced errors were not considered although the mathematical model has the ability to account for these errors. Due to the proprietary nature of the projects we are

  8. Munition Mass Properties Measurement Procedures Using a Spin Balance Machine

    Science.gov (United States)

    2015-03-09

    alignment fixtures, and the calibration tools (fixtures, laser alignment/pointing device, mechanical dial indicator, etc). There should be a crane hoist ...the measured quantity which consistently causes the output of the measuring machine to change. It is largely a function of friction in mechanical

  9. Modification of Moore measuring machine/Leitz microscope

    Science.gov (United States)

    Greth, H. A.; Brubaker, L.

    1976-01-01

    Quality assurance mechanical inspection, anticipating the need for improved measuring techniques for the various laboratory programs, has perfected a modification of the Leitz microscope for the Moore measuring machine that has the capability of significantly reducing inspection time with increased reliability.

  10. Kidney transplantation after oxygenated machine perfusion preservation with Custodiol-N solution.

    Science.gov (United States)

    Minor, Thomas; Paul, Andreas; Efferz, Patrik; Wohlschlaeger, Jeremias; Rauen, Ursula; Gallinat, Anja

    2015-09-01

    Custodiol-N, a new preservation solution, has been shown particularly suitable for hypothermic machine perfusion preservation (HMP) in isolated porcine kidneys. These preliminary results should be confirmed in an actual transplant model in vivo. Kidney function after 21 h of HMP was studied in an autotransplant model using Landrace pigs (25-30 kg; n = 6 per group). Perfusion was performed with oxygenated perfusate, using either Custodiol-N solution including 50 g/l dextran 40 (CND) or kidney perfusion solution 1 (KPS-1) as gold standard. Viability of the grafts was followed for 1 week after bilateral nephrectomy in the recipient pigs. HMP with CND resulted in less acute tubular injury, evaluated by levels of fatty acid-binding protein and better clearance function during the first 24 h after Tx than with KPS-1 (P perfusate for renal machine perfusion.

  11. Magnet Fiducialization with Coordinate Measuring Machines

    Energy Technology Data Exchange (ETDEWEB)

    Friedsam, H.; Oren, W.; Pietryka, M.; /SLAC

    2005-08-12

    One of the fundamental alignment problems encountered when building a particle accelerator is the transfer of a component's magnetic centerline position to external fiducials. This operation, dubbed fiducialization, is critical because it can contribute significantly to the alignment error budget. The fiducialization process requires two measurements: (1) from magnetic centerline to mechanical centerline, and (2) from mechanical centerline to external fiducials. This paper will focus on methods for observing the second measurement. Two Stanford Linear Collider (SLC) examples are presented. The object of magnet fiducialization is to relate the magnet-defined beamline position to exterior reference surfaces. To be useful for later component alignment, this relationship must be established in a manner consistent with overall positioning tolerances. The error budget for the SLC's {+-} 100 {micro}m component to component alignment tolerance is as follows: magnetic centerline to mechanical centerline--{sigma} = {+-}30 {micro}m; mechanical centerline to fiducial marks--{sigma} = {+-}50 {micro}m; and fiducial marks to adjacent components--{sigma} = {+-}80 {micro}m; the TOTAL {sigma} = {+-}100 {micro}m. The offset between the mechanical and magnetic centerlines of well-known magnets is generally smaller than the {+-}30 {micro}m measurement tolerance. It is commonly assumed to be zero without measurement. When this tiny value must be measured, extreme care is necessary to avoid obscuring the offset with measurement tool registration errors. In contrast, the mechanical centerline to fiducial measurement must be performed on every magnet. The 50 {micro}m tolerance for this operation is only slightly larger and pushes conventional surveying technology to its limit.

  12. EVALUATING AN INNOVATIVE OXYGEN SENSOR FOR REMOTE SUBSURFACE OXYGEN MEASUREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Millings, M; Brian Riha, B; Warren Hyde, W; Karen Vangelas, K; Brian02 Looney, B

    2006-10-12

    Oxygen is a primary indicator of whether anaerobic reductive dechlorination and similar redox based processes contribute to natural attenuation remedies at chlorinated solvent contaminated sites. Thus, oxygen is a viable indicator parameter for documenting that a system is being sustained in an anaerobic condition. A team of researchers investigated the adaptation of an optical sensor that was developed for oceanographic applications. The optical sensor, because of its design and operating principle, has potential for extended deployment and sensitivity at the low oxygen levels relevant to natural attenuation. The results of the research indicate this tool will be useful for in situ long-term monitoring applications, but that the traditional characterization tools continue to be appropriate for characterization activities.

  13. Study on Measuring System of Casing Machine Based on PLC

    Directory of Open Access Journals (Sweden)

    Huiqiang Wang

    2014-05-01

    Full Text Available According to the technology requirements of measurement for animal casing, in this paper, we use PLC and touch screen as the control core, the electromechanical integration design ideas to research the methods and principles for casing measure, and analyze the mechanical structures and mechanical characteristics of casing machine. As the control core, the programmable logic controller (PLC ensures that the whole control system has high precision, high stability, high reliability during the operation time. Through PLC and touch screen well match with PLC which make the casing machine more convenient to operate the whole system. The configuration software form has a brief and intuitive interface on touch screen which makes it easy to use. The mechanical structure and control system of this casing machine are more stable, more reliable and with high anti-interference ability, and satisfies various requirements for animal casings, easy and convenient to operate.

  14. ACCURATE MEASUREMENT OF ROTA-RY MACHINE AXIS CENTER TRACE

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Four methods aiming at measuring rotary machine axis center trace are discussed in detail.The comparative analysis is made on some aspects such as measurement accuracy, on-machine characteristics, feasibility, practical operation convenience and the integrity of measurement information.In order to simplify measurement, the axis profile error is ignored in traditional condition, while the measurement accuracy will be reduced.The 3-point method that the axis profile error is firstly separated has better real time character, at the same time, not only the axis motion error but also the axis profile error can be measured.All of those information can be used to diagnose the fault origin.The analysis result is proved to be correct by the experiment.

  15. Gaseous oxygen persufflation or oxygenated machine perfusion with Custodiol-N for long-term preservation of ischemic rat livers?

    Science.gov (United States)

    Stegemann, Judith; Hirner, Andreas; Rauen, Ursula; Minor, Thomas

    2009-02-01

    The aim of the present study was to evaluate the potential benefit of two different techniques for the provision of tissue aerobiosis upon cold preservation of marginal livers from non-heart beating donors using a recently developed improved preservation solution. Rat livers were harvested 30 min after cardiac arrest, flushed via the portal vein and cold-stored in HTK or modified HTK-solution (Custodiol-N) for 18 h at 4 degrees C. Other organs were flushed with Custodiol-N and subjected to aerobic conditions by either vascular systemic oxygen persufflation (VSOP) of the cold stored organ or hypothermic machine perfusion (HMP) with oxygenated Custodiol-N. Viability of the livers was assessed after 18 h of preservation by warm reperfusion in vitro for 120 min. Free radical mediated lipid peroxidation was significantly abrogated by the use of Custodiol-N in all groups compared with HTK. Custodiol-N improved enzyme leakage upon reperfusion and histological integrity, but had no impact on functional recovery (bile production, energetic status). However, VSOP further minimized enzyme release during the whole reperfusion period, led to a rise in hepatic bile production and enhanced recovery of energy charge (pVSOP. During the first 45min of reperfusion, leakage of ALT and LDH was also reduced by MP but deteriorated thereafter and became significantly higher compared to Custodiol-N at the end of the experiment. In conclusion, the results of the present study recommend the use of gaseous oxygen persufflation to improve tissue integrity and functional recovery of predamaged livers.

  16. Quantitative information measurement and application for machine component classification codes

    Institute of Scientific and Technical Information of China (English)

    LI Ling-Feng; TAN Jian-rong; LIU Bo

    2005-01-01

    Information embodied in machine component classification codes has internal relation with the probability distribution of the code symbol. This paper presents a model considering codes as information source based on Shannon's information theory. Using information entropy, it preserves the mathematical form and quantitatively measures the information amount of a symbol and a bit in the machine component classification coding system. It also gets the maximum value of information amount and the corresponding coding scheme when the category of symbols is fixed. Samples are given to show how to evaluate the information amount of component codes and how to optimize a coding system.

  17. Measurement of seedling growth rate by machine vision

    Science.gov (United States)

    Howarth, M. Scott; Stanwood, Phillip C.

    1993-05-01

    Seed vigor and germination tests have traditionally been used to determine deterioration of seed samples. Vigor tests describe the seed potential to emerge and produce a mature crop under certain field conditions and one measure is seedling growth rate. A machine vision system was developed to measure root growth rate over the entire germination period. The machine vision measurement technique was compared to the manual growth rate technique. The vision system provided similar growth rate measurements as compared to the manual growth rate technique. The average error between the system and a manual measurement was -0.13 for the lettuce test and -0.07 for the sorghum test. This technique also provided an accurate representation of the growth rate as well as percent germination.

  18. Oxygen Abundance Measurements of SHIELD Galaxies

    CERN Document Server

    Haurberg, Nathalie C; Cannon, John M; Marshall, Melissa V

    2015-01-01

    We have derived oxygen abundances for 8 galaxies from the Survey of HI in Extremely Low-mass Dwarfs (SHIELD). The SHIELD survey is an ongoing study of very low-mass galaxies, with M$_{\\rm HI}$ between 10$^{6.5}$ and 10$^{7.5}$ M$_{\\odot}$, that were detected by the Arecibo Legacy Fast ALFA (ALFALFA) survey. H$\\alpha$ images from the WIYN 3.5m telescope show that these 8 SHIELD galaxies each possess one or two active star-forming regions which were targeted with long-slit spectral observations using the Mayall 4m telescope at KPNO. We obtained a direct measurement of the electron temperature by detection of the weak [O III] $\\lambda$4363 line in 2 of the HII regions. Oxygen abundances for the other HII regions were estimated using a strong-line method. When the SHIELD galaxies are plotted on a B-band luminosity-metallicity diagram they appear to suggest a slightly shallower slope to the relationship than normally seen. However, that offset is systematically reduced when the near-infrared luminosity is used ins...

  19. Measurement of oxygen transfer from air into organic solvents

    DEFF Research Database (Denmark)

    Ramesh, Hemalata; Mayr, Torsten; Hobisch, Mathias

    2016-01-01

    applications). Subsequently, we measured the oxygen transfer rates from air into these organic solvents. Conclusion The measurement of oxygen transfer rates from air into organic solvents using the dynamic method was established using the solvent resistant optical sensor. The feasibility of online oxygen...... biological reactions require the supply of oxygen, most normally from air. However, reliable on-line measurements of oxygen concentration in organic solvents (and hence oxygen transfer rates from air to the solvent) has to date proven impossible due limitations in the current analytical methods. Results...

  20. Progress report on Freeform Calibrations on Coordinate Measureing Machines

    DEFF Research Database (Denmark)

    Savio, Enrico; Meneghello, R.; De Chiffre, Leonardo

    This report is made as a part of the project Easytrac, an EU project under the programme: Competitive and Sustainable Growth: Contract No: G6RD-CT-2000-00188, coordinated by UNIMETRIK S.A. (Spain). The project is concerned with low uncertainty calibrations on coordinate measuring machines....... The Centre for Geometrical Metrology (CGM) at the Technical University of Denmark takes care of free form measurements, in collaboration with DIMEG, University of Padova, Italy and Unilab Srl, Italy....

  1. Quantitative Measurement of Oxygen in Microgravity Combustion

    Science.gov (United States)

    Silver, Joel A.

    1997-01-01

    A low-gravity environment, in space or in ground-based facilities such as drop towers, provides a unique setting for studying combustion mechanisms. Understanding the physical phenomena controlling the ignition and spread of flames in microgravity has importance for space safety as well as for better characterization of dynamical and chemical combustion processes which are normally masked by buoyancy and other gravity-related effects. Due to restrictions associated with performing measurements in reduced gravity, diagnostic methods which have been applied to microgravity combustion studies have generally been limited to capture of flame emissions on film or video, laser Schlieren imaging and (intrusive) temperature measurements using thermocouples. Given the development of detailed theoretical models, more sophisticated diagnostic methods are needed to provide the kind of quantitative data necessary to characterize the properties of microgravity combustion processes as well as provide accurate feedback to improve the predictive capabilities of the models. When the demands of space flight are considered, the need for improved diagnostic systems which are rugged, compact, reliable, and operate at low power becomes apparent. The objective of this research is twofold. First, we want to develop a better understanding of the relative roles of diffusion and reaction of oxygen in microgravity combustion. As the primary oxidizer species, oxygen plays a major role in controlling the observed properties of flames, including flame front speed (in solid or liquid flames), extinguishment characteristics, flame size and flame temperature. The second objective is to develop better diagnostics based on diode laser absorption which can be of real value in both microgravity combustion research and as a sensor on-board Spacelab as either an air quality monitor or as part of a fire detection system. In our prior microgravity work, an eight line-of-sight fiber optic system measured

  2. A new method for thread calibration on coordinate measuring machines

    DEFF Research Database (Denmark)

    Carmignato, Simone; De Chiffre, Leonardo

    2003-01-01

    CIRP Annals – Paper proposal temporary reference: P15. This paper presents a new method for the calibration of thread gauges on coordinate measuring machines. The procedure involves scanning of thread profiles using a needle-like probe, achieving traceability by substitution of different thread......-3 gave measuring uncertainties comparable to the values from usual calibration methods on dedicated equipment, e.g. a measuring uncertainty of 1.5 µm was achieved for measurement of the pitch, and 2-2.5 µm for diameter measurements....

  3. [Stricture of oxygen outlet of the central piping identified by a decrease in the oxygen supply pressure into the anesthesia machine].

    Science.gov (United States)

    Desaki, Yoko; Yorozuya, Toshihiro; Nakanishi, Kazuo; Soutani, Masao; Nagaro, Takumi

    2011-04-01

    We experienced an incident of the stricture caused by the degradation of an O-ring in the oxygen outlet of the central piping. The event was identified by the intermittent decrease of the central piping oxygen supply pressure into the anesthesia machine. In this case, pressure was judged normal by periodical checking. But the malfunction became clear when the parts of outlet were replaced, because similar incidents frequently had occurred. The cyclical rhythm of the declining oxygen supply pressure means that oxygen supplies decreases with the increase of oxygen consumption, and it may be a sign of serious malfunction. Therefore, it is necessary to check the pressure deviations under use of high-flow oxygen.

  4. ERROR COMPENSATION OF COORDINATE MEASURING MACHINES WITH LOW STIFFNESS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A technique for compensating the errors of coordinate measuring machines (CMMs) with low stiffness is proposed. Some additional it ems related with the force deformation are introduced to the error compensation equations. The research was carried on a moving column horizontal arm CMM. Experimental results show that both the effects of systematic components of error motions and force deformations are greatly reduced, which shows the effectiveness o proposed technique.

  5. Measuring Diagnostic Stand for Experimental Researches in Technology Machining

    Directory of Open Access Journals (Sweden)

    A. E. Dreval'

    2014-01-01

    Full Text Available The paper reviews applied techniques, methods, and structure of the control and measuring means to conduct experimental and scientific researches of cutting processes. Existing research methods in cutting the metals are divided by features, such as essence of methods, the number of records of physical indicators, the number of studied factors, duration of tests. The groups of methods are briefly characterized.The chair "Tool Engineering and Technologies" of BMSTU developed and made a diagnostic stand of control and measurements for conducting research activities in the field of materials processing technology by cutting to define rational technological decisions, when machining, and carry out an analysis of efficiency and economic feasibility of made decisions. The diagnostic stand contains modern the electronic equipment. Record of measuring parameters is made in real time with a possibility for visual representation of read results and mathematical and statistical processing of measurement results. The stand can be used in research laboratories of machine-building enterprises, laboratories of higher education institutions, and other scientific divisions.The paper presents a justification that the stand is reasonable to use for the following: completion and choice of rational cutting modes, workability assessment of new constructional materials, technical and operational characteristics of the processed surfaces, and operational properties of the cutting tools of various producers, choice of optimum geometrical parameters of the cutting tools and brands of the lubricant cooling technological means, as well as the energy consumption for the chosen machining process. The stand allows us to make an assessment of wear resistance and tribology-technical characteristics of tool materials, as well as an accuracy, rigidity, vibration stability of machines, both new and being in operation.

  6. Oxygenated machine perfusion preservation of predamaged kidneys with HTK and Belzer machine perfusion solution: An experimental study in pigs

    NARCIS (Netherlands)

    Manekeller, S.; Leuvenink, Henri; Sitzia, M.; Minor, T.

    2005-01-01

    The objective of the present study was to evaluate the recently proposed aerobic machine preservation with the noncolloidal HTK solution by comparison with the colloidal Belzer machine perfusion solution (MPS) after procurement of marginal kidneys from non-heart-beating donors. Kidneys were harveste

  7. Oxygenated machine perfusion preservation of predamaged kidneys with HTK and Belzer machine perfusion solution : An experimental study in pigs

    NARCIS (Netherlands)

    Manekeller, S; Leuvenink, H; Sitzia, M; Minor, T

    2005-01-01

    The objective of the present study was to evaluate the recently proposed aerobic machine preservation with the noncolloidal HTK solution by comparison with the colloidal Belzer machine perfusion solution (MPS) after procurement of marginal kidneys from non-heart-beating donors. Kidneys were harveste

  8. Measurements of large silicon spheres using the NIST M48 coordinate measuring machine

    Science.gov (United States)

    Stoup, John; Doiron, Theodore

    2003-11-01

    The NIST M48 coordinate measuring machine (CMM) was used to measure the average diameter of two precision, silicon spheres of nominal diameter near 93.6mm. A measurement technique was devised that took advantage of the specific strengths of the machine and the artifacts while restricting the influences derived from the machine's few weaknesses. This effort resulted in measurements with unprecedented accuracy and uncertainty levels for CMM style instruments. The results were confirmed through a blind comparison with another national measurement institute (NMI) that used special apparatus specifically designed for the measurement of these silicon spheres and employed very different measurement techniques. The standard uncertainty of the average diameter measurements was less than 20 nanometers. This paper will describe the measurement techniques along with the decision-making processes used to develop these specific methods. The measurement uncertainty of the measurements will also be rigorously examined.

  9. Measuring Traces Of Oxygen By Resonant Electron Attachment

    Science.gov (United States)

    Man, Kin Fung; Boumsellek, Said; Chutjian, Ara

    1995-01-01

    Method of detecting trace amounts of oxygen based on dissociative attachment of electrons to oxygen molecules followed by measurement of resulting flux of negative oxygen ions in mass spectrometer. High sensitivity achieved in method by exploiting resonance in dissociative attachment of electrons to oxygen molecules: electron-attachment cross section rises to high peak at incident electron kinetic energy of 6.2 eV. Relative concentrations below 1 ppb detected. Devised to increase sensitivity of detection of oxygen in processing chambers in which oxygen regarded as contaminant; for example, chambers used in making semiconductor devices and in growing high-purity crystals.

  10. Accurate measurement method for tube's endpoints based on machine vision

    Science.gov (United States)

    Liu, Shaoli; Jin, Peng; Liu, Jianhua; Wang, Xiao; Sun, Peng

    2017-01-01

    Tubes are used widely in aerospace vehicles, and their accurate assembly can directly affect the assembling reliability and the quality of products. It is important to measure the processed tube's endpoints and then fix any geometric errors correspondingly. However, the traditional tube inspection method is time-consuming and complex operations. Therefore, a new measurement method for a tube's endpoints based on machine vision is proposed. First, reflected light on tube's surface can be removed by using photometric linearization. Then, based on the optimization model for the tube's endpoint measurements and the principle of stereo matching, the global coordinates and the relative distance of the tube's endpoint are obtained. To confirm the feasibility, 11 tubes are processed to remove the reflected light and then the endpoint's positions of tubes are measured. The experiment results show that the measurement repeatability accuracy is 0.167 mm, and the absolute accuracy is 0.328 mm. The measurement takes less than 1 min. The proposed method based on machine vision can measure the tube's endpoints without any surface treatment or any tools and can realize on line measurement.

  11. Accurate Measurement Method for Tube's Endpoints Based on Machine Vision

    Institute of Scientific and Technical Information of China (English)

    LIU Shaoli; JIN Peng; LIU Jianhua; WANG Xiao; SUN Peng

    2017-01-01

    Tubes are used widely in aerospace vehicles,and their accurate assembly can directly affect the assembling reliability and the quality of products.It is important to measure the processed tube's endpoints and then fix any geometric errors correspondingly.However,the traditional tube inspection method is time-consuming and complex operations.Therefore,a new measurement method for a tube's endpoints based on machine vision is proposed.First,reflected light on tube's surface can be removed by using photometric linearization.Then,based on the optimization model for the tube's endpoint measurements and the principle of stereo matching,the global coordinates and the relative distance of the tube's endpoint are obtained.To confirm the feasibility,11 tubes are processed to remove the reflected light and then the endpoint's positions of tubes are measured.The experiment results show that the measurement repeatability accuracy is 0.167 mm,and the absolute accuracy is 0.328 mm.The measurement takes less than 1 min.The proposed method based on machine vision can measure the tube's endpoints without any surface treatment or any tools and can realize on line measurement.

  12. Accurate measurement method for tube's endpoints based on machine vision

    Science.gov (United States)

    Liu, Shaoli; Jin, Peng; Liu, Jianhua; Wang, Xiao; Sun, Peng

    2016-08-01

    Tubes are used widely in aerospace vehicles, and their accurate assembly can directly affect the assembling reliability and the quality of products. It is important to measure the processed tube's endpoints and then fix any geometric errors correspondingly. However, the traditional tube inspection method is time-consuming and complex operations. Therefore, a new measurement method for a tube's endpoints based on machine vision is proposed. First, reflected light on tube's surface can be removed by using photometric linearization. Then, based on the optimization model for the tube's endpoint measurements and the principle of stereo matching, the global coordinates and the relative distance of the tube's endpoint are obtained. To confirm the feasibility, 11 tubes are processed to remove the reflected light and then the endpoint's positions of tubes are measured. The experiment results show that the measurement repeatability accuracy is 0.167 mm, and the absolute accuracy is 0.328 mm. The measurement takes less than 1 min. The proposed method based on machine vision can measure the tube's endpoints without any surface treatment or any tools and can realize on line measurement.

  13. On Machine Capacitance Dimensional and Surface Profile Measurement System

    Science.gov (United States)

    Resnick, Ralph

    1993-01-01

    A program was awarded under the Air Force Machine Tool Sensor Improvements Program Research and Development Announcement to develop and demonstrate the use of a Capacitance Sensor System including Capacitive Non-Contact Analog Probe and a Capacitive Array Dimensional Measurement System to check the dimensions of complex shapes and contours on a machine tool or in an automated inspection cell. The manufacturing of complex shapes and contours and the subsequent verification of those manufactured shapes is fundamental and widespread throughout industry. The critical profile of a gear tooth; the overall shape of a graphite EDM electrode; the contour of a turbine blade in a jet engine; and countless other components in varied applications possess complex shapes that require detailed and complex inspection procedures. Current inspection methods for complex shapes and contours are expensive, time-consuming, and labor intensive.

  14. Dynamical Mass Measurements of Contaminated Galaxy Clusters Using Machine Learning

    CERN Document Server

    Ntampaka, M; Sutherland, D J; Fromenteau, S; Poczos, B; Schneider, J

    2015-01-01

    We study dynamical mass measurements of galaxy clusters contaminated by interlopers and show that a modern machine learning (ML) algorithm can predict masses by better than a factor of two compared to a standard scaling relation approach. We create two mock catalogs from Multidark's publicly-available N-body MDPL1 simulation, one with perfect galaxy cluster membership information and the other where a simple cylindrical cut around the cluster center allows interlopers to contaminate the clusters. In the standard approach, we use a power law scaling relation to infer cluster mass from galaxy line of sight (LOS) velocity dispersion. Assuming perfect membership knowledge, this unrealistic case produces a wide fractional mass error distribution, with width = 0.87. Interlopers introduce additional scatter, significantly widening the error distribution further (width = 2.13). We employ the Support Distribution Machine (SDM) class of algorithms to learn from distributions of data to predict single values. Applied to...

  15. Comparison of Aerobic Preservation by Venous Systemic Oxygen Persufflation or Oxygenated Machine Perfusion of Warm-Ischemia-Damaged Porcine Kidneys.

    Science.gov (United States)

    Kalenski, Julia; Mancina, Elina; Paschenda, Pascal; Beckers, Christian; Bleilevens, Christian; Tóthová, Ľubomíra; Boor, Peter; Gross, Dominik; Tolba, René H; Doorschodt, Benedict M

    2016-01-01

    The global shortage of donor organs for transplantation has necessitated the expansion of the organ pool through increased use of organs from less ideal donors. Venous systemic oxygen persufflation (VSOP) and oxygenated machine perfusion (OMP) have previously demonstrated beneficial results compared to cold storage (CS) in the preservation of warm-ischemia-damaged kidney grafts. The aim of this study was to compare the efficacy of VSOP and OMP for the preservation of warm-ischemia-damaged porcine kidneys using the recently introduced Ecosol preservation solution compared to CS using Ecosol or histidine-tryptophan-ketoglutarate solution (HTK). Kidneys from German Landrace pigs (n = 5/group) were retrieved and washed out with either Ecosol or HTK after 45 min of clamping of the renal pedicle. As controls, kidneys without warm ischemia, cold stored for 24 h in HTK, were employed. Following 24 h of preservation by VSOP, OMP, CS-Ecosol, or CS-HTK, renal function and damage were assessed during 1 h using the isolated perfused porcine kidney model. During reperfusion, urine production was significantly higher in the VSOP and OMP groups than in the CS-HTK group; however, only VSOP could demonstrate lower urine protein concentrations and fractional excretion of sodium, which did not differ from the non-warm-ischemia-damaged control group. VSOP, CS-Ecosol, and controls showed better maintenance of the acid-base balance than CS-HTK. Reduced lipid peroxidation, as reflected in postreperfusion tissue thiobarbituric acid-reactive substance levels, was observed in the VSOP group compared to the OMP group, and the VSOP and CS-Ecosol groups had concentrations similar to the controls. The ratio of reduced to oxidized glutathione was higher in the VSOP, OMP, and CS-Ecosol groups than in the CS-HTK group and controls, with a higher ratio in the VSOP than in the OMP group. VSOP was associated with mitigation of oxidative stress in comparison to OMP and CS. Preservation of warm

  16. Statistical process control (SPC) for coordinate measurement machines

    Energy Technology Data Exchange (ETDEWEB)

    Escher, R.N.

    2000-01-04

    The application of process capability analysis, using designed experiments, and gage capability studies as they apply to coordinate measurement machine (CMM) uncertainty analysis and control will be demonstrated. The use of control standards in designed experiments, and the use of range charts and moving range charts to separate measurement error into it's discrete components will be discussed. The method used to monitor and analyze the components of repeatability and reproducibility will be presented with specific emphasis on how to use control charts to determine and monitor CMM performance and capability, and stay within your uncertainty assumptions.

  17. Optoacoustic measurements of human placenta and umbilical blood oxygenation

    Science.gov (United States)

    Nanovskaya, T. N.; Petrov, I. Y.; Petrov, Y.; Patrikeeva, S. L.; Ahmed, M. S.; Hankins, G. D. V.; Prough, D. S.; Esenaliev, R. O.

    2016-03-01

    Adequate oxygenation is essential for normal embryogenesis and fetal growth. Perturbations in the intrauterine oxidative environment during pregnancy are associated with several pathophysiological disorders such as pregnancy loss, preeclampsia, and intrauterine growth restriction. We proposed to use optoacoustic technology for monitoring placental and fetal umbilical blood oxygenation. In this work, we studied optoacoustic monitoring of oxygenation in placenta and umbilical cord blood ex vivo using technique of placenta perfusion. We used a medical grade, nearinfrared, tunable, optoacoustic system developed and built for oxygenation monitoring in blood vessels and in tissues. First, we calibrated the system for cord blood oxygenation measurements by using a CO-Oximeter (gold standard). Then we performed validation in cord blood circulating through the catheters localized on the fetal side of an isolated placental lobule. Finally, the oxygenation measurements were performed in the perfused placental tissue. To increase or decrease blood oxygenation, we used infusion of a gas mixture of 95% O2 + 5% CO2 and 95% N2 + 5% CO2, respectively. In placental tissue, up to four cycles of changes in oxygenation were performed. The optoacoustically measured oxygenation in circulating cord blood and in placental lobule closely correlated with the actual oxygenation data measured by CO-Oximeter. We plan to further test the placental and cord blood oxygenation monitoring with optoacoustics in animal and clinical studies.

  18. Machine learning and statistical methods for the prediction of maximal oxygen uptake: recent advances

    OpenAIRE

    Abut F; Akay MF

    2015-01-01

    Fatih Abut, Mehmet Fatih AkayDepartment of Computer Engineering, Çukurova University, Adana, TurkeyAbstract: Maximal oxygen uptake (VO2max) indicates how many milliliters of oxygen the body can consume in a state of intense exercise per minute. VO2max plays an important role in both sport and medical sciences for different purposes, such as indicating the endurance capacity of athletes or serving as a metric in estimating the disease risk of a person. In general, the direct measure...

  19. Single-cell measurement of red blood cell oxygen affinity

    CERN Document Server

    Caprio, Di; Higgins, John M; Schonbrun, Ethan

    2015-01-01

    Oxygen is transported throughout the body by hemoglobin in red blood cells. While the oxygen affinity of blood is well understood and is routinely assessed in patients by pulse oximetry, variability at the single-cell level has not been previously measured. In contrast, single-cell measurements of red blood cell volume and hemoglobin concentration are taken millions of times per day by clinical hematology analyzers and are important factors in determining the health of the hematologic system. To better understand the variability and determinants of oxygen affinity on a cellular level, we have developed a system that quantifies the oxygen saturation, cell volume and hemoglobin concentration for individual red blood cells in high-throughput. We find that the variability in single-cell saturation peaks at an oxygen partial pressure of 2.5%, which corresponds to the maximum slope of the oxygen-hemoglobin dissociation curve. In addition, single-cell oxygen affinity is positively correlated with hemoglobin concentr...

  20. Extreme learning machines: a new approach for modeling dissolved oxygen (DO) concentration with and without water quality variables as predictors.

    Science.gov (United States)

    Heddam, Salim; Kisi, Ozgur

    2017-07-01

    In this paper, several extreme learning machine (ELM) models, including standard extreme learning machine with sigmoid activation function (S-ELM), extreme learning machine with radial basis activation function (R-ELM), online sequential extreme learning machine (OS-ELM), and optimally pruned extreme learning machine (OP-ELM), are newly applied for predicting dissolved oxygen concentration with and without water quality variables as predictors. Firstly, using data from eight United States Geological Survey (USGS) stations located in different rivers basins, USA, the S-ELM, R-ELM, OS-ELM, and OP-ELM were compared against the measured dissolved oxygen (DO) using four water quality variables, water temperature, specific conductance, turbidity, and pH, as predictors. For each station, we used data measured at an hourly time step for a period of 4 years. The dataset was divided into a training set (70%) and a validation set (30%). We selected several combinations of the water quality variables as inputs for each ELM model and six different scenarios were compared. Secondly, an attempt was made to predict DO concentration without water quality variables. To achieve this goal, we used the year numbers, 2008, 2009, etc., month numbers from (1) to (12), day numbers from (1) to (31) and hour numbers from (00:00) to (24:00) as predictors. Thirdly, the best ELM models were trained using validation dataset and tested with the training dataset. The performances of the four ELM models were evaluated using four statistical indices: the coefficient of correlation (R), the Nash-Sutcliffe efficiency (NSE), the root mean squared error (RMSE), and the mean absolute error (MAE). Results obtained from the eight stations indicated that: (i) the best results were obtained by the S-ELM, R-ELM, OS-ELM, and OP-ELM models having four water quality variables as predictors; (ii) out of eight stations, the OP-ELM performed better than the other three ELM models at seven stations while the R

  1. Measurement of oxygen transfer from air into organic solvents

    DEFF Research Database (Denmark)

    Ramesh, Hemalata; Mayr, Torsten; Hobisch, Mathias;

    2016-01-01

    For the first time, we demonstrate on-line oxygen measurements in non-aqueous media using a novel optical sensor. The sensor was used to measure oxygen concentration in various organic solvents including toluene, THF, isooctane, DMF, heptane and hexane (which have all been shown suitable for several biological...

  2. 3-D measuring of engine camshaft based on machine vision

    Science.gov (United States)

    Qiu, Jianxin; Tan, Liang; Xu, Xiaodong

    2008-12-01

    The non-touch 3D measuring based on machine vision is introduced into camshaft precise measuring. Currently, because CCD 3-dimensional measuring can't meet requirements for camshaft's measuring precision, it's necessary to improve its measuring precision. In this paper, we put forward a method to improve the measuring method. A Multi-Character Match method based on the Polygonal Non-regular model is advanced with the theory of Corner Extraction and Corner Matching .This method has solved the problem of the matching difficulty and a low precision. In the measuring process, the use of the Coded marked Point method and Self-Character Match method can bring on this problem. The 3D measuring experiment on camshaft, which based on the Multi-Character Match method of the Polygonal Non-regular model, proves that the normal average measuring precision is increased to a new level less than 0.04mm in the point-clouds photo merge. This measuring method can effectively increase the 3D measuring precision of the binocular CCD.

  3. The ideal oxygen/nitrous oxide fresh gas flow sequence with the Anesthesia Delivery Unit machine.

    Science.gov (United States)

    Hendrickx, Jan F A; Cardinael, Sara; Carette, Rik; Lemmens, Hendrikus J M; De Wolf, Andre M

    2007-06-01

    To determine whether early reduction of oxygen and nitrous oxide fresh gas flow from 6 L/min to 0.7 L/min could be accomplished while maintaining end-expired nitrous oxide concentration > or =50% with an Anesthesia Delivery Unit anesthesia machine. Prospective, randomized clinical study. Large teaching hospital in Belgium. 53 ASA physical status I and II patients requiring general endotracheal anesthesia and controlled mechanical ventilation. Patients were randomly assigned to one of 4 groups depending on the duration of high oxygen/nitrous oxide fresh gas flow (two and 4 L/min, respectively) before lowering total fresh gas flow to 0.7 L/min (0.3 and 0.4 L/min oxygen and nitrous oxide, respectively): one, two, three, or 5 minutes (1-minute group, 2-minute group, 3-minute group, and 5-minute group), with n = 10, 12, 13, and 8, respectively. The course of the end-expired nitrous oxide concentration and bellows volume deficit at end-expiration was compared among the 4 groups during the first 30 minutes. At the end of the high-flow period the end-expired nitrous oxide concentration was 35.6 +/- 6.2%, 48.4 +/- 4.8%, 53.7 +/- 8.7%, and 57.3 +/- 1.6% in the 4 groups, respectively. Thereafter, the end-expired nitrous oxide concentration decreased to a nadir of 36.1 +/- 4.5%, 45.4 +/- 3.8%, 50.9 +/- 6.1%, and 55.4 +/- 2.8% after three, 4, 6, and 8 minutes after flows were lowered in the 1- to 5-minute groups, respectively. A decrease in bellows volume was observed in most patients, but was most pronounced in the 2-minute group. The bellows volume deficit gradually faded within 15 to 20 minutes in all 4 groups. A 3-minute high-flow period (oxygen and nitrous oxide fresh gas flow of 2 and 4 L/min, respectively) suffices to attain and maintain end-expired nitrous oxide concentration > or =50% and ensures an adequate bellows volume during the ensuing low-flow period.

  4. Contouring error compensation on a micro coordinate measuring machine

    Science.gov (United States)

    Fan, Kuang-Chao; Wang, Hung-Yu; Ye, Jyun-Kuan

    2011-12-01

    In recent years, three-dimensional measurements of nano-technology researches have received a great attention in the world. Based on the high accuracy demand, the error compensation of measurement machine is very important. In this study, a high precision Micro-CMM (coordinate measuring machine) has been developed which is composed of a coplanar stage for reducing the Abbé error in the vertical direction, the linear diffraction grating interferometer (LDGI) as the position feedback sensor in nanometer resolution, and ultrasonic motors for position control. This paper presents the error compensation strategy including "Home accuracy" and "Position accuracy" in both axes. For the home error compensation, we utilize a commercial DVD pick-up head and its S-curve principle to accurately search the origin of each axis. For the positioning error compensation, the absolute positions relative to the home are calibrated by laser interferometer and the error budget table is stored for feed forward error compensation. Contouring error can thus be compensated if both the compensation of both X and Y positioning errors are applied. Experiments show the contouring accuracy can be controlled to within 50nm after compensation.

  5. Microscopic oxygen imaging based on fluorescein bleaching efficiency measurements

    DEFF Research Database (Denmark)

    Beutler, Martin; Heisterkamp, Ines M.; Piltz, Bastian

    2014-01-01

    Photobleaching of the fluorophore fluorescein in an aqueous solution is dependent on the oxygen concentration. Therefore, the time-dependent bleaching behavior can be used to measure of dissolved oxygen concentrations. The method can be combined with epi-fluorescence microscopy. The molecular sta...... concentrations. The method was demonstrated on nitrifying biofilms growing on snail and mussel shells, showing clear effects of metabolic activity on oxygen concentrations. © 2014 Wiley Periodicals, Inc....

  6. Development of an Abbe Error Free Micro Coordinate Measuring Machine

    Directory of Open Access Journals (Sweden)

    Qiangxian Huang

    2016-04-01

    Full Text Available A micro Coordinate Measuring Machine (CMM with the measurement volume of 50 mm × 50 mm × 50 mm and measuring accuracy of about 100 nm (2σ has been developed. In this new micro CMM, an XYZ stage, which is driven by three piezo-motors in X, Y and Z directions, can achieve the drive resolution of about 1 nm and the stroke of more than 50 mm. In order to reduce the crosstalk among X-, Y- and Z-stages, a special mechanical structure, which is called co-planar stage, is introduced. The movement of the stage in each direction is detected by a laser interferometer. A contact type of probe is adopted for measurement. The center of the probe ball coincides with the intersection point of the measuring axes of the three laser interferometers. Therefore, the metrological system of the CMM obeys the Abbe principle in three directions and is free from Abbe error. The CMM is placed in an anti-vibration and thermostatic chamber for avoiding the influence of vibration and temperature fluctuation. A series of experimental results show that the measurement uncertainty within 40 mm among X, Y and Z directions is about 100 nm (2σ. The flatness of measuring face of the gauge block is also measured and verified the performance of the developed micro CMM.

  7. Brake Pedal Displacement Measuring System based on Machine Vision

    Directory of Open Access Journals (Sweden)

    Chang Wang

    2013-10-01

    Full Text Available Displacement of brake pedal was an important characteristic of driving behavior. This paper proposed a displacement measure algorithm based on machine vision. Image of brake pedal was captured by camera from left side, and images were processed in industry computer. Firstly, average smooth algorithm and wavelet transform algorithm were used to smooth the original image consecutively. Then, edge extracting method which combined Roberts’s operator with wavelet analysis was used to identify the edge of brake pedal. At last, least square method was adopted to recognize the characteristic line of brake pedal’s displacement. The experimental results demonstrated that the proposed method takes the advantages of Roberts’s operator and wavelet transform, it can obtain better measurement result as well as linear displacement sensors

  8. ASSESSING THE DYNAMIC ERRORS OF COORDINATE MEASURING MACHINES

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    The main factors affecting the dynamic errors of coordinate measuring machines are analyzed. It is pointed out that there are two main contributors to the dynamic errors: One is the rotation of the elements around the joints connected with air bearings and the other is the bending of the elements caused by the dynamic inertial forces. A method for obtaining the displacement errors at the probe position from dynamic rotational errors is presented. The dynamic rotational errors are measured with inductive position sensors and a laser interferometer. The theoretical and experimental results both show that during the process of fast probing, due to the dynamic inertial forces, there are not only large rotation of the elements around the joints connected with air bearings but also large bending of the weak elements themselves.

  9. Verification of optical coordinate measuring machines along the vertical measurement axis

    DEFF Research Database (Denmark)

    Morace, Renata Erica; Hansen, Hans Nørgaard; De Chiffre, Leonardo

    2005-01-01

    This paper deals with the performance verification of optical coordinate measuring machines (CMMs) equipped with video probes along the vertical measurement axis. The aim of this work was to investigate the capability of artefacts like gauge blocks and angle blocks for calibrating, verifying and ...

  10. TRACEABILITY OF PRECISION MEASUREMENTS ON COORDINATE MEASURING MACHINES – PERFORMANCE VERIFICATION OF CMMs

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Sobiecki, René; Tosello, Guido

    This document is used in connection with one exercise of 30 minutes duration as a part of the course VISION ONLINE – One week course on Precision & Nanometrology. The exercise concerns performance verification of the volumetric measuring capability of a small volume coordinate measuring machine. ....... This section contains reference to the American standard normative ANSI/ASME and a description of the exercise....

  11. TRACEABILITY OF PRECISION MEASUREMENTS ON COORDINATE MEASURING MACHINES – PERFORMANCE VERIFICATION OF CMMs

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Sobiecki, René; Tosello, Guido

    This document is used in connection with one exercise of 30 minutes duration as a part of the course VISION ONLINE – One week course on Precision & Nanometrology. The exercise concerns performance verification of the volumetric measuring capability of a small volume coordinate measuring machine...

  12. Dynamical Mass Measurements of Contaminated Galaxy Clusters Using Machine Learning

    Science.gov (United States)

    Ntampaka, M.; Trac, H.; Sutherland, D. J.; Fromenteau, S.; Póczos, B.; Schneider, J.

    2016-11-01

    We study dynamical mass measurements of galaxy clusters contaminated by interlopers and show that a modern machine learning algorithm can predict masses by better than a factor of two compared to a standard scaling relation approach. We create two mock catalogs from Multidark’s publicly available N-body MDPL1 simulation, one with perfect galaxy cluster membership information and the other where a simple cylindrical cut around the cluster center allows interlopers to contaminate the clusters. In the standard approach, we use a power-law scaling relation to infer cluster mass from galaxy line-of-sight (LOS) velocity dispersion. Assuming perfect membership knowledge, this unrealistic case produces a wide fractional mass error distribution, with a width of {{Δ }}ε ≈ 0.87. Interlopers introduce additional scatter, significantly widening the error distribution further ({{Δ }}ε ≈ 2.13). We employ the support distribution machine (SDM) class of algorithms to learn from distributions of data to predict single values. Applied to distributions of galaxy observables such as LOS velocity and projected distance from the cluster center, SDM yields better than a factor-of-two improvement ({{Δ }}ε ≈ 0.67) for the contaminated case. Remarkably, SDM applied to contaminated clusters is better able to recover masses than even the scaling relation approach applied to uncontaminated clusters. We show that the SDM method more accurately reproduces the cluster mass function, making it a valuable tool for employing cluster observations to evaluate cosmological models.

  13. In situ measurements of oxygen dynamics in unsaturated archaeological deposits

    DEFF Research Database (Denmark)

    Matthiesen, Henning; Hollesen, Jørgen; Dunlop, Rory

    2015-01-01

    Oxygen is a key parameter in the degradation of archaeological material, but little is known of its dynamics in situ. In this study, 10 optical oxygen sensors placed in a 2 m deep test pit in the cultural deposits at Bryggen in Bergen have monitored oxygen concentrations every half hour for more ...... of the soil exceeds 10–15% vol, while oxygen dissolved in infiltrating rainwater is of less importance for the supply of oxygen in the unsaturated zone.......Oxygen is a key parameter in the degradation of archaeological material, but little is known of its dynamics in situ. In this study, 10 optical oxygen sensors placed in a 2 m deep test pit in the cultural deposits at Bryggen in Bergen have monitored oxygen concentrations every half hour for more...... than a year. It is shown that there is a significant spatial and temporal variation in the oxygen concentration, which is correlated to measured soil characteristics, precipitation, soil water content and degradation of organic material. In these deposits oxygen typically occurs when the air content...

  14. Measuring blood oxygenation of pulsatile arteries using photoacoustic microscopy

    Science.gov (United States)

    Li, Qian; Yu, Tianhao; Li, Lin; Chai, Xinyu; Zhou, Chuanqing

    2016-10-01

    Heart pumps blood through the blood vessels to provide body with oxygen and nutrients. As the result, the blood flow, volume and oxygenation in arteries has a pulsatile nature. Measuring these pulsatile parameters enables more precise monitoring of oxygen metabolic rate and is thus valuable for researches and clinical applications. Photoacoustic microscopy (PAM) is a proven label-free method for in vivo measuring blood oxygenation at single blood vessel level. However, studies using PAM to observe the pulsatile nature of blood oxygenation in arteries were not reported. In this paper, we use optical-resolution PAM (OR-PAM) technology to study the blood oxygenation dynamics of pulsatile arteries. First, the ability of our OR-PAM system to accurately reflect the change of optical absorption in imaged objects is demonstrated in a phantom study. Then the system is used to image exposed cortical blood vessels of cat. The pulsatile nature of blood volume and oxygenation in arteries is clearly reflected in photoacoustic (PA) signals, whereas it's not observable in veins. By using a multi-wavelength laser, the dynamics of the blood oxygenation of pulsatile arteries in cardiac cycles can be measured, based on the spectroscopic method.

  15. Machine Perfusion of Porcine Livers with Oxygen-Carrying Solution Results in Reprogramming of Dynamic Inflammation Networks

    Directory of Open Access Journals (Sweden)

    David Sadowsky

    2016-11-01

    Full Text Available Background: Ex vivo machine perfusion (MP can better preserve organs for transplantation. We have recently reported on the first application of a MP protocol in which liver allografts were fully oxygenated, under dual pressures and subnormothermic conditions, with a new hemoglobin-based oxygen carrier solution specifically developed for ex vivo utilization. In those studies, MP improved organ function post-operatively and reduced inflammation in porcine livers. Herein, we sought to refine our knowledge regarding the impact of MP by defining dynamic networks of inflammation in both tissue and perfusate. Methods: Porcine liver allografts were preserved either with MP (n = 6 or with cold static preservation (CSP; n = 6, then transplanted orthotopically after 9 h of preservation. Fourteen inflammatory mediators were measured in both tissue and perfusate during liver preservation at multiple time points, and analyzed using Dynamic Bayesian Network (DyBN inference to define feedback interactions, as well as Dynamic Network Analysis (DyNA to define the time-dependent development of inflammation networks.Results: Network analyses of tissue and perfusate suggested an NLRP3 inflammasome-regulated response in both treatment groups, driven by the pro-inflammatory cytokine interleukin (IL-18 and the anti-inflammatory mediator IL-1 receptor antagonist (IL-1RA. Both DyBN and DyNA suggested a reduced role of IL-18 and increased role of IL-1RA with MP, along with increased liver damage with CSP. DyNA also suggested divergent progression of responses over the 9 h preservation time, with CSP leading to a stable pattern of IL-18-induced liver damage and MP leading to a resolution of the pro-inflammatory response. These results were consistent with prior clinical, biochemical, and histological findings after liver transplantation. Conclusion: Our results suggest that analysis of dynamic inflammation networks in the setting of liver preservation may identify novel

  16. Leaf water oxygen isotope measurement by direct equilibration

    National Research Council Canada - National Science Library

    Song, Xin; Barbour, Margaret M

    2016-01-01

    The oxygen isotope composition of leaf water imparts a signal to a range of molecules in the atmosphere and biosphere, but has been notoriously difficult to measure in studies requiring a large number...

  17. Herschel Measurements of Molecular Oxygen in Orion

    CERN Document Server

    Goldsmith, Paul F; Bell, Tom A; Black, John H; Chen, Jo-Hsin; Hollenbach, David; Kaufman, Michael J; Li, Di; Lis, Dariusz C; Melnick, Gary; Neufeld, David; Pagani, Laurent; Snell, Ronald; Benz, Arnold O; Bergin, Edwin; Bruderer, Simon; Caselli, Paola; Caux, Emmanuel; Encrenaz, Pierre; Falgarone, Edith; Gerin, Maryvonne; Goicoechea, Javier R; Hjalmarson, Ake; Larsson, Bengt; Bourlot, Jacques Le; De Luca, Franck Le Petit Massimo; Nagy, Zsofia; Roueff, Evelyne; Sandqvist, Aage; van der Tak, Floris; van Dishoeck, Ewine F; Vastel, Charlotte; Viti, Serena; Yildiz, Umut

    2011-01-01

    We report observations of three rotational transitions of molecular oxygen (O2) in emission from the H2 Peak 1 position of vibrationally excited molecular hydrogen in Orion. We observed the 487 GHz, 774 GHz, and 1121 GHz lines using HIFI on the Herschel Space Observatory, having velocities of 11 km s-1 to 12 km s-1 and widths of 3 km s-1. The beam-averaged column density is N(O2) = 6.5\\times1016 cm-2, and assuming that the source has an equal beam filling factor for all transitions (beam widths 44, 28, and 19"), the relative line intensities imply a kinetic temperature between 65 K and 120 K. The fractional abundance of O2 relative to H2 is 0.3 - 7.3\\times10-6. The unusual velocity suggests an association with a ~ 5" diameter source, denoted Peak A, the Western Clump, or MF4. The mass of this source is ~ 10 M\\odot and the dust temperature is \\geq 150 K. Our preferred explanation of the enhanced O2 abundance is that dust grains in this region are sufficiently warm (T \\geq 100 K) to desorb water ice and thus ke...

  18. New potential for the Leitz Infinity Coordinate Measuring Machine

    CERN Document Server

    Sanz, Claude; MAINAUD DURAND , Hélène; Schneider, Jurgen; Steffens, Norbert; Morantz , Paul; Shore , Paul

    2015-01-01

    The following study is realised within the frame of the PACMAN project: a study on Particle Accelerator Components Metrology and Alignment to the Nanometre scale, which is a Marie Curie program supported by the European commission and hosted by CERN (European Organisation for Nuclear Research). The aim of this program is to develop and build a pre-alignment bench on which each component is aligned to the required level in one single step using a stretched wire. During the operation, the centre of the stretched wire is aligned with the magnetic axis of the magnet. Then, the position of the wire is measured to the highest possible accuracy using a 3D Coordinate Measuring Machine (CMM) Leitz PMM-C Infinity from HEXAGON Metrology. The research described in this paper is two-fold: on one hand we apply a strong magnetic field to the head of the CMM and evaluate its influence on the measurement accuracy; on the other hand we measure the position

  19. Visible light optical coherence tomography measure retinal oxygen metabolic response to systemic oxygenation (Conference Presentation)

    Science.gov (United States)

    Yi, Ji; Liu, Wenzhong; Chen, Siyu; Backman, Vadim; Sheibani, Nader; Sorenson, Christine M.; Fawzi, Amani A.; Linsenmeier, Robert A.; Zhang, Hao F.

    2016-03-01

    The lack of capability to quantify oxygen metabolism noninvasively impedes both fundamental investigation and clinical diagnosis of a wide spectrum of diseases including all the major blinding diseases such as age-related macular degeneration, diabetic retinopathy, and glaucoma. Using visible light optical coherence tomography (vis-OCT), we demonstrated accurate and robust measurement of retinal oxygen metabolic rate (rMRO2) noninvasively in rat eyes. The rMRO2 was calculated by concurrent measurement of blood flow and blood oxygen saturation (sO2). Blood flow was calculated by the principle of Doppler optical coherence tomography, where the phase shift between two closely spaced A-lines measures the axial velocity. The distinct optical absorption spectra of oxy- and deoxy-hemoglobin provided the contrast for sO2 measurement, combined with the spectroscopic analysis of vis-OCT signal within the blood vessels. We continuously monitored the regulatory response of oxygen consumption to a progressive hypoxic challenge. We found that both oxygen delivery, and rMRO2 increased from the highly regulated retinal circulation (RC) under hypoxia, by 0.28+/-0.08 μL/min (pcompensated for the deficient oxygen supply from the poorly regulated choroidal circulation (CC).

  20. Measurement of electron attachment coefficient in oxygen and oxygen-argon mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, B.; Nakamura, Y. [Keio University, Tokyo (Japan)

    1998-07-01

    We analyzed the electron arrival time signal measured in pure oxygen and in dilute oxygen-argon mixtures by using a double shutter electron drift tube with variable drift distance and derived the density normalized attachment coefficient for respective gases. The present attachment coefficient determined for pure oxygen agreed well with previously reported values and we confirmed that the present apparatus was useful in determining electron attachment coefficient even if there were no ionization, when there will be no steady state current growth and, hence, the steady state Townsend (SST) method can not be applied in principle. The measured attachment coefficients in the mixtures agreed very well with the calculation using our latest cross section set for the oxygen molecule and that `II be a confirmation for the validity of the cross section set. 11 refs., 8 figs., 1 tab.

  1. The StarScan plate measuring machine: overview and calibrations

    CERN Document Server

    Zacharias, Norbert; Holdenried, Ellis; de Cuyper, Jean-Pierre; Rafferty, Ted; Wycoff, Gary

    2008-01-01

    The StarScan machine at the U.S. Naval Observatory (USNO) completed measuring photographic astrograph plates to allow determination of proper motions for the USNO CCD Astrograph Catalog (UCAC) program. All applicable 1940 AGK2 plates, about 2200 Hamburg Zone Astrograph plates, 900 Black Birch (USNO Twin Astrograph) plates, and 300 Lick Astrograph plates have been measured. StarScan comprises of a CCD camera, telecentric lens, air-bearing granite table, stepper motor screws, and Heidenhain scales to operate in a step-stare mode. The repeatability of StarScan measures is about 0.2 micrometer. The CCD mapping as well as the global table coordinate system has been calibrated using a special dot calibration plate and the overall accuracy of StarScan x,y data is derived to be 0.5 micrometer. Application to real photographic plate data shows that position information of at least 0.65 micrometer accuracy can be extracted from course grain 103a-type emulsion astrometric plates. Transformations between "direct" and "re...

  2. Direct measurement of oxygen stoichiometry in perovskite films

    Science.gov (United States)

    Scola, J.; Benamar, A.; Berini, B.; Jomard, F.; Dumont, Y.

    2017-02-01

    We present a direct method to measure the oxygen stoichiometry in an oxide film with an accuracy of about 2%. It is based on a combination of 18O annealing and high mass resolution secondary ion mass spectroscopy. Calibration has been done on a LaNiO3 film whose electrical properties dependence on oxygen stoichiometry are well documented. The method is illustrated with a series of LaNiO3 films grown on SrTiO3 substrates prepared with different oxygen stoichiometries. The large influence of the surface state on oxygen exchange is evidenced in films grown on different substrate orientations or coated with a thin layer of LaAlO3. Oxygen surface exchange and bulk diffusion is then discussed for both LaNiO3 and SrVO3 films.

  3. Software Development for Digital Control of WDW Series Testing Machine and Measurement of KIC

    Institute of Scientific and Technical Information of China (English)

    黄兴; 马杭; 程昌钧

    2005-01-01

    Software has been developed for digital control of WDW series testing machine and the measurement of fracture toughness by modularized design. Development of the software makes use of multi-thread and serial communication techniques, which can accurately control the testing machine and measure the fracture toughness in real-time. Three-point bending specimens were used in the measurement. The software operates stably and reliably, expanding the function of WDW series testing machine.

  4. Non-invasive measurement of hepatic oxygenation by an oxygen electrode in human orthotopic liver transplantation.

    Science.gov (United States)

    Seifalian, A M; Mallett, S; Piasecki, C; Rolles, K; Davidson, B R

    2000-06-01

    Precise evaluation of graft reperfusion is difficult in clinical liver transplantation. The oxygen electrode (OE) is a novel technique to detect blood flow indirectly by measuring the quantity of oxygen which can diffuse from the hepatic tissue to the surface electrode. Application of the surface OE does not influence the liver blood flow or parenchymal perfusion. Adequate graft oxygenation is essential to the outcome of organ transplantation and has not previously been analysed intra-operatively in liver transplant recipients. The OE was applied to the surface of the graft intra-operatively in 22 human liver grafts after restoring portal vein and hepatic artery inflow. OE readings were compared with liver blood flow using an electromagnetic flowmeter (EMF). Intra-operative haemodynamics and donor organ parameters known to influence graft function were correlated with the OE readings. There was a significant correlation (r=0.89; poxygenation using the OE and total liver blood flow measured by EMF. The tissue oxygenation measurements were reproducible with a coefficient of variation of 5%. The hepatic tissue oxygenation increased significantly from baseline following venous reperfusion of the graft (282+/-23 vs 3107+/-288 (+/-SE) nA, poxygen perfusion. There was significant negative correlation (r=0.80, poxygenation. The OE provides a reliable, cheap and non-invasive method of monitoring liver graft oxygenation and perfusion during transplantation.

  5. Oxygen measurement by multimode diode lasers employing gas correlation spectroscopy.

    Science.gov (United States)

    Lou, Xiutao; Somesfalean, Gabriel; Chen, Bin; Zhang, Zhiguo

    2009-02-10

    Multimode diode laser (MDL)-based correlation spectroscopy (COSPEC) was used to measure oxygen in ambient air, thereby employing a diode laser (DL) having an emission spectrum that overlaps the oxygen absorption lines of the A band. A sensitivity of 700 ppm m was achieved with good accuracy (2%) and linearity (R(2)=0.999). For comparison, measurements of ambient oxygen were also performed by tunable DL absorption spectroscopy (TDLAS) technique employing a vertical cavity surface emitting laser. We demonstrate that, despite slightly degraded sensitivity, the MDL-based COSPEC-based oxygen sensor has the advantages of high stability, low cost, ease-of-use, and relaxed requirements in component selection and instrument buildup compared with the TDLAS-based instrument.

  6. Non-contact measurement and analysis of machine tool spindles

    OpenAIRE

    Clough, David A; Fletcher, Simon; Longstaff, Andrew P.

    2010-01-01

    Increasing demand on the manufacturing industry to produce tighter tolerance parts means it is\\ud necessary to gain a greater understanding of machine tool capabilities and error sources. A significant source of machine tool errors is down to spindle inaccuracies and performance, leading to part scrapping. Catastrophic spindle failure brings production to a standstill until a new spindle can be procured and installed, resulting in lost production time.\\ud This project aims to assess the effec...

  7. Comparison of two different methods for the uncertainty estimation of circle diameter measurements using an optical coordinate measuring machine

    DEFF Research Database (Denmark)

    Morace, Renata Erica; Hansen, Hans Nørgaard; De Chiffre, Leonardo

    2005-01-01

    This paper deals with the uncertainty estimation of measurements performed on optical coordinate measuring machines (CMMs). Two different methods were used to assess the uncertainty of circle diameter measurements using an optical CMM: the sensitivity analysis developing an uncertainty budget...

  8. Cerebral blood oxygenation measurements in neonates with optoacoustic technique

    Science.gov (United States)

    Herrmann, Stephen; Petrov, Irene Y.; Petrov, Yuriy; Richardson, C. Joan; Fonseca, Rafael A.; Prough, Donald S.; Esenaliev, Rinat O.

    2017-03-01

    Cerebral hypoxia is a major contributor to neonatal/infant mortality and morbidity including severe neurological complications such as mental retardation, cerebral palsy, motor impairment, and epilepsy. Currently, no technology is capable of accurate monitoring of neonatal cerebral oxygenation. We proposed to use optoacoustics for this application by probing the superior sagittal sinus (SSS), a large central cerebral vein. We developed and built a multi-wavelength, optical parametric oscillator (OPO) and laser diode optoacoustic systems for measurement of SSS blood oxygenation in the reflection mode through open anterior or posterior fontanelles and in the transmission mode through the skull in the occipital area. In this paper we present results of initial tests of the laser diode system for neonatal cerebral oxygenation measurements. First, the system was tested in phantoms simulating neonatal SSS. Then, using the data obtained in the phantoms, we optimized the system's hardware and software and tested it in neonates admitted in the Neonatal Intensive Care Unit. The laser diode system was capable of detecting SSS signals in the reflection mode through the open anterior and posterior fontanelles as well as in the transmission mode through the skull with high signal-to-noise ratio. Using the signals measured at different wavelengths and algorithms developed for oxygenation measurements, the laser diode system provided real-time, continuous oxygenation monitoring with high precision at all these locations.

  9. Hypothermic oxygenated machine perfusion prevents arteriolonecrosis of the peribiliary plexus in pig livers donated after circulatory death.

    Directory of Open Access Journals (Sweden)

    Sanna Op den Dries

    Full Text Available BACKGROUND: Livers derived from donation after circulatory death (DCD are increasingly accepted for transplantation. However, DCD livers suffer additional donor warm ischemia, leading to biliary injury and more biliary complications after transplantation. It is unknown whether oxygenated machine perfusion results in better preservation of biliary epithelium and the peribiliary vasculature. We compared oxygenated hypothermic machine perfusion (HMP with static cold storage (SCS in a porcine DCD model. METHODS: After 30 min of cardiac arrest, livers were perfused in situ with HTK solution (4°C and preserved for 4 h by either SCS (n = 9 or oxygenated HMP (10°C; n = 9, using pressure-controlled arterial and portal venous perfusion. To simulate transplantation, livers were reperfused ex vivo at 37°C with oxygenated autologous blood. Bile duct injury and function were determined by biochemical and molecular markers, and a systematic histological scoring system. RESULTS: After reperfusion, arterial flow was higher in the HMP group, compared to SCS (251±28 vs 166±28 mL/min, respectively, after 1 hour of reperfusion; p = 0.003. Release of hepatocellular enzymes was significantly higher in the SCS group. Markers of biliary epithelial injury (biliary LDH, gamma-GT and function (biliary pH and bicarbonate, and biliary transporter expression were similar in the two groups. However, histology of bile ducts revealed significantly less arteriolonecrosis of the peribiliary vascular plexus in HMP preserved livers (>50% arteriolonecrosis was observed in 7 bile ducts of the SCS preserved livers versus only 1 bile duct of the HMP preserved livers; p = 0.024. CONCLUSIONS: Oxygenated HMP prevents arteriolonecrosis of the peribiliary vascular plexus of the bile ducts of DCD pig livers and results in higher arterial flow after reperfusion. Together this may contribute to better perfusion of the bile ducts, providing a potential advantage in the post

  10. A newly conceived cylinder measuring machine and methods that eliminate the spindle errors

    OpenAIRE

    Vissiere, Alain; Nouira, H; Damak, Mohamed; Gibaru, Olivier; David, Jean-Marie

    2012-01-01

    International audience; Advanced manufacturing processes require improving dimensional metrology applications to reach a nanometric accuracy level. Such measurements may be carried out using conventional highly accurate roundness measuring machines. On these machines, the metrology loop goes through the probing and the mechanical guiding elements. Hence, external forces, strain and thermal expansion are transmitted to the metrological structure through the supporting structure, thereby reduci...

  11. [Measurement of oxygen concentration using multimode diode laser absorption spectroscopy].

    Science.gov (United States)

    Gao, Guang-zhen; Cai, Ting-dong; Hu, Bo; Jia, Tian-jun

    2015-01-01

    Tunable diode laser absorption spectroscopy (TDLAS) is a widely used technique for high sensitivity, good selectivity and fast response. It is widely used in environment monitoring, industrial process control and biomedical sensing. In order to overcome the drawbacks of TDLAS including high cost, poor stability and center wavelength shift problem. A multi-mode diode laser system based on correlation spectroscopy and wavelength modulation spectroscopy (TMDL-COSPEC-WMS) was used to measure O2 concentration near 760nm at the 1%~30% range of near room temperature. During the experiment, the light is splitter into two beams, respectively through the sample and measuring cell, two receiving optical signal collection containing gas concentration information sent back stage treatment, invert the oxygen concentration through correlation and ratio between measured signal and reference signal, the correlation spectroscopy harmonic detection technique is used to improve the stability of the system and the signal to noise ratio. The result showed that, there was a good linear relationship between the measured oxygen concentration and the actual concentration value. A detection limit of 280 pmm. m in the 1 atmospheric which approved of the same sample. A continuous measurement for oxygen with the standard deviation of 0. 056% in ambient air during approximately 30 minutes confirms the stability and the capability of the system. The design of the system includes soft and hardware can meet the needs of oxygen online monitoring. The experimental device is simple and easy to use, easy to complex environment application.

  12. Observer-based Coal Mill Control using Oxygen Measurements

    DEFF Research Database (Denmark)

    Andersen, Palle; Bendtsen, Jan Dimon; S., Tom;

    2006-01-01

    This paper proposes a novel approach to coal flow estimation in pulverized coal mills, which utilizes measurements of oxygen content in the flue gas. Pulverized coal mills are typically not equipped with sensors that detect the amount of coal injected into the furnace. This makes control of the c......This paper proposes a novel approach to coal flow estimation in pulverized coal mills, which utilizes measurements of oxygen content in the flue gas. Pulverized coal mills are typically not equipped with sensors that detect the amount of coal injected into the furnace. This makes control...... into the furnace and oxygen concentration in the flue gas is designed to estimate the actual coal flow injected into the furnace. With this estimate, it becomes possible to close an inner loop around the coal mill itself, thus giving a better disturbance rejection capability. The approach is validated against...

  13. Integration of Error Compensation of Coordinate Measuring Machines into Feature Measurement: Part I—Model Development

    Directory of Open Access Journals (Sweden)

    Roque Calvo

    2016-09-01

    Full Text Available The development of an error compensation model for coordinate measuring machines (CMMs and its integration into feature measurement is presented. CMMs are widespread and dependable instruments in industry and laboratories for dimensional measurement. From the tip probe sensor to the machine display, there is a complex transformation of probed point coordinates through the geometrical feature model that makes the assessment of accuracy and uncertainty measurement results difficult. Therefore, error compensation is not standardized, conversely to other simpler instruments. Detailed coordinate error compensation models are generally based on CMM as a rigid-body and it requires a detailed mapping of the CMM’s behavior. In this paper a new model type of error compensation is proposed. It evaluates the error from the vectorial composition of length error by axis and its integration into the geometrical measurement model. The non-explained variability by the model is incorporated into the uncertainty budget. Model parameters are analyzed and linked to the geometrical errors and uncertainty of CMM response. Next, the outstanding measurement models of flatness, angle, and roundness are developed. The proposed models are useful for measurement improvement with easy integration into CMM signal processing, in particular in industrial environments where built-in solutions are sought. A battery of implementation tests are presented in Part II, where the experimental endorsement of the model is included.

  14. Continuous Dissolved Oxygen Measurements and Modelling Metabolism in Peatland Streams

    OpenAIRE

    2016-01-01

    Stream water dissolved oxygen was monitored in a 3.2km2 moorland headwater catchment in the Scottish Highlands. The stream consists of three 1st order headwaters and a 2nd order main stem. The stream network is fringed by peat soils with no riparian trees, though dwarf shrubs provide shading in the lower catchment. Dissolved oxygen (DO) is regulated by the balance between atmospheric re-aeration and the metabolic processes of photosynthesis and respiration. DO was continuously measured for >1...

  15. Measuring oxygen pressures using triplet quenching of Pd-porphine

    Science.gov (United States)

    Sinaasappel, Michiel; Ince, C.; Sanderse, E. A.; Bruining, Hajo A.

    1994-02-01

    A non-invasive optical method for measuring free oxygen in vivo is described. The method, introduced by Wilson and co-workers, is based on the quenching of the triplet state of Pd- porphine by oxygen and is described by the Stern-Volmer relation. The quenching of the triplet state is determined by measurement of the phosphorescence decay following excitation by a pulse of light. Measuring decay times has the advantage that they are independent of the changing optical properties of tissue and concentration of the dye. We describe a setup to measure the phosphorescence decay and present the values of Kq and (tau) o as a function of pH and temperature. Furthermore, some experiments on a rat liver and gut are presented.

  16. Calibration of absolute radial dimension of measurement for cylindrical coordinate measuring machine

    Science.gov (United States)

    Zhao, Zexiang; Wang, Guixia; Zhao, Huiying; Li, Bin

    2010-08-01

    According to the definitions of the diameters in the new generation Geometrical Product Specifications(GPS), the evaluation models of least square diameter, minimum circumscribed diameter, maximum inscribed diameter, area diameter, circumference diameter and volume diameter are built on the cylindrical coordinate system for the section measuring path, the element measuring path and the bird-cage measuring path in this paper. A cylindrical coordinate measuring machine for the measurement of the diameters above is introduced. Based on the external standard cylinder with super high precision, a relative calibration method for the measurement of the radial size is promoted. The influence of several special cases of the installation of the cylinder on the calibrating results is analyzed, and the calibrating equation related to the special cases is given.

  17. Definition of free form object for low uncertainty measurements on cooridnate measuring machines

    DEFF Research Database (Denmark)

    Savio, Enrico; De Chiffre, Leonardo

    This report is made as a part of the project Easytrac, an EU project under the programme: Competitive and Sustainable Growth: Contract No: G6RD-CT-2000-00188, coordinated by UNIMETRIK S.A. (Spain). The project is concerned with low uncertainty calibrations on coordinate measuring machines....... The Centre for Geometrical Metrology (CGM) at the Technical University of Denmark takes care of free form measurements, in collaboration with DIMEG, University of Padova, Italy. The present report describes the free form objects selected for the investigations on the uncertainty assessment procedures....

  18. Economy of running: beyond the measurement of oxygen uptake.

    Science.gov (United States)

    Fletcher, Jared R; Esau, Shane P; Macintosh, Brian R

    2009-12-01

    The purpose of this study was to compare running economy across three submaximal speeds expressed as both oxygen cost (mlxkg(-1)xkm(-1)) and the energy required to cover a given distance (kcalxkg(-1)xkm(-1)) in a group of trained male distance runners. It was hypothesized that expressing running economy in terms of caloric unit cost would be more sensitive to changes in speed than oxygen cost by accounting for differences associated with substrate utilization. Sixteen highly trained male distance runners [maximal oxygen uptake (Vo(2max)) 66.5 +/- 5.6 mlxkg(-1)xmin(-1), body mass 67.9 +/- 7.3 kg, height 177.6 +/- 7.0 cm, age 24.6 +/- 5.0 yr] ran on a motorized treadmill for 5 min with a gradient of 0% at speeds corresponding to 75%, 85%, and 95% of speed at lactate threshold with 5-min rest between stages. Oxygen uptake was measured via open-circuit calorimetry. Average oxygen cost was 221 +/- 19, 217 +/- 15, and 221 +/- 13 mlxkg(-1)xkm(-1), respectively. Caloric unit cost was 1.05 +/- 0.09, 1.07 +/- 0.08, and 1.11 +/- 0.07 kcalxkg(-1)xkm(-1) at the three trial speeds, respectively. There was no difference in oxygen cost with respect to speed (P = 0.657); however, caloric unit cost significantly increased with speed (P < 0.001). It was concluded that expression of running economy in terms of caloric unit cost is more sensitive to changes in speed and is a more valuable expression of running economy than oxygen uptake, even when normalized per distance traveled.

  19. On reactive oxygen species measurement in living systems

    OpenAIRE

    2015-01-01

    Studies devoted to the detection and measurement of free radicals in biological systems generally generated accepted methods of reactive oxygen species (ROS) level analysis. When out of control, ROS induces tissue damage, chronic inflammatory processes and cellular functional disturbances. Aerobic organisms have adapted to defense against ROS aggression by developing potent antioxidant mechanisms. Recent advances in ROS measurement methodology allow the study of ROS biology at a previously un...

  20. Dynamic Oxygen Storage Capacity Measurements on Ceria-Based Material

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Dynamic oxygen storage and release capability (OSC) measurement apparatus was designed to evaluate the OSC performance of ceria-based oxygen storage material. The optimum measurement condition was at a frequency of 0.1 Hz with the inlet gas-flow sequence CO (5S)→O2 (5S)→CO→O2 and a flow rate of 300 ml·min-1. Under this condition, similar regular square wave in the inlet and outlet of the reactor was obtained to guarantee the reliability of the dynamic OSC results. The dynamic OSC performance of the CeO2 and Ce0.67Zr0.33O2 mixed oxide prepared using the citric sol-gel method was studied at the optimum measurement condition with focus on both quantitative and qualitative analyses. The results reveal distinctly that Ce0.67Zr0.33O2 had better dynamic OSC performance because of its higher oxygen migration rate than CeO2. Under dynamic conditions, two CO2 production peaks occurred corresponding to the CO pulse and the O2 pulse, respectively, during the entire cycle. The intensity and ratio between the two CO2 productions were highly influenced by temperature and frequency indicating complex surface phenomena during the oxygen storage/release process. As a result, this set-up can be applied to the evaluation of ceria-based material on the OSC performance.

  1. Trophoblast invasion and oxygenation of the placenta: measurements versus presumptions.

    Science.gov (United States)

    Huppertz, Berthold; Weiss, Gregor; Moser, Gerit

    2014-03-01

    Invasion of extravillous trophoblast into maternal tissues has a profound effect on the oxygenation of the placenta and hence the fetus. The main route of trophoblast invasion is interstitial invasion into the tissues of the decidua and myometrium. From this main route side branches reach the spiral arteries (endovascular trophoblast) as well as the uterine glands (endoglandular trophoblast) to open both structures toward the intervillous space. This enables histiotrophic nutrition in the first trimester and hemotrophic nutrition in the second and third trimesters of pregnancy. Failure of endovascular trophoblast invasion has profound effects on the oxygenation of the placenta. Interestingly, this does not lead to hypoxia as has long been presumed. Rather, all measurements available today point to increased oxygen levels within the placenta in patients with a failure of spiral artery transformation. This should lead to a rethink regarding pathological conditions such as intrauterine growth restriction and preeclampsia.

  2. Phishtest: Measuring the Impact of Email Headers on the Predictive Accuracy of Machine Learning Techniques

    Science.gov (United States)

    Tout, Hicham

    2013-01-01

    The majority of documented phishing attacks have been carried by email, yet few studies have measured the impact of email headers on the predictive accuracy of machine learning techniques in detecting email phishing attacks. Research has shown that the inclusion of a limited subset of email headers as features in training machine learning…

  3. Phishtest: Measuring the Impact of Email Headers on the Predictive Accuracy of Machine Learning Techniques

    Science.gov (United States)

    Tout, Hicham

    2013-01-01

    The majority of documented phishing attacks have been carried by email, yet few studies have measured the impact of email headers on the predictive accuracy of machine learning techniques in detecting email phishing attacks. Research has shown that the inclusion of a limited subset of email headers as features in training machine learning…

  4. Non-invasive measurement of oxygen diffusion in model foods.

    Science.gov (United States)

    Bhunia, Kanishka; Sablani, Shyam S; Tang, Juming; Rasco, Barbara

    2016-11-01

    In this study, we developed a non-invasive method to determine oxygen diffusivity (DO2) in food gels using an Oxydot luminescence sensor. We designed and fabricated a transparent diffusion cell in order to represent oxygen transfer into foods packaged in an 8-ounce polymeric tray. Oxydots were glued to the sides (side-dot) and bottom (bottom-dot) of the cell and filled with 1, 2, and 3% (w/v) agar gel as a model food. After deoxygenation, local oxygen concentrations in the gels were measured non-invasively at 4, 12 and 22°C. Effective oxygen diffusivities in gels (DO2g) and water (DO2w) were obtained after fitting experimental data to the analytical solution (data from side-dot) and the numerical solution (data from bottom-dot) to Fick's second law. Temperature had significant positive influence (P0.05) was found between the activation energy (Ea) of water and gels (1-3% w/v) for temperatures ranging from 4 to 22°C. We used a combined obstruction and hydrodynamic model to explain why DO2g decreased as gel concentration increased. The method developed in this study can be used to study the oxygen diffusivity in foods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. A simple numerical model for membrane oxygenation of an artificial lung machine

    Science.gov (United States)

    Subraveti, Sai Nikhil; Sai, P. S. T.; Viswanathan Pillai, Vinod Kumar; Patnaik, B. S. V.

    2015-11-01

    Optimal design of membrane oxygenators will have far reaching ramification in the development of artificial heart-lung systems. In the present CFD study, we simulate the gas exchange between the venous blood and air that passes through the hollow fiber membranes on a benchmark device. The gas exchange between the tube side fluid and the shell side venous liquid is modeled by solving mass, momentum conservation equations. The fiber bundle was modelled as a porous block with a bundle porosity of 0.6. The resistance offered by the fiber bundle was estimated by the standard Ergun correlation. The present numerical simulations are validated against available benchmark data. The effect of bundle porosity, bundle size, Reynolds number, non-Newtonian constitutive relation, upstream velocity distribution etc. on the pressure drop, oxygen saturation levels etc. are investigated. To emulate the features of gas transfer past the alveoli, the effect of pulsatility on the membrane oxygenation is also investigated.

  6. Precision mechatronics based on high-precision measuring and positioning systems and machines

    Science.gov (United States)

    Jäger, Gerd; Manske, Eberhard; Hausotte, Tino; Mastylo, Rostyslav; Dorozhovets, Natalja; Hofmann, Norbert

    2007-06-01

    Precision mechatronics is defined in the paper as the science and engineering of a new generation of high precision systems and machines. Nanomeasuring and nanopositioning engineering represents important fields of precision mechatronics. The nanometrology is described as the today's limit of the precision engineering. The problem, how to design nanopositioning machines with uncertainties as small as possible will be discussed. The integration of several optical and tactile nanoprobes makes the 3D-nanopositioning machine suitable for various tasks, such as long range scanning probe microscopy, mask and wafer inspection, nanotribology, nanoindentation, free form surface measurement as well as measurement of microoptics, precision molds, microgears, ring gauges and small holes.

  7. Monitoring microvascular free flaps with tissue oxygen measurement and PET.

    Science.gov (United States)

    Schrey, Aleksi R; Kinnunen, Ilpo A J; Grénman, Reidar A; Minn, Heikki R I; Aitasalo, Kalle M J

    2008-07-01

    Tissue oxygen measurement and positron emission tomography (PET) were evaluated as methods for predicting ischemia in microvascular free flaps of the head and neck. Ten patients with head and neck squamous cell cancer underwent resection of the tumour followed by microvascular reconstruction with a free flap. Tissue oxygenation of the flap (P(ti)O(2)) was continuously monitored for three postoperative (POP) days and the blood flow of the flap was assessed using oxygen-15 labelled water and PET. In three free flaps a perfusion problem was suspected due to a remarkable drop in P(ti)O(2)-values, due to two anastomosis problems and due to POP turgor. No flap losses occurred. During the blood flow measurements with PET [mean 8.5 mL 100 g(-1) min(-1 )(SD 2.5)], the mean P(ti)O(2) of the flaps [46.8 mmHg (SD 17.0)] appeared to correlate with each other in each patient (pmonitoring system of free flaps. The perfusion-study with PET correlates with P(ti)O(2)-measurement.

  8. Determination of the workspace of a new coordinate-measuring machine using parallel-link mechanism

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Presents the detailed algorithm established for determination of workspace for a 3 - DOF coordinate measuring machine using parallel-link mechanism by constructing the inverse kinematic model first and then re viewing the physical and kinematical constraints from the structural characteristics of the parallel-link mechanism, and discusses the actual geometries of workspace and the factors having effect on workspace through computer simulation thereby providing necessary theoretical basis for the research and development of coordinate measuring machines using parallel-link mechanism.

  9. Estimation of measuring uncertainty for optical micro-coordinate measuring machine

    Institute of Scientific and Technical Information of China (English)

    Kang Song(宋康); Zhuangde Jiang(蒋庄德)

    2004-01-01

    Based on the evaluation principle of the measuring uncertainty of the traditional coordinate measuring machine (CMM), the analysis and evaluation of the measuring uncertainty for optical micro-CMM have been made. Optical micro-CMM is an integrated measuring system with optical, mechanical, and electronic components, which may influence the measuring uncertainty of the optical micro-CMM. If the influence of laser speckle is taken into account, its longitudinal measuring uncertainty is 2.0 μm, otherwise it is 0.88 μm. It is proved that the estimation of the synthetic uncertainty for optical micro-CMM is correct and reliable by measuring the standard reference materials and simulating the influence of the diameter of laser beam. With Heisenberg's uncertainty principle and quantum mechanics theory, a method for improving the measuring accuracy of optical micro-CMM through adding a diaphragm in the receiving terminal of the light path was proposed, and the measuring results are verified by experiments.

  10. A Review of Research on Improvement and Optimization of Performance Measures for Electrical Discharge Machining

    Directory of Open Access Journals (Sweden)

    C. R. Sanghani

    2014-01-01

    Full Text Available Electrical Discharge Machining (EDM is a non conventional machining method which can be used to machine electrically conductive work pieces irrespective of their shape, hardness and toughness. High cost of non conventional machine tools, compared to conventional machining, has forced us to operate these machines as efficiently as possible in order to reduce production cost and to obtain the required reimbursement. To achieve this task, machining parameters such as pulse on time, pulse off time, discharge current, gap voltage, flushing pressure, electrode material, etc. of this process should be selected such that optimal value of their performance measures like Material Removal Rate (MRR, Surface Roughness (SR, Electrode/Tool Wear Rate (EWR/TWR, dimensional accuracy, etc. can be obtained or improved. In past decades, intensive research work had been carried out by different researchers for improvement and optimization of EDM performance measures using various optimization techniques like Taguchi, Response Surface Methodology (RSM, Artificial Neural Network (ANN, Genetic Algorithm (GA, etc. This paper reviews research on improvement and optimization of various performance measures of spark erosion EDM and finally lists down certain areas that can be taken up for further research in the field of improvement and optimization for EDM process.

  11. Precise measurement of effective oxygen diffusivity for microporous media containing moisture by review of galvanic cell oxygen absorber configuration

    OpenAIRE

    Koresawa, Ryo; Utaka, Yoshio

    2014-01-01

    The performance of polymer electrolyte fuel cells is influenced by moisture control in their gas diffusion layer (GDL). Therefore, to achieve suitable control, it is necessary to clarify the mass transfer characteristics within a GDL by high precision measurement of oxygen diffusivity. We have previously proposed that measurement of the effective oxygen diffusivity in a GDL containing moisture can be achieved using a galvanic cell oxygen absorber and demonstrated this to be an effective techn...

  12. Measurements and modelling of low-frequency disturbances in induction machines

    Energy Technology Data Exchange (ETDEWEB)

    Thiringer, T. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Electric Power Engineering

    1996-12-01

    The thesis deals with the dynamic response of the induction machine to low frequency perturbations in the shaft torque, supply voltage and supply frequency. Also the response of a two-machine group connected to a weak grid is investigated. The results predicted by various induction models are compared with measurements performed on a laboratory set-up. Furthermore, the influence of machine and grid parameters, machine temperature, phase compensating capacitors, skin effect, saturation level and operating points is studied. The results predicted by the fifth-order non-linear Park model agree well with the measured induction machine responses to shaft torque, supply frequency and voltage magnitude perturbations. To determine the electric power response to very low-frequency perturbations in the magnitude of the supply voltage, the Park model must be modified to take varying iron losses into account. The temperature and supply frequency affect the low frequency dynamics of the induction machine significantly. The static shaft torque is, however, of importance for determining the responses to voltage magnitude perturbations. The performance of reduced-order induction machine models depends on the type of induction machine investigated. Best suited to be represented by reduced-order models are high-slip machines as well as machines that have a low ratio between the stator resistance and leakage reactances. A first-order model can predict the rotor speed, electrodynamic torque and electric power responses to shaft torque and supply frequency perturbations up to a perturbation frequency of at least 1 Hz. A second-order model can determine the same responses also for higher perturbation frequencies, at least up to 3 Hz. Using a third-order model all the responses can be determined up to at least 10 Hz. 48 refs, 45 figs, 14 tabs

  13. A new method for measuring the oxygen diffusion constant and oxygen consumption rate of arteriolar walls.

    Science.gov (United States)

    Sasaki, Nobuhiko; Horinouchi, Hirohisa; Ushiyama, Akira; Minamitani, Haruyuki

    2012-01-01

    Oxygen transport is believed to primarily occur via capillaries and depends on the oxygen tension gradient between the vessels and tissues. As blood flows along branching arterioles, the O(2) saturation drops, indicating either consumption or diffusion. The blood flow rate, the O(2) concentration gradient, and Krogh's O(2) diffusion constant (K) of the vessel wall are parameters affecting O(2)delivery. We devised a method for evaluating K of arteriolar wall in vivo using phosphorescence quenching microscopy to measure the partial pressure of oxygen in two areas almost simultaneously. The K value of arteriolar wall (inner diameter, 63.5 ± 11.9 μm; wall thickness, 18.0 ± 1.2 μm) was found to be 6.0 ± 1.2 × 10(-11) (cm(2)/s)(ml O(2)·cm(-3) tissue·mmHg(-1)). The arteriolar wall O(2) consumption rate (M) was 1.5 ± 0.1 (ml O(2)·100 cm(-3) tissue·min(-1)), as calculated using Krogh's diffusion equation. These results suggest that the arteriolar wall consumes a considerable proportion of the O(2) that diffuses through it.

  14. Validating Machine Learning Algorithms for Twitter Data Against Established Measures of Suicidality.

    Science.gov (United States)

    Braithwaite, Scott R; Giraud-Carrier, Christophe; West, Josh; Barnes, Michael D; Hanson, Carl Lee

    2016-05-16

    One of the leading causes of death in the United States (US) is suicide and new methods of assessment are needed to track its risk in real time. Our objective is to validate the use of machine learning algorithms for Twitter data against empirically validated measures of suicidality in the US population. Using a machine learning algorithm, the Twitter feeds of 135 Mechanical Turk (MTurk) participants were compared with validated, self-report measures of suicide risk. Our findings show that people who are at high suicidal risk can be easily differentiated from those who are not by machine learning algorithms, which accurately identify the clinically significant suicidal rate in 92% of cases (sensitivity: 53%, specificity: 97%, positive predictive value: 75%, negative predictive value: 93%). Machine learning algorithms are efficient in differentiating people who are at a suicidal risk from those who are not. Evidence for suicidality can be measured in nonclinical populations using social media data.

  15. Thenar oxygen saturation and invasive oxygen delivery measurements in critically ill patients in early septic shock.

    Science.gov (United States)

    Mesquida, Jaume; Gruartmoner, Guillem; Martínez, Maria Luisa; Masip, Jordi; Sabatier, Caroline; Espinal, Cristina; Artigas, Antonio; Baigorri, Francisco

    2011-05-01

    This prospective study was aimed to test the hypothesis that tissue hemoglobin oxygen saturation (StO₂) measured noninvasively using near-infrared spectroscopy is a reliable indicator of global oxygen delivery (DO₂) measured invasively using a pulmonary artery catheter (PAC) in patients with septic shock. The study setting was a 26-bed medical-surgical intensive care unit at a university hospital. Subjects were adult patients in septic shock who required PAC hemodynamic monitoring for resuscitation. Interventions included transient ischemic challenge on the forearm. After blood pressure normalization, hemodynamic and oximetric PAC variables and, simultaneously, steady-state StO₂ and its changes from ischemic challenge (deoxygenation and reoxygenation rates) were measured. Fifteen patients were studied. All the patients had a mean arterial pressure above 65 mmHg. The DO₂ index (iDO₂) range in the studied population was 215 to 674 mL O₂/min per m. The mean mixed venous oxygen saturation value was 61% ± 10%, mean cardiac index was 3.4 ± 0.9 L/min per m, and blood lactate level was 4.6 ± 2.7 mmol/L. Steady-state StO₂ significantly correlated with iDO₂, arterial and venous O₂ content, and O₂ extraction ratio. A StO₂ cutoff value of 75% predicted iDO₂ below 450, with a sensitivity of 0.9 and a specificity of 0.9. In patients in septic shock and normalized MAP, low StO₂ reflects extremely low iDO₂. Steady-state StO₂ does not correlate with moderately low iDO₂, indicating poor sensitivity of StO₂ to rule out hypoperfusion.

  16. Measuring the usefulness of hidden units in Boltzmann machines with mutual information.

    Science.gov (United States)

    Berglund, Mathias; Raiko, Tapani; Cho, Kyunghyun

    2015-04-01

    Restricted Boltzmann machines (RBMs) and deep Boltzmann machines (DBMs) are important models in deep learning, but it is often difficult to measure their performance in general, or measure the importance of individual hidden units in specific. We propose to use mutual information to measure the usefulness of individual hidden units in Boltzmann machines. The measure is fast to compute, and serves as an upper bound for the information the neuron can pass on, enabling detection of a particular kind of poor training results. We confirm experimentally that the proposed measure indicates how much the performance of the model drops when some of the units of an RBM are pruned away. We demonstrate the usefulness of the measure for early detection of poor training in DBMs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Integration of Error Compensation of Coordinate Measuring Machines into Feature Measurement: Part II—Experimental Implementation

    Directory of Open Access Journals (Sweden)

    Roque Calvo

    2016-10-01

    Full Text Available Coordinate measuring machines (CMM are main instruments of measurement in laboratories and in industrial quality control. A compensation error model has been formulated (Part I. It integrates error and uncertainty in the feature measurement model. Experimental implementation for the verification of this model is carried out based on the direct testing on a moving bridge CMM. The regression results by axis are quantified and compared to CMM indication with respect to the assigned values of the measurand. Next, testing of selected measurements of length, flatness, dihedral angle, and roundness features are accomplished. The measurement of calibrated gauge blocks for length or angle, flatness verification of the CMM granite table and roundness of a precision glass hemisphere are presented under a setup of repeatability conditions. The results are analysed and compared with alternative methods of estimation. The overall performance of the model is endorsed through experimental verification, as well as the practical use and the model capability to contribute in the improvement of current standard CMM measuring capabilities.

  18. Two applications of small feature dimensional measurements on a coordinate measuring machine with a fiber probe

    Science.gov (United States)

    Stanfield, Eric; Muralikrishnan, Bala; Doiron, Ted; Zheng, Alan; Orandi, Shahram; Duquette, David

    2013-10-01

    This paper describes two applications of dimensional measurements performed using a contact fiber probe on a commercial coordinate measuring machine (CMM). Both examples involve artifacts that serve as reference standards and contain features in the 100 μm to 500 μm range. The first application involves measuring the spacing between features, either holes or rectangular prisms, on a cylinder that is approximately the size of a finger. The artifact, referred to as the fingerprint target, serves as a standard for verifying the performance of fingerprint scanners. The second application involves measuring the volume of small three-dimensional features such as cylinders and rectangular prisms that rise from a plate. This artifact is referred to as the volume target in this paper; these targets serve as volume standards for manufacturers and users of solder paste inspection systems. In each case, the measurement challenges presented by these artifacts are discussed and the measurand, the measurement plan, error sources, and uncertainty budget are described.

  19. Using financial risk measures for analyzing generalization performance of machine learning models.

    Science.gov (United States)

    Takeda, Akiko; Kanamori, Takafumi

    2014-09-01

    We propose a unified machine learning model (UMLM) for two-class classification, regression and outlier (or novelty) detection via a robust optimization approach. The model embraces various machine learning models such as support vector machine-based and minimax probability machine-based classification and regression models. The unified framework makes it possible to compare and contrast existing learning models and to explain their differences and similarities. In this paper, after relating existing learning models to UMLM, we show some theoretical properties for UMLM. Concretely, we show an interpretation of UMLM as minimizing a well-known financial risk measure (worst-case value-at risk (VaR) or conditional VaR), derive generalization bounds for UMLM using such a risk measure, and prove that solving problems of UMLM leads to estimators with the minimized generalization bounds. Those theoretical properties are applicable to related existing learning models.

  20. Ion measurements in premixed methane-oxygen flames

    KAUST Repository

    Alquaity, Awad

    2014-07-25

    Ions are formed as a result of chemi-ionization processes in combustion systems. Recently, there has been an increasing interest in understanding flame ion chemistry due to the possible application of external electric fields to reduce emissions and improve combustion efficiency by active control of combustion process. In order to predict the effect of external electric fields on combustion plasma, it is critical to gain a good understanding of the flame ion chemistry. In this work, a Molecular Beam Mass Spectrometer (MBMS) is utilized to measure ion concentration profiles in premixed methane-oxygen-argon burner-stabilized flames. Lean, stoichiometric and rich flames at atmospheric pressure are used to study the dependence of ion chemistry on equivalence ratio of premixed flames. The relative ion concentration profiles are compared qualitatively with previous methane-oxygen studies and show good agreement. The relative ion concentration data obtained in the present study can be used to validate and improve ion chemistry models for methane-oxygen flames.

  1. Evaluation of the accuracy and limitations of three tooth-color measuring machines

    Directory of Open Access Journals (Sweden)

    Jiun-Yao Chang

    2015-03-01

    Conclusion: By knowing the limits of each machine after being analyzed with the Munsell Book of Color, we can use the color measuring instrument in the specific color space range that the devices measuring accuracy performs the best in to achieve objective and accurate tooth-color measuring results in routine dental practice.

  2. Charge Exchange Cross Sections Measured at Low Energies in Q-Machines

    DEFF Research Database (Denmark)

    Andersen, S. A.; Jensen, Vagn Orla; Michelsen, Poul

    1972-01-01

    A new technique for measurements of charge exchange cross sections at low energies is described. The measurements are performed in a single‐ended Q machine. The resonance charge exchange cross section for Cs at 2 eV was found to be 0.6×10−13 cm2±20%.......A new technique for measurements of charge exchange cross sections at low energies is described. The measurements are performed in a single‐ended Q machine. The resonance charge exchange cross section for Cs at 2 eV was found to be 0.6×10−13 cm2±20%....

  3. Ultrasonic fluid quantity measurement in dynamic vehicular applications a support vector machine approach

    CERN Document Server

    Terzic, Jenny; Nagarajah, Romesh; Alamgir, Muhammad

    2013-01-01

    Accurate fluid level measurement in dynamic environments can be assessed using a Support Vector Machine (SVM) approach. SVM is a supervised learning model that analyzes and recognizes patterns. It is a signal classification technique which has far greater accuracy than conventional signal averaging methods. Ultrasonic Fluid Quantity Measurement in Dynamic Vehicular Applications: A Support Vector Machine Approach describes the research and development of a fluid level measurement system for dynamic environments. The measurement system is based on a single ultrasonic sensor. A Support Vector Machines (SVM) based signal characterization and processing system has been developed to compensate for the effects of slosh and temperature variation in fluid level measurement systems used in dynamic environments including automotive applications. It has been demonstrated that a simple ν-SVM model with Radial Basis Function (RBF) Kernel with the inclusion of a Moving Median filter could be used to achieve the high levels...

  4. Machine integrated optical measurement of honed surfaces in presence of cooling lubricant

    Science.gov (United States)

    Schmitt, R.; König, N.; Zheng, H.

    2011-08-01

    The measurement of honed surfaces is one of the most important tasks in tribology. Although many established techniques exist for texture characterization, such as SEM, tactile stylus or white-light interferometry, none of them is suited for a machine integrated measurement. Harsh conditions such as the presence of cooling lubricant or vibrations prohibit the use of commercial sensors inside a honing machine. Instead, machined engine blocks need time-consuming cleaning and preparation while taken out of the production line for inspection. A full inspection of all produced parts is hardly possible this way. Within this paper, an approach for a machine-integrated measurement is presented, which makes use of optical sensors for texture profiling. The cooling lubricant here serves as immersion medium. The results of test measurements with a chromatic-confocal sensor and a fiber-optical low-coherence interferometer show the potential of both measuring principles for our approach. Cooling lubricant temperature and flow, scanning speed and measurement frequency have been varied in the tests. The sensor with best performance will later be chosen for machine integration.

  5. Machine integrated optical measurement of honed surfaces in presence of cooling lubricant

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, R; Koenig, N; Zheng, H, E-mail: n.koenig@wzl.rwth-aachen.de [Laboratory for Machine Tools and Production Engineering of RWTH Aachen University, Steinbachstr. 19, 52074 Aachen (Germany)

    2011-08-19

    The measurement of honed surfaces is one of the most important tasks in tribology. Although many established techniques exist for texture characterization, such as SEM, tactile stylus or white-light interferometry, none of them is suited for a machine integrated measurement. Harsh conditions such as the presence of cooling lubricant or vibrations prohibit the use of commercial sensors inside a honing machine. Instead, machined engine blocks need time-consuming cleaning and preparation while taken out of the production line for inspection. A full inspection of all produced parts is hardly possible this way. Within this paper, an approach for a machine-integrated measurement is presented, which makes use of optical sensors for texture profiling. The cooling lubricant here serves as immersion medium. The results of test measurements with a chromatic-confocal sensor and a fiber-optical low-coherence interferometer show the potential of both measuring principles for our approach. Cooling lubricant temperature and flow, scanning speed and measurement frequency have been varied in the tests. The sensor with best performance will later be chosen for machine integration.

  6. Comparison of two different methods for the uncertainty estimation of circle diameter measurements using an optical coordinate measuring machine

    DEFF Research Database (Denmark)

    Morace, Renata Erica; Hansen, Hans Nørgaard; De Chiffre, Leonardo

    2005-01-01

    This paper deals with the uncertainty estimation of measurements performed on optical coordinate measuring machines (CMMs). Two different methods were used to assess the uncertainty of circle diameter measurements using an optical CMM: the sensitivity analysis developing an uncertainty budget and...

  7. Accuracy and versatility of the NIST M48 coordinate measuring machine

    Science.gov (United States)

    Stoup, John R.; Doiron, Theodore D.

    2001-10-01

    The NIST Is continuing to develop the ability to perform accurate, traceable measurements on a wide range of artifacts using a very precise, error-mapped coordinate measuring machine (CMM). The NIST M48 CMM has promised accuracy and versatility for many ears. Recently, these promises have been realized in a reliable, reproducible way for many types of 1D, 2D, and 3D engineering metrology artifacts. The versatility of the machine has permitted state-of-the-art, accurate measurements of one meter step gages and precision ball plates as well as 500 micrometer holes and small precision parts made of aluminum or glass. To accomplish this wide range of measurements the CMM has required extensive assessment of machine positioning and straightness errors, probe response, machine motion control and speed, environmental stability, and measurement procedures. The CMM has been used as an absolute instrument and as a very complicated comparator. The data collection techniques have been designed to acquire statistical information on the machine and probe performance and to evaluate and remove any potential thermal drift in the machine coordinate system during operation. This paper will present the data collection and measurement techniques used by NIST to achieve excellent measurement results for gage blocks, long end standards, step gages, ring and plug gages, small holes, ball plates, and angular artifacts. Comparison data with existing independent primary measuring instruments will also be presented to show agreement and correlation with those historical methods. Current plans for incorporating the CMM into existing measurement services, such as plain ring gages, large plug gages, and long end standards, will be presented along with other proposed development of this CMM.

  8. Phase-locked loop based on machine surface topography measurement using lensed fibers

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jin-Ho; Lee, ChaBum; Joo, Jae-Young; Lee, Sun-Kyu

    2011-02-01

    We present the phase-locked loop (PLL)-based metrology concept using lensed fibers for on-machine surface topography measurement. The shape of a single-mode fiber at the endface was designed using an ABCD matrix method, and two designed lensed fibers--the ball type and the tapered type--were fabricated, and the performance was evaluated, respectively. As a result, the interferometric fringe was not found in the case of the ball lensed fiber, but the machined surface could be measured by utilization of autofocusing and intensity methods. On the other hand, a very clear Fizeau interferometric fringe was observed in the case of the tapered lensed fiber. Its performance was compared with the results of the capacitance sensor and a commercially available white-light interferometer. We confirmed that PLL-based surface profile measurement using the tapered and ball lensed fibers can be applied for on-machine surface topography measurement applications.

  9. Method for measurement of volatile oxygenated hydrocarbons in ambient air

    Science.gov (United States)

    Leibrock, E.; Slemr, J.

    An automated gas chromatographic method for the quantitative determination of oxygenated (C 2C 5 carbonyls and C 1C 2 alcohols) and some non-oxygenated (C 5C 8) hydrocarbons in ambient air has been developed. The analytical system consists of a gas chromatograph with a cryogenic sampling trap, a precolumn for the separation of water and other interfering compounds, a cryogenic focusing trap and two analytical columns connected in series. Substances are detected either by flame ionization or by a mass spectrometer. Ozone is removed by a potassium iodide scrubber placed upstream the sampling trap. External gas standards generated by a permeation device are used for calibration. The detection limits range between 0.03 and 0.08 ng (depending on the compound), equivalent to 5 to 56 ppt in 1 l of sampled air. The method was tested by an intercomparison with a different gas chromatographic technique for the determination of NMHC. The system has been applied since 1994 for measurements in ambient air. Data obtained during an intensive campaign in summer 1995 at the field station Wank (1778 m a.s.l.) near Garmisch-Partenkirchen, Germany, are reported and compared with NMHC mixing ratios measured simultaneously in the same air masses.

  10. Results of error correction techniques applied on two high accuracy coordinate measuring machines

    Energy Technology Data Exchange (ETDEWEB)

    Pace, C.; Doiron, T.; Stieren, D.; Borchardt, B.; Veale, R. (Sandia National Labs., Albuquerque, NM (USA); National Inst. of Standards and Technology, Gaithersburg, MD (USA))

    1990-01-01

    The Primary Standards Laboratory at Sandia National Laboratories (SNL) and the Precision Engineering Division at the National Institute of Standards and Technology (NIST) are in the process of implementing software error correction on two nearly identical high-accuracy coordinate measuring machines (CMMs). Both machines are Moore Special Tool Company M-48 CMMs which are fitted with laser positioning transducers. Although both machines were manufactured to high tolerance levels, the overall volumetric accuracy was insufficient for calibrating standards to the levels both laboratories require. The error mapping procedure was developed at NIST in the mid 1970's on an earlier but similar model. The error mapping procedure was originally very complicated and did not make any assumptions about the rigidness of the machine as it moved, each of the possible error motions was measured at each point of the error map independently. A simpler mapping procedure was developed during the early 1980's which assumed rigid body motion of the machine. This method has been used to calibrate lower accuracy machines with a high degree of success and similar software correction schemes have been implemented by many CMM manufacturers. The rigid body model has not yet been used on highly repeatable CMMs such as the M48. In this report we present early mapping data for the two M48 CMMs. The SNL CMM was manufactured in 1985 and has been in service for approximately four years, whereas the NIST CMM was delivered in early 1989. 4 refs., 5 figs.

  11. Relevance Vector Machine and Support Vector Machine Classifier Analysis of Scanning Laser Polarimetry Retinal Nerve Fiber Layer Measurements

    Science.gov (United States)

    Bowd, Christopher; Medeiros, Felipe A.; Zhang, Zuohua; Zangwill, Linda M.; Hao, Jiucang; Lee, Te-Won; Sejnowski, Terrence J.; Weinreb, Robert N.; Goldbaum, Michael H.

    2010-01-01

    Purpose To classify healthy and glaucomatous eyes using relevance vector machine (RVM) and support vector machine (SVM) learning classifiers trained on retinal nerve fiber layer (RNFL) thickness measurements obtained by scanning laser polarimetry (SLP). Methods Seventy-two eyes of 72 healthy control subjects (average age = 64.3 ± 8.8 years, visual field mean deviation =−0.71 ± 1.2 dB) and 92 eyes of 92 patients with glaucoma (average age = 66.9 ± 8.9 years, visual field mean deviation =−5.32 ± 4.0 dB) were imaged with SLP with variable corneal compensation (GDx VCC; Laser Diagnostic Technologies, San Diego, CA). RVM and SVM learning classifiers were trained and tested on SLP-determined RNFL thickness measurements from 14 standard parameters and 64 sectors (approximately 5.6° each) obtained in the circumpapillary area under the instrument-defined measurement ellipse (total 78 parameters). Tenfold cross-validation was used to train and test RVM and SVM classifiers on unique subsets of the full 164-eye data set and areas under the receiver operating characteristic (AUROC) curve for the classification of eyes in the test set were generated. AUROC curve results from RVM and SVM were compared to those for 14 SLP software-generated global and regional RNFL thickness parameters. Also reported was the AUROC curve for the GDx VCC software-generated nerve fiber indicator (NFI). Results The AUROC curves for RVM and SVM were 0.90 and 0.91, respectively, and increased to 0.93 and 0.94 when the training sets were optimized with sequential forward and backward selection (resulting in reduced dimensional data sets). AUROC curves for optimized RVM and SVM were significantly larger than those for all individual SLP parameters. The AUROC curve for the NFI was 0.87. Conclusions Results from RVM and SVM trained on SLP RNFL thickness measurements are similar and provide accurate classification of glaucomatous and healthy eyes. RVM may be preferable to SVM, because it provides a

  12. Measuring of beat up force on weaving machines

    Directory of Open Access Journals (Sweden)

    Bílek Martin

    2017-01-01

    Full Text Available The textile material (warp is stressed cyclically at a relative high frequency during the weaving process. Therefore, the special measuring device for analysis of beat up force in the textile material during the weaving process, has been devised in the Weaving Laboratory of the TUL. This paper includes a description of this measuring device. The experimental part includes measurements results for various materials (PES and VS and various warp thread densities of the produced fabric.

  13. A new method to measure oxygenator oxygen transfer performance during cardiopulmonary bypass: clinical testing using the Medtronic Fusion oxygenator.

    Science.gov (United States)

    Hamilton, Carole; Marin, Denise; Weinbrenner, Frank; Engelhardt, Branka; Rosenzweig, Dow; Beck, Ulrich; Borisov, Pavel; Hohe, Stephen

    2017-03-01

    There is no acceptable method of testing oxygen transfer performance in membrane oxygenators quickly and easily during cardiopulmonary bypass. Pre-clinical testing of oxygenators is performed under controlled situations in the laboratory, correlating oxygen transfer to blood flow using 100% oxygen. This laboratory method cannot be used clinically as oxygen transfer values vary significantly at each blood flow and the FiO2 is not kept at 1. Therefore, a formula was developed which corrects the existing FiO2 to attain a PaO2 of 150 mmHg: the corrected FiO2 at 150 mmHg. In graph form, this corrected FiO2 (x-axis) is correlated to the patient's oxygen consumption levels (y-axis), which determines the membrane oxygenator oxygen transfer performance. Blood gas and hemodynamic parameters taken during cardiopulmonary bypass using the Medtronic Fusion were used to calculate the oxygen consumption (inlet conditions to the oxygenator) and the corrected FiO2 for a PaO2 of 150 mmHg. Validation of the formula "FiO2-PaO2/(Pb-pH2O)+0.21" was carried out by plotting the calculated values on a graph using PaO2 values between 145 to 155 mmHg and then, using the corrected FiO2 for PaO2s outside of this range. All trend-lines correlated significantly to confirm that the Medtronic Fusion had an extrapolated oxygen transfer of 419 milliliters O2/min at an FiO2 of 1 to achieve a PaO2 of 150 mmHg. Use of the corrected FiO2 correlated to the oxygen transfer conditions of the membrane oxygenator can easily be used on a routine basis, providing valuable information clinically. When used by the manufacturer under laboratory conditions, further clinically relevant data is provided in terms of FiO2 and resultant PaO2s instead of the present limitations using blood flow. In this way, a clinically justifiable method has been developed to finally establish a standard in testing membrane oxygenator performance.

  14. Application of the NANOMEFOS non-contact measurement machine in asphere and freeform optics production

    NARCIS (Netherlands)

    Henselmans, R.; Gubbels, G.P.H.; Drunen, C. van

    2010-01-01

    The NANOMEFOS machine is capable of fast, non-contact and universal measurement of aspheres and freeforms, up to ø500 mm with a measurement uncertainty below 30 nm (2σ). It is now being applied in asphere and freeform production at TNO.

  15. Design of an E-ELT M1 segment measurement machine with nanometer accuracy

    NARCIS (Netherlands)

    Bos, A.; Henselmans, R.; Rosielle, P.C.J.N.; Steinbuch, M.; Voert, M.J.A. te

    2014-01-01

    The baseline design of the European Extremely Large Telescope features a telescope with a 39-meter-class primary mirror (M1), consisting of 798 hexagonal segments. A measurement machine design is presented based on a non-contact single-point scanning technique, capable of measuring the form error of

  16. Rigid and flexible endoscopes for three dimensional measurement of inside machine parts using fringe projection

    Science.gov (United States)

    Pösch, Andreas; Schlobohm, Jochen; Matthias, Steffen; Reithmeier, Eduard

    2017-02-01

    Routine maintenance is mandatory for safe and efficient operation of complex machines, such as airplane turbines. Occasional special events, like bird strike, entail extraordinary inspection works. Hereby, inside machine parts are hard to reach, oftentimes occluded by other parts and not directly accessible for visual inspection. Disassembly of machine parts is time-consuming and expensive and, therefore undesired. This leaves distal imaging, i.e. endoscopy, to be the only practical option for defect detection. Ordinary endoscopes, which provide two dimensional intensity image data, are insufficient to fully assess the risks caused by small three dimensional defects. As a solution to this issue, we have developed and implemented two different systems for three dimensional endoscopic measurement based on structured light projection which are capable of recording high resolution and high accuracy point cloud data. A measurement standard deviation of roughly 20 μm is achieved within a field of measurement of 20 × 30 × 30mm3 .

  17. Measurement and simulation of dissolved oxygen in Zayandehrood river

    Directory of Open Access Journals (Sweden)

    Ahmad Reza Rahsepar

    2012-01-01

    Full Text Available Aims: This study aims to simulate dissolved oxygen of Zayandehrood river from regulating dam to Polle-Kalleh bridge using MIKE11 software that is a hydrodynamics and water quality model. Materials and Methods: During 5 months the samples were taken from four hydrometric stations and water quality parameters such as dissolved oxygen, pH, BOD (1 day, 3 days, 5 days, and 7 days, NH 4 , NO 3 - phosphate (PO4 3- , and temperature were measured. Morphological and hydrological data were provided and introduced into the model. The model was calibrated and its accuracy was investigated. Results: The results indicated that concentration of PO4 3- , BOD5 , COD, NH 4 , and NO3 - exceeded surface water standards from regulating dam to Pole-Kalleh bridge. The results of the prediction for the next 25 years indicated that due to growth of population and industries along the river, concentration of some pollutants will be increased. Conclusions: The results indicated that although the current DO level is suitable for aquatic environment, this is not adequate for fish reproduction and migration. Prediction of the river water quality parameters for the future conditions showed that discharge of urban and rural wastewater to river should be avoided. In situations where release of effluent into the river is inevitable, nitrification process should be added to wastewater treatment processes.

  18. TRACEABILITY OF PRECISION MEASUREMENTS ON COORDINATE MEASURING MACHINES – UNCERTAINTY ASSESSMENT BY USING CALIBRATED WORPIECES ON CMMs

    DEFF Research Database (Denmark)

    Tosello, Guido; De Chiffre, Leonardo

    This document is used in connection with one exercise 30 minutes duration as a part of the course VISION ONLINE – One week course on Precision & Nanometrology. The exercise concerns establishment of traceability of precision measurements on coordinate measuring machines. This document contains...

  19. CIRP Interlaboratory Comparison of Coordinate Measuring Machines using an Optomechanical Hole Plate - Final Report

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Hansen, Hans Nørgaard; Morace, Renata Erica

    2005-01-01

    An interlaboratory comparison on mechanical and optical coordinate measuring machines (CMMs) was organized by the Centre for Geometrical Metrology (CGM), Department of Manufacturing Engineering and Management (IPL), Technical University of Denmark (DTU) and carried out within Collège International...... interferometers, 1 zerodur hole plate, 2 callipers, and 1 quartz standard. Out of the 23 measurement campaigns, 5 optical and 2 mechanical machines were not provided with establishment of traceability. The optomechanical hole plate is a suitable reference artefact providing traceability of CMMs, in particular...

  20. Two-dimensional Oxygen Distribution in a Surface Sediment Layer Measured Using an RGB Color Ratiometric Oxygen Planar Optode

    Directory of Open Access Journals (Sweden)

    Jae Seong Lee

    2013-09-01

    Full Text Available We measured two-dimensional (2-D oxygen distribution in the surface sediment layer of intertidal sediment using a simple and inexpensive planar oxygen optode, which is based on a color ratiometric image approach. The recorded emission intensity of red color luminophore light significantly changed with oxygen concentration by O2 quenching of platinum(IIoctaethylporphyrin (PtOEP. The ratios between the intensity of red and green emissions with oxygen concentration variation demonstrated the Stern-Volmer relationship. The 2-D oxygen distribution image showed microtopographic structure, diffusivity boundary layer and burrow in surface sediment layer. The oxygen penetration depth (OPD was about 2 mm and the one-dimensional vertical diffusive oxygen uptake (DOU was 12.6 mmol m−2 d−1 in the undisturbed surface sediment layer. However, those were enhanced near burrow by benthic fauna, and the OPD was two times deeper and DOU was increased by 34%. The simple and inexpensive oxygen planar optode has great application potential in the study of oxygen dynamics with high spatiotemporal resolution, in benthic boundary layers.

  1. Comparison of Coordinate Measuring Machines using an Optomechanical Hole Plate

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Hansen, Hans Nørgaard; Morace, Renata Erica

    2005-01-01

    This paper describes modelling of an integrated AFM - CMM instrument, its calibration, and estimation of measurement uncertainty. Positioning errors were seen to limit the instrument performance. Software for off-line stitching of single AFM scans was developed and verified, which allows compensa...

  2. Optical vibration and deviation measurement of rotating machine parts

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    It is of interest to get appropriate information about the dynamic behaviour of rotating machinery parts in service. This paper presents an approach of optical vibration and deviation measurement of such parts. Essential of this method is an image derotator combined with a high speed camera or a laser doppler vibrometer (LDV).

  3. A modified procedure for measuring oxygen-18 content of nitrate

    Science.gov (United States)

    Ahmed, M. A.; Aly, A. I. M.; Abdel Monem, N.; Hanafy, M.; Gomaa, H. E.

    2012-11-01

    SummaryMass spectrometric analysis of O-isotopic composition of nitrate has many potential applications in studies of environmental processes. Through this work, rapid, reliable, precise, broadly applicable, catalyst-free, low-priced and less labor intensive procedure for measuring δ18O of nitrate using Isotope Ratio Mass Spectrometer has been developed and implemented. The conditions necessary to effect complete nitrate recovery and complete removal of other oxygen containing anions and dissolved organic carbon (DOC) without scarifying the isotopic signature of nitrate were investigated. The developed procedure consists of two main parts: (1) wet chemistry train for extraction and purification of nitrate from the liquid matrix; (2) off-line pyrolysis of extracted nitrate salt with activated graphite at 550 °C for 30 min. The conditions necessary to effect complete nitrate recovery and complete removal of other oxygen containing compounds were investigated. Dramatic reduction in processing times needed for analysis of δ18O of nitrate at natural abundance level was achieved. Preservation experiments revealed that chloroform (99.8%) is an effective preservative. Isotopic contents of some selected nitrate salts were measured using the modified procedure and some other well established methods at two laboratories in Egypt and Germany. Performance assessment of the whole developed analytical train was made using internationally distributed nitrate isotopes reference materials and real world sample of initial zero-nitrate content. The uncertainty budget was evaluated using the graphical nested hierarchal approach. The obtained results proved the suitability for handling samples of complicated matrices. Reduction of consumables cost by about 80% was achieved.

  4. Measuring Collective Intelligence in Human-Machine Systems

    Science.gov (United States)

    2013-12-09

    the variance in the number of speaking turns by group members, as measured by the sociometric badge technology developed by Pentland and colleagues...including the Army Fires Center of Excellence in Fort Sill , Oklahoma, Carnegie Mellon University Tepper School of Business, University of Erlangen...Nuremberg, Germany and the Fuji Xerox Corporation in Japan. At Fort Sill and Carnegie Mellon, we are investigating whether our battery can predict

  5. The Obstacle Detection and Measurement Based on Machine Vision

    Directory of Open Access Journals (Sweden)

    Xitao Zheng

    2010-12-01

    Full Text Available To develop a quick obstacle detection and measurement algorithm for the image-based autonomous vehicle (AV or computer assisted driving system, this paper utilize the previous work of object detection to get the position of an obstacle and refocus windows on the selected target. Further calculation based on single camera will give the detailed measurement of the object, like the height, the distance to the vehicle, and possibly the width. It adopts a two camera system with different pitch angles, which can perform real-time monitoring for the front area of the vehicle with different coverage. This paper assumes that the vehicle will move at an even speed on a flat road, cameras will sample images at a given rate and the images will be analyzed simultaneously. Focus will be on the virtual window area of the image which is proved to be related to the distance to the object and speed of the vehicle. Counting of the blackened virtual sub-area can quickly find the existence of an obstacle and the obstacle area will be cut to get the interested parameter measurements for the object evaluation.

  6. Normal contour error measurement on-machine and compensation method for polishing complex surface by MRF

    Science.gov (United States)

    Chen, Hua; Chen, Jihong; Wang, Baorui; Zheng, Yongcheng

    2016-10-01

    The Magnetorheological finishing (MRF) process, based on the dwell time method with the constant normal spacing for flexible polishing, would bring out the normal contour error in the fine polishing complex surface such as aspheric surface. The normal contour error would change the ribbon's shape and removal characteristics of consistency for MRF. Based on continuously scanning the normal spacing between the workpiece and the finder by the laser range finder, the novel method was put forward to measure the normal contour errors while polishing complex surface on the machining track. The normal contour errors was measured dynamically, by which the workpiece's clamping precision, multi-axis machining NC program and the dynamic performance of the MRF machine were achieved for the verification and security check of the MRF process. The unit for measuring the normal contour errors of complex surface on-machine was designed. Based on the measurement unit's results as feedback to adjust the parameters of the feed forward control and the multi-axis machining, the optimized servo control method was presented to compensate the normal contour errors. The experiment for polishing 180mm × 180mm aspherical workpiece of fused silica by MRF was set up to validate the method. The results show that the normal contour error was controlled in less than 10um. And the PV value of the polished surface accuracy was improved from 0.95λ to 0.09λ under the conditions of the same process parameters. The technology in the paper has been being applied in the PKC600-Q1 MRF machine developed by the China Academe of Engineering Physics for engineering application since 2014. It is being used in the national huge optical engineering for processing the ultra-precision optical parts.

  7. True unipolar ECG machine for Wilson Central Terminal measurements.

    Science.gov (United States)

    Gargiulo, Gaetano D

    2015-01-01

    Since its invention (more than 80 years ago), modern electrocardiography has employed a supposedly stable voltage reference (with little variation during the cardiac cycle) for half of the signals. This reference, known by the name of "Wilson Central Terminal" in honor of its inventor, is obtained by averaging the three active limb electrode voltages measured with respect to the return ground electrode. However, concerns have been raised by researchers about problems (biasing and misdiagnosis) associated with the ambiguous value and behavior of this reference voltage, which requires perfect and balanced contact of at least four electrodes to work properly. The Wilson Central Terminal has received scant research attention in the last few decades even though consideration of recent widespread medical practice (limb electrodes are repositioned closer to the torso for resting electrocardiography) has also sparkled concerns about the validity and diagnostic fitness of leads not referred to the Wilson Central Terminal. Using a true unipolar electrocardiography device capable of precisely measuring the Wilson Central Terminal, we show its unpredictable variability during the cardiac cycle and confirm that the integrity of cardinal leads is compromised as well as the Wilson Central Terminal when limb electrodes are placed close to the torso.

  8. True Unipolar ECG Machine for Wilson Central Terminal Measurements

    Directory of Open Access Journals (Sweden)

    Gaetano D. Gargiulo

    2015-01-01

    Full Text Available Since its invention (more than 80 years ago, modern electrocardiography has employed a supposedly stable voltage reference (with little variation during the cardiac cycle for half of the signals. This reference, known by the name of “Wilson Central Terminal” in honor of its inventor, is obtained by averaging the three active limb electrode voltages measured with respect to the return ground electrode. However, concerns have been raised by researchers about problems (biasing and misdiagnosis associated with the ambiguous value and behavior of this reference voltage, which requires perfect and balanced contact of at least four electrodes to work properly. The Wilson Central Terminal has received scant research attention in the last few decades even though consideration of recent widespread medical practice (limb electrodes are repositioned closer to the torso for resting electrocardiography has also sparkled concerns about the validity and diagnostic fitness of leads not referred to the Wilson Central Terminal. Using a true unipolar electrocardiography device capable of precisely measuring the Wilson Central Terminal, we show its unpredictable variability during the cardiac cycle and confirm that the integrity of cardinal leads is compromised as well as the Wilson Central Terminal when limb electrodes are placed close to the torso.

  9. Experiment to measure oxygen opacity at high density and temperature

    Science.gov (United States)

    Keiter, Paul; Mussack, Katie; Orban, Chris; Colgan, James; Ducret, Jean-Eric; Fontes, Christopher J.; Guzik, Joyce Ann; Heeter, Robert F.; Kilcrease, Dave; Le Pennec, Maelle; Mancini, Roberto; Perry, Ted; Turck-Chièze, Sylvaine; Trantham, Matt

    2017-06-01

    In recent years, there has been a debate over the abundances of heavy elements (Z >2) in the solar interior. Recent solar atmosphere models [Asplund 2009] find a significantly lower abundance for C, N, and O compared to models used roughly a decade ago. This discrepancy has led to an investigation of opacities through laboratory experiments and improved opacity models for many of the larger contributors to the sun’s opacity, including iron and oxygen. Recent opacity measurements of iron disagree with opacity model predictions [Bailey et al, 2015]. Although these results are still controversial, repeated scrutiny of the experiment and data has not produced a conclusive reason for the discrepancy. New models have been implemented in the ATOMIC opacity code for C, O and Fe to address the solar abundance issue [Colgan, 2013]. Armstrong et al [2014] have also implemented changes in the ATOMIC code for low-Z elements. However, no data currently exists to test the low-Z material models in the regime relevant to the solar convection zone. We present an experimental design using the opacity platform developed at the National Ignition Facility to study the oxygen opacity at densities and temperatures near the solar convection zone conditions.This work is funded by the U.S. DOE, through the NNSA-DS and SC-OFES Joint Program in HEDPLP, grant No. DE-NA0001840, and the NLUF Program, grant No. DE-NA0000850, and through LLE, University of Rochester by the NNSA/OICF under Agreement No. DE-FC52-08NA28302.

  10. CIRP Interlaboratory Comparison of Coordinate Measuring Machines using an Optomechanical Hole Plate - Final Report

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Hansen, Hans Nørgaard; Morace, Renata Erica

    2005-01-01

    An interlaboratory comparison on mechanical and optical coordinate measuring machines (CMMs) was organized by the Centre for Geometrical Metrology (CGM), Department of Manufacturing Engineering and Management (IPL), Technical University of Denmark (DTU) and carried out within Collège Internationa...

  11. CIRP Interlaboratory Comparison of Coordinate Measuring Machines using an Optomechanical Hole Plate

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Hansen, Hans Nørgaard; Morace, Renata Erica

    An interlaboratory comparison on mechanical and optical coordinate measuring machines (CMMs) has been organized by the Centre for Geometrical Metrology (CGM), Department of Manufacturing Engineering and Management (IPL), Technical University of Denmark (DTU) and carried out within Collège Interna...

  12. Surface topography characterization using an atomic force microscope mounted on a coordinate measuring machine

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Hansen, H.N; Kofod, N

    1999-01-01

    The paper describes the construction, testing and use of an integrated system for topographic characterization of fine surfaces on parts having relatively big dimensions. An atomic force microscope (AFM) was mounted on a manual three-coordinate measuring machine (CMM) achieving free positioning...

  13. A newly conceived cylinder measuring machine and methods that eliminate the spindle errors

    Science.gov (United States)

    Vissiere, A.; Nouira, H.; Damak, M.; Gibaru, O.; David, J.-M.

    2012-09-01

    Advanced manufacturing processes require improving dimensional metrology applications to reach a nanometric accuracy level. Such measurements may be carried out using conventional highly accurate roundness measuring machines. On these machines, the metrology loop goes through the probing and the mechanical guiding elements. Hence, external forces, strain and thermal expansion are transmitted to the metrological structure through the supporting structure, thereby reducing measurement quality. The obtained measurement also combines both the motion error of the guiding system and the form error of the artifact. Detailed uncertainty budgeting might be improved, using error separation methods (multi-step, reversal and multi-probe error separation methods, etc), enabling identification of the systematic (synchronous or repeatable) guiding system motion errors as well as form error of the artifact. Nevertheless, the performance of this kind of machine is limited by the repeatability level of the mechanical guiding elements, which usually exceeds 25 nm (in the case of an air bearing spindle and a linear bearing). In order to guarantee a 5 nm measurement uncertainty level, LNE is currently developing an original machine dedicated to form measurement on cylindrical and spherical artifacts with an ultra-high level of accuracy. The architecture of this machine is based on the ‘dissociated metrological technique’ principle and contains reference probes and cylinder. The form errors of both cylindrical artifact and reference cylinder are obtained after a mathematical combination between the information given by the probe sensing the artifact and the information given by the probe sensing the reference cylinder by applying the modified multi-step separation method.

  14. Measurement of the accuracy of dental working casts using a coordinate measuring machine

    Directory of Open Access Journals (Sweden)

    Potran Michal

    2016-01-01

    Full Text Available Background/Aim: Dental impressions present a negative imprint of intraoral tissues of a patient which is, by pouring in gypsum, transferred extraorally on the working cast. Casting an accurate and precise working cast presents the first and very important step, since each of the following stages contributes to the overall error of the production process, which can lead to inadequately fitting dental restorations. The aim of this study was to promote and test a new model and technique for in vitro evaluation of the dental impression accuracy, as well as to asses the dimensional stability of impression material depending on the material bulk, and its effect on the accuracy of working casts. Methods. Impressions were made by the monophasic technique using the experimental master model. Custom trays with spacing of 1, 2 and 3 mm were constructed by rapid prototyping. The overall of 10 impressions were made with each custom tray. Working casts were made with gypsum type IV. Measurement of working casts was done 24 h later using a co-ordinate measuring machine. Results. The obtained results show that the working casts of all the three custom trays were in most cases significantly different in the transversal and sagittal planes in relation to the master model. The height of abutments was mainly unaffected. The degree of convergence showed certain significance in all the three custom trays, most pronounced in the tray with 3 mm spacing. Conclusion. The impression material bulk of 1–3 mm could provide accurate working casts when using the monophasic impression technique. The increase of the distance between abutment teeth influences the accuracy of working casts depending on the material bulk. [Projekat Ministarstva nauke Republike Srbije, br. TR 35020: Research and development of modelling methods and approaches in manufacturing of dental recoveries with the application of modern technologies and computer aided systems

  15. Installation and Implementation of an In-Process Coordinate Measuring Machine (CMM)

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Derek

    2008-06-16

    This report documents the work accomplished during the installation and implementation of the in-process Coordinate Measuring Machine (CMM) in Department A. A wealth of knowledge has been gained in solving the many technical issues that delayed the partial implementation of this CMM. The work completed thus far lead to the successfully calibrated in-process CMM workstation. A great deal of current and future work has been outlined in the following pages that shall be used as a guide for the full implementation of this CMM with machining processes in Department A.

  16. Oxygen evolution reaction on cobalt. Pt. 2. Transient measurements

    Energy Technology Data Exchange (ETDEWEB)

    Willems, H.; Kobussen, A.G.C.; Vinke, I.C.; Wit, J.H.W. de; Broers, G.H.J.

    1985-10-25

    Open-circuit overpotential decays on an aged cobalt electrode in the oxygen evolution range in 6 M KOH show different slopes for two overpotential regions. These slopes are lower than the Tafel slope in the same region: Tafel slopes of proportional100 and proportional40 mV/dec, at high and low overpotentials, respectively, compared to decay slopes of proportional -60 and proportional -20 to -30 mV/dec. For a fresh cobalt electrode a decay slope of proportional -40 mV/dec is found at high overpotentials. From impedance measurements during a decay it is concluded that the electrode capacitance cannot account for the decay curves observed. By means of steady-state potentiostatic impedance measurements (with stabilization times >24 h) it is found that the differential Tafel slope remains constant at proportional40-50 mV/dec and differs considerably from the Tafel slope at high overpotentials, proportional100 mV/dec. Galvanostatic pulse experiments give evidence of the presence of CoO/sub 2/ in the oxide layer. Two models which may explain the observed experimental results are analysed. Both include a potential-dependent (extra) process which is fixed by the amount of CoO/sub 2/ at the surface. In one model, CoO/sub 2/ is responsible for partial surface blockage (parallel process); in the other model, CoO/sub 2/ controls the conductivity of the top layer of the oxide layer on the electrode. (orig.).

  17. B-Machine Polarimeter: A Telescope to Measure the Polarization of the Cosmic Microwave Background

    CERN Document Server

    Williams, Brian D

    2013-01-01

    The B-Machine Telescope is the culmination of several years of development, construction, characterization and observation. The telescope is a departure from standard polarization chopping of correlation receivers to a half wave plate technique. Typical polarimeters use a correlation receiver to chop the polarization signal to overcome the $1/f$ noise inherent in HEMT amplifiers. B-Machine uses a room temperature half wave plate technology to chop between polarization states and measure the polarization signature of the CMB. The telescope has a demodulated $1/f$ knee of 5 mHz and an average sensitivity of 1.6 $\\mathrm{mK}\\sqrt{\\mathrm{s}}$. This document examines the construction, characterization, observation of astronomical sources, and data set analysis of B-Machine. Preliminary power spectra and sky maps with large sky coverage for the first year data set are included.

  18. B-machine polarimeter: A telescope to measure the polarization of the cosmic microwave background

    Science.gov (United States)

    Williams, Brian Dean

    The B-Machine Telescope is the culmination of several years of development, construction, characterization and observation. The telescope is a departure from standard polarization chopping of correlation receivers to a half wave plate technique. Typical polarimeters use a correlation receiver to chop the polarization signal to overcome the 1/f noise inherent in HEMT amplifiers. B-Machine uses a room temperature half wave plate technology to chop between polarization states and measure the polarization signature of the CMB. The telescope has a demodulated 1/f knee of 5 mHz and an average sensitivity of 1.6 mK s . This document examines the construction, characterization, observation of astronomical sources, and data set analysis of B-Machine. Preliminary power spectra and sky maps with large sky coverage for the first year data set are included.

  19. Microscopic oxygen imaging based on fluorescein bleaching efficiency measurements

    DEFF Research Database (Denmark)

    Beutler, Martin; Heisterkamp, Ines M.; Piltz, Bastian

    2014-01-01

    by a charge-coupled-device (ccd) camera mounted on a fluorescence microscope allowed a pixelwise estimation of the ratio function in a microscopic image. Use of a microsensor and oxygen-consuming bacteria in a sample chamber enabled the calibration of the system for quantification of absolute oxygen...

  20. Transducer-actuator systems and methods for performing on-machine measurements and automatic part alignment

    Science.gov (United States)

    Barkman, William E.; Dow, Thomas A.; Garrard, Kenneth P.; Marston, Zachary

    2016-07-12

    Systems and methods for performing on-machine measurements and automatic part alignment, including: a measurement component operable for determining the position of a part on a machine; and an actuation component operable for adjusting the position of the part by contacting the part with a predetermined force responsive to the determined position of the part. The measurement component consists of a transducer. The actuation component consists of a linear actuator. Optionally, the measurement component and the actuation component consist of a single linear actuator operable for contacting the part with a first lighter force for determining the position of the part and with a second harder force for adjusting the position of the part. The actuation component is utilized in a substantially horizontal configuration and the effects of gravitational drop of the part are accounted for in the force applied and the timing of the contact.

  1. Static Measurements on HTS Coils of Fully Superconducting AC Electric Machines for Aircraft Electric Propulsion System

    Science.gov (United States)

    Choi, Benjamin B.; Hunker, Keith R.; Hartwig, Jason; Brown, Gerald V.

    2017-01-01

    The NASA Glenn Research Center (GRC) has been developing the high efficiency and high-power density superconducting (SC) electric machines in full support of electrified aircraft propulsion (EAP) systems for a future electric aircraft. A SC coil test rig has been designed and built to perform static and AC measurements on BSCCO, (RE)BCO, and YBCO high temperature superconducting (HTS) wire and coils at liquid nitrogen (LN2) temperature. In this paper, DC measurements on five SC coil configurations of various geometry in zero external magnetic field are measured to develop good measurement technique and to determine the critical current (Ic) and the sharpness (n value) of the super-to-normal transition. Also, standard procedures for coil design, fabrication, coil mounting, micro-volt measurement, cryogenic testing, current control, and data acquisition technique were established. Experimentally measured critical currents are compared with theoretical predicted values based on an electric-field criterion (Ec). Data here are essential to quantify the SC electric machine operation limits where the SC begins to exhibit non-zero resistance. All test data will be utilized to assess the feasibility of using HTS coils for the fully superconducting AC electric machine development for an aircraft electric propulsion system.

  2. Development of an oxygen measurement system as a management tool in horticulture

    NARCIS (Netherlands)

    Holtman, W.; Oppedijk, B.; Vennik, M.; Draaijer, A.

    2009-01-01

    Gases (e.g. oxygen) in the root environment are an important factor for plant development. This study aims to show whether it is possible to obtain an overview of oxygen profiles within the root zone using a limited amount of oxygen measurements in the root environment. A further aim was to demonstr

  3. Measurement-induced operation of two-ion quantum heat machines

    Science.gov (United States)

    Chand, Suman; Biswas, Asoka

    2017-03-01

    We show how one can implement a quantum heat machine by using two interacting trapped ions, in presence of a thermal bath. The electronic states of the ions act like a working substance, while the vibrational mode is modelled as the cold bath. The heat exchange with the cold bath is mimicked by the projective measurement of the electronic states. We show how such measurement in a suitable basis can lead to either a quantum heat engine or a refrigerator, which undergoes a quantum Otto cycle. The local magnetic field is adiabatically changed during the heat cycle. The performance of the heat machine depends upon the interaction strength between the ions, the magnetic fields, and the measurement cost. In our model, the coupling to the hot and the cold baths is never switched off in an alternative fashion during the heat cycle, unlike other existing proposals of quantum heat engines. This makes our proposal experimentally realizable using current tapped-ion technology.

  4. Oxygen deficiency at CERN: Hazards, risks & mitigation measures

    CERN Document Server

    CERN. Geneva

    2016-01-01

    Compressed and liquified gases are used at many places at CERN. If they are introduced to the atmosphere, they can present an oxygen deficiency hazard (ODH) and lead to reduced abilities, unconsciousness or even death. The CERN method for ODH risk assessments is done on a case-by-case basis as each situation is unique. It is crucial to make sure the personnel can evacuate safely in case of an ODH situation. My talk will explain human reactions to reduced oxygen levels and I will give some practical examples on how one can assess and control the hazards from a possible oxygen deficient atmosphere. Some real accidents involving oxygen deficiency will also be mentioned.

  5. Retinal hemodynamic oxygen reactivity assessed by perfusion velocity, blood oximetry and vessel diameter measurements

    DEFF Research Database (Denmark)

    Klefter, Oliver Niels; Lauritsen, Anne Øberg; Larsen, Michael

    2015-01-01

    PURPOSE: To test the oxygen reactivity of a fundus photographic method of measuring macular perfusion velocity and to integrate macular perfusion velocities with measurements of retinal vessel diameters and blood oxygen saturation. METHODS: Sixteen eyes in 16 healthy volunteers were studied at two...... measurements may provide comprehensive information about retinal metabolism....

  6. CONTINUOUS, AUTOMATED AND SIMULTANEOUS MEASUREMENT OF OXYGEN UPTAKE AND CARBON DIOXIDE EVOLUTION IN BIOLOGICAL SYSTEMS

    Science.gov (United States)

    Commercial respirometers are capable of continuously and automatically measuring oxygen uptake in bioreactors. A method for continuously and automatically measuring carbon dioxide evolution can be retrofitted to commercial respirometers. Continuous and automatic measurements of...

  7. OVERVIEW OF WORK PIECE TEMPERATURE MEASUREMENT TECHNIQUES FOR MACHINING OF Ti6Al4V#

    Directory of Open Access Journals (Sweden)

    P.J.T. Conradie

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: Ti6Al4V is one of the most widely used titanium alloys in aerospace applications, but its machining remains a challenge. Comprehensive research has been done in the past, mainly investigating tool failure of various materials. Less research has been done to investigate the thermal effect of machining on work piece quality, including fatigue performance. Temperature measurement is considered to be a key enabling technology. This study presents an overview of current temperature measurement techniques for machined and tool surfaces. Two categories of methods were investigated: slower contact, and faster optical methods. Optical fibre two colour pyrometry experiments are reported that demonstrate the technique’s adequate response time. The infrared camera temperature measurement experiments synchronised temperature measurement with visual observation, aimed at mechanism analysis. The results corresponded with the literature.

    AFRIKAANSE OPSOMMING: Ti6Al4V is een van die mees gewilde lugvaart allooie, maar sy masjinering is ’n uitdaging. Bestaande navorsing dek beitelslytasie omvattend. Die termiese effek van masjinering op werkstuk integriteit, insluitend vermoeiingleeftyd, het egter veel minder dekking geniet. Temperatuurmeting wat in hierdie studie ondersoek word, word as ’n sleuteltegnologie beskou. Twee kategorië metodes is ondersoek, nl stadige kontakmetodes en optiese metodes met vinnige respons, wat die meting van oorgangsverskynsels moontlik maak. Eksperimentele werk wat beide optiese vesel tweekleurpirometrie en termiese kamera tegnieke insluit bewys die tegnieke as geskik vir die benodigde navorsing.

  8. Intrinsic artefacts in optical oxygen sensors--how reliable are our measurements?

    Science.gov (United States)

    Lehner, Philipp; Staudinger, Christoph; Borisov, Sergey M; Regensburger, Johannes; Klimant, Ingo

    2015-03-01

    Optical oxygen sensing is of broad interest in many areas of research, such as medicine, food processing, and micro- and marine biology. The operation principle of optical oxygen sensors is well established and these sensors are routinely employed in lab and field experiments. Ultratrace oxygen sensors, which enable measurements in the sub-nanomolar region (dissolved oxygen), are becoming increasingly important. Such sensors prominently exhibit phenomena that complicate calibration and measurements. However, these phenomena are not constrained to ultratrace sensors; rather, these effects are inherent to the way optical oxygen sensors work and may influence any optical oxygen measurement when certain conditions are met. This scenario is especially true for applications that deal with high-excitation light intensities, such as microscopy and microfluidic applications. Herein, we present various effects that we could observe in our studies with ultratrace oxygen sensors and discuss the reasons for their appearance, the mechanism by which they influence measurements, and how to best reduce their impact. The phenomena discussed are oxygen photoconsumption in the sensor material; depletion of the dye ground state by high-excitation photon-flux values, which can compromise both intensity and ratiometric-based measurements; triplet-triplet annihilation; and singlet-oxygen accumulation, which affects measurements at very low oxygen concentrations.

  9. Role of perfusion medium, oxygen and rheology for endoplasmic reticulum stress-induced cell death after hypothermic machine preservation of the liver.

    Science.gov (United States)

    Manekeller, Steffen; Schuppius, Andrea; Stegemann, Judith; Hirner, Andreas; Minor, Thomas

    2008-02-01

    Recently, the endoplasmic reticulum (ER) has been disclosed as subcellular target reactive to ischaemia/reperfusion and possibly influenced by hypothermic machine preservation. Here, the respective role of perfusate, perfusion itself, and the effect of continuous oxygenation to trigger ER-stress in the graft should be investigated. Livers were retrieved 30 min after cardiac arrest of male Wistar rats and preserved by cold storage (CS) in histidine-tryptophan-ketoglutarate (HTK) for 18 h at 4 degrees C. Other organs were subjected to aerobic conditions either by oxygenated machine perfusion with HTK (MP-HTK) or Belzer solution (MP-Belzer) at 4 degrees C or by venous insufflation of gaseous oxygen during cold storage (VSOP). Viability of livers was evaluated upon reperfusion in vitro according to previously validated techniques for 120 min at 37 degrees C. Oxygenation during preservation (MP-HTK, MP-Belzer or VSOP) concordantly improved functional recovery (bile flow, ammonia clearance), reduced parenchymal enzyme leakage and histological signs of necrosis and significantly attenuated mitochondrial induction of apoptosis (cleavage of caspase 9) compared to CS. However, MP with either medium produced about 500% elevated protein expression of CHOP/GADD153, suggesting pro-apoptotic ER-stress responses, paralleled by a significant elevation of caspase-12 enzyme activity compared to CS or VSOP. Although MP also promoted a slight (20%) induction of the cytoprotective ER-protein Bax inhibitor protein (BI-1), prevailing of proapoptotic reactions was seen by increased cleavage of caspase-3 and poly (ADP-Ribase)-polymerase (PARP) in both MP-groups. Endoplasmic stress activation is conjectured a specific side effect of long-term machine preservation irrespective of the medium, actually promoting cellular apoptosis via activation of caspase-12. The simple insufflation of gaseous O2 may be considered a feasible alternative, apparently indifferent to the endoplasmic reticulum.

  10. Relating Static and Dynamic Measurements for the Java Virtual Machine Instruction Set

    OpenAIRE

    Dowling, Tom; Power, James; Waldron, John

    2002-01-01

    It has previously been noted that, for conventional machine code, there is a strong relationship between static and dynamic code measurements. One of the goals of this paper is to examine whether this same relationship is true of Java programs at the bytecode level. To this end, the hypothesis of a linear correlation between static and dynamic frequencies was investigated using Pearson’s correlation coefficient. Programs from the Java Grande and SPEC benchmarks suites were used in...

  11. Modelling In-Store Consumer Behaviour Using Machine Learning and Digital Signage Audience Measurement Data

    OpenAIRE

    Ravnik, Robert; Solina, Franc; Žabkar, Vesna

    2014-01-01

    Audience adaptive digital signage is a new emerging tech- nology, where public broadcasting displays adapt their content to the audience demographic and temporal features. The collected audience measurement data can be used as a unique basis for statistical analysis of viewing patterns, interactive display applications and also for further research and observer modelling. Here, we use machine learning methods on real-world digital signage viewership data to predict consumer behav- iour in a r...

  12. Measuring Spatial and Temporal Heterogeneity of Dissolved Oxygen in Streambed Sediments Using Pressure Sensitive Paint (PSP)

    Science.gov (United States)

    Huynh, K. T.; Salus, A.; Xie, M.; Roche, K. R.; Packman, A. I.

    2014-12-01

    Pressure sensitive paints (PSP) have been largely used in aerodynamic applications to measure pressure distributions on complex bodies such as aircraft. One common family of PSPs employ fluorescent pigments that are quenched in the presence of oxygen, yielding an inverse relationship between fluorescence intensity and oxygen concentration that is used to measure pressure in aerodynamic applications through the partial pressure of oxygen. These PSPs offer unexplored potential for visualizing dissolved oxygen (DO) concentration distributions on surfaces underwater. PSP was used to measure dissolved oxygen concentrations in streambed sediments in a laboratory flume. Two PSP-coated 2.5 cm diameter spheres were emplaced in a bed of similar material, and imaged under varying DO concentrations. Calibration curves relating fluorescence intensity to dissolved oxygen concentration were developed on a pixel-by-pixel basis, enabling spatial patterns of oxygen to be resolved in the sediment bed. This method of measuring dissolved oxygen concentration is advantageous because of its fast response time and ability to measure heterogeneous oxygen distributions in sediments. Future work will explore the combined effects of stream flow and biofilm growth on oxygen distributions in streambed sediments.

  13. Modification of the Sandia National Laboratories/California advanced coordinate measuring machine for high speed scanning

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, J.M.; Pilkey, R.D. [Sandia National Labs., Livermore, CA (United States); Cassou, R.M.; Summerhays, K.D. [Univ. of San Francisco, CA (United States)] [and others

    1997-03-01

    The Moore M48V high accuracy coordinate measuring machine (CMM), while mechanically capable of exact measurement of physical artifacts, is not, in its original configuration, well suited for rapid gathering of high density dimensional information. This report describes hardware and software modifications to the original control and data acquisition system that allow relatively high speed scanning of cylindrical features. We also estimate the accuracy of the individual point data on artifacts measured with this system and provide detailed descriptions of the hardware and software apparatus as an aid to others who may wish to apply the system to cylindrical or other simple geometries. 6 refs., 18 figs., 1 tab.

  14. Measurement of oxygen consumption during muscle flaccidity exercise by near-infrared spectroscopy

    Science.gov (United States)

    Fukuda, K.; Fukawa, Y.

    2013-03-01

    Quantitative measurement oxygen consumption in the muscles is important to evaluate the effect of the exercise. Near-infrared spectroscopy (NIRS) is a noninvasive method for measuring muscle oxygenation. However, measurement results are affected by blood volume change due to changes in the blood pressure. In order to evaluate changes in blood volume and to improve measurement accuracy, we proposed a calculation method of three-wavelength measurement with considering the scattering factor and the measurement with monitoring blood flow for measuring the temporal change of the oxygen concentration more precisely. We applied three-wavelength light source (680nm, 808nm and 830nm) for the continued wave measurement. Two detectors (targeted detector and the reference detector) were placed near the target muscle and apart from it. We measured the blood flow by controlling the intravascular pressure and the oxygen consumption with the handgrip exercise in the forearm. The measured results show that the scattering factor contains the artifact at the surface and the blood flow in the artery and the vein in the same phase. The artifact and the blood flow in the same phase are reduced from the oxygenated and the deoxygenated hemoglobin densities. Thus our proposed method is effective for reducing the influence of the artifact and the blood flow in the same phase from the oxygen consumption measurement. Further, it is shown that the oxygen consumption is measured more accurately by subtracting the blood flow measured by the reference detector.

  15. X-ray Fluorescence Measurements of Turbulent Methane-Oxygen Shear Coaxial Flames (Briefing Charts)

    Science.gov (United States)

    2015-03-01

    Briefing Charts 3. DATES COVERED (From - To) March 2015-May 2015 4. TITLE AND SUBTITLE X-ray Fluorescence Measurements of Turbulent Methane -Oxygen Shear...1 DISTRIBUTION A: Approved for public release; distribution unlimited. Clearance # X-ray Fluorescence Measurements of Turbulent Methane -Oxygen Shear

  16. A Simple Experiment To Measure the Content of Oxygen in the Air Using Heated Steel Wool

    Science.gov (United States)

    Vera, Francisco; Rivera, Rodrigo; Nunez, Cesar

    2011-01-01

    The typical experiment to measure the oxygen content in the atmosphere uses the rusting of steel wool inside a closed volume of air. Two key aspects of this experiment that make possible a successful measurement of the content of oxygen in the air are the use of a closed atmosphere and the use of a chemical reaction that involves the oxidation of…

  17. Error map construction for rotary axes on five-axis machine tools by on-the-machine measurement using a touch-trigger probe

    OpenAIRE

    2013-01-01

    Position-dependent geometric errors, or “error map, ” of a rotary axis represent how position and orientation of the axis of rotation change with its rotation. This paper proposes a scheme to calibrate the error map of rotary axes by on-the-machine measurement of test pieces by using a contact-type touch-trigger probe installed on the machine's spindle. The present scheme enables more efficient and automated error calibration, which is crucial to implement periodic check of rotary axes error ...

  18. Design and Analysis of a Sensor System for Cutting Force Measurement in Machining Processes.

    Science.gov (United States)

    Liang, Qiaokang; Zhang, Dan; Coppola, Gianmarc; Mao, Jianxu; Sun, Wei; Wang, Yaonan; Ge, Yunjian

    2016-01-07

    Multi-component force sensors have infiltrated a wide variety of automation products since the 1970s. However, one seldom finds full-component sensor systems available in the market for cutting force measurement in machine processes. In this paper, a new six-component sensor system with a compact monolithic elastic element (EE) is designed and developed to detect the tangential cutting forces Fx, Fy and Fz (i.e., forces along x-, y-, and z-axis) as well as the cutting moments Mx, My and Mz (i.e., moments about x-, y-, and z-axis) simultaneously. Optimal structural parameters of the EE are carefully designed via simulation-driven optimization. Moreover, a prototype sensor system is fabricated, which is applied to a 5-axis parallel kinematic machining center. Calibration experimental results demonstrate that the system is capable of measuring cutting forces and moments with good linearity while minimizing coupling error. Both the Finite Element Analysis (FEA) and calibration experimental studies validate the high performance of the proposed sensor system that is expected to be adopted into machining processes.

  19. Design and Analysis of a Sensor System for Cutting Force Measurement in Machining Processes

    Directory of Open Access Journals (Sweden)

    Qiaokang Liang

    2016-01-01

    Full Text Available Multi-component force sensors have infiltrated a wide variety of automation products since the 1970s. However, one seldom finds full-component sensor systems available in the market for cutting force measurement in machine processes. In this paper, a new six-component sensor system with a compact monolithic elastic element (EE is designed and developed to detect the tangential cutting forces Fx, Fy and Fz (i.e., forces along x-, y-, and z-axis as well as the cutting moments Mx, My and Mz (i.e., moments about x-, y-, and z-axis simultaneously. Optimal structural parameters of the EE are carefully designed via simulation-driven optimization. Moreover, a prototype sensor system is fabricated, which is applied to a 5-axis parallel kinematic machining center. Calibration experimental results demonstrate that the system is capable of measuring cutting forces and moments with good linearity while minimizing coupling error. Both the Finite Element Analysis (FEA and calibration experimental studies validate the high performance of the proposed sensor system that is expected to be adopted into machining processes.

  20. Settlement Prediction of Road Soft Foundation Using a Support Vector Machine (SVM Based on Measured Data

    Directory of Open Access Journals (Sweden)

    Yu Huiling

    2016-01-01

    Full Text Available The suppor1t vector machine (SVM is a relatively new artificial intelligence technique which is increasingly being applied to geotechnical problems and is yielding encouraging results. SVM is a new machine learning method based on the statistical learning theory. A case study based on road foundation engineering project shows that the forecast results are in good agreement with the measured data. The SVM model is also compared with BP artificial neural network model and traditional hyperbola method. The prediction results indicate that the SVM model has a better prediction ability than BP neural network model and hyperbola method. Therefore, settlement prediction based on SVM model can reflect actual settlement process more correctly. The results indicate that it is effective and feasible to use this method and the nonlinear mapping relation between foundation settlement and its influence factor can be expressed well. It will provide a new method to predict foundation settlement.

  1. Torsion effect of swing frame on the measurement of horizontal two-plane balancing machine

    Science.gov (United States)

    Wang, Qiuxiao; Wang, Dequan; He, Bin; Jiang, Pan; Wu, Zhaofu; Fu, Xiaoyan

    2017-03-01

    In this paper, the vibration model of swing frame of two-plane balancing machine is established to calculate the vibration center position of swing frame first. The torsional stiffness formula of spring plate twisting around the vibration center is then deduced by using superposition principle. Finally, the dynamic balancing experiments prove the irrationality of A-B-C algorithm which ignores the torsion effect, and show that the torsional stiffness deduced by experiments is consistent with the torsional stiffness calculated by theory. The experimental datas show the influence of the torsion effect of swing frame on the separation ratio of sided balancing machines, which reveals the sources of measurement error and assesses the application scope of A-B-C algorithm.

  2. Beam Coupling Impedance Localization Technique Validation and Measurements in the CERN Machines

    CERN Document Server

    Biancacci, N; Argyropoulos, T; Bartosik, H; Calaga, R; Cornelis, K; Gilardoni, S; Métral, E; Mounet, N; Papaphilippou, Y; Persichelli, S; Rumolo, G; Salvant, B; Sterbini, G; Tomàs, R; Wasef, R; Migliorati, M; Palumbo, L

    2013-01-01

    The beam coupling impedance could lead to limitations in beam brightness and quality, and therefore it needs accurate quantification and continuous monitoring in order to detect and mitigate high impedance sources. In the CERN machines, for example, kickers and collimators are expected to be important contributors to the total imaginary part of the transverse impedance. In order to detect the other sources, a beam based measurement was developed: from the variation of betatron phase beating with intensity, it is possible to detect the locations of main impedance sources. In this work we present the application of the method with beam measurements in the CERN PS, SPS and LHC.

  3. Prediction of dissolved oxygen concentration in hypoxic river systems using support vector machine: a case study of Wen-Rui Tang River, China.

    Science.gov (United States)

    Ji, Xiaoliang; Shang, Xu; Dahlgren, Randy A; Zhang, Minghua

    2017-07-01

    Accurate quantification of dissolved oxygen (DO) is critically important for managing water resources and controlling pollution. Artificial intelligence (AI) models have been successfully applied for modeling DO content in aquatic ecosystems with limited data. However, the efficacy of these AI models in predicting DO levels in the hypoxic river systems having multiple pollution sources and complicated pollutants behaviors is unclear. Given this dilemma, we developed a promising AI model, known as support vector machine (SVM), to predict the DO concentration in a hypoxic river in southeastern China. Four different calibration models, specifically, multiple linear regression, back propagation neural network, general regression neural network, and SVM, were established, and their prediction accuracy was systemically investigated and compared. A total of 11 hydro-chemical variables were used as model inputs. These variables were measured bimonthly at eight sampling sites along the rural-suburban-urban portion of Wen-Rui Tang River from 2004 to 2008. The performances of the established models were assessed through the mean square error (MSE), determination coefficient (R (2)), and Nash-Sutcliffe (NS) model efficiency. The results indicated that the SVM model was superior to other models in predicting DO concentration in Wen-Rui Tang River. For SVM, the MSE, R (2), and NS values for the testing subset were 0.9416 mg/L, 0.8646, and 0.8763, respectively. Sensitivity analysis showed that ammonium-nitrogen was the most significant input variable of the proposal SVM model. Overall, these results demonstrated that the proposed SVM model can efficiently predict water quality, especially for highly impaired and hypoxic river systems.

  4. Measurements of oxygen pressure in a copper flash smelting furnace by an EMF method

    Science.gov (United States)

    Kemori, Nobumasa; Shibata, Yukio; Tomono, Mutsuo

    1986-01-01

    Oxygen pressures in a copper flash smelting furnace were measured by means of the following galvanic cell: Fe, FeO/ZrO2 + MgO/ barO in slag or matte. Measured oxygen pressures were normalized to 1523 K with respect to the reaction: 4 FeO(l) + O2(g) = 4 FeO1.5(l). Vertical and horizontal variations of normalized oxygen pressures in the reaction shaft and in the settler were studied. The equilibrium relation between normalized oxygen pressure and the ratio of ferric to ferrous oxide content in the furnace slag was confirmed, and the activity coefficient ratio of these oxides was determined.

  5. Quantifying height of ultraprecisely machined steps on oxygen-free electronic copper disc using Fourier-domain short coherence interferometry

    CERN Document Server

    Montonen, Risto; Hæggström, Edward; Österberg, Kenneth

    2016-01-01

    The internal shape and alignment of accelerator discs is crucial for efficient collider operation at the future compact linear collider (CLIC). We applied a calibrated custom-made Fourier-domain short coherence interferometer to measure the height of 40 and 60μm60  μm ultraprecisely turned steps (surface roughness Ra≤25nmRa≤25  nm, flatness ≤2μm≤2  μm) on an oxygen-free electronic copper disc. The step heights were quantified to be (39.6±2.6)μm(39.6±2.6)  μm and (59.0±2.3)μm(59.0±2.3)  μm. The uncertainties are quoted at 95% confidence level and include contributions from calibration, refractive index of air, cosine error, surface roughness, and thermal expansion in comparison to standard temperature of 20°C. The results were verified by measuring the same steps using a commercial white light interferometer Veeco—NT3300. Our instrument can ensure that the accelerator discs of the CLIC are aligned within the tolerance required for efficient collider operation.

  6. Quantifying height of ultraprecisely machined steps on oxygen-free electronic copper disc using Fourier-domain short coherence interferometry

    Science.gov (United States)

    Montonen, Risto; Kassamakov, Ivan; Hæggström, Edward; Österberg, Kenneth

    2016-01-01

    The internal shape and alignment of accelerator discs is crucial for efficient collider operation at the future compact linear collider (CLIC). We applied a calibrated custom-made Fourier-domain short coherence interferometer to measure the height of 40 and 60 μm ultraprecisely turned steps (surface roughness Ra≤25 nm, flatness ≤2 μm) on an oxygen-free electronic copper disc. The step heights were quantified to be (39.6±2.6) μm and (59.0±2.3) μm. The uncertainties are quoted at 95% confidence level and include contributions from calibration, refractive index of air, cosine error, surface roughness, and thermal expansion in comparison to standard temperature of 20°C. The results were verified by measuring the same steps using a commercial white light interferometer Veeco-NT3300. Our instrument can ensure that the accelerator discs of the CLIC are aligned within the tolerance required for efficient collider operation.

  7. Vacuum Ultraviolet Absorption Measurements of Atomic Oxygen in a Shock Tube

    Science.gov (United States)

    Meyer, Scott Andrew

    1995-01-01

    The absorption of vacuum ultraviolet light by atomic oxygen has been measured in the Electric Arc-driven Shock Tube (EAST) Facility at NASA-Ames Research Center. This investigation demonstrates the instrumentation required to determine atomic oxygen concentrations from absorption measurements in impulse facilities. A shock wave dissociates molecular oxygen, producing a high temperature sample of atomic oxygen in the shock tube. A probe beam is generated with a Raman-shifted ArF excimer laser. By suitable tuning of the laser, absorption is measured over a range of wavelengths in the region of the atomic line at 130.49 nm. The line shape function is determined from measurements at atomic oxygen densities of 3 x 10(exp 17) and 9 x 10(exp 17) cm(exp -3). The broadening coefficient for resonance interactions is deduced from this data, and this value is in accord with available theoretical models.

  8. Vacuum Ultraviolet Absorption Measurements of Atomic Oxygen in a Shock Tube

    Science.gov (United States)

    Meyer, Scott Andrew

    1995-01-01

    The absorption of vacuum ultraviolet light by atomic oxygen has been measured in the Electric Arc-driven Shock Tube (EAST) Facility at NASA-Ames Research Center. This investigation demonstrates the instrumentation required to determine atomic oxygen concentrations from absorption measurements in impulse facilities. A shock wave dissociates molecular oxygen, producing a high temperature sample of atomic oxygen in the shock tube. A probe beam is generated with a Raman-shifted ArF excimer laser. By suitable tuning of the laser, absorption is measured over a range of wavelengths in the region of the atomic line at 130.49 nm. The line shape function is determined from measurements at atomic oxygen densities of 3 x 10(exp 17) and 9 x 10(exp 17)/cu cm. The broadening coefficient for resonance interactions is deduced from this data, and this value is in accord with available theoretical models.

  9. Gene selection and classification for cancer microarray data based on machine learning and similarity measures

    Directory of Open Access Journals (Sweden)

    Liu Qingzhong

    2011-12-01

    Full Text Available Abstract Background Microarray data have a high dimension of variables and a small sample size. In microarray data analyses, two important issues are how to choose genes, which provide reliable and good prediction for disease status, and how to determine the final gene set that is best for classification. Associations among genetic markers mean one can exploit information redundancy to potentially reduce classification cost in terms of time and money. Results To deal with redundant information and improve classification, we propose a gene selection method, Recursive Feature Addition, which combines supervised learning and statistical similarity measures. To determine the final optimal gene set for prediction and classification, we propose an algorithm, Lagging Prediction Peephole Optimization. By using six benchmark microarray gene expression data sets, we compared Recursive Feature Addition with recently developed gene selection methods: Support Vector Machine Recursive Feature Elimination, Leave-One-Out Calculation Sequential Forward Selection and several others. Conclusions On average, with the use of popular learning machines including Nearest Mean Scaled Classifier, Support Vector Machine, Naive Bayes Classifier and Random Forest, Recursive Feature Addition outperformed other methods. Our studies also showed that Lagging Prediction Peephole Optimization is superior to random strategy; Recursive Feature Addition with Lagging Prediction Peephole Optimization obtained better testing accuracies than the gene selection method varSelRF.

  10. Measured and calculated variables of global oxygenation in healthy neonatal foals.

    Science.gov (United States)

    Wong, David M; Hepworth-Warren, Kate L; Sponseller, Beatrice T; Howard, Joan M; Wang, Chong

    2017-02-01

    OBJECTIVE To assess multiple central venous and arterial blood variables that alone or in conjunction with one another reflect global oxygenation status in healthy neonatal foals. ANIMALS 11 healthy neonatal foals. PROCEDURES Central venous and arterial blood samples were collected from healthy neonatal foals at 12, 24, 36, 48, 72, and 96 hours after birth. Variables measured from central venous and arterial blood samples included oxygen saturation of hemoglobin, partial pressure of oxygen, lactate concentration, partial pressure of carbon dioxide, and pH. Calculated variables included venous-to-arterial carbon dioxide gap, estimated oxygen extraction ratio, ratio of partial pressure of oxygen in arterial blood to the fraction of inspired oxygen, bicarbonate concentration, base excess, and blood oxygen content. RESULTS Significant differences between arterial and central venous blood obtained from neonatal foals were detected for several variables, particularly partial pressure of oxygen, oxygen saturation of hemoglobin, and oxygen content. In addition, the partial pressure of carbon dioxide in central venous blood samples was significantly higher than the value for corresponding arterial blood samples. Several temporal differences were detected for other variables. CONCLUSIONS AND CLINICAL RELEVANCE Results of this study provided information about several variables that reflect global oxygenation in healthy neonatal foals. Values for these variables in healthy foals can allow for comparison with values for critically ill foals in future studies. Comparison of these variables between healthy and ill foals may aid in treatment decisions and prognosis of clinical outcome for critically ill foals.

  11. Measurement of hepatic tissue hypoxia using near infrared spectroscopy: comparison with hepatic vein oxygen partial pressure.

    Science.gov (United States)

    El-Desoky, A E; Jiao, L R; Havlik, R; Habib, N; Davidson, B R; Seifalian, A M

    2000-01-01

    Hepatic hypoxia occurs during liver surgery and transplantation. The critical level associated with irreversible hepatocellular damage is unknown. Measurement of hepatic tissue oxygenation and hepatic vein oxygen partial pressure (HVPO(2)) reflects oxygen supply and consumption. Near infrared spectroscopy (NIRS) can be used to monitor hepatic oxyhaemoglobin (HbO(2)), deoxyhaemoglobin (Hb) and cytochrome oxidase (Cyt Ox) oxidation. This study compared regional hepatic tissue oxygenation (HbO(2), Hb and Cyt Ox) using NIRS with HVPO(2). The use of tissue oxygenation measured by NIRS and HVPO(2) as indicators of hepatic tissue hypoxia was also investigated. Large Landrace pigs (n = 5) underwent laparotomy and liver exposure. Systemic and hepatic haemodynamics were monitored continuously. NIRS probes were placed on the liver to record continuously HbO(2), Hb and Cyt Ox. Graded hypoxaemia was achieved by stepwise reduction of the fraction of inspired oxygen (FiO(2)) from 30% (baseline) to 4%. A significant decrease in hepatic arterial blood flow and total hepatic blood flow was seen with severe hypoxaemia while there was no significant change to portal vein blood flow. Oxygen partial pressures in the hepatic artery, portal vein and hepatic vein decreased progressively with all grades of hypoxaemia. There was an immediate reduction of hepatic HbO(2) and simultaneous increase in hepatic Hb with all grades of hypoxaemia. Hepatic Cyt Ox was reduced significantly only with FiO(2) oxygenation parameters measured by NIRS and HVPO(2). HVPO(2) measurement did not predict the reduction in intracellular tissue oxygenation demonstrated by NIRS with a decrease of Cyt Ox oxidation. In conclusion there was a good correlation between the tissue oxygenation parameters measured by NIRS and HVPO(2). However, the reduction of intracellular oxygenation found with severe hypoxaemia was demonstrated only by NIRS.

  12. 盾构机姿态的人工测量原理%Manual measurement principle of tunnel boring machine attitude

    Institute of Scientific and Technical Information of China (English)

    黄小斌; 区兆铭; 张永超; 蒋样明

    2011-01-01

    The paper put forward the manual measurement principle of tunnel boring machine attitude for the oriented approach of the tunnel boring machine in Metro tunnel shield construction. It used the shield attitude solver in Excel to calculate the real-time tunnel boring machine attitude. It could be the timely guidance for correcting tunnel boring machine, and ensure the tunnel boring machine tunneling along the designed circuit.%本文针对地铁隧道盾构法施工中盾构机的导向方法,提出盾构机姿态的人工测量原理,通过在Excel中编辑的盾构掘进姿态解算程序来计算盾构机的实时掘进姿态,及时指导盾构机纠偏,确保盾构机按照设计的线路进行掘进.

  13. Accurate NIRS measurement of muscle oxygenation by correcting the influence of a subcutaneous fat layer

    Science.gov (United States)

    Yamamoto, Katsuyuki; Niwayama, Masatsugu; Lin, Ling; Shiga, Toshikazu; Kudo, Nobuki; Takahashi, Makoto

    1998-01-01

    Although the inhomogeneity of tissue structure affects the sensitivity of tissue oxygenation measurement by reflectance near-infrared spectroscopy, few analyses of this effect have been reported. In this study, the influence of a subcutaneous fat layer on muscle oxygenation measurement was investigated by Monte Carlo simulation and experimental studies. In the experiments, measurement sensitivity was examined by measuring the falling rate of oxygenation in occlusion tests on the forearm using a tissue oxygen monitor. The fat layer thickness was measured by ultrasonography. Results of the simulation and occlusion tests clearly showed that the presence of a fat layer greatly decreases the measurement sensitivity and increases the light intensity at the detector. The correction factors of sensitivity were obtained from this relationship and were successfully validated by experiments on 12 subjects whose fat layer thickness ranged from 3.5 to 8 mm.

  14. Measuring vertical oxygen profiles in the hyporheic zone using planar optodes

    Science.gov (United States)

    Vieweg, M.; Fleckenstein, J. H.; Schmidt, C.

    2012-04-01

    On of the key parameters, controlling biogeochemical reactions in the hyporheic zone (HZ) is the distribution of oxygen. A reliable measurement of the vertical oxygen distribution is an important tool to understand the dynamic fluctuations of the aerobic zone within the HZ. With repeated measurements of continuous profiles, mixing of surface water and groundwater as well as the consumption of oxygen can be evaluated. We present a novel approach for the in situ measurements of vertical oxygen distribution in the riverbed using a planar optode. The luminescence based optode measurement enables a non invasive measurement without consumption of oxygen, no creation of preferential flow paths and only minimal disturbance of the flow field. Possible atmospheric contamination by pumping pore water into a vessel can be avoided and the readings are independent of flow velocity. A self manufactured planar optode is wrapped around an acrylic tube and installed in the riverbed. The measurement is performed by vertically moving a profiler-piston inside the acrylic tube. The piston holds a robust polymer optical fibre which emits a modulated light signal through the acrylic glass to the optode-foil and transmits the induced luminescence signal back to a commercially available trace oxygen meter. Temperature compensation is accomplished using a depth-oriented temperature probe nearby and processing the raw data within a Matlab script. Robust and unbiased oxygen profiles are obtained by averaging multiple consecutive measurements. To ensure a constant velocity of the profiler for replicating the exact measuring depths, an electric motor device is used. First results at our test site show a variable oxygen profile down to 40 cm depth which is strongly influenced by stream level and upwelling groundwater conditions. The measured oxygen profiles will serve as input parameter for a 3D solute transport and chemical reaction subsurface model of the HZ.

  15. Diagnostic measurements on the great machines conditions of lignite surface mines

    Energy Technology Data Exchange (ETDEWEB)

    Helebrant, F.; Jurman, J.; Fries, J. [Technical University of Ostrava, Ostrava-Poruba (Czech Republic)

    2005-07-01

    An analysis of the diagnosis of loading and service dependability of a rail-mounted excavator used in surface lignite mining is described. Wheel power vibrations in electric motor bearings and electric motor input bearings to the gearbox were measured in situ, in horizontal, vertical, and axial directions. The data were analyzed using a mathematical relationship. The results are presented in a loading diagram that shows the deterioration and the acceptable lower bound of machine conditions over time. Work is continuing. 5 refs., 1 fig.

  16. Oxygen optodes as fast sensors for eddy correlation measurements in aquatic systems

    DEFF Research Database (Denmark)

    Chipman, Lindsay; Huettel, Markus; Berg, Peter

    2012-01-01

    The aquatic eddy-correlation technique can be used to noninvasively determine the oxygen exchange across the sediment-water interface by analyzing the covariance of vertical flow velocity and oxygen concentration in a small measuring volume above the sea bed. The method requires fast sensors that...

  17. In vivo mitochondrial oxygen tension measured by a delayed fluorescence lifetime technique

    NARCIS (Netherlands)

    E.G. Mik (Egbert); T. Johannes (Tanja); C.J. Zuurbier (Coert Jozef); A. Heinen (Andre); J.H.P.M. Houben-Weerts (Judith); G.M. Balestra (Gianmarco); J. Stap (Jan); J.F. Beek (Johan); C. Ince (Can)

    2008-01-01

    textabstractMitochondrial oxygen tension (mitoPO2) is a key parameter for cellular function, which is considered to be affected under various pathophysiological circumstances. Although many techniques for assessing in vivo oxygenation are available, no technique for measuring mitoPO2in vivo exists.

  18. Definition, significance and measurement of quantities pertaining to the oxygen carrying properties of human blood

    NARCIS (Netherlands)

    Zijlstra, WG; Maas, AHJ; Moran, RF

    1996-01-01

    A consistent set of definitions is given of the principal quantities pertaining to the oxygen transport by the blood, and of their mutual relationships, in relation to the methods used in their measurement. At the core is the correct definition of oxygen saturation, the deviation of which has

  19. Fractional-Order Control of a Nonlinear Time-Delay System: Case Study in Oxygen Regulation in the Heart-Lung Machine

    Directory of Open Access Journals (Sweden)

    S. J. Sadati

    2012-01-01

    Full Text Available A fractional-order controller will be proposed to regulate the inlet oxygen into the heart-lung machine. An analytical approach will be explained to satisfy some requirements together with practical implementation of some restrictions for the first time. Primarily a nonlinear single-input single-output (SISO time-delay model which was obtained previously in the literature is introduced for the oxygen generation process in the heart-lung machine system and we will complete it by adding some new states to control it. Thereafter, the system is linearized using the state feedback linearization approach to find a third-order time-delay dynamics. Consequently classical PID and fractional order controllers are gained to assess the quality of the proposed technique. A set of optimal parameters of those controllers are achieved through the genetic algorithm optimization procedure through minimizing a cost function. Our design method focuses on minimizing some famous performance criterions such as IAE, ISE, and ITSE. In the genetic algorithm, the controller parameters are chosen as a random population. The best relevant values are achieved by reducing the cost function. A time-domain simulation signifies the performance of controller with respect to a traditional optimized PID controller.

  20. High Accuracy On-line Measurement Method of Motion Error on Machine Tools Straight-going Parts

    Institute of Scientific and Technical Information of China (English)

    苏恒; 洪迈生; 魏元雷; 李自军

    2003-01-01

    Harmonic suppression, non-periodic and non-closing in straightness profile error that will bring about harmonic component distortion in measurement result are analyzed. The countermeasure-a novel accurate two-probe method in time domain is put forward to measure straight-going component motion error in machine tools based on the frequency domain 3-point method after symmetrical continuation of probes' primitive signal. Both straight-going component motion error in machine tools and the profile error in workpiece that is manufactured on this machine can be measured at the same time. The information is available to diagnose the fault origin of machine tools. The analysis result is proved to be correct by the experiment.

  1. Production and evaluation of measuring equipment for share viscosity of polymer melts included nanofiller with injection molding machine

    Science.gov (United States)

    Kameda, Takao; Sugino, Naoto; Takei, Satoshi

    2016-10-01

    Shear viscosity measurement device was produced to evaluate the injection molding workability for high-performance resins. Observation was possible in shear rate from 10 to 10000 [1/sec] that were higher than rotary rheometer by measuring with a plasticization cylinder of the injection molding machine. The result of measurements extrapolated result of a measurement of the rotary rheometer.

  2. Investigation of the applicability of a tensile testing machine for measuring mucoadhesive strength.

    Science.gov (United States)

    Dyvik, K; Graffner, C

    1992-01-01

    The applicability of a tensile testing machine (M30K, JJ Lloyd Instruments Ltd, GB) is investigated for measuring mucoadhesive strengths. A sample of an aqueous dispersion of a polymer with expected mucoadhesive properties is placed between two homemade discs of polyoxymethylene. The upper disc is mounted on a movable part of the machine while the lower disc is fixed on the stationary frame. A tensile force is submitted and the maximum detachment force at fracture and the adhesion work are estimated from the force displacement curve recorded. In some experiments, native mucous tissue of the large intestine of pigs was glued to the upper disc. Four polymers polycarbophil (Carbopol EX-55), carboxypolymethylene (Carbopol 934P), hydroxypropylmethylcellulose (Methocel K4M), and sodium alginate, are used in five different concentrations. At least three measurements are made of each polymer and concentration. Viscosity and osmolality are determined. By standardizing the time of sample equilibration and the run rate before measurement, it is possible to get good reproducibility of the tensile values. Based on the maximum nominal breaking force and the work consumed, it is concluded that the tensile strength is dependent both on the concentration and the type of polymer. The conclusions are the same independent of whether mucous pig tissue is used, or not. The same rank order in adhesive properties of the polymers is achieved as from using modified surface tensiometers.

  3. Making an honest measurement scale out of the oxygen isotope delta-values.

    Science.gov (United States)

    Gat, Joel R; DeBievre, Paul

    2002-01-01

    The differential measurement of the abundance of oxygen isotopes based on reference materials, such as VSMOW for the case of water, was used because the precision of the absolute mass-spectrometric determination of the abundance fell short of the differences to be measured. Since then these measurements have been much improved, so that a calibration scheme of the oxygen isotope abundance in water, carbonates, silica, phosphates, sulfates, nitrates and organic materials is suggested, based on an accredited primary standard of oxygen in air and using standard fluorination and O(2) to CO(2) conversion techniques. Copyright 2002 John Wiley & Sons, Ltd.

  4. Direct measurement of local dissolved oxygen concentration spatial profiles in a cell culture environment.

    Science.gov (United States)

    Kagawa, Yuki; Matsuura, Katsuhisa; Shimizu, Tatsuya; Tsuneda, Satoshi

    2015-06-01

    Controlling local dissolved oxygen concentration (DO) in media is critical for cell or tissue cultures. Various biomaterials and culture methods have been developed to modulate DO. Direct measurement of local DO in cultures has not been validated as a method to test DO modulation. In the present study we developed a DO measurement system equipped with a Clark-type oxygen microelectrode manipulated with 1 μm precision in three-dimensional space to explore potential applications for tissue engineering. By determining the microelectrode tip position precisely against the bottom plane of culture dishes with rat or human cardiac cells in static monolayer culture, we successfully obtained spatial distributions of DO in the medium. Theoretical quantitative predictions fit the obtained data well. Based on analyses of the variance between samples, we found the data reflected "local" oxygen consumption in the vicinity of the microelectrode and the detection of temporal changes in oxygen consumption rates of cultured cells was limited by the diffusion rate of oxygen in the medium. This oxygen measuring system monitors local oxygen consumption and production with high spatial resolution, and can potentially be used with recently developed oxygen modulating biomaterials to design microenvironments and non-invasively monitor local DO dynamics during culture. © 2015 Wiley Periodicals, Inc.

  5. Evaluation of a high-precision gear measuring machine for helix measurement using helix and wedge artifacts

    Science.gov (United States)

    Taguchi, Tetsuya; Kondo, Yohan

    2016-08-01

    High-precision gears are required for advanced motion and power transmission. The reliability of the measured value becomes important as the gear accuracy increases, and the establishment of a traceability system is needed. Therefore, a high-precision gear measuring machine (GMM) with a smaller uncertainty is expected to improve the gear calibration uncertainty. For this purpose, we developed a prototype of a high-precision GMM that adopts a direct drive mechanism and other features. Then, the high measurement capability of the developed GMM was verified using gear artifacts. Recently, some new measurement methods using simple shapes such as spheres and planes have been proposed as standards. We have verified the tooth profile measurement using a sphere artifact and reported the results that the developed GMM had a high capability in tooth profile measurement. Therefore, we attempted to devise a new evaluation method for helix measurement using a wedge artifact (WA) whose plane was treated as the tooth flank, and the high measurement capability of the developed GMM was verified. The results will provide a part of information to fully assess measurement uncertainty as our future work. This paper describes the evaluation results of the developed GMM for helix measurement using both a helix artifact and the WA, and discusses the effectiveness of the WA as a new artifact to evaluate the GMMs.

  6. Machine learning aided diagnosis of hepatic malignancies through in vivo dielectric measurements with microwaves

    Science.gov (United States)

    Yilmaz, Tuba; Alp Kılıç, Mahmut; Erdoğan, Melike; Çayören, Mehmet; Tunaoğlu, Doruk; Kurtoğlu, İsmail; Yaslan, Yusuf; Çayören, Hüseyin; Enes Arıkan, Akif; Teksöz, Serkan; Cancan, Gülden; Kepil, Nuray; Erdamar, Sibel; Özcan, Murat; Akduman, İbrahim; Kalkan, Tunaya

    2016-07-01

    In the past decade, extensive research on dielectric properties of biological tissues led to characterization of dielectric property discrepancy between the malignant and healthy tissues. Such discrepancy enabled the development of microwave therapeutic and diagnostic technologies. Traditionally, dielectric property measurements of biological tissues is performed with the well-known contact probe (open-ended coaxial probe) technique. However, the technique suffers from limited accuracy and low loss resolution for permittivity and conductivity measurements, respectively. Therefore, despite the inherent dielectric property discrepancy, a rigorous measurement routine with open-ended coaxial probes is required for accurate differentiation of malignant and healthy tissues. In this paper, we propose to eliminate the need for multiple measurements with open-ended coaxial probe for malignant and healthy tissue differentiation by applying support vector machine (SVM) classification algorithm to the dielectric measurement data. To do so, first, in vivo malignant and healthy rat liver tissue dielectric property measurements are collected with open-ended coaxial probe technique between 500 MHz to 6 GHz. Cole-Cole functions are fitted to the measured dielectric properties and measurement data is verified with the literature. Malign tissue classification is realized by applying SVM to the open-ended coaxial probe measurements where as high as 99.2% accuracy (F1 Score) is obtained.

  7. Measurement and interpretation of low levels of dissolved oxygen in ground water

    Science.gov (United States)

    White, A.F.; Peterson, M.L.; Solbau, R.D.

    1990-01-01

    A Rhodazine-D colorimetric technique was adapted to measure low-level dissolved oxygen concentrations in ground water. Prepared samples containing between 0 and 8.0 ??moles L-1 dissolved oxygen in equilibrium with known gas mixtures produced linear spectrophotometric absorbance with a lower detection limit of 0.2 ??moles L-1. Excellent reproducibility was found for solutions ranging in composition from deionized water to sea water with chemical interferences detected only for easily reduced metal species such as ferric ion, cupric ion, and hexavalent chromium. Such effects were correctable based on parallel reaction stoichiometries relative to oxygen. The technique, coupled with a downhole wire line tool, permitted low-level monitoring of dissolved oxygen in wells at the selenium-contaminated Kesterson Reservoir in California. Results indicated a close association between low but measurable dissolved oxygen concentrations and mobility of oxidized forms of selenium. -from Authors

  8. How to measure metallicity from five-band photometry with supervised machine learning algorithms

    CERN Document Server

    Acquaviva, Viviana

    2015-01-01

    We demonstrate that it is possible to measure metallicity from the SDSS five-band photometry to better than 0.1 dex using supervised machine learning algorithms. Using spectroscopic estimates of metallicity as ground truth, we build, optimize and train several estimators to predict metallicity. We use the observed photometry, as well as derived quantities such as stellar mass and photometric redshift, as features, and we build two sample data sets at median redshifts of 0.103 and 0.218 and median r-band magnitude of 17.5 and 18.3 respectively. We find that ensemble methods, such as Random Forests of Trees and Extremely Randomized Trees, and Support Vector Machines all perform comparably well and can measure metallicity with a Root Mean Square Error (RMSE) of 0.081 and 0.090 for the two data sets when all objects are included. The fraction of outliers (objects for which the difference between true and predicted metallicity is larger than 0.2 dex) is only 2.2 and 3.9% respectively, and the RMSE decreases to 0.0...

  9. Step-height measurements on sand surfaces: A comparison between optical scanner and coordinate measuring machine

    DEFF Research Database (Denmark)

    Mohaghegh, Kamran; Yazdanbakhsh, Seyed Alireza; Tiedje, Niels Skat

    2016-01-01

    the same routine to touch the different positions on the polygonised mesh. Each measurement was repeated 5 times. The results of step height measurements on sand surfaces showed a maximum error of ± 12 µm for CMM, while scanner shows only ± 4 µm. Generally speaking, optical step height values were measured...

  10. Ex Vivo Machine Perfusion in VCA with a Novel Oxygen Carrier System to Enhance Graft Preservation and Immunologic Outcomes

    Science.gov (United States)

    2016-12-01

    the utilization of this new preservation technology in composite tissue allotransplants (CTAs). The experiments were successful in showing the role...a new application of our technology previously and successfully performed in both porcine and human liver allografts. Machine Perfusion of the...current standard of care. Both groups were followed for 7 days. The VRAM grafts were biopsied on days 2, 4 and 7. An end-study necropsy was performed

  11. Impact of red blood cell transfusion on global and regional measures of oxygenation.

    Science.gov (United States)

    Roberson, Russell S; Bennett-Guerrero, Elliott

    2012-01-01

    Anemia is common in critically ill patients. Although the goal of transfusion of red blood cells is to increase oxygen-carrying capacity, there are contradictory results about whether red blood cell transfusion to treat moderate anemia (e.g., hemoglobin 7-10 g/dL) improves tissue oxygenation or changes outcomes. Whereas increasing levels of anemia eventually lead to a level of critical oxygen delivery, increased cardiac output and oxygen extraction are homeostatic mechanisms the body uses to prevent a state of dysoxia in the setting of diminished oxygen delivery due to anemia. In order for cardiac output to increase in the face of anemia, normovolemia must be maintained. Transfusion of red blood cells increases blood viscosity, which may actually decrease cardiac output (barring a state of hypovolemia prior to transfusion). Studies have generally shown that transfusion of red blood cells fails to increase oxygen uptake unless oxygen uptake/oxygen delivery dependency exists (e.g., severe anemia or strenuous exercise). Recently, near-infrared spectroscopy, which approximates the hemoglobin saturation of venous blood, has been used to investigate whether transfusion of red blood cells increases tissue oxygenation in regional tissue beds (e.g., brain, peripheral skeletal muscle). These studies have generally shown increases in near-infrared spectroscopy derived measurements of tissue oxygenation following transfusion. Studies evaluating the effect of transfusion on the microcirculation have shown that transfusion increases the functional capillary density. This article will review fundamental aspects of oxygen delivery and extraction, and the effects of red blood cell transfusion on tissue oxygenation as well as the microcirculation.

  12. 万立制氧机组增加氮气产量实践%Practice of Increasing Nitrogen-manufacturing Capacity by 10 000 m3/h Oxygen Making Machine Unit

    Institute of Scientific and Technical Information of China (English)

    于久明; 杨宗翰; 冯志超

    2015-01-01

    In order to substitute for the nitrogen in water-cooling tower to the air precooling system in oxygen making machine unit based on the molecular sieve process and then supply the nitrogen into the pipe network, the measure of additionally installing the water cooling machine unit for cooling the low temperature water cooled by the crude nitrogen was taken. After the measure was taken, the temperature of the water drained out of the tower without needing the nitrogen for cooling can meet design requirements and satisfy the conditions for productive technology. And therefore the capacity for manufacturing nitrogen was increased.%在分子筛流程中,为了将制氧机组中空气预冷系统水冷塔的氮气替换出来并送入管网,采取了增设水冷机组冷却经污氮冷却的低温水的措施。采取措施后,出塔水温在不使用氮气的条件下达到了设计要求,满足了生产工艺条件,从而增加了氮气产量。

  13. Precision Measurement of Cylinder Surface Profile on an Ultra-Precision Machine Tool

    Science.gov (United States)

    Lee, J. C.; Noh, Y. J.; Arai, Y.; Gao, W.; Park, C. H.

    2009-01-01

    This paper describes the measurement of the surface straightness profile of a cylinder workpiece on an ultra-precision machine tool which has a T-base design with a spindle, an X-slide and a Z-slide. The movement range of the X-slide is 220 mm and that of the Z-slide is 150 mm, which have roller bearings in common. Two capacitive sensors are employed to scan a cylinder workpiece mounted on the spindle along the Z-axis. The straightness error motion of the Z-slide is measured to be approximately 100 nm by the reversal method. The straightness profile of the cylinder workpiece is evaluated to be approximately 400 nm by separation of the motion error, simultaneously.

  14. Validation of a novel device to objectively measure adherence to long-term oxygen therapy

    Directory of Open Access Journals (Sweden)

    Sun-Kai V Lin

    2008-10-01

    Full Text Available Sun-Kai V Lin1, Daniel K Bogen1, Samuel T Kuna2,31Department of Bioengineering; 2Department of Medicine, Pulmonary, Allergy and Critical Care Division, and Center for Sleep and Respiratory Neurobiology, University of Pennsylvania, Pennsylvania, USA; 3Department of Medicine, Philadelphia Veterans Affairs Medical Center Philadelphia, Pennsylvania, USARationale: We have developed a novel oxygen adherence monitor that objectively measures patient use of long-term oxygen therapy. The monitor attaches to the oxygen source and detects whether or not the patient is wearing the nasal cannula.Objective: The study’s purpose was to validate the monitor’s performance in patients with chronic obstructive pulmonary disease during wakefulness and sleep.Methods: Ten adult males with stable chronic obstructive pulmonary disease (mean ± SD FEV1 37.7 ± 14.9% of predicted on long-term continuous oxygen therapy were tested in a sleep laboratory over a 12–13 hour period that included an overnight polysomnogram.Measurements: The monitor’s measurements were obtained at 4-minute intervals and compared to actual oxygen use determined by review of time-synchronized video recordings.Main results: The monitor made 1504/1888 (79.7% correct detections (unprocessed data across all participants: 957/1,118 (85.6% correct detections during wakefulness and 546/770 (70.9% during sleep. All errors were false negatives, ie, the monitor failed to detect that the participant was actually wearing the cannula. Application of a majority-vote filter to the raw data improved overall detection accuracy to 84.9%.Conclusions: The results demonstrate the monitor’s ability to objectively measure whether or not men with chronic obstructive pulmonary disease are receiving their oxygen treatment. The ability to objectively measure oxygen delivery, rather than oxygen expended, may help improve the management of patients on long-term oxygen therapy.Keywords: chronic obstructive pulmonary

  15. A microscopy approach for in situ inspection of micro-coordinate measurement machine styli for contamination

    Science.gov (United States)

    Feng, Xiaobing; Pascal, Jonathan; Lawes, Simon

    2017-09-01

    During the process of measurement using a micro-coordinate measurement machine (µCMM) contamination gradually builds up on the surface of the stylus tip and affects the dimensional accuracy of the measurement. Regular inspection of the stylus for contamination is essential to determine the appropriate cleaning interval and prevent the dimensional error from becoming significant. However, in situ inspection of a µCMM stylus is challenging due to the size, spherical shape, material and surface properties of a typical stylus. To address this challenge, this study evaluates several non-contact measurement technologies for in situ stylus inspection and, based on those findings, proposes a cost-effective microscopy approach. The operational principle is then demonstrated by an automated prototype, coordinated directly by the CMM software MCOSMOS, with an effective threshold of detection as low as 400 nm and a large field of view and depth of field. The level of contamination on the stylus has been found to increase steadily with the number of measurement contacts made. Once excessive contamination is detected on the stylus, measurement should be stopped and a stylus cleaning procedure should be performed to avoid affecting measurement accuracy.

  16. Spatial and temporal oxygen distribution measured with oxygen microsensors in growing media with different levels of compaction

    DEFF Research Database (Denmark)

    Dresbøll, Dorte; Thorup-Kristensen, Kristian

    2011-01-01

    % compacted, respectively). The water distribution in the pot was determined as water content (gcm-3) in the top, middle and bottom layers of the peat. Oxygen content was also determined after a standard subirrigation cycle and after excessive irrigation where the bottom of the pots were left waterlogged......Oxygen microsensors were used to determine oxygen profiles in situ from the top to the bottom layer of the growing medium for potted plants of Rosa sp. ‘Dior’. The growing medium was peat- based and compacted uniformly to 3 different bulk densities of 0.14, 0.18 and 0.23 g cm-3 (0, 20 and 40...... for 24 h. Measurements were carried out at 5.5 weeks during the production phase and at 12 weeks at the end of the production. The results showed that with increasing compaction and density, more water was transported to the upper layers of the pot. After a standard irrigation cycle there was no effect...

  17. INTEGRATION OF OVERALL EQUIPMENT EFFECTIVENESS (OEE AND RELIABILITY METHOD FOR MEASURING MACHINE EFFECTIVENESS

    Directory of Open Access Journals (Sweden)

    H. Abdul Samat

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: Maintenance is an important process in a manufacturing system. Thus it should be conducted and measured effectively to ensure performance efficiency. A variety of studies have been conducted on maintenance as affected by factors such as productivity, cost, employee skills, resource utilisation, equipment, processes, and maintenance task planning and scheduling [1,2]. According to Coetzee [3], equipment is the most significant factor affecting maintenance performance because it is directly influenced by maintenance activities. This paper proposes an equipment performance and reliability (EPR model for measuring maintenance performance based on machine effectiveness. The model is developed in four phases, using Pareto analysis for machine selection, and failure mode and effect analysis (FMEA for failure analysis processes. Machine effectiveness is measured using the integration of overall equipment effectiveness and the reliability principle. The result is interpreted in terms of maintenance effectiveness, using five health index levels as bases. The model is implemented in a semiconductor company, and the outcomes confirm the practicality of the EPR model as it helps companies to measure maintenance effectiveness.

    AFRIKAANSE OPSOMMING: Instandhouding is ’n belangrike proses in ’n vervaardigingsomgewing. Dit moet dus effektief onderneem en bestuur word met die oog op doeltreffende werkverrrigting. Verskeie studies is reeds onderneem om die impak van faktore soos produktiwiteit, koste, werknemervaardighede, hulpbronbenutting, toerusting, prosesse en instandhoudingsbeplanning en skedulering op instandhouding te bepaal [1,2]. Volgens Coetzee [3] het toerusting die mees betekeninsvolle impak op instandhoudingswerkverrrigting aangesien dit direk beïnvloed word deur instandhoudingsaktiwiteite. Hierdie artikel hou ’n model voor vir toerustingwerkverrigting en betroubaarheid wat gebruik kan word om die

  18. A Machine Learning Approach for Dynamical Mass Measurements of Galaxy Clusters

    CERN Document Server

    Ntampaka, Michelle; Sutherland, Dougal J; Battaglia, Nicholas; Poczos, Barnabas; Schneider, Jeff

    2014-01-01

    We present a modern machine learning approach for cluster dynamical mass measurements that is a factor of two improvement over using a conventional scaling relation. Different methods are tested against a mock cluster catalog constructed using halos with mass >= 10^14 Msolar/h from Multidark's publicly-available N-body MDPL halo catalog. In the conventional method, we use a standard M(sigma_v) power law scaling relation to infer cluster mass, M, from line-of-sight (LOS) galaxy velocity dispersion, sigma_v. The resulting fractional mass error distribution is broad, with width = 0.86 (68% scatter), and has extended high-error tails. The standard scaling relation can be simply enhanced by including higher-order moments of the LOS velocity distribution. Applying the kurtosis as a linear correction term to log(sigma_v) reduces the width of the error distribution to 0.74 (15% improvement). Machine learning can be used to take full advantage of all the information in the velocity distribution. We employ the Support ...

  19. Measuring hemoglobin amount and oxygen saturation of skin with advancing age

    Science.gov (United States)

    Watanabe, Shumpei; Yamamoto, Satoshi; Yamauchi, Midori; Tsumura, Norimichi; Ogawa-Ochiai, Keiko; Akiba, Tetsuo

    2012-03-01

    We measured the oxygen saturation of skin at various ages using our previously proposed method that can rapidly simulate skin spectral reflectance with high accuracy. Oxygen saturation is commonly measured by a pulse oximeter to evaluate oxygen delivery for monitoring the functions of heart and lungs at a specific time. On the other hand, oxygen saturation of skin is expected to assess peripheral conditions. Our previously proposed method, the optical path-length matrix method (OPLM), is based on a Monte Carlo for multi-layered media (MCML), but can simulate skin spectral reflectance 27,000 times faster than MCML. In this study, we implemented an iterative simulation of OPLM with a nonlinear optimization technique such that this method can also be used for estimating hemoglobin concentration and oxygen saturation from the measured skin spectral reflectance. In the experiments, the skin reflectance spectra of 72 outpatients aged between 20 and 86 years were measured by a spectrophotometer. Three points were measured for each subject: the forearm, the thenar eminence, and the intermediate phalanx. The result showed that the oxygen saturation of skin remained constant at each point as the age varied.

  20. Continuous measurement of transcutaneous oxygen tension of neonates under general anesthesia.

    Science.gov (United States)

    Welle, P; Hayden, W; Miller, T

    1980-06-01

    Neonates present unique challenges to the anesthesiologist because of their susceptibility to oxygen toxicity and because clinical assessment of the degree of an infant's hypoxia is more difficult than in the adult. Equipment is now available for the continuous noninvasive measurement of transcutaneous oxygen tension. We used this equipment to monitor nine different neonates undergoing ten surgical procedures requiring general anesthesia. We found that certain of the infants were above and below what we considered to be a safe range for the transcutaneous oxygen tension for a significant portion of the surgery. Additionally, the manipulations of the surgeon and anesthesiologists were seen to cause sudden and large fluctuations in the transcutaneous oxygen tension. By providing the anesthesiologist with continuous and immediate data on the cardiorespiratory status of the infant, transcutaneous oxygen monitoring makes itself a valuable addition to the equipment used in the intraoperative monitoring of the neonate.

  1. Machine Vision Based Measurement of Dynamic Contact Angles in Microchannel Flows

    Institute of Scientific and Technical Information of China (English)

    Valtteri Heiskanen; Kalle Marjanen; Pasi Kallio

    2008-01-01

    When characterizing flows in miniaturized channels, the determination of the dynamic contact angle is important. By measuring the dynamic contact angle, the flow properties of the flowing liquid and the effect of material properties on the flow can be characterized. A machine vision based system to measure the contact angle of front or rear menisci of a moving liquid plug is described in this article. In this research, transparent flow channels fabricated on thermoplastic polymer and scaled with an adhesive tape are used. The transparency of the channels enables image based monitoring and measurement of flow variables, including the dynamic contact angle. It is shown that the dynamic angle can be measured from a liquid flow in a channel using the image based measurement system. An image processing algorithm has been developed in a MATLAB environment. Im-ages are taken using a CCD camera and the channels are illuminated using a custom made ring light. Two fitting methods, a circle and two parabolas, are experimented and the results are compared in the measurement of the dynamic contact angles.

  2. Ex Vivo Machine Perfusion in CTA with a Novel Oxygen Carrier System to Enhance Graft Preservation and Immunologic Outcomes

    Science.gov (United States)

    2014-10-01

    rectus abdominal muscle , autotransplantation, heterotopic, superior epigastric vein, cold ischemia time, immunomodulation, transcriptomics...composite flap ( muscle , adipose tissue and skin) from the whole rectus abdominal muscle (RAM). This model was maximized through extensive anatomical...combination with a newly developed hemoglobin based oxygen carrier (HBOC) solution under subnormothermic (21°C) conditions as a way to enhance organ

  3. Swept Mechanism of Micro-Milling Tool Geometry Effect on Machined Oxygen Free High Conductivity Copper (OFHC) Surface Roughness.

    Science.gov (United States)

    Shi, Zhenyu; Liu, Zhanqiang; Li, Yuchao; Qiao, Yang

    2017-01-28

    Cutting tool geometry should be very much considered in micro-cutting because it has a significant effect on the topography and accuracy of the machined surface, particularly considering the uncut chip thickness is comparable to the cutting edge radius. The objective of this paper was to clarify the influence of the mechanism of the cutting tool geometry on the surface topography in the micro-milling process. Four different cutting tools including two two-fluted end milling tools with different helix angles of 15° and 30° cutting tools, as well as two three-fluted end milling tools with different helix angles of 15° and 30° were investigated by combining theoretical modeling analysis with experimental research. The tool geometry was mathematically modeled through coordinate translation and transformation to make all three cutting edges at the cutting tool tip into the same coordinate system. Swept mechanisms, minimum uncut chip thickness, and cutting tool run-out were considered on modeling surface roughness parameters (the height of surface roughness Rz and average surface roughness Ra) based on the established mathematical model. A set of cutting experiments was carried out using four different shaped cutting tools. It was found that the sweeping volume of the cutting tool increases with the decrease of both the cutting tool helix angle and the flute number. Great coarse machined surface roughness and more non-uniform surface topography are generated when the sweeping volume increases. The outcome of this research should bring about new methodologies for micro-end milling tool design and manufacturing. The machined surface roughness can be improved by appropriately selecting the tool geometrical parameters.

  4. Measurement of oxygen transfer from air into organic solvents

    DEFF Research Database (Denmark)

    Ramesh, Hemalata; Mayr, Torsten; Hobisch, Mathias;

    2016-01-01

    Background:The use of non-aqueous organic media is becoming increasingly important in many biotechnological applications in order to achieve process intensification. Such media can be used for example to directly extract poorly water-soluble toxic products from fermentations. Likewise many...... measurements in organic solvents has also been demonstrated, paving the way for new opportunities in process control....

  5. Determination of Oxygen Transport Properties from Flux and Driving Force Measurements

    DEFF Research Database (Denmark)

    Dalslet, Bjarke Thomas; Søgaard, Martin; Hendriksen, Peter Vang

    2007-01-01

    We demonstrate that an electrolyte probe can be used to measure the difference in oxygen chemical potential across the surface, when an oxygen flux is forced through an oxygen permeable membrane disk. The oxygen flux as well as the total oxygen chemical potential difference is carefully controlled...... by an oxygen pump. The developed method is tested on a (La0.6Sr0.4)0.99Co0.2Fe0.8O3−delta membrane. An La0.75Sr0.25MnO3/Y0.16Zr0.84O1.92/La0.75Sr0.25MnO3 oxygen pump was attached to one side of the membrane. A conical Ce0.9Gd0.1O1.95 (CG10) electrolyte probe was pressed against the other side of the membrane....... The voltage difference between the base and the tip of the CG10 probe was recorded with an applied oxygen flux through the membrane. This voltage was used to extract precise values of the surface exchange rate constant, kO. Using these values of kO, the vacancy diffusion factor, Dv0, could be extracted from...

  6. Range Measurements of keV Hydrogen Ions in Solid Oxygen and Carbon Monoxide

    DEFF Research Database (Denmark)

    Schou, Jørgen; Sørensen, H.; Andersen, H.H.

    1984-01-01

    Ranges of 1.3–3.5 keV/atom hydrogen and deuterium molecular ions have been measured by a thin-film reflection method. The technique, used here for range measurements in solid oxygen and carbon monoxide targets, is identical to the one used previously for range measurements in hydrogen and nitrogen....... The main aim was to look for phase-effects, i.e. gas-solid differences in the stopping processes. While measured ranges in solid oxygen were in agreement with known gas data, the ranges in solid carbon monoxide were up to 50% larger than those calculated from gas-stopping data. The latter result agrees...

  7. Analysis and methodology for measuring oxygen concentration in liquid sodium with a plugging meter

    Energy Technology Data Exchange (ETDEWEB)

    Nollet, B. K.; Hvasta, M.; Anderson, M. [Univ. of Wisconsin-Madison, 1500 Engineering Dr., Madison, WI 53706 (United States)

    2012-07-01

    Oxygen concentration in liquid sodium is a critical measurement in assessing the potential for corrosion damage in sodium-cooled fast reactors (SFRs). There has been little recent work on sodium reactors and oxygen detection. Thus, the technical expertise dealing with oxygen measurements within sodium is no longer readily available in the U.S. Two methods of oxygen detection that have been investigated are the plugging meter and the galvanic cell. One of the overall goals of the Univ. of Wisconsin's sodium research program is to develop an affordable, reliable galvanic cell oxygen sensor. Accordingly, attention must first be dedicated to a well-known standard known as a plugging meter. Therefore, a sodium loop has been constructed on campus in effort to develop the plugging meter technique and gain experience working with liquid metal. The loop contains both a galvanic cell test section and a plugging meter test section. Consistent plugging results have been achieved below 20 [wppm], and a detailed process for achieving effective plugging has been developed. This paper will focus both on an accurate methodology to obtain oxygen concentrations from a plugging meter, and on how to easily control the oxygen concentration of sodium in a test loop. Details of the design, materials, manufacturing, and operation will be presented. Data interpretation will also be discussed, since a modern discussion of plugging data interpretation does not currently exist. (authors)

  8. Surface topography characterization using an atomic force microscope mounted on a coordinate measuring machine

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Hansen, H.N; Kofod, N

    1999-01-01

    The paper describes the construction, testing and use of an integrated system for topographic characterization of fine surfaces on parts having relatively big dimensions. An atomic force microscope (AFM) was mounted on a manual three-coordinate measuring machine (CMM) achieving free positioning o...... areas traced in single scans of 40 mu m x 40 mu m. The results show that surface mapping on industrial surfaces is possible using the Least Mean Square alignment provided by the AFM software....... values in the order of 1 nm. The positioning repeatability of the two horizontal axes of the CMM was determined to +/-1 mu m. Sets of four 20 mu m x 20 mu m areas were traced on fiat objects, combining the data into single 40 mu m x 40 mu m areas, and comparing the roughness values to those for the same...

  9. Measurements of wave-particle interaction in a single-ended Q machine

    DEFF Research Database (Denmark)

    Andersen, S.A.; Christoffersen, G.B.; Jensen, Vagn Orla

    1971-01-01

    A Green-function technique is used to solve the linearized Vlasov equation for the perturbed ion velocity distribution function, f( x,v,t), in a case where a short density pulse is released into a plasma. Some characteristic features in the calculated curves are caused by wave-particle interaction....... Experimentally, short density pulses are generated in the plasma in a single-ended Q machine by application of electrical square pulses to a grid immersed in the plasma column. The perturbed ion velocity distribution function in the density pulse is measured by means of an electrostatic energy analyzer....... The features showing the wave-particle interaction appear in the experimental results...

  10. Nonlinear Elastodynamic Behaviour Analysis of High-Speed Spatial Parallel Coordinate Measuring Machines

    Directory of Open Access Journals (Sweden)

    Xiulong Chen

    2012-10-01

    Full Text Available In order to study the elastodynamic behaviour of 4‐ universal joints‐ prismatic pairs‐ spherical joints / universal joints‐ prismatic pairs‐ universal joints 4‐UPS‐UPU high‐speed spatial PCMMs(parallel coordinate measuring machines, the nonlinear time‐varying dynamics model, which comprehensively considers geometric nonlinearity and the rigid‐flexible coupling effect, is derived by using Lagrange equations and finite element methods. Based on the Newmark method, the kinematics output response of 4‐UPS‐UPU PCMMs is illustrated through numerical simulation. The results of the simulation show that the flexibility of the links is demonstrated to have a significant impact on the system dynamics response. This research can provide the important theoretical base of the optimization design and vibration control for 4‐UPS‐UPU PCMMs.

  11. Ex Vivo Machine Perfusion in CTA with a Novel Oxygen Carrier System to Enhance Graft Preservation and Immunologic Outcomes

    Science.gov (United States)

    2015-10-01

    adipose and muscular tissues. The control group showed early contraction bands within the muscular tissue within the initial period (4 hours). These...Enhance Graft Preservation and Immunologic Outcomes” PRINCIPAL INVESTIGATOR: Paulo Fontes, MD CONTRACTING ORGANIZATION: University of Pittsburgh...Perfusion in CTA with a Novel Oxygen Carrier System to Enhance Graft 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-13-2-0061 5c. PROGRAM ELEMENT

  12. Effects of incremental exercise on cerebral oxygenation measured by near-infrared spectroscopy: a systematic review.

    Science.gov (United States)

    Rooks, Cherie R; Thom, Nathaniel J; McCully, Kevin K; Dishman, Rod K

    2010-10-01

    We conducted a systematic review and meta-regression analysis to quantify effects of exercise on brain hemodynamics measured by near-infrared spectroscopy (NIRS). The results indicate that acute incremental exercise (categorized relative to aerobic capacity (VO(2)peak) as low - <30% VO(2)peak; moderate - ≥30% VO(2)peak to <60% VO(2)peak; hard - ≥60% VO(2)peak to oxygenated hemoglobin (O(2)Hb) or other measures of oxygen level (O(2)Hbdiff) or saturation (SCO(2)) (0.92±0.67, 1.17), deoxygenated hemoglobin (dHb) (0.87±0.56, 1.19), and blood volume estimated by total hemoglobin (tHb) (1.21±0.84, 1.59). After peaking at hard intensities, cerebral oxygen levels dropped during very hard intensities. People who were aerobically trained attained higher levels of cortical oxygen, dHb, and tHb than untrained people during very hard intensities. Among untrained people, a marked drop in oxygen levels and a small increase in dHb at very hard intensities accompanied declines in tHb, implying reduced blood flow. In 6 studies of 222 patients with heart or lung conditions, oxygenation and dHb were lowered or unchanged during exercise compared to baseline. In conclusion, prefrontal oxygenation measured with NIRS in healthy people showed a quadratic response to incremental exercise, rising between moderate and hard intensities, then falling at very hard intensities. Training status influenced the responses. While methodological improvements in measures of brain oxygen are forthcoming, these results extend the evidence relevant to existing models of central limitations to maximal exercise.

  13. Measurements of electron attachment by oxygen molecule in proportional counter

    Science.gov (United States)

    Tosaki, M.; Kawano, T.; Isozumi, Y.

    2013-11-01

    We present pulse height measurements for 5-keV Auger electrons from a radioactive 55Fe source mounted at the inner cathode surface of cylindrical proportional counter, which is operated with CH4 admixed dry air or N2. A clear shift of the pulse height has been observed by varying the amount of the admixtures; the number of electrons, created in the primary ionization by Auger electrons, is decreased by the electron attachment of the admixtures during their drift from the place near the source to the anode wire. The large gas amplification (typically 104) in the secondary ionization of proportional counter makes it possible to investigate a small change in the number of primary electrons. The electron attenuation cross-section of O2 has been evaluated by analyzing the shifts of the pulse height caused by the electron attachment to dry air and N2.

  14. Measurements of electron attachment by oxygen molecule in proportional counter

    Energy Technology Data Exchange (ETDEWEB)

    Tosaki, M., E-mail: tosaki.mitsuo.3v@kyoto-u.ac.jp [Radioisotope Research Center, Kyoto University, Kyoto 606-8501 (Japan); Kawano, T. [National Institute for Fusion Science, 322-6 Oroshi, Toki 509-5292 (Japan); Isozumi, Y. [Radioisotope Research Center, Kyoto University, Kyoto 606-8501 (Japan)

    2013-11-15

    We present pulse height measurements for 5-keV Auger electrons from a radioactive {sup 55}Fe source mounted at the inner cathode surface of cylindrical proportional counter, which is operated with CH{sub 4} admixed dry air or N{sub 2}. A clear shift of the pulse height has been observed by varying the amount of the admixtures; the number of electrons, created in the primary ionization by Auger electrons, is decreased by the electron attachment of the admixtures during their drift from the place near the source to the anode wire. The large gas amplification (typically 10{sup 4}) in the secondary ionization of proportional counter makes it possible to investigate a small change in the number of primary electrons. The electron attenuation cross-section of O{sub 2} has been evaluated by analyzing the shifts of the pulse height caused by the electron attachment to dry air and N{sub 2}.

  15. Standardization for oxygen isotope ratio measurement - still an unsolved problem.

    Science.gov (United States)

    Kornexl; Werner; Gehre

    1999-07-01

    Numerous organic and inorganic laboratory standards were gathered from nine European and North American laboratories and were analyzed for their delta(18)O values with a new on-line high temperature pyrolysis system that was calibrated using Vienna standard mean ocean water (VSMOW) and standard light Antartic precipitation (SLAP) internationally distributed reference water samples. Especially for organic materials, discrepancies between reported and measured values were high, ranging up to 2 per thousand. The reasons for these discrepancies are discussed and the need for an exact and reliable calibration of existing reference materials, as well as for the establishment of additional organic and inorganic reference materials is stressed. Copyright 1999 John Wiley & Sons, Ltd.

  16. ACE EPAM and Van Allen Probes RBSPICE measurements of interplanetary oxygen injection to the inner magnetosphere

    Science.gov (United States)

    Patterson, J. D.; Manweiler, J. W.; Gerrard, A. J.; Lanzerotti, L. J.

    2015-12-01

    On March 17, 2015, a significant oxygen-rich interplanetary event was measure by the Advanced Composition Explorer (ACE) Electron Proton Alpha Monitor (EPAM) instrument. At the same time the Van Allen Probes Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) instrument recorded significant enhancements of oxygen in the inner magnetosphere. We present a detailed analysis of this event utilizing a new method of exploiting the EPAM Pulse Height Analyzer (PHA) data to precisely resolve helium and oxygen spectra within the 0.5 to 5 MeV/nuc range. We also present the flux, partial particle pressures, and pitch angle distributions of the ion measurements from RBSPICE. During this event, both EPAM and RBSPICE measured O:He ratios greater than 10:1. The pitch angle distributions from RBSPICE-B show a strong beam of oxygen at an L ~ 5.8 early on March 17th during orbit. The timing between the observations of the oxygen peak at ACE and the beam observed at RBSPICE-B is consistent with the travel-time required for energetic particle transport from L1 to Earth and access to the magnetosphere. We assert that the oxygen seen by RBSPICE during the initial phase of this event is the result of direct injection from the interplanetary medium of energetic ions. This poster contains the observations and detailed calculations to support this assertion.

  17. High time resolution measurements of the thermosphere from Fabry-Perot Interferometer measurements of atomic oxygen

    Directory of Open Access Journals (Sweden)

    E. A. K. Ford

    2007-06-01

    Full Text Available Recent advances in the performance of CCD detectors have enabled a high time resolution study of the high latitude upper thermosphere with Fabry-Perot Interferometers (FPIs to be performed. 10-s integration times were used during a campaign in April 2004 on an FPI located in northern Sweden in the auroral oval. The FPI is used to study the thermosphere by measuring the oxygen red line emission at 630.0 nm, which emits at an altitude of approximately 240 km. Previous time resolutions have been 4 min at best, due to the cycle of look directions normally observed. By using 10 s rather than 40 s integration times, and by limiting the number of full cycles in a night, high resolution measurements down to 15 s were achievable. This has allowed the maximum variability of the thermospheric winds and temperatures, and 630.0 nm emission intensities, at approximately 240 km, to be determined as a few minutes. This is a significantly greater variability than the often assumed value of 1 h or more. A Lomb-Scargle analysis of this data has shown evidence of gravity wave activity with waves with short periods. Gravity waves are an important feature of mesosphere-lower thermosphere (MLT dynamics, observed using many techniques and providing an important mechanism for energy transfer between atmospheric regions. At high latitudes gravity waves may be generated in-situ by localised auroral activity. Short period waves were detected in all four clear nights when this experiment was performed, in 630.0 nm intensities and thermospheric winds and temperatures. Waves with many periodicities were observed, from periods of several hours, down to 14 min. These waves were seen in all parameters over several nights, implying that this variability is a typical property of the thermosphere.

  18. Precision of measurement of cerebral tissue oxygenation index using near-infrared spectroscopy in preterm neonates

    DEFF Research Database (Denmark)

    Sorensen, Line C; Greisen, Gorm

    2006-01-01

    The use of cerebral tissue oxygenation index (c-TOI) in a clinical setting is limited by doubts concerning the accuracy of the measurements. Since there is no gold standard, validation is difficult. Our modest aim was to quantify the precision of c-TOI doing repeated measurements by reapplying th...

  19. The Kety-Schmidt Technique for Quantitative Perfusion and Oxygen Metabolism Measurements in the MR Environment

    Science.gov (United States)

    Lee, John J.; Powers, William J.; Faulkner, Chad B.; Boyle, Patrick J.; Derdeyn, Colin P.

    2013-01-01

    The Kety-Schmidt technique provides quantitative measurement of whole brain cerebral blood flow (CBF). CBF is measured as the area between the arterial and venous washout curves of a diffusible tracer. Oxygen extraction and metabolism may be calculated from arterial and venous samples. In this report we present a method for performing these measurements in an MR environment. This technique could be useful for validation of MR methods of hemodynamic and metabolic measurements in humans. PMID:22997166

  20. A PLM-based automated inspection planning system for coordinate measuring machine

    Science.gov (United States)

    Zhao, Haibin; Wang, Junying; Wang, Boxiong; Wang, Jianmei; Chen, Huacheng

    2006-11-01

    With rapid progress of Product Lifecycle Management (PLM) in manufacturing industry, automatic generation of inspection planning of product and the integration with other activities in product lifecycle play important roles in quality control. But the techniques for these purposes are laggard comparing with techniques of CAD/CAM. Therefore, an automatic inspection planning system for Coordinate Measuring Machine (CMM) was developed to improve the automatization of measuring based on the integration of inspection system in PLM. Feature information representation is achieved based on a PLM canter database; measuring strategy is optimized through the integration of multi-sensors; reasonable number and distribution of inspection points are calculated and designed with the guidance of statistic theory and a synthesis distribution algorithm; a collision avoidance method is proposed to generate non-collision inspection path with high efficiency. Information mapping is performed between Neutral Interchange Files (NIFs), such as STEP, DML, DMIS, XML, etc., to realize information integration with other activities in the product lifecycle like design, manufacturing and inspection execution, etc. Simulation was carried out to demonstrate the feasibility of the proposed system. As a result, the inspection process is becoming simpler and good result can be got based on the integration in PLM.

  1. A distortion-correction method for workshop machine vision measurement system

    Science.gov (United States)

    Chen, Ruwen; Huang, Ren; Zhang, Zhisheng; Shi, Jinfei; Chen, Zixin

    2008-12-01

    The application of machine vision measurement system is developing rapidly in industry for its non-contact, high speed, and automation characteristics. However, there are nonlinear distortions in the images which are vital to measuring precision, for the object dimensions are determined by the image properties. People are interested in this problem and put forward some physical model based correction methods which are widely applied in engineering. However, these methods are difficult to be realized in workshop for the images are non-repetitive interfered by the coupled dynamic factors, which means the real imaging is a stochastic process. A new nonlinear distortion correction method based on a VNAR model (Volterra series based nonlinear auto-regressive time series model) is proposed to describe the distorted image edge series. The model parameter vectors are achieved by the laws of data. The distortion-free edges are obtained after model filtering and the image dimensions are transformed to measuring dimensions. Experimental results show that the method is reliable and can be applied to engineering.

  2. Identification of characteristic ELM evolution patterns with Alfven-scale measurements and unsupervised machine learning analysis

    Science.gov (United States)

    Smith, David R.; Fonck, R. J.; McKee, G. R.; Diallo, A.; Kaye, S. M.; Leblanc, B. P.; Sabbagh, S. A.

    2016-10-01

    Edge localized mode (ELM) saturation mechanisms, filament dynamics, and multi-mode interactions require nonlinear models, and validation of nonlinear ELM models requires fast, localized measurements on Alfven timescales. Recently, we investigated characteristic ELM evolution patterns with Alfven-scale measurements from the NSTX/NSTX-U beam emission spectroscopy (BES) system. We applied clustering algorithms from the machine learning domain to ELM time-series data. The algorithms identified two or three groups of ELM events with distinct evolution patterns. In addition, we found that the identified ELM groups correspond to distinct parameter regimes for plasma current, shape, magnetic balance, and density pedestal profile. The observed characteristic evolution patterns and corresponding parameter regimes suggest genuine variation in the underlying physical mechanisms that influence the evolution of ELM events and motivate nonlinear MHD simulations. Here, we review the previous results for characteristic ELM evolution patterns and parameter regimes, and we report on a new effort to explore the identified ELM groups with 2D BES measurements and nonlinear MHD simulations. Supported by U.S. Department of Energy Award Numbers DE-SC0001288 and DE-AC02-09CH11466.

  3. Observations on intrauterine oxygen tension measured by fibre-optic microsensors.

    Science.gov (United States)

    Ottosen, Lars D M; Hindkaer, Johnny; Husth, Merete; Petersen, Dorrit Elschner; Kirk, John; Ingerslev, Hans Jakob

    2006-09-01

    Understanding the biology of reproductive organs is essential for the development of assisted reproductive techniques. There is at present no direct evidence for either the concentration and dynamics of intrauterine oxygen tension at the endometrial surface, nor its importance for the receptiveness of the endometrium. In this study a new method measured mid-cycle (ranging from day 12-18) endometrial surface oxygen tension in 21 patients referred to intrauterine insemination (IUI). Time series was measured online for a period of 5-10 min. The (mean) individual oxygen tension among patients varied from 4 to 27% air saturation. Overall mean oxygen tension among all patients was 11.8% air saturation. Within the same patient, considerable time-related variations were observed. Some patients exhibited rhythmic oscillations with a frequency in the order of 1 min, whereas others did not show any regular patterns. A good description of endometrial surface oxygen concentration and dynamics was thus obtained, but given the relatively small number of participants, an association with pregnancy following insemination could not be established. Further studies using this new method could elucidate the association between individual intrauterine activity, embryo implantation and endometrial surface oxygen tension.

  4. The Choroidal Eye Oximeter - An instrument for measuring oxygen saturation of choroidal blood in vivo

    Science.gov (United States)

    Laing, R. A.; Danisch, L. A.; Young, L. R.

    1975-01-01

    The Choroidal Eye Oximeter is an electro-optical instrument that noninvasively measures the oxygen saturation of choroidal blood in the back of the human eye by a spectrophotometric method. Since choroidal blood is characteristic of blood which is supplied to the brain, the Choroidal Eye Oximeter can be used to monitor the amount of oxygen which is supplied to the brain under varying external conditions. The instrument consists of two basic systems: the optical system and the electronic system. The optical system produces a suitable bi-chromatic beam of light, reflects this beam from the fundus of the subject's eye, and onto a low-noise photodetector. The electronic system amplifies the weak composite signal from the photodetector, computes the average oxygen saturation from the area of the fundus that was sampled, and displays the value of the computed oxygen saturation on a panel meter.

  5. Monte Carlo Method for Calculating Oxygen Abundances and Their Uncertainties from Strong-Line Flux Measurements

    CERN Document Server

    Bianco, Federica B; Oh, Seung Man; Fierroz, David; Liu, Yuqian; Kewley, Lisa; Graur, Or

    2015-01-01

    We present the open-source Python code pyMCZ that determines oxygen abundance and its distribution from strong emission lines in the standard metallicity scales, based on the original IDL code of Kewley & Dopita (2002) with updates from Kewley & Ellison (2008), and expanded to include more recently developed scales. The standard strong-line diagnostics have been used to estimate the oxygen abundance in the interstellar medium through various emission line ratios in many areas of astrophysics, including galaxy evolution and supernova host galaxy studies. We introduce a Python implementation of these methods that, through Monte Carlo (MC) sampling, better characterizes the statistical reddening-corrected oxygen abundance confidence region. Given line flux measurements and their uncertainties, our code produces synthetic distributions for the oxygen abundance in up to 13 metallicity scales simultaneously, as well as for E(B-V), and estimates their median values and their 66% confidence regions. In additi...

  6. Oxygen plasma flow properties deduced from laser-induced fluorescence and probe measurements

    Science.gov (United States)

    Löhle, Stefan; Eichhorn, Christoph; Steinbeck, Andreas; Lein, Sebastian; Herdrich, Georg; Röser, Hans-Peter; Auweter-Kurtz, Monika

    2008-04-01

    Estimation of the local dissociation degree and the local mass-specific enthalpy of a pure oxygen plasma flow determined mainly from laser-induced fluorescence measurements are reported. Measurements have been conducted for several generator parameters in an inductively heated plasma wind tunnel. Additional probe measurements of total pressure together with the deduced translational temperature are used to estimate the local mass-specific enthalpy. For a reference condition, full dissociation has been measured. The measured translational temperature of atomic oxygen for this condition is T = 3500 K. Subsequently, the local mass-specific enthalpy has been derived using these local density and temperature measurements. For the reference condition the estimated value of h = 27 MJ/kg is in good agreement with the probe measurements and results from diode laser absorption spectroscopy.

  7. Flexible Sheet-Type Sensor for Noninvasive Measurement of Cellular Oxygen Metabolism on a Culture Dish.

    Directory of Open Access Journals (Sweden)

    Mari Kojima

    Full Text Available A novel flexible sensor was developed for the noninvasive oxygen metabolism measurement of cultivated cells and tissues. This device is composed of a transparent double-layered polymer sheet of ethylene-vinyl alcohol (EVOH and poly(dimethylsiloxane (PDMS having an array of microhole structures of 90 μm diameter and 50 μm depth on its surface. All the microhole structures were equipped with a 1-μm-thick optical chemical sensing layer of platinum porphyrin-fluoropolymer on their bottom. The three-dimensional microstructures of the sensor were fabricated by a newly developed simple and low-cost production method named self-aligned hot embossing. The device was designed to be attached slightly above the cells cultivated on a dish to form a temporarily closed microspace over the target cells during measurement. Since the change in oxygen concentration is relatively fast in the microcompartmentalized culture medium, a rapid evaluation of the oxygen consumption rate is possible by measuring the phosphorescence lifetime of the platinum porphyrin-fluoropolymer. The combined use of the device and an automated optical measurement system enabled the high-throughput sensing of cellular oxygen consumption (100 points/min. We monitored the oxygen metabolism of the human breast cancer cell line MCF7 on a Petri dish and evaluated the oxygen consumption rate to be 0.72 ± 0.12 fmol/min/cell. Furthermore, to demonstrate the utility of the developed sensing system, we demonstrated the mapping of the oxygen consumption rate of rat brain slices and succeeded in visualizing a clear difference among the layer structures of the hippocampus, i.e., the cornu ammonis (CA1 and CA3 and dentate gyrus (DG.

  8. Rotating electrical machines, pt.2: Methods for determining losses and efficiency of rotating electrical machinery form tests (excl. machines for traction vehicles), 1st suppl. Measurement of losses by the calorimetric method

    CERN Document Server

    International Electrotechnical Commission. Geneva

    1974-01-01

    Describes methods for measuring the efficiency of electrical rotating machines either by determining total losses on load or by determination of the segregated losses for air and water cooling mediums. Applies to large generators but may be used for other machines.

  9. Measuring Flow Rate in Crystalline Bedrock Wells Using the Dissolved Oxygen Alteration Method.

    Science.gov (United States)

    Vitale, Sarah A; Robbins, Gary A

    2017-03-22

    Determination of vertical flow rates in a fractured bedrock well can aid in planning and implementing hydraulic tests, water quality sampling, and improving interpretations of water quality data. Although flowmeters are highly accurate in flow rate measurement, the high cost and logistics may be limiting. In this study the dissolved oxygen alteration method (DOAM) is expanded upon as a low-cost alternative to determine vertical flow rates in crystalline bedrock wells. The method entails altering the dissolved oxygen content in the wellbore through bubbler aeration, and monitoring the vertical advective movement of the dissolved oxygen over time. Measurements were taken for upward and downward flows, and under ambient and pumping conditions. Vertical flow rates from 0.06 to 2.30 Lpm were measured. To validate the method, flow rates determined with the DOAM were compared to pump discharge rates and found to be in agreement within 2.5%.

  10. Method of measuring blood oxygenation based on spectroscopy of diffusely scattered light

    Science.gov (United States)

    Kleshnin, M. S.; Orlova, A. G.; Kirillin, M. Yu.; Golubyatnikov, G. Yu.; Turchin, I. V.

    2017-05-01

    A new approach to the measurement of blood oxygenation is developed and implemented, based on an original two-step algorithm reconstructing the relative concentration of biological chromophores (haemoglobin, water, lipids) from the measured spectra of diffusely scattered light at different distances from the radiation source. The numerical experiments and approbation of the proposed approach using a biological phantom have shown the high accuracy of the reconstruction of optical properties of the object in question, as well as the possibility of correct calculation of the haemoglobin oxygenation in the presence of additive noises without calibration of the measuring device. The results of the experimental studies in animals agree with the previously published results obtained by other research groups and demonstrate the possibility of applying the developed method to the monitoring of blood oxygenation in tumour tissues.

  11. Radioimmunoassay measurement of plasma oxytocin and vasopressin in cows during machine milking

    Energy Technology Data Exchange (ETDEWEB)

    Landgraf, R.; Wehowsky, G.; Schulz, J.; Schulze, H.; Bothur, D. (Forschungsinstitut fuer Koerperkultur und Sport, Leipzig (German Democratic Republic); Karl-Marx-Universitaet, Leipzig (German Democratic Republic). Sektion Tierproduktion und Veterinaermedizin)

    1982-07-01

    The response of plasma oxytocin and vasopressin to machine milking in cows was studied by radioimmunoassay. Depending on the method of machine milking used, plasma oxytocin increased to a greater or lesser degree after teat cup application. Plasma vasopressin was not affected by the milking procedures.

  12. Use of O2 airglow for calibrating direct atomic oxygen measurements from sounding rockets

    Directory of Open Access Journals (Sweden)

    G. Witt

    2009-12-01

    Full Text Available Accurate knowledge about the distribution of atomic oxygen is crucial for many studies of the mesosphere and lower thermosphere. Direct measurements of atomic oxygen by the resonance fluorescence technique at 130 nm have been made from many sounding rocket payloads in the past. This measurement technique yields atomic oxygen profiles with good sensitivity and altitude resolution. However, accuracy is a problem as calibration and aerodynamics make the quantitative analysis challenging. Most often, accuracies better than a factor 2 are not to be expected from direct atomic oxygen measurements. As an example, we present results from the NLTE (Non Local Thermodynamic Equilibrium sounding rocket campaign at Esrange, Sweden, in 1998, with simultaneous O2 airglow and O resonance fluorescence measurements. O number densities are found to be consistent with the nightglow analysis, but only within the uncertainty limits of the resonance fluorescence technique. Based on these results, we here describe how better atomic oxygen number densities can be obtained by calibrating direct techniques with complementary airglow photometer measurements and detailed aerodynamic analysis. Night-time direct O measurements can be complemented by photometric detection of the O2 (b1∑g+−X3∑g- Atmospheric Band at 762 nm, while during daytime the O2 (a1Δg−X3∑g- Infrared Atmospheric Band at 1.27 μm can be used. The combination of a photometer and a rather simple resonance fluorescence probe can provide atomic oxygen profiles with both good accuracy and good height resolution.

  13. Using Support Vector Machines to Detect Therapeutically Incorrect Measurements by the MiniMed CGMS®

    Science.gov (United States)

    Bondia, Jorge; Tarín, Cristina; García-Gabin, Winston; Esteve, Eduardo; Fernández-Real, José Manuel; Ricart, Wifredo; Vehí, Josep

    2008-01-01

    Background Current continuous glucose monitors have limited accuracy mainly in the low range of glucose measurements. This lack of accuracy is a limiting factor in their clinical use and in the development of the so-called artificial pancreas. The ability to detect incorrect readings provided by continuous glucose monitors from raw data and other information supplied by the monitor itself is of utmost clinical importance. In this study, support vector machines (SVMs), a powerful statistical learning technique, were used to detect therapeutically incorrect measurements made by the Medtronic MiniMed CGMS®. Methods Twenty patients were monitored for three days (first day at the hospital and two days at home) using the MiniMed CGMS. After the third day, the monitor data were downloaded to the physician's computer. During the first 12 hours, the patients stayed in the hospital, and blood samples were taken every 15 minutes for two hours after meals and every 30 minutes otherwise. Plasma glucose measurements were interpolated using a cubic method for time synchronization with simultaneous MiniMed CGMS measurements every five minutes, obtaining a total of 2281 samples. A Gaussian SVM classifier trained on the monitor's electrical signal and glucose estimation was tuned and validated using multiple runs of k-fold cross-validation. The classes considered were Clarke error grid zones A+B and C+D+E. Results After ten runs of ten-fold cross-validation, an average specificity and sensitivity of 92.74% and 75.49%, respectively, were obtained (see Figure 4). The average correct rate was 91.67%. Conclusions Overall, the SVM performed well, in spite of the somewhat low sensitivity. The classifier was able to detect the time intervals when the monitor's glucose profile could not be trusted due to incorrect measurements. As a result, hypoglycemic episodes missed by the monitor were detected. PMID:19885238

  14. Development of a new clinically applicable device for embryo evaluation which measures embryo oxygen consumption.

    Science.gov (United States)

    Kurosawa, Hiroki; Utsunomiya, Hiroki; Shiga, Naomi; Takahashi, Aiko; Ihara, Motomasa; Ishibashi, Masumi; Nishimoto, Mitsuo; Watanabe, Zen; Abe, Hiroyuki; Kumagai, Jin; Terada, Yukihiro; Igarashi, Hideki; Takahashi, Toshifumi; Fukui, Atsushi; Suganuma, Ryota; Tachibana, Masahito; Yaegashi, Nobuo

    2016-10-01

    Does a new system-the chip-sensing embryo respiration monitoring system (CERMs)-enable evaluation of embryo viability for potential application in a clinical IVF setting? The system enabled the oxygen consumption rate of spheroids, bovine embryos and frozen-thawed human embryos to be measured, and this rate corresponded to the developmental potential of embryos. To date, no reliable and clinically suitable objective evaluation methods for embryos are available, which circumvent the differences in inter-observer subjective view. Existing systems such as the scanning electrochemical microscopy (SECM) technique, which enables the measurement of oxygen consumption rate in embryos, need improvement in usability before they can be applied to a clinical setting. This is a prospective original research study. The feasibility of measuring the oxygen consumption rate was assessed using CERMs for 9 spheroids, 9 bovine embryos and 30 redundant frozen-thawed human embryos. The endpoints for the study were whether CERMs could detect a dissolved oxygen gradient with high sensitivity, had comparable accuracy to the SECM measuring system with improved usability, and could predict the development of an embryo to a blastocyst by measuring the oxygen consumption rate. The relationship between the oxygen consumption rate and standard morphological evaluation was also examined. We developed a new CERMs, which enables the oxygen consumption rate to be measured automatically using an electrochemical method. The device was initially used for measuring a dissolved oxygen concentration gradient in order to calculate oxygen consumption rate using nine spheroids. Next, we evaluated data correlation between the CERMs and the SECM measuring systems using nine bovine embryos. Finally, the oxygen consumption rates of 30 human embryos, which were frozen-thawed on 2nd day after fertilization, were measured by CERMs at 6, 24, 48, 72 and 96 h after thawing with standard morphological evaluation

  15. Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations

    Science.gov (United States)

    Kalyanaraman, Balaraman; Darley-Usmar, Victor; Davies, Kelvin J.A.; Dennery, Phyllis A.; Forman, Henry Jay; Grisham, Matthew B.; Mann, Giovanni E.; Moore, Kevin; Roberts, L. Jackson; Ischiropoulos, Harry

    2013-01-01

    The purpose of this position paper is to present a critical analysis of the challenges and limitations of the most widely used fluorescent probes for detecting and measuring reactive oxygen and nitrogen species. Where feasible, we have made recommendations for the use of alternate probes and appropriate analytical techniques that measure the specific products formed from the reactions between fluorescent probes and reactive oxygen and nitrogen species. We have proposed guidelines that will help present and future researchers with regard to the optimal use of selected fluorescent probes and interpretation of results. PMID:22027063

  16. Simple light guide for measuring irradiance in an aqueous oxygen electrode chamber.

    Science.gov (United States)

    Vogtschaller, Jeff; Wise, Robert

    2004-01-01

    The light-dependent reactions of photosynthesis are often measured with Clark-type oxygen electrodes yet the irradiance level inside aqueous oxygen electrode reaction vessels is seldom reported due to the difficulty of measuring light inside a small volume chamber. We describe a simple light guide terminating in a 90 degrees prism that can be inserted into a reaction vessel. Incoming irradiation is directed to a commercially available quantum sensor positioned at the other end of the light guide. Both materials for and construction of the device are inexpensive.

  17. A scanning contact probe for a micro-coordinate measuring machine (CMM)

    Science.gov (United States)

    Fan, Kuang-Chao; Cheng, Fang; Wang, Weili; Chen, Yejin; Lin, Jia-You

    2010-05-01

    A new high precision contact scanning probe able to measure miniature components on a micro/nano-coordinate measuring machine (CMM) is proposed. This contact probe is composed of a fiber stylus with a ball tip, a floating plate and focus sensors. The stylus is attached to a floating plate, which is connected to the probe housing via four elastic wires. When the probe tip is touched and then deflected by the workpiece, the wires experience elastic deformations and the four mirrors mounted on the plate will be displaced. These displacements can be detected by four corresponding laser focus probes. To calibrate this touch trigger probe, a double-trigger method is developed for a high-speed approach and a low-speed touch. Experimental results show that the probe has a symmetric contact property in the horizontal XY plane. The contact force is found to be about 109 µN. The standard deviation of the unidirectional touch is less than 10 nm and the pre-travel distance is around 10 nm with a standard deviation of less than 3 nm.

  18. Design and implementation of an x-ray strain measurement capability using a rotating anode machine

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, J.A.; Rangaswamy, P.; Lujan, M. Jr.; Bourke, M.A.M.

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Residual stresses close to the surface can improve the reliability and lifetime of parts for technological applications. X-ray diffraction plays a significant role in gaining an exact knowledge of the stresses at the surface and their depth distribution. An x-ray capability at Los Alamos is key to developing and maintaining industrial collaborations in strain effects. To achieve this goal, the authors implemented a residual strain measuring station on the rotating anode x-ray instrument at the Lujan Center. This capability has been used to investigate residual strains in heat treated automotive components, machining effects on titanium alloys, resistance welded steel joints, titanium matrix fiber reinforced composites, ceramic matrix composites, thin films, and ceramic coatings. The overall objective is to combine both x-ray and neutron diffraction measurements with numerical models (e.g., finite element calculations).

  19. Measuring the differences between human-human and human-machine dialogs

    Directory of Open Access Journals (Sweden)

    David GRIOL

    2016-05-01

    Full Text Available In this paper, we assess the applicability of user simulation techniques to generate dialogs which are similar to real human-machine spoken interactions.To do so, we present the results of the comparison between three corpora acquired by means of different techniques. The first corpus was acquired with real users.A statistical user simulation technique has been applied to the same task to acquire the second corpus. In this technique, the next user answer is selected by means of a classification process that takes into account the previous dialog history, the lexical information in the clause, and the subtask of the dialog to which it contributes. Finally, a dialog simulation technique has been developed for the acquisition of the third corpus. This technique uses a random selection of the user and system turns, defining stop conditions for automatically deciding if the simulated dialog is successful or not. We use several evaluation measures proposed in previous research to compare between our three acquired corpora, and then discuss the similarities and differences with regard to these measures.

  20. No-reference video quality measurement: added value of machine learning

    Science.gov (United States)

    Mocanu, Decebal Constantin; Pokhrel, Jeevan; Garella, Juan Pablo; Seppänen, Janne; Liotou, Eirini; Narwaria, Manish

    2015-11-01

    Video quality measurement is an important component in the end-to-end video delivery chain. Video quality is, however, subjective, and thus, there will always be interobserver differences in the subjective opinion about the visual quality of the same video. Despite this, most existing works on objective quality measurement typically focus only on predicting a single score and evaluate their prediction accuracies based on how close it is to the mean opinion scores (or similar average based ratings). Clearly, such an approach ignores the underlying diversities in the subjective scoring process and, as a result, does not allow further analysis on how reliable the objective prediction is in terms of subjective variability. Consequently, the aim of this paper is to analyze this issue and present a machine-learning based solution to address it. We demonstrate the utility of our ideas by considering the practical scenario of video broadcast transmissions with focus on digital terrestrial television (DTT) and proposing a no-reference objective video quality estimator for such application. We conducted meaningful verification studies on different video content (including video clips recorded from real DTT broadcast transmissions) in order to verify the performance of the proposed solution.

  1. The Application of Phasor Measurement Units in Transmission Line Outage Detection Using Support Vector Machine

    Directory of Open Access Journals (Sweden)

    A. Y. Abdelaziz

    2013-07-01

    Full Text Available Many protection applications are based upon the Phasor Measurement Units (PMUs technology. Therefore, PMUs have been increasingly widespread throughout the power network, and there are several researches have been made to locate the PMUs for complete system observability. This paper introduces an important application of PMUs in power system protection which is the detection of single line outage. In addition, a detection of the out of service line is achieved depending on the variations of phase angles measured at the system buses where the PMUs are located. Hence, a protection scheme from unexpected overloading in the network that may lead to system collapse can be achieved. Such detections are based upon an artificial intelligence technique which is the support Vector Machine (SVM classification tool. To demonstrate the effectiveness of the proposed approach, the algorithm is tested using offline simulation for both the 14-bus IEEE and the 30-bus IEEE systems. Two different kernels of the SVM are tested to select the more appropriate one (i.e. polynomial and Radial Basis Function (RBF kernels are used.

  2. Laser-Machined Microcavities for Simultaneous Measurement of High-Temperature and High-Pressure

    Directory of Open Access Journals (Sweden)

    Zengling Ran

    2014-08-01

    Full Text Available Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure are demonstrated. These two cascaded microcavities are an air cavity and a composite cavity including a section of fiber and an air cavity. They are both placed into a pressure chamber inside a furnace to perform simultaneous pressure and high-temperature tests. The thermal and pressure coefficients of the short air cavity are ~0.0779 nm/°C and ~1.14 nm/MPa, respectively. The thermal and pressure coefficients of the composite cavity are ~32.3 nm/°C and ~24.4 nm/MPa, respectively. The sensor could be used to separate temperature and pressure due to their different thermal and pressure coefficients. The excellent feature of such a sensor head is that it can withstand high temperatures of up to 400 °C and achieve precise measurement of high-pressure under high temperature conditions.

  3. Muscle oxygenation measurement in humans by noninvasive optical spectroscopy and Locally Weighted Regression.

    Science.gov (United States)

    Arakaki, Lorilee S L; Schenkman, Kenneth A; Ciesielski, Wayne A; Shaver, Jeremy M

    2013-06-27

    We have developed a method to make real-time, continuous, noninvasive measurements of muscle oxygenation (Mox) from the surface of the skin. A key development was measurement in both the visible and near infrared (NIR) regions. Measurement of both oxygenated and deoxygenated myoglobin and hemoglobin resulted in a more accurate measurement of Mox than could be achieved with measurement of only the deoxygenated components, as in traditional near-infrared spectroscopy (NIRS). Using the second derivative with respect to wavelength reduced the effects of scattering on the spectra and also made oxygenated and deoxygenated forms more distinguishable from each other. Selecting spectral bands where oxygenated and deoxygenated forms absorb filtered out noise and spectral features unrelated to Mox. NIR and visible bands were scaled relative to each other in order to correct for errors introduced by normalization. Multivariate Curve Resolution (MCR) was used to estimate Mox from spectra within each data set collected from healthy subjects. A Locally Weighted Regression (LWR) model was built from calibration set spectra and associated Mox values from 20 subjects using 2562 spectra. LWR and Partial Least Squares (PLS) allow accurate measurement of Mox despite variations in skin pigment or fat layer thickness in different subjects. The method estimated Mox in five healthy subjects with an RMSE of 5.4%.

  4. Design of a machine for the universal non-contact measurement of large free-form optics with 30 nm uncertainty

    NARCIS (Netherlands)

    Henselmans, R.; Rosielle, P.C.J.N.; Steinbuch, M.; Saunders, I.; Bergmans, R.

    2005-01-01

    A new universal non-contact measurement machine design for measuring free-form optics with 30 nm expanded uncertainty is presented. In the cylindrical machine concept, an optical probe with 5 mm range is positioned over the surface by a motion system. Due to a 2nd order error effect when measuring s

  5. Rapid and direct micro-machining/patterning of polymer materials by oxygen MeV ion beam irradiation through masks

    Energy Technology Data Exchange (ETDEWEB)

    Brun, S., E-mail: sebastien.brun@he-arc.ch [Institut des Microtechnologies Appliquees, Eplatures-Grise 17, 2300 La Chaux-de-Fonds (Switzerland); Guibert, G. [Institut des Microtechnologies Appliquees, Eplatures-Grise 17, 2300 La Chaux-de-Fonds (Switzerland); Meunier, C. [Universite de Franche Comte, Institut FEMTO-ST, UMR 6174 CNRS, 4 Place Tharradin, BP 71427, 25211 Montbeliard (France); Guibert, E.; Keppner, H.; Mikhailov, S. [Institut des Microtechnologies Appliquees, Eplatures-Grise 17, 2300 La Chaux-de-Fonds (Switzerland)

    2011-10-15

    PTFE (PolyTetraFluoroEthylene), often called Teflon, is a well-known polymer for being a non-stick material with good thermal properties. Moreover, PTFE is biocompatible and especially it is a cyto-compatible polymer. To enable bonding, a chemical etching based on sodium solutions is generally used to modify surfaces. In this paper we study the etching of PTFE using an oxygen ion beam in the MeV energy range. We present micro-patterning of PTFE through masks with two fluences of 5 x 10{sup 15} and 1 x 10{sup 16} ion cm{sup -2}. As is demonstrated the use of a mask allows structuring of large areas while maintaining a distance between the mask and sample makes industrial applications possible.

  6. [The Research of Oxygen Measurement by TDLAS Based on Levenberg-Marquardt Nonlinear Fitting].

    Science.gov (United States)

    Yan, Jie; Zhai, Chang; Wang, Xiao-niu; Huang, Wen-ping

    2015-06-01

    Oxygen concentration is an important monitoring parameter in industrial process. Wavelength modulation spectroscopy of tunable diode laser absorption spectroscopy (TDLAS) was used to measure concentration of oxygen gas in industrial process by online monitoring. In this paper, we use the characteristic absorption peak of Oxygen at 760 nm to measure the oxygen concentration. Because of the strong coherence of laser, the detection sensitivity of TDLAS is severely restricted by optical interference noise. Especially at low concentrations, there is larger error by extraction signal in the absorption peak waveform because of the background fluctuation caused by optical interference. In response to this situation, Levenberg-Marquardt nonlinear fitting algorithm was proposed, and the use of the absorption line-derivative form of Lorenz line to fit the second harmonic signal and to extract the peak amplitude. On the other hand, Levenberg-Marquardt nonlinear fitting method needs a large amount of calculation. In order to develop the TDLAS analyzer can achieve real-time monitoring of the site, we use the C28 series of DSQ for data processing which support floating-point arithmetic, and the instrument achieve real-time monitoring capabilities in industrial process. Experimental results show that the algorithm can effectively extract the absorption peak characteristic value of the 2nd harmonic signal and overcome the background noise, The ratio of calculated by algorithm to actual oxygen concentration is nearly 1.01, the linear error of the concentration measurement is 1.18%.

  7. Microscopic Local Measurement of Blood Flow and Oxygen Tension in Brain Microcirculation

    Science.gov (United States)

    Minamitani, Haruyuki; Takahashi, Ryota; Tsukada, Kousuke

    A multi-photonic imaging system was proposed for measuring blood flow velocity, vessel diameter and blood oxygen tension pO2 simultaneously with high spatio-temporal resolution in the parenchymatous organ microcirculation, such as pial tissue, by using a closed cranial window and two light sources. FITC-stained erythrocytes was used to visualize the microcirculation, and the fluorescent image was recorded by a high-speed video camera for measuring blood flow velocity. Oxygen tension pO2 was measured by oxygen-dependent quenching of phosphorescent molecules, Pd-TCPP, in the microvessels after irradiation of second harmonic light of Nd:YAG pulse laser (532nm). Animal experiments were performed for investigation of blood flow dynamics and oxygen diffusion phenomenon during acute cerebral ischemia using photochemical thrombus formation in the closed cranial window of male Wistar rats. Experimental results showed specific and significant blood flow and oxygen diffusion phenomena related to the abnormal organ tissues, from those the proposed technique would contribute to the trasnlational research for the clinical medicine, concerned in the ischemic dysfunction, angiogenisis, tumorgenisis and so on.

  8. Bibliography of papers, reports, and presentations related to point-sample dimensional measurement methods for machined part evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, J.M. [Sandia National Labs., Livermore, CA (United States). Integrated Manufacturing Systems

    1996-04-01

    The Dimensional Inspection Techniques Specification (DITS) Project is an ongoing effort to produce tools and guidelines for optimum sampling and data analysis of machined parts, when measured using point-sample methods of dimensional metrology. This report is a compilation of results of a literature survey, conducted in support of the DITS. Over 160 citations are included, with author abstracts where available.

  9. Oxygen Diffusion Measurements in Unsaturated Porous Media on the International Space Station

    Science.gov (United States)

    Heinse, R.; Jones, S. B.; Or, D.; Topham, T. S.; Podolskiy, I. G.; Bingham, G. E.

    2007-12-01

    Oxygen supply to plant roots in unsaturated porous media is regulated by the amount of water and its distribution pattern. The design of optimal plant growth media must strike a balance between the retention of sufficient amounts of water in pore spaces by capillarity and maintenance of sufficient air-filled pore connectivity for gaseous diffusion. The challenges presented by microgravity conditions aboard spacecraft require novel management approaches to ensure optimal conditions for plant roots. We developed and tested a system for measurement of oxygen diffusion in partially saturated porous media under microgravity conditions. A sealed dual-chamber diffusion cell was constructed and controlled by an automated measurement system capable of controlling porous media water content using a metered pumping system through a porous membrane, and tensiometers to measure matric potentials concurrently. Continuous measurements of oxygen concentrations in the cells were conducted with Galvanic-based sensors providing transient response data for estimating water content-dependent diffusion coefficients. Gas diffusion was modeled as a function of air-filled porosity in mm- sized aggregated particles. Data were collected on the International Space Station between July and September 2007 as part of the ORZS-MIS experimental flight package (http://www.sdl.usu.edu/programs/orzs). Oxygen diffusion measurements in microgravity were compared with earth-based data using triplicate cell measurements in three different porous media. Preliminary results point to enhanced hysteresis in oxygen diffusion dependency on air-filled porosity in microgravity, indicating altered water distribution patterns relative to earth-based measurements. Considering air invasion during drainage, we hypothesize that a critical air-filled pathway forms at lower saturation in microgravity due to the absence of hydrostatic water distribution. A shift in the critical air-filled in microgravity would require

  10. Information Contents of a Signal at Repeated Positioning Measurements of the Coordinate Measuring Machine (CMM by Laser Interferometer

    Directory of Open Access Journals (Sweden)

    Stejskal Tomáš

    2016-10-01

    Full Text Available The input of this paper lies in displaying possibilities how to determine the condition of a coordinate measuring machine (CMM based on a large number of repeated measurements. The number of repeated measurements exceeds common requirements for determining positioning accuracy. The total offset in the accuracy of spatial positioning consists of partial inaccuracies of individual axes. 6 basic errors may be defined at each axis. In a triaxial set, that translates into 18 errors, to which an offset from the perpendicularity between the axial pairs must be added. Therefore, the combined number of errors in a single position is 21. These errors are systemic and stem from the machine’s geometry. In addition, there are accidental errors to account for as well. Accidental errors can be attributed to vibrations, mass inertness, passive resistance, and in part to fluctuations in temperature. A peculiar set of systemic errors are time-varying errors. The nature of those errors may be reversible, for instance if they result from influence of temperature or elastic deformation. They can be also irreversible, for example as a result of wear and tear or line clogging, due to loosened connection or permanent deformation of a part post collision. A demonstration of thermal equalizing of the machine’s parts may also be observed in case of failure to adhere to a sufficient time interval from the moment the air-conditioning is turned on. Repeated measurements done on a selected axis with linear interferometer can provide complex information on the CMM condition and also on the machine’s interaction with the given technical environment.

  11. Measurement of atomic oxygen in the middle atmosphere using solid electrolyte sensors and catalytic probes

    Science.gov (United States)

    Eberhart, M.; Löhle, S.; Steinbeck, A.; Binder, T.; Fasoulas, S.

    2015-09-01

    The middle- and upper-atmospheric energy budget is largely dominated by reactions involving atomic oxygen (O). Modeling of these processes requires detailed knowledge about the distribution of this oxygen species. Understanding the mutual contributions of atomic oxygen and wave motions to the atmospheric heating is the main goal of the rocket project WADIS (WAve propagation and DISsipation in the middle atmosphere). It includes, amongst others, our instruments for the measurement of atomic oxygen that have both been developed with the aim of resolving density variations on small vertical scales along the trajectory. In this paper the instrument based on catalytic effects (PHLUX: Pyrometric Heat Flux Experiment) is introduced briefly. The experiment employing solid electrolyte sensors (FIPEX: Flux φ(Phi) Probe Experiment) is presented in detail. These sensors were laboratory calibrated using a microwave plasma as a source of atomic oxygen in combination with mass spectrometer reference measurements. The spectrometer was in turn calibrated for O with a method based on methane. In order to get insight into the horizontal variability, the rocket payload had instrument decks at both ends. Each housed several sensor heads measuring during both the up- and downleg of the trajectory. The WADIS project comprises two rocket flights during different geophysical conditions. Results from WADIS-1 are presented, which was successfully launched in June 2013 from the Andøya Space Center, Norway. FIPEX data were sampled at 100 Hz and yield atomic oxygen density profiles with a vertical resolution better than 9 m. This allows density variations to be studied on very small spatial scales. Numerical simulations of the flow field around the rocket were done at several points of the trajectory to assess the influence of aerodynamic effects on the measurement results. Density profiles peak at 3 × 1010 cm-3 at altitudes of 93.6 and 96 km for the up- and downleg, respectively.

  12. Pd tetrabenzoporphyrin-dendrimers: near-infrared phosphors for oxygen measurements by phosphorescence quenching

    Science.gov (United States)

    Vinogradov, Sergei A.; Kim, Evelyn; Wilson, David F.

    2002-06-01

    Phosphorescence quenching is an optical method for measuring tissue oxygenation. The technique is based on the quenching of phosphorescence originated from the injected dye by molecule oxygen dissolved in the medium. The phosphor is the only 'invasive' component of the measurement procedure, and thus it is important to have precise control over the bio- distribution of the phosphor, i.e. to confine it to a single compartment within the sample. For tissue applications the phosphor must also be an effective light absorber in the near IR and to exhibit oxygen quenching constant of 200-400 Torr-1 sec-1, to permit reliable quantification of oxygen in arterioles as well as in veins. Overall, it is desirable to have synthetic, inert, hydrophilic, phosphors with quenching characteristics that are not affected by molecules other than oxygen. We discuss a new generation of phosphors based on dendrimer- tetrabenzoporphyrins, designed to satisfy the above criteria. In these phosphors, the core metallotetrabenzoporphyrins prove the required physical characteristics, while their immediate surrounding environments consist of covalently attached dendritic branches. The dendritic cages around porphyrins control their quenching properties and protect porphyrins from interactions with other substances in the blood.

  13. Direct measurements of the light dependence of gross photosynthesis and oxygen consumption in the ocean

    Science.gov (United States)

    Bailleul, B.; Park, J.; Brown, C. M.; Bidle, K. D.; Lee, S.; Falkowski, P. G.

    2016-02-01

    For decades, a lack of understanding of how respiration is influenced by light has been stymying our ability to quantitatively analyze how phytoplankton allocate carbon in situ and the biological mechanisms that participate to the fate of blooms. Using membrane inlet mass spectrometry (MIMS), the light dependencies of gross photosynthesis and oxygen uptake rates were measured during the bloom demises of two prymnesiophytes, in two open ocean regions. In the North Atlantic, dominated by Emiliania huxleyi, respiration was independent of irradiance and was higher than the gross photosynthetic rate at all irradiances. In the Amundsen Sea (Antarctica), dominated by Phaeocystis antarctica, the situation was very different. Dark respiration was one order of magnitude lower than the maximal gross photosynthetic rate. ut the oxygen uptake rate increased by 10 fold at surface irradiances, where it becomes higher than gross photosynthesis. Our results suggest that the light dependence of oxygen uptake in P. antarctica has two sources: one is independent of photosynthesis, and is possibly associated with the photo-reduction of O2 mediated by dissolved organic matter; the second reflects the activity of an oxidase fueled in the light with photosynthetic electron flow. Interestingly, these dramatic light-dependent changes in oxygen uptake were not reproduced in nutrient-replete P. antarctica cultures, in the laboratory. Our measurements highlight the importance of improving our understanding of oxygen consuming reactions in the euphotic zone, which is critical to investigating the physiology of phytoplankton and tracing the fate of phytoplankton blooms.

  14. An autonomous multisensor in situ metrology system for enabling high dynamic range measurement of 3D surfaces on precision machine tools

    Science.gov (United States)

    Liu, Samuel M. Y.; Cheung, Benny C. F.; Whitehouse, David; Cheng, Ching-Hsiang

    2016-11-01

    An in situ measurement is of prime importance when trying to maintain the position of the workpiece for further compensation processes in order to improve the accuracy and efficiency of the precision machining of three dimensional (3D) surfaces. However, the coordinates of most of the machine tools with closed machine interfaces and control system are not accessible for users, which make it difficult to use the motion axes of the machine tool for in situ measurements. This paper presents an autonomous multisensor in situ metrology system for enabling high dynamic range measurement of 3D surfaces on precision machine tools. It makes use of a designed tool path and an additional motion sensor to assist the registration of time-space data for the position estimation of a 2D laser scanner which measures the surface with a high lateral resolution and large area without the need to interface with the machine tool system. A prototype system was built and integrated into an ultra-precision polishing machine. Experimental results show that it measures the 3D surfaces with high resolution, high repeatability, and large measurement range. The system not only improves the efficiency and accuracy of the precision machining process but also extends the capability of machine tools.

  15. LUMOS - A Sensitive and Reliable Optode System for Measuring Dissolved Oxygen in the Nanomolar Range

    DEFF Research Database (Denmark)

    Lehner, Philipp; Larndorfer, Christoph; Garcia-Robledo, Emilio;

    2015-01-01

    Most commercially available optical oxygen sensors target the measuring range of 300 to 2 mu mol L-1. However these are not suitable for investigating the nanomolar range which is relevant for many important environmental situations. We therefore developed a miniaturized phase fluorimeter based m...

  16. Oxygen-tension measurements - The first step towards prevention and early detection of anastomotic leakage

    NARCIS (Netherlands)

    Tanase, D.; French, P.J.; Komen, N.; Kleinrensink, G.J.; Jeekel, J.; Lange, J.F.; Draaijer, A.

    2007-01-01

    Many patients still die every year as a result of anastomotic leakage after surgery. The medical world needs an objective aid to detect leakage during surgery and during the critical recovery period. We propose a miniature measurement system to detect adequate tissue oxygenation pre- and

  17. Ionic conductivity of perovskite LaCoO3 measured by oxygen permeation technique

    NARCIS (Netherlands)

    Chen, C.H.; Kruidhof, H.; Bouwmeester, H.J.M.; Burggraaf, A.J.

    1997-01-01

    Oxygen permeation measurement is demonstrated, not only for a mixed oxide ionic and electronic conductor, but also as a new alternative to determine ambipolar conductivities, which can be usually reduced to be partial conductivities (either ionic or electronic). As a model system and an end member o

  18. RELATIONSHIPS BETWEEN NEAR-BOTTOM DISSOLVED OXYGEN AND SEDIMENT PROFILE CAMERA MEASUREMENTS

    Science.gov (United States)

    The United States Environmental Protection Agency (U.S. EPA) and other environmental authorities regulate concentrations of dissolved oxygen (DO) as a measure of nutrient-related eutrophication in estuarine and coastal waters. However, in situ DO concentrations are extremely var...

  19. Measurements of oxygen tension in native and transplanted rat pancreatic islets.

    Science.gov (United States)

    Carlsson, P O; Liss, P; Andersson, A; Jansson, L

    1998-07-01

    This study was performed to measure the oxygen tension before and after revascularization of pancreatic islets transplanted beneath the renal capsule and to investigate to what extent this was affected by acute and chronic hyperglycemia. In addition, the oxygen tension in islets within the pancreas was determined. PO2 was measured with a modified Clark electrode (tip 2-6 microm o.d.). Within native pancreatic islets, the mean PO2 was higher (31-37 mmHg) than within the exocrine pancreas (20-23 mmHg). The mean oxygen tension in the transplanted islets the day after implantation was half of that recorded in native islets (14-19 mmHg) and did not differ between normoglycemic and diabetic recipients. At 1 month after transplantation, when revascularization had occurred, the mean PO2 in the islet grafts was 9-15 mmHgf in normoglycemic animals but was lower (6-8 mmHg) in diabetic animals, whereas the blood perfusion of the transplants, as measured with laser-Doppler flowmetry (probe diameter 0.45 mm), was similar in both groups. The mean oxygen tension in the superficial renal cortex surrounding the implanted islets was similar in all groups and remained stable at 13-21 mmHg. Intravenous administration of D-glucose (1 g/kg) did not affect the oxygen tension in any of the investigated tissues. We conclude that the mean PO2 in islets implanted under the renal capsule is markedly lower than in native islets, not only in the immediate posttransplantation period but also 1 month after implantation, i.e., when revascularization has occurred. Furthermore, persistent hyperglycemia in the recipient leads to a further decrease in graft oxygen tension. To what extent this may contribute to islet graft failure is at present unknown.

  20. Measurement of cell respiration and oxygenation in standard multichannel biochips using phosphorescent O2-sensitive probes.

    Science.gov (United States)

    Kondrashina, Alina V; Papkovsky, Dmitri B; Dmitriev, Ruslan I

    2013-09-07

    Measurement of cell oxygenation and oxygen consumption is useful for studies of cell bioenergetics, metabolism, mitochondrial function, drug toxicity and common pathophysiological conditions. Here we present a new platform for such applications which uses commercial multichannel biochips (μ-slides, Ibidi) and phosphorescent O2 sensitive probes. This platform was evaluated with both extracellular and intracellular O2 probes, several different cell types and treatments including mitochondrial uncoupling and inhibition, depletion of extracellular Ca(2+) and inhibition of V-ATPase and histone deacetylases. The results show that compared to the standard microwell plates currently used, the μ-slide platform provides facile O2 measurements with both suspension and adherent cells, higher sensitivity and reproducibility, and faster measurement time. It also allows re-perfusion and multiple treatments of cells and multi-parametric analyses in conjunction with other probes. Optical measurements are conducted on standard fluorescence readers and microscopes.

  1. A Fiber Optic Catalytic Sensor for Neutral Atom Measurements in Oxygen Plasma

    Directory of Open Access Journals (Sweden)

    Alenka Vesel

    2012-03-01

    Full Text Available The presented sensor for neutral oxygen atom measurement in oxygen plasma is a catalytic probe which uses fiber optics and infrared detection system to measure the gray body radiation of the catalyst. The density of neutral atoms can be determined from the temperature curve of the probe, because the catalyst is heated predominantly by the dissipation of energy caused by the heterogeneous surface recombination of neutral atoms. The advantages of this sensor are that it is simple, reliable, easy to use, noninvasive, quantitative and can be used in plasma discharge regions. By using different catalyst materials the sensor can also be applied for detection of neutral atoms in other plasmas. Sensor design, operation, example measurements and new measurement procedure for systematic characterization are presented.

  2. Win percentage: a novel measure for assessing the suitability of machine classifiers for biological problems

    Science.gov (United States)

    2012-01-01

    Background Selecting an appropriate classifier for a particular biological application poses a difficult problem for researchers and practitioners alike. In particular, choosing a classifier depends heavily on the features selected. For high-throughput biomedical datasets, feature selection is often a preprocessing step that gives an unfair advantage to the classifiers built with the same modeling assumptions. In this paper, we seek classifiers that are suitable to a particular problem independent of feature selection. We propose a novel measure, called "win percentage", for assessing the suitability of machine classifiers to a particular problem. We define win percentage as the probability a classifier will perform better than its peers on a finite random sample of feature sets, giving each classifier equal opportunity to find suitable features. Results First, we illustrate the difficulty in evaluating classifiers after feature selection. We show that several classifiers can each perform statistically significantly better than their peers given the right feature set among the top 0.001% of all feature sets. We illustrate the utility of win percentage using synthetic data, and evaluate six classifiers in analyzing eight microarray datasets representing three diseases: breast cancer, multiple myeloma, and neuroblastoma. After initially using all Gaussian gene-pairs, we show that precise estimates of win percentage (within 1%) can be achieved using a smaller random sample of all feature pairs. We show that for these data no single classifier can be considered the best without knowing the feature set. Instead, win percentage captures the non-zero probability that each classifier will outperform its peers based on an empirical estimate of performance. Conclusions Fundamentally, we illustrate that the selection of the most suitable classifier (i.e., one that is more likely to perform better than its peers) not only depends on the dataset and application but also on the

  3. Use of fiber optic-based distributed temperature measurement system for electrical machines

    Science.gov (United States)

    Rajendran, Veera P.; Deblock, Mark; Wetzel, Todd; Lusted, Mark; Kaminski, Christopher; Childers, Brooks A.

    2003-11-01

    A fiber optic based distributed temperature measurement system was implemented in stator windings (straight copper bars) as well as in the end-windings (curved copper bars) of a motor. Usually, in electrical machines such as motors or generators, only a few conventional temperature sensors are used, whereas the distributed temperature system has the potential of providing very detailed temperature distribution by having hundreds of sensors in a single fiber. The sensors were made of Bragg gratings etched onto the fiber itself. For the present study, the spatial resolution of the sensors is 6 mm (nominally at 1/4" apart). The technique uses Optical Frequency Domain Reflectometry (OFDR) to process the back-reflected light signal indicative of the thermal filed. A prototype fiber optic system was implemented in a motor made by GE industrial systems. The sensing length (length of the stator) for the motor was 0.75 m containing approximately 150 sensors thus providing very detailed temperature data. Performance tests were conducted at different heat loads representing different electrical conditions. Continuous tests for the duration of 19 hours were conducted. The temperature of stator windings varied from ambient (~ 23°C) to approximately 85°C. As reference, Resistance Temperature Devices (RTDs) were installed in adjacent slots to the slot where fiber optic sensors were installed. A total of 8 sensors were installed but data were collected on only 3 fibers. Fiber sensor measurements were found to track the temperature trends very well. The fiber data agreed with RTD data within +/- 3°C in the entire duration. The RMS value of difference between the fiber and RTD on one side was 0.3°C, and with the RTD on the other side was 0.5°C. The fiber measurements also showed how hotspots could be missed by using few RTDs, as is done in the industry. The fiber measurements also showed the temperature distribution in the endwindings, an area not normally monitored. The

  4. Human Islet Oxygen Consumption Rate and DNA Measurements Predict Diabetes Reversal in Nude Mice

    OpenAIRE

    Papas, K.K.; Colton, C. K.; Nelson, R. A.; Rozak, P.R.; Avgoustiniatos, E.S.; Scott, W. E.; Wildey, G. M.; Pisania, A.; Weir, G. C.; Hering, B. J.

    2007-01-01

    There is a need for simple, quantitative and prospective assays for islet quality assessment that are predictive of islet transplantation outcome. The current state-of-the-art athymic nude mouse bioassay is costly, technically challenging and retrospective. In this study, we report on the ability of 2 parameters characterizing human islet quality: (1) oxygen consumption rate (OCR), a measure of viable volume; and (2) OCR/DNA, a measure of fractional viability, to predict diabetes reversal in ...

  5. Activation Energy Measurement of Oxygen Ordering in a Nb-Ti Alloy by Anelastic Relaxation

    Directory of Open Access Journals (Sweden)

    Niemeyer T.C.

    2002-01-01

    Full Text Available Metals with bcc structure are able to dissolve large amounts of interstitial element atoms in the form of oxygen. These atoms diffuse through the lattice by jumping into octahedral sites with equivalent symmetry, causing strong alterations in the anelastic behavior. This paper reports on a study of Snoek relaxation in Nb-Ti alloys with oxygen in solid solution, based on internal friction as a function of temperature. The internal friction measurements were taken in a torsion pendulum operating at temperatures in the range of 350 to 650 K, with frequencies varying from 6 to 36 Hz. The results show relaxation spectra in which thermally activated relaxation peaks produced by the stress-induced ordering of oxygen atoms around niobium atoms of the metallic matrix were identified.

  6. Distinguishing phosphate from fertilizers and wastewater treatment plant effluents in Western Canada using oxygen isotope measurements

    Science.gov (United States)

    Fau, Veronique; Nightingale, Michael; Tamburini, Frederica; Mayer, Bernhard

    2014-05-01

    The successful application of oxygen isotope ratios as a tracer for phosphate in aquatic ecosystems requires that different sources of phosphate are isotopically distinct. The objective of this study was to determine whether the oxygen isotope ratios of phosphate from fertilizers and effluents from wastewater treatment plants in Western Canada are isotopically distinct. Therefore, we carried out oxygen isotope analyses on phosphate in effluent from five different wastewater treatment plants (WWTP) in the Bow River watershed of Alberta, Canada. Samples were collected directly from the final effluent (post-UV) in Banff and Canmore upstream of Calgary, and from effluents of Calgary's WWTPs at Bonnybrook, Fish Creek and Pine Creek. We also carried out oxygen isotope analyses on a variety of phosphate-containing fertilizers that are widely used in Western Canada. Historically, most of the phosphate contained in manufactured fertilizers sold in Alberta came from two distinct deposits: 1) a weathered Pliocene igneous carbonatite located in eastern Canada, and 2) the Permian Phosphoria Formation in the western USA. Phosphate (PO43-) contained in the water or the fertilizer was concentrated and quantitatively converted to pure silver phosphate (Ag3PO4). The silver phosphate was then reduced with carbon in an oxygen free environment using a TC/EA pyrolysis reactor linked to a mass spectrometer where 18O/16O ratios of CO were measured in continuous flow mode. Preparation of samples for δ18OPO4 analyses was conducted using the Magnesium Induced Coprecipitation (MAGIC) method. Expected oxygen isotope ratios for phosphate in equilibrium with water (δ18Oeq) were calculated using the Longinelli and Nuti equation: T (° C) = 111.4 - 4.3 (δ18Oeq - δ18Owater). Measured δ18O values of phosphate for fertilizer samples varied from 8 to 25 oÈ®n average, fertilizer samples of sedimentary origin had higher δ18O values (15.8) than those of igneous origin (11.5). Phosphate isotopic

  7. Airborne Lidar Measurements of Atmospheric Pressure Made Using the Oxygen A-Band

    Science.gov (United States)

    Riris, Haris; Rodriquez, Michael D.; Allan, Graham R.; Hasselbrack, William E.; Mao, Jianping; Stephen, Mark A.; Abshire, James B.

    2012-01-01

    Accurate measurements of greenhouse gas mixing ratios on a global scale are currently needed to gain a better understanding of climate change and its possible impact on our planet. In order to remotely measure greenhouse gas concentrations in the atmosphere with regard to dry air, the air number density in the atmosphere is also needed in deriving the greenhouse gas concentrations. Since oxygen is stable and uniformly mixed in the atmosphere at 20.95%, the measurement of an oxygen absorption in the atmosphere can be used to infer the dry air density and used to calculate the dry air mixing ratio of a greenhouse gas, such as carbon dioxide or methane. OUT technique of measuring Oxygen uses integrated path differential absorption (IPDA) with an Erbium Doped Fiber Amplifier (EDF A) laser system and single photon counting module (SPCM). It measures the absorbance of several on- and off-line wavelengths tuned to an O2 absorption line in the A-band at 764.7 nm. The choice of wavelengths allows us to maximize the pressure sensitivity using the trough between two absorptions in the Oxygen A-band. Our retrieval algorithm uses ancillary meteorological and aircraft altitude information to fit the experimentally obtained lidar O2 line shapes to a model atmosphere and derives the pressure from the profiles of the two lines. We have demonstrated O2 measurements from the ground and from an airborne platform. In this paper we will report on our airborne measurements during our 2011 campaign for the ASCENDS program.

  8. 提高数控加工质量的工艺措施%Improve the Quality of NC Machining Process Measures

    Institute of Scientific and Technical Information of China (English)

    窦金平

    2012-01-01

    在数控加工中,除了受机床、刀具、夹具的制造误差和安装误差的影响外,加工质量还与数控加工中所采取的工艺措施密切相关.从加工工艺角度出发,论述了提高数控加工精度和零件表面加工质量的若干措施,以利于高效地使用数控机床.%In NC machining, in addition to effected by manufacture errors and installation errors of machine tool, tool, fixture, machining quality is closely related to process measures taken in NC machining. From the process point of view, a number of measures for improving NC machining accuracy and surface quality of parts were discussed so as to use NC machine tools efficiently.

  9. Correlation of oxygenation and perfusion sensitive MRI with invasive micro probe measurements in healthy mice brain

    Energy Technology Data Exchange (ETDEWEB)

    Sedlacik, Jan; Fiehler, Jens [University Medical Center Hamburg-Eppendorf, Hamburg (Germany). Neuroradiology; Reitz, Matthias; Schmidt, Nils O. [University Medical Center Hamburg-Eppendorf, Hamburg (Germany). Neurosurgery; Bolar, Divya S. [Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA (United States). Radiology; Adalsteinsson, Elfar [Massachusetts Institute of Technology, Cambridge, MA (United States). Electrical Engineering and Computer Science

    2015-05-01

    The non-invasive assessment of (patho-)physiological parameters such as, perfusion and oxygenation, is of great importance for the characterization of pathologies e.g., tumors, which may be helpful to better predict treatment response and potential outcome. To better understand the influence of physiological parameters on the investigated oxygenation and perfusion sensitive MRI methods, MRI measurements were correlated with subsequent invasive micro probe measurements during free breathing conditions of air, air+10% CO2 and 100% O2 in healthy mice brain. MRI parameters were the irreversible (R2), reversible (R2') and effective (R2*) transverse relaxation rates, venous blood oxygenation level assessed by quantitative blood oxygenation level dependent (qBOLD) method and cerebral blood flow (CBF) assessed by arterial spin labeling (ASL) using a 7T small animal MRI scanner. One to two days after MRI, tissue perfusion and pO2 were measured by Laser-Doppler flowmetry and fluorescence quenching micro probes, respectively. The tissue pO2 values were converted to blood oxygen saturation by using the Hill equation. The animals were anesthetized by intra peritoneal injection of ketamine-xylazine-acepromazine (10-2-0.3 mg/ml.kg). Results for normal/hypercapnia/hyperoxia conditions were: R2[s {sup and} -1] = 20.7/20.4/20.1, R2*[s {sup and} -1] = 31.6/29.6/25.9, R2'[s {sup and} 1] = 10.9/9.2/5.7, qBOLD venous blood oxygenation level = 0.43/0.51/0.56, CBF[ml.min {sup and} -1.100g {sup and} -1] = 70.6/105.5/81.8, Laser-Doppler flowmetry[a.u.] = 89.2/120.2/90.6 and pO2[mmHg] = 6.3/32.3/46.7. All parameters were statistically significantly different with P < 0.001 between all breathing conditions. All MRI and the corresponding micro probe measurements were also statistically significantly (P ≤ 0.03) correlated with each other. However, converting the tissue pO2 to blood oxygen saturation = 0.02/0.34/0.63, showed only very limited agreement with the qBOLD venous blood

  10. Real-time frequency-domain fiber optic sensor for intra-arterial blood oxygen measurements

    Science.gov (United States)

    Alcala, J. R.; Scott, Ian L.; Parker, Jennifer W.; Atwater, Beauford W.; Yu, Clement; Fischer, Russell; Bellingrath, K.

    1993-05-01

    A real time frequency domain phosphorimeter capable of measuring precise and accurate excited state lifetimes for determining oxygen is described. This frequency domain instrument does not make use of cross correlation techniques traditionally used in frequency domain fluorometers. Instead, the electrical signal from the detector is filtered to contain only the first several harmonics. This filtered signal is then sampled and averaged over a few thousand cycles. The absolute phase and absolute modulation of each sampled harmonic of the excitation and of the luminescence is computed by employing fast Fourier transform algorithms. The phase delay and the modulation ratio is then calculated at each harmonic frequency. A least squares fit is performed in the frequency domain to obtain the lifetimes of discrete exponentials. Oxygen concentrations are computed from these lifetimes. Prototypes based on these techniques were built employing commercially available components. Results from measurements in saline solution and in the arterial blood of dogs show that oxygen concentrations can be determined reproducibly. The system drift is less than 1% in over 100 hours of continuous operation. The performance of fiber optic sensors was evaluated in dogs over a period of 10 hours. The sensors tracked changes in arterial oxygen tension over the course of the experiment without instabilities. The overall response of the system was about 90 seconds. The update time was 3 seconds.

  11. Near-infrared spectroscopy measurement of blood oxygenation content and its application in sports practice

    Science.gov (United States)

    Xu, Guodong; Gong, Hui; Ge, Xinfa; Luo, Qingming

    2003-12-01

    To research the change characteristics of blood oxygenation content in skeletal muscle, the change regularity between blood oxygenation content and exercise intensity as well as HbO2 and blood lactate acid while taking incremental exercises, we took an in vivo, real-time and continuous measurement on the blood oxygenation content of eight sportsmen when they did incremental exercises of five degrees on a power bicycle using a portable tissue oximeter which is based on the principle of near-infrared spectroscopy(NIRS), simultaneously, we detected the blood lactate acid of subjects after each degree of incremental physical load instantly using a blood lactate analysis equipment. The results showed that the content of HbO2 descended regularly while that of Hb ascended; blood volume decreased; and the density of lactate increased as the intensity of exercises was heightened. The statistics analyses showed that the relationship between HbO2 and blood lactate is rather close (correlation coefficient r=-0.918). With this discovery, a theoretical basis in measuring the relative change of blood oxygenation content non-invasively was evidenced, and a novel technology for assessing the physical situation of sportsman, grasping sports density and evaluating the training effect could be imported.

  12. Monte Carlo method for calculating oxygen abundances and their uncertainties from strong-line flux measurements

    Science.gov (United States)

    Bianco, F. B.; Modjaz, M.; Oh, S. M.; Fierroz, D.; Liu, Y. Q.; Kewley, L.; Graur, O.

    2016-07-01

    We present the open-source Python code pyMCZ that determines oxygen abundance and its distribution from strong emission lines in the standard metallicity calibrators, based on the original IDL code of Kewley and Dopita (2002) with updates from Kewley and Ellison (2008), and expanded to include more recently developed calibrators. The standard strong-line diagnostics have been used to estimate the oxygen abundance in the interstellar medium through various emission line ratios (referred to as indicators) in many areas of astrophysics, including galaxy evolution and supernova host galaxy studies. We introduce a Python implementation of these methods that, through Monte Carlo sampling, better characterizes the statistical oxygen abundance confidence region including the effect due to the propagation of observational uncertainties. These uncertainties are likely to dominate the error budget in the case of distant galaxies, hosts of cosmic explosions. Given line flux measurements and their uncertainties, our code produces synthetic distributions for the oxygen abundance in up to 15 metallicity calibrators simultaneously, as well as for E(B- V) , and estimates their median values and their 68% confidence regions. We provide the option of outputting the full Monte Carlo distributions, and their Kernel Density estimates. We test our code on emission line measurements from a sample of nearby supernova host galaxies (z github.com/nyusngroup/pyMCZ.

  13. Non-destructive measurement of carbonic anhydrase activity and the oxygen isotope composition of soil water

    Science.gov (United States)

    Jones, Sam; Sauze, Joana; Ogée, Jérôme; Wohl, Steven; Bosc, Alexandre; Wingate, Lisa

    2016-04-01

    oxygen isotope composition of ambient CO2. This non-destructive approach was tested through laboratory incubations of air-dried soils that were re-wetted with water of known isotopic composition. Performance was assessed by comparing estimates of the soil water oxygen isotope composition derived from open chamber flux measurements with those measured in the irrigation water and soil water extracted following incubations. The influence of soil pH and bovine carbonic anhydrase additions on these estimates was also investigated. Coherent values were found between the soil water composition estimates obtained from the dual steady state approach and those measured for irrigation waters. Estimates of carbonic anhydrase activity made using this approach also reflected well artificial increases to the concentration of carbonic anhydrase and indicated that this activity was sensitive to soil pH.

  14. Reduced-Gravity Measurements of the Effect of Oxygen on Properties of Zirconium

    Science.gov (United States)

    Zhao, J.; Lee, J.; Wunderlich, R.; Fecht, H.-J.; Schneider, S.; SanSoucie, M.; Rogers, J.; Hyers, R.

    2016-01-01

    The influence of oxygen on the thermophysical properties of zirconium is being investigated using MSL-EML (Material Science Laboratory - Electromagnetic Levitator) on ISS (International Space Station) in collaboration with NASA, ESA (European Space Agency), and DLR (German Aerospace Center). Zirconium samples with different oxygen concentrations will be put into multiple melt cycles, during which the density, viscosity, surface tension, heat capacity, and electric conductivity will be measured at various undercooled temperatures. The facility check-up of MSL-EML and the first set of melting experiments have been successfully performed in 2015. The first zirconium sample will be tested near the end of 2015. As part of ground support activities, the thermophysical properties of zirconium and ZrO were measured using a ground-based electrostatic levitator located at the NASA Marshall Space Flight Center. The influence of oxygen on the measured surface tension was evaluated. The results of this research will serve as reference data for those measured in ISS.

  15. A Web-based on-machine mould matching and measurement system based on CAD/CAM/CAI integration

    Institute of Scientific and Technical Information of China (English)

    CHOI Jin-hwa; JEON Byung-cheol; KIM Gun-hee; SHIN Bong-cheol; LEE Honghee; CHO Myeong-woo; SEONG Eun-je; PARK Dong-sam

    2006-01-01

    The purpose of this study is to develop a Web-based on-machine mould identification and measurement system. The Web-based mould identification system matches obtained vision information with CAD database. Developed Web-based system is to exchange messages between a server and a client by making of ActiveX control, and the result of mould identification is shown on Web-browser at remote site. For effective feature classification and extraction, the signature method is used to make meaningful information from obtained image data. For on-machine measurement of the matched mould, inspection database is constructed from CAD database using developed inspection planning methods. The results are simulated and analyzed using developed system to verify the effectiveness of the proposed methods.

  16. Modelling and Calibration Technique of Laser Triangulation Sensors for Integration in Robot Arms and Articulated Arm Coordinate Measuring Machines

    Directory of Open Access Journals (Sweden)

    Juan J. Aguilar

    2009-09-01

    Full Text Available A technique for intrinsic and extrinsic calibration of a laser triangulation sensor (LTS integrated in an articulated arm coordinate measuring machine (AACMM is presented in this paper. After applying a novel approach to the AACMM kinematic parameter identification problem, by means of a single calibration gauge object, a one-step calibration method to obtain both intrinsic―laser plane, CCD sensor and camera geometry―and extrinsic parameters related to the AACMM main frame has been developed. This allows the integration of LTS and AACMM mathematical models without the need of additional optimization methods after the prior sensor calibration, usually done in a coordinate measuring machine (CMM before the assembly of the sensor in the arm. The experimental tests results for accuracy and repeatability show the suitable performance of this technique, resulting in a reliable, quick and friendly calibration method for the AACMM final user. The presented method is also valid for sensor integration in robot arms and CMMs.

  17. Modelling and calibration technique of laser triangulation sensors for integration in robot arms and articulated arm coordinate measuring machines.

    Science.gov (United States)

    Santolaria, Jorge; Guillomía, David; Cajal, Carlos; Albajez, José A; Aguilar, Juan J

    2009-01-01

    A technique for intrinsic and extrinsic calibration of a laser triangulation sensor (LTS) integrated in an articulated arm coordinate measuring machine (AACMM) is presented in this paper. After applying a novel approach to the AACMM kinematic parameter identification problem, by means of a single calibration gauge object, a one-step calibration method to obtain both intrinsic-laser plane, CCD sensor and camera geometry-and extrinsic parameters related to the AACMM main frame has been developed. This allows the integration of LTS and AACMM mathematical models without the need of additional optimization methods after the prior sensor calibration, usually done in a coordinate measuring machine (CMM) before the assembly of the sensor in the arm. The experimental tests results for accuracy and repeatability show the suitable performance of this technique, resulting in a reliable, quick and friendly calibration method for the AACMM final user. The presented method is also valid for sensor integration in robot arms and CMMs.

  18. Electrochemical and CMT measurements of the anomalous dissolution of nickel in solutions containing oxygen

    DEFF Research Database (Denmark)

    Bech-Nielsen, Gregers; de Fontenay, Frank; Poulsen, Henning

    1997-01-01

    potential. When passivation was approached (spontaneously or by anodic polarization) the true rate of dissolution approached the rate of anodic reaction. During cathodic polarization there was still a significant rate of dissolution. The true rate of dissolution was determined by CMT measurements (Corrosion......In addition to single nickel crystals also nickel samples produced by dc and pr (pulse-reversal) plating were examined. As previously reported the true rate of dissolution of nickel in solutions containing oxygen was found to be as much as three times the electrochemical rate at the corrosion...... Measurements by Titration). Electrochemical measurements (EC) indicating the rate of electrochemical reactions were made simultaneously....

  19. Modelling and Calibration Technique of Laser Triangulation Sensors for Integration in Robot Arms and Articulated Arm Coordinate Measuring Machines

    OpenAIRE

    Aguilar, Juan J.; Albajez, José A.; Carlos Cajal; David Guillomía; Jorge Santolaria

    2009-01-01

    A technique for intrinsic and extrinsic calibration of a laser triangulation sensor (LTS) integrated in an articulated arm coordinate measuring machine (AACMM) is presented in this paper. After applying a novel approach to the AACMM kinematic parameter identification problem, by means of a single calibration gauge object, a one-step calibration method to obtain both intrinsic―laser plane, CCD sensor and camera geometry―and extrinsic parameters related to the AACMM main frame has been develope...

  20. Consistent calculation of aquatic gross production from oxygen triple isotope measurements

    Directory of Open Access Journals (Sweden)

    J. Kaiser

    2011-04-01

    Full Text Available Oxygen triple isotope measurements can be used to calculate aquatic gross oxygen production rates. Past studies have emphasised the appropriate definition of the 17O excess and often used an approximation to derive production rates from the 17O excess. Here, I show that the calculation can be phrased more consistently and without any approximations using the relative 17O/16O and 18O/16O isotope ratio differences directly. The 17O excess is merely a mathematical construct and the derived production rate is independent of its definition, provided all calculations are performed with a consistent definition. I focus on the mixed layer, but also show how time series of triple oxygen measurements below the mixed layer can be used to derive gross production.

    In the calculation of mixed layer productivity, I explicitly include isotopic fractionation during gas invasion and evasion, which requires the oxygen supersaturation s to be measured as well. I also suggest how bubble injection could be considered in the same mathematical framework. I distinguish between concentration steady state and isotopic steady state and show that only the latter needs to be assumed in the calculation. It is even possible to derive an estimate of the net production rate in the mixed layer that is independent of the assumption of concentration steady state.

    I review measurements of the parameters required for the calculation of gross production rates and show how their systematic uncertainties as well as the use of different published calculation methods can cause large variations in the production rates for the same underlying isotope ratios. In particular, the 17O excess of dissolved O2 in equilibrium with atmospheric O2 and the 17O excess of photosynthetic O2 need to be re-measured. Because of these uncertainties, all

  1. Investigation of the Cooling and Thermal-Measuring System of a Compound-Structure Permanent-Magnet Synchronous Machine

    Directory of Open Access Journals (Sweden)

    Jingang Bai

    2014-03-01

    Full Text Available The compound-structure permanent-magnet synchronous machine (CS-PMSM is a power-split device which can enable the internal combustion engine (ICE to operate at optimum efficiency during all driving conditions by controlling its torque and speed. However, the CS-PMSM has more serious temperature rise and heat dissipation problems than conventional permanent-magnet (PM machines, especially when the CS-PMSM is running at low speed and under full load conditions. As the thermal resistance of double-layer air gaps is quite big, the hot spot proves to be in the inner winding rotor. To ensure the safe operation of the CS-PMSM, the use of forced-air and water cooling in the inner winding rotor are investigated. The study shows that the water cooling can provide a better cooling effect, but require a complicated mechanical structure. Considering the complexity of the high efficiency cooling system, a real-time temperature monitoring method is proposed and a temperature measuring system which can accurately measure the real-time temperature of multiple key points in the machine is developed to promptly adjust the operating and cooling conditions based on the measured temperature results. Finally, the temperature rise experiment of the CS-PMSM prototype is done and the simulation results are partly validated by the experimental data.

  2. Some measurements of Java-to-bytecode compiler performance in the Java Virtual Machine

    OpenAIRE

    Daly, Charles; Horgan, Jane; Power, James; Waldron, John

    2001-01-01

    In this paper we present a platform independent analysis of the dynamic profiles of Java programs when executing on the Java Virtual Machine. The Java programs selected are taken from the Java Grande Forum benchmark suite, and five different Java-to-bytecode compilers are analysed. The results presented describe the dynamic instruction usage frequencies.

  3. Measuring and Modelling Delays in Robot Manipulators for Temporally Precise Control using Machine Learning

    DEFF Research Database (Denmark)

    Andersen, Thomas Timm; Amor, Heni Ben; Andersen, Nils Axel

    2015-01-01

    and separate. In this paper, we present a data-driven methodology for separating and modelling inherent delays during robot control. We show how both actuation and response delays can be modelled using modern machine learning methods. The resulting models can be used to predict the delays as well...

  4. Machine Vision-Based Measurement Systems for Fruit and Vegetable Quality Control in Postharvest.

    Science.gov (United States)

    Blasco, José; Munera, Sandra; Aleixos, Nuria; Cubero, Sergio; Molto, Enrique

    2017-03-14

    Individual items of any agricultural commodity are different from each other in terms of colour, shape or size. Furthermore, as they are living thing, they change their quality attributes over time, thereby making the development of accurate automatic inspection machines a challenging task. Machine vision-based systems and new optical technologies make it feasible to create non-destructive control and monitoring tools for quality assessment to ensure adequate accomplishment of food standards. Such systems are much faster than any manual non-destructive examination of fruit and vegetable quality, thus allowing the whole production to be inspected with objective and repeatable criteria. Moreover, current technology makes it possible to inspect the fruit in spectral ranges beyond the sensibility of the human eye, for instance in the ultraviolet and near-infrared regions. Machine vision-based applications require the use of multiple technologies and knowledge, ranging from those related to image acquisition (illumination, cameras, etc.) to the development of algorithms for spectral image analysis. Machine vision-based systems for inspecting fruit and vegetables are targeted towards different purposes, from in-line sorting into commercial categories to the detection of contaminants or the distribution of specific chemical compounds on the product's surface. This chapter summarises the current state of the art in these techniques, starting with systems based on colour images for the inspection of conventional colour, shape or external defects and then goes on to consider recent developments in spectral image analysis for internal quality assessment or contaminant detection.

  5. Partial Discharge Measurements in HV Rotating Machines in Dependence on Pressure of Coolant

    Directory of Open Access Journals (Sweden)

    I. Kršňák

    2002-01-01

    Full Text Available The influence of the pressure of the coolant used in high voltage rotating machines on partial discharges occurring in stator insulation is discussed in this paper. The first part deals with a theoretical analysis of the topic. The second part deals with the results obtained on a real generator in industrial conditions. Finally, theoretical assumptions and obtained results are compared.

  6. Some measurements of Java-to-bytecode compiler performance in the Java Virtual Machine

    OpenAIRE

    Daly, Charles; Horgan, Jane; Power, James; Waldron, John

    2001-01-01

    In this paper we present a platform independent analysis of the dynamic profiles of Java programs when executing on the Java Virtual Machine. The Java programs selected are taken from the Java Grande Forum benchmark suite, and five different Java-to-bytecode compilers are analysed. The results presented describe the dynamic instruction usage frequencies.

  7. Local Measurement of Flap Oxygen Saturation: An Application of Visible Light Spectroscopy.

    Science.gov (United States)

    Nasseri, Nassim; Kleiser, Stefan; Reidt, Sascha; Wolf, Martin

    2016-01-01

    The aim was to develop and test a new device (OxyVLS) to measure tissue oxygen saturation by visible light spectroscopy independently of the optical pathlength and scattering. Its local applicability provides the possibility of real time application in flap reconstruction surgery. We tested OxyVLS in a liquid phantom with optical properties similar to human tissue. Our results were in good agreement with a conventional near infrared spectroscopy device.

  8. Quantitative measurement of neuronal degeneration in organotypic hippocampal cultures after combined oxygen/glucose deprivation.

    Science.gov (United States)

    Strasser, U; Fischer, G

    1995-04-01

    Organotypic hippocampal cultures were used to study cell degeneration during the recovery period after defined periods (30 and 60 min) of combined oxygen/glucose deprivation mimicking transient ischemic conditions. Staining with the fluorescent dye propidium iodide allowed detection of damaged cells. Fluorescence intensity was measured by an image analysis system and used to quantify cell damage at different time points during the recovery period (up to 22 h). At 30 min of oxygen/glucose deprivation cells in the CA1 area were relatively more sensitive compared to CA3 and dentate gyrus cells, with respect to the time course of degeneration and the percentage of affected cells. Expanding the oxygen/glucose deprivation period from 30 to 60 min drastically increased the percentage of cells dying in all hippocampal areas. Still, however, cells in CA1 degenerated faster compared to those in the CA3 area and dentate gyrus. A histological analysis of toluidine blue as well as MAP2-immunostained sections revealed that almost all neurons degenerated in all hippocampal areas following the 60-min deprivation period, whereas GFAP-stained astrocytes appeared to be unaffected. Therefore, neuronal degeneration could be quantified by taking the fluorescence intensity values 22 h after 60 min of oxygen/glucose deprivation as 100% neuronal damage. The possibility to quantify neuronal damage in organotypic cultures offers a useful tool for detailed studies on mechanisms of neuronal cell death in a cell culture system which is closer to in situ conditions than monolayer cell cultures.

  9. Neutral beam injector oxygen impurity measurements and concentration reduction via gettering processes. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Kane, R.J.; Hsu, W.L.; Kerr, R.G.; Mills, B.E.; Poulsen, P.; Hibbs, S.

    1984-12-01

    We have measured the reduction of oxygen impurity levels by means of gettering within the arc chambers of the TMX-U neutral-beam injectors using the TMX-U neutral-beam test stand. Our analysis incorporated silicon surface-probe measurements and optical Doppler-shift measurements of the hydrogen alpha spectra of deuterium atoms with energies appropriate for D/sub 2/O parentage. Without gettering, the Auger electron spectroscopy analysis of an exposed silicon sample showed a large oxygen peak below the surface peak with a concentration equivalence of approximately 2% for an accelerated beam. After gettering, with either titanium or chromium getters, optical monochromator data indicated a reduction in the oxygen concentration of at least a factor of 10 whereas Auger spectroscopy data showed at least a factor-of-eight reduction. Other metallic impurities remained below the level of detection even after gettering. Additional effects observed during this study include a change in the accelerated deuterium species concentrations, loss of gettering activity, loss of arc operation, and a change in arc performance due to arc chamber gas absorption during operation.

  10. Atmospheric Airborne Pressure Measurements Using the Oxygen A Band for the ASCENDS Mission

    Science.gov (United States)

    Riris, Haris; Rodriguez, Mike; Stephen, Mark; Hasselbrack, William; Allan, Graham; Mao, Jiamping,; Kawa, Stephan R.; Weaver, Clark J.

    2011-01-01

    We report on airborne atmospheric pressure measurements using new fiber-based laser technology and the oxygen A-band at 765 nm. Remote measurements of atmospheric temperature and pressure are required for a number of NASA Earth science missions and specifically for the Active Sensing of CO2 Emissions Over Nights, Days, and Seasons (ASCENDS) mission. Accurate measurements of tropospheric CO2 on a global scale are very important in order to better understand its sources and sinks and to improve predictions on any future climate change. The ultimate goal of a CO2 remote sensing mission, such as ASCENDS, is to derive the CO2 concentration in the atmosphere in terms of mole fraction in unit of parts-per-million (ppmv) with regard to dry air. Therefore, both CO2 and the dry air number of molecules in the atmosphere are needed in deriving this quantity. O2 is a stable molecule and uniformly mixed in the atmosphere. Measuring the O2 absorption in the atmosphere can thus be used to infer the dry air number of molecules and then used to calculate CO2 concentration. With the knowledge of atmospheric water vapor, we can then estimate the total surface pressure needed for CO2 retrievals. Our work, funded by the ESTO IIP program, uses fiber optic technology and non-linear optics to generate 765 nm laser radiation coincident with the Oxygen A-band. Our pulsed, time gated technique uses several on- and off-line wavelengths tuned to the O2 absorption line. The choice of wavelengths allows us to measure the pressure by using two adjacent O2 absorptions in the Oxygen A-band. Our retrieval algorithm fits the O2 lineshapes and derives the pressure. Our measurements compare favorably with a local weather monitor mounted outside our laboratory and a local weather station.

  11. A novel device for head gesture measurement system in combination with eye-controlled human machine interface

    Science.gov (United States)

    Lin, Chern-Sheng; Ho, Chien-Wa; Chang, Kai-Chieh; Hung, San-Shan; Shei, Hung-Jung; Yeh, Mau-Shiun

    2006-06-01

    This study describes the design and combination of an eye-controlled and a head-controlled human-machine interface system. This system is a highly effective human-machine interface, detecting head movement by changing positions and numbers of light sources on the head. When the users utilize the head-mounted display to browse a computer screen, the system will catch the images of the user's eyes with CCD cameras, which can also measure the angle and position of the light sources. In the eye-tracking system, the program in the computer will locate each center point of the pupils in the images, and record the information on moving traces and pupil diameters. In the head gesture measurement system, the user wears a double-source eyeglass frame, so the system catches images of the user's head by using a CCD camera in front of the user. The computer program will locate the center point of the head, transferring it to the screen coordinates, and then the user can control the cursor by head motions. We combine the eye-controlled and head-controlled human-machine interface system for the virtual reality applications.

  12. T2 and T2* measurements of fetal brain oxygenation during hypoxia with MRI at 3T: correlation with fetal arterial blood oxygen saturation

    Energy Technology Data Exchange (ETDEWEB)

    Wedegaertner, Ulrike; Adam, Gerhard [Universitaetsklinikum Hamburg-Eppendorf, Department of Diagnostic and Interventional Radiology, Hamburg (Germany); Kooijman, Hendrik [Philips Medical Systems, Best (Netherlands); Andreas, Thomas; Beindorff, Nicola; Hecher, Kurt [University Hospital Hamburg-Eppendorf, Department of Obstetrics and Prenatal Medicine, Hamburg (Germany)

    2010-01-15

    The purpose of this prospective study was to determine the oxygen saturation of blood in the fetal brain based on T2 and T2* measurements in a fetal sheep model. Five sheep fetuses were investigated during normoxia and hypoxia by 3T MRI. Multi-echo gradient-echo and turbo-spin-echo sequences were performed on the fetal brain. MR-determined oxygen saturation (MR-sO{sub 2}) of blood in the fetal brain was calculated based on T2 and T2* values. Fetal arterial blood oxygen saturation (blood-sO{sub 2}) was measured during the two experimental phases. The slope of MR-sO{sub 2} as a function of blood-sO{sub 2} was estimated and tested for compatibility using the one-sample t-test. During normoxia, mean values for carotid blood oxygen saturation were 67%, 83 ms for T2*, 202 ms for T2 and 96% for MR-sO{sub 2}. During hypoxia, arterial blood oxygen saturation, T2* and calculated MR-sO{sub 2} decreased to 22%, 64 ms, and 68% respectively. The one-sample t-test revealed the slope to be significantly different from 0(T=5.023, df=4, P=0.007). It is feasible to perform quantitative T2 and T2* measurements in the fetal brain. MR-sO{sub 2} and fetal arterial blood oxygen saturation correlated significantly. However, based on these data a reliable quantification of fetal brain tissue oxygenation is not possible. (orig.)

  13. Measurements of Positively Charged Ions in Premixed Methane-Oxygen Atmospheric Flames

    KAUST Repository

    Alquaity, Awad B. S.

    2016-08-22

    Cations and anions are formed as a result of chemi-ionization processes in combustion systems. Electric fields can be applied to reduce emissions and improve combustion efficiency by active control of the combustion process. Detailed flame ion chemistry models are needed to understand and predict the effect of external electric fields on combustion plasmas. In this work, a molecular beam mass spectrometer (MBMS) is utilized to measure ion concentration profiles in premixed methane–oxygen argon burner-stabilized atmospheric flames. Lean and stoichiometric flames are considered to assess the dependence of ion chemistry on flame stoichiometry. Relative ion concentration profiles are compared with numerical simulations using various temperature profiles, and good qualitative agreement was observed for the stoichiometric flame. However, for the lean flame, numerical simulations misrepresent the spatial distribution of selected ions greatly. Three modifications are suggested to enhance the ion mechanism and improve the agreement between experiments and simulations. The first two modifications comprise the addition of anion detachment reactions to increase anion recombination at low temperatures. The third modification involves restoring a detachment reaction to its original irreversible form. To our knowledge, this work presents the first detailed measurements of cations and flame temperature in canonical methane–oxygen-argon atmospheric flat flames. The positive ion profiles reported here may be useful to validate and improve ion chemistry models for methane-oxygen flames.

  14. Supplementary Material for: Measurements of Positively Charged Ions in Premixed Methane-Oxygen Atmospheric Flames

    KAUST Repository

    Alquaity, Awad B. S.

    2017-01-01

    Cations and anions are formed as a result of chemi-ionization processes in combustion systems. Electric fields can be applied to reduce emissions and improve combustion efficiency by active control of the combustion process. Detailed flame ion chemistry models are needed to understand and predict the effect of external electric fields on combustion plasmas. In this work, a molecular beam mass spectrometer (MBMS) is utilized to measure ion concentration profiles in premixed methane–oxygen argon burner-stabilized atmospheric flames. Lean and stoichiometric flames are considered to assess the dependence of ion chemistry on flame stoichiometry. Relative ion concentration profiles are compared with numerical simulations using various temperature profiles, and good qualitative agreement was observed for the stoichiometric flame. However, for the lean flame, numerical simulations misrepresent the spatial distribution of selected ions greatly. Three modifications are suggested to enhance the ion mechanism and improve the agreement between experiments and simulations. The first two modifications comprise the addition of anion detachment reactions to increase anion recombination at low temperatures. The third modification involves restoring a detachment reaction to its original irreversible form. To our knowledge, this work presents the first detailed measurements of cations and flame temperature in canonical methane–oxygen-argon atmospheric flat flames. The positive ion profiles reported here may be useful to validate and improve ion chemistry models for methane-oxygen flames.

  15. Neutral beam injector oxygen impurity measurements and concentration reduction via gettering processes

    Energy Technology Data Exchange (ETDEWEB)

    Kane, R.J.; Hsu, W.L.; Kerr, R.G.; Mills, B.E.; Poulsen, P.; Hibbs, S.

    1984-10-01

    The reduction of oxygen impurity levels by means of gettering within the arc chambers of the TMX-U neutral beam injectors has been measured. The TMX-U Neutral Beam Test Stand was used for this experiment. Analysis incorporated silicon surface probes and optical Doppler-shift measurements of the Lyman alpha spectra of deuterium atoms with energies appropriate for D/sub 2/O parentage. Without gettering, the Auger electron spectroscopy analysis of an exposed silicon sample showed a large oxygen peak below the surface peak with a concentration equivalent of approximately 2% for an accelerated beam. After gettering, with either titanium or chromium getters, the oxygen concentration was reduced by at least a factor of 10 according to optical monochromator data, and at least a factor of 8 from Auger spectroscopy data. Simultaneously, other metallic impurities were not increased substantially as a result of gettering. Additional effects observed during this study include a change in the accelerated deuterium species concentrations, loss of gettering activity and arc operation, and a change in arc performance from arc chamber gas absorption during operation.

  16. Non-invasive measurement of real-time oxygen flux in plant systems with a self-referencing optrode

    OpenAIRE

    2015-01-01

    Authors: Yinglang Wan, Eric McLamore, Lusheng Fan, Huaiqing Hao, D. Marshall Porterfield, Zengkai Zhang, Wenjun Wang, Yue (Jeff) Xu & Jinxing Lin ### Abstract This protocol describes an integration of the Non-invasive Micro-test Technique and Oxygen Optrode (NMT-OO) to quantify rhizosphere oxygen fluxes in Arabidopsis. The optrode has high sensitivity and selectivity in the measurement of oxygen concentrations and fluxes at the cellular level. In particular, application of the NMT...

  17. Measuring drift velocity and electric field in mirror machine by fast photography

    Science.gov (United States)

    Be'ery, I.; Seemann, O.; Fruchtman, A.; Fisher, A.; Nemirovsky, J.

    2013-02-01

    The flute instability in mirror machines is driven by spatial charge accumulation and the resulting E × B plasma drift. On the other hand, E × B drift due to external electrodes or coils can be used as a stabilizing feedback mechanism. Fast photography is used to visualize Hydrogen plasma in a small mirror machine and infer the plasma drift and the internal electric field distribution. Using incompressible flow and monotonic decay assumptions we obtain components of the velocity field from the temporal evolution of the plasma cross section. The electric field perpendicular to the density gradient is then deduced from E=-V × B. With this technique we analyzed the electric field of flute perturbations and the field induced by electrodes immersed in the plasma.

  18. MM98.52 - An industrial comparison of coordinate measuring machines in Scandinavia with focus on uncertainty statements

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Chiffre, Leonardo De

    1999-01-01

    This paper describes an industrial comparison of coordinate measuring machines (CMMs) carried out in the Scandinavian countries from October 1994 to May 1996. Fifty-nine industrial companies with a total of 62 CMMs participated in the project and measured a comparison package with five items chosen...... results for the majority of the participants; whereas, increasing the level of difficulty from simple length measurements to more complex geometrical quantities gave severe problems for some of the companies. This occurred even though the participants measured according to prescribed procedures....... An important part of the intercomparison was to test the ability of the participants to determine measurement uncertainties. One of the uncertainties was based upon a "best guess" but nevertheless, many participants did not even report this uncertainty. Uncertainty budgeting was not used for measurements other...

  19. Comparison of the GUM and Monte Carlo methods on the flatness uncertainty estimation in coordinate measuring machine

    Directory of Open Access Journals (Sweden)

    Jalid Abdelilah

    2016-01-01

    Full Text Available In engineering industry, control of manufactured parts is usually done on a coordinate measuring machine (CMM, a sensor mounted at the end of the machine probes a set of points on the surface to be inspected. Data processing is performed subsequently using software, and the result of this measurement process either validates or not the conformity of the part. Measurement uncertainty is a crucial parameter for making the right decisions, and not taking into account this parameter can, therefore, sometimes lead to aberrant decisions. The determination of the uncertainty measurement on CMM is a complex task for the variety of influencing factors. Through this study, we aim to check if the uncertainty propagation model developed according to the guide to the expression of uncertainty in measurement (GUM approach is valid, we present here a comparison of the GUM and Monte Carlo methods. This comparison is made to estimate a flatness deviation of a surface belonging to an industrial part and the uncertainty associated to the measurement result.

  20. Identification of Synchronous Machine Magnetization Characteristics From Calorimetric Core-Loss and No-Load Curve Measurements

    OpenAIRE

    Rasilo, Paavo; Abdallh, Ahmed Abou-Elyazied; Belahcen, Anouar; Arkkio, Antero; Dupre, Luc

    2015-01-01

    The magnetic material characteristics of a wound-field synchronous machine are identified based on global calorimetric core-loss and no-load curve measurements. This is accomplished by solving a coupled experimental-numerical electromagnetic inverse problem, formulated to minimize the difference between a finite-element (FE) simulation-based Kriging surrogate model and the measurement results. The core-loss estimation in the FE model is based on combining a dynamic iron-loss model and a static v...

  1. Assessment of the uncertainty budget for the amperometric measurement of dissolved oxygen.

    Science.gov (United States)

    Fisicaro, Paola; Adriaens, Annemie; Ferrara, Enzo; Prenesti, Enrico

    2007-07-30

    This work aimed at identifying the main sources of uncertainty for the measurement of dissolved oxygen concentration in aqueous solutions. The experimental apparatus consists of an amperometric cell based on the Clark-type sensor. The corresponding uncertainty budget was assessed, this being a fundamental step for the validation of a measurement method. The principle of the measurement, as well as the procedure for the set-up and the characterisation of the cell, are described. The measurement equation was defined as a combination of Faraday's and Fick's laws, and a method was worked out for the empirical determination of the diffusivity parameter. In this connection, the solutions of oxygen were standardised by way of the Winkler's titration, as suggested by the ISO Guide 5813 and 5814. With this approach we aimed at contributing to the development of a potential primary method of measurement. A discussion of all the contributions to the overall uncertainty is reported, allowing operators to locate the largest ones and plan specific improvements.

  2. Technical note: Consistent calculation of aquatic gross production from oxygen triple isotope measurements

    Directory of Open Access Journals (Sweden)

    J. Kaiser

    2011-07-01

    Full Text Available Oxygen triple isotope measurements can be used to calculate aquatic gross oxygen production rates. Past studies have emphasised the appropriate definition of the 17O excess and often used an approximation to derive production rates from the 17O excess. Here, I show that the calculation can be phrased more consistently and without any approximations using the relative 17O/16O and 18O/16O isotope ratio differences (delta values directly. I call this the "dual delta method". The 17O excess is merely a mathematical construct and the derived production rate is independent of its definition, provided all calculations are performed with a consistent definition. I focus on the mixed layer, but also show how time series of triple isotope measurements below the mixed layer can be used to derive gross production.

    In the calculation of mixed layer productivity, I explicitly include isotopic fractionation during gas invasion and evasion, which requires the oxygen supersaturation s to be measured as well. I also suggest how bubble injection could be considered in the same mathematical framework. I distinguish between concentration steady state and isotopic steady state and show that only the latter needs to be assumed in the calculation. It is even possible to derive an estimate of the net production rate in the mixed layer that is independent of the assumption of concentration steady state.

    I review measurements of the parameters required for the calculation of gross production rates and show how their systematic uncertainties as well as the use of different published calculation methods can cause large variations in the production rates for the same underlying isotope ratios. In particular, the 17O excess of dissolved O2 in equilibrium with atmospheric O2 and the 17O excess of photosynthetic O2 need to

  3. [Laser Tuning Performance Testing and Optimization in TDLAS Oxygen Measuring Systems].

    Science.gov (United States)

    He, Jun-feng; Hu, Jun; Kan, Rui-feng; Xu, Zhen-yu; Wang, Tao

    2015-03-01

    TDLAS (tunable diode laser absorption spectroscopy) technology, with its unmatched advantages such as high selectivity molecular spectra, fast response, high sensitivity, non-contact measuring, become the preferred scheme for combustion process diagnosis, and can be effectively used for oxygen measuring. DFB (distributed feedback) laser diode with its small size, low power consumption, long service life, narrow linewidth, tunable wavelength has become the main choice of the TDLAS system. Performance of laser tuning characteristics is a key factor restricting TDLAS's measuring performance. According to TDLAS oxygen measuring system's working requirements, a simple experimental method was used to test and analyze tuning characteristics such as wavelength current, power current and wavelength temperature of a 764 nm DFB laser diode in the system. Nonlinear distortion of tuning curves was obvious, which affects oxygen measuring accuracy. The laser spectra's characteristics such as narrow linewidth, high side mode suppression ratio and wide wavelength tuning range are obvious, while its wavelength-current tuning curve with a tuning rate of about 0.023 nm x mA(-1) is not strictly linear. The higher the temperature the greater the threshold current, the PI curve is not strictly linear either. Temperature tuning curve is of good linearity, temperature-wave-length tuning rate keeps constant of about 0.056 nm/DEG C. Temperature tuning nonlinearity can be improved by high temperature control accuracy, and current power nonlinearity can be improved by setting the reference light path. In order to solve the wavelength current tuning nonlinear problems, the method of DA controlling injection current was considered to compensate for non-linear wavelength current tuning according to DFB laser diode tuning mechanism and polynomial fitting of test results. In view of different type of lasers, this method needs only one polynomial fitting process before the system's initial work. The

  4. Identification of geometric deviations inherent to multi-axis machine tools based on the pose measurement principle

    Science.gov (United States)

    Haitao, Li; Junjie, Guo; Yufen, Deng; Jindong, Wang; Xinrong, He

    2016-12-01

    The laser tracker is an effective instrument for measuring 3D relative displacement in a work volume because its attitude can be freely changed. This paper presents a novel principle to realize the precise calibration of a numerical control (NC) machine tool accurately and quickly; this is the ‘pose measurement principle’, for measuring errors. We also introduce an algorithm for identifying geometric deviations. A NC precise table mounted on a motion axis and a laser tracker are used for the coordinate determination of three fixed points to obtain the pose information of each motion axis, then calculate the pose deviations, and finally identify all the errors. For the error identification, first, according to the definition of geometric errors, we extend the concept of pose deviations, and represent the six geometric errors using a position deviation vector and attitude deviation vector. Next, we geometrically identify the three angular errors and linear errors in order; the error mathematical model for the linear axis and rotary axis are developed, respectively. Moreover, the validity of the calibration algorithm for the base station, measuring points and identification of errors are confirmed by simulations. In the end, the proposed method is applied to a three-axis NC milling machine tool and a rotary table, and then the geometric deviations are identified successfully in 3 h and 2.5 h, respectively. Comparative experiments by means of other instruments also agree well with the proposed method. Thus, the proposed method can be applied to the measurement of the multi-axis machine tool.

  5. Measuring gas exchange with step changes in inspired oxygen: an analysis of the assumption of oxygen steady state in patients suffering from COPD.

    Science.gov (United States)

    Thomsen, Lars P; Weinreich, Ulla M; Karbing, Dan S; Wagner, Peter D; Rees, Stephen E

    2014-12-01

    Bedside estimation of pulmonary gas exchange efficiency may be possible from step changes in FIO2 and subsequent measurement of arterial oxygenation at steady state conditions. However, a steady state may not be achieved quickly after a change in FIO2, especially in patients with lung disease such as COPD, rendering this approach cumbersome. This paper investigates whether breath by breath measurement of respiratory gas and arterial oxygen levels as FIO2 is changed can be used as a much more rapid alternative to collecting data from steady state conditions for measuring pulmonary gas exchange efficiency. Fourteen patients with COPD were studied using 4-5 step changes in FIO2 in the range of 0.15-0.35. Values of expired respiratory gas and arterial oxygenation were used to calculate and compare the parameters of a mathematical model of pulmonary gas exchange in two cases: from data at steady state; and from breath by breath data prior to achievement of a steady state. For each patient, the breath by breath data were corrected for the delay in arterial oxygen saturation changes following each change in FIO2. Calculated model parameters were shown to be similar for the two data sets, with Bland-Altman bias and limits of agreement of -0.4 and -3.0 to 2.2 % for calculation of pulmonary shunt and 0.17 and -0.47 to 0.81 kPa for alveolar to end-capillary PO2, a measure of oxygen abnormality due to shunting plus regions of low [Formula: see text] A/[Formula: see text] ratio. This study shows that steady state oxygen levels may not be necessary when estimating pulmonary gas exchange using changes in FIO2. As such this technique may be applicable in patients with lung disease such as COPD.

  6. Measurement of Temperature Field for the Spindle of Machine Tool Based on Optical Fiber Bragg Grating Sensors

    Directory of Open Access Journals (Sweden)

    Mingyao Liu

    2013-01-01

    Full Text Available The change of spindle temperature field is an important factor which influences machining precision. Many methods of spindle temperature field measurement have been proposed. However, most of the methods are based on the electric temperature sensors. There exist some defects (e.g., anti-interference, multiplexing, and stability capacity are poor. To increase the temperature sensitivity and reduce strain sensitivity of the bare Fiber Bragg Grating (FBG sensor, a cassette packaged FBG sensor is proposed to measure spindle temperature field. The temperature characteristics of the packaged FBG sensor are studied by comparative experiment with traditional thermal resistor sensor. The experimental results show that the packaged FBG sensor has the same capacity of temperature measurement with the thermal resistor sensor but with more remarkable antiinterference. In the further measurement experiment of the temperature field, a spindle nonuniform temperature field is acquired by the calibrated FBG sensors. It indicates that the packaged FBG sensor can be used to measure the temperature field for the spindle of machine tool.

  7. Oxygen uptake efficiency slope as a useful measure of cardiorespiratory fitness in morbidly obese women.

    Science.gov (United States)

    Onofre, Tatiana; Oliver, Nicole; Carlos, Renata; Felismino, Amanda; Corte, Renata Cristina; Silva, Eliane; Bruno, Selma

    2017-01-01

    Cardiopulmonary assessment through oxygen uptake efficiency slope (OUES) data has shown encouraging results, revealing that we can obtain important clinical information about functional status. Until now, the use of OUES has not been established as a measure of cardiorespiratory capacity in an obese adult population, only in cardiac and pulmonary diseases or pediatric patients. The aim of this study was to characterize submaximal and maximal levels of OUES in a sample of morbidly obese women and analyze its relationship with traditional measures of cardiorespiratory fitness, anthropometry and pulmonary function. Thirty-three morbidly obese women (age 39.1 ± 9.2 years) performed Cardiopulmonary Exercise Testing (CPX) on a treadmill using the ramp protocol. In addition, anthropometric measurements and pulmonary function were also evaluated. Maximal and submaximal OUES were measured, being calculated from data obtained in the first 50% (OUES50%) and 75% (OUES75%) of total CPX duration. In one-way ANOVA analysis, OUES did not significantly differ between the three different exercise intensities, as observed through a Bland-Altman concordance of 58.9 mL/min/log(L/min) between OUES75% and OUES100%, and 0.49 mL/kg/min/log(l/min) between OUES/kg75% and OUES/kg100%. A strong positive correlation between the maximal (r = 0.79) and submaximal (r = 0.81) OUES/kg with oxygen consumption at peak exercise (VO2peak) and ventilatory anaerobic threshold (VO2VAT) was observed, and a moderate negative correlation with hip circumference (r = -0.46) and body adiposity index (r = -0.50) was also verified. There was no significant difference between maximal and submaximal OUES, showing strong correlations with each other and oxygen consumption (peak and VAT). These results indicate that OUES can be a useful parameter which could be used as a cardiopulmonary fitness index in subjects with severe limitations to perform CPX, as for morbidly obese women.

  8. Accurate, in vivo NIR measurement of skeletal muscle oxygenation through fat

    Science.gov (United States)

    Jin, Chunguang; Zou, Fengmei; Ellerby, Gwenn E. C.; Scott, Peter; Peshlov, Boyan; Soller, Babs R.

    2010-02-01

    Noninvasive near infrared (NIR) spectroscopic measurement of muscle oxygenation requires the penetration of light through overlying skin and fat layers. We have previously demonstrated a dual-light source design and orthogonalization algorithm that corrects for inference from skin absorption and fat scattering. To achieve accurate muscle oxygen saturation (SmO2) measurement, one must select the appropriate source-detector distance (SD) to completely penetrate the fat layer. Methods: Six healthy subjects were supine for 15min to normalize tissue oxygenation across the body. NIR spectra were collected from the calf, shoulder, lower and upper thigh muscles with long SD distances of 30mm, 35mm, 40mm and 45mm. Spectral preprocessing with the short SD (3mm) spectrum preceded SmO2 calculation with a Taylor series expansion method. Three-way ANOVA was used to compare SmO2 values over varying fat thickness, subjects and SD distances. Results: Overlying fat layers varied in thickness from 4.9mm to 19.6mm across all subjects. SmO2 measured at the four locations were comparable for each subject (p=0.133), regardless of fat thickness and SD distance. SmO2 (mean+/-std dev) measured at calf, shoulder, low and high thigh were 62+/-3%, 59+/-8%, 61+/-2%, 61+/-4% respectively for SD distance of 30mm. In these subjects no significant influence of SD was observed (p=0.948). Conclusions: The results indicate that for our sensor design a 30mm SD is sufficient to penetrate through a 19mm fat layer and that orthogonalization with short SD effectively removed spectral interference from fat to result in a reproducible determination of SmO2.

  9. An optode sensor array for long term in situ Oxygen measurements in soil and sediment

    DEFF Research Database (Denmark)

    Rickelt, Lars F; Jensen, Louise Askær; Walpersdorf, Eva Christine

    2013-01-01

    characteristics of the sensor array system are presented along with a novel approach for temperature compensation of O2 optodes. During in situ application over several months in a peat bog, we used the new device to document pronounced variations in O2 distribution aft er marked shift s in water level. Th e......Long-term measurements of molecular oxygen (O2) dynamics in wetlands are highly relevant for understanding the eff ects of water level changes on net greenhouse gas budgets in these ecosystems. However, such measurements have been limited due to a lack of suitable measuring equipment. We...... constructed an O2 optode sensor array for long-term in situ measurements in soil and sediment. Th e new device consists of a 1.3-m-long, cylindrical, spear-shaped rod equipped with 10 sensor spots along the shaft . Each spot contains a thermocouple fi xed with a robust fi beroptic O2 optode made...

  10. RAMI approach as guidance for optimizing the design of the WEST machine protection system using IR thermography measurements

    Energy Technology Data Exchange (ETDEWEB)

    Delchambre, E., E-mail: elise.delchambre@cea.fr; Houtte, D. van; Courtois, X.; Aumeunier, M.H.; Bucalossi, J.

    2015-10-15

    Highlights: • In the framework of the WEST project, a RAMI analysis has been performed to evaluate the availability of the IR thermography diagnostic and to compare it with the objective. • Due to a too low availability value, especially for the machine protection function, a major modification of the initial design of the IR thermography diagnostic was required to meet WEST expectations. • Thanks to the design change and some other recommendations in terms of spares on-site and maintenance, the expected availability of the machine protection function has been improved from ∼43% to 91% and therefore contribute in the mitigation of technical/operational risks during the WEST operation phase. - Abstract: The WEST project (Tungsten (W) Environment in Steady State Tokamak) is targeted at minimizing risks in support of the ITER divertor strategy. Part of the machine protection system will be based on Short Wave InfraRed (SWIR) thermography diagnostic which consists in monitoring and controlling in real time the power load on the plasma facing components through the surface temperature measurements. The inherent availability objective of such a machine protection diagnostic is essential for WEST operation. A functional analysis of the IR system from highest level main functions down to basic operational functions has been developed. The availability of the initial design has been assessed by making a RAMI (Reliability, Availability Maintainability and Inspectability) analysis. Despite mitigation actions to reduce the frequency of potential failures and their time to repair, the availability required by the project could not be reached. With the aim of achieving the availability target, a recommendation was made to consider an alternative design. This paper presents a RAMI analysis of the IR thermography diagnostic whose results have led to modifying the design of antennas protection system to a more available system as required by the WEST project.

  11. Non-invasive measurement and validation of tissue oxygen saturation covered with overlying tissues

    Institute of Scientific and Technical Information of China (English)

    Yichao Teng; Haishu Ding; Lan Huang; Yue Li; Quanzhong Shan; Datian Ye; Haiyan Ding; Jenchung Chien; Betau Hwang

    2008-01-01

    In this paper,the biological tissue oxygen saturation(rS02)is obtained non-invasively and in real time based on near infrared spec-troscopy(NIRS)using two emitting wavelengths and two detectors,where the tissue is covered with overlying tissues.Our group devel-oped an NIRS oximeter based on the above principle independently,and validated it using liquid tissue model calibrations and animal experiments.The results indicate that(1)in the normal range of tissue oxygen saturation(40-70%),the rS02 measured by NIRS is accu-rate enough and little influenced by the background absorptions(such as the absorption of water)and overlying tissues(such as fat);(2)during cerebral hypoxia and recovery of three piglets,there is excellent correlation(p<0.001)between cerebral rS02 and jugular venous oxygen saturation(Sj02),meaning that the rS02 can be indicated by the Sj02 to a large extent;during the death of the three piglets induced by heart beat stopping,cerebral rS02 decreases continuously to significantly low levels(<25%)because cerebral blood supply does not exist any more.All the above results are of explicit physiological importance.

  12. Time-resolved temperature measurements in a rapid compression machine using quantum cascade laser absorption in the intrapulse mode

    KAUST Repository

    Nasir, Ehson Fawad

    2016-07-16

    A temperature sensor based on the intrapulse absorption spectroscopy technique has been developed to measure in situ temperature time-histories in a rapid compression machine (RCM). Two quantum-cascade lasers (QCLs) emitting near 4.55μm and 4.89μm were operated in pulsed mode, causing a frequency "down-chirp" across two ro-vibrational transitions of carbon monoxide. The down-chirp phenomenon resulted in large spectral tuning (δν ∼2.8cm-1) within a single pulse of each laser at a high pulse repetition frequency (100kHz). The wide tuning range allowed the application of the two-line thermometry technique, thus making the sensor quantitative and calibration-free. The sensor was first tested in non-reactive CO-N2 gas mixtures in the RCM and then applied to cases of n-pentane oxidation. Experiments were carried out for end of compression (EOC) pressures and temperatures ranging 9.21-15.32bar and 745-827K, respectively. Measured EOC temperatures agreed with isentropic calculations within 5%. Temperature rise measured during the first-stage ignition of n-pentane is over-predicted by zero-dimensional kinetic simulations. This work presents, for the first time, highly time-resolved temperature measurements in reactive and non-reactive rapid compression machine experiments. © 2016 Elsevier Ltd.

  13. Investigating Characteristics of the Static Tri-Switches Tactile Probing Structure for Micro-Coordinate Measuring Machine (CMM

    Directory of Open Access Journals (Sweden)

    Yin Tung Albert Sun

    2016-07-01

    Full Text Available This paper describes the fabrication of a series of micro ball-ended stylus tips by applying micro-EDM (Electrical Discharge Machining and OPED (One Pulse Electrical Discharge processes, followed by a manual assembly process of a static tri-switches tactile structure on a micro-CMM (Coordinate Measuring Machine. This paper further proves that the essential performance of the proposed system meets an acceptable benchmark among peer micro-CMM systems with a low cost. The system also adjusts for ambient temperature and humidity as the ordinary lab environmental conditions. For demonstration, several experiments used a randomly selected glass stylus with the diameters of stem and sphere of 0.07 mm and 0.12 mm, respectively. By leveraging research guidelines and common practice, this paper further investigates the probing relationship between measurement accuracy and its associated critical characteristics, namely triggering scenarios and geometric feature probing validation. The experimental results show that repeated detections in the uncertainty, in vertical and horizontal directions of the same point, achieved as small as 0.11 μm and 0.29 μm, respectively. This customized tri-switches tactile probing structure was also capable of measuring geometric features of micro-components, such as the inner profile and depth of a micro-hole. Finally, extensions of the proposed approach to pursue higher accuracy measurement are discussed.

  14. Direct Measurements of Oxygen Gradients in Spheroid Culture System Using Electron Parametric Resonance Oximetry.

    Directory of Open Access Journals (Sweden)

    Laura M Langan

    Full Text Available Advanced in vitro culture from tissues of different origin includes three-dimensional (3D organoid micro structures that may mimic conditions in vivo. One example of simple 3D culture is spheroids; ball shaped structures typically used as liver and tumour models. Oxygen is critically important in physiological processes, but is difficult to quantify in 3D culture: and the question arises, how small does a spheroid have to be to have minimal micro-environment formation? This question is of particular importance in the growing field of 3D based models for toxicological assessment. Here, we describe a simple non-invasive approach modified for the quantitative measurement and subsequent evaluation of oxygen gradients in spheroids developed from a non-malignant fish cell line (i.e. RTG-2 cells using Electron Paramagnetic Resonance (EPR oximetry. Sonication of the paramagnetic probe Lithium phthalocyanine (LiPc allows for incorporation of probe particulates into spheroid during its formation. Spectra signal strength after incorporation of probe into spheroid indicated that a volume of 20 μl of probe (stock solution: 0.10 mg/mL is sufficient to provide a strong spectra across a range of spheroid sizes. The addition of non-toxic probes (that do not produce or consume oxygen report on oxygen diffusion throughout the spheroid as a function of size. We provide evidence supporting the use of this model over a range of initial cell seeding densities and spheroid sizes with the production of oxygen distribution as a function of these parameters. In our spheroid model, lower cell seeding densities (∼2,500 cells/spheroid and absolute size (118±32 μm allow control of factors such as pre-existing stresses (e.g. ∼ 2% normoxic/hypoxic interface for more accurate measurement of treatment response. The applied methodology provides an elegant, widely applicable approach to directly characterize spheroid (and other organoid cultures in biomedical and

  15. Electrochemical and CMT measurements of the anomalous dissolution of nickel in solutions containing oxygen

    DEFF Research Database (Denmark)

    Bech-Nielsen, Gregers; de Fontenay, Frank; Poulsen, Henning

    1997-01-01

    In addition to single nickel crystals also nickel samples produced by dc and pr (pulse-reversal) plating were examined. As previously reported the true rate of dissolution of nickel in solutions containing oxygen was found to be as much as three times the electrochemical rate at the corrosion...... potential. When passivation was approached (spontaneously or by anodic polarization) the true rate of dissolution approached the rate of anodic reaction. During cathodic polarization there was still a significant rate of dissolution. The true rate of dissolution was determined by CMT measurements (Corrosion...

  16. Shock-tube measurements of excited oxygen atoms using cavity-enhanced absorption spectroscopy.

    Science.gov (United States)

    Nations, Marcel; Wang, Shengkai; Goldenstein, Christopher S; Sun, Kai; Davidson, David F; Jeffries, Jay B; Hanson, Ronald K

    2015-10-10

    We report the use of cavity-enhanced absorption spectroscopy (CEAS) using two distributed feedback diode lasers near 777.2 and 844.6 nm for sensitive, time-resolved, in situ measurements of excited-state populations of atomic oxygen in a shock tube. Here, a 1% O2/Ar mixture was shock-heated to 5400-8000 K behind reflected shock waves. The combined use of a low-finesse cavity, fast wavelength scanning of the lasers, and an off-axis alignment enabled measurements with 10 μs time response and low cavity noise. The CEAS absorption gain factors of 104 and 142 for the P35←S520 (777.2 nm) and P0,1,23←S310 (844.6 nm) atomic oxygen transitions, respectively, significantly improved the detection sensitivity over conventional single-pass measurements. This work demonstrates the potential of using CEAS to improve shock-tube studies of nonequilibrium electronic-excitation processes at high temperatures.

  17. A pilot study of a new spectrophotometry device to measure tissue oxygen saturation.

    Science.gov (United States)

    Abel, Gemma; Allen, John; Drinnan, Michael

    2014-09-01

    Tissue oxygen saturation (SO2) measurements have the potential for far wider use than at present but are limited by device availability and portability for many potential applications. A device based on a small, low-cost general-purpose spectrophotometer (the Harrison device) might facilitate wider use. The aim of this study was to compare the Harrison device with a commercial instrument, the LEA O2C.Measurements were carried out on the forearm and finger of 20 healthy volunteers, using a blood pressure cuff on the upper arm to induce different levels of oxygenation. Repeatability of both devices was assessed, and the Bland-Altman method was used to assess agreement between them.The devices showed agreement in overall tracking of changes in SO2. Test-retest agreement for the Harrison device was worse than for O2C, with SD repeatability of 10.6% (forearm) or 18.6% (finger). There was no overall bias between devices, but mean (SD) difference of 1.2 (11.8%) (forearm) or 4.4 (11.5%) (finger) were outside of a clinically acceptable range.Disagreements were attributed to the stability of the Harrison probe and the natural SO2 variations across the skin surface increasing the random error. Therefore, though not equivalent to the LEA O2C, a probe redesign and averaged measurements may help establish the Harrison device as a low cost alternative.

  18. Dynamic Measurements of Greenhouse Gas Respirations Caused by Changing Oxygen Levels

    Science.gov (United States)

    Fleck, D.; Saad, N.

    2015-12-01

    The necessity for constant monitoring of greenhouse gases (GHGs) is clearly evident now more than ever. Moreover, interpreting and understanding the processes that dictate the production and consumption of these gases will allow for proper management of GHGs in order to mitigate its detrimental climate effects. Presence of oxygen, or lack of it, is the driving force for determining pathways within biochemical redox reactions. Experiments to find correlations between oxygen and greenhouse gases have helped us understand photosynthesis, denitrification and beyond. Within the past few years measurements of O2 and nitrous oxide have been used over a wide ranging array of disciplines; from studying avenues for redox chemistry to characterizing gas profiles in sputum of cystic fibrosis patients. We present a full analysis solution, based on cavity ring-down spectroscopy, for simultaneous measurements of N2O, CO2, CH4, H2O, NH3, and O2 concentrations in soil flux, in order to better understand dynamics of ecological and biogeochemical processes. The stability and high temporal resolution of the five-species CRDS analyzer, coupled with a continuous high-precision O2 measurement (1-σ changing O2. Experimental data is also presented to explore correlations of soil respiration rates of N2O, CO2 and CH4 due to differing soil O2 contents at varying timescales from minutes to days.

  19. Novel Local Calibration Method for Chemical Oxygen Demand Measurements by Using UV-Vis Spectrometry

    Science.gov (United States)

    Yingtian, Hu; Chao, Liu; Xiaoping, Wang

    2017-05-01

    In recent years, ultraviolet-visible spectroscopy has been widely used for chemical oxygen demand (COD) measurements of water. However, chemical compositions of substance in different water samples can cause measurement deviations, so a local calibration is needed. In this study, a novel local calibration method is proposed. The absorption spectra of COD standard solutions and wastewater samples taken from four factories were collected. We analyzed the impact of chemical compositions of substance in different water samples and extracted the morphology features of their absorptive spectra for recognition models. Furthermore, we calculated the local calibration parameters of the four categories of real water samples by specific modification based on the ability of light absorption in various water environments. After the process of local calibration, the root mean square errors (RMSEs) of the predictions were very small, which highlights the potential of this method for improving the accuracy and adaptability of COD measurements based on ultraviolet-visible spectrum.

  20. Soft Measurement Modeling Based on Chaos Theory for Biochemical Oxygen Demand (BOD

    Directory of Open Access Journals (Sweden)

    Junfei Qiao

    2016-12-01

    Full Text Available The precision of soft measurement for biochemical oxygen demand (BOD is always restricted due to various factors in the wastewater treatment plant (WWTP. To solve this problem, a new soft measurement modeling method based on chaos theory is proposed and is applied to BOD measurement in this paper. Phase space reconstruction (PSR based on Takens embedding theorem is used to extract more information from the limited datasets of the chaotic system. The WWTP is first testified as a chaotic system by the correlation dimension (D, the largest Lyapunov exponents (λ1, the Kolmogorov entropy (K of the BOD and other water quality parameters time series. Multivariate chaotic time series modeling method with principal component analysis (PCA and artificial neural network (ANN is then adopted to estimate the value of the effluent BOD. Simulation results show that the proposed approach has higher accuracy and better prediction ability than the corresponding modeling approaches not based on chaos theory.

  1. Measurement of total-body oxygen, nitrogen, and carbon in vivo by photon activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ulin, K.

    1984-01-01

    With the aim of assessing nutritional status, the feasibility of measuring the total body quantities of the major body elements, i.e. oxygen, nitrogen, and carbon, using the photon beam of a 45 MV betatron and a whole-body counter, has been evaluated in detail. Following photon activation a single energy ..gamma..-radiation (.511 MeV) is observed from all three elements to be measured. The half-lives of /sup 15/O, /sup 13/N, and /sup 11/C, however, are sufficiently different (20.5 min, 10.0 min, and 20.4 min. respectively) to permit their measurement from an analysis of the measured decay curve. Following corrections for interfering reactions, a computer curve-fitting algorithm is used to resolve the data into /sup 15/O, /sup 13/N, and /sup 11/C components. Measurements of O, N, and C have been made both in phantoms and in live and dead rats. A comparison of the body composition results from this technique with results from chemical analysis indicates that measured carbon can quite accurately predict total body fat. The comparison of the total body nitrogen measurement by photon activation with total body protein by chemical analysis was inconclusive and suggests that further work be done to verify the estimated accuracy of the nitrogen measurement.

  2. Continuous measurements of greenhouse gases and atmospheric oxygen at the Namib Desert Atmospheric Observatory

    Science.gov (United States)

    Morgan, E. J.; Lavrič, J. V.; Seifert, T.; Chicoine, T.; Day, A.; Gomez, J.; Logan, R.; Sack, J.; Shuuya, T.; Uushona, E. G.; Vincent, K.; Schultz, U.; Brunke, E.-G.; Labuschagne, C.; Thompson, R. L.; Schmidt, S.; Manning, A. C.; Heimann, M.

    2015-02-01

    A new coastal background site has been established for observations of greenhouse gases (GHGs) in the central Namib Desert at Gobabeb, Namibia. The location of the site was chosen to provide observations for a data-poor region in the global sampling network for GHGs. Semi-automated, continuous measurements of carbon dioxide, methane, nitrous oxide, carbon monoxide, atmospheric oxygen, and basic meteorology are made at a height of 21 m a.g.l., 50 km from the coast at the northern border of the Namib Sand Sea. Atmospheric oxygen is measured with a differential fuel cell analyzer (DFCA). Carbon dioxide and methane are measured with an early-model cavity ring-down spectrometer (CRDS); nitrous oxide and carbon monoxide are measured with an off-axis integrated cavity output spectrometer (OA-ICOS). Instrument-specific water corrections are employed for both the CRDS and OA-ICOS instruments in lieu of drying. The performance and measurement uncertainties are discussed in detail. As the station is located in a remote desert environment, there are some particular challenges, namely fine dust, high diurnal temperature variability, and minimal infrastructure. The gas handling system and calibration scheme were tailored to best fit the conditions of the site. The CRDS and DFCA provide data of acceptable quality when base requirements for operation are met, specifically adequate temperature control in the laboratory and regular supply of electricity. In the case of the OA-ICOS instrument, performance is significantly improved through the implementation of a drift correction through frequent measurements of a working tank.

  3. Continuous measurements of greenhouse gases and atmospheric oxygen at the Namib Desert Atmospheric Observatory

    Science.gov (United States)

    Morgan, E. J.; Lavrič, J. V.; Seifert, T.; Chicoine, T.; Day, A.; Gomez, J.; Logan, R.; Sack, J.; Shuuya, T.; Uushona, E. G.; Vincent, K.; Schultz, U.; Brunke, E.-G.; Labuschagne, C.; Thompson, R. L.; Schmidt, S.; Manning, A. C.; Heimann, M.

    2015-06-01

    A new coastal background site has been established for observations of greenhouse gases (GHGs) in the central Namib Desert at Gobabeb, Namibia. The location of the site was chosen to provide observations for a data-poor region in the global sampling network for GHGs. Semi-automated continuous measurements of carbon dioxide, methane, nitrous oxide, carbon monoxide, atmospheric oxygen, and basic meteorology are made at a height of 21 m a.g.l., 50 km from the coast at the northern border of the Namib Sand Sea. Atmospheric oxygen is measured with a differential fuel cell analyzer (DFCA). Carbon dioxide and methane are measured with an early-model cavity ring-down spectrometer (CRDS); nitrous oxide and carbon monoxide are measured with an off-axis integrated cavity output spectrometer (OA-ICOS). Instrument-specific water corrections are employed for both the CRDS and OA-ICOS instruments in lieu of drying. The performance and measurement uncertainties are discussed in detail. As the station is located in a remote desert environment, there are some particular challenges, namely fine dust, high diurnal temperature variability, and minimal infrastructure. The gas handling system and calibration scheme were tailored to best fit the conditions of the site. The CRDS and DFCA provide data of acceptable quality when base requirements for operation are met, specifically adequate temperature control in the laboratory and regular supply of electricity. In the case of the OA-ICOS instrument, performance is significantly improved through the implementation of a drift correction through frequent measurements of a reference cylinder.

  4. Ex vivo measures of muscle mitochondrial capacity reveal quantitative limits of oxygen delivery by the circulation during exercise

    DEFF Research Database (Denmark)

    Boushel, Robert; Saltin, Bengt

    2013-01-01

    of the body mass will be discussed in relation to mitochondrial capacity measured ex vivo. These analyses reveal that as the mass of muscle engaged in exercise increases from one-leg knee extension, to 2-arm cranking, to 2-leg cycling and x-country skiing, the magnitude of blood flow and oxygen delivery...... decrease. Accordingly, a 2-fold higher oxygen delivery and oxygen uptake per unit muscle mass are seen in vivo during 1-leg exercise compared to 2-leg cycling indicating a significant limitation of the circulation during exercise with a large muscle mass. This analysis also reveals that mitochondrial......Muscle mitochondrial respiratory capacity measured ex vivo provides a physiological reference to assess cellular oxidative capacity as a component in the oxygen cascade in vivo. In this article, the magnitude of muscle blood flow and oxygen uptake during exercise involving a small-to-large fraction...

  5. When Machines Design Machines!

    DEFF Research Database (Denmark)

    2011-01-01

    Until recently we were the sole designers, alone in the driving seat making all the decisions. But, we have created a world of complexity way beyond human ability to understand, control, and govern. Machines now do more trades than humans on stock markets, they control our power, water, gas...... and food supplies, manage our elevators, microclimates, automobiles and transport systems, and manufacture almost everything. It should come as no surprise that machines are now designing machines. The chips that power our computers and mobile phones, the robots and commercial processing plants on which we...... depend, all are now largely designed by machines. So what of us - will be totally usurped, or are we looking at a new symbiosis with human and artificial intelligences combined to realise the best outcomes possible. In most respects we have no choice! Human abilities alone cannot solve any of the major...

  6. Preliminary results of processing of Pulkovo series of photographic observations of double star 61 Cygni measured by automatic machine "Fantasy"

    Science.gov (United States)

    Gorshanov, D. L.; Shakht, N. A.; Kisselev, A. A.; Polyakov, E. V.; Bronnikova, A. A.; Kanaev, I. I.

    2003-11-01

    Two long-term series of photographic observations of one of the nearest double star 61 Cygni have been obtained at Pulkovo by means of normal astrograph in 1895-2000 (I) and by means of 26'' refractor in 1958-2000 (II). All these observations have been measured by means automatic machine "Fantasy" with mean error of yearly positions 0.016'' and 0.008'' for I and II series correspondly. The periodic deviations with period 6.4 +/- 0.5 yr in the residuals in relative distances between components are noticed for series II.

  7. Measurement of the t$\\bar{t}$ cross section at the Run II Tevatron using Support Vector Machines

    Energy Technology Data Exchange (ETDEWEB)

    Whitehouse, Benjamin Eric [Tufts Univ., Medford, MA (United States)

    2010-08-01

    This dissertation measures the t$\\bar{t}$ production cross section at the Run II CDF detector using data from early 2001 through March 2007. The Tevatron at Fermilab is a p$\\bar{p}$ collider with center of mass energy √s = 1.96 TeV. This data composes a sample with a time-integrated luminosity measured at 2.2 ± 0.1 fb-1. A system of learning machines is developed to recognize t$\\bar{t}$ events in the 'lepton plus jets' decay channel. Support Vector Machines are described, and their ability to cope with a multi-class discrimination problem is provided. The t$\\bar{t}$ production cross section is then measured in this framework, and found to be σt$\\bar{t}$ = 7.14 ± 0.25 (stat)-0.86+0.61(sys) pb.

  8. Dependence of receptor potential and redox state of mitochondrial cytochromes on oxygen fraction measured in the blowfly eye in vivo

    NARCIS (Netherlands)

    Smits, R.P.; Jansonius, N.M.; Stavenga, D.G.

    1. The dependence of dark-adapted fly (Calliphora vicina) photoreceptors on oxygen was investigated by measuring the electroretinogram (ERG), the receptor potential, and the redox states of the mitochondrial cytochromes. The redox states were determined via reflection microspectrophotometry on

  9. The effects of oxygen induced pulmonary vasoconstriction on bedside measurement of pulmonary gas exchange.

    Science.gov (United States)

    Weinreich, Ulla M; Thomsen, Lars P; Rees, Stephen E; Rasmussen, Bodil S

    2016-04-01

    In patients with respiratory failure measurements of pulmonary gas exchange are of importance. The bedside automatic lung parameter estimator (ALPE) of pulmonary gas exchange is based on changes in inspired oxygen (FiO2) assuming that these changes do not affect pulmonary circulation. This assumption is investigated in this study. Forty-two out of 65 patients undergoing coronary artery bypass grafting (CABG) had measurements of mean pulmonary arterial pressure (MPAP), cardiac output and pulmonary capillary wedge pressure thus enabling the calculation of pulmonary vascular resistance (PVR) at each FiO2 level. The research version of ALPE was used and FiO2 was step-wise reduced a median of 0.20 and ultimately returned towards baseline values, allowing 6-8 min' steady state period at each of 4-6 levels before recording the oxygen saturation (SpO2). FiO2 reduction led to median decrease in SpO2 from 99 to 92 %, an increase in MPAP of 4 mmHg and an increase in PVR of 36 dyn s cm(-5). Changes were immediately reversed on returning FiO2 towards baseline. In this study changes in MPAP and PVR are small and immediately reversible consistent with small changes in pulmonary gas exchange. This indicates that mild deoxygenation induced pulmonary vasoconstriction does not have significant influences on the ALPE parameters in patients after CABG.

  10. Measuring oxygen isotopes beyond the neutron dripline: Two-neutron emission and radioactivity

    Science.gov (United States)

    Kohley, Zach

    2013-10-01

    The availability of rare isotope beams has made it possible to extend nuclear structure measurements to nuclei far away from stability. Drastic changes in the structure, properties, and available decay-modes of these exotic isotopes have been observed in comparison to their stable counterparts. The oxygen isotopic chain has been particularly interesting with observations of new shell closures at N = 14 and N = 16. The MoNA-LISA/Sweeper setup at the National Superconducting Cyclotron Laboratory at Michigan State University has allowed for studies of the oxygen isotopes to be extended beyond the neutron dripline. Recently, the 26O ground state was observed for the first time and shown to be unbound by less than 200 keV. The low energy ground state of the two-neutron unbound 26O opened the possibility for the discovery of two-neutron radioactivity. A new technique was developed to measure the lifetimes of neutron unbound nuclei in the picosecond range. This technique was applied to the 26O decay and a half-life of 4.5-1. 5 + 1 . 1 (stat.) +/-3 (sys.) ps was extracted. This corresponds to 26O having a finite lifetime at an 82% confidence level and, thus, suggests the possibility of two-neutron radioactivity. Supported by the National Science Foundation, under Grant No. PHY-1102511.

  11. Assessment of skin flaps using optically based methods for measuring blood flow and oxygenation.

    Science.gov (United States)

    Payette, Jeri R; Kohlenberg, Elicia; Leonardi, Lorenzo; Pabbies, Arone; Kerr, Paul; Liu, Kan-Zhi; Sowa, Michael G

    2005-02-01

    The objective of this study was to compare two noninvasive techniques, laser Doppler and optical spectroscopy, for monitoring hemodynamic changes in skin flaps. Animal models for assessing these changes in microvascular free flaps and pedicle flaps were investigated. A 2 x 3-cm free flap model based on the epigastric vein-artery pair and a reversed MacFarlane 3 x 10-cm pedicle flap model were used in this study. Animals were divided into four groups, with groups 1 (n = 6) and 2 (n = 4) undergoing epigastric free flap surgery and groups 3 (n = 3) and 4 (n = 10) undergoing pedicle flap surgery. Groups 1 and 4 served as controls for each of the flap models. Groups 2 and 3 served as ischemia-reperfusion models. Optical spectroscopy provides a measure of hemoglobin oxygen saturation and blood volume, and the laser Doppler method measures blood flow. Optical spectroscopy proved to be consistently more reliable in detecting problems with arterial in flow compared with laser Doppler assessments. When spectroscopy was used in an imaging configuration, oxygen saturation images of the entire flap were generated, thus creating a visual picture of global flap health. In both single-point and imaging modes the technique was sensitive to vessel manipulation, with the immediate post operative images providing an accurate prediction of eventual outcome. This series of skin flap studies suggests a potential role for optical spectroscopy and spectroscopic imaging in the clinical assessment of skin flaps.

  12. Modeling and prototyping of a fiber Bragg grating-based dynamic micro-coordinate measuring machine probe

    Science.gov (United States)

    Liu, Fangfang; Chen, Lijuan; Wang, Jingfan; Xia, Haojie; Li, Ruijun; Yu, Liandong; Fei, Yetai

    2016-02-01

    Higher-accuracy measurements of the 3D metrology of nano- and micro-structures are increasingly demanded. This paper details the prototyping of a novel 3D micro-scale coordinate measuring machine probe based on fiber Bragg grating sensors for true 3D measurements at micro- and nanometer scales. A new manufacturing technique for the high-precision cantilever used in the probe is also reported. Simulations are performed during the design and testing to help to test important aspects of the probe and to gain understanding about the influence of the probe geometrical parameters on the sensor sensitivity. The initial performance of the probe has been tested in both the vertical and horizontal directions, and the characterization results are promising. Further experimental results demonstrate that the probe is not affected by surface interaction forces.

  13. Stable oxygen and hydrogen isotopes measurement by CF-IRMS with applications in hydrology studies

    Energy Technology Data Exchange (ETDEWEB)

    Costinel, Diana; Vremera, Raluca [National Research and Development Institute for Cryogenics and Isotopic Technologies, 4 Uzinei, POBox Raureni 7, 240050 Ramnicu Valcea (Romania); Grecu, Voicu V [University Bucharest, Faculty of Physics, Department of Atomic and Nuclear Physics, 405 Atomistilor, CP MG 11, 077125 Bucharest-Magurele (Romania); Cuna, Stela, E-mail: diana@icsi.r [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath, 400293 Cluj-Napoca (Romania)

    2009-08-01

    The major changes in isotopic composition of natural waters occur in the atmospheric part of the water cycle and in surface waters which are exposed to the atmosphere. This study demonstrated the utility of the Continuous Flow - Isotope Ratio Mass Spectrometry method for measuring natural variation of the occurring isotopes of hydrogen ({sup 2}H) and oxygen ({sup 18}O) in meteoric waters. The variation of {delta}{sup 18}O and {delta}{sup 2}D values from precipitation fallen in Raureni-Valcea area between May-December 2007 and September 2008-March 2009 were measured together with the {delta}{sup 18}O and {delta}{sup 2}D values from the Bistrita River. The Local Meteoric Water Line was reported for this area. Also, the variation of {delta}{sup 18}O and {delta}{sup 2}D values was correlated with the temperature and humidity in the same period.

  14. Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects

    Science.gov (United States)

    Durduran, Turgut; Zhou, Chao; Buckley, Erin M.; Kim, Meeri N.; Yu, Guoqiang; Choe, Regine; Gaynor, J. William; Spray, Thomas L.; Durning, Suzanne M.; Mason, Stefanie E.; Montenegro, Lisa M.; Nicolson, Susan C.; Zimmerman, Robert A.; Putt, Mary E.; Wang, Jiongjiong; Greenberg, Joel H.; Detre, John A.; Yodh, Arjun G.; Licht, Daniel J.

    2010-05-01

    We employ a hybrid diffuse correlation spectroscopy (DCS) and near-infrared spectroscopy (NIRS) monitor for neonates with congenital heart disease (n=33). The NIRS-DCS device measured changes during hypercapnia of oxyhemoglobin, deoxyhemoglobin, and total hemoglobin concentrations; cerebral blood flow (rCBFDCS); and oxygen metabolism (rCMRO2). Concurrent measurements with arterial spin-labeled magnetic resonance imaging (rCBFASL-MRI, n=12) cross-validate rCBFDCS against rCBFASL-MRI, showing good agreement (R=0.7, p=0.01). The study demonstrates use of NIRS-DCS on a critically ill neonatal population, and the results indicate that the optical technology is a promising clinical method for monitoring this population.

  15. Evapotranspiration partitioning through in-situ oxygen isotope measurements in an oasis cropland

    Science.gov (United States)

    Wen, Xue-Fa

    2016-04-01

    The oxygen isotope compositions of ecosystem water pools and fluxes are useful tracers in the water cycle. As part of the Heihe Watershed Allied Telemetry Experimental Research (HiWATER) program, high-frequency and near-continuous in situ measurements of 18O composition of atmospheric vapor (δv) and of evapotranspiration (δET) were made with the flux-gradient method using a cavity ring-down spectroscopy water vapor isotope analyzer. At the sub-daily scale, we found, in conjunction with intensive isotopic measurements of other ecosystem water pools, that the differences between 18O composition of transpiration (δT) and of xylem water (δx) were negligible in early afternoon (13:00-15:00 Beijing time) when ET approached the daytime maximum, indicating isotopic steady state. At the daily scale, for the purpose of flux partitioning, δT was approximated by δx at early afternoon hours, and the 18O composition of soil evaporation (δE) was obtained from the Craig-Gordon model with a moisture-dependent soil resistance. The relative contribution of transpiration to evapotranspiration ranged from 0.71 to 0.96 with a mean of 0.87 ± 0.052 for the growing season according to the isotopic labeling, which was good agreement with soil lysimeter measurements showing a mean transpiration fraction of 0.86 ± 0.058. At the growing season scale, the predicted18O composition of runoff water was within the range of precipitation and irrigation water according to the isotopic mass conservation. The 18O mass conservation requires that the decreased δ18O of ET should be balanced by enhanced δ18O of runoff water. (Wen, XF*, Yang, B, Sun, XM, Lee, X. 2015. Evapotranspiration partitioning through in-situ oxygen isotope measurements in an oasis cropland. Agricultural and Forest Meteorology , doi:10.1016/j.agrformet.2015.12.003).

  16. Measuring oxygen tension modulation, induced by a new pre-radiotherapy therapeutic, in a mammary window chamber mouse model

    Science.gov (United States)

    Schafer, Rachel; Gmitro, Arthur F.

    2015-03-01

    Tumor regions under hypoxic or low oxygen conditions respond less effectively to many treatment strategies, including radiation therapy. A novel investigational therapeutic, NVX-108 (NuvOx Pharma), has been developed to increase delivery of oxygen through the use of a nano-emulsion of dodecofluoropentane. By raising pO2 levels prior to delivering radiation, treatment efficacy may be improved. To aid in evaluating the novel drug, oxygen tension was quantitatively measured, spatially and temporally, to record the effect of administrating NVX-108 in an orthotopic mammary window chamber mouse model of breast cancer. The oxygen tension was measured through the use of an oxygen-sensitive coating, comprised of phosphorescent platinum porphyrin dye embedded in a polystyrene matrix. The coating, applied to the surface of the coverslip of the window chamber through spin coating, is placed in contact with the mammary fat pad to record the oxygenation status of the surface tissue layer. Prior to implantation of the window chamber, a tumor is grown in the SCID mouse model by injection of MCF-7 cells into the mammary fat pad. Two-dimensional spatial distributions of the pO2 levels were obtained through conversion of measured maps of phosphorescent lifetime. The resulting information on the spatial and temporal variation of the induced oxygen modulation could provide valuable insight into the optimal timing between administration of NVX-108 and radiation treatment to provide the most effective treatment outcome.

  17. Optoacoustic measurement of central venous oxygenation for assessment of circulatory shock: clinical study in cardiac surgery patients

    Science.gov (United States)

    Petrov, Irene Y.; Prough, Donald S.; Kinsky, Michael; Petrov, Yuriy; Petrov, Andrey; Henkel, S. Nan; Seeton, Roger; Salter, Michael G.; Esenaliev, Rinat O.

    2014-03-01

    Circulatory shock is a dangerous medical condition, in which blood flow cannot provide the necessary amount of oxygen to organs and tissues. Currently, its diagnosis and therapy decisions are based on hemodynamic parameters (heart rate, blood pressure, blood gases) and mental status of a patient, which all have low specificity. Measurement of mixed or central venous blood oxygenation via catheters is more reliable, but highly invasive and associated with complications. Our previous studies in healthy volunteers demonstrated that optoacoustic systems provide non-invasive measurement of blood oxygenation in specific vessels, including central veins. Here we report our first results of a clinical study in coronary artery bypass graft (CABG) surgery patients. We used a medical-grade OPO-based optoacoustic system developed in our laboratory to measure in real time blood oxygenation in the internal jugular vein (IJV) of these patients. A clinical ultrasound imaging system (GE Vivid e) was used for IJV localization. Catheters were placed in the IJV as part of routine care and blood samples taken via the catheters were processed with a CO-oximeter. The optoacoustic oxygenation data were compared to the CO-oximeter readings. Good correlation between the noninvasive and invasive measurements was obtained. The results of these studies suggest that the optoacoustic system can provide accurate, noninvasive measurements of central venous oxygenation that can be used for patients with circulatory shock.

  18. Chlorine measurement in the jet singlet oxygen generator considering the effects of the droplets

    Science.gov (United States)

    Goodarzi, Mohamad S.; Saghafifar, Hossein

    2016-09-01

    A new method is presented to measure chlorine concentration more accurately than conventional method in exhaust gases of a jet-type singlet oxygen generator. One problem in this measurement is the existence of micrometer-sized droplets. In this article, an empirical method is reported to eliminate the effects of the droplets. Two wavelengths from a fiber coupled LED are adopted and the measurement is made on both selected wavelengths. Chlorine is measured by the two-wavelength more accurately than the one-wavelength method by eliminating the droplet term in the equations. This method is validated without the basic hydrogen peroxide injection in the reactor. In this case, a pressure meter value in the diagnostic cell is compared with the optically calculated pressure, which is obtained by the one-wavelength and the two-wavelength methods. It is found that chlorine measurement by the two-wavelength method and pressure meter is nearly the same, while the one-wavelength method has a significant error due to the droplets.

  19. Direct measurement of local oxygen concentration in the bone marrow of live animals

    Science.gov (United States)

    Spencer, Joel A.; Ferraro, Francesca; Roussakis, Emmanuel; Klein, Alyssa; Wu, Juwell; Runnels, Judith M.; Zaher, Walid; Mortensen, Luke J.; Alt, Clemens; Turcotte, Raphaël; Yusuf, Rushdia; Côté, Daniel; Vinogradov, Sergei A.; Scadden, David T.; Lin, Charles P.

    2014-04-01

    Characterization of how the microenvironment, or niche, regulates stem cell activity is central to understanding stem cell biology and to developing strategies for the therapeutic manipulation of stem cells. Low oxygen tension (hypoxia) is commonly thought to be a shared niche characteristic in maintaining quiescence in multiple stem cell types. However, support for the existence of a hypoxic niche has largely come from indirect evidence such as proteomic analysis, expression of hypoxia inducible factor-1α (Hif-1α) and related genes, and staining with surrogate hypoxic markers (for example, pimonidazole). Here we perform direct in vivo measurements of local oxygen tension (pO2) in the bone marrow of live mice. Using two-photon phosphorescence lifetime microscopy, we determined the absolute pO2 of the bone marrow to be quite low (arteries that are often positive for the marker nestin. These pO2 values change markedly after radiation and chemotherapy, pointing to the role of stress in altering the stem cell metabolic microenvironment.

  20. Oxygen potential measurements in high burnup LWR U0 2 fuel

    Science.gov (United States)

    Matzke, Hj.

    1995-05-01

    A miniature solid state galvanic cell was used to measure the oxygen potential Δ overlineG( O2) of reactor irradiated U0 2 fuel at different burnups in the range of 28 to ⩾ 150 GWd d/t M. This very high burnup was achieved in the rim region of a fuel with a cross section average burnup of 75 GWd d/t M. The fuels had different enrichments and therefore different contributions of fission of 235U and 239Pu. The temperature range covered was 900 to 1350 K. None of the fuels showed a significant oxidation. Rather, if allowance is made for the dissolved rare earth fission products and the Pu formed during irradiation, some of the fuels were very slightly substoichiometric and the highest possible degree of oxidation corresponded to U0 2.001. In general, the Δ overlineG( O2) at 750°C was about -400 kJ/mol, corresponding to the Δ overlineG( O2) of the reaction Mo + O 2 → MoO 2. The implication of these results which are in contrast to commonly assumed ideas that U0 2 fuel oxidizes due to burnup, are discussed and the importance of the fission product Mo and of the zircaloy clad as oxygen buffers is outlined.

  1. A machine-learning approach to measuring the escape of ionizing radiation from galaxies in the reionization epoch

    CERN Document Server

    Jensen, Hannes; Pelckmans, Kristiaan; Binggeli, Christian; Ausmees, Kristiina; Lundholm, Ulrika

    2016-01-01

    Recent observations of galaxies at $z \\gtrsim 7$, along with the low value of the electron scattering optical depth measured by the Planck mission, make galaxies plausible as dominant sources of ionizing photons during the epoch of reionization. However, scenarios of galaxy-driven reionization hinge on the assumption that the average escape fraction of ionizing photons is significantly higher for galaxies in the reionization epoch than in the local Universe. The NIRSpec instrument on the James Webb Space Telescope (JWST) will enable spectroscopic observations of large samples of reionization-epoch galaxies. While the leakage of ionizing photons will not be directly measurable from these spectra, the leakage is predicted to have an indirect effect on the spectral slope and the strength of nebular emission lines in the rest-frame ultraviolet and optical. Here, we apply a machine learning technique known as lasso regression on mock JWST/NIRSpec observations of simulated $z=7$ galaxies in order to obtain a model ...

  2. Compressive Sensing Based Machine Learning Strategy For Characterizing The Flow Around A Cylinder With Limited Pressure Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Bright, Ido; Lin, Guang; Kutz, Nathan

    2013-12-05

    Compressive sensing is used to determine the flow characteristics around a cylinder (Reynolds number and pressure/flow field) from a sparse number of pressure measurements on the cylinder. Using a supervised machine learning strategy, library elements encoding the dimensionally reduced dynamics are computed for various Reynolds numbers. Convex L1 optimization is then used with a limited number of pressure measurements on the cylinder to reconstruct, or decode, the full pressure field and the resulting flow field around the cylinder. Aside from the highly turbulent regime (large Reynolds number) where only the Reynolds number can be identified, accurate reconstruction of the pressure field and Reynolds number is achieved. The proposed data-driven strategy thus achieves encoding of the fluid dynamics using the L2 norm, and robust decoding (flow field reconstruction) using the sparsity promoting L1 norm.

  3. Determination of Sediment Oxygen Demand in the Ziya River Watershed, China: Based on Laboratory Core Incubation and Microelectrode Measurements.

    Science.gov (United States)

    Rong, Nan; Shan, Baoqing; Wang, Chao

    2016-02-19

    A study coupling sedimentcore incubation and microelectrode measurement was performed to explore the sediment oxygen demand (SOD) at 16 stations in the Ziya River Watershed, a severely polluted and anoxic river system in the north of China. Total oxygen flux values in the range 0.19-1.41 g/(m²·d) with an average of 0.62 g/(m²·d) were obtained by core incubations, and diffusive oxygen flux values in the range 0.15-1.38 g/(m²·d) with an average of 0.51 g/(m²·d) were determined by microelectrodes. Total oxygen flux obviously correlated with diffusive oxygen flux (R² = 0.842). The microelectrode method produced smaller results than the incubation method in 15 of 16 sites, and the diffusive oxygen flux was smaller than the total oxygen flux. Although the two sets of SOD values had significant difference accepted by the two methods via the Wilcoxon signed-rank test (p Watershed when the dissolved oxygen (DO) recovered in the overlying water.

  4. A computational model of a microfluidic device to measure the dynamics of oxygen-dependent ATP release from erythrocytes.

    Directory of Open Access Journals (Sweden)

    Richard J Sove

    Full Text Available Erythrocytes are proposed to be involved in blood flow regulation through both shear- and oxygen-dependent mechanisms for the release of adenosine triphosphate (ATP, a potent vasodilator. In a recent study, the dynamics of shear-dependent ATP release from erythrocytes was measured using a microfluidic device with a constriction in the channel to increase shear stress. The brief period of increased shear stress resulted in ATP release within 25 to 75 milliseconds downstream of the constriction. The long-term goal of our research is to apply a similar approach to determine the dynamics of oxygen-dependent ATP release. In the place of the constriction, an oxygen permeable membrane would be used to decrease the hemoglobin oxygen saturation of erythrocytes flowing through the channel. This paper describes the first stage in achieving that goal, the development of a computational model of the proposed experimental system to determine the feasibility of altering oxygen saturation rapidly enough to measure ATP release dynamics. The computational model was constructed based on hemodynamics, molecular transport of oxygen and ATP, kinetics of luciferin/luciferase reaction for reporting ATP concentrations, light absorption by hemoglobin, and sensor characteristics. A linear model of oxygen saturation-dependent ATP release with variable time delay was used in this study. The computational results demonstrate that a microfluidic device with a 100 µm deep channel will cause a rapid decrease in oxygen saturation over the oxygen permeable membrane that yields a measurable light intensity profile for a change in rate of ATP release from erythrocytes on a timescale as short as 25 milliseconds. The simulation also demonstrates that the complex dynamics of ATP release from erythrocytes combined with the consumption by luciferin/luciferase in a flowing system results in light intensity values that do not simply correlate with ATP concentrations. A computational

  5. Measurement of brain oxygenation changes using dynamic T1-weighted imaging

    DEFF Research Database (Denmark)

    Haddock, Bryan; Larsson, Henrik B W; Hansen, Adam E

    2013-01-01

    Magnetic resonance imaging (MRI) has proven useful in evaluating oxygenation in several types of tissue and blood. This study evaluates brain tissue oxygenation changes between normoxia and hyperoxia in healthy subjects using dynamic T1 and T2*-weighted imaging sequences. The change in FiO2 induced...... in the brain with a potential to provide quantitative information on tissue oxygenation....

  6. Machine learning to analyze images of shocked materials for precise and accurate measurements

    Energy Technology Data Exchange (ETDEWEB)

    Dresselhaus-Cooper, Leora; Howard, Marylesa; Hock, Margaret C.; Meehan, B. T.; Ramos, Kyle J.; Bolme, Cindy A.; Sandberg, Richard L.; Nelson, Keith A.

    2017-09-14

    A supervised machine learning algorithm, called locally adaptive discriminant analysis (LADA), has been developed to locate boundaries between identifiable image features that have varying intensities. LADA is an adaptation of image segmentation, which includes techniques that find the positions of image features (classes) using statistical intensity distributions for each class in the image. In order to place a pixel in the proper class, LADA considers the intensity at that pixel and the distribution of intensities in local (nearby) pixels. This paper presents the use of LADA to provide, with statistical uncertainties, the positions and shapes of features within ultrafast images of shock waves. We demonstrate the ability to locate image features including crystals, density changes associated with shock waves, and material jetting caused by shock waves. This algorithm can analyze images that exhibit a wide range of physical phenomena because it does not rely on comparison to a model. LADA enables analysis of images from shock physics with statistical rigor independent of underlying models or simulations.

  7. An Intelligent Optical Dissolved Oxygen Measurement Method Based on a Fluorescent Quenching Mechanism

    Directory of Open Access Journals (Sweden)

    Fengmei Li

    2015-12-01

    Full Text Available Dissolved oxygen (DO is a key factor that influences the healthy growth of fishes in aquaculture. The DO content changes with the aquatic environment and should therefore be monitored online. However, traditional measurement methods, such as iodometry and other chemical analysis methods, are not suitable for online monitoring. The Clark method is not stable enough for extended periods of monitoring. To solve these problems, this paper proposes an intelligent DO measurement method based on the fluorescence quenching mechanism. The measurement system is composed of fluorescent quenching detection, signal conditioning, intelligent processing, and power supply modules. The optical probe adopts the fluorescent quenching mechanism to detect the DO content and solves the problem, whereas traditional chemical methods are easily influenced by the environment. The optical probe contains a thermistor and dual excitation sources to isolate visible parasitic light and execute a compensation strategy. The intelligent processing module adopts the IEEE 1451.2 standard and realizes intelligent compensation. Experimental results show that the optical measurement method is stable, accurate, and suitable for online DO monitoring in aquaculture applications.

  8. In vivo measurement of changes in venous blood-oxygenation with high resolution functional MRI at 0.95 tesla by measuring changes in susceptibility and velocity.

    Science.gov (United States)

    Hoogenraad, F G; Reichenbach, J R; Haacke, E M; Lai, S; Kuppusamy, K; Sprenger, M

    1998-01-01

    High-resolution functional imaging experiments at 0.95 Tesla have been performed to determine the changes in oxygen saturation in pial veins during motor activation by measuring both flow and susceptibility changes in the blood. Averaging across subjects, mean values for the change of the oxygenation level, deltaY = 0.16 +/- 0.08 (n = 7) and deltaY = 0.13 +/- 0.09 (n = 4), were obtained from the susceptibility sensitive and the flow sensitive acquisitions, respectively. The results suggest that the increase in blood flow is largely uncoupled from the oxygen consumption. The quoted errors reflect mainly the intersubject variability. In addition, low-resolution echo planar imaging (EPI) measurements were performed on the same volunteers to quantify signal intensity changes. Using the measured change in oxygenation, the observed signal changes in the EPI experiments can be attributed to a 5% venous blood volume.

  9. Development of Estimating Equation of Machine Operational Skill by Utilizing Eye Movement Measurement and Analysis of Stress and Fatigue

    Directory of Open Access Journals (Sweden)

    Satoshi Suzuki

    2013-01-01

    Full Text Available For an establishment of a skill evaluation method for human support systems, development of an estimating equation of the machine operational skill is presented. Factors of the eye movement such as frequency, velocity, and moving distance of saccade were computed using the developed eye gaze measurement system, and the eye movement features were determined from these factors. The estimating equation was derived through an outlier test (to eliminate nonstandard data and a principal component analysis (to find dominant components. Using a cooperative carrying task (cc-task simulator, the eye movement and operational data of the machine operators were recorded, and effectiveness of the derived estimating equation was investigated. As a result, it was confirmed that the estimating equation was effective strongly against actual simple skill levels (r=0.56–0.84. In addition, effects of internal condition such as fatigue and stress on the estimating equation were analyzed. Using heart rate (HR and coefficient of variation of R-R interval (Cvrri. Correlation analysis between these biosignal indexes and the estimating equation of operational skill found that the equation reflected effects of stress and fatigue, although the equation could estimate the skill level adequately.

  10. Metabolic cold adaptation of polar fish based on measurements of aerobic oxygen consumption: fact or artefact? Artefact!

    DEFF Research Database (Denmark)

    Steffensen, John Fleng

    2002-01-01

    a considerably elevated resting oxygen consumption, or standard metabolic rate, compared with oxygen consumption values of tropical or temperate fish extrapolated to similar low polar temperatures. Recent experiments on arctic and Antarctic fish, however, do not show elevated resting aerobic oxygen consumption......Whether metabolic cold adaptation in polar fish, based on measurements of aerobic standard metabolic rate, is a fact or an artefact has been a dispute since Holeton asked the question in 1974. So far polar fish had been considered to be metabolically cold adapted because they were reported to have...

  11. Evaluation of tissue oxygen measurements for flap monitoring in an animal model

    DEFF Research Database (Denmark)

    Bonde, Christian; Elberg, Jens; Holstein-Rathlou, N.-H.

    2008-01-01

    Tissue oxygen tension (p(ti)O(2)) measurements are common in neurosurgery but uncommon in plastic surgery. We examined this technique as a monitoring method with probe placement in the subcutaneous tissue and addressed the importance of probe placement. Myocutaneous flaps were raised in an animal......) was 18 minutes. We found no significant relation between initial levels of p(ti)O(2) and T(1/2). Location of the probe and absolute p(ti)O(2) value is of little relevance for flap monitoring. It is the relative change in p(ti)O(2) that is important. The p(ti)O(2) technique is well suited for monitoring...

  12. Measuring Antioxidant Activity in Bioorganic Samples by the Differential Oxygen Uptake Apparatus: Recent Advances

    Directory of Open Access Journals (Sweden)

    Riccardo Amorati

    2017-01-01

    Full Text Available The measure of O2 consumption during the inhibited autoxidation of an easily oxidizable substrate is one of the most reliable and predictive methods to assess antioxidant activity, especially for structure-activity relationship studies, for food and industrial applications. The differential oxygen uptake apparatus described herein represents a powerful and cost-effective way to obtain antioxidant activity from inhibited autoxidation studies. These experiments provide the rate constant and the stoichiometry of the reaction between antioxidants and peroxyl radicals (ROO∙, which are involved in the propagation of radical damage. We show the operation principles and the utility of this instrumentation in the bioorganic laboratory, with regard to the recent advances in this field, ranging from the study of natural antioxidants in biomimetic system, to the use of substrates generating hydroperoxyl radicals, and to the evaluation of novel nanoantioxidants.

  13. Imaging of Phosphorescence: A Novel Method for Measuring Oxygen Distribution in Perfused Tissue

    Science.gov (United States)

    Rumsey, William L.; Vanderkooi, Jane M.; Wilson, David F.

    1988-09-01

    The imaging of phosphorescence provides a method for monitoring oxygen distribution within the vascular system of intact tissues. Isolated rat livers were perfused through the portal vein with media containing palladium coproporphyrin, which phosphoresced and was used to image the liver at various perfusion rates. Because oxygen is a powerful quenching agent for phosphors, the transition from well-perfused liver to anoxia (no flow of oxygen) resulted in large increases of phosphorescence. During stepwise restoration of oxygen flow, the phosphorescence images showed marked heterogeneous patterns of tissue reoxygenation, which indicated that there were regional inequalities in oxygen delivery.

  14. Integrating the pulse of the riverscape and landscape: modelling stream metabolism using continuous dissolved oxygen measurements

    Science.gov (United States)

    Soulsby, C.; Birkel, C.; Malcolm, I.; Tetzlaff, D.

    2013-12-01

    Stream metabolism is a fundamental pulse of the watershed which reflects both the in-stream environment and its connectivity with the wider landscape. We used high quality, continuous (15 minute), long-term (>3 years) measurement of stream dissolved oxygen (DO) concentrations to estimate photosynthetic productivity (P) and system respiration (R) in forest and moorland reaches of an upland stream with peaty soils. We calibrated a simple five parameter numerical oxygen mass balance model driven by radiation, stream and air temperature, stream depth and re-aeration capacity. This used continuous 24-hour periods for the whole time series to identify behavioural simulations where DO simulations were re-produced sufficiently well to be considered reasonable representations of ecosystem functioning. Results were evaluated using a seasonal Regional Sensitivity Analysis and a co-linearity index for parameter sensitivity. This showed that >95 % of the behavioural models for the moorland and forest sites were identifiable and able to infer in-stream processes from the DO time series for almost half of all measured days at both sites. Days when the model failed to simulate DO levels successfully provided invaluable insight into time periods when other factors are likely to disrupt in-stream metabolic processes; these include (a) flood events when scour reduces the biomass of benthic primary producers, (b) periods of high water colour in higher summer/autumn flows and (c) low flow periods when hyporheic respiration is evident. Monthly P/R ratios tree cover is likely to be a much larger source of carbon to the atmosphere (122 mmol C m-2 d-1) compared to the forested reach (64 mmol C m-2 d-1). The study indicates the value of integrating field and modelling studies of stream metabolism as a means of understanding the dynamic interactions of the riverscape and its surrounding landscape.

  15. Measurement of characteristic prompt gamma rays emitted from oxygen and carbon in tissue-equivalent samples during proton beam irradiation

    OpenAIRE

    Polf, Jerimy C.; Panthi, Rajesh; Mackin, Dennis S; McCleskey, Matt; Saastamoinen, Antti; Roeder, Brian T; Beddar, Sam

    2013-01-01

    The purpose of this work was to characterize how prompt gamma (PG) emission from tissue changes as a function of carbon and oxygen concentration, and to assess the feasibility of determining elemental concentration in tissues irradiated with proton beams. For this study, four tissue-equivalent water-sucrose samples with differing densities and concentrations of carbon, hydrogen, and oxygen were irradiated with a 48 MeV proton pencil beam. The PG spectrum emitted from each sample was measured ...

  16. The effect of laparotomy on hydroxyl radicals, singlet oxygen and antioxidants measured by EPR method in the tails of rats.

    Science.gov (United States)

    Fricova, Jitka; Stopka, Pavel; Krizova, Jana; Yamamotova, Anna; Rokyta, Richard

    2009-01-01

    The aim of the study was to demonstrate that direct measurement of hydroxyl radicals and singlet oxygen in the tail of living rats is possible. The basic level of hydroxyl radicals and singlet oxygen were measured and the effects of antioxidants on their levels were studied in the tail of living anaesthetized rats after acute postoperative pain. Laparotomy was performed as the source of acute abdominal pain. After closure of the abdominal cavity, the animals began to awaken within 30-60 minutes. They were left to recover for 2-3 hours; then they were reanesthetized and the effect of antioxidants was measured on the numbers of hydroxyl radicals and singlet oxygen via blood in the tail. The laparotomy was preformed under general anesthesia (Xylazin and Ketamin) using Wistar rats. After recovery and several hours of consciousness they were reanaesthetized and free radicals and singlet oxygen were measured. An antioxidant mixture (vitamins A, C, D and Selenium) was administered intramuscularly prior to the laparotomy. All measurements were done on the tail of anaesthetized animals. In this particular article, the effect of antioxidants is only reported for hydroxyl radicals. After laparotomy, which represented both somatic and visceral pain, hydroxyl radicals and singlet oxygen were increased. Antioxidant application prior to laparotomy decreased the numbers of hydroxyl radicals. Results are in agreement with our previous finding regarding the increase in hydroxyl free radicals and singlet oxygen following nociceptive stimulation, in this case a combination of both somatic and visceral pain. The administered antioxidants mitigated the increase. This is further confirmation that direct measurement of free radicals and singlet oxygen represents a very useful method for the biochemical evaluation of pain and nociception.

  17. Reproducibility and correlation between meat shear force measurements by Warner-Bratzler machine and a texturometer

    Directory of Open Access Journals (Sweden)

    Lucas Arantes-Pereira

    2016-10-01

    Full Text Available Tenderness has a prominent position on meat quality and is considered to be the sensory characteristic that most influences meat acceptance. Therefore, the aim of this study was to evaluate the accuracy and determine correlations among three different meat shear force techniques. Commercial samples of bovine Longissimus thoracis et lumborum (BLTL, Tensor fasciae latae (BTFL, Semitendinosus (BST, Psoas major (BPM, Biceps femoris (BBF and swine Longissimus thoracis et lumborum (PLTL were analyzed for pH, proximate composition, cooking loss and shear force with a classical Warner-Bratzler device and a TA-XT2 Texturometer equipped with shear blades 1 and 3 mm thick. The effect of different techniques in each studied muscle was statistically analyzed and regression curves were built. Results from the 1 mm blade were quite similar to the ones obtained with the Warner-Bratzler, however the results from 3 mm blade were overestimated (p<0.05. Significant correlation (p<0.01 among shear force technique using Warner-Bratzler and the ones using the Texturometer was observed (0.47 for 1 mm blade and 0.57 for the 3 mm blade. In conclusion, we found that the 1 mm blade and the Warner-Bratzler machine are reproducible for all tested muscles, while the 3 mm blade is not reproducible for the BTFL, BST, BPM, BBF, PLTL. There is a significant correlation between the results obtained by the classical Warner-Bratzler and the TA-XT2 Texturometer equipped with both blades. Therefore, TA-XT2 Texturometer equipped with the 1mm blade can perfectly replace the traditional Warner-Bratzler device.

  18. On-line measurements of particle-bound reactive oxygen species (ROS) in Beijing wintertime air

    Science.gov (United States)

    Steimer, Sarah; Wragg, Francis; Kalberer, Markus

    2017-04-01

    Reactive oxygen species (ROS), present in particles or generated by particle components upon deposition of particles in the human lung, are widely thought to be one of the main contributors to particle-related toxicity. However, there is so far only relatively little data available on their concentrations in ambient air, which makes it difficult to gauge their impact on air quality. Recent studies have shown that a large fraction of particle-bound ROS in secondary organic aerosol is relatively short-lived, with lifetimes of several minutes. Traditional off-line sampling with high-volume samplers is therefore likely to severely underestimate ROS concentrations, showing the need for using on-line instrumentation. We have recently developed a compact on-line instrument for the measurement of particle-bound ROS (OPROSI). To measure ROS concentrations, particles are continuously extracted and the extract is reacted with 2'7'-dichlorofluorescein (DCFH) in presence of horseradish peroxidase (HRP). This leads to formation of a fluorescent dye, which is detected spectroscopically. The instrument allows for up to 16 h of continuous measurement with a time resolution of ≤12 min and a limit of detection of 3.85 nmol [H2O2] equivalent per m3 air. For this study, we have used the OPROSI to continuously measure the concentration of particle-bound ROS in Beijing wintertime air during the first half of the Air Pollution and Human Health in a Developing Megacity (APHH-Beijing) campaign in November and December 2016. Measured ROS data are compared with other air pollution parameters such as total particulate mass, ozone and NOx as well as with meteorological measurements such as temperature and humidity.

  19. An innovative method for coordinate measuring machine one-dimensional self-calibration with simplified experimental process.

    Science.gov (United States)

    Fang, Cheng; Butler, David Lee

    2013-05-01

    In this paper, an innovative method for CMM (Coordinate Measuring Machine) self-calibration is proposed. In contrast to conventional CMM calibration that relies heavily on a high precision reference standard such as a laser interferometer, the proposed calibration method is based on a low-cost artefact which is fabricated with commercially available precision ball bearings. By optimizing the mathematical model and rearranging the data sampling positions, the experimental process and data analysis can be simplified. In mathematical expression, the samples can be minimized by eliminating the redundant equations among those configured by the experimental data array. The section lengths of the artefact are measured at arranged positions, with which an equation set can be configured to determine the measurement errors at the corresponding positions. With the proposed method, the equation set is short of one equation, which can be supplemented by either measuring the total length of the artefact with a higher-precision CMM or calibrating the single point error at the extreme position with a laser interferometer. In this paper, the latter is selected. With spline interpolation, the error compensation curve can be determined. To verify the proposed method, a simple calibration system was set up on a commercial CMM. Experimental results showed that with the error compensation curve uncertainty of the measurement can be reduced to 50%.

  20. Inline Measurement of Particle Concentrations in Multicomponent Suspensions using Ultrasonic Sensor and Least Squares Support Vector Machines.

    Science.gov (United States)

    Zhan, Xiaobin; Jiang, Shulan; Yang, Yili; Liang, Jian; Shi, Tielin; Li, Xiwen

    2015-09-18

    This paper proposes an ultrasonic measurement system based on least squares support vector machines (LS-SVM) for inline measurement of particle concentrations in multicomponent suspensions. Firstly, the ultrasonic signals are analyzed and processed, and the optimal feature subset that contributes to the best model performance is selected based on the importance of features. Secondly, the LS-SVM model is tuned, trained and tested with different feature subsets to obtain the optimal model. In addition, a comparison is made between the partial least square (PLS) model and the LS-SVM model. Finally, the optimal LS-SVM model with the optimal feature subset is applied to inline measurement of particle concentrations in the mixing process. The results show that the proposed method is reliable and accurate for inline measuring the particle concentrations in multicomponent suspensions and the measurement accuracy is sufficiently high for industrial application. Furthermore, the proposed method is applicable to the modeling of the nonlinear system dynamically and provides a feasible way to monitor industrial processes.

  1. MM99.50 - Surface Topography Characterization Using an Atomic Force Microscope Mounted on a Coordinate Measuring Machine

    DEFF Research Database (Denmark)

    Chiffre, Leonardo De; Hansen, Hans Nørgaard; Kofod, Niels

    1999-01-01

    The paper describes the construction, testing and use of an integrated system for topographic characterization of fine surfaces on parts having relatively big dimensions. An atomic force microscope (AFM) was mounted on a manual three-coordinate measuring machine (CMM) achieving free positioning o...... areas traced in single scans of 40 mu m x 40 mu m. The results show that surface mapping on industrial surfaces is possible using the Least Mean Square alignment provided by the AFM software....... values in the order of 1 nm. The positioning repeatability of the two horizontal axes of the CMM was determined to +/-1 mu m. Sets of four 20 mu m x 20 mu m areas were traced on fiat objects, combining the data into single 40 mu m x 40 mu m areas, and comparing the roughness values to those for the same...

  2. Scanning compound surfaces with no existing CAD model by using laser probe of a coordinate measuring machine

    Science.gov (United States)

    Che, Chenggang

    1992-09-01

    In recent years, the manufacturing of parts with compound surfaces relies more and more on computer integrated manufacturing (CIM) because of the ever increasing complexity of surface features. For a standard CIM cycle, it starts from a computer aided design (CAD) model which was designed previously be experienced mechanical drafters. The CAD model is then interpreted as numerical controlled (NC) machining codes according to which the part is finally manufactured, this is usually referred to as the normal manufacturing process in Figure 1. However, in many cases, a CAD model of a part is not always readily available to begin the CIM cycle. For instance, in automobile industry, the development of new car models takes a long time from concept to model because of the tedious manual digitization process. Also, in some other cases, the mechanical design of a product may need frequent modification, such as ship hulls, aeroplane fuselages, wings and turbine blades, etc. This was traditionally done by copymilling of a master model. In a computer aided manufacturing (CAM) environment, a mathematical model or representation of a part is required to begin a CIM cycle. The automation of the whole manufacturing system requires a rapid part modeling tool. Fortunately, this becomes possible with the advent of recent development in optical sensing devices and many non-contact sensing techniques. Before a part model is established, surface digitization should first be implemented so that enough measurement points can be fitted later, and this is the most important step of the reverse engineering process as in Figure 1. And also, it is obvious that the efficiency and accuracy of the surface modeling relies heavily on the efficiency and accuracy of the surface digitization. The present paper aims at achieving surface digitization accurately and rapidly with a coordinate measurement machine (CMM) and an inexpensive laser range-finding probe. By making full use of the control system of

  3. Measurements of UV-generated free radicals/reactive oxygen species (ROS) in skin

    Science.gov (United States)

    Herrling, Th.; Jung, K.; Fuchs, J.

    2006-03-01

    Free radicals/reactive oxygen species (ROS) generated in skin by UV irradiation were measured by electron spin resonance (ESR). To increase the sensitivity of measurement the short life free radicals/ROS were scavenged and accumulated by using the nitroxyl probe 3-carboxy-2,2,5,5-tetrametylpyrrolidine-1-oxyl (PCA). The spatial distribution of free radicals/ROS measured in pig skin biopsies with ESR imaging after UV irradiation corresponds to the intensity decay of irradiance in the depth of the skin. The main part of free radicals/ROS were generated by UVA (320-400 nm) so that the spatial distribution of free radicals reaches up to the lower side of the dermis. In vivo measurements on human skin were performed with a L-band ESR spectrometer and a surface coil integrating the signal intensities from all skin layers to get a sufficient signal amplitude. Using this experimental arrangement the protection of UVB and UVA/B filter against the generation of free radicals/ROS in skin were measured. The protection against ROS and the repair of damages caused by them can be realized with active antioxidants characterized by a high antioxidative power (AP). The effect of UV filter and antioxidants corresponding to their protection against free radicals/ROS in skin generated by UVAB irradiation can be quantified by the new radical sun protection factor (RSF). The RSF indicates the increase of time for staying in the sun to generate the same number of free radicals/ROS in the skin like for the unprotected skin. Regarding the amount of generated free radicals/ROS in skin as an biophysical endpoint the RSF characterizes both the protection against UVB and UVA radiation.

  4. Evaluation of the efficiency and effectiveness of independent dose calculation followed by machine log file analysis against conventional measurement based IMRT QA.

    Science.gov (United States)

    Sun, Baozhou; Rangaraj, Dharanipathy; Boddu, Sunita; Goddu, Murty; Yang, Deshan; Palaniswaamy, Geethpriya; Yaddanapudi, Sridhar; Wooten, Omar; Mutic, Sasa

    2012-09-06

    Experimental methods are commonly used for patient-specific IMRT delivery verification. There are a variety of IMRT QA techniques which have been proposed and clinically used with a common understanding that not one single method can detect all possible errors. The aim of this work was to compare the efficiency and effectiveness of independent dose calculation followed by machine log file analysis to conventional measurement-based methods in detecting errors in IMRT delivery. Sixteen IMRT treatment plans (5 head-and-neck, 3 rectum, 3 breast, and 5 prostate plans) created with a commercial treatment planning system (TPS) were recalculated on a QA phantom. All treatment plans underwent ion chamber (IC) and 2D diode array measurements. The same set of plans was also recomputed with another commercial treatment planning system and the two sets of calculations were compared. The deviations between dosimetric measurements and independent dose calculation were evaluated. The comparisons included evaluations of DVHs and point doses calculated by the two TPS systems. Machine log files were captured during pretreatment composite point dose measurements and analyzed to verify data transfer and performance of the delivery machine. Average deviation between IC measurements and point dose calculations with the two TPSs for head-and-neck plans were 1.2 ± 1.3% and 1.4 ± 1.6%, respectively. For 2D diode array measurements, the mean gamma value with 3% dose difference and 3 mm distance-to-agreement was within 1.5% for 13 of 16 plans. The mean 3D dose differences calculated from two TPSs were within 3% for head-and-neck cases and within 2% for other plans. The machine log file analysis showed that the gantry angle, jaw position, collimator angle, and MUs were consistent as planned, and maximal MLC position error was less than 0.5 mm. The independent dose calculation followed by the machine log analysis takes an average 47 ± 6 minutes, while the experimental approach (using IC and

  5. Accuracy of Oxygen Consumption and Carbon Dioxide Elimination Measurements in 2 Breath-by-Breath Devices.

    Science.gov (United States)

    Smallwood, Craig D; Kheir, John N; Walsh, Brian K; Mehta, Nilesh M

    2017-04-01

    Although accurate quantification of oxygen consumption (V̇O2 ) and carbon dioxide elimination (V̇CO2 ) provides important insights into a patient's nutritional and hemodynamic status, few devices exist to accurately measure these parameters in children. Therefore, we assessed the accuracy and agreement of 2 devices currently on the market using a pediatric in vitro model of gas exchange. We utilized a Huszczuk simulation model, which simulates oxygen consumption and carbon dioxide production using gas dilution, to examine the accuracy of two FDA-cleared respiratory modules (E-COVX and E-sCAiOVX-00). V̇O2 and V̇CO2 were set at 20, 40, 60, and 100 mL/min, ranges typical for infant and pediatric patients. Bland-Altman analysis was used to calculate the bias and limits of agreement of each device relative to simulated values for V̇O2 and V̇CO2 . The E-COVX mean percentage bias (limits of agreement) was -26.3% (-36.1 to -16.6%) and -39.3% (-47.5 to -31.1%) for V̇O2 and V̇CO2 , respectively. The mean bias (limits of agreement) for the E-aCAiOVX-00 was -0.5% (-13.3 to 12.3%) and -6.0% (-13.8 to 1.7%) for V̇O2 and V̇CO2 , respectively. The E-COVX demonstrated bias and limits of agreement that were not clinically acceptable; therefore, application of this module to pediatric patients would not be recommended. The new module, E-sCAiOVX, demonstrated acceptable bias and limits of agreement for the V̇O2 and V̇CO2 in the range 40-100 mL/min (which corresponds to patients in the range of ∼5-16 kg). Copyright © 2017 by Daedalus Enterprises.

  6. Quantitative measurement of cerebral oxygen extraction fraction using MRI in patients with MELAS.

    Directory of Open Access Journals (Sweden)

    Lei Yu

    Full Text Available OBJECTIVE: To quantify the cerebral OEF at different phases of stroke-like episodes in patients with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS by using MRI. METHODS: We recruited 32 patients with MELAS confirmed by gene analysis. Conventional MRI scanning, as well as functional MRI including arterial spin labeling and oxygen extraction fraction imaging, was undertaken to obtain the pathological and metabolic information of the brains at different stages of stroke-like episodes in patients. A total of 16 MRI examinations at the acute and subacute phase and 19 examinations at the interictal phase were performed. In addition, 24 healthy volunteers were recruited for control subjects. Six regions of interest were placed in the anterior, middle, and posterior parts of the bilateral hemispheres to measure the OEF of the brain or the lesions. RESULTS: OEF was reduced significantly in brains of patients at both the acute and subacute phase (0.266 ± 0.026 and at the interictal phase (0.295 ± 0.009, compared with normal controls (0.316 ± 0.025. In the brains at the acute and subacute phase of the episode, 13 ROIs were prescribed on the stroke-like lesions, which showed decreased OEF compared with the contralateral spared brain regions. Increased blood flow was revealed in the stroke-like lesions at the acute and subacute phase, which was confined to the lesions. CONCLUSION: MRI can quantitatively show changes in OEF at different phases of stroke-like episodes. The utilization of oxygen in the brain seems to be reduced more severely after the onset of episodes in MELAS, especially for those brain tissues involved in the episodes.

  7. An undergraduate laboratory experiment on measuring the velocity of light with a catastrophic machine

    CERN Document Server

    Mishonov, T M; Maskimovski, D D; Manolev, S G; Gourev, V N; Yordanov, V G

    2016-01-01

    An experimental setup for electrostatic measurement of $\\varepsilon_0$, magneto-static measurement of $\\mu_0$ and determination of the velocity of light $c=1/\\sqrt{\\varepsilon_0 \\mu_0}$ with percent accuracy is described. No forces are measured with the experimental setup therefore there is no need of a scale and the experiment price less than \\pounds20 is mainly due to the batteries used. Multiplied 137~times, this experimental setup was given at the fourth open international Experimental Physics Olympiad (EPO4) and a dozen high school students did very well. This article, however, focuses on the catastrophe theory, which is the basis of the methodology.

  8. MAVEN in situ measurements of photochemical escape of oxygen from Mars

    Science.gov (United States)

    Lillis, Robert; Deighan, Justin; Fox, Jane; Bougher, Stephen; Lee, Yuni; Cravens, Thomas; Rahmati, Ali; Mahaffy, Paul; Benna, Mehdi; Groller, Hannes; Jakosky, Bruce

    2016-04-01

    One of the primary goals of the MAVEN mission is to characterize rates of atmospheric escape from Mars at the present epoch and relate those escape rates to solar drivers. One of the known escape processes is photochemical escape, where a) an exothermic chemical reaction in the atmosphere results in an upward-traveling neutral particle whose velocity exceeds planetary escape velocity and b) the particle is not prevented from escaping through subsequent collisions. At Mars, photochemical escape of oxygen is expected to be a significant channel for atmospheric escape, particularly in the early solar system when extreme ultraviolet (EUV) fluxes were much higher. Thus characterizing this escape process and its variability with solar drivers is central to understanding the role escape to space has played in Mars' climate evolution. We use near-periapsis (atoms. The second is a Monte Carlo hot atom transport model that takes that distribution of initial O energies and the measured neutral density profiles and calculates the probability that a hot atom born at that altitude will escape. The third takes the measured electron and ion densities and electron temperatures and calculates the production rate of hot O atoms. We then multiply together the profiles of hot atom production and escape probability to get profiles of the production rate of escaping atoms. We integrate with respect to altitude to give us the escape flux of hot oxygen atoms for that periapsis pass. We have sufficient coverage in solar zenith angle (SZA) to estimate total escape rates for two intervals with the obvious assumption that escape rates are the same at all points with the same SZA. We estimate total escape rates of 3.5-5.8 x 1025 s-1 for Ls = 289° to 319° and 1.6-2.6 x 1025 s-1 for Ls = 326° to 348°. The latter is the most directly comparable to previous model-based estimates and is roughly in line with several of them. Total photochemical loss over Mars history is not very useful to

  9. Neutron spectral measurements in an intense photon field associated with a high-energy x-ray radiotherapy machine.

    Science.gov (United States)

    Holeman, G R; Price, K W; Friedman, L F; Nath, R

    1977-01-01

    High-energy x-ray radiotherapy machines in the supermegavoltage region generate complex neutron energy spectra which make an exact evaluation of neutron shielding difficult. Fast neutrons resulting from photonuclear reactions in the x-ray target and collimators undergo successive collisions in the surrounding materials and are moderated by varying amounts. In order to examine the neutron radiation exposures quantitatively, the neutron energy spectra have been measured inside and outside the treatment room of a Sagittaire medical linear accelerator (25-MV x rays) located at Yale-New Haven Hospital. The measurements were made using a Bonner spectrometer consisting of 2-, 3-, 5-, 8-, 10- and 12-in.-diameter polyethylene spheres with 6Li and 7Li thermoluminescent dosimeter (TLD) chips at the centers, in addition to bare and cadmium-covered chips. The individual TLD chips were calibrated for neutron and photon response. The spectrometer was calibrated using a known PuBe spectrum Spectrometer measurements were made at Yale Electron Accelerator Laboratory and results compared with a neutron time-of-flight spectrometer and an activation technique. The agreement between the results from these independent methods is found to be good, except for the measurements in the direct photon beam. Quality factors have been inferred for the neutron fields inside and outside the treatment room. Values of the inferred quality factors fall primarily between 4 and 8, depending on location.

  10. Under-ice eddy covariance flux measurements of heat, salt, momentum, and dissolved oxygen in an artificial sea ice pool

    DEFF Research Database (Denmark)

    Else, B. G T; Rysgaard, S.; Attard, K.

    2015-01-01

    Turbulent exchanges under sea ice play a controlling role in ice mass balance, ice drift, biogeochemistry, and mixed layer modification. In this study, we examined the potential to measure under-ice turbulent exchanges of heat, salt, momentum, and dissolved oxygen using eddy covariance...... as ice grew from 5 to 25 cm thick. Heat, momentum, and dissolved oxygen fluxes were all successfully derived. Quantification of salt fluxes was unsuccessful due to noise in the conductivity sensor, a problem which appears to be resolved in a subsequent version of the instrument. Heat fluxes during...... initial ice growth were directed upward at 10 to 25 W m−2. Dissolved oxygen fluxes were directed downward at rates of 5 to 50mmolm−2 d−1 throughout the experiment, at times exceeding the expected amount of oxygen rejected with the brine during ice growth. Bubble formation and dissolution was identified...

  11. Investigation on influence parameters in measurements of the optomechanical hole plate using an optical coordinate measuring machine

    DEFF Research Database (Denmark)

    Morace, Renate Erica; Hansen, Hans Nørgaard; De Chiffre, Leonardo

    2003-01-01

    This paper describes the results of an experimental investigation on influence parameters in optical coordinate measurements of the optomechanical hole plate. Special attention was paid to the background of the object, which strongly influences the measurement result. Furthermore, it is seen that...

  12. Investigation on influence parameters in measurements of the optomechanical hole plate using an optical coordinate measuring machine

    DEFF Research Database (Denmark)

    Morace, Renate Erica; Hansen, Hans Nørgaard; De Chiffre, Leonardo;

    2003-01-01

    This paper describes the results of an experimental investigation on influence parameters in optical coordinate measurements of the optomechanical hole plate. Special attention was paid to the background of the object, which strongly influences the measurement result. Furthermore, it is seen...

  13. Automatic measurements of plasma parameters in the PUPR mirror and cusp plasma machine

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, S; Colmenares, F; Gonzalez-Lizardo, A; Leal-Quiros, E [Plasma Engineering Laboratory, Polytechnic University of Puerto Rico, San Juan, PR 00918 (Puerto Rico)

    2008-10-15

    This paper presents an ongoing effort to develop an automatic measurement system for plasma diagnostics at the Plasma Engineering Laboratory of the Polytechnic University of Puerto Rico (PUPR), along with an example of its operation. The system is intended to be used with electrostatic probes such as single and double Langmuir probes, emissive probes, ion and electron energy analyzers, etc. The automatic measurement system includes automatic positioning of the probes inside the plasma chamber, automatic voltage sweep of the probes for each position, and automatic analysis of the probe I-V characteristic. The results of measurements obtained by using this automatic measurement system during a particular experiment are shown and compared with a traditional method with satisfactory results.

  14. A Planar-Dimensions Machine Vision Measurement Method Based on Lens Distortion Correction

    Directory of Open Access Journals (Sweden)

    Qiucheng Sun

    2013-01-01

    Full Text Available Lens distortion practically presents in a real optical imaging system causing nonuniform geometric distortion in the images and gives rise to additional errors in the vision measurement. In this paper, a planar-dimensions vision measurement method is proposed by improving camera calibration, in which the lens distortion is corrected on the pixel plane of image. The method can be divided into three steps: firstly, the feature points, only in the small central region of the image, are used to get a more accurate perspective projection model; secondly, rather than defining a uniform model, the smoothing spline function is used to describe the lens distortion in the measurement region of image, and two correction functions can be obtained by fitting two deviation surfaces; finally, a measurement method for planar dimensions is proposed, in which accurate magnification factor of imaging system can be obtained by using the correction functions. The effectiveness of the method is demonstrated by applying the proposed method to the test of measuring shaft diameter. Experimental data prove that the accurate planar-dimensions measurements can be performed using the proposed method even if images are deformed by lens distortion.

  15. Measurement of ADP–ATP Exchange in Relation to Mitochondrial Transmembrane Potential and Oxygen Consumption

    Science.gov (United States)

    Chinopoulos, Christos; Kiss, Gergely; Kawamata, Hibiki; Starkov, Anatoly A.

    2015-01-01

    We have previously described a fluorometric method to measure ADP–ATP exchange rates in mitochondria of permeabilized cells, in which several enzymes that consume substantial amounts of ATP and other competing reactions interconverting adenine nucleotides are present. This method relies on recording changes in free extramitochondrial Mg2+ with the Mg2+-sensitive fluorescent indicator Magnesium Green (MgGr)™, exploiting the differential affinity of ADP and ATP for Mg2+. In particular, cells are permeabilized with digitonin in the presence of BeF3− and Na3VO4, inhibiting all ATP- and ADP-utilizing reactions but mitochondrial exchange of ATP with ADP catalyzed by the adenine nucleotide translocase. The rate of ATP appearing in the medium upon the addition of ADP to energized mitochondria is then calculated from the rate of change in free extramitochondrial Mg2+ using standard binding equations. Here, we describe a variant of this method involving an improved calibration step. This step minimizes errors that may be introduced during the conversion of the MgGr™ signal into free extramitochondrial [Mg2+] and ATP. Furthermore, we describe an approach for combining this methodology with the measurement of mitochondrial membrane potential and oxygen consumption in the same sample. The method described herein is useful for the study of malignant cells, which are known to thrive in hypoxic environments and to harbor mitochondria with profound functional alterations. PMID:24862274

  16. Measurement of ADP-ATP exchange in relation to mitochondrial transmembrane potential and oxygen consumption.

    Science.gov (United States)

    Chinopoulos, Christos; Kiss, Gergely; Kawamata, Hibiki; Starkov, Anatoly A

    2014-01-01

    We have previously described a fluorometric method to measure ADP-ATP exchange rates in mitochondria of permeabilized cells, in which several enzymes that consume substantial amounts of ATP and other competing reactions interconverting adenine nucleotides are present. This method relies on recording changes in free extramitochondrial Mg(2+) with the Mg(2+)-sensitive fluorescent indicator Magnesium Green (MgGr)™, exploiting the differential affinity of ADP and ATP for Mg(2+). In particular, cells are permeabilized with digitonin in the presence of BeF3(-) and Na3VO4, inhibiting all ATP- and ADP-utilizing reactions but mitochondrial exchange of ATP with ADP catalyzed by the adenine nucleotide translocase. The rate of ATP appearing in the medium upon the addition of ADP to energized mitochondria is then calculated from the rate of change in free extramitochondrial Mg(2+) using standard binding equations. Here, we describe a variant of this method involving an improved calibration step. This step minimizes errors that may be introduced during the conversion of the MgGr™ signal into free extramitochondrial [Mg(2+)] and ATP. Furthermore, we describe an approach for combining this methodology with the measurement of mitochondrial membrane potential and oxygen consumption in the same sample. The method described herein is useful for the study of malignant cells, which are known to thrive in hypoxic environments and to harbor mitochondria with profound functional alterations. © 2014 Elsevier Inc. All rights reserved.

  17. Integrating measuring uncertainty of tactile and optical coordinate measuring machines in the process capability assessment of micro injection moulding

    DEFF Research Database (Denmark)

    Tosello, Guido; Hansen, Hans Nørgaard; Gasparin, Stefania

    2010-01-01

    Process capability of micro injection moulding was investigated in this paper by calculating the Cp and Cpk statistics. Uncertainty of both optical and tactile measuring systems employed in the quality control of micro injection moulded products was assessed and compared with the specified...... tolerances. Limits in terms of manufacturing process capability as well as of suitability of such measuring systems when employed for micro production inspection were quantitatively determined....

  18. Design of a data acquisition system of articulated arm coordinate measuring machines

    Science.gov (United States)

    Yang, Huiping; Gao, Guanbin; Wang, Wen

    2015-02-01

    A novel cylindrical capacitive sensor (CCS) with differential, symmetrical and integrated structure was proposed to measure multi-degree-of-freedom rotation errors of high precision spindle simultaneously and to reduce impacts of multiple-sensors installation errors on the measurement accuracy. The nonlinear relationship between the output capacitance of CCS and the radial gap was derived using the capacitance formula and was quantitatively analyzed. It was found through analysis that the thickness of curved electrode plates led to the existence of fringe effect. The influence of the fringe effect on the output capacitance was investigated through FEM simulation. It was found through analysis and simulation that the CCS could be optimized to improve the measurement accuracy.

  19. Design and development of LED-based irregular leather area measuring machine

    Science.gov (United States)

    Adil, Rehan; Khan, Sarah Jamal

    2012-01-01

    Using optical sensor array, a precision motion control system in a conveyer follows the irregular shaped leather sheet to measure its surface area. In operation, irregular shaped leather sheet passes on conveyer belt and optical sensor array detects the leather sheet edge. In this way outside curvature of the leather sheet is detected and is then feed to the controller to measure its approximate area. Such system can measure irregular shapes, by neglecting rounded corners, ellipses etc. To minimize the error in calculating surface area of irregular curve to the above mentioned system, the motion control system only requires the footprint of the optical sensor to be small and the distance between the sensors is to be minimized. In the proposed technique surface area measurement of irregular shaped leather sheet is done by defining velocity and detecting position of the move. The motion controller takes the information and creates the necessary edge profile on point-to-point bases. As a result irregular shape of leather sheet is mapped and is then feed to the controller to calculate surface area.

  20. CIRP Interlaboratory Comparison of Coordinate Measuring Machines using an Optomechanical Hole Plate

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Hansen, Hans Nørgaard; Morace, Renata Erica

    International pour l'Etude Scientifique des Techniques de Production Mécanique (CIRP). In the project, 15 research laboratories have been involved from 9 countries: Belgium, Denmark, Germany, Italy, Poland, Spain, Switzerland, United Kingdom, USA. A total of 24 CMMs were used to measure an optomechanical hole...

  1. A high precision method for quantitative measurements of reactive oxygen species in frozen biopsies.

    Directory of Open Access Journals (Sweden)

    Kirsti Berg

    Full Text Available OBJECTIVE: An electron paramagnetic resonance (EPR technique using the spin probe cyclic hydroxylamine 1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine (CMH was introduced as a versatile method for high precision quantification of reactive oxygen species, including the superoxide radical in frozen biological samples such as cell suspensions, blood or biopsies. MATERIALS AND METHODS: Loss of measurement precision and accuracy due to variations in sample size and shape were minimized by assembling the sample in a well-defined volume. Measurement was carried out at low temperature (150 K using a nitrogen flow Dewar. The signal intensity was measured from the EPR 1st derivative amplitude, and related to a sample, 3-carboxy-proxyl (CP• with known spin concentration. RESULTS: The absolute spin concentration could be quantified with a precision and accuracy better than ±10 µM (k = 1. The spin concentration of samples stored at -80°C could be reproduced after 6 months of storage well within the same error estimate. CONCLUSION: The absolute spin concentration in wet biological samples such as biopsies, water solutions and cell cultures could be quantified with higher precision and accuracy than normally achievable using common techniques such as flat cells, tissue cells and various capillary tubes. In addition; biological samples could be collected and stored for future incubation with spin probe, and also further stored up to at least six months before EPR analysis, without loss of signal intensity. This opens for the possibility to store and transport incubated biological samples with known accuracy of the spin concentration over time.

  2. RSI: oxygen consumption, blood flow, and reoxygenation in patients suffering RSI measured by noninvasive optical spectroscopy

    Science.gov (United States)

    Thijssen, Dick H. J.; van Uden, Caro J. T.; Krijgsman, Hans; Colier, Willy N. J. M.

    2003-07-01

    Background: Repetitive Strain Injury (RSI) is a major problem in nowadays health care and creates high financial costs and personal distress. Average prevalence rates in the Netherlands vary from 20-40% of the working population. Insight into the patho-physiological mechanism of RSI is important in order to establish adequate treatment and prevention programs. Objective: The aim of this study was to gain insight in muscle oxygen consumption (mVO2), blood flow (BF), and reoxygenation (ReOx) in the forearm of computer workers with stage III Repetitive Strain Injury (RSI). Method: We have used continuous wave infrared spectroscopy (NIRS) to measure these variables. Measurements were conducted on the extensor and flexor muscle in both arms as well in RSI-patients (n=10) as in control subjects (n=21). A protocol of increased isometric repetitive contraction in a handgrip ergonometer was used with increasing levels of strength. Results: mVO2 in the extensor muscle in RSI-subjects (dominant side) was increased compared to control subjects and compared to the non-dominant side (pmuscle). However, there was a tendency towards statistical significance (p=0.065). BF in rest was equal in both groups, however after exercise it tended to be increased. Half-time recovery (T ») was measured during only one part of the protocol and it was significantly increased (p<0.05). Conclusion: mVO2 in RSI is impaired. BF and ReOx did not show difference between both groups. Future research should aim at a microvascular dysfunction in RSI.

  3. Nitrogen and oxygen isotope measurements of nitrate to survey the sources and transformation of nitrogen loads in rivers

    OpenAIRE

    Ohte, Nobuhito; Nagata, Toshi; Tayasu, Ichiro; KOHAZU, Ayato; Yoshimizu, Chikage

    2008-01-01

    This paper reviews the studies on evaluation of river environments in terms of water pollution, ecosystem disturbances, excess nutrient (nitrogen) loads, and developments in the isotopic measurements of nitrate and present an update and future perspectives regarding the application of nitrate isotopes to river nutrient assessments. Then, we present the advantages of simultaneous measurement of the nitrogen and oxygen isotopes of nitrate in streamwaters.Dual isotope measurement has recently be...

  4. Performance Measurement for Brain-Computer or Brain-Machine Interfaces: A Tutorial

    Science.gov (United States)

    Thompson, David E.; Quitadamo, Lucia R.; Mainardi, Luca; Laghari, Khalil ur Rehman; Gao, Shangkai; Kindermans, Pieter-Jan; Simeral, John D.; Fazel-Rezai, Reza; Matteucci, Matteo; Falk, Tiago H.; Bianchi, Luigi; Chestek, Cynthia A.; Huggins, Jane E.

    2014-01-01

    Objective Brain-Computer Interfaces (BCIs) have the potential to be valuable clinical tools. However, the varied nature of BCIs, combined with the large number of laboratories participating in BCI research, makes uniform performance reporting difficult. To address this situation, we present a tutorial on performance measurement in BCI research. Approach A workshop on this topic was held at the 2013 International BCI Meeting at Asilomar Conference Center in Pacific Grove, California. This manuscript contains the consensus opinion of the workshop members, refined through discussion in the following months and the input of authors who were unable to attend the workshop. Main Results Checklists for methods reporting were developed for both discrete and continuous BCIs. Relevant metrics are reviewed for different types of BCI research, with notes on their application to encourage uniform application between laboratories. Significance Graduate students and other researchers new to BCI research may find this tutorial a helpful introduction to performance measurement in the field. PMID:24838070

  5. Measuring and Modelling Delays in Robot Manipulators for Temporally Precise Control using Machine Learning.

    OpenAIRE

    Andersen, Thomas Timm; Amor, Heni Ben; Andersen, Nils Axel; Ravn, Ole

    2015-01-01

    Latencies and delays play an important role in temporally precise robot control. During dynamic tasks in particular, a robot has to account for inherent delays to reach manipulated objects in time. The different types of occurring delays are typically convoluted and thereby hard to measure and separate. In this paper, we present a data-driven methodology for separating and modelling inherent delays during robot control. We show how both actuation and response delays can be modelled using mode...

  6. The basic anaesthesia machine.

    Science.gov (United States)

    Gurudatt, Cl

    2013-09-01

    After WTG Morton's first public demonstration in 1846 of use of ether as an anaesthetic agent, for many years anaesthesiologists did not require a machine to deliver anaesthesia to the patients. After the introduction of oxygen and nitrous oxide in the form of compressed gases in cylinders, there was a necessity for mounting these cylinders on a metal frame. This stimulated many people to attempt to construct the anaesthesia machine. HEG Boyle in the year 1917 modified the Gwathmey's machine and this became popular as Boyle anaesthesia machine. Though a lot of changes have been made for the original Boyle machine still the basic structure remains the same. All the subsequent changes which have been brought are mainly to improve the safety of the patients. Knowing the details of the basic machine will make the trainee to understand the additional improvements. It is also important for every practicing anaesthesiologist to have a thorough knowledge of the basic anaesthesia machine for safe conduct of anaesthesia.

  7. The basic anaesthesia machine

    Directory of Open Access Journals (Sweden)

    C L Gurudatt

    2013-01-01

    Full Text Available After WTG Morton′s first public demonstration in 1846 of use of ether as an anaesthetic agent, for many years anaesthesiologists did not require a machine to deliver anaesthesia to the patients. After the introduction of oxygen and nitrous oxide in the form of compressed gases in cylinders, there was a necessity for mounting these cylinders on a metal frame. This stimulated many people to attempt to construct the anaesthesia machine. HEG Boyle in the year 1917 modified the Gwathmey′s machine and this became popular as Boyle anaesthesia machine. Though a lot of changes have been made for the original Boyle machine still the basic structure remains the same. All the subsequent changes which have been brought are mainly to improve the safety of the patients. Knowing the details of the basic machine will make the trainee to understand the additional improvements. It is also important for every practicing anaesthesiologist to have a thorough knowledge of the basic anaesthesia machine for safe conduct of anaesthesia.

  8. Correlation between cerebral oxygen metabolism and cerebral blood flow simultaneously measured before and after acetazolamide administration

    Science.gov (United States)

    Yamaguchi, Hiroichiro; Yamauchi, Hideto; Hazama, Shiro; Hamamoto, Hirotsugu; Inoue, Nobuhiro

    1999-10-01

    The cerebral circulation and metabolism of ten preoperative cardiac surgery patients were assessed. Alterations in regional cerebral blood flow (rCBF), measured by 123I-N- isopropyl-p-iodo-amphetamine single-photon emission computed tomography, and in cerebral oxygen metabolism, simultaneously detected by near-infrared spectroscopy (NIRS) before and after acetazolamide administration, were investigated. The rCBF (ml/min/100 g) increased significantly from 40.21 +/- 7.65 to 56.24 +/- 13.69 (p equals 0.001), and a significant increase in oxyhemoglobin (Oxy-Hb) of 13.9% (p equals 0.0022) and total hemoglobin (Total-Hb) of 5.7% (0.0047) along with a significant decrease in deoxyhemoglobin (Deoxy-Hb) of 8.9% (p equals 0.0414) were observed concomitantly. Thus, the Oxy-Hb/Total- Hb ratio (%Oxy-Hb) rose significantly from 67.26 +/- 9.82% to 72.98 +/- 8.09% (p equals 0.0022). Examination of the relationships between individual parameters showed that the percentage changes in rCBF and Oxy-Hb were significantly correlated (r equals 0.758, p equals 0.011). The percentage changes in rCBF and %Oxy-Hb were also correlated significantly (r equals 0.740, p equals 0.014). In conclusion, this evidence suggested that NIRS is able to detect relative changes in cerebral hemodynamics and reflect luxury perfusion induced by acetazolamide.

  9. Effect of self-administered stretching on NIRS-measured oxygenation dynamics.

    Science.gov (United States)

    Kruse, Nicholas T; Scheuermann, Barry W

    2016-03-01

    This study determined human skeletal muscle oxygenation dynamics during and after a single bout of self-administered stretching (SAS) of the plantar flexors. Nine healthy recreationally fit men (n = 7; age = 25·7 years) and women (n = 2; age = 23·5 years) performed two protocols: (i) one bout of SAS for 4 min and (ii) one bout of moderate intensity cycling for 4 min. We used near infrared spectroscopy to measure changes in muscle deoxygenated haemoglobin-myoglobin ([HHb]) and blood volume ([Hbtot ]) of gastrocnemius medialis muscle before, during and after stretching. The SAS caused an increase (Pstretching between 60 and 240 s relative to baseline, but not at 30 s. No significant difference was found for [Hbtot ] at any time interval during SAS. Furthermore, the increase in local blood flow (suggested by [Hbtot ] changes) was found to be significantly increased relative to baseline at 1, 5 and 10 min after SAS, thus providing novel evidence for a poststretch hyperaemia. No significant interaction for [HHb] was found between stretching and cycling conditions, suggesting that the metabolic disturbance during stretching closely resembles moderate intensity exercise. These findings suggest that a single self-administered stretch for 60 s can produce a substantial microcirculatory event and that blood flow may be enhanced for up to 10 min after stretching.

  10. Influence of plasma DNA on acid-base balance, blood gas measurement, and oxygen transport in health and stroke.

    Science.gov (United States)

    Konorova, Irina L; Veiko, Natalya N; Novikov, Viktor E

    2008-08-01

    Hyperoxia and alkalemia, as a result of pulmonary hyperventilation and elevation of plasma DNA (pDNA), are seen during the first 24 h after ischemic stroke. In this study we have examined the correlation between pDNA and these blood parameters in health and stroke. Acid-base equilibrium, oxygen status, hemoglobin affinity to oxygen and concentration of pDNA in arterial blood were measured after the intravenous injection of homologous long-chain DNA to healthy rats and rats subjected to common carotid arterial occlusion. In addition the effect of adding homologous DNA to human and rat venous blood samples was studied in vitro. Hyperoxia, alkalemia, and an increase in hemoglobin affinity to oxygen were seen in rats with artificial stroke. A marked decrease in pulmonary hyperventilation and hemoglobin affinity to oxygen was observed after injection of homologous genomic DNA (10(-6) g/mL of blood). After the DNA injection, blood gas measurement and concentration of pDNA were correlated. Addition of DNA at a concentration of 10(-7) g/mL to venous blood samples in vitro increased oxygen saturation that disappeared when the dose of the DNA increased 10-fold. Thus, a change of pDNA concentration or size can alter acid-base equilibrium, oxygen status, and oxygen transport. These results may be important for a better understanding of the mechanisms of stroke and other diseases associated with the elevation of pDNA concentration, and they open the possibility of new therapeutic approaches.

  11. Automatic Recognition Method for Optical Measuring Instruments Based on Machine Vision

    Institute of Scientific and Technical Information of China (English)

    SONG Le; LIN Yuchi; HAO Liguo

    2008-01-01

    Based on a comprehensive study of various algorithms, the automatic recognition of traditional ocular optical measuring instruments is realized. Taking a universal tools microscope (UTM) lens view image as an example, a 2-layer automatic recognition model for data reading is established after adopting a series of pre-processing algorithms. This model is an optimal combination of the correlation-based template matching method and a concurrent back propagation (BP) neural network. Multiple complementary feature extraction is used in generating the eigenvectors of the concurrent network. In order to improve fault-tolerance capacity, rotation invariant features based on Zernike moments are extracted from digit characters and a 4-dimensional group of the outline features is also obtained. Moreover, the operating time and reading accuracy can be adjusted dynamically by setting the threshold value. The experimental result indicates that the newly developed algorithm has optimal recognition precision and working speed. The average reading ratio can achieve 97.23%. The recognition method can automatically obtain the results of optical measuring instruments rapidly and stably without modifying their original structure, which meets the application requirements.

  12. A Machine-learning Approach to Measuring the Escape of Ionizing Radiation from Galaxies in the Reionization Epoch

    Science.gov (United States)

    Jensen, Hannes; Zackrisson, Erik; Pelckmans, Kristiaan; Binggeli, Christian; Ausmees, Kristiina; Lundholm, Ulrika

    2016-08-01

    Recent observations of galaxies at z≳ 7, along with the low value of the electron scattering optical depth measured by the Planck mission, make galaxies plausible as dominant sources of ionizing photons during the epoch of reionization. However, scenarios of galaxy-driven reionization hinge on the assumption that the average escape fraction of ionizing photons is significantly higher for galaxies in the reionization epoch than in the local universe. The NIRSpec instrument on the James Webb Space Telescope (JWST) will enable spectroscopic observations of large samples of reionization-epoch galaxies. While the leakage of ionizing photons will not be directly measurable from these spectra, the leakage is predicted to have an indirect effect on the spectral slope and the strength of nebular emission lines in the rest-frame ultraviolet and optical. Here, we apply a machine learning technique known as lasso regression on mock JWST/NIRSpec observations of simulated z = 7 galaxies in order to obtain a model that can predict the escape fraction from JWST/NIRSpec data. Barring systematic biases in the simulated spectra, our method is able to retrieve the escape fraction with a mean absolute error of {{Δ }}{f}{esc}≈ 0.12 for spectra with signal-to-noise ratio ≈ 5 at a rest-frame wavelength of 1500 Å for our fiducial simulation. This prediction accuracy represents a significant improvement over previous similar approaches.

  13. Robust recognition of degraded machine-printed characters using complementary similarity measure and error-correction learning

    Science.gov (United States)

    Hagita, Norihiro; Sawaki, Minako

    1995-03-01

    Most conventional methods in character recognition extract geometrical features such as stroke direction, connectivity of strokes, etc., and compare them with reference patterns in a stored dictionary. Unfortunately, geometrical features are easily degraded by blurs, stains and the graphical background designs used in Japanese newspaper headlines. This noise must be removed before recognition commences, but no preprocessing method is completely accurate. This paper proposes a method for recognizing degraded characters and characters printed on graphical background designs. This method is based on the binary image feature method and uses binary images as features. A new similarity measure, called the complementary similarity measure, is used as a discriminant function. It compares the similarity and dissimilarity of binary patterns with reference dictionary patterns. Experiments are conducted using the standard character database ETL-2 which consists of machine-printed Kanji, Hiragana, Katakana, alphanumeric, an special characters. The results show that this method is much more robust against noise than the conventional geometrical feature method. It also achieves high recognition rates of over 92% for characters with textured foregrounds, over 98% for characters with textured backgrounds, over 98% for outline fonts, and over 99% for reverse contrast characters.

  14. Assessment of Renal Hemodynamics and Oxygenation by Simultaneous Magnetic Resonance Imaging (MRI) and Quantitative Invasive Physiological Measurements.

    Science.gov (United States)

    Cantow, Kathleen; Arakelyan, Karen; Seeliger, Erdmann; Niendorf, Thoralf; Pohlmann, Andreas

    2016-01-01

    In vivo assessment of renal perfusion and oxygenation under (patho)physiological conditions by means of noninvasive diagnostic imaging is conceptually appealing. Blood oxygen level-dependent (BOLD) magnetic resonance imaging (MRI) and quantitative parametric mapping of the magnetic resonance (MR) relaxation times T 2* and T 2 are thought to provide surrogates of renal tissue oxygenation. The validity and efficacy of this technique for quantitative characterization of local tissue oxygenation and its changes under different functional conditions have not been systematically examined yet and remain to be established. For this purpose, the development of an integrative multimodality approaches is essential. Here we describe an integrated hybrid approach (MR-PHYSIOL) that combines established quantitative physiological measurements with T 2* (T 2) mapping and MR-based kidney size measurements. Standardized reversible (patho)physiologically relevant interventions, such as brief periods of aortic occlusion, hypoxia, and hyperoxia, are used for detailing the relation between the MR-PHYSIOL parameters, in particular between renal T 2* and tissue oxygenation.

  15. Oxygen consumption rate v. rate of energy utilization of fishes: a comparison and brief history of the two measurements.

    Science.gov (United States)

    Nelson, J A

    2016-01-01

    Accounting for energy use by fishes has been taking place for over 200 years. The original, and continuing gold standard for measuring energy use in terrestrial animals, is to account for the waste heat produced by all reactions of metabolism, a process referred to as direct calorimetry. Direct calorimetry is not easy or convenient in terrestrial animals and is extremely difficult in aquatic animals. Thus, the original and most subsequent measurements of metabolic activity in fishes have been measured via indirect calorimetry. Indirect calorimetry takes advantage of the fact that oxygen is consumed and carbon dioxide is produced during the catabolic conversion of foodstuffs or energy reserves to useful ATP energy. As measuring [CO2 ] in water is more challenging than measuring [O2 ], most indirect calorimetric studies on fishes have used the rate of O2 consumption. To relate measurements of O2 consumption back to actual energy usage requires knowledge of the substrate being oxidized. Many contemporary studies of O2 consumption by fishes do not attempt to relate this measurement back to actual energy usage. Thus, the rate of oxygen consumption (M˙O2 ) has become a measurement in its own right that is not necessarily synonymous with metabolic rate. Because all extant fishes are obligate aerobes (many fishes engage in substantial net anaerobiosis, but all require oxygen to complete their life cycle), this discrepancy does not appear to be of great concern to the fish biology community, and reports of fish oxygen consumption, without being related to energy, have proliferated. Unfortunately, under some circumstances, these measures can be quite different from one another. A review of the methodological history of the two measurements and a look towards the future are included.

  16. A new test machine for measuring friction and wear in controlled atmospheres to 1200 C

    Science.gov (United States)

    Sliney, Harold E.; Dellacorte, Christopher

    1991-01-01

    This paper describes a new high-temperature friction and wear test apparatus (tribometer). The tribometer can be used as a pin-on-disk or pin-on-ring configuration and is specially designed to measure the tribological properties of ceramics and high temperature metallic alloys from room temperature to 1200 C. Sliding mode can be selected to be either unidirectional at velocities up to 22 m/sec or oscillating at frequencies up to 4.6 Hz and amplitudes up to + or - 60 deg. The test atmosphere is established by a controlled flow rate of a purge gas. All components within the test chamber are compatible with oxidizing, inert or reducing gases.

  17. Measuring Hysteresis Loop and Optimization of the Stator Tooth Width in the Permanent Magnet Synchronous Machine

    Directory of Open Access Journals (Sweden)

    Zdeněk NOVÁK

    2013-12-01

    Full Text Available The first part of this paper deals with the measuring of hysteresis loop of the toroidal shape core. LabVIEW software is used to automate this process. The results are compared with the data from the manufacturer and used in the FEMM software for setting parameters of the stator core of Permanent magnet synchronous motor (PMSM. Then, in the second part of this paper, the Lua scripting engine in FEMM software is used to optimize stator tooth width. Program code is written in the Matlab environment and after starting the run process, Matlab uses inter-process communication via ActiveX to connect with FEMM. In this process program tries several options for the stator tooth width. Based on the results, user can evaluate all the data about the overall progress and choose the optimal stator tooth width.

  18. Machine Translation

    Institute of Scientific and Technical Information of China (English)

    张严心

    2015-01-01

    As a kind of ancillary translation tool, Machine Translation has been paid increasing attention to and received different kinds of study by a great deal of researchers and scholars for a long time. To know the definition of Machine Translation and to analyse its benefits and problems are significant for translators in order to make good use of Machine Translation, and helpful to develop and consummate Machine Translation Systems in the future.

  19. Retrieval of aerosol optical depth from surface solar radiation measurements using machine learning algorithms, non-linear regression and a radiative transfer-based look-up table

    Science.gov (United States)

    Huttunen, Jani; Kokkola, Harri; Mielonen, Tero; Esa Juhani Mononen, Mika; Lipponen, Antti; Reunanen, Juha; Vilhelm Lindfors, Anders; Mikkonen, Santtu; Erkki Juhani Lehtinen, Kari; Kouremeti, Natalia; Bais, Alkiviadis; Niska, Harri; Arola, Antti

    2016-07-01

    In order to have a good estimate of the current forcing by anthropogenic aerosols, knowledge on past aerosol levels is needed. Aerosol optical depth (AOD) is a good measure for aerosol loading. However, dedicated measurements of AOD are only available from the 1990s onward. One option to lengthen the AOD time series beyond the 1990s is to retrieve AOD from surface solar radiation (SSR) measurements taken with pyranometers. In this work, we have evaluated several inversion methods designed for this task. We compared a look-up table method based on radiative transfer modelling, a non-linear regression method and four machine learning methods (Gaussian process, neural network, random forest and support vector machine) with AOD observations carried out with a sun photometer at an Aerosol Robotic Network (AERONET) site in Thessaloniki, Greece. Our results show that most of the machine learning methods produce AOD estimates comparable to the look-up table and non-linear regression methods. All of the applied methods produced AOD values that corresponded well to the AERONET observations with the lowest correlation coefficient value being 0.87 for the random forest method. While many of the methods tended to slightly overestimate low AODs and underestimate high AODs, neural network and support vector machine showed overall better correspondence for the whole AOD range. The differences in producing both ends of the AOD range seem to be caused by differences in the aerosol composition. High AODs were in most cases those with high water vapour content which might affect the aerosol single scattering albedo (SSA) through uptake of water into aerosols. Our study indicates that machine learning methods benefit from the fact that they do not constrain the aerosol SSA in the retrieval, whereas the LUT method assumes a constant value for it. This would also mean that machine learning methods could have potential in reproducing AOD from SSR even though SSA would have changed during

  20. Oxygen potential measurements of Cm0.09Pu0.91O2-x by EMF method

    Science.gov (United States)

    Otobe, H.; Akabori, M.; Arai, Y.

    2010-03-01

    The dependence of the oxygen potentials on oxygen nonstoichiometry (x) and temperature of Cm0.09Pu0.91O2-x was measured by electromotive force (EMF) measurements. The galvanic cell type is shown: (Pt) air | Zr(Ca)O2-x | Cm0.09Pu0.91O2-x (Pt). The coulomb titration has been made for the sample at the intervals of 40 K between 1173 and 1333 K over the x range of 0.018 <= x <= 0.053. The oxygen potentials decreased gradually from -31.02 to -117.48 kJmol-1 with increasing x from 0.018 to 0.045, and more rapidly decreased from -117.48 to -283.74 kJmol-1 up to 0.053. The temperature dependence of the oxygen potentials was also measured between 1173 and 1333 K for several constant x values. The temperature dependences exhibited the smooth curves over the x and temperature ranges concerned. Systematic comparison of the oxygen potentials between Cm0.09Pu0.91O2-x and those published for CmO2 -x and Am-containing oxides was also made. The oxygen potential of Cm09Pu0.91O2-x at the equimolar ratio of Cm3+/Cm4+ was higher than those of AmyPu1-yO2-x at the equimolar ratio of Am3+/Am4+ by approximately 150 kJmol-1 when the Pu valence was assumed to be +4 in both oxides.

  1. Sustainable machining

    CERN Document Server

    2017-01-01

    This book provides an overview on current sustainable machining. Its chapters cover the concept in economic, social and environmental dimensions. It provides the reader with proper ways to handle several pollutants produced during the machining process. The book is useful on both undergraduate and postgraduate levels and it is of interest to all those working with manufacturing and machining technology.

  2. A new optical flat surface measurement method based on machine vision and deflectometry

    Science.gov (United States)

    Kewei, E.; Li, Dahai; Yang, Lijie; Guo, Guangrao; Li, Mengyang; Wang, Xuemin; Zhang, Tao; Xiong, Zhao

    2016-10-01

    Phase Measuring Deflectometry(PMD) is a non-contact, high dynamic-range and full-field metrology which becomes a serious competitor to interferometry. However, the accuracy of deflectometry metrology is strongly influenced by the level of the calibrations. Our paper presents a calibration-based PMD method to test optical flat surface with a high accuracy. In our method, a pin-hole camera was set next to the LCD screen which is used to project sinusoidal fringes to the test flat. And the test flat was placed parallel to the direction of the LCD screen, which makes the geometry calibration process are simplified. The photogrammetric methods used in computer vision science was used to calibrate the pin-hole camera by using a checker pattern shown on another LCD display at six different orientations, the intrinsic parameters can be obtained by processing the obtained image of checker patterns. Further, by making the last orientation of checker pattern is aligned at the same position as the test optical flat, the algorithms used in this paper can obtain the mapping relationship between the CCD pixels and the subaperture coordinates on the test optical flat. We test a optical flat with a size of 50mm in diameter using our setup and algorithm. Our experimental results of optical flat figure from low to high order aberrations show a good agreement with that from the Fizeau interferometer.

  3. Oil Concentration Measurement In Saturated Liquid Refrigerant Flowing Inside A Refrigeration Machine

    Directory of Open Access Journals (Sweden)

    Evelyne Morvan

    2001-03-01

    Full Text Available

    An ultrasonic device was calibrated to measure in situ and in real time the polyol ester oil (POE concentration of the refrigerant liquid R 410A. The first part of this paper is devoted to the properties of the mixture, to the effects of the presence of oil on the speed of sound in the liquid phase and to the calibration and validation procedures carried out with a saturated liquid refrigerant. In order to have a number of calibration points that is not too large, it is necessary to maintain the mixture as close as possible to saturation conditions, which constrains the choice of the location of the sensor on the installation investigated. In the second part, the first results obtained on this installation are presented. It appears that the speed of sound in the POE / R 410A mixture is a strong function of the temperature and oil concentration, as was expected, but it also significantly depends on the pressure. Consequently, if the use of a sensor in a sub-cooled area is considered, additional calibration and validation procedures are necessary.

    • This paper was presented at the ECOS'00 Conference in Enschede, July 5-7, 2000 

  4. X-ray Fluorescence Measurements of Turbulent Methane-Oxygen Shear Coaxial Flames

    Science.gov (United States)

    2015-05-01

    applied to turbulent methane-oxygen shear coaxial flames. These flames are directly applicable to the oxygen-enriched combustion that occurs in liquid ...background argon signal subtraction and signal trapping corrections were required. To allow tracking of both the fuel and oxidizer stream, cases were...enriched combustion that occurs in liquid rocket engines where, due to the high temperature, it is difficult to obtain quantitative mixing field

  5. Microencapsulated 3-dimensional sensor for the measurement of oxygen in single isolated pancreatic islets.

    Directory of Open Access Journals (Sweden)

    Wanyu Chen

    Full Text Available BACKGROUND: Oxygen consumption reflects multiple processes in pancreatic islets including mechanisms contributing to insulin secretion, oxidative stress and viability, providing an important readout in studies of islet function, islet viability and drug testing. Due to the scarcity, heterogeneity, and intrinsic kinetic properties of individual islets, it would be of great benefit to detect oxygen consumption by single islets. We present a novel method we have developed to image oxygen in single islets. METHODOLOGY/PRINCIPAL FINDINGS: Using a microfluidics system, individual islets and a fluorescent oxygen-sensitive dye were encased within a thin alginate polymer layer. Insulin secretion by the encapsulated islets was normal. Fluorescent signal from the encased dye, detected using a standard inverted fluorescence microscope and digital camera, was stable and proportional to the amount of oxygen in the media. When integrated into a perifusion system, the sensing system detected changes in response to metabolic substrates, mitochondrial poisons, and induced-oscillations. Glucose responses averaged 30.1±7.1% of the response to a metabolic inhibitor (cyanide, increases were observed in all cases (n = 6, and the system was able to resolve changes in oxygen consumption that had a period greater than 0.5 minutes. The sensing system operated similarly from 2-48 hours following encapsulation, and viability and function of the islets were not significantly affected by the encapsulation process. CONCLUSIONS/SIGNIFICANCE: An oxygen-dependent dye situated around and within a pancreatic islet encapsulated by a thin layer of alginate was sensitive to changes in oxygen consumption, and was not harmful to the function or viability of islets over the course of two days. The microcapsule-based sensing method is particularly suited to assessing the effects of compounds (dose responses and time courses and chronic changes occurring over the course of days. The

  6. Shock tube measurements of growth constants in the branched-chain ethane-carbon monoxide-oxygen system

    Science.gov (United States)

    Brokaw, R. S.; Brabbs, T. A.; Snyder, C. A.

    1985-01-01

    Exponential free radical growth constants have been measured for ethane carbon monoxide oxygen mixtures by monitoring the growth of oxygen atom concentration as manifested by CO flame band emission. Data were obtained over the temperature range of 1200 to 1700 K. The data were analyzed using an ethane oxidation mechanism involving seven elementary reaction steps. Calculated growth constants were close to experimental values at lower temperatures, up to about 1400 K, but at higher temperatures computed growth constants were considerably smaller than experiment. In attempts to explain these results additional branching reactions were added to the mechanism. However, these additional reactions did not appreciably change calculated growth constants.

  7. Measuring atomic oxygen densities and electron properties in an Inductively Coupled Plasma for thin film deposition

    Science.gov (United States)

    Meehan, David; Gibson, Andrew; Booth, Jean-Paul; Wagenaars, Erik

    2016-09-01

    Plasma Enhanced Pulsed Laser Deposition (PE-PLD) is an advanced way of depositing thin films of oxide materials by using a laser to ablate a target, and passing the resulting plasma plume through a background Inductively-Coupled Plasma (ICP), instead of a background gas as is done in traditional PLD. The main advantage of PE-PLD is the control of film stoichiometry via the direct control of the reactive oxygen species in the ICP instead of relying on a neutral gas background. The aim is to deposit zinc oxide films from a zinc metal target and an oxygen ICP. In this work, we characterise the range of compositions of the reactive oxygen species achievable in ICPs; in particular the atomic oxygen density. The density of atomic oxygen has been determined within two ICPs of two different geometries over a range of plasma powers and pressures with the use of Energy Resolved Actinometry (ERA). ERA is a robust diagnostic technique with determines both the dissociation degree and average electron energy by comparing the excitation ratios of two oxygen and one argon transition. Alongside this the electron densities have been determined with the use of a hairpin probe. This work received financial support from the EPSRC, and York-Paris CIRC.

  8. The MOSDEF Survey: First Measurement of Nebular Oxygen Abundance at z > 4

    Science.gov (United States)

    Shapley, Alice E.; Sanders, Ryan L.; Reddy, Naveen A.; Kriek, Mariska; Freeman, William R.; Mobasher, Bahram; Siana, Brian; Coil, Alison L.; Leung, Gene C. K.; deGroot, Laura; Shivaei, Irene; Price, Sedona H.; Azadi, Mojegan; Aird, James

    2017-09-01

    We present the first spectroscopic measurement of multiple rest-frame optical emission lines at z > 4. During the MOSFIRE Deep Evolution Field survey, we observed the galaxy GOODSN-17940 with the Keck I/MOSFIRE spectrograph. The K-band spectrum of GOODSN-17940 includes significant detections of the [O ii]λλ3726,3729, [Ne iii]λ3869, and Hγ emission lines and a tentative detection of Hδ, indicating z spec = 4.4121. GOODSN-17940 is an actively star-forming z > 4 galaxy based on its K-band spectrum and broadband spectral energy distribution. A significant excess relative to the surrounding continuum is present in the Spitzer/IRAC channel 1 photometry of GOODSN-17940, due primarily to strong Hα emission with a rest-frame equivalent width of EW(Hα) = 1200 Å. Based on the assumption of 0.5 Z ⊙ models and the Calzetti attenuation curve, GOODSN-17940 is characterized by {M}* ={5.0}-0.2+4.3× {10}9 {M}ȯ . The Balmer decrement inferred from Hα/Hγ is used to dust correct the Hα emission, yielding {{SFR(H}}α )={320}-140+190 {M}ȯ {{{yr}}}-1. These M * and star formation rate (SFR) values place GOODSN-17940 an order of magnitude in SFR above the z ∼ 4 star-forming “main sequence.” Finally, we use the observed ratio of [Ne iii]/[O ii] to estimate the nebular oxygen abundance in GOODSN-17940, finding O/H ∼ 0.2 (O/H)⊙. Combining our new [Ne iii]/[O ii] measurement with those from stacked spectra at z ∼ 0, 2, and 3, we show that GOODSN-17940 represents an extension to z > 4 of the evolution toward higher [Ne iii]/[O ii] (i.e., lower O/H) at fixed stellar mass. It will be possible to perform the measurements presented here out to z ∼ 10 using the James Webb Space Telescope. Based on data obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration, and was made possible by the generous financial support

  9. The impact of the detection angle on the quantitative measurement of hemoglobin oxygen saturation in optical-resolution photoacoustic microscopy

    Science.gov (United States)

    Wu, Ning; Li, Changhui

    2016-10-01

    Optical-resolution photoacoustic microscopy (OR-PAM) plays an important role in the quantitative measurement of hemoglobin oxygen saturation (SO2) at a single vessel level. In this study, we reported that the relative angle between light illumination and ultrasonic detection could have a significant impact on the SO2 measurement. Both simulation and phantom studies were provided, and this result will help the system design and result interpretation of the functional OR-PAM.

  10. Influence of oxygen addition to the carrier gas on laser-induced breakdown spectroscopy measurements on aerosols

    Science.gov (United States)

    Palazzo, N.; Migliorini, F.; Dondè, R.; Maffi, S.; De Iuliis, S.

    2016-01-01

    In this work, laser-induced breakdown spectrosopy is implemented on aerosol particles for absolute concentration analysis. The aim of this work is the investigation of the effect of the bath gas used for nebulizing the aerosol. Nitrogen, air, and 50% O2 in N2 mixture have been chosen as carrier gasses in order to analyze the effect of oxygen addition to the gas. LIBS measurements have been carried out on aerosol particles produced from CuCl2 2H2O solutions, and the 324.7 nm Cu line is considered. As a first analysis, plasma parameters, such as temperature and electron density, have been evaluated changing the carrier gas. Measurements to derive the LIBS calibration curve of the 324.7 nm Cu line are carried out in air and in N2. The significant difference in the slope of the resulting calibration curves has to be attributed to the oxygen addition to the bath gas. To explore such behavior, time-resolved measurements of the Cu line and peak/base ratio have been performed. The presence of two competitive effects have been observed that becomes significant increasing the amount of oxygen in the carrier gas. One is the oxygen-quenching effect, already observed in the literature, and the other one is the enhancement of the Cu LIBS signal, expecially at short delay times. These effects have been observed also at other Cu lines and changing the analyte source. The results are presented and widely discussed.

  11. Electrical Properties and Dilatometric Measurements of La2Mo2O9 under Low Oxygen Partial Pressure

    Institute of Scientific and Technical Information of China (English)

    夏天; 李佳艳; 骆欣; 李芹; 孟健; 曹学强

    2005-01-01

    The electrical conductivity and thermal expansion of La2Mo2O9 under low oxygen partial pressure were studied with the help of thermoelectric power and dilatometric measurements, respectively. The ionic conduction of La2Mo2O9 was predominant with the electronic transference number less than 0.05 above an oxygen partial pressure of about Po2=10-7 Pa at 700℃, and below this pressure the electronic conduction became obvious. The defect reaction and small polaron hopping among molybdenum sites were proposed to explain the electronic conduction. Accompanying the phase transition, there was a sharp increase of thermal expansion, which became more serious under low oxygen partial pressure. The substitution of lanthanum by neodymium led to the increase of electrical conductivity but the decrease of phase stability.

  12. Shock tube measurements of growth constants in the branched chain formaldehyde-carbon monoxide-oxygen system

    Science.gov (United States)

    Brabbs, T. A.; Brokaw, R. S.

    1982-01-01

    Exponential free radical growth constants were measured for formaldehyde carbon monoxide-oxygen systems by monitoring the growth of oxygen atom concentration as manifested by CO flame band emission. Data were obtained over the temperature range of 1200 to 2000 K. The data were analyzed using a formaldehyde oxidation mechanism involving 12 elementary reaction steps. The computed growth constants are roughly in accord with experimental values, but are much more temperature dependent. The data was also analyzed assuming formaldehyde is rapidly decomposed to carbon monoxide and hydrogen. Growth constants computed for the resulting carbon monoxide hydrogen oxygen mixtures have a temperature dependence similar to experiments; however, for most mixtures, the computed growth constants were larger than experimental values.

  13. Abdominal strengthening using the AbVice machine as measured by surface electromyographic activation levels.

    Science.gov (United States)

    Avedisian, Lori; Kowalsky, Don S; Albro, Richard C; Goldner, Daniel; Gill, Robert C

    2005-08-01

    Twenty-four college students served as subjects in a study that examined the effect of a prototypical abdominal muscle strengthening device (AbVice) compared with other devices currently on the market. The purpose of the present study was to investigate a prototypical device (AbVice) that incorporates contraction of the hamstring and gluteal musculature in conjunction with the abdominals, which may assist in decreasing activation of the hip flexors by allowing greater activity levels of the abdominal musculature via the theory of reflex inhibition, compared with other devices currently available on the market (AbRoller and AbRocker). The repeated-measures study included 17 women and 7 men who ranged in age from 20-23 years (mean +/- SD age, 21.3 +/- 1.5 years). Each subject underwent a single session of data collection during which they completed 10 repetitions of abdominal crunches per device. Subjects completed 4 different crunch sets (AbRocker, AbRoller, standard crunch, AbVice). Counterbalancing of the device was used to negate the effect of fatigue. Speed of repetitions was ensured via use of a metronome set at 40 b.min(-1) to permit similar contraction times and rest periods between repetitions. Rest between conditions was 3 minutes. Mean activation levels of surface electromyography (EMG) were recorded for each condition at the following locations on the right side of the body: rectus abdominis 2.5 cm superior to the umbilicus, rectus abdominis 2.5 cm inferior to the umbilicus, external oblique abdominis 1.0 cm medial to the anterior superior iliac spine, and external oblique abdominis less than 1.0 cm superior to the inguinal ligament. Mean (SD) activation was 1,165.21 mV (634.60 mV) with the AbVice, 242.92 mV (263.03 mV) with the AbRocker, 753.29 mV (514.80 mV) with the standard crunch, and 757.67 mV (542.85 mV) with the AbRoller. Broken down by sex, women had the following mean (SD) EMG values: 1,079.76 mV (705.02 mV) with the AbVice, 680.35 mV (535.35 m

  14. Machinability evaluation of machinable ceramics with fuzzy theory

    Institute of Scientific and Technical Information of China (English)

    YU Ai-bing; ZHONG Li-jun; TAN Ye-fa

    2005-01-01

    The property parameters and machining output parameters were selected for machinability evaluation of machinable ceramics. Based on fuzzy evaluation theory, two-stage fuzzy evaluation approach was applied to consider these parameters. Two-stage fuzzy comprehensive evaluation model was proposed to evaluate machinability of machinable ceramic materials. Ce-ZrO2/CePO4 composites were fabricated and machined for evaluation of machinable ceramics. Material removal rates and specific normal grinding forces were measured. The parameters concerned with machinability were selected as alternative set. Five grades were chosen for the machinability evaluation of machnable ceramics. Machinability grades of machinable ceramics were determined through fuzzy operation. Ductile marks are observed on Ce-ZrO2/CePO4 machined surface. Five prepared Ce-ZrO2/CePO4 composites are classified as three machinability grades according to the fuzzy comprehensive evaluation results. The machinability grades of Ce-ZrO2/CePO4 composites are concerned with CePO4 content.

  15. Advanced analytical methodologies for measuring healthy ageing and its determinants, using factor analysis and machine learning techniques: the ATHLOS project

    Science.gov (United States)

    Félix Caballero, Francisco; Soulis, George; Engchuan, Worrawat; Sánchez-Niubó, Albert; Arndt, Holger; Ayuso-Mateos, José Luis; Haro, Josep Maria; Chatterji, Somnath; Panagiotakos, Demosthenes B.

    2017-01-01

    A most challenging task for scientists that are involved in the study of ageing is the development of a measure to quantify health status across populations and over time. In the present study, a Bayesian multilevel Item Response Theory approach is used to create a health score that can be compared across different waves in a longitudinal study, using anchor items and items that vary across waves. The same approach can be applied to compare health scores across different longitudinal studies, using items that vary across studies. Data from the English Longitudinal Study of Ageing (ELSA) are employed. Mixed-effects multilevel regression and Machine Learning methods were used to identify relationships between socio-demographics and the health score created. The metric of health was created for 17,886 subjects (54.6% of women) participating in at least one of the first six ELSA waves and correlated well with already known conditions that affect health. Future efforts will implement this approach in a harmonised data set comprising several longitudinal studies of ageing. This will enable valid comparisons between clinical and community dwelling populations and help to generate norms that could be useful in day-to-day clinical practice. PMID:28281663

  16. 凸轮轴高速数控磨削在位测量技术%On-machine Measurement Technology of Camshaft High Speed NC Grinding

    Institute of Scientific and Technical Information of China (English)

    万林林; 邓朝晖; 黄强; 刘志坚

    2015-01-01

    基于 USB 总线技术与自复位光栅位移传感器开发了凸轮轴轮廓在位测量装置,对磨削后的凸轮轴进行了在位升程测量。介绍了测量原理及升程测量过程,采用“敏感点”法并结合三次均匀 B 样条拟合与最小二乘法对测量数据进行了处理,求解了凸轮升程的起始转角,获得了凸轮的实测升程。利用在位测量装置与 BG1310-10型凸轮轮廓检测仪针对同一凸轮轴样件进行了对比检测实验。结果表明,该在位测量装置能够满足凸轮轴加工轮廓误差检测的精度要求。%An on-machine measurement device was proposed based on the USB bus technology and re-centering grating displacement sensor.Cam lift was measured directly on the grinding machine. The on-machine measuring principles and lift measuring process were studied.To solve the cam lift initial turning angle and get cam measured lift,the sensitive point method were used to process the measured lift data combining with cubic uniform B-spline interpolation fitting and least square meth-od.A grinded camshaft was measured by the on-machine measurement device and BG1310-10 cam contour detector,and the measuring results were compared to confirm the validity of the proposed de-v i c e .

  17. High-precision measurement of (186)Os/(188)Os and (187)Os/(188)Os: isobaric oxide corrections with in-run measured oxygen isotope ratios.

    Science.gov (United States)

    Chu, Zhu-Yin; Li, Chao-Feng; Chen, Zhi; Xu, Jun-Jie; Di, Yan-Kun; Guo, Jing-Hui

    2015-09-01

    We present a novel method for high precision measurement of (186)Os/(188)Os and (187)Os/(188)Os ratios, applying isobaric oxide interference correction based on in-run measurements of oxygen isotopic ratios. For this purpose, we set up a static data collection routine to measure the main Os(16)O3(-) ion beams with Faraday cups connected to conventional 10(11) amplifiers, and (192)Os(16)O2(17)O(-) and (192)Os(16)O2(18)O(-) ion beams with Faraday cups connected to 10(12) amplifiers. Because of the limited number of Faraday cups, we did not measure (184)Os(16)O3(-) and (189)Os(16)O3(-) simultaneously in-run, but the analytical setup had no significant influence on final (186)Os/(188)Os and (187)Os/(188)Os data. By analyzing UMd, DROsS, an in-house Os solution standard, and several rock reference materials, including WPR-1, WMS-1a, and Gpt-5, the in-run measured oxygen isotopic ratios were proven to present accurate Os isotopic data. However, (186)Os/(188)Os and (187)Os/(188)Os data obtained with in-run O isotopic compositions for the solution standards and rock reference materials show minimal improvement in internal and external precision, compared to the conventional oxygen correction method. We concluded that, the small variations of oxygen isotopes during OsO3(-) analytical sessions are probably not the main source of error for high precision Os isotopic analysis. Nevertheless, use of run-specific O isotopic compositions is still a better choice for Os isotopic data reduction and eliminates the requirement of extra measurements of the oxygen isotopic ratios.

  18. Enzyme-based online monitoring and measurement of antioxidant activity using an optical oxygen sensor coupled to an HPLC system.

    Science.gov (United States)

    Quaranta, Michela; Nugroho Prasetyo, Endry; Koren, Klaus; Nyanhongo, Gibson S; Murkovic, Michael; Klimant, Ingo; Guebitz, Georg M

    2013-03-01

    It is estimated that up to 50% of the adult population take antioxidant products on a daily basis to promote their health status. Strangely, despite the well-recognized importance of antioxidants, currently there is no international standard index for labeling owing to the lack of standardized methods for antioxidant measurement in complex products. Here, an online high-performance liquid chromatography (HPLC)-based method to detect and measure the total antioxidant capacity of antioxidant samples is presented. In this approach, complex samples containing antioxidants are separated by the HPLC system, which is further coupled to an antioxidant measuring system consisting of an optical oxygen sensor, laccase, and tetramethoxy azobismethylene quinone (TMAMQ). The antioxidants, separated via HPLC, reduce TMAMQ to syringaldazine, which is then reoxidized by laccase while simultaneously consuming O(2). The amount of consumed oxygen is directly proportional to the concentration of antioxidants and is measured by the optical oxygen sensor. The sensor is fabricated by coating a glass capillary with an oxygen-sensitive thin layer made of platinum(II) meso-tetra(4-fluorophenyl)tetrabenzoporphyrin and polystyrene, which makes real-time analysis possible (t(90) = 1.1 s in solution). Four selected antioxidants (3 mM), namely, catechin, ferulic acid, naringenin (used as a control), and Trolox, representing flavonol, hydrocinnamic acid, flavanone, and vitamin E, respectively, were injected into the online antioxidant monitoring system, separated, and then mixed with the TMAMQ/laccase solution, which resulted in oxygen consumption. This study shows that, with the use of such a system, the antioxidant activity of individual antioxidant molecules in a sample and their contribution to the total antioxidant activity of the sample can be correctly assigned.

  19. Metallized Gelled Propellants: Oxygen/RP-1/Aluminum Rocket Heat Transfer and Combustion Measurements

    Science.gov (United States)

    Palaszewski, Bryan; Zakany, James S.

    1996-01-01

    A series of rocket engine heat transfer experiments using metallized gelled liquid propellants was conducted. These experiments used a small 20- to 40-lb/f thrust engine composed of a modular injector, igniter, chamber and nozzle. The fuels used were traditional liquid RP-1 and gelled RP-1 with 0-, 5-, and 55-percentage by weight loadings of aluminum particles. Gaseous oxygen was used as the oxidizer. Three different injectors were used during the testing: one for the baseline O(2)/RP-1 tests and two for the gelled and metallized gelled fuel firings. Heat transfer measurements were made with a rocket engine calorimeter chamber and nozzle with a total of 31 cooling channels. Each chamber used a water flow to carry heat away from the chamber and the attached thermocouples and flow meters allowed heat flux estimates at each of the 31 stations. The rocket engine Cstar efficiency for the RP-1 fuel was in the 65-69 percent range, while the gelled 0 percent by weight RP-1 and the 5-percent by weight RP-1 exhibited a Cstar efficiency range of 60 to 62% and 65 to 67%, respectively. The 55-percent by weight RP-1 fuel delivered a 42-47% Cstar efficiency. Comparisons of the heat flux and temperature profiles of the RP-1 and the metallized gelled RP-1/A1 fuels show that the peak nozzle heat fluxes with the metallized gelled O2/RP-1/A1 propellants are substantially higher than the baseline O2/RP-1: up to double the flux for the 55 percent by weight RP-1/A1 over the RP-1 fuel. Analyses showed that the heat transfer to the wall was significantly different for the RP-1/A1 at 55-percent by weight versus the RP-1 fuel. Also, a gellant and an aluminum combustion delay was inferred in the 0 percent and 5-percent by weight RP-1/A1 cases from the decrease in heat flux in the first part of the chamber. A large decrease in heat flux in the last half of the chamber was caused by fuel deposition in the chamber and nozzle. The engine combustion occurred well downstream of the injector face

  20. Activities of oxygen in liquid copper and silver from electrochemical measurements

    Science.gov (United States)

    Otsuka, Shinya; Kozuka, Zensaku

    1981-09-01

    Modified coulometric titrations on the galvanic cell: O in liquid Cu or Ag / ZrO2( + CaO) / Air, Pt, were performed to determine precisely the oxygen activities in liquid copper and silver in the range of relatively low oxygen concentration. The present experimental results were remarkably reproducible in comparison with the published data. The standard Gibbs energies of solution of oxygen in liquid copper and liquid silver for 1/2 O2(l atm) → O(l at. pct) were determined respectively to be ΔG° (in Cu) = -18040 -0.03 T(K) (± 120) cal · g-atom-1 = -75500 -0.12 T(K)(± 500) J · g-atom-1, ΔG°(inAg)= -3860+ 1.56 T(K) (±90) cal · g-atom-1 = -16140 + 6.52 T(K)(±380) J · g-atom-1 where the reference state for dissolved oxygen was an infinitely dilute solution. The present value of the partial entropy of oxygen dissolved in liquid copper differs significantly from that suggested by many investigators. Further, the present equation for liquid copper has been found to be consistent with a correlation proposed previously by the present authors. The equation for liquid silver is in good agreement with the published ones.

  1. Non-invasive measurement of oxygen saturation in the spinal vein using SWI: quantitative evaluation under conditions of physiological and caffeine load.

    Science.gov (United States)

    Fujima, Noriyuki; Kudo, Kohsuke; Terae, Satoshi; Ishizaka, Kinya; Yazu, Rie; Zaitsu, Yuri; Tha, Khin Khin; Yoshida, Daisuke; Tsukahara, Akiko; Haacke, Mark E; Sasaki, Makoto; Shirato, Hiroki

    2011-01-01

    Susceptibility-weighted imaging (SWI) has been used for quantitative and non-invasive measurement of blood oxygen saturation in the brain. In this study, we used SWI for quantitative measurement of oxygen saturation in the spinal vein to look for physiological- or caffeine-induced changes in venous oxygenation. SWI measurements were obtained for 5 healthy volunteers using 1.5-T MR units, under 1) 3 kinds of physiological load (breath holding, Bh; hyperventilation, Hv; and inspiration of highly concentrated oxygen, Ox) and 2) caffeine load. Oxygen saturation in the anterior spinal vein (ASV) was calculated. We evaluated changes in oxygen saturation induced by physiological load. We also evaluated the time-course of oxygen saturation after caffeine intake. For the physiological load measurements, the average oxygen saturation for the 5 subjects was significantly lower in Hv (0.75) and significantly higher in Bh (0.84) when compared with control (0.80). There was no significant difference between Ox (0.81) and control. Oxygen saturation gradually decreased after caffeine intake. The average values of oxygen saturation were 0.79 (0 min), 0.76 (20 min), 0.74 (40 min), and 0.73 (60 min), respectively. We demonstrated a significant difference in oxygen saturation at 40 and 60 min after caffeine intake when compared with 0 min. In conclusion, we demonstrated the feasibility of using SWI for non-invasive measurement of oxygen saturation in the spinal vein. We showed changes in oxygen saturation under physiological as well as caffeine load and suggest that this method is a useful tool for the clinical evaluation of spinal cord oxygenation.

  2. Response of electrochemical oxygen sensors to inert gas-air and carbon dioxide-air mixtures: measurements and mathematical modelling.

    Science.gov (United States)

    Walsh, P T; Gant, S E; Dowker, K P; Batt, R

    2011-02-15

    Electrochemical oxygen gas sensors are widely used for monitoring the state of inertisation of flammable atmospheres and to warn of asphyxiation risks. It is well established but not widely known by users of such oxygen sensors that the response of the sensor is affected by the nature of the diluent gas responsible for the decrease in ambient oxygen concentration. The present work investigates the response of electrochemical sensors, with either acid or alkaline electrolytes, to gas mixtures comprising air with enhanced levels of nitrogen, carbon dioxide, argon or helium. The measurements indicate that both types of sensors over-read the oxygen concentrations when atmospheres contain high levels of helium. Sensors with alkaline electrolytes are also shown to underestimate the severity of the hazard in atmospheres containing high levels of carbon dioxide. This deviation is greater for alkaline electrolyte sensors compared to acid electrolyte sensors. A Computational Fluid Dynamics (CFD) model is developed to predict the response of an alkaline electrolyte, electrochemical gas sensor. Differences between predicted and measured sensor responses are less than 10% in relative terms for nearly all of the gas mixtures tested, and in many cases less than 5%. Extending the model to simulate responses of sensors with acid electrolytes would be straightforward.

  3. Transient, three-dimensional heat transfer model for the laser assisted machining of silicon nitride: 1. Comparison of predictions with measured surface temperature histories

    Energy Technology Data Exchange (ETDEWEB)

    Rozzi, J.C.; Pfefferkorn, F.E.; Shin, Y.C. [Purdue University, (United States). Laser Assisted Materials Processing Laboratory, School of Mechanical Engineering; Incropera, F.P. [University of Notre Dame, (United States). Aerospace and Mechanical Engineering Department

    2000-04-01

    Laser assisted machining (LAM), in which the material is locally heated by an intense laser source prior to material removal, provides an alternative machining process with the potential to yield higher material removal rates, as well as improved control of workpiece properties and geometry, for difficult-to-machine materials such as structural ceramics. To assess the feasibility of the LAM process and to obtain an improved understanding of governing physical phenomena, experiments have been performed to determine the thermal response of a rotating silicon nitride workpiece undergoing heating by a translating CO{sub 2} laser and material removal by a cutting tool. Using a focused laser pyrometer, surface temperature histories were measured to determine the effect of the rotational and translational speeds, the depth of cut, the laser-tool lead distance, and the laser beam diameter and power on thermal conditions. The measurements are in excellent agreement with predictions based on a transient, three-dimensional numerical solution of the heating and material removal processes. The temperature distribution within the unmachined workpiece is most strongly influenced by the laser power and laser-tool lead distance, as well as by the laser/tool translational velocity. A minimum allowable operating temperature in the material removal region corresponds to the YSiAlON glass transition temperature, below which tool fracture may occur. In a companion paper, the numerical model is used to further elucidate thermal conditions associated with laser assisted machining. (author)

  4. Measurement of Soot Volume Fraction and Temperature for Oxygen-Enriched Ethylene Combustion Based on Flame Image Processing

    Directory of Open Access Journals (Sweden)

    Weijie Yan

    2017-05-01

    Full Text Available A method for simultaneously visualizing the two-dimensional distributions of temperature and soot volume fraction in an ethylene flame was presented. A single-color charge-coupled device (CCD camera was used to capture the flame image in the visible spectrum considering the broad-response spectrum of the R and G bands of the camera. The directional emissive power of the R and G bands were calibrated and used for measurement. Slightly increased temperatures and reduced soot concentration were predicted in the central flame without self-absorption effects considered, an iterative algorithm was used for eliminating the effect of self-absorption. Nine different cases were presented in the experiment to demonstrate the effects of fuel mass flow rate and oxygen concentration on temperature and soot concentration in three different atmospheres. For ethylene combustion in pure-air atmosphere, as the fuel mass flow rate increased, the maximum temperature slightly decreased, and the maximum soot volume fraction slightly increased. For oxygen fractions of 30%, 40%, and 50% combustion in O2/N2 oxygen-enhanced atmospheres, the maximum flame temperatures were 2276, 2451, and 2678 K, whereas combustion in O2/CO2 atmospheres were 1916, 2322, and 2535 K. The maximum soot volume fractions were 4.5, 7.0, and 9.5 ppm in oxygen-enriched O2/N2 atmosphere and 13.6, 15.3, and 14.8 ppm in oxygen-enriched O2/CO2 atmosphere. Compared with the O2/CO2 atmosphere, combustion in the oxygen-enriched O2/N2 atmosphere produced higher flame temperature and larger soot volume fraction. Preliminary results indicated that this technique is reliable and can be used for combustion diagnosis.

  5. Measurement of the ductal L-R shunt during extracorporeal membrane oxygenation in the lamb.

    NARCIS (Netherlands)

    Tanke, R.B.; Heijst, A.F.J. van; Klaessens, J.H.G.M.; Daniels, O.; Festen, C.

    2004-01-01

    OBJECTIVE: In neonates, initially a ductal shunt is often observed during veno-arterial extracorporeal membrane oxygenation (ECMO). Depending on the degree of pulmonary hypertension in these patients, the ductal shunt will be right to left (R-L), left to right (L-R), or bidirectional. A ductal L-R s

  6. A Simplified and Inexpensive Method for Measuring Dissolved Oxygen in Water.

    Science.gov (United States)

    Austin, John

    1983-01-01

    A modified Winkler method for determining dissolved oxygen in water is described. The method does not require use of a burette or starch indicator, is simple and inexpensive and can be used in the field or laboratory. Reagents/apparatus needed and specific procedures are included. (JN)

  7. Lamp enables measurement of oxygen concentration in presence of water vapor

    Science.gov (United States)

    Brisco, F. J.; Moorhead, J. E.; Paige, W. S.

    1967-01-01

    Open-electrode ultraviolet source lamp radiates sufficient energy at 1800 angstroms and 1470 angstroms for use in a double-beam, duel-wavelength oxygen sensor. The lamp is filled with xenon at a pressure of 100 mm of Hg.

  8. The oxygen evolution reaction on cobalt Part I. Reaction order experiments and impedance measurements

    NARCIS (Netherlands)

    Kobussen, A.G.C.; Willems, H.; Wit, J.H.W. de; Broers, G.H.J.

    1984-01-01

    It was found that the oxygen evolution reaction on cobalt in concentrated KOH solutions can be described differently for low and high overpotentials. In the overpotential range from 150 to 280 mV, the reaction has a Tafel slope of approximately 40 mV and a reaction order with respect to the KOH acti

  9. Measurement of oxygen consumption in children undergoing cardiac catheterization: comparison between mass spectrometry and the breath-by-breath method.

    Science.gov (United States)

    Guo, Long; Cui, Yong; Pharis, Scott; Walsh, Mark; Atallah, Joseph; Tan, Meng-Wei; Rutledge, Jennifer; Coe, J Y; Adatia, Ian

    2014-06-01

    Accurate measurement of oxygen consumption (VO2) is important to precise calculation of blood flow using the Fick equation. This study aimed to validate the breath-by-breath method (BBBM) of measuring oxygen consumption VO2 compared with respiratory mass spectroscopy (MS) for intubated children during cardiac catheterization. The study used MS and BBBM to measure VO2 continuously and simultaneously for 10 min in consecutive anesthetized children undergoing cardiac catheterization who were intubated with a cuffed endotracheal tube, ventilated mechanically, and hemodynamically stable, with normal body temperature. From 26 patients, 520 data points were obtained. The mean VO2 was 94.5 ml/min (95 % confidence interval [CI] 65.7-123.3 ml/min) as measured by MS and 91.4 ml/min (95 % CI 64.9-117.9 ml/min) as measured by BBBM. The mean difference in VO2 measurements between MS and BBBM (3.1 ml/min; 95 % CI -1.7 to +7.9 ml/min) was not significant (p = 0.19). The MS and BBBM VO2 measurements were highly correlated (R (2) = 0.98; P measure VO2 in anesthetized intubated children undergoing cardiac catheterization. The two methods demonstrated excellent agreement. However, BBBM may be more suited to clinical use with children.

  10. Silicon etching using only Oxygen at high temperature: An alternative approach to Si micro-machining on 150 mm Si wafers.

    Science.gov (United States)

    Chai, Jessica; Walker, Glenn; Wang, Li; Massoubre, David; Tan, Say Hwa; Chaik, Kien; Hold, Leonie; Iacopi, Alan

    2015-12-04

    Using a combination of low-pressure oxygen and high temperatures, isotropic and anisotropic silicon (Si) etch rates can be controlled up to ten micron per minute. By varying the process conditions, we show that the vertical-to-lateral etch rate ratio can be controlled from 1:1 isotropic etch to 1.8:1 anisotropic. This simple Si etching technique combines the main respective advantages of both wet and dry Si etching techniques such as fast Si etch rate, stiction-free, and high etch rate uniformity across a wafer. In addition, this alternative O2-based Si etching technique has additional advantages not commonly associated with dry etchants such as avoiding the use of halogens and has no toxic by-products, which improves safety and simplifies waste disposal. Furthermore, this process also exhibits very high selectivity (>1000:1) with conventional hard masks such as silicon carbide, silicon dioxide and silicon nitride, enabling deep Si etching. In these initial studies, etch rates as high as 9.2 μm/min could be achieved at 1150 °C. Empirical estimation for the calculation of the etch rate as a function of the feature size and oxygen flow rate are presented and used as proof of concepts.

  11. Enzymatic assay of total cholesterol in serum or plasma by amperometric measurement of rate of oxygen depletion following saponification.

    Science.gov (United States)

    Kumar, A; Christian, G D

    1977-01-17

    A method for serum or plasma cholesterol assay involving amperometric measurement of the rate of oxygen depletion in the cholesterol oxidase-catalyzed oxidation of cholesterol is described. The hydrolysis of the serum cholesterol esters is accomplished by saponification of 50 mul of sample with 0.2 ml of ethanolic KOH (1.0 mol/1) containing 0.5% Triton X-100 for 5 min at 75 degrees C. The rate of oxygen consumption in a 25-mul aliquot of this is measured with a Clark electrode in a Beckman Glucose Analyzer and the assay takes about one minute after incubation; results are read digitally on the instrument. The analyzer cell contains 1 ml of 1 M phosphate buffer, pH 7.4, with 100 mg sodium cholate/100 ml and 0.1-0.2 U cholesterol oxidase.

  12. Assessment of body fat and lean in the elderly by measuring body carbon and oxygen: validation against hydrodensitometry.

    Science.gov (United States)

    Kehayias, J J; Zhuang, H; Hughes, V; Dowling, L

    1998-01-01

    Based on the observation that the carbon-to-oxygen ratio (C/O) in tissue is a measure of fat content, we developed a model which correlates C/O to percent body fat. Carbon and oxygen mass and their ratio are measured in vivo by fast neutron inelastic scattering, using a miniature D-T neutron generator, at a radiation exposure of less than 0.06 mSv. We tested the validity of this model against hydrodensitometry with 19 healthy adult volunteers. The method was found to be accurate and insensitive to assumptions about the composition of lean tissue and, therefore, appropriate for studying the elderly and patients with catabolic conditions.

  13. Monitoring of the state of the paper machine circulation water with a wide-band impedance measurement; Paperikoneen kiertoveden tilan seuranta laajakaistaisella impedanssimittauksella - MPKT 02

    Energy Technology Data Exchange (ETDEWEB)

    Varpula, T. [VTT Automation, Espoo (Finland). Measurement Technology

    1998-12-31

    A new measurement method for monitoring the chemical state of the circulation water in the paper machine is proposed and studied. In the method, the electrical properties - conductivity and permittivity - of the water are measured in a wide frequency band: 20 Hz - 10 mhz. Large-molecule organic compounds in the water are expected cause characteristic changes in the dielectric properties of the water. Continuous monitoring of the permittivity in the wide frequency band thus reveals their presence. Various electronic measurement setups for the measurement are constructed and studied by using test samples. If the method turns out to be promising, a prototype device will be made. (orig.)

  14. Simple machines

    CERN Document Server

    Graybill, George

    2007-01-01

    Just how simple are simple machines? With our ready-to-use resource, they are simple to teach and easy to learn! Chocked full of information and activities, we begin with a look at force, motion and work, and examples of simple machines in daily life are given. With this background, we move on to different kinds of simple machines including: Levers, Inclined Planes, Wedges, Screws, Pulleys, and Wheels and Axles. An exploration of some compound machines follows, such as the can opener. Our resource is a real time-saver as all the reading passages, student activities are provided. Presented in s

  15. Spatially and Temporally Resolved Atomic Oxygen Measurements in Short Pulse Discharges by Two Photon Laser Induced Fluorescence

    Science.gov (United States)

    Lempert, Walter; Uddi, Mruthunjaya; Mintusov, Eugene; Jiang, Naibo; Adamovich, Igor

    2007-10-01

    Two Photon Laser Induced Fluorescence (TALIF) is used to measure time-dependent absolute oxygen atom concentrations in O2/He, O2/N2, and CH4/air plasmas produced with a 20 nanosecond duration, 20 kV pulsed discharge at 10 Hz repetition rate. Xenon calibrated spectra show that a single discharge pulse creates initial oxygen dissociation fraction of ˜0.0005 for air like mixtures at 40-60 torr total pressure. Peak O atom concentration is a factor of approximately two lower in fuel lean (φ=0.5) methane/air mixtures. In helium buffer, the initially formed atomic oxygen decays monotonically, with decay time consistent with formation of ozone. In all nitrogen containing mixtures, atomic oxygen concentrations are found to initially increase, for time scales on the order of 10-100 microseconds, due presumably to additional O2 dissociation caused by collisions with electronically excited nitrogen. Further evidence of the role of metastable N2 is demonstrated from time-dependent N2 2^nd Positive and NO Gamma band emission spectroscopy. Comparisons with modeling predictions show qualitative, but not quantitative, agreement with the experimental data.

  16. Development of a passive air sampler to measure airborne organophosphorus pesticides and oxygen analogs in an agricultural community.

    Science.gov (United States)

    Armstrong, Jenna L; Yost, Michael G; Fenske, Richard A

    2014-09-01

    Organophosphorus pesticides are some of the most widely used insecticides in the US, and spray drift may result in human exposures. We investigate sampling methodologies using the polyurethane foam passive air sampling device to measure cumulative monthly airborne concentrations of OP pesticides chlorpyrifos, azinphos-methyl, and oxygen analogs. Passive sampling rates (m(3)d(-1)) were determined using calculations using chemical properties, loss of depuration compounds, and calibration with side-by-side active air sampling in a dynamic laboratory exposure chamber and in the field. The effects of temperature, relative humidity, and wind velocity on outdoor sampling rates were examined at 23 sites in Yakima Valley, Washington. Indoor sampling rates were significantly lower than outdoors. Outdoor rates significantly increased with average wind velocity, with high rates (>4m(3)d(-1)) observed above 8ms(-1). In exposure chamber studies, very little oxygen analog was observed on the PUF-PAS, yet substantial amounts chlorpyrifos-oxon and azinphos methyl oxon were measured in outdoor samples. PUF-PAS is a practical and useful alternative to AAS because it results in little artificial transformation to the oxygen analog during sampling, it provides cumulative exposure estimates, and the measured sampling rates were comparable to rates for other SVOCs. It is ideal for community based participatory research due to low subject burden and simple deployment in remote areas.

  17. Adaptation of the "Dynamic Method" for measuring the specific respiration rate in oxygen transfer systems through diffusion membrane.

    Science.gov (United States)

    Pamboukian, Marilena Martins; Pereira, Carlos Augusto; Augusto, Elisabeth de Fatima Pires; Tonso, Aldo

    2011-12-01

    Monitoring the specific respiration rate (Q(O2)) is a valuable tool to evaluate cell growth and physiology. However, for low Q(O2) values the accuracy may depend on the measurement methodology, as it is the case in animal cell culture. The widely used "Dynamic Method" imposes serious difficulties concerning oxygen transfer cancellation, especially through membrane oxygenation. This paper presents an improved procedure to this method, through an automated control of the gas inlet composition that can minimize the residual oxygen transfer driving force during the Q(O2) measurement phase. The improved technique was applied to animal cell cultivation, particularly three recombinant S2 (Drosophila melanogaster) insect cell lines grown in a membrane aeration bioreactor. The average measurements of the proposed method reached 98% of stationary liquid phase balance method, taken as a reference, compared to 21% when the traditional method was used. Furthermore, this methodology does not require knowledge of the volumetric transfer coefficient k(L)a, which may vary during growth.

  18. 对数控机床在线测量进行误差分析%Error Analysis of CNC Machine Tools Online Measurement

    Institute of Scientific and Technical Information of China (English)

    于佃清

    2015-01-01

    The paper split CNC machine tools online measurement system into 2 parts for optimizing online measurement system, CNC machine tools body and probe measurement system. According to the analysis of the structure and working principle of CNC machine tools online system, the structure composition and measurement principle of the probe system were analysed, then the error sources and characters as well.%本文为优化数控机床在线测量系统,将数控机床在线测量系统拆分为数控机床本体和测头测量系统两部分,通过对数控机床在线系统的结构组成和工作原理分析,再对测头系统的结构组成及测量原理分析,然后对其开展深层次的分析误差来源及性质.以期能够为数控机床在线测量有效优化提供有价值的参考依据.

  19. Effects of nicotinamide and carbogen on oxygenation in human tumor xenografts measured with luminescense based fiber-optic probes.

    Science.gov (United States)

    Bussink, J; Kaanders, J H; Strik, A M; van der Kogel, A J

    2000-10-01

    In head and neck cancer, addition of both carbogen breathing and nicotinamide to accelerated fractionated radiotherapy showed increased loco-regional control rates. An assay based on the measurement of changes in tumor pO(2) in response to oxygenation modification could be helpful for selecting patients for these new treatment approaches. The fiber-optic oxygen-sensing device, OxyLite, was used to measure changes in pO(2), at a single position in tumors, after treatment with nicotinamide and carbogen in three human xenograft tumor lines with different vascular architecture and hypoxic patterns. Pimonidazole was used as a marker of hypoxia and was analyzed with a digital image processing system. At the position of pO(2) measurement, half of the tumors showed a local increase in pO(2) after nicotinamide administration. Steep increases in pO(2) were measured in most tumors during carbogen breathing although the increase was less pronounced in tumor areas with a low pre-treatment pO(2). A trend towards a faster local response to carbogen breathing for nicotinamide pre-treated tumors was found in all three lines. There were significant differences in hypoxic fractions, based on pimonidazole binding, between the three tumor lines. There was no correlation between hypoxic marker binding and the response to carbogen breathing. Temporal changes in local pO(2) can be measured with the OxyLite. This system was used to quantitate the effects of oxygen modifying treatments. Rapid increases in pO(2) during carbogen breathing were observed in most tumor areas. The locally measured response to nicotinamide was smaller and more variable. Bio-reductive hypoxic cell marker binding in combination with OxyLite pO(2) determination gives spatial information about the distribution patterns of tumor hypoxia at the microscopic level together with the possibility to continuously measure changes in pO(2) in specific tumor areas.

  20. Measurement of the quasi-elastic axial vector mass in neutrino-oxygen interactions

    CERN Document Server

    Gran, R; Bóna, M; Boutigny, D; Couderc, F; Karyotakis, Yu; Lees, J P; Poireau, V; Tisserand, V; Zghiche, A; Graugès-Pous, E; Palano, A; Pappagallo, M; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Battaglia, M; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Groysman, Y; Jacobsen, R G; Kadyk, J A; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Wenzel, W A; Barrett, M; Ford, K E; Harrison, T J; Hart, A J; Hawkes, C M; Morgan, S E; Watson, A T; Goetzen, K; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schröder, T; Steinke, M; Boyd, J T; Burke, J P; Cottingham, W N; Walker, D; Çuhadar-Dönszelmann, T; Fulsom, B G; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Khan, A; Kyberd, P; Saleem, M; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, Yu K; Best, D S; Bondioli, M; Bruinsma, M; Chao, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M A; Mommsen, R K; Röthel, W; Stoker, D P; Abachi, S; Buchanan, C; Foulkes, S D; Gary, J W; Long, O; Shen, B C; Wang, K; Zhang, L; Hadavand, H K; Hill, E J; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Kovalskyi, D; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Nesom, G; Schalk, T; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dvoretskii, A; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Andreassen, R; Mancinelli, G; Meadows, B T; Sokoloff, M D; Blanc, F; Bloom, P C; Chen, S; Ford, W T; Hirschauer, J F; Kreisel, A; Nauenberg, U; Olivas, A; Ruddick, W O; Smith, J G; Ulmer, K A; Wagner, S R; Zhang, J; Chen, A; Eckhart, E A; Soffer, A; Toki, W H; Wilson, R J; Winklmeier, F; Zeng, Q; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Spaan, B; Brandt, T; Klose, V; Lacker, H M; Mader, W F; Nogowski, R; Petzold, A; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Volk, A; Bernard, D; Bonneaud, G R; Grenier, P; Latour, E; Thiebaux, C; Verderi, M; Bard, D J; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Robertson, A I; Xie, Y; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Prencipe, E; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; De Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Lo Vetere, M; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Brandenburg, G; Chaisanguanthum, K S; Morii, M; Wu, J; Dubitzky, R S; Marks, J; Schenk, S; Uwer, U; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Flack, R L; Gaillard, J R; Nash, J A; Nikolich, M B; Panduro-Vazquez, W; Chai, X; Charles, M J; Mallik, U; Meyer, N T; Ziegler, V; Cochran, J; Crawley, H B; Dong, L; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gritsan, A V; Fritsch, M; Schott, G; Arnaud, N; Davier, M; Grosdidier, G; Höcker, A; Le Diberder, F R; Lepeltier, V; Lutz, A M; Oyanguren, A; Pruvot, S; Rodier, S; Roudeau, P; Schune, M H; Stocchi, A; Wang, W F; Wormser, G; Cheng, C H; Lange, D J; Wright, D M; Chavez, C A; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; George, K A; Hutchcroft, D E; Payne, D J; Schofield, K C; Touramanis, C; Bevan, A J; Di Lodovico, F; Menges, W; Sacco, R; Brown, C L; Cowan, G; Flächer, H U; Hopkins, D A; Jackson, P S; McMahon, T R; Ricciardi, S; Salvatore, F; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Chia, Y M; Edgar, C L; Kelly, M P; Lafferty, G D; Naisbit, M T; Williams, J C; Yi, J I; Chen, C; Hulsbergen, W D; Jawahery, A; Lae, C K; Roberts, D A; Simi, G; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Li, X; Moore, T B; Saremi, S; Stängle, H; Willocq, S Y; Cowan, R; Koeneke, K; Sciolla, G; Sekula, S J; Spitznagel, M; Taylor, F; Yamamoto, R K; Kim, H; Patel, P M; Potter, C T; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Simard, M; Taras, P; Viaud, F B; Nicholson, H; Cavallo, N; De Nardo, Gallieno; Del Re, D; Fabozzi, F; Gatto, C; Lista, L; Monorchio, D; Piccolo, D; Sciacca, C; Baak, M; Bulten, H; Raven, G; Snoek, H L; Jessop, C P; LoSecco, J M; Allmendinger, T; Benelli, G; Gan, K K; Honscheid, K; Hufnagel, D; Jackson, P D; Kagan, H; Kass, R; Pulliam, T; Rahimi, A M; Ter-Antonian, R; Wong, Q K; Blount, N L; Brau, J E; Frey, R; Igonkina, O; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Galeazzi, F; Gaz, A; Margoni, M; Morandin, M; Pompili, A; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Benayoun, M; Chauveau, J; David, P; Del Buono, L; La Vaissière, C de; Hamon, O; Hartfiel, B L; John, M J J; Leruste, P; Malcles, J; Ocariz, J; Roos, L; Therin, G; Behera, P K; Gladney, L; Panetta, J; Biasini, M; Covarelli, R; Pioppi, M; Angelini, C; Batignani, G; Bettarini, S; Bucci, F; Calderini, G; Carpinelli, M; Cenci, R; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Mazur, M A; Morganti, M; Neri, N; Paoloni, E; Rizzo, G; Walsh, J; Haire, M; Judd, D; Wagoner, D E; Biesiada, J; Danielson, N; Elmer, P; Lau, Y P; Lü, C; Olsen, J; Smith, A J S; Telnov, A V; Bellini, F; Cavoto, G; D'Orazio, A; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Li Gioi, L; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Safai-Tehrani, F; Voena, C; Ebert, M; Schröder, H; Waldi, R; Adye, T; De Groot, N; Franek, B; Olaiya, E O; Wilson, F F; Emery, S; Gaidot, A; Ganzhur, S F; Hamel de Monchenault, G; Kozanecki, Witold; Legendre, M; Mayer, B; Vasseur, G; Yéche, C; Zito, M; Park, W; Purohit, M V; Weidemann, A W; Wilson, J R; Allen, M T; Aston, D; Bartoldus, R; Bechtle, P; Berger, N; Boyarski, A M; Claus, R; Coleman, J P; Convery, M R; Cristinziani, M; Dingfelder, J C; Dong, D; Dorfan, J; Dubois-Felsmann, G P; Dujmic, D; Dunwoodie, W M; Field, R C; Glanzman, T; Gowdy, S J; Graham, M T; Halyo, V; Hast, C; Hrynóva, T; Innes, W R; Kelsey, M H; Kim, P; Kocian, M L; Leith, D W G S; Li, S; Libby, J; Luitz, S; Lüth, V; Lynch, H L; MacFarlane, D B; Marsiske, H; Messner, R; Müller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Stelzer, J; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Vavra, J; Van Bakel, N; Weaver, M; Weinstein, A J R; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Yi, K; Young, C C; Burchat, P R; Edwards, A J; Majewski, S A; Petersen, B A; Roat, C; Wilden, L; Ahmed, S; Alam, M S; Bula, R; Ernst, J A; Jain, V; Pan, B; Saeed, M A; Wappler, F R; Zain, S B; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Ritchie, J L; Satpathy, A; Schilling, C J; Schwitters, R F; Izen, J M; Kitayama, I; Lou, X C; Ye, S; Bianchi, F; Gallo, F; Gamba, D; Bomben, M; Bosisio, L; Cartaro, C; Cossutti, F; Della Ricca, G; Dittongo, S; Grancagnolo, S; Lanceri, L; Vitale, L; Azzolini, V; Martínez-Vidal, F; Banerjee, Sw; Bhuyan, B; Brown, C M; Fortin, D; Hamano, K; Kowalewski, R V; Nugent, I M; Roney, J M; Sobie, R J; Back, J J; Harrison, P F; Latham, T E; Mohanty, G B; Band, H R; Chen, X; Cheng, B; Dasu, S; Datta, M; Eichenbaum, A M; Flood, K T; Hollar, J J; Johnson, J R; Kutter, P E; Li, H; Liu, R; Mellado, B; Mihályi, A; Mohapatra, A K; Pan, Y; Pierini, M; Prepost, R; Tan, P; Wu, S L; Yu, Z; Neal, H; Back, B B

    2006-01-01

    The weak nucleon axial-vector form factor for quasi-elastic interactions is determined using neutrino interaction data from the K2K Scintillating Fiber detector in the neutrino beam at KEK. More than 12,000 events are analyzed, of which half are charged-current quasi-elastic interactions nu-mu n to mu- p occurring primarily in oxygen nuclei. We use a relativistic Fermi gas model for oxygen and assume the form factor is approximately a dipole with one parameter, the axial vector mass M_A, and fit to the shape of the distribution of the square of the momentum transfer from the nucleon to the nucleus. Our best fit result for M_A = 1.20 \\pm 0.12 GeV. Furthermore, this analysis includes updated vector form factors from recent electron scattering experiments and a discussion of the effects of the nucleon momentum on the shape of the fitted distributions.

  1. On-line technique for measuring stable oxygen and hydrogen isotopes from microliter quantities of water

    Science.gov (United States)

    Socki, R. A.; Romanek, C. S.; Gibson, E. K. Jr; Gibson EK, J. r. (Principal Investigator)

    1999-01-01

    Detailed here is a method for extracting and analyzing oxygen and hydrogen isotopes from 10 microL-sized water samples. Based on the traditional CO2-H2O equilibration technique, the oxygen isotope exchange reaction is done exclusively in sealed 6-mm (o.d.) Pyrex tubes at 25 degrees C, with full isotope exchange completed in at least 28 h. Using the same water sample employed in the 18O equilibration, D/H extractions are done in separate sealed 6-mm (o.d.) Pyrex tubes by reaction with Zn at 450 degrees C to form H2(g). Provided that a correction factor is applied to 18O analyses, accuracy and precision for both 18O and D/H are comparable to standard techniques using much larger samples.

  2. Oxygen diffusion measurements in porous media on the ISS: One piece of the puzzle for optimal root zone performance

    Science.gov (United States)

    Jones, Scott; Heinse, Robert; Or, Dani; Topham, T. Shane; Podolsky, Igor; Bingham, Gail

    Optimization of Root Zone Substrates (ORZS) are currently being researched to expand plantbased bio-regenerative life support systems. This NASA funded research investigates the effect of reduced-gravity on porous media fluid management at the root-module and pore scale, necessitated by current limitations in root zone management that may have led to stunted, often unexplained plant vigor. Among them, alterations in substrate water retention and oxygen diffusion are restraining optimal support of plant growth. Our work explores the effect of gravity on the distribution and flow of fluids in porous media. These effects demonstrate unanticipated behavior in fluid transport with fluid distribution in pursuit of a capillary equilibrium within the hysteretic, contingent energy potential of water and continuity of phases for the supply of plant resources to the root. We investigate how accounts of fluid transport are part of a larger story of fluid distribution when gravitational and capillary forces are shifting. We now have data from the International Space Station that were collected in a novel experimental setup developed and tested for measurement of oxygen diffusion in partially saturated porous media under microgravity conditions with a sealed dual-chamber diffusion cell. The experiment flew on the International Space Station between July and September 2007 as part of the ORZS- MIS experimental flight package. In comparing oxygen diffusion measurements in microgravity with earth-based data, results point to enhanced hysteresis in oxygen diffusion dependency on air-filled porosity in microgravity. This indicates altered water distribution patterns relative to earth-based measurements. Considering air invasion during drainage, we hypothesize that a critical air-filled pathway forms at higher saturation in microgravity due to the absence of hydrostatic water distribution. A shift in the critical air-filled porosity in microgravity would require adjustment in plant

  3. Localized T2 measurements using an OSIRIS-CPMG method. Application to measurements of blood oxygenation and transverse relaxation free of diffusion effect.

    Science.gov (United States)

    Girard, F; Poulet, P; Namer, I J; Steibel, J; Chambron, J

    1994-12-01

    This work presents a new method allowing localized T2 measurements, based upon the OSIRIS scheme. A train of 180 degrees pulses is applied after the OSIRIS preparation cycle, recording directly the transverse magnetization decay. The method was verified for two nuclei, 1H and 19F, with phantoms and in vivo on rats. The accuracy of the T2 values is discussed, as well as possible applications of the OSIRIS-CPMG method to proton transverse spin relaxation measurements, free of diffusion effects, and to non-invasive in vivo blood oxygenation measurements, through the use of an emulsion of perfluorooctylbromide, a blood substitute containing fluorine.

  4. Electric machine

    Science.gov (United States)

    El-Refaie, Ayman Mohamed Fawzi [Niskayuna, NY; Reddy, Patel Bhageerath [Madison, WI

    2012-07-17

    An interior permanent magnet electric machine is disclosed. The interior permanent magnet electric machine comprises a rotor comprising a plurality of radially placed magnets each having a proximal end and a distal end, wherein each magnet comprises a plurality of magnetic segments and at least one magnetic segment towards the distal end comprises a high resistivity magnetic material.

  5. Interference of heart and transcutaneous oxygen monitoring in the measurement of bioelectrical impedance analysis in preterm newborns

    Directory of Open Access Journals (Sweden)

    Viviane C. Comym

    Full Text Available Abstract Objective: To verify if the connection of electrodes for heart and transcutaneous oxygen monitoring interfere with the measurement of electrical bioimpedance in preterm newborns. Methods: This was a prospective, blinded, controlled, cross-sectional, crossover study that assessed and compared paired measures of resistance (R and reactance (Xc by BIA, obtained with and without monitoring wires attached to the preterm newborn. The measurements were performed in immediate sequence, after randomization to the presence or absence of electrodes. The sample size calculated was 114 measurements or tests with monitoring wires and 114 without monitoring wires, considering for a difference between the averages of 0.1 ohms, with an alpha error of 10% and beta error of 20%, with significance <0.05. Results: No differences were observed between the R (677.37 ± 196.07 vs. 677.46 ± 194.86 and Xc (31.15 ± 9.36 vs. 31.01 ± 9.56 values obtained with and without monitoring wires, respectively, with good correlation between them (R: 0.997 and Xc: 0.968. Conclusion: The presence of heart and/or transcutaneous oxygen monitoring wires connected to the preterm newborn did not affect the values of R or Xc measured by BIA, allowing them to be carried out in this population without risks.

  6. Tests of Machine Intelligence

    CERN Document Server

    Legg, Shane

    2007-01-01

    Although the definition and measurement of intelligence is clearly of fundamental importance to the field of artificial intelligence, no general survey of definitions and tests of machine intelligence exists. Indeed few researchers are even aware of alternatives to the Turing test and its many derivatives. In this paper we fill this gap by providing a short survey of the many tests of machine intelligence that have been proposed.

  7. The Machine within the Machine

    CERN Multimedia

    Katarina Anthony

    2014-01-01

    Although Virtual Machines are widespread across CERN, you probably won't have heard of them unless you work for an experiment. Virtual machines - known as VMs - allow you to create a separate machine within your own, allowing you to run Linux on your Mac, or Windows on your Linux - whatever combination you need.   Using a CERN Virtual Machine, a Linux analysis software runs on a Macbook. When it comes to LHC data, one of the primary issues collaborations face is the diversity of computing environments among collaborators spread across the world. What if an institute cannot run the analysis software because they use different operating systems? "That's where the CernVM project comes in," says Gerardo Ganis, PH-SFT staff member and leader of the CernVM project. "We were able to respond to experimentalists' concerns by providing a virtual machine package that could be used to run experiment software. This way, no matter what hardware they have ...

  8. Airborne Measurements of Atmospheric Pressure made Using an IPDA Lidar Operating in the Oxygen A-Band

    Science.gov (United States)

    Riris, Haris; Abshire, James B.; Stephen, Mark; Rodriquez, Michael; Allan, Graham; Hasselbrack, William; Mao, Jianping

    2012-01-01

    We report airborne measurements of atmospheric pressure made using an integrated path differential absorption (IPDA) lidar that operates in the oxygen A-band near 765 nm. Remote measurements of atmospheric temperature and pressure are needed for NASA s Active Sensing of CO2 Emissions Over Nights, Days, and Seasons (ASCENDS) mission to measure atmospheric CO2. Accurate measurements of tropospheric CO2 on a global scale are very important in order to better understand its sources and sinks and to improve our predictions of climate change. The goal of ASCENDS is to determine the CO2 dry mixing ratio with lidar measurements from space at a level of 1 ppm. Analysis to date shows that with current weather models, measurements of both the CO2 column density and the column density of dry air are needed. Since O2 is a stable molecule that uniformly mixed in the atmosphere, measuring O2 absorption in the atmosphere can be used to infer the dry air density. We have developed an airborne (IPDA) lidar for Oxygen, with support from the NASA ESTO IIP program. Our lidar uses DFB-based seed laser diodes, a pulsed modulator, a fiber laser amplifier, and a non-linear crystal to generate wavelength tunable 765 nm laser pulses with a few uJ/pulse energy. The laser pulse rate is 10 KHz, and average transmitted laser power is 20 mW. Our lidar steps laser pulses across a selected line O2 doublet near 764.7 nm in the Oxygen A-band. The direct detection lidar receiver uses a 20 cm diameter telescope, a Si APD detector in Geiger mode, and a multi-channel scalar to detect and record the time resolved laser backscatter in 40 separate wavelength channels. Subsequent analysis is used to estimate the transmission line shape of the doublet for the laser pulses reflected from the ground. Ground based data analysis allows averaging from 1 to 60 seconds to increase SNR in the transmission line shape of the doublet. Our retrieval algorithm fits the expected O2 lineshapes against the measurements and

  9. Transcutaneous oxygen pressure. An effective measure for prosthesis fitting on below-knee amputations.

    Science.gov (United States)

    Casillas, J M; Michel, C; Aurelle, B; Becker, F; Marcer, I; Schultz, S; Didier, J P

    1993-02-01

    After amputation for arterial occlusive disease of the lower limbs, healing and local adaptation to a prosthesis depend on the oxygen ratio in the tissue. Transcutaneous oxygen tension (TcPO2) is a noninvasive microcirculatory exploration. Forty six below-knee stumps were selected without any prosthetic problem excepting vascular, with a follow-up mean duration of 23 months. They were classified into different prosthetic categories. The first was the worst because it required further amputation on the thigh and the fourth the best, which displayed complete adaptation to a socket contact. These groups were related to their TcPO2 values on the anterior and exterior face of the stumps in both reclined and seated positions. It seems that it is impossible to achieve healing when the TcPO2 value is lower than 15 mm Hg in lying position. However, healing is possible above 20 mm Hg but socket contact is not possible when TcPO2 values are under 40 mm Hg. When TcPO2 values are above 40 mm Hg, a good prosthesis fitting is possible when no problems are encountered other than vascular ones.

  10. The use of visible light spectroscopy to measure tissue oxygenation in free flap reconstruction.

    Science.gov (United States)

    Cornejo, Agustin; Rodriguez, Thomas; Steigelman, Megan; Stephenson, Stacy; Sahar, David; Cohn, Stephen M; Michalek, Joel E; Wang, Howard T

    2011-09-01

    The loss of a free flap is a feared complication for both the surgeon and the patient. Early recognition of vascular compromise has been shown to provide the best chance for flap salvage. The ideal monitoring technique for perioperative free flap ischemia would be noninvasive, continuous, and reliable. Visible light spectroscopy (VLS) was evaluated as a new method for predicting ischemia in microvascular cutaneous soft tissue free flaps. In an Institutional Review Board-approved prospective trial, 12 patients were monitored after free flap reconstructions. The tissue hemoglobin oxygen saturation (StO (2)) and total hemoglobin concentration (THB) of 12 flaps were continuously monitored using VLS for 72 hours postoperatively. Out of these 12 flaps 11 were transplanted successfully and 1 flap loss occurred. The StO (2 )was 48.99% and the THB was 46.74% for the 12 flaps. There was no significant difference in these values among the flaps. For the single flap loss, the device accurately reflected the ischemic drop in StO (2) indicating drastic tissue ischemia at 6 hours postoperatively before the disappearance of implantable Doppler signals or clinical signs of flap compromise. VLS, a continuous, noninvasive, and localized method to monitor oxygenation, appeared to predict early ischemic complications after free flap reconstruction.

  11. Episodes of apnea and bradycardia in the preterm newborn: impact on cerebral oxygenation measured by near-infrared spectrophotometry

    Science.gov (United States)

    Van Huffel, Sabine; Craemers, Johan; Lenaerts, Bart; Daniels, Hans; Naulaers, Gunnar; Casaer, Paul

    1998-12-01

    The objective of this study is to evaluate the effect of episodes of apneas and/or mild bradycardia (heart rate decreases of 10 to 20% or more) on cerebral oxyhemoglobin (HbO2) and reduced hemoglobin (Hb) concentration as measured by Near Infrared Spectrophotometry (NIRS). Measurements were carried out on 7 preterm infants who experienced apneic and bradycardiac events. It is shown how to characterize these events using time-frequency analysis. In addition to NIRS (performed with a NIRO-500 from Hamamatsu, Japan), the heart rate, ECG, peripheral arterial oxygen saturation (measured at the foot) and respiration (abdominal and thoracic pressure, and nasal airflow) were continuously recorded. The impact of apneic events and periodic breathing on these measurements reveals the clinical relevance of NIRS. In particular, we investigate whether these changes in heart rate and respiration also influence HbO2 and reduced Hb concentration in neonatal brain. These changes are characterized, as well as their relationships with the other simultaneously recorded signals such as peripheral arterial oxygen saturation.

  12. Validation and calibration of a TDLAS oxygen sensor for in-line measurement on flow-packed products

    Science.gov (United States)

    Cocola, L.; Fedel, M.; Allermann, H.; Landa, S.; Tondello, G.; Bardenstein, A.; Poletto, L.

    2016-05-01

    A device based on Tunable Diode Laser Absorption Spectroscopy has been developed for non-invasive evaluation of gaseous oxygen concentration inside packed food containers. This work has been done in the context of the SAFETYPACK European project in order to enable full, automated product testing on a production line. The chosen samples at the end of the manufacturing process are modified atmosphere bags of processed mozzarella, in which the target oxygen concentration is required to be below 5%. The spectrometer allows in-line measurement of moving samples which are passing on a conveyor belt, with an optical layout optimized for bags made of a flexible scattering material, and works by sensing the gas phase in the headspace at the top of the package. A field applicable method for the calibration of this device has been identified and validated against traditional, industry standard, invasive measurement techniques. This allows some degrees of freedom for the end-user regarding packaging dimensions and shape. After deployment and setup of the instrument at the end-user manufacturing site, performance has been evaluated on a different range of samples in order to validate the choice of electro optical and geometrical parameters regarding sample handling and measurement timing at the actual measurement conditions.

  13. The tabletting machine as an analytical instrument: qualification of the measurement devices for punch forces and validation of the calibration procedures.

    Science.gov (United States)

    Belda, P M; Mielck, J B

    1998-11-01

    The quality of force measurement in an eccentric tabletting machine equipped with piezo-electric load washers mounted under pre-stress at the upper and lower punches, and the reliability of their calibration in situ and under working conditions were carefully investigated, since this tabletting machine is used as an 'analytical instrument' for the evaluation of the compression behaviour of pharmaceutical materials. For a quasistatic calibration procedure the repeatability under standard conditions and the robustness against variations in machine settings, installation conditions, equipment and handling were evaluated. Two differently constructed reference load cells equipped with strain gauges were used for the calibration of the upper punch sensor. The lower punch sensor was calibrated against the upper one. Except for a mechanical hysteresis, owing to uneven stress distribution over the piezo-electric sensors, the results of the quasistatic measurements are assessed to be satisfactory. In addition, dynamic calibrations were performed. One of the strain-gauged load cells was used in addition to two piezo-electric load washers installed without pre-stress. The dynamic behaviour of all the transducers used is deficient. While for the piezo-electric sensors a significant change in the slope of the calibration function with respect to the quasistatic behaviour was observed, for the strain-gauged load cell a pronounced hysteresis must be noted. Comparing the dynamic behaviour at different profiles of rates of force development generated by variations in machine speed and by maximum force setting, the variability in the sensitivity of the upper and lower punch piezo-electric load washers is comparatively small.

  14. Origin of magnetite in oxidized CV chondrites: in situ measurement of oxygen isotope compositions of Allende magnetite and olivine.

    Science.gov (United States)

    Choi, B G; McKeegan, K D; Leshin, L A; Wasson, J T

    1997-01-01

    Magnetite in the oxidized CV chondrite Allende mainly occurs as spherical nodules in porphyritic-olivine (PO) chondrules, where it is associated with Ni-rich metal and/or sulfides. To help constrain the origin of the magnetite, we measured oxygen isotopic compositions of magnetite and coexisting olivine grains in PO chondrules of Allende by an in situ ion microprobe technique. Five magnetite nodules form a relatively tight cluster in oxygen isotopic composition with delta 18O values from -4.8 to -7.1% and delta 17O values from -2.9 to -6.3%. Seven coexisting olivine grains have oxygen isotopic compositions from -0.9 to -6.3% in delta 18O and from -4.6 to -7.9% in delta 17O. The delta 17O values of the magnetite and coexisting olivine do not overlap; they range from -0.4 to -2.6%, and from -4.0 to -5.7%, respectively. Thus, the magnetite is not in isotopic equilibrium with the olivine in PO chondrules, implying that it formed after the chondrule formation. The delta 17O of the magnetite is somewhat more negative than estimates for the ambient solar nebula gas. We infer that the magnetite formed on the parent asteroid by oxidation of metal by H2O which had previously experienced minor O isotope exchange with fine-grained silicates.

  15. Experimental measurement of the electrical conductivity of single crystal olivine at high temperature and high pressure under different oxygen fugacities

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    At 1.0-4.0 GPa and 1123-1473 K and under oxygen fugacity-controlled conditions (Ni + NiO, Fe + Fe3O4, Fe +FeO and Mo + MoO2 buffers), a YJ-3000t Model six-anvil solid high-pressure apparatus and a Sarltron-1260 Impedance/Gain-Phase analyzer were employed to conduct an in situ measurement of the electrical conductivity of single crystal olivine. Experimental results showed that: (1) within the range of experimentally selected frequencies (103-106 Hz), the electrical conductivity of the sample is of great dependence on the frequency; (2) with the rise of temperature (T), the electrical conductivity (σ) will increase, and the Arrenhius linear relationship is established between lgσ and 1/T; (3) under the control of oxygen buffer Fe + Fe3O4, with the rise of pressure, the electrical conductivity tends to decrease whereas the activation enthalpy and independent-of-temperature preexponential factor tend to increase,with the activation energy and activation volume of the sample estimated at ( 1.25 ± 0.08) eV and (0. 105 ± 0. 025) cm3/mol, respectively; (4) under given pressure and temperature conditions, the electrical conductivity tends to increase whereas the activation energy tends to decrease with increasing oxygen fugacity; and (5) the mechanism of electrical conduction of small polarons can provide insight into the behavior of electrical conduction of olivine under high pressure and high temperature.

  16. Measurements of vertical distributions of bromine oxide, iodine oxide, oxygenated hydrocarbons and ozone over the Eastern Tropical Pacific Ocean

    Science.gov (United States)

    Volkamer, R. M.; Baidar, S.; Dix, B. K.; Apel, E. C.; Hornbrook, R. S.; Pierce, B.; Gao, R.

    2012-12-01

    As part of the Tropical Ocean tRoposphere Exchange of Reactive halogen species and Oxygenated VOC (TORERO) field experiment 17 research flights were conducted with the NSF/NCAR GV aircraft equipped with a combination of chemical in-situ sensors, and remote sensing instruments to characterize air-sea exchange of reactive halogen species, oxygenated hydrocarbons, and aerosols, and their transport into the free troposphere, over different ocean environments of the Humboldt current in the Eastern Tropical Pacific Ocean (42S to 14N Lat.; 70W to 105W Long.). This presentation presents measurements of the spatial distributions of halogen oxide radicals, oxygenated hydrocarbons, and discusses their impact on ozone destruction rates, and the oxidation of atmospheric mercury. Air mass history is assessed by means of the Real-time Air Quality Modeling System (RAQMS), a global meteorological, chemical and aerosol assimilation/forecasting system that assimilates real-time stratospheric ozone retrievals from the Microwave Limb Sounder (MLS), total column ozone from the Ozone Monitoring Instrument (OMI), and aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS). Reactive halogen species and organic carbon are important in the atmosphere, because they modify HOx radical abundances, influence the reactive chemistry and lifetime of climate active gases (e.g., ozone, methane, dimethyl sulfide), modify aerosol-cloud interactions; halogen radicals can further oxidize atmospheric mercury.

  17. The collaboration of Antoine and Marie-Anne Lavoisier and the first measurements of human oxygen consumption.

    Science.gov (United States)

    West, John B

    2013-12-01

    Antoine Lavoisier (1743-1794) was one of the most eminent scientists of the late 18th century. He is often referred to as the father of chemistry, in part because of his book Elementary Treatise on Chemistry. In addition he was a major figure in respiratory physiology, being the first person to recognize the true nature of oxygen, elucidating the similarities between respiration and combustion, and making the first measurements of human oxygen consumption under various conditions. Less well known are the contributions made by his wife, Marie-Anne Lavoisier. However, she was responsible for drawings of the experiments on oxygen consumption when the French revolution was imminent. These are of great interest because written descriptions are not available. Possible interpretations of the experiments are given here. In addition, her translations from English to French of papers by Priestley and others were critical in Lavoisier's demolition of the erroneous phlogiston theory. She also provided the engravings for her husband's textbook, thus documenting the extensive new equipment that he developed. In addition she undertook editorial work, for example in preparing his posthumous memoirs. The scientific collaboration of this husband-wife team is perhaps unique among the giants of respiratory physiology.

  18. Machine Learning

    CERN Document Server

    CERN. Geneva

    2017-01-01

    Machine learning, which builds on ideas in computer science, statistics, and optimization, focuses on developing algorithms to identify patterns and regularities in data, and using these learned patterns to make predictions on new observations. Boosted by its industrial and commercial applications, the field of machine learning is quickly evolving and expanding. Recent advances have seen great success in the realms of computer vision, natural language processing, and broadly in data science. Many of these techniques have already been applied in particle physics, for instance for particle identification, detector monitoring, and the optimization of computer resources. Modern machine learning approaches, such as deep learning, are only just beginning to be applied to the analysis of High Energy Physics data to approach more and more complex problems. These classes will review the framework behind machine learning and discuss recent developments in the field.

  19. Real-time In Situ Electron Spin Resonance Measurements on Fungal Spores of Penicillium digitatum during Exposure of Oxygen Plasmas

    CERN Document Server

    Ishikawa, Kenji; Tanaka, Hiromasa; Tamiya, Kazuhiro; Hashizume, Hiroshi; Ohta, Takayuki; Ito, Masafumi; Iseki, Sachiko; Takeda, Keigo; Kondo, Hiroki; Sekine, Makoto; Hori, Masaru

    2012-01-01

    We report the kinetic analysis of free radicals on fungal spores of Penicillium digitatum interacted with atomic oxygen generated plasma electric discharge using real time in situ electron spin resonance (ESR) measurements. We have obtained information that the ESR signal from the spores was observed and preliminarily assignable to semiquinone radical with a g-value of around 2.004 and a line width of approximately 5G. The decay of the signal is possibly linked to the inactivation of the fungal spore. The real-time in situ ESR has proven to be a useful method to elucidate plasma-induced surface reactions on biological specimens.

  20. Real-time in situ electron spin resonance measurements on fungal spores of Penicillium digitatum during exposure of oxygen plasmas

    Science.gov (United States)

    Ishikawa, Kenji; Mizuno, Hiroko; Tanaka, Hiromasa; Tamiya, Kazuhiro; Hashizume, Hiroshi; Ohta, Takayuki; Ito, Masafumi; Iseki, Sachiko; Takeda, Keigo; Kondo, Hiroki; Sekine, Makoto; Hori, Masaru

    2012-07-01

    We report the kinetic analysis of free radicals on fungal spores of Penicillium digitatum interacted with atomic oxygen generated plasma electric discharge using real time in situ electron spin resonance (ESR) measurements. We have obtained information that the ESR signal from the spores was observed and preliminarily assignable to semiquinone radical with a g-value of around 2.004 and a line width of approximately 5G. The decay of the signal is possibly linked to the inactivation of the fungal spore. The real-time in situ ESR has proven to be a useful method to elucidate plasma-induced surface reactions on biological specimens.

  1. AquaResp® - free open-source software for measuring oxygen consumption of resting aquatic animals

    DEFF Research Database (Denmark)

    Steffensen, John Fleng

    2012-01-01

    Soc for experimental Biol Annual Meeting - Salzburg 2012 Morten Bo S. Svendsen (University of Copenhagen, Denmark), Peter V. Skov (Technical University of Denmark, Denmark), Peter G .Bushnell (Indiana University South Bend, Indiana) and John F. Steffensen (University of Copenhagen, Denmark) Aqua......Resp" is a free open-source software program developed to measure the oxygen consumption of aquatic animals using intermittent flow techniques. This free program is based on Microsoft Excel, and uses the MCC Universal Library and a data acquisition board to acquire analogue readings from up to four input ports...

  2. AquaResp® — free open-source software for measuring oxygen consumption of resting aquatic animals

    DEFF Research Database (Denmark)

    Svendsen, Morten Bo S.; Skov, Peter Vilhelm; Bushnell, Peter G.

    AquaResp® is a free open-source software program developed to measure the oxygen consumption of aquatic animals using intermittent flow techniques. This free program is based on Microsoft Excel, and uses the MCC Universal Library and a data acquisition board to acquire analogue readings from up...... manufacturers. AquaResp was developed with the intention of automating data acquisition and control by programming in commonly-available software (Microsoft Excel) and allowing customization by the user without restrictions. The program has been tested in different laboratories for an extended period...

  3. Development of a reflected optical fiber system for measuring oxygen saturation in an integrated artificial heart-lung system.

    Science.gov (United States)

    Yasuda, Toshitaka; Saito, Tomohiko; Kihara, Tatsuya; Takatani, Setsuo; Funakubo, Akio

    2008-03-01

    The purpose of this study was to develop a blood oxygen saturation (OS) monitoring system for use with an integrated artificial heart-lung system (IAHLS). The OS monitoring system consists of two paired optical fiber probes (OFPs) and a measurement system. To investigate the effect of the OFP configuration and incident light wavelength on the relationship between OS and the reflectance ratio for wavelengths of 810 and 645 nm, we performed theoretical analyses of the relationship between OS and R810/R645 using a diffusion equation. The prototype OFP located on the blood outlet port of our IAHLS housing was evaluated using an in vitro test. An OS range of 65-100% was adjusted to supply oxygen and nitrogen gas to the IAHLS. The blood flow rate was maintained at 3 L/min by the rotational speed of an impeller in the IAHLS. The OS-corrected blood from the IAHLS was measured using a commercial gas analyzer. The correlation coefficients (r(2)) between the theoretical ratio of R810/R645 and OS, and between measured OS and the reflectance ratio of R810/R645 were 0.97 and 0.78, respectively. In conclusion, we confirmed that the development of this oximetry system is applicable for IAHLS.

  4. End-ischemic machine perfusion reduces bile duct injury in donation after circulatory death rat donor livers independent of the machine perfusion temperature.

    Science.gov (United States)

    Westerkamp, Andrie C; Mahboub, Paria; Meyer, Sophie L; Hottenrott, Maximilia; Ottens, Petra J; Wiersema-Buist, Janneke; Gouw, Annette S H; Lisman, Ton; Leuvenink, Henri G D; Porte, Robert J

    2015-10-01

    A short period of oxygenated machine perfusion (MP) after static cold storage (SCS) may reduce biliary injury in donation after cardiac death (DCD) donor livers. However, the ideal perfusion temperature for protection of the bile ducts is unknown. In this study, the optimal perfusion temperature for protection of the bile ducts was assessed. DCD rat livers were preserved by SCS for 6 hours. Thereafter, 1 hour of oxygenated MP was performed using either hypothermic machine perfusion, subnormothermic machine perfusion, or with controlled oxygenated rewarming (COR) conditions. Subsequently, graft and bile duct viability were assessed during 2 hours of normothermic ex situ reperfusion. In the MP study groups, lower levels of transaminases, lactate dehydrogenase (LDH), and thiobarbituric acid reactive substances were measured compared to SCS. In parallel, mitochondrial oxygen consumption and adenosine triphosphate (ATP) production were significantly higher in the MP groups. Biomarkers of biliary function, including bile production, biliary bicarbonate concentration, and pH, were significantly higher in the MP groups, whereas biomarkers of biliary epithelial injury (biliary gamma-glutamyltransferase [GGT] and LDH), were significantly lower in MP preserved livers. Histological analysis revealed less injury of large bile duct epithelium in the MP groups compared to SCS. In conclusion, compared to SCS, end-ischemic oxygenated MP of DCD livers provides better preservation of biliary epithelial function and morphology, independent of the temperature at which MP is performed. End-ischemic oxygenated MP could reduce biliary injury after DCD liver transplantation. © 2015 American Association for the Study of Liver Diseases.

  5. [Application of infrared spectroscopy technique to protein content fast measurement in milk powder based on support vector machines].

    Science.gov (United States)

    Wu, Di; Cao, Fang; Feng, Shui-Juan; He, Yong

    2008-05-01

    In the present study, the JASCO Model FTIR-4 000 fourier transform infrared spectrometer (Japan) was used, with a valid range of 7 800-350 cm(-1). Seven brands of milk powder were bought in a local supermarket. Milk powder was compressed into a uniform tablet with a diameter of 5 mm and a thickness of 2 mm, and then scanned by the spectrometer. Each sample was scanned 40 times and the data were averaged. About 60 samples were measured for each brand, and data for 409 samples were obtained. NIRS analysis was based on the range of 4 000 to 6 666 cm(-1), while MIRS analysis was between 400 and 4 000 cm(-1). The protein content was determined by kjeldahl method and the factor 6.38 was used to convert the nitrogen values to protein. The protein content value is the weight of protein per 100 g of milk powder. The NIR data of the milk powder exhibited slight differences. Univariate analysis was not really appropriate for analyzing the data sets. From NIRS region, it could be observed that the trend of different curves is similar. The one around 4 312 cm(-1) embodies the vibration of protein. From MIRS region, it could be determined that there are many differences between transmission value curves. Two troughs around 1 545 and 1 656 cm(-1) stand for the vibration of amide I and II bands of protein. The smoothing way of Savitzky-Golay with 3 segments and zero polynomials and multiplicative scatter correction (MSC) were applied for denoising. First 8 important principle components (PCs), which were obtained from principle component analysis (PCA), were the optimal input feature subset. Least-squares support vector machines was applied to build the protein prediction model based on infrared spectral transmission value. The prediction result was better than that of traditional PLS regression model as the determination coefficient for prediction (R(p)2) is 0.951 7 and root mean square error for prediction (RMSEP) is 0.520 201. These indicate that LS-SVM is a powerful tool for

  6. Modelling algae growth and dissolved oxygen in the Seine River downstream the Paris urban area: contribution of high frequency measurements

    Science.gov (United States)

    Vilmin, Lauriane; Escoffier, Nicolas; Groleau, Alexis; Poulin, Michel; Flipo, Nicolas

    2014-05-01

    Dissolved oxygen is a key variable in the hydro-ecological functioning of river systems. The accurate representation of the different biogeochemical processes affecting algal blooms and dissolved oxygen in the water column in hydro-ecological models is crucial for the use of these models as reliable management tools. This study focuses on the water quality of the Seine River along a 225 km stretch, from Paris to the Seine estuary. The study area is highly urbanized and located downstream France's largest agricultural area, and therefore receives large amounts of nutrients. During the last decades, nutrient inputs have been significantly reduced, especially with the implementation of new sewage water treatment technologies. Even though the frequency and the intensity of observed algal blooms have decreased, blooms were observed in 2011 and 2012. These blooms are generally followed by a period of high organic matter accumulation, leading to high mineralization fluxes and potential oxygen depletion. The hydrodynamics and the water quality of the Seine River are simulated for the 2011-2012 period with the distributed process-based hydro-ecological model ProSe (Even et al., 1998). The simulated chlorophyll a and dissolved oxygen concentrations are compared to high frequency measurements at the Bougival monitoring station (50 km downstream from Paris), which is part of the CarboSeine monitoring network. The high frequency continuous dataset allows calibrating of primary producers' physiological parameters. New growth parameters are defined for the diatom community. The blooms occur at the end of the winter period (march 2011 and march 2012) and the optimal temperature for diatom growth is calibrated at 10°C, based on an analysis of the physiological response of the diatom community. One of the main outcomes of the modelling exercise is that the precise identification of the constituting communities of algal blooms must be achieved prior to the modelling itself. With the

  7. Oceanographic profile temperature, salinity, oxygen and other measurement collected using bottle in the Barents, Kara, Laptev, White, Norwegian Seas from 1970 - 1975 (NODC Accession 0002125)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic profile temperature, salinity, oxygen and other measurement collected using bottle in the Barents, Kara, Laptev, White, Norwegian Seas from 1970 - 1975...

  8. Oceanographic profile temperature, salinity, oxygen and other measurement collected using bottle in the Barents, Kara, Laptev, White, Norwegian Seas from 1976 - 1982 (NODC Accession 0002126)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic profile temperature, salinity, oxygen and other measurement collected using bottle in the Barents, Kara, Laptev, White, Norwegian Seas from 1976 - 1982...

  9. Oceanographic temperature, salinity, oxygen, transmissivity, and PAR measurements collected using CTD from NOAA Ship McArthur II during 2007 (NCEI Accession 0034511)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic temperature, salinity, oxygen, transmissivity, and PAR measurements collected using CTD from NOAA Ship McArthur II during 2007 as part of PACOOS.

  10. Oceanographic profile temperature, salinity, oxygen measurements collected using bottle from multiple platforms in the Azov, Black Seas from 1924-1990 (NODC Accession 0002717)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic profile temperature, salinity, oxygen measurements collected using bottle from multiple platforms in the Azov, Black Seas from 1924-1990

  11. Estimation of Biochemical Oxygen Demand Based on Dissolved Organic Carbon, UV Absorption, and Fluorescence Measurements

    Directory of Open Access Journals (Sweden)

    Jihyun Kwak

    2013-01-01

    Full Text Available Determination of 5-d biochemical oxygen demand (BOD5 is the most commonly practiced test to assess the water quality of surface waters and the waste loading. However, BOD5 is not a good parameter for the control of water or wastewater treatment processes because of its long test period. It is very difficult to produce consistent and reliable BOD5 results without using careful laboratory quality control practices. This study was performed to develop software sensors to predict the BOD5 of river water and wastewater. The software sensors were based on the multiple regression analysis using the dissolved organic carbon (DOC concentration, UV light absorbance at 254 nm, and synchronous fluorescence spectra. River water samples and wastewater treatment plant (WWTP effluents were collected at 1-hour interval to evaluate the feasibility of the software sensors. In short, the software sensors developed in this study could well predict the BOD5 of river water (r=0.78 and for the WWTP effluent (r=0.90.

  12. Continuous measurements of atmospheric oxygen and carbon dioxide on a North Sea gas platform

    NARCIS (Netherlands)

    Laan-Luijkx, I.T. van der; Neubert, R.E.M.; Laan, S. van der; Meijer, H.A.J.; Toohey, D.

    2010-01-01

    A new atmospheric measurement station has been established on the North Sea oil and gas production platform F3, 200 km north off the Dutch coast (54 degrees 51' N, 4 degrees 44' E). Atmospheric concentrations of O(2) and CO(2) are continuously measured using fuel cell technology and compact infrared

  13. Continuous measurements of atmospheric oxygen and carbon dioxide on a North Sea gas platform

    NARCIS (Netherlands)

    Laan-Luijkx, van der I.T.; Neubert, R.E.M.; Laan, van der S.; Meijer, H.A.J.

    2010-01-01

    A new atmospheric measurement station has been established on the North Sea oil and gas production platform F3, 200 km north off the Dutch coast (54°51' N, 4°44' E). Atmospheric concentrations of O2 and CO2 are continuously measured using fuel cell technology and compact infrared absorption instrume

  14. Pilot study to visualise and measure skin tissue oxygenation, erythema, total haemoglobin and melanin content using index maps in healthy controls

    Science.gov (United States)

    Poxon, Ian; Wilkinson, Jack; Herrick, Ariane; Dickinson, Mark; Murray, Andrea

    2014-02-01

    We report on a method for analysing multispectral images of skin in vivo for the measurement and visualisation of skin characteristics. Four different indices were used to characterise skin tissue oxygenation, erythema, total haemoglobin and melanin content. Index values were calculated pixel-wise and combined to create index maps to visualise skin properties. Quantitative measurement of tissue oxygenation saturation was possible by calibrating the oxygenation index using a commercial, calibrated oximeter. Index maps were tested by arterial occlusion of the index finger with multispectral images taken before, during and after occlusion in a pilot study with 10 healthy controls.

  15. Atomic oxygen in a cold argon plasma jet: TALIF spectroscopy in ambient air with modelling and measurements of ambient species diffusion

    Science.gov (United States)

    Reuter, S.; Winter, J.; Schmidt-Bleker, A.; Schroeder, D.; Lange, H.; Knake, N.; Schulz-von der Gathen, V.; Weltmann, K.-D.

    2012-04-01

    By investigating the atomic oxygen density in its effluent, two-photon absorption laser-induced fluorescence (TALIF) spectroscopy measurements are for the first time performed in a cold argon/oxygen atmospheric pressure plasma jet. The measurements are carried out in ambient air and quenching by inflowing air species is considered. We propose a novel absorption technique in the VUV spectral range, where emission originating from within the discharge is used as light source to determine the inflow of atmospheric oxygen into the effluent. Furthermore, we propose a modelling solution for the on-axis density of inflowing ambient air based on the stationary convection-diffusion equation.

  16. Measurement of the neutrino-oxygen neutral-current interaction cross section by observing nuclear deexcitation γ rays

    Science.gov (United States)

    Abe, K.; Adam, J.; Aihara, H.; Akiri, T.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Ariga, T.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bass, M.; Batkiewicz, M.; Bay, F.; Bentham, S. W.; Berardi, V.; Berger, B. E.; Berkman, S.; Bertram, I.; Bhadra, S.; Blaszczyk, F. d. M.; Blondel, A.; Bojechko, C.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Buchanan, N.; Calland, R. G.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Christodoulou, G.; Clifton, A.; Coleman, J.; Coleman, S. J.; Collazuol, G.; Connolly, K.; Cremonesi, L.; Dabrowska, A.; Danko, I.; Das, R.; Davis, S.; de Perio, P.; De Rosa, G.; Dealtry, T.; Dennis, S. R.; Densham, C.; Dewhurst, D.; Di Lodovico, F.; Di Luise, S.; Drapier, O.; Duboyski, T.; Duffy, K.; Dufour, F.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Emery-Schrenk, S.; Ereditato, A.; Escudero, L.; Finch, A. J.; Fiorentini Aguirre, G. A.; Friend, M.; Fujii, Y.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Gaudin, A.; Giffin, S.; Giganti, C.; Gilje, K.; Goeldi, D.; Golan, T.; Gomez-Cadenas, J. J.; Gonin, M.; Grant, N.; Gudin, D.; Hadley, D. R.; Haegel, L.; Haesler, A.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayato, Y.; Hearty, C.; Helmer, R. L.; Hierholzer, M.; Hignight, J.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Holeczek, J.; Horikawa, S.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Ikeda, M.; Imber, J.; Insler, J.; Irvine, T. J.; Ishida, T.; Ishii, T.; Ives, S. J.; Iwai, E.; Iwamoto, K.; Iyogi, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Johnson, R. A.; Johnson, S.; Jo, J. H.; Jonsson, P.; Jung, C. K.; Kabirnezhad, M.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Kanazawa, Y.; Karlen, D.; Karpikov, I.; Katori, T.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kilinski, A.; Kim, J.; King, S.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Koch, L.; Kolaceke, A.; Konaka, A.; Kormos, L. L.; Korzenev, A.; Koseki, K.; Koshio, Y.; Kreslo, I.; Kropp, W.; Kubo, H.; Kudenko, Y.; Kumaratunga, S.; Kurjata, R.; Kutter, T.; Lagoda, J.; Laihem, K.; Lamont, I.; Larkin, E.; Laveder, M.; Lawe, M.; Lazos, M.; Lee, K. P.; Licciardi, C.; Lindner, T.; Lister, C.; Litchfield, R. P.; Longhin, A.; Ludovici, L.; Macaire, M.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marino, A. D.; Marteau, J.; Martin, J. F.; Martynenko, S.; Maruyama, T.; Marzec, J.; Mathie, E. L.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Mefodiev, A.; Metelko, C.; Mezzetto, M.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Mine, S.; Missert, A.; Miura, M.; Monfregola, L.; Moriyama, S.; Mueller, Th. A.; Murakami, A.; Murdoch, M.; Murphy, S.; Myslik, J.; Nagasaki, T.; Nakadaira, T.; Nakahata, M.; Nakai, T.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Nantais, C.; Naples, D.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; Nowak, J.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Ovsyannikova, T.; Owen, R. A.; Oyama, Y.; Palladino, V.; Palomino, J. L.; Paolone, V.; Payne, D.; Pearce, G. F.; Perevozchikov, O.; Perkin, J. D.; Petrov, Y.; Pickard, L.; Pinzon Guerra, E. S.; Pistillo, C.; Plonski, P.; Poplawska, E.; Popov, B.; Posiadala-Zezula, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Redij, A.; Reeves, M.; Reinherz-Aronis, E.; Riccio, C.; Retiere, F.; Robert, A.; Rodrigues, P. A.; Rojas, P.; Rondio, E.; Roth, S.; Rubbia, A.; Ruterbories, D.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schoppmann, S.; Schwehr, J.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shaker, F.; Shiozawa, M.; Short, S.; Shustrov, Y.; Sinclair, P.; Smith, B.; Smith, R. J.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Still, B.; Suda, Y.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Szeglowski, T.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. K.; Tanaka, H. A.; Tanaka, M. M.; Taylor, I. J.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Tobayama, S.; Toki, W.; Tomura, T.; Totsuka, Y.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Ueno, K.; Vacheret, A.; Vagins, M.; Vasseur, G.; Wachala, T.; Waldron, A. V.; Walter, C. W.; Wark, D.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Williamson, Z.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, Y.; Yamamoto, K.; Yanagisawa, C.; Yano, T.; Yen, S.; Yershov, N.; Yokoyama, M.; Yuan, T.; Yu, M.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.; T2K Collaboration

    2014-10-01

    We report the first measurement of the neutrino-oxygen neutral-current quasielastic (NCQE) cross section. It is obtained by observing nuclear deexcitation γ rays which follow neutrino-oxygen interactions at the Super-Kamiokande water Cherenkov detector. We use T2K data corresponding to 3.01 ×1 020 protons on target. By selecting only events during the T2K beam window and with well-reconstructed vertices in the fiducial volume, the large background rate from natural radioactivity is dramatically reduced. We observe 43 events in the 4-30 MeV reconstructed energy window, compared with an expectation of 51.0, which includes an estimated 16.2 background events. The background is primarily nonquasielastic neutral-current interactions and has only 1.2 events from natural radioactivity. The flux-averaged NCQE cross section we measure is 1.55 ×1 0-38 cm2 with a 68% confidence interval of (1.22 ,2.20 )×1 0-38 cm2 at a median neutrino energy of 630 MeV, compared with the theoretical prediction of 2.01 ×1 0-38 cm2 .

  17. Reply to Nicholson's comment on "Consistent calculation of aquatic gross production from oxygen triple isotope measurements" by Kaiser (2011

    Directory of Open Access Journals (Sweden)

    J. Kaiser

    2011-10-01

    Full Text Available The comment by Nicholson (2011a questions the "consistency" of the "definition" of the "biological end-member" used by Kaiser (2011a in the calculation of oxygen gross production. "Biological end-member" refers to the relative oxygen isotope ratio difference between photosynthetic oxygen and Air-O2 (abbreviated 17δP and 18δP for 17O/16O and 18O/16O, respectively.

    This comment has no merit for the following reasons: (a the isotopic composition of photosynthetic oxygen cannot be "defined", it can only be measured, modelled or calculated based on other data; (b the isotopic composition of photosynthetic oxygen was not "defined" in Kaiser (2011a, but derived from published measurements; (c the published measurements themselves were inconsistent and no single result could be identified as best; (d since no best value could be identified, a hypothetical base case was constructed in a way that was consistent with previous publications; (e the values of 17δP=−11.646‰ and 18δP=−22.835‰ assumed for the base case are compatible with the experimental evidence published before the paper of Kaiser (2011a; (f even if the "biological end-member" was based on a definition, there could be no argument about the "consistency" of this definition – as per its nature, a definition is arbitrary.

    The qualification of base case gross production values as being "30 % too high" must therefore also be rejected. Even though recently revised measurements of the relative 17O/16O isotope ratio difference between VSMOW and Air-O2, 17δVSMOW (Barkan and Luz, 2011, do support lower estimates of gross production, our own measurements disagree with these revised 17δVSMOW values. If scaled for differences in 18

  18. Irreversible Heating Measurement with Microsecond Pulse Magnet: Example of the α-θ Phase Transition of Solid Oxygen

    Science.gov (United States)

    Nomura, Toshihiro; Matsuda, Yasuhiro H.; Takeyama, Shojiro; Kobayashi, Tatsuo C.

    2016-09-01

    Dissipation inevitably occurs in first-order phase transitions, leading to irreversible heating. Conversely, the irreversible heating effect may indicate the occurrence of the first-order phase transition. We measured the temperature change at the magnetic-field-induced α-θ phase transition of solid oxygen. A significant temperature increase from 13 to 37 K, amounting to 700 J/mol, due to irreversible heating was observed at the first-order phase transition. We argue that the hysteresis loss of the magnetization curve and the dissipative structural transformation account for the irreversible heating. The measurement of irreversible heating can be utilized to detect the first-order phase transition in combination with an ultrahigh magnetic fields generated in a time of µs order.

  19. Hydroxyl radical-PLIF measurements and accuracy investigation in high pressure gaseous hydrogen/gaseous oxygen combustion

    Science.gov (United States)

    Vaidyanathan, Aravind

    In-flow species concentration measurements in reacting flows at high pressures are needed both to improve the current understanding of the physical processes taking place and to validate predictive tools that are under development, for application to the design and optimization of a range of power plants from diesel to rocket engines. To date, non intrusive measurements have been based on calibrations determined from assumptions that were not sufficiently quantified to provide a clear understanding of the range of uncertainty associated with these measurements. The purpose of this work is to quantify the uncertainties associated with OH measurement in a oxygen-hydrogen system produced by a shear, coaxial injector typical of those used in rocket engines. Planar OH distributions are obtained providing instantaneous and averaged distribution that are required for both LES and RANS codes currently under development. This study has evaluated the uncertainties associated with OH measurement at 10, 27, 37 and 53 bar respectively. The total rms error for OH-PLIF measurements from eighteen different parameters was quantified and found as 21.9, 22.8, 22.5, and 22.9% at 10, 27, 37 and 53 bar respectively. These results are used by collaborators at Georgia Institute of Technology (LES), Pennsylvania State University (LES), University of Michigan (RANS) and NASA Marshall (RANS).

  20. Comparing measurement-derived (3DVH) and machine log file-derived dose reconstruction methods for VMAT QA in patient geometries.

    Science.gov (United States)

    Tyagi, Neelam; Yang, Kai; Yan, Di

    2014-07-08

    The purpose of this study was to compare the measurement-derived (3DVH) dose reconstruction method with machine log file-derived dose reconstruction method in patient geometries for VMAT delivery. A total of ten patient plans were selected from a regular fractionation plan to complex SBRT plans. Treatment sites in the lung and abdomen were chosen to explore the effects of tissue heterogeneity on the respective dose reconstruction algorithms. Single- and multiple-arc VMAT plans were generated to achieve the desired target objectives. Delivered plan in the patient geometry was reconstructed by using ArcCHECK Planned Dose Perturbation (ACPDP) within 3DVH software, and by converting the machine log file to Pinnacle3 9.0 treatment plan format and recalculating dose with CVSP algorithm. In addition, delivered gantry angles between machine log file and 3DVH 4D measurement were also compared to evaluate the accuracy of the virtual inclinometer within the 3DVH. Measured ion chamber and 3DVH-derived isocenter dose agreed with planned dose within 0.4% ± 1.2% and -1.0% ± 1.6%, respectively. 3D gamma analysis showed greater than 98% between log files and 3DVH reconstructed dose. Machine log file reconstructed doses and TPS dose agreed to within 2% in PTV and OARs over the entire treatment. 3DVH reconstructed dose showed an average maximum dose difference of 3% ± 1.2% in PTV, and an average mean difference of -4.5% ± 10.5% in OAR doses. The average virtual inclinometer error (VIE) was -0.65° ± 1.6° for all patients, with a maximum error of -5.16° ± 4.54° for an SRS case. The time averaged VIE was within 1°-2°, and did not have a large impact on the overall accuracy of the estimated patient dose from ACPDP algorithm. In this study, we have compared two independent dose reconstruction methods for VMAT QA. Both methods are capable of taking into account the measurement and delivery parameter discrepancy, and display the delivered dose in CT patient geometry rather than