WorldWideScience

Sample records for machine learning tool

  1. Implementing Machine Learning in the PCWG Tool

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, Andrew; Ding, Yu; Stuart, Peter

    2016-12-13

    The Power Curve Working Group (www.pcwg.org) is an ad-hoc industry-led group to investigate the performance of wind turbines in real-world conditions. As part of ongoing experience-sharing exercises, machine learning has been proposed as a possible way to predict turbine performance. This presentation provides some background information about machine learning and how it might be implemented in the PCWG exercises.

  2. Development of Machine Learning Tools in ROOT

    Science.gov (United States)

    Gleyzer, S. V.; Moneta, L.; Zapata, Omar A.

    2016-10-01

    ROOT is a framework for large-scale data analysis that provides basic and advanced statistical methods used by the LHC experiments. These include machine learning algorithms from the ROOT-integrated Toolkit for Multivariate Analysis (TMVA). We present several recent developments in TMVA, including a new modular design, new algorithms for variable importance and cross-validation, interfaces to other machine-learning software packages and integration of TMVA with Jupyter, making it accessible with a browser.

  3. Machine Learning: A Crucial Tool for Sensor Design

    Directory of Open Access Journals (Sweden)

    Weixiang Zhao

    2008-12-01

    Full Text Available Sensors have been widely used for disease diagnosis, environmental quality monitoring, food quality control, industrial process analysis and control, and other related fields. As a key tool for sensor data analysis, machine learning is becoming a core part of novel sensor design. Dividing a complete machine learning process into three steps: data pre-treatment, feature extraction and dimension reduction, and system modeling, this paper provides a review of the methods that are widely used for each step. For each method, the principles and the key issues that affect modeling results are discussed. After reviewing the potential problems in machine learning processes, this paper gives a summary of current algorithms in this field and provides some feasible directions for future studies.

  4. MLBCD: a machine learning tool for big clinical data.

    Science.gov (United States)

    Luo, Gang

    2015-01-01

    Predictive modeling is fundamental for extracting value from large clinical data sets, or "big clinical data," advancing clinical research, and improving healthcare. Machine learning is a powerful approach to predictive modeling. Two factors make machine learning challenging for healthcare researchers. First, before training a machine learning model, the values of one or more model parameters called hyper-parameters must typically be specified. Due to their inexperience with machine learning, it is hard for healthcare researchers to choose an appropriate algorithm and hyper-parameter values. Second, many clinical data are stored in a special format. These data must be iteratively transformed into the relational table format before conducting predictive modeling. This transformation is time-consuming and requires computing expertise. This paper presents our vision for and design of MLBCD (Machine Learning for Big Clinical Data), a new software system aiming to address these challenges and facilitate building machine learning predictive models using big clinical data. The paper describes MLBCD's design in detail. By making machine learning accessible to healthcare researchers, MLBCD will open the use of big clinical data and increase the ability to foster biomedical discovery and improve care.

  5. Advancing Research in Second Language Writing through Computational Tools and Machine Learning Techniques: A Research Agenda

    Science.gov (United States)

    Crossley, Scott A.

    2013-01-01

    This paper provides an agenda for replication studies focusing on second language (L2) writing and the use of natural language processing (NLP) tools and machine learning algorithms. Specifically, it introduces a range of the available NLP tools and machine learning algorithms and demonstrates how these could be used to replicate seminal studies…

  6. Advancing Research in Second Language Writing through Computational Tools and Machine Learning Techniques: A Research Agenda

    Science.gov (United States)

    Crossley, Scott A.

    2013-01-01

    This paper provides an agenda for replication studies focusing on second language (L2) writing and the use of natural language processing (NLP) tools and machine learning algorithms. Specifically, it introduces a range of the available NLP tools and machine learning algorithms and demonstrates how these could be used to replicate seminal studies…

  7. Machine Learning Tools for Geomorphic Mapping of Planetary Surfaces

    OpenAIRE

    Stepinski, Tomasz F.; Vilalta, Ricardo

    2010-01-01

    Geomorphic auto-mapping of planetary surfaces is a challenging problem. Here we have described how machine learning techniques, such as clustering or classification, can be utilized to automate the process of geomorphic mapping for exploratory and exploitation purposes. Relatively coarse resolution of planetary topographic data limits the number of features that can be used in the learning process and makes planetary auto-mapping more challenging than terrestrial auto-mapping. With this cavea...

  8. Data mining practical machine learning tools and techniques

    CERN Document Server

    Witten, Ian H

    2005-01-01

    As with any burgeoning technology that enjoys commercial attention, the use of data mining is surrounded by a great deal of hype. Exaggerated reports tell of secrets that can be uncovered by setting algorithms loose on oceans of data. But there is no magic in machine learning, no hidden power, no alchemy. Instead there is an identifiable body of practical techniques that can extract useful information from raw data. This book describes these techniques and shows how they work. The book is a major revision of the first edition that appeared in 1999. While the basic core remains the same

  9. Characterizing EMG data using machine-learning tools.

    Science.gov (United States)

    Yousefi, Jamileh; Hamilton-Wright, Andrew

    2014-08-01

    Effective electromyographic (EMG) signal characterization is critical in the diagnosis of neuromuscular disorders. Machine-learning based pattern classification algorithms are commonly used to produce such characterizations. Several classifiers have been investigated to develop accurate and computationally efficient strategies for EMG signal characterization. This paper provides a critical review of some of the classification methodologies used in EMG characterization, and presents the state-of-the-art accomplishments in this field, emphasizing neuromuscular pathology. The techniques studied are grouped by their methodology, and a summary of the salient findings associated with each method is presented.

  10. The use of machine learning and nonlinear statistical tools for ADME prediction.

    Science.gov (United States)

    Sakiyama, Yojiro

    2009-02-01

    Absorption, distribution, metabolism and excretion (ADME)-related failure of drug candidates is a major issue for the pharmaceutical industry today. Prediction of ADME by in silico tools has now become an inevitable paradigm to reduce cost and enhance efficiency in pharmaceutical research. Recently, machine learning as well as nonlinear statistical tools has been widely applied to predict routine ADME end points. To achieve accurate and reliable predictions, it would be a prerequisite to understand the concepts, mechanisms and limitations of these tools. Here, we have devised a small synthetic nonlinear data set to help understand the mechanism of machine learning by 2D-visualisation. We applied six new machine learning methods to four different data sets. The methods include Naive Bayes classifier, classification and regression tree, random forest, Gaussian process, support vector machine and k nearest neighbour. The results demonstrated that ensemble learning and kernel machine displayed greater accuracy of prediction than classical methods irrespective of the data set size. The importance of interaction with the engineering field is also addressed. The results described here provide insights into the mechanism of machine learning, which will enable appropriate usage in the future.

  11. Quantum machine learning.

    Science.gov (United States)

    Biamonte, Jacob; Wittek, Peter; Pancotti, Nicola; Rebentrost, Patrick; Wiebe, Nathan; Lloyd, Seth

    2017-09-13

    Fuelled by increasing computer power and algorithmic advances, machine learning techniques have become powerful tools for finding patterns in data. Quantum systems produce atypical patterns that classical systems are thought not to produce efficiently, so it is reasonable to postulate that quantum computers may outperform classical computers on machine learning tasks. The field of quantum machine learning explores how to devise and implement quantum software that could enable machine learning that is faster than that of classical computers. Recent work has produced quantum algorithms that could act as the building blocks of machine learning programs, but the hardware and software challenges are still considerable.

  12. Machine Learning

    CERN Document Server

    CERN. Geneva

    2017-01-01

    Machine learning, which builds on ideas in computer science, statistics, and optimization, focuses on developing algorithms to identify patterns and regularities in data, and using these learned patterns to make predictions on new observations. Boosted by its industrial and commercial applications, the field of machine learning is quickly evolving and expanding. Recent advances have seen great success in the realms of computer vision, natural language processing, and broadly in data science. Many of these techniques have already been applied in particle physics, for instance for particle identification, detector monitoring, and the optimization of computer resources. Modern machine learning approaches, such as deep learning, are only just beginning to be applied to the analysis of High Energy Physics data to approach more and more complex problems. These classes will review the framework behind machine learning and discuss recent developments in the field.

  13. Recent progresses in the exploration of machine learning methods as in-silico ADME prediction tools.

    Science.gov (United States)

    Tao, L; Zhang, P; Qin, C; Chen, S Y; Zhang, C; Chen, Z; Zhu, F; Yang, S Y; Wei, Y Q; Chen, Y Z

    2015-06-23

    In-silico methods have been explored as potential tools for assessing ADME and ADME regulatory properties particularly in early drug discovery stages. Machine learning methods, with their ability in classifying diverse structures and complex mechanisms, are well suited for predicting ADME and ADME regulatory properties. Recent efforts have been directed at the broadening of application scopes and the improvement of predictive performance with particular focuses on the coverage of ADME properties, and exploration of more diversified training data, appropriate molecular features, and consensus modeling. Moreover, several online machine learning ADME prediction servers have emerged. Here we review these progresses and discuss the performances, application prospects and challenges of exploring machine learning methods as useful tools in predicting ADME and ADME regulatory properties.

  14. Machine Learning

    Energy Technology Data Exchange (ETDEWEB)

    Chikkagoudar, Satish; Chatterjee, Samrat; Thomas, Dennis G.; Carroll, Thomas E.; Muller, George

    2017-04-21

    The absence of a robust and unified theory of cyber dynamics presents challenges and opportunities for using machine learning based data-driven approaches to further the understanding of the behavior of such complex systems. Analysts can also use machine learning approaches to gain operational insights. In order to be operationally beneficial, cybersecurity machine learning based models need to have the ability to: (1) represent a real-world system, (2) infer system properties, and (3) learn and adapt based on expert knowledge and observations. Probabilistic models and Probabilistic graphical models provide these necessary properties and are further explored in this chapter. Bayesian Networks and Hidden Markov Models are introduced as an example of a widely used data driven classification/modeling strategy.

  15. PREDICTION OF TOOL CONDITION DURING TURNING OF ALUMINIUM/ALUMINA/GRAPHITE HYBRID METAL MATRIX COMPOSITES USING MACHINE LEARNING APPROACH

    Directory of Open Access Journals (Sweden)

    N. RADHIKA

    2015-10-01

    Full Text Available Aluminium/alumina/graphite hybrid metal matrix composites manufactured using stir casting technique was subjected to machining studies to predict tool condition during machining. Fresh tool as well as tools with specific amount of wear deliberately created prior to machining experiments was used. Vibration signals were acquired using an accelerometer for each tool condition. These signals were then processed to extract statistical and histogram features to predict the tool condition during machining. Two classifiers namely, Random Forest and Classification and Regression Tree (CART were used to classify the tool condition. Results showed that histogram features with Random Forest classifier yielded maximum efficiency in predicting the tool condition. This machine learning approach enables the prediction of tool failure in advance, thereby minimizing the unexpected breakdown of tool and machine.

  16. Machine tool structures

    CERN Document Server

    Koenigsberger, F

    1970-01-01

    Machine Tool Structures, Volume 1 deals with fundamental theories and calculation methods for machine tool structures. Experimental investigations into stiffness are discussed, along with the application of the results to the design of machine tool structures. Topics covered range from static and dynamic stiffness to chatter in metal cutting, stability in machine tools, and deformations of machine tool structures. This volume is divided into three sections and opens with a discussion on stiffness specifications and the effect of stiffness on the behavior of the machine under forced vibration c

  17. Of Genes and Machines: application of a combination of machine learning tools to astronomy datasets

    CERN Document Server

    Heinis, S; Gezari, S; Burgett, W S; Chambers, K C; Draper, P W; Flewelling, H; Kaiser, N; Magnier, E A; Metcalfe, N; Waters, C

    2016-01-01

    We apply a combination of a Genetic Algorithms (GA) and Support Vector Machines (SVM) machine learning algorithm to solve two important problems faced by the astronomical community: star/galaxy separation, and photometric redshift estimation of galaxies in survey catalogs. We use the GA to select the relevant features in the first step, followed by optimization of SVM parameters in the second step to obtain an optimal set of parameters to classify or regress, in process of which we avoid over-fitting. We apply our method to star/galaxy separation in Pan-STARRS1 data. We show that our method correctly classifies 98% of objects down to i_P1= 24.5, with a completeness (or true positive rate) of 99% for galaxies, and 88% for stars. By combining colors with morphology, our star/classification method yields better results than the new SExtractor classifier spread_model in particular at the faint end (i_P1>22). We also use our method to derive photometric redshifts for galaxies in the COSMOS bright multi-wavelength ...

  18. Developing Prognosis Tools to Identify Learning Difficulties in Children Using Machine Learning Technologies.

    Science.gov (United States)

    Loizou, Antonis; Laouris, Yiannis

    2011-09-01

    The Mental Attributes Profiling System was developed in 2002 (Laouris and Makris, Proceedings of multilingual & cross-cultural perspectives on Dyslexia, Omni Shoreham Hotel, Washington, D.C, 2002), to provide a multimodal evaluation of the learning potential and abilities of young children's brains. The method is based on the assessment of non-verbal abilities using video-like interfaces and was compared to more established methodologies in (Papadopoulos, Laouris, Makris, Proceedings of IDA 54th annual conference, San Diego, 2003), such as the Wechsler Intelligence Scale for Children (Watkins et al., Psychol Sch 34(4):309-319, 1997). To do so, various tests have been applied to a population of 134 children aged 7-12 years old. This paper addresses the issue of identifying a minimal set of variables that are able to accurately predict the learning abilities of a given child. The use of Machine Learning technologies to do this provides the advantage of making no prior assumptions about the nature of the data and eliminating natural bias associated with data processing carried out by humans. Kohonen's Self Organising Maps (Kohonen, Biol Cybern 43:59-69, 1982) algorithm is able to split a population into groups based on large and complex sets of observations. Once the population is split, the individual groups can then be probed for their defining characteristics providing insight into the rationale of the split. The characteristics identified form the basis of classification systems that are able to accurately predict which group an individual will belong to, using only a small subset of the tests available. The specifics of this methodology are detailed herein, and the resulting classification systems provide an effective tool to prognose the learning abilities of new subjects.

  19. Machine Learning for Hackers

    CERN Document Server

    Conway, Drew

    2012-01-01

    If you're an experienced programmer interested in crunching data, this book will get you started with machine learning-a toolkit of algorithms that enables computers to train themselves to automate useful tasks. Authors Drew Conway and John Myles White help you understand machine learning and statistics tools through a series of hands-on case studies, instead of a traditional math-heavy presentation. Each chapter focuses on a specific problem in machine learning, such as classification, prediction, optimization, and recommendation. Using the R programming language, you'll learn how to analyz

  20. A Machine Learning Tool for Weighted Regressions in Time, Discharge, and Season

    Directory of Open Access Journals (Sweden)

    Alexander Maestre

    2014-01-01

    Full Text Available A new machine learning tool has been developed to classify water stations with similar water quality trends. The tool is based on the statistical method, Weighted Regressions in Time, Discharge, and Season (WRTDS, developed by the United States Geological Survey (USGS to estimate daily concentrations of water constituents in rivers and streams based on continuous daily discharge data and discrete water quality samples collected at the same or nearby locations. WRTDS is based on parametric survival regressions using a jack-knife cross validation procedure that generates unbiased estimates of the prediction errors. One of the disadvantages of WRTDS is that it needs a large number of samples (n > 200 collected during at least two decades. In this article, the tool is used to evaluate the use of Boosted Regression Trees (BRT as an alternative to the parametric survival regressions for water quality stations with a small number of samples. We describe the development of the machine learning tool as well as an evaluation comparison of the two methods, WRTDS and BRT. The purpose of the tool is to evaluate the reduction in variability of the estimates by clustering data from nearby stations with similar concentration and discharge characteristics. The results indicate that, using clustering, the predicted concentrations using BRT are in general higher than the observed concentrations. In addition, it appears that BRT generates higher sum of square residuals than the parametric survival regressions.

  1. A planning quality evaluation tool for prostate adaptive IMRT based on machine learning

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Xiaofeng; Ge Yaorong; Li Taoran; Thongphiew, Danthai; Yin Fangfang; Wu, Q Jackie [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27708 (United States); Department of Biomedical Engineering, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, North Carolina 27106 (United States); Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27708 (United States); Department of Radiation Oncology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834 (United States); Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27708 (United States)

    2011-02-15

    Purpose: To ensure plan quality for adaptive IMRT of the prostate, we developed a quantitative evaluation tool using a machine learning approach. This tool generates dose volume histograms (DVHs) of organs-at-risk (OARs) based on prior plans as a reference, to be compared with the adaptive plan derived from fluence map deformation. Methods: Under the same configuration using seven-field 15 MV photon beams, DVHs of OARs (bladder and rectum) were estimated based on anatomical information of the patient and a model learned from a database of high quality prior plans. In this study, the anatomical information was characterized by the organ volumes and distance-to-target histogram (DTH). The database consists of 198 high quality prostate plans and was validated with 14 cases outside the training pool. Principal component analysis (PCA) was applied to DVHs and DTHs to quantify their salient features. Then, support vector regression (SVR) was implemented to establish the correlation between the features of the DVH and the anatomical information. Results: DVH/DTH curves could be characterized sufficiently just using only two or three truncated principal components, thus, patient anatomical information was quantified with reduced numbers of variables. The evaluation of the model using the test data set demonstrated its accuracy {approx}80% in prediction and effectiveness in improving ART planning quality. Conclusions: An adaptive IMRT plan quality evaluation tool based on machine learning has been developed, which estimates OAR sparing and provides reference in evaluating ART.

  2. A machine learning tool for re-planning and adaptive RT: A multicenter cohort investigation.

    Science.gov (United States)

    Guidi, G; Maffei, N; Meduri, B; D'Angelo, E; Mistretta, G M; Ceroni, P; Ciarmatori, A; Bernabei, A; Maggi, S; Cardinali, M; Morabito, V E; Rosica, F; Malara, S; Savini, A; Orlandi, G; D'Ugo, C; Bunkheila, F; Bono, M; Lappi, S; Blasi, C; Lohr, F; Costi, T

    2016-12-01

    To predict patients who would benefit from adaptive radiotherapy (ART) and re-planning intervention based on machine learning from anatomical and dosimetric variations in a retrospective dataset. 90 patients (pts) treated for head-neck cancer (H&N) formed a multicenter data-set. 41 H&N pts (45.6%) were considered for learning; 49 pts (54.4%) were used to test the tool. A homemade machine-learning classifier was developed to analyze volume and dose variations of parotid glands (PG). Using deformable image registration (DIR) and GPU, patients' conditions were analyzed automatically. Support Vector Machines (SVM) was used for time-series evaluation. "Inadequate" class identified patients that might benefit from replanning. Double-blind evaluation by two radiation oncologists (ROs) was carried out to validate day/week selected for re-planning by the classifier. The cohort was affected by PG mean reduction of 23.7±8.8%. During the first 3weeks, 86.7% cases show PG deformation aligned with predefined tolerance, thus not requiring re-planning. From 4th week, an increased number of pts would potentially benefit from re-planning: a mean of 58% of cases, with an inter-center variability of 8.3%, showed "inadequate" conditions. 11% of cases showed "bias" due to DIR and script failure; 6% showed "warning" output due to potential positioning issues. Comparing re-planning suggested by tool with recommended by ROs, the 4th week seems the most favorable time in 70% cases. SVM and decision-making tool was applied to overcome ART challenges. Pts would benefit from ART and ideal time for re-planning intervention was identified in this retrospective analysis. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  3. Gaussian Process Regression as a machine learning tool for predicting organic carbon from soil spectra - a machine learning comparison study

    Science.gov (United States)

    Schmidt, Andreas; Lausch, Angela; Vogel, Hans-Jörg

    2016-04-01

    Diffuse reflectance spectroscopy as a soil analytical tool is spreading more and more. There is a wide range of possible applications ranging from the point scale (e.g. simple soil samples, drill cores, vertical profile scans) through the field scale to the regional and even global scale (UAV, airborne and space borne instruments, soil reflectance databases). The basic idea is that the soil's reflectance spectrum holds information about its properties (like organic matter content or mineral composition). The relation between soil properties and the observable spectrum is usually not exactly know and is typically derived from statistical methods. Nowadays these methods are classified in the term machine learning, which comprises a vast pool of algorithms and methods for learning the relationship between pairs if input - output data (training data set). Within this pool of methods a Gaussian Process Regression (GPR) is newly emerging method (originating from Bayesian statistics) which is increasingly applied to applications in different fields. For example, it was successfully used to predict vegetation parameters from hyperspectral remote sensing data. In this study we apply GPR to predict soil organic carbon from soil spectroscopy data (400 - 2500 nm). We compare it to more traditional and widely used methods such as Partitial Least Squares Regression (PLSR), Random Forest (RF) and Gradient Boosted Regression Trees (GBRT). All these methods have the common ability to calculate a measure for the variable importance (wavelengths importance). The main advantage of GPR is its ability to also predict the variance of the target parameter. This makes it easy to see whether a prediction is reliable or not. The ability to choose from various covariance functions makes GPR a flexible method. This allows for including different assumptions or a priori knowledge about the data. For this study we use samples from three different locations to test the prediction accuracies. One

  4. Machine Tool Software

    Science.gov (United States)

    1988-01-01

    A NASA-developed software package has played a part in technical education of students who major in Mechanical Engineering Technology at William Rainey Harper College. Professor Hack has been using (APT) Automatically Programmed Tool Software since 1969 in his CAD/CAM Computer Aided Design and Manufacturing curriculum. Professor Hack teaches the use of APT programming languages for control of metal cutting machines. Machine tool instructions are geometry definitions written in APT Language to constitute a "part program." The part program is processed by the machine tool. CAD/CAM students go from writing a program to cutting steel in the course of a semester.

  5. SKYNET: an efficient and robust neural network training tool for machine learning in astronomy

    CERN Document Server

    Graff, Philip; Hobson, Michael P; Lasenby, Anthony N

    2013-01-01

    We present the first public release of our generic neural network training algorithm, called SKYNET. This efficient and robust machine-learning tool is able to train large and deep feed-forward neural networks, including autoencoders, for use in a wide range of supervised and unsupervised learning applications, such as regression, classification, density estimation, clustering and dimensionality reduction. SKYNET uses a powerful 'pre-training' method, to obtain a set of network parameters close to the true global maximum of the training objective function, followed by further optimisation using an automatically-regularised variant of Newton's method; the latter uses second-order derivative information to improve convergence, but without the need to evaluate or store the full Hessian matrix, by using a fast approximate method to calculate Hessian-vector products. This combination of methods allows for the training of complicated networks that are difficult to optimise using standard backpropagation techniques....

  6. Chatter and machine tools

    CERN Document Server

    Stone, Brian

    2014-01-01

    Focussing on occurrences of unstable vibrations, or Chatter, in machine tools, this book gives important insights into how to eliminate chatter with associated improvements in product quality, surface finish and tool wear. Covering a wide range of machining processes, including turning, drilling, milling and grinding, the author uses his research expertise and practical knowledge of vibration problems to provide solutions supported by experimental evidence of their effectiveness. In addition, this book contains links to supplementary animation programs that help readers to visualise the ideas detailed in the text. Advancing knowledge in chatter avoidance and suggesting areas for new innovations, Chatter and Machine Tools serves as a handbook for those desiring to achieve significant reductions in noise, longer tool and grinding wheel life and improved product finish.

  7. EVALUATION OF MACHINE TOOL QUALITY

    Directory of Open Access Journals (Sweden)

    Ivan Kuric

    2011-12-01

    Full Text Available Paper deals with aspects of quality and accuracy of machine tools. As the accuracy of machine tools has key factor for product quality, it is important to know the methods for evaluation of quality and accuracy of machine tools. Several aspects of diagnostics of machine tools are described, such as aspects of reliability.

  8. Structure Based Thermostability Prediction Models for Protein Single Point Mutations with Machine Learning Tools.

    Science.gov (United States)

    Jia, Lei; Yarlagadda, Ramya; Reed, Charles C

    2015-01-01

    Thermostability issue of protein point mutations is a common occurrence in protein engineering. An application which predicts the thermostability of mutants can be helpful for guiding decision making process in protein design via mutagenesis. An in silico point mutation scanning method is frequently used to find "hot spots" in proteins for focused mutagenesis. ProTherm (http://gibk26.bio.kyutech.ac.jp/jouhou/Protherm/protherm.html) is a public database that consists of thousands of protein mutants' experimentally measured thermostability. Two data sets based on two differently measured thermostability properties of protein single point mutations, namely the unfolding free energy change (ddG) and melting temperature change (dTm) were obtained from this database. Folding free energy change calculation from Rosetta, structural information of the point mutations as well as amino acid physical properties were obtained for building thermostability prediction models with informatics modeling tools. Five supervised machine learning methods (support vector machine, random forests, artificial neural network, naïve Bayes classifier, K nearest neighbor) and partial least squares regression are used for building the prediction models. Binary and ternary classifications as well as regression models were built and evaluated. Data set redundancy and balancing, the reverse mutations technique, feature selection, and comparison to other published methods were discussed. Rosetta calculated folding free energy change ranked as the most influential features in all prediction models. Other descriptors also made significant contributions to increasing the accuracy of the prediction models.

  9. Structure Based Thermostability Prediction Models for Protein Single Point Mutations with Machine Learning Tools.

    Directory of Open Access Journals (Sweden)

    Lei Jia

    Full Text Available Thermostability issue of protein point mutations is a common occurrence in protein engineering. An application which predicts the thermostability of mutants can be helpful for guiding decision making process in protein design via mutagenesis. An in silico point mutation scanning method is frequently used to find "hot spots" in proteins for focused mutagenesis. ProTherm (http://gibk26.bio.kyutech.ac.jp/jouhou/Protherm/protherm.html is a public database that consists of thousands of protein mutants' experimentally measured thermostability. Two data sets based on two differently measured thermostability properties of protein single point mutations, namely the unfolding free energy change (ddG and melting temperature change (dTm were obtained from this database. Folding free energy change calculation from Rosetta, structural information of the point mutations as well as amino acid physical properties were obtained for building thermostability prediction models with informatics modeling tools. Five supervised machine learning methods (support vector machine, random forests, artificial neural network, naïve Bayes classifier, K nearest neighbor and partial least squares regression are used for building the prediction models. Binary and ternary classifications as well as regression models were built and evaluated. Data set redundancy and balancing, the reverse mutations technique, feature selection, and comparison to other published methods were discussed. Rosetta calculated folding free energy change ranked as the most influential features in all prediction models. Other descriptors also made significant contributions to increasing the accuracy of the prediction models.

  10. Evaluation of machine learning tools for inspection of steam generator tube structures using pulsed eddy current

    Science.gov (United States)

    Buck, J. A.; Underhill, P. R.; Morelli, J.; Krause, T. W.

    2017-02-01

    Degradation of nuclear steam generator (SG) tubes and support structures can result in a loss of reactor efficiency. Regular in-service inspection, by conventional eddy current testing (ECT), permits detection of cracks, measurement of wall loss, and identification of other SG tube degradation modes. However, ECT is challenged by overlapping degradation modes such as might occur for SG tube fretting accompanied by tube off-set within a corroding ferromagnetic support structure. Pulsed eddy current (PEC) is an emerging technology examined here for inspection of Alloy-800 SG tubes and associated carbon steel drilled support structures. Support structure hole size was varied to simulate uniform corrosion, while SG tube was off-set relative to hole axis. PEC measurements were performed using a single driver with an 8 pick-up coil configuration in the presence of flat-bottom rectangular frets as an overlapping degradation mode. A modified principal component analysis (MPCA) was performed on the time-voltage data in order to reduce data dimensionality. The MPCA scores were then used to train a support vector machine (SVM) that simultaneously targeted four independent parameters associated with; support structure hole size, tube off-centering in two dimensions and fret depth. The support vector machine was trained, tested, and validated on experimental data. Results were compared with a previously developed artificial neural network (ANN) trained on the same data. Estimates of tube position showed comparable results between the two machine learning tools. However, the ANN produced better estimates of hole inner diameter and fret depth. The better results from ANN analysis was attributed to challenges associated with the SVM when non-constant variance is present in the data.

  11. Soft computing in machine learning

    CERN Document Server

    Park, Jooyoung; Inoue, Atsushi

    2014-01-01

    As users or consumers are now demanding smarter devices, intelligent systems are revolutionizing by utilizing machine learning. Machine learning as part of intelligent systems is already one of the most critical components in everyday tools ranging from search engines and credit card fraud detection to stock market analysis. You can train machines to perform some things, so that they can automatically detect, diagnose, and solve a variety of problems. The intelligent systems have made rapid progress in developing the state of the art in machine learning based on smart and deep perception. Using machine learning, the intelligent systems make widely applications in automated speech recognition, natural language processing, medical diagnosis, bioinformatics, and robot locomotion. This book aims at introducing how to treat a substantial amount of data, to teach machines and to improve decision making models. And this book specializes in the developments of advanced intelligent systems through machine learning. It...

  12. SKYNET: an efficient and robust neural network training tool for machine learning in astronomy

    Science.gov (United States)

    Graff, Philip; Feroz, Farhan; Hobson, Michael P.; Lasenby, Anthony

    2014-06-01

    We present the first public release of our generic neural network training algorithm, called SKYNET. This efficient and robust machine learning tool is able to train large and deep feed-forward neural networks, including autoencoders, for use in a wide range of supervised and unsupervised learning applications, such as regression, classification, density estimation, clustering and dimensionality reduction. SKYNET uses a `pre-training' method to obtain a set of network parameters that has empirically been shown to be close to a good solution, followed by further optimization using a regularized variant of Newton's method, where the level of regularization is determined and adjusted automatically; the latter uses second-order derivative information to improve convergence, but without the need to evaluate or store the full Hessian matrix, by using a fast approximate method to calculate Hessian-vector products. This combination of methods allows for the training of complicated networks that are difficult to optimize using standard backpropagation techniques. SKYNET employs convergence criteria that naturally prevent overfitting, and also includes a fast algorithm for estimating the accuracy of network outputs. The utility and flexibility of SKYNET are demonstrated by application to a number of toy problems, and to astronomical problems focusing on the recovery of structure from blurred and noisy images, the identification of gamma-ray bursters, and the compression and denoising of galaxy images. The SKYNET software, which is implemented in standard ANSI C and fully parallelized using MPI, is available at http://www.mrao.cam.ac.uk/software/skynet/.

  13. Automatically-Programed Machine Tools

    Science.gov (United States)

    Purves, L.; Clerman, N.

    1985-01-01

    Software produces cutter location files for numerically-controlled machine tools. APT, acronym for Automatically Programed Tools, is among most widely used software systems for computerized machine tools. APT developed for explicit purpose of providing effective software system for programing NC machine tools. APT system includes specification of APT programing language and language processor, which executes APT statements and generates NC machine-tool motions specified by APT statements.

  14. Automatically-Programed Machine Tools

    Science.gov (United States)

    Purves, L.; Clerman, N.

    1985-01-01

    Software produces cutter location files for numerically-controlled machine tools. APT, acronym for Automatically Programed Tools, is among most widely used software systems for computerized machine tools. APT developed for explicit purpose of providing effective software system for programing NC machine tools. APT system includes specification of APT programing language and language processor, which executes APT statements and generates NC machine-tool motions specified by APT statements.

  15. Analysis of machining and machine tools

    CERN Document Server

    Liang, Steven Y

    2016-01-01

    This book delivers the fundamental science and mechanics of machining and machine tools by presenting systematic and quantitative knowledge in the form of process mechanics and physics. It gives readers a solid command of machining science and engineering, and familiarizes them with the geometry and functionality requirements of creating parts and components in today’s markets. The authors address traditional machining topics, such as: single and multiple point cutting processes grinding components accuracy and metrology shear stress in cutting cutting temperature and analysis chatter They also address non-traditional machining, such as: electrical discharge machining electrochemical machining laser and electron beam machining A chapter on biomedical machining is also included. This book is appropriate for advanced undergraduate and graduate mechani cal engineering students, manufacturing engineers, and researchers. Each chapter contains examples, exercises and their solutions, and homework problems that re...

  16. Machine Learning examples on Invenio

    CERN Document Server

    CERN. Geneva

    2017-01-01

    This talk will present the different Machine Learning tools that the INSPIRE is developing and integrating in order to automatize as much as possible content selection and curation in a subject based repository.

  17. Using machine learning tools to model complex toxic interactions with limited sampling regimes.

    Science.gov (United States)

    Bertin, Matthew J; Moeller, Peter; Guillette, Louis J; Chapman, Robert W

    2013-03-19

    A major impediment to understanding the impact of environmental stress, including toxins and other pollutants, on organisms, is that organisms are rarely challenged by one or a few stressors in natural systems. Thus, linking laboratory experiments that are limited by practical considerations to a few stressors and a few levels of these stressors to real world conditions is constrained. In addition, while the existence of complex interactions among stressors can be identified by current statistical methods, these methods do not provide a means to construct mathematical models of these interactions. In this paper, we offer a two-step process by which complex interactions of stressors on biological systems can be modeled in an experimental design that is within the limits of practicality. We begin with the notion that environment conditions circumscribe an n-dimensional hyperspace within which biological processes or end points are embedded. We then randomly sample this hyperspace to establish experimental conditions that span the range of the relevant parameters and conduct the experiment(s) based upon these selected conditions. Models of the complex interactions of the parameters are then extracted using machine learning tools, specifically artificial neural networks. This approach can rapidly generate highly accurate models of biological responses to complex interactions among environmentally relevant toxins, identify critical subspaces where nonlinear responses exist, and provide an expedient means of designing traditional experiments to test the impact of complex mixtures on biological responses. Further, this can be accomplished with an astonishingly small sample size.

  18. Hinged Shields for Machine Tools

    Science.gov (United States)

    Lallande, J. B.; Poland, W. W.; Tull, S.

    1985-01-01

    Flaps guard against flying chips, but fold away for tool setup. Clear plastic shield in position to intercept flying chips from machine tool and retracted to give operator access to workpiece. Machine shops readily make such shields for own use.

  19. Human Machine Learning Symbiosis

    Science.gov (United States)

    Walsh, Kenneth R.; Hoque, Md Tamjidul; Williams, Kim H.

    2017-01-01

    Human Machine Learning Symbiosis is a cooperative system where both the human learner and the machine learner learn from each other to create an effective and efficient learning environment adapted to the needs of the human learner. Such a system can be used in online learning modules so that the modules adapt to each learner's learning state both…

  20. Machine Learning for Medical Imaging.

    Science.gov (United States)

    Erickson, Bradley J; Korfiatis, Panagiotis; Akkus, Zeynettin; Kline, Timothy L

    2017-01-01

    Machine learning is a technique for recognizing patterns that can be applied to medical images. Although it is a powerful tool that can help in rendering medical diagnoses, it can be misapplied. Machine learning typically begins with the machine learning algorithm system computing the image features that are believed to be of importance in making the prediction or diagnosis of interest. The machine learning algorithm system then identifies the best combination of these image features for classifying the image or computing some metric for the given image region. There are several methods that can be used, each with different strengths and weaknesses. There are open-source versions of most of these machine learning methods that make them easy to try and apply to images. Several metrics for measuring the performance of an algorithm exist; however, one must be aware of the possible associated pitfalls that can result in misleading metrics. More recently, deep learning has started to be used; this method has the benefit that it does not require image feature identification and calculation as a first step; rather, features are identified as part of the learning process. Machine learning has been used in medical imaging and will have a greater influence in the future. Those working in medical imaging must be aware of how machine learning works. (©)RSNA, 2017.

  1. Machine learning with R

    CERN Document Server

    Lantz, Brett

    2013-01-01

    Written as a tutorial to explore and understand the power of R for machine learning. This practical guide that covers all of the need to know topics in a very systematic way. For each machine learning approach, each step in the process is detailed, from preparing the data for analysis to evaluating the results. These steps will build the knowledge you need to apply them to your own data science tasks.Intended for those who want to learn how to use R's machine learning capabilities and gain insight from your data. Perhaps you already know a bit about machine learning, but have never used R; or

  2. Microsoft Azure machine learning

    CERN Document Server

    Mund, Sumit

    2015-01-01

    The book is intended for those who want to learn how to use Azure Machine Learning. Perhaps you already know a bit about Machine Learning, but have never used ML Studio in Azure; or perhaps you are an absolute newbie. In either case, this book will get you up-and-running quickly.

  3. Pattern recognition & machine learning

    CERN Document Server

    Anzai, Y

    1992-01-01

    This is the first text to provide a unified and self-contained introduction to visual pattern recognition and machine learning. It is useful as a general introduction to artifical intelligence and knowledge engineering, and no previous knowledge of pattern recognition or machine learning is necessary. Basic for various pattern recognition and machine learning methods. Translated from Japanese, the book also features chapter exercises, keywords, and summaries.

  4. Introduction to machine learning.

    Science.gov (United States)

    Baştanlar, Yalin; Ozuysal, Mustafa

    2014-01-01

    The machine learning field, which can be briefly defined as enabling computers make successful predictions using past experiences, has exhibited an impressive development recently with the help of the rapid increase in the storage capacity and processing power of computers. Together with many other disciplines, machine learning methods have been widely employed in bioinformatics. The difficulties and cost of biological analyses have led to the development of sophisticated machine learning approaches for this application area. In this chapter, we first review the fundamental concepts of machine learning such as feature assessment, unsupervised versus supervised learning and types of classification. Then, we point out the main issues of designing machine learning experiments and their performance evaluation. Finally, we introduce some supervised learning methods.

  5. Machine Learning for Education: Learning to Teach

    Science.gov (United States)

    2016-12-01

    1 Machine Learning for Education: Learning to Teach Matthew C. Gombolay, Reed Jensen, Sung-Hyun Son Massachusetts Institute of Technology Lincoln...training tools and develop military strategies within their training environment. Second, we develop methods for improving warfighter education: learning to...and do not necessarily reflect the views of the Department of the Navy. RAMS # 1001485 Fig. 1. SGD enables development of automated teaching tools for

  6. Learning with Support Vector Machines

    CERN Document Server

    Campbell, Colin

    2010-01-01

    Support Vectors Machines have become a well established tool within machine learning. They work well in practice and have now been used across a wide range of applications from recognizing hand-written digits, to face identification, text categorisation, bioinformatics, and database marketing. In this book we give an introductory overview of this subject. We start with a simple Support Vector Machine for performing binary classification before considering multi-class classification and learning in the presence of noise. We show that this framework can be extended to many other scenarios such a

  7. Machine learning with R

    CERN Document Server

    Lantz, Brett

    2015-01-01

    Perhaps you already know a bit about machine learning but have never used R, or perhaps you know a little R but are new to machine learning. In either case, this book will get you up and running quickly. It would be helpful to have a bit of familiarity with basic programming concepts, but no prior experience is required.

  8. Machine Learning and Radiology

    Science.gov (United States)

    Wang, Shijun; Summers, Ronald M.

    2012-01-01

    In this paper, we give a short introduction to machine learning and survey its applications in radiology. We focused on six categories of applications in radiology: medical image segmentation, registration, computer aided detection and diagnosis, brain function or activity analysis and neurological disease diagnosis from fMR images, content-based image retrieval systems for CT or MRI images, and text analysis of radiology reports using natural language processing (NLP) and natural language understanding (NLU). This survey shows that machine learning plays a key role in many radiology applications. Machine learning identifies complex patterns automatically and helps radiologists make intelligent decisions on radiology data such as conventional radiographs, CT, MRI, and PET images and radiology reports. In many applications, the performance of machine learning-based automatic detection and diagnosis systems has shown to be comparable to that of a well-trained and experienced radiologist. Technology development in machine learning and radiology will benefit from each other in the long run. Key contributions and common characteristics of machine learning techniques in radiology are discussed. We also discuss the problem of translating machine learning applications to the radiology clinical setting, including advantages and potential barriers. PMID:22465077

  9. Development of a state machine sequencer for the Keck Interferometer: evolution, development, and lessons learned using a CASE tool approach

    Science.gov (United States)

    Reder, Leonard J.; Booth, Andrew; Hsieh, Jonathan; Summers, Kellee R.

    2004-09-01

    This paper presents a discussion of the evolution of a sequencer from a simple Experimental Physics and Industrial Control System (EPICS) based sequencer into a complex implementation designed utilizing UML (Unified Modeling Language) methodologies and a Computer Aided Software Engineering (CASE) tool approach. The main purpose of the Interferometer Sequencer (called the IF Sequencer) is to provide overall control of the Keck Interferometer to enable science operations to be carried out by a single operator (and/or observer). The interferometer links the two 10m telescopes of the W. M. Keck Observatory at Mauna Kea, Hawaii. The IF Sequencer is a high-level, multi-threaded, Harel finite state machine software program designed to orchestrate several lower-level hardware and software hard real-time subsystems that must perform their work in a specific and sequential order. The sequencing need not be done in hard real-time. Each state machine thread commands either a high-speed real-time multiple mode embedded controller via CORBA, or slower controllers via EPICS Channel Access interfaces. The overall operation of the system is simplified by the automation. The UML is discussed and our use of it to implement the sequencer is presented. The decision to use the Rhapsody product as our CASE tool is explained and reflected upon. Most importantly, a section on lessons learned is presented and the difficulty of integrating CASE tool automatically generated C++ code into a large control system consisting of multiple infrastructures is presented.

  10. Development of a State Machine Sequencer for the Keck Interferometer: Evolution, Development and Lessons Learned using a CASE Tool Approach

    Science.gov (United States)

    Rede, Leonard J.; Booth, Andrew; Hsieh, Jonathon; Summer, Kellee

    2004-01-01

    This paper presents a discussion of the evolution of a sequencer from a simple EPICS (Experimental Physics and Industrial Control System) based sequencer into a complex implementation designed utilizing UML (Unified Modeling Language) methodologies and a CASE (Computer Aided Software Engineering) tool approach. The main purpose of the sequencer (called the IF Sequencer) is to provide overall control of the Keck Interferometer to enable science operations be carried out by a single operator (and/or observer). The interferometer links the two 10m telescopes of the W. M. Keck Observatory at Mauna Kea, Hawaii. The IF Sequencer is a high-level, multi-threaded, Hare1 finite state machine, software program designed to orchestrate several lower-level hardware and software hard real time subsystems that must perform their work in a specific and sequential order. The sequencing need not be done in hard real-time. Each state machine thread commands either a high-speed real-time multiple mode embedded controller via CORB A, or slower controllers via EPICS Channel Access interfaces. The overall operation of the system is simplified by the automation. The UML is discussed and our use of it to implement the sequencer is presented. The decision to use the Rhapsody product as our CASE tool is explained and reflected upon. Most importantly, a section on lessons learned is presented and the difficulty of integrating CASE tool automatically generated C++ code into a large control system consisting of multiple infrastructures is presented.

  11. Machine Learning Exciton Dynamics

    CERN Document Server

    Häse, Florian; Pyzer-Knapp, Edward; Aspuru-Guzik, Alán

    2015-01-01

    Obtaining the exciton dynamics of large photosynthetic complexes by using mixed quantum mechanics/molecular mechanics (QM/MM) is computationally demanding. We propose a machine learning technique, multi-layer perceptrons, as a tool to reduce the time required to compute excited state energies. With this approach we predict time-dependent density functional theory (TDDFT) excited state energies of bacteriochlorophylls in the Fenna-Matthews-Olson (FMO) complex. Additionally we compute spectral densities and exciton populations from the predictions. Different methods to determine multi-layer perceptron training sets are introduced, leading to several initial data selections. In addition, we compute spectral densities and exciton populations. Once multi-layer perceptrons are trained, predicting excited state energies was found to be significantly faster than the corresponding QM/MM calculations. We showed that multi-layer perceptrons can successfully reproduce the energies of QM/MM calculations to a high degree o...

  12. Application of Machine Learning tools to recognition of molecular patterns in STM images

    Science.gov (United States)

    Maksov, Artem; Ziatdinov, Maxim; Fujii, Shintaro; Kiguchi, Manabu; Higashibayashi, Shuhei; Sakurai, Hidehiro; Kalinin, Sergei; Sumpter, Bobby

    The ability to utilize individual molecules and molecular assemblies as data storage elements has motivated scientist for years, concurrent with the continuous effort to shrink a size of data storage devices in microelectronics industry. One of the critical issues in this effort lies in being able to identify individual molecular assembly units (patterns), on a large scale in an automated fashion of complete information extraction. Here we present a novel method of applying machine learning techniques for extraction of positional and rotational information from scanning tunneling microscopy (STM) images of π-bowl sumanene molecules on gold. We use Markov Random Field (MRF) model to decode the polar rotational states for each molecule in a large scale STM image of molecular film. We further develop an algorithm that uses a convolutional Neural Network combined with MRF and input from density functional theory to classify molecules into different azimuthal rotational classes. Our results demonstrate that a molecular film is partitioned into distinctive azimuthal rotational domains consisting typically of 20-30 molecules. In each domain, the ``bowl-down'' molecules are generally surrounded by six nearest neighbor molecules in ``bowl-up'' configuration, and the resultant overall structure form a periodic lattice of rotational and polar states within each domain. Research was supported by the US Department of Energy.

  13. mlpy: Machine Learning Python

    CERN Document Server

    Albanese, Davide; Merler, Stefano; Riccadonna, Samantha; Jurman, Giuseppe; Furlanello, Cesare

    2012-01-01

    mlpy is a Python Open Source Machine Learning library built on top of NumPy/SciPy and the GNU Scientific Libraries. mlpy provides a wide range of state-of-the-art machine learning methods for supervised and unsupervised problems and it is aimed at finding a reasonable compromise among modularity, maintainability, reproducibility, usability and efficiency. mlpy is multiplatform, it works with Python 2 and 3 and it is distributed under GPL3 at the website http://mlpy.fbk.eu.

  14. mlpy: Machine Learning Python

    OpenAIRE

    Albanese, Davide; Visintainer, Roberto; Merler, Stefano; Riccadonna, Samantha; Jurman, Giuseppe; Furlanello, Cesare

    2012-01-01

    mlpy is a Python Open Source Machine Learning library built on top of NumPy/SciPy and the GNU Scientific Libraries. mlpy provides a wide range of state-of-the-art machine learning methods for supervised and unsupervised problems and it is aimed at finding a reasonable compromise among modularity, maintainability, reproducibility, usability and efficiency. mlpy is multiplatform, it works with Python 2 and 3 and it is distributed under GPL3 at the website http://mlpy.fbk.eu.

  15. Automated cell analysis tool for a genome-wide RNAi screen with support vector machine based supervised learning

    Science.gov (United States)

    Remmele, Steffen; Ritzerfeld, Julia; Nickel, Walter; Hesser, Jürgen

    2011-03-01

    RNAi-based high-throughput microscopy screens have become an important tool in biological sciences in order to decrypt mostly unknown biological functions of human genes. However, manual analysis is impossible for such screens since the amount of image data sets can often be in the hundred thousands. Reliable automated tools are thus required to analyse the fluorescence microscopy image data sets usually containing two or more reaction channels. The herein presented image analysis tool is designed to analyse an RNAi screen investigating the intracellular trafficking and targeting of acylated Src kinases. In this specific screen, a data set consists of three reaction channels and the investigated cells can appear in different phenotypes. The main issue of the image processing task is an automatic cell segmentation which has to be robust and accurate for all different phenotypes and a successive phenotype classification. The cell segmentation is done in two steps by segmenting the cell nuclei first and then using a classifier-enhanced region growing on basis of the cell nuclei to segment the cells. The classification of the cells is realized by a support vector machine which has to be trained manually using supervised learning. Furthermore, the tool is brightness invariant allowing different staining quality and it provides a quality control that copes with typical defects during preparation and acquisition. A first version of the tool has already been successfully applied for an RNAi-screen containing three hundred thousand image data sets and the SVM extended version is designed for additional screens.

  16. Comparative study of machine-learning and chemometric tools for analysis of in-vivo high-throughput screening data.

    Science.gov (United States)

    Simmons, Kirk; Kinney, John; Owens, Aaron; Kleier, Dan; Bloch, Karen; Argentar, Dave; Walsh, Alicia; Vaidyanathan, Ganesh

    2008-08-01

    High-throughput screening (HTS) has become a central tool of many pharmaceutical and crop-protection discovery operations. If HTS screening is carried out at the level of the intact organism, as is commonly done in crop protection, this strategy has the potential of uncovering a completely new mechanism of actions. The challenge in running a cost-effective HTS operation is to identify ways in which to improve the overall success rate in discovering new biologically active compounds. To this end, we describe our efforts directed at making full use of the data stream arising from HTS. This paper describes a comparative study in which several machine learning and chemometric methodologies were used to develop classifiers on the same data sets derived from in vivo HTS campaigns and their predictive performances compared in terms of false negative and false positive error profiles.

  17. Machine Learning Meta-analysis of Large Metagenomic Datasets: Tools and Biological Insights.

    Science.gov (United States)

    Pasolli, Edoardo; Truong, Duy Tin; Malik, Faizan; Waldron, Levi; Segata, Nicola

    2016-07-01

    Shotgun metagenomic analysis of the human associated microbiome provides a rich set of microbial features for prediction and biomarker discovery in the context of human diseases and health conditions. However, the use of such high-resolution microbial features presents new challenges, and validated computational tools for learning tasks are lacking. Moreover, classification rules have scarcely been validated in independent studies, posing questions about the generality and generalization of disease-predictive models across cohorts. In this paper, we comprehensively assess approaches to metagenomics-based prediction tasks and for quantitative assessment of the strength of potential microbiome-phenotype associations. We develop a computational framework for prediction tasks using quantitative microbiome profiles, including species-level relative abundances and presence of strain-specific markers. A comprehensive meta-analysis, with particular emphasis on generalization across cohorts, was performed in a collection of 2424 publicly available metagenomic samples from eight large-scale studies. Cross-validation revealed good disease-prediction capabilities, which were in general improved by feature selection and use of strain-specific markers instead of species-level taxonomic abundance. In cross-study analysis, models transferred between studies were in some cases less accurate than models tested by within-study cross-validation. Interestingly, the addition of healthy (control) samples from other studies to training sets improved disease prediction capabilities. Some microbial species (most notably Streptococcus anginosus) seem to characterize general dysbiotic states of the microbiome rather than connections with a specific disease. Our results in modelling features of the "healthy" microbiome can be considered a first step toward defining general microbial dysbiosis. The software framework, microbiome profiles, and metadata for thousands of samples are publicly

  18. Machine Learning with Distances

    Science.gov (United States)

    2015-02-16

    and demonstrated their usefulness in experiments. 1 Introduction The goal of machine learning is to find useful knowledge behind data. Many machine...212, 172]. However, direct divergence approximators still suffer from the curse of dimensionality. A possible cure for this problem is to combine them...obtain the global optimal solution or even a good local solution without any prior knowledge . For this reason, we decided to introduce the unit-norm

  19. Machine Learning Markets

    CERN Document Server

    Storkey, Amos

    2011-01-01

    Prediction markets show considerable promise for developing flexible mechanisms for machine learning. Here, machine learning markets for multivariate systems are defined, and a utility-based framework is established for their analysis. This differs from the usual approach of defining static betting functions. It is shown that such markets can implement model combination methods used in machine learning, such as product of expert and mixture of expert approaches as equilibrium pricing models, by varying agent utility functions. They can also implement models composed of local potentials, and message passing methods. Prediction markets also allow for more flexible combinations, by combining multiple different utility functions. Conversely, the market mechanisms implement inference in the relevant probabilistic models. This means that market mechanism can be utilized for implementing parallelized model building and inference for probabilistic modelling.

  20. Machine Learning in Medicine.

    Science.gov (United States)

    Deo, Rahul C

    2015-11-17

    Spurred by advances in processing power, memory, storage, and an unprecedented wealth of data, computers are being asked to tackle increasingly complex learning tasks, often with astonishing success. Computers have now mastered a popular variant of poker, learned the laws of physics from experimental data, and become experts in video games - tasks that would have been deemed impossible not too long ago. In parallel, the number of companies centered on applying complex data analysis to varying industries has exploded, and it is thus unsurprising that some analytic companies are turning attention to problems in health care. The purpose of this review is to explore what problems in medicine might benefit from such learning approaches and use examples from the literature to introduce basic concepts in machine learning. It is important to note that seemingly large enough medical data sets and adequate learning algorithms have been available for many decades, and yet, although there are thousands of papers applying machine learning algorithms to medical data, very few have contributed meaningfully to clinical care. This lack of impact stands in stark contrast to the enormous relevance of machine learning to many other industries. Thus, part of my effort will be to identify what obstacles there may be to changing the practice of medicine through statistical learning approaches, and discuss how these might be overcome.

  1. Clojure for machine learning

    CERN Document Server

    Wali, Akhil

    2014-01-01

    A book that brings out the strengths of Clojure programming that have to facilitate machine learning. Each topic is described in substantial detail, and examples and libraries in Clojure are also demonstrated.This book is intended for Clojure developers who want to explore the area of machine learning. Basic understanding of the Clojure programming language is required, but thorough acquaintance with the standard Clojure library or any libraries are not required. Familiarity with theoretical concepts and notation of mathematics and statistics would be an added advantage.

  2. Mastering machine learning with scikit-learn

    CERN Document Server

    Hackeling, Gavin

    2014-01-01

    If you are a software developer who wants to learn how machine learning models work and how to apply them effectively, this book is for you. Familiarity with machine learning fundamentals and Python will be helpful, but is not essential.

  3. Machine Learning for Security

    CERN Document Server

    CERN. Geneva

    2015-01-01

    Applied statistics, aka ‘Machine Learning’, offers a wealth of techniques for answering security questions. It’s a much hyped topic in the big data world, with many companies now providing machine learning as a service. This talk will demystify these techniques, explain the math, and demonstrate their application to security problems. The presentation will include how-to’s on classifying malware, looking into encrypted tunnels, and finding botnets in DNS data. About the speaker Josiah is a security researcher with HP TippingPoint DVLabs Research Group. He has over 15 years of professional software development experience. Josiah used to do AI, with work focused on graph theory, search, and deductive inference on large knowledge bases. As rules only get you so far, he moved from AI to using machine learning techniques identifying failure modes in email traffic. There followed digressions into clustered data storage and later integrated control systems. Current ...

  4. Massively collaborative machine learning

    NARCIS (Netherlands)

    Rijn, van J.N.

    2016-01-01

    Many scientists are focussed on building models. We nearly process all information we perceive to a model. There are many techniques that enable computers to build models as well. The field of research that develops such techniques is called Machine Learning. Many research is devoted to develop comp

  5. Machine learning in image steganalysis

    CERN Document Server

    Schaathun, Hans Georg

    2012-01-01

    "The only book to look at steganalysis from the perspective of machine learning theory, and to apply the common technique of machine learning to the particular field of steganalysis; ideal for people working in both disciplines"--

  6. New Applications of Learning Machines

    DEFF Research Database (Denmark)

    Larsen, Jan

    * Machine learning framework for sound search * Genre classification * Music separation * MIMO channel estimation and symbol detection......* Machine learning framework for sound search * Genre classification * Music separation * MIMO channel estimation and symbol detection...

  7. New Applications of Learning Machines

    DEFF Research Database (Denmark)

    Larsen, Jan

    * Machine learning framework for sound search * Genre classification * Music separation * MIMO channel estimation and symbol detection......* Machine learning framework for sound search * Genre classification * Music separation * MIMO channel estimation and symbol detection...

  8. Machine Tool Operation, Course Description.

    Science.gov (United States)

    Denny, Walter E.; Anderson, Floyd L.

    Prepared by an instructor and curriculum specialists, this course of study was designed to meet the individual needs of the dropout and/or hard-core unemployed youth by providing them skill training, related information, and supportive services knowledge in machine tool operation. The achievement level of each student is determined at entry, and…

  9. Machine Learning at Scale

    OpenAIRE

    Izrailev, Sergei; Stanley, Jeremy M.

    2014-01-01

    It takes skill to build a meaningful predictive model even with the abundance of implementations of modern machine learning algorithms and readily available computing resources. Building a model becomes challenging if hundreds of terabytes of data need to be processed to produce the training data set. In a digital advertising technology setting, we are faced with the need to build thousands of such models that predict user behavior and power advertising campaigns in a 24/7 chaotic real-time p...

  10. Data Mining and Machine Learning Tools for Combinatorial Material Science of All-Oxide Photovoltaic Cells.

    Science.gov (United States)

    Yosipof, Abraham; Nahum, Oren E; Anderson, Assaf Y; Barad, Hannah-Noa; Zaban, Arie; Senderowitz, Hanoch

    2015-06-01

    Growth in energy demands, coupled with the need for clean energy, are likely to make solar cells an important part of future energy resources. In particular, cells entirely made of metal oxides (MOs) have the potential to provide clean and affordable energy if their power conversion efficiencies are improved. Such improvements require the development of new MOs which could benefit from combining combinatorial material sciences for producing solar cells libraries with data mining tools to direct synthesis efforts. In this work we developed a data mining workflow and applied it to the analysis of two recently reported solar cell libraries based on Titanium and Copper oxides. Our results demonstrate that QSAR models with good prediction statistics for multiple solar cells properties could be developed and that these models highlight important factors affecting these properties in accord with experimental findings. The resulting models are therefore suitable for designing better solar cells.

  11. Design of equipment for training machine tools

    Directory of Open Access Journals (Sweden)

    Císar Miroslav

    2017-01-01

    Full Text Available The article proposes multiple devices designed to be used with training machine tools EMCO Concept series. Design was focused to enchant educational potential of training machine tools located in the laboratory of CNC programing, department of automation and production systems, Faculty of mechanical engineering, University of Zilina. The described device allows monitoring of machine tool, to measure tool offset and dimension, to use alternative ways of clamping, and to create video of machining.

  12. Machine learning with R cookbook

    CERN Document Server

    Chiu, Yu-Wei

    2015-01-01

    If you want to learn how to use R for machine learning and gain insights from your data, then this book is ideal for you. Regardless of your level of experience, this book covers the basics of applying R to machine learning through to advanced techniques. While it is helpful if you are familiar with basic programming or machine learning concepts, you do not require prior experience to benefit from this book.

  13. Standardized Curriculum for Machine Tool Operation/Machine Shop.

    Science.gov (United States)

    Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.

    Standardized vocational education course titles and core contents for two courses in Mississippi are provided: machine tool operation/machine shop I and II. The first course contains the following units: (1) orientation; (2) shop safety; (3) shop math; (4) measuring tools and instruments; (5) hand and bench tools; (6) blueprint reading; (7)…

  14. Calibration of a Parallel Kinematic Machine Tool

    Institute of Scientific and Technical Information of China (English)

    HE Xiao-mei; DING Hong-sheng; FU Tie; XIE Dian-huang; XU Jin-zhong; LI Hua-feng; LIU Hui-lin

    2006-01-01

    A calibration method is presented to enhance the static accuracy of a parallel kinematic machine tool by using a coordinate measuring machine and a laser tracker. According to the established calibration model and the calibration experiment, the factual 42 kinematic parameters of BKX-I parallel kinematic machine tool are obtained. By circular tests the comparison is made between the calibrated and the uncalibrated parameters and shows that there is 80% improvement in accuracy of this machine tool.

  15. Quantum-Enhanced Machine Learning.

    Science.gov (United States)

    Dunjko, Vedran; Taylor, Jacob M; Briegel, Hans J

    2016-09-23

    The emerging field of quantum machine learning has the potential to substantially aid in the problems and scope of artificial intelligence. This is only enhanced by recent successes in the field of classical machine learning. In this work we propose an approach for the systematic treatment of machine learning, from the perspective of quantum information. Our approach is general and covers all three main branches of machine learning: supervised, unsupervised, and reinforcement learning. While quantum improvements in supervised and unsupervised learning have been reported, reinforcement learning has received much less attention. Within our approach, we tackle the problem of quantum enhancements in reinforcement learning as well, and propose a systematic scheme for providing improvements. As an example, we show that quadratic improvements in learning efficiency, and exponential improvements in performance over limited time periods, can be obtained for a broad class of learning problems.

  16. Quantum-Enhanced Machine Learning

    Science.gov (United States)

    Dunjko, Vedran; Taylor, Jacob M.; Briegel, Hans J.

    2016-09-01

    The emerging field of quantum machine learning has the potential to substantially aid in the problems and scope of artificial intelligence. This is only enhanced by recent successes in the field of classical machine learning. In this work we propose an approach for the systematic treatment of machine learning, from the perspective of quantum information. Our approach is general and covers all three main branches of machine learning: supervised, unsupervised, and reinforcement learning. While quantum improvements in supervised and unsupervised learning have been reported, reinforcement learning has received much less attention. Within our approach, we tackle the problem of quantum enhancements in reinforcement learning as well, and propose a systematic scheme for providing improvements. As an example, we show that quadratic improvements in learning efficiency, and exponential improvements in performance over limited time periods, can be obtained for a broad class of learning problems.

  17. Quantum adiabatic machine learning

    CERN Document Server

    Pudenz, Kristen L

    2011-01-01

    We develop an approach to machine learning and anomaly detection via quantum adiabatic evolution. In the training phase we identify an optimal set of weak classifiers, to form a single strong classifier. In the testing phase we adiabatically evolve one or more strong classifiers on a superposition of inputs in order to find certain anomalous elements in the classification space. Both the training and testing phases are executed via quantum adiabatic evolution. We apply and illustrate this approach in detail to the problem of software verification and validation.

  18. Machine learning in healthcare informatics

    CERN Document Server

    Acharya, U; Dua, Prerna

    2014-01-01

    The book is a unique effort to represent a variety of techniques designed to represent, enhance, and empower multi-disciplinary and multi-institutional machine learning research in healthcare informatics. The book provides a unique compendium of current and emerging machine learning paradigms for healthcare informatics and reflects the diversity, complexity and the depth and breath of this multi-disciplinary area. The integrated, panoramic view of data and machine learning techniques can provide an opportunity for novel clinical insights and discoveries.

  19. Stacked Extreme Learning Machines.

    Science.gov (United States)

    Zhou, Hongming; Huang, Guang-Bin; Lin, Zhiping; Wang, Han; Soh, Yeng Chai

    2015-09-01

    Extreme learning machine (ELM) has recently attracted many researchers' interest due to its very fast learning speed, good generalization ability, and ease of implementation. It provides a unified solution that can be used directly to solve regression, binary, and multiclass classification problems. In this paper, we propose a stacked ELMs (S-ELMs) that is specially designed for solving large and complex data problems. The S-ELMs divides a single large ELM network into multiple stacked small ELMs which are serially connected. The S-ELMs can approximate a very large ELM network with small memory requirement. To further improve the testing accuracy on big data problems, the ELM autoencoder can be implemented during each iteration of the S-ELMs algorithm. The simulation results show that the S-ELMs even with random hidden nodes can achieve similar testing accuracy to support vector machine (SVM) while having low memory requirements. With the help of ELM autoencoder, the S-ELMs can achieve much better testing accuracy than SVM and slightly better accuracy than deep belief network (DBN) with much faster training speed.

  20. Prediction of Machine Tool Condition Using Support Vector Machine

    Science.gov (United States)

    Wang, Peigong; Meng, Qingfeng; Zhao, Jian; Li, Junjie; Wang, Xiufeng

    2011-07-01

    Condition monitoring and predicting of CNC machine tools are investigated in this paper. Considering the CNC machine tools are often small numbers of samples, a condition predicting method for CNC machine tools based on support vector machines (SVMs) is proposed, then one-step and multi-step condition prediction models are constructed. The support vector machines prediction models are used to predict the trends of working condition of a certain type of CNC worm wheel and gear grinding machine by applying sequence data of vibration signal, which is collected during machine processing. And the relationship between different eigenvalue in CNC vibration signal and machining quality is discussed. The test result shows that the trend of vibration signal Peak-to-peak value in surface normal direction is most relevant to the trend of surface roughness value. In trends prediction of working condition, support vector machine has higher prediction accuracy both in the short term ('One-step') and long term (multi-step) prediction compared to autoregressive (AR) model and the RBF neural network. Experimental results show that it is feasible to apply support vector machine to CNC machine tool condition prediction.

  1. Attaching Chuck Keys to Machine Tools

    Science.gov (United States)

    Richardson, V.

    1984-01-01

    Chuck keys attached to portable machine tools by retracting lanyards. Lanyard held taut by recoil caddy attached to tool base. Chuck key available for use when needed and safely secured during operation of tool.

  2. Cutting tool materials for high speed machining

    Institute of Scientific and Technical Information of China (English)

    LIU Zhanqiang; AI Xing

    2005-01-01

    High speed machining (HSM) is one of the emerging cutting processes, which is machining at a speed significantlyhigher than the speed commonly in use on the shop floor. In the last twenty years, high speed machining has received great attentions as a technological solution for high productivity in manufacturing. This article reviews the developments of tool materials in high speed machining operations, and the properties, applications and prospective developments of tool materials in HSM are also presented.

  3. How To Teach Common Characteristics of Machine Tools

    Science.gov (United States)

    Kazanas, H. C.

    1970-01-01

    Organizes machine tools and machine operations into commonalities in order to help the student visualize and distinguish the common characteristics which exist between machine tools and operations. (GR)

  4. Chip breaking system for automated machine tool

    Science.gov (United States)

    Arehart, Theodore A.; Carey, Donald O.

    1987-01-01

    The invention is a rotary selectively directional valve assembly for use in an automated turret lathe for directing a stream of high pressure liquid machining coolant to the interface of a machine tool and workpiece for breaking up ribbon-shaped chips during the formation thereof so as to inhibit scratching or other marring of the machined surfaces by these ribbon-shaped chips. The valve assembly is provided by a manifold arrangement having a plurality of circumferentially spaced apart ports each coupled to a machine tool. The manifold is rotatable with the turret when the turret is positioned for alignment of a machine tool in a machining relationship with the workpiece. The manifold is connected to a non-rotational header having a single passageway therethrough which conveys the high pressure coolant to only the port in the manifold which is in registry with the tool disposed in a working relationship with the workpiece. To position the machine tools the turret is rotated and one of the tools is placed in a material-removing relationship of the workpiece. The passageway in the header and one of the ports in the manifold arrangement are then automatically aligned to supply the machining coolant to the machine tool workpiece interface for breaking up of the chips as well as cooling the tool and workpiece during the machining operation.

  5. Machine learning methods for nanolaser characterization

    CERN Document Server

    Zibar, Darko; Winther, Ole; Moerk, Jesper; Schaeffer, Christian

    2016-01-01

    Nanocavity lasers, which are an integral part of an on-chip integrated photonic network, are setting stringent requirements on the sensitivity of the techniques used to characterize the laser performance. Current characterization tools cannot provide detailed knowledge about nanolaser noise and dynamics. In this progress article, we will present tools and concepts from the Bayesian machine learning and digital coherent detection that offer novel approaches for highly-sensitive laser noise characterization and inference of laser dynamics. The goal of the paper is to trigger new research directions that combine the fields of machine learning and nanophotonics for characterizing nanolasers and eventually integrated photonic networks

  6. Active Control of Machine Tool Chatter

    OpenAIRE

    Håkansson, Lars; Claesson, Ingvar; Lagö, Thomas L.

    1999-01-01

    In the turning operation chatter or vibration is a frequent problem, which affects the result of the machining, and, in particular, the surface finish. Tool life is also influenced by vibration. Severe acoustic noise in the working environment frequently occurs as a result of dynamic motion between the cutting tool and the workpiece. By proper machine design, e.g. improved stiffness of the machine structure, the problem of relative dynamic motion between cutting tool and workpiece may be part...

  7. Machine Learning for Biological Trajectory Classification Applications

    Science.gov (United States)

    Sbalzarini, Ivo F.; Theriot, Julie; Koumoutsakos, Petros

    2002-01-01

    Machine-learning techniques, including clustering algorithms, support vector machines and hidden Markov models, are applied to the task of classifying trajectories of moving keratocyte cells. The different algorithms axe compared to each other as well as to expert and non-expert test persons, using concepts from signal-detection theory. The algorithms performed very well as compared to humans, suggesting a robust tool for trajectory classification in biological applications.

  8. MACHINE LEARNING TECHNIQUES USED IN BIG DATA

    Directory of Open Access Journals (Sweden)

    STEFANIA LOREDANA NITA

    2016-07-01

    Full Text Available The classical tools used in data analysis are not enough in order to benefit of all advantages of big data. The amount of information is too large for a complete investigation, and the possible connections and relations between data could be missed, because it is difficult or even impossible to verify all assumption over the information. Machine learning is a great solution in order to find concealed correlations or relationships between data, because it runs at scale machine and works very well with large data sets. The more data we have, the more the machine learning algorithm is useful, because it “learns” from the existing data and applies the found rules on new entries. In this paper, we present some machine learning algorithms and techniques used in big data.

  9. Machine Learning: developing an image recognition program : with Python, Scikit Learn and OpenCV

    OpenAIRE

    Nguyen, Minh

    2016-01-01

    Machine Learning is one of the most debated topic in computer world these days, especially after the first Computer Go program has beaten human Go world champion. Among endless application of Machine Learning, image recognition, which problem is processing enormous amount of data from dynamic input. This thesis will present the basic concept of Machine Learning, Machine Learning algorithms, Python programming language and Scikit Learn – a simple and efficient tool for data analysis in P...

  10. Machine learning in virtual screening.

    Science.gov (United States)

    Melville, James L; Burke, Edmund K; Hirst, Jonathan D

    2009-05-01

    In this review, we highlight recent applications of machine learning to virtual screening, focusing on the use of supervised techniques to train statistical learning algorithms to prioritize databases of molecules as active against a particular protein target. Both ligand-based similarity searching and structure-based docking have benefited from machine learning algorithms, including naïve Bayesian classifiers, support vector machines, neural networks, and decision trees, as well as more traditional regression techniques. Effective application of these methodologies requires an appreciation of data preparation, validation, optimization, and search methodologies, and we also survey developments in these areas.

  11. Learning thermodynamics with Boltzmann machines

    Science.gov (United States)

    Torlai, Giacomo; Melko, Roger G.

    2016-10-01

    A Boltzmann machine is a stochastic neural network that has been extensively used in the layers of deep architectures for modern machine learning applications. In this paper, we develop a Boltzmann machine that is capable of modeling thermodynamic observables for physical systems in thermal equilibrium. Through unsupervised learning, we train the Boltzmann machine on data sets constructed with spin configurations importance sampled from the partition function of an Ising Hamiltonian at different temperatures using Monte Carlo (MC) methods. The trained Boltzmann machine is then used to generate spin states, for which we compare thermodynamic observables to those computed by direct MC sampling. We demonstrate that the Boltzmann machine can faithfully reproduce the observables of the physical system. Further, we observe that the number of neurons required to obtain accurate results increases as the system is brought close to criticality.

  12. Emerging Paradigms in Machine Learning

    CERN Document Server

    Jain, Lakhmi; Howlett, Robert

    2013-01-01

    This  book presents fundamental topics and algorithms that form the core of machine learning (ML) research, as well as emerging paradigms in intelligent system design. The  multidisciplinary nature of machine learning makes it a very fascinating and popular area for research.  The book is aiming at students, practitioners and researchers and captures the diversity and richness of the field of machine learning and intelligent systems.  Several chapters are devoted to computational learning models such as granular computing, rough sets and fuzzy sets An account of applications of well-known learning methods in biometrics, computational stylistics, multi-agent systems, spam classification including an extremely well-written survey on Bayesian networks shed light on the strengths and weaknesses of the methods. Practical studies yielding insight into challenging problems such as learning from incomplete and imbalanced data, pattern recognition of stochastic episodic events and on-line mining of non-stationary ...

  13. Machine learning for healthcare technologies

    CERN Document Server

    Clifton, David A

    2016-01-01

    This book brings together chapters on the state-of-the-art in machine learning (ML) as it applies to the development of patient-centred technologies, with a special emphasis on 'big data' and mobile data.

  14. Scikit-learn: Machine Learning in Python

    OpenAIRE

    Pedregosa, Fabian; Varoquaux, Gaël; Gramfort, Alexandre; Michel, Vincent; Thirion, Bertrand; Grisel, Olivier; Blondel, Mathieu; Prettenhofer, Peter; Weiss, Ron; Dubourg, Vincent; Vanderplas, Jake; Passos, Alexandre; Cournapeau, David; Brucher, Matthieu; Perrot, Matthieu

    2011-01-01

    International audience; Scikit-learn is a Python module integrating a wide range of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised problems. This package focuses on bringing machine learning to non-specialists using a general-purpose high-level language. Emphasis is put on ease of use, performance, documentation, and API consistency. It has minimal dependencies and is distributed under the simplified BSD license, encouraging its use in both academic ...

  15. Paradigms for Realizing Machine Learning Algorithms.

    Science.gov (United States)

    Agneeswaran, Vijay Srinivas; Tonpay, Pranay; Tiwary, Jayati

    2013-12-01

    The article explains the three generations of machine learning algorithms-with all three trying to operate on big data. The first generation tools are SAS, SPSS, etc., while second generation realizations include Mahout and RapidMiner (that work over Hadoop), and the third generation paradigms include Spark and GraphLab, among others. The essence of the article is that for a number of machine learning algorithms, it is important to look beyond the Hadoop's Map-Reduce paradigm in order to make them work on big data. A number of promising contenders have emerged in the third generation that can be exploited to realize deep analytics on big data.

  16. Machine learning methods for planning

    CERN Document Server

    Minton, Steven

    1993-01-01

    Machine Learning Methods for Planning provides information pertinent to learning methods for planning and scheduling. This book covers a wide variety of learning methods and learning architectures, including analogical, case-based, decision-tree, explanation-based, and reinforcement learning.Organized into 15 chapters, this book begins with an overview of planning and scheduling and describes some representative learning systems that have been developed for these tasks. This text then describes a learning apprentice for calendar management. Other chapters consider the problem of temporal credi

  17. Machine learning for identifying botnet network traffic

    DEFF Research Database (Denmark)

    Stevanovic, Matija; Pedersen, Jens Myrup

    2013-01-01

    . Due to promise of non-invasive and resilient detection, botnet detection based on network traffic analysis has drawn a special attention of the research community. Furthermore, many authors have turned their attention to the use of machine learning algorithms as the mean of inferring botnet......-related knowledge from the monitored traffic. This paper presents a review of contemporary botnet detection methods that use machine learning as a tool of identifying botnet-related traffic. The main goal of the paper is to provide a comprehensive overview on the field by summarizing current scientific efforts....... The contribution of the paper is three-fold. First, the paper provides a detailed insight on the existing detection methods by investigating which bot-related heuristic were assumed by the detection systems and how different machine learning techniques were adapted in order to capture botnet-related knowledge...

  18. Speed-Selector Guard For Machine Tool

    Science.gov (United States)

    Shakhshir, Roda J.; Valentine, Richard L.

    1992-01-01

    Simple guardplate prevents accidental reversal of direction of rotation or sudden change of speed of lathe, milling machine, or other machine tool. Custom-made for specific machine and control settings. Allows control lever to be placed at only one setting. Operator uses handle to slide guard to engage or disengage control lever. Protects personnel from injury and equipment from damage occurring if speed- or direction-control lever inadvertently placed in wrong position.

  19. USSR Report Machine Tools and Metalworking Equipment

    Science.gov (United States)

    2007-11-02

    determined, therefore, by the shape of the machined surface and is spatial , i.e., kinematically the most complicated one, different for each machined...place in a single hour. But in actuality? Perhaps it began when they began to study the loading of the production capacities of the sections... kindergartens , the machine tools are outdated and there is nowhere to rest." "At that time I said to myself: ’First achieve their confidence; this

  20. Method for machining steel with diamond tools

    Science.gov (United States)

    Casstevens, John M.

    1986-01-01

    The present invention is directed to a method for machining optical quality inishes and contour accuracies of workpieces of carbon-containing metals such as steel with diamond tooling. The wear rate of the diamond tooling is significantly reduced by saturating the atmosphere at the interface of the workpiece and the diamond tool with a gaseous hydrocarbon during the machining operation. The presence of the gaseous hydrocarbon effectively eliminates the deterioration of the diamond tool by inhibiting or preventing the conversion of the diamond carbon to graphite carbon at the point of contact between the cutting tool and the workpiece.

  1. Machine learning for evolution strategies

    CERN Document Server

    Kramer, Oliver

    2016-01-01

    This book introduces numerous algorithmic hybridizations between both worlds that show how machine learning can improve and support evolution strategies. The set of methods comprises covariance matrix estimation, meta-modeling of fitness and constraint functions, dimensionality reduction for search and visualization of high-dimensional optimization processes, and clustering-based niching. After giving an introduction to evolution strategies and machine learning, the book builds the bridge between both worlds with an algorithmic and experimental perspective. Experiments mostly employ a (1+1)-ES and are implemented in Python using the machine learning library scikit-learn. The examples are conducted on typical benchmark problems illustrating algorithmic concepts and their experimental behavior. The book closes with a discussion of related lines of research.

  2. Numerically Controlled Machine Tools and Worker Skills.

    Science.gov (United States)

    Keefe, Jeffrey H.

    1991-01-01

    Analysis of data from "Industry Wage Surveys of Machinery Manufacturers" on the skill levels of 57 machining jobs found that introduction of numerically controlled machine tools has resulted in a very small reduction in skill levels or no significant change, supporting neither the deskilling argument nor argument that skill levels…

  3. Machine Tool Series. Duty Task List.

    Science.gov (United States)

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This task list is intended for use in planning and/or evaluating a competency-based course to prepare machine tool, drill press, grinding machine, lathe, mill, and/or power saw operators. The listing is divided into six sections, with each one outlining the tasks required to perform the duties that have been identified for the given occupation.…

  4. Numerically Controlled Machine Tools and Worker Skills.

    Science.gov (United States)

    Keefe, Jeffrey H.

    1991-01-01

    Analysis of data from "Industry Wage Surveys of Machinery Manufacturers" on the skill levels of 57 machining jobs found that introduction of numerically controlled machine tools has resulted in a very small reduction in skill levels or no significant change, supporting neither the deskilling argument nor argument that skill levels…

  5. Transition Towards Energy Efficient Machine Tools

    CERN Document Server

    Zein, André

    2012-01-01

    Energy efficiency represents a cost-effective and immediate strategy of a sustainable development. Due to substantial environmental and economic implications, a strong emphasis is put on the electrical energy requirements of machine tools for metalworking processes. The improvement of energy efficiency is however confronted with diverse barriers, which sustain an energy efficiency gap of unexploited potential. The deficiencies lie in the lack of information about the actual energy requirements of machine tools, a minimum energy reference to quantify improvement potential and the possible actions to improve the energy demand. Therefore, a comprehensive concept for energy performance management of machine tools is developed which guides the transition towards energy efficient machine tools. It is structured in four innovative concept modules, which are embedded into step-by-step workflow models. The capability of the performance management concept is demonstrated in an automotive manufacturing environment. The ...

  6. Refrigerated cutting tools improve machining of superalloys

    Science.gov (United States)

    Dudley, G. M.

    1971-01-01

    Freon-12 applied to tool cutting edge evaporates quickly, leaves no residue, and permits higher cutting rate than with conventional coolants. This technique increases cutting rate on Rene-41 threefold and improves finish of machined surface.

  7. Game-powered machine learning.

    Science.gov (United States)

    Barrington, Luke; Turnbull, Douglas; Lanckriet, Gert

    2012-04-24

    Searching for relevant content in a massive amount of multimedia information is facilitated by accurately annotating each image, video, or song with a large number of relevant semantic keywords, or tags. We introduce game-powered machine learning, an integrated approach to annotating multimedia content that combines the effectiveness of human computation, through online games, with the scalability of machine learning. We investigate this framework for labeling music. First, a socially-oriented music annotation game called Herd It collects reliable music annotations based on the "wisdom of the crowds." Second, these annotated examples are used to train a supervised machine learning system. Third, the machine learning system actively directs the annotation games to collect new data that will most benefit future model iterations. Once trained, the system can automatically annotate a corpus of music much larger than what could be labeled using human computation alone. Automatically annotated songs can be retrieved based on their semantic relevance to text-based queries (e.g., "funky jazz with saxophone," "spooky electronica," etc.). Based on the results presented in this paper, we find that actively coupling annotation games with machine learning provides a reliable and scalable approach to making searchable massive amounts of multimedia data.

  8. Machine Learning for Neuroimaging with Scikit-Learn

    Directory of Open Access Journals (Sweden)

    Alexandre eAbraham

    2014-02-01

    Full Text Available Statistical machine learning methods are increasingly used for neuroimaging data analysis. Their main virtue is their ability to model high-dimensional datasets, e.g. multivariate analysis of activation images or resting-state time series. Supervised learning is typically used in decoding or encoding settings to relate brain images to behavioral or clinical observations, while unsupervised learning can uncover hidden structures in sets of images (e.g. resting state functional MRI or find sub-populations in large cohorts. By considering different functional neuroimaging applications, we illustrate how scikit-learn, a Python machine learning library, can be used to perform some key analysis steps. Scikit-learn contains a very large set of statistical learning algorithms, both supervised and unsupervised, and its application to neuroimaging data provides a versatile tool to study the brain.

  9. Machine learning for neuroimaging with scikit-learn.

    Science.gov (United States)

    Abraham, Alexandre; Pedregosa, Fabian; Eickenberg, Michael; Gervais, Philippe; Mueller, Andreas; Kossaifi, Jean; Gramfort, Alexandre; Thirion, Bertrand; Varoquaux, Gaël

    2014-01-01

    Statistical machine learning methods are increasingly used for neuroimaging data analysis. Their main virtue is their ability to model high-dimensional datasets, e.g., multivariate analysis of activation images or resting-state time series. Supervised learning is typically used in decoding or encoding settings to relate brain images to behavioral or clinical observations, while unsupervised learning can uncover hidden structures in sets of images (e.g., resting state functional MRI) or find sub-populations in large cohorts. By considering different functional neuroimaging applications, we illustrate how scikit-learn, a Python machine learning library, can be used to perform some key analysis steps. Scikit-learn contains a very large set of statistical learning algorithms, both supervised and unsupervised, and its application to neuroimaging data provides a versatile tool to study the brain.

  10. Machine learning with quantum relative entropy

    Energy Technology Data Exchange (ETDEWEB)

    Tsuda, Koji [Max Planck Institute for Biological Cybernetics, Spemannstr. 38, Tuebingen, 72076 (Germany)], E-mail: koji.tsuda@tuebingen.mpg.de

    2009-12-01

    Density matrices are a central tool in quantum physics, but it is also used in machine learning. A positive definite matrix called kernel matrix is used to represent the similarities between examples. Positive definiteness assures that the examples are embedded in an Euclidean space. When a positive definite matrix is learned from data, one has to design an update rule that maintains the positive definiteness. Our update rule, called matrix exponentiated gradient update, is motivated by the quantum relative entropy. Notably, the relative entropy is an instance of Bregman divergences, which are asymmetric distance measures specifying theoretical properties of machine learning algorithms. Using the calculus commonly used in quantum physics, we prove an upperbound of the generalization error of online learning.

  11. Higgs Machine Learning Challenge 2014

    CERN Multimedia

    Olivier, A-P; Bourdarios, C ; LAL / Orsay; Goldfarb, S ; University of Michigan

    2014-01-01

    High Energy Physics (HEP) has been using Machine Learning (ML) techniques such as boosted decision trees (paper) and neural nets since the 90s. These techniques are now routinely used for difficult tasks such as the Higgs boson search. Nevertheless, formal connections between the two research fields are rather scarce, with some exceptions such as the AppStat group at LAL, founded in 2006. In collaboration with INRIA, AppStat promotes interdisciplinary research on machine learning, computational statistics, and high-energy particle and astroparticle physics. We are now exploring new ways to improve the cross-fertilization of the two fields by setting up a data challenge, following the footsteps of, among others, the astrophysics community (dark matter and galaxy zoo challenges) and neurobiology (connectomics and decoding the human brain). The organization committee consists of ATLAS physicists and machine learning researchers. The Challenge will run from Monday 12th to September 2014.

  12. Machine learning methods in chemoinformatics

    Science.gov (United States)

    Mitchell, John B O

    2014-01-01

    Machine learning algorithms are generally developed in computer science or adjacent disciplines and find their way into chemical modeling by a process of diffusion. Though particular machine learning methods are popular in chemoinformatics and quantitative structure–activity relationships (QSAR), many others exist in the technical literature. This discussion is methods-based and focused on some algorithms that chemoinformatics researchers frequently use. It makes no claim to be exhaustive. We concentrate on methods for supervised learning, predicting the unknown property values of a test set of instances, usually molecules, based on the known values for a training set. Particularly relevant approaches include Artificial Neural Networks, Random Forest, Support Vector Machine, k-Nearest Neighbors and naïve Bayes classifiers. WIREs Comput Mol Sci 2014, 4:468–481. How to cite this article: WIREs Comput Mol Sci 2014, 4:468–481. doi:10.1002/wcms.1183 PMID:25285160

  13. Machine learning phases of matter

    Science.gov (United States)

    Carrasquilla, Juan; Melko, Roger G.

    2017-02-01

    Condensed-matter physics is the study of the collective behaviour of infinitely complex assemblies of electrons, nuclei, magnetic moments, atoms or qubits. This complexity is reflected in the size of the state space, which grows exponentially with the number of particles, reminiscent of the `curse of dimensionality' commonly encountered in machine learning. Despite this curse, the machine learning community has developed techniques with remarkable abilities to recognize, classify, and characterize complex sets of data. Here, we show that modern machine learning architectures, such as fully connected and convolutional neural networks, can identify phases and phase transitions in a variety of condensed-matter Hamiltonians. Readily programmable through modern software libraries, neural networks can be trained to detect multiple types of order parameter, as well as highly non-trivial states with no conventional order, directly from raw state configurations sampled with Monte Carlo.

  14. Using Your Hands in Learning CNC Machine Tools%巧用自己的双手精通数控机床

    Institute of Scientific and Technical Information of China (English)

    郑龙燕

    2014-01-01

    In the process learning CNC machine tools ,the students often encounter some confusing codes or difficults ,for example , the tool radius compensation instructions G41 and G42 ,left turning tool and right turning tool ,left-hand thread and right-hand thread .This article describes how to use the learner himself hands to quickly distinguish these knowledge .%在学习数控机床过程中,经常会碰到一些容易混淆程序代码或者难以记忆的知识点。比如刀具半径补偿指令G41和G42、左偏车刀和右偏车刀、左旋螺纹和右旋螺纹等知识点,两者之间容易混淆。阐述了如何利用学习者自己的双手就能快速准确地区分这些知识点,且记忆深刻,不易忘记。

  15. Machine Learning in Medicine

    National Research Council Canada - National Science Library

    Deo, Rahul C

    2015-01-01

    Spurred by advances in processing power, memory, storage, and an unprecedented wealth of data, computers are being asked to tackle increasingly complex learning tasks, often with astonishing success...

  16. Machine Translation Tools - Tools of The Translator's Trade

    DEFF Research Database (Denmark)

    Kastberg, Peter

    2012-01-01

    In this article three of the more common types of translation tools are presented, discussed and critically evaluated. The types of translation tools dealt with in this article are: Fully Automated Machine Translation (or FAMT), Human Aided Machine Translation (or HAMT) and Machine Aided Human...... Translation (or MAHT). The strengths and weaknesses of the different types of tools are discussed and evaluated by means of a number of examples. The article aims at two things: at presenting a sort of state of the art of what is commonly referred to as “machine translation” as well as at providing the reader...... with a sound basis for considering what translation tool (if any) is the most appropriate in order to meet his or her specific translation needs....

  17. Machine Learning in Parliament Elections

    Directory of Open Access Journals (Sweden)

    Ahmad Esfandiari

    2012-09-01

    Full Text Available Parliament is considered as one of the most important pillars of the country governance. The parliamentary elections and prediction it, had been considered by scholars of from various field like political science long ago. Some important features are used to model the results of consultative parliament elections. These features are as follows: reputation and popularity, political orientation, tradesmen's support, clergymen's support, support from political wings and the type of supportive wing. Two parameters of reputation and popularity and the support of clergymen and religious scholars that have more impact in reducing of prediction error in election results, have been used as input parameters in implementation. In this study, the Iranian parliamentary elections, modeled and predicted using learnable machines of neural network and neuro-fuzzy. Neuro-fuzzy machine combines the ability of knowledge representation of fuzzy sets and the learning power of neural networks simultaneously. In predicting the social and political behavior, the neural network is first trained by two learning algorithms using the training data set and then this machine predict the result on test data. Next, the learning of neuro-fuzzy inference machine is performed. Then, be compared the results of two machines.

  18. From machine learning to deep learning: progress in machine intelligence for rational drug discovery.

    Science.gov (United States)

    Zhang, Lu; Tan, Jianjun; Han, Dan; Zhu, Hao

    2017-09-04

    Machine intelligence, which is normally presented as artificial intelligence, refers to the intelligence exhibited by computers. In the history of rational drug discovery, various machine intelligence approaches have been applied to guide traditional experiments, which are expensive and time-consuming. Over the past several decades, machine-learning tools, such as quantitative structure-activity relationship (QSAR) modeling, were developed that can identify potential biological active molecules from millions of candidate compounds quickly and cheaply. However, when drug discovery moved into the era of 'big' data, machine learning approaches evolved into deep learning approaches, which are a more powerful and efficient way to deal with the massive amounts of data generated from modern drug discovery approaches. Here, we summarize the history of machine learning and provide insight into recently developed deep learning approaches and their applications in rational drug discovery. We suggest that this evolution of machine intelligence now provides a guide for early-stage drug design and discovery in the current big data era. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Attention: A Machine Learning Perspective

    DEFF Research Database (Denmark)

    Hansen, Lars Kai

    2012-01-01

    We review a statistical machine learning model of top-down task driven attention based on the notion of ‘gist’. In this framework we consider the task to be represented as a classification problem with two sets of features — a gist of coarse grained global features and a larger set of low...

  20. Machine Learning applications in CMS

    CERN Document Server

    CERN. Geneva

    2017-01-01

    Machine Learning is used in many aspects of CMS data taking, monitoring, processing and analysis. We review a few of these use cases and the most recent developments, with an outlook to future applications in the LHC Run III and for the High-Luminosity phase.

  1. Sparse Machine Learning Methods for Understanding Large Text Corpora

    Data.gov (United States)

    National Aeronautics and Space Administration — Sparse machine learning has recently emerged as powerful tool to obtain models of high-dimensional data with high degree of interpretability, at low computational...

  2. Automatic Calibration Of Manual Machine Tools

    Science.gov (United States)

    Gurney, Rex D.

    1990-01-01

    Modified scheme uses data from multiple positions and eliminates tedious positioning. Modification of computer program adapts calibration system for convenient use with manually-controlled machine tools. Developed for use on computer-controlled tools. Option added to calibration program allows data on random tool-axis positions to be entered manually into computer for reduction. Instead of setting axis to predetermined positions, operator merely sets it at variety of arbitrary positions.

  3. Learning scikit-learn machine learning in Python

    CERN Document Server

    Garreta, Raúl

    2013-01-01

    The book adopts a tutorial-based approach to introduce the user to Scikit-learn.If you are a programmer who wants to explore machine learning and data-based methods to build intelligent applications and enhance your programming skills, this the book for you. No previous experience with machine-learning algorithms is required.

  4. Machine learning an artificial intelligence approach

    CERN Document Server

    Banerjee, R; Bradshaw, Gary; Carbonell, Jaime Guillermo; Mitchell, Tom Michael; Michalski, Ryszard Spencer

    1983-01-01

    Machine Learning: An Artificial Intelligence Approach contains tutorial overviews and research papers representative of trends in the area of machine learning as viewed from an artificial intelligence perspective. The book is organized into six parts. Part I provides an overview of machine learning and explains why machines should learn. Part II covers important issues affecting the design of learning programs-particularly programs that learn from examples. It also describes inductive learning systems. Part III deals with learning by analogy, by experimentation, and from experience. Parts IV a

  5. ADAPTABLE DESIGN OF MACHINE TOOLS STRUCTURES

    Institute of Scientific and Technical Information of China (English)

    XU Yanshen; CHEN Yongliang; ZHANG Guojun; GU Peihua

    2008-01-01

    Adaptable design aims to extend the utilities of design and product. The specific methods are developed for practical applications of adaptable design in the design of mechanical structures, including adaptable platform, interface and module designs. Adaptable redesign problems are formulated as adaptable platform design under adaptability bound constraints. Analysis tools are then suggested for the implementation of the redesign of machine tool structures, including variation techniques based sensitivity analysis, similarity-based commonality analysis, performance improvement, and adaptability measures. The specific measure of adaptability for machine tool structures is measured through the quantification of the structural similarity and performance improvement gained from adaptable design. The method provides designers with an approach that brings adaptability into the design process, with considering the cost and benefits of such adaptability. The redesign of CNC spiral bevel gear cutting machine structures has been included to illustrate these concepts and methods.

  6. Machine learning a probabilistic perspective

    CERN Document Server

    Murphy, Kevin P

    2012-01-01

    Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach. The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic method...

  7. Program Design Report of the CNC Machine Tool(II)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Kiun; Youm, K. U.; Kim, K. S.; Lee, I. B.; Yoon, K. B.; Lee, C. K.; Youm, J. H

    2007-06-15

    The application of CNC machine tool being widely expanded according to variety of machine work method and rapid promotion of machine tool, cutting tool, for high speed efficient machine work. In order to conduct of the project of manufacture and maintenance of laboratory equipment, production design and machine work technology are continually developed, especially the application of CNC machine tool is very important for the improvement of productivity, quality and clearing up a manpower shortage. We publish technical report which it includes CNC machine tool program and drawing, it contributes to the systematic development of CNC program design and machine work technology.

  8. Sine-Bar Attachment For Machine Tools

    Science.gov (United States)

    Mann, Franklin D.

    1988-01-01

    Sine-bar attachment for collets, spindles, and chucks helps machinists set up quickly for precise angular cuts that require greater precision than provided by graduations of machine tools. Machinist uses attachment to index head, carriage of milling machine or lathe relative to table or turning axis of tool. Attachment accurate to 1 minute or arc depending on length of sine bar and precision of gauge blocks in setup. Attachment installs quickly and easily on almost any type of lathe or mill. Requires no special clamps or fixtures, and eliminates many trial-and-error measurements. More stable than improvised setups and not jarred out of position readily.

  9. Sine-Bar Attachment For Machine Tools

    Science.gov (United States)

    Mann, Franklin D.

    1988-01-01

    Sine-bar attachment for collets, spindles, and chucks helps machinists set up quickly for precise angular cuts that require greater precision than provided by graduations of machine tools. Machinist uses attachment to index head, carriage of milling machine or lathe relative to table or turning axis of tool. Attachment accurate to 1 minute or arc depending on length of sine bar and precision of gauge blocks in setup. Attachment installs quickly and easily on almost any type of lathe or mill. Requires no special clamps or fixtures, and eliminates many trial-and-error measurements. More stable than improvised setups and not jarred out of position readily.

  10. Learning Extended Finite State Machines

    Science.gov (United States)

    Cassel, Sofia; Howar, Falk; Jonsson, Bengt; Steffen, Bernhard

    2014-01-01

    We present an active learning algorithm for inferring extended finite state machines (EFSM)s, combining data flow and control behavior. Key to our learning technique is a novel learning model based on so-called tree queries. The learning algorithm uses the tree queries to infer symbolic data constraints on parameters, e.g., sequence numbers, time stamps, identifiers, or even simple arithmetic. We describe sufficient conditions for the properties that the symbolic constraints provided by a tree query in general must have to be usable in our learning model. We have evaluated our algorithm in a black-box scenario, where tree queries are realized through (black-box) testing. Our case studies include connection establishment in TCP and a priority queue from the Java Class Library.

  11. Learning Design Tools

    NARCIS (Netherlands)

    Griffiths, David; Blat, Josep; Garcia, Rocío; Vogten, Hubert; Kwong, KL

    2005-01-01

    Griffiths, D., Blat, J., Garcia, R., Vogten, H. & Kwong, KL. (2005). Learning Design Tools. In: Koper, R. & Tattersall, C., Learning Design: A Handbook on Modelling and Delivering Networked Education and Training (pp. 109-136). Berlin-Heidelberg: Springer Verlag.

  12. Learning Machine Learning: A Case Study

    Science.gov (United States)

    Lavesson, N.

    2010-01-01

    This correspondence reports on a case study conducted in the Master's-level Machine Learning (ML) course at Blekinge Institute of Technology, Sweden. The students participated in a self-assessment test and a diagnostic test of prerequisite subjects, and their results on these tests are correlated with their achievement of the course's learning…

  13. Learning Machine Learning: A Case Study

    Science.gov (United States)

    Lavesson, N.

    2010-01-01

    This correspondence reports on a case study conducted in the Master's-level Machine Learning (ML) course at Blekinge Institute of Technology, Sweden. The students participated in a self-assessment test and a diagnostic test of prerequisite subjects, and their results on these tests are correlated with their achievement of the course's learning…

  14. Attractor Control Using Machine Learning

    CERN Document Server

    Duriez, Thomas; Noack, Bernd R; Cordier, Laurent; Segond, Marc; Abel, Markus

    2013-01-01

    We propose a general strategy for feedback control design of complex dynamical systems exploiting the nonlinear mechanisms in a systematic unsupervised manner. These dynamical systems can have a state space of arbitrary dimension with finite number of actuators (multiple inputs) and sensors (multiple outputs). The control law maps outputs into inputs and is optimized with respect to a cost function, containing physics via the dynamical or statistical properties of the attractor to be controlled. Thus, we are capable of exploiting nonlinear mechanisms, e.g. chaos or frequency cross-talk, serving the control objective. This optimization is based on genetic programming, a branch of machine learning. This machine learning control is successfully applied to the stabilization of nonlinearly coupled oscillators and maximization of Lyapunov exponent of a forced Lorenz system. We foresee potential applications to most nonlinear multiple inputs/multiple outputs control problems, particulary in experiments.

  15. Machine-Tool Technology Instructor's Sourcebook.

    Science.gov (United States)

    Tammer, Anthony M.

    This document lists and annotates commercial and noncommercial resources pertaining to machine-tool technology. Following an introduction that explains how the document came to be written, the subjects of succeeding chapters are (1) periodicals; (2) associations; (3) audiovisual resources, including a subject index; (4) publishers, including a…

  16. Technology network for machine tools in Vietnam

    OpenAIRE

    Mizuno, Junko

    2012-01-01

    When Vietnam joined the WTO, it accepted foreign direct investment and started to grow. Technically, it was then greatly influenced by the enterprises that entered the country through direct investment. This report shows that the technology network for machine tools is formed via direct investment and subcontracting.

  17. Machine learning phases of matter

    OpenAIRE

    Carrasquilla, Juan; Melko, Roger G.

    2016-01-01

    Neural networks can be used to identify phases and phase transitions in condensed matter systems via supervised machine learning. Readily programmable through modern software libraries, we show that a standard feed-forward neural network can be trained to detect multiple types of order parameter directly from raw state configurations sampled with Monte Carlo. In addition, they can detect highly non-trivial states such as Coulomb phases, and if modified to a convolutional neural network, topol...

  18. Galaxy Classification using Machine Learning

    Science.gov (United States)

    Fowler, Lucas; Schawinski, Kevin; Brandt, Ben-Elias; widmer, Nicole

    2017-01-01

    We present our current research into the use of machine learning to classify galaxy imaging data with various convolutional neural network configurations in TensorFlow. We are investigating how five-band Sloan Digital Sky Survey imaging data can be used to train on physical properties such as redshift, star formation rate, mass and morphology. We also investigate the performance of artificially redshifted images in recovering physical properties as image quality degrades.

  19. Machine learning for medical images analysis.

    Science.gov (United States)

    Criminisi, A

    2016-10-01

    This article discusses the application of machine learning for the analysis of medical images. Specifically: (i) We show how a special type of learning models can be thought of as automatically optimized, hierarchically-structured, rule-based algorithms, and (ii) We discuss how the issue of collecting large labelled datasets applies to both conventional algorithms as well as machine learning techniques. The size of the training database is a function of model complexity rather than a characteristic of machine learning methods.

  20. PCP-ML: protein characterization package for machine learning.

    Science.gov (United States)

    Eickholt, Jesse; Wang, Zheng

    2014-11-18

    Machine Learning (ML) has a number of demonstrated applications in protein prediction tasks such as protein structure prediction. To speed further development of machine learning based tools and their release to the community, we have developed a package which characterizes several aspects of a protein commonly used for protein prediction tasks with machine learning. A number of software libraries and modules exist for handling protein related data. The package we present in this work, PCP-ML, is unique in its small footprint and emphasis on machine learning. Its primary focus is on characterizing various aspects of a protein through sets of numerical data. The generated data can then be used with machine learning tools and/or techniques. PCP-ML is very flexible in how the generated data is formatted and as a result is compatible with a variety of existing machine learning packages. Given its small size, it can be directly packaged and distributed with community developed tools for protein prediction tasks. Source code and example programs are available under a BSD license at http://mlid.cps.cmich.edu/eickh1jl/tools/PCPML/. The package is implemented in C++ and accessible as a Python module.

  1. Python Spectral Analysis Tool (PySAT) for Preprocessing, Multivariate Analysis, and Machine Learning with Point Spectra

    Science.gov (United States)

    Anderson, R. B.; Finch, N.; Clegg, S.; Graff, T.; Morris, R. V.; Laura, J.

    2017-06-01

    We present a Python-based library and graphical interface for the analysis of point spectra. The tool is being developed with a focus on methods used for ChemCam data, but is flexible enough to handle spectra from other instruments.

  2. ATST telescope mount: telescope of machine tool

    Science.gov (United States)

    Jeffers, Paul; Stolz, Günter; Bonomi, Giovanni; Dreyer, Oliver; Kärcher, Hans

    2012-09-01

    The Advanced Technology Solar Telescope (ATST) will be the largest solar telescope in the world, and will be able to provide the sharpest views ever taken of the solar surface. The telescope has a 4m aperture primary mirror, however due to the off axis nature of the optical layout, the telescope mount has proportions similar to an 8 meter class telescope. The technology normally used in this class of telescope is well understood in the telescope community and has been successfully implemented in numerous projects. The world of large machine tools has developed in a separate realm with similar levels of performance requirement but different boundary conditions. In addition the competitive nature of private industry has encouraged development and usage of more cost effective solutions both in initial capital cost and thru-life operating cost. Telescope mounts move relatively slowly with requirements for high stability under external environmental influences such as wind buffeting. Large machine tools operate under high speed requirements coupled with high application of force through the machine but with little or no external environmental influences. The benefits of these parallel development paths and the ATST system requirements are being combined in the ATST Telescope Mount Assembly (TMA). The process of balancing the system requirements with new technologies is based on the experience of the ATST project team, Ingersoll Machine Tools who are the main contractor for the TMA and MT Mechatronics who are their design subcontractors. This paper highlights a number of these proven technologies from the commercially driven machine tool world that are being introduced to the TMA design. Also the challenges of integrating and ensuring that the differences in application requirements are accounted for in the design are discussed.

  3. Continual Learning through Evolvable Neural Turing Machines

    DEFF Research Database (Denmark)

    Lüders, Benno; Schläger, Mikkel; Risi, Sebastian

    2016-01-01

    Continual learning, i.e. the ability to sequentially learn tasks without catastrophic forgetting of previously learned ones, is an important open challenge in machine learning. In this paper we take a step in this direction by showing that the recently proposed Evolving Neural Turing Machine (ENTM......) approach is able to perform one-shot learning in a reinforcement learning task without catastrophic forgetting of previously stored associations....

  4. Reverse hypothesis machine learning a practitioner's perspective

    CERN Document Server

    Kulkarni, Parag

    2017-01-01

    This book introduces a paradigm of reverse hypothesis machines (RHM), focusing on knowledge innovation and machine learning. Knowledge- acquisition -based learning is constrained by large volumes of data and is time consuming. Hence Knowledge innovation based learning is the need of time. Since under-learning results in cognitive inabilities and over-learning compromises freedom, there is need for optimal machine learning. All existing learning techniques rely on mapping input and output and establishing mathematical relationships between them. Though methods change the paradigm remains the same—the forward hypothesis machine paradigm, which tries to minimize uncertainty. The RHM, on the other hand, makes use of uncertainty for creative learning. The approach uses limited data to help identify new and surprising solutions. It focuses on improving learnability, unlike traditional approaches, which focus on accuracy. The book is useful as a reference book for machine learning researchers and professionals as ...

  5. Designing Contestability: Interaction Design, Machine Learning, and Mental Health.

    Science.gov (United States)

    Hirsch, Tad; Merced, Kritzia; Narayanan, Shrikanth; Imel, Zac E; Atkins, David C

    2017-06-01

    We describe the design of an automated assessment and training tool for psychotherapists to illustrate challenges with creating interactive machine learning (ML) systems, particularly in contexts where human life, livelihood, and wellbeing are at stake. We explore how existing theories of interaction design and machine learning apply to the psychotherapy context, and identify "contestability" as a new principle for designing systems that evaluate human behavior. Finally, we offer several strategies for making ML systems more accountable to human actors.

  6. Machine learning a theoretical approach

    CERN Document Server

    Natarajan, Balas K

    2014-01-01

    This is the first comprehensive introduction to computational learning theory. The author's uniform presentation of fundamental results and their applications offers AI researchers a theoretical perspective on the problems they study. The book presents tools for the analysis of probabilistic models of learning, tools that crisply classify what is and is not efficiently learnable. After a general introduction to Valiant's PAC paradigm and the important notion of the Vapnik-Chervonenkis dimension, the author explores specific topics such as finite automata and neural networks. The presentation

  7. On-the-Fly Learning in a Perpetual Learning Machine

    OpenAIRE

    2015-01-01

    Despite the promise of brain-inspired machine learning, deep neural networks (DNN) have frustratingly failed to bridge the deceptively large gap between learning and memory. Here, we introduce a Perpetual Learning Machine; a new type of DNN that is capable of brain-like dynamic 'on the fly' learning because it exists in a self-supervised state of Perpetual Stochastic Gradient Descent. Thus, we provide the means to unify learning and memory within a machine learning framework. We also explore ...

  8. Machine tool metrology an industrial handbook

    CERN Document Server

    Smith, Graham T

    2016-01-01

    Maximizing reader insights into the key scientific disciplines of Machine Tool Metrology, this text will prove useful for the industrial-practitioner and those interested in the operation of machine tools. Within this current level of industrial-content, this book incorporates significant usage of the existing published literature and valid information obtained from a wide-spectrum of manufacturers of plant, equipment and instrumentation before putting forward novel ideas and methodologies. Providing easy to understand bullet points and lucid descriptions of metrological and calibration subjects, this book aids reader understanding of the topics discussed whilst adding a voluminous-amount of footnotes utilised throughout all of the chapters, which adds some additional detail to the subject. Featuring an extensive amount of photographic-support, this book will serve as a key reference text for all those involved in the field. .

  9. SDM applications to machine tools and engines

    Indian Academy of Sciences (India)

    A Sestieri

    2000-06-01

    The method of structural dynamic optimization is applied here to two real-life structures, a small two-cylinder, air-cooled gasoline engine and a high speed machine tool. The aim of the first application isthe reduction of the kinematic vibration transmission path composed of a piston-connecting rod, a crankshaft and an engine block, while the goal of the second application is the lowering of the peaks of the spindle-drive point FRFs measured along two orthogonal directions.It is shown how the addition of a small amount of mass at a few points on the engine block, and a small dynamic absorber with highly damped elastic connections provides the required improvements for the engine and the machine tool respectively.

  10. Machine learning approaches in medical image analysis

    DEFF Research Database (Denmark)

    de Bruijne, Marleen

    2016-01-01

    Machine learning approaches are increasingly successful in image-based diagnosis, disease prognosis, and risk assessment. This paper highlights new research directions and discusses three main challenges related to machine learning in medical imaging: coping with variation in imaging protocols......, learning from weak labels, and interpretation and evaluation of results....

  11. Parametric programming of CNC machine tools

    Directory of Open Access Journals (Sweden)

    Gołębski Rafał

    2017-01-01

    Full Text Available The article presents the possibilities of parametric programming of CNC machine tools for the SINUMERIK 840D sl control system. The kinds and types of the definition of variables for the control system under discussion described. On the example of the longitudinal cutting cycle, parametric programming possibilities are shown. The program’s code and its implementation in the control system is described in detail. The principle of parametric programming in a high-level language is also explained.

  12. Archetypal Analysis for Machine Learning

    DEFF Research Database (Denmark)

    Mørup, Morten; Hansen, Lars Kai

    2010-01-01

    Archetypal analysis (AA) proposed by Cutler and Breiman in [1] estimates the principal convex hull of a data set. As such AA favors features that constitute representative ’corners’ of the data, i.e. distinct aspects or archetypes. We will show that AA enjoys the interpretability of clustering - ...... for K-means [2]. We demonstrate that the AA model is relevant for feature extraction and dimensional reduction for a large variety of machine learning problems taken from computer vision, neuroimaging, text mining and collaborative filtering....

  13. Extreme Learning Machine for land cover classification

    OpenAIRE

    Pal, Mahesh

    2008-01-01

    This paper explores the potential of extreme learning machine based supervised classification algorithm for land cover classification. In comparison to a backpropagation neural network, which requires setting of several user-defined parameters and may produce local minima, extreme learning machine require setting of one parameter and produce a unique solution. ETM+ multispectral data set (England) was used to judge the suitability of extreme learning machine for remote sensing classifications...

  14. Machine learning in genetics and genomics

    Science.gov (United States)

    Libbrecht, Maxwell W.; Noble, William Stafford

    2016-01-01

    The field of machine learning promises to enable computers to assist humans in making sense of large, complex data sets. In this review, we outline some of the main applications of machine learning to genetic and genomic data. In the process, we identify some recurrent challenges associated with this type of analysis and provide general guidelines to assist in the practical application of machine learning to real genetic and genomic data. PMID:25948244

  15. Introducing Machine Learning Concepts with WEKA.

    Science.gov (United States)

    Smith, Tony C; Frank, Eibe

    2016-01-01

    This chapter presents an introduction to data mining with machine learning. It gives an overview of various types of machine learning, along with some examples. It explains how to download, install, and run the WEKA data mining toolkit on a simple data set, then proceeds to explain how one might approach a bioinformatics problem. Finally, it includes a brief summary of machine learning algorithms for other types of data mining problems, and provides suggestions about where to find additional information.

  16. Trends in Machine Learning for Signal Processing

    DEFF Research Database (Denmark)

    Adali, Tulay; Miller, David J.; Diamantaras, Konstantinos I.

    2011-01-01

    By putting the accent on learning from the data and the environment, the Machine Learning for SP (MLSP) Technical Committee (TC) provides the essential bridge between the machine learning and SP communities. While the emphasis in MLSP is on learning and data-driven approaches, SP defines the main...... applications of interest, and thus the constraints and requirements on solutions, which include computational efficiency, online adaptation, and learning with limited supervision/reference data....

  17. Advanced Machine learning Algorithm Application for Rotating Machine Health Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kanemoto, Shigeru; Watanabe, Masaya [The University of Aizu, Aizuwakamatsu (Japan); Yusa, Noritaka [Tohoku University, Sendai (Japan)

    2014-08-15

    The present paper tries to evaluate the applicability of conventional sound analysis techniques and modern machine learning algorithms to rotating machine health monitoring. These techniques include support vector machine, deep leaning neural network, etc. The inner ring defect and misalignment anomaly sound data measured by a rotating machine mockup test facility are used to verify the above various kinds of algorithms. Although we cannot find remarkable difference of anomaly discrimination performance, some methods give us the very interesting eigen patterns corresponding to normal and abnormal states. These results will be useful for future more sensitive and robust anomaly monitoring technology.

  18. Machine learning in medicine cookbook

    CERN Document Server

    Cleophas, Ton J

    2014-01-01

    The amount of data in medical databases doubles every 20 months, and physicians are at a loss to analyze them. Also, traditional methods of data analysis have difficulty to identify outliers and patterns in big data and data with multiple exposure / outcome variables and analysis-rules for surveys and questionnaires, currently common methods of data collection, are, essentially, missing. Obviously, it is time that medical and health professionals mastered their reluctance to use machine learning and the current 100 page cookbook should be helpful to that aim. It covers in a condensed form the subjects reviewed in the 750 page three volume textbook by the same authors, entitled “Machine Learning in Medicine I-III” (ed. by Springer, Heidelberg, Germany, 2013) and was written as a hand-hold presentation and must-read publication. It was written not only to investigators and students in the fields, but also to jaded clinicians new to the methods and lacking time to read the entire textbooks. General purposes ...

  19. Machine learning techniques and drug design.

    Science.gov (United States)

    Gertrudes, J C; Maltarollo, V G; Silva, R A; Oliveira, P R; Honório, K M; da Silva, A B F

    2012-01-01

    The interest in the application of machine learning techniques (MLT) as drug design tools is growing in the last decades. The reason for this is related to the fact that the drug design is very complex and requires the use of hybrid techniques. A brief review of some MLT such as self-organizing maps, multilayer perceptron, bayesian neural networks, counter-propagation neural network and support vector machines is described in this paper. A comparison between the performance of the described methods and some classical statistical methods (such as partial least squares and multiple linear regression) shows that MLT have significant advantages. Nowadays, the number of studies in medicinal chemistry that employ these techniques has considerably increased, in particular the use of support vector machines. The state of the art and the future trends of MLT applications encompass the use of these techniques to construct more reliable QSAR models. The models obtained from MLT can be used in virtual screening studies as well as filters to develop/discovery new chemicals. An important challenge in the drug design field is the prediction of pharmacokinetic and toxicity properties, which can avoid failures in the clinical phases. Therefore, this review provides a critical point of view on the main MLT and shows their potential ability as a valuable tool in drug design.

  20. CIMT 2003--An attractive gala of world machine tool industry

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ With the support of the Chinese Government and through close cooperation with related machine tool associations from all countries of the world, the China Machine Tool & Tool Builders' Association(CMTBA) has successfully hosted seven times of the China International Machine Tool Show(CIMT). With expanding scales and exhibition of more advanced products, CIMT has become the largest and best- known international machine tool exhibition in China. Domestic and overseas machine tool manufacturers consider CIMT an important venue to demonstrate their new products, conduct technological exchanges, promote trade and seek cooperative and joint venture partners. The 8th China International Machine Tool Show, also known as CIMT 2003, will be held at the China International Exhibition Center in Beijing on April 16 - 22 next year. The organizer of CIMT 2003 has started the work of inviting domestic and overseas machine tool manufacturers to attend the grand exhibition.

  1. Building machine learning systems with Python

    CERN Document Server

    Coelho, Luis Pedro

    2015-01-01

    This book primarily targets Python developers who want to learn and use Python's machine learning capabilities and gain valuable insights from data to develop effective solutions for business problems.

  2. Extreme learning machines 2013 algorithms and applications

    CERN Document Server

    Toh, Kar-Ann; Romay, Manuel; Mao, Kezhi

    2014-01-01

    In recent years, ELM has emerged as a revolutionary technique of computational intelligence, and has attracted considerable attentions. An extreme learning machine (ELM) is a single layer feed-forward neural network alike learning system, whose connections from the input layer to the hidden layer are randomly generated, while the connections from the hidden layer to the output layer are learned through linear learning methods. The outstanding merits of extreme learning machine (ELM) are its fast learning speed, trivial human intervene and high scalability.   This book contains some selected papers from the International Conference on Extreme Learning Machine 2013, which was held in Beijing China, October 15-17, 2013. This conference aims to bring together the researchers and practitioners of extreme learning machine from a variety of fields including artificial intelligence, biomedical engineering and bioinformatics, system modelling and control, and signal and image processing, to promote research and discu...

  3. Performance of machine learning methods for classification tasks

    Directory of Open Access Journals (Sweden)

    B. Krithika

    2013-06-01

    Full Text Available In this paper, the performance of various machine learning methods on pattern classification and recognition tasks are proposed. The proposed method for evaluating performance will be based on the feature representation, feature selection and setting model parameters. The nature of the data, the methods of feature extraction and feature representation are discussed. The results of the Machine Learning algorithms on the classification task are analysed. The performance of Machine Learning methods on classifying Tamil word patterns, i.e., classification of noun and verbs are analysed.The software WEKA (data mining tool is used for evaluating the performance. WEKA has several machine learning algorithms like Bayes, Trees, Lazy, Rule based classifiers.

  4. Learning as a Machine: Crossovers between Humans and Machines

    Science.gov (United States)

    Hildebrandt, Mireille

    2017-01-01

    This article is a revised version of the keynote presented at LAK '16 in Edinburgh. The article investigates some of the assumptions of learning analytics, notably those related to behaviourism. Building on the work of Ivan Pavlov, Herbert Simon, and James Gibson as ways of "learning as a machine," the article then develops two levels of…

  5. Keeping you safe by making machine tools safe

    CERN Multimedia

    2012-01-01

    CERN’s third safety objective for 2012 concerns the safety of equipment - and machine tools in particular.   There are three prerequisites for ensuring that a machine tool can be used safely: ·      the machine tool must comply with Directive 2009/104/EC, ·      the layout of the workshop must be compliant, and ·      everyone who uses the machine tool must be trained. Provided these conditions are met, the workshop head can grant authorisation to use the machine tool. To fulfil this objective, an inventory of the machine tools must be drawn up and the people responsible for them identified. The HSE Unit's Safety Inspection Service produces compliance reports for the machine tools. In order to meet the third objective set by the Director-General, the section has doubled its capacity to carry out inspections: ...

  6. Machine learning research 1989-90

    Science.gov (United States)

    Porter, Bruce W.; Souther, Arthur

    1990-01-01

    Multifunctional knowledge bases offer a significant advance in artificial intelligence because they can support numerous expert tasks within a domain. As a result they amortize the costs of building a knowledge base over multiple expert systems and they reduce the brittleness of each system. Due to the inevitable size and complexity of multifunctional knowledge bases, their construction and maintenance require knowledge engineering and acquisition tools that can automatically identify interactions between new and existing knowledge. Furthermore, their use requires software for accessing those portions of the knowledge base that coherently answer questions. Considerable progress was made in developing software for building and accessing multifunctional knowledge bases. A language was developed for representing knowledge, along with software tools for editing and displaying knowledge, a machine learning program for integrating new information into existing knowledge, and a question answering system for accessing the knowledge base.

  7. Machine Learning wins the Higgs Challenge

    CERN Multimedia

    Abha Eli Phoboo

    2014-01-01

    The winner of the four-month-long Higgs Machine Learning Challenge, launched on 12 May, is Gábor Melis from Hungary, followed closely by Tim Salimans from the Netherlands and Pierre Courtiol from France. The challenge explored the potential of advanced machine learning methods to improve the significance of the Higgs discovery.   Winners of the Higgs Machine Learning Challenge: Gábor Melis and Tim Salimans (top row), Tianqi Chen and Tong He (bottom row). Participants in the Higgs Machine Learning Challenge were tasked with developing an algorithm to improve the detection of Higgs boson signal events decaying into two tau particles in a sample of simulated ATLAS data* that contains few signal and a majority of non-Higgs boson “background” events. No knowledge of particle physics was required for the challenge but skills in machine learning - the training of computers to recognise patterns in data – were essential. The Challenge, hosted by Ka...

  8. Machine learning in sedimentation modelling.

    Science.gov (United States)

    Bhattacharya, B; Solomatine, D P

    2006-03-01

    The paper presents machine learning (ML) models that predict sedimentation in the harbour basin of the Port of Rotterdam. The important factors affecting the sedimentation process such as waves, wind, tides, surge, river discharge, etc. are studied, the corresponding time series data is analysed, missing values are estimated and the most important variables behind the process are chosen as the inputs. Two ML methods are used: MLP ANN and M5 model tree. The latter is a collection of piece-wise linear regression models, each being an expert for a particular region of the input space. The models are trained on the data collected during 1992-1998 and tested by the data of 1999-2000. The predictive accuracy of the models is found to be adequate for the potential use in the operational decision making.

  9. Machine learning in motion control

    Science.gov (United States)

    Su, Renjeng; Kermiche, Noureddine

    1989-01-01

    The existing methodologies for robot programming originate primarily from robotic applications to manufacturing, where uncertainties of the robots and their task environment may be minimized by repeated off-line modeling and identification. In space application of robots, however, a higher degree of automation is required for robot programming because of the desire of minimizing the human intervention. We discuss a new paradigm of robotic programming which is based on the concept of machine learning. The goal is to let robots practice tasks by themselves and the operational data are used to automatically improve their motion performance. The underlying mathematical problem is to solve the problem of dynamical inverse by iterative methods. One of the key questions is how to ensure the convergence of the iterative process. There have been a few small steps taken into this important approach to robot programming. We give a representative result on the convergence problem.

  10. Machine learning in motion control

    Science.gov (United States)

    Su, Renjeng; Kermiche, Noureddine

    1989-01-01

    The existing methodologies for robot programming originate primarily from robotic applications to manufacturing, where uncertainties of the robots and their task environment may be minimized by repeated off-line modeling and identification. In space application of robots, however, a higher degree of automation is required for robot programming because of the desire of minimizing the human intervention. We discuss a new paradigm of robotic programming which is based on the concept of machine learning. The goal is to let robots practice tasks by themselves and the operational data are used to automatically improve their motion performance. The underlying mathematical problem is to solve the problem of dynamical inverse by iterative methods. One of the key questions is how to ensure the convergence of the iterative process. There have been a few small steps taken into this important approach to robot programming. We give a representative result on the convergence problem.

  11. Performance of a Machine Learning Classifier of Knee MRI Reports in Two Large Academic Radiology Practices: A Tool to Estimate Diagnostic Yield.

    Science.gov (United States)

    Hassanpour, Saeed; Langlotz, Curtis P; Amrhein, Timothy J; Befera, Nicholas T; Lungren, Matthew P

    2017-04-01

    The purpose of this study is to evaluate the performance of a natural language processing (NLP) system in classifying a database of free-text knee MRI reports at two separate academic radiology practices. An NLP system that uses terms and patterns in manually classified narrative knee MRI reports was constructed. The NLP system was trained and tested on expert-classified knee MRI reports from two major health care organizations. Radiology reports were modeled in the training set as vectors, and a support vector machine framework was used to train the classifier. A separate test set from each organization was used to evaluate the performance of the system. We evaluated the performance of the system both within and across organizations. Standard evaluation metrics, such as accuracy, precision, recall, and F1 score (i.e., the weighted average of the precision and recall), and their respective 95% CIs were used to measure the efficacy of our classification system. The accuracy for radiology reports that belonged to the model's clinically significant concept classes after training data from the same institution was good, yielding an F1 score greater than 90% (95% CI, 84.6-97.3%). Performance of the classifier on cross-institutional application without institution-specific training data yielded F1 scores of 77.6% (95% CI, 69.5-85.7%) and 90.2% (95% CI, 84.5-95.9%) at the two organizations studied. The results show excellent accuracy by the NLP machine learning classifier in classifying free-text knee MRI reports, supporting the institution-independent reproducibility of knee MRI report classification. Furthermore, the machine learning classifier performed well on free-text knee MRI reports from another institution. These data support the feasibility of multiinstitutional classification of radiologic imaging text reports with a single machine learning classifier without requiring institution-specific training data.

  12. Probabilistic machine learning and artificial intelligence.

    Science.gov (United States)

    Ghahramani, Zoubin

    2015-05-28

    How can a machine learn from experience? Probabilistic modelling provides a framework for understanding what learning is, and has therefore emerged as one of the principal theoretical and practical approaches for designing machines that learn from data acquired through experience. The probabilistic framework, which describes how to represent and manipulate uncertainty about models and predictions, has a central role in scientific data analysis, machine learning, robotics, cognitive science and artificial intelligence. This Review provides an introduction to this framework, and discusses some of the state-of-the-art advances in the field, namely, probabilistic programming, Bayesian optimization, data compression and automatic model discovery.

  13. Probabilistic machine learning and artificial intelligence

    Science.gov (United States)

    Ghahramani, Zoubin

    2015-05-01

    How can a machine learn from experience? Probabilistic modelling provides a framework for understanding what learning is, and has therefore emerged as one of the principal theoretical and practical approaches for designing machines that learn from data acquired through experience. The probabilistic framework, which describes how to represent and manipulate uncertainty about models and predictions, has a central role in scientific data analysis, machine learning, robotics, cognitive science and artificial intelligence. This Review provides an introduction to this framework, and discusses some of the state-of-the-art advances in the field, namely, probabilistic programming, Bayesian optimization, data compression and automatic model discovery.

  14. Building machine learning systems with Python

    CERN Document Server

    Richert, Willi

    2013-01-01

    This is a tutorial-driven and practical, but well-grounded book showcasing good Machine Learning practices. There will be an emphasis on using existing technologies instead of showing how to write your own implementations of algorithms. This book is a scenario-based, example-driven tutorial. By the end of the book you will have learnt critical aspects of Machine Learning Python projects and experienced the power of ML-based systems by actually working on them.This book primarily targets Python developers who want to learn about and build Machine Learning into their projects, or who want to pro

  15. Applied genetic programming and machine learning

    CERN Document Server

    Iba, Hitoshi; Paul, Topon Kumar

    2009-01-01

    What do financial data prediction, day-trading rule development, and bio-marker selection have in common? They are just a few of the tasks that could potentially be resolved with genetic programming and machine learning techniques. Written by leaders in this field, Applied Genetic Programming and Machine Learning delineates the extension of Genetic Programming (GP) for practical applications. Reflecting rapidly developing concepts and emerging paradigms, this book outlines how to use machine learning techniques, make learning operators that efficiently sample a search space, navigate the searc

  16. Adaptive Learning Systems: Beyond Teaching Machines

    Science.gov (United States)

    Kara, Nuri; Sevim, Nese

    2013-01-01

    Since 1950s, teaching machines have changed a lot. Today, we have different ideas about how people learn, what instructor should do to help students during their learning process. We have adaptive learning technologies that can create much more student oriented learning environments. The purpose of this article is to present these changes and its…

  17. Influence of Process and Machine tool on tolerance

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo

    This note gives a summary of how the process and the machine tool can influence the geometrical tolerances. The note concerns cutting processes and machine tools but many of the considerations can be transferred directly to other types of manufacturing process and machines....

  18. Machine Learning Interface for Medical Image Analysis.

    Science.gov (United States)

    Zhang, Yi C; Kagen, Alexander C

    2016-10-11

    TensorFlow is a second-generation open-source machine learning software library with a built-in framework for implementing neural networks in wide variety of perceptual tasks. Although TensorFlow usage is well established with computer vision datasets, the TensorFlow interface with DICOM formats for medical imaging remains to be established. Our goal is to extend the TensorFlow API to accept raw DICOM images as input; 1513 DaTscan DICOM images were obtained from the Parkinson's Progression Markers Initiative (PPMI) database. DICOM pixel intensities were extracted and shaped into tensors, or n-dimensional arrays, to populate the training, validation, and test input datasets for machine learning. A simple neural network was constructed in TensorFlow to classify images into normal or Parkinson's disease groups. Training was executed over 1000 iterations for each cross-validation set. The gradient descent optimization and Adagrad optimization algorithms were used to minimize cross-entropy between the predicted and ground-truth labels. Cross-validation was performed ten times to produce a mean accuracy of 0.938 ± 0.047 (95 % CI 0.908-0.967). The mean sensitivity was 0.974 ± 0.043 (95 % CI 0.947-1.00) and mean specificity was 0.822 ± 0.207 (95 % CI 0.694-0.950). We extended the TensorFlow API to enable DICOM compatibility in the context of DaTscan image analysis. We implemented a neural network classifier that produces diagnostic accuracies on par with excellent results from previous machine learning models. These results indicate the potential role of TensorFlow as a useful adjunct diagnostic tool in the clinical setting.

  19. International Conference on Extreme Learning Machines 2014

    CERN Document Server

    Mao, Kezhi; Cambria, Erik; Man, Zhihong; Toh, Kar-Ann

    2015-01-01

    This book contains some selected papers from the International Conference on Extreme Learning Machine 2014, which was held in Singapore, December 8-10, 2014. This conference brought together the researchers and practitioners of Extreme Learning Machine (ELM) from a variety of fields to promote research and development of “learning without iterative tuning”.  The book covers theories, algorithms and applications of ELM. It gives the readers a glance of the most recent advances of ELM.  

  20. International Conference on Extreme Learning Machine 2015

    CERN Document Server

    Mao, Kezhi; Wu, Jonathan; Lendasse, Amaury; ELM 2015; Theory, Algorithms and Applications (I); Theory, Algorithms and Applications (II)

    2016-01-01

    This book contains some selected papers from the International Conference on Extreme Learning Machine 2015, which was held in Hangzhou, China, December 15-17, 2015. This conference brought together researchers and engineers to share and exchange R&D experience on both theoretical studies and practical applications of the Extreme Learning Machine (ELM) technique and brain learning. This book covers theories, algorithms ad applications of ELM. It gives readers a glance of the most recent advances of ELM. .

  1. Python for probability, statistics, and machine learning

    CERN Document Server

    Unpingco, José

    2016-01-01

    This book covers the key ideas that link probability, statistics, and machine learning illustrated using Python modules in these areas. The entire text, including all the figures and numerical results, is reproducible using the Python codes and their associated Jupyter/IPython notebooks, which are provided as supplementary downloads. The author develops key intuitions in machine learning by working meaningful examples using multiple analytical methods and Python codes, thereby connecting theoretical concepts to concrete implementations. Modern Python modules like Pandas, Sympy, and Scikit-learn are applied to simulate and visualize important machine learning concepts like the bias/variance trade-off, cross-validation, and regularization. Many abstract mathematical ideas, such as convergence in probability theory, are developed and illustrated with numerical examples. This book is suitable for anyone with an undergraduate-level exposure to probability, statistics, or machine learning and with rudimentary knowl...

  2. An introduction to machine learning with Scikit-Learn

    CERN Document Server

    CERN. Geneva

    2015-01-01

    This tutorial gives an introduction to the scientific ecosystem for data analysis and machine learning in Python. After a short introduction of machine learning concepts, we will demonstrate on High Energy Physics data how a basic supervised learning analysis can be carried out using the Scikit-Learn library. Topics covered include data loading facilities and data representation, supervised learning algorithms, pipelines, model selection and evaluation, and model introspection.

  3. Machine Learning Techniques in Clinical Vision Sciences.

    Science.gov (United States)

    Caixinha, Miguel; Nunes, Sandrina

    2017-01-01

    This review presents and discusses the contribution of machine learning techniques for diagnosis and disease monitoring in the context of clinical vision science. Many ocular diseases leading to blindness can be halted or delayed when detected and treated at its earliest stages. With the recent developments in diagnostic devices, imaging and genomics, new sources of data for early disease detection and patients' management are now available. Machine learning techniques emerged in the biomedical sciences as clinical decision-support techniques to improve sensitivity and specificity of disease detection and monitoring, increasing objectively the clinical decision-making process. This manuscript presents a review in multimodal ocular disease diagnosis and monitoring based on machine learning approaches. In the first section, the technical issues related to the different machine learning approaches will be present. Machine learning techniques are used to automatically recognize complex patterns in a given dataset. These techniques allows creating homogeneous groups (unsupervised learning), or creating a classifier predicting group membership of new cases (supervised learning), when a group label is available for each case. To ensure a good performance of the machine learning techniques in a given dataset, all possible sources of bias should be removed or minimized. For that, the representativeness of the input dataset for the true population should be confirmed, the noise should be removed, the missing data should be treated and the data dimensionally (i.e., the number of parameters/features and the number of cases in the dataset) should be adjusted. The application of machine learning techniques in ocular disease diagnosis and monitoring will be presented and discussed in the second section of this manuscript. To show the clinical benefits of machine learning in clinical vision sciences, several examples will be presented in glaucoma, age-related macular degeneration

  4. Active Control of Machine-Tool Vibration in a Lathe

    OpenAIRE

    Claesson, Ingvar; Håkansson, Lars

    1997-01-01

    In the turning operation the relative dynamic motion between cutting tool and workpiece, or vibration is a frequent problem, which affects the result of the machining, in particular the surface finish. The tool life is also influenced by the vibrations. When the working environment is considered, noise is frequently introduced by dynamic motion between the cutting tool and the workpiece. By proper machine design, e.g. improved stiffness of the machine structure, the problem of relative dynami...

  5. Machine Learning and Cosmological Simulations

    Science.gov (United States)

    Kamdar, Harshil; Turk, Matthew; Brunner, Robert

    2016-01-01

    We explore the application of machine learning (ML) to the problem of galaxy formation and evolution in a hierarchical universe. Our motivations are two-fold: (1) presenting a new, promising technique to study galaxy formation, and (2) quantitatively evaluating the extent of the influence of dark matter halo properties on small-scale structure formation. For our analyses, we use both semi-analytical models (Millennium simulation) and N-body + hydrodynamical simulations (Illustris simulation). The ML algorithms are trained on important dark matter halo properties (inputs) and galaxy properties (outputs). The trained models are able to robustly predict the gas mass, stellar mass, black hole mass, star formation rate, $g-r$ color, and stellar metallicity. Moreover, the ML simulated galaxies obey fundamental observational constraints implying that the population of ML predicted galaxies is physically and statistically robust. Next, ML algorithms are trained on an N-body + hydrodynamical simulation and applied to an N-body only simulation (Dark Sky simulation, Illustris Dark), populating this new simulation with galaxies. We can examine how structure formation changes with different cosmological parameters and are able to mimic a full-blown hydrodynamical simulation in a computation time that is orders of magnitude smaller. We find that the set of ML simulated galaxies in Dark Sky obey the same observational constraints, further solidifying ML's place as an intriguing and promising technique in future galaxy formation studies and rapid mock galaxy catalog creation.

  6. Machine Translation-Assisted Language Learning: Writing for Beginners

    Science.gov (United States)

    Garcia, Ignacio; Pena, Maria Isabel

    2011-01-01

    The few studies that deal with machine translation (MT) as a language learning tool focus on its use by advanced learners, never by beginners. Yet, freely available MT engines (i.e. Google Translate) and MT-related web initiatives (i.e. Gabble-on.com) position themselves to cater precisely to the needs of learners with a limited command of a…

  7. Machine learning techniques in optical communication

    DEFF Research Database (Denmark)

    Zibar, Darko; Piels, Molly; Jones, Rasmus Thomas

    2015-01-01

    Techniques from the machine learning community are reviewed and employed for laser characterization, signal detection in the presence of nonlinear phase noise, and nonlinearity mitigation. Bayesian filtering and expectation maximization are employed within nonlinear state-space framework...

  8. Machine learning techniques in optical communication

    DEFF Research Database (Denmark)

    Zibar, Darko; Piels, Molly; Jones, Rasmus Thomas

    2016-01-01

    Machine learning techniques relevant for nonlinearity mitigation, carrier recovery, and nanoscale device characterization are reviewed and employed. Markov Chain Monte Carlo in combination with Bayesian filtering is employed within the nonlinear state-space framework and demonstrated for parameter...

  9. Lane Detection Based on Machine Learning Algorithm

    National Research Council Canada - National Science Library

    Chao Fan; Jingbo Xu; Shuai Di

    2013-01-01

    In order to improve accuracy and robustness of the lane detection in complex conditions, such as the shadows and illumination changing, a novel detection algorithm was proposed based on machine learning...

  10. Experimental investigation of active machine tool vibration control

    Science.gov (United States)

    Rojas, J.; Liang, Chen; Geng, Zheng J.

    1996-05-01

    The successful vibration reduction of machine tools during machining process can improve productivity, increase quality, and reduce tool wear. This paper will present our initial investigation in the application of smart material technologies in machine tool vibration control using magnetostrictive actuators and electrorheological elastomer dampers on an industrial Sheldon horizontal lathe. The dynamics of the machining process are first studied, which reveals the complexity in the machine tool vibration response and the challenge to the active control techniques. The active control experiment shows encouraging results. The use of electrorheological elastomer damping device for active/passive vibration control provides significant vibration reduction in the high frequency range and great improvement in the workpiece surface finishing. The research presented in this paper demonstrates that the combination of active and active/passive vibration control techniques is very promising for successful machine tool vibration control.

  11. THE MACHINING OF HARDENED CARBON STEELS BY COATED CUTTING TOOLS

    Directory of Open Access Journals (Sweden)

    Yusuf ŞAHİN

    2001-02-01

    Full Text Available The investigation of machining AISI 1050 carbon steels hardened to the 60 HRC hardness was carried out to determine the tool life and wear behaviour of the various cutting tools under different conditions. These experiments were conducted at using coated ceramic cutting tools and carbide cutting tools. The experimental results showed that the coated ceramic tools exhibited better performance than those of the coated carbide tools when machining the hardened steels. Moreover, wear behaviour of cutting tools were investigated in a scanning electron microscope. Electron microscopic examination also indicated that flank wear, thermal cracks on the tool nose combined with the nose deformation on the tools were responsible for the wear behaviour of the ceramic tools. For the carbide tools, however, removal of coated material from the substrate tool and combined with the crater wear were effective for the machining the hardened steel.

  12. The application of discriminant analysis and Machine Learning methods as tools to identify and classify compounds with potential as transdermal enhancers.

    Science.gov (United States)

    Moss, G P; Shah, A J; Adams, R G; Davey, N; Wilkinson, S C; Pugh, W J; Sun, Y

    2012-01-23

    Discriminant analysis (DA) has previously been shown to allow the proposal of simple guidelines for the classification of 73 chemical enhancers of percutaneous absorption. Pugh et al. employed DA to classify such enhancers into simple categories, based on the physicochemical properties of the enhancer molecules (Pugh et al., 2005). While this approach provided a reasonable accuracy of classification it was unable to provide a consistently reliable estimate of enhancement ratio (ER, defined as the amount of hydrocortisone transferred after 24h, relative to control). Machine Learning methods, including Gaussian process (GP) regression, have recently been employed in the prediction of percutaneous absorption of exogenous chemicals (Moss et al., 2009; Lam et al., 2010; Sun et al., 2011). They have shown that they provide more accurate predictions of these phenomena. In this study several Machine Learning methods, including the K-nearest-neighbour (KNN) regression, single layer networks, radial basis function networks and the SVM classifier were applied to an enhancer dataset reported previously. The SMOTE sampling method was used to oversample chemical compounds with ER>10 in each training set in order to improve estimation of GP and KNN. Results show that models using five physicochemical descriptors exhibit better performance than those with three features. The best classification result was obtained by using the SVM method without dealing with imbalanced data. Following over-sampling, GP gives the best result. It correctly assigned 8 of the 12 "good" (ER>10) enhancers and 56 of the 59 "poor" enhancers (ERMachine Learning methods are that they can provide more accurate classification of enhancer type with fewer false-positive results and that, unlike discriminant analysis, they are able to make predictions of enhancer ability.

  13. Addressing uncertainty in atomistic machine learning

    DEFF Research Database (Denmark)

    Peterson, Andrew A.; Christensen, Rune; Khorshidi, Alireza

    2017-01-01

    Machine-learning regression has been demonstrated to precisely emulate the potential energy and forces that are output from more expensive electronic-structure calculations. However, to predict new regions of the potential energy surface, an assessment must be made of the credibility of the predi......Machine-learning regression has been demonstrated to precisely emulate the potential energy and forces that are output from more expensive electronic-structure calculations. However, to predict new regions of the potential energy surface, an assessment must be made of the credibility...... of the predictions. In this perspective, we address the types of errors that might arise in atomistic machine learning, the unique aspects of atomistic simulations that make machine-learning challenging, and highlight how uncertainty analysis can be used to assess the validity of machine-learning predictions. We...... suggest this will allow researchers to more fully use machine learning for the routine acceleration of large, high-accuracy, or extended-time simulations. In our demonstrations, we use a bootstrap ensemble of neural network-based calculators, and show that the width of the ensemble can provide an estimate...

  14. Addressing uncertainty in atomistic machine learning.

    Science.gov (United States)

    Peterson, Andrew A; Christensen, Rune; Khorshidi, Alireza

    2017-05-10

    Machine-learning regression has been demonstrated to precisely emulate the potential energy and forces that are output from more expensive electronic-structure calculations. However, to predict new regions of the potential energy surface, an assessment must be made of the credibility of the predictions. In this perspective, we address the types of errors that might arise in atomistic machine learning, the unique aspects of atomistic simulations that make machine-learning challenging, and highlight how uncertainty analysis can be used to assess the validity of machine-learning predictions. We suggest this will allow researchers to more fully use machine learning for the routine acceleration of large, high-accuracy, or extended-time simulations. In our demonstrations, we use a bootstrap ensemble of neural network-based calculators, and show that the width of the ensemble can provide an estimate of the uncertainty when the width is comparable to that in the training data. Intriguingly, we also show that the uncertainty can be localized to specific atoms in the simulation, which may offer hints for the generation of training data to strategically improve the machine-learned representation.

  15. [Research on infrared safety protection system for machine tool].

    Science.gov (United States)

    Zhang, Shuan-Ji; Zhang, Zhi-Ling; Yan, Hui-Ying; Wang, Song-De

    2008-04-01

    In order to ensure personal safety and prevent injury accident in machine tool operation, an infrared machine tool safety system was designed with infrared transmitting-receiving module, memory self-locked relay and voice recording-playing module. When the operator does not enter the danger area, the system has no response. Once the operator's whole or part of body enters the danger area and shades the infrared beam, the system will alarm and output an control signal to the machine tool executive element, and at the same time, the system makes the machine tool emergency stop to prevent equipment damaged and person injured. The system has a module framework, and has many advantages including safety, reliability, common use, circuit simplicity, maintenance convenience, low power consumption, low costs, working stability, easy debugging, vibration resistance and interference resistance. It is suitable for being installed and used in different machine tools such as punch machine, pour plastic machine, digital control machine, armor plate cutting machine, pipe bending machine, oil pressure machine etc.

  16. USSR Report, Machine Tools and Metalworking Equipment, No. 6

    Science.gov (United States)

    2007-11-02

    operators, forsee shortages of equipment for individual machine groups, or take into account wastage due to nonideal manufacturing condipions. Let us...manufacture, chemical and petroleum machine building, and machine building for light industry, the food industry, and household appliance manufacture...Building for Light and Food Industry and Household Appliances for a group of tool shops at machine-building plants in Kiev, Vinnintsa, and Poltava

  17. Design principles of metal-cutting machine tools

    CERN Document Server

    Koenigsberger, F

    1964-01-01

    Design Principles of Metal-Cutting Machine Tools discusses the fundamentals aspects of machine tool design. The book covers the design consideration of metal-cutting machine, such as static and dynamic stiffness, operational speeds, gearboxes, manual, and automatic control. The text first details the data calculation and the general requirements of the machine tool. Next, the book discusses the design principles, which include stiffness and rigidity of the separate constructional elements and their combined behavior under load, as well as electrical, mechanical, and hydraulic drives for the op

  18. An Investigation of Vibration Reducing on a Machine Tool

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In order to reduce the vibration on a machine tool, more orthogonal experiment schemes have been designed, which are based on the steel balls vibration reducing principle. After experiments the optimal reducing vibration scheme was determined. This kind of vibration reducing scheme is used in steel balls vibration absorber, which can be used to reduce vibration magnitudes of a machine tools under the working conditions, whereby improving machining precision. The suggested experiment method is of useful reference in reducing vibrations on other machine tools too.

  19. Robust Control of Machine-Tool Vibration in a Lathe

    OpenAIRE

    Claesson, Ingvar; Håkansson, Lars; Lagö, Thomas L.

    1999-01-01

    In the turning operation the relative dynamic motion between cutting tool and workpiece, or vibration, is a frequent problem, which affects the result of the machining, and, in particular, the surface finish. Tool life is also influenced by vibration. Severe acoustic noise in the working environment frequently occurs as a result of dynamic motion between the cutting tool and the workpiece. These problems can be reduced substantially by active control of the machine-tool vibration. Adaptive fe...

  20. DRIVE AND CONTROL OF VIRTUAL-AXIS NC MACHINE TOOLS

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The structure features and driving modes of virtual-axis NC machine tools are studied.Accor- ding to different application requirements,the three-axis control method,the five-axis control method and the six-freedom control method are put forward.These results lay a foundation for the product development of the virtual-axis NC machine tools.

  1. Thermal Analysis for Condition Monitoring of Machine Tool Spindles

    Science.gov (United States)

    Clough, D.; Fletcher, S.; Longstaff, A. P.; Willoughby, P.

    2012-05-01

    Decreasing tolerances on parts manufactured, or inspected, on machine tools increases the requirement to have a greater understanding of machine tool capabilities, error sources and factors affecting asset availability. Continuous usage of a machine tool during production processes causes heat generation typically at the moving elements, resulting in distortion of the machine structure. These effects, known as thermal errors, can contribute a significant percentage of the total error in a machine tool. There are a number of design solutions available to the machine tool builder to reduce thermal error including, liquid cooling systems, low thermal expansion materials and symmetric machine tool structures. However, these can only reduce the error not eliminate it altogether. It is therefore advisable, particularly in the production of high value parts, for manufacturers to obtain a thermal profile of their machine, to ensure it is capable of producing in tolerance parts. This paper considers factors affecting practical implementation of condition monitoring of the thermal errors. In particular is the requirement to find links between temperature, which is easily measureable during production and the errors which are not. To this end, various methods of testing including the advantages of thermal images are shown. Results are presented from machines in typical manufacturing environments, which also highlight the value of condition monitoring using thermal analysis.

  2. Research on steel-fibber polymer concrete machine tool structure

    Institute of Scientific and Technical Information of China (English)

    XU Ping; YU Ying-hua

    2008-01-01

    Researched on the design and manufacturing of machine tool bed made by Steel-fibber Polymer Concrete(SFPC),which analyzed the static,dynamic and thermal performances of the bed.The results of study prove that machine tool bed made with SFPC is much more superiority than made in cast iron in dynamic and thermal performances,and is more superiority then made in Polymer Concrete (PC) in static performances.It can be concluded that the static,dynamic and thermal properties of machine tool can be improved by manufacturing machine tool bed with SFPC.Also SFPC machine tool bed posses some other advantages in the following: short development time,simple production process,reducing cost cost,saving energy,iron and steel.

  3. Research on steel-fibber polymer concrete machine tool structure

    Institute of Scientific and Technical Information of China (English)

    XU Ping; YU Ying-hua

    2008-01-01

    Researched on the design and manufacturing of machine tool bed made by Steel-fibber Polymer Concrete(SFPC), which analyzed the static, dynamic and thermal performances of the bed. The results of study prove that machine tool bed made with SFPC is much more superiority than made in cast iron in dynamic and thermal perform-ances, and is more superiority then made in Polymer Concrete (PC) in static perform-ances. It can be concluded that the static, dynamic and thermal properties of machine tool can be improved by manufacturing machine tool bed with SFPC. Also SFPC machine tool bed posses some other advantages in the following: short development time, simple pro-duction process, reducing cost cost, saving energy, iron and steel.

  4. Teraflop-scale Incremental Machine Learning

    CERN Document Server

    Özkural, Eray

    2011-01-01

    We propose a long-term memory design for artificial general intelligence based on Solomonoff's incremental machine learning methods. We use R5RS Scheme and its standard library with a few omissions as the reference machine. We introduce a Levin Search variant based on Stochastic Context Free Grammar together with four synergistic update algorithms that use the same grammar as a guiding probability distribution of programs. The update algorithms include adjusting production probabilities, re-using previous solutions, learning programming idioms and discovery of frequent subprograms. Experiments with two training sequences demonstrate that our approach to incremental learning is effective.

  5. Machine learning a Bayesian and optimization perspective

    CERN Document Server

    Theodoridis, Sergios

    2015-01-01

    This tutorial text gives a unifying perspective on machine learning by covering both probabilistic and deterministic approaches, which rely on optimization techniques, as well as Bayesian inference, which is based on a hierarchy of probabilistic models. The book presents the major machine learning methods as they have been developed in different disciplines, such as statistics, statistical and adaptive signal processing and computer science. Focusing on the physical reasoning behind the mathematics, all the various methods and techniques are explained in depth, supported by examples and problems, giving an invaluable resource to the student and researcher for understanding and applying machine learning concepts. The book builds carefully from the basic classical methods to the most recent trends, with chapters written to be as self-contained as possible, making the text suitable for different courses: pattern recognition, statistical/adaptive signal processing, statistical/Bayesian learning, as well as shor...

  6. Machine Learning Phases of Strongly Correlated Fermions

    Directory of Open Access Journals (Sweden)

    Kelvin Ch’ng

    2017-08-01

    Full Text Available Machine learning offers an unprecedented perspective for the problem of classifying phases in condensed matter physics. We employ neural-network machine learning techniques to distinguish finite-temperature phases of the strongly correlated fermions on cubic lattices. We show that a three-dimensional convolutional network trained on auxiliary field configurations produced by quantum Monte Carlo simulations of the Hubbard model can correctly predict the magnetic phase diagram of the model at the average density of one (half filling. We then use the network, trained at half filling, to explore the trend in the transition temperature as the system is doped away from half filling. This transfer learning approach predicts that the instability to the magnetic phase extends to at least 5% doping in this region. Our results pave the way for other machine learning applications in correlated quantum many-body systems.

  7. Machine Learning Phases of Strongly Correlated Fermions

    Science.gov (United States)

    Ch'ng, Kelvin; Carrasquilla, Juan; Melko, Roger G.; Khatami, Ehsan

    2017-07-01

    Machine learning offers an unprecedented perspective for the problem of classifying phases in condensed matter physics. We employ neural-network machine learning techniques to distinguish finite-temperature phases of the strongly correlated fermions on cubic lattices. We show that a three-dimensional convolutional network trained on auxiliary field configurations produced by quantum Monte Carlo simulations of the Hubbard model can correctly predict the magnetic phase diagram of the model at the average density of one (half filling). We then use the network, trained at half filling, to explore the trend in the transition temperature as the system is doped away from half filling. This transfer learning approach predicts that the instability to the magnetic phase extends to at least 5% doping in this region. Our results pave the way for other machine learning applications in correlated quantum many-body systems.

  8. Machine learning: Trends, perspectives, and prospects.

    Science.gov (United States)

    Jordan, M I; Mitchell, T M

    2015-07-17

    Machine learning addresses the question of how to build computers that improve automatically through experience. It is one of today's most rapidly growing technical fields, lying at the intersection of computer science and statistics, and at the core of artificial intelligence and data science. Recent progress in machine learning has been driven both by the development of new learning algorithms and theory and by the ongoing explosion in the availability of online data and low-cost computation. The adoption of data-intensive machine-learning methods can be found throughout science, technology and commerce, leading to more evidence-based decision-making across many walks of life, including health care, manufacturing, education, financial modeling, policing, and marketing.

  9. Deep Extreme Learning Machine and Its Application in EEG Classification

    OpenAIRE

    Shifei Ding; Nan Zhang; Xinzheng Xu; Lili Guo; Jian Zhang

    2015-01-01

    Recently, deep learning has aroused wide interest in machine learning fields. Deep learning is a multilayer perceptron artificial neural network algorithm. Deep learning has the advantage of approximating the complicated function and alleviating the optimization difficulty associated with deep models. Multilayer extreme learning machine (MLELM) is a learning algorithm of an artificial neural network which takes advantages of deep learning and extreme learning machine. Not only does MLELM appr...

  10. Deep Extreme Learning Machine and Its Application in EEG Classification

    OpenAIRE

    2015-01-01

    Recently, deep learning has aroused wide interest in machine learning fields. Deep learning is a multilayer perceptron artificial neural network algorithm. Deep learning has the advantage of approximating the complicated function and alleviating the optimization difficulty associated with deep models. Multilayer extreme learning machine (MLELM) is a learning algorithm of an artificial neural network which takes advantages of deep learning and extreme learning machine. Not only does MLELM appr...

  11. Heterogeneous versus Homogeneous Machine Learning Ensembles

    Directory of Open Access Journals (Sweden)

    Petrakova Aleksandra

    2015-12-01

    Full Text Available The research demonstrates efficiency of the heterogeneous model ensemble application for a cancer diagnostic procedure. Machine learning methods used for the ensemble model training are neural networks, random forest, support vector machine and offspring selection genetic algorithm. Training of models and the ensemble design is performed by means of HeuristicLab software. The data used in the research have been provided by the General Hospital of Linz, Austria.

  12. PERFORMANCE OF COATED CUTTING TOOLS IN MACHINING HARDENED STEEL

    Directory of Open Access Journals (Sweden)

    K.Subramanyam,

    2010-10-01

    Full Text Available This paper deals with the study of the performance of coated tools in machining hardening steel under dry conditions. This paper involves of machining AISI 4340 hardened steel using coated carbide tools is studied using full factorial experiments. Many parameters influence the quality of the products in hard turning process. The objective of this study is on the effect of the cutting conditions such as cutting velocity, feed, and depth of cut on the surface finish in machining AISI 4340 hardened steel. Machining of hardened steels has become an important manufacturing process, particularly in the automotive and bearing industries.

  13. Study of on-machine error identification and compensation methods for micro machine tools

    Science.gov (United States)

    Wang, Shih-Ming; Yu, Han-Jen; Lee, Chun-Yi; Chiu, Hung-Sheng

    2016-08-01

    Micro machining plays an important role in the manufacturing of miniature products which are made of various materials with complex 3D shapes and tight machining tolerance. To further improve the accuracy of a micro machining process without increasing the manufacturing cost of a micro machine tool, an effective machining error measurement method and a software-based compensation method are essential. To avoid introducing additional errors caused by the re-installment of the workpiece, the measurement and compensation method should be on-machine conducted. In addition, because the contour of a miniature workpiece machined with a micro machining process is very tiny, the measurement method should be non-contact. By integrating the image re-constructive method, camera pixel correction, coordinate transformation, the error identification algorithm, and trajectory auto-correction method, a vision-based error measurement and compensation method that can on-machine inspect the micro machining errors and automatically generate an error-corrected numerical control (NC) program for error compensation was developed in this study. With the use of the Canny edge detection algorithm and camera pixel calibration, the edges of the contour of a machined workpiece were identified and used to re-construct the actual contour of the work piece. The actual contour was then mapped to the theoretical contour to identify the actual cutting points and compute the machining errors. With the use of a moving matching window and calculation of the similarity between the actual and theoretical contour, the errors between the actual cutting points and theoretical cutting points were calculated and used to correct the NC program. With the use of the error-corrected NC program, the accuracy of a micro machining process can be effectively improved. To prove the feasibility and effectiveness of the proposed methods, micro-milling experiments on a micro machine tool were conducted, and the results

  14. New tools for learning.

    Science.gov (United States)

    Dickinson, D

    1999-01-01

    In the last twenty-five years more has been learned about the human brain than in the past history of mankind. Through the use of new technologies such as PET and CAT scans and functional MRI's, it is now possible to see and learn much about the human brain while it is in the process of thinking. The research of neuroscientists, such as Marian Diamond, has demonstrated that the brain changes physiologically as a result of learning and experience--for better or worse--and that plasticity can continue throughout the lifespan. It appears that there are particular kinds of environments that are most conducive to the development of good mental equipment. They are positive, nurturing, stimulating, and encourage action and interaction. Many of the most effective schools and training programs have created such high-challenge low-threat environments. It is also very clear that intelligence is not a static structure, but an open, dynamic system that can continue to develop throughout life. This understanding is being utilized not only in school systems but in the workplace, where training programs show that even at the adult level people are able to develop their intelligence more fully. Corporations such as Motorola have implemented programs in which they are training their employees, managers, and executives to think, problem-solve and create more effectively using strategies developed by such educational innovators as Reuven Feurstein, J.P. Guilford, and Edward de Bono. A most recent development is in the new kinds of technology that make it possible for people to take responsibility for their own learning as they access and process information through the internet, communicate with experts anywhere in the world, and use software that facilitate higher order thinking and problem-solving. Computers are in no way replacing teachers, but rather these new tools allow them to spend more time being facilitators, mentors, and guides. As a result, teachers and students are able

  15. Machine learning paradigms applications in recommender systems

    CERN Document Server

    Lampropoulos, Aristomenis S

    2015-01-01

    This timely book presents Applications in Recommender Systems which are making recommendations using machine learning algorithms trained via examples of content the user likes or dislikes. Recommender systems built on the assumption of availability of both positive and negative examples do not perform well when negative examples are rare. It is exactly this problem that the authors address in the monograph at hand. Specifically, the books approach is based on one-class classification methodologies that have been appearing in recent machine learning research. The blending of recommender systems and one-class classification provides a new very fertile field for research, innovation and development with potential applications in “big data” as well as “sparse data” problems. The book will be useful to researchers, practitioners and graduate students dealing with problems of extensive and complex data. It is intended for both the expert/researcher in the fields of Pattern Recognition, Machine Learning and ...

  16. Volumetric verification of multiaxis machine tool using laser tracker.

    Science.gov (United States)

    Aguado, Sergio; Samper, David; Santolaria, Jorge; Aguilar, Juan José

    2014-01-01

    This paper aims to present a method of volumetric verification in machine tools with linear and rotary axes using a laser tracker. Beyond a method for a particular machine, it presents a methodology that can be used in any machine type. Along this paper, the schema and kinematic model of a machine with three axes of movement, two linear and one rotational axes, including the measurement system and the nominal rotation matrix of the rotational axis are presented. Using this, the machine tool volumetric error is obtained and nonlinear optimization techniques are employed to improve the accuracy of the machine tool. The verification provides a mathematical, not physical, compensation, in less time than other methods of verification by means of the indirect measurement of geometric errors of the machine from the linear and rotary axes. This paper presents an extensive study about the appropriateness and drawbacks of the regression function employed depending on the types of movement of the axes of any machine. In the same way, strengths and weaknesses of measurement methods and optimization techniques depending on the space available to place the measurement system are presented. These studies provide the most appropriate strategies to verify each machine tool taking into consideration its configuration and its available work space.

  17. Parsing learning in networks using brain-machine interfaces.

    Science.gov (United States)

    Orsborn, Amy L; Pesaran, Bijan

    2017-08-24

    Brain-machine interfaces (BMIs) define new ways to interact with our environment and hold great promise for clinical therapies. Motor BMIs, for instance, re-route neural activity to control movements of a new effector and could restore movement to people with paralysis. Increasing experience shows that interfacing with the brain inevitably changes the brain. BMIs engage and depend on a wide array of innate learning mechanisms to produce meaningful behavior. BMIs precisely define the information streams into and out of the brain, but engage wide-spread learning. We take a network perspective and review existing observations of learning in motor BMIs to show that BMIs engage multiple learning mechanisms distributed across neural networks. Recent studies demonstrate the advantages of BMI for parsing this learning and its underlying neural mechanisms. BMIs therefore provide a powerful tool for studying the neural mechanisms of learning that highlights the critical role of learning in engineered neural therapies. Copyright © 2017. Published by Elsevier Ltd.

  18. New active machine tool drive mounting on the frame

    Directory of Open Access Journals (Sweden)

    Švéda J.

    2007-10-01

    Full Text Available The paper deals with the new active mounting of the machine tool drives. The commonly used machine tools are at this time mainly equipped with fix-mounting of the feed drives. This structure causes full transmission of the force shocks to the machine bed and thereby restricts the dynamic properties of the motion axis and the whole machine. The spring-mounting of the feed drives is one of the possibilities how to partially suppress the vibrations. The force that reacts to the machine tool bed is transformed thereby the vibrations are lightly reduced. Unfortunately the transformation is not fully controlled. The new active mounting of the machine tool drives allows to fully control the force behaviour that react to the machine body. Thereby the number of excited frequencies on the machine tool bed is significantly reduced. The active variant of the feed drive mounting is characterized by the synergistic cooperation between two series-connected actuators (“motor on motor”. The paper briefly describes design, control techniques and optimization of the feed drives with the new active mounting conception.

  19. Machine Learning Optimization of Evolvable Artificial Cells

    DEFF Research Database (Denmark)

    Caschera, F.; Rasmussen, S.; Hanczyc, M.

    2011-01-01

    can be explored. A machine learning approach (Evo-DoE) could be applied to explore this experimental space and define optimal interactions according to a specific fitness function. Herein an implementation of an evolutionary design of experiments to optimize chemical and biochemical systems based...... on a machine learning process is presented. The optimization proceeds over generations of experiments in iterative loop until optimal compositions are discovered. The fitness function is experimentally measured every time the loop is closed. Two examples of complex systems, namely a liposomal drug formulation...

  20. A Machine Learning Approach to Automated Negotiation

    Institute of Scientific and Technical Information of China (English)

    Zhang Huaxiang(张化祥); Zhang Liang; Huang Shangteng; Ma Fanyuan

    2004-01-01

    Automated negotiation between two competitive agents is analyzed, and a multi-issue negotiation model based on machine learning, time belief, offer belief and state-action pair expected Q value is developed. Unlike the widely used approaches such as game theory approach, heuristic approach and argumentation approach, This paper uses a machine learning method to compute agents' average Q values in each negotiation stage. The delayed reward is used to generate agents' offer and counteroffer of every issue. The effect of time and discount rate on negotiation outcome is analyzed. Theory analysis and experimental data show this negotiation model is practical.

  1. A Method for Design of Modular Reconfigurable Machine Tools

    Directory of Open Access Journals (Sweden)

    Zhengyi Xu

    2017-02-01

    Full Text Available Presented in this paper is a method for the design of modular reconfigurable machine tools (MRMTs. An MRMT is capable of using a minimal number of modules through reconfiguration to perform the required machining tasks for a family of parts. The proposed method consists of three steps: module identification, module determination, and layout synthesis. In the first step, the module components are collected from a family of general-purpose machines to establish a module library. In the second step, for a given family of parts to be machined, a set of needed modules are selected from the module library to construct a desired reconfigurable machine tool. In the third step, a final machine layout is decided though evaluation by considering a number of performance indices. Based on this method, a software package has been developed that can design an MRMT for a given part family.

  2. A Machine Learning Based Framework for Adaptive Mobile Learning

    Science.gov (United States)

    Al-Hmouz, Ahmed; Shen, Jun; Yan, Jun

    Advances in wireless technology and handheld devices have created significant interest in mobile learning (m-learning) in recent years. Students nowadays are able to learn anywhere and at any time. Mobile learning environments must also cater for different user preferences and various devices with limited capability, where not all of the information is relevant and critical to each learning environment. To address this issue, this paper presents a framework that depicts the process of adapting learning content to satisfy individual learner characteristics by taking into consideration his/her learning style. We use a machine learning based algorithm for acquiring, representing, storing, reasoning and updating each learner acquired profile.

  3. Haptics-Augmented Simple-Machine Educational Tools.

    Science.gov (United States)

    Williams, Robert L., II; Chen, Meng-Yun; Seaton, Jeffrey M.

    2003-01-01

    Describes a unique project using commercial haptic interfaces to augment the teaching of simple machines in elementary school. Suggests that the use of haptics in virtual simple-machine simulations has the potential for deeper, more engaging learning. (Contains 13 references.) (Author/YDS)

  4. Job Grading Standard for Machine Tool Operator, WG-3431.

    Science.gov (United States)

    Civil Service Commission, Washington, DC. Bureau of Policies and Standards.

    The standard covers nonsupervisory work involved in the set up, adjustment, and operation of conventional machine tools to perform machining operations in the manufacture and repair of castings, forgings, or parts from raw stock made of various metals, metal alloys, and other materials. A general description of the job at both the WG-8 and WG-9…

  5. Forbidden Zones for Numerically-Controlled Machine Tools

    Science.gov (United States)

    Philpot, D.

    1986-01-01

    Computer-controlled machine tool prevented from striking and damaging protruding members on workpiece by creating forbidden zone in control program. With aid of computer graphics, tool profile and coordinates of forbidden zone digitized and stored in computer memory as part of tool path.

  6. Increasing Machine Tool Productivity with High Pressure Cryogenic Coolant Flow

    Science.gov (United States)

    1992-05-01

    tool change time and cost for the three strategies. " Item 4 shows the Tool/Machine Cost Ratios ( TIM Ratio) for the various strategies and tool...0.; and Tharp , M. J. Chip breaking on uranium alloy. Oak Ridge Y-12 Plant, Union Carbide Corp., Oak Ridge, TN. September 1987, p. 16. 25. Ringler, A

  7. Machine-Learning Algorithms to Code Public Health Spending Accounts.

    Science.gov (United States)

    Brady, Eoghan S; Leider, Jonathon P; Resnick, Beth A; Alfonso, Y Natalia; Bishai, David

    Government public health expenditure data sets require time- and labor-intensive manipulation to summarize results that public health policy makers can use. Our objective was to compare the performances of machine-learning algorithms with manual classification of public health expenditures to determine if machines could provide a faster, cheaper alternative to manual classification. We used machine-learning algorithms to replicate the process of manually classifying state public health expenditures, using the standardized public health spending categories from the Foundational Public Health Services model and a large data set from the US Census Bureau. We obtained a data set of 1.9 million individual expenditure items from 2000 to 2013. We collapsed these data into 147 280 summary expenditure records, and we followed a standardized method of manually classifying each expenditure record as public health, maybe public health, or not public health. We then trained 9 machine-learning algorithms to replicate the manual process. We calculated recall, precision, and coverage rates to measure the performance of individual and ensembled algorithms. Compared with manual classification, the machine-learning random forests algorithm produced 84% recall and 91% precision. With algorithm ensembling, we achieved our target criterion of 90% recall by using a consensus ensemble of ≥6 algorithms while still retaining 93% coverage, leaving only 7% of the summary expenditure records unclassified. Machine learning can be a time- and cost-saving tool for estimating public health spending in the United States. It can be used with standardized public health spending categories based on the Foundational Public Health Services model to help parse public health expenditure information from other types of health-related spending, provide data that are more comparable across public health organizations, and evaluate the impact of evidence-based public health resource allocation.

  8. Perspective: Machine learning potentials for atomistic simulations

    Science.gov (United States)

    Behler, Jörg

    2016-11-01

    Nowadays, computer simulations have become a standard tool in essentially all fields of chemistry, condensed matter physics, and materials science. In order to keep up with state-of-the-art experiments and the ever growing complexity of the investigated problems, there is a constantly increasing need for simulations of more realistic, i.e., larger, model systems with improved accuracy. In many cases, the availability of sufficiently efficient interatomic potentials providing reliable energies and forces has become a serious bottleneck for performing these simulations. To address this problem, currently a paradigm change is taking place in the development of interatomic potentials. Since the early days of computer simulations simplified potentials have been derived using physical approximations whenever the direct application of electronic structure methods has been too demanding. Recent advances in machine learning (ML) now offer an alternative approach for the representation of potential-energy surfaces by fitting large data sets from electronic structure calculations. In this perspective, the central ideas underlying these ML potentials, solved problems and remaining challenges are reviewed along with a discussion of their current applicability and limitations.

  9. Classifying smoking urges via machine learning.

    Science.gov (United States)

    Dumortier, Antoine; Beckjord, Ellen; Shiffman, Saul; Sejdić, Ervin

    2016-12-01

    Smoking is the largest preventable cause of death and diseases in the developed world, and advances in modern electronics and machine learning can help us deliver real-time intervention to smokers in novel ways. In this paper, we examine different machine learning approaches to use situational features associated with having or not having urges to smoke during a quit attempt in order to accurately classify high-urge states. To test our machine learning approaches, specifically, Bayes, discriminant analysis and decision tree learning methods, we used a dataset collected from over 300 participants who had initiated a quit attempt. The three classification approaches are evaluated observing sensitivity, specificity, accuracy and precision. The outcome of the analysis showed that algorithms based on feature selection make it possible to obtain high classification rates with only a few features selected from the entire dataset. The classification tree method outperformed the naive Bayes and discriminant analysis methods, with an accuracy of the classifications up to 86%. These numbers suggest that machine learning may be a suitable approach to deal with smoking cessation matters, and to predict smoking urges, outlining a potential use for mobile health applications. In conclusion, machine learning classifiers can help identify smoking situations, and the search for the best features and classifier parameters significantly improves the algorithms' performance. In addition, this study also supports the usefulness of new technologies in improving the effect of smoking cessation interventions, the management of time and patients by therapists, and thus the optimization of available health care resources. Future studies should focus on providing more adaptive and personalized support to people who really need it, in a minimum amount of time by developing novel expert systems capable of delivering real-time interventions. Copyright © 2016 Elsevier Ireland Ltd. All rights

  10. Setting of angles on machine tools speeded by magnetic protractor

    Science.gov (United States)

    Vale, L. B.

    1964-01-01

    An adjustable protractor facilitates transference of angles to remote machine tools. It has a magnetic base incorporating a beam which can be adjusted until its shadow coincides with an image on the screen of a projector.

  11. Research on Visual Virtual Design Platform for NC Machine Tools

    Institute of Scientific and Technical Information of China (English)

    HU Rufu; CHEN Xiaoping; SUN Qinghong

    2006-01-01

    The fundamental ideas on building the collaborative design platform of virtual visualization for NC machine tools are introduced. The platform is based on the globally shared product model conforming to the STEP Standard, and used PDM system to integrate and encapsulate CAD/CAE and other application software for the product development. The platform also integrated the expert system of NC machine tools design, analysis and estimation. This expert system utilized fuzzy estimation principle to evaluate the design and simulation analysis results and make decisions. The platform provides the collaborative intelligent environment for the design of virtual NC machine tools prototype aiming at integrated product design team. It also supports the customized development of NC machine tools.

  12. Real-Time Compensation of Chatter Vibration in Machine Tools

    Directory of Open Access Journals (Sweden)

    Dong-Hoon Kim

    2013-05-01

    Full Text Available The chatter vibration stands for a sudden relative vibration appeared between a material and a tool while processing with a machine. This vibration is a factor that seriously affects the quality of processed materials as well as being a factor which causes serious damages to the tool and the machine. This study is related to the detection and compensation of chatter vibration that can compensate chatter vibration faster and produce processed goods with more precision by autonomous compensation. The above-mentioned chatter vibration compensator includes the chatter vibration sensor and the chatter compensator that estimates the compensation value according to the sensor detecting the chatter vibration of machine tool and the chatter vibration detected from the sensor while having a feature of being organized by interlocking with the machine tool controller.

  13. Intelligent machine tools. Kosaku kikai no intelligent ka

    Energy Technology Data Exchange (ETDEWEB)

    Moriwaki, T. (Kobe Univ., Kobe (Japan). Faculty of Engineering)

    1993-12-05

    A background of the trend to equip machine tools with intelligence is reviewed and the outline of intelligent machine tools that are now in the process of research and development is surveyed. The flexible manufacturing system (FMS) that was born in the process of automation of machine manufacturing has been proved, in fact, inflexible in the hierarchical structure of information system. This directs attention of transferring to an autonomous and dispersed manufacturing system. In the system, structural components such as machine tools are required to be highly intelligent enough to produce things, while deciding their will autonomously according to their own criteria in cooperation with other components and attempting to optimize the system. The hardware of intelligent machine tools consists of an interface part to intermediate between machines and computers or human, a core system of center of intelligence, and a machine tool part responsible to process things actually. As to processing of information and movement, they consist of processing parts of pre-process, in-process and post-process. A brief introduction is given on their basic functions and on the present state of related researches. 8 refs., 4 figs.

  14. Photometric Supernova Classification With Machine Learning

    CERN Document Server

    Lochner, Michelle; Peiris, Hiranya V; Lahav, Ofer; Winter, Max K

    2016-01-01

    Automated photometric supernova classification has become an active area of research in recent years in light of current and upcoming imaging surveys such as the Dark Energy Survey (DES) and the Large Synoptic Telescope (LSST), given that spectroscopic confirmation of type for all supernovae discovered with these surveys will be impossible. Here, we develop a multi-faceted classification pipeline, combining existing and new approaches. Our pipeline consists of two stages: extracting descriptive features from the light curves and classification using a machine learning algorithm. Our feature extraction methods vary from model-dependent techniques, namely SALT2 fits, to more independent techniques fitting parametric models to curves, to a completely model-independent wavelet approach. We cover a range of representative machine learning algorithms, including naive Bayes, k-nearest neighbors, support vector machines, artificial neural networks and boosted decision trees. We test the pipeline on simulated multi-ba...

  15. Data Mining and Machine Learning in Astronomy

    CERN Document Server

    Ball, Nicholas M

    2009-01-01

    We review the current state of data mining and machine learning in Astronomy. 'Data Mining' can have a somewhat mixed connotation from the point of view of a researcher in this field. On the one hand, it is a powerful approach, holding the potential to fully exploit the exponentially increasing amount of available data, which promises almost limitless scientific advances. On the other, it can be the application of black-box computing algorithms that at best give little physical insight, and at worst provide questionable results. Here, we give an overview of the entire data mining process, from data collection through the interpretation of results. We cover common machine learning algorithms, such as artificial neural networks and support vector machines; applications from a broad range of Astronomy, with an emphasis on those where data mining resulted in improved physical insights, and important current and future directions, including the construction of full probability density functions, parallel algorithm...

  16. Evaluating machine learning classification for financial trading: An empirical approach

    OpenAIRE

    Gerlein, EA; McGinnity, M; Belatreche, A; Coleman, S.

    2016-01-01

    Technical and quantitative analysis in financial trading use mathematical and statistical tools to help investors decide on the optimum moment to initiate and close orders. While these traditional approaches have served their purpose to some extent, new techniques arising from the field of computational intelligence such as machine learning and data mining have emerged to analyse financial information. While the main financial engineering research has focused on complex computational models s...

  17. Tracking by Machine Learning Methods

    CERN Document Server

    Jofrehei, Arash

    2015-01-01

    Current track reconstructing methods start with two points and then for each layer loop through all possible hits to find proper hits to add to that track. Another idea would be to use this large number of already reconstructed events and/or simulated data and train a machine on this data to find tracks given hit pixels. Training time could be long but real time tracking is really fast Simulation might not be as realistic as real data but tacking has been done for that with 100 percent efficiency while by using real data we would probably be limited to current efficiency.

  18. Prototype-based models in machine learning

    NARCIS (Netherlands)

    Biehl, Michael; Hammer, Barbara; Villmann, Thomas

    2016-01-01

    An overview is given of prototype-based models in machine learning. In this framework, observations, i.e., data, are stored in terms of typical representatives. Together with a suitable measure of similarity, the systems can be employed in the context of unsupervised and supervised analysis of poten

  19. Parallelization of TMVA Machine Learning Algorithms

    CERN Document Server

    Hajili, Mammad

    2017-01-01

    This report reflects my work on Parallelization of TMVA Machine Learning Algorithms integrated to ROOT Data Analysis Framework during summer internship at CERN. The report consists of 4 impor- tant part - data set used in training and validation, algorithms that multiprocessing applied on them, parallelization techniques and re- sults of execution time changes due to number of workers.

  20. Supporting visual quality assessment with machine learning

    NARCIS (Netherlands)

    Gastaldo, P.; Zunino, R.; Redi, J.

    2013-01-01

    Objective metrics for visual quality assessment often base their reliability on the explicit modeling of the highly non-linear behavior of human perception; as a result, they may be complex and computationally expensive. Conversely, machine learning (ML) paradigms allow to tackle the quality

  1. Prototype-based models in machine learning

    NARCIS (Netherlands)

    Biehl, Michael; Hammer, Barbara; Villmann, Thomas

    2016-01-01

    An overview is given of prototype-based models in machine learning. In this framework, observations, i.e., data, are stored in terms of typical representatives. Together with a suitable measure of similarity, the systems can be employed in the context of unsupervised and supervised analysis of

  2. Machine learning approximation techniques using dual trees

    OpenAIRE

    Ergashbaev, Denis

    2015-01-01

    This master thesis explores a dual-tree framework as applied to a particular class of machine learning problems that are collectively referred to as generalized n-body problems. It builds a new algorithm on top of it and improves existing Boosted OGE classifier.

  3. The ATLAS Higgs Machine Learning Challenge

    CERN Document Server

    Cowan, Glen; The ATLAS collaboration; Bourdarios, Claire

    2015-01-01

    High Energy Physics has been using Machine Learning techniques (commonly known as Multivariate Analysis) since the 1990s with Artificial Neural Net and more recently with Boosted Decision Trees, Random Forest etc. Meanwhile, Machine Learning has become a full blown field of computer science. With the emergence of Big Data, data scientists are developing new Machine Learning algorithms to extract meaning from large heterogeneous data. HEP has exciting and difficult problems like the extraction of the Higgs boson signal, and at the same time data scientists have advanced algorithms: the goal of the HiggsML project was to bring the two together by a “challenge”: participants from all over the world and any scientific background could compete online to obtain the best Higgs to tau tau signal significance on a set of ATLAS fully simulated Monte Carlo signal and background. Instead of HEP physicists browsing through machine learning papers and trying to infer which new algorithms might be useful for HEP, then c...

  4. Non-contact measurement and analysis of machine tool spindles

    OpenAIRE

    Clough, David A; Fletcher, Simon; Longstaff, Andrew P.

    2010-01-01

    Increasing demand on the manufacturing industry to produce tighter tolerance parts means it is\\ud necessary to gain a greater understanding of machine tool capabilities and error sources. A significant source of machine tool errors is down to spindle inaccuracies and performance, leading to part scrapping. Catastrophic spindle failure brings production to a standstill until a new spindle can be procured and installed, resulting in lost production time.\\ud This project aims to assess the effec...

  5. Improvement of Electrochemical Machining Accuracy by Using Dual Pole Tool

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Electrochemical machining (ECM) is one of the best al ternatives for producing complex shapes in advanced materials used in aircraft a nd aerospace industries. However, the reduction of the stray material removal co ntinues to be major challenges for industries in addressing accuracy improvement . This study presents a method of improving machining accuracy in ECM by using a dual pole tool with a metallic bush outside the insulated coating of a cathode tool. The bush is connected with anode and so the el...

  6. Extracting meaning from audio signals - a machine learning approach

    DEFF Research Database (Denmark)

    Larsen, Jan

    2007-01-01

    * Machine learning framework for sound search * Genre classification * Music and audio separation * Wind noise suppression......* Machine learning framework for sound search * Genre classification * Music and audio separation * Wind noise suppression...

  7. Extracting meaning from audio signals - a machine learning approach

    DEFF Research Database (Denmark)

    Larsen, Jan

    2007-01-01

    * Machine learning framework for sound search * Genre classification * Music and audio separation * Wind noise suppression......* Machine learning framework for sound search * Genre classification * Music and audio separation * Wind noise suppression...

  8. Machine Learning and Data Mining Methods in Diabetes Research.

    Science.gov (United States)

    Kavakiotis, Ioannis; Tsave, Olga; Salifoglou, Athanasios; Maglaveras, Nicos; Vlahavas, Ioannis; Chouvarda, Ioanna

    2017-01-01

    The remarkable advances in biotechnology and health sciences have led to a significant production of data, such as high throughput genetic data and clinical information, generated from large Electronic Health Records (EHRs). To this end, application of machine learning and data mining methods in biosciences is presently, more than ever before, vital and indispensable in efforts to transform intelligently all available information into valuable knowledge. Diabetes mellitus (DM) is defined as a group of metabolic disorders exerting significant pressure on human health worldwide. Extensive research in all aspects of diabetes (diagnosis, etiopathophysiology, therapy, etc.) has led to the generation of huge amounts of data. The aim of the present study is to conduct a systematic review of the applications of machine learning, data mining techniques and tools in the field of diabetes research with respect to a) Prediction and Diagnosis, b) Diabetic Complications, c) Genetic Background and Environment, and e) Health Care and Management with the first category appearing to be the most popular. A wide range of machine learning algorithms were employed. In general, 85% of those used were characterized by supervised learning approaches and 15% by unsupervised ones, and more specifically, association rules. Support vector machines (SVM) arise as the most successful and widely used algorithm. Concerning the type of data, clinical datasets were mainly used. The title applications in the selected articles project the usefulness of extracting valuable knowledge leading to new hypotheses targeting deeper understanding and further investigation in DM.

  9. WORMHOLE: Novel Least Diverged Ortholog Prediction through Machine Learning.

    Science.gov (United States)

    Sutphin, George L; Mahoney, J Matthew; Sheppard, Keith; Walton, David O; Korstanje, Ron

    2016-11-01

    The rapid advancement of technology in genomics and targeted genetic manipulation has made comparative biology an increasingly prominent strategy to model human disease processes. Predicting orthology relationships between species is a vital component of comparative biology. Dozens of strategies for predicting orthologs have been developed using combinations of gene and protein sequence, phylogenetic history, and functional interaction with progressively increasing accuracy. A relatively new class of orthology prediction strategies combines aspects of multiple methods into meta-tools, resulting in improved prediction performance. Here we present WORMHOLE, a novel ortholog prediction meta-tool that applies machine learning to integrate 17 distinct ortholog prediction algorithms to identify novel least diverged orthologs (LDOs) between 6 eukaryotic species-humans, mice, zebrafish, fruit flies, nematodes, and budding yeast. Machine learning allows WORMHOLE to intelligently incorporate predictions from a wide-spectrum of strategies in order to form aggregate predictions of LDOs with high confidence. In this study we demonstrate the performance of WORMHOLE across each combination of query and target species. We show that WORMHOLE is particularly adept at improving LDO prediction performance between distantly related species, expanding the pool of LDOs while maintaining low evolutionary distance and a high level of functional relatedness between genes in LDO pairs. We present extensive validation, including cross-validated prediction of PANTHER LDOs and evaluation of evolutionary divergence and functional similarity, and discuss future applications of machine learning in ortholog prediction. A WORMHOLE web tool has been developed and is available at http://wormhole.jax.org/.

  10. WORMHOLE: Novel Least Diverged Ortholog Prediction through Machine Learning.

    Directory of Open Access Journals (Sweden)

    George L Sutphin

    2016-11-01

    Full Text Available The rapid advancement of technology in genomics and targeted genetic manipulation has made comparative biology an increasingly prominent strategy to model human disease processes. Predicting orthology relationships between species is a vital component of comparative biology. Dozens of strategies for predicting orthologs have been developed using combinations of gene and protein sequence, phylogenetic history, and functional interaction with progressively increasing accuracy. A relatively new class of orthology prediction strategies combines aspects of multiple methods into meta-tools, resulting in improved prediction performance. Here we present WORMHOLE, a novel ortholog prediction meta-tool that applies machine learning to integrate 17 distinct ortholog prediction algorithms to identify novel least diverged orthologs (LDOs between 6 eukaryotic species-humans, mice, zebrafish, fruit flies, nematodes, and budding yeast. Machine learning allows WORMHOLE to intelligently incorporate predictions from a wide-spectrum of strategies in order to form aggregate predictions of LDOs with high confidence. In this study we demonstrate the performance of WORMHOLE across each combination of query and target species. We show that WORMHOLE is particularly adept at improving LDO prediction performance between distantly related species, expanding the pool of LDOs while maintaining low evolutionary distance and a high level of functional relatedness between genes in LDO pairs. We present extensive validation, including cross-validated prediction of PANTHER LDOs and evaluation of evolutionary divergence and functional similarity, and discuss future applications of machine learning in ortholog prediction. A WORMHOLE web tool has been developed and is available at http://wormhole.jax.org/.

  11. Mississippi Curriculum Framework for Machine Tool Operation/Machine Shop (Program CIP: 48.0503--Machine Shop Assistant). Secondary Programs.

    Science.gov (United States)

    Mississippi Research and Curriculum Unit for Vocational and Technical Education, State College.

    This document, which reflects Mississippi's statutory requirement that instructional programs be based on core curricula and performance-based assessment, contains outlines of the instructional units required in local instructional management plans and daily lesson plans for machine tool operation/machine shop I and II. Presented first are a…

  12. Fast, Continuous Audiogram Estimation Using Machine Learning.

    Science.gov (United States)

    Song, Xinyu D; Wallace, Brittany M; Gardner, Jacob R; Ledbetter, Noah M; Weinberger, Kilian Q; Barbour, Dennis L

    2015-01-01

    Pure-tone audiometry has been a staple of hearing assessments for decades. Many different procedures have been proposed for measuring thresholds with pure tones by systematically manipulating intensity one frequency at a time until a discrete threshold function is determined. The authors have developed a novel nonparametric approach for estimating a continuous threshold audiogram using Bayesian estimation and machine learning classification. The objective of this study was to assess the accuracy and reliability of this new method relative to a commonly used threshold measurement technique. The authors performed air conduction pure-tone audiometry on 21 participants between the ages of 18 and 90 years with varying degrees of hearing ability. Two repetitions of automated machine learning audiogram estimation and one repetition of conventional modified Hughson-Westlake ascending-descending audiogram estimation were acquired by an audiologist. The estimated hearing thresholds of these two techniques were compared at standard audiogram frequencies (i.e., 0.25, 0.5, 1, 2, 4, 8 kHz). The two threshold estimate methods delivered very similar estimates at standard audiogram frequencies. Specifically, the mean absolute difference between estimates was 4.16 ± 3.76 dB HL. The mean absolute difference between repeated measurements of the new machine learning procedure was 4.51 ± 4.45 dB HL. These values compare favorably with those of other threshold audiogram estimation procedures. Furthermore, the machine learning method generated threshold estimates from significantly fewer samples than the modified Hughson-Westlake procedure while returning a continuous threshold estimate as a function of frequency. The new machine learning audiogram estimation technique produces continuous threshold audiogram estimates accurately, reliably, and efficiently, making it a strong candidate for widespread application in clinical and research audiometry.

  13. Intelligent Machine Learning Approaches for Aerospace Applications

    Science.gov (United States)

    Sathyan, Anoop

    Machine Learning is a type of artificial intelligence that provides machines or networks the ability to learn from data without the need to explicitly program them. There are different kinds of machine learning techniques. This thesis discusses the applications of two of these approaches: Genetic Fuzzy Logic and Convolutional Neural Networks (CNN). Fuzzy Logic System (FLS) is a powerful tool that can be used for a wide variety of applications. FLS is a universal approximator that reduces the need for complex mathematics and replaces it with expert knowledge of the system to produce an input-output mapping using If-Then rules. The expert knowledge of a system can help in obtaining the parameters for small-scale FLSs, but for larger networks we will need to use sophisticated approaches that can automatically train the network to meet the design requirements. This is where Genetic Algorithms (GA) and EVE come into the picture. Both GA and EVE can tune the FLS parameters to minimize a cost function that is designed to meet the requirements of the specific problem. EVE is an artificial intelligence developed by Psibernetix that is trained to tune large scale FLSs. The parameters of an FLS can include the membership functions and rulebase of the inherent Fuzzy Inference Systems (FISs). The main issue with using the GFS is that the number of parameters in a FIS increase exponentially with the number of inputs thus making it increasingly harder to tune them. To reduce this issue, the FLSs discussed in this thesis consist of 2-input-1-output FISs in cascade (Chapter 4) or as a layer of parallel FISs (Chapter 7). We have obtained extremely good results using GFS for different applications at a reduced computational cost compared to other algorithms that are commonly used to solve the corresponding problems. In this thesis, GFSs have been designed for controlling an inverted double pendulum, a task allocation problem of clustering targets amongst a set of UAVs, a fire

  14. Case study of virtual reality in CNC machine tool exhibition

    Directory of Open Access Journals (Sweden)

    Kao Yung-Chou

    2017-01-01

    Full Text Available Exhibition and demonstration are generally used in the promotion and sale-assistance of manufactured products. However, the transportation cost of the real goods from the vender factory to the exposition venue is generally expensive for huge and heavy commodity. With the advancement of computing, graphics, mobile apps, and mobile hardware the 3D visibility technology is getting more and more popular to be adopted in visual-assisted communication such as amusement games. Virtual reality (VR technology has therefore being paid great attention in emulating expensive small and/or huge and heavy equipment. Virtual reality can be characterized as 3D extension with Immersion, Interaction and Imagination. This paper was then be focused on the study of virtual reality in the assistance of CNC machine tool demonstration and exhibition. A commercial CNC machine tool was used in this study to illustrate the effectiveness and usability of using virtual reality for an exhibition. The adopted CNC machine tool is a large and heavy mill-turn machine with the width up to eleven meters and weighted about 35 tons. A head-mounted display (HMD was attached to the developed VR CNC machine tool for the immersion viewing. A user can see around the 3D scene of the large mill-turn machine and the operation of the virtual CNC machine can be actuated by bare hand. Coolant was added to demonstrate more realistic operation while collision detection function was also added to remind the operator. The developed VR demonstration system has been presented in the 2017 Taipei International Machine Tool Show (TIMTOS 2017. This case study has shown that young engineers and/or students are very impressed by the VR-based demonstration while elder persons could not adapt themselves easily to the VR-based scene because of eyesight issues. However, virtual reality has successfully being adopted and integrated with the CNC machine tool in an international show. Another machine tool on

  15. Interface Metaphors for Interactive Machine Learning

    Energy Technology Data Exchange (ETDEWEB)

    Jasper, Robert J.; Blaha, Leslie M.

    2017-07-14

    To promote more interactive and dynamic machine learn- ing, we revisit the notion of user-interface metaphors. User-interface metaphors provide intuitive constructs for supporting user needs through interface design elements. A user-interface metaphor provides a visual or action pattern that leverages a user’s knowledge of another domain. Metaphors suggest both the visual representations that should be used in a display as well as the interactions that should be afforded to the user. We argue that user-interface metaphors can also offer a method of extracting interaction-based user feedback for use in machine learning. Metaphors offer indirect, context-based information that can be used in addition to explicit user inputs, such as user-provided labels. Implicit information from user interactions with metaphors can augment explicit user input for active learning paradigms. Or it might be leveraged in systems where explicit user inputs are more challenging to obtain. Each interaction with the metaphor provides an opportunity to gather data and learn. We argue this approach is especially important in streaming applications, where we desire machine learning systems that can adapt to dynamic, changing data.

  16. Financial signal processing and machine learning

    CERN Document Server

    Kulkarni,Sanjeev R; Dmitry M. Malioutov

    2016-01-01

    The modern financial industry has been required to deal with large and diverse portfolios in a variety of asset classes often with limited market data available. Financial Signal Processing and Machine Learning unifies a number of recent advances made in signal processing and machine learning for the design and management of investment portfolios and financial engineering. This book bridges the gap between these disciplines, offering the latest information on key topics including characterizing statistical dependence and correlation in high dimensions, constructing effective and robust risk measures, and their use in portfolio optimization and rebalancing. The book focuses on signal processing approaches to model return, momentum, and mean reversion, addressing theoretical and implementation aspects. It highlights the connections between portfolio theory, sparse learning and compressed sensing, sparse eigen-portfolios, robust optimization, non-Gaussian data-driven risk measures, graphical models, causal analy...

  17. Learning from Distributions via Support Measure Machines

    CERN Document Server

    Muandet, Krikamol; Fukumizu, Kenji; Dinuzzo, Francesco

    2012-01-01

    This paper presents a kernel-based discriminative learning framework on probability measures. Rather than relying on large collections of vectorial training examples, our framework learns using a collection of probability distributions that have been constructed to meaningfully represent training data. By representing these probability distributions as mean embeddings in the reproducing kernel Hilbert space (RKHS), we are able to apply many standard kernel-based learning techniques in straightforward fashion. To accomplish this, we construct a generalization of the support vector machine (SVM) called a support measure machine (SMM). Our analyses of SMMs provides several insights into their relationship to traditional SVMs. Based on such insights, we propose a flexible SVM (Flex-SVM) that places different kernel functions on each training example. Experimental results on both synthetic and real-world data demonstrate the effectiveness of our proposed framework.

  18. Diagnostic Tools for Learning Organizations.

    Science.gov (United States)

    Moilanen, Raili

    2001-01-01

    The Learning Organization Diamond Tool was designed for holistic analysis of 10 learning organization elements at the individual and organizational levels. A test in 25 Finnish organizations established validity. Comparison with existing tools showed that differences derive from their different purposes. (Contains 33 references.) (SK)

  19. Diamond tool machining of materials which react with diamond

    Science.gov (United States)

    Lundin, Ralph L.; Stewart, Delbert D.; Evans, Christopher J.

    1992-01-01

    Apparatus for the diamond machining of materials which detrimentally react with diamond cutting tools in which the cutting tool and the workpiece are chilled to very low temperatures. This chilling halts or retards the chemical reaction between the workpiece and the diamond cutting tool so that wear rates of the diamond tool on previously detrimental materials are comparable with the diamond turning of materials which do not react with diamond.

  20. A Tool Path Generation Strategy for Sculptured Surfaces Machining

    Institute of Scientific and Technical Information of China (English)

    Chen Tao; Zhong Yifang; Zhou Ji

    2001-01-01

    This paper presents a strategy to generate interference-free tool paths for machiningsculptured surfaces. The strategy proposed here is first to determine the tool path topology. Thevalues of the step length and the path interval are then calculated based on the machining tolerancerequirements. After detecting and eliminating the tool interference, the interference-free tool path isgenerated. The effectiveness of the developed algorithm is demonstrated through simulation andactual cutting tests.

  1. Assisting the Tooling and Machining Industry to Become Energy Efficient

    Energy Technology Data Exchange (ETDEWEB)

    Curry, Bennett [Arizona Commerce Authority, Phoenix, AZ (United States)

    2016-12-30

    The Arizona Commerce Authority (ACA) conducted an Innovation in Advanced Manufacturing Grant Competition to support and grow southern and central Arizona’s Aerospace and Defense (A&D) industry and its supply chain. The problem statement for this grant challenge was that many A&D machining processes utilize older generation CNC machine tool technologies that can result an inefficient use of resources – energy, time and materials – compared to the latest state-of-the-art CNC machines. Competitive awards funded projects to develop innovative new tools and technologies that reduce energy consumption for older generation machine tools and foster working relationships between industry small to medium-sized manufacturing enterprises and third-party solution providers. During the 42-month term of this grant, 12 competitive awards were made. Final reports have been included with this submission.

  2. Accuracy Analysis and Calibration of Gantry Hybrid Machine Tool

    Institute of Scientific and Technical Information of China (English)

    唐晓强; 李铁民; 尹文生; 汪劲松

    2003-01-01

    The kinematic accuracy is a key factor in the design of parallel or hybrid machine tools. This analysis improved the accuracy of a 4-DOF (degree of freedom) gantry hybrid machine tool based on a 3-DOF planar parallel manipulator by compensating for various positioning errors. The machine tool architecture was described with the inverse kinematic solution. The control parameter error model was used to analyze the accuracy of the 3-DOF planar parallel manipulator and to develop a kinematic calibration method. The experimental results prove that the calibration method reduces the cutter nose errors from ±0.50 mm to ±0.03 mm for a horizontal movement of 600 mm by compensating for errors in the slider home position, the guide way distance and the extensible strut home position. The calibration method will be useful for similar types of parallel kinematic machines.

  3. Machine learning analysis of binaural rowing sounds

    DEFF Research Database (Denmark)

    Johard, Leonard; Ruffaldi, Emanuele; Hoffmann, Pablo F.

    2011-01-01

    Techniques for machine hearing are increasing their potentiality due to new application domains. In this work we are addressing the analysis of rowing sounds in natural context for the purpose of supporting a training system based on virtual environments. This paper presents the acquisition metho...... methodology and the evaluation of different machine learning techniques for classifying rowing-sound data. We see that a combination of principal component analysis and shallow networks perform equally well as deep architectures, while being much faster to train....

  4. Machine Learning Analysis of Binaural Rowing Sounds

    Directory of Open Access Journals (Sweden)

    Filippeschi Alessandro

    2011-12-01

    Full Text Available Techniques for machine hearing are increasing their potentiality due to new application domains. In this work we are addressing the analysis of rowing sounds in natural context for the purpose of supporting a training system based on virtual environments. This paper presents the acquisition methodology and the evaluation of different machine learning techniques for classifying rowing-sound data. We see that a combination of principal component analysis and shallow networks perform equally well as deep architectures, while being much faster to train.

  5. Structural Bionic Design of Machine Tool Structures

    Institute of Scientific and Technical Information of China (English)

    ZHAO Ling; WANG Ting; GUO Hong-liang; LI Guo-meng

    2011-01-01

    A structural bionic design process is systematically presented for lightweight mechanical structures. By mimicking biological excellent structural principles, the stiffening ribs of a machining table and a moving column were redesigned for better load-bearing efficiency. Finite element method(FEM) simulation and model experiments were carried out for performance verification, which showed the increase of structural static and dynamic performance. Structural bionic offers a new solution to change conventional structures for high specific stiffness.

  6. USSR Report: Machine Tools and Metalworking Equipment.

    Science.gov (United States)

    2007-11-02

    RABOCHAYA GAZETA, 29 Mar 85) AUTOMATED LINES AND AGGREGATED MACHINING SYSTEMS Flexible Production Systems in CEMA Countries Viewed (A. Poplekhin...Automation Equipment Eyed Flexible Module in Odessa ROBOTICS Leningrad Robotics Institute Heads CEMA Group (L. Chausov; PRAVDA, 4 Nov 85) Robot...FLEXIBLE PRODUCTION SYSTEMS IN CEMA COUNTRIES VIEWED Moscow SOTSIALISTICHESKAYA INDUSTRIYA in Russian 16 Mar 85 p 3 [Article by A. Poplekhin: "The Impact

  7. Machine Learning for Computer Vision

    CERN Document Server

    Battiato, Sebastiano; Farinella, Giovanni

    2013-01-01

    Computer vision is the science and technology of making machines that see. It is concerned with the theory, design and implementation of algorithms that can automatically process visual data to recognize objects, track and recover their shape and spatial layout. The International Computer Vision Summer School - ICVSS was established in 2007 to provide both an objective and clear overview and an in-depth analysis of the state-of-the-art research in Computer Vision. The courses are delivered by world renowned experts in the field, from both academia and industry, and cover both theoretical and practical aspects of real Computer Vision problems. The school is organized every year by University of Cambridge (Computer Vision and Robotics Group) and University of Catania (Image Processing Lab). Different topics are covered each year. A summary of the past Computer Vision Summer Schools can be found at: http://www.dmi.unict.it/icvss This edited volume contains a selection of articles covering some of the talks and t...

  8. Characteristics of machined surface controlled by cutting tools and conditions in machining of brittle material

    Institute of Scientific and Technical Information of China (English)

    Yong-Woo KIM; Soo-Chang CHOI; Jeung-Woo PARK; Deug-Woo LEE

    2009-01-01

    One of the ultra-precision machining methods was adapted for brittle material as well as soft material by using multi-arrayed diamond tips and high speed spindle. Conventional machining method is too hard to control surface roughness and surface texture against brittle material because the particles of grinding tools are irregular size and material can be fragile. Therefore, we were able to design tool paths and machine controlled pattern on surface by multi-arrayed diamond tips with uniform size made in MEMS fabrication and high speed spindle, and the maximum speed was about 3×105 r/min. We defined several parameters that can affect the machining surface. Those were multi-array of diamond tips (n×n), speed of air spindle and feeding rate. The surface roughness and surface texture can be controlled by those parameters for micro machining.

  9. In-process machine tool vibration cancellation using PMN actuators

    Science.gov (United States)

    Eshete, Zelalem; Zhang, Guangming

    1996-12-01

    At present, the machine tool technology in the US is not in the state-of-the-art of leading international competitors. Conventional machine tools under use are being pushed into their machining accuracy limits. There is a pressing need calling for revitalizing the machine tool industry. This paper presents, a mechatronic system developed for reducing tool vibration during machining. It consists of electrical and mechanical components, and is realized by placing electrically driven electrostrictive actuators in a specially designed tool post mechanical structure. The linear neural network controller, namely, digital filters, are implemented using a signal processing board. The experimental investigation is conducted in two stages. In the first stage, a test bed is established to use an electro-magnetic shaker to resemble the excitation of cutting force acting on the tool. In the second stage, experiments were conducted using a lathe on the shop floor. In-process vibration cancellation was observed. In the laboratory experiment, a percent reduction in the 90 percent was possible using a feedforward scheme. The improvement in surface roughness during the turning operation was confirmed from measurements of surface roughness profiles.

  10. Machine learning in geosciences and remote sensing

    Institute of Scientific and Technical Information of China (English)

    David J. Lary; Amir H. Alavi; Amir H. Gandomi; Annette L. Walker

    2016-01-01

    Learning incorporates a broad range of complex procedures. Machine learning (ML) is a subdivision of artificial intelligence based on the biological learning process. The ML approach deals with the design of algorithms to learn from machine readable data. ML covers main domains such as data mining, difficult-to-program applications, and software applications. It is a collection of a variety of algorithms (e.g. neural networks, support vector machines, self-organizing map, decision trees, random forests, case-based reasoning, genetic programming, etc.) that can provide multivariate, nonlinear, nonparametric regres-sion or classification. The modeling capabilities of the ML-based methods have resulted in their extensive applications in science and engineering. Herein, the role of ML as an effective approach for solving problems in geosciences and remote sensing will be highlighted. The unique features of some of the ML techniques will be outlined with a specific attention to genetic programming paradigm. Furthermore, nonparametric regression and classification illustrative examples are presented to demonstrate the ef-ficiency of ML for tackling the geosciences and remote sensing problems.

  11. Machine learning in geosciences and remote sensing

    Directory of Open Access Journals (Sweden)

    David J. Lary

    2016-01-01

    Full Text Available Learning incorporates a broad range of complex procedures. Machine learning (ML is a subdivision of artificial intelligence based on the biological learning process. The ML approach deals with the design of algorithms to learn from machine readable data. ML covers main domains such as data mining, difficult-to-program applications, and software applications. It is a collection of a variety of algorithms (e.g. neural networks, support vector machines, self-organizing map, decision trees, random forests, case-based reasoning, genetic programming, etc. that can provide multivariate, nonlinear, nonparametric regression or classification. The modeling capabilities of the ML-based methods have resulted in their extensive applications in science and engineering. Herein, the role of ML as an effective approach for solving problems in geosciences and remote sensing will be highlighted. The unique features of some of the ML techniques will be outlined with a specific attention to genetic programming paradigm. Furthermore, nonparametric regression and classification illustrative examples are presented to demonstrate the efficiency of ML for tackling the geosciences and remote sensing problems.

  12. Machine learning analysis of binaural rowing sounds

    DEFF Research Database (Denmark)

    Johard, Leonard; Ruffaldi, Emanuele; Hoffmann, Pablo F.

    2011-01-01

    Techniques for machine hearing are increasing their potentiality due to new application domains. In this work we are addressing the analysis of rowing sounds in natural context for the purpose of supporting a training system based on virtual environments. This paper presents the acquisition metho...... methodology and the evaluation of different machine learning techniques for classifying rowing-sound data. We see that a combination of principal component analysis and shallow networks perform equally well as deep architectures, while being much faster to train.......Techniques for machine hearing are increasing their potentiality due to new application domains. In this work we are addressing the analysis of rowing sounds in natural context for the purpose of supporting a training system based on virtual environments. This paper presents the acquisition...

  13. Performative Tools and Collaborative Learning

    DEFF Research Database (Denmark)

    Minder, Bettina; Lassen, Astrid Heidemann

    of performative tools used in transdisciplinary events for collaborative learning. The results of this single case study add to extant knowledge- and learning literature by providing the reader with a rich description of characteristics and learning functions of performative tools in transdisciplinary events......The use of performative tools can support collaborative learning across knowledge domains (i.e. science and practice), because they create new spaces for dialog. However, so far innovation literature provides little answers to the important discussion of how to describe the effects and requirements...... and a description of how they interrelate with the specific setting of such an event. Furthermore, they complement previous findings by relating performative tools to collaborative learning for knowledge intensive ideas....

  14. Hard turning micro-machine tool

    Science.gov (United States)

    DeVor, Richard E; Adair, Kurt; Kapoor, Shiv G

    2013-10-22

    A micro-scale apparatus for supporting a tool for hard turning comprises a base, a pivot coupled to the base, an actuator coupled to the base, and at least one member coupled to the actuator at one end and rotatably coupled to the pivot at another end. A tool mount is disposed on the at least one member. The at least one member defines a first lever arm between the pivot and the tool mount, and a second lever arm between the pivot and the actuator. The first lever arm has a length that is less than a length of the second lever arm. The actuator moves the tool mount along an arc.

  15. Machine Learning Assessments of Soil Drying

    Science.gov (United States)

    Coopersmith, E. J.; Minsker, B. S.; Wenzel, C.; Gilmore, B. J.

    2011-12-01

    Agricultural activities require the use of heavy equipment and vehicles on unpaved farmlands. When soil conditions are wet, equipment can cause substantial damage, leaving deep ruts. In extreme cases, implements can sink and become mired, causing considerable delays and expense to extricate the equipment. Farm managers, who are often located remotely, cannot assess sites before allocating equipment, causing considerable difficulty in reliably assessing conditions of countless sites with any reliability and frequency. For example, farmers often trace serpentine paths of over one hundred miles each day to assess the overall status of various tracts of land spanning thirty, forty, or fifty miles in each direction. One means of assessing the moisture content of a field lies in the strategic positioning of remotely-monitored in situ sensors. Unfortunately, land owners are often reluctant to place sensors across their properties due to the significant monetary cost and complexity. This work aspires to overcome these limitations by modeling the process of wetting and drying statistically - remotely assessing field readiness using only information that is publically accessible. Such data includes Nexrad radar and state climate network sensors, as well as Twitter-based reports of field conditions for validation. Three algorithms, classification trees, k-nearest-neighbors, and boosted perceptrons are deployed to deliver statistical field readiness assessments of an agricultural site located in Urbana, IL. Two of the three algorithms performed with 92-94% accuracy, with the majority of misclassifications falling within the calculated margins of error. This demonstrates the feasibility of using a machine learning framework with only public data, knowledge of system memory from previous conditions, and statistical tools to assess "readiness" without the need for real-time, on-site physical observation. Future efforts will produce a workflow assimilating Nexrad, climate network

  16. Machine Learning and Cosmological Simulations II: Hydrodynamical Simulations

    CERN Document Server

    Kamdar, Harshil M; Brunner, Robert J

    2015-01-01

    We extend a machine learning (ML) framework presented previously to model galaxy formation and evolution in a hierarchical universe using N-body + hydrodynamical simulations. In this work, we show that ML is a promising technique to study galaxy formation in the backdrop of a hydrodynamical simulation. We use the Illustris Simulation to train and test various sophisticated machine learning algorithms. By using only essential dark matter halo physical properties and no merger history, our model predicts the gas mass, stellar mass, black hole mass, star formation rate, $g-r$ color, and stellar metallicity fairly robustly. Our results provide a unique and powerful phenomenological framework to explore the galaxy-halo connection that is built upon a solid hydrodynamical simulation. The promising reproduction of the listed galaxy properties demonstrably place ML as a promising and a significantly more computationally efficient tool to study small-scale structure formation. We find that ML mimics a full-blown hydro...

  17. Machine Learning with Operational Costs

    CERN Document Server

    Tulabandhula, Theja

    2011-01-01

    This work concerns the way that statistical models are used to make decisions. In particular, we aim to merge the way estimation algorithms are designed with how they are used for a subsequent task. Our methodology considers the operational cost of carrying out a policy, based on a predictive model. The operational cost becomes a regularization term in the learning algorithm's objective function, allowing either an \\textit{optimistic} or \\textit{pessimistic} view of possible costs. Limiting the operational cost reduces the hypothesis space for the predictive model, and can thus improve generalization. We show that different types of operational problems can lead to the same type of restriction on the hypothesis space, namely the restriction to an intersection of an $\\ell_{q}$ ball with a halfspace. We bound the complexity of such hypothesis spaces by proposing a technique that involves counting integer points in polyhedrons.

  18. Application of Machine Learning to Rotorcraft Health Monitoring

    Science.gov (United States)

    Cody, Tyler; Dempsey, Paula J.

    2017-01-01

    Machine learning is a powerful tool for data exploration and model building with large data sets. This project aimed to use machine learning techniques to explore the inherent structure of data from rotorcraft gear tests, relationships between features and damage states, and to build a system for predicting gear health for future rotorcraft transmission applications. Classical machine learning techniques are difficult, if not irresponsible to apply to time series data because many make the assumption of independence between samples. To overcome this, Hidden Markov Models were used to create a binary classifier for identifying scuffing transitions and Recurrent Neural Networks were used to leverage long distance relationships in predicting discrete damage states. When combined in a workflow, where the binary classifier acted as a filter for the fatigue monitor, the system was able to demonstrate accuracy in damage state prediction and scuffing identification. The time dependent nature of the data restricted data exploration to collecting and analyzing data from the model selection process. The limited amount of available data was unable to give useful information, and the division of training and testing sets tended to heavily influence the scores of the models across combinations of features and hyper-parameters. This work built a framework for tracking scuffing and fatigue on streaming data and demonstrates that machine learning has much to offer rotorcraft health monitoring by using Bayesian learning and deep learning methods to capture the time dependent nature of the data. Suggested future work is to implement the framework developed in this project using a larger variety of data sets to test the generalization capabilities of the models and allow for data exploration.

  19. Machine Learning for ATLAS DDM Network Metrics

    CERN Document Server

    Lassnig, Mario; The ATLAS collaboration; Vamosi, Ralf

    2016-01-01

    The increasing volume of physics data is posing a critical challenge to the ATLAS experiment. In anticipation of high luminosity physics, automation of everyday data management tasks has become necessary. Previously many of these tasks required human decision-making and operation. Recent advances in hardware and software have made it possible to entrust more complicated duties to automated systems using models trained by machine learning algorithms. In this contribution we show results from our ongoing automation efforts. First, we describe our framework for distributed data management and network metrics, automatically extract and aggregate data, train models with various machine learning algorithms, and eventually score the resulting models and parameters. Second, we use these models to forecast metrics relevant for network-aware job scheduling and data brokering. We show the characteristics of the data and evaluate the forecasting accuracy of our models.

  20. Discharge estimation based on machine learning

    Institute of Scientific and Technical Information of China (English)

    Zhu JIANG; Hui-yan WANG; Wen-wu SONG

    2013-01-01

    To overcome the limitations of the traditional stage-discharge models in describing the dynamic characteristics of a river, a machine learning method of non-parametric regression, the locally weighted regression method was used to estimate discharge. With the purpose of improving the precision and efficiency of river discharge estimation, a novel machine learning method is proposed:the clustering-tree weighted regression method. First, the training instances are clustered. Second, the k-nearest neighbor method is used to cluster new stage samples into the best-fit cluster. Finally, the daily discharge is estimated. In the estimation process, the interference of irrelevant information can be avoided, so that the precision and efficiency of daily discharge estimation are improved. Observed data from the Luding Hydrological Station were used for testing. The simulation results demonstrate that the precision of this method is high. This provides a new effective method for discharge estimation.

  1. Parallelization of the ROOT Machine Learning Methods

    CERN Document Server

    Vakilipourtakalou, Pourya

    2016-01-01

    Today computation is an inseparable part of scientific research. Specially in Particle Physics when there is a classification problem like discrimination of Signals from Backgrounds originating from the collisions of particles. On the other hand, Monte Carlo simulations can be used in order to generate a known data set of Signals and Backgrounds based on theoretical physics. The aim of Machine Learning is to train some algorithms on known data set and then apply these trained algorithms to the unknown data sets. However, the most common framework for data analysis in Particle Physics is ROOT. In order to use Machine Learning methods, a Toolkit for Multivariate Data Analysis (TMVA) has been added to ROOT. The major consideration in this report is the parallelization of some TMVA methods, specially Cross-Validation and BDT.

  2. Machine learning models in breast cancer survival prediction.

    Science.gov (United States)

    Montazeri, Mitra; Montazeri, Mohadeseh; Montazeri, Mahdieh; Beigzadeh, Amin

    2016-01-01

    Breast cancer is one of the most common cancers with a high mortality rate among women. With the early diagnosis of breast cancer survival will increase from 56% to more than 86%. Therefore, an accurate and reliable system is necessary for the early diagnosis of this cancer. The proposed model is the combination of rules and different machine learning techniques. Machine learning models can help physicians to reduce the number of false decisions. They try to exploit patterns and relationships among a large number of cases and predict the outcome of a disease using historical cases stored in datasets. The objective of this study is to propose a rule-based classification method with machine learning techniques for the prediction of different types of Breast cancer survival. We use a dataset with eight attributes that include the records of 900 patients in which 876 patients (97.3%) and 24 (2.7%) patients were females and males respectively. Naive Bayes (NB), Trees Random Forest (TRF), 1-Nearest Neighbor (1NN), AdaBoost (AD), Support Vector Machine (SVM), RBF Network (RBFN), and Multilayer Perceptron (MLP) machine learning techniques with 10-cross fold technique were used with the proposed model for the prediction of breast cancer survival. The performance of machine learning techniques were evaluated with accuracy, precision, sensitivity, specificity, and area under ROC curve. Out of 900 patients, 803 patients and 97 patients were alive and dead, respectively. In this study, Trees Random Forest (TRF) technique showed better results in comparison to other techniques (NB, 1NN, AD, SVM and RBFN, MLP). The accuracy, sensitivity and the area under ROC curve of TRF are 96%, 96%, 93%, respectively. However, 1NN machine learning technique provided poor performance (accuracy 91%, sensitivity 91% and area under ROC curve 78%). This study demonstrates that Trees Random Forest model (TRF) which is a rule-based classification model was the best model with the highest level of

  3. Network anomaly detection a machine learning perspective

    CERN Document Server

    Bhattacharyya, Dhruba Kumar

    2013-01-01

    With the rapid rise in the ubiquity and sophistication of Internet technology and the accompanying growth in the number of network attacks, network intrusion detection has become increasingly important. Anomaly-based network intrusion detection refers to finding exceptional or nonconforming patterns in network traffic data compared to normal behavior. Finding these anomalies has extensive applications in areas such as cyber security, credit card and insurance fraud detection, and military surveillance for enemy activities. Network Anomaly Detection: A Machine Learning Perspective presents mach

  4. Ozone ensemble forecast with machine learning algorithms

    OpenAIRE

    Mallet, Vivien; Stoltz, Gilles; Mauricette, Boris

    2009-01-01

    International audience; We apply machine learning algorithms to perform sequential aggregation of ozone forecasts. The latter rely on a multimodel ensemble built for ozone forecasting with the modeling system Polyphemus. The ensemble simulations are obtained by changes in the physical parameterizations, the numerical schemes, and the input data to the models. The simulations are carried out for summer 2001 over western Europe in order to forecast ozone daily peaks and ozone hourly concentrati...

  5. The ATLAS Higgs machine learning challenge

    CERN Document Server

    Davey, W; The ATLAS collaboration; Rousseau, D; Cowan, G; Kegl, B; Germain-Renaud, C; Guyon, I

    2014-01-01

    High Energy Physics has been using Machine Learning techniques (commonly known as Multivariate Analysis) since the 90's with Artificial Neural Net for example, more recently with Boosted Decision Trees, Random Forest etc... Meanwhile, Machine Learning has become a full blown field of computer science. With the emergence of Big Data, Data Scientists are developing new Machine Learning algorithms to extract sense from large heterogeneous data. HEP has exciting and difficult problems like the extraction of the Higgs boson signal, data scientists have advanced algorithms: the goal of the HiggsML project is to bring the two together by a “challenge”: participants from all over the world and any scientific background can compete online ( https://www.kaggle.com/c/higgs-boson ) to obtain the best Higgs to tau tau signal significance on a set of ATLAS full simulated Monte Carlo signal and background. Winners with the best scores will receive money prizes ; authors of the best method (most usable) will be invited t...

  6. Quantum Loop Topography for Machine Learning

    Science.gov (United States)

    Zhang, Yi; Kim, Eun-Ah

    2017-05-01

    Despite rapidly growing interest in harnessing machine learning in the study of quantum many-body systems, training neural networks to identify quantum phases is a nontrivial challenge. The key challenge is in efficiently extracting essential information from the many-body Hamiltonian or wave function and turning the information into an image that can be fed into a neural network. When targeting topological phases, this task becomes particularly challenging as topological phases are defined in terms of nonlocal properties. Here, we introduce quantum loop topography (QLT): a procedure of constructing a multidimensional image from the "sample" Hamiltonian or wave function by evaluating two-point operators that form loops at independent Monte Carlo steps. The loop configuration is guided by the characteristic response for defining the phase, which is Hall conductivity for the cases at hand. Feeding QLT to a fully connected neural network with a single hidden layer, we demonstrate that the architecture can be effectively trained to distinguish the Chern insulator and the fractional Chern insulator from trivial insulators with high fidelity. In addition to establishing the first case of obtaining a phase diagram with a topological quantum phase transition with machine learning, the perspective of bridging traditional condensed matter theory with machine learning will be broadly valuable.

  7. Ensemble Machine Learning Methods and Applications

    CERN Document Server

    Ma, Yunqian

    2012-01-01

    It is common wisdom that gathering a variety of views and inputs improves the process of decision making, and, indeed, underpins a democratic society. Dubbed “ensemble learning” by researchers in computational intelligence and machine learning, it is known to improve a decision system’s robustness and accuracy. Now, fresh developments are allowing researchers to unleash the power of ensemble learning in an increasing range of real-world applications. Ensemble learning algorithms such as “boosting” and “random forest” facilitate solutions to key computational issues such as face detection and are now being applied in areas as diverse as object trackingand bioinformatics.   Responding to a shortage of literature dedicated to the topic, this volume offers comprehensive coverage of state-of-the-art ensemble learning techniques, including various contributions from researchers in leading industrial research labs. At once a solid theoretical study and a practical guide, the volume is a windfall for r...

  8. Deep Extreme Learning Machine and Its Application in EEG Classification

    Directory of Open Access Journals (Sweden)

    Shifei Ding

    2015-01-01

    Full Text Available Recently, deep learning has aroused wide interest in machine learning fields. Deep learning is a multilayer perceptron artificial neural network algorithm. Deep learning has the advantage of approximating the complicated function and alleviating the optimization difficulty associated with deep models. Multilayer extreme learning machine (MLELM is a learning algorithm of an artificial neural network which takes advantages of deep learning and extreme learning machine. Not only does MLELM approximate the complicated function but it also does not need to iterate during the training process. We combining with MLELM and extreme learning machine with kernel (KELM put forward deep extreme learning machine (DELM and apply it to EEG classification in this paper. This paper focuses on the application of DELM in the classification of the visual feedback experiment, using MATLAB and the second brain-computer interface (BCI competition datasets. By simulating and analyzing the results of the experiments, effectiveness of the application of DELM in EEG classification is confirmed.

  9. Scalable Machine Learning for Massive Astronomical Datasets

    Science.gov (United States)

    Ball, Nicholas M.; Gray, A.

    2014-04-01

    We present the ability to perform data mining and machine learning operations on a catalog of half a billion astronomical objects. This is the result of the combination of robust, highly accurate machine learning algorithms with linear scalability that renders the applications of these algorithms to massive astronomical data tractable. We demonstrate the core algorithms kernel density estimation, K-means clustering, linear regression, nearest neighbors, random forest and gradient-boosted decision tree, singular value decomposition, support vector machine, and two-point correlation function. Each of these is relevant for astronomical applications such as finding novel astrophysical objects, characterizing artifacts in data, object classification (including for rare objects), object distances, finding the important features describing objects, density estimation of distributions, probabilistic quantities, and exploring the unknown structure of new data. The software, Skytree Server, runs on any UNIX-based machine, a virtual machine, or cloud-based and distributed systems including Hadoop. We have integrated it on the cloud computing system of the Canadian Astronomical Data Centre, the Canadian Advanced Network for Astronomical Research (CANFAR), creating the world's first cloud computing data mining system for astronomy. We demonstrate results showing the scaling of each of our major algorithms on large astronomical datasets, including the full 470,992,970 objects of the 2 Micron All-Sky Survey (2MASS) Point Source Catalog. We demonstrate the ability to find outliers in the full 2MASS dataset utilizing multiple methods, e.g., nearest neighbors. This is likely of particular interest to the radio astronomy community given, for example, that survey projects contain groups dedicated to this topic. 2MASS is used as a proof-of-concept dataset due to its convenience and availability. These results are of interest to any astronomical project with large and/or complex

  10. Machine Learning Based Diagnosis of Lithium Batteries

    Science.gov (United States)

    Ibe-Ekeocha, Chinemerem Christopher

    The depletion of the world's current petroleum reserve, coupled with the negative effects of carbon monoxide and other harmful petrochemical by-products on the environment, is the driving force behind the movement towards renewable and sustainable energy sources. Furthermore, the growing transportation sector consumes a significant portion of the total energy used in the United States. A complete electrification of this sector would require a significant development in electric vehicles (EVs) and hybrid electric vehicles (HEVs), thus translating to a reduction in the carbon footprint. As the market for EVs and HEVs grows, their battery management systems (BMS) need to be improved accordingly. The BMS is not only responsible for optimally charging and discharging the battery, but also monitoring battery's state of charge (SOC) and state of health (SOH). SOC, similar to an energy gauge, is a representation of a battery's remaining charge level as a percentage of its total possible charge at full capacity. Similarly, SOH is a measure of deterioration of a battery; thus it is a representation of the battery's age. Both SOC and SOH are not measurable, so it is important that these quantities are estimated accurately. An inaccurate estimation could not only be inconvenient for EV consumers, but also potentially detrimental to battery's performance and life. Such estimations could be implemented either online, while battery is in use, or offline when battery is at rest. This thesis presents intelligent online SOC and SOH estimation methods using machine learning tools such as artificial neural network (ANN). ANNs are a powerful generalization tool if programmed and trained effectively. Unlike other estimation strategies, the techniques used require no battery modeling or knowledge of battery internal parameters but rather uses battery's voltage, charge/discharge current, and ambient temperature measurements to accurately estimate battery's SOC and SOH. The developed

  11. Tool management in manufacturing systems equipped with CNC machines

    Directory of Open Access Journals (Sweden)

    Giovanni Tani

    1997-12-01

    Full Text Available This work has been carried out for the purpose of realizing an automated system for the integrated management of tools within a company. By integrating planning, inspection and tool-room functions, automated tool management can ensure optimum utilization of tools on the selected machines, guaranteeing their effective availability. The first stage of the work consisted of defining and developing a Tool Management System whose central nucleus is a unified Data Base for all of the tools, forming part of the company's Technological Files (files on machines, materials, equipment, methods, etc., interfaceable with all of the company departments that require information on tools. The system assigns code numbers to the individual components of the tools and file them on the basis of their morphological and functional characteristics. The system is also designed to effect assemblies of tools, from which are obtained the "Tool Cards" required for compiling working cycles (CAPP, for CAM programming and for the Tool-room where the tools are physically prepared. Methods for interfacing with suitable systems for the aforesaid functions have also been devised

  12. A defect-driven diagnostic method for machine tool spindles.

    Science.gov (United States)

    Vogl, Gregory W; Donmez, M Alkan

    2015-01-01

    Simple vibration-based metrics are, in many cases, insufficient to diagnose machine tool spindle condition. These metrics couple defect-based motion with spindle dynamics; diagnostics should be defect-driven. A new method and spindle condition estimation device (SCED) were developed to acquire data and to separate system dynamics from defect geometry. Based on this method, a spindle condition metric relying only on defect geometry is proposed. Application of the SCED on various milling and turning spindles shows that the new approach is robust for diagnosing the machine tool spindle condition.

  13. Finding New Perovskite Halides via Machine learning

    Directory of Open Access Journals (Sweden)

    Ghanshyam ePilania

    2016-04-01

    Full Text Available Advanced materials with improved properties have the potential to fuel future technological advancements. However, identification and discovery of these optimal materials for a specific application is a non-trivial task, because of the vastness of the chemical search space with enormous compositional and configurational degrees of freedom. Materials informatics provides an efficient approach towards rational design of new materials, via learning from known data to make decisions on new and previously unexplored compounds in an accelerated manner. Here, we demonstrate the power and utility of such statistical learning (or machine learning via building a support vector machine (SVM based classifier that uses elemental features (or descriptors to predict the formability of a given ABX3 halide composition (where A and B represent monovalent and divalent cations, respectively, and X is F, Cl, Br or I anion in the perovskite crystal structure. The classification model is built by learning from a dataset of 181 experimentally known ABX3 compounds. After exploring a wide range of features, we identify ionic radii, tolerance factor and octahedral factor to be the most important factors for the classification, suggesting that steric and geometric packing effects govern the stability of these halides. The trained and validated models then predict, with a high degree of confidence, several novel ABX3 compositions with perovskite crystal structure.

  14. Finding New Perovskite Halides via Machine learning

    Science.gov (United States)

    Pilania, Ghanshyam; Balachandran, Prasanna V.; Kim, Chiho; Lookman, Turab

    2016-04-01

    Advanced materials with improved properties have the potential to fuel future technological advancements. However, identification and discovery of these optimal materials for a specific application is a non-trivial task, because of the vastness of the chemical search space with enormous compositional and configurational degrees of freedom. Materials informatics provides an efficient approach towards rational design of new materials, via learning from known data to make decisions on new and previously unexplored compounds in an accelerated manner. Here, we demonstrate the power and utility of such statistical learning (or machine learning) via building a support vector machine (SVM) based classifier that uses elemental features (or descriptors) to predict the formability of a given ABX3 halide composition (where A and B represent monovalent and divalent cations, respectively, and X is F, Cl, Br or I anion) in the perovskite crystal structure. The classification model is built by learning from a dataset of 181 experimentally known ABX3 compounds. After exploring a wide range of features, we identify ionic radii, tolerance factor and octahedral factor to be the most important factors for the classification, suggesting that steric and geometric packing effects govern the stability of these halides. The trained and validated models then predict, with a high degree of confidence, several novel ABX3 compositions with perovskite crystal structure.

  15. BENCHMARKING MACHINE LEARNING TECHNIQUES FOR SOFTWARE DEFECT DETECTION

    Directory of Open Access Journals (Sweden)

    Saiqa Aleem

    2015-06-01

    Full Text Available Machine Learning approaches are good in solving problems that have less information. In most cases, the software domain problems characterize as a process of learning that depend on the various circumstances and changes accordingly. A predictive model is constructed by using machine learning approaches and classified them into defective and non-defective modules. Machine learning techniques help developers to retrieve useful information after the classification and enable them to analyse data from different perspectives. Machine learning techniques are proven to be useful in terms of software bug prediction. This study used public available data sets of software modules and provides comparative performance analysis of different machine learning techniques for software bug prediction. Results showed most of the machine learning methods performed well on software bug datasets.

  16. Entanglement-based machine learning on a quantum computer.

    Science.gov (United States)

    Cai, X-D; Wu, D; Su, Z-E; Chen, M-C; Wang, X-L; Li, Li; Liu, N-L; Lu, C-Y; Pan, J-W

    2015-03-20

    Machine learning, a branch of artificial intelligence, learns from previous experience to optimize performance, which is ubiquitous in various fields such as computer sciences, financial analysis, robotics, and bioinformatics. A challenge is that machine learning with the rapidly growing "big data" could become intractable for classical computers. Recently, quantum machine learning algorithms [Lloyd, Mohseni, and Rebentrost, arXiv.1307.0411] were proposed which could offer an exponential speedup over classical algorithms. Here, we report the first experimental entanglement-based classification of two-, four-, and eight-dimensional vectors to different clusters using a small-scale photonic quantum computer, which are then used to implement supervised and unsupervised machine learning. The results demonstrate the working principle of using quantum computers to manipulate and classify high-dimensional vectors, the core mathematical routine in machine learning. The method can, in principle, be scaled to larger numbers of qubits, and may provide a new route to accelerate machine learning.

  17. Sparse extreme learning machine for classification.

    Science.gov (United States)

    Bai, Zuo; Huang, Guang-Bin; Wang, Danwei; Wang, Han; Westover, M Brandon

    2014-10-01

    Extreme learning machine (ELM) was initially proposed for single-hidden-layer feedforward neural networks (SLFNs). In the hidden layer (feature mapping), nodes are randomly generated independently of training data. Furthermore, a unified ELM was proposed, providing a single framework to simplify and unify different learning methods, such as SLFNs, least square support vector machines, proximal support vector machines, and so on. However, the solution of unified ELM is dense, and thus, usually plenty of storage space and testing time are required for large-scale applications. In this paper, a sparse ELM is proposed as an alternative solution for classification, reducing storage space and testing time. In addition, unified ELM obtains the solution by matrix inversion, whose computational complexity is between quadratic and cubic with respect to the training size. It still requires plenty of training time for large-scale problems, even though it is much faster than many other traditional methods. In this paper, an efficient training algorithm is specifically developed for sparse ELM. The quadratic programming problem involved in sparse ELM is divided into a series of smallest possible sub-problems, each of which are solved analytically. Compared with SVM, sparse ELM obtains better generalization performance with much faster training speed. Compared with unified ELM, sparse ELM achieves similar generalization performance for binary classification applications, and when dealing with large-scale binary classification problems, sparse ELM realizes even faster training speed than unified ELM.

  18. Formation enthalpies for transition metal alloys using machine learning

    Science.gov (United States)

    Ubaru, Shashanka; Miedlar, Agnieszka; Saad, Yousef; Chelikowsky, James R.

    2017-06-01

    The enthalpy of formation is an important thermodynamic property. Developing fast and accurate methods for its prediction is of practical interest in a variety of applications. Material informatics techniques based on machine learning have recently been introduced in the literature as an inexpensive means of exploiting materials data, and can be used to examine a variety of thermodynamics properties. We investigate the use of such machine learning tools for predicting the formation enthalpies of binary intermetallic compounds that contain at least one transition metal. We consider certain easily available properties of the constituting elements complemented by some basic properties of the compounds, to predict the formation enthalpies. We show how choosing these properties (input features) based on a literature study (using prior physics knowledge) seems to outperform machine learning based feature selection methods such as sensitivity analysis and LASSO (least absolute shrinkage and selection operator) based methods. A nonlinear kernel based support vector regression method is employed to perform the predictions. The predictive ability of our model is illustrated via several experiments on a dataset containing 648 binary alloys. We train and validate the model using the formation enthalpies calculated using a model by Miedema, which is a popular semiempirical model used for the prediction of formation enthalpies of metal alloys.

  19. Research on Positioning Error Compensation for Micro Milling Machine Tool

    Institute of Scientific and Technical Information of China (English)

    Ming-Jun Chen; Wen-Lan Tian; Yong Xiao; Yan Jiang

    2014-01-01

    Micro milling has many advantages in fabricating three⁃dimensional ( 3D) structure in micrometer scale. The micro milling machine tool with high positioning accuracy is of great importance for getting micro structure with high profile precision and good surface quality. Meanwhile, the method of position error compensation is a good way to improve the accuracy of the micro milling machine tools. In this paper, a software method is adopted to compensate the positioning error and improve the positioning accuracy. According to error cancellation theory, the compensation values are generated and compensation tables are built to adjust the positioning error in the NC system based on Industrial Motion and Automation Control ( IMAC) . The positioning accuracy of linear motor is ±0�3μm without backlash after compensation. In order to verify the effectiveness of compensation on the machining performance, concave spherical surfaces are processed on the micro milling machine tool. The experimental results show that the profile radius error of the spherical surface machined with compensation decreases more than 60%.

  20. Dry Machining Tool Design via Chlorine Ion Implantation

    Institute of Scientific and Technical Information of China (English)

    Tatsuhiko Aizawa; Atsushi Mitsuo; Shigeo Yamamoto; Shinji Muraishi; Taro Sumitomo

    2004-01-01

    Dry machining has become a key issue to significantly reduce the wastes of used lubricants and cleaning agents and to improve the environmental consciousness for medical and food applications of special tooling. Since the tools and metallic works are in direct contact in dry, severe adhesive wear and oxidation are thought to occur even at the presence of hard protective coatings. Self-lubrication mechanism with use of lubricous oxide films is found to be effective for dry machining. Through the chlorine ion implantation to tools, titanium base oxides are in-situ formed on the tool surface.This oxide deforms elasto-plastically so that both friction coefficient and wear volume are reduced even in the high-speed cutting.

  1. Dry Machining Tool Design via Chlorine Ion Implantation

    Institute of Scientific and Technical Information of China (English)

    TatsuhikoAizawa; AtsushiMitsuo; ShigeoYamamoto; ShinjiMuraishi; TaroSumitomo

    2004-01-01

    Dry machining has become a key issue to significantly reduce the wastes of used lubricants and cleaning agents and to improve the environmental consciousness for medical and food applications of special tooling. Since the tools and metallic works are in direct contact in dry, severe adhesive wear and oxidation are thought to occur even at the presence of hard protective coatings. Self-lubrication mechanism with use of lubricous oxide films is found to be effective for dry machining. Through the chlorine ion implantation to tools, titanium base oxides are in-situ formed on the tool surface. This oxide deforms elasto-plastically so that both friction coefficient and wear volume are reduced even in the high-speed cutting.

  2. Initial experimental results of a machine learning-based temperature control system for an RF gun

    CERN Document Server

    Edelen, A L; Milton, S V; Chase, B E; Crawford, D J; Eddy, N; Edstrom, D; Harms, E R; Ruan, J; Santucci, J K; Stabile, P

    2015-01-01

    Colorado State University (CSU) and Fermi National Accelerator Laboratory (Fermilab) have been developing a control system to regulate the resonant frequency of an RF electron gun. As part of this effort, we present initial test results for a benchmark temperature controller that combines a machine learning-based model and a predictive control algorithm. This is part of an on-going effort to develop adaptive, machine learning-based tools specifically to address control challenges found in particle accelerator systems.

  3. Laboratory directed research and development final report: Intelligent tools for on-machine acceptance of precision machined components

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, N.G.; Harwell, L.D.; Hazelton, A.

    1997-02-01

    On-Machine Acceptance (OMA) is an agile manufacturing concept being developed for machine tools at SNL. The concept behind OMA is the integration of product design, fabrication, and qualification processes by using the machining center as a fabrication and inspection tool. This report documents the final results of a Laboratory Directed Research and Development effort to qualify OMA.

  4. Machine-learning-assisted materials discovery using failed experiments

    Science.gov (United States)

    Raccuglia, Paul; Elbert, Katherine C.; Adler, Philip D. F.; Falk, Casey; Wenny, Malia B.; Mollo, Aurelio; Zeller, Matthias; Friedler, Sorelle A.; Schrier, Joshua; Norquist, Alexander J.

    2016-05-01

    Inorganic-organic hybrid materials such as organically templated metal oxides, metal-organic frameworks (MOFs) and organohalide perovskites have been studied for decades, and hydrothermal and (non-aqueous) solvothermal syntheses have produced thousands of new materials that collectively contain nearly all the metals in the periodic table. Nevertheless, the formation of these compounds is not fully understood, and development of new compounds relies primarily on exploratory syntheses. Simulation- and data-driven approaches (promoted by efforts such as the Materials Genome Initiative) provide an alternative to experimental trial-and-error. Three major strategies are: simulation-based predictions of physical properties (for example, charge mobility, photovoltaic properties, gas adsorption capacity or lithium-ion intercalation) to identify promising target candidates for synthetic efforts; determination of the structure-property relationship from large bodies of experimental data, enabled by integration with high-throughput synthesis and measurement tools; and clustering on the basis of similar crystallographic structure (for example, zeolite structure classification or gas adsorption properties). Here we demonstrate an alternative approach that uses machine-learning algorithms trained on reaction data to predict reaction outcomes for the crystallization of templated vanadium selenites. We used information on ‘dark’ reactions—failed or unsuccessful hydrothermal syntheses—collected from archived laboratory notebooks from our laboratory, and added physicochemical property descriptions to the raw notebook information using cheminformatics techniques. We used the resulting data to train a machine-learning model to predict reaction success. When carrying out hydrothermal synthesis experiments using previously untested, commercially available organic building blocks, our machine-learning model outperformed traditional human strategies, and successfully predicted

  5. Machine-learning-assisted materials discovery using failed experiments.

    Science.gov (United States)

    Raccuglia, Paul; Elbert, Katherine C; Adler, Philip D F; Falk, Casey; Wenny, Malia B; Mollo, Aurelio; Zeller, Matthias; Friedler, Sorelle A; Schrier, Joshua; Norquist, Alexander J

    2016-05-05

    Inorganic-organic hybrid materials such as organically templated metal oxides, metal-organic frameworks (MOFs) and organohalide perovskites have been studied for decades, and hydrothermal and (non-aqueous) solvothermal syntheses have produced thousands of new materials that collectively contain nearly all the metals in the periodic table. Nevertheless, the formation of these compounds is not fully understood, and development of new compounds relies primarily on exploratory syntheses. Simulation- and data-driven approaches (promoted by efforts such as the Materials Genome Initiative) provide an alternative to experimental trial-and-error. Three major strategies are: simulation-based predictions of physical properties (for example, charge mobility, photovoltaic properties, gas adsorption capacity or lithium-ion intercalation) to identify promising target candidates for synthetic efforts; determination of the structure-property relationship from large bodies of experimental data, enabled by integration with high-throughput synthesis and measurement tools; and clustering on the basis of similar crystallographic structure (for example, zeolite structure classification or gas adsorption properties). Here we demonstrate an alternative approach that uses machine-learning algorithms trained on reaction data to predict reaction outcomes for the crystallization of templated vanadium selenites. We used information on 'dark' reactions--failed or unsuccessful hydrothermal syntheses--collected from archived laboratory notebooks from our laboratory, and added physicochemical property descriptions to the raw notebook information using cheminformatics techniques. We used the resulting data to train a machine-learning model to predict reaction success. When carrying out hydrothermal synthesis experiments using previously untested, commercially available organic building blocks, our machine-learning model outperformed traditional human strategies, and successfully predicted conditions

  6. Smarter Instruments, Smarter Archives: Machine Learning for Tactical Science

    Science.gov (United States)

    Thompson, D. R.; Kiran, R.; Allwood, A.; Altinok, A.; Estlin, T.; Flannery, D.

    2014-12-01

    There has been a growing interest by Earth and Planetary Sciences in machine learning, visualization and cyberinfrastructure to interpret ever-increasing volumes of instrument data. Such tools are commonly used to analyze archival datasets, but they can also play a valuable real-time role during missions. Here we discuss ways that machine learning can benefit tactical science decisions during Earth and Planetary Exploration. Machine learning's potential begins at the instrument itself. Smart instruments endowed with pattern recognition can immediately recognize science features of interest. This allows robotic explorers to optimize their limited communications bandwidth, triaging science products and prioritizing the most relevant data. Smart instruments can also target their data collection on the fly, using principles of experimental design to reduce redundancy and generally improve sampling efficiency for time-limited operations. Moreover, smart instruments can respond immediately to transient or unexpected phenomena. Examples include detections of cometary plumes, terrestrial floods, or volcanism. We show recent examples of smart instruments from 2014 tests including: aircraft and spacecraft remote sensing instruments that recognize cloud contamination, field tests of a "smart camera" for robotic surface geology, and adaptive data collection by X-Ray fluorescence spectrometers. Machine learning can also assist human operators when tactical decision making is required. Terrestrial scenarios include airborne remote sensing, where the decision to re-fly a transect must be made immediately. Planetary scenarios include deep space encounters or planetary surface exploration, where the number of command cycles is limited and operators make rapid daily decisions about where next to collect measurements. Visualization and modeling can reveal trends, clusters, and outliers in new data. This can help operators recognize instrument artifacts or spot anomalies in real time

  7. Design of a novel parallel reconfigurable machine tool

    CSIR Research Space (South Africa)

    Modungwa, D

    2008-06-01

    Full Text Available equipment, with high stiffness. Each worn out mould or die has different defects, which requires different mechanical processing and positioning of the reconditioning tools. Conventional machine tools and serial manipulators have been found incapable... and philosophy of re-configurability. The structure is influenced by 1) specifications for the repair and re- conditioning of moulds and dies, and 2) the manufacturing processes involved. 1. INTRODUCTION Serial manipulators have been used extensively...

  8. Applying Machine Learning to Star Cluster Classification

    Science.gov (United States)

    Fedorenko, Kristina; Grasha, Kathryn; Calzetti, Daniela; Mahadevan, Sridhar

    2016-01-01

    Catalogs describing populations of star clusters are essential in investigating a range of important issues, from star formation to galaxy evolution. Star cluster catalogs are typically created in a two-step process: in the first step, a catalog of sources is automatically produced; in the second step, each of the extracted sources is visually inspected by 3-to-5 human classifiers and assigned a category. Classification by humans is labor-intensive and time consuming, thus it creates a bottleneck, and substantially slows down progress in star cluster research.We seek to automate the process of labeling star clusters (the second step) through applying supervised machine learning techniques. This will provide a fast, objective, and reproducible classification. Our data is HST (WFC3 and ACS) images of galaxies in the distance range of 3.5-12 Mpc, with a few thousand star clusters already classified by humans as a part of the LEGUS (Legacy ExtraGalactic UV Survey) project. The classification is based on 4 labels (Class 1 - symmetric, compact cluster; Class 2 - concentrated object with some degree of asymmetry; Class 3 - multiple peak system, diffuse; and Class 4 - spurious detection). We start by looking at basic machine learning methods such as decision trees. We then proceed to evaluate performance of more advanced techniques, focusing on convolutional neural networks and other Deep Learning methods. We analyze the results, and suggest several directions for further improvement.

  9. Using Machine Learning in Adversarial Environments.

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Warren Leon [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-02-01

    Intrusion/anomaly detection systems are among the first lines of cyber defense. Commonly, they either use signatures or machine learning (ML) to identify threats, but fail to account for sophisticated attackers trying to circumvent them. We propose to embed machine learning within a game theoretic framework that performs adversarial modeling, develops methods for optimizing operational response based on ML, and integrates the resulting optimization codebase into the existing ML infrastructure developed by the Hybrid LDRD. Our approach addresses three key shortcomings of ML in adversarial settings: 1) resulting classifiers are typically deterministic and, therefore, easy to reverse engineer; 2) ML approaches only address the prediction problem, but do not prescribe how one should operationalize predictions, nor account for operational costs and constraints; and 3) ML approaches do not model attackers’ response and can be circumvented by sophisticated adversaries. The principal novelty of our approach is to construct an optimization framework that blends ML, operational considerations, and a model predicting attackers reaction, with the goal of computing optimal moving target defense. One important challenge is to construct a realistic model of an adversary that is tractable, yet realistic. We aim to advance the science of attacker modeling by considering game-theoretic methods, and by engaging experimental subjects with red teaming experience in trying to actively circumvent an intrusion detection system, and learning a predictive model of such circumvention activities. In addition, we will generate metrics to test that a particular model of an adversary is consistent with available data.

  10. Educational Resources for the Machine Tool Industry. Executive Summary.

    Science.gov (United States)

    Texas State Technical Coll. System, Waco.

    This document describes the MASTER (Machine Tool Advanced Skills Educational Resources) program, a geographic partnership of seven of the nation's best 2-year technical and community colleges located in seven states. The project developed and disseminated a national training model for manufacturing processes and new technologies within the…

  11. Critical Technology Assessment of Five Axis Simultaneous Control Machine Tools

    Science.gov (United States)

    2009-07-01

    some of the less traditional end-uses cited in export license applications for these particular machine tools include the manufacture of artificial ... insemination equipment for cattle and the manufacture of moulds for the soles of shoes. C. Military Applications According to DOD’s Military

  12. An Evolutionary Machine Learning Framework for Big Data Sequence Mining

    Science.gov (United States)

    Kamath, Uday Krishna

    2014-01-01

    Sequence classification is an important problem in many real-world applications. Unlike other machine learning data, there are no "explicit" features or signals in sequence data that can help traditional machine learning algorithms learn and predict from the data. Sequence data exhibits inter-relationships in the elements that are…

  13. An Evolutionary Machine Learning Framework for Big Data Sequence Mining

    Science.gov (United States)

    Kamath, Uday Krishna

    2014-01-01

    Sequence classification is an important problem in many real-world applications. Unlike other machine learning data, there are no "explicit" features or signals in sequence data that can help traditional machine learning algorithms learn and predict from the data. Sequence data exhibits inter-relationships in the elements that are…

  14. Wearable Learning Tools.

    Science.gov (United States)

    Bowskill, Jerry; Dyer, Nick

    1999-01-01

    Describes wearable computers, or information and communication technology devices that are designed to be mobile. Discusses how such technologies can enhance computer-mediated communications, focusing on collaborative working for learning. Describes an experimental system, MetaPark, which explores communications, data retrieval and recording, and…

  15. Machine learning: novel bioinformatics approaches for combating antimicrobial resistance.

    Science.gov (United States)

    Macesic, Nenad; Polubriaginof, Fernanda; Tatonetti, Nicholas P

    2017-09-12

    Antimicrobial resistance (AMR) is a threat to global health and new approaches to combating AMR are needed. Use of machine learning in addressing AMR is in its infancy but has made promising steps. We reviewed the current literature on the use of machine learning for studying bacterial AMR. The advent of large-scale data sets provided by next-generation sequencing and electronic health records make applying machine learning to the study and treatment of AMR possible. To date, it has been used for antimicrobial susceptibility genotype/phenotype prediction, development of AMR clinical decision rules, novel antimicrobial agent discovery and antimicrobial therapy optimization. Application of machine learning to studying AMR is feasible but remains limited. Implementation of machine learning in clinical settings faces barriers to uptake with concerns regarding model interpretability and data quality.Future applications of machine learning to AMR are likely to be laboratory-based, such as antimicrobial susceptibility phenotype prediction.

  16. A Real-Time Tool Positioning Sensor for Machine-Tools

    Science.gov (United States)

    Ruiz, Antonio Ramon Jimenez; Rosas, Jorge Guevara; Granja, Fernando Seco; Honorato, Jose Carlos Prieto; Taboada, Jose Juan Esteve; Serrano, Vicente Mico; Jimenez, Teresa Molina

    2009-01-01

    In machining, natural oscillations, and elastic, gravitational or temperature deformations, are still a problem to guarantee the quality of fabricated parts. In this paper we present an optical measurement system designed to track and localize in 3D a reference retro-reflector close to the machine-tool's drill. The complete system and its components are described in detail. Several tests, some static (including impacts and rotations) and others dynamic (by executing linear and circular trajectories), were performed on two different machine tools. It has been integrated, for the first time, a laser tracking system into the position control loop of a machine-tool. Results indicate that oscillations and deformations close to the tool can be estimated with micrometric resolution and a bandwidth from 0 to more than 100 Hz. Therefore this sensor opens the possibility for on-line compensation of oscillations and deformations. PMID:22408472

  17. A real-time tool positioning sensor for machine-tools.

    Science.gov (United States)

    Ruiz, Antonio Ramon Jimenez; Rosas, Jorge Guevara; Granja, Fernando Seco; Honorato, Jose Carlos Prieto; Taboada, Jose Juan Esteve; Serrano, Vicente Mico; Jimenez, Teresa Molina

    2009-01-01

    In machining, natural oscillations, and elastic, gravitational or temperature deformations, are still a problem to guarantee the quality of fabricated parts. In this paper we present an optical measurement system designed to track and localize in 3D a reference retro-reflector close to the machine-tool's drill. The complete system and its components are described in detail. Several tests, some static (including impacts and rotations) and others dynamic (by executing linear and circular trajectories), were performed on two different machine tools. It has been integrated, for the first time, a laser tracking system into the position control loop of a machine-tool. Results indicate that oscillations and deformations close to the tool can be estimated with micrometric resolution and a bandwidth from 0 to more than 100 Hz. Therefore this sensor opens the possibility for on-line compensation of oscillations and deformations.

  18. Parameterized Machine Learning for High-Energy Physics

    CERN Document Server

    Baldi, Pierre; Faucett, Taylor; Sadowski, Peter; Whiteson, Daniel

    2016-01-01

    We investigate a new structure for machine learning classifiers applied to problems in high-energy physics by expanding the inputs to include not only measured features but also physics parameters. The physics parameters represent a smoothly varying learning task, and the resulting parameterized classifier can smoothly interpolate between them and replace sets of classifiers trained at individual values. This simplifies the training process and gives improved performance at intermediate values, even for complex problems requiring deep learning. Applications include tools parameterized in terms of theoretical model parameters, such as the mass of a particle, which allow for a single network to provide improved discrimination across a range of masses. This concept is simple to implement and allows for optimized interpolatable results.

  19. Analysis Of Machine Learning Techniques By Using Blogger Data

    Directory of Open Access Journals (Sweden)

    Gowsalya.R,

    2014-04-01

    Full Text Available Blogs are the recent fast progressing media which depends on information system and technological advancement. The mass media is not much developed for the developing countries are in government terms and their schemes are developed based on governmental concepts, so blogs are provided for knowledge and ideas sharing. This article has highlighted and performed simulations from obtained information, 100 instances of Bloggers by using Weka 3. 6 Tool, and by applying many machine learning algorithms and analyzed with the values of accuracy, precision, recall and F-measure for getting future tendency anticipation of users to blogging and using in strategical areas. Keywords -

  20. Machine Learning Algorithms in Web Page Classification

    Directory of Open Access Journals (Sweden)

    W.A.AWAD

    2012-11-01

    Full Text Available In this paper we use machine learning algorithms like SVM, KNN and GIS to perform a behaviorcomparison on the web pages classifications problem, from the experiment we see in the SVM with smallnumber of negative documents to build the centroids has the smallest storage requirement and the least online test computation cost. But almost all GIS with different number of nearest neighbors have an evenhigher storage requirement and on line test computation cost than KNN. This suggests that some futurework should be done to try to reduce the storage requirement and on list test cost of GIS.

  1. Medical Dataset Classification: A Machine Learning Paradigm Integrating Particle Swarm Optimization with Extreme Learning Machine Classifier

    OpenAIRE

    C. V. Subbulakshmi; Deepa, S. N.

    2015-01-01

    Medical data classification is a prime data mining problem being discussed about for a decade that has attracted several researchers around the world. Most classifiers are designed so as to learn from the data itself using a training process, because complete expert knowledge to determine classifier parameters is impracticable. This paper proposes a hybrid methodology based on machine learning paradigm. This paradigm integrates the successful exploration mechanism called self-regulated learni...

  2. Statistical and machine learning approaches for network analysis

    CERN Document Server

    Dehmer, Matthias

    2012-01-01

    Explore the multidisciplinary nature of complex networks through machine learning techniques Statistical and Machine Learning Approaches for Network Analysis provides an accessible framework for structurally analyzing graphs by bringing together known and novel approaches on graph classes and graph measures for classification. By providing different approaches based on experimental data, the book uniquely sets itself apart from the current literature by exploring the application of machine learning techniques to various types of complex networks. Comprised of chapters written by internation

  3. Predicting Networked Strategic Behavior via Machine Learning and Game Theory

    Science.gov (United States)

    2015-01-13

    Report: Predicting Networked Strategic Behavior via Machine Learning and Game Theory The views, opinions and/or findings contained in this report...2211 machine learning, game theory , microeconomics, behavioral data REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR...Strategic Behavior via Machine Learning and Game Theory Report Title The funding for this project was used to develop basic models, methodology

  4. Performance of machine learning methods for classification tasks

    OpenAIRE

    B. Krithika; Dr. V. Ramalingam; Rajan, K

    2013-01-01

    In this paper, the performance of various machine learning methods on pattern classification and recognition tasks are proposed. The proposed method for evaluating performance will be based on the feature representation, feature selection and setting model parameters. The nature of the data, the methods of feature extraction and feature representation are discussed. The results of the Machine Learning algorithms on the classification task are analysed. The performance of Machine Learning meth...

  5. Medical Dataset Classification: A Machine Learning Paradigm Integrating Particle Swarm Optimization with Extreme Learning Machine Classifier

    Directory of Open Access Journals (Sweden)

    C. V. Subbulakshmi

    2015-01-01

    Full Text Available Medical data classification is a prime data mining problem being discussed about for a decade that has attracted several researchers around the world. Most classifiers are designed so as to learn from the data itself using a training process, because complete expert knowledge to determine classifier parameters is impracticable. This paper proposes a hybrid methodology based on machine learning paradigm. This paradigm integrates the successful exploration mechanism called self-regulated learning capability of the particle swarm optimization (PSO algorithm with the extreme learning machine (ELM classifier. As a recent off-line learning method, ELM is a single-hidden layer feedforward neural network (FFNN, proved to be an excellent classifier with large number of hidden layer neurons. In this research, PSO is used to determine the optimum set of parameters for the ELM, thus reducing the number of hidden layer neurons, and it further improves the network generalization performance. The proposed method is experimented on five benchmarked datasets of the UCI Machine Learning Repository for handling medical dataset classification. Simulation results show that the proposed approach is able to achieve good generalization performance, compared to the results of other classifiers.

  6. Medical Dataset Classification: A Machine Learning Paradigm Integrating Particle Swarm Optimization with Extreme Learning Machine Classifier.

    Science.gov (United States)

    Subbulakshmi, C V; Deepa, S N

    2015-01-01

    Medical data classification is a prime data mining problem being discussed about for a decade that has attracted several researchers around the world. Most classifiers are designed so as to learn from the data itself using a training process, because complete expert knowledge to determine classifier parameters is impracticable. This paper proposes a hybrid methodology based on machine learning paradigm. This paradigm integrates the successful exploration mechanism called self-regulated learning capability of the particle swarm optimization (PSO) algorithm with the extreme learning machine (ELM) classifier. As a recent off-line learning method, ELM is a single-hidden layer feedforward neural network (FFNN), proved to be an excellent classifier with large number of hidden layer neurons. In this research, PSO is used to determine the optimum set of parameters for the ELM, thus reducing the number of hidden layer neurons, and it further improves the network generalization performance. The proposed method is experimented on five benchmarked datasets of the UCI Machine Learning Repository for handling medical dataset classification. Simulation results show that the proposed approach is able to achieve good generalization performance, compared to the results of other classifiers.

  7. Laser-error-correction control unit for machine tools

    Energy Technology Data Exchange (ETDEWEB)

    Burleson, R.R.

    1978-05-23

    An ultraprecision machining capability is needed for the laser fusion program. For this work, a precision air-bearing spindle has been mounted horizontally on a modified vertical column of a Moore Number 3 measuring machine base located in a development laboratory at the Oak Ridge Y-12 Plant. An open-loop control system previously installed on this machine was inadequate to meet the upcoming requirements since accuracy is limited to 0.5 ..mu..m by the errors in the machine's gears and leadscrew. A new controller was needed that could monitor the actual position of the machine and perform real-time error correction on the programmed tool path. It was necessary that this project: (1) attain an optimum tradeoff between hardware and software; (2) use a modular design for easy maintenance; (3) use a standard NC tape service; (4) drive the x and y axes with a positioning resolution of 5.08 nm and a feedback resolution of 10 nm; (5) drive the x and y axis motors at a velocity of 0.05 cm/sec in the contouring mode and 0.18 cm/sec in the positioning mode; (6) eliminate the possibility of tape-reader errors; and (7) allow editing of the part description data. The work that was done to develop and install the new machine controller is described.

  8. MysiRNA: improving siRNA efficacy prediction using a machine-learning model combining multi-tools and whole stacking energy (ΔG).

    Science.gov (United States)

    Mysara, Mohamed; Elhefnawi, Mahmoud; Garibaldi, Jonathan M

    2012-06-01

    The investigation of small interfering RNA (siRNA) and its posttranscriptional gene-regulation has become an extremely important research topic, both for fundamental reasons and for potential longer-term therapeutic benefits. Several factors affect the functionality of siRNA including positional preferences, target accessibility and other thermodynamic features. State of the art tools aim to optimize the selection of target siRNAs by identifying those that may have high experimental inhibition. Such tools implement artificial neural network models as Biopredsi and ThermoComposition21, and linear regression models as DSIR, i-Score and Scales, among others. However, all these models have limitations in performance. In this work, a neural-network trained new siRNA scoring/efficacy prediction model was developed based on combining two existing scoring algorithms (ThermoComposition21 and i-Score), together with the whole stacking energy (ΔG), in a multi-layer artificial neural network. These three parameters were chosen after a comparative combinatorial study between five well known tools. Our developed model, 'MysiRNA' was trained on 2431 siRNA records and tested using three further datasets. MysiRNA was compared with 11 alternative existing scoring tools in an evaluation study to assess the predicted and experimental siRNA efficiency where it achieved the highest performance both in terms of correlation coefficient (R(2)=0.600) and receiver operating characteristics analysis (AUC=0.808), improving the prediction accuracy by up to 18% with respect to sensitivity and specificity of the best available tools. MysiRNA is a novel, freely accessible model capable of predicting siRNA inhibition efficiency with improved specificity and sensitivity. This multiclassifier approach could help improve the performance of prediction in several bioinformatics areas. MysiRNA model, part of MysiRNA-Designer package [1], is expected to play a key role in siRNA selection and evaluation.

  9. Knowledge discovery via machine learning for neurodegenerative disease researchers.

    Science.gov (United States)

    Ozyurt, I Burak; Brown, Gregory G

    2009-01-01

    Ever-increasing size of the biomedical literature makes more precise information retrieval and tapping into implicit knowledge in scientific literature a necessity. In this chapter, first, three new variants of the expectation-maximization (EM) method for semisupervised document classification (Machine Learning 39:103-134, 2000) are introduced to refine biomedical literature meta-searches. The retrieval performance of a multi-mixture per class EM variant with Agglomerative Information Bottleneck clustering (Slonim and Tishby (1999) Agglomerative information bottleneck. In Proceedings of NIPS-12) using Davies-Bouldin cluster validity index (IEEE Transactions on Pattern Analysis and Machine Intelligence 1:224-227, 1979), rivaled the state-of-the-art transductive support vector machines (TSVM) (Joachims (1999) Transductive inference for text classification using support vector machines. In Proceedings of the International Conference on Machine Learning (ICML)). Moreover, the multi-mixture per class EM variant refined search results more quickly with more than one order of magnitude improvement in execution time compared with TSVM. A second tool, CRFNER, uses conditional random fields (Lafferty et al. (2001) Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In Proceedings of ICML-2001) to recognize 15 types of named entities from schizophrenia abstracts outperforming ABNER (Settles (2004) Biomedical named entity recognition using conditional random fields and rich feature sets. In Proceedings of COLING 2004 International Joint Workshop on Natural Language Processing in Biomedicine and its Applications (NLPBA)) in biological named entity recognition and reaching F(1) performance of 82.5% on the second set of named entities.

  10. Visual quality assessment by machine learning

    CERN Document Server

    Xu, Long; Kuo, C -C Jay

    2015-01-01

    The book encompasses the state-of-the-art visual quality assessment (VQA) and learning based visual quality assessment (LB-VQA) by providing a comprehensive overview of the existing relevant methods. It delivers the readers the basic knowledge, systematic overview and new development of VQA. It also encompasses the preliminary knowledge of Machine Learning (ML) to VQA tasks and newly developed ML techniques for the purpose. Hence, firstly, it is particularly helpful to the beginner-readers (including research students) to enter into VQA field in general and LB-VQA one in particular. Secondly, new development in VQA and LB-VQA particularly are detailed in this book, which will give peer researchers and engineers new insights in VQA.

  11. Geological applications of machine learning on hyperspectral remote sensing data

    Science.gov (United States)

    Tse, C. H.; Li, Yi-liang; Lam, Edmund Y.

    2015-02-01

    The CRISM imaging spectrometer orbiting Mars has been producing a vast amount of data in the visible to infrared wavelengths in the form of hyperspectral data cubes. These data, compared with those obtained from previous remote sensing techniques, yield an unprecedented level of detailed spectral resolution in additional to an ever increasing level of spatial information. A major challenge brought about by the data is the burden of processing and interpreting these datasets and extract the relevant information from it. This research aims at approaching the challenge by exploring machine learning methods especially unsupervised learning to achieve cluster density estimation and classification, and ultimately devising an efficient means leading to identification of minerals. A set of software tools have been constructed by Python to access and experiment with CRISM hyperspectral cubes selected from two specific Mars locations. A machine learning pipeline is proposed and unsupervised learning methods were implemented onto pre-processed datasets. The resulting data clusters are compared with the published ASTER spectral library and browse data products from the Planetary Data System (PDS). The result demonstrated that this approach is capable of processing the huge amount of hyperspectral data and potentially providing guidance to scientists for more detailed studies.

  12. Smart adaptronic hydrostatic guiding system for machine tool slides

    Science.gov (United States)

    Munzinger, C.; Weis, M.; Herder, S.

    2009-03-01

    Guiding systems figure amongst the central components in the flux of a machine tool. Their characteristics have a direct impact on machining accuracy. Hydrostatic guiding systems are preferably used when specific requirements are to be met with regards to accuracy, stiffness and damping. However, an active intervention in the guiding system of such conventional systems, i.e. to absorb geometrical guiding rail errors, has so far not been possible. Compared to modular, conventional systems, adaptronic systems offer considerable cost savings potentials thanks to their increased functional degree of integration [1].

  13. Design of Five-Axis Ultrasonic Assistant Compound Machine Tool

    Institute of Scientific and Technical Information of China (English)

    Liu Bing刘冰; Fang Fengzhou房丰洲; Xu Zongwei徐宗伟; Zhang Xiaofeng张晓峰

    2015-01-01

    A compound machine tool was designed, which combined rotary ultrasonic assisted grinding, electrical discharge machining (EDM) and multi-axis milling. Experimental results indicated that its positioning accuracy was less than 5.6μm and its repetitive positioning accuracy was less than 1.8μm;the vibration amplitude of ultrasonic grinding system was uniform and stable, and the EDM system worked well and stably.A smooth surface of K9 optical glass component was achieved by the grinding method.

  14. Influence of machining parameters on cutting tool life while machining aluminum alloy fly ash composite

    Science.gov (United States)

    Rao, C. R. Prakash; chandra, Poorna; Kiran, R.; Asha, P. B.

    2016-09-01

    Metal matrix composites containing fly ash as reinforcement are primarily preferred because these materials possess lower density and higher strength to weight ratio. The metal matrix composites possess hetrogeneous microstructure which is due to the presence of hard ceramic particles. While turning composites, the catastrophic failure of cutting tools is attributed to the presence of hard particles. Selection of optimal cutting conditions for a given machining process and grade of cutting tools are of utmost importance to enhance the tool life during turning operation. Thus the research work was aimed at the experimental investigation of the cutting tool life while machining aluminum alloy composite containing 0-15% fly-ash. The experiments carried out following ISO3685 standards. The carbide inserts of grade K10 and style CGGN120304 were the turning tools. The cutting speed selected was between 200m/min to 500m/min in step of 100m/min, feed of 0.08 & 0.16 mm/revolution and constant depth of cut of 1.0 mm. The experimental results revealed that the performance of K10 grade carbide insert found better while machining composite containing 5% filler, at all cutting speeds and 0.08mm/revolution feed. The failures of carbide tools are mainly due to notch wear followed by built up edge and edge chipping.

  15. A Fast Reduced Kernel Extreme Learning Machine.

    Science.gov (United States)

    Deng, Wan-Yu; Ong, Yew-Soon; Zheng, Qing-Hua

    2016-04-01

    In this paper, we present a fast and accurate kernel-based supervised algorithm referred to as the Reduced Kernel Extreme Learning Machine (RKELM). In contrast to the work on Support Vector Machine (SVM) or Least Square SVM (LS-SVM), which identifies the support vectors or weight vectors iteratively, the proposed RKELM randomly selects a subset of the available data samples as support vectors (or mapping samples). By avoiding the iterative steps of SVM, significant cost savings in the training process can be readily attained, especially on Big datasets. RKELM is established based on the rigorous proof of universal learning involving reduced kernel-based SLFN. In particular, we prove that RKELM can approximate any nonlinear functions accurately under the condition of support vectors sufficiency. Experimental results on a wide variety of real world small instance size and large instance size applications in the context of binary classification, multi-class problem and regression are then reported to show that RKELM can perform at competitive level of generalized performance as the SVM/LS-SVM at only a fraction of the computational effort incurred.

  16. Measure Transformer Semantics for Bayesian Machine Learning

    Science.gov (United States)

    Borgström, Johannes; Gordon, Andrew D.; Greenberg, Michael; Margetson, James; van Gael, Jurgen

    The Bayesian approach to machine learning amounts to inferring posterior distributions of random variables from a probabilistic model of how the variables are related (that is, a prior distribution) and a set of observations of variables. There is a trend in machine learning towards expressing Bayesian models as probabilistic programs. As a foundation for this kind of programming, we propose a core functional calculus with primitives for sampling prior distributions and observing variables. We define combinators for measure transformers, based on theorems in measure theory, and use these to give a rigorous semantics to our core calculus. The original features of our semantics include its support for discrete, continuous, and hybrid measures, and, in particular, for observations of zero-probability events. We compile our core language to a small imperative language that has a straightforward semantics via factor graphs, data structures that enable many efficient inference algorithms. We use an existing inference engine for efficient approximate inference of posterior marginal distributions, treating thousands of observations per second for large instances of realistic models.

  17. Photometric Supernova Classification with Machine Learning

    Science.gov (United States)

    Lochner, Michelle; McEwen, Jason D.; Peiris, Hiranya V.; Lahav, Ofer; Winter, Max K.

    2016-08-01

    Automated photometric supernova classification has become an active area of research in recent years in light of current and upcoming imaging surveys such as the Dark Energy Survey (DES) and the Large Synoptic Survey Telescope, given that spectroscopic confirmation of type for all supernovae discovered will be impossible. Here, we develop a multi-faceted classification pipeline, combining existing and new approaches. Our pipeline consists of two stages: extracting descriptive features from the light curves and classification using a machine learning algorithm. Our feature extraction methods vary from model-dependent techniques, namely SALT2 fits, to more independent techniques that fit parametric models to curves, to a completely model-independent wavelet approach. We cover a range of representative machine learning algorithms, including naive Bayes, k-nearest neighbors, support vector machines, artificial neural networks, and boosted decision trees (BDTs). We test the pipeline on simulated multi-band DES light curves from the Supernova Photometric Classification Challenge. Using the commonly used area under the curve (AUC) of the Receiver Operating Characteristic as a metric, we find that the SALT2 fits and the wavelet approach, with the BDTs algorithm, each achieve an AUC of 0.98, where 1 represents perfect classification. We find that a representative training set is essential for good classification, whatever the feature set or algorithm, with implications for spectroscopic follow-up. Importantly, we find that by using either the SALT2 or the wavelet feature sets with a BDT algorithm, accurate classification is possible purely from light curve data, without the need for any redshift information.

  18. Machine Learning Approaches: From Theory to Application in Schizophrenia

    Directory of Open Access Journals (Sweden)

    Elisa Veronese

    2013-01-01

    Full Text Available In recent years, machine learning approaches have been successfully applied for analysis of neuroimaging data, to help in the context of disease diagnosis. We provide, in this paper, an overview of recent support vector machine-based methods developed and applied in psychiatric neuroimaging for the investigation of schizophrenia. In particular, we focus on the algorithms implemented by our group, which have been applied to classify subjects affected by schizophrenia and healthy controls, comparing them in terms of accuracy results with other recently published studies. First we give a description of the basic terminology used in pattern recognition and machine learning. Then we separately summarize and explain each study, highlighting the main features that characterize each method. Finally, as an outcome of the comparison of the results obtained applying the described different techniques, conclusions are drawn in order to understand how much automatic classification approaches can be considered a useful tool in understanding the biological underpinnings of schizophrenia. We then conclude by discussing the main implications achievable by the application of these methods into clinical practice.

  19. A Real-Time Tool Positioning Sensor for Machine-Tools

    Directory of Open Access Journals (Sweden)

    Vicente Mico Serrano

    2009-09-01

    Full Text Available In machining, natural oscillations, and elastic, gravitational or temperature deformations, are still a problem to guarantee the quality of fabricated parts. In this paper we present an optical measurement system designed to track and localize in 3D a reference retro-reflector close to the machine-tool’s drill. The complete system and its components are described in detail. Several tests, some static (including impacts and rotations and others dynamic (by executing linear and circular trajectories, were performed on two different machine tools. It has been integrated, for the first time, a laser tracking system into the position control loop of a machine-tool. Results indicate that oscillations and deformations close to the tool can be estimated with micrometric resolution and a bandwidth from 0 to more than 100 Hz. Therefore this sensor opens the possibility for on-line compensation of oscillations and deformations.

  20. Broiler chickens can benefit from machine learning: support vector machine analysis of observational epidemiological data.

    Science.gov (United States)

    Hepworth, Philip J; Nefedov, Alexey V; Muchnik, Ilya B; Morgan, Kenton L

    2012-08-07

    Machine-learning algorithms pervade our daily lives. In epidemiology, supervised machine learning has the potential for classification, diagnosis and risk factor identification. Here, we report the use of support vector machine learning to identify the features associated with hock burn on commercial broiler farms, using routinely collected farm management data. These data lend themselves to analysis using machine-learning techniques. Hock burn, dermatitis of the skin over the hock, is an important indicator of broiler health and welfare. Remarkably, this classifier can predict the occurrence of high hock burn prevalence with accuracy of 0.78 on unseen data, as measured by the area under the receiver operating characteristic curve. We also compare the results with those obtained by standard multi-variable logistic regression and suggest that this technique provides new insights into the data. This novel application of a machine-learning algorithm, embedded in poultry management systems could offer significant improvements in broiler health and welfare worldwide.

  1. Improving diagnostic recognition of primary hyperparathyroidism with machine learning.

    Science.gov (United States)

    Somnay, Yash R; Craven, Mark; McCoy, Kelly L; Carty, Sally E; Wang, Tracy S; Greenberg, Caprice C; Schneider, David F

    2017-04-01

    decrease the accuracy significantly (area under receiver operating characteristic = 0.985). In mild disease cases, however, the Bayesian network model classified correctly 71.1% of patients with normal calcium and 92.1% with normal parathyroid hormone levels preoperatively. Bayesian networking and AdaBoost improved the accuracy of all parathyroid hormone patients to 97.2% cases (area under receiver operating characteristic = 0.994), and 91.9% of primary hyperparathyroidism patients with mild disease. This was significantly improved relative to Bayesian networking alone (P Machine learning can diagnose accurately primary hyperparathyroidism without human input even in mild disease. Incorporation of this tool into electronic medical record systems may aid in recognition of this under-diagnosed disorder. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Virtual Sensor for Calibration of Thermal Models of Machine Tools

    Directory of Open Access Journals (Sweden)

    Alexander Dementjev

    2014-01-01

    strictly depends on the accuracy of these machines, but they are prone to deformation caused by their own heat. The deformation needs to be compensated in order to assure accurate production. So an adequate model of the high-dimensional thermal deformation process must be created and parameters of this model must be evaluated. Unfortunately, such parameters are often unknown and cannot be calculated a priori. Parameter identification during real experiments is not an option for these models because of its high engineering and machine time effort. The installation of additional sensors to measure these parameters directly is uneconomical. Instead, an effective calibration of thermal models can be reached by combining real and virtual measurements on a machine tool during its real operation, without additional sensors installation. In this paper, a new approach for thermal model calibration is presented. The expected results are very promising and can be recommended as an effective solution for this class of problems.

  3. Optimal Machine Tools Selection Using Interval-Valued Data FCM Clustering Algorithm

    Directory of Open Access Journals (Sweden)

    Yupeng Xin

    2014-01-01

    Full Text Available Machine tool selection directly affects production rates, accuracy, and flexibility. In order to quickly and accurately select the appropriate machine tools in machining process planning, this paper proposes an optimal machine tools selection method based on interval-valued data fuzzy C-means (FCM clustering algorithm. We define the machining capability meta (MAE as the smallest unit to describe machining capacity of machine tools and establish MAE library based on the MAE information model. According to the manufacturing process requirements, the MAEs can be queried from MAE library. Subsequently, interval-valued data FCM algorithm is used to select the appropriate machine tools for manufacturing process. Through computing matching degree between manufacturing process machining constraints and MAEs, we get the most appropriate MAEs and the corresponding machine tools. Finally, a case study of an exhaust duct part of the aeroengine is presented to demonstrate the applicability of the proposed method.

  4. ANN Based Tool Condition Monitoring System for CNC Milling Machines

    Directory of Open Access Journals (Sweden)

    Mota-Valtierra G.C.

    2011-10-01

    Full Text Available Most of the companies have as objective to manufacture high-quality products, then by optimizing costs, reducing and controlling the variations in its production processes it is possible. Within manufacturing industries a very important issue is the tool condition monitoring, since the tool state will determine the quality of products. Besides, a good monitoring system will protect the machinery from severe damages. For determining the state of the cutting tools in a milling machine, there is a great variety of models in the industrial market, however these systems are not available to all companies because of their high costs and the requirements of modifying the machining tool in order to attach the system sensors. This paper presents an intelligent classification system which determines the status of cutt ers in a Computer Numerical Control (CNC milling machine. This tool state is mainly detected through the analysis of the cutting forces drawn from the spindle motors currents. This monitoring system does not need sensors so it is no necessary to modify the machine. The correct classification is made by advanced digital signal processing techniques. Just after acquiring a signal, a FIR digital filter is applied to the data to eliminate the undesired noisy components and to extract the embedded force components. A Wavelet Transformation is applied to the filtered signal in order to compress the data amount and to optimize the classifier structure. Then a multilayer perceptron- type neural network is responsible for carrying out the classification of the signal. Achieving a reliability of 95%, the system is capable of detecting breakage and a worn cutter.

  5. An efficient flow-based botnet detection using supervised machine learning

    DEFF Research Database (Denmark)

    Stevanovic, Matija; Pedersen, Jens Myrup

    2014-01-01

    Botnet detection represents one of the most crucial prerequisites of successful botnet neutralization. This paper explores how accurate and timely detection can be achieved by using supervised machine learning as the tool of inferring about malicious botnet traffic. In order to do so, the paper...... introduces a novel flow-based detection system that relies on supervised machine learning for identifying botnet network traffic. For use in the system we consider eight highly regarded machine learning algorithms, indicating the best performing one. Furthermore, the paper evaluates how much traffic needs...... to accurately and timely detect botnet traffic using purely flow-based traffic analysis and supervised machine learning. Additionally, the results show that in order to achieve accurate detection traffic flows need to be monitored for only a limited time period and number of packets per flow. This indicates...

  6. Geminivirus data warehouse: a database enriched with machine learning approaches.

    Science.gov (United States)

    Silva, Jose Cleydson F; Carvalho, Thales F M; Basso, Marcos F; Deguchi, Michihito; Pereira, Welison A; Sobrinho, Roberto R; Vidigal, Pedro M P; Brustolini, Otávio J B; Silva, Fabyano F; Dal-Bianco, Maximiller; Fontes, Renildes L F; Santos, Anésia A; Zerbini, Francisco Murilo; Cerqueira, Fabio R; Fontes, Elizabeth P B

    2017-05-05

    The Geminiviridae family encompasses a group of single-stranded DNA viruses with twinned and quasi-isometric virions, which infect a wide range of dicotyledonous and monocotyledonous plants and are responsible for significant economic losses worldwide. Geminiviruses are divided into nine genera, according to their insect vector, host range, genome organization, and phylogeny reconstruction. Using rolling-circle amplification approaches along with high-throughput sequencing technologies, thousands of full-length geminivirus and satellite genome sequences were amplified and have become available in public databases. As a consequence, many important challenges have emerged, namely, how to classify, store, and analyze massive datasets as well as how to extract information or new knowledge. Data mining approaches, mainly supported by machine learning (ML) techniques, are a natural means for high-throughput data analysis in the context of genomics, transcriptomics, proteomics, and metabolomics. Here, we describe the development of a data warehouse enriched with ML approaches, designated geminivirus.org. We implemented search modules, bioinformatics tools, and ML methods to retrieve high precision information, demarcate species, and create classifiers for genera and open reading frames (ORFs) of geminivirus genomes. The use of data mining techniques such as ETL (Extract, Transform, Load) to feed our database, as well as algorithms based on machine learning for knowledge extraction, allowed us to obtain a database with quality data and suitable tools for bioinformatics analysis. The Geminivirus Data Warehouse (geminivirus.org) offers a simple and user-friendly environment for information retrieval and knowledge discovery related to geminiviruses.

  7. MACHINING OF NICKEL BASED ALLOYS USING DIFFERENT CEMENTED CARBIDE TOOLS

    Directory of Open Access Journals (Sweden)

    BASIM A. KHIDHIR

    2010-09-01

    Full Text Available This paper presents the results of experimental work in dry turning of nickel based alloys (Haynes – 276 using Deferent tool geometer of cemented carbide tools. The turning tests were conducted at three different cutting speeds (112, 152, 201and 269 m/min while feed rate and depth of cut were kept constant at 0.2 mm/rev and 1.5 mm, respectively. The tool holders used were SCLCR with insert CCMT-12 and CCLNR – M12-4 with insert CNGN-12. The influence of cutting speed, tool inserts type and workpiece material was investigated on the machined surface roughness. The worn parts of the cutting tools were also examined under scanning electron microscope (SEM. The results showed that cutting speed significantly affected the machined surface finish values in related with the tool insert geometry. Insert type CCMT-12 showed better surface finish for cutting speed to 201 m/min, while insert type CNGN-12 surface roughness increased dramatically with increasing of speed to a limit completely damage of insert geometer beyond 152 m/min.

  8. Quantum machine learning what quantum computing means to data mining

    CERN Document Server

    Wittek, Peter

    2014-01-01

    Quantum Machine Learning bridges the gap between abstract developments in quantum computing and the applied research on machine learning. Paring down the complexity of the disciplines involved, it focuses on providing a synthesis that explains the most important machine learning algorithms in a quantum framework. Theoretical advances in quantum computing are hard to follow for computer scientists, and sometimes even for researchers involved in the field. The lack of a step-by-step guide hampers the broader understanding of this emergent interdisciplinary body of research. Quantum Machine L

  9. Fundamentals of Machine Learning for Neural Machine Translation

    OpenAIRE

    Kelleher, John

    2016-01-01

    This paper presents a short introduction to neural networks and how they are used for machine translation and concludes with some discussion on the current research challenges being addressed by neural machine translation (NMT) research. The primary goal of this paper is to give a no-tears introduction to NMT to readers that do not have a computer science or mathematical background. The secondary goal is to provide the reader with a deep enough understanding of NMT that they can appreciate th...

  10. Evaluation as a Learning Tool

    Science.gov (United States)

    Feinstein, Osvaldo Nestor

    2012-01-01

    Evaluation of programs or projects is often perceived as a threat. This is to a great extent related to the anticipated use of evaluation for accountability, which is often prioritized at the expense of using evaluation as a learning tool. Frequently it is argued that there is a trade-off between these two evaluation functions. An alternative…

  11. Series Design of Large-Scale NC Machine Tool

    Institute of Scientific and Technical Information of China (English)

    TANG Zhi

    2007-01-01

    Product system design is a mature concept in western developed countries. It has been applied in war industry during the last century. However, up until now, functional combination is still the main method for product system design in China. Therefore, in terms of a concept of product generation and product interaction we are in a weak position compared with the requirements of global markets. Today, the idea of serial product design has attracted much attention in the design field and the definition of product generation as well as its parameters has already become the standard in serial product designs. Although the design of a large-scale NC machine tool is complicated, it can be further optimized by the precise exercise of object design by placing the concept of platform establishment firmly into serial product design. The essence of a serial product design has been demonstrated by the design process of a large-scale NC machine tool.

  12. INVERSE DYNAMIC FORMULATION OF A NOVEL HYBRID MACHINE TOOL

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In recent years, hybrid devices have increasingly received more research.However, few of researchers studied the dynamic analysis.The inverse dynamic analysis of a novel hybrid machine tool designed in Tsinghua University is presented.The hybrid machine tool under consideration consists of parallel and serial structures, which is based on a new 2-DOF parallel platform and serial orientations.The kinematics and the dynamic equations are studied first for the parallel structure through Newton-Euler approach.And then, the dynamic analysis for serial structures is conducted.Finally, a closed-form inverse dynamic formulation is derived by using some elimination techniques.Some simulation results are also given.

  13. A general thermal model of machine tool spindle

    Directory of Open Access Journals (Sweden)

    Yanfang Dong

    2017-01-01

    Full Text Available As the core component of machine tool, the thermal characteristics of the spindle have a significant influence on machine tool running status. Lack of an accurate model of the spindle system, particularly the model of load–deformation coefficient between the bearing rolling elements and rings, severely limits the thermal error analytic precision of the spindle. In this article, bearing internal loads, especially the function relationships between the principal curvature difference F(ρ and auxiliary parameter nδ, semi-major axis a, and semi-minor axis b, have been determined; furthermore, high-precision heat generation combining the heat sinks in the spindle system is calculated; finally, an accurate thermal model of the spindle was established. Moreover, a conventional spindle with embedded fiber Bragg grating temperature sensors has been developed. By comparing the experiment results with simulation, it indicates that the model has good accuracy, which verifies the reliability of the modeling process.

  14. Distributed Extreme Learning Machine for Nonlinear Learning over Network

    Directory of Open Access Journals (Sweden)

    Songyan Huang

    2015-02-01

    Full Text Available Distributed data collection and analysis over a network are ubiquitous, especially over a wireless sensor network (WSN. To our knowledge, the data model used in most of the distributed algorithms is linear. However, in real applications, the linearity of systems is not always guaranteed. In nonlinear cases, the single hidden layer feedforward neural network (SLFN with radial basis function (RBF hidden neurons has the ability to approximate any continuous functions and, thus, may be used as the nonlinear learning system. However, confined by the communication cost, using the distributed version of the conventional algorithms to train the neural network directly is usually prohibited. Fortunately, based on the theorems provided in the extreme learning machine (ELM literature, we only need to compute the output weights of the SLFN. Computing the output weights itself is a linear learning problem, although the input-output mapping of the overall SLFN is still nonlinear. Using the distributed algorithmto cooperatively compute the output weights of the SLFN, we obtain a distributed extreme learning machine (dELM for nonlinear learning in this paper. This dELM is applied to the regression problem and classification problem to demonstrate its effectiveness and advantages.

  15. Combining Formal Logic and Machine Learning for Sentiment Analysis

    DEFF Research Database (Denmark)

    Petersen, Niklas Christoffer; Villadsen, Jørgen

    2014-01-01

    This paper presents a formal logical method for deep structural analysis of the syntactical properties of texts using machine learning techniques for efficient syntactical tagging. To evaluate the method it is used for entity level sentiment analysis as an alternative to pure machine learning...

  16. An active role for machine learning in drug development

    Science.gov (United States)

    Murphy, Robert F.

    2014-01-01

    Due to the complexity of biological systems, cutting-edge machine-learning methods will be critical for future drug development. In particular, machine-vision methods to extract detailed information from imaging assays and active-learning methods to guide experimentation will be required to overcome the dimensionality problem in drug development. PMID:21587249

  17. Newton Methods for Large Scale Problems in Machine Learning

    Science.gov (United States)

    Hansen, Samantha Leigh

    2014-01-01

    The focus of this thesis is on practical ways of designing optimization algorithms for minimizing large-scale nonlinear functions with applications in machine learning. Chapter 1 introduces the overarching ideas in the thesis. Chapters 2 and 3 are geared towards supervised machine learning applications that involve minimizing a sum of loss…

  18. Applying Machine Learning to Facilitate Autism Diagnostics: Pitfalls and Promises

    Science.gov (United States)

    Bone, Daniel; Goodwin, Matthew S.; Black, Matthew P.; Lee, Chi-Chun; Audhkhasi, Kartik; Narayanan, Shrikanth

    2015-01-01

    Machine learning has immense potential to enhance diagnostic and intervention research in the behavioral sciences, and may be especially useful in investigations involving the highly prevalent and heterogeneous syndrome of autism spectrum disorder. However, use of machine learning in the absence of clinical domain expertise can be tenuous and lead…

  19. Large-Scale Machine Learning for Classification and Search

    Science.gov (United States)

    Liu, Wei

    2012-01-01

    With the rapid development of the Internet, nowadays tremendous amounts of data including images and videos, up to millions or billions, can be collected for training machine learning models. Inspired by this trend, this thesis is dedicated to developing large-scale machine learning techniques for the purpose of making classification and nearest…

  20. Large-Scale Machine Learning for Classification and Search

    Science.gov (United States)

    Liu, Wei

    2012-01-01

    With the rapid development of the Internet, nowadays tremendous amounts of data including images and videos, up to millions or billions, can be collected for training machine learning models. Inspired by this trend, this thesis is dedicated to developing large-scale machine learning techniques for the purpose of making classification and nearest…

  1. Newton Methods for Large Scale Problems in Machine Learning

    Science.gov (United States)

    Hansen, Samantha Leigh

    2014-01-01

    The focus of this thesis is on practical ways of designing optimization algorithms for minimizing large-scale nonlinear functions with applications in machine learning. Chapter 1 introduces the overarching ideas in the thesis. Chapters 2 and 3 are geared towards supervised machine learning applications that involve minimizing a sum of loss…

  2. Applying Machine Learning to Facilitate Autism Diagnostics: Pitfalls and Promises

    Science.gov (United States)

    Bone, Daniel; Goodwin, Matthew S.; Black, Matthew P.; Lee, Chi-Chun; Audhkhasi, Kartik; Narayanan, Shrikanth

    2015-01-01

    Machine learning has immense potential to enhance diagnostic and intervention research in the behavioral sciences, and may be especially useful in investigations involving the highly prevalent and heterogeneous syndrome of autism spectrum disorder. However, use of machine learning in the absence of clinical domain expertise can be tenuous and lead…

  3. IEEE International Workshop on Machine Learning for Signal Processing: Preface

    DEFF Research Database (Denmark)

    Tao, Jianhua

    The 21st IEEE International Workshop on Machine Learning for Signal Processing will be held in Beijing, China, on September 18–21, 2011. The workshop series is the major annual technical event of the IEEE Signal Processing Society's Technical Committee on Machine Learning for Signal Processing...

  4. Proceedings of the IEEE Machine Learning for Signal Processing XVII

    DEFF Research Database (Denmark)

    The seventeenth of a series of workshops sponsored by the IEEE Signal Processing Society and organized by the Machine Learning for Signal Processing Technical Committee (MLSP-TC). The field of machine learning has matured considerably in both methodology and real-world application domains and has...

  5. IEEE International Workshop on Machine Learning for Signal Processing: Preface

    DEFF Research Database (Denmark)

    Tao, Jianhua

    The 21st IEEE International Workshop on Machine Learning for Signal Processing will be held in Beijing, China, on September 18–21, 2011. The workshop series is the major annual technical event of the IEEE Signal Processing Society's Technical Committee on Machine Learning for Signal Processing...

  6. Configuration Design of Product Service System for CNC Machine Tools

    OpenAIRE

    Zhongqi Sheng; Tao Xu; Junyou Song

    2015-01-01

    Product service system is a combination of product and services to meet the customer requirements. Configuration design is the key process of product service system development. This paper studies the configuration design of product service system for CNC machine tools. The research explores the configuration design process of product service system development, analyzes the retrieval method of product service system schemes, determines the configuration sequence of product modules and servic...

  7. Editing of EIA coded, numerically controlled, machine tool tapes

    Science.gov (United States)

    Weiner, J. M.

    1975-01-01

    Editing of numerically controlled (N/C) machine tool tapes (8-level paper tape) using an interactive graphic display processor is described. A rapid technique required for correcting production errors in N/C tapes was developed using the interactive text editor on the IMLAC PDS-ID graphic display system and two special programs resident on disk. The correction technique and special programs for processing N/C tapes coded to EIA specifications are discussed.

  8. Developing an Intelligent Diagnosis and Assessment E-Learning Tool for Introductory Programming

    Science.gov (United States)

    Huang, Chenn-Jung; Chen, Chun-Hua; Luo, Yun-Cheng; Chen, Hong-Xin; Chuang, Yi-Ta

    2008-01-01

    Recently, a lot of open source e-learning platforms have been offered for free in the Internet. We thus incorporate the intelligent diagnosis and assessment tool into an open software e-learning platform developed for programming language courses, wherein the proposed learning diagnosis assessment tools based on text mining and machine learning…

  9. Dropout Prediction in E-Learning Courses through the Combination of Machine Learning Techniques

    Science.gov (United States)

    Lykourentzou, Ioanna; Giannoukos, Ioannis; Nikolopoulos, Vassilis; Mpardis, George; Loumos, Vassili

    2009-01-01

    In this paper, a dropout prediction method for e-learning courses, based on three popular machine learning techniques and detailed student data, is proposed. The machine learning techniques used are feed-forward neural networks, support vector machines and probabilistic ensemble simplified fuzzy ARTMAP. Since a single technique may fail to…

  10. Dropout Prediction in E-Learning Courses through the Combination of Machine Learning Techniques

    Science.gov (United States)

    Lykourentzou, Ioanna; Giannoukos, Ioannis; Nikolopoulos, Vassilis; Mpardis, George; Loumos, Vassili

    2009-01-01

    In this paper, a dropout prediction method for e-learning courses, based on three popular machine learning techniques and detailed student data, is proposed. The machine learning techniques used are feed-forward neural networks, support vector machines and probabilistic ensemble simplified fuzzy ARTMAP. Since a single technique may fail to…

  11. ACL2(ml: Machine-Learning for ACL2

    Directory of Open Access Journals (Sweden)

    Jónathan Heras

    2014-06-01

    Full Text Available ACL2(ml is an extension for the Emacs interface of ACL2. This tool uses machine-learning to help the ACL2 user during the proof-development. Namely, ACL2(ml gives hints to the user in the form of families of similar theorems, and generates auxiliary lemmas automatically. In this paper, we present the two most recent extensions for ACL2(ml. First, ACL2(ml can suggest now families of similar function definitions, in addition to the families of similar theorems. Second, the lemma generation tool implemented in ACL2(ml has been improved with a method to generate preconditions using the guard mechanism of ACL2. The user of ACL2(ml can also invoke directly the latter extension to obtain preconditions for his own conjectures.

  12. Kinematic Analysis of a Serial - Parallel Machine Tool: the VERNE machine

    CERN Document Server

    Kanaan, Daniel; Chablat, Damien; 10.1016/j.mechmachtheory.2008.03.002

    2008-01-01

    The paper derives the inverse and the forward kinematic equations of a serial - parallel 5-axis machine tool: the VERNE machine. This machine is composed of a three-degree-of-freedom (DOF) parallel module and a two-DOF serial tilting table. The parallel module consists of a moving platform that is connected to a fixed base by three non-identical legs. These legs are connected in a way that the combined effects of the three legs lead to an over-constrained mechanism with complex motion. This motion is defined as a simultaneous combination of rotation and translation. In this paper we propose symbolical methods that able to calculate all kinematic solutions and identify the acceptable one by adding analytical constraint on the disposition of legs of the parallel module.

  13. APPLICATION OF MACHINE LEARNING TO THE PREDICTION OF VEGETATION HEALTH

    Directory of Open Access Journals (Sweden)

    E. Burchfield

    2016-06-01

    Full Text Available This project applies machine learning techniques to remotely sensed imagery to train and validate predictive models of vegetation health in Bangladesh and Sri Lanka. For both locations, we downloaded and processed eleven years of imagery from multiple MODIS datasets which were combined and transformed into two-dimensional matrices. We applied a gradient boosted machines model to the lagged dataset values to forecast future values of the Enhanced Vegetation Index (EVI. The predictive power of raw spectral data MODIS products were compared across time periods and land use categories. Our models have significantly more predictive power on held-out datasets than a baseline. Though the tool was built to increase capacity to monitor vegetation health in data scarce regions like South Asia, users may include ancillary spatiotemporal datasets relevant to their region of interest to increase predictive power and to facilitate interpretation of model results. The tool can automatically update predictions as new MODIS data is made available by NASA. The tool is particularly well-suited for decision makers interested in understanding and predicting vegetation health dynamics in countries in which environmental data is scarce and cloud cover is a significant concern.

  14. Application of Machine Learning to the Prediction of Vegetation Health

    Science.gov (United States)

    Burchfield, Emily; Nay, John J.; Gilligan, Jonathan

    2016-06-01

    This project applies machine learning techniques to remotely sensed imagery to train and validate predictive models of vegetation health in Bangladesh and Sri Lanka. For both locations, we downloaded and processed eleven years of imagery from multiple MODIS datasets which were combined and transformed into two-dimensional matrices. We applied a gradient boosted machines model to the lagged dataset values to forecast future values of the Enhanced Vegetation Index (EVI). The predictive power of raw spectral data MODIS products were compared across time periods and land use categories. Our models have significantly more predictive power on held-out datasets than a baseline. Though the tool was built to increase capacity to monitor vegetation health in data scarce regions like South Asia, users may include ancillary spatiotemporal datasets relevant to their region of interest to increase predictive power and to facilitate interpretation of model results. The tool can automatically update predictions as new MODIS data is made available by NASA. The tool is particularly well-suited for decision makers interested in understanding and predicting vegetation health dynamics in countries in which environmental data is scarce and cloud cover is a significant concern.

  15. A Machine-Learning-Driven Sky Model.

    Science.gov (United States)

    Satylmys, Pynar; Bashford-Rogers, Thomas; Chalmers, Alan; Debattista, Kurt

    2017-01-01

    Sky illumination is responsible for much of the lighting in a virtual environment. A machine-learning-based approach can compactly represent sky illumination from both existing analytic sky models and from captured environment maps. The proposed approach can approximate the captured lighting at a significantly reduced memory cost and enable smooth transitions of sky lighting to be created from a small set of environment maps captured at discrete times of day. The author's results demonstrate accuracy close to the ground truth for both analytical and capture-based methods. The approach has a low runtime overhead, so it can be used as a generic approach for both offline and real-time applications.

  16. Machine learning of Calabi-Yau volumes

    Science.gov (United States)

    Krefl, Daniel; Seong, Rak-Kyeong

    2017-09-01

    We employ machine learning techniques to investigate the volume minimum of Sasaki-Einstein base manifolds of noncompact toric Calabi-Yau three-folds. We find that the minimum volume can be approximated via a second-order multiple linear regression on standard topological quantities obtained from the corresponding toric diagram. The approximation improves further after invoking a convolutional neural network with the full toric diagram of the Calabi-Yau three-folds as the input. We are thereby able to circumvent any minimization procedure that was previously necessary and find an explicit mapping between the minimum volume and the topological quantities of the toric diagram. Under the AdS/CFT correspondence, the minimum volumes of Sasaki-Einstein manifolds correspond to central charges of a class of 4 d N =1 superconformal field theories. We therefore find empirical evidence for a function that gives values of central charges without the usual extremization procedure.

  17. Optimal sensor placement using machine learning

    CERN Document Server

    Semaan, Richard

    2016-01-01

    A new method for optimal sensor placement based on variable importance of machine learned models is proposed. With its simplicity, adaptivity, and low computational cost, the method offers many advantages over existing approaches. The new method is implemented on an airfoil equipped with a Coanda actuator. The analysis is based on flow field data obtained from 2D unsteady Reynolds averaged Navier-Stokes (URANS) simulations with different actuation conditions. The optimal sensor locations is compared against the current de-facto standard of maximum POD modal amplitude location, and against a brute force approach that scans all possible sensor combinations. The results show that both the flow conditions and the type of sensor have an effect on the optimal sensor placement, whereas the choice of the response function appears to have limited influence.

  18. CD process control through machine learning

    Science.gov (United States)

    Utzny, Clemens

    2016-10-01

    For the specific requirements of the 14nm and 20nm site applications a new CD map approach was developed at the AMTC. This approach relies on a well established machine learning technique called recursive partitioning. Recursive partitioning is a powerful technique which creates a decision tree by successively testing whether the quantity of interest can be explained by one of the supplied covariates. The test performed is generally a statistical test with a pre-supplied significance level. Once the test indicates significant association between the variable of interest and a covariate a split performed at a threshold value which minimizes the variation within the newly attained groups. This partitioning is recurred until either no significant association can be detected or the resulting sub group size falls below a pre-supplied level.

  19. Lane Detection Based on Machine Learning Algorithm

    Directory of Open Access Journals (Sweden)

    Chao Fan

    2013-09-01

    Full Text Available In order to improve accuracy and robustness of the lane detection in complex conditions, such as the shadows and illumination changing, a novel detection algorithm was proposed based on machine learning. After pretreatment, a set of haar-like filters were used to calculate the eigenvalue in the gray image f(x,y and edge e(x,y. Then these features were trained by using improved boosting algorithm and the final class function g(x was obtained, which was used to judge whether the point x belonging to the lane or not. To avoid the over fitting in traditional boosting, Fisher discriminant analysis was used to initialize the weights of samples. After testing by many road in all conditions, it showed that this algorithm had good robustness and real-time to recognize the lane in all challenging conditions.

  20. Research advances in coupling bionic optimization design method for CNC machine tools based on ergonomics

    Directory of Open Access Journals (Sweden)

    Shihao LIU

    2015-06-01

    Full Text Available Currently, most Chinese CNC machine tools' dynamic and static performances have large gap comparing with the similar foreign products, and the CNC machine tools users' human-centered design demand are ignored, which results in that the domestic CNC machine tools' overall competitiveness is relatively low. In order to solve the above problem, the ergonomics and coupling bionics are adopted to study collaborative optimization design method for CNC machine tools based on the domestic and foreign machine tool design method research achievement. The CNC machine tools' "man-machine-environment" interaction mechanism can be built by combining with ergonomic, and then the CNC ergonomic design criteria is obtained. Taking the coupling bionics as theoretical basis, the biological structures "morphology-structure-function-adaptive growth" multiple coupling mechanism can be studied, and the mechanical performance benefits structure can be extracted, then the CNC machine tools structural coupling bionic design technology is obtained by combining with the similarity principle. Combination of CNC machine tools' ergonomic design criteria and coupling bionic design technology, and considering the CNC machine tool performance's interaction and coupling mechanisms, a new multi-objective optimization design method can be obtained, which is verified through CNC machine tools' prototype experiments. The new optimization design method for CNC machine tools can not only help improve the whole machine's dynamic and static performance, but also has a bright prospect because of the "man-oriented" design concept.

  1. Tracking medical genetic literature through machine learning.

    Science.gov (United States)

    Bornstein, Aaron T; McLoughlin, Matthew H; Aguilar, Jesus; Wong, Wendy S W; Solomon, Benjamin D

    2016-08-01

    There has been remarkable progress in identifying the causes of genetic conditions as well as understanding how changes in specific genes cause disease. Though difficult (and often superficial) to parse, an interesting tension involves emphasis on basic research aimed to dissect normal and abnormal biology versus more clearly clinical and therapeutic investigations. To examine one facet of this question and to better understand progress in Mendelian-related research, we developed an algorithm that classifies medical literature into three categories (Basic, Clinical, and Management) and conducted a retrospective analysis. We built a supervised machine learning classification model using the Azure Machine Learning (ML) Platform and analyzed the literature (1970-2014) from NCBI's Entrez Gene2Pubmed Database (http://www.ncbi.nlm.nih.gov/gene) using genes from the NHGRI's Clinical Genomics Database (http://research.nhgri.nih.gov/CGD/). We applied our model to 376,738 articles: 288,639 (76.6%) were classified as Basic, 54,178 (14.4%) as Clinical, and 24,569 (6.5%) as Management. The average classification accuracy was 92.2%. The rate of Clinical publication was significantly higher than Basic or Management. The rate of publication of article types differed significantly when divided into key eras: Human Genome Project (HGP) planning phase (1984-1990); HGP launch (1990) to publication (2001); following HGP completion to the "Next Generation" advent (2009); the era following 2009. In conclusion, in addition to the findings regarding the pace and focus of genetic progress, our algorithm produced a database that can be used in a variety of contexts including automating the identification of management-related literature.

  2. Machine Learning in the Big Data Era: Are We There Yet?

    Energy Technology Data Exchange (ETDEWEB)

    Sukumar, Sreenivas Rangan [ORNL

    2014-01-01

    In this paper, we discuss the machine learning challenges of the Big Data era. We observe that recent innovations in being able to collect, access, organize, integrate, and query massive amounts of data from a wide variety of data sources have brought statistical machine learning under more scrutiny and evaluation for gleaning insights from the data than ever before. In that context, we pose and debate the question - Are machine learning algorithms scaling with the ability to store and compute? If yes, how? If not, why not? We survey recent developments in the state-of-the-art to discuss emerging and outstanding challenges in the design and implementation of machine learning algorithms at scale. We leverage experience from real-world Big Data knowledge discovery projects across domains of national security and healthcare to suggest our efforts be focused along the following axes: (i) the data science challenge - designing scalable and flexible computational architectures for machine learning (beyond just data-retrieval); (ii) the science of data challenge the ability to understand characteristics of data before applying machine learning algorithms and tools; and (iii) the scalable predictive functions challenge the ability to construct, learn and infer with increasing sample size, dimensionality, and categories of labels. We conclude with a discussion of opportunities and directions for future research.

  3. Machine learning in radiation oncology theory and applications

    CERN Document Server

    El Naqa, Issam; Murphy, Martin J

    2015-01-01

    ​This book provides a complete overview of the role of machine learning in radiation oncology and medical physics, covering basic theory, methods, and a variety of applications in medical physics and radiotherapy. An introductory section explains machine learning, reviews supervised and unsupervised learning methods, discusses performance evaluation, and summarizes potential applications in radiation oncology. Detailed individual sections are then devoted to the use of machine learning in quality assurance; computer-aided detection, including treatment planning and contouring; image-guided rad

  4. Reinforcement and Systemic Machine Learning for Decision Making

    CERN Document Server

    Kulkarni, Parag

    2012-01-01

    Reinforcement and Systemic Machine Learning for Decision Making There are always difficulties in making machines that learn from experience. Complete information is not always available-or it becomes available in bits and pieces over a period of time. With respect to systemic learning, there is a need to understand the impact of decisions and actions on a system over that period of time. This book takes a holistic approach to addressing that need and presents a new paradigm-creating new learning applications and, ultimately, more intelligent machines. The first book of its kind in this new an

  5. Using Machine Learning to Search for MSSM Higgs Bosons

    CERN Document Server

    Diesing, Rebecca

    2016-01-01

    This paper examines the performance of machine learning in the identification of Minimally Su- persymmetric Standard Model (MSSM) Higgs Bosons, and compares this performance to that of traditional cut strategies. Two boosted decision tree algorithms were tested, scikit-learn and XGBoost. These tests indicated that machine learning can perform significantly better than traditional cuts. However, since machine learning in this form cannot be directly implemented in a real MSSM Higgs analysis, this performance information was instead used to better understand the relationships between training variables. Further studies might use this information to construct an improved cut strategy.

  6. 76 FR 27668 - ASC Machine Tools, Inc., Spokane Valley, WA; Notice of Negative Determination on Reconsideration

    Science.gov (United States)

    2011-05-12

    ... Employment and Training Administration ASC Machine Tools, Inc., Spokane Valley, WA; Notice of Negative... Regarding Application for Reconsideration for the workers and former workers of ASC Machine Tools, Inc... adjustment assistance for workers and former workers of ASC Machine Tools, Inc., Spokane Valley,...

  7. Application of new tool material for electrical discharge machining (EDM)

    Indian Academy of Sciences (India)

    A K Khanra; L C Pathak; M M Godkhindi

    2009-08-01

    In EDM, Cu and graphite are commonly used as tool materials. The poor wear resistance is the drawback of these tools. In the current study, an attempt has been made to develop a ZrB2–Cu composite as an EDM tool material to overcome this problem. Initially, the ZrB2 powder is prepared by self-propagating high-temperature synthesis (SHS) technique and synthesized powder is mixed with different amounts of Cu powder. Dense composite is developed by a pressureless sintering at 1250°C. The composites are tested as tool material at different EDM process parameters during machining of mild steel. The ZrB2–40 wt% Cu composite shows highest metal removal rate (MRR) with significant tool removal rate (TRR) than other composites. The performance of ZrB2–40 wt% Cu composite is compared to conventional Cu tool. The composite shows higher MRR with less TRR than Cu tool but it shows more average surface roughness and diameteral overcut than Cu tool.

  8. Assessing and comparison of different machine learning methods in parent-offspring trios for genotype imputation.

    Science.gov (United States)

    Mikhchi, Abbas; Honarvar, Mahmood; Kashan, Nasser Emam Jomeh; Aminafshar, Mehdi

    2016-06-21

    Genotype imputation is an important tool for prediction of unknown genotypes for both unrelated individuals and parent-offspring trios. Several imputation methods are available and can either employ universal machine learning methods, or deploy algorithms dedicated to infer missing genotypes. In this research the performance of eight machine learning methods: Support Vector Machine, K-Nearest Neighbors, Extreme Learning Machine, Radial Basis Function, Random Forest, AdaBoost, LogitBoost, and TotalBoost compared in terms of the imputation accuracy, computation time and the factors affecting imputation accuracy. The methods employed using real and simulated datasets to impute the un-typed SNPs in parent-offspring trios. The tested methods show that imputation of parent-offspring trios can be accurate. The Random Forest and Support Vector Machine were more accurate than the other machine learning methods. The TotalBoost performed slightly worse than the other methods.The running times were different between methods. The ELM was always most fast algorithm. In case of increasing the sample size, the RBF requires long imputation time.The tested methods in this research can be an alternative for imputation of un-typed SNPs in low missing rate of data. However, it is recommended that other machine learning methods to be used for imputation.

  9. Machine and deep learning techniques in heavy-ion collisions with ALICE arXiv

    CERN Document Server

    INSPIRE-00382877

    Over the last years, machine learning tools have been successfully applied to a wealth of problems in high-energy physics. A typical example is the classification of physics objects. Supervised machine learning methods allow for significant improvements in classification problems by taking into account observable correlations and by learning the optimal selection from examples, e.g. from Monte Carlo simulations. Even more promising is the usage of deep learning techniques. Methods like deep convolutional networks might be able to catch features from low-level parameters that are not exploited by default cut-based methods. These ideas could be particularly beneficial for measurements in heavy-ion collisions, because of the very large multiplicities. Indeed, machine learning methods potentially perform much better in systems with a large number of degrees of freedom compared to cut-based methods. Moreover, many key heavy-ion observables are most interesting at low transverse momentum where the underlying event ...

  10. Adaptive Control of Machine-Tool Vibration Based on an Active Tool Holder Shank with an Embedded Piezo Ceramic Actuator

    OpenAIRE

    Pettersson, Linus; Håkansson, Lars; Claesson, Ingvar; Olsson, Sven

    2001-01-01

    In the turning operation chatter or vibration is a common problem affecting the result of the machining, and, in particular, the surface finish. Tool life is also influenced by vibration. Severe acoustic noise in the working environment frequently occurs as a result of dynamic motion between the cutting tool and the workpiece. These problems can be reduced by active control of machine-tool vibration. However, machine-tool vibration control systems are usually not applicable to a general lathe...

  11. MEDLINE MeSH Indexing: Lessons Learned from Machine Learning and Future Directions

    DEFF Research Database (Denmark)

    Jimeno-Yepes, Antonio; Mork, James G.; Wilkowski, Bartlomiej

    2012-01-01

    Map and a k-NN approach called PubMed Related Citations (PRC). Our motivation is to improve the quality of MTI based on machine learning. Typical machine learning approaches fit this indexing task into text categorization. In this work, we have studied some Medical Subject Headings (MeSH) recommended by MTI...... and analyzed the issues when using standard machine learning algorithms. We show that in some cases machine learning can improve the annotations already recommended by MTI, that machine learning based on low variance methods achieves better performance and that each MeSH heading presents a different behavior...

  12. Machine Learning and the Traveling Repairman

    CERN Document Server

    Tulabandhula, Theja; Jaillet, Patrick

    2011-01-01

    The goal of the Machine Learning and Traveling Repairman Problem (ML&TRP) is to determine a route for a "repair crew," which repairs nodes on a graph. The repair crew aims to minimize the cost of failures at the nodes, but as in many real situations, the failure probabilities are not known and must be estimated. We introduce two formulations for the ML&TRP, where the first formulation is sequential: failure probabilities are estimated at each node, and then a weighted version of the traveling repairman problem is used to construct the route from the failure cost. We develop two models for the failure cost, based on whether repeat failures are considered, or only the first failure on a node. Our second formulation is a multi-objective learning problem for ranking on graphs. Here, we are estimating failure probabilities simultaneously with determining the graph traversal route; the choice of route influences the estimated failure probabilities. This is in accordance with a prior belief that probabilitie...

  13. Active Learning of Nondeterministic Finite State Machines

    Directory of Open Access Journals (Sweden)

    Warawoot Pacharoen

    2013-01-01

    Full Text Available We consider the problem of learning nondeterministic finite state machines (NFSMs from systems where their internal structures are implicit and nondeterministic. Recently, an algorithm for inferring observable NFSMs (ONFSMs, which are the potentially learnable subclass of NFSMs, has been proposed based on the hypothesis that the complete testing assumption is satisfied. According to this assumption, with an input sequence (query, the complete set of all possible output sequences is given by the so-called Teacher, so the number of times for asking the same query is not taken into account in the algorithm. In this paper, we propose LNM*, a refined ONFSM learning algorithm that considers the amount for repeating the same query as one parameter. Unlike the previous work, our approach does not require all possible output sequences in one answer. Instead, it tries to observe the possible output sequences by asking the same query many times to the Teacher. We have proved that LNM* can infer the corresponding ONFSMs of the unknown systems when the number of tries for the same query is adequate to guarantee the complete testing assumption. Moreover, the proof shows that our algorithm will eventually terminate no matter whether the assumption is fulfilled or not. We also present the theoretical time complexity analysis of LNM*. In addition, experimental results demonstrate the practical efficiency of our approach.

  14. Cast Iron And Mineral Cast Applied For Machine Tool Bed - Dynamic Behavior Analysis

    OpenAIRE

    2015-01-01

    Cast iron and mineral cast are the materials most often used in the machine structural elements design (bodies, housings, machine tools beds etc.). The materials significantly differ in physical and mechanical properties. The ability to suppress vibration is one of the most important factors determining the dynamic properties of the machine and has a significant impact on the machining capabilities of a machine tool. Recent research and development trends show that there is a clear tendency t...

  15. Effective and efficient optics inspection approach using machine learning algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Abdulla, G; Kegelmeyer, L; Liao, Z; Carr, W

    2010-11-02

    The Final Optics Damage Inspection (FODI) system automatically acquires and utilizes the Optics Inspection (OI) system to analyze images of the final optics at the National Ignition Facility (NIF). During each inspection cycle up to 1000 images acquired by FODI are examined by OI to identify and track damage sites on the optics. The process of tracking growing damage sites on the surface of an optic can be made more effective by identifying and removing signals associated with debris or reflections. The manual process to filter these false sites is daunting and time consuming. In this paper we discuss the use of machine learning tools and data mining techniques to help with this task. We describe the process to prepare a data set that can be used for training and identifying hardware reflections in the image data. In order to collect training data, the images are first automatically acquired and analyzed with existing software and then relevant features such as spatial, physical and luminosity measures are extracted for each site. A subset of these sites is 'truthed' or manually assigned a class to create training data. A supervised classification algorithm is used to test if the features can predict the class membership of new sites. A suite of self-configuring machine learning tools called 'Avatar Tools' is applied to classify all sites. To verify, we used 10-fold cross correlation and found the accuracy was above 99%. This substantially reduces the number of false alarms that would otherwise be sent for more extensive investigation.

  16. Machine learning landscapes and predictions for patient outcomes

    Science.gov (United States)

    Das, Ritankar; Wales, David J.

    2017-07-01

    The theory and computational tools developed to interpret and explore energy landscapes in molecular science are applied to the landscapes defined by local minima for neural networks. These machine learning landscapes correspond to fits of training data, where the inputs are vital signs and laboratory measurements for a database of patients, and the objective is to predict a clinical outcome. In this contribution, we test the predictions obtained by fitting to single measurements, and then to combinations of between 2 and 10 different patient medical data items. The effect of including measurements over different time intervals from the 48 h period in question is analysed, and the most recent values are found to be the most important. We also compare results obtained for neural networks as a function of the number of hidden nodes, and for different values of a regularization parameter. The predictions are compared with an alternative convex fitting function, and a strong correlation is observed. The dependence of these results on the patients randomly selected for training and testing decreases systematically with the size of the database available. The machine learning landscapes defined by neural network fits in this investigation have single-funnel character, which probably explains why it is relatively straightforward to obtain the global minimum solution, or a fit that behaves similarly to this optimal parameterization.

  17. Dynamical Mass Measurements of Contaminated Galaxy Clusters Using Machine Learning

    Science.gov (United States)

    Ntampaka, M.; Trac, H.; Sutherland, D. J.; Fromenteau, S.; Póczos, B.; Schneider, J.

    2016-11-01

    We study dynamical mass measurements of galaxy clusters contaminated by interlopers and show that a modern machine learning algorithm can predict masses by better than a factor of two compared to a standard scaling relation approach. We create two mock catalogs from Multidark’s publicly available N-body MDPL1 simulation, one with perfect galaxy cluster membership information and the other where a simple cylindrical cut around the cluster center allows interlopers to contaminate the clusters. In the standard approach, we use a power-law scaling relation to infer cluster mass from galaxy line-of-sight (LOS) velocity dispersion. Assuming perfect membership knowledge, this unrealistic case produces a wide fractional mass error distribution, with a width of {{Δ }}ε ≈ 0.87. Interlopers introduce additional scatter, significantly widening the error distribution further ({{Δ }}ε ≈ 2.13). We employ the support distribution machine (SDM) class of algorithms to learn from distributions of data to predict single values. Applied to distributions of galaxy observables such as LOS velocity and projected distance from the cluster center, SDM yields better than a factor-of-two improvement ({{Δ }}ε ≈ 0.67) for the contaminated case. Remarkably, SDM applied to contaminated clusters is better able to recover masses than even the scaling relation approach applied to uncontaminated clusters. We show that the SDM method more accurately reproduces the cluster mass function, making it a valuable tool for employing cluster observations to evaluate cosmological models.

  18. GEOLOGICAL MAPPING USING MACHINE LEARNING ALGORITHMS

    Directory of Open Access Journals (Sweden)

    A. S. Harvey

    2016-06-01

    Full Text Available Remotely sensed spectral imagery, geophysical (magnetic and gravity, and geodetic (elevation data are useful in a variety of Earth science applications such as environmental monitoring and mineral exploration. Using these data with Machine Learning Algorithms (MLA, which are widely used in image analysis and statistical pattern recognition applications, may enhance preliminary geological mapping and interpretation. This approach contributes towards a rapid and objective means of geological mapping in contrast to conventional field expedition techniques. In this study, four supervised MLAs (naïve Bayes, k-nearest neighbour, random forest, and support vector machines are compared in order to assess their performance for correctly identifying geological rocktypes in an area with complete ground validation information. Geological maps of the Sudbury region are used for calibration and validation. Percent of correct classifications was used as indicators of performance. Results show that random forest is the best approach. As expected, MLA performance improves with more calibration clusters, i.e. a more uniform distribution of calibration data over the study region. Performance is generally low, though geological trends that correspond to a ground validation map are visualized. Low performance may be the result of poor spectral images of bare rock which can be covered by vegetation or water. The distribution of calibration clusters and MLA input parameters affect the performance of the MLAs. Generally, performance improves with more uniform sampling, though this increases required computational effort and time. With the achievable performance levels in this study, the technique is useful in identifying regions of interest and identifying general rocktype trends. In particular, phase I geological site investigations will benefit from this approach and lead to the selection of sites for advanced surveys.

  19. Geological Mapping Using Machine Learning Algorithms

    Science.gov (United States)

    Harvey, A. S.; Fotopoulos, G.

    2016-06-01

    Remotely sensed spectral imagery, geophysical (magnetic and gravity), and geodetic (elevation) data are useful in a variety of Earth science applications such as environmental monitoring and mineral exploration. Using these data with Machine Learning Algorithms (MLA), which are widely used in image analysis and statistical pattern recognition applications, may enhance preliminary geological mapping and interpretation. This approach contributes towards a rapid and objective means of geological mapping in contrast to conventional field expedition techniques. In this study, four supervised MLAs (naïve Bayes, k-nearest neighbour, random forest, and support vector machines) are compared in order to assess their performance for correctly identifying geological rocktypes in an area with complete ground validation information. Geological maps of the Sudbury region are used for calibration and validation. Percent of correct classifications was used as indicators of performance. Results show that random forest is the best approach. As expected, MLA performance improves with more calibration clusters, i.e. a more uniform distribution of calibration data over the study region. Performance is generally low, though geological trends that correspond to a ground validation map are visualized. Low performance may be the result of poor spectral images of bare rock which can be covered by vegetation or water. The distribution of calibration clusters and MLA input parameters affect the performance of the MLAs. Generally, performance improves with more uniform sampling, though this increases required computational effort and time. With the achievable performance levels in this study, the technique is useful in identifying regions of interest and identifying general rocktype trends. In particular, phase I geological site investigations will benefit from this approach and lead to the selection of sites for advanced surveys.

  20. Use of machine learning techniques for modeling of snow depth

    Directory of Open Access Journals (Sweden)

    G. V. Ayzel

    2017-01-01

    Full Text Available Snow exerts significant regulating effect on the land hydrological cycle since it controls intensity of heat and water exchange between the soil-vegetative cover and the atmosphere. Estimating of a spring flood runoff or a rain-flood on mountainous rivers requires understanding of the snow cover dynamics on a watershed. In our work, solving a problem of the snow cover depth modeling is based on both available databases of hydro-meteorological observations and easily accessible scientific software that allows complete reproduction of investigation results and further development of this theme by scientific community. In this research we used the daily observational data on the snow cover and surface meteorological parameters, obtained at three stations situated in different geographical regions: Col de Porte (France, Sodankyla (Finland, and Snoquamie Pass (USA.Statistical modeling of the snow cover depth is based on a complex of freely distributed the present-day machine learning models: Decision Trees, Adaptive Boosting, Gradient Boosting. It is demonstrated that use of combination of modern machine learning methods with available meteorological data provides the good accuracy of the snow cover modeling. The best results of snow cover depth modeling for every investigated site were obtained by the ensemble method of gradient boosting above decision trees – this model reproduces well both, the periods of snow cover accumulation and its melting. The purposeful character of learning process for models of the gradient boosting type, their ensemble character, and use of combined redundancy of a test sample in learning procedure makes this type of models a good and sustainable research tool. The results obtained can be used for estimating the snow cover characteristics for river basins where hydro-meteorological information is absent or insufficient.

  1. Application of machine learning in SNP discovery

    Directory of Open Access Journals (Sweden)

    Cregan Perry B

    2006-01-01

    Full Text Available Abstract Background Single nucleotide polymorphisms (SNP constitute more than 90% of the genetic variation, and hence can account for most trait differences among individuals in a given species. Polymorphism detection software PolyBayes and PolyPhred give high false positive SNP predictions even with stringent parameter values. We developed a machine learning (ML method to augment PolyBayes to improve its prediction accuracy. ML methods have also been successfully applied to other bioinformatics problems in predicting genes, promoters, transcription factor binding sites and protein structures. Results The ML program C4.5 was applied to a set of features in order to build a SNP classifier from training data based on human expert decisions (True/False. The training data were 27,275 candidate SNP generated by sequencing 1973 STS (sequence tag sites (12 Mb in both directions from 6 diverse homozygous soybean cultivars and PolyBayes analysis. Test data of 18,390 candidate SNP were generated similarly from 1359 additional STS (8 Mb. SNP from both sets were classified by experts. After training the ML classifier, it agreed with the experts on 97.3% of test data compared with 7.8% agreement between PolyBayes and experts. The PolyBayes positive predictive values (PPV (i.e., fraction of candidate SNP being real were 7.8% for all predictions and 16.7% for those with 100% posterior probability of being real. Using ML improved the PPV to 84.8%, a 5- to 10-fold increase. While both ML and PolyBayes produced a similar number of true positives, the ML program generated only 249 false positives as compared to 16,955 for PolyBayes. The complexity of the soybean genome may have contributed to high false SNP predictions by PolyBayes and hence results may differ for other genomes. Conclusion A machine learning (ML method was developed as a supplementary feature to the polymorphism detection software for improving prediction accuracies. The results from this study

  2. Modelling tick abundance using machine learning techniques and satellite imagery

    DEFF Research Database (Denmark)

    Kjær, Lene Jung; Korslund, L.; Kjelland, V.

    satellite images to run Boosted Regression Tree machine learning algorithms to predict overall distribution (presence/absence of ticks) and relative tick abundance of nymphs and larvae in southern Scandinavia. For nymphs, the predicted abundance had a positive correlation with observed abundance...... the predicted distribution of larvae was mostly even throughout Denmark, it was primarily around the coastlines in Norway and Sweden. Abundance was fairly low overall except in some fragmented patches corresponding to forested habitats in the region. Machine learning techniques allow us to predict for larger...... the collected ticks for pathogens and using the same machine learning techniques to develop prevalence maps of the ScandTick region....

  3. Implementing Machine Learning in Radiology Practice and Research.

    Science.gov (United States)

    Kohli, Marc; Prevedello, Luciano M; Filice, Ross W; Geis, J Raymond

    2017-04-01

    The purposes of this article are to describe concepts that radiologists should understand to evaluate machine learning projects, including common algorithms, supervised as opposed to unsupervised techniques, statistical pitfalls, and data considerations for training and evaluation, and to briefly describe ethical dilemmas and legal risk. Machine learning includes a broad class of computer programs that improve with experience. The complexity of creating, training, and monitoring machine learning indicates that the success of the algorithms will require radiologist involvement for years to come, leading to engagement rather than replacement.

  4. Studying depression using imaging and machine learning methods.

    Science.gov (United States)

    Patel, Meenal J; Khalaf, Alexander; Aizenstein, Howard J

    2016-01-01

    Depression is a complex clinical entity that can pose challenges for clinicians regarding both accurate diagnosis and effective timely treatment. These challenges have prompted the development of multiple machine learning methods to help improve the management of this disease. These methods utilize anatomical and physiological data acquired from neuroimaging to create models that can identify depressed patients vs. non-depressed patients and predict treatment outcomes. This article (1) presents a background on depression, imaging, and machine learning methodologies; (2) reviews methodologies of past studies that have used imaging and machine learning to study depression; and (3) suggests directions for future depression-related studies.

  5. On Electro Discharge Machining of Inconel 718 with Hollow Tool

    Science.gov (United States)

    Rajesha, S.; Sharma, A. K.; Kumar, Pradeep

    2012-06-01

    Inconel 718 is a nickel-based alloy designed for high yield, tensile, and creep-rupture properties. This alloy has been widely used in jet engines and high-speed airframe parts in aeronautic application. In this study, electric discharge machining (EDM) process was used for machining commercially available Inconel 718. A copper electrode with 99.9% purity having tubular cross section was employed to machine holes of 20 mm height and 12 mm diameter on Inconel 718 workpieces. Experiments were planned using response surface methodology (RSM). Effects of five major process parameters—pulse current, duty factor, sensitivity control, gap control, and flushing pressure on the process responses—material removal rate (MRR) and surface roughness (SR) have been discussed. Mathematical models for MRR and SR have been developed using analysis of variance. Influences of process parameters on tool wear and tool geometry have been presented with the help of scanning electron microscope (SEM) micrographs. Analysis shows significant interaction effect of pulse current and duty factor on MRR yielding a wide range from 14.4 to 22.6 mm3/min, while pulse current remains the most contributing factor with approximate changes in the MRR and SR of 48 and 37%, respectively, corresponding to the extreme values considered. Interactions of duty factor and flushing pressure yield a minimum surface roughness of 6.2 μm. The thickness of the sputtered layer and the crack length were found to be functions of pulse current. The hollow tool gets worn out on both the outer and the inner edges owing to spark erosion as well as abrasion due to flow of debris.

  6. Simulation Process Analysis of Rubber Shock Absorber for Machine Tool

    Directory of Open Access Journals (Sweden)

    Chai Rong Xia

    2016-01-01

    Full Text Available The simulation on rubber shock absorber of machine tool was studied. The simple material model of rubber was obtained by through the finite element analysis software ABAQUS. The compression speed and the hardness of rubber material were considered to obtain the deformation law of rubber shock absorber. The location of fatigue were confirmed from the simulation results. The results shown that the fatigue position is distributed in the corner of shock absorber. The degree of deformation is increased with increasing of compress speed, and the hardness of rubber material is proportional to deformation.

  7. Error Model and Accuracy Calibration of 5-Axis Machine Tool

    Directory of Open Access Journals (Sweden)

    Fangyu Pan

    2013-08-01

    Full Text Available To improve the machining precision and reduce the geometric errors for 5-axis machinetool, error model and calibration are presented in this paper. Error model is realized by the theory of multi-body system and characteristic matrixes, which can establish the relationship between the cutting tool and the workpiece in theory. The accuracy calibration was difficult to achieve, but by a laser approach-laser interferometer and laser tracker, the errors can be displayed accurately which is benefit for later compensation.

  8. Reducing maintenance costs in agreement with CNC machine tools reliability

    Science.gov (United States)

    Ungureanu, A. L.; Stan, G.; Butunoi, P. A.

    2016-08-01

    Aligning maintenance strategy with reliability is a challenge due to the need to find an optimal balance between them. Because the various methods described in the relevant literature involve laborious calculations or use of software that can be costly, this paper proposes a method that is easier to implement on CNC machine tools. The new method, called the Consequence of Failure Analysis (CFA) is based on technical and economic optimization, aimed at obtaining a level of required performance with minimum investment and maintenance costs.

  9. Dimensional Synthesis Design of Novel Parallel Machine Tool

    Institute of Scientific and Technical Information of China (English)

    汪劲松; 唐晓强; 段广洪; 尹文生

    2002-01-01

    This paper presents dimensional synthesis design theory for a novel planar 3-DOF (degrees of freedom) parallel machine tool. Closed-form solutions are developed for both the inverse and direct kinematics. The formulation of the dexterity and the definitions of the theoretical workspace and the valid workspace are used to analyze the effects of the design parameters on the dexterity and workspace. The analysis results are used to propose an approach to satisfy the platform motion requirement while realizing orientation capability, dexterity and valid workspace. A design example is given to illustrate the effectiveness of this approach.

  10. Prediction of stroke thrombolysis outcome using CT brain machine learning

    Directory of Open Access Journals (Sweden)

    Paul Bentley

    2014-01-01

    Full Text Available A critical decision-step in the emergency treatment of ischemic stroke is whether or not to administer thrombolysis — a treatment that can result in good recovery, or deterioration due to symptomatic intracranial haemorrhage (SICH. Certain imaging features based upon early computerized tomography (CT, in combination with clinical variables, have been found to predict SICH, albeit with modest accuracy. In this proof-of-concept study, we determine whether machine learning of CT images can predict which patients receiving tPA will develop SICH as opposed to showing clinical improvement with no haemorrhage. Clinical records and CT brains of 116 acute ischemic stroke patients treated with intravenous thrombolysis were collected retrospectively (including 16 who developed SICH. The sample was split into training (n = 106 and test sets (n = 10, repeatedly for 1760 different combinations. CT brain images acted as inputs into a support vector machine (SVM, along with clinical severity. Performance of the SVM was compared with established prognostication tools (SEDAN and HAT scores; original, or after adaptation to our cohort. Predictive performance, assessed as area under receiver-operating-characteristic curve (AUC, of the SVM (0.744 compared favourably with that of prognostic scores (original and adapted versions: 0.626–0.720; p < 0.01. The SVM also identified 9 out of 16 SICHs, as opposed to 1–5 using prognostic scores, assuming a 10% SICH frequency (p < 0.001. In summary, machine learning methods applied to acute stroke CT images offer automation, and potentially improved performance, for prediction of SICH following thrombolysis. Larger-scale cohorts, and incorporation of advanced imaging, should be tested with such methods.

  11. A review of designing machine tool for leanness

    Indian Academy of Sciences (India)

    Anil Gupta; T K Kundra

    2012-04-01

    As an ideology, Leanness is not a new concept but still researchers strive for developing new methods to reduce almost all kinds of identified wastages at almost every stage and in every activity — right from design till delivery of final product to the end-customer. Newly developed manufacturing ideologies, paradigms and systems are always critically examined from the point of view of leanness. In other words, leanness is becoming an important evaluation tool to compare the recently developed/pioneered approaches. There has been a gradual evolution of the leanness over the years from the shop floor level of a manufacturing (automobile) organization to almost every operational and management aspect now. The Leanness has undergone and still is undergoing a process of continuous and never-ending evolution due to its inherently built dynamic concept of continuous improvement. Although in the literature a lot of work has been reported to the application of lean tools, principles, theories and methodologies to production systems, but a very few is evident in the area of Lean design process of a product and machine tool. For this reason an attempt is being made here to focus a significant proportion of this paper on evolutionary aspect of leanness from manufacturing to design stage. Also, this paper reviews the concepts and practices being followed till date by the industrialists, researchers and academicians in applying lean tools and techniques in the design of product and machine tools along with the methods to measure the lean improvements in the systems.

  12. Toward Automating HIV Identification: Machine Learning for Rapid Identification of HIV-Related Social Media Data.

    Science.gov (United States)

    Young, Sean D; Yu, Wenchao; Wang, Wei

    2017-02-01

    "Social big data" from technologies such as social media, wearable devices, and online searches continue to grow and can be used as tools for HIV research. Although researchers can uncover patterns and insights associated with HIV trends and transmission, the review process is time consuming and resource intensive. Machine learning methods derived from computer science might be used to assist HIV domain experts by learning how to rapidly and accurately identify patterns associated with HIV from a large set of social data. Using an existing social media data set that was associated with HIV and coded by an HIV domain expert, we tested whether 4 commonly used machine learning methods could learn the patterns associated with HIV risk behavior. We used the 10-fold cross-validation method to examine the speed and accuracy of these models in applying that knowledge to detect HIV content in social media data. Logistic regression and random forest resulted in the highest accuracy in detecting HIV-related social data (85.3%), whereas the Ridge Regression Classifier resulted in the lowest accuracy. Logistic regression yielded the fastest processing time (16.98 seconds). Machine learning can enable social big data to become a new and important tool in HIV research, helping to create a new field of "digital HIV epidemiology." If a domain expert can identify patterns in social data associated with HIV risk or HIV transmission, machine learning models could quickly and accurately learn those associations and identify potential HIV patterns in large social data sets.

  13. THE CONFORMITY OF MACHINE TOOLS WITH RESPECT TO EUROPEAN SAFETY STANDARDS

    CERN Multimedia

    TIS/TE

    2001-01-01

    European regulations require that all motorized machine tools conform to the latest safety standards by the end of the year 2000. CERN must follow these regulations and has already modified most of its machine tools accordingly. However, there is still a small number of machine tools which have not yet been modified as required. These machines should not be used until they are brought up to the required safety standards, failing which the machines should be discarded. One can recognise which machine tools conform with the latest standards by the indication 'CS' on the identification plate of the machine, see foto below. In cases of doubt about the status of a machine tool you should contact K. Altherr/EST or C. Margaroli/TIS for advice.

  14. THE CONFORMITY OF MACHINE TOOLS WITH RESPECT TO EUROPEAN SAFETY STANDARDS

    CERN Multimedia

    TIS/TE

    2000-01-01

    European regulations require that all motorized machine tools conform to the latest safety standards by the end of the year 2000. CERN must follow these regulations and has already modified most of its machine tools accordingly. However, there is still a small number of machine tools which have not yet been modified as required. These machines should not be used until they are brought up to the required safety standards, failing which the machines should be discarded. One can recognise which machine tools conform with the latest standards by the indication 'CS' on the identification plate of the machine, see foto below. In cases of doubt about the status of a machine tool you should contact K. Altherr/EST or C. Margaroli/TIS for advice.

  15. Predicting Increased Blood Pressure Using Machine Learning

    Science.gov (United States)

    Golino, Hudson Fernandes; Amaral, Liliany Souza de Brito; Duarte, Stenio Fernando Pimentel; Soares, Telma de Jesus; dos Reis, Luciana Araujo

    2014-01-01

    The present study investigates the prediction of increased blood pressure by body mass index (BMI), waist (WC) and hip circumference (HC), and waist hip ratio (WHR) using a machine learning technique named classification tree. Data were collected from 400 college students (56.3% women) from 16 to 63 years old. Fifteen trees were calculated in the training group for each sex, using different numbers and combinations of predictors. The result shows that for women BMI, WC, and WHR are the combination that produces the best prediction, since it has the lowest deviance (87.42), misclassification (.19), and the higher pseudo R2 (.43). This model presented a sensitivity of 80.86% and specificity of 81.22% in the training set and, respectively, 45.65% and 65.15% in the test sample. For men BMI, WC, HC, and WHC showed the best prediction with the lowest deviance (57.25), misclassification (.16), and the higher pseudo R2 (.46). This model had a sensitivity of 72% and specificity of 86.25% in the training set and, respectively, 58.38% and 69.70% in the test set. Finally, the result from the classification tree analysis was compared with traditional logistic regression, indicating that the former outperformed the latter in terms of predictive power. PMID:24669313

  16. Optimal interference code based on machine learning

    Science.gov (United States)

    Qian, Ye; Chen, Qian; Hu, Xiaobo; Cao, Ercong; Qian, Weixian; Gu, Guohua

    2016-10-01

    In this paper, we analyze the characteristics of pseudo-random code, by the case of m sequence. Depending on the description of coding theory, we introduce the jamming methods. We simulate the interference effect or probability model by the means of MATLAB to consolidate. In accordance with the length of decoding time the adversary spends, we find out the optimal formula and optimal coefficients based on machine learning, then we get the new optimal interference code. First, when it comes to the phase of recognition, this study judges the effect of interference by the way of simulating the length of time over the decoding period of laser seeker. Then, we use laser active deception jamming simulate interference process in the tracking phase in the next block. In this study we choose the method of laser active deception jamming. In order to improve the performance of the interference, this paper simulates the model by MATLAB software. We find out the least number of pulse intervals which must be received, then we can make the conclusion that the precise interval number of the laser pointer for m sequence encoding. In order to find the shortest space, we make the choice of the greatest common divisor method. Then, combining with the coding regularity that has been found before, we restore pulse interval of pseudo-random code, which has been already received. Finally, we can control the time period of laser interference, get the optimal interference code, and also increase the probability of interference as well.

  17. Image Segmentation for Connectomics Using Machine Learning

    Energy Technology Data Exchange (ETDEWEB)

    Tasdizen, Tolga; Seyedhosseini, Mojtaba; Liu, TIng; Jones, Cory; Jurrus, Elizabeth R.

    2014-12-01

    Reconstruction of neural circuits at the microscopic scale of individual neurons and synapses, also known as connectomics, is an important challenge for neuroscience. While an important motivation of connectomics is providing anatomical ground truth for neural circuit models, the ability to decipher neural wiring maps at the individual cell level is also important in studies of many neurodegenerative diseases. Reconstruction of a neural circuit at the individual neuron level requires the use of electron microscopy images due to their extremely high resolution. Computational challenges include pixel-by-pixel annotation of these images into classes such as cell membrane, mitochondria and synaptic vesicles and the segmentation of individual neurons. State-of-the-art image analysis solutions are still far from the accuracy and robustness of human vision and biologists are still limited to studying small neural circuits using mostly manual analysis. In this chapter, we describe our image analysis pipeline that makes use of novel supervised machine learning techniques to tackle this problem.

  18. Predicting Increased Blood Pressure Using Machine Learning

    Directory of Open Access Journals (Sweden)

    Hudson Fernandes Golino

    2014-01-01

    Full Text Available The present study investigates the prediction of increased blood pressure by body mass index (BMI, waist (WC and hip circumference (HC, and waist hip ratio (WHR using a machine learning technique named classification tree. Data were collected from 400 college students (56.3% women from 16 to 63 years old. Fifteen trees were calculated in the training group for each sex, using different numbers and combinations of predictors. The result shows that for women BMI, WC, and WHR are the combination that produces the best prediction, since it has the lowest deviance (87.42, misclassification (.19, and the higher pseudo R2 (.43. This model presented a sensitivity of 80.86% and specificity of 81.22% in the training set and, respectively, 45.65% and 65.15% in the test sample. For men BMI, WC, HC, and WHC showed the best prediction with the lowest deviance (57.25, misclassification (.16, and the higher pseudo R2 (.46. This model had a sensitivity of 72% and specificity of 86.25% in the training set and, respectively, 58.38% and 69.70% in the test set. Finally, the result from the classification tree analysis was compared with traditional logistic regression, indicating that the former outperformed the latter in terms of predictive power.

  19. Classification of Electrocardiogram Signals With Extreme Learning Machine and Relevance Vector Machine

    Directory of Open Access Journals (Sweden)

    S. Karpagachelvi

    2011-01-01

    Full Text Available The ECG is one of the most effective diagnostic tools to detect cardiac diseases. It is a method to measure and record different electrical potentials of the heart. The electrical potential generated by electrical activity in cardiac tissue is measured on the surface of the human body. Current flow, in the form of ions, signals contraction of cardiac muscle fibers leading to the heart's pumping action. This ECG can be classified as normal and abnormal signals. In this paper, a thorough experimental study was conducted to show the superiority of the generalization capability of the Relevance Vector Machine (RVM compared with Extreme Learning Machine (ELM approach in the automatic classification of ECG beats. The generalization performance of the ELM classifier has not achieved the nearest maximum accuracy of ECG signal classsification. To achieve the maximum accuracy the RVM classifier design by searching for the best value of the parameters that tune its discriminant function, and upstream by looking for the best subset of features that feed the classifier. The experiments were conducted on the ECG data from the Massachusetts Institute of Technology-Beth Israel Hospital (MIT- BIH arrhythmia database to classify five kinds of abnormal waveforms and normal beats. In particular, the sensitivity of the RVM classifier is tested and that is compared with ELM. Both the approaches are compared by giving raw input data and preprocessed data. The obtained results clearly confirm the superiority of the RVM approach when compared to traditional classifiers.

  20. METAPHOR: Probability density estimation for machine learning based photometric redshifts

    Science.gov (United States)

    Amaro, V.; Cavuoti, S.; Brescia, M.; Vellucci, C.; Tortora, C.; Longo, G.

    2017-06-01

    We present METAPHOR (Machine-learning Estimation Tool for Accurate PHOtometric Redshifts), a method able to provide a reliable PDF for photometric galaxy redshifts estimated through empirical techniques. METAPHOR is a modular workflow, mainly based on the MLPQNA neural network as internal engine to derive photometric galaxy redshifts, but giving the possibility to easily replace MLPQNA with any other method to predict photo-z's and their PDF. We present here the results about a validation test of the workflow on the galaxies from SDSS-DR9, showing also the universality of the method by replacing MLPQNA with KNN and Random Forest models. The validation test include also a comparison with the PDF's derived from a traditional SED template fitting method (Le Phare).

  1. Alignment of Custom Standards by Machine Learning Algorithms

    Directory of Open Access Journals (Sweden)

    Adela Sirbu

    2010-09-01

    Full Text Available Building an efficient model for automatic alignment of terminologies would bring a significant improvement to the information retrieval process. We have developed and compared two machine learning based algorithms whose aim is to align 2 custom standards built on a 3 level taxonomy, using kNN and SVM classifiers that work on a vector representation consisting of several similarity measures. The weights utilized by the kNN were optimized with an evolutionary algorithm, while the SVM classifier's hyper-parameters were optimized with a grid search algorithm. The database used for train was semi automatically obtained by using the Coma++ tool. The performance of our aligners is shown by the results obtained on the test set.

  2. Acceleration of saddle-point searches with machine learning.

    Science.gov (United States)

    Peterson, Andrew A

    2016-08-21

    In atomistic simulations, the location of the saddle point on the potential-energy surface (PES) gives important information on transitions between local minima, for example, via transition-state theory. However, the search for saddle points often involves hundreds or thousands of ab initio force calls, which are typically all done at full accuracy. This results in the vast majority of the computational effort being spent calculating the electronic structure of states not important to the researcher, and very little time performing the calculation of the saddle point state itself. In this work, we describe how machine learning (ML) can reduce the number of intermediate ab initio calculations needed to locate saddle points. Since machine-learning models can learn from, and thus mimic, atomistic simulations, the saddle-point search can be conducted rapidly in the machine-learning representation. The saddle-point prediction can then be verified by an ab initio calculation; if it is incorrect, this strategically has identified regions of the PES where the machine-learning representation has insufficient training data. When these training data are used to improve the machine-learning model, the estimates greatly improve. This approach can be systematized, and in two simple example problems we demonstrate a dramatic reduction in the number of ab initio force calls. We expect that this approach and future refinements will greatly accelerate searches for saddle points, as well as other searches on the potential energy surface, as machine-learning methods see greater adoption by the atomistics community.

  3. Acceleration of saddle-point searches with machine learning

    Science.gov (United States)

    Peterson, Andrew A.

    2016-08-01

    In atomistic simulations, the location of the saddle point on the potential-energy surface (PES) gives important information on transitions between local minima, for example, via transition-state theory. However, the search for saddle points often involves hundreds or thousands of ab initio force calls, which are typically all done at full accuracy. This results in the vast majority of the computational effort being spent calculating the electronic structure of states not important to the researcher, and very little time performing the calculation of the saddle point state itself. In this work, we describe how machine learning (ML) can reduce the number of intermediate ab initio calculations needed to locate saddle points. Since machine-learning models can learn from, and thus mimic, atomistic simulations, the saddle-point search can be conducted rapidly in the machine-learning representation. The saddle-point prediction can then be verified by an ab initio calculation; if it is incorrect, this strategically has identified regions of the PES where the machine-learning representation has insufficient training data. When these training data are used to improve the machine-learning model, the estimates greatly improve. This approach can be systematized, and in two simple example problems we demonstrate a dramatic reduction in the number of ab initio force calls. We expect that this approach and future refinements will greatly accelerate searches for saddle points, as well as other searches on the potential energy surface, as machine-learning methods see greater adoption by the atomistics community.

  4. Stability analysis of machine tool spindle under uncertainty

    Directory of Open Access Journals (Sweden)

    Wei Dou

    2016-05-01

    Full Text Available Chatter is a harmful machining vibration that occurs between the workpiece and the cutting tool, usually resulting in irregular flaw streaks on the finished surface and severe tool wear. Stability lobe diagrams could predict chatter by providing graphical representations of the stable combinations of the axial depth of the cut and spindle speed. In this article, the analytical model of a spindle system is constructed, including a Timoshenko beam rotating shaft model and double sets of angular contact ball bearings with 5 degrees of freedom. Then, the stability lobe diagram of the model is developed according to its dynamic properties. The Monte Carlo method is applied to analyse the bearing preload influence on the system stability with uncertainty taken into account.

  5. A Protein Classification Benchmark collection for machine learning

    NARCIS (Netherlands)

    Sonego, P.; Pacurar, M.; Dhir, S.; Kertész-Farkas, A.; Kocsor, A.; Gáspári, Z.; Leunissen, J.A.M.; Pongor, S.

    2007-01-01

    Protein classification by machine learning algorithms is now widely used in structural and functional annotation of proteins. The Protein Classification Benchmark collection (http://hydra.icgeb.trieste.it/benchmark) was created in order to provide standard datasets on which the performance of machin

  6. Machine Learning and Software Quality Prediction: As an Expert System

    Directory of Open Access Journals (Sweden)

    Ekbal A. Rashid

    2014-04-01

    Full Text Available To improve the software quality the number of errors from the software must be removed. The research paper presents a study towards machine learning and software quality prediction as an expert system. The purpose of this paper is to apply the machine learning approaches, such as case-based reasoning, to predict software quality. The main objective of this research is to minimize software costs. Predict the error in software module correctly and use the results in future estimation. The novel idea behind this system is that Knowledge base (KBS building is an important task in CBR and the knowledge base can be built based on world new problems along with world new solutions. Second, reducing the maintenance cost by removing the duplicate record set from the KBS. Third, error prediction with the help of similarity functions. In this research four similarity functions have been used and these are Euclidean, Manhattan, Canberra, and Exponential. We feel that case-based models are particularly useful when it is difficult to define actual rules about a problem domain. For this purpose we have developed a case-based reasoning model and have validated it upon student data. It was observed that, Euclidean and Exponential both are good for error calculation in comparison to Manhattan and Canberra after performing five experiments. In order to obtain a result we have used indigenous tool. For finding the mean and standard deviation, SPSS version 16 and for generating graphs MATLAB 7.10.0 version have been used as an analyzing tool.

  7. Probabilistic models and machine learning in structural bioinformatics

    DEFF Research Database (Denmark)

    Hamelryck, Thomas

    2009-01-01

    . Recently, probabilistic models and machine learning methods based on Bayesian principles are providing efficient and rigorous solutions to challenging problems that were long regarded as intractable. In this review, I will highlight some important recent developments in the prediction, analysis...

  8. Parameter Identifiability in Statistical Machine Learning: A Review.

    Science.gov (United States)

    Ran, Zhi-Yong; Hu, Bao-Gang

    2017-05-01

    This review examines the relevance of parameter identifiability for statistical models used in machine learning. In addition to defining main concepts, we address several issues of identifiability closely related to machine learning, showing the advantages and disadvantages of state-of-the-art research and demonstrating recent progress. First, we review criteria for determining the parameter structure of models from the literature. This has three related issues: parameter identifiability, parameter redundancy, and reparameterization. Second, we review the deep influence of identifiability on various aspects of machine learning from theoretical and application viewpoints. In addition to illustrating the utility and influence of identifiability, we emphasize the interplay among identifiability theory, machine learning, mathematical statistics, information theory, optimization theory, information geometry, Riemann geometry, symbolic computation, Bayesian inference, algebraic geometry, and others. Finally, we present a new perspective together with the associated challenges.

  9. Machine Learning Strategy for Accelerated Design of Polymer Dielectrics

    National Research Council Canada - National Science Library

    Mannodi-Kanakkithodi, Arun; Pilania, Ghanshyam; Huan, Tran Doan; Lookman, Turab; Ramprasad, Rampi

    2016-01-01

    .... The polymers are 'fingerprinted' as simple, easily attainable numerical representations, which are mapped to the properties of interest using a machine learning algorithm to develop an on-demand...

  10. Scaling Datalog for Machine Learning on Big Data

    CERN Document Server

    Bu, Yingyi; Carey, Michael J; Rosen, Joshua; Polyzotis, Neoklis; Condie, Tyson; Weimer, Markus; Ramakrishnan, Raghu

    2012-01-01

    In this paper, we present the case for a declarative foundation for data-intensive machine learning systems. Instead of creating a new system for each specific flavor of machine learning task, or hardcoding new optimizations, we argue for the use of recursive queries to program a variety of machine learning systems. By taking this approach, database query optimization techniques can be utilized to identify effective execution plans, and the resulting runtime plans can be executed on a single unified data-parallel query processing engine. As a proof of concept, we consider two programming models--Pregel and Iterative Map-Reduce-Update---from the machine learning domain, and show how they can be captured in Datalog, tuned for a specific task, and then compiled into an optimized physical plan. Experiments performed on a large computing cluster with real data demonstrate that this declarative approach can provide very good performance while offering both increased generality and programming ease.

  11. A Machine Learning System for Recognizing Subclasses (Demo)

    Energy Technology Data Exchange (ETDEWEB)

    Vatsavai, Raju [ORNL

    2012-01-01

    Thematic information extraction from remote sensing images is a complex task. In this demonstration, we present *Miner machine learning system. In particular, we demonstrate an advanced subclass recognition algorithm that is specifically designed to extract finer classes from aggregate classes.

  12. Reduced multiple empirical kernel learning machine.

    Science.gov (United States)

    Wang, Zhe; Lu, MingZhe; Gao, Daqi

    2015-02-01

    Multiple kernel learning (MKL) is demonstrated to be flexible and effective in depicting heterogeneous data sources since MKL can introduce multiple kernels rather than a single fixed kernel into applications. However, MKL would get a high time and space complexity in contrast to single kernel learning, which is not expected in real-world applications. Meanwhile, it is known that the kernel mapping ways of MKL generally have two forms including implicit kernel mapping and empirical kernel mapping (EKM), where the latter is less attracted. In this paper, we focus on the MKL with the EKM, and propose a reduced multiple empirical kernel learning machine named RMEKLM for short. To the best of our knowledge, it is the first to reduce both time and space complexity of the MKL with EKM. Different from the existing MKL, the proposed RMEKLM adopts the Gauss Elimination technique to extract a set of feature vectors, which is validated that doing so does not lose much information of the original feature space. Then RMEKLM adopts the extracted feature vectors to span a reduced orthonormal subspace of the feature space, which is visualized in terms of the geometry structure. It can be demonstrated that the spanned subspace is isomorphic to the original feature space, which means that the dot product of two vectors in the original feature space is equal to that of the two corresponding vectors in the generated orthonormal subspace. More importantly, the proposed RMEKLM brings a simpler computation and meanwhile needs a less storage space, especially in the processing of testing. Finally, the experimental results show that RMEKLM owns a much efficient and effective performance in terms of both complexity and classification. The contributions of this paper can be given as follows: (1) by mapping the input space into an orthonormal subspace, the geometry of the generated subspace is visualized; (2) this paper first reduces both the time and space complexity of the EKM-based MKL; (3

  13. Machine learning techniques applied to system characterization and equalization

    DEFF Research Database (Denmark)

    Zibar, Darko; Thrane, Jakob; Wass, Jesper

    2016-01-01

    Linear signal processing algorithms are effective in combating linear fibre channel impairments. We demonstrate the ability of machine learning algorithms to combat nonlinear fibre channel impairments and perform parameter extraction from directly detected signals.......Linear signal processing algorithms are effective in combating linear fibre channel impairments. We demonstrate the ability of machine learning algorithms to combat nonlinear fibre channel impairments and perform parameter extraction from directly detected signals....

  14. Machine learning concepts in coherent optical communication systems

    DEFF Research Database (Denmark)

    Zibar, Darko; Schäffer, Christian G.

    2014-01-01

    Powerful statistical signal processing methods, used by the machine learning community, are addressed and linked to current problems in coherent optical communication. Bayesian filtering methods are presented and applied for nonlinear dynamic state tracking. © 2014 OSA.......Powerful statistical signal processing methods, used by the machine learning community, are addressed and linked to current problems in coherent optical communication. Bayesian filtering methods are presented and applied for nonlinear dynamic state tracking. © 2014 OSA....

  15. Double/Debiased/Neyman Machine Learning of Treatment Effects

    OpenAIRE

    Chernozhukov, Victor; Chetverikov, Denis; Demirer, Mert; Duflo, Esther; Hansen, Christian; Newey, Whitney

    2017-01-01

    Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, and Newey (2016) provide a generic double/de-biased machine learning (DML) approach for obtaining valid inferential statements about focal parameters, using Neyman-orthogonal scores and cross-fitting, in settings where nuisance parameters are estimated using a new generation of nonparametric fitting methods for high-dimensional data, called machine learning methods. In this note, we illustrate the application of this method in the context of ...

  16. Machine learning concepts in coherent optical communication systems

    DEFF Research Database (Denmark)

    Zibar, Darko; Schäffer, Christian G.

    2014-01-01

    Powerful statistical signal processing methods, used by the machine learning community, are addressed and linked to current problems in coherent optical communication. Bayesian filtering methods are presented and applied for nonlinear dynamic state tracking. © 2014 OSA.......Powerful statistical signal processing methods, used by the machine learning community, are addressed and linked to current problems in coherent optical communication. Bayesian filtering methods are presented and applied for nonlinear dynamic state tracking. © 2014 OSA....

  17. A machine learning-based automatic currency trading system

    OpenAIRE

    Brvar, Anže

    2012-01-01

    The main goal of this thesis was to develop an automated trading system for Forex trading, which would use machine learning methods and their prediction models for deciding about trading actions. A training data set was obtained from exchange rates and values of technical indicators, which describe conditions on currency market. We estimated selected machine learning algorithms and their parameters with validation with sampling. We have prepared a set of automated trading systems with various...

  18. Machinability of Green Powder Metallurgy Components: Part I. Characterization of the Influence of Tool Wear

    Science.gov (United States)

    Robert-Perron, Etienne; Blais, Carl; Pelletier, Sylvain; Thomas, Yannig

    2007-06-01

    The green machining process is an interesting approach for solving the mediocre machining behavior of high-performance powder metallurgy (PM) steels. This process appears as a promising method for extending tool life and reducing machining costs. Recent improvements in binder/lubricant technologies have led to high green strength systems that enable green machining. So far, tool wear has been considered negligible when characterizing the machinability of green PM specimens. This inaccurate assumption may lead to the selection of suboptimum cutting conditions. The first part of this study involves the optimization of the machining parameters to minimize the effects of tool wear on the machinability in turning of green PM components. The second part of our work compares the sintered mechanical properties of components machined in green state with other machined after sintering.

  19. Tool wear of a single-crystal diamond tool in nano-groove machining of a quartz glass plate

    Science.gov (United States)

    Yoshino, Masahiko; Nakajima, Satoshi; Terano, Motoki

    2015-12-01

    Tool wear characteristics of a diamond tool in ductile mode machining are presented in this paper. Nano-groove machining of a quartz glass plate was conducted to examine the tool wear rate of a single-crystal diamond tool. Effects of lubrication on the tool wear rate were also evaluated. A numerical simulation technique was developed to evaluate the tool temperature and normal stress acting on the wear surface. From the simulation results it was found that the tool temperature does not increase during the machining experiment. It is also demonstrated that tool wear is attributed to the abrasive wear mechanism, but the effect of the adhesion wear mechanism is minor in nano-groove machining. It is found that the tool wear rate is reduced by using water or kerosene as a lubricant.

  20. Simultaneous Scheduling of Jobs, AGVs and Tools Considering Tool Transfer Times in Multi Machine FMS By SOS Algorithm

    Science.gov (United States)

    Sivarami Reddy, N.; Ramamurthy, D. V., Dr.; Prahlada Rao, K., Dr.

    2017-08-01

    This article addresses simultaneous scheduling of machines, AGVs and tools where machines are allowed to share the tools considering transfer times of jobs and tools between machines, to generate best optimal sequences that minimize makespan in a multi-machine Flexible Manufacturing System (FMS). Performance of FMS is expected to improve by effective utilization of its resources, by proper integration and synchronization of their scheduling. Symbiotic Organisms Search (SOS) algorithm is a potent tool which is a better alternative for solving optimization problems like scheduling and proven itself. The proposed SOS algorithm is tested on 22 job sets with makespan as objective for scheduling of machines and tools where machines are allowed to share tools without considering transfer times of jobs and tools and the results are compared with the results of existing methods. The results show that the SOS has outperformed. The same SOS algorithm is used for simultaneous scheduling of machines, AGVs and tools where machines are allowed to share tools considering transfer times of jobs and tools to determine the best optimal sequences that minimize makespan.

  1. 76 FR 5832 - International Business Machines (IBM), Software Group Business Unit, Optim Data Studio Tools QA...

    Science.gov (United States)

    2011-02-02

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF LABOR Employment and Training Administration International Business Machines (IBM), Software Group Business Unit... at International Business Machines (IBM), Software Group Business Unit, Optim Data Studio Tools...

  2. Use of Machine Learning Classifiers and Sensor Data to Detect Neurological Deficit in Stroke Patients.

    Science.gov (United States)

    Park, Eunjeong; Chang, Hyuk-Jae; Nam, Hyo Suk

    2017-04-18

    The pronator drift test (PDT), a neurological examination, is widely used in clinics to measure motor weakness of stroke patients. The aim of this study was to develop a PDT tool with machine learning classifiers to detect stroke symptoms based on quantification of proximal arm weakness using inertial sensors and signal processing. We extracted features of drift and pronation from accelerometer signals of wearable devices on the inner wrists of 16 stroke patients and 10 healthy controls. Signal processing and feature selection approach were applied to discriminate PDT features used to classify stroke patients. A series of machine learning techniques, namely support vector machine (SVM), radial basis function network (RBFN), and random forest (RF), were implemented to discriminate stroke patients from controls with leave-one-out cross-validation. Signal processing by the PDT tool extracted a total of 12 PDT features from sensors. Feature selection abstracted the major attributes from the 12 PDT features to elucidate the dominant characteristics of proximal weakness of stroke patients using machine learning classification. Our proposed PDT classifiers had an area under the receiver operating characteristic curve (AUC) of .806 (SVM), .769 (RBFN), and .900 (RF) without feature selection, and feature selection improves the AUCs to .913 (SVM), .956 (RBFN), and .975 (RF), representing an average performance enhancement of 15.3%. Sensors and machine learning methods can reliably detect stroke signs and quantify proximal arm weakness. Our proposed solution will facilitate pervasive monitoring of stroke patients.

  3. Hydrological data assimilation using Extreme Learning Machines

    Science.gov (United States)

    Boucher, Marie-Amélie; Quilty, John; Adamowski, Jan

    2017-04-01

    Data assimilation refers to any process that allows for updating state variables in a model to represent reality more accurately than the initial (open loop) simulation. In hydrology, data assimilation is often a pre-requisite for forecasting. In practice, many operational agencies rely on "manual" data assimilation: perturbations are added manually to meteorological inputs or directly to state variables based on "expert knowledge" until the simulated streamflow matches the observed streamflow closely. The corrected state variables are then considered as representative of the "true", unknown, state of the watershed just before the forecasting period. However, manual data assimilation raises concerns, mainly regarding reproducibility and high reliance on "expert knowledge". For those reasons, automatic data assimilation methods have been proposed in the literature. Automatic data assimilation also allows for the assessment and reduction of state variable uncertainty, which is predominant for short-term streamflow forecasts (e.g. Thiboult et al. 2016). The goal of this project is to explore the potential of Extreme Learning Machines (ELM, Zang and Liu 2015) for data assimilation. ELMs are an emerging type of neural network that does not require iterative optimisation of their weights and biases and therefore are much faster to calibrate than typical feed-forward backpropagation neural networks. We explore ELM for updating state variables of the lumped conceptual hydrological model GR4J. The GR4J model has two state variables: the level of water in the production and routing reservoirs. Although these two variables are sufficient to describe the state of a snow-free watershed, they are modelling artifices that are not measurable. Consequently, their "true" values can only be verified indirectly through a comparison of simulated and observed streamflow and their values are highly uncertain. GR4J can also be coupled with the snow model CemaNeige, which adds two other

  4. The validation and assessment of machine learning: a game of prediction from high-dimensional data

    DEFF Research Database (Denmark)

    Pers, Tune Hannes; Albrechtsen, A; Holst, C

    2009-01-01

    In applied statistics, tools from machine learning are popular for analyzing complex and high-dimensional data. However, few theoretical results are available that could guide to the appropriate machine learning tool in a new application. Initial development of an overall strategy thus often...... implies that multiple methods are tested and compared on the same set of data. This is particularly difficult in situations that are prone to over-fitting where the number of subjects is low compared to the number of potential predictors. The article presents a game which provides some grounds...... the ideas, the game is applied to data from the Nugenob Study where the aim is to predict the fat oxidation capacity based on conventional factors and high-dimensional metabolomics data. Three players have chosen to use support vector machines, LASSO, and random forests, respectively....

  5. Generative Modeling for Machine Learning on the D-Wave

    Energy Technology Data Exchange (ETDEWEB)

    Thulasidasan, Sunil [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Information Sciences Group

    2016-11-15

    These are slides on Generative Modeling for Machine Learning on the D-Wave. The following topics are detailed: generative models; Boltzmann machines: a generative model; restricted Boltzmann machines; learning parameters: RBM training; practical ways to train RBM; D-Wave as a Boltzmann sampler; mapping RBM onto the D-Wave; Chimera restricted RBM; mapping binary RBM to Ising model; experiments; data; D-Wave effective temperature, parameters noise, etc.; experiments: contrastive divergence (CD) 1 step; after 50 steps of CD; after 100 steps of CD; D-Wave (experiments 1, 2, 3); D-Wave observations.

  6. Big Data Analysis Using Modern Statistical and Machine Learning Methods in Medicine

    OpenAIRE

    Yoo, Changwon; Ramirez, Luis; Liuzzi, Juan

    2014-01-01

    In this article we introduce modern statistical machine learning and bioinformatics approaches that have been used in learning statistical relationships from big data in medicine and behavioral science that typically include clinical, genomic (and proteomic) and environmental variables. Every year, data collected from biomedical and behavioral science is getting larger and more complicated. Thus, in medicine, we also need to be aware of this trend and understand the statistical tools that are...

  7. Metabolite identification and molecular fingerprint prediction through machine learning.

    Science.gov (United States)

    Heinonen, Markus; Shen, Huibin; Zamboni, Nicola; Rousu, Juho

    2012-09-15

    Metabolite identification from tandem mass spectra is an important problem in metabolomics, underpinning subsequent metabolic modelling and network analysis. Yet, currently this task requires matching the observed spectrum against a database of reference spectra originating from similar equipment and closely matching operating parameters, a condition that is rarely satisfied in public repositories. Furthermore, the computational support for identification of molecules not present in reference databases is lacking. Recent efforts in assembling large public mass spectral databases such as MassBank have opened the door for the development of a new genre of metabolite identification methods. We introduce a novel framework for prediction of molecular characteristics and identification of metabolites from tandem mass spectra using machine learning with the support vector machine. Our approach is to first predict a large set of molecular properties of the unknown metabolite from salient tandem mass spectral signals, and in the second step to use the predicted properties for matching against large molecule databases, such as PubChem. We demonstrate that several molecular properties can be predicted to high accuracy and that they are useful in de novo metabolite identification, where the reference database does not contain any spectra of the same molecule. An Matlab/Python package of the FingerID tool is freely available on the web at http://www.sourceforge.net/p/fingerid. markus.heinonen@cs.helsinki.fi.

  8. The Fuzzy Cluster Analysis in Identification of Key Temperatures in Machine Tool

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The thermal-induced error is a very important sour ce of machining errors of machine tools. To compensate the thermal-induced machin ing errors, a relationship model between the thermal field and deformations was needed. The relationship can be deduced by virtual of FEM (Finite Element Method ), ANN (Artificial Neural Network) or MRA (Multiple Regression Analysis). MR A is on the basis of a total understanding of the temperature distribution of th e machine tool. Although the more the temperatures measu...

  9. Estimating extinction using unsupervised machine learning

    Science.gov (United States)

    Meingast, Stefan; Lombardi, Marco; Alves, João

    2017-05-01

    Dust extinction is the most robust tracer of the gas distribution in the interstellar medium, but measuring extinction is limited by the systematic uncertainties involved in estimating the intrinsic colors to background stars. In this paper we present a new technique, Pnicer, that estimates intrinsic colors and extinction for individual stars using unsupervised machine learning algorithms. This new method aims to be free from any priors with respect to the column density and intrinsic color distribution. It is applicable to any combination of parameters and works in arbitrary numbers of dimensions. Furthermore, it is not restricted to color space. Extinction toward single sources is determined by fitting Gaussian mixture models along the extinction vector to (extinction-free) control field observations. In this way it becomes possible to describe the extinction for observed sources with probability densities, rather than a single value. Pnicer effectively eliminates known biases found in similar methods and outperforms them in cases of deep observational data where the number of background galaxies is significant, or when a large number of parameters is used to break degeneracies in the intrinsic color distributions. This new method remains computationally competitive, making it possible to correctly de-redden millions of sources within a matter of seconds. With the ever-increasing number of large-scale high-sensitivity imaging surveys, Pnicer offers a fast and reliable way to efficiently calculate extinction for arbitrary parameter combinations without prior information on source characteristics. The Pnicer software package also offers access to the well-established Nicer technique in a simple unified interface and is capable of building extinction maps including the Nicest correction for cloud substructure. Pnicer is offered to the community as an open-source software solution and is entirely written in Python.

  10. Machine learning methods for metabolic pathway prediction

    Directory of Open Access Journals (Sweden)

    Karp Peter D

    2010-01-01

    Full Text Available Abstract Background A key challenge in systems biology is the reconstruction of an organism's metabolic network from its genome sequence. One strategy for addressing this problem is to predict which metabolic pathways, from a reference database of known pathways, are present in the organism, based on the annotated genome of the organism. Results To quantitatively validate methods for pathway prediction, we developed a large "gold standard" dataset of 5,610 pathway instances known to be present or absent in curated metabolic pathway databases for six organisms. We defined a collection of 123 pathway features, whose information content we evaluated with respect to the gold standard. Feature data were used as input to an extensive collection of machine learning (ML methods, including naïve Bayes, decision trees, and logistic regression, together with feature selection and ensemble methods. We compared the ML methods to the previous PathoLogic algorithm for pathway prediction using the gold standard dataset. We found that ML-based prediction methods can match the performance of the PathoLogic algorithm. PathoLogic achieved an accuracy of 91% and an F-measure of 0.786. The ML-based prediction methods achieved accuracy as high as 91.2% and F-measure as high as 0.787. The ML-based methods output a probability for each predicted pathway, whereas PathoLogic does not, which provides more information to the user and facilitates filtering of predicted pathways. Conclusions ML methods for pathway prediction perform as well as existing methods, and have qualitative advantages in terms of extensibility, tunability, and explainability. More advanced prediction methods and/or more sophisticated input features may improve the performance of ML methods. However, pathway prediction performance appears to be limited largely by the ability to correctly match enzymes to the reactions they catalyze based on genome annotations.

  11. Pulsar Search Using Supervised Machine Learning

    Science.gov (United States)

    Ford, John M.

    2017-05-01

    Pulsars are rapidly rotating neutron stars which emit a strong beam of energy through mechanisms that are not entirely clear to physicists. These very dense stars are used by astrophysicists to study many basic physical phenomena, such as the behavior of plasmas in extremely dense environments, behavior of pulsar-black hole pairs, and tests of general relativity. Many of these tasks require a large ensemble of pulsars to provide enough statistical information to answer the scientific questions posed by physicists. In order to provide more pulsars to study, there are several large-scale pulsar surveys underway, which are generating a huge backlog of unprocessed data. Searching for pulsars is a very labor-intensive process, currently requiring skilled people to examine and interpret plots of data output by analysis programs. An automated system for screening the plots will speed up the search for pulsars by a very large factor. Research to date on using machine learning and pattern recognition has not yielded a completely satisfactory system, as systems with the desired near 100% recall have false positive rates that are higher than desired, causing more manual labor in the classification of pulsars. This work proposed to research, identify, propose and develop methods to overcome the barriers to building an improved classification system with a false positive rate of less than 1% and a recall of near 100% that will be useful for the current and next generation of large pulsar surveys. The results show that it is possible to generate classifiers that perform as needed from the available training data. While a false positive rate of 1% was not reached, recall of over 99% was achieved with a false positive rate of less than 2%. Methods of mitigating the imbalanced training and test data were explored and found to be highly effective in enhancing classification accuracy.

  12. Machine Learning Predictions of Flash Floods

    Science.gov (United States)

    Clark, R. A., III; Flamig, Z.; Gourley, J. J.; Hong, Y.

    2016-12-01

    This study concerns the development, assessment, and use of machine learning (ML) algorithms to automatically generate predictions of flash floods around the world from numerical weather prediction (NWP) output. Using an archive of NWP outputs from the Global Forecast System (GFS) model and a historical archive of reports of flash floods across the U.S. and Europe, we developed a set of ML models that output forecasts of the probability of a flash flood given a certain set of atmospheric conditions. Using these ML models, real-time global flash flood predictions from NWP data have been generated in research mode since February 2016. These ML models provide information about which atmospheric variables are most important in the flash flood prediction process. The raw ML predictions can be calibrated against historical events to generate reliable flash flood probabilities. The automatic system was tested in a research-to-operations testbed enviroment with National Weather Service forecasters. The ML models are quite successful at incorporating large amounts of information in a computationally-efficient manner and and result in reasonably skillful predictions. The system is largely successful at identifying flash floods resulting from synoptically-forced events, but struggles with isolated flash floods that arise as a result of weather systems largely unresolvable by the coarse resolution of a global NWP system. The results from this collection of studies suggest that automatic probabilistic predictions of flash floods are a plausible way forward in operational forecasting, but that future research could focus upon applying these methods to finer-scale NWP guidance, to NWP ensembles, and to forecast lead times beyond 24 hours.

  13. A review of supervised machine learning applied to ageing research.

    Science.gov (United States)

    Fabris, Fabio; Magalhães, João Pedro de; Freitas, Alex A

    2017-04-01

    Broadly speaking, supervised machine learning is the computational task of learning correlations between variables in annotated data (the training set), and using this information to create a predictive model capable of inferring annotations for new data, whose annotations are not known. Ageing is a complex process that affects nearly all animal species. This process can be studied at several levels of abstraction, in different organisms and with different objectives in mind. Not surprisingly, the diversity of the supervised machine learning algorithms applied to answer biological questions reflects the complexities of the underlying ageing processes being studied. Many works using supervised machine learning to study the ageing process have been recently published, so it is timely to review these works, to discuss their main findings and weaknesses. In summary, the main findings of the reviewed papers are: the link between specific types of DNA repair and ageing; ageing-related proteins tend to be highly connected and seem to play a central role in molecular pathways; ageing/longevity is linked with autophagy and apoptosis, nutrient receptor genes, and copper and iron ion transport. Additionally, several biomarkers of ageing were found by machine learning. Despite some interesting machine learning results, we also identified a weakness of current works on this topic: only one of the reviewed papers has corroborated the computational results of machine learning algorithms through wet-lab experiments. In conclusion, supervised machine learning has contributed to advance our knowledge and has provided novel insights on ageing, yet future work should have a greater emphasis in validating the predictions.

  14. Kernel Methods for Machine Learning with Life Science Applications

    DEFF Research Database (Denmark)

    Abrahamsen, Trine Julie

    Kernel methods refer to a family of widely used nonlinear algorithms for machine learning tasks like classification, regression, and feature extraction. By exploiting the so-called kernel trick straightforward extensions of classical linear algorithms are enabled as long as the data only appear...... models to kernel learning, and means for restoring the generalizability in both kernel Principal Component Analysis and the Support Vector Machine are proposed. Viability is proved on a wide range of benchmark machine learning data sets....... as innerproducts in the model formulation. This dissertation presents research on improving the performance of standard kernel methods like kernel Principal Component Analysis and the Support Vector Machine. Moreover, the goal of the thesis has been two-fold. The first part focuses on the use of kernel Principal...

  15. 2015 International Conference on Machine Learning and Signal Processing

    CERN Document Server

    Woo, Wai; Sulaiman, Hamzah; Othman, Mohd; Saat, Mohd

    2016-01-01

    This book presents important research findings and recent innovations in the field of machine learning and signal processing. A wide range of topics relating to machine learning and signal processing techniques and their applications are addressed in order to provide both researchers and practitioners with a valuable resource documenting the latest advances and trends. The book comprises a careful selection of the papers submitted to the 2015 International Conference on Machine Learning and Signal Processing (MALSIP 2015), which was held on 15–17 December 2015 in Ho Chi Minh City, Vietnam with the aim of offering researchers, academicians, and practitioners an ideal opportunity to disseminate their findings and achievements. All of the included contributions were chosen by expert peer reviewers from across the world on the basis of their interest to the community. In addition to presenting the latest in design, development, and research, the book provides access to numerous new algorithms for machine learni...

  16. Towards a Standard-based Domain-specific Platform to Solve Machine Learning-based Problems

    Directory of Open Access Journals (Sweden)

    Vicente García-Díaz

    2015-12-01

    Full Text Available Machine learning is one of the most important subfields of computer science and can be used to solve a variety of interesting artificial intelligence problems. There are different languages, framework and tools to define the data needed to solve machine learning-based problems. However, there is a great number of very diverse alternatives which makes it difficult the intercommunication, portability and re-usability of the definitions, designs or algorithms that any developer may create. In this paper, we take the first step towards a language and a development environment independent of the underlying technologies, allowing developers to design solutions to solve machine learning-based problems in a simple and fast way, automatically generating code for other technologies. That can be considered a transparent bridge among current technologies. We rely on Model-Driven Engineering approach, focusing on the creation of models to abstract the definition of artifacts from the underlying technologies.

  17. Prediction of antiepileptic drug treatment outcomes using machine learning

    Science.gov (United States)

    Colic, Sinisa; Wither, Robert G.; Lang, Min; Zhang, Liang; Eubanks, James H.; Bardakjian, Berj L.

    2017-02-01

    Objective. Antiepileptic drug (AED) treatments produce inconsistent outcomes, often necessitating patients to go through several drug trials until a successful treatment can be found. This study proposes the use of machine learning techniques to predict epilepsy treatment outcomes of commonly used AEDs. Approach. Machine learning algorithms were trained and evaluated using features obtained from intracranial electroencephalogram (iEEG) recordings of the epileptiform discharges observed in Mecp2-deficient mouse model of the Rett Syndrome. Previous work have linked the presence of cross-frequency coupling (I CFC) of the delta (2-5 Hz) rhythm with the fast ripple (400-600 Hz) rhythm in epileptiform discharges. Using the I CFC to label post-treatment outcomes we compared support vector machines (SVMs) and random forest (RF) machine learning classifiers for providing likelihood scores of successful treatment outcomes. Main results. (a) There was heterogeneity in AED treatment outcomes, (b) machine learning techniques could be used to rank the efficacy of AEDs by estimating likelihood scores for successful treatment outcome, (c) I CFC features yielded the most effective a priori identification of appropriate AED treatment, and (d) both classifiers performed comparably. Significance. Machine learning approaches yielded predictions of successful drug treatment outcomes which in turn could reduce the burdens of drug trials and lead to substantial improvements in patient quality of life.

  18. Identification of Kinematic Errors of Five-axis Machine Tool Trunnion Axis from Finished Test Piece

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ya; FU Jianzhong; CHEN Zichen

    2014-01-01

    Compared with the traditional non-cutting measurement, machining tests can more accurately reflect the kinematic errors of five-axis machine tools in the actual machining process for the users. However, measurement and calculation of the machining tests in the literature are quite difficult and time-consuming. A new method of the machining tests for the trunnion axis of five-axis machine tool is proposed. Firstly, a simple mathematical model of the cradle-type five-axis machine tool was established by optimizing the coordinate system settings based on robot kinematics. Then, the machining tests based on error-sensitive directions were proposed to identify the kinematic errors of the trunnion axis of cradle-type five-axis machine tool. By adopting the error-sensitive vectors in the matrix calculation, the functional relationship equations between the machining errors of the test piece in the error-sensitive directions and the kinematic errors of C-axis and A-axis of five-axis machine tool rotary table was established based on the model of the kinematic errors. According to our previous work, the kinematic errors of C-axis can be treated as the known quantities, and the kinematic errors of A-axis can be obtained from the equations. This method was tested in Mikron UCP600 vertical machining center. The machining errors in the error-sensitive directions can be obtained by CMM inspection from the finished test piece to identify the kinematic errors of five-axis machine tool trunnion axis. Experimental results demonstrated that the proposed method can reduce the complexity, cost, and the time consumed substantially, and has a wider applicability. This paper proposes a new method of the machining tests for the trunnion axis of five-axis machine tool.

  19. Prospects for chaos control of machine tool chatter

    Energy Technology Data Exchange (ETDEWEB)

    Hively, L.M.; Protopopescu, V.A.; Clapp, N.E.; Daw, C.S.

    1998-06-01

    The authors analyze the nonlinear tool-part dynamics during turning of stainless steel in the nonchatter and chatter regimes, toward the ultimate objective of chatter control. Their previous work analyzed tool acceleration in three dimensions at four spindle speeds. In the present work, the authors analyze the machining power and obtain nonlinear measures of this power. They also calculate the cycle-to-cycle energy for the turning process. Return maps for power cycle times do not reveal fixed points or (un)stable manifolds. Energy return maps do display stable and unstable directions (manifolds) to and from an unstable period-1 orbit, which is the dominant periodicity. Both nonchatter and chatter dynamics have the unusual feature of arriving at the unstable period-1 fixed point and departing from that fixed point of the energy return map in a single step. This unusual feature makes chaos maintenance, based on the well-known Ott-Grebogi-Yorke scheme, a very difficult option for chatter suppression. Alternative control schemes, such as synchronization of the tool-part motion to prerecorded nonchatter dynamics or dynamically damping the period-1 motion, are briefly discussed.

  20. Modeling of tool path for the CNC sheet cutting machines

    Science.gov (United States)

    Petunin, Aleksandr A.

    2015-11-01

    In the paper the problem of tool path optimization for CNC (Computer Numerical Control) cutting machines is considered. The classification of the cutting techniques is offered. We also propose a new classification of toll path problems. The tasks of cost minimization and time minimization for standard cutting technique (Continuous Cutting Problem, CCP) and for one of non-standard cutting techniques (Segment Continuous Cutting Problem, SCCP) are formalized. We show that the optimization tasks can be interpreted as discrete optimization problem (generalized travel salesman problem with additional constraints, GTSP). Formalization of some constraints for these tasks is described. For the solution GTSP we offer to use mathematical model of Prof. Chentsov based on concept of a megalopolis and dynamic programming.

  1. Small machine tools for small workpieces final report of the DFG priority program 1476

    CERN Document Server

    Sanders, Adam

    2017-01-01

    This contributed volume presents the research results of the program “Small machine tools for small work pieces” (SPP 1476), funded by the German Research Society (DFG). The book contains the final report of the priority program, presenting novel approached for size-adapted, reconfigurable micro machine tools. The target audience primarily comprises research experts and practitioners in the field of micro machine tools, but the book may also be beneficial for graduate students.

  2. Adaptive Active Control of Machine-Tool Vibration In a Lathe

    OpenAIRE

    Claesson, Ingvar; Håkansson, Lars

    1998-01-01

    In the turning operation the relative dynamic motion between cutting tool and workpiece, or vibration, is a frequent problem, which affects the result of the machining, and in particular, the surface finish. Tool life is also influenced by vibration. Noise in the working environment frequently occurs as a result of dynamic motion between the cutting tool and the workpiece. With proper machine design, i.e. improved stiffness of the machine structure, the problem of relative dynamic motion betw...

  3. Applications of Machine Learning in Cancer Prediction and Prognosis

    Directory of Open Access Journals (Sweden)

    Joseph A. Cruz

    2006-01-01

    Full Text Available Machine learning is a branch of artificial intelligence that employs a variety of statistical, probabilistic and optimization techniques that allows computers to “learn” from past examples and to detect hard-to-discern patterns from large, noisy or complex data sets. This capability is particularly well-suited to medical applications, especially those that depend on complex proteomic and genomic measurements. As a result, machine learning is frequently used in cancer diagnosis and detection. More recently machine learning has been applied to cancer prognosis and prediction. This latter approach is particularly interesting as it is part of a growing trend towards personalized, predictive medicine. In assembling this review we conducted a broad survey of the different types of machine learning methods being used, the types of data being integrated and the performance of these methods in cancer prediction and prognosis. A number of trends are noted, including a growing dependence on protein biomarkers and microarray data, a strong bias towards applications in prostate and breast cancer, and a heavy reliance on “older” technologies such artificial neural networks (ANNs instead of more recently developed or more easily interpretable machine learning methods. A number of published studies also appear to lack an appropriate level of validation or testing. Among the better designed and validated studies it is clear that machine learning methods can be used to substantially (15-25% improve the accuracy of predicting cancer susceptibility, recurrence and mortality. At a more fundamental level, it is also evident that machine learning is also helping to improve our basic understanding of cancer development and progression.

  4. Uncertainty-Aware Estimation of Population Abundance using Machine Learning

    NARCIS (Netherlands)

    Boom, B.J.; Beauxis-Aussalet, E.M.A.L.; Hardman, L.; Fisher, R.B.

    2015-01-01

    Machine Learning is widely used for mining collections, such as images, sounds, or texts, by classifying their elements into categories. Automatic classication based on supervised learning requires groundtruth datasets for modeling the elements to classify, and for testing the quality of the classic

  5. Comparison of Machine Learning Techniques for Target Detection

    NARCIS (Netherlands)

    Vink, J.P.; Haan, G. de

    2013-01-01

    This paper focuses on machine learning techniques for real-time detection. Although many supervised learning techniques have been described in the literature, no technique always performs best. Several comparative studies are available, but have not always been performedcarefully, leading to invalid

  6. Comparison of Machine Learning Techniques for Target Detection

    NARCIS (Netherlands)

    Vink, J.P.; Haan, G. de

    2013-01-01

    This paper focuses on machine learning techniques for real-time detection. Although many supervised learning techniques have been described in the literature, no technique always performs best. Several comparative studies are available, but have not always been performedcarefully, leading to invalid

  7. Distribution Learning in Evolutionary Strategies and Restricted Boltzmann Machines

    DEFF Research Database (Denmark)

    Krause, Oswin

    The thesis is concerned with learning distributions in the two settings of Evolutionary Strategies (ESs) and Restricted Boltzmann Machines (RBMs). In both cases, the distributions are learned from samples, albeit with different goals. Evolutionary Strategies are concerned with finding an optimum ...

  8. Large-scale Machine Learning in High-dimensional Datasets

    DEFF Research Database (Denmark)

    Hansen, Toke Jansen

    Over the last few decades computers have gotten to play an essential role in our daily life, and data is now being collected in various domains at a faster pace than ever before. This dissertation presents research advances in four machine learning fields that all relate to the challenges imposed...... are better at modeling local heterogeneities. In the field of machine learning for neuroimaging, we introduce learning protocols for real-time functional Magnetic Resonance Imaging (fMRI) that allow for dynamic intervention in the human decision process. Specifically, the model exploits the structure of f...

  9. Machine learning in Python essential techniques for predictive analysis

    CERN Document Server

    Bowles, Michael

    2015-01-01

    Learn a simpler and more effective way to analyze data and predict outcomes with Python Machine Learning in Python shows you how to successfully analyze data using only two core machine learning algorithms, and how to apply them using Python. By focusing on two algorithm families that effectively predict outcomes, this book is able to provide full descriptions of the mechanisms at work, and the examples that illustrate the machinery with specific, hackable code. The algorithms are explained in simple terms with no complex math and applied using Python, with guidance on algorithm selection, d

  10. Amplifying human ability through autonomics and machine learning in IMPACT

    Science.gov (United States)

    Dzieciuch, Iryna; Reeder, John; Gutzwiller, Robert; Gustafson, Eric; Coronado, Braulio; Martinez, Luis; Croft, Bryan; Lange, Douglas S.

    2017-05-01

    Amplifying human ability for controlling complex environments featuring autonomous units can be aided by learned models of human and system performance. In developing a command and control system that allows a small number of people to control a large number of autonomous teams, we employ an autonomics framework to manage the networks that represent mission plans and the networks that are composed of human controllers and their autonomous assistants. Machine learning allows us to build models of human and system performance useful for monitoring plans and managing human attention and task loads. Machine learning also aids in the development of tactics that human supervisors can successfully monitor through the command and control system.

  11. Less is more: regularization perspectives on large scale machine learning

    CERN Document Server

    CERN. Geneva

    2017-01-01

    Deep learning based techniques provide a possible solution at the expanse of theoretical guidance and, especially, of computational requirements. It is then a key challenge for large scale machine learning to devise approaches guaranteed to be accurate and yet computationally efficient. In this talk, we will consider a regularization perspectives on machine learning appealing to classical ideas in linear algebra and inverse problems to scale-up dramatically nonparametric methods such as kernel methods, often dismissed because of prohibitive costs. Our analysis derives optimal theoretical guarantees while providing experimental results at par or out-performing state of the art approaches.

  12. Conformal prediction for reliable machine learning theory, adaptations and applications

    CERN Document Server

    Balasubramanian, Vineeth; Vovk, Vladimir

    2014-01-01

    The conformal predictions framework is a recent development in machine learning that can associate a reliable measure of confidence with a prediction in any real-world pattern recognition application, including risk-sensitive applications such as medical diagnosis, face recognition, and financial risk prediction. Conformal Predictions for Reliable Machine Learning: Theory, Adaptations and Applications captures the basic theory of the framework, demonstrates how to apply it to real-world problems, and presents several adaptations, including active learning, change detection, and anomaly detecti

  13. A Machine Learning Perspective on Predictive Coding with PAQ

    CERN Document Server

    Knoll, Byron

    2011-01-01

    PAQ8 is an open source lossless data compression algorithm that currently achieves the best compression rates on many benchmarks. This report presents a detailed description of PAQ8 from a statistical machine learning perspective. It shows that it is possible to understand some of the modules of PAQ8 and use this understanding to improve the method. However, intuitive statistical explanations of the behavior of other modules remain elusive. We hope the description in this report will be a starting point for discussions that will increase our understanding, lead to improvements to PAQ8, and facilitate a transfer of knowledge from PAQ8 to other machine learning methods, such a recurrent neural networks and stochastic memoizers. Finally, the report presents a broad range of new applications of PAQ to machine learning tasks including language modeling and adaptive text prediction, adaptive game playing, classification, and compression using features from the field of deep learning.

  14. Proceedings of the IEEE Machine Learning for Signal Processing XVII

    DEFF Research Database (Denmark)

    , and two papers from the winners of the Data Analysis Competition. The program included papers in the following areas: genomic signal processing, pattern recognition and classification, image and video processing, blind signal processing, models, learning algorithms, and applications of machine learning......The seventeenth of a series of workshops sponsored by the IEEE Signal Processing Society and organized by the Machine Learning for Signal Processing Technical Committee (MLSP-TC). The field of machine learning has matured considerably in both methodology and real-world application domains and has....... The program featured a Special Session on Genomic Signal Processing, chaired by Prof. Man-Wai Mak from Hong Kong Polytechnic University, Hong Kong. The session included four refereed papers by leading experts in the field. We also continued the tradition of the Data Analysis Competition thanks to the efforts...

  15. Actualities and Development of Heavy-Duty CNC Machine Tool Thermal Error Monitoring Technology

    Science.gov (United States)

    Zhou, Zu-De; Gui, Lin; Tan, Yue-Gang; Liu, Ming-Yao; Liu, Yi; Li, Rui-Ya

    2017-09-01

    Thermal error monitoring technology is the key technological support to solve the thermal error problem of heavy-duty CNC (computer numerical control) machine tools. Currently, there are many review literatures introducing the thermal error research of CNC machine tools, but those mainly focus on the thermal issues in small and medium-sized CNC machine tools and seldom introduce thermal error monitoring technologies. This paper gives an overview of the research on the thermal error of CNC machine tools and emphasizes the study of thermal error of the heavy-duty CNC machine tool in three areas. These areas are the causes of thermal error of heavy-duty CNC machine tool and the issues with the temperature monitoring technology and thermal deformation monitoring technology. A new optical measurement technology called the "fiber Bragg grating (FBG) distributed sensing technology" for heavy-duty CNC machine tools is introduced in detail. This technology forms an intelligent sensing and monitoring system for heavy-duty CNC machine tools. This paper fills in the blank of this kind of review articles to guide the development of this industry field and opens up new areas of research on the heavy-duty CNC machine tool thermal error.

  16. A tool for urban soundscape evaluation applying Support Vector Machines for developing a soundscape classification model.

    Science.gov (United States)

    Torija, Antonio J; Ruiz, Diego P; Ramos-Ridao, Angel F

    2014-06-01

    To ensure appropriate soundscape management in urban environments, the urban-planning authorities need a range of tools that enable such a task to be performed. An essential step during the management of urban areas from a sound standpoint should be the evaluation of the soundscape in such an area. In this sense, it has been widely acknowledged that a subjective and acoustical categorization of a soundscape is the first step to evaluate it, providing a basis for designing or adapting it to match people's expectations as well. In this sense, this work proposes a model for automatic classification of urban soundscapes. This model is intended for the automatic classification of urban soundscapes based on underlying acoustical and perceptual criteria. Thus, this classification model is proposed to be used as a tool for a comprehensive urban soundscape evaluation. Because of the great complexity associated with the problem, two machine learning techniques, Support Vector Machines (SVM) and Support Vector Machines trained with Sequential Minimal Optimization (SMO), are implemented in developing model classification. The results indicate that the SMO model outperforms the SVM model in the specific task of soundscape classification. With the implementation of the SMO algorithm, the classification model achieves an outstanding performance (91.3% of instances correctly classified).

  17. Recent Advances in Conotoxin Classification by Using Machine Learning Methods

    Directory of Open Access Journals (Sweden)

    Fu-Ying Dao

    2017-06-01

    Full Text Available Conotoxins are disulfide-rich small peptides, which are invaluable peptides that target ion channel and neuronal receptors. Conotoxins have been demonstrated as potent pharmaceuticals in the treatment of a series of diseases, such as Alzheimer’s disease, Parkinson’s disease, and epilepsy. In addition, conotoxins are also ideal molecular templates for the development of new drug lead compounds and play important roles in neurobiological research as well. Thus, the accurate identification of conotoxin types will provide key clues for the biological research and clinical medicine. Generally, conotoxin types are confirmed when their sequence, structure, and function are experimentally validated. However, it is time-consuming and costly to acquire the structure and function information by using biochemical experiments. Therefore, it is important to develop computational tools for efficiently and effectively recognizing conotoxin types based on sequence information. In this work, we reviewed the current progress in computational identification of conotoxins in the following aspects: (i construction of benchmark dataset; (ii strategies for extracting sequence features; (iii feature selection techniques; (iv machine learning methods for classifying conotoxins; (v the results obtained by these methods and the published tools; and (vi future perspectives on conotoxin classification. The paper provides the basis for in-depth study of conotoxins and drug therapy research.

  18. Machine learning methods without tears: a primer for ecologists.

    Science.gov (United States)

    Olden, Julian D; Lawler, Joshua J; Poff, N LeRoy

    2008-06-01

    Machine learning methods, a family of statistical techniques with origins in the field of artificial intelligence, are recognized as holding great promise for the advancement of understanding and prediction about ecological phenomena. These modeling techniques are flexible enough to handle complex problems with multiple interacting elements and typically outcompete traditional approaches (e.g., generalized linear models), making them ideal for modeling ecological systems. Despite their inherent advantages, a review of the literature reveals only a modest use of these approaches in ecology as compared to other disciplines. One potential explanation for this lack of interest is that machine learning techniques do not fall neatly into the class of statistical modeling approaches with which most ecologists are familiar. In this paper, we provide an introduction to three machine learning approaches that can be broadly used by ecologists: classification and regression trees, artificial neural networks, and evolutionary computation. For each approach, we provide a brief background to the methodology, give examples of its application in ecology, describe model development and implementation, discuss strengths and weaknesses, explore the availability of statistical software, and provide an illustrative example. Although the ecological application of machine learning approaches has increased, there remains considerable skepticism with respect to the role of these techniques in ecology. Our review encourages a greater understanding of machin learning approaches and promotes their future application and utilization, while also providing a basis from which ecologists can make informed decisions about whether to select or avoid these approaches in their future modeling endeavors.

  19. Machine Learning and Conflict Prediction: A Use Case

    Directory of Open Access Journals (Sweden)

    Chris Perry

    2013-10-01

    Full Text Available For at least the last two decades, the international community in general and the United Nations specifically have attempted to develop robust, accurate and effective conflict early warning system for conflict prevention. One potential and promising component of integrated early warning systems lies in the field of machine learning. This paper aims at giving conflict analysis a basic understanding of machine learning methodology as well as to test the feasibility and added value of such an approach. The paper finds that the selection of appropriate machine learning methodologies can offer substantial improvements in accuracy and performance. It also finds that even at this early stage in testing machine learning on conflict prediction, full models offer more predictive power than simply using a prior outbreak of violence as the leading indicator of current violence. This suggests that a refined data selection methodology combined with strategic use of machine learning algorithms could indeed offer a significant addition to the early warning toolkit. Finally, the paper suggests a number of steps moving forward to improve upon this initial test methodology.

  20. Data Triage of Astronomical Transients: A Machine Learning Approach

    Science.gov (United States)

    Rebbapragada, U.

    This talk presents real-time machine learning systems for triage of big data streams generated by photometric and image-differencing pipelines. Our first system is a transient event detection system in development for the Palomar Transient Factory (PTF), a fully-automated synoptic sky survey that has demonstrated real-time discovery of optical transient events. The system is tasked with discriminating between real astronomical objects and bogus objects, which are usually artifacts of the image differencing pipeline. We performed a machine learning forensics investigation on PTF’s initial system that led to training data improvements that decreased both false positive and negative rates. The second machine learning system is a real-time classification engine of transients and variables in development for the Australian Square Kilometre Array Pathfinder (ASKAP), an upcoming wide-field radio survey with unprecedented ability to investigate the radio transient sky. The goal of our system is to classify light curves into known classes with as few observations as possible in order to trigger follow-up on costlier assets. We discuss the violation of standard machine learning assumptions incurred by this task, and propose the use of ensemble and hierarchical machine learning classifiers that make predictions most robustly.

  1. Machine learning in cell biology - teaching computers to recognize phenotypes.

    Science.gov (United States)

    Sommer, Christoph; Gerlich, Daniel W

    2013-12-15

    Recent advances in microscope automation provide new opportunities for high-throughput cell biology, such as image-based screening. High-complex image analysis tasks often make the implementation of static and predefined processing rules a cumbersome effort. Machine-learning methods, instead, seek to use intrinsic data structure, as well as the expert annotations of biologists to infer models that can be used to solve versatile data analysis tasks. Here, we explain how machine-learning methods work and what needs to be considered for their successful application in cell biology. We outline how microscopy images can be converted into a data representation suitable for machine learning, and then introduce various state-of-the-art machine-learning algorithms, highlighting recent applications in image-based screening. Our Commentary aims to provide the biologist with a guide to the application of machine learning to microscopy assays and we therefore include extensive discussion on how to optimize experimental workflow as well as the data analysis pipeline.

  2. Fast Affinity Propagation Clustering based on Machine Learning

    OpenAIRE

    Shailendra Kumar Shrivastava; J. L. Rana; DR.R.C.JAIN

    2013-01-01

    Affinity propagation (AP) was recently introduced as an un-supervised learning algorithm for exemplar based clustering. In this paper a novel Fast Affinity Propagation clustering Approach based on Machine Learning (FAPML) has been proposed. FAPML tries to put data points into clusters based on the history of the data points belonging to clusters in early stages. In FAPML we introduce affinity learning constant and dispersion constant which supervise the clustering process. FAPML also enforces...

  3. Single-Machine Scheduling with Accelerating Learning Effects

    Directory of Open Access Journals (Sweden)

    T. C. E. Cheng

    2013-01-01

    Full Text Available Scheduling with learning effects has been widely studied. However, there are situations where the learning effect might accelerate. In this paper, we propose a new model where the learning effect accelerates as time goes by. We derive the optimal solutions for the single-machine problems to minimize the makespan, total completion time, total weighted completion time, maximum lateness, maximum tardiness, and total tardiness.

  4. Learning from minimum entropy queries in a large committee machine

    CERN Document Server

    Sollich, P

    1996-01-01

    In supervised learning, the redundancy contained in random examples can be avoided by learning from queries. Using statistical mechanics, we study learning from minimum entropy queries in a large tree-committee machine. The generalization error decreases exponentially with the number of training examples, providing a significant improvement over the algebraic decay for random examples. The connection between entropy and generalization error in multi-layer networks is discussed, and a computationally cheap algorithm for constructing queries is suggested and analysed.

  5. CHISSL: A Human-Machine Collaboration Space for Unsupervised Learning

    Energy Technology Data Exchange (ETDEWEB)

    Arendt, Dustin L.; Komurlu, Caner; Blaha, Leslie M.

    2017-07-14

    We developed CHISSL, a human-machine interface that utilizes supervised machine learning in an unsupervised context to help the user group unlabeled instances by her own mental model. The user primarily interacts via correction (moving a misplaced instance into its correct group) or confirmation (accepting that an instance is placed in its correct group). Concurrent with the user's interactions, CHISSL trains a classification model guided by the user's grouping of the data. It then predicts the group of unlabeled instances and arranges some of these alongside the instances manually organized by the user. We hypothesize that this mode of human and machine collaboration is more effective than Active Learning, wherein the machine decides for itself which instances should be labeled by the user. We found supporting evidence for this hypothesis in a pilot study where we applied CHISSL to organize a collection of handwritten digits.

  6. Machine Learning Based Classification of Microsatellite Variation: An Effective Approach for Phylogeographic Characterization of Olive Populations.

    Science.gov (United States)

    Torkzaban, Bahareh; Kayvanjoo, Amir Hossein; Ardalan, Arman; Mousavi, Soraya; Mariotti, Roberto; Baldoni, Luciana; Ebrahimie, Esmaeil; Ebrahimi, Mansour; Hosseini-Mazinani, Mehdi

    2015-01-01

    Finding efficient analytical techniques is overwhelmingly turning into a bottleneck for the effectiveness of large biological data. Machine learning offers a novel and powerful tool to advance classification and modeling solutions in molecular biology. However, these methods have been less frequently used with empirical population genetics data. In this study, we developed a new combined approach of data analysis using microsatellite marker data from our previous studies of olive populations using machine learning algorithms. Herein, 267 olive accessions of various origins including 21 reference cultivars, 132 local ecotypes, and 37 wild olive specimens from the Iranian plateau, together with 77 of the most represented Mediterranean varieties were investigated using a finely selected panel of 11 microsatellite markers. We organized data in two '4-targeted' and '16-targeted' experiments. A strategy of assaying different machine based analyses (i.e. data cleaning, feature selection, and machine learning classification) was devised to identify the most informative loci and the most diagnostic alleles to represent the population and the geography of each olive accession. These analyses revealed microsatellite markers with the highest differentiating capacity and proved efficiency for our method of clustering olive accessions to reflect upon their regions of origin. A distinguished highlight of this study was the discovery of the best combination of markers for better differentiating of populations via machine learning models, which can be exploited to distinguish among other biological populations.

  7. Learning Words through Computer-Adaptive Tool

    DEFF Research Database (Denmark)

    Zhang, Chun

    2005-01-01

    the category of L2 lexical learning in computer-adaptive learning environment. The reason to adopt computer-adaptive tool in WPG is based on the following premises: 1. Lexical learning is incremental in nature. 2. Learning can be measured precisely with tests (objectivist epistemology). In the course of WPG...... construction, I stress the design of a test theory, namely, a learning algorithm. The learning algorithm is designed under such principles that users experience both 'elaborative rehearsal’ (aspects in receptive and productive learning) and 'expanding rehearsal, (memory-based learning and repetitive act...

  8. A collaborative framework for Distributed Privacy-Preserving Support Vector Machine learning.

    Science.gov (United States)

    Que, Jialan; Jiang, Xiaoqian; Ohno-Machado, Lucila

    2012-01-01

    A Support Vector Machine (SVM) is a popular tool for decision support. The traditional way to build an SVM model is to estimate parameters based on a centralized repository of data. However, in the field of biomedicine, patient data are sometimes stored in local repositories or institutions where they were collected, and may not be easily shared due to privacy concerns. This creates a substantial barrier for researchers to effectively learn from the distributed data using machine learning tools like SVMs. To overcome this difficulty and promote efficient information exchange without sharing sensitive raw data, we developed a Distributed Privacy Preserving Support Vector Machine (DPP-SVM). The DPP-SVM enables privacy-preserving collaborative learning, in which a trusted server integrates "privacy-insensitive" intermediary results. The globally learned model is guaranteed to be exactly the same as learned from combined data. We also provide a free web-service (http://privacy.ucsd.edu:8080/ppsvm/) for multiple participants to collaborate and complete the SVM-learning task in an efficient and privacy-preserving manner.

  9. Modern machine learning techniques and their applications in cartoon animation research

    CERN Document Server

    Yu, Jun

    2013-01-01

    The integration of machine learning techniques and cartoon animation research is fast becoming a hot topic. This book helps readers learn the latest machine learning techniques, including patch alignment framework; spectral clustering, graph cuts, and convex relaxation; ensemble manifold learning; multiple kernel learning; multiview subspace learning; and multiview distance metric learning. It then presents the applications of these modern machine learning techniques in cartoon animation research. With these techniques, users can efficiently utilize the cartoon materials to generate animations

  10. Recognition of printed Arabic text using machine learning

    Science.gov (United States)

    Amin, Adnan

    1998-04-01

    Many papers have been concerned with the recognition of Latin, Chinese and Japanese characters. However, although almost a third of a billion people worldwide, in several different languages, use Arabic characters for writing, little research progress, in both on-line and off-line has been achieved towards the automatic recognition of Arabic characters. This is a result of the lack of adequate support in terms of funding, and other utilities such as Arabic text database, dictionaries, etc. and of course of the cursive nature of its writing rules. The main theme of this paper is the automatic recognition of Arabic printed text using machine learning C4.5. Symbolic machine learning algorithms are designed to accept example descriptions in the form of feature vectors which include a label that identifies the class to which an example belongs. The output of the algorithm is a set of rules that classifies unseen examples based on generalization from the training set. This ability to generalize is the main attraction of machine learning for handwriting recognition. Samples of a character can be preprocessed into a feature vector representation for presentation to a machine learning algorithm that creates rules for recognizing characters of the same class. Symbolic machine learning has several advantages over other learning methods. It is fast in training and in recognition, generalizes well, is noise tolerant and the symbolic representation is easy to understand. The technique can be divided into three major steps: the first step is pre- processing in which the original image is transformed into a binary image utilizing a 300 dpi scanner and then forming the connected component. Second, global features of the input Arabic word are then extracted such as number subwords, number of peaks within the subword, number and position of the complementary character, etc. Finally, machine learning C4.5 is used for character classification to generate a decision tree.

  11. Feasibility of Active Machine Learning for Multiclass Compound Classification.

    Science.gov (United States)

    Lang, Tobias; Flachsenberg, Florian; von Luxburg, Ulrike; Rarey, Matthias

    2016-01-25

    A common task in the hit-to-lead process is classifying sets of compounds into multiple, usually structural classes, which build the groundwork for subsequent SAR studies. Machine learning techniques can be used to automate this process by learning classification models from training compounds of each class. Gathering class information for compounds can be cost-intensive as the required data needs to be provided by human experts or experiments. This paper studies whether active machine learning can be used to reduce the required number of training compounds. Active learning is a machine learning method which processes class label data in an iterative fashion. It has gained much attention in a broad range of application areas. In this paper, an active learning method for multiclass compound classification is proposed. This method selects informative training compounds so as to optimally support the learning progress. The combination with human feedback leads to a semiautomated interactive multiclass classification procedure. This method was investigated empirically on 15 compound classification tasks containing 86-2870 compounds in 3-38 classes. The empirical results show that active learning can solve these classification tasks using 10-80% of the data which would be necessary for standard learning techniques.

  12. Analysis on machine tool systems using spindle vibration monitoring for automatic tool changer

    Directory of Open Access Journals (Sweden)

    Shang-Liang Chen

    2015-12-01

    Full Text Available Recently, the intelligent systems of technology have become one of the major items in the development of machine tools. One crucial technology is the machinery status monitoring function, which is required for abnormal warnings and the improvement of cutting efficiency. During processing, the mobility act of the spindle unit determines the most frequent and important part such as automatic tool changer. The vibration detection system includes the development of hardware and software, such as vibration meter, signal acquisition card, data processing platform, and machine control program. Meanwhile, based on the difference between the mechanical configuration and the desired characteristics, it is difficult for a vibration detection system to directly choose the commercially available kits. For this reason, it was also selected as an item for self-development research, along with the exploration of a significant parametric study that is sufficient to represent the machine characteristics and states. However, we also launched the development of functional parts of the system simultaneously. Finally, we entered the conditions and the parameters generated from both the states and the characteristics into the developed system to verify its feasibility.

  13. Building Artificial Vision Systems with Machine Learning

    Energy Technology Data Exchange (ETDEWEB)

    LeCun, Yann [New York University

    2011-02-23

    Three questions pose the next challenge for Artificial Intelligence (AI), robotics, and neuroscience. How do we learn perception (e.g. vision)? How do we learn representations of the perceptual world? How do we learn visual categories from just a few examples?

  14. Sensorless compensation system for thermal deformations of ball screws in machine tools drives

    Science.gov (United States)

    Kowal, Michał

    2016-12-01

    The article presents constructional, technological and operational issues associated with the compensation of thermal deformations of ball screw drives. Further, it demonstrates the analysis of a new sensorless compensation method relying on coordinated computation of data fed directly from the drive and the control system in combination with the information pertaining to the operational history of the servo drive, retrieved with the use of an artificial neural networks (ANN)-based learning system. Preliminary ANN-based models, developed to simulate energy dissipation resulting from the friction in the screw-cap assembly and convection of heat are expounded upon, as are the processes of data selection and ANN learning. In conclusion, the article presents the results of simulation studies and preliminary experimental evidence confirming the applicability of the proposed method, efficiently compensating for the thermal elongation of the ball screw in machine tool drives.

  15. Machine Learning Principles Can Improve Hip Fracture Prediction

    DEFF Research Database (Denmark)

    Kruse, Christian; Eiken, Pia; Vestergaard, Peter

    2017-01-01

    Apply machine learning principles to predict hip fractures and estimate predictor importance in Dual-energy X-ray absorptiometry (DXA)-scanned men and women. Dual-energy X-ray absorptiometry data from two Danish regions between 1996 and 2006 were combined with national Danish patient data.......89 [0.82; 0.95], but with poor calibration in higher probabilities. A ten predictor subset (BMD, biochemical cholesterol and liver function tests, penicillin use and osteoarthritis diagnoses) achieved a test AUC of 0.86 [0.78; 0.94] using an "xgbTree" model. Machine learning can improve hip fracture...... prediction beyond logistic regression using ensemble models. Compiling data from international cohorts of longer follow-up and performing similar machine learning procedures has the potential to further improve discrimination and calibration....

  16. Machine learning of network metrics in ATLAS Distributed Data Management

    CERN Document Server

    Lassnig, Mario; The ATLAS collaboration

    2017-01-01

    The increasing volume of physics data poses a critical challenge to the ATLAS experiment. In anticipation of high luminosity physics, automation of everyday data management tasks has become necessary. Previously many of these tasks required human decision-making and operation. Recent advances in hardware and software have made it possible to entrust more complicated duties to automated systems using models trained by machine learning algorithms. In this contribution we show results from one of our ongoing automation efforts that focuses on network metrics. First, we describe our machine learning framework built atop the ATLAS Analytics Platform. This framework can automatically extract and aggregate data, train models with various machine learning algorithms, and eventually score the resulting models and parameters. Second, we use these models to forecast metrics relevant for network-aware job scheduling and data brokering. We show the characteristics of the data and evaluate the forecasting accuracy of our m...

  17. Accurate Identification of Cancerlectins through Hybrid Machine Learning Technology

    Directory of Open Access Journals (Sweden)

    Jieru Zhang

    2016-01-01

    Full Text Available Cancerlectins are cancer-related proteins that function as lectins. They have been identified through computational identification techniques, but these techniques have sometimes failed to identify proteins because of sequence diversity among the cancerlectins. Advanced machine learning identification methods, such as support vector machine and basic sequence features (n-gram, have also been used to identify cancerlectins. In this study, various protein fingerprint features and advanced classifiers, including ensemble learning techniques, were utilized to identify this group of proteins. We improved the prediction accuracy of the original feature extraction methods and classification algorithms by more than 10% on average. Our work provides a basis for the computational identification of cancerlectins and reveals the power of hybrid machine learning techniques in computational proteomics.

  18. Photometric classification of emission line galaxies with Machine Learning methods

    CERN Document Server

    Cavuoti, Stefano; D'Abrusco, Raffaele; Longo, Giuseppe; Paolillo, Maurizio

    2013-01-01

    In this paper we discuss an application of machine learning based methods to the identification of candidate AGN from optical survey data and to the automatic classification of AGNs in broad classes. We applied four different machine learning algorithms, namely the Multi Layer Perceptron (MLP), trained respectively with the Conjugate Gradient, Scaled Conjugate Gradient and Quasi Newton learning rules, and the Support Vector Machines (SVM), to tackle the problem of the classification of emission line galaxies in different classes, mainly AGNs vs non-AGNs, obtained using optical photometry in place of the diagnostics based on line intensity ratios which are classically used in the literature. Using the same photometric features we discuss also the behavior of the classifiers on finer AGN classification tasks, namely Seyfert I vs Seyfert II and Seyfert vs LINER. Furthermore we describe the algorithms employed, the samples of spectroscopically classified galaxies used to train the algorithms, the procedure follow...

  19. Predicting Market Impact Costs Using Nonparametric Machine Learning Models.

    Directory of Open Access Journals (Sweden)

    Saerom Park

    Full Text Available Market impact cost is the most significant portion of implicit transaction costs that can reduce the overall transaction cost, although it cannot be measured directly. In this paper, we employed the state-of-the-art nonparametric machine learning models: neural networks, Bayesian neural network, Gaussian process, and support vector regression, to predict market impact cost accurately and to provide the predictive model that is versatile in the number of variables. We collected a large amount of real single transaction data of US stock market from Bloomberg Terminal and generated three independent input variables. As a result, most nonparametric machine learning models outperformed a-state-of-the-art benchmark parametric model such as I-star model in four error measures. Although these models encounter certain difficulties in separating the permanent and temporary cost directly, nonparametric machine learning models can be good alternatives in reducing transaction costs by considerably improving in prediction performance.

  20. Predicting Market Impact Costs Using Nonparametric Machine Learning Models.

    Science.gov (United States)

    Park, Saerom; Lee, Jaewook; Son, Youngdoo

    2016-01-01

    Market impact cost is the most significant portion of implicit transaction costs that can reduce the overall transaction cost, although it cannot be measured directly. In this paper, we employed the state-of-the-art nonparametric machine learning models: neural networks, Bayesian neural network, Gaussian process, and support vector regression, to predict market impact cost accurately and to provide the predictive model that is versatile in the number of variables. We collected a large amount of real single transaction data of US stock market from Bloomberg Terminal and generated three independent input variables. As a result, most nonparametric machine learning models outperformed a-state-of-the-art benchmark parametric model such as I-star model in four error measures. Although these models encounter certain difficulties in separating the permanent and temporary cost directly, nonparametric machine learning models can be good alternatives in reducing transaction costs by considerably improving in prediction performance.