WorldWideScience

Sample records for machine learning systems

  1. Building machine learning systems with Python

    CERN Document Server

    Richert, Willi

    2013-01-01

    This is a tutorial-driven and practical, but well-grounded book showcasing good Machine Learning practices. There will be an emphasis on using existing technologies instead of showing how to write your own implementations of algorithms. This book is a scenario-based, example-driven tutorial. By the end of the book you will have learnt critical aspects of Machine Learning Python projects and experienced the power of ML-based systems by actually working on them.This book primarily targets Python developers who want to learn about and build Machine Learning into their projects, or who want to pro

  2. Machine learning paradigms applications in recommender systems

    CERN Document Server

    Lampropoulos, Aristomenis S

    2015-01-01

    This timely book presents Applications in Recommender Systems which are making recommendations using machine learning algorithms trained via examples of content the user likes or dislikes. Recommender systems built on the assumption of availability of both positive and negative examples do not perform well when negative examples are rare. It is exactly this problem that the authors address in the monograph at hand. Specifically, the books approach is based on one-class classification methodologies that have been appearing in recent machine learning research. The blending of recommender systems and one-class classification provides a new very fertile field for research, innovation and development with potential applications in “big data” as well as “sparse data” problems. The book will be useful to researchers, practitioners and graduate students dealing with problems of extensive and complex data. It is intended for both the expert/researcher in the fields of Pattern Recognition, Machine Learning and ...

  3. Building machine learning systems with Python

    CERN Document Server

    Coelho, Luis Pedro

    2015-01-01

    This book primarily targets Python developers who want to learn and use Python's machine learning capabilities and gain valuable insights from data to develop effective solutions for business problems.

  4. Adaptive Learning Systems: Beyond Teaching Machines

    Science.gov (United States)

    Kara, Nuri; Sevim, Nese

    2013-01-01

    Since 1950s, teaching machines have changed a lot. Today, we have different ideas about how people learn, what instructor should do to help students during their learning process. We have adaptive learning technologies that can create much more student oriented learning environments. The purpose of this article is to present these changes and its…

  5. Machine Learning

    Energy Technology Data Exchange (ETDEWEB)

    Chikkagoudar, Satish; Chatterjee, Samrat; Thomas, Dennis G.; Carroll, Thomas E.; Muller, George

    2017-04-21

    The absence of a robust and unified theory of cyber dynamics presents challenges and opportunities for using machine learning based data-driven approaches to further the understanding of the behavior of such complex systems. Analysts can also use machine learning approaches to gain operational insights. In order to be operationally beneficial, cybersecurity machine learning based models need to have the ability to: (1) represent a real-world system, (2) infer system properties, and (3) learn and adapt based on expert knowledge and observations. Probabilistic models and Probabilistic graphical models provide these necessary properties and are further explored in this chapter. Bayesian Networks and Hidden Markov Models are introduced as an example of a widely used data driven classification/modeling strategy.

  6. Reinforcement and Systemic Machine Learning for Decision Making

    CERN Document Server

    Kulkarni, Parag

    2012-01-01

    Reinforcement and Systemic Machine Learning for Decision Making There are always difficulties in making machines that learn from experience. Complete information is not always available-or it becomes available in bits and pieces over a period of time. With respect to systemic learning, there is a need to understand the impact of decisions and actions on a system over that period of time. This book takes a holistic approach to addressing that need and presents a new paradigm-creating new learning applications and, ultimately, more intelligent machines. The first book of its kind in this new an

  7. A Machine Learning System for Recognizing Subclasses (Demo)

    Energy Technology Data Exchange (ETDEWEB)

    Vatsavai, Raju [ORNL

    2012-01-01

    Thematic information extraction from remote sensing images is a complex task. In this demonstration, we present *Miner machine learning system. In particular, we demonstrate an advanced subclass recognition algorithm that is specifically designed to extract finer classes from aggregate classes.

  8. A machine learning-based automatic currency trading system

    OpenAIRE

    Brvar, Anže

    2012-01-01

    The main goal of this thesis was to develop an automated trading system for Forex trading, which would use machine learning methods and their prediction models for deciding about trading actions. A training data set was obtained from exchange rates and values of technical indicators, which describe conditions on currency market. We estimated selected machine learning algorithms and their parameters with validation with sampling. We have prepared a set of automated trading systems with various...

  9. The immune system, adaptation, and machine learning

    Science.gov (United States)

    Farmer, J. Doyne; Packard, Norman H.; Perelson, Alan S.

    1986-10-01

    The immune system is capable of learning, memory, and pattern recognition. By employing genetic operators on a time scale fast enough to observe experimentally, the immune system is able to recognize novel shapes without preprogramming. Here we describe a dynamical model for the immune system that is based on the network hypothesis of Jerne, and is simple enough to simulate on a computer. This model has a strong similarity to an approach to learning and artificial intelligence introduced by Holland, called the classifier system. We demonstrate that simple versions of the classifier system can be cast as a nonlinear dynamical system, and explore the analogy between the immune and classifier systems in detail. Through this comparison we hope to gain insight into the way they perform specific tasks, and to suggest new approaches that might be of value in learning systems.

  10. Human Machine Learning Symbiosis

    Science.gov (United States)

    Walsh, Kenneth R.; Hoque, Md Tamjidul; Williams, Kim H.

    2017-01-01

    Human Machine Learning Symbiosis is a cooperative system where both the human learner and the machine learner learn from each other to create an effective and efficient learning environment adapted to the needs of the human learner. Such a system can be used in online learning modules so that the modules adapt to each learner's learning state both…

  11. Machine Learning

    CERN Document Server

    CERN. Geneva

    2017-01-01

    Machine learning, which builds on ideas in computer science, statistics, and optimization, focuses on developing algorithms to identify patterns and regularities in data, and using these learned patterns to make predictions on new observations. Boosted by its industrial and commercial applications, the field of machine learning is quickly evolving and expanding. Recent advances have seen great success in the realms of computer vision, natural language processing, and broadly in data science. Many of these techniques have already been applied in particle physics, for instance for particle identification, detector monitoring, and the optimization of computer resources. Modern machine learning approaches, such as deep learning, are only just beginning to be applied to the analysis of High Energy Physics data to approach more and more complex problems. These classes will review the framework behind machine learning and discuss recent developments in the field.

  12. Quantum machine learning.

    Science.gov (United States)

    Biamonte, Jacob; Wittek, Peter; Pancotti, Nicola; Rebentrost, Patrick; Wiebe, Nathan; Lloyd, Seth

    2017-09-13

    Fuelled by increasing computer power and algorithmic advances, machine learning techniques have become powerful tools for finding patterns in data. Quantum systems produce atypical patterns that classical systems are thought not to produce efficiently, so it is reasonable to postulate that quantum computers may outperform classical computers on machine learning tasks. The field of quantum machine learning explores how to devise and implement quantum software that could enable machine learning that is faster than that of classical computers. Recent work has produced quantum algorithms that could act as the building blocks of machine learning programs, but the hardware and software challenges are still considerable.

  13. Building Artificial Vision Systems with Machine Learning

    Energy Technology Data Exchange (ETDEWEB)

    LeCun, Yann [New York University

    2011-02-23

    Three questions pose the next challenge for Artificial Intelligence (AI), robotics, and neuroscience. How do we learn perception (e.g. vision)? How do we learn representations of the perceptual world? How do we learn visual categories from just a few examples?

  14. Inverse Learning Control of Nonlinear Systems Using Support Vector Machines

    Institute of Scientific and Technical Information of China (English)

    HU Zhong-hui; LI Yuan-gui; CAI Yun-ze; XU Xiao-ming

    2005-01-01

    An inverse learning control scheme using the support vector machine (SVM) for regression was proposed. The inverse learning approach is originally researched in the neural networks. Compared with neural networks, SVMs overcome the problems of local minimum and curse of dimensionality. Additionally, the good generalization performance of SVMs increases the robustness of control system. The method of designing SVM inverselearning controller was presented. The proposed method is demonstrated on tracking problems and the performance is satisfactory.

  15. Rule based systems for big data a machine learning approach

    CERN Document Server

    Liu, Han; Cocea, Mihaela

    2016-01-01

    The ideas introduced in this book explore the relationships among rule based systems, machine learning and big data. Rule based systems are seen as a special type of expert systems, which can be built by using expert knowledge or learning from real data. The book focuses on the development and evaluation of rule based systems in terms of accuracy, efficiency and interpretability. In particular, a unified framework for building rule based systems, which consists of the operations of rule generation, rule simplification and rule representation, is presented. Each of these operations is detailed using specific methods or techniques. In addition, this book also presents some ensemble learning frameworks for building ensemble rule based systems.

  16. Machine learning strategies for systems with invariance properties

    Science.gov (United States)

    Ling, Julia; Jones, Reese; Templeton, Jeremy

    2016-08-01

    In many scientific fields, empirical models are employed to facilitate computational simulations of engineering systems. For example, in fluid mechanics, empirical Reynolds stress closures enable computationally-efficient Reynolds Averaged Navier Stokes simulations. Likewise, in solid mechanics, constitutive relations between the stress and strain in a material are required in deformation analysis. Traditional methods for developing and tuning empirical models usually combine physical intuition with simple regression techniques on limited data sets. The rise of high performance computing has led to a growing availability of high fidelity simulation data. These data open up the possibility of using machine learning algorithms, such as random forests or neural networks, to develop more accurate and general empirical models. A key question when using data-driven algorithms to develop these empirical models is how domain knowledge should be incorporated into the machine learning process. This paper will specifically address physical systems that possess symmetry or invariance properties. Two different methods for teaching a machine learning model an invariance property are compared. In the first method, a basis of invariant inputs is constructed, and the machine learning model is trained upon this basis, thereby embedding the invariance into the model. In the second method, the algorithm is trained on multiple transformations of the raw input data until the model learns invariance to that transformation. Results are discussed for two case studies: one in turbulence modeling and one in crystal elasticity. It is shown that in both cases embedding the invariance property into the input features yields higher performance at significantly reduced computational training costs.

  17. Decision Support System for Diabetes Mellitus through Machine Learning Techniques

    Directory of Open Access Journals (Sweden)

    Tarik A. Rashid

    2016-07-01

    Full Text Available recently, the diseases of diabetes mellitus have grown into extremely feared problems that can have damaging effects on the health condition of their sufferers globally. In this regard, several machine learning models have been used to predict and classify diabetes types. Nevertheless, most of these models attempted to solve two problems; categorizing patients in terms of diabetic types and forecasting blood surge rate of patients. This paper presents an automatic decision support system for diabetes mellitus through machine learning techniques by taking into account the above problems, plus, reflecting the skills of medical specialists who believe that there is a great relationship between patient’s symptoms with some chronic diseases and the blood sugar rate. Data sets are collected from Layla Qasim Clinical Center in Kurdistan Region, then, the data is cleaned and proposed using feature selection techniques such as Sequential Forward Selection and the Correlation Coefficient, finally, the refined data is fed into machine learning models for prediction, classification, and description purposes. This system enables physicians and doctors to provide diabetes mellitus (DM patients good health treatments and recommendations.

  18. An Android malware detection system based on machine learning

    Science.gov (United States)

    Wen, Long; Yu, Haiyang

    2017-08-01

    The Android smartphone, with its open source character and excellent performance, has attracted many users. However, the convenience of the Android platform also has motivated the development of malware. The traditional method which detects the malware based on the signature is unable to detect unknown applications. The article proposes a machine learning-based lightweight system that is capable of identifying malware on Android devices. In this system we extract features based on the static analysis and the dynamitic analysis, then a new feature selection approach based on principle component analysis (PCA) and relief are presented in the article to decrease the dimensions of the features. After that, a model will be constructed with support vector machine (SVM) for classification. Experimental results show that our system provides an effective method in Android malware detection.

  19. Machine learning techniques applied to system characterization and equalization

    DEFF Research Database (Denmark)

    Zibar, Darko; Thrane, Jakob; Wass, Jesper

    2016-01-01

    Linear signal processing algorithms are effective in combating linear fibre channel impairments. We demonstrate the ability of machine learning algorithms to combat nonlinear fibre channel impairments and perform parameter extraction from directly detected signals.......Linear signal processing algorithms are effective in combating linear fibre channel impairments. We demonstrate the ability of machine learning algorithms to combat nonlinear fibre channel impairments and perform parameter extraction from directly detected signals....

  20. Machine learning concepts in coherent optical communication systems

    DEFF Research Database (Denmark)

    Zibar, Darko; Schäffer, Christian G.

    2014-01-01

    Powerful statistical signal processing methods, used by the machine learning community, are addressed and linked to current problems in coherent optical communication. Bayesian filtering methods are presented and applied for nonlinear dynamic state tracking. © 2014 OSA.......Powerful statistical signal processing methods, used by the machine learning community, are addressed and linked to current problems in coherent optical communication. Bayesian filtering methods are presented and applied for nonlinear dynamic state tracking. © 2014 OSA....

  1. Machine learning concepts in coherent optical communication systems

    DEFF Research Database (Denmark)

    Zibar, Darko; Schäffer, Christian G.

    2014-01-01

    Powerful statistical signal processing methods, used by the machine learning community, are addressed and linked to current problems in coherent optical communication. Bayesian filtering methods are presented and applied for nonlinear dynamic state tracking. © 2014 OSA.......Powerful statistical signal processing methods, used by the machine learning community, are addressed and linked to current problems in coherent optical communication. Bayesian filtering methods are presented and applied for nonlinear dynamic state tracking. © 2014 OSA....

  2. Machine Learning and Radiology

    Science.gov (United States)

    Wang, Shijun; Summers, Ronald M.

    2012-01-01

    In this paper, we give a short introduction to machine learning and survey its applications in radiology. We focused on six categories of applications in radiology: medical image segmentation, registration, computer aided detection and diagnosis, brain function or activity analysis and neurological disease diagnosis from fMR images, content-based image retrieval systems for CT or MRI images, and text analysis of radiology reports using natural language processing (NLP) and natural language understanding (NLU). This survey shows that machine learning plays a key role in many radiology applications. Machine learning identifies complex patterns automatically and helps radiologists make intelligent decisions on radiology data such as conventional radiographs, CT, MRI, and PET images and radiology reports. In many applications, the performance of machine learning-based automatic detection and diagnosis systems has shown to be comparable to that of a well-trained and experienced radiologist. Technology development in machine learning and radiology will benefit from each other in the long run. Key contributions and common characteristics of machine learning techniques in radiology are discussed. We also discuss the problem of translating machine learning applications to the radiology clinical setting, including advantages and potential barriers. PMID:22465077

  3. Derivative Free Optimization of Complex Systems with the Use of Statistical Machine Learning Models

    Science.gov (United States)

    2015-09-12

    AFRL-AFOSR-VA-TR-2015-0278 DERIVATIVE FREE OPTIMIZATION OF COMPLEX SYSTEMS WITH THE USE OF STATISTICAL MACHINE LEARNING MODELS Katya Scheinberg...COMPLEX SYSTEMS WITH THE USE OF STATISTICAL MACHINE LEARNING MODELS 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-11-1-0239 5c.  PROGRAM ELEMENT...developed, which has been the focus of our research. 15. SUBJECT TERMS optimization, Derivative-Free Optimization, Statistical Machine Learning 16. SECURITY

  4. Machine Learning and Software Quality Prediction: As an Expert System

    Directory of Open Access Journals (Sweden)

    Ekbal A. Rashid

    2014-04-01

    Full Text Available To improve the software quality the number of errors from the software must be removed. The research paper presents a study towards machine learning and software quality prediction as an expert system. The purpose of this paper is to apply the machine learning approaches, such as case-based reasoning, to predict software quality. The main objective of this research is to minimize software costs. Predict the error in software module correctly and use the results in future estimation. The novel idea behind this system is that Knowledge base (KBS building is an important task in CBR and the knowledge base can be built based on world new problems along with world new solutions. Second, reducing the maintenance cost by removing the duplicate record set from the KBS. Third, error prediction with the help of similarity functions. In this research four similarity functions have been used and these are Euclidean, Manhattan, Canberra, and Exponential. We feel that case-based models are particularly useful when it is difficult to define actual rules about a problem domain. For this purpose we have developed a case-based reasoning model and have validated it upon student data. It was observed that, Euclidean and Exponential both are good for error calculation in comparison to Manhattan and Canberra after performing five experiments. In order to obtain a result we have used indigenous tool. For finding the mean and standard deviation, SPSS version 16 and for generating graphs MATLAB 7.10.0 version have been used as an analyzing tool.

  5. 1st International Conference on Machine Learning for Cyber Physical Systems and Industry 4.0

    CERN Document Server

    Beyerer, Jürgen

    2016-01-01

    The work presents new approaches to Machine Learning for Cyber Physical Systems, experiences and visions. It contains some selected papers from the international Conference ML4CPS – Machine Learning for Cyber Physical Systems, which was held in Lemgo, October 1-2, 2015. Cyber Physical Systems are characterized by their ability to adapt and to learn: They analyze their environment and, based on observations, they learn patterns, correlations and predictive models. Typical applications are condition monitoring, predictive maintenance, image processing and diagnosis. Machine Learning is the key technology for these developments.

  6. Network Intrusion Detection System Based On Machine Learning Algorithms

    Directory of Open Access Journals (Sweden)

    Vipin Das

    2010-12-01

    Full Text Available Network and system security is of paramount importance in the present data communication environment. Hackers and intruders can create many successful attempts to cause the crash of the networks and web services by unauthorized intrusion. New threats and associated solutions to prevent these threats are emerging together with the secured system evolution. Intrusion Detection Systems (IDS are one of these solutions. The main function of Intrusion Detection System is to protect the resources from threats. It analyzes and predicts the behaviours of users, and then these behaviours will be considered an attack or a normal behaviour. We use Rough Set Theory (RST and Support Vector Machine (SVM to detect network intrusions. First, packets are captured from the network, RST is used to pre-process the data and reduce the dimensions. The features selected by RST will be sent to SVM model to learn and test respectively. The method is effective to decrease the space density of data. The experiments compare the results with Principal Component Analysis (PCA and show RST and SVM schema could reduce the false positive rate and increase the accuracy.

  7. Soft computing in machine learning

    CERN Document Server

    Park, Jooyoung; Inoue, Atsushi

    2014-01-01

    As users or consumers are now demanding smarter devices, intelligent systems are revolutionizing by utilizing machine learning. Machine learning as part of intelligent systems is already one of the most critical components in everyday tools ranging from search engines and credit card fraud detection to stock market analysis. You can train machines to perform some things, so that they can automatically detect, diagnose, and solve a variety of problems. The intelligent systems have made rapid progress in developing the state of the art in machine learning based on smart and deep perception. Using machine learning, the intelligent systems make widely applications in automated speech recognition, natural language processing, medical diagnosis, bioinformatics, and robot locomotion. This book aims at introducing how to treat a substantial amount of data, to teach machines and to improve decision making models. And this book specializes in the developments of advanced intelligent systems through machine learning. It...

  8. Machine learning techniques for energy optimization in mobile embedded systems

    Science.gov (United States)

    Donohoo, Brad Kyoshi

    Mobile smartphones and other portable battery operated embedded systems (PDAs, tablets) are pervasive computing devices that have emerged in recent years as essential instruments for communication, business, and social interactions. While performance, capabilities, and design are all important considerations when purchasing a mobile device, a long battery lifetime is one of the most desirable attributes. Battery technology and capacity has improved over the years, but it still cannot keep pace with the power consumption demands of today's mobile devices. This key limiter has led to a strong research emphasis on extending battery lifetime by minimizing energy consumption, primarily using software optimizations. This thesis presents two strategies that attempt to optimize mobile device energy consumption with negligible impact on user perception and quality of service (QoS). The first strategy proposes an application and user interaction aware middleware framework that takes advantage of user idle time between interaction events of the foreground application to optimize CPU and screen backlight energy consumption. The framework dynamically classifies mobile device applications based on their received interaction patterns, then invokes a number of different power management algorithms to adjust processor frequency and screen backlight levels accordingly. The second strategy proposes the usage of machine learning techniques to learn a user's mobile device usage pattern pertaining to spatiotemporal and device contexts, and then predict energy-optimal data and location interface configurations. By learning where and when a mobile device user uses certain power-hungry interfaces (3G, WiFi, and GPS), the techniques, which include variants of linear discriminant analysis, linear logistic regression, non-linear logistic regression, and k-nearest neighbor, are able to dynamically turn off unnecessary interfaces at runtime in order to save energy.

  9. An Interactive Web-based Learning System for Assisting Machining Technology Education

    Directory of Open Access Journals (Sweden)

    Min Jou

    2008-05-01

    Full Text Available The key technique of manufacturing methods is machining. The degree of technique of machining directly affects the quality of the product. Therefore, the machining technique is of primary importance in promoting student practice ability during the training process. Currently, practical training is applied in shop floor to discipline student’s practice ability. Much time and cost are used to teach these techniques. Particularly, computerized machines are continuously increasing in use. The development of educating engineers on computerized machines becomes much more difficult than with traditional machines. This is because of the limitation of the extremely expensive cost of teaching. The quality and quantity of teaching cannot always be promoted in this respect. The traditional teaching methods can not respond well to the needs of the future. Therefore, this research aims to the following topics; (1.Propose the teaching strategies for the students to learning machining processing planning through web-based learning system. (2.Establish on-line teaching material for the computer-aided manufacturing courses including CNC coding method, CNC simulation. (3.Develop the virtual machining laboratory to bring the machining practical training to web-based learning system. (4.Integrate multi-media and virtual laboratory in the developed e-learning web-based system to enhance the effectiveness of machining education through web-based system.

  10. Machine Learning Markets

    CERN Document Server

    Storkey, Amos

    2011-01-01

    Prediction markets show considerable promise for developing flexible mechanisms for machine learning. Here, machine learning markets for multivariate systems are defined, and a utility-based framework is established for their analysis. This differs from the usual approach of defining static betting functions. It is shown that such markets can implement model combination methods used in machine learning, such as product of expert and mixture of expert approaches as equilibrium pricing models, by varying agent utility functions. They can also implement models composed of local potentials, and message passing methods. Prediction markets also allow for more flexible combinations, by combining multiple different utility functions. Conversely, the market mechanisms implement inference in the relevant probabilistic models. This means that market mechanism can be utilized for implementing parallelized model building and inference for probabilistic modelling.

  11. Machine Learning Method Applied in Readout System of Superheated Droplet Detector

    Science.gov (United States)

    Liu, Yi; Sullivan, Clair Julia; d'Errico, Francesco

    2017-07-01

    Direct readability is one advantage of superheated droplet detectors in neutron dosimetry. Utilizing such a distinct characteristic, an imaging readout system analyzes image of the detector for neutron dose readout. To improve the accuracy and precision of algorithms in the imaging readout system, machine learning algorithms were developed. Deep learning neural network and support vector machine algorithms are applied and compared with generally used Hough transform and curvature analysis methods. The machine learning methods showed a much higher accuracy and better precision in recognizing circular gas bubbles.

  12. Machine Learning for Security

    CERN Document Server

    CERN. Geneva

    2015-01-01

    Applied statistics, aka ‘Machine Learning’, offers a wealth of techniques for answering security questions. It’s a much hyped topic in the big data world, with many companies now providing machine learning as a service. This talk will demystify these techniques, explain the math, and demonstrate their application to security problems. The presentation will include how-to’s on classifying malware, looking into encrypted tunnels, and finding botnets in DNS data. About the speaker Josiah is a security researcher with HP TippingPoint DVLabs Research Group. He has over 15 years of professional software development experience. Josiah used to do AI, with work focused on graph theory, search, and deductive inference on large knowledge bases. As rules only get you so far, he moved from AI to using machine learning techniques identifying failure modes in email traffic. There followed digressions into clustered data storage and later integrated control systems. Current ...

  13. Initial experimental results of a machine learning-based temperature control system for an RF gun

    CERN Document Server

    Edelen, A L; Milton, S V; Chase, B E; Crawford, D J; Eddy, N; Edstrom, D; Harms, E R; Ruan, J; Santucci, J K; Stabile, P

    2015-01-01

    Colorado State University (CSU) and Fermi National Accelerator Laboratory (Fermilab) have been developing a control system to regulate the resonant frequency of an RF electron gun. As part of this effort, we present initial test results for a benchmark temperature controller that combines a machine learning-based model and a predictive control algorithm. This is part of an on-going effort to develop adaptive, machine learning-based tools specifically to address control challenges found in particle accelerator systems.

  14. Knowledge Level Assessment in e-Learning Systems Using Machine Learning and User Activity Analysis

    Directory of Open Access Journals (Sweden)

    Nazeeh Ghatasheh

    2015-04-01

    Full Text Available Electronic Learning has been one of the foremost trends in education so far. Such importance draws the attention to an important shift in the educational paradigm. Due to the complexity of the evolving paradigm, the prospective dynamics of learning require an evolution of knowledge delivery and evaluation. This research work tries to put in hand a futuristic design of an autonomous and intelligent e-Learning system. In which machine learning and user activity analysis play the role of an automatic evaluator for the knowledge level. It is important to assess the knowledge level in order to adapt content presentation and to have more realistic evaluation of online learners. Several classification algorithms are applied to predict the knowledge level of the learners and the corresponding results are reported. Furthermore, this research proposes a modern design of a dynamic learning environment that goes along the most recent trends in e-Learning. The experimental results illustrate an overall performance superiority of a support vector machine model in evaluating the knowledge levels; having 98.6%of correctly classified instances with 0.0069 mean absolute error.

  15. TensorFlow: A system for large-scale machine learning

    OpenAIRE

    2016-01-01

    TensorFlow is a machine learning system that operates at large scale and in heterogeneous environments. TensorFlow uses dataflow graphs to represent computation, shared state, and the operations that mutate that state. It maps the nodes of a dataflow graph across many machines in a cluster, and within a machine across multiple computational devices, including multicore CPUs, general-purpose GPUs, and custom designed ASICs known as Tensor Processing Units (TPUs). This architecture gives flexib...

  16. Machine learning with R

    CERN Document Server

    Lantz, Brett

    2013-01-01

    Written as a tutorial to explore and understand the power of R for machine learning. This practical guide that covers all of the need to know topics in a very systematic way. For each machine learning approach, each step in the process is detailed, from preparing the data for analysis to evaluating the results. These steps will build the knowledge you need to apply them to your own data science tasks.Intended for those who want to learn how to use R's machine learning capabilities and gain insight from your data. Perhaps you already know a bit about machine learning, but have never used R; or

  17. On the Safety of Machine Learning: Cyber-Physical Systems, Decision Sciences, and Data Products.

    Science.gov (United States)

    Varshney, Kush R; Alemzadeh, Homa

    2017-09-01

    Machine learning algorithms increasingly influence our decisions and interact with us in all parts of our daily lives. Therefore, just as we consider the safety of power plants, highways, and a variety of other engineered socio-technical systems, we must also take into account the safety of systems involving machine learning. Heretofore, the definition of safety has not been formalized in a machine learning context. In this article, we do so by defining machine learning safety in terms of risk, epistemic uncertainty, and the harm incurred by unwanted outcomes. We then use this definition to examine safety in all sorts of applications in cyber-physical systems, decision sciences, and data products. We find that the foundational principle of modern statistical machine learning, empirical risk minimization, is not always a sufficient objective. We discuss how four different categories of strategies for achieving safety in engineering, including inherently safe design, safety reserves, safe fail, and procedural safeguards can be mapped to a machine learning context. We then discuss example techniques that can be adopted in each category, such as considering interpretability and causality of predictive models, objective functions beyond expected prediction accuracy, human involvement for labeling difficult or rare examples, and user experience design of software and open data.

  18. Microsoft Azure machine learning

    CERN Document Server

    Mund, Sumit

    2015-01-01

    The book is intended for those who want to learn how to use Azure Machine Learning. Perhaps you already know a bit about Machine Learning, but have never used ML Studio in Azure; or perhaps you are an absolute newbie. In either case, this book will get you up-and-running quickly.

  19. Pattern recognition & machine learning

    CERN Document Server

    Anzai, Y

    1992-01-01

    This is the first text to provide a unified and self-contained introduction to visual pattern recognition and machine learning. It is useful as a general introduction to artifical intelligence and knowledge engineering, and no previous knowledge of pattern recognition or machine learning is necessary. Basic for various pattern recognition and machine learning methods. Translated from Japanese, the book also features chapter exercises, keywords, and summaries.

  20. Machine Learning for Power System Disturbance and Cyber-attack Discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Raymond Charles [ORNL; Beaver, Justin M [ORNL; Buckner, Mark A [ORNL; Morris, Thomas [Mississippi State University (MSU); Adhikari, Uttam [ORNL; Pan, Shengyi [Mississippi State University (MSU)

    2014-01-01

    Power system disturbances are inherently complex and can be attributed to a wide range of sources, including both natural and man-made events. Currently, the power system operators are heavily relied on to make decisions regarding the causes of experienced disturbances and the appropriate course of action as a response. In the case of cyber-attacks against a power system, human judgment is less certain since there is an overt attempt to disguise the attack and deceive the operators as to the true state of the system. To enable the human decision maker, we explore the viability of machine learning as a means for discriminating types of power system disturbances, and focus specifically on detecting cyber-attacks where deception is a core tenet of the event. We evaluate various machine learning methods as disturbance discriminators and discuss the practical implications for deploying machine learning systems as an enhancement to existing power system architectures.

  1. Introduction to machine learning.

    Science.gov (United States)

    Baştanlar, Yalin; Ozuysal, Mustafa

    2014-01-01

    The machine learning field, which can be briefly defined as enabling computers make successful predictions using past experiences, has exhibited an impressive development recently with the help of the rapid increase in the storage capacity and processing power of computers. Together with many other disciplines, machine learning methods have been widely employed in bioinformatics. The difficulties and cost of biological analyses have led to the development of sophisticated machine learning approaches for this application area. In this chapter, we first review the fundamental concepts of machine learning such as feature assessment, unsupervised versus supervised learning and types of classification. Then, we point out the main issues of designing machine learning experiments and their performance evaluation. Finally, we introduce some supervised learning methods.

  2. Sequential Nonlinear Learning for Distributed Multiagent Systems via Extreme Learning Machines.

    Science.gov (United States)

    Vanli, Nuri Denizcan; Sayin, Muhammed O; Delibalta, Ibrahim; Kozat, Suleyman Serdar

    2017-03-01

    We study online nonlinear learning over distributed multiagent systems, where each agent employs a single hidden layer feedforward neural network (SLFN) structure to sequentially minimize arbitrary loss functions. In particular, each agent trains its own SLFN using only the data that is revealed to itself. On the other hand, the aim of the multiagent system is to train the SLFN at each agent as well as the optimal centralized batch SLFN that has access to all the data, by exchanging information between neighboring agents. We address this problem by introducing a distributed subgradient-based extreme learning machine algorithm. The proposed algorithm provides guaranteed upper bounds on the performance of the SLFN at each agent and shows that each of these individual SLFNs asymptotically achieves the performance of the optimal centralized batch SLFN. Our performance guarantees explicitly distinguish the effects of data- and network-dependent parameters on the convergence rate of the proposed algorithm. The experimental results illustrate that the proposed algorithm achieves the oracle performance significantly faster than the state-of-the-art methods in the machine learning and signal processing literature. Hence, the proposed method is highly appealing for the applications involving big data.

  3. Machine Learning for Medical Imaging.

    Science.gov (United States)

    Erickson, Bradley J; Korfiatis, Panagiotis; Akkus, Zeynettin; Kline, Timothy L

    2017-01-01

    Machine learning is a technique for recognizing patterns that can be applied to medical images. Although it is a powerful tool that can help in rendering medical diagnoses, it can be misapplied. Machine learning typically begins with the machine learning algorithm system computing the image features that are believed to be of importance in making the prediction or diagnosis of interest. The machine learning algorithm system then identifies the best combination of these image features for classifying the image or computing some metric for the given image region. There are several methods that can be used, each with different strengths and weaknesses. There are open-source versions of most of these machine learning methods that make them easy to try and apply to images. Several metrics for measuring the performance of an algorithm exist; however, one must be aware of the possible associated pitfalls that can result in misleading metrics. More recently, deep learning has started to be used; this method has the benefit that it does not require image feature identification and calculation as a first step; rather, features are identified as part of the learning process. Machine learning has been used in medical imaging and will have a greater influence in the future. Those working in medical imaging must be aware of how machine learning works. (©)RSNA, 2017.

  4. Machine learning with R

    CERN Document Server

    Lantz, Brett

    2015-01-01

    Perhaps you already know a bit about machine learning but have never used R, or perhaps you know a little R but are new to machine learning. In either case, this book will get you up and running quickly. It would be helpful to have a bit of familiarity with basic programming concepts, but no prior experience is required.

  5. Learning thermodynamics with Boltzmann machines

    Science.gov (United States)

    Torlai, Giacomo; Melko, Roger G.

    2016-10-01

    A Boltzmann machine is a stochastic neural network that has been extensively used in the layers of deep architectures for modern machine learning applications. In this paper, we develop a Boltzmann machine that is capable of modeling thermodynamic observables for physical systems in thermal equilibrium. Through unsupervised learning, we train the Boltzmann machine on data sets constructed with spin configurations importance sampled from the partition function of an Ising Hamiltonian at different temperatures using Monte Carlo (MC) methods. The trained Boltzmann machine is then used to generate spin states, for which we compare thermodynamic observables to those computed by direct MC sampling. We demonstrate that the Boltzmann machine can faithfully reproduce the observables of the physical system. Further, we observe that the number of neurons required to obtain accurate results increases as the system is brought close to criticality.

  6. Self-Evolvable Systems Machine Learning in Social Media

    CERN Document Server

    Iordache, Octavian

    2012-01-01

    This monograph presents key method to successfully manage the growing  complexity of systems  where conventional engineering and scientific methodologies and technologies based on learning and adaptability come to their limits and new ways are nowadays required. The transition from adaptable to evolvable and finally to self-evolvable systems is highlighted, self-properties such as self-organization, self-configuration, and self-repairing are introduced and challenges and limitations of the self-evolvable engineering systems are evaluated.

  7. THE MACHINE LEARNING SYSTEM OF TELEPHONE NETWORKS MANAGEMENT

    Institute of Scientific and Technical Information of China (English)

    CaoLiming; ZhouQiang

    1996-01-01

    The problem of fault information process in telephone networks management system in AT & T in the US has been solved with step-wise learning approach.This method makes the information decrease step by step by means of merge and sort, classifies the information to several typical classes and establishes the knowledgebase (KB) eventually. If new fault information is inputted, we will call the knowledge in KB and predict the related faults which will happen.

  8. A Machine Learns to Predict the Stability of Tightly Packed Planetary Systems

    Science.gov (United States)

    Tamayo, Daniel; Silburt, Ari; Valencia, Diana; Menou, Kristen; Ali-Dib, Mohamad; Petrovich, Cristobal; Huang, Chelsea X.; Rein, Hanno; van Laerhoven, Christa; Paradise, Adiv; Obertas, Alysa; Murray, Norman

    2016-12-01

    The requirement that planetary systems be dynamically stable is often used to vet new discoveries or set limits on unconstrained masses or orbital elements. This is typically carried out via computationally expensive N-body simulations. We show that characterizing the complicated and multi-dimensional stability boundary of tightly packed systems is amenable to machine-learning methods. We find that training an XGBoost machine-learning algorithm on physically motivated features yields an accurate classifier of stability in packed systems. On the stability timescale investigated (107 orbits), it is three orders of magnitude faster than direct N-body simulations. Optimized machine-learning classifiers for dynamical stability may thus prove useful across the discipline, e.g., to characterize the exoplanet sample discovered by the upcoming Transiting Exoplanet Survey Satellite. This proof of concept motivates investing computational resources to train algorithms capable of predicting stability over longer timescales and over broader regions of phase space.

  9. A Machine Learns to Predict the Stability of Tightly Packed Planetary Systems

    CERN Document Server

    Tamayo, Daniel; Valencia, Diana; Menou, Kristen; Ali-Dib, Mohamad; Petrovich, Cristobal; Huang, Chelsea X; Rein, Hanno; van Laerhoven, Christa; Paradise, Adiv; Obertas, Alysa; Murray, Norman

    2016-01-01

    The requirement that planetary systems be dynamically stable is often used to vet new discoveries or set limits on unconstrained masses or orbital elements. This is typically carried out via computationally expensive N-body simulations. We show that characterizing the complicated and multi-dimensional stability boundary of tightly packed systems is amenable to machine learning methods. We find that training a state-of-the-art machine learning algorithm on physically motivated features yields an accurate classifier of stability in packed systems. On the stability timescale investigated ($10^7$ orbits), it is 3 orders of magnitude faster than direct N-body simulations. Optimized machine learning classifiers for dynamical stability may thus prove useful across the discipline, e.g., to characterize the exoplanet sample discovered by the upcoming Transiting Exoplanet Survey Satellite (TESS).

  10. Machine Learning for Hackers

    CERN Document Server

    Conway, Drew

    2012-01-01

    If you're an experienced programmer interested in crunching data, this book will get you started with machine learning-a toolkit of algorithms that enables computers to train themselves to automate useful tasks. Authors Drew Conway and John Myles White help you understand machine learning and statistics tools through a series of hands-on case studies, instead of a traditional math-heavy presentation. Each chapter focuses on a specific problem in machine learning, such as classification, prediction, optimization, and recommendation. Using the R programming language, you'll learn how to analyz

  11. Emerging Paradigms in Machine Learning

    CERN Document Server

    Jain, Lakhmi; Howlett, Robert

    2013-01-01

    This  book presents fundamental topics and algorithms that form the core of machine learning (ML) research, as well as emerging paradigms in intelligent system design. The  multidisciplinary nature of machine learning makes it a very fascinating and popular area for research.  The book is aiming at students, practitioners and researchers and captures the diversity and richness of the field of machine learning and intelligent systems.  Several chapters are devoted to computational learning models such as granular computing, rough sets and fuzzy sets An account of applications of well-known learning methods in biometrics, computational stylistics, multi-agent systems, spam classification including an extremely well-written survey on Bayesian networks shed light on the strengths and weaknesses of the methods. Practical studies yielding insight into challenging problems such as learning from incomplete and imbalanced data, pattern recognition of stochastic episodic events and on-line mining of non-stationary ...

  12. mlpy: Machine Learning Python

    CERN Document Server

    Albanese, Davide; Merler, Stefano; Riccadonna, Samantha; Jurman, Giuseppe; Furlanello, Cesare

    2012-01-01

    mlpy is a Python Open Source Machine Learning library built on top of NumPy/SciPy and the GNU Scientific Libraries. mlpy provides a wide range of state-of-the-art machine learning methods for supervised and unsupervised problems and it is aimed at finding a reasonable compromise among modularity, maintainability, reproducibility, usability and efficiency. mlpy is multiplatform, it works with Python 2 and 3 and it is distributed under GPL3 at the website http://mlpy.fbk.eu.

  13. mlpy: Machine Learning Python

    OpenAIRE

    Albanese, Davide; Visintainer, Roberto; Merler, Stefano; Riccadonna, Samantha; Jurman, Giuseppe; Furlanello, Cesare

    2012-01-01

    mlpy is a Python Open Source Machine Learning library built on top of NumPy/SciPy and the GNU Scientific Libraries. mlpy provides a wide range of state-of-the-art machine learning methods for supervised and unsupervised problems and it is aimed at finding a reasonable compromise among modularity, maintainability, reproducibility, usability and efficiency. mlpy is multiplatform, it works with Python 2 and 3 and it is distributed under GPL3 at the website http://mlpy.fbk.eu.

  14. Machine learning an artificial intelligence approach

    CERN Document Server

    Banerjee, R; Bradshaw, Gary; Carbonell, Jaime Guillermo; Mitchell, Tom Michael; Michalski, Ryszard Spencer

    1983-01-01

    Machine Learning: An Artificial Intelligence Approach contains tutorial overviews and research papers representative of trends in the area of machine learning as viewed from an artificial intelligence perspective. The book is organized into six parts. Part I provides an overview of machine learning and explains why machines should learn. Part II covers important issues affecting the design of learning programs-particularly programs that learn from examples. It also describes inductive learning systems. Part III deals with learning by analogy, by experimentation, and from experience. Parts IV a

  15. Power System Parameters Forecasting Using Hilbert-Huang Transform and Machine Learning

    OpenAIRE

    Kurbatsky, Victor G.; Spiryaev, Vadim A.; Tomin, Nikita V.; Leahy, Paul G.; Sidorov, Denis N.; Zhukov, Alexei V.

    2014-01-01

    A novel hybrid data-driven approach is developed for forecasting power system parameters with the goal of increasing the efficiency of short-term forecasting studies for non-stationary time-series. The proposed approach is based on mode decomposition and a feature analysis of initial retrospective data using the Hilbert-Huang transform and machine learning algorithms. The random forests and gradient boosting trees learning techniques were examined. The decision tree techniques were used to ra...

  16. Machine learning methods for planning

    CERN Document Server

    Minton, Steven

    1993-01-01

    Machine Learning Methods for Planning provides information pertinent to learning methods for planning and scheduling. This book covers a wide variety of learning methods and learning architectures, including analogical, case-based, decision-tree, explanation-based, and reinforcement learning.Organized into 15 chapters, this book begins with an overview of planning and scheduling and describes some representative learning systems that have been developed for these tasks. This text then describes a learning apprentice for calendar management. Other chapters consider the problem of temporal credi

  17. Pattern Recognition in Collective Cognitive Systems: Hybrid Human-Machine Learning (HHML) By Heterogeneous Ensembles

    CERN Document Server

    Dashti, Hesam T; Siahpirani, Alireza F; Tonejc, Jernej; Uilecan, Ioan V; Simas, Tiago; Miranda, Bruno; Ribeiro, Rita; Wang, Liya; Assadi, Amir H

    2010-01-01

    The ubiquitous role of the cyber-infrastructures, such as the WWW, provides myriad opportunities for machine learning and its broad spectrum of application domains taking advantage of digital communication. Pattern classification and feature extraction are among the first applications of machine learning that have received extensive attention. The most remarkable achievements have addressed data sets of moderate-to-large size. The 'data deluge' in the last decade or two has posed new challenges for AI researchers to design new, effective and accurate algorithms for similar tasks using ultra-massive data sets and complex (natural or synthetic) dynamical systems. We propose a novel principled approach to feature extraction in hybrid architectures comprised of humans and machines in networked communication, who collaborate to solve a pre-assigned pattern recognition (feature extraction) task. There are two practical considerations addressed below: (1) Human experts, such as plant biologists or astronomers, often...

  18. Game-powered machine learning.

    Science.gov (United States)

    Barrington, Luke; Turnbull, Douglas; Lanckriet, Gert

    2012-04-24

    Searching for relevant content in a massive amount of multimedia information is facilitated by accurately annotating each image, video, or song with a large number of relevant semantic keywords, or tags. We introduce game-powered machine learning, an integrated approach to annotating multimedia content that combines the effectiveness of human computation, through online games, with the scalability of machine learning. We investigate this framework for labeling music. First, a socially-oriented music annotation game called Herd It collects reliable music annotations based on the "wisdom of the crowds." Second, these annotated examples are used to train a supervised machine learning system. Third, the machine learning system actively directs the annotation games to collect new data that will most benefit future model iterations. Once trained, the system can automatically annotate a corpus of music much larger than what could be labeled using human computation alone. Automatically annotated songs can be retrieved based on their semantic relevance to text-based queries (e.g., "funky jazz with saxophone," "spooky electronica," etc.). Based on the results presented in this paper, we find that actively coupling annotation games with machine learning provides a reliable and scalable approach to making searchable massive amounts of multimedia data.

  19. Machine Learning with Distances

    Science.gov (United States)

    2015-02-16

    and demonstrated their usefulness in experiments. 1 Introduction The goal of machine learning is to find useful knowledge behind data. Many machine...212, 172]. However, direct divergence approximators still suffer from the curse of dimensionality. A possible cure for this problem is to combine them...obtain the global optimal solution or even a good local solution without any prior knowledge . For this reason, we decided to introduce the unit-norm

  20. Machine Learning in Medicine.

    Science.gov (United States)

    Deo, Rahul C

    2015-11-17

    Spurred by advances in processing power, memory, storage, and an unprecedented wealth of data, computers are being asked to tackle increasingly complex learning tasks, often with astonishing success. Computers have now mastered a popular variant of poker, learned the laws of physics from experimental data, and become experts in video games - tasks that would have been deemed impossible not too long ago. In parallel, the number of companies centered on applying complex data analysis to varying industries has exploded, and it is thus unsurprising that some analytic companies are turning attention to problems in health care. The purpose of this review is to explore what problems in medicine might benefit from such learning approaches and use examples from the literature to introduce basic concepts in machine learning. It is important to note that seemingly large enough medical data sets and adequate learning algorithms have been available for many decades, and yet, although there are thousands of papers applying machine learning algorithms to medical data, very few have contributed meaningfully to clinical care. This lack of impact stands in stark contrast to the enormous relevance of machine learning to many other industries. Thus, part of my effort will be to identify what obstacles there may be to changing the practice of medicine through statistical learning approaches, and discuss how these might be overcome.

  1. Clojure for machine learning

    CERN Document Server

    Wali, Akhil

    2014-01-01

    A book that brings out the strengths of Clojure programming that have to facilitate machine learning. Each topic is described in substantial detail, and examples and libraries in Clojure are also demonstrated.This book is intended for Clojure developers who want to explore the area of machine learning. Basic understanding of the Clojure programming language is required, but thorough acquaintance with the standard Clojure library or any libraries are not required. Familiarity with theoretical concepts and notation of mathematics and statistics would be an added advantage.

  2. Mastering machine learning with scikit-learn

    CERN Document Server

    Hackeling, Gavin

    2014-01-01

    If you are a software developer who wants to learn how machine learning models work and how to apply them effectively, this book is for you. Familiarity with machine learning fundamentals and Python will be helpful, but is not essential.

  3. Nondegenerate piecewise linear systems: a finite Newton algorithm and applications in machine learning.

    Science.gov (United States)

    Yuan, Xiao-Tong; Yan, Shuicheng

    2012-04-01

    We investigate Newton-type optimization methods for solving piecewise linear systems (PLSs) with nondegenerate coefficient matrix. Such systems arise, for example, from the numerical solution of linear complementarity problem, which is useful to model several learning and optimization problems. In this letter, we propose an effective damped Newton method, PLS-DN, to find the exact (up to machine precision) solution of nondegenerate PLSs. PLS-DN exhibits provable semiiterative property, that is, the algorithm converges globally to the exact solution in a finite number of iterations. The rate of convergence is shown to be at least linear before termination. We emphasize the applications of our method in modeling, from a novel perspective of PLSs, some statistical learning problems such as box-constrained least squares, elitist Lasso (Kowalski & Torreesani, 2008), and support vector machines (Cortes & Vapnik, 1995). Numerical results on synthetic and benchmark data sets are presented to demonstrate the effectiveness and efficiency of PLS-DN on these problems.

  4. Hand gesture recognition system based in computer vision and machine learning

    OpenAIRE

    Trigueiros, Paulo; Ribeiro, António Fernando; Reis, L.P.

    2015-01-01

    "Lecture notes in computational vision and biomechanics series, ISSN 2212-9391, vol. 19" Hand gesture recognition is a natural way of human computer interaction and an area of very active research in computer vision and machine learning. This is an area with many different possible applications, giving users a simpler and more natural way to communicate with robots/systems interfaces, without the need for extra devices. So, the primary goal of gesture recognition research applied to Hum...

  5. Massively collaborative machine learning

    NARCIS (Netherlands)

    Rijn, van J.N.

    2016-01-01

    Many scientists are focussed on building models. We nearly process all information we perceive to a model. There are many techniques that enable computers to build models as well. The field of research that develops such techniques is called Machine Learning. Many research is devoted to develop comp

  6. Machine Learning Control For Highly Reconfigurable High-Order Systems

    Science.gov (United States)

    2015-01-02

    This work was extended to overactuated systems by Snell et al. [15]. More recently, the same concept has been employed to design longitudinal...for Aircraft,” Journal of Guidance, Control, and Dynamics, Vol. 10, No. 1, 1987, pp. 67–72. doi:10.2514/3.20182 [15] Snell , S. A., Enns, D. F., and

  7. Evaluating Machine Learning Classifiers for Hybrid Network Intrusion Detection Systems

    Science.gov (United States)

    2015-03-26

    5 2.2.1 Snort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2.2 Bro ...Snort Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3. Structure of Bro System [34...103 x List of Tables Table Page 2.1. Bro conn.log Fields [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

  8. Machine learning in image steganalysis

    CERN Document Server

    Schaathun, Hans Georg

    2012-01-01

    "The only book to look at steganalysis from the perspective of machine learning theory, and to apply the common technique of machine learning to the particular field of steganalysis; ideal for people working in both disciplines"--

  9. New Applications of Learning Machines

    DEFF Research Database (Denmark)

    Larsen, Jan

    * Machine learning framework for sound search * Genre classification * Music separation * MIMO channel estimation and symbol detection......* Machine learning framework for sound search * Genre classification * Music separation * MIMO channel estimation and symbol detection...

  10. New Applications of Learning Machines

    DEFF Research Database (Denmark)

    Larsen, Jan

    * Machine learning framework for sound search * Genre classification * Music separation * MIMO channel estimation and symbol detection......* Machine learning framework for sound search * Genre classification * Music separation * MIMO channel estimation and symbol detection...

  11. A generic trust framework for large-scale open systems using machine learning

    CERN Document Server

    Liu, Xin; Datta, Anwitaman

    2011-01-01

    In many large scale distributed systems and on the web, agents need to interact with other unknown agents to carry out some tasks or transactions. The ability to reason about and assess the potential risks in carrying out such transactions is essential for providing a safe and reliable environment. A traditional approach to reason about the trustworthiness of a transaction is to determine the trustworthiness of the specific agent involved, derived from the history of its behavior. As a departure from such traditional trust models, we propose a generic, machine learning approach based trust framework where an agent uses its own previous transactions (with other agents) to build a knowledge base, and utilize this to assess the trustworthiness of a transaction based on associated features, which are capable of distinguishing successful transactions from unsuccessful ones. These features are harnessed using appropriate machine learning algorithms to extract relationships between the potential transaction and prev...

  12. ISOLATED SPEECH RECOGNITION SYSTEM FOR TAMIL LANGUAGE USING STATISTICAL PATTERN MATCHING AND MACHINE LEARNING TECHNIQUES

    Directory of Open Access Journals (Sweden)

    VIMALA C.

    2015-05-01

    Full Text Available In recent years, speech technology has become a vital part of our daily lives. Various techniques have been proposed for developing Automatic Speech Recognition (ASR system and have achieved great success in many applications. Among them, Template Matching techniques like Dynamic Time Warping (DTW, Statistical Pattern Matching techniques such as Hidden Markov Model (HMM and Gaussian Mixture Models (GMM, Machine Learning techniques such as Neural Networks (NN, Support Vector Machine (SVM, and Decision Trees (DT are most popular. The main objective of this paper is to design and develop a speaker-independent isolated speech recognition system for Tamil language using the above speech recognition techniques. The background of ASR system, the steps involved in ASR, merits and demerits of the conventional and machine learning algorithms and the observations made based on the experiments are presented in this paper. For the above developed system, highest word recognition accuracy is achieved with HMM technique. It offered 100% accuracy during training process and 97.92% for testing process.

  13. Machine Learning and Computer Vision System for Phenotype Data Acquisition and Analysis in Plants

    Directory of Open Access Journals (Sweden)

    Pedro J. Navarro

    2016-05-01

    Full Text Available Phenomics is a technology-driven approach with promising future to obtain unbiased data of biological systems. Image acquisition is relatively simple. However data handling and analysis are not as developed compared to the sampling capacities. We present a system based on machine learning (ML algorithms and computer vision intended to solve the automatic phenotype data analysis in plant material. We developed a growth-chamber able to accommodate species of various sizes. Night image acquisition requires near infrared lightning. For the ML process, we tested three different algorithms: k-nearest neighbour (kNN, Naive Bayes Classifier (NBC, and Support Vector Machine. Each ML algorithm was executed with different kernel functions and they were trained with raw data and two types of data normalisation. Different metrics were computed to determine the optimal configuration of the machine learning algorithms. We obtained a performance of 99.31% in kNN for RGB images and a 99.34% in SVM for NIR. Our results show that ML techniques can speed up phenomic data analysis. Furthermore, both RGB and NIR images can be segmented successfully but may require different ML algorithms for segmentation.

  14. Machine Learning and Computer Vision System for Phenotype Data Acquisition and Analysis in Plants.

    Science.gov (United States)

    Navarro, Pedro J; Pérez, Fernando; Weiss, Julia; Egea-Cortines, Marcos

    2016-05-05

    Phenomics is a technology-driven approach with promising future to obtain unbiased data of biological systems. Image acquisition is relatively simple. However data handling and analysis are not as developed compared to the sampling capacities. We present a system based on machine learning (ML) algorithms and computer vision intended to solve the automatic phenotype data analysis in plant material. We developed a growth-chamber able to accommodate species of various sizes. Night image acquisition requires near infrared lightning. For the ML process, we tested three different algorithms: k-nearest neighbour (kNN), Naive Bayes Classifier (NBC), and Support Vector Machine. Each ML algorithm was executed with different kernel functions and they were trained with raw data and two types of data normalisation. Different metrics were computed to determine the optimal configuration of the machine learning algorithms. We obtained a performance of 99.31% in kNN for RGB images and a 99.34% in SVM for NIR. Our results show that ML techniques can speed up phenomic data analysis. Furthermore, both RGB and NIR images can be segmented successfully but may require different ML algorithms for segmentation.

  15. Machine Learning at Scale

    OpenAIRE

    Izrailev, Sergei; Stanley, Jeremy M.

    2014-01-01

    It takes skill to build a meaningful predictive model even with the abundance of implementations of modern machine learning algorithms and readily available computing resources. Building a model becomes challenging if hundreds of terabytes of data need to be processed to produce the training data set. In a digital advertising technology setting, we are faced with the need to build thousands of such models that predict user behavior and power advertising campaigns in a 24/7 chaotic real-time p...

  16. Machine learning and complex-network for personalized and systems biomedicine

    KAUST Repository

    Cannistraci, Carlo Vittorio

    2016-01-27

    The talk will begin with an introduction on using machine learning to discover hidden information and unexpected patterns in large biomedical datasets. Then, recent results on the use of complex network theory in biomedicine and neuroscience will be discussed. In particular, metagenomics and metabolomics data, approaches for drug-target repositioning, functional/structural MR connectomes and gut-brain axis data will be presented. The conclusion will outline the novel and exciting perspectives offered by the translation of these methods from systems biology to systems medicine.

  17. Web-based newborn screening system for metabolic diseases: machine learning versus clinicians.

    Science.gov (United States)

    Chen, Wei-Hsin; Hsieh, Sheau-Ling; Hsu, Kai-Ping; Chen, Han-Ping; Su, Xing-Yu; Tseng, Yi-Ju; Chien, Yin-Hsiu; Hwu, Wuh-Liang; Lai, Feipei

    2013-05-23

    A hospital information system (HIS) that integrates screening data and interpretation of the data is routinely requested by hospitals and parents. However, the accuracy of disease classification may be low because of the disease characteristics and the analytes used for classification. The objective of this study is to describe a system that enhanced the neonatal screening system of the Newborn Screening Center at the National Taiwan University Hospital. The system was designed and deployed according to a service-oriented architecture (SOA) framework under the Web services .NET environment. The system consists of sample collection, testing, diagnosis, evaluation, treatment, and follow-up services among collaborating hospitals. To improve the accuracy of newborn screening, machine learning and optimal feature selection mechanisms were investigated for screening newborns for inborn errors of metabolism. The framework of the Newborn Screening Hospital Information System (NSHIS) used the embedded Health Level Seven (HL7) standards for data exchanges among heterogeneous platforms integrated by Web services in the C# language. In this study, machine learning classification was used to predict phenylketonuria (PKU), hypermethioninemia, and 3-methylcrotonyl-CoA-carboxylase (3-MCC) deficiency. The classification methods used 347,312 newborn dried blood samples collected at the Center between 2006 and 2011. Of these, 220 newborns had values over the diagnostic cutoffs (positive cases) and 1557 had values that were over the screening cutoffs but did not meet the diagnostic cutoffs (suspected cases). The original 35 analytes and the manifested features were ranked based on F score, then combinations of the top 20 ranked features were selected as input features to support vector machine (SVM) classifiers to obtain optimal feature sets. These feature sets were tested using 5-fold cross-validation and optimal models were generated. The datasets collected in year 2011 were used as

  18. Collective Machine Learning: Team Learning and Classification in Multi-Agent Systems

    Science.gov (United States)

    Gifford, Christopher M.

    2009-01-01

    This dissertation focuses on the collaboration of multiple heterogeneous, intelligent agents (hardware or software) which collaborate to learn a task and are capable of sharing knowledge. The concept of collaborative learning in multi-agent and multi-robot systems is largely under studied, and represents an area where further research is needed to…

  19. Collective Machine Learning: Team Learning and Classification in Multi-Agent Systems

    Science.gov (United States)

    Gifford, Christopher M.

    2009-01-01

    This dissertation focuses on the collaboration of multiple heterogeneous, intelligent agents (hardware or software) which collaborate to learn a task and are capable of sharing knowledge. The concept of collaborative learning in multi-agent and multi-robot systems is largely under studied, and represents an area where further research is needed to…

  20. Machine learning with R cookbook

    CERN Document Server

    Chiu, Yu-Wei

    2015-01-01

    If you want to learn how to use R for machine learning and gain insights from your data, then this book is ideal for you. Regardless of your level of experience, this book covers the basics of applying R to machine learning through to advanced techniques. While it is helpful if you are familiar with basic programming or machine learning concepts, you do not require prior experience to benefit from this book.

  1. Extreme learning machines 2013 algorithms and applications

    CERN Document Server

    Toh, Kar-Ann; Romay, Manuel; Mao, Kezhi

    2014-01-01

    In recent years, ELM has emerged as a revolutionary technique of computational intelligence, and has attracted considerable attentions. An extreme learning machine (ELM) is a single layer feed-forward neural network alike learning system, whose connections from the input layer to the hidden layer are randomly generated, while the connections from the hidden layer to the output layer are learned through linear learning methods. The outstanding merits of extreme learning machine (ELM) are its fast learning speed, trivial human intervene and high scalability.   This book contains some selected papers from the International Conference on Extreme Learning Machine 2013, which was held in Beijing China, October 15-17, 2013. This conference aims to bring together the researchers and practitioners of extreme learning machine from a variety of fields including artificial intelligence, biomedical engineering and bioinformatics, system modelling and control, and signal and image processing, to promote research and discu...

  2. Machine-learning approach for local classification of crystalline structures in multiphase systems

    Science.gov (United States)

    Dietz, C.; Kretz, T.; Thoma, M. H.

    2017-07-01

    Machine learning is one of the most popular fields in computer science and has a vast number of applications. In this work we will propose a method that will use a neural network to locally identify crystal structures in a mixed phase Yukawa system consisting of fcc, hcp, and bcc clusters and disordered particles similar to plasma crystals. We compare our approach to already used methods and show that the quality of identification increases significantly. The technique works very well for highly disturbed lattices and shows a flexible and robust way to classify crystalline structures that can be used by only providing particle positions. This leads to insights into highly disturbed crystalline structures.

  3. Attractor Control Using Machine Learning

    CERN Document Server

    Duriez, Thomas; Noack, Bernd R; Cordier, Laurent; Segond, Marc; Abel, Markus

    2013-01-01

    We propose a general strategy for feedback control design of complex dynamical systems exploiting the nonlinear mechanisms in a systematic unsupervised manner. These dynamical systems can have a state space of arbitrary dimension with finite number of actuators (multiple inputs) and sensors (multiple outputs). The control law maps outputs into inputs and is optimized with respect to a cost function, containing physics via the dynamical or statistical properties of the attractor to be controlled. Thus, we are capable of exploiting nonlinear mechanisms, e.g. chaos or frequency cross-talk, serving the control objective. This optimization is based on genetic programming, a branch of machine learning. This machine learning control is successfully applied to the stabilization of nonlinearly coupled oscillators and maximization of Lyapunov exponent of a forced Lorenz system. We foresee potential applications to most nonlinear multiple inputs/multiple outputs control problems, particulary in experiments.

  4. Prediction of druggable proteins using machine learning and systems biology: a mini-review

    Directory of Open Access Journals (Sweden)

    Gaurav eKandoi

    2015-12-01

    Full Text Available The emergence of -omics technologies has allowed the collection of vast amounts of data on biological systems. Although the pace of such collection has been exponential, the impact of these data remains small on many critical biomedical applications such as drug development. Limited resources, high costs and low hit-to-lead ratio have led researchers to search for more cost effective methodologies. A possible alternative is to incorporate computational methods of potential drug target prediction early during drug discovery workflow. Computational methods based on systems approaches have the advantage of taking into account the global properties of a molecule not limited to its sequence, structure or function. Machine learning techniques are powerful tools that can extract relevant information from massive and noisy data sets. In recent years the scientific community has explored the combined power of these fields to propose increasingly accurate and low cost methods to propose interesting drug targets. In this mini-review, we describe promising approaches based on the simultaneous use of systems biology and machine learning to access gene and protein druggability. Moreover, we discuss the state-of-the-art of this emerging and interdisciplinary field, discussing data sources, algorithms and the performance of the different methodologies. Finally, we indicate interesting avenues of research and some remaining open challenges.

  5. Quantum-Enhanced Machine Learning.

    Science.gov (United States)

    Dunjko, Vedran; Taylor, Jacob M; Briegel, Hans J

    2016-09-23

    The emerging field of quantum machine learning has the potential to substantially aid in the problems and scope of artificial intelligence. This is only enhanced by recent successes in the field of classical machine learning. In this work we propose an approach for the systematic treatment of machine learning, from the perspective of quantum information. Our approach is general and covers all three main branches of machine learning: supervised, unsupervised, and reinforcement learning. While quantum improvements in supervised and unsupervised learning have been reported, reinforcement learning has received much less attention. Within our approach, we tackle the problem of quantum enhancements in reinforcement learning as well, and propose a systematic scheme for providing improvements. As an example, we show that quadratic improvements in learning efficiency, and exponential improvements in performance over limited time periods, can be obtained for a broad class of learning problems.

  6. Quantum-Enhanced Machine Learning

    Science.gov (United States)

    Dunjko, Vedran; Taylor, Jacob M.; Briegel, Hans J.

    2016-09-01

    The emerging field of quantum machine learning has the potential to substantially aid in the problems and scope of artificial intelligence. This is only enhanced by recent successes in the field of classical machine learning. In this work we propose an approach for the systematic treatment of machine learning, from the perspective of quantum information. Our approach is general and covers all three main branches of machine learning: supervised, unsupervised, and reinforcement learning. While quantum improvements in supervised and unsupervised learning have been reported, reinforcement learning has received much less attention. Within our approach, we tackle the problem of quantum enhancements in reinforcement learning as well, and propose a systematic scheme for providing improvements. As an example, we show that quadratic improvements in learning efficiency, and exponential improvements in performance over limited time periods, can be obtained for a broad class of learning problems.

  7. Quantum adiabatic machine learning

    CERN Document Server

    Pudenz, Kristen L

    2011-01-01

    We develop an approach to machine learning and anomaly detection via quantum adiabatic evolution. In the training phase we identify an optimal set of weak classifiers, to form a single strong classifier. In the testing phase we adiabatically evolve one or more strong classifiers on a superposition of inputs in order to find certain anomalous elements in the classification space. Both the training and testing phases are executed via quantum adiabatic evolution. We apply and illustrate this approach in detail to the problem of software verification and validation.

  8. Machine learning in healthcare informatics

    CERN Document Server

    Acharya, U; Dua, Prerna

    2014-01-01

    The book is a unique effort to represent a variety of techniques designed to represent, enhance, and empower multi-disciplinary and multi-institutional machine learning research in healthcare informatics. The book provides a unique compendium of current and emerging machine learning paradigms for healthcare informatics and reflects the diversity, complexity and the depth and breath of this multi-disciplinary area. The integrated, panoramic view of data and machine learning techniques can provide an opportunity for novel clinical insights and discoveries.

  9. A New Profile Learning Model for Recommendation System based on Machine Learning Technique

    Directory of Open Access Journals (Sweden)

    Shereen H. Ali

    2016-03-01

    Full Text Available Recommender systems (RSs have been used to successfully address the information overload problem by providing personalized and targeted recommendations to the end users. RSs are software tools and techniques providing suggestions for items to be of use to a user, hence, they typically apply techniques and methodologies from Data Mining. The main contribution of this paper is to introduce a new user profile learning model to promote the recommendation accuracy of vertical recommendation systems. The proposed profile learning model employs the vertical classifier that has been used in multi classification module of the Intelligent Adaptive Vertical Recommendation (IAVR system to discover the user’s area of interest, and then build the user’s profile accordingly. Experimental results have proven the effectiveness of the proposed profile learning model, which accordingly will promote the recommendation accuracy.

  10. Machine learning phases of matter

    OpenAIRE

    Carrasquilla, Juan; Melko, Roger G.

    2016-01-01

    Neural networks can be used to identify phases and phase transitions in condensed matter systems via supervised machine learning. Readily programmable through modern software libraries, we show that a standard feed-forward neural network can be trained to detect multiple types of order parameter directly from raw state configurations sampled with Monte Carlo. In addition, they can detect highly non-trivial states such as Coulomb phases, and if modified to a convolutional neural network, topol...

  11. Optimized Extreme Learning Machine for Power System Transient Stability Prediction Using Synchrophasors

    Directory of Open Access Journals (Sweden)

    Yanjun Zhang

    2015-01-01

    Full Text Available A new optimized extreme learning machine- (ELM- based method for power system transient stability prediction (TSP using synchrophasors is presented in this paper. First, the input features symbolizing the transient stability of power systems are extracted from synchronized measurements. Then, an ELM classifier is employed to build the TSP model. And finally, the optimal parameters of the model are optimized by using the improved particle swarm optimization (IPSO algorithm. The novelty of the proposal is in the fact that it improves the prediction performance of the ELM-based TSP model by using IPSO to optimize the parameters of the model with synchrophasors. And finally, based on the test results on both IEEE 39-bus system and a large-scale real power system, the correctness and validity of the presented approach are verified.

  12. Stacked Extreme Learning Machines.

    Science.gov (United States)

    Zhou, Hongming; Huang, Guang-Bin; Lin, Zhiping; Wang, Han; Soh, Yeng Chai

    2015-09-01

    Extreme learning machine (ELM) has recently attracted many researchers' interest due to its very fast learning speed, good generalization ability, and ease of implementation. It provides a unified solution that can be used directly to solve regression, binary, and multiclass classification problems. In this paper, we propose a stacked ELMs (S-ELMs) that is specially designed for solving large and complex data problems. The S-ELMs divides a single large ELM network into multiple stacked small ELMs which are serially connected. The S-ELMs can approximate a very large ELM network with small memory requirement. To further improve the testing accuracy on big data problems, the ELM autoencoder can be implemented during each iteration of the S-ELMs algorithm. The simulation results show that the S-ELMs even with random hidden nodes can achieve similar testing accuracy to support vector machine (SVM) while having low memory requirements. With the help of ELM autoencoder, the S-ELMs can achieve much better testing accuracy than SVM and slightly better accuracy than deep belief network (DBN) with much faster training speed.

  13. Leveraging Expert Knowledge to Improve Machine-Learned Decision Support Systems

    Science.gov (United States)

    Kuusisto, Finn; Dutra, Inês; Elezaby, Mai; Mendonça, Eneida A.; Shavlik, Jude; Burnside, Elizabeth S.

    2015-01-01

    While the use of machine learning methods in clinical decision support has great potential for improving patient care, acquiring standardized, complete, and sufficient training data presents a major challenge for methods relying exclusively on machine learning techniques. Domain experts possess knowledge that can address these challenges and guide model development. We present Advice-Based-Learning (ABLe), a framework for incorporating expert clinical knowledge into machine learning models, and show results for an example task: estimating the probability of malignancy following a non-definitive breast core needle biopsy. By applying ABLe to this task, we demonstrate a statistically significant improvement in specificity (24.0% with p=0.004) without missing a single malignancy. PMID:26306246

  14. Leveraging Expert Knowledge to Improve Machine-Learned Decision Support Systems.

    Science.gov (United States)

    Kuusisto, Finn; Dutra, Inês; Elezaby, Mai; Mendonça, Eneida A; Shavlik, Jude; Burnside, Elizabeth S

    2015-01-01

    While the use of machine learning methods in clinical decision support has great potential for improving patient care, acquiring standardized, complete, and sufficient training data presents a major challenge for methods relying exclusively on machine learning techniques. Domain experts possess knowledge that can address these challenges and guide model development. We present Advice-Based-Learning (ABLe), a framework for incorporating expert clinical knowledge into machine learning models, and show results for an example task: estimating the probability of malignancy following a non-definitive breast core needle biopsy. By applying ABLe to this task, we demonstrate a statistically significant improvement in specificity (24.0% with p=0.004) without missing a single malignancy.

  15. Application of Machine Learning Approaches in Intrusion Detection System: A Survey

    Directory of Open Access Journals (Sweden)

    Nutan Farah Haq

    2015-03-01

    Full Text Available Network security is one of the major concerns of the modern era. With the rapid development and massive usage of internet over the past decade, the vulnerabilities of network security have become an important issue. Intrusion detection system is used to identify unauthorized access and unusual attacks over the secured networks. Over the past years, many studies have been conducted on the intrusion detection system. However, in order to understand the current status of implementation of machine learning techniques for solving the intrusion detection problems this survey paper enlisted the 49 related studies in the time frame between 2009 and 2014 focusing on the architecture of the single, hybrid and ensemble classifier design. This survey paper also includes a statistical comparison of classifier algorithms, datasets being used and some other experimental setups as well as consideration of feature selection step.

  16. Machine Learning Exciton Dynamics

    CERN Document Server

    Häse, Florian; Pyzer-Knapp, Edward; Aspuru-Guzik, Alán

    2015-01-01

    Obtaining the exciton dynamics of large photosynthetic complexes by using mixed quantum mechanics/molecular mechanics (QM/MM) is computationally demanding. We propose a machine learning technique, multi-layer perceptrons, as a tool to reduce the time required to compute excited state energies. With this approach we predict time-dependent density functional theory (TDDFT) excited state energies of bacteriochlorophylls in the Fenna-Matthews-Olson (FMO) complex. Additionally we compute spectral densities and exciton populations from the predictions. Different methods to determine multi-layer perceptron training sets are introduced, leading to several initial data selections. In addition, we compute spectral densities and exciton populations. Once multi-layer perceptrons are trained, predicting excited state energies was found to be significantly faster than the corresponding QM/MM calculations. We showed that multi-layer perceptrons can successfully reproduce the energies of QM/MM calculations to a high degree o...

  17. Machine Learning Algorithms For Predicting the Instability Timescales of Compact Planetary Systems

    Science.gov (United States)

    Tamayo, Daniel; Ali-Dib, Mohamad; Cloutier, Ryan; Huang, Chelsea; Van Laerhoven, Christa L.; Leblanc, Rejean; Menou, Kristen; Murray, Norman; Obertas, Alysa; Paradise, Adiv; Petrovich, Cristobal; Rachkov, Aleksandar; Rein, Hanno; Silburt, Ari; Tacik, Nick; Valencia, Diana

    2016-10-01

    The Kepler mission has uncovered hundreds of compact multi-planet systems. The dynamical pathways to instability in these compact systems and their associated timescales are not well understood theoretically. However, long-term stability is often used as a constraint to narrow down the space of orbital solutions from the transit data. This requires a large suite of N-body integrations that can each take several weeks to complete. This computational bottleneck is therefore an important limitation in our ability to characterize compact multi-planet systems.From suites of numerical simulations, previous studies have fit simple scaling relations between the instability timescale and various system parameters. However, the numerically simulated systems can deviate strongly from these empirical fits.We present a new approach to the problem using machine learning algorithms that have enjoyed success across a broad range of high-dimensional industry applications. In particular, we have generated large training sets of direct N-body integrations of synthetic compact planetary systems to train several regression models (support vector machine, gradient boost) that predict the instability timescale. We find that ensembling these models predicts the instability timescale of planetary systems better than previous approaches using the simple scaling relations mentioned above.Finally, we will discuss how these models provide a powerful tool for not only understanding the current Kepler multi-planet sample, but also for characterizing and shaping the radial-velocity follow-up strategies of multi-planet systems from the upcoming Transiting Exoplanet Survey Satellite (TESS) mission, given its shorter observation baselines.

  18. An Automated System for Skeletal Maturity Assessment by Extreme Learning Machines.

    Science.gov (United States)

    Mansourvar, Marjan; Shamshirband, Shahaboddin; Raj, Ram Gopal; Gunalan, Roshan; Mazinani, Iman

    2015-01-01

    Assessing skeletal age is a subjective and tedious examination process. Hence, automated assessment methods have been developed to replace manual evaluation in medical applications. In this study, a new fully automated method based on content-based image retrieval and using extreme learning machines (ELM) is designed and adapted to assess skeletal maturity. The main novelty of this approach is it overcomes the segmentation problem as suffered by existing systems. The estimation results of ELM models are compared with those of genetic programming (GP) and artificial neural networks (ANNs) models. The experimental results signify improvement in assessment accuracy over GP and ANN, while generalization capability is possible with the ELM approach. Moreover, the results are indicated that the ELM model developed can be used confidently in further work on formulating novel models of skeletal age assessment strategies. According to the experimental results, the new presented method has the capacity to learn many hundreds of times faster than traditional learning methods and it has sufficient overall performance in many aspects. It has conclusively been found that applying ELM is particularly promising as an alternative method for evaluating skeletal age.

  19. An Automated System for Skeletal Maturity Assessment by Extreme Learning Machines.

    Directory of Open Access Journals (Sweden)

    Marjan Mansourvar

    Full Text Available Assessing skeletal age is a subjective and tedious examination process. Hence, automated assessment methods have been developed to replace manual evaluation in medical applications. In this study, a new fully automated method based on content-based image retrieval and using extreme learning machines (ELM is designed and adapted to assess skeletal maturity. The main novelty of this approach is it overcomes the segmentation problem as suffered by existing systems. The estimation results of ELM models are compared with those of genetic programming (GP and artificial neural networks (ANNs models. The experimental results signify improvement in assessment accuracy over GP and ANN, while generalization capability is possible with the ELM approach. Moreover, the results are indicated that the ELM model developed can be used confidently in further work on formulating novel models of skeletal age assessment strategies. According to the experimental results, the new presented method has the capacity to learn many hundreds of times faster than traditional learning methods and it has sufficient overall performance in many aspects. It has conclusively been found that applying ELM is particularly promising as an alternative method for evaluating skeletal age.

  20. Machine learning in virtual screening.

    Science.gov (United States)

    Melville, James L; Burke, Edmund K; Hirst, Jonathan D

    2009-05-01

    In this review, we highlight recent applications of machine learning to virtual screening, focusing on the use of supervised techniques to train statistical learning algorithms to prioritize databases of molecules as active against a particular protein target. Both ligand-based similarity searching and structure-based docking have benefited from machine learning algorithms, including naïve Bayesian classifiers, support vector machines, neural networks, and decision trees, as well as more traditional regression techniques. Effective application of these methodologies requires an appreciation of data preparation, validation, optimization, and search methodologies, and we also survey developments in these areas.

  1. Integrating Symbolic and Statistical Methods for Testing Intelligent Systems Applications to Machine Learning and Computer Vision

    Energy Technology Data Exchange (ETDEWEB)

    Jha, Sumit Kumar [University of Central Florida, Orlando; Pullum, Laura L [ORNL; Ramanathan, Arvind [ORNL

    2016-01-01

    Embedded intelligent systems ranging from tiny im- plantable biomedical devices to large swarms of autonomous un- manned aerial systems are becoming pervasive in our daily lives. While we depend on the flawless functioning of such intelligent systems, and often take their behavioral correctness and safety for granted, it is notoriously difficult to generate test cases that expose subtle errors in the implementations of machine learning algorithms. Hence, the validation of intelligent systems is usually achieved by studying their behavior on representative data sets, using methods such as cross-validation and bootstrapping.In this paper, we present a new testing methodology for studying the correctness of intelligent systems. Our approach uses symbolic decision procedures coupled with statistical hypothesis testing to. We also use our algorithm to analyze the robustness of a human detection algorithm built using the OpenCV open-source computer vision library. We show that the human detection implementation can fail to detect humans in perturbed video frames even when the perturbations are so small that the corresponding frames look identical to the naked eye.

  2. Predicting Software Faults in Large Space Systems using Machine Learning Techniques

    Directory of Open Access Journals (Sweden)

    Bhekisipho Twala

    2011-07-01

    Full Text Available Recently, the use of machine learning (ML algorithms has proven to be of great practical value in solving a variety of engineering problems including the prediction of failure, fault, and defect-proneness as the space system software becomes complex. One of the most active areas of recent research in ML has been the use of ensemble classifiers. How ML techniques (or classifiers could be used to predict software faults in space systems, including many aerospace systems is shown, and further use ensemble individual classifiers by having them vote for the most popular class to improve system software fault-proneness prediction. Benchmarking results on four NASA public datasets show the Naive Bayes classifier as more robust software fault prediction while most ensembles with a decision tree classifier as one of its components achieve higher accuracy rates.Defence Science Journal, 2011, 61(4, pp.306-316, DOI:http://dx.doi.org/10.14429/dsj.61.1088

  3. Machine Learning examples on Invenio

    CERN Document Server

    CERN. Geneva

    2017-01-01

    This talk will present the different Machine Learning tools that the INSPIRE is developing and integrating in order to automatize as much as possible content selection and curation in a subject based repository.

  4. Machine learning for healthcare technologies

    CERN Document Server

    Clifton, David A

    2016-01-01

    This book brings together chapters on the state-of-the-art in machine learning (ML) as it applies to the development of patient-centred technologies, with a special emphasis on 'big data' and mobile data.

  5. Scikit-learn: Machine Learning in Python

    OpenAIRE

    Pedregosa, Fabian; Varoquaux, Gaël; Gramfort, Alexandre; Michel, Vincent; Thirion, Bertrand; Grisel, Olivier; Blondel, Mathieu; Prettenhofer, Peter; Weiss, Ron; Dubourg, Vincent; Vanderplas, Jake; Passos, Alexandre; Cournapeau, David; Brucher, Matthieu; Perrot, Matthieu

    2011-01-01

    International audience; Scikit-learn is a Python module integrating a wide range of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised problems. This package focuses on bringing machine learning to non-specialists using a general-purpose high-level language. Emphasis is put on ease of use, performance, documentation, and API consistency. It has minimal dependencies and is distributed under the simplified BSD license, encouraging its use in both academic ...

  6. MACHINE LEARNING IMPLEMENTATION FOR THE CLASSIFICATION OF ATTACKS ON WEB SYSTEMS. PART 1

    Directory of Open Access Journals (Sweden)

    K. Smirnova

    2017-08-01

    Full Text Available The possibility of applying machine learning is considered for the classification of malicious requests to a Web application. This approach excludes the use of deterministic analysis systems (for example, expert systems, and based on the application of a cascade of neural networks or perceptrons on an approximate model to the real human brain. The main idea of the work is to enable to describe complex attack vectors consisting of feature sets, abstract terms for compiling a training sample, controlling the quality of recognition and classifying each of the layers (networks participating in the work, with the ability to adjust not the entire network, But only a small part of it, in the training of which a mistake or inaccuracy crept in.  The design of the developed network can be described as a cascaded, scalable neural network.  The developed system of intrusion detection uses a three-layer neural network. Layers can be built independently of each other by cascades. In the first layer, for each class of attack recognition, there is a corresponding network and correctness is checked on this network. To learn this layer, we have chosen classes of things that can be classified uniquely as yes or no, that is, they are linearly separable. Thus, a layer is obtained not just of neurons, but of their microsets, which can best determine whether is there some data class in the query or not. The following layers are not trained to recognize the attacks themselves, they are trained that a set of attacks creates certain threats. This allows you to more accurately recognize the attacker's attempts to bypass the defense system, as well as classify the target of the attack, and not just its fact. Simple layering allows you to minimize the percentage of false positives.

  7. Learning with Support Vector Machines

    CERN Document Server

    Campbell, Colin

    2010-01-01

    Support Vectors Machines have become a well established tool within machine learning. They work well in practice and have now been used across a wide range of applications from recognizing hand-written digits, to face identification, text categorisation, bioinformatics, and database marketing. In this book we give an introductory overview of this subject. We start with a simple Support Vector Machine for performing binary classification before considering multi-class classification and learning in the presence of noise. We show that this framework can be extended to many other scenarios such a

  8. Machine Learning Phases of Strongly Correlated Fermions

    Directory of Open Access Journals (Sweden)

    Kelvin Ch’ng

    2017-08-01

    Full Text Available Machine learning offers an unprecedented perspective for the problem of classifying phases in condensed matter physics. We employ neural-network machine learning techniques to distinguish finite-temperature phases of the strongly correlated fermions on cubic lattices. We show that a three-dimensional convolutional network trained on auxiliary field configurations produced by quantum Monte Carlo simulations of the Hubbard model can correctly predict the magnetic phase diagram of the model at the average density of one (half filling. We then use the network, trained at half filling, to explore the trend in the transition temperature as the system is doped away from half filling. This transfer learning approach predicts that the instability to the magnetic phase extends to at least 5% doping in this region. Our results pave the way for other machine learning applications in correlated quantum many-body systems.

  9. Machine Learning Phases of Strongly Correlated Fermions

    Science.gov (United States)

    Ch'ng, Kelvin; Carrasquilla, Juan; Melko, Roger G.; Khatami, Ehsan

    2017-07-01

    Machine learning offers an unprecedented perspective for the problem of classifying phases in condensed matter physics. We employ neural-network machine learning techniques to distinguish finite-temperature phases of the strongly correlated fermions on cubic lattices. We show that a three-dimensional convolutional network trained on auxiliary field configurations produced by quantum Monte Carlo simulations of the Hubbard model can correctly predict the magnetic phase diagram of the model at the average density of one (half filling). We then use the network, trained at half filling, to explore the trend in the transition temperature as the system is doped away from half filling. This transfer learning approach predicts that the instability to the magnetic phase extends to at least 5% doping in this region. Our results pave the way for other machine learning applications in correlated quantum many-body systems.

  10. Machine learning for evolution strategies

    CERN Document Server

    Kramer, Oliver

    2016-01-01

    This book introduces numerous algorithmic hybridizations between both worlds that show how machine learning can improve and support evolution strategies. The set of methods comprises covariance matrix estimation, meta-modeling of fitness and constraint functions, dimensionality reduction for search and visualization of high-dimensional optimization processes, and clustering-based niching. After giving an introduction to evolution strategies and machine learning, the book builds the bridge between both worlds with an algorithmic and experimental perspective. Experiments mostly employ a (1+1)-ES and are implemented in Python using the machine learning library scikit-learn. The examples are conducted on typical benchmark problems illustrating algorithmic concepts and their experimental behavior. The book closes with a discussion of related lines of research.

  11. Water quality of Danube Delta systems: ecological status and prediction using machine-learning algorithms.

    Science.gov (United States)

    Stoica, C; Camejo, J; Banciu, A; Nita-Lazar, M; Paun, I; Cristofor, S; Pacheco, O R; Guevara, M

    2016-01-01

    Environmental issues have a worldwide impact on water bodies, including the Danube Delta, the largest European wetland. The Water Framework Directive (2000/60/EC) implementation operates toward solving environmental issues from European and national level. As a consequence, the water quality and the biocenosis structure was altered, especially the composition of the macro invertebrate community which is closely related to habitat and substrate heterogeneity. This study aims to assess the ecological status of Southern Branch of the Danube Delta, Saint Gheorghe, using benthic fauna and a computational method as an alternative for monitoring the water quality in real time. The analysis of spatial and temporal variability of unicriterial and multicriterial indices were used to assess the current status of aquatic systems. In addition, chemical status was characterized. Coliform bacteria and several chemical parameters were used to feed machine-learning (ML) algorithms to simulate a real-time classification method. Overall, the assessment of the water bodies indicated a moderate ecological status based on the biological quality elements or a good ecological status based on chemical and ML algorithms criteria.

  12. A Framework for Intelligent Instructional Systems: An Artificial Intelligence Machine Learning Approach.

    Science.gov (United States)

    Becker, Lee A.

    1987-01-01

    Presents and develops a general model of the nature of a learning system and a classification for learning systems. Highlights include the relationship between artificial intelligence and cognitive psychology; computer-based instructional systems; intelligent instructional systems; and the role of the learner's knowledge base in an intelligent…

  13. Higgs Machine Learning Challenge 2014

    CERN Multimedia

    Olivier, A-P; Bourdarios, C ; LAL / Orsay; Goldfarb, S ; University of Michigan

    2014-01-01

    High Energy Physics (HEP) has been using Machine Learning (ML) techniques such as boosted decision trees (paper) and neural nets since the 90s. These techniques are now routinely used for difficult tasks such as the Higgs boson search. Nevertheless, formal connections between the two research fields are rather scarce, with some exceptions such as the AppStat group at LAL, founded in 2006. In collaboration with INRIA, AppStat promotes interdisciplinary research on machine learning, computational statistics, and high-energy particle and astroparticle physics. We are now exploring new ways to improve the cross-fertilization of the two fields by setting up a data challenge, following the footsteps of, among others, the astrophysics community (dark matter and galaxy zoo challenges) and neurobiology (connectomics and decoding the human brain). The organization committee consists of ATLAS physicists and machine learning researchers. The Challenge will run from Monday 12th to September 2014.

  14. Machine learning methods in chemoinformatics

    Science.gov (United States)

    Mitchell, John B O

    2014-01-01

    Machine learning algorithms are generally developed in computer science or adjacent disciplines and find their way into chemical modeling by a process of diffusion. Though particular machine learning methods are popular in chemoinformatics and quantitative structure–activity relationships (QSAR), many others exist in the technical literature. This discussion is methods-based and focused on some algorithms that chemoinformatics researchers frequently use. It makes no claim to be exhaustive. We concentrate on methods for supervised learning, predicting the unknown property values of a test set of instances, usually molecules, based on the known values for a training set. Particularly relevant approaches include Artificial Neural Networks, Random Forest, Support Vector Machine, k-Nearest Neighbors and naïve Bayes classifiers. WIREs Comput Mol Sci 2014, 4:468–481. How to cite this article: WIREs Comput Mol Sci 2014, 4:468–481. doi:10.1002/wcms.1183 PMID:25285160

  15. Machine learning phases of matter

    Science.gov (United States)

    Carrasquilla, Juan; Melko, Roger G.

    2017-02-01

    Condensed-matter physics is the study of the collective behaviour of infinitely complex assemblies of electrons, nuclei, magnetic moments, atoms or qubits. This complexity is reflected in the size of the state space, which grows exponentially with the number of particles, reminiscent of the `curse of dimensionality' commonly encountered in machine learning. Despite this curse, the machine learning community has developed techniques with remarkable abilities to recognize, classify, and characterize complex sets of data. Here, we show that modern machine learning architectures, such as fully connected and convolutional neural networks, can identify phases and phase transitions in a variety of condensed-matter Hamiltonians. Readily programmable through modern software libraries, neural networks can be trained to detect multiple types of order parameter, as well as highly non-trivial states with no conventional order, directly from raw state configurations sampled with Monte Carlo.

  16. Optimizing a machine learning based glioma grading system using multi-parametric MRI histogram and texture features.

    Science.gov (United States)

    Zhang, Xin; Yan, Lin-Feng; Hu, Yu-Chuan; Li, Gang; Yang, Yang; Han, Yu; Sun, Ying-Zhi; Liu, Zhi-Cheng; Tian, Qiang; Han, Zi-Yang; Liu, Le-De; Hu, Bin-Quan; Qiu, Zi-Yu; Wang, Wen; Cui, Guang-Bin

    2017-07-18

    Current machine learning techniques provide the opportunity to develop noninvasive and automated glioma grading tools, by utilizing quantitative parameters derived from multi-modal magnetic resonance imaging (MRI) data. However, the efficacies of different machine learning methods in glioma grading have not been investigated.A comprehensive comparison of varied machine learning methods in differentiating low-grade gliomas (LGGs) and high-grade gliomas (HGGs) as well as WHO grade II, III and IV gliomas based on multi-parametric MRI images was proposed in the current study. The parametric histogram and image texture attributes of 120 glioma patients were extracted from the perfusion, diffusion and permeability parametric maps of preoperative MRI. Then, 25 commonly used machine learning classifiers combined with 8 independent attribute selection methods were applied and evaluated using leave-one-out cross validation (LOOCV) strategy. Besides, the influences of parameter selection on the classifying performances were investigated. We found that support vector machine (SVM) exhibited superior performance to other classifiers. By combining all tumor attributes with synthetic minority over-sampling technique (SMOTE), the highest classifying accuracy of 0.945 or 0.961 for LGG and HGG or grade II, III and IV gliomas was achieved. Application of Recursive Feature Elimination (RFE) attribute selection strategy further improved the classifying accuracies. Besides, the performances of LibSVM, SMO, IBk classifiers were influenced by some key parameters such as kernel type, c, gama, K, etc. SVM is a promising tool in developing automated preoperative glioma grading system, especially when being combined with RFE strategy. Model parameters should be considered in glioma grading model optimization.

  17. Machine Learning Optimization of Evolvable Artificial Cells

    DEFF Research Database (Denmark)

    Caschera, F.; Rasmussen, S.; Hanczyc, M.

    2011-01-01

    can be explored. A machine learning approach (Evo-DoE) could be applied to explore this experimental space and define optimal interactions according to a specific fitness function. Herein an implementation of an evolutionary design of experiments to optimize chemical and biochemical systems based...... on a machine learning process is presented. The optimization proceeds over generations of experiments in iterative loop until optimal compositions are discovered. The fitness function is experimentally measured every time the loop is closed. Two examples of complex systems, namely a liposomal drug formulation...

  18. Machine Learning in Medicine

    National Research Council Canada - National Science Library

    Deo, Rahul C

    2015-01-01

    Spurred by advances in processing power, memory, storage, and an unprecedented wealth of data, computers are being asked to tackle increasingly complex learning tasks, often with astonishing success...

  19. Bionic machines and systems

    Energy Technology Data Exchange (ETDEWEB)

    Halme, A.; Paanajaervi, J. (eds.)

    2004-07-01

    Introduction Biological systems form a versatile and complex entirety on our planet. One evolutionary branch of primates, called humans, has created an extraordinary skill, called technology, by the aid of which it nowadays dominate life on the planet. Humans use technology for producing and harvesting food, healthcare and reproduction, increasing their capability to commute and communicate, defending their territory etc., and to develop more technology. As a result of this, humans have become much technology dependent, so that they have been forced to form a specialized class of humans, called engineers, who take care of the knowledge of technology developing it further and transferring it to later generations. Until now, technology has been relatively independent from biology, although some of its branches, e.g. biotechnology and biomedical engineering, have traditionally been in close contact with it. There exist, however, an increasing interest to expand the interface between technology and biology either by directly utilizing biological processes or materials by combining them with 'dead' technology, or by mimicking in technological solutions the biological innovations created by evolution. The latter theme is in focus of this report, which has been written as the proceeding of the post-graduate seminar 'Bionic Machines and Systems' held at HUT Automation Technology Laboratory in autumn 2003. The underlaying idea of the seminar was to analyze biological species by considering them as 'robotic machines' having various functional subsystems, such as for energy, motion and motion control, perception, navigation, mapping and localization. We were also interested about intelligent capabilities, such as learning and communication, and social structures like swarming behavior and its mechanisms. The word 'bionic machine' comes from the book which was among the initial material when starting our mission to the fascinating world

  20. Prediction of chronic damage in systemic lupus erythematosus by using machine-learning models

    Science.gov (United States)

    Perricone, Carlo; Galvan, Giulio; Morelli, Francesco; Vicente, Luis Nunes; Leccese, Ilaria; Massaro, Laura; Cipriano, Enrica; Spinelli, Francesca Romana; Alessandri, Cristiano; Valesini, Guido; Conti, Fabrizio

    2017-01-01

    Objective The increased survival in Systemic Lupus Erythematosus (SLE) patients implies the development of chronic damage, occurring in up to 50% of cases. Its prevention is a major goal in the SLE management. We aimed at predicting chronic damage in a large monocentric SLE cohort by using neural networks. Methods We enrolled 413 SLE patients (M/F 30/383; mean age ± SD 46.3±11.9 years; mean disease duration ± SD 174.6 ± 112.1 months). Chronic damage was assessed by the SLICC/ACR Damage Index (SDI). We applied Recurrent Neural Networks (RNNs) as a machine-learning model to predict the risk of chronic damage. The clinical data sequences registered for each patient during the follow-up were used for building and testing the RNNs. Results At the first visit in the Lupus Clinic, 35.8% of patients had an SDI≥1. For the RNN model, two groups of patients were analyzed: patients with SDI = 0 at the baseline, developing damage during the follow-up (N = 38), and patients without damage (SDI = 0). We created a mathematical model with an AUC value of 0.77, able to predict damage development. A threshold value of 0.35 (sensitivity 0.74, specificity 0.76) seemed able to identify patients at risk to develop damage. Conclusion We applied RNNs to identify a prediction model for SLE chronic damage. The use of the longitudinal data from the Sapienza Lupus Cohort, including laboratory and clinical items, resulted able to construct a mathematical model, potentially identifying patients at risk to develop damage. PMID:28329014

  1. Machine Learning in Parliament Elections

    Directory of Open Access Journals (Sweden)

    Ahmad Esfandiari

    2012-09-01

    Full Text Available Parliament is considered as one of the most important pillars of the country governance. The parliamentary elections and prediction it, had been considered by scholars of from various field like political science long ago. Some important features are used to model the results of consultative parliament elections. These features are as follows: reputation and popularity, political orientation, tradesmen's support, clergymen's support, support from political wings and the type of supportive wing. Two parameters of reputation and popularity and the support of clergymen and religious scholars that have more impact in reducing of prediction error in election results, have been used as input parameters in implementation. In this study, the Iranian parliamentary elections, modeled and predicted using learnable machines of neural network and neuro-fuzzy. Neuro-fuzzy machine combines the ability of knowledge representation of fuzzy sets and the learning power of neural networks simultaneously. In predicting the social and political behavior, the neural network is first trained by two learning algorithms using the training data set and then this machine predict the result on test data. Next, the learning of neuro-fuzzy inference machine is performed. Then, be compared the results of two machines.

  2. Part Machinability Evaluation System

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    In the early design period, estimation of the part or the whole product machinability is useful to consider the function and process request of the product at the same time so as to globally optimize the design decision. This paper presents a part machinability evaluation system, discusses the general restrictions of part machinability, and realizes the inspection of these restrictions with the relation between tool scan space and part model. During the system development, the expansibility and understandability were considered, and an independent restriction algorithm library and a general function library were set up. Additionally, the system has an interpreter and a knowledge manager.

  3. Machine Learning for Education: Learning to Teach

    Science.gov (United States)

    2016-12-01

    1 Machine Learning for Education: Learning to Teach Matthew C. Gombolay, Reed Jensen, Sung-Hyun Son Massachusetts Institute of Technology Lincoln...training tools and develop military strategies within their training environment. Second, we develop methods for improving warfighter education: learning to...and do not necessarily reflect the views of the Department of the Navy. RAMS # 1001485 Fig. 1. SGD enables development of automated teaching tools for

  4. Attention: A Machine Learning Perspective

    DEFF Research Database (Denmark)

    Hansen, Lars Kai

    2012-01-01

    We review a statistical machine learning model of top-down task driven attention based on the notion of ‘gist’. In this framework we consider the task to be represented as a classification problem with two sets of features — a gist of coarse grained global features and a larger set of low...

  5. Machine Learning applications in CMS

    CERN Document Server

    CERN. Geneva

    2017-01-01

    Machine Learning is used in many aspects of CMS data taking, monitoring, processing and analysis. We review a few of these use cases and the most recent developments, with an outlook to future applications in the LHC Run III and for the High-Luminosity phase.

  6. Machine learning for identifying botnet network traffic

    DEFF Research Database (Denmark)

    Stevanovic, Matija; Pedersen, Jens Myrup

    2013-01-01

    . Due to promise of non-invasive and resilient detection, botnet detection based on network traffic analysis has drawn a special attention of the research community. Furthermore, many authors have turned their attention to the use of machine learning algorithms as the mean of inferring botnet......-related knowledge from the monitored traffic. This paper presents a review of contemporary botnet detection methods that use machine learning as a tool of identifying botnet-related traffic. The main goal of the paper is to provide a comprehensive overview on the field by summarizing current scientific efforts....... The contribution of the paper is three-fold. First, the paper provides a detailed insight on the existing detection methods by investigating which bot-related heuristic were assumed by the detection systems and how different machine learning techniques were adapted in order to capture botnet-related knowledge...

  7. Learning scikit-learn machine learning in Python

    CERN Document Server

    Garreta, Raúl

    2013-01-01

    The book adopts a tutorial-based approach to introduce the user to Scikit-learn.If you are a programmer who wants to explore machine learning and data-based methods to build intelligent applications and enhance your programming skills, this the book for you. No previous experience with machine-learning algorithms is required.

  8. Machine learning a probabilistic perspective

    CERN Document Server

    Murphy, Kevin P

    2012-01-01

    Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach. The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic method...

  9. Prototype-based models in machine learning

    NARCIS (Netherlands)

    Biehl, Michael; Hammer, Barbara; Villmann, Thomas

    2016-01-01

    An overview is given of prototype-based models in machine learning. In this framework, observations, i.e., data, are stored in terms of typical representatives. Together with a suitable measure of similarity, the systems can be employed in the context of unsupervised and supervised analysis of poten

  10. Prototype-based models in machine learning

    NARCIS (Netherlands)

    Biehl, Michael; Hammer, Barbara; Villmann, Thomas

    2016-01-01

    An overview is given of prototype-based models in machine learning. In this framework, observations, i.e., data, are stored in terms of typical representatives. Together with a suitable measure of similarity, the systems can be employed in the context of unsupervised and supervised analysis of

  11. Learning Extended Finite State Machines

    Science.gov (United States)

    Cassel, Sofia; Howar, Falk; Jonsson, Bengt; Steffen, Bernhard

    2014-01-01

    We present an active learning algorithm for inferring extended finite state machines (EFSM)s, combining data flow and control behavior. Key to our learning technique is a novel learning model based on so-called tree queries. The learning algorithm uses the tree queries to infer symbolic data constraints on parameters, e.g., sequence numbers, time stamps, identifiers, or even simple arithmetic. We describe sufficient conditions for the properties that the symbolic constraints provided by a tree query in general must have to be usable in our learning model. We have evaluated our algorithm in a black-box scenario, where tree queries are realized through (black-box) testing. Our case studies include connection establishment in TCP and a priority queue from the Java Class Library.

  12. Statistical and Machine-Learning Classifier Framework to Improve Pulse Shape Discrimination System Design

    Energy Technology Data Exchange (ETDEWEB)

    Wurtz, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kaplan, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-28

    Pulse shape discrimination (PSD) is a variety of statistical classifier. Fully-­realized statistical classifiers rely on a comprehensive set of tools for designing, building, and implementing. PSD advances rely on improvements to the implemented algorithm. PSD advances can be improved by using conventional statistical classifier or machine learning methods. This paper provides the reader with a glossary of classifier-­building elements and their functions in a fully-­designed and operational classifier framework that can be used to discover opportunities for improving PSD classifier projects. This paper recommends reporting the PSD classifier’s receiver operating characteristic (ROC) curve and its behavior at a gamma rejection rate (GRR) relevant for realistic applications.

  13. Learning Machine Learning: A Case Study

    Science.gov (United States)

    Lavesson, N.

    2010-01-01

    This correspondence reports on a case study conducted in the Master's-level Machine Learning (ML) course at Blekinge Institute of Technology, Sweden. The students participated in a self-assessment test and a diagnostic test of prerequisite subjects, and their results on these tests are correlated with their achievement of the course's learning…

  14. Learning Machine Learning: A Case Study

    Science.gov (United States)

    Lavesson, N.

    2010-01-01

    This correspondence reports on a case study conducted in the Master's-level Machine Learning (ML) course at Blekinge Institute of Technology, Sweden. The students participated in a self-assessment test and a diagnostic test of prerequisite subjects, and their results on these tests are correlated with their achievement of the course's learning…

  15. New Trends in Computing Anticipatory Systems : Emergence of Artificial Conscious Intelligence with Machine Learning Natural Language

    Science.gov (United States)

    Dubois, Daniel M.

    2008-10-01

    This paper deals with the challenge to create an Artificial Intelligence System with an Artificial Consciousness. For that, an introduction to computing anticipatory systems is presented, with the definitions of strong and weak anticipation. The quasi-anticipatory systems of Robert Rosen are linked to open-loop controllers. Then, some properties of the natural brain are presented in relation to the triune brain theory of Paul D. MacLean, and the mind time of Benjamin Libet, with his veto of the free will. The theory of the hyperincursive discrete anticipatory systems is recalled in view to introduce the concept of hyperincursive free will, which gives a similar veto mechanism: free will as unpredictable hyperincursive anticipation The concepts of endo-anticipation and exo-anticipation are then defined. Finally, some ideas about artificial conscious intelligence with natural language are presented, in relation to the Turing Machine, Formal Language, Intelligent Agents and Mutli-Agent System.

  16. Galaxy Classification using Machine Learning

    Science.gov (United States)

    Fowler, Lucas; Schawinski, Kevin; Brandt, Ben-Elias; widmer, Nicole

    2017-01-01

    We present our current research into the use of machine learning to classify galaxy imaging data with various convolutional neural network configurations in TensorFlow. We are investigating how five-band Sloan Digital Sky Survey imaging data can be used to train on physical properties such as redshift, star formation rate, mass and morphology. We also investigate the performance of artificially redshifted images in recovering physical properties as image quality degrades.

  17. Cybernetic anthropomorphic machine systems

    Science.gov (United States)

    Gray, W. E.

    1974-01-01

    Functional descriptions are provided for a number of cybernetic man machine systems that augment the capacity of normal human beings in the areas of strength, reach or physical size, and environmental interaction, and that are also applicable to aiding the neurologically handicapped. Teleoperators, computer control, exoskeletal devices, quadruped vehicles, space maintenance systems, and communications equipment are considered.

  18. Classifying smoking urges via machine learning.

    Science.gov (United States)

    Dumortier, Antoine; Beckjord, Ellen; Shiffman, Saul; Sejdić, Ervin

    2016-12-01

    Smoking is the largest preventable cause of death and diseases in the developed world, and advances in modern electronics and machine learning can help us deliver real-time intervention to smokers in novel ways. In this paper, we examine different machine learning approaches to use situational features associated with having or not having urges to smoke during a quit attempt in order to accurately classify high-urge states. To test our machine learning approaches, specifically, Bayes, discriminant analysis and decision tree learning methods, we used a dataset collected from over 300 participants who had initiated a quit attempt. The three classification approaches are evaluated observing sensitivity, specificity, accuracy and precision. The outcome of the analysis showed that algorithms based on feature selection make it possible to obtain high classification rates with only a few features selected from the entire dataset. The classification tree method outperformed the naive Bayes and discriminant analysis methods, with an accuracy of the classifications up to 86%. These numbers suggest that machine learning may be a suitable approach to deal with smoking cessation matters, and to predict smoking urges, outlining a potential use for mobile health applications. In conclusion, machine learning classifiers can help identify smoking situations, and the search for the best features and classifier parameters significantly improves the algorithms' performance. In addition, this study also supports the usefulness of new technologies in improving the effect of smoking cessation interventions, the management of time and patients by therapists, and thus the optimization of available health care resources. Future studies should focus on providing more adaptive and personalized support to people who really need it, in a minimum amount of time by developing novel expert systems capable of delivering real-time interventions. Copyright © 2016 Elsevier Ireland Ltd. All rights

  19. Estimation of in-situ bioremediation system cost using a hybrid Extreme Learning Machine (ELM)-particle swarm optimization approach

    Science.gov (United States)

    Yadav, Basant; Ch, Sudheer; Mathur, Shashi; Adamowski, Jan

    2016-12-01

    In-situ bioremediation is the most common groundwater remediation procedure used for treating organically contaminated sites. A simulation-optimization approach, which incorporates a simulation model for groundwaterflow and transport processes within an optimization program, could help engineers in designing a remediation system that best satisfies management objectives as well as regulatory constraints. In-situ bioremediation is a highly complex, non-linear process and the modelling of such a complex system requires significant computational exertion. Soft computing techniques have a flexible mathematical structure which can generalize complex nonlinear processes. In in-situ bioremediation management, a physically-based model is used for the simulation and the simulated data is utilized by the optimization model to optimize the remediation cost. The recalling of simulator to satisfy the constraints is an extremely tedious and time consuming process and thus there is need for a simulator which can reduce the computational burden. This study presents a simulation-optimization approach to achieve an accurate and cost effective in-situ bioremediation system design for groundwater contaminated with BTEX (Benzene, Toluene, Ethylbenzene, and Xylenes) compounds. In this study, the Extreme Learning Machine (ELM) is used as a proxy simulator to replace BIOPLUME III for the simulation. The selection of ELM is done by a comparative analysis with Artificial Neural Network (ANN) and Support Vector Machine (SVM) as they were successfully used in previous studies of in-situ bioremediation system design. Further, a single-objective optimization problem is solved by a coupled Extreme Learning Machine (ELM)-Particle Swarm Optimization (PSO) technique to achieve the minimum cost for the in-situ bioremediation system design. The results indicate that ELM is a faster and more accurate proxy simulator than ANN and SVM. The total cost obtained by the ELM-PSO approach is held to a minimum

  20. Ten million and one penguins, or, lessons learned from booting millions of virtual machines on HPC systems.

    Energy Technology Data Exchange (ETDEWEB)

    Minnich, Ronald G.; Rudish, Donald W.

    2009-01-01

    In this paper we describe Megatux, a set of tools we are developing for rapid provisioning of millions of virtual machines and controlling and monitoring them, as well as what we've learned from booting one million Linux virtual machines on the Thunderbird (4660 nodes) and 550,000 Linux virtual machines on the Hyperion (1024 nodes) clusters. As might be expected, our tools use hierarchical structures. In contrast to existing HPC systems, our tools do not require perfect hardware; that all systems be booted at the same time; and static configuration files that define the role of each node. While we believe these tools will be useful for future HPC systems, we are using them today to construct botnets. Botnets have been in the news recently, as discoveries of their scale (millions of infected machines for even a single botnet) and their reach (global) and their impact on organizations (devastating in financial costs and time lost to recovery) have become more apparent. A distinguishing feature of botnets is their emergent behavior: fairly simple operational rule sets can result in behavior that cannot be predicted. In general, there is no reducible understanding of how a large network will behave ahead of 'running it'. 'Running it' means observing the actual network in operation or simulating/emulating it. Unfortunately, this behavior is only seen at scale, i.e. when at minimum 10s of thousands of machines are infected. To add to the problem, botnets typically change at least 11% of the machines they are using in any given week, and this changing population is an integral part of their behavior. The use of virtual machines to assist in the forensics of malware is not new to the cyber security world. Reverse engineering techniques often use virtual machines in combination with code debuggers. Nevertheless, this task largely remains a manual process to get past code obfuscation and is inherently slow. As part of our cyber security work at

  1. Machine learning for medical images analysis.

    Science.gov (United States)

    Criminisi, A

    2016-10-01

    This article discusses the application of machine learning for the analysis of medical images. Specifically: (i) We show how a special type of learning models can be thought of as automatically optimized, hierarchically-structured, rule-based algorithms, and (ii) We discuss how the issue of collecting large labelled datasets applies to both conventional algorithms as well as machine learning techniques. The size of the training database is a function of model complexity rather than a characteristic of machine learning methods.

  2. Strange Beta: An Assistance System for Indoor Rock Climbing Route Setting Using Chaotic Variations and Machine Learning

    CERN Document Server

    Phillips, Caleb; Bradley, Elizabeth

    2011-01-01

    This paper applies machine learning and the mathematics of chaos to the task of designing indoor rock-climbing routes. Chaotic variation has been used to great advantage on music and dance, but the challenges here are quite different, beginning with the representation. We present a formalized system for transcribing rock climbing problems, then describe a variation generator that is designed to support human route-setters in designing new and interesting climbing problems. This variation generator, termed Strange Beta, combines chaos and machine learning, using the former to introduce novelty and the latter to smooth transitions in a manner that is consistent with the style of the climbs This entails parsing the domain-specific natural language that rock climbers use to describe routes and movement and then learning the patterns in the results. We validated this approach with a pilot study in a small university rock climbing gym, followed by a large blinded study in a commercial climbing gym, in cooperation w...

  3. Interface Metaphors for Interactive Machine Learning

    Energy Technology Data Exchange (ETDEWEB)

    Jasper, Robert J.; Blaha, Leslie M.

    2017-07-14

    To promote more interactive and dynamic machine learn- ing, we revisit the notion of user-interface metaphors. User-interface metaphors provide intuitive constructs for supporting user needs through interface design elements. A user-interface metaphor provides a visual or action pattern that leverages a user’s knowledge of another domain. Metaphors suggest both the visual representations that should be used in a display as well as the interactions that should be afforded to the user. We argue that user-interface metaphors can also offer a method of extracting interaction-based user feedback for use in machine learning. Metaphors offer indirect, context-based information that can be used in addition to explicit user inputs, such as user-provided labels. Implicit information from user interactions with metaphors can augment explicit user input for active learning paradigms. Or it might be leveraged in systems where explicit user inputs are more challenging to obtain. Each interaction with the metaphor provides an opportunity to gather data and learn. We argue this approach is especially important in streaming applications, where we desire machine learning systems that can adapt to dynamic, changing data.

  4. Machine learning analysis of binaural rowing sounds

    DEFF Research Database (Denmark)

    Johard, Leonard; Ruffaldi, Emanuele; Hoffmann, Pablo F.

    2011-01-01

    Techniques for machine hearing are increasing their potentiality due to new application domains. In this work we are addressing the analysis of rowing sounds in natural context for the purpose of supporting a training system based on virtual environments. This paper presents the acquisition metho...... methodology and the evaluation of different machine learning techniques for classifying rowing-sound data. We see that a combination of principal component analysis and shallow networks perform equally well as deep architectures, while being much faster to train....

  5. Machine Learning Analysis of Binaural Rowing Sounds

    Directory of Open Access Journals (Sweden)

    Filippeschi Alessandro

    2011-12-01

    Full Text Available Techniques for machine hearing are increasing their potentiality due to new application domains. In this work we are addressing the analysis of rowing sounds in natural context for the purpose of supporting a training system based on virtual environments. This paper presents the acquisition methodology and the evaluation of different machine learning techniques for classifying rowing-sound data. We see that a combination of principal component analysis and shallow networks perform equally well as deep architectures, while being much faster to train.

  6. An active role for machine learning in drug development

    Science.gov (United States)

    Murphy, Robert F.

    2014-01-01

    Due to the complexity of biological systems, cutting-edge machine-learning methods will be critical for future drug development. In particular, machine-vision methods to extract detailed information from imaging assays and active-learning methods to guide experimentation will be required to overcome the dimensionality problem in drug development. PMID:21587249

  7. Continual Learning through Evolvable Neural Turing Machines

    DEFF Research Database (Denmark)

    Lüders, Benno; Schläger, Mikkel; Risi, Sebastian

    2016-01-01

    Continual learning, i.e. the ability to sequentially learn tasks without catastrophic forgetting of previously learned ones, is an important open challenge in machine learning. In this paper we take a step in this direction by showing that the recently proposed Evolving Neural Turing Machine (ENTM......) approach is able to perform one-shot learning in a reinforcement learning task without catastrophic forgetting of previously stored associations....

  8. Reverse hypothesis machine learning a practitioner's perspective

    CERN Document Server

    Kulkarni, Parag

    2017-01-01

    This book introduces a paradigm of reverse hypothesis machines (RHM), focusing on knowledge innovation and machine learning. Knowledge- acquisition -based learning is constrained by large volumes of data and is time consuming. Hence Knowledge innovation based learning is the need of time. Since under-learning results in cognitive inabilities and over-learning compromises freedom, there is need for optimal machine learning. All existing learning techniques rely on mapping input and output and establishing mathematical relationships between them. Though methods change the paradigm remains the same—the forward hypothesis machine paradigm, which tries to minimize uncertainty. The RHM, on the other hand, makes use of uncertainty for creative learning. The approach uses limited data to help identify new and surprising solutions. It focuses on improving learnability, unlike traditional approaches, which focus on accuracy. The book is useful as a reference book for machine learning researchers and professionals as ...

  9. Machine learning analysis of binaural rowing sounds

    DEFF Research Database (Denmark)

    Johard, Leonard; Ruffaldi, Emanuele; Hoffmann, Pablo F.

    2011-01-01

    Techniques for machine hearing are increasing their potentiality due to new application domains. In this work we are addressing the analysis of rowing sounds in natural context for the purpose of supporting a training system based on virtual environments. This paper presents the acquisition metho...... methodology and the evaluation of different machine learning techniques for classifying rowing-sound data. We see that a combination of principal component analysis and shallow networks perform equally well as deep architectures, while being much faster to train.......Techniques for machine hearing are increasing their potentiality due to new application domains. In this work we are addressing the analysis of rowing sounds in natural context for the purpose of supporting a training system based on virtual environments. This paper presents the acquisition...

  10. Virtual machine vs Real Machine: Security Systems

    Directory of Open Access Journals (Sweden)

    Dr. C. Suresh Gnana Das

    2009-08-01

    Full Text Available This paper argues that the operating system and applications currently running on a real machine should relocate into a virtual machine. This structure enables services to be added below the operating system and to do so without trusting or modifying the operating system or applications. To demonstrate the usefulness of this structure, we describe three services that take advantage of it: secure logging, intrusion prevention and detection, and environment migration. In particular, we can provide services below the guest operating system without trusting or modifying it. We believe providing services at this layer are especially useful for enhancing security and mobility. This position paper describes the general benefits and challenges that arise from running most applications in a virtual machine, and then describes some example services and alternative ways to provide those services.

  11. On-the-Fly Learning in a Perpetual Learning Machine

    OpenAIRE

    2015-01-01

    Despite the promise of brain-inspired machine learning, deep neural networks (DNN) have frustratingly failed to bridge the deceptively large gap between learning and memory. Here, we introduce a Perpetual Learning Machine; a new type of DNN that is capable of brain-like dynamic 'on the fly' learning because it exists in a self-supervised state of Perpetual Stochastic Gradient Descent. Thus, we provide the means to unify learning and memory within a machine learning framework. We also explore ...

  12. Machine learning approaches in medical image analysis

    DEFF Research Database (Denmark)

    de Bruijne, Marleen

    2016-01-01

    Machine learning approaches are increasingly successful in image-based diagnosis, disease prognosis, and risk assessment. This paper highlights new research directions and discusses three main challenges related to machine learning in medical imaging: coping with variation in imaging protocols......, learning from weak labels, and interpretation and evaluation of results....

  13. Broiler chickens can benefit from machine learning: support vector machine analysis of observational epidemiological data.

    Science.gov (United States)

    Hepworth, Philip J; Nefedov, Alexey V; Muchnik, Ilya B; Morgan, Kenton L

    2012-08-07

    Machine-learning algorithms pervade our daily lives. In epidemiology, supervised machine learning has the potential for classification, diagnosis and risk factor identification. Here, we report the use of support vector machine learning to identify the features associated with hock burn on commercial broiler farms, using routinely collected farm management data. These data lend themselves to analysis using machine-learning techniques. Hock burn, dermatitis of the skin over the hock, is an important indicator of broiler health and welfare. Remarkably, this classifier can predict the occurrence of high hock burn prevalence with accuracy of 0.78 on unseen data, as measured by the area under the receiver operating characteristic curve. We also compare the results with those obtained by standard multi-variable logistic regression and suggest that this technique provides new insights into the data. This novel application of a machine-learning algorithm, embedded in poultry management systems could offer significant improvements in broiler health and welfare worldwide.

  14. Archetypal Analysis for Machine Learning

    DEFF Research Database (Denmark)

    Mørup, Morten; Hansen, Lars Kai

    2010-01-01

    Archetypal analysis (AA) proposed by Cutler and Breiman in [1] estimates the principal convex hull of a data set. As such AA favors features that constitute representative ’corners’ of the data, i.e. distinct aspects or archetypes. We will show that AA enjoys the interpretability of clustering - ...... for K-means [2]. We demonstrate that the AA model is relevant for feature extraction and dimensional reduction for a large variety of machine learning problems taken from computer vision, neuroimaging, text mining and collaborative filtering....

  15. Extreme Learning Machine for land cover classification

    OpenAIRE

    Pal, Mahesh

    2008-01-01

    This paper explores the potential of extreme learning machine based supervised classification algorithm for land cover classification. In comparison to a backpropagation neural network, which requires setting of several user-defined parameters and may produce local minima, extreme learning machine require setting of one parameter and produce a unique solution. ETM+ multispectral data set (England) was used to judge the suitability of extreme learning machine for remote sensing classifications...

  16. Machine learning in genetics and genomics

    Science.gov (United States)

    Libbrecht, Maxwell W.; Noble, William Stafford

    2016-01-01

    The field of machine learning promises to enable computers to assist humans in making sense of large, complex data sets. In this review, we outline some of the main applications of machine learning to genetic and genomic data. In the process, we identify some recurrent challenges associated with this type of analysis and provide general guidelines to assist in the practical application of machine learning to real genetic and genomic data. PMID:25948244

  17. Introducing Machine Learning Concepts with WEKA.

    Science.gov (United States)

    Smith, Tony C; Frank, Eibe

    2016-01-01

    This chapter presents an introduction to data mining with machine learning. It gives an overview of various types of machine learning, along with some examples. It explains how to download, install, and run the WEKA data mining toolkit on a simple data set, then proceeds to explain how one might approach a bioinformatics problem. Finally, it includes a brief summary of machine learning algorithms for other types of data mining problems, and provides suggestions about where to find additional information.

  18. Ozone ensemble forecast with machine learning algorithms

    OpenAIRE

    Mallet, Vivien; Stoltz, Gilles; Mauricette, Boris

    2009-01-01

    International audience; We apply machine learning algorithms to perform sequential aggregation of ozone forecasts. The latter rely on a multimodel ensemble built for ozone forecasting with the modeling system Polyphemus. The ensemble simulations are obtained by changes in the physical parameterizations, the numerical schemes, and the input data to the models. The simulations are carried out for summer 2001 over western Europe in order to forecast ozone daily peaks and ozone hourly concentrati...

  19. Trends in Machine Learning for Signal Processing

    DEFF Research Database (Denmark)

    Adali, Tulay; Miller, David J.; Diamantaras, Konstantinos I.

    2011-01-01

    By putting the accent on learning from the data and the environment, the Machine Learning for SP (MLSP) Technical Committee (TC) provides the essential bridge between the machine learning and SP communities. While the emphasis in MLSP is on learning and data-driven approaches, SP defines the main...... applications of interest, and thus the constraints and requirements on solutions, which include computational efficiency, online adaptation, and learning with limited supervision/reference data....

  20. Advanced Machine learning Algorithm Application for Rotating Machine Health Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kanemoto, Shigeru; Watanabe, Masaya [The University of Aizu, Aizuwakamatsu (Japan); Yusa, Noritaka [Tohoku University, Sendai (Japan)

    2014-08-15

    The present paper tries to evaluate the applicability of conventional sound analysis techniques and modern machine learning algorithms to rotating machine health monitoring. These techniques include support vector machine, deep leaning neural network, etc. The inner ring defect and misalignment anomaly sound data measured by a rotating machine mockup test facility are used to verify the above various kinds of algorithms. Although we cannot find remarkable difference of anomaly discrimination performance, some methods give us the very interesting eigen patterns corresponding to normal and abnormal states. These results will be useful for future more sensitive and robust anomaly monitoring technology.

  1. Data Processing And Machine Learning Methods For Multi-Modal Operator State Classification Systems

    Science.gov (United States)

    Hearn, Tristan A.

    2015-01-01

    This document is intended as an introduction to a set of common signal processing learning methods that may be used in the software portion of a functional crew state monitoring system. This includes overviews of both the theory of the methods involved, as well as examples of implementation. Practical considerations are discussed for implementing modular, flexible, and scalable processing and classification software for a multi-modal, multi-channel monitoring system. Example source code is also given for all of the discussed processing and classification methods.

  2. Classification of Suicide Attempts through a Machine Learning Algorithm Based on Multiple Systemic Psychiatric Scales

    Directory of Open Access Journals (Sweden)

    Jihoon Oh

    2017-09-01

    Full Text Available Classification and prediction of suicide attempts in high-risk groups is important for preventing suicide. The purpose of this study was to investigate whether the information from multiple clinical scales has classification power for identifying actual suicide attempts. Patients with depression and anxiety disorders (N = 573 were included, and each participant completed 31 self-report psychiatric scales and questionnaires about their history of suicide attempts. We then trained an artificial neural network classifier with 41 variables (31 psychiatric scales and 10 sociodemographic elements and ranked the contribution of each variable for the classification of suicide attempts. To evaluate the clinical applicability of our model, we measured classification performance with top-ranked predictors. Our model had an overall accuracy of 93.7% in 1-month, 90.8% in 1-year, and 87.4% in lifetime suicide attempts detection. The area under the receiver operating characteristic curve (AUROC was the highest for 1-month suicide attempts detection (0.93, followed by lifetime (0.89, and 1-year detection (0.87. Among all variables, the Emotion Regulation Questionnaire had the highest contribution, and the positive and negative characteristics of the scales similarly contributed to classification performance. Performance on suicide attempts classification was largely maintained when we only used the top five ranked variables for training (AUROC; 1-month, 0.75, 1-year, 0.85, lifetime suicide attempts detection, 0.87. Our findings indicate that information from self-report clinical scales can be useful for the classification of suicide attempts. Based on the reliable performance of the top five predictors alone, this machine learning approach could help clinicians identify high-risk patients in clinical settings.

  3. Synergistic target combination prediction from curated signaling networks: Machine learning meets systems biology and pharmacology.

    Science.gov (United States)

    Chua, Huey Eng; Bhowmick, Sourav S; Tucker-Kellogg, Lisa

    2017-05-25

    Given a signaling network, the target combination prediction problem aims to predict efficacious and safe target combinations for combination therapy. State-of-the-art in silico methods use Monte Carlo simulated annealing (mcsa) to modify a candidate solution stochastically, and use the Metropolis criterion to accept or reject the proposed modifications. However, such stochastic modifications ignore the impact of the choice of targets and their activities on the combination's therapeutic effect and off-target effects, which directly affect the solution quality. In this paper, we present mascot, a method that addresses this limitation by leveraging two additional heuristic criteria to minimize off-target effects and achieve synergy for candidate modification. Specifically, off-target effects measure the unintended response of a signaling network to the target combination and is often associated with toxicity. Synergy occurs when a pair of targets exerts effects that are greater than the sum of their individual effects, and is generally a beneficial strategy for maximizing effect while minimizing toxicity. mascot leverages on a machine learning-based target prioritization method which prioritizes potential targets in a given disease-associated network to select more effective targets (better therapeutic effect and/or lower off-target effects); and on Loewe additivity theory from pharmacology which assesses the non-additive effects in a combination drug treatment to select synergistic target activities. Our experimental study on two disease-related signaling networks demonstrates the superiority of mascot in comparison to existing approaches. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. A machine learning system for automated whole-brain seizure detection

    Directory of Open Access Journals (Sweden)

    P. Fergus

    2016-01-01

    Full Text Available Epilepsy is a chronic neurological condition that affects approximately 70 million people worldwide. Characterised by sudden bursts of excess electricity in the brain, manifesting as seizures, epilepsy is still not well understood when compared with other neurological disorders. Seizures often happen unexpectedly and attempting to predict them has been a research topic for the last 30 years. Electroencephalograms have been integral to these studies, as the recordings that they produce can capture the brain’s electrical signals. The diagnosis of epilepsy is usually made by a neurologist, but can be difficult to make in the early stages. Supporting para-clinical evidence obtained from magnetic resonance imaging and electroencephalography may enable clinicians to make a diagnosis of epilepsy and instigate treatment earlier. However, electroencephalogram capture and interpretation is time consuming and can be expensive due to the need for trained specialists to perform the interpretation. Automated detection of correlates of seizure activity generalised across different regions of the brain and across multiple subjects may be a solution. This paper explores this idea further and presents a supervised machine learning approach that classifies seizure and non-seizure records using an open dataset containing 342 records (171 seizures and 171 non-seizures. Our approach posits a new method for generalising seizure detection across different subjects without prior knowledge about the focal point of seizures. Our results show an improvement on existing studies with 88% for sensitivity, 88% for specificity and 93% for the area under the curve, with a 12% global error, using the k-NN classifier.

  5. Machine learning in medicine cookbook

    CERN Document Server

    Cleophas, Ton J

    2014-01-01

    The amount of data in medical databases doubles every 20 months, and physicians are at a loss to analyze them. Also, traditional methods of data analysis have difficulty to identify outliers and patterns in big data and data with multiple exposure / outcome variables and analysis-rules for surveys and questionnaires, currently common methods of data collection, are, essentially, missing. Obviously, it is time that medical and health professionals mastered their reluctance to use machine learning and the current 100 page cookbook should be helpful to that aim. It covers in a condensed form the subjects reviewed in the 750 page three volume textbook by the same authors, entitled “Machine Learning in Medicine I-III” (ed. by Springer, Heidelberg, Germany, 2013) and was written as a hand-hold presentation and must-read publication. It was written not only to investigators and students in the fields, but also to jaded clinicians new to the methods and lacking time to read the entire textbooks. General purposes ...

  6. Machine Learning for ATLAS DDM Network Metrics

    CERN Document Server

    Lassnig, Mario; The ATLAS collaboration; Vamosi, Ralf

    2016-01-01

    The increasing volume of physics data is posing a critical challenge to the ATLAS experiment. In anticipation of high luminosity physics, automation of everyday data management tasks has become necessary. Previously many of these tasks required human decision-making and operation. Recent advances in hardware and software have made it possible to entrust more complicated duties to automated systems using models trained by machine learning algorithms. In this contribution we show results from our ongoing automation efforts. First, we describe our framework for distributed data management and network metrics, automatically extract and aggregate data, train models with various machine learning algorithms, and eventually score the resulting models and parameters. Second, we use these models to forecast metrics relevant for network-aware job scheduling and data brokering. We show the characteristics of the data and evaluate the forecasting accuracy of our models.

  7. Scalable Machine Learning for Massive Astronomical Datasets

    Science.gov (United States)

    Ball, Nicholas M.; Gray, A.

    2014-04-01

    We present the ability to perform data mining and machine learning operations on a catalog of half a billion astronomical objects. This is the result of the combination of robust, highly accurate machine learning algorithms with linear scalability that renders the applications of these algorithms to massive astronomical data tractable. We demonstrate the core algorithms kernel density estimation, K-means clustering, linear regression, nearest neighbors, random forest and gradient-boosted decision tree, singular value decomposition, support vector machine, and two-point correlation function. Each of these is relevant for astronomical applications such as finding novel astrophysical objects, characterizing artifacts in data, object classification (including for rare objects), object distances, finding the important features describing objects, density estimation of distributions, probabilistic quantities, and exploring the unknown structure of new data. The software, Skytree Server, runs on any UNIX-based machine, a virtual machine, or cloud-based and distributed systems including Hadoop. We have integrated it on the cloud computing system of the Canadian Astronomical Data Centre, the Canadian Advanced Network for Astronomical Research (CANFAR), creating the world's first cloud computing data mining system for astronomy. We demonstrate results showing the scaling of each of our major algorithms on large astronomical datasets, including the full 470,992,970 objects of the 2 Micron All-Sky Survey (2MASS) Point Source Catalog. We demonstrate the ability to find outliers in the full 2MASS dataset utilizing multiple methods, e.g., nearest neighbors. This is likely of particular interest to the radio astronomy community given, for example, that survey projects contain groups dedicated to this topic. 2MASS is used as a proof-of-concept dataset due to its convenience and availability. These results are of interest to any astronomical project with large and/or complex

  8. Designing Contestability: Interaction Design, Machine Learning, and Mental Health.

    Science.gov (United States)

    Hirsch, Tad; Merced, Kritzia; Narayanan, Shrikanth; Imel, Zac E; Atkins, David C

    2017-06-01

    We describe the design of an automated assessment and training tool for psychotherapists to illustrate challenges with creating interactive machine learning (ML) systems, particularly in contexts where human life, livelihood, and wellbeing are at stake. We explore how existing theories of interaction design and machine learning apply to the psychotherapy context, and identify "contestability" as a new principle for designing systems that evaluate human behavior. Finally, we offer several strategies for making ML systems more accountable to human actors.

  9. Performance evaluation of the machine learning algorithms used in inference mechanism of a medical decision support system.

    Science.gov (United States)

    Bal, Mert; Amasyali, M Fatih; Sever, Hayri; Kose, Guven; Demirhan, Ayse

    2014-01-01

    The importance of the decision support systems is increasingly supporting the decision making process in cases of uncertainty and the lack of information and they are widely used in various fields like engineering, finance, medicine, and so forth, Medical decision support systems help the healthcare personnel to select optimal method during the treatment of the patients. Decision support systems are intelligent software systems that support decision makers on their decisions. The design of decision support systems consists of four main subjects called inference mechanism, knowledge-base, explanation module, and active memory. Inference mechanism constitutes the basis of decision support systems. There are various methods that can be used in these mechanisms approaches. Some of these methods are decision trees, artificial neural networks, statistical methods, rule-based methods, and so forth. In decision support systems, those methods can be used separately or a hybrid system, and also combination of those methods. In this study, synthetic data with 10, 100, 1000, and 2000 records have been produced to reflect the probabilities on the ALARM network. The accuracy of 11 machine learning methods for the inference mechanism of medical decision support system is compared on various data sets.

  10. Performance Evaluation of the Machine Learning Algorithms Used in Inference Mechanism of a Medical Decision Support System

    Directory of Open Access Journals (Sweden)

    Mert Bal

    2014-01-01

    Full Text Available The importance of the decision support systems is increasingly supporting the decision making process in cases of uncertainty and the lack of information and they are widely used in various fields like engineering, finance, medicine, and so forth, Medical decision support systems help the healthcare personnel to select optimal method during the treatment of the patients. Decision support systems are intelligent software systems that support decision makers on their decisions. The design of decision support systems consists of four main subjects called inference mechanism, knowledge-base, explanation module, and active memory. Inference mechanism constitutes the basis of decision support systems. There are various methods that can be used in these mechanisms approaches. Some of these methods are decision trees, artificial neural networks, statistical methods, rule-based methods, and so forth. In decision support systems, those methods can be used separately or a hybrid system, and also combination of those methods. In this study, synthetic data with 10, 100, 1000, and 2000 records have been produced to reflect the probabilities on the ALARM network. The accuracy of 11 machine learning methods for the inference mechanism of medical decision support system is compared on various data sets.

  11. Combining an expert-based medical entity recognizer to a machine-learning system: methods and a case study.

    Science.gov (United States)

    Zweigenbaum, Pierre; Lavergne, Thomas; Grabar, Natalia; Hamon, Thierry; Rosset, Sophie; Grouin, Cyril

    2013-01-01

    Medical entity recognition is currently generally performed by data-driven methods based on supervised machine learning. Expert-based systems, where linguistic and domain expertise are directly provided to the system are often combined with data-driven systems. We present here a case study where an existing expert-based medical entity recognition system, Ogmios, is combined with a data-driven system, Caramba, based on a linear-chain Conditional Random Field (CRF) classifier. Our case study specifically highlights the risk of overfitting incurred by an expert-based system. We observe that it prevents the combination of the 2 systems from obtaining improvements in precision, recall, or F-measure, and analyze the underlying mechanisms through a post-hoc feature-level analysis. Wrapping the expert-based system alone as attributes input to a CRF classifier does boost its F-measure from 0.603 to 0.710, bringing it on par with the data-driven system. The generalization of this method remains to be further investigated.

  12. Performance Evaluation of the Machine Learning Algorithms Used in Inference Mechanism of a Medical Decision Support System

    Science.gov (United States)

    Bal, Mert; Amasyali, M. Fatih; Sever, Hayri; Kose, Guven; Demirhan, Ayse

    2014-01-01

    The importance of the decision support systems is increasingly supporting the decision making process in cases of uncertainty and the lack of information and they are widely used in various fields like engineering, finance, medicine, and so forth, Medical decision support systems help the healthcare personnel to select optimal method during the treatment of the patients. Decision support systems are intelligent software systems that support decision makers on their decisions. The design of decision support systems consists of four main subjects called inference mechanism, knowledge-base, explanation module, and active memory. Inference mechanism constitutes the basis of decision support systems. There are various methods that can be used in these mechanisms approaches. Some of these methods are decision trees, artificial neural networks, statistical methods, rule-based methods, and so forth. In decision support systems, those methods can be used separately or a hybrid system, and also combination of those methods. In this study, synthetic data with 10, 100, 1000, and 2000 records have been produced to reflect the probabilities on the ALARM network. The accuracy of 11 machine learning methods for the inference mechanism of medical decision support system is compared on various data sets. PMID:25295291

  13. Learning as a Machine: Crossovers between Humans and Machines

    Science.gov (United States)

    Hildebrandt, Mireille

    2017-01-01

    This article is a revised version of the keynote presented at LAK '16 in Edinburgh. The article investigates some of the assumptions of learning analytics, notably those related to behaviourism. Building on the work of Ivan Pavlov, Herbert Simon, and James Gibson as ways of "learning as a machine," the article then develops two levels of…

  14. Quantum Loop Topography for Machine Learning

    Science.gov (United States)

    Zhang, Yi; Kim, Eun-Ah

    2017-05-01

    Despite rapidly growing interest in harnessing machine learning in the study of quantum many-body systems, training neural networks to identify quantum phases is a nontrivial challenge. The key challenge is in efficiently extracting essential information from the many-body Hamiltonian or wave function and turning the information into an image that can be fed into a neural network. When targeting topological phases, this task becomes particularly challenging as topological phases are defined in terms of nonlocal properties. Here, we introduce quantum loop topography (QLT): a procedure of constructing a multidimensional image from the "sample" Hamiltonian or wave function by evaluating two-point operators that form loops at independent Monte Carlo steps. The loop configuration is guided by the characteristic response for defining the phase, which is Hall conductivity for the cases at hand. Feeding QLT to a fully connected neural network with a single hidden layer, we demonstrate that the architecture can be effectively trained to distinguish the Chern insulator and the fractional Chern insulator from trivial insulators with high fidelity. In addition to establishing the first case of obtaining a phase diagram with a topological quantum phase transition with machine learning, the perspective of bridging traditional condensed matter theory with machine learning will be broadly valuable.

  15. Machine Learning wins the Higgs Challenge

    CERN Multimedia

    Abha Eli Phoboo

    2014-01-01

    The winner of the four-month-long Higgs Machine Learning Challenge, launched on 12 May, is Gábor Melis from Hungary, followed closely by Tim Salimans from the Netherlands and Pierre Courtiol from France. The challenge explored the potential of advanced machine learning methods to improve the significance of the Higgs discovery.   Winners of the Higgs Machine Learning Challenge: Gábor Melis and Tim Salimans (top row), Tianqi Chen and Tong He (bottom row). Participants in the Higgs Machine Learning Challenge were tasked with developing an algorithm to improve the detection of Higgs boson signal events decaying into two tau particles in a sample of simulated ATLAS data* that contains few signal and a majority of non-Higgs boson “background” events. No knowledge of particle physics was required for the challenge but skills in machine learning - the training of computers to recognise patterns in data – were essential. The Challenge, hosted by Ka...

  16. Machine learning in sedimentation modelling.

    Science.gov (United States)

    Bhattacharya, B; Solomatine, D P

    2006-03-01

    The paper presents machine learning (ML) models that predict sedimentation in the harbour basin of the Port of Rotterdam. The important factors affecting the sedimentation process such as waves, wind, tides, surge, river discharge, etc. are studied, the corresponding time series data is analysed, missing values are estimated and the most important variables behind the process are chosen as the inputs. Two ML methods are used: MLP ANN and M5 model tree. The latter is a collection of piece-wise linear regression models, each being an expert for a particular region of the input space. The models are trained on the data collected during 1992-1998 and tested by the data of 1999-2000. The predictive accuracy of the models is found to be adequate for the potential use in the operational decision making.

  17. Machine learning in motion control

    Science.gov (United States)

    Su, Renjeng; Kermiche, Noureddine

    1989-01-01

    The existing methodologies for robot programming originate primarily from robotic applications to manufacturing, where uncertainties of the robots and their task environment may be minimized by repeated off-line modeling and identification. In space application of robots, however, a higher degree of automation is required for robot programming because of the desire of minimizing the human intervention. We discuss a new paradigm of robotic programming which is based on the concept of machine learning. The goal is to let robots practice tasks by themselves and the operational data are used to automatically improve their motion performance. The underlying mathematical problem is to solve the problem of dynamical inverse by iterative methods. One of the key questions is how to ensure the convergence of the iterative process. There have been a few small steps taken into this important approach to robot programming. We give a representative result on the convergence problem.

  18. Machine learning in motion control

    Science.gov (United States)

    Su, Renjeng; Kermiche, Noureddine

    1989-01-01

    The existing methodologies for robot programming originate primarily from robotic applications to manufacturing, where uncertainties of the robots and their task environment may be minimized by repeated off-line modeling and identification. In space application of robots, however, a higher degree of automation is required for robot programming because of the desire of minimizing the human intervention. We discuss a new paradigm of robotic programming which is based on the concept of machine learning. The goal is to let robots practice tasks by themselves and the operational data are used to automatically improve their motion performance. The underlying mathematical problem is to solve the problem of dynamical inverse by iterative methods. One of the key questions is how to ensure the convergence of the iterative process. There have been a few small steps taken into this important approach to robot programming. We give a representative result on the convergence problem.

  19. Effects of Semantic Features on Machine Learning-Based Drug Name Recognition Systems: Word Embeddings vs. Manually Constructed Dictionaries

    Directory of Open Access Journals (Sweden)

    Shengyu Liu

    2015-12-01

    Full Text Available Semantic features are very important for machine learning-based drug name recognition (DNR systems. The semantic features used in most DNR systems are based on drug dictionaries manually constructed by experts. Building large-scale drug dictionaries is a time-consuming task and adding new drugs to existing drug dictionaries immediately after they are developed is also a challenge. In recent years, word embeddings that contain rich latent semantic information of words have been widely used to improve the performance of various natural language processing tasks. However, they have not been used in DNR systems. Compared to the semantic features based on drug dictionaries, the advantage of word embeddings lies in that learning them is unsupervised. In this paper, we investigate the effect of semantic features based on word embeddings on DNR and compare them with semantic features based on three drug dictionaries. We propose a conditional random fields (CRF-based system for DNR. The skip-gram model, an unsupervised algorithm, is used to induce word embeddings on about 17.3 GigaByte (GB unlabeled biomedical texts collected from MEDLINE (National Library of Medicine, Bethesda, MD, USA. The system is evaluated on the drug-drug interaction extraction (DDIExtraction 2013 corpus. Experimental results show that word embeddings significantly improve the performance of the DNR system and they are competitive with semantic features based on drug dictionaries. F-score is improved by 2.92 percentage points when word embeddings are added into the baseline system. It is comparative with the improvements from semantic features based on drug dictionaries. Furthermore, word embeddings are complementary to the semantic features based on drug dictionaries. When both word embeddings and semantic features based on drug dictionaries are added, the system achieves the best performance with an F-score of 78.37%, which outperforms the best system of the DDIExtraction 2013

  20. A machine learning framework for auto classification of imaging system exams in hospital setting for utilization optimization.

    Science.gov (United States)

    Patil, Meru A; Patil, Ravindra B; Krishnamoorthy, P; John, Jacob; Patil, Meru A; Patil, Ravindra B; Krishnamoorthy, P; John, Jacob; Patil, Meru A; John, Jacob; Patil, Ravindra B; Krishnamoorthy, P

    2016-08-01

    In clinical environment, Interventional X-Ray (IXR) system is used on various anatomies and for various types of the procedures. It is important to classify correctly each exam of IXR system into respective procedures and/or assign to correct anatomy. This classification enhances productivity of the system in terms of better scheduling of the Cath lab, also provides means to perform device usage/revenue forecast of the system by hospital management and focus on targeted treatment planning for a disease/anatomy. Although it may appear classification of each exam into respective procedure/anatomy a simple task. However, in real-life hospital settings, it is well-known that same system settings are used to perform different types of procedures. Though, such usage leads to under-utilization of the system. In this work, a method is developed to classify exams into respective anatomical type by applying machine-learning techniques (SVM, KNN and decision trees) on log information of the systems. The classification result is promising with accuracy of greater than 90%.

  1. Probabilistic machine learning and artificial intelligence.

    Science.gov (United States)

    Ghahramani, Zoubin

    2015-05-28

    How can a machine learn from experience? Probabilistic modelling provides a framework for understanding what learning is, and has therefore emerged as one of the principal theoretical and practical approaches for designing machines that learn from data acquired through experience. The probabilistic framework, which describes how to represent and manipulate uncertainty about models and predictions, has a central role in scientific data analysis, machine learning, robotics, cognitive science and artificial intelligence. This Review provides an introduction to this framework, and discusses some of the state-of-the-art advances in the field, namely, probabilistic programming, Bayesian optimization, data compression and automatic model discovery.

  2. Probabilistic machine learning and artificial intelligence

    Science.gov (United States)

    Ghahramani, Zoubin

    2015-05-01

    How can a machine learn from experience? Probabilistic modelling provides a framework for understanding what learning is, and has therefore emerged as one of the principal theoretical and practical approaches for designing machines that learn from data acquired through experience. The probabilistic framework, which describes how to represent and manipulate uncertainty about models and predictions, has a central role in scientific data analysis, machine learning, robotics, cognitive science and artificial intelligence. This Review provides an introduction to this framework, and discusses some of the state-of-the-art advances in the field, namely, probabilistic programming, Bayesian optimization, data compression and automatic model discovery.

  3. Applied genetic programming and machine learning

    CERN Document Server

    Iba, Hitoshi; Paul, Topon Kumar

    2009-01-01

    What do financial data prediction, day-trading rule development, and bio-marker selection have in common? They are just a few of the tasks that could potentially be resolved with genetic programming and machine learning techniques. Written by leaders in this field, Applied Genetic Programming and Machine Learning delineates the extension of Genetic Programming (GP) for practical applications. Reflecting rapidly developing concepts and emerging paradigms, this book outlines how to use machine learning techniques, make learning operators that efficiently sample a search space, navigate the searc

  4. A Heuristic Approach to the Disease Diagnose System Using Machine Learning Algorithms (An Expert Advisory System for EMU Bird’s Diseases

    Directory of Open Access Journals (Sweden)

    P.Naga Jyothi,

    2010-03-01

    Full Text Available The paper deals with the concepts of expert system and data mining belongs to the Artificial Intelligence fields. The main task of expert system is to ratiocination, while the machine learning algorithm is to find the better optimal solution. This paper mainly focuses on diagnoses of the disease which is effected to the Emu bird by mechanism of Particle Swarm Optimization (PSO algorithm and Artificial Bee Colony(ABC algorithm. The decisive rules of database is mined and that could be applied in expert system. Thus, by applying optimization techniques resulting to best global optimized solution.

  5. Combatting nonlinear phase noise in coherent optical systems with an optimized decision processor based on machine learning

    Science.gov (United States)

    Wang, Danshi; Zhang, Min; Cai, Zhongle; Cui, Yue; Li, Ze; Han, Huanhuan; Fu, Meixia; Luo, Bin

    2016-06-01

    An effective machine learning algorithm, the support vector machine (SVM), is presented in the context of a coherent optical transmission system. As a classifier, the SVM can create nonlinear decision boundaries to mitigate the distortions caused by nonlinear phase noise (NLPN). Without any prior information or heuristic assumptions, the SVM can learn and capture the link properties from only a few training data. Compared with the maximum likelihood estimation (MLE) algorithm, a lower bit-error rate (BER) is achieved by the SVM for a given launch power; moreover, the launch power dynamic range (LPDR) is increased by 3.3 dBm for 8 phase-shift keying (8 PSK), 1.2 dBm for QPSK, and 0.3 dBm for BPSK. The maximum transmission distance corresponding to a BER of 1 ×10-3 is increased by 480 km for the case of 8 PSK. The larger launch power range and longer transmission distance improve the tolerance to amplitude and phase noise, which demonstrates the feasibility of the SVM in digital signal processing for M-PSK formats. Meanwhile, in order to apply the SVM method to 16 quadratic amplitude modulation (16 QAM) detection, we propose a parameter optimization scheme. By utilizing a cross-validation and grid-search techniques, the optimal parameters of SVM can be selected, thus leading to the LPDR improvement by 2.8 dBm. Additionally, we demonstrate that the SVM is also effective in combating the laser phase noise combined with the inphase and quadrature (I/Q) modulator imperfections, but the improvement is insignificant for the linear noise and separate I/Q imbalance. The computational complexity of SVM is also discussed. The relatively low complexity makes it possible for SVM to implement the real-time processing.

  6. Scaling Datalog for Machine Learning on Big Data

    CERN Document Server

    Bu, Yingyi; Carey, Michael J; Rosen, Joshua; Polyzotis, Neoklis; Condie, Tyson; Weimer, Markus; Ramakrishnan, Raghu

    2012-01-01

    In this paper, we present the case for a declarative foundation for data-intensive machine learning systems. Instead of creating a new system for each specific flavor of machine learning task, or hardcoding new optimizations, we argue for the use of recursive queries to program a variety of machine learning systems. By taking this approach, database query optimization techniques can be utilized to identify effective execution plans, and the resulting runtime plans can be executed on a single unified data-parallel query processing engine. As a proof of concept, we consider two programming models--Pregel and Iterative Map-Reduce-Update---from the machine learning domain, and show how they can be captured in Datalog, tuned for a specific task, and then compiled into an optimized physical plan. Experiments performed on a large computing cluster with real data demonstrate that this declarative approach can provide very good performance while offering both increased generality and programming ease.

  7. International Conference on Extreme Learning Machines 2014

    CERN Document Server

    Mao, Kezhi; Cambria, Erik; Man, Zhihong; Toh, Kar-Ann

    2015-01-01

    This book contains some selected papers from the International Conference on Extreme Learning Machine 2014, which was held in Singapore, December 8-10, 2014. This conference brought together the researchers and practitioners of Extreme Learning Machine (ELM) from a variety of fields to promote research and development of “learning without iterative tuning”.  The book covers theories, algorithms and applications of ELM. It gives the readers a glance of the most recent advances of ELM.  

  8. International Conference on Extreme Learning Machine 2015

    CERN Document Server

    Mao, Kezhi; Wu, Jonathan; Lendasse, Amaury; ELM 2015; Theory, Algorithms and Applications (I); Theory, Algorithms and Applications (II)

    2016-01-01

    This book contains some selected papers from the International Conference on Extreme Learning Machine 2015, which was held in Hangzhou, China, December 15-17, 2015. This conference brought together researchers and engineers to share and exchange R&D experience on both theoretical studies and practical applications of the Extreme Learning Machine (ELM) technique and brain learning. This book covers theories, algorithms ad applications of ELM. It gives readers a glance of the most recent advances of ELM. .

  9. Short-Term Distribution System State Forecast Based on Optimal Synchrophasor Sensor Placement and Extreme Learning Machine

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Huaiguang; Zhang, Yingchen

    2016-11-14

    This paper proposes an approach for distribution system state forecasting, which aims to provide an accurate and high speed state forecasting with an optimal synchrophasor sensor placement (OSSP) based state estimator and an extreme learning machine (ELM) based forecaster. Specifically, considering the sensor installation cost and measurement error, an OSSP algorithm is proposed to reduce the number of synchrophasor sensor and keep the whole distribution system numerically and topologically observable. Then, the weighted least square (WLS) based system state estimator is used to produce the training data for the proposed forecaster. Traditionally, the artificial neural network (ANN) and support vector regression (SVR) are widely used in forecasting due to their nonlinear modeling capabilities. However, the ANN contains heavy computation load and the best parameters for SVR are difficult to obtain. In this paper, the ELM, which overcomes these drawbacks, is used to forecast the future system states with the historical system states. The proposed approach is effective and accurate based on the testing results.

  10. Artificial intelligence expert systems with neural network machine learning may assist decision-making for extractions in orthodontic treatment planning.

    Science.gov (United States)

    Takada, Kenji

    2016-09-01

    New approach for the diagnosis of extractions with neural network machine learning. Seok-Ki Jung and Tae-Woo Kim. Am J Orthod Dentofacial Orthop 2016;149:127-33. Not reported. Mathematical modeling. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. MLBCD: a machine learning tool for big clinical data.

    Science.gov (United States)

    Luo, Gang

    2015-01-01

    Predictive modeling is fundamental for extracting value from large clinical data sets, or "big clinical data," advancing clinical research, and improving healthcare. Machine learning is a powerful approach to predictive modeling. Two factors make machine learning challenging for healthcare researchers. First, before training a machine learning model, the values of one or more model parameters called hyper-parameters must typically be specified. Due to their inexperience with machine learning, it is hard for healthcare researchers to choose an appropriate algorithm and hyper-parameter values. Second, many clinical data are stored in a special format. These data must be iteratively transformed into the relational table format before conducting predictive modeling. This transformation is time-consuming and requires computing expertise. This paper presents our vision for and design of MLBCD (Machine Learning for Big Clinical Data), a new software system aiming to address these challenges and facilitate building machine learning predictive models using big clinical data. The paper describes MLBCD's design in detail. By making machine learning accessible to healthcare researchers, MLBCD will open the use of big clinical data and increase the ability to foster biomedical discovery and improve care.

  12. [Remote intelligent Brunnstrom assessment system for upper limb rehabilitation for post-stroke based on extreme learning machine].

    Science.gov (United States)

    Wang, Yue; Yu, Lei; Fu, Jianming; Fang, Qiang

    2014-04-01

    In order to realize an individualized and specialized rehabilitation assessment of remoteness and intelligence, we set up a remote intelligent assessment system of upper limb movement function of post-stroke patients during rehabilitation. By using the remote rehabilitation training sensors and client data sampling software, we collected and uploaded the gesture data from a patient's forearm and upper arm during rehabilitation training to database of the server. Then a remote intelligent assessment system, which had been developed based on the extreme learning machine (ELM) algorithm and Brunnstrom stage assessment standard, was used to evaluate the gesture data. To evaluate the reliability of the proposed method, a group of 23 stroke patients, whose upper limb movement functions were in different recovery stages, and 4 healthy people, whose upper limb movement functions were normal, were recruited to finish the same training task. The results showed that, compared to that of the experienced rehabilitation expert who used the Brunnstrom stage standard table, the accuracy of the proposed remote Brunnstrom intelligent assessment system can reach a higher level, as 92.1%. The practical effects of surgery have proved that the proposed system could realize the intelligent assessment of upper limb movement function of post-stroke patients remotely, and it could also make the rehabilitation of the post-stroke patients at home or in a community care center possible.

  13. Using Machine Learning in Adversarial Environments.

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Warren Leon [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-02-01

    Intrusion/anomaly detection systems are among the first lines of cyber defense. Commonly, they either use signatures or machine learning (ML) to identify threats, but fail to account for sophisticated attackers trying to circumvent them. We propose to embed machine learning within a game theoretic framework that performs adversarial modeling, develops methods for optimizing operational response based on ML, and integrates the resulting optimization codebase into the existing ML infrastructure developed by the Hybrid LDRD. Our approach addresses three key shortcomings of ML in adversarial settings: 1) resulting classifiers are typically deterministic and, therefore, easy to reverse engineer; 2) ML approaches only address the prediction problem, but do not prescribe how one should operationalize predictions, nor account for operational costs and constraints; and 3) ML approaches do not model attackers’ response and can be circumvented by sophisticated adversaries. The principal novelty of our approach is to construct an optimization framework that blends ML, operational considerations, and a model predicting attackers reaction, with the goal of computing optimal moving target defense. One important challenge is to construct a realistic model of an adversary that is tractable, yet realistic. We aim to advance the science of attacker modeling by considering game-theoretic methods, and by engaging experimental subjects with red teaming experience in trying to actively circumvent an intrusion detection system, and learning a predictive model of such circumvention activities. In addition, we will generate metrics to test that a particular model of an adversary is consistent with available data.

  14. Python for probability, statistics, and machine learning

    CERN Document Server

    Unpingco, José

    2016-01-01

    This book covers the key ideas that link probability, statistics, and machine learning illustrated using Python modules in these areas. The entire text, including all the figures and numerical results, is reproducible using the Python codes and their associated Jupyter/IPython notebooks, which are provided as supplementary downloads. The author develops key intuitions in machine learning by working meaningful examples using multiple analytical methods and Python codes, thereby connecting theoretical concepts to concrete implementations. Modern Python modules like Pandas, Sympy, and Scikit-learn are applied to simulate and visualize important machine learning concepts like the bias/variance trade-off, cross-validation, and regularization. Many abstract mathematical ideas, such as convergence in probability theory, are developed and illustrated with numerical examples. This book is suitable for anyone with an undergraduate-level exposure to probability, statistics, or machine learning and with rudimentary knowl...

  15. An introduction to machine learning with Scikit-Learn

    CERN Document Server

    CERN. Geneva

    2015-01-01

    This tutorial gives an introduction to the scientific ecosystem for data analysis and machine learning in Python. After a short introduction of machine learning concepts, we will demonstrate on High Energy Physics data how a basic supervised learning analysis can be carried out using the Scikit-Learn library. Topics covered include data loading facilities and data representation, supervised learning algorithms, pipelines, model selection and evaluation, and model introspection.

  16. Amplifying human ability through autonomics and machine learning in IMPACT

    Science.gov (United States)

    Dzieciuch, Iryna; Reeder, John; Gutzwiller, Robert; Gustafson, Eric; Coronado, Braulio; Martinez, Luis; Croft, Bryan; Lange, Douglas S.

    2017-05-01

    Amplifying human ability for controlling complex environments featuring autonomous units can be aided by learned models of human and system performance. In developing a command and control system that allows a small number of people to control a large number of autonomous teams, we employ an autonomics framework to manage the networks that represent mission plans and the networks that are composed of human controllers and their autonomous assistants. Machine learning allows us to build models of human and system performance useful for monitoring plans and managing human attention and task loads. Machine learning also aids in the development of tactics that human supervisors can successfully monitor through the command and control system.

  17. Machine Learning Techniques in Clinical Vision Sciences.

    Science.gov (United States)

    Caixinha, Miguel; Nunes, Sandrina

    2017-01-01

    This review presents and discusses the contribution of machine learning techniques for diagnosis and disease monitoring in the context of clinical vision science. Many ocular diseases leading to blindness can be halted or delayed when detected and treated at its earliest stages. With the recent developments in diagnostic devices, imaging and genomics, new sources of data for early disease detection and patients' management are now available. Machine learning techniques emerged in the biomedical sciences as clinical decision-support techniques to improve sensitivity and specificity of disease detection and monitoring, increasing objectively the clinical decision-making process. This manuscript presents a review in multimodal ocular disease diagnosis and monitoring based on machine learning approaches. In the first section, the technical issues related to the different machine learning approaches will be present. Machine learning techniques are used to automatically recognize complex patterns in a given dataset. These techniques allows creating homogeneous groups (unsupervised learning), or creating a classifier predicting group membership of new cases (supervised learning), when a group label is available for each case. To ensure a good performance of the machine learning techniques in a given dataset, all possible sources of bias should be removed or minimized. For that, the representativeness of the input dataset for the true population should be confirmed, the noise should be removed, the missing data should be treated and the data dimensionally (i.e., the number of parameters/features and the number of cases in the dataset) should be adjusted. The application of machine learning techniques in ocular disease diagnosis and monitoring will be presented and discussed in the second section of this manuscript. To show the clinical benefits of machine learning in clinical vision sciences, several examples will be presented in glaucoma, age-related macular degeneration

  18. Machine learning for the identification of scaling laws and dynamical systems directly from data in fusion

    Energy Technology Data Exchange (ETDEWEB)

    Murari, A., E-mail: andrea.murari@igi.cnr.i [Consorzio RFX-Associazione EURATOM ENEA per la Fusione, I-35127 Padova (Italy); Vega, J. [Asociacion EURATOM-CIEMAT para Fusion, CIEMAT, Madrid (Spain); Mazon, D. [Association EURATOM-CEA, CEA Cadarache, 13108 Saint-Paul-lez-Durance (France); Patane, D.; Vagliasindi, G.; Arena, P. [Dipartimento di Ingegneria Elettrica Elettronica e dei Sistemi-Universita degli Studi di Catania, 95125 Catania (Italy); Martin, N.; Martin, N.F. [Arts et Metiers Paris Tech Engineering College (ENSAM) 13100 Aix-en-Provence (France); Ratta, G. [Asociacion EURATOM-CIEMAT para Fusion, CIEMAT, Madrid (Spain); Caloone, V. [Arts et Metiers Paris Tech Engineering College (ENSAM) 13100 Aix-en-Provence (France)

    2010-11-11

    Original methods to extract equations directly from experimental signals are presented. These techniques have been applied first to the determination of scaling laws for the threshold between the L and H mode of confinement in Tokamaks. The required equations can be extracted from the weights of neural networks and the separating hyperplane of Support Vector Machines. More powerful tools are required for the identification of differential equations directly from the time series of the signals. To this end, recurrent neural networks have proved to be very effective to properly identify ordinary differential equations and have been applied to the coupling between sawteeth and ELMs.

  19. Development and evaluation of RapTAT: a machine learning system for concept mapping of phrases from medical narratives.

    Science.gov (United States)

    Gobbel, Glenn T; Reeves, Ruth; Jayaramaraja, Shrimalini; Giuse, Dario; Speroff, Theodore; Brown, Steven H; Elkin, Peter L; Matheny, Michael E

    2014-04-01

    Rapid, automated determination of the mapping of free text phrases to pre-defined concepts could assist in the annotation of clinical notes and increase the speed of natural language processing systems. The aim of this study was to design and evaluate a token-order-specific naïve Bayes-based machine learning system (RapTAT) to predict associations between phrases and concepts. Performance was assessed using a reference standard generated from 2860 VA discharge summaries containing 567,520 phrases that had been mapped to 12,056 distinct Systematized Nomenclature of Medicine - Clinical Terms (SNOMED CT) concepts by the MCVS natural language processing system. It was also assessed on the manually annotated, 2010 i2b2 challenge data. Performance was established with regard to precision, recall, and F-measure for each of the concepts within the VA documents using bootstrapping. Within that corpus, concepts identified by MCVS were broadly distributed throughout SNOMED CT, and the token-order-specific language model achieved better performance based on precision, recall, and F-measure (0.95±0.15, 0.96±0.16, and 0.95±0.16, respectively; mean±SD) than the bag-of-words based, naïve Bayes model (0.64±0.45, 0.61±0.46, and 0.60±0.45, respectively) that has previously been used for concept mapping. Precision, recall, and F-measure on the i2b2 test set were 92.9%, 85.9%, and 89.2% respectively, using the token-order-specific model. RapTAT required just 7.2ms to map all phrases within a single discharge summary, and mapping rate did not decrease as the number of processed documents increased. The high performance attained by the tool in terms of both accuracy and speed was encouraging, and the mapping rate should be sufficient to support near-real-time, interactive annotation of medical narratives. These results demonstrate the feasibility of rapidly and accurately mapping phrases to a wide range of medical concepts based on a token-order-specific naïve Bayes model and

  20. Machine Learning and Cosmological Simulations

    Science.gov (United States)

    Kamdar, Harshil; Turk, Matthew; Brunner, Robert

    2016-01-01

    We explore the application of machine learning (ML) to the problem of galaxy formation and evolution in a hierarchical universe. Our motivations are two-fold: (1) presenting a new, promising technique to study galaxy formation, and (2) quantitatively evaluating the extent of the influence of dark matter halo properties on small-scale structure formation. For our analyses, we use both semi-analytical models (Millennium simulation) and N-body + hydrodynamical simulations (Illustris simulation). The ML algorithms are trained on important dark matter halo properties (inputs) and galaxy properties (outputs). The trained models are able to robustly predict the gas mass, stellar mass, black hole mass, star formation rate, $g-r$ color, and stellar metallicity. Moreover, the ML simulated galaxies obey fundamental observational constraints implying that the population of ML predicted galaxies is physically and statistically robust. Next, ML algorithms are trained on an N-body + hydrodynamical simulation and applied to an N-body only simulation (Dark Sky simulation, Illustris Dark), populating this new simulation with galaxies. We can examine how structure formation changes with different cosmological parameters and are able to mimic a full-blown hydrodynamical simulation in a computation time that is orders of magnitude smaller. We find that the set of ML simulated galaxies in Dark Sky obey the same observational constraints, further solidifying ML's place as an intriguing and promising technique in future galaxy formation studies and rapid mock galaxy catalog creation.

  1. Applying Machine Learning to Star Cluster Classification

    Science.gov (United States)

    Fedorenko, Kristina; Grasha, Kathryn; Calzetti, Daniela; Mahadevan, Sridhar

    2016-01-01

    Catalogs describing populations of star clusters are essential in investigating a range of important issues, from star formation to galaxy evolution. Star cluster catalogs are typically created in a two-step process: in the first step, a catalog of sources is automatically produced; in the second step, each of the extracted sources is visually inspected by 3-to-5 human classifiers and assigned a category. Classification by humans is labor-intensive and time consuming, thus it creates a bottleneck, and substantially slows down progress in star cluster research.We seek to automate the process of labeling star clusters (the second step) through applying supervised machine learning techniques. This will provide a fast, objective, and reproducible classification. Our data is HST (WFC3 and ACS) images of galaxies in the distance range of 3.5-12 Mpc, with a few thousand star clusters already classified by humans as a part of the LEGUS (Legacy ExtraGalactic UV Survey) project. The classification is based on 4 labels (Class 1 - symmetric, compact cluster; Class 2 - concentrated object with some degree of asymmetry; Class 3 - multiple peak system, diffuse; and Class 4 - spurious detection). We start by looking at basic machine learning methods such as decision trees. We then proceed to evaluate performance of more advanced techniques, focusing on convolutional neural networks and other Deep Learning methods. We analyze the results, and suggest several directions for further improvement.

  2. Machine learning techniques in optical communication

    DEFF Research Database (Denmark)

    Zibar, Darko; Piels, Molly; Jones, Rasmus Thomas

    2015-01-01

    Techniques from the machine learning community are reviewed and employed for laser characterization, signal detection in the presence of nonlinear phase noise, and nonlinearity mitigation. Bayesian filtering and expectation maximization are employed within nonlinear state-space framework...

  3. Machine learning techniques in optical communication

    DEFF Research Database (Denmark)

    Zibar, Darko; Piels, Molly; Jones, Rasmus Thomas

    2016-01-01

    Machine learning techniques relevant for nonlinearity mitigation, carrier recovery, and nanoscale device characterization are reviewed and employed. Markov Chain Monte Carlo in combination with Bayesian filtering is employed within the nonlinear state-space framework and demonstrated for parameter...

  4. Lane Detection Based on Machine Learning Algorithm

    National Research Council Canada - National Science Library

    Chao Fan; Jingbo Xu; Shuai Di

    2013-01-01

    In order to improve accuracy and robustness of the lane detection in complex conditions, such as the shadows and illumination changing, a novel detection algorithm was proposed based on machine learning...

  5. Implementing Machine Learning in the PCWG Tool

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, Andrew; Ding, Yu; Stuart, Peter

    2016-12-13

    The Power Curve Working Group (www.pcwg.org) is an ad-hoc industry-led group to investigate the performance of wind turbines in real-world conditions. As part of ongoing experience-sharing exercises, machine learning has been proposed as a possible way to predict turbine performance. This presentation provides some background information about machine learning and how it might be implemented in the PCWG exercises.

  6. Development of Machine Learning Tools in ROOT

    Science.gov (United States)

    Gleyzer, S. V.; Moneta, L.; Zapata, Omar A.

    2016-10-01

    ROOT is a framework for large-scale data analysis that provides basic and advanced statistical methods used by the LHC experiments. These include machine learning algorithms from the ROOT-integrated Toolkit for Multivariate Analysis (TMVA). We present several recent developments in TMVA, including a new modular design, new algorithms for variable importance and cross-validation, interfaces to other machine-learning software packages and integration of TMVA with Jupyter, making it accessible with a browser.

  7. Distributed Extreme Learning Machine for Nonlinear Learning over Network

    Directory of Open Access Journals (Sweden)

    Songyan Huang

    2015-02-01

    Full Text Available Distributed data collection and analysis over a network are ubiquitous, especially over a wireless sensor network (WSN. To our knowledge, the data model used in most of the distributed algorithms is linear. However, in real applications, the linearity of systems is not always guaranteed. In nonlinear cases, the single hidden layer feedforward neural network (SLFN with radial basis function (RBF hidden neurons has the ability to approximate any continuous functions and, thus, may be used as the nonlinear learning system. However, confined by the communication cost, using the distributed version of the conventional algorithms to train the neural network directly is usually prohibited. Fortunately, based on the theorems provided in the extreme learning machine (ELM literature, we only need to compute the output weights of the SLFN. Computing the output weights itself is a linear learning problem, although the input-output mapping of the overall SLFN is still nonlinear. Using the distributed algorithmto cooperatively compute the output weights of the SLFN, we obtain a distributed extreme learning machine (dELM for nonlinear learning in this paper. This dELM is applied to the regression problem and classification problem to demonstrate its effectiveness and advantages.

  8. Addressing uncertainty in atomistic machine learning

    DEFF Research Database (Denmark)

    Peterson, Andrew A.; Christensen, Rune; Khorshidi, Alireza

    2017-01-01

    Machine-learning regression has been demonstrated to precisely emulate the potential energy and forces that are output from more expensive electronic-structure calculations. However, to predict new regions of the potential energy surface, an assessment must be made of the credibility of the predi......Machine-learning regression has been demonstrated to precisely emulate the potential energy and forces that are output from more expensive electronic-structure calculations. However, to predict new regions of the potential energy surface, an assessment must be made of the credibility...... of the predictions. In this perspective, we address the types of errors that might arise in atomistic machine learning, the unique aspects of atomistic simulations that make machine-learning challenging, and highlight how uncertainty analysis can be used to assess the validity of machine-learning predictions. We...... suggest this will allow researchers to more fully use machine learning for the routine acceleration of large, high-accuracy, or extended-time simulations. In our demonstrations, we use a bootstrap ensemble of neural network-based calculators, and show that the width of the ensemble can provide an estimate...

  9. Addressing uncertainty in atomistic machine learning.

    Science.gov (United States)

    Peterson, Andrew A; Christensen, Rune; Khorshidi, Alireza

    2017-05-10

    Machine-learning regression has been demonstrated to precisely emulate the potential energy and forces that are output from more expensive electronic-structure calculations. However, to predict new regions of the potential energy surface, an assessment must be made of the credibility of the predictions. In this perspective, we address the types of errors that might arise in atomistic machine learning, the unique aspects of atomistic simulations that make machine-learning challenging, and highlight how uncertainty analysis can be used to assess the validity of machine-learning predictions. We suggest this will allow researchers to more fully use machine learning for the routine acceleration of large, high-accuracy, or extended-time simulations. In our demonstrations, we use a bootstrap ensemble of neural network-based calculators, and show that the width of the ensemble can provide an estimate of the uncertainty when the width is comparable to that in the training data. Intriguingly, we also show that the uncertainty can be localized to specific atoms in the simulation, which may offer hints for the generation of training data to strategically improve the machine-learned representation.

  10. Multispectral imaging burn wound tissue classification system: a comparison of test accuracies between several common machine learning algorithms

    Science.gov (United States)

    Squiers, John J.; Li, Weizhi; King, Darlene R.; Mo, Weirong; Zhang, Xu; Lu, Yang; Sellke, Eric W.; Fan, Wensheng; DiMaio, J. Michael; Thatcher, Jeffrey E.

    2016-03-01

    The clinical judgment of expert burn surgeons is currently the standard on which diagnostic and therapeutic decisionmaking regarding burn injuries is based. Multispectral imaging (MSI) has the potential to increase the accuracy of burn depth assessment and the intraoperative identification of viable wound bed during surgical debridement of burn injuries. A highly accurate classification model must be developed using machine-learning techniques in order to translate MSI data into clinically-relevant information. An animal burn model was developed to build an MSI training database and to study the burn tissue classification ability of several models trained via common machine-learning algorithms. The algorithms tested, from least to most complex, were: K-nearest neighbors (KNN), decision tree (DT), linear discriminant analysis (LDA), weighted linear discriminant analysis (W-LDA), quadratic discriminant analysis (QDA), ensemble linear discriminant analysis (EN-LDA), ensemble K-nearest neighbors (EN-KNN), and ensemble decision tree (EN-DT). After the ground-truth database of six tissue types (healthy skin, wound bed, blood, hyperemia, partial injury, full injury) was generated by histopathological analysis, we used 10-fold cross validation to compare the algorithms' performances based on their accuracies in classifying data against the ground truth, and each algorithm was tested 100 times. The mean test accuracy of the algorithms were KNN 68.3%, DT 61.5%, LDA 70.5%, W-LDA 68.1%, QDA 68.9%, EN-LDA 56.8%, EN-KNN 49.7%, and EN-DT 36.5%. LDA had the highest test accuracy, reflecting the bias-variance tradeoff over the range of complexities inherent to the algorithms tested. Several algorithms were able to match the current standard in burn tissue classification, the clinical judgment of expert burn surgeons. These results will guide further development of an MSI burn tissue classification system. Given that there are few surgeons and facilities specializing in burn care

  11. Data Triage of Astronomical Transients: A Machine Learning Approach

    Science.gov (United States)

    Rebbapragada, U.

    This talk presents real-time machine learning systems for triage of big data streams generated by photometric and image-differencing pipelines. Our first system is a transient event detection system in development for the Palomar Transient Factory (PTF), a fully-automated synoptic sky survey that has demonstrated real-time discovery of optical transient events. The system is tasked with discriminating between real astronomical objects and bogus objects, which are usually artifacts of the image differencing pipeline. We performed a machine learning forensics investigation on PTF’s initial system that led to training data improvements that decreased both false positive and negative rates. The second machine learning system is a real-time classification engine of transients and variables in development for the Australian Square Kilometre Array Pathfinder (ASKAP), an upcoming wide-field radio survey with unprecedented ability to investigate the radio transient sky. The goal of our system is to classify light curves into known classes with as few observations as possible in order to trigger follow-up on costlier assets. We discuss the violation of standard machine learning assumptions incurred by this task, and propose the use of ensemble and hierarchical machine learning classifiers that make predictions most robustly.

  12. MACHINE LEARNING TECHNIQUES USED IN BIG DATA

    Directory of Open Access Journals (Sweden)

    STEFANIA LOREDANA NITA

    2016-07-01

    Full Text Available The classical tools used in data analysis are not enough in order to benefit of all advantages of big data. The amount of information is too large for a complete investigation, and the possible connections and relations between data could be missed, because it is difficult or even impossible to verify all assumption over the information. Machine learning is a great solution in order to find concealed correlations or relationships between data, because it runs at scale machine and works very well with large data sets. The more data we have, the more the machine learning algorithm is useful, because it “learns” from the existing data and applies the found rules on new entries. In this paper, we present some machine learning algorithms and techniques used in big data.

  13. Machine learning research 1989-90

    Science.gov (United States)

    Porter, Bruce W.; Souther, Arthur

    1990-01-01

    Multifunctional knowledge bases offer a significant advance in artificial intelligence because they can support numerous expert tasks within a domain. As a result they amortize the costs of building a knowledge base over multiple expert systems and they reduce the brittleness of each system. Due to the inevitable size and complexity of multifunctional knowledge bases, their construction and maintenance require knowledge engineering and acquisition tools that can automatically identify interactions between new and existing knowledge. Furthermore, their use requires software for accessing those portions of the knowledge base that coherently answer questions. Considerable progress was made in developing software for building and accessing multifunctional knowledge bases. A language was developed for representing knowledge, along with software tools for editing and displaying knowledge, a machine learning program for integrating new information into existing knowledge, and a question answering system for accessing the knowledge base.

  14. Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers

    National Research Council Canada - National Science Library

    Awad, Mariette; Khanna, Rahul

    2015-01-01

    .... Their experiential emphasis, expressed in their close analysis of sample algorithms throughout the book, aims to equip engineers, students of engineering, and system designers to design and create...

  15. Teraflop-scale Incremental Machine Learning

    CERN Document Server

    Özkural, Eray

    2011-01-01

    We propose a long-term memory design for artificial general intelligence based on Solomonoff's incremental machine learning methods. We use R5RS Scheme and its standard library with a few omissions as the reference machine. We introduce a Levin Search variant based on Stochastic Context Free Grammar together with four synergistic update algorithms that use the same grammar as a guiding probability distribution of programs. The update algorithms include adjusting production probabilities, re-using previous solutions, learning programming idioms and discovery of frequent subprograms. Experiments with two training sequences demonstrate that our approach to incremental learning is effective.

  16. Machine learning a Bayesian and optimization perspective

    CERN Document Server

    Theodoridis, Sergios

    2015-01-01

    This tutorial text gives a unifying perspective on machine learning by covering both probabilistic and deterministic approaches, which rely on optimization techniques, as well as Bayesian inference, which is based on a hierarchy of probabilistic models. The book presents the major machine learning methods as they have been developed in different disciplines, such as statistics, statistical and adaptive signal processing and computer science. Focusing on the physical reasoning behind the mathematics, all the various methods and techniques are explained in depth, supported by examples and problems, giving an invaluable resource to the student and researcher for understanding and applying machine learning concepts. The book builds carefully from the basic classical methods to the most recent trends, with chapters written to be as self-contained as possible, making the text suitable for different courses: pattern recognition, statistical/adaptive signal processing, statistical/Bayesian learning, as well as shor...

  17. Machine learning: Trends, perspectives, and prospects.

    Science.gov (United States)

    Jordan, M I; Mitchell, T M

    2015-07-17

    Machine learning addresses the question of how to build computers that improve automatically through experience. It is one of today's most rapidly growing technical fields, lying at the intersection of computer science and statistics, and at the core of artificial intelligence and data science. Recent progress in machine learning has been driven both by the development of new learning algorithms and theory and by the ongoing explosion in the availability of online data and low-cost computation. The adoption of data-intensive machine-learning methods can be found throughout science, technology and commerce, leading to more evidence-based decision-making across many walks of life, including health care, manufacturing, education, financial modeling, policing, and marketing.

  18. Exploring Machine Learning Techniques For Dynamic Modeling on Future Exascale Systems

    Energy Technology Data Exchange (ETDEWEB)

    Song, Shuaiwen; Tallent, Nathan R.; Vishnu, Abhinav

    2013-09-23

    Future exascale systems must be optimized for both power and performance at scale in order to achieve DOE’s goal of a sustained petaflop within 20 Megawatts by 2022 [1]. Massive parallelism of the future systems combined with complex memory hierarchies will form a barrier to efficient application and architecture design. These challenges are exacerbated with emerging complex architectures such as GPGPUs and Intel Xeon Phi as parallelism increases orders of magnitude and system power consumption can easily triple or quadruple. Therefore, we need techniques that can reduce the search space for optimization, isolate power-performance bottlenecks, identify root causes for software/hardware inefficiency, and effectively direct runtime scheduling.

  19. Advancing Post-Genome Data and System Integration Through Machine Learning

    Directory of Open Access Journals (Sweden)

    Francisco Azuaje

    2006-04-01

    Full Text Available Research on biological data integration has traditionally focused on the development of systems for the maintenance and interconnection of databases. In the next few years, public and private biotechnology organisations will expand their actions to promote the creation of a post-genome semantic web. It has commonly been accepted that artificial intelligence and data mining techniques may support the interpretation of huge amounts of integrated data. But at the same time, these research disciplines are contributing to the creation of content markup languages and sophisticated programs able to exploit the constraints and preferences of user domains. This paper discusses a number of issues on intelligent systems for the integration of bioinformatic resources.

  20. A generic trust framework for large-scale open systems using machine learning

    OpenAIRE

    Liu, Xin; Tredan, Gilles; Datta, Anwitaman

    2011-01-01

    In many large scale distributed systems and on the web, agents need to interact with other unknown agents to carry out some tasks or transactions. The ability to reason about and assess the potential risks in carrying out such transactions is essential for providing a safe and reliable environment. A traditional approach to reason about the trustworthiness of a transaction is to determine the trustworthiness of the specific agent involved, derived from the history of its behavior. As a depart...

  1. Deep Extreme Learning Machine and Its Application in EEG Classification

    OpenAIRE

    Shifei Ding; Nan Zhang; Xinzheng Xu; Lili Guo; Jian Zhang

    2015-01-01

    Recently, deep learning has aroused wide interest in machine learning fields. Deep learning is a multilayer perceptron artificial neural network algorithm. Deep learning has the advantage of approximating the complicated function and alleviating the optimization difficulty associated with deep models. Multilayer extreme learning machine (MLELM) is a learning algorithm of an artificial neural network which takes advantages of deep learning and extreme learning machine. Not only does MLELM appr...

  2. Deep Extreme Learning Machine and Its Application in EEG Classification

    OpenAIRE

    2015-01-01

    Recently, deep learning has aroused wide interest in machine learning fields. Deep learning is a multilayer perceptron artificial neural network algorithm. Deep learning has the advantage of approximating the complicated function and alleviating the optimization difficulty associated with deep models. Multilayer extreme learning machine (MLELM) is a learning algorithm of an artificial neural network which takes advantages of deep learning and extreme learning machine. Not only does MLELM appr...

  3. Clinical data miner: an electronic case report form system with integrated data preprocessing and machine-learning libraries supporting clinical diagnostic model research.

    Science.gov (United States)

    Installé, Arnaud Jf; Van den Bosch, Thierry; De Moor, Bart; Timmerman, Dirk

    2014-10-20

    Using machine-learning techniques, clinical diagnostic model research extracts diagnostic models from patient data. Traditionally, patient data are often collected using electronic Case Report Form (eCRF) systems, while mathematical software is used for analyzing these data using machine-learning techniques. Due to the lack of integration between eCRF systems and mathematical software, extracting diagnostic models is a complex, error-prone process. Moreover, due to the complexity of this process, it is usually only performed once, after a predetermined number of data points have been collected, without insight into the predictive performance of the resulting models. The objective of the study of Clinical Data Miner (CDM) software framework is to offer an eCRF system with integrated data preprocessing and machine-learning libraries, improving efficiency of the clinical diagnostic model research workflow, and to enable optimization of patient inclusion numbers through study performance monitoring. The CDM software framework was developed using a test-driven development (TDD) approach, to ensure high software quality. Architecturally, CDM's design is split over a number of modules, to ensure future extendability. The TDD approach has enabled us to deliver high software quality. CDM's eCRF Web interface is in active use by the studies of the International Endometrial Tumor Analysis consortium, with over 4000 enrolled patients, and more studies planned. Additionally, a derived user interface has been used in six separate interrater agreement studies. CDM's integrated data preprocessing and machine-learning libraries simplify some otherwise manual and error-prone steps in the clinical diagnostic model research workflow. Furthermore, CDM's libraries provide study coordinators with a method to monitor a study's predictive performance as patient inclusions increase. To our knowledge, CDM is the only eCRF system integrating data preprocessing and machine-learning libraries

  4. Machine Learning for Biological Trajectory Classification Applications

    Science.gov (United States)

    Sbalzarini, Ivo F.; Theriot, Julie; Koumoutsakos, Petros

    2002-01-01

    Machine-learning techniques, including clustering algorithms, support vector machines and hidden Markov models, are applied to the task of classifying trajectories of moving keratocyte cells. The different algorithms axe compared to each other as well as to expert and non-expert test persons, using concepts from signal-detection theory. The algorithms performed very well as compared to humans, suggesting a robust tool for trajectory classification in biological applications.

  5. Heterogeneous versus Homogeneous Machine Learning Ensembles

    Directory of Open Access Journals (Sweden)

    Petrakova Aleksandra

    2015-12-01

    Full Text Available The research demonstrates efficiency of the heterogeneous model ensemble application for a cancer diagnostic procedure. Machine learning methods used for the ensemble model training are neural networks, random forest, support vector machine and offspring selection genetic algorithm. Training of models and the ensemble design is performed by means of HeuristicLab software. The data used in the research have been provided by the General Hospital of Linz, Austria.

  6. Wastewater quality monitoring system using sensor fusion and machine learning techniques.

    Science.gov (United States)

    Qin, Xusong; Gao, Furong; Chen, Guohua

    2012-03-15

    A multi-sensor water quality monitoring system incorporating an UV/Vis spectrometer and a turbidimeter was used to monitor the Chemical Oxygen Demand (COD), Total Suspended Solids (TSS) and Oil & Grease (O&G) concentrations of the effluents from the Chinese restaurant on campus and an electrocoagulation-electroflotation (EC-EF) pilot plant. In order to handle the noise and information unbalance in the fused UV/Vis spectra and turbidity measurements during the calibration model building, an improved boosting method, Boosting-Iterative Predictor Weighting-Partial Least Squares (Boosting-IPW-PLS), was developed in the present study. The Boosting-IPW-PLS method incorporates IPW into boosting scheme to suppress the quality-irrelevant variables by assigning small weights, and builds up the models for the wastewater quality predictions based on the weighted variables. The monitoring system was tested in the field with satisfactory results, underlying the potential of this technique for the online monitoring of water quality. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Machine Learning Methods for the Understanding and Prediction of Climate Systems: Tropical Pacific Ocean Thermocline and ENSO events

    Science.gov (United States)

    Lima, C. H.; Lall, U.

    2012-12-01

    In this work we explore recently developed methods from the machine learning community for dimensionality reduction and model selection of very large datasets. We apply the nonlinear maximum variance unfolding (MVU) method to find a short dimensional space for the thermocline of the Tropical Pacific Ocean as indicated by the ocean depth of the 200C isotherm from the NOAA/NCEP GODAS dataset. The leading modes are then used as covariates in an ENSO forecast model based on LASSO regression, where parameters are shrunk in order to find the best subset of predictors. A comparison with Principal Component Analysis (PCA) reveals that MVU is able to reduce the thermocline data from 21009 dimensions to three main components that collectively explain 77% of the system variance, whereas the first three PCs respond to 47% of the variance only. The series of the first three leading MVU and PCA based modes and their associated spatial patterns show also different features, including an enhanced monotonic upward trend in the first MVU mode that is hardly detected in the correspondent first PCA mode. Correlation analysis between the MVU components and the NINO3 index shows that each of the modes has peak correlations across different lag times, with statistically significant correlation coefficients up to two years. After combining the three MVU components across several lag times, a forecast model for NINO3 based on LASSO regression was built and tested using the ten-fold cross-validation method. Based on metrics such as the RMSE and correlation scores, the results show appreciable skills for lead times that go beyond ten months, particularly for the December NINO3, which is responsible for several floods and droughts across the globe.; Spatial signature of the first MVU mode. ; First MVU series featuring the upward trend.

  8. Unsupervised machine-learning method for improving the performance of ambulatory fall-detection systems

    Directory of Open Access Journals (Sweden)

    Yuwono Mitchell

    2012-02-01

    Full Text Available Abstract Background Falls can cause trauma, disability and death among older people. Ambulatory accelerometer devices are currently capable of detecting falls in a controlled environment. However, research suggests that most current approaches can tend to have insufficient sensitivity and specificity in non-laboratory environments, in part because impacts can be experienced as part of ordinary daily living activities. Method We used a waist-worn wireless tri-axial accelerometer combined with digital signal processing, clustering and neural network classifiers. The method includes the application of Discrete Wavelet Transform, Regrouping Particle Swarm Optimization, Gaussian Distribution of Clustered Knowledge and an ensemble of classifiers including a multilayer perceptron and Augmented Radial Basis Function (ARBF neural networks. Results Preliminary testing with 8 healthy individuals in a home environment yields 98.6% sensitivity to falls and 99.6% specificity for routine Activities of Daily Living (ADL data. Single ARB and MLP classifiers were compared with a combined classifier. The combined classifier offers the greatest sensitivity, with a slight reduction in specificity for routine ADL and an increased specificity for exercise activities. In preliminary tests, the approach achieves 100% sensitivity on in-group falls, 97.65% on out-group falls, 99.33% specificity on routine ADL, and 96.59% specificity on exercise ADL. Conclusion The pre-processing and feature-extraction steps appear to simplify the signal while successfully extracting the essential features that are required to characterize a fall. The results suggest this combination of classifiers can perform better than MLP alone. Preliminary testing suggests these methods may be useful for researchers who are attempting to improve the performance of ambulatory fall-detection systems.

  9. Machine Learning and Conflict Prediction: A Use Case

    Directory of Open Access Journals (Sweden)

    Chris Perry

    2013-10-01

    Full Text Available For at least the last two decades, the international community in general and the United Nations specifically have attempted to develop robust, accurate and effective conflict early warning system for conflict prevention. One potential and promising component of integrated early warning systems lies in the field of machine learning. This paper aims at giving conflict analysis a basic understanding of machine learning methodology as well as to test the feasibility and added value of such an approach. The paper finds that the selection of appropriate machine learning methodologies can offer substantial improvements in accuracy and performance. It also finds that even at this early stage in testing machine learning on conflict prediction, full models offer more predictive power than simply using a prior outbreak of violence as the leading indicator of current violence. This suggests that a refined data selection methodology combined with strategic use of machine learning algorithms could indeed offer a significant addition to the early warning toolkit. Finally, the paper suggests a number of steps moving forward to improve upon this initial test methodology.

  10. Paradigms for Realizing Machine Learning Algorithms.

    Science.gov (United States)

    Agneeswaran, Vijay Srinivas; Tonpay, Pranay; Tiwary, Jayati

    2013-12-01

    The article explains the three generations of machine learning algorithms-with all three trying to operate on big data. The first generation tools are SAS, SPSS, etc., while second generation realizations include Mahout and RapidMiner (that work over Hadoop), and the third generation paradigms include Spark and GraphLab, among others. The essence of the article is that for a number of machine learning algorithms, it is important to look beyond the Hadoop's Map-Reduce paradigm in order to make them work on big data. A number of promising contenders have emerged in the third generation that can be exploited to realize deep analytics on big data.

  11. A Machine Learning Approach to Automated Negotiation

    Institute of Scientific and Technical Information of China (English)

    Zhang Huaxiang(张化祥); Zhang Liang; Huang Shangteng; Ma Fanyuan

    2004-01-01

    Automated negotiation between two competitive agents is analyzed, and a multi-issue negotiation model based on machine learning, time belief, offer belief and state-action pair expected Q value is developed. Unlike the widely used approaches such as game theory approach, heuristic approach and argumentation approach, This paper uses a machine learning method to compute agents' average Q values in each negotiation stage. The delayed reward is used to generate agents' offer and counteroffer of every issue. The effect of time and discount rate on negotiation outcome is analyzed. Theory analysis and experimental data show this negotiation model is practical.

  12. Machine learning methods for nanolaser characterization

    CERN Document Server

    Zibar, Darko; Winther, Ole; Moerk, Jesper; Schaeffer, Christian

    2016-01-01

    Nanocavity lasers, which are an integral part of an on-chip integrated photonic network, are setting stringent requirements on the sensitivity of the techniques used to characterize the laser performance. Current characterization tools cannot provide detailed knowledge about nanolaser noise and dynamics. In this progress article, we will present tools and concepts from the Bayesian machine learning and digital coherent detection that offer novel approaches for highly-sensitive laser noise characterization and inference of laser dynamics. The goal of the paper is to trigger new research directions that combine the fields of machine learning and nanophotonics for characterizing nanolasers and eventually integrated photonic networks

  13. A Machine Learning Based Framework for Adaptive Mobile Learning

    Science.gov (United States)

    Al-Hmouz, Ahmed; Shen, Jun; Yan, Jun

    Advances in wireless technology and handheld devices have created significant interest in mobile learning (m-learning) in recent years. Students nowadays are able to learn anywhere and at any time. Mobile learning environments must also cater for different user preferences and various devices with limited capability, where not all of the information is relevant and critical to each learning environment. To address this issue, this paper presents a framework that depicts the process of adapting learning content to satisfy individual learner characteristics by taking into consideration his/her learning style. We use a machine learning based algorithm for acquiring, representing, storing, reasoning and updating each learner acquired profile.

  14. Extracting Information from Spoken User Input. A Machine Learning Approach

    NARCIS (Netherlands)

    Lendvai, P.K.

    2004-01-01

    We propose a module that performs automatic analysis of user input in spoken dialogue systems using machine learning algorithms. The input to the module is material received from the speech recogniser and the dialogue manager of the spoken dialogue system, the output is a four-level

  15. Active Learning of Nondeterministic Finite State Machines

    Directory of Open Access Journals (Sweden)

    Warawoot Pacharoen

    2013-01-01

    Full Text Available We consider the problem of learning nondeterministic finite state machines (NFSMs from systems where their internal structures are implicit and nondeterministic. Recently, an algorithm for inferring observable NFSMs (ONFSMs, which are the potentially learnable subclass of NFSMs, has been proposed based on the hypothesis that the complete testing assumption is satisfied. According to this assumption, with an input sequence (query, the complete set of all possible output sequences is given by the so-called Teacher, so the number of times for asking the same query is not taken into account in the algorithm. In this paper, we propose LNM*, a refined ONFSM learning algorithm that considers the amount for repeating the same query as one parameter. Unlike the previous work, our approach does not require all possible output sequences in one answer. Instead, it tries to observe the possible output sequences by asking the same query many times to the Teacher. We have proved that LNM* can infer the corresponding ONFSMs of the unknown systems when the number of tries for the same query is adequate to guarantee the complete testing assumption. Moreover, the proof shows that our algorithm will eventually terminate no matter whether the assumption is fulfilled or not. We also present the theoretical time complexity analysis of LNM*. In addition, experimental results demonstrate the practical efficiency of our approach.

  16. Machine learning with quantum relative entropy

    Energy Technology Data Exchange (ETDEWEB)

    Tsuda, Koji [Max Planck Institute for Biological Cybernetics, Spemannstr. 38, Tuebingen, 72076 (Germany)], E-mail: koji.tsuda@tuebingen.mpg.de

    2009-12-01

    Density matrices are a central tool in quantum physics, but it is also used in machine learning. A positive definite matrix called kernel matrix is used to represent the similarities between examples. Positive definiteness assures that the examples are embedded in an Euclidean space. When a positive definite matrix is learned from data, one has to design an update rule that maintains the positive definiteness. Our update rule, called matrix exponentiated gradient update, is motivated by the quantum relative entropy. Notably, the relative entropy is an instance of Bregman divergences, which are asymmetric distance measures specifying theoretical properties of machine learning algorithms. Using the calculus commonly used in quantum physics, we prove an upperbound of the generalization error of online learning.

  17. Machine learning methods without tears: a primer for ecologists.

    Science.gov (United States)

    Olden, Julian D; Lawler, Joshua J; Poff, N LeRoy

    2008-06-01

    Machine learning methods, a family of statistical techniques with origins in the field of artificial intelligence, are recognized as holding great promise for the advancement of understanding and prediction about ecological phenomena. These modeling techniques are flexible enough to handle complex problems with multiple interacting elements and typically outcompete traditional approaches (e.g., generalized linear models), making them ideal for modeling ecological systems. Despite their inherent advantages, a review of the literature reveals only a modest use of these approaches in ecology as compared to other disciplines. One potential explanation for this lack of interest is that machine learning techniques do not fall neatly into the class of statistical modeling approaches with which most ecologists are familiar. In this paper, we provide an introduction to three machine learning approaches that can be broadly used by ecologists: classification and regression trees, artificial neural networks, and evolutionary computation. For each approach, we provide a brief background to the methodology, give examples of its application in ecology, describe model development and implementation, discuss strengths and weaknesses, explore the availability of statistical software, and provide an illustrative example. Although the ecological application of machine learning approaches has increased, there remains considerable skepticism with respect to the role of these techniques in ecology. Our review encourages a greater understanding of machin learning approaches and promotes their future application and utilization, while also providing a basis from which ecologists can make informed decisions about whether to select or avoid these approaches in their future modeling endeavors.

  18. Photometric Supernova Classification With Machine Learning

    CERN Document Server

    Lochner, Michelle; Peiris, Hiranya V; Lahav, Ofer; Winter, Max K

    2016-01-01

    Automated photometric supernova classification has become an active area of research in recent years in light of current and upcoming imaging surveys such as the Dark Energy Survey (DES) and the Large Synoptic Telescope (LSST), given that spectroscopic confirmation of type for all supernovae discovered with these surveys will be impossible. Here, we develop a multi-faceted classification pipeline, combining existing and new approaches. Our pipeline consists of two stages: extracting descriptive features from the light curves and classification using a machine learning algorithm. Our feature extraction methods vary from model-dependent techniques, namely SALT2 fits, to more independent techniques fitting parametric models to curves, to a completely model-independent wavelet approach. We cover a range of representative machine learning algorithms, including naive Bayes, k-nearest neighbors, support vector machines, artificial neural networks and boosted decision trees. We test the pipeline on simulated multi-ba...

  19. Data Mining and Machine Learning in Astronomy

    CERN Document Server

    Ball, Nicholas M

    2009-01-01

    We review the current state of data mining and machine learning in Astronomy. 'Data Mining' can have a somewhat mixed connotation from the point of view of a researcher in this field. On the one hand, it is a powerful approach, holding the potential to fully exploit the exponentially increasing amount of available data, which promises almost limitless scientific advances. On the other, it can be the application of black-box computing algorithms that at best give little physical insight, and at worst provide questionable results. Here, we give an overview of the entire data mining process, from data collection through the interpretation of results. We cover common machine learning algorithms, such as artificial neural networks and support vector machines; applications from a broad range of Astronomy, with an emphasis on those where data mining resulted in improved physical insights, and important current and future directions, including the construction of full probability density functions, parallel algorithm...

  20. Tracking by Machine Learning Methods

    CERN Document Server

    Jofrehei, Arash

    2015-01-01

    Current track reconstructing methods start with two points and then for each layer loop through all possible hits to find proper hits to add to that track. Another idea would be to use this large number of already reconstructed events and/or simulated data and train a machine on this data to find tracks given hit pixels. Training time could be long but real time tracking is really fast Simulation might not be as realistic as real data but tacking has been done for that with 100 percent efficiency while by using real data we would probably be limited to current efficiency.

  1. FUZZY NEURAL NETWORK FOR MACHINE PARTS RECOGNITION SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Luo Xiaobin; Yin Guofu; Chen Ke; Hu Xiaobing; Luo Yang

    2003-01-01

    The primary purpose is to develop a robust adaptive machine parts recognition system. A fuzzy neural network classifier is proposed for machine parts classifier. It is an efficient modeling method. Through learning, it can approach a random nonlinear function. A fuzzy neural network classifier is presented based on fuzzy mapping model. It is used for machine parts classification. The experimental system of machine parts classification is introduced. A robust least square back-propagation (RLSBP) training algorithm which combines robust least square (RLS) with back-propagation (BP) algorithm is put forward. Simulation and experimental results show that the learning property of RLSBP is superior to BP.

  2. Parallelization of TMVA Machine Learning Algorithms

    CERN Document Server

    Hajili, Mammad

    2017-01-01

    This report reflects my work on Parallelization of TMVA Machine Learning Algorithms integrated to ROOT Data Analysis Framework during summer internship at CERN. The report consists of 4 impor- tant part - data set used in training and validation, algorithms that multiprocessing applied on them, parallelization techniques and re- sults of execution time changes due to number of workers.

  3. Supporting visual quality assessment with machine learning

    NARCIS (Netherlands)

    Gastaldo, P.; Zunino, R.; Redi, J.

    2013-01-01

    Objective metrics for visual quality assessment often base their reliability on the explicit modeling of the highly non-linear behavior of human perception; as a result, they may be complex and computationally expensive. Conversely, machine learning (ML) paradigms allow to tackle the quality

  4. Machine learning approximation techniques using dual trees

    OpenAIRE

    Ergashbaev, Denis

    2015-01-01

    This master thesis explores a dual-tree framework as applied to a particular class of machine learning problems that are collectively referred to as generalized n-body problems. It builds a new algorithm on top of it and improves existing Boosted OGE classifier.

  5. The ATLAS Higgs Machine Learning Challenge

    CERN Document Server

    Cowan, Glen; The ATLAS collaboration; Bourdarios, Claire

    2015-01-01

    High Energy Physics has been using Machine Learning techniques (commonly known as Multivariate Analysis) since the 1990s with Artificial Neural Net and more recently with Boosted Decision Trees, Random Forest etc. Meanwhile, Machine Learning has become a full blown field of computer science. With the emergence of Big Data, data scientists are developing new Machine Learning algorithms to extract meaning from large heterogeneous data. HEP has exciting and difficult problems like the extraction of the Higgs boson signal, and at the same time data scientists have advanced algorithms: the goal of the HiggsML project was to bring the two together by a “challenge”: participants from all over the world and any scientific background could compete online to obtain the best Higgs to tau tau signal significance on a set of ATLAS fully simulated Monte Carlo signal and background. Instead of HEP physicists browsing through machine learning papers and trying to infer which new algorithms might be useful for HEP, then c...

  6. Extracting meaning from audio signals - a machine learning approach

    DEFF Research Database (Denmark)

    Larsen, Jan

    2007-01-01

    * Machine learning framework for sound search * Genre classification * Music and audio separation * Wind noise suppression......* Machine learning framework for sound search * Genre classification * Music and audio separation * Wind noise suppression...

  7. Extracting meaning from audio signals - a machine learning approach

    DEFF Research Database (Denmark)

    Larsen, Jan

    2007-01-01

    * Machine learning framework for sound search * Genre classification * Music and audio separation * Wind noise suppression......* Machine learning framework for sound search * Genre classification * Music and audio separation * Wind noise suppression...

  8. Machine learning of network metrics in ATLAS Distributed Data Management

    CERN Document Server

    Lassnig, Mario; The ATLAS collaboration

    2017-01-01

    The increasing volume of physics data poses a critical challenge to the ATLAS experiment. In anticipation of high luminosity physics, automation of everyday data management tasks has become necessary. Previously many of these tasks required human decision-making and operation. Recent advances in hardware and software have made it possible to entrust more complicated duties to automated systems using models trained by machine learning algorithms. In this contribution we show results from one of our ongoing automation efforts that focuses on network metrics. First, we describe our machine learning framework built atop the ATLAS Analytics Platform. This framework can automatically extract and aggregate data, train models with various machine learning algorithms, and eventually score the resulting models and parameters. Second, we use these models to forecast metrics relevant for network-aware job scheduling and data brokering. We show the characteristics of the data and evaluate the forecasting accuracy of our m...

  9. Machine Learning: A Crucial Tool for Sensor Design

    Directory of Open Access Journals (Sweden)

    Weixiang Zhao

    2008-12-01

    Full Text Available Sensors have been widely used for disease diagnosis, environmental quality monitoring, food quality control, industrial process analysis and control, and other related fields. As a key tool for sensor data analysis, machine learning is becoming a core part of novel sensor design. Dividing a complete machine learning process into three steps: data pre-treatment, feature extraction and dimension reduction, and system modeling, this paper provides a review of the methods that are widely used for each step. For each method, the principles and the key issues that affect modeling results are discussed. After reviewing the potential problems in machine learning processes, this paper gives a summary of current algorithms in this field and provides some feasible directions for future studies.

  10. A Machine Learning Based Analytical Framework for Semantic Annotation Requirements

    CERN Document Server

    Hassanzadeh, Hamed; 10.5121/ijwest.2011.2203

    2011-01-01

    The Semantic Web is an extension of the current web in which information is given well-defined meaning. The perspective of Semantic Web is to promote the quality and intelligence of the current web by changing its contents into machine understandable form. Therefore, semantic level information is one of the cornerstones of the Semantic Web. The process of adding semantic metadata to web resources is called Semantic Annotation. There are many obstacles against the Semantic Annotation, such as multilinguality, scalability, and issues which are related to diversity and inconsistency in content of different web pages. Due to the wide range of domains and the dynamic environments that the Semantic Annotation systems must be performed on, the problem of automating annotation process is one of the significant challenges in this domain. To overcome this problem, different machine learning approaches such as supervised learning, unsupervised learning and more recent ones like, semi-supervised learning and active learn...

  11. Fast, Continuous Audiogram Estimation Using Machine Learning.

    Science.gov (United States)

    Song, Xinyu D; Wallace, Brittany M; Gardner, Jacob R; Ledbetter, Noah M; Weinberger, Kilian Q; Barbour, Dennis L

    2015-01-01

    Pure-tone audiometry has been a staple of hearing assessments for decades. Many different procedures have been proposed for measuring thresholds with pure tones by systematically manipulating intensity one frequency at a time until a discrete threshold function is determined. The authors have developed a novel nonparametric approach for estimating a continuous threshold audiogram using Bayesian estimation and machine learning classification. The objective of this study was to assess the accuracy and reliability of this new method relative to a commonly used threshold measurement technique. The authors performed air conduction pure-tone audiometry on 21 participants between the ages of 18 and 90 years with varying degrees of hearing ability. Two repetitions of automated machine learning audiogram estimation and one repetition of conventional modified Hughson-Westlake ascending-descending audiogram estimation were acquired by an audiologist. The estimated hearing thresholds of these two techniques were compared at standard audiogram frequencies (i.e., 0.25, 0.5, 1, 2, 4, 8 kHz). The two threshold estimate methods delivered very similar estimates at standard audiogram frequencies. Specifically, the mean absolute difference between estimates was 4.16 ± 3.76 dB HL. The mean absolute difference between repeated measurements of the new machine learning procedure was 4.51 ± 4.45 dB HL. These values compare favorably with those of other threshold audiogram estimation procedures. Furthermore, the machine learning method generated threshold estimates from significantly fewer samples than the modified Hughson-Westlake procedure while returning a continuous threshold estimate as a function of frequency. The new machine learning audiogram estimation technique produces continuous threshold audiogram estimates accurately, reliably, and efficiently, making it a strong candidate for widespread application in clinical and research audiometry.

  12. Intelligent Machine Learning Approaches for Aerospace Applications

    Science.gov (United States)

    Sathyan, Anoop

    Machine Learning is a type of artificial intelligence that provides machines or networks the ability to learn from data without the need to explicitly program them. There are different kinds of machine learning techniques. This thesis discusses the applications of two of these approaches: Genetic Fuzzy Logic and Convolutional Neural Networks (CNN). Fuzzy Logic System (FLS) is a powerful tool that can be used for a wide variety of applications. FLS is a universal approximator that reduces the need for complex mathematics and replaces it with expert knowledge of the system to produce an input-output mapping using If-Then rules. The expert knowledge of a system can help in obtaining the parameters for small-scale FLSs, but for larger networks we will need to use sophisticated approaches that can automatically train the network to meet the design requirements. This is where Genetic Algorithms (GA) and EVE come into the picture. Both GA and EVE can tune the FLS parameters to minimize a cost function that is designed to meet the requirements of the specific problem. EVE is an artificial intelligence developed by Psibernetix that is trained to tune large scale FLSs. The parameters of an FLS can include the membership functions and rulebase of the inherent Fuzzy Inference Systems (FISs). The main issue with using the GFS is that the number of parameters in a FIS increase exponentially with the number of inputs thus making it increasingly harder to tune them. To reduce this issue, the FLSs discussed in this thesis consist of 2-input-1-output FISs in cascade (Chapter 4) or as a layer of parallel FISs (Chapter 7). We have obtained extremely good results using GFS for different applications at a reduced computational cost compared to other algorithms that are commonly used to solve the corresponding problems. In this thesis, GFSs have been designed for controlling an inverted double pendulum, a task allocation problem of clustering targets amongst a set of UAVs, a fire

  13. Machine learning a theoretical approach

    CERN Document Server

    Natarajan, Balas K

    2014-01-01

    This is the first comprehensive introduction to computational learning theory. The author's uniform presentation of fundamental results and their applications offers AI researchers a theoretical perspective on the problems they study. The book presents tools for the analysis of probabilistic models of learning, tools that crisply classify what is and is not efficiently learnable. After a general introduction to Valiant's PAC paradigm and the important notion of the Vapnik-Chervonenkis dimension, the author explores specific topics such as finite automata and neural networks. The presentation

  14. Machine Learning for Neuroimaging with Scikit-Learn

    Directory of Open Access Journals (Sweden)

    Alexandre eAbraham

    2014-02-01

    Full Text Available Statistical machine learning methods are increasingly used for neuroimaging data analysis. Their main virtue is their ability to model high-dimensional datasets, e.g. multivariate analysis of activation images or resting-state time series. Supervised learning is typically used in decoding or encoding settings to relate brain images to behavioral or clinical observations, while unsupervised learning can uncover hidden structures in sets of images (e.g. resting state functional MRI or find sub-populations in large cohorts. By considering different functional neuroimaging applications, we illustrate how scikit-learn, a Python machine learning library, can be used to perform some key analysis steps. Scikit-learn contains a very large set of statistical learning algorithms, both supervised and unsupervised, and its application to neuroimaging data provides a versatile tool to study the brain.

  15. Machine learning for neuroimaging with scikit-learn.

    Science.gov (United States)

    Abraham, Alexandre; Pedregosa, Fabian; Eickenberg, Michael; Gervais, Philippe; Mueller, Andreas; Kossaifi, Jean; Gramfort, Alexandre; Thirion, Bertrand; Varoquaux, Gaël

    2014-01-01

    Statistical machine learning methods are increasingly used for neuroimaging data analysis. Their main virtue is their ability to model high-dimensional datasets, e.g., multivariate analysis of activation images or resting-state time series. Supervised learning is typically used in decoding or encoding settings to relate brain images to behavioral or clinical observations, while unsupervised learning can uncover hidden structures in sets of images (e.g., resting state functional MRI) or find sub-populations in large cohorts. By considering different functional neuroimaging applications, we illustrate how scikit-learn, a Python machine learning library, can be used to perform some key analysis steps. Scikit-learn contains a very large set of statistical learning algorithms, both supervised and unsupervised, and its application to neuroimaging data provides a versatile tool to study the brain.

  16. Financial signal processing and machine learning

    CERN Document Server

    Kulkarni,Sanjeev R; Dmitry M. Malioutov

    2016-01-01

    The modern financial industry has been required to deal with large and diverse portfolios in a variety of asset classes often with limited market data available. Financial Signal Processing and Machine Learning unifies a number of recent advances made in signal processing and machine learning for the design and management of investment portfolios and financial engineering. This book bridges the gap between these disciplines, offering the latest information on key topics including characterizing statistical dependence and correlation in high dimensions, constructing effective and robust risk measures, and their use in portfolio optimization and rebalancing. The book focuses on signal processing approaches to model return, momentum, and mean reversion, addressing theoretical and implementation aspects. It highlights the connections between portfolio theory, sparse learning and compressed sensing, sparse eigen-portfolios, robust optimization, non-Gaussian data-driven risk measures, graphical models, causal analy...

  17. Learning from Distributions via Support Measure Machines

    CERN Document Server

    Muandet, Krikamol; Fukumizu, Kenji; Dinuzzo, Francesco

    2012-01-01

    This paper presents a kernel-based discriminative learning framework on probability measures. Rather than relying on large collections of vectorial training examples, our framework learns using a collection of probability distributions that have been constructed to meaningfully represent training data. By representing these probability distributions as mean embeddings in the reproducing kernel Hilbert space (RKHS), we are able to apply many standard kernel-based learning techniques in straightforward fashion. To accomplish this, we construct a generalization of the support vector machine (SVM) called a support measure machine (SMM). Our analyses of SMMs provides several insights into their relationship to traditional SVMs. Based on such insights, we propose a flexible SVM (Flex-SVM) that places different kernel functions on each training example. Experimental results on both synthetic and real-world data demonstrate the effectiveness of our proposed framework.

  18. Automated mapping of building facades by machine learning

    DEFF Research Database (Denmark)

    Höhle, Joachim

    2014-01-01

    Facades of buildings contain various types of objects which have to be recorded for information systems. The article describes a solution for this task focussing on automated classification by means of machine learning techniques. Stereo pairs of oblique images are used to derive 3D point clouds...

  19. Acquiring Software Design Schemas: A Machine Learning Perspective

    Science.gov (United States)

    Harandi, Mehdi T.; Lee, Hing-Yan

    1991-01-01

    In this paper, we describe an approach based on machine learning that acquires software design schemas from design cases of existing applications. An overview of the technique, design representation, and acquisition system are presented. the paper also addresses issues associated with generalizing common features such as biases. The generalization process is illustrated using an example.

  20. Obstacle Recognition Based on Machine Learning for On-Chip LiDAR Sensors in a Cyber-Physical System.

    Science.gov (United States)

    Castaño, Fernando; Beruvides, Gerardo; Haber, Rodolfo E; Artuñedo, Antonio

    2017-09-14

    Collision avoidance is an important feature in advanced driver-assistance systems, aimed at providing correct, timely and reliable warnings before an imminent collision (with objects, vehicles, pedestrians, etc.). The obstacle recognition library is designed and implemented to address the design and evaluation of obstacle detection in a transportation cyber-physical system. The library is integrated into a co-simulation framework that is supported on the interaction between SCANeR software and Matlab/Simulink. From the best of the authors' knowledge, two main contributions are reported in this paper. Firstly, the modelling and simulation of virtual on-chip light detection and ranging sensors in a cyber-physical system, for traffic scenarios, is presented. The cyber-physical system is designed and implemented in SCANeR. Secondly, three specific artificial intelligence-based methods for obstacle recognition libraries are also designed and applied using a sensory information database provided by SCANeR. The computational library has three methods for obstacle detection: a multi-layer perceptron neural network, a self-organization map and a support vector machine. Finally, a comparison among these methods under different weather conditions is presented, with very promising results in terms of accuracy. The best results are achieved using the multi-layer perceptron in sunny and foggy conditions, the support vector machine in rainy conditions and the self-organized map in snowy conditions.

  1. Obstacle Recognition Based on Machine Learning for On-Chip LiDAR Sensors in a Cyber-Physical System

    Directory of Open Access Journals (Sweden)

    Fernando Castaño

    2017-09-01

    Full Text Available Collision avoidance is an important feature in advanced driver-assistance systems, aimed at providing correct, timely and reliable warnings before an imminent collision (with objects, vehicles, pedestrians, etc.. The obstacle recognition library is designed and implemented to address the design and evaluation of obstacle detection in a transportation cyber-physical system. The library is integrated into a co-simulation framework that is supported on the interaction between SCANeR software and Matlab/Simulink. From the best of the authors’ knowledge, two main contributions are reported in this paper. Firstly, the modelling and simulation of virtual on-chip light detection and ranging sensors in a cyber-physical system, for traffic scenarios, is presented. The cyber-physical system is designed and implemented in SCANeR. Secondly, three specific artificial intelligence-based methods for obstacle recognition libraries are also designed and applied using a sensory information database provided by SCANeR. The computational library has three methods for obstacle detection: a multi-layer perceptron neural network, a self-organization map and a support vector machine. Finally, a comparison among these methods under different weather conditions is presented, with very promising results in terms of accuracy. The best results are achieved using the multi-layer perceptron in sunny and foggy conditions, the support vector machine in rainy conditions and the self-organized map in snowy conditions.

  2. Controls and Machine Protection Systems

    CERN Document Server

    Carrone, E

    2016-01-01

    Machine protection, as part of accelerator control systems, can be managed with a 'functional safety' approach, which takes into account product life cycle, processes, quality, industrial standards and cybersafety. This paper will discuss strategies to manage such complexity and the related risks, with particular attention to fail-safe design and safety integrity levels, software and hardware standards, testing, and verification philosophy. It will also discuss an implementation of a machine protection system at the SLAC National Accelerator Laboratory's Linac Coherent Light Source (LCLS).

  3. Machine Learning for Computer Vision

    CERN Document Server

    Battiato, Sebastiano; Farinella, Giovanni

    2013-01-01

    Computer vision is the science and technology of making machines that see. It is concerned with the theory, design and implementation of algorithms that can automatically process visual data to recognize objects, track and recover their shape and spatial layout. The International Computer Vision Summer School - ICVSS was established in 2007 to provide both an objective and clear overview and an in-depth analysis of the state-of-the-art research in Computer Vision. The courses are delivered by world renowned experts in the field, from both academia and industry, and cover both theoretical and practical aspects of real Computer Vision problems. The school is organized every year by University of Cambridge (Computer Vision and Robotics Group) and University of Catania (Image Processing Lab). Different topics are covered each year. A summary of the past Computer Vision Summer Schools can be found at: http://www.dmi.unict.it/icvss This edited volume contains a selection of articles covering some of the talks and t...

  4. Using Machine Learning and Natural Language Processing Algorithms to Automate the Evaluation of Clinical Decision Support in Electronic Medical Record Systems.

    Science.gov (United States)

    Szlosek, Donald A; Ferrett, Jonathan

    2016-01-01

    As the number of clinical decision support systems (CDSSs) incorporated into electronic medical records (EMRs) increases, so does the need to evaluate their effectiveness. The use of medical record review and similar manual methods for evaluating decision rules is laborious and inefficient. The authors use machine learning and Natural Language Processing (NLP) algorithms to accurately evaluate a clinical decision support rule through an EMR system, and they compare it against manual evaluation. Modeled after the EMR system EPIC at Maine Medical Center, we developed a dummy data set containing physician notes in free text for 3,621 artificial patients records undergoing a head computed tomography (CT) scan for mild traumatic brain injury after the incorporation of an electronic best practice approach. We validated the accuracy of the Best Practice Advisories (BPA) using three machine learning algorithms-C-Support Vector Classification (SVC), Decision Tree Classifier (DecisionTreeClassifier), k-nearest neighbors classifier (KNeighborsClassifier)-by comparing their accuracy for adjudicating the occurrence of a mild traumatic brain injury against manual review. We then used the best of the three algorithms to evaluate the effectiveness of the BPA, and we compared the algorithm's evaluation of the BPA to that of manual review. The electronic best practice approach was found to have a sensitivity of 98.8 percent (96.83-100.0), specificity of 10.3 percent, PPV = 7.3 percent, and NPV = 99.2 percent when reviewed manually by abstractors. Though all the machine learning algorithms were observed to have a high level of prediction, the SVC displayed the highest with a sensitivity 93.33 percent (92.49-98.84), specificity of 97.62 percent (96.53-98.38), PPV = 50.00, NPV = 99.83. The SVC algorithm was observed to have a sensitivity of 97.9 percent (94.7-99.86), specificity 10.30 percent, PPV 7.25 percent, and NPV 99.2 percent for evaluating the best practice approach, after

  5. From machine learning to deep learning: progress in machine intelligence for rational drug discovery.

    Science.gov (United States)

    Zhang, Lu; Tan, Jianjun; Han, Dan; Zhu, Hao

    2017-09-04

    Machine intelligence, which is normally presented as artificial intelligence, refers to the intelligence exhibited by computers. In the history of rational drug discovery, various machine intelligence approaches have been applied to guide traditional experiments, which are expensive and time-consuming. Over the past several decades, machine-learning tools, such as quantitative structure-activity relationship (QSAR) modeling, were developed that can identify potential biological active molecules from millions of candidate compounds quickly and cheaply. However, when drug discovery moved into the era of 'big' data, machine learning approaches evolved into deep learning approaches, which are a more powerful and efficient way to deal with the massive amounts of data generated from modern drug discovery approaches. Here, we summarize the history of machine learning and provide insight into recently developed deep learning approaches and their applications in rational drug discovery. We suggest that this evolution of machine intelligence now provides a guide for early-stage drug design and discovery in the current big data era. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Machine learning in geosciences and remote sensing

    Institute of Scientific and Technical Information of China (English)

    David J. Lary; Amir H. Alavi; Amir H. Gandomi; Annette L. Walker

    2016-01-01

    Learning incorporates a broad range of complex procedures. Machine learning (ML) is a subdivision of artificial intelligence based on the biological learning process. The ML approach deals with the design of algorithms to learn from machine readable data. ML covers main domains such as data mining, difficult-to-program applications, and software applications. It is a collection of a variety of algorithms (e.g. neural networks, support vector machines, self-organizing map, decision trees, random forests, case-based reasoning, genetic programming, etc.) that can provide multivariate, nonlinear, nonparametric regres-sion or classification. The modeling capabilities of the ML-based methods have resulted in their extensive applications in science and engineering. Herein, the role of ML as an effective approach for solving problems in geosciences and remote sensing will be highlighted. The unique features of some of the ML techniques will be outlined with a specific attention to genetic programming paradigm. Furthermore, nonparametric regression and classification illustrative examples are presented to demonstrate the ef-ficiency of ML for tackling the geosciences and remote sensing problems.

  7. Machine learning in geosciences and remote sensing

    Directory of Open Access Journals (Sweden)

    David J. Lary

    2016-01-01

    Full Text Available Learning incorporates a broad range of complex procedures. Machine learning (ML is a subdivision of artificial intelligence based on the biological learning process. The ML approach deals with the design of algorithms to learn from machine readable data. ML covers main domains such as data mining, difficult-to-program applications, and software applications. It is a collection of a variety of algorithms (e.g. neural networks, support vector machines, self-organizing map, decision trees, random forests, case-based reasoning, genetic programming, etc. that can provide multivariate, nonlinear, nonparametric regression or classification. The modeling capabilities of the ML-based methods have resulted in their extensive applications in science and engineering. Herein, the role of ML as an effective approach for solving problems in geosciences and remote sensing will be highlighted. The unique features of some of the ML techniques will be outlined with a specific attention to genetic programming paradigm. Furthermore, nonparametric regression and classification illustrative examples are presented to demonstrate the efficiency of ML for tackling the geosciences and remote sensing problems.

  8. Machine Learning with Operational Costs

    CERN Document Server

    Tulabandhula, Theja

    2011-01-01

    This work concerns the way that statistical models are used to make decisions. In particular, we aim to merge the way estimation algorithms are designed with how they are used for a subsequent task. Our methodology considers the operational cost of carrying out a policy, based on a predictive model. The operational cost becomes a regularization term in the learning algorithm's objective function, allowing either an \\textit{optimistic} or \\textit{pessimistic} view of possible costs. Limiting the operational cost reduces the hypothesis space for the predictive model, and can thus improve generalization. We show that different types of operational problems can lead to the same type of restriction on the hypothesis space, namely the restriction to an intersection of an $\\ell_{q}$ ball with a halfspace. We bound the complexity of such hypothesis spaces by proposing a technique that involves counting integer points in polyhedrons.

  9. Discharge estimation based on machine learning

    Institute of Scientific and Technical Information of China (English)

    Zhu JIANG; Hui-yan WANG; Wen-wu SONG

    2013-01-01

    To overcome the limitations of the traditional stage-discharge models in describing the dynamic characteristics of a river, a machine learning method of non-parametric regression, the locally weighted regression method was used to estimate discharge. With the purpose of improving the precision and efficiency of river discharge estimation, a novel machine learning method is proposed:the clustering-tree weighted regression method. First, the training instances are clustered. Second, the k-nearest neighbor method is used to cluster new stage samples into the best-fit cluster. Finally, the daily discharge is estimated. In the estimation process, the interference of irrelevant information can be avoided, so that the precision and efficiency of daily discharge estimation are improved. Observed data from the Luding Hydrological Station were used for testing. The simulation results demonstrate that the precision of this method is high. This provides a new effective method for discharge estimation.

  10. Parallelization of the ROOT Machine Learning Methods

    CERN Document Server

    Vakilipourtakalou, Pourya

    2016-01-01

    Today computation is an inseparable part of scientific research. Specially in Particle Physics when there is a classification problem like discrimination of Signals from Backgrounds originating from the collisions of particles. On the other hand, Monte Carlo simulations can be used in order to generate a known data set of Signals and Backgrounds based on theoretical physics. The aim of Machine Learning is to train some algorithms on known data set and then apply these trained algorithms to the unknown data sets. However, the most common framework for data analysis in Particle Physics is ROOT. In order to use Machine Learning methods, a Toolkit for Multivariate Data Analysis (TMVA) has been added to ROOT. The major consideration in this report is the parallelization of some TMVA methods, specially Cross-Validation and BDT.

  11. Machine Learning Predictions of Flash Floods

    Science.gov (United States)

    Clark, R. A., III; Flamig, Z.; Gourley, J. J.; Hong, Y.

    2016-12-01

    This study concerns the development, assessment, and use of machine learning (ML) algorithms to automatically generate predictions of flash floods around the world from numerical weather prediction (NWP) output. Using an archive of NWP outputs from the Global Forecast System (GFS) model and a historical archive of reports of flash floods across the U.S. and Europe, we developed a set of ML models that output forecasts of the probability of a flash flood given a certain set of atmospheric conditions. Using these ML models, real-time global flash flood predictions from NWP data have been generated in research mode since February 2016. These ML models provide information about which atmospheric variables are most important in the flash flood prediction process. The raw ML predictions can be calibrated against historical events to generate reliable flash flood probabilities. The automatic system was tested in a research-to-operations testbed enviroment with National Weather Service forecasters. The ML models are quite successful at incorporating large amounts of information in a computationally-efficient manner and and result in reasonably skillful predictions. The system is largely successful at identifying flash floods resulting from synoptically-forced events, but struggles with isolated flash floods that arise as a result of weather systems largely unresolvable by the coarse resolution of a global NWP system. The results from this collection of studies suggest that automatic probabilistic predictions of flash floods are a plausible way forward in operational forecasting, but that future research could focus upon applying these methods to finer-scale NWP guidance, to NWP ensembles, and to forecast lead times beyond 24 hours.

  12. Network anomaly detection a machine learning perspective

    CERN Document Server

    Bhattacharyya, Dhruba Kumar

    2013-01-01

    With the rapid rise in the ubiquity and sophistication of Internet technology and the accompanying growth in the number of network attacks, network intrusion detection has become increasingly important. Anomaly-based network intrusion detection refers to finding exceptional or nonconforming patterns in network traffic data compared to normal behavior. Finding these anomalies has extensive applications in areas such as cyber security, credit card and insurance fraud detection, and military surveillance for enemy activities. Network Anomaly Detection: A Machine Learning Perspective presents mach

  13. The ATLAS Higgs machine learning challenge

    CERN Document Server

    Davey, W; The ATLAS collaboration; Rousseau, D; Cowan, G; Kegl, B; Germain-Renaud, C; Guyon, I

    2014-01-01

    High Energy Physics has been using Machine Learning techniques (commonly known as Multivariate Analysis) since the 90's with Artificial Neural Net for example, more recently with Boosted Decision Trees, Random Forest etc... Meanwhile, Machine Learning has become a full blown field of computer science. With the emergence of Big Data, Data Scientists are developing new Machine Learning algorithms to extract sense from large heterogeneous data. HEP has exciting and difficult problems like the extraction of the Higgs boson signal, data scientists have advanced algorithms: the goal of the HiggsML project is to bring the two together by a “challenge”: participants from all over the world and any scientific background can compete online ( https://www.kaggle.com/c/higgs-boson ) to obtain the best Higgs to tau tau signal significance on a set of ATLAS full simulated Monte Carlo signal and background. Winners with the best scores will receive money prizes ; authors of the best method (most usable) will be invited t...

  14. Perspective: Machine learning potentials for atomistic simulations

    Science.gov (United States)

    Behler, Jörg

    2016-11-01

    Nowadays, computer simulations have become a standard tool in essentially all fields of chemistry, condensed matter physics, and materials science. In order to keep up with state-of-the-art experiments and the ever growing complexity of the investigated problems, there is a constantly increasing need for simulations of more realistic, i.e., larger, model systems with improved accuracy. In many cases, the availability of sufficiently efficient interatomic potentials providing reliable energies and forces has become a serious bottleneck for performing these simulations. To address this problem, currently a paradigm change is taking place in the development of interatomic potentials. Since the early days of computer simulations simplified potentials have been derived using physical approximations whenever the direct application of electronic structure methods has been too demanding. Recent advances in machine learning (ML) now offer an alternative approach for the representation of potential-energy surfaces by fitting large data sets from electronic structure calculations. In this perspective, the central ideas underlying these ML potentials, solved problems and remaining challenges are reviewed along with a discussion of their current applicability and limitations.

  15. Ensemble Machine Learning Methods and Applications

    CERN Document Server

    Ma, Yunqian

    2012-01-01

    It is common wisdom that gathering a variety of views and inputs improves the process of decision making, and, indeed, underpins a democratic society. Dubbed “ensemble learning” by researchers in computational intelligence and machine learning, it is known to improve a decision system’s robustness and accuracy. Now, fresh developments are allowing researchers to unleash the power of ensemble learning in an increasing range of real-world applications. Ensemble learning algorithms such as “boosting” and “random forest” facilitate solutions to key computational issues such as face detection and are now being applied in areas as diverse as object trackingand bioinformatics.   Responding to a shortage of literature dedicated to the topic, this volume offers comprehensive coverage of state-of-the-art ensemble learning techniques, including various contributions from researchers in leading industrial research labs. At once a solid theoretical study and a practical guide, the volume is a windfall for r...

  16. Pulsar Search Using Supervised Machine Learning

    Science.gov (United States)

    Ford, John M.

    2017-05-01

    Pulsars are rapidly rotating neutron stars which emit a strong beam of energy through mechanisms that are not entirely clear to physicists. These very dense stars are used by astrophysicists to study many basic physical phenomena, such as the behavior of plasmas in extremely dense environments, behavior of pulsar-black hole pairs, and tests of general relativity. Many of these tasks require a large ensemble of pulsars to provide enough statistical information to answer the scientific questions posed by physicists. In order to provide more pulsars to study, there are several large-scale pulsar surveys underway, which are generating a huge backlog of unprocessed data. Searching for pulsars is a very labor-intensive process, currently requiring skilled people to examine and interpret plots of data output by analysis programs. An automated system for screening the plots will speed up the search for pulsars by a very large factor. Research to date on using machine learning and pattern recognition has not yielded a completely satisfactory system, as systems with the desired near 100% recall have false positive rates that are higher than desired, causing more manual labor in the classification of pulsars. This work proposed to research, identify, propose and develop methods to overcome the barriers to building an improved classification system with a false positive rate of less than 1% and a recall of near 100% that will be useful for the current and next generation of large pulsar surveys. The results show that it is possible to generate classifiers that perform as needed from the available training data. While a false positive rate of 1% was not reached, recall of over 99% was achieved with a false positive rate of less than 2%. Methods of mitigating the imbalanced training and test data were explored and found to be highly effective in enhancing classification accuracy.

  17. Deep Extreme Learning Machine and Its Application in EEG Classification

    Directory of Open Access Journals (Sweden)

    Shifei Ding

    2015-01-01

    Full Text Available Recently, deep learning has aroused wide interest in machine learning fields. Deep learning is a multilayer perceptron artificial neural network algorithm. Deep learning has the advantage of approximating the complicated function and alleviating the optimization difficulty associated with deep models. Multilayer extreme learning machine (MLELM is a learning algorithm of an artificial neural network which takes advantages of deep learning and extreme learning machine. Not only does MLELM approximate the complicated function but it also does not need to iterate during the training process. We combining with MLELM and extreme learning machine with kernel (KELM put forward deep extreme learning machine (DELM and apply it to EEG classification in this paper. This paper focuses on the application of DELM in the classification of the visual feedback experiment, using MATLAB and the second brain-computer interface (BCI competition datasets. By simulating and analyzing the results of the experiments, effectiveness of the application of DELM in EEG classification is confirmed.

  18. DIANA: A Machine Learning Mechanism for Adjusting the TDD Uplink-Downlink Configuration in XG-PON-LTE Systems

    Directory of Open Access Journals (Sweden)

    Panagiotis Sarigiannidis

    2017-01-01

    Full Text Available Modern broadband hybrid optical-wireless access networks have gained the attention of academia and industry due to their strategic advantages (cost-efficiency, huge bandwidth, flexibility, and mobility. At the same time, the proliferation of Software Defined Networking (SDN enables the efficient reconfiguration of the underlying network components dynamically using SDN controllers. Hence, effective traffic-aware schemes are feasible in dynamically determining suitable configuration parameters for advancing the network performance. To this end, a novel machine learning mechanism is proposed for an SDN-enabled hybrid optical-wireless network. The proposed architecture consists of a 10-gigabit-capable passive optical network (XG-PON in the network backhaul and multiple Long Term Evolution (LTE radio access networks in the fronthaul. The proposed mechanism receives traffic-aware knowledge from the SDN controllers and applies an adjustment on the uplink-downlink configuration in the LTE radio communication. This traffic-aware mechanism is capable of determining the most suitable configuration based on the traffic dynamics in the whole hybrid network. The introduced scheme is evaluated in a realistic environment using real traffic traces such as Voice over IP (VoIP, real-time video, and streaming video. According to the obtained numerical results, the proposed mechanism offers significant improvements in the network performance in terms of latency and jitter.

  19. Improvement of multi-machine power system stability with variable series capacitor using on-line learning neural network

    Energy Technology Data Exchange (ETDEWEB)

    Senjyu, Tomonobu; Yamane, Shotaro; Morishima, Yoshiteru; Uezato, Katsumi [Univ. of the Ryukyus, Dept. of Electrical and Electronics Engineering, Nakagami, Okinawa (Japan); Fujita, Hideki [Chubu Electric Power Co., Inc., Midori-ku, Nagoya (Japan)

    2003-06-01

    This paper presents an adaptive control technique for the variable series capacitor using a recurrent neural network (RNN). Since, the parameters of the controller are determined by Genetic Algorithm (GA), which is one of the optimization algorithms, they are optimum only for that operating point and it is not possible to obtain good control performance against variations in the operating and fault point. The adaptive controller proposed in this paper consists of an optimum controller using GA and an RNN. As the RNN was on-line training, robust control performance can be achieved for various operating conditions. The effectiveness of this control method is demonstrated by considering simulation of a multi-machine power system. (Author)

  20. Machine Learning and Sensor Fusion for Estimating Continuous Energy Expenditure

    OpenAIRE

    Vyas, Nisarg; BodyMedia, Inc.; Farringdon, Jonathan; BodyMedia Inc.; Andre, David; Cerebellum Capital, Inc.; Stivoric, John Ivo; BodyMedia

    2012-01-01

    In this article we provide insight into the BodyMedia FIT armband system — a wearable multi-sensor technology that continuously monitors physiological events related to energy expenditure for weight management using machine learning and data modeling methods. Since becoming commercially available in 2001, more than half a million users have used the system to track their physiological parameters and to achieve their individual health goals including weight-loss. We describe several challenges...

  1. Finding New Perovskite Halides via Machine learning

    Directory of Open Access Journals (Sweden)

    Ghanshyam ePilania

    2016-04-01

    Full Text Available Advanced materials with improved properties have the potential to fuel future technological advancements. However, identification and discovery of these optimal materials for a specific application is a non-trivial task, because of the vastness of the chemical search space with enormous compositional and configurational degrees of freedom. Materials informatics provides an efficient approach towards rational design of new materials, via learning from known data to make decisions on new and previously unexplored compounds in an accelerated manner. Here, we demonstrate the power and utility of such statistical learning (or machine learning via building a support vector machine (SVM based classifier that uses elemental features (or descriptors to predict the formability of a given ABX3 halide composition (where A and B represent monovalent and divalent cations, respectively, and X is F, Cl, Br or I anion in the perovskite crystal structure. The classification model is built by learning from a dataset of 181 experimentally known ABX3 compounds. After exploring a wide range of features, we identify ionic radii, tolerance factor and octahedral factor to be the most important factors for the classification, suggesting that steric and geometric packing effects govern the stability of these halides. The trained and validated models then predict, with a high degree of confidence, several novel ABX3 compositions with perovskite crystal structure.

  2. Finding New Perovskite Halides via Machine learning

    Science.gov (United States)

    Pilania, Ghanshyam; Balachandran, Prasanna V.; Kim, Chiho; Lookman, Turab

    2016-04-01

    Advanced materials with improved properties have the potential to fuel future technological advancements. However, identification and discovery of these optimal materials for a specific application is a non-trivial task, because of the vastness of the chemical search space with enormous compositional and configurational degrees of freedom. Materials informatics provides an efficient approach towards rational design of new materials, via learning from known data to make decisions on new and previously unexplored compounds in an accelerated manner. Here, we demonstrate the power and utility of such statistical learning (or machine learning) via building a support vector machine (SVM) based classifier that uses elemental features (or descriptors) to predict the formability of a given ABX3 halide composition (where A and B represent monovalent and divalent cations, respectively, and X is F, Cl, Br or I anion) in the perovskite crystal structure. The classification model is built by learning from a dataset of 181 experimentally known ABX3 compounds. After exploring a wide range of features, we identify ionic radii, tolerance factor and octahedral factor to be the most important factors for the classification, suggesting that steric and geometric packing effects govern the stability of these halides. The trained and validated models then predict, with a high degree of confidence, several novel ABX3 compositions with perovskite crystal structure.

  3. Assessing Implicit Knowledge in BIM Models with Machine Learning

    DEFF Research Database (Denmark)

    Krijnen, Thomas; Tamke, Martin

    2015-01-01

    architects and engineers are able to deduce non-explicitly explicitly stated information, which is often the core of the transported architectural information. This paper investigates how machine learning approaches allow a computational system to deduce implicit knowledge from a set of BIM models.......The promise, which comes along with Building Information Models, is that they are information rich, machine readable and represent the insights of multiple building disciplines within single or linked models. However, this knowledge has to be stated explicitly in order to be understood. Trained...

  4. Assessing Implicit Knowledge in BIM Models with Machine Learning

    DEFF Research Database (Denmark)

    Krijnen, Thomas; Tamke, Martin

    2015-01-01

    architects and engineers are able to deduce non-explicitly explicitly stated information, which is often the core of the transported architectural information. This paper investigates how machine learning approaches allow a computational system to deduce implicit knowledge from a set of BIM models.......The promise, which comes along with Building Information Models, is that they are information rich, machine readable and represent the insights of multiple building disciplines within single or linked models. However, this knowledge has to be stated explicitly in order to be understood. Trained...

  5. BENCHMARKING MACHINE LEARNING TECHNIQUES FOR SOFTWARE DEFECT DETECTION

    Directory of Open Access Journals (Sweden)

    Saiqa Aleem

    2015-06-01

    Full Text Available Machine Learning approaches are good in solving problems that have less information. In most cases, the software domain problems characterize as a process of learning that depend on the various circumstances and changes accordingly. A predictive model is constructed by using machine learning approaches and classified them into defective and non-defective modules. Machine learning techniques help developers to retrieve useful information after the classification and enable them to analyse data from different perspectives. Machine learning techniques are proven to be useful in terms of software bug prediction. This study used public available data sets of software modules and provides comparative performance analysis of different machine learning techniques for software bug prediction. Results showed most of the machine learning methods performed well on software bug datasets.

  6. Entanglement-based machine learning on a quantum computer.

    Science.gov (United States)

    Cai, X-D; Wu, D; Su, Z-E; Chen, M-C; Wang, X-L; Li, Li; Liu, N-L; Lu, C-Y; Pan, J-W

    2015-03-20

    Machine learning, a branch of artificial intelligence, learns from previous experience to optimize performance, which is ubiquitous in various fields such as computer sciences, financial analysis, robotics, and bioinformatics. A challenge is that machine learning with the rapidly growing "big data" could become intractable for classical computers. Recently, quantum machine learning algorithms [Lloyd, Mohseni, and Rebentrost, arXiv.1307.0411] were proposed which could offer an exponential speedup over classical algorithms. Here, we report the first experimental entanglement-based classification of two-, four-, and eight-dimensional vectors to different clusters using a small-scale photonic quantum computer, which are then used to implement supervised and unsupervised machine learning. The results demonstrate the working principle of using quantum computers to manipulate and classify high-dimensional vectors, the core mathematical routine in machine learning. The method can, in principle, be scaled to larger numbers of qubits, and may provide a new route to accelerate machine learning.

  7. Sparse extreme learning machine for classification.

    Science.gov (United States)

    Bai, Zuo; Huang, Guang-Bin; Wang, Danwei; Wang, Han; Westover, M Brandon

    2014-10-01

    Extreme learning machine (ELM) was initially proposed for single-hidden-layer feedforward neural networks (SLFNs). In the hidden layer (feature mapping), nodes are randomly generated independently of training data. Furthermore, a unified ELM was proposed, providing a single framework to simplify and unify different learning methods, such as SLFNs, least square support vector machines, proximal support vector machines, and so on. However, the solution of unified ELM is dense, and thus, usually plenty of storage space and testing time are required for large-scale applications. In this paper, a sparse ELM is proposed as an alternative solution for classification, reducing storage space and testing time. In addition, unified ELM obtains the solution by matrix inversion, whose computational complexity is between quadratic and cubic with respect to the training size. It still requires plenty of training time for large-scale problems, even though it is much faster than many other traditional methods. In this paper, an efficient training algorithm is specifically developed for sparse ELM. The quadratic programming problem involved in sparse ELM is divided into a series of smallest possible sub-problems, each of which are solved analytically. Compared with SVM, sparse ELM obtains better generalization performance with much faster training speed. Compared with unified ELM, sparse ELM achieves similar generalization performance for binary classification applications, and when dealing with large-scale binary classification problems, sparse ELM realizes even faster training speed than unified ELM.

  8. Machine learning based Intelligent cognitive network using fog computing

    Science.gov (United States)

    Lu, Jingyang; Li, Lun; Chen, Genshe; Shen, Dan; Pham, Khanh; Blasch, Erik

    2017-05-01

    In this paper, a Cognitive Radio Network (CRN) based on artificial intelligence is proposed to distribute the limited radio spectrum resources more efficiently. The CRN framework can analyze the time-sensitive signal data close to the signal source using fog computing with different types of machine learning techniques. Depending on the computational capabilities of the fog nodes, different features and machine learning techniques are chosen to optimize spectrum allocation. Also, the computing nodes send the periodic signal summary which is much smaller than the original signal to the cloud so that the overall system spectrum source allocation strategies are dynamically updated. Applying fog computing, the system is more adaptive to the local environment and robust to spectrum changes. As most of the signal data is processed at the fog level, it further strengthens the system security by reducing the communication burden of the communications network.

  9. The RADAR Test Methodology: Evaluating a Multi-Task Machine Learning System with Humans in the Loop

    Science.gov (United States)

    2006-10-01

    Learning System with Humans in the Loop 7 subject in the form of static web pages easily accessible from the subject’s home page (Figure 2, top and...middle). Other static web content included a conference planning manual (complete with documentation of standard task constraints), a PDF of the...that I can make arrangements! Thanks, you’re the best! Kim Figure 2. Static web and vendor portal examples The RADAR Test Methodology

  10. Machine vision: an incremental learning system based on features derived using fast Gabor transforms for the identification of textural objects

    Science.gov (United States)

    Clark, Richard M.; Adjei, Osei; Johal, Harpal

    2001-11-01

    This paper proposes a fast, effective and also very adaptable incremental learning system for identifying textures based on features extracted from Gabor space. The Gabor transform is a useful technique for feature extraction since it exhibits properties that are similar to biologically visual sensory systems such as those found in the mammalian visual cortex. Although two-dimensional Gabor filters have been applied successfully to a variety of tasks such as text segmentation, object detection and fingerprint analysis, the work of this paper extends previous work by incorporating incremental learning to facilitate easier training. The proposed system transforms textural images into Gabor space and a non-linear threshold function is then applied to extract feature vectors that bear signatures of the textural images. The mean and variance of each training group is computed followed by a technique that uses the Kohonen network to cluster these features. The centers of these clusters form the basis of an incremental learning paradigm that allows new information to be integrated into the existing knowledge. A number of experiments are conducted for real-time identification or discrimination of textural images.

  11. Application of Machine Learning to Rotorcraft Health Monitoring

    Science.gov (United States)

    Cody, Tyler; Dempsey, Paula J.

    2017-01-01

    Machine learning is a powerful tool for data exploration and model building with large data sets. This project aimed to use machine learning techniques to explore the inherent structure of data from rotorcraft gear tests, relationships between features and damage states, and to build a system for predicting gear health for future rotorcraft transmission applications. Classical machine learning techniques are difficult, if not irresponsible to apply to time series data because many make the assumption of independence between samples. To overcome this, Hidden Markov Models were used to create a binary classifier for identifying scuffing transitions and Recurrent Neural Networks were used to leverage long distance relationships in predicting discrete damage states. When combined in a workflow, where the binary classifier acted as a filter for the fatigue monitor, the system was able to demonstrate accuracy in damage state prediction and scuffing identification. The time dependent nature of the data restricted data exploration to collecting and analyzing data from the model selection process. The limited amount of available data was unable to give useful information, and the division of training and testing sets tended to heavily influence the scores of the models across combinations of features and hyper-parameters. This work built a framework for tracking scuffing and fatigue on streaming data and demonstrates that machine learning has much to offer rotorcraft health monitoring by using Bayesian learning and deep learning methods to capture the time dependent nature of the data. Suggested future work is to implement the framework developed in this project using a larger variety of data sets to test the generalization capabilities of the models and allow for data exploration.

  12. An Evolutionary Machine Learning Framework for Big Data Sequence Mining

    Science.gov (United States)

    Kamath, Uday Krishna

    2014-01-01

    Sequence classification is an important problem in many real-world applications. Unlike other machine learning data, there are no "explicit" features or signals in sequence data that can help traditional machine learning algorithms learn and predict from the data. Sequence data exhibits inter-relationships in the elements that are…

  13. An Evolutionary Machine Learning Framework for Big Data Sequence Mining

    Science.gov (United States)

    Kamath, Uday Krishna

    2014-01-01

    Sequence classification is an important problem in many real-world applications. Unlike other machine learning data, there are no "explicit" features or signals in sequence data that can help traditional machine learning algorithms learn and predict from the data. Sequence data exhibits inter-relationships in the elements that are…

  14. Machine learning models in breast cancer survival prediction.

    Science.gov (United States)

    Montazeri, Mitra; Montazeri, Mohadeseh; Montazeri, Mahdieh; Beigzadeh, Amin

    2016-01-01

    Breast cancer is one of the most common cancers with a high mortality rate among women. With the early diagnosis of breast cancer survival will increase from 56% to more than 86%. Therefore, an accurate and reliable system is necessary for the early diagnosis of this cancer. The proposed model is the combination of rules and different machine learning techniques. Machine learning models can help physicians to reduce the number of false decisions. They try to exploit patterns and relationships among a large number of cases and predict the outcome of a disease using historical cases stored in datasets. The objective of this study is to propose a rule-based classification method with machine learning techniques for the prediction of different types of Breast cancer survival. We use a dataset with eight attributes that include the records of 900 patients in which 876 patients (97.3%) and 24 (2.7%) patients were females and males respectively. Naive Bayes (NB), Trees Random Forest (TRF), 1-Nearest Neighbor (1NN), AdaBoost (AD), Support Vector Machine (SVM), RBF Network (RBFN), and Multilayer Perceptron (MLP) machine learning techniques with 10-cross fold technique were used with the proposed model for the prediction of breast cancer survival. The performance of machine learning techniques were evaluated with accuracy, precision, sensitivity, specificity, and area under ROC curve. Out of 900 patients, 803 patients and 97 patients were alive and dead, respectively. In this study, Trees Random Forest (TRF) technique showed better results in comparison to other techniques (NB, 1NN, AD, SVM and RBFN, MLP). The accuracy, sensitivity and the area under ROC curve of TRF are 96%, 96%, 93%, respectively. However, 1NN machine learning technique provided poor performance (accuracy 91%, sensitivity 91% and area under ROC curve 78%). This study demonstrates that Trees Random Forest model (TRF) which is a rule-based classification model was the best model with the highest level of

  15. Machine learning: novel bioinformatics approaches for combating antimicrobial resistance.

    Science.gov (United States)

    Macesic, Nenad; Polubriaginof, Fernanda; Tatonetti, Nicholas P

    2017-09-12

    Antimicrobial resistance (AMR) is a threat to global health and new approaches to combating AMR are needed. Use of machine learning in addressing AMR is in its infancy but has made promising steps. We reviewed the current literature on the use of machine learning for studying bacterial AMR. The advent of large-scale data sets provided by next-generation sequencing and electronic health records make applying machine learning to the study and treatment of AMR possible. To date, it has been used for antimicrobial susceptibility genotype/phenotype prediction, development of AMR clinical decision rules, novel antimicrobial agent discovery and antimicrobial therapy optimization. Application of machine learning to studying AMR is feasible but remains limited. Implementation of machine learning in clinical settings faces barriers to uptake with concerns regarding model interpretability and data quality.Future applications of machine learning to AMR are likely to be laboratory-based, such as antimicrobial susceptibility phenotype prediction.

  16. Machine Learning Interface for Medical Image Analysis.

    Science.gov (United States)

    Zhang, Yi C; Kagen, Alexander C

    2016-10-11

    TensorFlow is a second-generation open-source machine learning software library with a built-in framework for implementing neural networks in wide variety of perceptual tasks. Although TensorFlow usage is well established with computer vision datasets, the TensorFlow interface with DICOM formats for medical imaging remains to be established. Our goal is to extend the TensorFlow API to accept raw DICOM images as input; 1513 DaTscan DICOM images were obtained from the Parkinson's Progression Markers Initiative (PPMI) database. DICOM pixel intensities were extracted and shaped into tensors, or n-dimensional arrays, to populate the training, validation, and test input datasets for machine learning. A simple neural network was constructed in TensorFlow to classify images into normal or Parkinson's disease groups. Training was executed over 1000 iterations for each cross-validation set. The gradient descent optimization and Adagrad optimization algorithms were used to minimize cross-entropy between the predicted and ground-truth labels. Cross-validation was performed ten times to produce a mean accuracy of 0.938 ± 0.047 (95 % CI 0.908-0.967). The mean sensitivity was 0.974 ± 0.043 (95 % CI 0.947-1.00) and mean specificity was 0.822 ± 0.207 (95 % CI 0.694-0.950). We extended the TensorFlow API to enable DICOM compatibility in the context of DaTscan image analysis. We implemented a neural network classifier that produces diagnostic accuracies on par with excellent results from previous machine learning models. These results indicate the potential role of TensorFlow as a useful adjunct diagnostic tool in the clinical setting.

  17. Robust Extreme Learning Machine With its Application to Indoor Positioning.

    Science.gov (United States)

    Lu, Xiaoxuan; Zou, Han; Zhou, Hongming; Xie, Lihua; Huang, Guang-Bin

    2016-01-01

    The increasing demands of location-based services have spurred the rapid development of indoor positioning system and indoor localization system interchangeably (IPSs). However, the performance of IPSs suffers from noisy measurements. In this paper, two kinds of robust extreme learning machines (RELMs), corresponding to the close-to-mean constraint, and the small-residual constraint, have been proposed to address the issue of noisy measurements in IPSs. Based on whether the feature mapping in extreme learning machine is explicit, we respectively provide random-hidden-nodes and kernelized formulations of RELMs by second order cone programming. Furthermore, the computation of the covariance in feature space is discussed. Simulations and real-world indoor localization experiments are extensively carried out and the results demonstrate that the proposed algorithms can not only improve the accuracy and repeatability, but also reduce the deviation and worst case error of IPSs compared with other baseline algorithms.

  18. Machine learning methods for metabolic pathway prediction

    Directory of Open Access Journals (Sweden)

    Karp Peter D

    2010-01-01

    Full Text Available Abstract Background A key challenge in systems biology is the reconstruction of an organism's metabolic network from its genome sequence. One strategy for addressing this problem is to predict which metabolic pathways, from a reference database of known pathways, are present in the organism, based on the annotated genome of the organism. Results To quantitatively validate methods for pathway prediction, we developed a large "gold standard" dataset of 5,610 pathway instances known to be present or absent in curated metabolic pathway databases for six organisms. We defined a collection of 123 pathway features, whose information content we evaluated with respect to the gold standard. Feature data were used as input to an extensive collection of machine learning (ML methods, including naïve Bayes, decision trees, and logistic regression, together with feature selection and ensemble methods. We compared the ML methods to the previous PathoLogic algorithm for pathway prediction using the gold standard dataset. We found that ML-based prediction methods can match the performance of the PathoLogic algorithm. PathoLogic achieved an accuracy of 91% and an F-measure of 0.786. The ML-based prediction methods achieved accuracy as high as 91.2% and F-measure as high as 0.787. The ML-based methods output a probability for each predicted pathway, whereas PathoLogic does not, which provides more information to the user and facilitates filtering of predicted pathways. Conclusions ML methods for pathway prediction perform as well as existing methods, and have qualitative advantages in terms of extensibility, tunability, and explainability. More advanced prediction methods and/or more sophisticated input features may improve the performance of ML methods. However, pathway prediction performance appears to be limited largely by the ability to correctly match enzymes to the reactions they catalyze based on genome annotations.

  19. Machine Learning Assessments of Soil Drying

    Science.gov (United States)

    Coopersmith, E. J.; Minsker, B. S.; Wenzel, C.; Gilmore, B. J.

    2011-12-01

    Agricultural activities require the use of heavy equipment and vehicles on unpaved farmlands. When soil conditions are wet, equipment can cause substantial damage, leaving deep ruts. In extreme cases, implements can sink and become mired, causing considerable delays and expense to extricate the equipment. Farm managers, who are often located remotely, cannot assess sites before allocating equipment, causing considerable difficulty in reliably assessing conditions of countless sites with any reliability and frequency. For example, farmers often trace serpentine paths of over one hundred miles each day to assess the overall status of various tracts of land spanning thirty, forty, or fifty miles in each direction. One means of assessing the moisture content of a field lies in the strategic positioning of remotely-monitored in situ sensors. Unfortunately, land owners are often reluctant to place sensors across their properties due to the significant monetary cost and complexity. This work aspires to overcome these limitations by modeling the process of wetting and drying statistically - remotely assessing field readiness using only information that is publically accessible. Such data includes Nexrad radar and state climate network sensors, as well as Twitter-based reports of field conditions for validation. Three algorithms, classification trees, k-nearest-neighbors, and boosted perceptrons are deployed to deliver statistical field readiness assessments of an agricultural site located in Urbana, IL. Two of the three algorithms performed with 92-94% accuracy, with the majority of misclassifications falling within the calculated margins of error. This demonstrates the feasibility of using a machine learning framework with only public data, knowledge of system memory from previous conditions, and statistical tools to assess "readiness" without the need for real-time, on-site physical observation. Future efforts will produce a workflow assimilating Nexrad, climate network

  20. Machine Learning Algorithms in Web Page Classification

    Directory of Open Access Journals (Sweden)

    W.A.AWAD

    2012-11-01

    Full Text Available In this paper we use machine learning algorithms like SVM, KNN and GIS to perform a behaviorcomparison on the web pages classifications problem, from the experiment we see in the SVM with smallnumber of negative documents to build the centroids has the smallest storage requirement and the least online test computation cost. But almost all GIS with different number of nearest neighbors have an evenhigher storage requirement and on line test computation cost than KNN. This suggests that some futurework should be done to try to reduce the storage requirement and on list test cost of GIS.

  1. Medical Dataset Classification: A Machine Learning Paradigm Integrating Particle Swarm Optimization with Extreme Learning Machine Classifier

    OpenAIRE

    C. V. Subbulakshmi; Deepa, S. N.

    2015-01-01

    Medical data classification is a prime data mining problem being discussed about for a decade that has attracted several researchers around the world. Most classifiers are designed so as to learn from the data itself using a training process, because complete expert knowledge to determine classifier parameters is impracticable. This paper proposes a hybrid methodology based on machine learning paradigm. This paradigm integrates the successful exploration mechanism called self-regulated learni...

  2. Statistical and machine learning approaches for network analysis

    CERN Document Server

    Dehmer, Matthias

    2012-01-01

    Explore the multidisciplinary nature of complex networks through machine learning techniques Statistical and Machine Learning Approaches for Network Analysis provides an accessible framework for structurally analyzing graphs by bringing together known and novel approaches on graph classes and graph measures for classification. By providing different approaches based on experimental data, the book uniquely sets itself apart from the current literature by exploring the application of machine learning techniques to various types of complex networks. Comprised of chapters written by internation

  3. Predicting Networked Strategic Behavior via Machine Learning and Game Theory

    Science.gov (United States)

    2015-01-13

    Report: Predicting Networked Strategic Behavior via Machine Learning and Game Theory The views, opinions and/or findings contained in this report...2211 machine learning, game theory , microeconomics, behavioral data REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR...Strategic Behavior via Machine Learning and Game Theory Report Title The funding for this project was used to develop basic models, methodology

  4. Performance of machine learning methods for classification tasks

    OpenAIRE

    B. Krithika; Dr. V. Ramalingam; Rajan, K

    2013-01-01

    In this paper, the performance of various machine learning methods on pattern classification and recognition tasks are proposed. The proposed method for evaluating performance will be based on the feature representation, feature selection and setting model parameters. The nature of the data, the methods of feature extraction and feature representation are discussed. The results of the Machine Learning algorithms on the classification task are analysed. The performance of Machine Learning meth...

  5. Machine Learning Methods for Attack Detection in the Smart Grid.

    Science.gov (United States)

    Ozay, Mete; Esnaola, Inaki; Yarman Vural, Fatos Tunay; Kulkarni, Sanjeev R; Poor, H Vincent

    2016-08-01

    Attack detection problems in the smart grid are posed as statistical learning problems for different attack scenarios in which the measurements are observed in batch or online settings. In this approach, machine learning algorithms are used to classify measurements as being either secure or attacked. An attack detection framework is provided to exploit any available prior knowledge about the system and surmount constraints arising from the sparse structure of the problem in the proposed approach. Well-known batch and online learning algorithms (supervised and semisupervised) are employed with decision- and feature-level fusion to model the attack detection problem. The relationships between statistical and geometric properties of attack vectors employed in the attack scenarios and learning algorithms are analyzed to detect unobservable attacks using statistical learning methods. The proposed algorithms are examined on various IEEE test systems. Experimental analyses show that machine learning algorithms can detect attacks with performances higher than attack detection algorithms that employ state vector estimation methods in the proposed attack detection framework.

  6. Improving the Caenorhabditis elegans genome annotation using machine learning.

    Directory of Open Access Journals (Sweden)

    Gunnar Rätsch

    2007-02-01

    Full Text Available For modern biology, precise genome annotations are of prime importance, as they allow the accurate definition of genic regions. We employ state-of-the-art machine learning methods to assay and improve the accuracy of the genome annotation of the nematode Caenorhabditis elegans. The proposed machine learning system is trained to recognize exons and introns on the unspliced mRNA, utilizing recent advances in support vector machines and label sequence learning. In 87% (coding and untranslated regions and 95% (coding regions only of all genes tested in several out-of-sample evaluations, our method correctly identified all exons and introns. Notably, only 37% and 50%, respectively, of the presently unconfirmed genes in the C. elegans genome annotation agree with our predictions, thus we hypothesize that a sizable fraction of those genes are not correctly annotated. A retrospective evaluation of the Wormbase WS120 annotation [] of C. elegans reveals that splice form predictions on unconfirmed genes in WS120 are inaccurate in about 18% of the considered cases, while our predictions deviate from the truth only in 10%-13%. We experimentally analyzed 20 controversial genes on which our system and the annotation disagree, confirming the superiority of our predictions. While our method correctly predicted 75% of those cases, the standard annotation was never completely correct. The accuracy of our system is further corroborated by a comparison with two other recently proposed systems that can be used for splice form prediction: SNAP and ExonHunter. We conclude that the genome annotation of C. elegans and other organisms can be greatly enhanced using modern machine learning technology.

  7. Behavioral Profiling of Scada Network Traffic Using Machine Learning Algorithms

    Science.gov (United States)

    2014-03-27

    encryption [37]. As an alternative to traditional classification approaches, machine learning (ML) algorithms (e.g., Naı̈ve Bayes) have successfully used...systems, and conducting physical security surveys of remote sites. Eliminating possible backdoor entry into a SCADA network can be a daunting task...notify the master of an issue. Furthermore, SCADA protocols generally lack authentication and encryption due to operating requirements and use of

  8. Probabilistic forecasting of wind power generation using extreme learning machine

    DEFF Research Database (Denmark)

    Wan, Can; Xu, Zhao; Pinson, Pierre

    2014-01-01

    an extreme learning machine (ELM)-based probabilistic forecasting method for wind power generation. To account for the uncertainties in the forecasting results, several bootstrapmethods have been compared for modeling the regression uncertainty, based on which the pairs bootstrap method is identified...... demonstrate that the proposed method is effective for probabilistic forecasting of wind power generation with a high potential for practical applications in power systems....

  9. Medical Dataset Classification: A Machine Learning Paradigm Integrating Particle Swarm Optimization with Extreme Learning Machine Classifier

    Directory of Open Access Journals (Sweden)

    C. V. Subbulakshmi

    2015-01-01

    Full Text Available Medical data classification is a prime data mining problem being discussed about for a decade that has attracted several researchers around the world. Most classifiers are designed so as to learn from the data itself using a training process, because complete expert knowledge to determine classifier parameters is impracticable. This paper proposes a hybrid methodology based on machine learning paradigm. This paradigm integrates the successful exploration mechanism called self-regulated learning capability of the particle swarm optimization (PSO algorithm with the extreme learning machine (ELM classifier. As a recent off-line learning method, ELM is a single-hidden layer feedforward neural network (FFNN, proved to be an excellent classifier with large number of hidden layer neurons. In this research, PSO is used to determine the optimum set of parameters for the ELM, thus reducing the number of hidden layer neurons, and it further improves the network generalization performance. The proposed method is experimented on five benchmarked datasets of the UCI Machine Learning Repository for handling medical dataset classification. Simulation results show that the proposed approach is able to achieve good generalization performance, compared to the results of other classifiers.

  10. Medical Dataset Classification: A Machine Learning Paradigm Integrating Particle Swarm Optimization with Extreme Learning Machine Classifier.

    Science.gov (United States)

    Subbulakshmi, C V; Deepa, S N

    2015-01-01

    Medical data classification is a prime data mining problem being discussed about for a decade that has attracted several researchers around the world. Most classifiers are designed so as to learn from the data itself using a training process, because complete expert knowledge to determine classifier parameters is impracticable. This paper proposes a hybrid methodology based on machine learning paradigm. This paradigm integrates the successful exploration mechanism called self-regulated learning capability of the particle swarm optimization (PSO) algorithm with the extreme learning machine (ELM) classifier. As a recent off-line learning method, ELM is a single-hidden layer feedforward neural network (FFNN), proved to be an excellent classifier with large number of hidden layer neurons. In this research, PSO is used to determine the optimum set of parameters for the ELM, thus reducing the number of hidden layer neurons, and it further improves the network generalization performance. The proposed method is experimented on five benchmarked datasets of the UCI Machine Learning Repository for handling medical dataset classification. Simulation results show that the proposed approach is able to achieve good generalization performance, compared to the results of other classifiers.

  11. The cerebellum: a neuronal learning machine?

    Science.gov (United States)

    Raymond, J. L.; Lisberger, S. G.; Mauk, M. D.

    1996-01-01

    Comparison of two seemingly quite different behaviors yields a surprisingly consistent picture of the role of the cerebellum in motor learning. Behavioral and physiological data about classical conditioning of the eyelid response and motor learning in the vestibulo-ocular reflex suggests that (i) plasticity is distributed between the cerebellar cortex and the deep cerebellar nuclei; (ii) the cerebellar cortex plays a special role in learning the timing of movement; and (iii) the cerebellar cortex guides learning in the deep nuclei, which may allow learning to be transferred from the cortex to the deep nuclei. Because many of the similarities in the data from the two systems typify general features of cerebellar organization, the cerebellar mechanisms of learning in these two systems may represent principles that apply to many motor systems.

  12. Machine Learning: developing an image recognition program : with Python, Scikit Learn and OpenCV

    OpenAIRE

    Nguyen, Minh

    2016-01-01

    Machine Learning is one of the most debated topic in computer world these days, especially after the first Computer Go program has beaten human Go world champion. Among endless application of Machine Learning, image recognition, which problem is processing enormous amount of data from dynamic input. This thesis will present the basic concept of Machine Learning, Machine Learning algorithms, Python programming language and Scikit Learn – a simple and efficient tool for data analysis in P...

  13. Hydrological data assimilation using Extreme Learning Machines

    Science.gov (United States)

    Boucher, Marie-Amélie; Quilty, John; Adamowski, Jan

    2017-04-01

    state variables (snow calorific deficit and the percentage of the watershed covered by snow). In order to verify the general applicability of the proposed method, it is applied to five watersheds in contrasting hydro-climatic contexts (e.g., nordic, semi-arid, humid, and temperate). We show that the ELMs can be used to successfully update GR4J's state variables, in all cases. Considering the ensemble mean as a deterministic forecast, the Mean Absolute Error between simulated and observed streamflow can be reduced by up to 30 %. We also show that the success of the method is highly dependent on adequate selection of input variables for the ELMs. Overall, this new data assimilation method offers good performance with low computational costs. References Thiboult, A., Anctil, F. and Boucher, M.-A. (2016) Accounting for three sources of uncertainty in ensemble hydrological forecasting, Hydrology and Earth System Sciences, 20(5), 1809-1825. Zang, K. and Liu, M. (2015) Outlier-robust extreme learning machine for regression problems, Neurocomputing, 151, part 3, 1519-1527.

  14. Understanding Neural Networks for Machine Learning using Microsoft Neural Network Algorithm

    National Research Council Canada - National Science Library

    Nagesh Ramprasad

    2016-01-01

    .... In this research, focus is on the Microsoft Neural System Algorithm. The Microsoft Neural System Algorithm is a simple implementation of the adaptable and popular neural networks that are used in the machine learning...

  15. Machine learning techniques and drug design.

    Science.gov (United States)

    Gertrudes, J C; Maltarollo, V G; Silva, R A; Oliveira, P R; Honório, K M; da Silva, A B F

    2012-01-01

    The interest in the application of machine learning techniques (MLT) as drug design tools is growing in the last decades. The reason for this is related to the fact that the drug design is very complex and requires the use of hybrid techniques. A brief review of some MLT such as self-organizing maps, multilayer perceptron, bayesian neural networks, counter-propagation neural network and support vector machines is described in this paper. A comparison between the performance of the described methods and some classical statistical methods (such as partial least squares and multiple linear regression) shows that MLT have significant advantages. Nowadays, the number of studies in medicinal chemistry that employ these techniques has considerably increased, in particular the use of support vector machines. The state of the art and the future trends of MLT applications encompass the use of these techniques to construct more reliable QSAR models. The models obtained from MLT can be used in virtual screening studies as well as filters to develop/discovery new chemicals. An important challenge in the drug design field is the prediction of pharmacokinetic and toxicity properties, which can avoid failures in the clinical phases. Therefore, this review provides a critical point of view on the main MLT and shows their potential ability as a valuable tool in drug design.

  16. Visual quality assessment by machine learning

    CERN Document Server

    Xu, Long; Kuo, C -C Jay

    2015-01-01

    The book encompasses the state-of-the-art visual quality assessment (VQA) and learning based visual quality assessment (LB-VQA) by providing a comprehensive overview of the existing relevant methods. It delivers the readers the basic knowledge, systematic overview and new development of VQA. It also encompasses the preliminary knowledge of Machine Learning (ML) to VQA tasks and newly developed ML techniques for the purpose. Hence, firstly, it is particularly helpful to the beginner-readers (including research students) to enter into VQA field in general and LB-VQA one in particular. Secondly, new development in VQA and LB-VQA particularly are detailed in this book, which will give peer researchers and engineers new insights in VQA.

  17. A Fast Reduced Kernel Extreme Learning Machine.

    Science.gov (United States)

    Deng, Wan-Yu; Ong, Yew-Soon; Zheng, Qing-Hua

    2016-04-01

    In this paper, we present a fast and accurate kernel-based supervised algorithm referred to as the Reduced Kernel Extreme Learning Machine (RKELM). In contrast to the work on Support Vector Machine (SVM) or Least Square SVM (LS-SVM), which identifies the support vectors or weight vectors iteratively, the proposed RKELM randomly selects a subset of the available data samples as support vectors (or mapping samples). By avoiding the iterative steps of SVM, significant cost savings in the training process can be readily attained, especially on Big datasets. RKELM is established based on the rigorous proof of universal learning involving reduced kernel-based SLFN. In particular, we prove that RKELM can approximate any nonlinear functions accurately under the condition of support vectors sufficiency. Experimental results on a wide variety of real world small instance size and large instance size applications in the context of binary classification, multi-class problem and regression are then reported to show that RKELM can perform at competitive level of generalized performance as the SVM/LS-SVM at only a fraction of the computational effort incurred.

  18. Measure Transformer Semantics for Bayesian Machine Learning

    Science.gov (United States)

    Borgström, Johannes; Gordon, Andrew D.; Greenberg, Michael; Margetson, James; van Gael, Jurgen

    The Bayesian approach to machine learning amounts to inferring posterior distributions of random variables from a probabilistic model of how the variables are related (that is, a prior distribution) and a set of observations of variables. There is a trend in machine learning towards expressing Bayesian models as probabilistic programs. As a foundation for this kind of programming, we propose a core functional calculus with primitives for sampling prior distributions and observing variables. We define combinators for measure transformers, based on theorems in measure theory, and use these to give a rigorous semantics to our core calculus. The original features of our semantics include its support for discrete, continuous, and hybrid measures, and, in particular, for observations of zero-probability events. We compile our core language to a small imperative language that has a straightforward semantics via factor graphs, data structures that enable many efficient inference algorithms. We use an existing inference engine for efficient approximate inference of posterior marginal distributions, treating thousands of observations per second for large instances of realistic models.

  19. Photometric Supernova Classification with Machine Learning

    Science.gov (United States)

    Lochner, Michelle; McEwen, Jason D.; Peiris, Hiranya V.; Lahav, Ofer; Winter, Max K.

    2016-08-01

    Automated photometric supernova classification has become an active area of research in recent years in light of current and upcoming imaging surveys such as the Dark Energy Survey (DES) and the Large Synoptic Survey Telescope, given that spectroscopic confirmation of type for all supernovae discovered will be impossible. Here, we develop a multi-faceted classification pipeline, combining existing and new approaches. Our pipeline consists of two stages: extracting descriptive features from the light curves and classification using a machine learning algorithm. Our feature extraction methods vary from model-dependent techniques, namely SALT2 fits, to more independent techniques that fit parametric models to curves, to a completely model-independent wavelet approach. We cover a range of representative machine learning algorithms, including naive Bayes, k-nearest neighbors, support vector machines, artificial neural networks, and boosted decision trees (BDTs). We test the pipeline on simulated multi-band DES light curves from the Supernova Photometric Classification Challenge. Using the commonly used area under the curve (AUC) of the Receiver Operating Characteristic as a metric, we find that the SALT2 fits and the wavelet approach, with the BDTs algorithm, each achieve an AUC of 0.98, where 1 represents perfect classification. We find that a representative training set is essential for good classification, whatever the feature set or algorithm, with implications for spectroscopic follow-up. Importantly, we find that by using either the SALT2 or the wavelet feature sets with a BDT algorithm, accurate classification is possible purely from light curve data, without the need for any redshift information.

  20. Step Characterization using Sensor Information Fusion and Machine Learning

    Directory of Open Access Journals (Sweden)

    Ricardo Anacleto

    2015-12-01

    Full Text Available A pedestrian inertial navigation system is typically used to suppress the Global Navigation Satellite System limitation to track persons in indoor or in dense environments. However, low- cost inertial systems provide huge location estimation errors due to sensors and pedestrian dead reckoning inherent characteristics. To suppress some of these errors we propose a system that uses two inertial measurement units spread in person’s body, which measurements are aggregated using learning algorithms that learn the gait behaviors. In this work we present our results on using different machine learning algorithms which are used to characterize the step according to its direction and length. This characterization is then used to adapt the navigation algorithm according to the performed classifications.

  1. A Machine Learning Approach to Test Data Generation

    DEFF Research Database (Denmark)

    Christiansen, Henning; Dahmcke, Christina Mackeprang

    2007-01-01

    been tested, and a more thorough statistical foundation is required. We propose to use logic-statistical modelling methods for machine-learning for analyzing existing and manually marked up data, integrated with the generation of new, artificial data. More specifically, we suggest to use the PRISM...... system developed by Sato and Kameya. Based on logic programming extended with random variables and parameter learning, PRISM appears as a powerful modelling environment, which subsumes HMMs and a wide range of other methods, all embedded in a declarative language. We illustrate these principles here...

  2. Protein function in precision medicine: deep understanding with machine learning.

    Science.gov (United States)

    Rost, Burkhard; Radivojac, Predrag; Bromberg, Yana

    2016-08-01

    Precision medicine and personalized health efforts propose leveraging complex molecular, medical and family history, along with other types of personal data toward better life. We argue that this ambitious objective will require advanced and specialized machine learning solutions. Simply skimming some low-hanging results off the data wealth might have limited potential. Instead, we need to better understand all parts of the system to define medically relevant causes and effects: how do particular sequence variants affect particular proteins and pathways? How do these effects, in turn, cause the health or disease-related phenotype? Toward this end, deeper understanding will not simply diffuse from deeper machine learning, but from more explicit focus on understanding protein function, context-specific protein interaction networks, and impact of variation on both. © 2016 Federation of European Biochemical Societies.

  3. C4.5 programs for machine learning

    CERN Document Server

    Quinlan, J Ross

    1992-01-01

    Classifier systems play a major role in machine learning and knowledge-based systems, and Ross Quinlan's work on ID3 and C4.5 is widely acknowledged to have made some of the most significant contributions to their development. This book is a complete guide to the C4.5 system as implemented in C for the UNIX environment. It contains a comprehensive guide to the system's use , the source code (about 8,800 lines), and implementation notes. The source code and sample datasets are also available for download (see below). C4.5 starts with large sets of cases belonging to known classes. The cases,

  4. Weka machine learning for predicting the phospholipidosis inducing potential.

    Science.gov (United States)

    Ivanciuc, Ovidiu

    2008-01-01

    The drug discovery and development process is lengthy and expensive, and bringing a drug to market may take up to 18 years and may cost up to 2 billion $US. The extensive use of computer-assisted drug design techniques may considerably increase the chances of finding valuable drug candidates, thus decreasing the drug discovery time and costs. The most important computational approach is represented by structure-activity relationships that can discriminate between sets of chemicals that are active/inactive towards a certain biological receptor. An adverse effect of some cationic amphiphilic drugs is phospholipidosis that manifests as an intracellular accumulation of phospholipids and formation of concentric lamellar bodies. Here we present structure-activity relationships (SAR) computed with a wide variety of machine learning algorithms trained to identify drugs that have phospholipidosis inducing potential. All SAR models are developed with the machine learning software Weka, and include both classical algorithms, such as k-nearest neighbors and decision trees, as well as recently introduced methods, such as support vector machines and artificial immune systems. The best predictions are obtained with support vector machines, followed by perceptron artificial neural network, logistic regression, and k-nearest neighbors.

  5. Amp: A modular approach to machine learning in atomistic simulations

    Science.gov (United States)

    Khorshidi, Alireza; Peterson, Andrew A.

    2016-10-01

    Electronic structure calculations, such as those employing Kohn-Sham density functional theory or ab initio wavefunction theories, have allowed for atomistic-level understandings of a wide variety of phenomena and properties of matter at small scales. However, the computational cost of electronic structure methods drastically increases with length and time scales, which makes these methods difficult for long time-scale molecular dynamics simulations or large-sized systems. Machine-learning techniques can provide accurate potentials that can match the quality of electronic structure calculations, provided sufficient training data. These potentials can then be used to rapidly simulate large and long time-scale phenomena at similar quality to the parent electronic structure approach. Machine-learning potentials usually take a bias-free mathematical form and can be readily developed for a wide variety of systems. Electronic structure calculations have favorable properties-namely that they are noiseless and targeted training data can be produced on-demand-that make them particularly well-suited for machine learning. This paper discusses our modular approach to atomistic machine learning through the development of the open-source Atomistic Machine-learning Package (Amp), which allows for representations of both the total and atom-centered potential energy surface, in both periodic and non-periodic systems. Potentials developed through the atom-centered approach are simultaneously applicable for systems with various sizes. Interpolation can be enhanced by introducing custom descriptors of the local environment. We demonstrate this in the current work for Gaussian-type, bispectrum, and Zernike-type descriptors. Amp has an intuitive and modular structure with an interface through the python scripting language yet has parallelizable fortran components for demanding tasks; it is designed to integrate closely with the widely used Atomic Simulation Environment (ASE), which

  6. Quantum machine learning what quantum computing means to data mining

    CERN Document Server

    Wittek, Peter

    2014-01-01

    Quantum Machine Learning bridges the gap between abstract developments in quantum computing and the applied research on machine learning. Paring down the complexity of the disciplines involved, it focuses on providing a synthesis that explains the most important machine learning algorithms in a quantum framework. Theoretical advances in quantum computing are hard to follow for computer scientists, and sometimes even for researchers involved in the field. The lack of a step-by-step guide hampers the broader understanding of this emergent interdisciplinary body of research. Quantum Machine L

  7. Fundamentals of Machine Learning for Neural Machine Translation

    OpenAIRE

    Kelleher, John

    2016-01-01

    This paper presents a short introduction to neural networks and how they are used for machine translation and concludes with some discussion on the current research challenges being addressed by neural machine translation (NMT) research. The primary goal of this paper is to give a no-tears introduction to NMT to readers that do not have a computer science or mathematical background. The secondary goal is to provide the reader with a deep enough understanding of NMT that they can appreciate th...

  8. Machine Learning Based Diagnosis of Lithium Batteries

    Science.gov (United States)

    Ibe-Ekeocha, Chinemerem Christopher

    The depletion of the world's current petroleum reserve, coupled with the negative effects of carbon monoxide and other harmful petrochemical by-products on the environment, is the driving force behind the movement towards renewable and sustainable energy sources. Furthermore, the growing transportation sector consumes a significant portion of the total energy used in the United States. A complete electrification of this sector would require a significant development in electric vehicles (EVs) and hybrid electric vehicles (HEVs), thus translating to a reduction in the carbon footprint. As the market for EVs and HEVs grows, their battery management systems (BMS) need to be improved accordingly. The BMS is not only responsible for optimally charging and discharging the battery, but also monitoring battery's state of charge (SOC) and state of health (SOH). SOC, similar to an energy gauge, is a representation of a battery's remaining charge level as a percentage of its total possible charge at full capacity. Similarly, SOH is a measure of deterioration of a battery; thus it is a representation of the battery's age. Both SOC and SOH are not measurable, so it is important that these quantities are estimated accurately. An inaccurate estimation could not only be inconvenient for EV consumers, but also potentially detrimental to battery's performance and life. Such estimations could be implemented either online, while battery is in use, or offline when battery is at rest. This thesis presents intelligent online SOC and SOH estimation methods using machine learning tools such as artificial neural network (ANN). ANNs are a powerful generalization tool if programmed and trained effectively. Unlike other estimation strategies, the techniques used require no battery modeling or knowledge of battery internal parameters but rather uses battery's voltage, charge/discharge current, and ambient temperature measurements to accurately estimate battery's SOC and SOH. The developed

  9. Combining Formal Logic and Machine Learning for Sentiment Analysis

    DEFF Research Database (Denmark)

    Petersen, Niklas Christoffer; Villadsen, Jørgen

    2014-01-01

    This paper presents a formal logical method for deep structural analysis of the syntactical properties of texts using machine learning techniques for efficient syntactical tagging. To evaluate the method it is used for entity level sentiment analysis as an alternative to pure machine learning...

  10. Newton Methods for Large Scale Problems in Machine Learning

    Science.gov (United States)

    Hansen, Samantha Leigh

    2014-01-01

    The focus of this thesis is on practical ways of designing optimization algorithms for minimizing large-scale nonlinear functions with applications in machine learning. Chapter 1 introduces the overarching ideas in the thesis. Chapters 2 and 3 are geared towards supervised machine learning applications that involve minimizing a sum of loss…

  11. Applying Machine Learning to Facilitate Autism Diagnostics: Pitfalls and Promises

    Science.gov (United States)

    Bone, Daniel; Goodwin, Matthew S.; Black, Matthew P.; Lee, Chi-Chun; Audhkhasi, Kartik; Narayanan, Shrikanth

    2015-01-01

    Machine learning has immense potential to enhance diagnostic and intervention research in the behavioral sciences, and may be especially useful in investigations involving the highly prevalent and heterogeneous syndrome of autism spectrum disorder. However, use of machine learning in the absence of clinical domain expertise can be tenuous and lead…

  12. Large-Scale Machine Learning for Classification and Search

    Science.gov (United States)

    Liu, Wei

    2012-01-01

    With the rapid development of the Internet, nowadays tremendous amounts of data including images and videos, up to millions or billions, can be collected for training machine learning models. Inspired by this trend, this thesis is dedicated to developing large-scale machine learning techniques for the purpose of making classification and nearest…

  13. Large-Scale Machine Learning for Classification and Search

    Science.gov (United States)

    Liu, Wei

    2012-01-01

    With the rapid development of the Internet, nowadays tremendous amounts of data including images and videos, up to millions or billions, can be collected for training machine learning models. Inspired by this trend, this thesis is dedicated to developing large-scale machine learning techniques for the purpose of making classification and nearest…

  14. Newton Methods for Large Scale Problems in Machine Learning

    Science.gov (United States)

    Hansen, Samantha Leigh

    2014-01-01

    The focus of this thesis is on practical ways of designing optimization algorithms for minimizing large-scale nonlinear functions with applications in machine learning. Chapter 1 introduces the overarching ideas in the thesis. Chapters 2 and 3 are geared towards supervised machine learning applications that involve minimizing a sum of loss…

  15. Applying Machine Learning to Facilitate Autism Diagnostics: Pitfalls and Promises

    Science.gov (United States)

    Bone, Daniel; Goodwin, Matthew S.; Black, Matthew P.; Lee, Chi-Chun; Audhkhasi, Kartik; Narayanan, Shrikanth

    2015-01-01

    Machine learning has immense potential to enhance diagnostic and intervention research in the behavioral sciences, and may be especially useful in investigations involving the highly prevalent and heterogeneous syndrome of autism spectrum disorder. However, use of machine learning in the absence of clinical domain expertise can be tenuous and lead…

  16. IEEE International Workshop on Machine Learning for Signal Processing: Preface

    DEFF Research Database (Denmark)

    Tao, Jianhua

    The 21st IEEE International Workshop on Machine Learning for Signal Processing will be held in Beijing, China, on September 18–21, 2011. The workshop series is the major annual technical event of the IEEE Signal Processing Society's Technical Committee on Machine Learning for Signal Processing...

  17. Proceedings of the IEEE Machine Learning for Signal Processing XVII

    DEFF Research Database (Denmark)

    The seventeenth of a series of workshops sponsored by the IEEE Signal Processing Society and organized by the Machine Learning for Signal Processing Technical Committee (MLSP-TC). The field of machine learning has matured considerably in both methodology and real-world application domains and has...

  18. IEEE International Workshop on Machine Learning for Signal Processing: Preface

    DEFF Research Database (Denmark)

    Tao, Jianhua

    The 21st IEEE International Workshop on Machine Learning for Signal Processing will be held in Beijing, China, on September 18–21, 2011. The workshop series is the major annual technical event of the IEEE Signal Processing Society's Technical Committee on Machine Learning for Signal Processing...

  19. Refining fuzzy logic controllers with machine learning

    Science.gov (United States)

    Berenji, Hamid R.

    1994-01-01

    In this paper, we describe the GARIC (Generalized Approximate Reasoning-Based Intelligent Control) architecture, which learns from its past performance and modifies the labels in the fuzzy rules to improve performance. It uses fuzzy reinforcement learning which is a hybrid method of fuzzy logic and reinforcement learning. This technology can simplify and automate the application of fuzzy logic control to a variety of systems. GARIC has been applied in simulation studies of the Space Shuttle rendezvous and docking experiments. It has the potential of being applied in other aerospace systems as well as in consumer products such as appliances, cameras, and cars.

  20. A Machine Learning Framework for Plan Payment Risk Adjustment.

    Science.gov (United States)

    Rose, Sherri

    2016-12-01

    To introduce cross-validation and a nonparametric machine learning framework for plan payment risk adjustment and then assess whether they have the potential to improve risk adjustment. 2011-2012 Truven MarketScan database. We compare the performance of multiple statistical approaches within a broad machine learning framework for estimation of risk adjustment formulas. Total annual expenditure was predicted using age, sex, geography, inpatient diagnoses, and hierarchical condition category variables. The methods included regression, penalized regression, decision trees, neural networks, and an ensemble super learner, all in concert with screening algorithms that reduce the set of variables considered. The performance of these methods was compared based on cross-validated R(2) . Our results indicate that a simplified risk adjustment formula selected via this nonparametric framework maintains much of the efficiency of a traditional larger formula. The ensemble approach also outperformed classical regression and all other algorithms studied. The implementation of cross-validated machine learning techniques provides novel insight into risk adjustment estimation, possibly allowing for a simplified formula, thereby reducing incentives for increased coding intensity as well as the ability of insurers to "game" the system with aggressive diagnostic upcoding. © Health Research and Educational Trust.

  1. Dropout Prediction in E-Learning Courses through the Combination of Machine Learning Techniques

    Science.gov (United States)

    Lykourentzou, Ioanna; Giannoukos, Ioannis; Nikolopoulos, Vassilis; Mpardis, George; Loumos, Vassili

    2009-01-01

    In this paper, a dropout prediction method for e-learning courses, based on three popular machine learning techniques and detailed student data, is proposed. The machine learning techniques used are feed-forward neural networks, support vector machines and probabilistic ensemble simplified fuzzy ARTMAP. Since a single technique may fail to…

  2. Dropout Prediction in E-Learning Courses through the Combination of Machine Learning Techniques

    Science.gov (United States)

    Lykourentzou, Ioanna; Giannoukos, Ioannis; Nikolopoulos, Vassilis; Mpardis, George; Loumos, Vassili

    2009-01-01

    In this paper, a dropout prediction method for e-learning courses, based on three popular machine learning techniques and detailed student data, is proposed. The machine learning techniques used are feed-forward neural networks, support vector machines and probabilistic ensemble simplified fuzzy ARTMAP. Since a single technique may fail to…

  3. A Machine-Learning-Driven Sky Model.

    Science.gov (United States)

    Satylmys, Pynar; Bashford-Rogers, Thomas; Chalmers, Alan; Debattista, Kurt

    2017-01-01

    Sky illumination is responsible for much of the lighting in a virtual environment. A machine-learning-based approach can compactly represent sky illumination from both existing analytic sky models and from captured environment maps. The proposed approach can approximate the captured lighting at a significantly reduced memory cost and enable smooth transitions of sky lighting to be created from a small set of environment maps captured at discrete times of day. The author's results demonstrate accuracy close to the ground truth for both analytical and capture-based methods. The approach has a low runtime overhead, so it can be used as a generic approach for both offline and real-time applications.

  4. Machine learning of Calabi-Yau volumes

    Science.gov (United States)

    Krefl, Daniel; Seong, Rak-Kyeong

    2017-09-01

    We employ machine learning techniques to investigate the volume minimum of Sasaki-Einstein base manifolds of noncompact toric Calabi-Yau three-folds. We find that the minimum volume can be approximated via a second-order multiple linear regression on standard topological quantities obtained from the corresponding toric diagram. The approximation improves further after invoking a convolutional neural network with the full toric diagram of the Calabi-Yau three-folds as the input. We are thereby able to circumvent any minimization procedure that was previously necessary and find an explicit mapping between the minimum volume and the topological quantities of the toric diagram. Under the AdS/CFT correspondence, the minimum volumes of Sasaki-Einstein manifolds correspond to central charges of a class of 4 d N =1 superconformal field theories. We therefore find empirical evidence for a function that gives values of central charges without the usual extremization procedure.

  5. Optimal sensor placement using machine learning

    CERN Document Server

    Semaan, Richard

    2016-01-01

    A new method for optimal sensor placement based on variable importance of machine learned models is proposed. With its simplicity, adaptivity, and low computational cost, the method offers many advantages over existing approaches. The new method is implemented on an airfoil equipped with a Coanda actuator. The analysis is based on flow field data obtained from 2D unsteady Reynolds averaged Navier-Stokes (URANS) simulations with different actuation conditions. The optimal sensor locations is compared against the current de-facto standard of maximum POD modal amplitude location, and against a brute force approach that scans all possible sensor combinations. The results show that both the flow conditions and the type of sensor have an effect on the optimal sensor placement, whereas the choice of the response function appears to have limited influence.

  6. CD process control through machine learning

    Science.gov (United States)

    Utzny, Clemens

    2016-10-01

    For the specific requirements of the 14nm and 20nm site applications a new CD map approach was developed at the AMTC. This approach relies on a well established machine learning technique called recursive partitioning. Recursive partitioning is a powerful technique which creates a decision tree by successively testing whether the quantity of interest can be explained by one of the supplied covariates. The test performed is generally a statistical test with a pre-supplied significance level. Once the test indicates significant association between the variable of interest and a covariate a split performed at a threshold value which minimizes the variation within the newly attained groups. This partitioning is recurred until either no significant association can be detected or the resulting sub group size falls below a pre-supplied level.

  7. Lane Detection Based on Machine Learning Algorithm

    Directory of Open Access Journals (Sweden)

    Chao Fan

    2013-09-01

    Full Text Available In order to improve accuracy and robustness of the lane detection in complex conditions, such as the shadows and illumination changing, a novel detection algorithm was proposed based on machine learning. After pretreatment, a set of haar-like filters were used to calculate the eigenvalue in the gray image f(x,y and edge e(x,y. Then these features were trained by using improved boosting algorithm and the final class function g(x was obtained, which was used to judge whether the point x belonging to the lane or not. To avoid the over fitting in traditional boosting, Fisher discriminant analysis was used to initialize the weights of samples. After testing by many road in all conditions, it showed that this algorithm had good robustness and real-time to recognize the lane in all challenging conditions.

  8. Strategies and Principles of Distributed Machine Learning on Big Data

    Directory of Open Access Journals (Sweden)

    Eric P. Xing

    2016-06-01

    Full Text Available The rise of big data has led to new demands for machine learning (ML systems to learn complex models, with millions to billions of parameters, that promise adequate capacity to digest massive datasets and offer powerful predictive analytics (such as high-dimensional latent features, intermediate representations, and decision functions thereupon. In order to run ML algorithms at such scales, on a distributed cluster with tens to thousands of machines, it is often the case that significant engineering efforts are required—and one might fairly ask whether such engineering truly falls within the domain of ML research. Taking the view that “big” ML systems can benefit greatly from ML-rooted statistical and algorithmic insights—and that ML researchers should therefore not shy away from such systems design—we discuss a series of principles and strategies distilled from our recent efforts on industrial-scale ML solutions. These principles and strategies span a continuum from application, to engineering, and to theoretical research and development of big ML systems and architectures, with the goal of understanding how to make them efficient, generally applicable, and supported with convergence and scaling guarantees. They concern four key questions that traditionally receive little attention in ML research: How can an ML program be distributed over a cluster? How can ML computation be bridged with inter-machine communication? How can such communication be performed? What should be communicated between machines? By exposing underlying statistical and algorithmic characteristics unique to ML programs but not typically seen in traditional computer programs, and by dissecting successful cases to reveal how we have harnessed these principles to design and develop both high-performance distributed ML software as well as general-purpose ML frameworks, we present opportunities for ML researchers and practitioners to further shape and enlarge the area

  9. Tracking medical genetic literature through machine learning.

    Science.gov (United States)

    Bornstein, Aaron T; McLoughlin, Matthew H; Aguilar, Jesus; Wong, Wendy S W; Solomon, Benjamin D

    2016-08-01

    There has been remarkable progress in identifying the causes of genetic conditions as well as understanding how changes in specific genes cause disease. Though difficult (and often superficial) to parse, an interesting tension involves emphasis on basic research aimed to dissect normal and abnormal biology versus more clearly clinical and therapeutic investigations. To examine one facet of this question and to better understand progress in Mendelian-related research, we developed an algorithm that classifies medical literature into three categories (Basic, Clinical, and Management) and conducted a retrospective analysis. We built a supervised machine learning classification model using the Azure Machine Learning (ML) Platform and analyzed the literature (1970-2014) from NCBI's Entrez Gene2Pubmed Database (http://www.ncbi.nlm.nih.gov/gene) using genes from the NHGRI's Clinical Genomics Database (http://research.nhgri.nih.gov/CGD/). We applied our model to 376,738 articles: 288,639 (76.6%) were classified as Basic, 54,178 (14.4%) as Clinical, and 24,569 (6.5%) as Management. The average classification accuracy was 92.2%. The rate of Clinical publication was significantly higher than Basic or Management. The rate of publication of article types differed significantly when divided into key eras: Human Genome Project (HGP) planning phase (1984-1990); HGP launch (1990) to publication (2001); following HGP completion to the "Next Generation" advent (2009); the era following 2009. In conclusion, in addition to the findings regarding the pace and focus of genetic progress, our algorithm produced a database that can be used in a variety of contexts including automating the identification of management-related literature.

  10. Machine Learning for Optical Performance Monitoring from Directly Detected PDM-QAM Signals

    DEFF Research Database (Denmark)

    Wass, J.; Thrane, Jakob; Piels, Molly

    2016-01-01

    Supervised machine learning methods are applied and demonstrated experimentally for inband OSNR estimation and modulation format classification in optical communication systems. The proposed methods accurately evaluate coherent signals up to 64QAM using only intensity information....

  11. A Comparative Review of Machine Learning for Arabic Named Entity Recognition

    Directory of Open Access Journals (Sweden)

    Ramzi Esmail Salah

    2017-04-01

    Full Text Available Arabic Named Entity Recognition (ANER systems aim to identify and classify Arabic Named entities (NEs within Arabic text. Other important tasks in Arabic Natural Language Processing (NLP depends on ANER such as machine translation, question-answering, information extraction, etc. In general, ANER systems can be classified into three main approaches, namely, rule-based, machine-learning or hybrid systems. In this paper, we focus on research progress in machine-learning (ML ANER and compare between linguistic resource, entity type, domain, method and performance. We also highlight the challenges when processing Arabic NEs through ML systems.

  12. Machine learning in radiation oncology theory and applications

    CERN Document Server

    El Naqa, Issam; Murphy, Martin J

    2015-01-01

    ​This book provides a complete overview of the role of machine learning in radiation oncology and medical physics, covering basic theory, methods, and a variety of applications in medical physics and radiotherapy. An introductory section explains machine learning, reviews supervised and unsupervised learning methods, discusses performance evaluation, and summarizes potential applications in radiation oncology. Detailed individual sections are then devoted to the use of machine learning in quality assurance; computer-aided detection, including treatment planning and contouring; image-guided rad

  13. Using Machine Learning to Search for MSSM Higgs Bosons

    CERN Document Server

    Diesing, Rebecca

    2016-01-01

    This paper examines the performance of machine learning in the identification of Minimally Su- persymmetric Standard Model (MSSM) Higgs Bosons, and compares this performance to that of traditional cut strategies. Two boosted decision tree algorithms were tested, scikit-learn and XGBoost. These tests indicated that machine learning can perform significantly better than traditional cuts. However, since machine learning in this form cannot be directly implemented in a real MSSM Higgs analysis, this performance information was instead used to better understand the relationships between training variables. Further studies might use this information to construct an improved cut strategy.

  14. Combining generative and discriminative representation learning for lung CT analysis with convolutional restricted Boltzmann machines

    DEFF Research Database (Denmark)

    van Tulder, Gijs; de Bruijne, Marleen

    2016-01-01

    unlabeled data, but does not necessarily produce features that are optimal for classification. In this paper we propose the convolutional classification restricted Boltzmann machine, which combines a generative and a discriminative learning objective. This allows it to learn filters that are good both......The choice of features greatly influences the performance of a tissue classification system. Despite this, many systems are built with standard, predefined filter banks that are not optimized for that particular application. Representation learning methods such as restricted Boltzmann machines may...... outperform these standard filter banks because they learn a feature description directly from the training data. Like many other representation learning methods, restricted Boltzmann machines are unsupervised and are trained with a generative learning objective; this allows them to learn representations from...

  15. MEDLINE MeSH Indexing: Lessons Learned from Machine Learning and Future Directions

    DEFF Research Database (Denmark)

    Jimeno-Yepes, Antonio; Mork, James G.; Wilkowski, Bartlomiej

    2012-01-01

    Map and a k-NN approach called PubMed Related Citations (PRC). Our motivation is to improve the quality of MTI based on machine learning. Typical machine learning approaches fit this indexing task into text categorization. In this work, we have studied some Medical Subject Headings (MeSH) recommended by MTI...... and analyzed the issues when using standard machine learning algorithms. We show that in some cases machine learning can improve the annotations already recommended by MTI, that machine learning based on low variance methods achieves better performance and that each MeSH heading presents a different behavior...

  16. 机器学习的研究%Research on Machine Learning

    Institute of Scientific and Technical Information of China (English)

    侯树范; 孙英娟

    2012-01-01

    The paper has a deep research on machine learning. We discussed the development and application about machine learning from four aspects of machine learning development, research, system structure and its application.%本文对机器学习进行了深入研究,从机器学习的发展历程、研究领域、系统构成及其在分类上的应用四个方面论述了机器学习的发展和应用。

  17. Machine Learning and the Traveling Repairman

    CERN Document Server

    Tulabandhula, Theja; Jaillet, Patrick

    2011-01-01

    The goal of the Machine Learning and Traveling Repairman Problem (ML&TRP) is to determine a route for a "repair crew," which repairs nodes on a graph. The repair crew aims to minimize the cost of failures at the nodes, but as in many real situations, the failure probabilities are not known and must be estimated. We introduce two formulations for the ML&TRP, where the first formulation is sequential: failure probabilities are estimated at each node, and then a weighted version of the traveling repairman problem is used to construct the route from the failure cost. We develop two models for the failure cost, based on whether repeat failures are considered, or only the first failure on a node. Our second formulation is a multi-objective learning problem for ranking on graphs. Here, we are estimating failure probabilities simultaneously with determining the graph traversal route; the choice of route influences the estimated failure probabilities. This is in accordance with a prior belief that probabilitie...

  18. Performance Analysis of Machine-Learning Approaches for Modeling the Charging/Discharging Profiles of Stationary Battery Systems with Non-Uniform Cell Aging

    Directory of Open Access Journals (Sweden)

    Nandha Kumar Kandasamy

    2017-06-01

    Full Text Available The number of Stationary Battery Systems (SBS connected to various power distribution networks across the world has increased drastically. The increase in the integration of renewable energy sources is one of the major contributors to the increase in the number of SBS. SBS are also used in other applications such as peak load management, load-shifting, voltage regulation and power quality improvement. Accurately modeling the charging/discharging characteristics of such SBS at various instances (charging/discharging profile is vital for many applications. Capacity loss due to the aging of the batteries is an important factor to be considered for estimating the charging/discharging profile of SBS more accurately. Empirical modeling is a common approach used in the literature for estimating capacity loss, which is further used for estimating the charging/discharging profiles of SBS. However, in the case of SBS used for renewable integration and other grid related applications, machine-learning (ML based models provide extreme flexibility and require minimal resources for implementation. The models can even leverage existing smart meter data to estimate the charging/discharging profile of SBS. In this paper, an analysis on the performance of different ML approaches that can be applied for lithium iron phosphate battery systems and vanadium redox flow battery systems used as SBS is presented for the scenarios where the aging of individual cells is non-uniform.

  19. Improving diagnostic recognition of primary hyperparathyroidism with machine learning.

    Science.gov (United States)

    Somnay, Yash R; Craven, Mark; McCoy, Kelly L; Carty, Sally E; Wang, Tracy S; Greenberg, Caprice C; Schneider, David F

    2017-04-01

    decrease the accuracy significantly (area under receiver operating characteristic = 0.985). In mild disease cases, however, the Bayesian network model classified correctly 71.1% of patients with normal calcium and 92.1% with normal parathyroid hormone levels preoperatively. Bayesian networking and AdaBoost improved the accuracy of all parathyroid hormone patients to 97.2% cases (area under receiver operating characteristic = 0.994), and 91.9% of primary hyperparathyroidism patients with mild disease. This was significantly improved relative to Bayesian networking alone (P Machine learning can diagnose accurately primary hyperparathyroidism without human input even in mild disease. Incorporation of this tool into electronic medical record systems may aid in recognition of this under-diagnosed disorder. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Geological applications of machine learning on hyperspectral remote sensing data

    Science.gov (United States)

    Tse, C. H.; Li, Yi-liang; Lam, Edmund Y.

    2015-02-01

    The CRISM imaging spectrometer orbiting Mars has been producing a vast amount of data in the visible to infrared wavelengths in the form of hyperspectral data cubes. These data, compared with those obtained from previous remote sensing techniques, yield an unprecedented level of detailed spectral resolution in additional to an ever increasing level of spatial information. A major challenge brought about by the data is the burden of processing and interpreting these datasets and extract the relevant information from it. This research aims at approaching the challenge by exploring machine learning methods especially unsupervised learning to achieve cluster density estimation and classification, and ultimately devising an efficient means leading to identification of minerals. A set of software tools have been constructed by Python to access and experiment with CRISM hyperspectral cubes selected from two specific Mars locations. A machine learning pipeline is proposed and unsupervised learning methods were implemented onto pre-processed datasets. The resulting data clusters are compared with the published ASTER spectral library and browse data products from the Planetary Data System (PDS). The result demonstrated that this approach is capable of processing the huge amount of hyperspectral data and potentially providing guidance to scientists for more detailed studies.

  1. Fall detection using supervised machine learning algorithms: A comparative study

    KAUST Repository

    Zerrouki, Nabil

    2017-01-05

    Fall incidents are considered as the leading cause of disability and even mortality among older adults. To address this problem, fall detection and prevention fields receive a lot of intention over the past years and attracted many researcher efforts. We present in the current study an overall performance comparison between fall detection systems using the most popular machine learning approaches which are: Naïve Bayes, K nearest neighbor, neural network, and support vector machine. The analysis of the classification power associated to these most widely utilized algorithms is conducted on two fall detection databases namely FDD and URFD. Since the performance of the classification algorithm is inherently dependent on the features, we extracted and used the same features for all classifiers. The classification evaluation is conducted using different state of the art statistical measures such as the overall accuracy, the F-measure coefficient, and the area under ROC curve (AUC) value.

  2. GEOLOGICAL MAPPING USING MACHINE LEARNING ALGORITHMS

    Directory of Open Access Journals (Sweden)

    A. S. Harvey

    2016-06-01

    Full Text Available Remotely sensed spectral imagery, geophysical (magnetic and gravity, and geodetic (elevation data are useful in a variety of Earth science applications such as environmental monitoring and mineral exploration. Using these data with Machine Learning Algorithms (MLA, which are widely used in image analysis and statistical pattern recognition applications, may enhance preliminary geological mapping and interpretation. This approach contributes towards a rapid and objective means of geological mapping in contrast to conventional field expedition techniques. In this study, four supervised MLAs (naïve Bayes, k-nearest neighbour, random forest, and support vector machines are compared in order to assess their performance for correctly identifying geological rocktypes in an area with complete ground validation information. Geological maps of the Sudbury region are used for calibration and validation. Percent of correct classifications was used as indicators of performance. Results show that random forest is the best approach. As expected, MLA performance improves with more calibration clusters, i.e. a more uniform distribution of calibration data over the study region. Performance is generally low, though geological trends that correspond to a ground validation map are visualized. Low performance may be the result of poor spectral images of bare rock which can be covered by vegetation or water. The distribution of calibration clusters and MLA input parameters affect the performance of the MLAs. Generally, performance improves with more uniform sampling, though this increases required computational effort and time. With the achievable performance levels in this study, the technique is useful in identifying regions of interest and identifying general rocktype trends. In particular, phase I geological site investigations will benefit from this approach and lead to the selection of sites for advanced surveys.

  3. Geological Mapping Using Machine Learning Algorithms

    Science.gov (United States)

    Harvey, A. S.; Fotopoulos, G.

    2016-06-01

    Remotely sensed spectral imagery, geophysical (magnetic and gravity), and geodetic (elevation) data are useful in a variety of Earth science applications such as environmental monitoring and mineral exploration. Using these data with Machine Learning Algorithms (MLA), which are widely used in image analysis and statistical pattern recognition applications, may enhance preliminary geological mapping and interpretation. This approach contributes towards a rapid and objective means of geological mapping in contrast to conventional field expedition techniques. In this study, four supervised MLAs (naïve Bayes, k-nearest neighbour, random forest, and support vector machines) are compared in order to assess their performance for correctly identifying geological rocktypes in an area with complete ground validation information. Geological maps of the Sudbury region are used for calibration and validation. Percent of correct classifications was used as indicators of performance. Results show that random forest is the best approach. As expected, MLA performance improves with more calibration clusters, i.e. a more uniform distribution of calibration data over the study region. Performance is generally low, though geological trends that correspond to a ground validation map are visualized. Low performance may be the result of poor spectral images of bare rock which can be covered by vegetation or water. The distribution of calibration clusters and MLA input parameters affect the performance of the MLAs. Generally, performance improves with more uniform sampling, though this increases required computational effort and time. With the achievable performance levels in this study, the technique is useful in identifying regions of interest and identifying general rocktype trends. In particular, phase I geological site investigations will benefit from this approach and lead to the selection of sites for advanced surveys.

  4. An efficient flow-based botnet detection using supervised machine learning

    DEFF Research Database (Denmark)

    Stevanovic, Matija; Pedersen, Jens Myrup

    2014-01-01

    Botnet detection represents one of the most crucial prerequisites of successful botnet neutralization. This paper explores how accurate and timely detection can be achieved by using supervised machine learning as the tool of inferring about malicious botnet traffic. In order to do so, the paper...... introduces a novel flow-based detection system that relies on supervised machine learning for identifying botnet network traffic. For use in the system we consider eight highly regarded machine learning algorithms, indicating the best performing one. Furthermore, the paper evaluates how much traffic needs...... to accurately and timely detect botnet traffic using purely flow-based traffic analysis and supervised machine learning. Additionally, the results show that in order to achieve accurate detection traffic flows need to be monitored for only a limited time period and number of packets per flow. This indicates...

  5. Machine Protection System response in 2011

    CERN Document Server

    Zerlauth, M; Wenninger, J

    2012-01-01

    The performance of the machine protection system during the 2011 run is summarized in this paper. Following an analysis of the beam dump causes in comparison to the previous 2010 run, special emphasis will be given to analyse events which risked to exposed parts of the machine to damage. Further improvements and mitigations of potential holes in the protection systems as well as in the change management will be evaluated along with their impact on the 2012 run. The role of the restricted Machine Protection Panel ( rMPP ) during the various operational phases such as commissioning, the intensity ramp up and Machine Developments is being discussed.

  6. Application of machine learning in SNP discovery

    Directory of Open Access Journals (Sweden)

    Cregan Perry B

    2006-01-01

    Full Text Available Abstract Background Single nucleotide polymorphisms (SNP constitute more than 90% of the genetic variation, and hence can account for most trait differences among individuals in a given species. Polymorphism detection software PolyBayes and PolyPhred give high false positive SNP predictions even with stringent parameter values. We developed a machine learning (ML method to augment PolyBayes to improve its prediction accuracy. ML methods have also been successfully applied to other bioinformatics problems in predicting genes, promoters, transcription factor binding sites and protein structures. Results The ML program C4.5 was applied to a set of features in order to build a SNP classifier from training data based on human expert decisions (True/False. The training data were 27,275 candidate SNP generated by sequencing 1973 STS (sequence tag sites (12 Mb in both directions from 6 diverse homozygous soybean cultivars and PolyBayes analysis. Test data of 18,390 candidate SNP were generated similarly from 1359 additional STS (8 Mb. SNP from both sets were classified by experts. After training the ML classifier, it agreed with the experts on 97.3% of test data compared with 7.8% agreement between PolyBayes and experts. The PolyBayes positive predictive values (PPV (i.e., fraction of candidate SNP being real were 7.8% for all predictions and 16.7% for those with 100% posterior probability of being real. Using ML improved the PPV to 84.8%, a 5- to 10-fold increase. While both ML and PolyBayes produced a similar number of true positives, the ML program generated only 249 false positives as compared to 16,955 for PolyBayes. The complexity of the soybean genome may have contributed to high false SNP predictions by PolyBayes and hence results may differ for other genomes. Conclusion A machine learning (ML method was developed as a supplementary feature to the polymorphism detection software for improving prediction accuracies. The results from this study

  7. Modelling tick abundance using machine learning techniques and satellite imagery

    DEFF Research Database (Denmark)

    Kjær, Lene Jung; Korslund, L.; Kjelland, V.

    satellite images to run Boosted Regression Tree machine learning algorithms to predict overall distribution (presence/absence of ticks) and relative tick abundance of nymphs and larvae in southern Scandinavia. For nymphs, the predicted abundance had a positive correlation with observed abundance...... the predicted distribution of larvae was mostly even throughout Denmark, it was primarily around the coastlines in Norway and Sweden. Abundance was fairly low overall except in some fragmented patches corresponding to forested habitats in the region. Machine learning techniques allow us to predict for larger...... the collected ticks for pathogens and using the same machine learning techniques to develop prevalence maps of the ScandTick region....

  8. Implementing Machine Learning in Radiology Practice and Research.

    Science.gov (United States)

    Kohli, Marc; Prevedello, Luciano M; Filice, Ross W; Geis, J Raymond

    2017-04-01

    The purposes of this article are to describe concepts that radiologists should understand to evaluate machine learning projects, including common algorithms, supervised as opposed to unsupervised techniques, statistical pitfalls, and data considerations for training and evaluation, and to briefly describe ethical dilemmas and legal risk. Machine learning includes a broad class of computer programs that improve with experience. The complexity of creating, training, and monitoring machine learning indicates that the success of the algorithms will require radiologist involvement for years to come, leading to engagement rather than replacement.

  9. Studying depression using imaging and machine learning methods.

    Science.gov (United States)

    Patel, Meenal J; Khalaf, Alexander; Aizenstein, Howard J

    2016-01-01

    Depression is a complex clinical entity that can pose challenges for clinicians regarding both accurate diagnosis and effective timely treatment. These challenges have prompted the development of multiple machine learning methods to help improve the management of this disease. These methods utilize anatomical and physiological data acquired from neuroimaging to create models that can identify depressed patients vs. non-depressed patients and predict treatment outcomes. This article (1) presents a background on depression, imaging, and machine learning methodologies; (2) reviews methodologies of past studies that have used imaging and machine learning to study depression; and (3) suggests directions for future depression-related studies.

  10. Coordinated machine learning and decision support for situation awareness.

    Energy Technology Data Exchange (ETDEWEB)

    Draelos, Timothy John; Zhang, Peng-Chu.; Wunsch, Donald C. (University of Missouri, Rolla, MO); Seiffertt, John (University of Missouri, Rolla, MO); Conrad, Gregory N.; Brannon, Nathan Gregory

    2007-09-01

    For applications such as force protection, an effective decision maker needs to maintain an unambiguous grasp of the environment. Opportunities exist to leverage computational mechanisms for the adaptive fusion of diverse information sources. The current research employs neural networks and Markov chains to process information from sources including sensors, weather data, and law enforcement. Furthermore, the system operator's input is used as a point of reference for the machine learning algorithms. More detailed features of the approach are provided, along with an example force protection scenario.

  11. A Machine Learning and Optimization Toolkit for the Swarm

    Science.gov (United States)

    2014-11-17

    Swarm   Ilge  Akkaya,  Shuhei  Emoto...3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE A Machine Learning and Optimization Toolkit for the Swarm 5a. CONTRACT NUMBER...design  by   •  Exploi0ng  component-­‐level  interac0ons  in  the   swarm   •  Restoring  the  system  level  roots

  12. Transportation mode detection by using smartphone sensors and machine learning

    Directory of Open Access Journals (Sweden)

    Ensar Arif Sağbaş

    2016-10-01

    Full Text Available The aim of this study is to detect transportation modes of the users by using smartphone sensors. Therefore, GPS (Global Positioning System, accelerometer and gyroscope sensor data have been collected while walking, running, cycling and travelling by bus or by car from the smartphone of the user. Sensor data were tagged with 12 second interval and 2500 pattern were obtained. 14 features were acquired from the dataset. Machine learning methods were tested on the dataset. Best result was obtained from GPS, accelerometer and gyroscope sensor combination and Random Forest method with 99.4% accuracy rate.

  13. Classifying BCI signals from novice users with extreme learning machine

    Science.gov (United States)

    Rodríguez-Bermúdez, Germán; Bueno-Crespo, Andrés; José Martinez-Albaladejo, F.

    2017-07-01

    Brain computer interface (BCI) allows to control external devices only with the electrical activity of the brain. In order to improve the system, several approaches have been proposed. However it is usual to test algorithms with standard BCI signals from experts users or from repositories available on Internet. In this work, extreme learning machine (ELM) has been tested with signals from 5 novel users to compare with standard classification algorithms. Experimental results show that ELM is a suitable method to classify electroencephalogram signals from novice users.

  14. Classifying BCI signals from novice users with extreme learning machine

    Directory of Open Access Journals (Sweden)

    Rodríguez-Bermúdez Germán

    2017-07-01

    Full Text Available Brain computer interface (BCI allows to control external devices only with the electrical activity of the brain. In order to improve the system, several approaches have been proposed. However it is usual to test algorithms with standard BCI signals from experts users or from repositories available on Internet. In this work, extreme learning machine (ELM has been tested with signals from 5 novel users to compare with standard classification algorithms. Experimental results show that ELM is a suitable method to classify electroencephalogram signals from novice users.

  15. Analysis Of Machine Learning Techniques By Using Blogger Data

    Directory of Open Access Journals (Sweden)

    Gowsalya.R,

    2014-04-01

    Full Text Available Blogs are the recent fast progressing media which depends on information system and technological advancement. The mass media is not much developed for the developing countries are in government terms and their schemes are developed based on governmental concepts, so blogs are provided for knowledge and ideas sharing. This article has highlighted and performed simulations from obtained information, 100 instances of Bloggers by using Weka 3. 6 Tool, and by applying many machine learning algorithms and analyzed with the values of accuracy, precision, recall and F-measure for getting future tendency anticipation of users to blogging and using in strategical areas. Keywords -

  16. Machine Learning for Quantum Mechanical Properties of Atoms in Molecules

    CERN Document Server

    Rupp, Matthias; von Lilienfeld, O Anatole

    2015-01-01

    We introduce machine learning models of quantum mechanical observables of atoms in molecules. Instant out-of-sample predictions for proton and carbon nuclear chemical shifts, atomic core level excitations, and forces on atoms reach accuracies on par with density functional theory reference. Locality is exploited within non-linear regression via local atom-centered coordinate systems. The approach is validated on a diverse set of 9k small organic molecules. Linear scaling is demonstrated for saturated polymers with up to sub-mesoscale lengths.

  17. Machine learning techniques in dialogue act recognition

    Directory of Open Access Journals (Sweden)

    Mark Fišel

    2007-05-01

    Full Text Available This report addresses dialogue acts, their existing applications and techniques of automatically recognizing them, in Estonia as well as elsewhere. Three main applications are described: in dialogue systems to determine the intention of the speaker, in dialogue systems with machine translation to resolve ambiguities in the possible translation variants and in speech recognition to reduce word recognition error rate. Several recognition techniques are described on the surface level: how they work and how they are trained. A summary of the corresponding representation methods is provided for each technique. The paper also includes examples of applying the techniques to dialogue act recognition.The author comes to the conclusion that using the current evaluation metric it is impossible to compare dialogue act recognition techniques when these are applied to different dialogue act tag sets. Dialogue acts remain an open research area, with space and need for developing new recognition techniques and methods of evaluation.

  18. Machine learning on geospatial big data

    CSIR Research Space (South Africa)

    Van Zyl, T

    2014-02-01

    Full Text Available learning, a model may be trained so as to do automated classification of new unlabelled observations, to forecast future observations of some system or automatically spot anomalous events (Vatsavai et al. 2012). Geospatial big data present two opportunities...

  19. STEP based Finish Machining CAPP system

    OpenAIRE

    A Arivazhagan; Mehta, NK; Jain, PK

    2012-01-01

    This research paper presents various methodologies developed in a STEP based Computer Aided Process Planning (CAPP) system named "Finish Machining – CAPP" (FM-CAPP). It is developed to generate automatic process plans for finish machining prismatic parts. It is designed in a modular fashion consisting of three main modules, namely (i) Feature Recognition module (FRM) (ii) Machining Planning Module (MPM) and (iii) Setup Planning Module (SPM). The FRM Module analyses the geometrical and topolog...

  20. Supervised Machine Learning Methods Applied to Predict Ligand- Binding Affinity.

    Science.gov (United States)

    Heck, Gabriela S; Pintro, Val O; Pereira, Richard R; de Ávila, Mauricio B; Levin, Nayara M B; de Azevedo, Walter F

    2017-01-01

    Calculation of ligand-binding affinity is an open problem in computational medicinal chemistry. The ability to computationally predict affinities has a beneficial impact in the early stages of drug development, since it allows a mathematical model to assess protein-ligand interactions. Due to the availability of structural and binding information, machine learning methods have been applied to generate scoring functions with good predictive power. Our goal here is to review recent developments in the application of machine learning methods to predict ligand-binding affinity. We focus our review on the application of computational methods to predict binding affinity for protein targets. In addition, we also describe the major available databases for experimental binding constants and protein structures. Furthermore, we explain the most successful methods to evaluate the predictive power of scoring functions. Association of structural information with ligand-binding affinity makes it possible to generate scoring functions targeted to a specific biological system. Through regression analysis, this data can be used as a base to generate mathematical models to predict ligandbinding affinities, such as inhibition constant, dissociation constant and binding energy. Experimental biophysical techniques were able to determine the structures of over 120,000 macromolecules. Considering also the evolution of binding affinity information, we may say that we have a promising scenario for development of scoring functions, making use of machine learning techniques. Recent developments in this area indicate that building scoring functions targeted to the biological systems of interest shows superior predictive performance, when compared with other approaches. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Kernel-based machine learning techniques for infrasound signal classification

    Science.gov (United States)

    Tuma, Matthias; Igel, Christian; Mialle, Pierrick

    2014-05-01

    Infrasound monitoring is one of four remote sensing technologies continuously employed by the CTBTO Preparatory Commission. The CTBTO's infrasound network is designed to monitor the Earth for potential evidence of atmospheric or shallow underground nuclear explosions. Upon completion, it will comprise 60 infrasound array stations distributed around the globe, of which 47 were certified in January 2014. Three stages can be identified in CTBTO infrasound data processing: automated processing at the level of single array stations, automated processing at the level of the overall global network, and interactive review by human analysts. At station level, the cross correlation-based PMCC algorithm is used for initial detection of coherent wavefronts. It produces estimates for trace velocity and azimuth of incoming wavefronts, as well as other descriptive features characterizing a signal. Detected arrivals are then categorized into potentially treaty-relevant versus noise-type signals by a rule-based expert system. This corresponds to a binary classification task at the level of station processing. In addition, incoming signals may be grouped according to their travel path in the atmosphere. The present work investigates automatic classification of infrasound arrivals by kernel-based pattern recognition methods. It aims to explore the potential of state-of-the-art machine learning methods vis-a-vis the current rule-based and task-tailored expert system. To this purpose, we first address the compilation of a representative, labeled reference benchmark dataset as a prerequisite for both classifier training and evaluation. Data representation is based on features extracted by the CTBTO's PMCC algorithm. As classifiers, we employ support vector machines (SVMs) in a supervised learning setting. Different SVM kernel functions are used and adapted through different hyperparameter optimization routines. The resulting performance is compared to several baseline classifiers. All

  2. Predicting Increased Blood Pressure Using Machine Learning

    Science.gov (United States)

    Golino, Hudson Fernandes; Amaral, Liliany Souza de Brito; Duarte, Stenio Fernando Pimentel; Soares, Telma de Jesus; dos Reis, Luciana Araujo

    2014-01-01

    The present study investigates the prediction of increased blood pressure by body mass index (BMI), waist (WC) and hip circumference (HC), and waist hip ratio (WHR) using a machine learning technique named classification tree. Data were collected from 400 college students (56.3% women) from 16 to 63 years old. Fifteen trees were calculated in the training group for each sex, using different numbers and combinations of predictors. The result shows that for women BMI, WC, and WHR are the combination that produces the best prediction, since it has the lowest deviance (87.42), misclassification (.19), and the higher pseudo R2 (.43). This model presented a sensitivity of 80.86% and specificity of 81.22% in the training set and, respectively, 45.65% and 65.15% in the test sample. For men BMI, WC, HC, and WHC showed the best prediction with the lowest deviance (57.25), misclassification (.16), and the higher pseudo R2 (.46). This model had a sensitivity of 72% and specificity of 86.25% in the training set and, respectively, 58.38% and 69.70% in the test set. Finally, the result from the classification tree analysis was compared with traditional logistic regression, indicating that the former outperformed the latter in terms of predictive power. PMID:24669313

  3. Optimal interference code based on machine learning

    Science.gov (United States)

    Qian, Ye; Chen, Qian; Hu, Xiaobo; Cao, Ercong; Qian, Weixian; Gu, Guohua

    2016-10-01

    In this paper, we analyze the characteristics of pseudo-random code, by the case of m sequence. Depending on the description of coding theory, we introduce the jamming methods. We simulate the interference effect or probability model by the means of MATLAB to consolidate. In accordance with the length of decoding time the adversary spends, we find out the optimal formula and optimal coefficients based on machine learning, then we get the new optimal interference code. First, when it comes to the phase of recognition, this study judges the effect of interference by the way of simulating the length of time over the decoding period of laser seeker. Then, we use laser active deception jamming simulate interference process in the tracking phase in the next block. In this study we choose the method of laser active deception jamming. In order to improve the performance of the interference, this paper simulates the model by MATLAB software. We find out the least number of pulse intervals which must be received, then we can make the conclusion that the precise interval number of the laser pointer for m sequence encoding. In order to find the shortest space, we make the choice of the greatest common divisor method. Then, combining with the coding regularity that has been found before, we restore pulse interval of pseudo-random code, which has been already received. Finally, we can control the time period of laser interference, get the optimal interference code, and also increase the probability of interference as well.

  4. Image Segmentation for Connectomics Using Machine Learning

    Energy Technology Data Exchange (ETDEWEB)

    Tasdizen, Tolga; Seyedhosseini, Mojtaba; Liu, TIng; Jones, Cory; Jurrus, Elizabeth R.

    2014-12-01

    Reconstruction of neural circuits at the microscopic scale of individual neurons and synapses, also known as connectomics, is an important challenge for neuroscience. While an important motivation of connectomics is providing anatomical ground truth for neural circuit models, the ability to decipher neural wiring maps at the individual cell level is also important in studies of many neurodegenerative diseases. Reconstruction of a neural circuit at the individual neuron level requires the use of electron microscopy images due to their extremely high resolution. Computational challenges include pixel-by-pixel annotation of these images into classes such as cell membrane, mitochondria and synaptic vesicles and the segmentation of individual neurons. State-of-the-art image analysis solutions are still far from the accuracy and robustness of human vision and biologists are still limited to studying small neural circuits using mostly manual analysis. In this chapter, we describe our image analysis pipeline that makes use of novel supervised machine learning techniques to tackle this problem.

  5. Predicting Increased Blood Pressure Using Machine Learning

    Directory of Open Access Journals (Sweden)

    Hudson Fernandes Golino

    2014-01-01

    Full Text Available The present study investigates the prediction of increased blood pressure by body mass index (BMI, waist (WC and hip circumference (HC, and waist hip ratio (WHR using a machine learning technique named classification tree. Data were collected from 400 college students (56.3% women from 16 to 63 years old. Fifteen trees were calculated in the training group for each sex, using different numbers and combinations of predictors. The result shows that for women BMI, WC, and WHR are the combination that produces the best prediction, since it has the lowest deviance (87.42, misclassification (.19, and the higher pseudo R2 (.43. This model presented a sensitivity of 80.86% and specificity of 81.22% in the training set and, respectively, 45.65% and 65.15% in the test sample. For men BMI, WC, HC, and WHC showed the best prediction with the lowest deviance (57.25, misclassification (.16, and the higher pseudo R2 (.46. This model had a sensitivity of 72% and specificity of 86.25% in the training set and, respectively, 58.38% and 69.70% in the test set. Finally, the result from the classification tree analysis was compared with traditional logistic regression, indicating that the former outperformed the latter in terms of predictive power.

  6. Acceleration of saddle-point searches with machine learning.

    Science.gov (United States)

    Peterson, Andrew A

    2016-08-21

    In atomistic simulations, the location of the saddle point on the potential-energy surface (PES) gives important information on transitions between local minima, for example, via transition-state theory. However, the search for saddle points often involves hundreds or thousands of ab initio force calls, which are typically all done at full accuracy. This results in the vast majority of the computational effort being spent calculating the electronic structure of states not important to the researcher, and very little time performing the calculation of the saddle point state itself. In this work, we describe how machine learning (ML) can reduce the number of intermediate ab initio calculations needed to locate saddle points. Since machine-learning models can learn from, and thus mimic, atomistic simulations, the saddle-point search can be conducted rapidly in the machine-learning representation. The saddle-point prediction can then be verified by an ab initio calculation; if it is incorrect, this strategically has identified regions of the PES where the machine-learning representation has insufficient training data. When these training data are used to improve the machine-learning model, the estimates greatly improve. This approach can be systematized, and in two simple example problems we demonstrate a dramatic reduction in the number of ab initio force calls. We expect that this approach and future refinements will greatly accelerate searches for saddle points, as well as other searches on the potential energy surface, as machine-learning methods see greater adoption by the atomistics community.

  7. Acceleration of saddle-point searches with machine learning

    Science.gov (United States)

    Peterson, Andrew A.

    2016-08-01

    In atomistic simulations, the location of the saddle point on the potential-energy surface (PES) gives important information on transitions between local minima, for example, via transition-state theory. However, the search for saddle points often involves hundreds or thousands of ab initio force calls, which are typically all done at full accuracy. This results in the vast majority of the computational effort being spent calculating the electronic structure of states not important to the researcher, and very little time performing the calculation of the saddle point state itself. In this work, we describe how machine learning (ML) can reduce the number of intermediate ab initio calculations needed to locate saddle points. Since machine-learning models can learn from, and thus mimic, atomistic simulations, the saddle-point search can be conducted rapidly in the machine-learning representation. The saddle-point prediction can then be verified by an ab initio calculation; if it is incorrect, this strategically has identified regions of the PES where the machine-learning representation has insufficient training data. When these training data are used to improve the machine-learning model, the estimates greatly improve. This approach can be systematized, and in two simple example problems we demonstrate a dramatic reduction in the number of ab initio force calls. We expect that this approach and future refinements will greatly accelerate searches for saddle points, as well as other searches on the potential energy surface, as machine-learning methods see greater adoption by the atomistics community.

  8. A Protein Classification Benchmark collection for machine learning

    NARCIS (Netherlands)

    Sonego, P.; Pacurar, M.; Dhir, S.; Kertész-Farkas, A.; Kocsor, A.; Gáspári, Z.; Leunissen, J.A.M.; Pongor, S.

    2007-01-01

    Protein classification by machine learning algorithms is now widely used in structural and functional annotation of proteins. The Protein Classification Benchmark collection (http://hydra.icgeb.trieste.it/benchmark) was created in order to provide standard datasets on which the performance of machin

  9. Probabilistic models and machine learning in structural bioinformatics

    DEFF Research Database (Denmark)

    Hamelryck, Thomas

    2009-01-01

    . Recently, probabilistic models and machine learning methods based on Bayesian principles are providing efficient and rigorous solutions to challenging problems that were long regarded as intractable. In this review, I will highlight some important recent developments in the prediction, analysis...

  10. Sparse Machine Learning Methods for Understanding Large Text Corpora

    Data.gov (United States)

    National Aeronautics and Space Administration — Sparse machine learning has recently emerged as powerful tool to obtain models of high-dimensional data with high degree of interpretability, at low computational...

  11. Parameter Identifiability in Statistical Machine Learning: A Review.

    Science.gov (United States)

    Ran, Zhi-Yong; Hu, Bao-Gang

    2017-05-01

    This review examines the relevance of parameter identifiability for statistical models used in machine learning. In addition to defining main concepts, we address several issues of identifiability closely related to machine learning, showing the advantages and disadvantages of state-of-the-art research and demonstrating recent progress. First, we review criteria for determining the parameter structure of models from the literature. This has three related issues: parameter identifiability, parameter redundancy, and reparameterization. Second, we review the deep influence of identifiability on various aspects of machine learning from theoretical and application viewpoints. In addition to illustrating the utility and influence of identifiability, we emphasize the interplay among identifiability theory, machine learning, mathematical statistics, information theory, optimization theory, information geometry, Riemann geometry, symbolic computation, Bayesian inference, algebraic geometry, and others. Finally, we present a new perspective together with the associated challenges.

  12. Machine Learning Strategy for Accelerated Design of Polymer Dielectrics

    National Research Council Canada - National Science Library

    Mannodi-Kanakkithodi, Arun; Pilania, Ghanshyam; Huan, Tran Doan; Lookman, Turab; Ramprasad, Rampi

    2016-01-01

    .... The polymers are 'fingerprinted' as simple, easily attainable numerical representations, which are mapped to the properties of interest using a machine learning algorithm to develop an on-demand...

  13. Performance of machine learning methods for classification tasks

    Directory of Open Access Journals (Sweden)

    B. Krithika

    2013-06-01

    Full Text Available In this paper, the performance of various machine learning methods on pattern classification and recognition tasks are proposed. The proposed method for evaluating performance will be based on the feature representation, feature selection and setting model parameters. The nature of the data, the methods of feature extraction and feature representation are discussed. The results of the Machine Learning algorithms on the classification task are analysed. The performance of Machine Learning methods on classifying Tamil word patterns, i.e., classification of noun and verbs are analysed.The software WEKA (data mining tool is used for evaluating the performance. WEKA has several machine learning algorithms like Bayes, Trees, Lazy, Rule based classifiers.

  14. Reduced multiple empirical kernel learning machine.

    Science.gov (United States)

    Wang, Zhe; Lu, MingZhe; Gao, Daqi

    2015-02-01

    Multiple kernel learning (MKL) is demonstrated to be flexible and effective in depicting heterogeneous data sources since MKL can introduce multiple kernels rather than a single fixed kernel into applications. However, MKL would get a high time and space complexity in contrast to single kernel learning, which is not expected in real-world applications. Meanwhile, it is known that the kernel mapping ways of MKL generally have two forms including implicit kernel mapping and empirical kernel mapping (EKM), where the latter is less attracted. In this paper, we focus on the MKL with the EKM, and propose a reduced multiple empirical kernel learning machine named RMEKLM for short. To the best of our knowledge, it is the first to reduce both time and space complexity of the MKL with EKM. Different from the existing MKL, the proposed RMEKLM adopts the Gauss Elimination technique to extract a set of feature vectors, which is validated that doing so does not lose much information of the original feature space. Then RMEKLM adopts the extracted feature vectors to span a reduced orthonormal subspace of the feature space, which is visualized in terms of the geometry structure. It can be demonstrated that the spanned subspace is isomorphic to the original feature space, which means that the dot product of two vectors in the original feature space is equal to that of the two corresponding vectors in the generated orthonormal subspace. More importantly, the proposed RMEKLM brings a simpler computation and meanwhile needs a less storage space, especially in the processing of testing. Finally, the experimental results show that RMEKLM owns a much efficient and effective performance in terms of both complexity and classification. The contributions of this paper can be given as follows: (1) by mapping the input space into an orthonormal subspace, the geometry of the generated subspace is visualized; (2) this paper first reduces both the time and space complexity of the EKM-based MKL; (3

  15. Double/Debiased/Neyman Machine Learning of Treatment Effects

    OpenAIRE

    Chernozhukov, Victor; Chetverikov, Denis; Demirer, Mert; Duflo, Esther; Hansen, Christian; Newey, Whitney

    2017-01-01

    Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, and Newey (2016) provide a generic double/de-biased machine learning (DML) approach for obtaining valid inferential statements about focal parameters, using Neyman-orthogonal scores and cross-fitting, in settings where nuisance parameters are estimated using a new generation of nonparametric fitting methods for high-dimensional data, called machine learning methods. In this note, we illustrate the application of this method in the context of ...

  16. Machine Learning for Galaxy Morphology Classification

    CERN Document Server

    Gauci, Adam; Abela, John; Magro, Alessio

    2010-01-01

    In this work, decision tree learning algorithms and fuzzy inferencing systems are applied for galaxy morphology classification. In particular, the CART, the C4.5, the Random Forest and fuzzy logic algorithms are studied and reliable classifiers are developed to distinguish between spiral galaxies, elliptical galaxies or star/unknown galactic objects. Morphology information for the training and testing datasets is obtained from the Galaxy Zoo project while the corresponding photometric and spectra parameters are downloaded from the SDSS DR7 catalogue.

  17. PCP-ML: protein characterization package for machine learning.

    Science.gov (United States)

    Eickholt, Jesse; Wang, Zheng

    2014-11-18

    Machine Learning (ML) has a number of demonstrated applications in protein prediction tasks such as protein structure prediction. To speed further development of machine learning based tools and their release to the community, we have developed a package which characterizes several aspects of a protein commonly used for protein prediction tasks with machine learning. A number of software libraries and modules exist for handling protein related data. The package we present in this work, PCP-ML, is unique in its small footprint and emphasis on machine learning. Its primary focus is on characterizing various aspects of a protein through sets of numerical data. The generated data can then be used with machine learning tools and/or techniques. PCP-ML is very flexible in how the generated data is formatted and as a result is compatible with a variety of existing machine learning packages. Given its small size, it can be directly packaged and distributed with community developed tools for protein prediction tasks. Source code and example programs are available under a BSD license at http://mlid.cps.cmich.edu/eickh1jl/tools/PCPML/. The package is implemented in C++ and accessible as a Python module.

  18. Machine Learning of Accurate Energy-Conserving Molecular Force Fields

    CERN Document Server

    Chmiela, Stefan; Sauceda, Huziel E; Poltavsky, Igor; Schütt, Kristof; Müller, Klaus-Robert

    2016-01-01

    Using conservation of energy -- a fundamental property of closed classical and quantum mechanical systems -- we develop an efficient gradient-domain machine learning (GDML) approach to construct accurate molecular force fields using a restricted number of samples from ab initio molecular dynamics (AIMD) trajectories. The GDML implementation is able to reproduce global potential-energy surfaces of intermediate-size molecules with an accuracy of 0.3 kcal/mol for energies and 1 kcal/mol/{\\AA} for atomic forces using only 1000 conformational geometries for training. We demonstrate this accuracy for AIMD trajectories of molecules, including benzene, toluene, naphthalene, ethanol, uracil, and aspirin. The challenge of constructing conservative force fields is accomplished in our work by learning in a Hilbert space of vector-valued functions that obey the law of energy conservation. The GDML approach enables quantitative molecular dynamics simulations for molecules at a fraction of cost of explicit AIMD calculations...

  19. Machine learning control taming nonlinear dynamics and turbulence

    CERN Document Server

    Duriez, Thomas; Noack, Bernd R

    2017-01-01

    This is the first book on a generally applicable control strategy for turbulence and other complex nonlinear systems. The approach of the book employs powerful methods of machine learning for optimal nonlinear control laws. This machine learning control (MLC) is motivated and detailed in Chapters 1 and 2. In Chapter 3, methods of linear control theory are reviewed. In Chapter 4, MLC is shown to reproduce known optimal control laws for linear dynamics (LQR, LQG). In Chapter 5, MLC detects and exploits a strongly nonlinear actuation mechanism of a low-dimensional dynamical system when linear control methods are shown to fail. Experimental control demonstrations from a laminar shear-layer to turbulent boundary-layers are reviewed in Chapter 6, followed by general good practices for experiments in Chapter 7. The book concludes with an outlook on the vast future applications of MLC in Chapter 8. Matlab codes are provided for easy reproducibility of the presented results. The book includes interviews with leading r...

  20. Machine Learning Techniques for Prediction of Early Childhood Obesity.

    Science.gov (United States)

    Dugan, T M; Mukhopadhyay, S; Carroll, A; Downs, S

    2015-01-01

    This paper aims to predict childhood obesity after age two, using only data collected prior to the second birthday by a clinical decision support system called CHICA. Analyses of six different machine learning methods: RandomTree, RandomForest, J48, ID3, Naïve Bayes, and Bayes trained on CHICA data show that an accurate, sensitive model can be created. Of the methods analyzed, the ID3 model trained on the CHICA dataset proved the best overall performance with accuracy of 85% and sensitivity of 89%. Additionally, the ID3 model had a positive predictive value of 84% and a negative predictive value of 88%. The structure of the tree also gives insight into the strongest predictors of future obesity in children. Many of the strongest predictors seen in the ID3 modeling of the CHICA dataset have been independently validated in the literature as correlated with obesity, thereby supporting the validity of the model. This study demonstrated that data from a production clinical decision support system can be used to build an accurate machine learning model to predict obesity in children after age two.

  1. Harnessing Disordered-Ensemble Quantum Dynamics for Machine Learning

    Science.gov (United States)

    Fujii, Keisuke; Nakajima, Kohei

    2017-08-01

    The quantum computer has an amazing potential of fast information processing. However, the realization of a digital quantum computer is still a challenging problem requiring highly accurate controls and key application strategies. Here we propose a platform, quantum reservoir computing, to solve these issues successfully by exploiting the natural quantum dynamics of ensemble systems, which are ubiquitous in laboratories nowadays, for machine learning. This framework enables ensemble quantum systems to universally emulate nonlinear dynamical systems including classical chaos. A number of numerical experiments show that quantum systems consisting of 5-7 qubits possess computational capabilities comparable to conventional recurrent neural networks of 100-500 nodes. This discovery opens up a paradigm for information processing with artificial intelligence powered by quantum physics.

  2. Cooling system for rotating machine

    Science.gov (United States)

    Gerstler, William Dwight; El-Refaie, Ayman Mohamed Fawzi; Lokhandwalla, Murtuza; Alexander, James Pellegrino; Quirion, Owen Scott; Palafox, Pepe; Shen, Xiaochun; Salasoo, Lembit

    2011-08-09

    An electrical machine comprising a rotor is presented. The electrical machine includes the rotor disposed on a rotatable shaft and defining a plurality of radial protrusions extending from the shaft up to a periphery of the rotor. The radial protrusions having cavities define a fluid path. A stationary shaft is disposed concentrically within the rotatable shaft wherein an annular space is formed between the stationary and rotatable shaft. A plurality of magnetic segments is disposed on the radial protrusions and the fluid path from within the stationary shaft into the annular space and extending through the cavities within the radial protrusions.

  3. Generative Modeling for Machine Learning on the D-Wave

    Energy Technology Data Exchange (ETDEWEB)

    Thulasidasan, Sunil [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Information Sciences Group

    2016-11-15

    These are slides on Generative Modeling for Machine Learning on the D-Wave. The following topics are detailed: generative models; Boltzmann machines: a generative model; restricted Boltzmann machines; learning parameters: RBM training; practical ways to train RBM; D-Wave as a Boltzmann sampler; mapping RBM onto the D-Wave; Chimera restricted RBM; mapping binary RBM to Ising model; experiments; data; D-Wave effective temperature, parameters noise, etc.; experiments: contrastive divergence (CD) 1 step; after 50 steps of CD; after 100 steps of CD; D-Wave (experiments 1, 2, 3); D-Wave observations.

  4. Estimating extinction using unsupervised machine learning

    Science.gov (United States)

    Meingast, Stefan; Lombardi, Marco; Alves, João

    2017-05-01

    Dust extinction is the most robust tracer of the gas distribution in the interstellar medium, but measuring extinction is limited by the systematic uncertainties involved in estimating the intrinsic colors to background stars. In this paper we present a new technique, Pnicer, that estimates intrinsic colors and extinction for individual stars using unsupervised machine learning algorithms. This new method aims to be free from any priors with respect to the column density and intrinsic color distribution. It is applicable to any combination of parameters and works in arbitrary numbers of dimensions. Furthermore, it is not restricted to color space. Extinction toward single sources is determined by fitting Gaussian mixture models along the extinction vector to (extinction-free) control field observations. In this way it becomes possible to describe the extinction for observed sources with probability densities, rather than a single value. Pnicer effectively eliminates known biases found in similar methods and outperforms them in cases of deep observational data where the number of background galaxies is significant, or when a large number of parameters is used to break degeneracies in the intrinsic color distributions. This new method remains computationally competitive, making it possible to correctly de-redden millions of sources within a matter of seconds. With the ever-increasing number of large-scale high-sensitivity imaging surveys, Pnicer offers a fast and reliable way to efficiently calculate extinction for arbitrary parameter combinations without prior information on source characteristics. The Pnicer software package also offers access to the well-established Nicer technique in a simple unified interface and is capable of building extinction maps including the Nicest correction for cloud substructure. Pnicer is offered to the community as an open-source software solution and is entirely written in Python.

  5. A review of supervised machine learning applied to ageing research.

    Science.gov (United States)

    Fabris, Fabio; Magalhães, João Pedro de; Freitas, Alex A

    2017-04-01

    Broadly speaking, supervised machine learning is the computational task of learning correlations between variables in annotated data (the training set), and using this information to create a predictive model capable of inferring annotations for new data, whose annotations are not known. Ageing is a complex process that affects nearly all animal species. This process can be studied at several levels of abstraction, in different organisms and with different objectives in mind. Not surprisingly, the diversity of the supervised machine learning algorithms applied to answer biological questions reflects the complexities of the underlying ageing processes being studied. Many works using supervised machine learning to study the ageing process have been recently published, so it is timely to review these works, to discuss their main findings and weaknesses. In summary, the main findings of the reviewed papers are: the link between specific types of DNA repair and ageing; ageing-related proteins tend to be highly connected and seem to play a central role in molecular pathways; ageing/longevity is linked with autophagy and apoptosis, nutrient receptor genes, and copper and iron ion transport. Additionally, several biomarkers of ageing were found by machine learning. Despite some interesting machine learning results, we also identified a weakness of current works on this topic: only one of the reviewed papers has corroborated the computational results of machine learning algorithms through wet-lab experiments. In conclusion, supervised machine learning has contributed to advance our knowledge and has provided novel insights on ageing, yet future work should have a greater emphasis in validating the predictions.

  6. Kernel Methods for Machine Learning with Life Science Applications

    DEFF Research Database (Denmark)

    Abrahamsen, Trine Julie

    Kernel methods refer to a family of widely used nonlinear algorithms for machine learning tasks like classification, regression, and feature extraction. By exploiting the so-called kernel trick straightforward extensions of classical linear algorithms are enabled as long as the data only appear...... models to kernel learning, and means for restoring the generalizability in both kernel Principal Component Analysis and the Support Vector Machine are proposed. Viability is proved on a wide range of benchmark machine learning data sets....... as innerproducts in the model formulation. This dissertation presents research on improving the performance of standard kernel methods like kernel Principal Component Analysis and the Support Vector Machine. Moreover, the goal of the thesis has been two-fold. The first part focuses on the use of kernel Principal...

  7. 2015 International Conference on Machine Learning and Signal Processing

    CERN Document Server

    Woo, Wai; Sulaiman, Hamzah; Othman, Mohd; Saat, Mohd

    2016-01-01

    This book presents important research findings and recent innovations in the field of machine learning and signal processing. A wide range of topics relating to machine learning and signal processing techniques and their applications are addressed in order to provide both researchers and practitioners with a valuable resource documenting the latest advances and trends. The book comprises a careful selection of the papers submitted to the 2015 International Conference on Machine Learning and Signal Processing (MALSIP 2015), which was held on 15–17 December 2015 in Ho Chi Minh City, Vietnam with the aim of offering researchers, academicians, and practitioners an ideal opportunity to disseminate their findings and achievements. All of the included contributions were chosen by expert peer reviewers from across the world on the basis of their interest to the community. In addition to presenting the latest in design, development, and research, the book provides access to numerous new algorithms for machine learni...

  8. Prediction of antiepileptic drug treatment outcomes using machine learning

    Science.gov (United States)

    Colic, Sinisa; Wither, Robert G.; Lang, Min; Zhang, Liang; Eubanks, James H.; Bardakjian, Berj L.

    2017-02-01

    Objective. Antiepileptic drug (AED) treatments produce inconsistent outcomes, often necessitating patients to go through several drug trials until a successful treatment can be found. This study proposes the use of machine learning techniques to predict epilepsy treatment outcomes of commonly used AEDs. Approach. Machine learning algorithms were trained and evaluated using features obtained from intracranial electroencephalogram (iEEG) recordings of the epileptiform discharges observed in Mecp2-deficient mouse model of the Rett Syndrome. Previous work have linked the presence of cross-frequency coupling (I CFC) of the delta (2-5 Hz) rhythm with the fast ripple (400-600 Hz) rhythm in epileptiform discharges. Using the I CFC to label post-treatment outcomes we compared support vector machines (SVMs) and random forest (RF) machine learning classifiers for providing likelihood scores of successful treatment outcomes. Main results. (a) There was heterogeneity in AED treatment outcomes, (b) machine learning techniques could be used to rank the efficacy of AEDs by estimating likelihood scores for successful treatment outcome, (c) I CFC features yielded the most effective a priori identification of appropriate AED treatment, and (d) both classifiers performed comparably. Significance. Machine learning approaches yielded predictions of successful drug treatment outcomes which in turn could reduce the burdens of drug trials and lead to substantial improvements in patient quality of life.

  9. Systematic Poisoning Attacks on and Defenses for Machine Learning in Healthcare.

    Science.gov (United States)

    Mozaffari-Kermani, Mehran; Sur-Kolay, Susmita; Raghunathan, Anand; Jha, Niraj K

    2015-11-01

    Machine learning is being used in a wide range of application domains to discover patterns in large datasets. Increasingly, the results of machine learning drive critical decisions in applications related to healthcare and biomedicine. Such health-related applications are often sensitive, and thus, any security breach would be catastrophic. Naturally, the integrity of the results computed by machine learning is of great importance. Recent research has shown that some machine-learning algorithms can be compromised by augmenting their training datasets with malicious data, leading to a new class of attacks called poisoning attacks. Hindrance of a diagnosis may have life-threatening consequences and could cause distrust. On the other hand, not only may a false diagnosis prompt users to distrust the machine-learning algorithm and even abandon the entire system but also such a false positive classification may cause patient distress. In this paper, we present a systematic, algorithm-independent approach for mounting poisoning attacks across a wide range of machine-learning algorithms and healthcare datasets. The proposed attack procedure generates input data, which, when added to the training set, can either cause the results of machine learning to have targeted errors (e.g., increase the likelihood of classification into a specific class), or simply introduce arbitrary errors (incorrect classification). These attacks may be applied to both fixed and evolving datasets. They can be applied even when only statistics of the training dataset are available or, in some cases, even without access to the training dataset, although at a lower efficacy. We establish the effectiveness of the proposed attacks using a suite of six machine-learning algorithms and five healthcare datasets. Finally, we present countermeasures against the proposed generic attacks that are based on tracking and detecting deviations in various accuracy metrics, and benchmark their effectiveness.

  10. Machine-Learning Algorithms to Automate Morphological and Functional Assessments in 2D Echocardiography.

    Science.gov (United States)

    Narula, Sukrit; Shameer, Khader; Salem Omar, Alaa Mabrouk; Dudley, Joel T; Sengupta, Partho P

    2016-11-29

    Machine-learning models may aid cardiac phenotypic recognition by using features of cardiac tissue deformation. This study investigated the diagnostic value of a machine-learning framework that incorporates speckle-tracking echocardiographic data for automated discrimination of hypertrophic cardiomyopathy (HCM) from physiological hypertrophy seen in athletes (ATH). Expert-annotated speckle-tracking echocardiographic datasets obtained from 77 ATH and 62 HCM patients were used for developing an automated system. An ensemble machine-learning model with 3 different machine-learning algorithms (support vector machines, random forests, and artificial neural networks) was developed and a majority voting method was used for conclusive predictions with further K-fold cross-validation. Feature selection using an information gain (IG) algorithm revealed that volume was the best predictor for differentiating between HCM ands. ATH (IG = 0.24) followed by mid-left ventricular segmental (IG = 0.134) and average longitudinal strain (IG = 0.131). The ensemble machine-learning model showed increased sensitivity and specificity compared with early-to-late diastolic transmitral velocity ratio (p 13 mm. In this subgroup analysis, the automated model continued to show equal sensitivity, but increased specificity relative to early-to-late diastolic transmitral velocity ratio, e', and strain. Our results suggested that machine-learning algorithms can assist in the discrimination of physiological versus pathological patterns of hypertrophic remodeling. This effort represents a step toward the development of a real-time, machine-learning-based system for automated interpretation of echocardiographic images, which may help novice readers with limited experience. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  11. Liquid intake monitoring through breathing signal using machine learning

    Science.gov (United States)

    Dong, Bo; Biswas, Subir

    2013-05-01

    This paper presents the design, system structure and performance for a wireless and wearable diet monitoring system. Food and drink intake can be detected by the way of detecting a person's swallow events. The system works based on the key observation that a person's otherwise continuous breathing process is interrupted by a short apnea when she or he swallows as a part of solid or liquid intake process. We detect the swallows through the difference between normal breathing cycle and breathing cycle with swallows using a wearable chest-belt. Three popular machine learning algorithms have been applied on both time and frequency domain features. Discrimination power of features is then analyzed for applications where only small number of features is allowed. It is shown that high detection performance can be achieved with only few features.

  12. Machine-learned approximations to Density Functional Theory Hamiltonians

    Science.gov (United States)

    Hegde, Ganesh; Bowen, R. Chris

    2017-01-01

    Large scale Density Functional Theory (DFT) based electronic structure calculations are highly time consuming and scale poorly with system size. While semi-empirical approximations to DFT result in a reduction in computational time versus ab initio DFT, creating such approximations involves significant manual intervention and is highly inefficient for high-throughput electronic structure screening calculations. In this letter, we propose the use of machine-learning for prediction of DFT Hamiltonians. Using suitable representations of atomic neighborhoods and Kernel Ridge Regression, we show that an accurate and transferable prediction of DFT Hamiltonians for a variety of material environments can be achieved. Electronic structure properties such as ballistic transmission and band structure computed using predicted Hamiltonians compare accurately with their DFT counterparts. The method is independent of the specifics of the DFT basis or material system used and can easily be automated and scaled for predicting Hamiltonians of any material system of interest. PMID:28198471

  13. Machine-learned approximations to Density Functional Theory Hamiltonians

    Science.gov (United States)

    Hegde, Ganesh; Bowen, R. Chris

    2017-02-01

    Large scale Density Functional Theory (DFT) based electronic structure calculations are highly time consuming and scale poorly with system size. While semi-empirical approximations to DFT result in a reduction in computational time versus ab initio DFT, creating such approximations involves significant manual intervention and is highly inefficient for high-throughput electronic structure screening calculations. In this letter, we propose the use of machine-learning for prediction of DFT Hamiltonians. Using suitable representations of atomic neighborhoods and Kernel Ridge Regression, we show that an accurate and transferable prediction of DFT Hamiltonians for a variety of material environments can be achieved. Electronic structure properties such as ballistic transmission and band structure computed using predicted Hamiltonians compare accurately with their DFT counterparts. The method is independent of the specifics of the DFT basis or material system used and can easily be automated and scaled for predicting Hamiltonians of any material system of interest.

  14. Operating System For Numerically Controlled Milling Machine

    Science.gov (United States)

    Ray, R. B.

    1992-01-01

    OPMILL program is operating system for Kearney and Trecker milling machine providing fast easy way to program manufacture of machine parts with IBM-compatible personal computer. Gives machinist "equation plotter" feature, which plots equations that define movements and converts equations to milling-machine-controlling program moving cutter along defined path. System includes tool-manager software handling up to 25 tools and automatically adjusts to account for each tool. Developed on IBM PS/2 computer running DOS 3.3 with 1 MB of random-access memory.

  15. Operating System For Numerically Controlled Milling Machine

    Science.gov (United States)

    Ray, R. B.

    1992-01-01

    OPMILL program is operating system for Kearney and Trecker milling machine providing fast easy way to program manufacture of machine parts with IBM-compatible personal computer. Gives machinist "equation plotter" feature, which plots equations that define movements and converts equations to milling-machine-controlling program moving cutter along defined path. System includes tool-manager software handling up to 25 tools and automatically adjusts to account for each tool. Developed on IBM PS/2 computer running DOS 3.3 with 1 MB of random-access memory.

  16. Combining Generative and Discriminative Representation Learning for Lung CT Analysis With Convolutional Restricted Boltzmann Machines.

    Science.gov (United States)

    van Tulder, Gijs; de Bruijne, Marleen

    2016-05-01

    The choice of features greatly influences the performance of a tissue classification system. Despite this, many systems are built with standard, predefined filter banks that are not optimized for that particular application. Representation learning methods such as restricted Boltzmann machines may outperform these standard filter banks because they learn a feature description directly from the training data. Like many other representation learning methods, restricted Boltzmann machines are unsupervised and are trained with a generative learning objective; this allows them to learn representations from unlabeled data, but does not necessarily produce features that are optimal for classification. In this paper we propose the convolutional classification restricted Boltzmann machine, which combines a generative and a discriminative learning objective. This allows it to learn filters that are good both for describing the training data and for classification. We present experiments with feature learning for lung texture classification and airway detection in CT images. In both applications, a combination of learning objectives outperformed purely discriminative or generative learning, increasing, for instance, the lung tissue classification accuracy by 1 to 8 percentage points. This shows that discriminative learning can help an otherwise unsupervised feature learner to learn filters that are optimized for classification.

  17. State-space approaches for modelling and control in financial engineering systems theory and machine learning methods

    CERN Document Server

    Rigatos, Gerasimos G

    2017-01-01

    The book conclusively solves problems associated with the control and estimation of nonlinear and chaotic dynamics in financial systems when these are described in the form of nonlinear ordinary differential equations. It then addresses problems associated with the control and estimation of financial systems governed by partial differential equations (e.g. the Black–Scholes partial differential equation (PDE) and its variants). Lastly it an offers optimal solution to the problem of statistical validation of computational models and tools used to support financial engineers in decision making. The application of state-space models in financial engineering means that the heuristics and empirical methods currently in use in decision-making procedures for finance can be eliminated. It also allows methods of fault-free performance and optimality in the management of assets and capitals and methods assuring stability in the functioning of financial systems to be established. Covering the following key are...

  18. Estimation of Alpine Skier Posture Using Machine Learning Techniques

    Directory of Open Access Journals (Sweden)

    Bojan Nemec

    2014-10-01

    Full Text Available High precision Global Navigation Satellite System (GNSS measurements are becoming more and more popular in alpine skiing due to the relatively undemanding setup and excellent performance. However, GNSS provides only single-point measurements that are defined with the antenna placed typically behind the skier’s neck. A key issue is how to estimate other more relevant parameters of the skier’s body, like the center of mass (COM and ski trajectories. Previously, these parameters were estimated by modeling the skier’s body with an inverted-pendulum model that oversimplified the skier’s body. In this study, we propose two machine learning methods that overcome this shortcoming and estimate COM and skis trajectories based on a more faithful approximation of the skier’s body with nine degrees-of-freedom. The first method utilizes a well-established approach of artificial neural networks, while the second method is based on a state-of-the-art statistical generalization method. Both methods were evaluated using the reference measurements obtained on a typical giant slalom course and compared with the inverted-pendulum method. Our results outperform the results of commonly used inverted-pendulum methods and demonstrate the applicability of machine learning techniques in biomechanical measurements of alpine skiing.

  19. Machine Learning for Knowledge Extraction from PHR Big Data.

    Science.gov (United States)

    Poulymenopoulou, Michaela; Malamateniou, Flora; Vassilacopoulos, George

    2014-01-01

    Cloud computing, Internet of things (IOT) and NoSQL database technologies can support a new generation of cloud-based PHR services that contain heterogeneous (unstructured, semi-structured and structured) patient data (health, social and lifestyle) from various sources, including automatically transmitted data from Internet connected devices of patient living space (e.g. medical devices connected to patients at home care). The patient data stored in such PHR systems constitute big data whose analysis with the use of appropriate machine learning algorithms is expected to improve diagnosis and treatment accuracy, to cut healthcare costs and, hence, to improve the overall quality and efficiency of healthcare provided. This paper describes a health data analytics engine which uses machine learning algorithms for analyzing cloud based PHR big health data towards knowledge extraction to support better healthcare delivery as regards disease diagnosis and prognosis. This engine comprises of the data preparation, the model generation and the data analysis modules and runs on the cloud taking advantage from the map/reduce paradigm provided by Apache Hadoop.

  20. Forecasting daily streamflow using online sequential extreme learning machines

    Science.gov (United States)

    Lima, Aranildo R.; Cannon, Alex J.; Hsieh, William W.

    2016-06-01

    While nonlinear machine methods have been widely used in environmental forecasting, in situations where new data arrive continually, the need to make frequent model updates can become cumbersome and computationally costly. To alleviate this problem, an online sequential learning algorithm for single hidden layer feedforward neural networks - the online sequential extreme learning machine (OSELM) - is automatically updated inexpensively as new data arrive (and the new data can then be discarded). OSELM was applied to forecast daily streamflow at two small watersheds in British Columbia, Canada, at lead times of 1-3 days. Predictors used were weather forecast data generated by the NOAA Global Ensemble Forecasting System (GEFS), and local hydro-meteorological observations. OSELM forecasts were tested with daily, monthly or yearly model updates. More frequent updating gave smaller forecast errors, including errors for data above the 90th percentile. Larger datasets used in the initial training of OSELM helped to find better parameters (number of hidden nodes) for the model, yielding better predictions. With the online sequential multiple linear regression (OSMLR) as benchmark, we concluded that OSELM is an attractive approach as it easily outperformed OSMLR in forecast accuracy.

  1. Machine and deep learning techniques in heavy-ion collisions with ALICE arXiv

    CERN Document Server

    INSPIRE-00382877

    Over the last years, machine learning tools have been successfully applied to a wealth of problems in high-energy physics. A typical example is the classification of physics objects. Supervised machine learning methods allow for significant improvements in classification problems by taking into account observable correlations and by learning the optimal selection from examples, e.g. from Monte Carlo simulations. Even more promising is the usage of deep learning techniques. Methods like deep convolutional networks might be able to catch features from low-level parameters that are not exploited by default cut-based methods. These ideas could be particularly beneficial for measurements in heavy-ion collisions, because of the very large multiplicities. Indeed, machine learning methods potentially perform much better in systems with a large number of degrees of freedom compared to cut-based methods. Moreover, many key heavy-ion observables are most interesting at low transverse momentum where the underlying event ...

  2. Software Aging Prediction Based on Extreme Learning Machine

    Directory of Open Access Journals (Sweden)

    Xiaozhi Du

    2013-11-01

    Full Text Available In the research on software aging and rejuvenation, one of the most important questions is when to trigger the rejuvenation action. And it is useful to predict the system resource utilization state efficiently for determining the rejuvenation time. In this paper, we propose software aging prediction model based on extreme learning machine (ELM for a real VOD system. First, the data on the parameters of system resources and application server are collected. Then, the data is preprocessed by normalization and principal component analysis (PCA. Then, ELMs are constructed to model the extracted data series of systematic parameters. Finally, we get the predicted data of system resource by computing the sum of the outputs of these ELMs. Experiments show that the proposed software aging prediction method based on wavelet transform and ELM is superior to the artificial neural network (ANN and support vector machine (SVM in the aspects of prediction precision and efficiency. Based on the models employed here, software rejuvenation policies can be triggered by actual measurements.  

  3. Predicting the Plant Root-Associated Ecological Niche of 21 Pseudomonas Species Using Machine Learning and Metabolic Modeling

    OpenAIRE

    Chien, Jennifer; Larsen, Peter

    2017-01-01

    Plants rarely occur in isolated systems. Bacteria can inhabit either the endosphere, the region inside the plant root, or the rhizosphere, the soil region just outside the plant root. Our goal is to understand if using genomic data and media dependent metabolic model information is better for training machine learning of predicting bacterial ecological niche than media independent models or pure genome based species trees. We considered three machine learning techniques: support vector machin...

  4. Applications of Machine Learning in Cancer Prediction and Prognosis

    Directory of Open Access Journals (Sweden)

    Joseph A. Cruz

    2006-01-01

    Full Text Available Machine learning is a branch of artificial intelligence that employs a variety of statistical, probabilistic and optimization techniques that allows computers to “learn” from past examples and to detect hard-to-discern patterns from large, noisy or complex data sets. This capability is particularly well-suited to medical applications, especially those that depend on complex proteomic and genomic measurements. As a result, machine learning is frequently used in cancer diagnosis and detection. More recently machine learning has been applied to cancer prognosis and prediction. This latter approach is particularly interesting as it is part of a growing trend towards personalized, predictive medicine. In assembling this review we conducted a broad survey of the different types of machine learning methods being used, the types of data being integrated and the performance of these methods in cancer prediction and prognosis. A number of trends are noted, including a growing dependence on protein biomarkers and microarray data, a strong bias towards applications in prostate and breast cancer, and a heavy reliance on “older” technologies such artificial neural networks (ANNs instead of more recently developed or more easily interpretable machine learning methods. A number of published studies also appear to lack an appropriate level of validation or testing. Among the better designed and validated studies it is clear that machine learning methods can be used to substantially (15-25% improve the accuracy of predicting cancer susceptibility, recurrence and mortality. At a more fundamental level, it is also evident that machine learning is also helping to improve our basic understanding of cancer development and progression.

  5. Learning surface molecular structures via machine vision

    Science.gov (United States)

    Ziatdinov, Maxim; Maksov, Artem; Kalinin, Sergei V.

    2017-08-01

    Recent advances in high resolution scanning transmission electron and scanning probe microscopies have allowed researchers to perform measurements of materials structural parameters and functional properties in real space with a picometre precision. In many technologically relevant atomic and/or molecular systems, however, the information of interest is distributed spatially in a non-uniform manner and may have a complex multi-dimensional nature. One of the critical issues, therefore, lies in being able to accurately identify (`read out') all the individual building blocks in different atomic/molecular architectures, as well as more complex patterns that these blocks may form, on a scale of hundreds and thousands of individual atomic/molecular units. Here we employ machine vision to read and recognize complex molecular assemblies on surfaces. Specifically, we combine Markov random field model and convolutional neural networks to classify structural and rotational states of all individual building blocks in molecular assembly on the metallic surface visualized in high-resolution scanning tunneling microscopy measurements. We show how the obtained full decoding of the system allows us to directly construct a pair density function—a centerpiece in analysis of disorder-property relationship paradigm—as well as to analyze spatial correlations between multiple order parameters at the nanoscale, and elucidate reaction pathway involving molecular conformation changes. The method represents a significant shift in our way of analyzing atomic and/or molecular resolved microscopic images and can be applied to variety of other microscopic measurements of structural, electronic, and magnetic orders in different condensed matter systems.

  6. Uncertainty-Aware Estimation of Population Abundance using Machine Learning

    NARCIS (Netherlands)

    Boom, B.J.; Beauxis-Aussalet, E.M.A.L.; Hardman, L.; Fisher, R.B.

    2015-01-01

    Machine Learning is widely used for mining collections, such as images, sounds, or texts, by classifying their elements into categories. Automatic classication based on supervised learning requires groundtruth datasets for modeling the elements to classify, and for testing the quality of the classic

  7. Comparison of Machine Learning Techniques for Target Detection

    NARCIS (Netherlands)

    Vink, J.P.; Haan, G. de

    2013-01-01

    This paper focuses on machine learning techniques for real-time detection. Although many supervised learning techniques have been described in the literature, no technique always performs best. Several comparative studies are available, but have not always been performedcarefully, leading to invalid

  8. Comparison of Machine Learning Techniques for Target Detection

    NARCIS (Netherlands)

    Vink, J.P.; Haan, G. de

    2013-01-01

    This paper focuses on machine learning techniques for real-time detection. Although many supervised learning techniques have been described in the literature, no technique always performs best. Several comparative studies are available, but have not always been performedcarefully, leading to invalid

  9. Distribution Learning in Evolutionary Strategies and Restricted Boltzmann Machines

    DEFF Research Database (Denmark)

    Krause, Oswin

    The thesis is concerned with learning distributions in the two settings of Evolutionary Strategies (ESs) and Restricted Boltzmann Machines (RBMs). In both cases, the distributions are learned from samples, albeit with different goals. Evolutionary Strategies are concerned with finding an optimum ...

  10. Smile (System/Machine-Independent Local Environment)

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, J.G.

    1988-04-01

    This document defines the characteristics of Smile, a System/machine-independent local environment. This environment consists primarily of a number of primitives (types, macros, procedure calls, and variables) that a program may use; these primitives provide facilities, such as memory allocation, timing, tasking and synchronization beyond those typically provided by a programming language. The intent is that a program will be portable from system to system and from machine to machine if it relies only on the portable aspects of its programming language and on the Smile primitives. For this to be so, Smile itself must be implemented on each system and machine, most likely using non-portable constructions; that is, while the environment provided by Smile is intended to be portable, the implementation of Smile is not necessarily so. In order to make the implementation of Smile as easy as possible and thereby expedite the porting of programs to a new system or a new machine, Smile has been defined to provide a minimal portable environment; that is, simple primitives are defined, out of which more complex facilities may be constructed using portable procedures. The implementation of Smile can be as any of the following: the underlying software environment for the operating system of an otherwise {open_quotes}bare{close_quotes} machine, a {open_quotes}guest{close_quotes} system environment built upon a preexisting operating system, an environment within a {open_quotes}user{close_quotes} process run by an operating system, or a single environment for an entire machine, encompassing both system and {open_quotes}user{close_quotes} processes. In the first three of these cases the tasks provided by Smile are {open_quotes}lightweight processes{close_quotes} multiplexed within preexisting processes or the system, while in the last case they also include the system processes themselves.

  11. Why Robots Should Be Social: Enhancing Machine Learning through Social Human-Robot Interaction.

    Directory of Open Access Journals (Sweden)

    Joachim de Greeff

    Full Text Available Social learning is a powerful method for cultural propagation of knowledge and skills relying on a complex interplay of learning strategies, social ecology and the human propensity for both learning and tutoring. Social learning has the potential to be an equally potent learning strategy for artificial systems and robots in specific. However, given the complexity and unstructured nature of social learning, implementing social machine learning proves to be a challenging problem. We study one particular aspect of social machine learning: that of offering social cues during the learning interaction. Specifically, we study whether people are sensitive to social cues offered by a learning robot, in a similar way to children's social bids for tutoring. We use a child-like social robot and a task in which the robot has to learn the meaning of words. For this a simple turn-based interaction is used, based on language games. Two conditions are tested: one in which the robot uses social means to invite a human teacher to provide information based on what the robot requires to fill gaps in its knowledge (i.e. expression of a learning preference; the other in which the robot does not provide social cues to communicate a learning preference. We observe that conveying a learning preference through the use of social cues results in better and faster learning by the robot. People also seem to form a "mental model" of the robot, tailoring the tutoring to the robot's performance as opposed to using simply random teaching. In addition, the social learning shows a clear gender effect with female participants being responsive to the robot's bids, while male teachers appear to be less receptive. This work shows how additional social cues in social machine learning can result in people offering better quality learning input to artificial systems, resulting in improved learning performance.

  12. Why Robots Should Be Social: Enhancing Machine Learning through Social Human-Robot Interaction.

    Science.gov (United States)

    de Greeff, Joachim; Belpaeme, Tony

    2015-01-01

    Social learning is a powerful method for cultural propagation of knowledge and skills relying on a complex interplay of learning strategies, social ecology and the human propensity for both learning and tutoring. Social learning has the potential to be an equally potent learning strategy for artificial systems and robots in specific. However, given the complexity and unstructured nature of social learning, implementing social machine learning proves to be a challenging problem. We study one particular aspect of social machine learning: that of offering social cues during the learning interaction. Specifically, we study whether people are sensitive to social cues offered by a learning robot, in a similar way to children's social bids for tutoring. We use a child-like social robot and a task in which the robot has to learn the meaning of words. For this a simple turn-based interaction is used, based on language games. Two conditions are tested: one in which the robot uses social means to invite a human teacher to provide information based on what the robot requires to fill gaps in its knowledge (i.e. expression of a learning preference); the other in which the robot does not provide social cues to communicate a learning preference. We observe that conveying a learning preference through the use of social cues results in better and faster learning by the robot. People also seem to form a "mental model" of the robot, tailoring the tutoring to the robot's performance as opposed to using simply random teaching. In addition, the social learning shows a clear gender effect with female participants being responsive to the robot's bids, while male teachers appear to be less receptive. This work shows how additional social cues in social machine learning can result in people offering better quality learning input to artificial systems, resulting in improved learning performance.

  13. Large-scale Machine Learning in High-dimensional Datasets

    DEFF Research Database (Denmark)

    Hansen, Toke Jansen

    Over the last few decades computers have gotten to play an essential role in our daily life, and data is now being collected in various domains at a faster pace than ever before. This dissertation presents research advances in four machine learning fields that all relate to the challenges imposed...... are better at modeling local heterogeneities. In the field of machine learning for neuroimaging, we introduce learning protocols for real-time functional Magnetic Resonance Imaging (fMRI) that allow for dynamic intervention in the human decision process. Specifically, the model exploits the structure of f...

  14. Machine learning in Python essential techniques for predictive analysis

    CERN Document Server

    Bowles, Michael

    2015-01-01

    Learn a simpler and more effective way to analyze data and predict outcomes with Python Machine Learning in Python shows you how to successfully analyze data using only two core machine learning algorithms, and how to apply them using Python. By focusing on two algorithm families that effectively predict outcomes, this book is able to provide full descriptions of the mechanisms at work, and the examples that illustrate the machinery with specific, hackable code. The algorithms are explained in simple terms with no complex math and applied using Python, with guidance on algorithm selection, d

  15. Less is more: regularization perspectives on large scale machine learning

    CERN Document Server

    CERN. Geneva

    2017-01-01

    Deep learning based techniques provide a possible solution at the expanse of theoretical guidance and, especially, of computational requirements. It is then a key challenge for large scale machine learning to devise approaches guaranteed to be accurate and yet computationally efficient. In this talk, we will consider a regularization perspectives on machine learning appealing to classical ideas in linear algebra and inverse problems to scale-up dramatically nonparametric methods such as kernel methods, often dismissed because of prohibitive costs. Our analysis derives optimal theoretical guarantees while providing experimental results at par or out-performing state of the art approaches.

  16. Conformal prediction for reliable machine learning theory, adaptations and applications

    CERN Document Server

    Balasubramanian, Vineeth; Vovk, Vladimir

    2014-01-01

    The conformal predictions framework is a recent development in machine learning that can associate a reliable measure of confidence with a prediction in any real-world pattern recognition application, including risk-sensitive applications such as medical diagnosis, face recognition, and financial risk prediction. Conformal Predictions for Reliable Machine Learning: Theory, Adaptations and Applications captures the basic theory of the framework, demonstrates how to apply it to real-world problems, and presents several adaptations, including active learning, change detection, and anomaly detecti

  17. Machine learning for the automatic detection of anomalous events

    Science.gov (United States)

    Fisher, Wendy D.

    In this dissertation, we describe our research contributions for a novel approach to the application of machine learning for the automatic detection of anomalous events. We work in two different domains to ensure a robust data-driven workflow that could be generalized for monitoring other systems. Specifically, in our first domain, we begin with the identification of internal erosion events in earth dams and levees (EDLs) using geophysical data collected from sensors located on the surface of the levee. As EDLs across the globe reach the end of their design lives, effectively monitoring their structural integrity is of critical importance. The second domain of interest is related to mobile telecommunications, where we investigate a system for automatically detecting non-commercial base station routers (BSRs) operating in protected frequency space. The presence of non-commercial BSRs can disrupt the connectivity of end users, cause service issues for the commercial providers, and introduce significant security concerns. We provide our motivation, experimentation, and results from investigating a generalized novel data-driven workflow using several machine learning techniques. In Chapter 2, we present results from our performance study that uses popular unsupervised clustering algorithms to gain insights to our real-world problems, and evaluate our results using internal and external validation techniques. Using EDL passive seismic data from an experimental laboratory earth embankment, results consistently show a clear separation of events from non-events in four of the five clustering algorithms applied. Chapter 3 uses a multivariate Gaussian machine learning model to identify anomalies in our experimental data sets. For the EDL work, we used experimental data from two different laboratory earth embankments. Additionally, we explore five wavelet transform methods for signal denoising. The best performance is achieved with the Haar wavelets. We achieve up to 97

  18. A Machine Learning Perspective on Predictive Coding with PAQ

    CERN Document Server

    Knoll, Byron

    2011-01-01

    PAQ8 is an open source lossless data compression algorithm that currently achieves the best compression rates on many benchmarks. This report presents a detailed description of PAQ8 from a statistical machine learning perspective. It shows that it is possible to understand some of the modules of PAQ8 and use this understanding to improve the method. However, intuitive statistical explanations of the behavior of other modules remain elusive. We hope the description in this report will be a starting point for discussions that will increase our understanding, lead to improvements to PAQ8, and facilitate a transfer of knowledge from PAQ8 to other machine learning methods, such a recurrent neural networks and stochastic memoizers. Finally, the report presents a broad range of new applications of PAQ to machine learning tasks including language modeling and adaptive text prediction, adaptive game playing, classification, and compression using features from the field of deep learning.

  19. Proceedings of the IEEE Machine Learning for Signal Processing XVII

    DEFF Research Database (Denmark)

    , and two papers from the winners of the Data Analysis Competition. The program included papers in the following areas: genomic signal processing, pattern recognition and classification, image and video processing, blind signal processing, models, learning algorithms, and applications of machine learning......The seventeenth of a series of workshops sponsored by the IEEE Signal Processing Society and organized by the Machine Learning for Signal Processing Technical Committee (MLSP-TC). The field of machine learning has matured considerably in both methodology and real-world application domains and has....... The program featured a Special Session on Genomic Signal Processing, chaired by Prof. Man-Wai Mak from Hong Kong Polytechnic University, Hong Kong. The session included four refereed papers by leading experts in the field. We also continued the tradition of the Data Analysis Competition thanks to the efforts...

  20. Detection of Hypertension Retinopathy Using Deep Learning and Boltzmann Machines

    Science.gov (United States)

    Triwijoyo, B. K.; Pradipto, Y. D.

    2017-01-01

    hypertensive retinopathy (HR) in the retina of the eye is disturbance caused by high blood pressure disease, where there is a systemic change of arterial in the blood vessels of the retina. Most heart attacks occur in patients caused by high blood pressure symptoms of undiagnosed. Hypertensive retinopathy Symptoms such as arteriolar narrowing, retinal haemorrhage and cotton wool spots. Based on this reasons, the early diagnosis of the symptoms of hypertensive retinopathy is very urgent to aim the prevention and treatment more accurate. This research aims to develop a system for early detection of hypertension retinopathy stage. The proposed method is to determine the combined features artery and vein diameter ratio (AVR) as well as changes position with Optic Disk (OD) in retinal images to review the classification of hypertensive retinopathy using Deep Neural Networks (DNN) and Boltzmann Machines approach. We choose this approach of because based on previous research DNN models were more accurate in the image pattern recognition, whereas Boltzmann machines selected because It requires speedy iteration in the process of learning neural network. The expected results from this research are designed a prototype system early detection of hypertensive retinopathy stage and analysed the effectiveness and accuracy of the proposed methods.

  1. Modelling and simulation of multitechnological machine systems

    Energy Technology Data Exchange (ETDEWEB)

    Holopainen, T. (ed.) [VTT Manufacturing Technology, Espoo (Finland)

    2001-07-01

    The Smart Machines and Systems 2010 (SMART) technology programme 1997-2000 aimed at supporting the machine and electromechanical industries in incorporating the modern technology into their products and processes. The public research projects in this programme were planned to accumulate the latest research results and transfer them for the benefit of industrial product development. The major research topic in the SMART programme was called Modelling and Simulation of Multitechnological Mechatronic Systems. The behaviour of modern machine systems and subsystems addresses many different types of physical phenomena and their mutual interactions: mechanical behaviour of structures, electromagnetic effects, hydraulics, vibrations and acoustics etc. together with associated control systems and software. The actual research was carried out in three separate projects called Modelling and Simulation of Mechtronic Machine Systems for Product Development and Condition Monitoring Purposes (MASI), Virtual Testing of Hydraulically Driven Machines (HYSI), and Control of Low Frequency Vibration of a Mobile Machine (AKSUS). This publication contains the papers presented at the final seminar of these three research projects, held on November 30th at Otaniemi Espoo. (orig.)

  2. FRC Separatrix inference using machine-learning techniques

    Science.gov (United States)

    Romero, Jesus; Roche, Thomas; the TAE Team

    2016-10-01

    As Field Reversed Configuration (FRC) devices approach lifetimes exceeding the characteristic time of conductive structures external to the plasma, plasma stabilization cannot be achieved solely by the flux conserving effect of the external structures, and active control systems are then necessary. An essential component of such control systems is a reconstruction method for the plasma separatrix suitable for real time. We report on a method to infer the separatrix in an FRC using the information of magnetic probes located externally to the plasma. The method uses machine learning methods, namely Bayesian inference of Gaussian Processes, to obtain the most likely plasma current density distribution given the measurements of magnetic field external to the plasma. From the current sources, flux function and in particular separatrix are easily computed. The reconstruction method is non iterative and hence suitable for deterministic real time applications. Validation results with numerical simulations and application to separatrix inference of C-2U plasma discharges will be presented.

  3. Closed-Loop Turbulence Control Using Machine Learning

    CERN Document Server

    Duriez, Thomas; Cordier, Laurent; Noack, Bernd R; Delville, Joël; Bonnet, Jean-Paul; Segond, Marc; Abel, Markus

    2014-01-01

    We propose a general model-free strategy for feedback control design of turbulent flows. This strategy called 'machine learning control' (MLC) is capable of exploiting nonlinear mechanisms in a systematic unsupervised manner. It relies on an evolutionary algorithm that is used to evolve an ensemble of feedback control laws until minimization of a targeted cost function. This methodology can be applied to any non-linear multiple-input multiple-output (MIMO) system to derive an optimal closed-loop control law. MLC is successfully applied to the stabilization of nonlinearly coupled oscillators exhibiting frequency cross-talk, to the maximization of the largest Lyapunov exponent of a forced Lorenz system, and to the mixing enhancement in an experimental mixing layer flow. We foresee numerous potential applications to most nonlinear MIMO control problems, particularly in experiments.

  4. A feasibility study of automatic lung nodule detection in chest digital tomosynthesis with machine learning based on support vector machine

    Science.gov (United States)

    Lee, Donghoon; Kim, Ye-seul; Choi, Sunghoon; Lee, Haenghwa; Jo, Byungdu; Choi, Seungyeon; Shin, Jungwook; Kim, Hee-Joung

    2017-03-01

    The chest digital tomosynthesis(CDT) is recently developed medical device that has several advantage for diagnosing lung disease. For example, CDT provides depth information with relatively low radiation dose compared to computed tomography (CT). However, a major problem with CDT is the image artifacts associated with data incompleteness resulting from limited angle data acquisition in CDT geometry. For this reason, the sensitivity of lung disease was not clear compared to CT. In this study, to improve sensitivity of lung disease detection in CDT, we developed computer aided diagnosis (CAD) systems based on machine learning. For design CAD systems, we used 100 cases of lung nodules cropped images and 100 cases of normal lesion cropped images acquired by lung man phantoms and proto type CDT. We used machine learning techniques based on support vector machine and Gabor filter. The Gabor filter was used for extracting characteristics of lung nodules and we compared performance of feature extraction of Gabor filter with various scale and orientation parameters. We used 3, 4, 5 scales and 4, 6, 8 orientations. After extracting features, support vector machine (SVM) was used for classifying feature of lesions. The linear, polynomial and Gaussian kernels of SVM were compared to decide the best SVM conditions for CDT reconstruction images. The results of CAD system with machine learning showed the capability of automatically lung lesion detection. Furthermore detection performance was the best when Gabor filter with 5 scale and 8 orientation and SVM with Gaussian kernel were used. In conclusion, our suggested CAD system showed improving sensitivity of lung lesion detection in CDT and decide Gabor filter and SVM conditions to achieve higher detection performance of our developed CAD system for CDT.

  5. Machine learning in cell biology - teaching computers to recognize phenotypes.

    Science.gov (United States)

    Sommer, Christoph; Gerlich, Daniel W

    2013-12-15

    Recent advances in microscope automation provide new opportunities for high-throughput cell biology, such as image-based screening. High-complex image analysis tasks often make the implementation of static and predefined processing rules a cumbersome effort. Machine-learning methods, instead, seek to use intrinsic data structure, as well as the expert annotations of biologists to infer models that can be used to solve versatile data analysis tasks. Here, we explain how machine-learning methods work and what needs to be considered for their successful application in cell biology. We outline how microscopy images can be converted into a data representation suitable for machine learning, and then introduce various state-of-the-art machine-learning algorithms, highlighting recent applications in image-based screening. Our Commentary aims to provide the biologist with a guide to the application of machine learning to microscopy assays and we therefore include extensive discussion on how to optimize experimental workflow as well as the data analysis pipeline.

  6. Fast Affinity Propagation Clustering based on Machine Learning

    OpenAIRE

    Shailendra Kumar Shrivastava; J. L. Rana; DR.R.C.JAIN

    2013-01-01

    Affinity propagation (AP) was recently introduced as an un-supervised learning algorithm for exemplar based clustering. In this paper a novel Fast Affinity Propagation clustering Approach based on Machine Learning (FAPML) has been proposed. FAPML tries to put data points into clusters based on the history of the data points belonging to clusters in early stages. In FAPML we introduce affinity learning constant and dispersion constant which supervise the clustering process. FAPML also enforces...

  7. Single-Machine Scheduling with Accelerating Learning Effects

    Directory of Open Access Journals (Sweden)

    T. C. E. Cheng

    2013-01-01

    Full Text Available Scheduling with learning effects has been widely studied. However, there are situations where the learning effect might accelerate. In this paper, we propose a new model where the learning effect accelerates as time goes by. We derive the optimal solutions for the single-machine problems to minimize the makespan, total completion time, total weighted completion time, maximum lateness, maximum tardiness, and total tardiness.

  8. Learning from minimum entropy queries in a large committee machine

    CERN Document Server

    Sollich, P

    1996-01-01

    In supervised learning, the redundancy contained in random examples can be avoided by learning from queries. Using statistical mechanics, we study learning from minimum entropy queries in a large tree-committee machine. The generalization error decreases exponentially with the number of training examples, providing a significant improvement over the algebraic decay for random examples. The connection between entropy and generalization error in multi-layer networks is discussed, and a computationally cheap algorithm for constructing queries is suggested and analysed.

  9. CHISSL: A Human-Machine Collaboration Space for Unsupervised Learning

    Energy Technology Data Exchange (ETDEWEB)

    Arendt, Dustin L.; Komurlu, Caner; Blaha, Leslie M.

    2017-07-14

    We developed CHISSL, a human-machine interface that utilizes supervised machine learning in an unsupervised context to help the user group unlabeled instances by her own mental model. The user primarily interacts via correction (moving a misplaced instance into its correct group) or confirmation (accepting that an instance is placed in its correct group). Concurrent with the user's interactions, CHISSL trains a classification model guided by the user's grouping of the data. It then predicts the group of unlabeled instances and arranges some of these alongside the instances manually organized by the user. We hypothesize that this mode of human and machine collaboration is more effective than Active Learning, wherein the machine decides for itself which instances should be labeled by the user. We found supporting evidence for this hypothesis in a pilot study where we applied CHISSL to organize a collection of handwritten digits.

  10. Modern machine learning techniques and their applications in cartoon animation research

    CERN Document Server

    Yu, Jun

    2013-01-01

    The integration of machine learning techniques and cartoon animation research is fast becoming a hot topic. This book helps readers learn the latest machine learning techniques, including patch alignment framework; spectral clustering, graph cuts, and convex relaxation; ensemble manifold learning; multiple kernel learning; multiview subspace learning; and multiview distance metric learning. It then presents the applications of these modern machine learning techniques in cartoon animation research. With these techniques, users can efficiently utilize the cartoon materials to generate animations

  11. Recognition of printed Arabic text using machine learning

    Science.gov (United States)

    Amin, Adnan

    1998-04-01

    Many papers have been concerned with the recognition of Latin, Chinese and Japanese characters. However, although almost a third of a billion people worldwide, in several different languages, use Arabic characters for writing, little research progress, in both on-line and off-line has been achieved towards the automatic recognition of Arabic characters. This is a result of the lack of adequate support in terms of funding, and other utilities such as Arabic text database, dictionaries, etc. and of course of the cursive nature of its writing rules. The main theme of this paper is the automatic recognition of Arabic printed text using machine learning C4.5. Symbolic machine learning algorithms are designed to accept example descriptions in the form of feature vectors which include a label that identifies the class to which an example belongs. The output of the algorithm is a set of rules that classifies unseen examples based on generalization from the training set. This ability to generalize is the main attraction of machine learning for handwriting recognition. Samples of a character can be preprocessed into a feature vector representation for presentation to a machine learning algorithm that creates rules for recognizing characters of the same class. Symbolic machine learning has several advantages over other learning methods. It is fast in training and in recognition, generalizes well, is noise tolerant and the symbolic representation is easy to understand. The technique can be divided into three major steps: the first step is pre- processing in which the original image is transformed into a binary image utilizing a 300 dpi scanner and then forming the connected component. Second, global features of the input Arabic word are then extracted such as number subwords, number of peaks within the subword, number and position of the complementary character, etc. Finally, machine learning C4.5 is used for character classification to generate a decision tree.

  12. Feasibility of Active Machine Learning for Multiclass Compound Classification.

    Science.gov (United States)

    Lang, Tobias; Flachsenberg, Florian; von Luxburg, Ulrike; Rarey, Matthias

    2016-01-25

    A common task in the hit-to-lead process is classifying sets of compounds into multiple, usually structural classes, which build the groundwork for subsequent SAR studies. Machine learning techniques can be used to automate this process by learning classification models from training compounds of each class. Gathering class information for compounds can be cost-intensive as the required data needs to be provided by human experts or experiments. This paper studies whether active machine learning can be used to reduce the required number of training compounds. Active learning is a machine learning method which processes class label data in an iterative fashion. It has gained much attention in a broad range of application areas. In this paper, an active learning method for multiclass compound classification is proposed. This method selects informative training compounds so as to optimally support the learning progress. The combination with human feedback leads to a semiautomated interactive multiclass classification procedure. This method was investigated empirically on 15 compound classification tasks containing 86-2870 compounds in 3-38 classes. The empirical results show that active learning can solve these classification tasks using 10-80% of the data which would be necessary for standard learning techniques.

  13. Machine learning techniques for razor triggers

    CERN Document Server

    Kolosova, Marina

    2015-01-01

    My project was focused on the development of a neural network which can predict if an event passes or not a razor trigger. Using synthetic data containing jets and missing transverse energy we built and trained a razor network by supervised learning. We accomplished a ∼ 91% agreement between the output of the neural network and the target while the other 10% was due to the noise of the neural network. We could apply such networks during the L1 trigger using neuromorhic hardware. Neuromorphic chips are electronic systems that function in a way similar to an actual brain, they are faster than GPUs or CPUs, but they can only be used with spiking neural networks.

  14. High slot utilization systems for electric machines

    Science.gov (United States)

    Hsu, John S

    2009-06-23

    Two new High Slot Utilization (HSU) Systems for electric machines enable the use of form wound coils that have the highest fill factor and the best use of magnetic materials. The epoxy/resin/curing treatment ensures the mechanical strength of the assembly of teeth, core, and coils. In addition, the first HSU system allows the coil layers to be moved inside the slots for the assembly purpose. The second system uses the slided-in teeth instead of the plugged-in teeth. The power density of the electric machine that uses either system can reach its highest limit.

  15. 基于机器学习的并行文件系统性能预测%Predicting the Parallel File System Performance via Machine Learning

    Institute of Scientific and Technical Information of China (English)

    赵铁柱; 董守斌; Verdi March; Simon See

    2011-01-01

    并行文件系统能有效解决高性能计算系统的海量数据存储和I/O瓶颈问题.由于影响系统性能的因素十分复杂,如何有效地评估系统性能并对性能进行预测成为一个潜在的挑战和热点.以并行文件系统的性能评估和预测作为研究目标,在研究文件系统的架构和性能因子后,设计了一个基于机器学习的并行文件系统预测模型,运用特征选择算法对性能因子数量进行约简,挖掘出系统性能和影响因子之间的特定的关系进行性能预测.通过设计大量实验用例,对特定的Lustre文件系统进行性能评估和预测.评估和实验结果表明:threads/OST、对象存储器(OSS)的数量、磁盘数目和RAID的组织方式是4个调整系统性能最重要因子,预测结果的平均相对误差能控制在25.1%~32.1%之间,具有较好预准确度.%Parallel file system can effectively solve the problems of massive data storage and I/O bottleneck. Because the potential impact on the system is not clearly understood, how to evaluate and predict performance of parallel file system becomes the potential challenge and hotspot. In this work,we aim to research the performance evaluation and prediction of parallel file system. After studying the architecture and performance factors of such file system, we design a predictive mode of parallel file system based on machine learning approaches. We use feature selection algorithms to reduce the number of performance factors to be tested in validating the performance. We also mine the particular relationship of system performance and impact factors to predict the performance of a specific file system. We validate and predict the performance of a specific Lustre file system through a series of experiment cases. Our evaluation and experiment results indicate that threads/OST, num of OSSs (Object Storage Server), hum of disks and num and type of RAID are the four most important parameters to tune the performance

  16. Future Smart Cooking Machine System Design

    Directory of Open Access Journals (Sweden)

    Dewi Agushinta R.

    2013-11-01

    Full Text Available There are many tools make human task get easier. Cooking has become a basic necessity for human beings, since food is one of basic human needs. Until now, the cooking equipment being used is still a hand tool. However everyone has slightly high activity. The presence of cooking tools that can do the cooking work by itself is now necessary. Future Smart Cooking Machine is an artificial intelligence machine that can do cooking work automatically. With this system design, the time is minimized and the ease of work is expected to be achieved. The development of this system is carried out with System Development Life Cycle (SDLC methods. Prototyping method used in this system is a throw-away prototyping approach. At the end of this research there will be produced a cooking machine system design including physical design engine and interface design.

  17. Demonstration of quantum advantage in machine learning

    Science.gov (United States)

    Ristè, Diego; da Silva, Marcus P.; Ryan, Colm A.; Cross, Andrew W.; Córcoles, Antonio D.; Smolin, John A.; Gambetta, Jay M.; Chow, Jerry M.; Johnson, Blake R.

    2017-04-01

    The main promise of quantum computing is to efficiently solve certain problems that are prohibitively expensive for a classical computer. Most problems with a proven quantum advantage involve the repeated use of a black box, or oracle, whose structure encodes the solution. One measure of the algorithmic performance is the query complexity, i.e., the scaling of the number of oracle calls needed to find the solution with a given probability. Few-qubit demonstrations of quantum algorithms, such as Deutsch-Jozsa and Grover, have been implemented across diverse physical systems such as nuclear magnetic resonance, trapped ions, optical systems, and superconducting circuits. However, at the small scale, these problems can already be solved classically with a few oracle queries, limiting the obtained advantage. Here we solve an oracle-based problem, known as learning parity with noise, on a five-qubit superconducting processor. Executing classical and quantum algorithms using the same oracle, we observe a large gap in query count in favor of quantum processing. We find that this gap grows by orders of magnitude as a function of the error rates and the problem size. This result demonstrates that, while complex fault-tolerant architectures will be required for universal quantum computing, a significant quantum advantage already emerges in existing noisy systems.

  18. Machine Learning Principles Can Improve Hip Fracture Prediction

    DEFF Research Database (Denmark)

    Kruse, Christian; Eiken, Pia; Vestergaard, Peter

    2017-01-01

    Apply machine learning principles to predict hip fractures and estimate predictor importance in Dual-energy X-ray absorptiometry (DXA)-scanned men and women. Dual-energy X-ray absorptiometry data from two Danish regions between 1996 and 2006 were combined with national Danish patient data.......89 [0.82; 0.95], but with poor calibration in higher probabilities. A ten predictor subset (BMD, biochemical cholesterol and liver function tests, penicillin use and osteoarthritis diagnoses) achieved a test AUC of 0.86 [0.78; 0.94] using an "xgbTree" model. Machine learning can improve hip fracture...... prediction beyond logistic regression using ensemble models. Compiling data from international cohorts of longer follow-up and performing similar machine learning procedures has the potential to further improve discrimination and calibration....

  19. Accurate Identification of Cancerlectins through Hybrid Machine Learning Technology

    Directory of Open Access Journals (Sweden)

    Jieru Zhang

    2016-01-01

    Full Text Available Cancerlectins are cancer-related proteins that function as lectins. They have been identified through computational identification techniques, but these techniques have sometimes failed to identify proteins because of sequence diversity among the cancerlectins. Advanced machine learning identification methods, such as support vector machine and basic sequence features (n-gram, have also been used to identify cancerlectins. In this study, various protein fingerprint features and advanced classifiers, including ensemble learning techniques, were utilized to identify this group of proteins. We improved the prediction accuracy of the original feature extraction methods and classification algorithms by more than 10% on average. Our work provides a basis for the computational identification of cancerlectins and reveals the power of hybrid machine learning techniques in computational proteomics.

  20. Photometric classification of emission line galaxies with Machine Learning methods

    CERN Document Server

    Cavuoti, Stefano; D'Abrusco, Raffaele; Longo, Giuseppe; Paolillo, Maurizio

    2013-01-01

    In this paper we discuss an application of machine learning based methods to the identification of candidate AGN from optical survey data and to the automatic classification of AGNs in broad classes. We applied four different machine learning algorithms, namely the Multi Layer Perceptron (MLP), trained respectively with the Conjugate Gradient, Scaled Conjugate Gradient and Quasi Newton learning rules, and the Support Vector Machines (SVM), to tackle the problem of the classification of emission line galaxies in different classes, mainly AGNs vs non-AGNs, obtained using optical photometry in place of the diagnostics based on line intensity ratios which are classically used in the literature. Using the same photometric features we discuss also the behavior of the classifiers on finer AGN classification tasks, namely Seyfert I vs Seyfert II and Seyfert vs LINER. Furthermore we describe the algorithms employed, the samples of spectroscopically classified galaxies used to train the algorithms, the procedure follow...

  1. Predicting Market Impact Costs Using Nonparametric Machine Learning Models.

    Directory of Open Access Journals (Sweden)

    Saerom Park

    Full Text Available Market impact cost is the most significant portion of implicit transaction costs that can reduce the overall transaction cost, although it cannot be measured directly. In this paper, we employed the state-of-the-art nonparametric machine learning models: neural networks, Bayesian neural network, Gaussian process, and support vector regression, to predict market impact cost accurately and to provide the predictive model that is versatile in the number of variables. We collected a large amount of real single transaction data of US stock market from Bloomberg Terminal and generated three independent input variables. As a result, most nonparametric machine learning models outperformed a-state-of-the-art benchmark parametric model such as I-star model in four error measures. Although these models encounter certain difficulties in separating the permanent and temporary cost directly, nonparametric machine learning models can be good alternatives in reducing transaction costs by considerably improving in prediction performance.

  2. Predicting Market Impact Costs Using Nonparametric Machine Learning Models.

    Science.gov (United States)

    Park, Saerom; Lee, Jaewook; Son, Youngdoo

    2016-01-01

    Market impact cost is the most significant portion of implicit transaction costs that can reduce the overall transaction cost, although it cannot be measured directly. In this paper, we employed the state-of-the-art nonparametric machine learning models: neural networks, Bayesian neural network, Gaussian process, and support vector regression, to predict market impact cost accurately and to provide the predictive model that is versatile in the number of variables. We collected a large amount of real single transaction data of US stock market from Bloomberg Terminal and generated three independent input variables. As a result, most nonparametric machine learning models outperformed a-state-of-the-art benchmark parametric model such as I-star model in four error measures. Although these models encounter certain difficulties in separating the permanent and temporary cost directly, nonparametric machine learning models can be good alternatives in reducing transaction costs by considerably improving in prediction performance.

  3. Machine learning for Big Data analytics in plants.

    Science.gov (United States)

    Ma, Chuang; Zhang, Hao Helen; Wang, Xiangfeng

    2014-12-01

    Rapid advances in high-throughput genomic technology have enabled biology to enter the era of 'Big Data' (large datasets). The plant science community not only needs to build its own Big-Data-compatible parallel computing and data management infrastructures, but also to seek novel analytical paradigms to extract information from the overwhelming amounts of data. Machine learning offers promising computational and analytical solutions for the integrative analysis of large, heterogeneous and unstructured datasets on the Big-Data scale, and is gradually gaining popularity in biology. This review introduces the basic concepts and procedures of machine-learning applications and envisages how machine learning could interface with Big Data technology to facilitate basic research and biotechnology in the plant sciences.

  4. Proceedings of IEEE Machine Learning for Signal Processing Workshop XV

    DEFF Research Database (Denmark)

    Larsen, Jan

    These proceedings contains refereed papers presented at the Fifteenth IEEE Workshop on Machine Learning for Signal Processing (MLSP’2005), held in Mystic, Connecticut, USA, September 28-30, 2005. This is a continuation of the IEEE Workshops on Neural Networks for Signal Processing (NNSP) organized...... by the NNSP Technical Committee of the IEEE Signal Processing Society. The name of the Technical Committee, hence of the Workshop, was changed to Machine Learning for Signal Processing in September 2003 to better reflect the areas represented by the Technical Committee. The conference is organized...... by the Machine Learning for Signal Processing Technical Committee with sponsorship of the IEEE Signal Processing Society. Following the practice started two years ago, the bound volume of the proceedings is going to be published by IEEE following the Workshop, and we are pleased to offer to conference attendees...

  5. Proceedings of IEEE Machine Learning for Signal Processing Workshop XV

    DEFF Research Database (Denmark)

    Larsen, Jan

    These proceedings contains refereed papers presented at the Fifteenth IEEE Workshop on Machine Learning for Signal Processing (MLSP’2005), held in Mystic, Connecticut, USA, September 28-30, 2005. This is a continuation of the IEEE Workshops on Neural Networks for Signal Processing (NNSP) organized...... by the NNSP Technical Committee of the IEEE Signal Processing Society. The name of the Technical Committee, hence of the Workshop, was changed to Machine Learning for Signal Processing in September 2003 to better reflect the areas represented by the Technical Committee. The conference is organized...... by the Machine Learning for Signal Processing Technical Committee with sponsorship of the IEEE Signal Processing Society. Following the practice started two years ago, the bound volume of the proceedings is going to be published by IEEE following the Workshop, and we are pleased to offer to conference attendees...

  6. Galaxy Zoo: Reproducing Galaxy Morphologies Via Machine Learning

    CERN Document Server

    Banerji, Manda; Lintott, Chris J; Abdalla, Filipe B; Schawinski, Kevin; Andreescu, Dan; Bamford, Steven; Murray, Phil; Raddick, M Jordan; Slosar, Anze; Szalay, Alex; Thomas, Daniel; Vandenberg, Jan

    2009-01-01

    We present morphological classifications obtained using machine learning for objects in SDSS DR7 that have been classified by Galaxy Zoo into three classes namely spirals, ellipticals and stars/unique objects. An artificial neural network is trained on a subset of objects classified by the human eye and we test whether the machine learning algorithm can reproduce the human classifications for the rest of the sample. We find that the success of the neural network in matching the human classifications depends crucially on the set of input parameters chosen for the machine-learning algorithm. The colours, concentrations and parameters associated with profile-fitting are reasonable in seperating the stars and galaxies into three classes. However, these results are considerably improved when adding adaptive shape parameters as well as texture. The adaptive moments and texture parameters alone cannot distinguish between stars and elliptical galaxies. Using a set of thirteen distance-independant parameters, the neur...

  7. Machine learning based global particle indentification algorithms at LHCb experiment

    CERN Multimedia

    Derkach, Denis; Likhomanenko, Tatiana; Rogozhnikov, Aleksei; Ratnikov, Fedor

    2017-01-01

    One of the most important aspects of data processing at LHC experiments is the particle identification (PID) algorithm. In LHCb, several different sub-detector systems provide PID information: the Ring Imaging CHerenkov (RICH) detector, the hadronic and electromagnetic calorimeters, and the muon chambers. To improve charged particle identification, several neural networks including a deep architecture and gradient boosting have been applied to data. These new approaches provide higher identification efficiencies than existing implementations for all charged particle types. It is also necessary to achieve a flat dependency between efficiencies and spectator variables such as particle momentum, in order to reduce systematic uncertainties during later stages of data analysis. For this purpose, "flat” algorithms that guarantee the flatness property for efficiencies have also been developed. This talk presents this new approach based on machine learning and its performance.

  8. A Machine Learning Approach to Test Data Generation

    DEFF Research Database (Denmark)

    Christiansen, Henning; Dahmcke, Christina Mackeprang

    2007-01-01

    Programs for gene prediction in computational biology are examples of systems for which the acquisition of authentic test data is difficult as these require years of extensive research. This has lead to test methods based on semiartificially produced test data, often produced by {\\em ad hoc......} techniques complemented by statistical models such as Hidden Markov Models (HMM). The quality of such a test method depends on how well the test data reflect the regularities in known data and how well they generalize these regularities. So far only very simplified and generalized, artificial data sets have...... been tested, and a more thorough statistical foundation is required. We propose to use logic-statistical modelling methods for machine-learning for analyzing existing and manually marked up data, integrated with the generation of new, artificial data. More specifically, we suggest to use the PRISM...

  9. Crystal Structure Representations for Machine Learning Models of Formation Energies

    CERN Document Server

    Faber, Felix; von Lilienfeld, O Anatole; Armiento, Rickard

    2015-01-01

    We introduce and evaluate a set of feature vector representations of crystal structures for machine learning (ML) models of formation energies of solids. ML models of atomization energies of organic molecules have been successful using a Coulomb matrix representation of the molecule. We consider three ways to generalize such representations to periodic systems: (i) a matrix where each element is related to the Ewald sum of the electrostatic interaction between two different atoms in the unit cell repeated over the lattice; (ii) an extended Coulomb-like matrix that takes into account a number of neighboring unit cells; and (iii) an Ansatz that mimics the periodicity and the basic features of the elements in the Ewald sum matrix by using a sine function of the crystal coordinates of the atoms. The representations are compared for a Laplacian kernel with Manhattan norm, trained to reproduce formation energies using a data set of 3938 crystal structures obtained from the Materials Project. For training sets consi...

  10. Fully automatic CNC machining production system

    Directory of Open Access Journals (Sweden)

    Lee Jeng-Dao

    2017-01-01

    Full Text Available Customized manufacturing is increasing years by years. The consumption habits change has been cause the shorter of product life cycle. Therefore, many countries view industry 4.0 as a target to achieve more efficient and more flexible automated production. To develop an automatic loading and unloading CNC machining system via vision inspection is the first step in industrial upgrading. CNC controller is adopted as the main controller to command to the robot, conveyor, and other equipment in this study. Moreover, machine vision systems are used to detect position of material on the conveyor and the edge of the machining material. In addition, Open CNC and SCADA software will be utilized to make real-time monitor, remote system of control, alarm email notification, and parameters collection. Furthermore, RFID has been added to employee classification and management. The machine handshaking has been successfully proposed to achieve automatic vision detect, edge tracing measurement, machining and system parameters collection for data analysis to accomplish industrial automation system integration with real-time monitor.

  11. NASA's online machine aided indexing system

    Science.gov (United States)

    Silvester, June P.; Genuardi, Michael T.; Klingbiel, Paul H.

    1993-01-01

    This report describes the NASA Lexical Dictionary, a machine aided indexing system used online at the National Aeronautics and Space Administration's Center for Aerospace Information (CASI). This system is comprised of a text processor that is based on the computational, non-syntactic analysis of input text, and an extensive 'knowledge base' that serves to recognize and translate text-extracted concepts. The structure and function of the various NLD system components are described in detail. Methods used for the development of the knowledge base are discussed. Particular attention is given to a statistically-based text analysis program that provides the knowledge base developer with a list of concept-specific phrases extracted from large textual corpora. Production and quality benefits resulting from the integration of machine aided indexing at CASI are discussed along with a number of secondary applications of NLD-derived systems including on-line spell checking and machine aided lexicography.

  12. Effective and efficient optics inspection approach using machine learning algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Abdulla, G; Kegelmeyer, L; Liao, Z; Carr, W

    2010-11-02

    The Final Optics Damage Inspection (FODI) system automatically acquires and utilizes the Optics Inspection (OI) system to analyze images of the final optics at the National Ignition Facility (NIF). During each inspection cycle up to 1000 images acquired by FODI are examined by OI to identify and track damage sites on the optics. The process of tracking growing damage sites on the surface of an optic can be made more effective by identifying and removing signals associated with debris or reflections. The manual process to filter these false sites is daunting and time consuming. In this paper we discuss the use of machine learning tools and data mining techniques to help with this task. We describe the process to prepare a data set that can be used for training and identifying hardware reflections in the image data. In order to collect training data, the images are first automatically acquired and analyzed with existing software and then relevant features such as spatial, physical and luminosity measures are extracted for each site. A subset of these sites is 'truthed' or manually assigned a class to create training data. A supervised classification algorithm is used to test if the features can predict the class membership of new sites. A suite of self-configuring machine learning tools called 'Avatar Tools' is applied to classify all sites. To verify, we used 10-fold cross correlation and found the accuracy was above 99%. This substantially reduces the number of false alarms that would otherwise be sent for more extensive investigation.

  13. SPAM CLASSIFICATION BASED ON SUPERVISED LEARNING USING MACHINE LEARNING TECHNIQUES

    Directory of Open Access Journals (Sweden)

    T. Hamsapriya

    2011-12-01

    Full Text Available E-mail is one of the most popular and frequently used ways of communication due to its worldwide accessibility, relatively fast message transfer, and low sending cost. The flaws in the e-mail protocols and the increasing amount of electronic business and financial transactions directly contribute to the increase in e-mail-based threats. Email spam is one of the major problems of the today’s Internet, bringing financial damage to companies and annoying individual users. Spam emails are invading users without their consent and filling their mail boxes. They consume more network capacity as well as time in checking and deleting spam mails. The vast majority of Internet users are outspoken in their disdain for spam, although enough of them respond to commercial offers that spam remains a viable source of income to spammers. While most of the users want to do right think to avoid and get rid of spam, they need clear and simple guidelines on how to behave. In spite of all the measures taken to eliminate spam, they are not yet eradicated. Also when the counter measures are over sensitive, even legitimate emails will be eliminated. Among the approaches developed to stop spam, filtering is the one of the most important technique. Many researches in spam filtering have been centered on the more sophisticated classifier-related issues. In recent days, Machine learning for spam classification is an important research issue. The effectiveness of the proposed work is explores and identifies the use of different learning algorithms for classifying spam messages from e-mail. A comparative analysis among the algorithms has also been presented.

  14. 3D Visualization of Machine Learning Algorithms with Astronomical Data

    Science.gov (United States)

    Kent, Brian R.

    2016-01-01

    We present innovative machine learning (ML) methods using unsupervised clustering with minimum spanning trees (MSTs) to study 3D astronomical catalogs. Utilizing Python code to build trees based on galaxy catalogs, we can render the results with the visualization suite Blender to produce interactive 360 degree panoramic videos. The catalogs and their ML results can be explored in a 3D space using mobile devices, tablets or desktop browsers. We compare the statistics of the MST results to a number of machine learning methods relating to optimization and efficiency.

  15. Machine Learning: When and Where the Horses Went Astray?

    CERN Document Server

    Diamant, Emanuel

    2009-01-01

    Machine Learning is usually defined as a subfield of AI, which is busy with information extraction from raw data sets. Despite of its common acceptance and widespread recognition, this definition is wrong and groundless. Meaningful information does not belong to the data that bear it. It belongs to the observers of the data and it is a shared agreement and a convention among them. Therefore, this private information cannot be extracted from the data by any means. Therefore, all further attempts of Machine Learning apologists to justify their funny business are inappropriate.

  16. Oceanic eddy detection and lifetime forecast using machine learning methods

    Science.gov (United States)

    Ashkezari, Mohammad D.; Hill, Christopher N.; Follett, Christopher N.; Forget, Gaël.; Follows, Michael J.

    2016-12-01

    We report a novel altimetry-based machine learning approach for eddy identification and characterization. The machine learning models use daily maps of geostrophic velocity anomalies and are trained according to the phase angle between the zonal and meridional components at each grid point. The trained models are then used to identify the corresponding eddy phase patterns and to predict the lifetime of a detected eddy structure. The performance of the proposed method is examined at two dynamically different regions to demonstrate its robust behavior and region independency.

  17. Energy landscapes for a machine learning application to series data.

    Science.gov (United States)

    Ballard, Andrew J; Stevenson, Jacob D; Das, Ritankar; Wales, David J

    2016-03-28

    Methods developed to explore and characterise potential energy landscapes are applied to the corresponding landscapes obtained from optimisation of a cost function in machine learning. We consider neural network predictions for the outcome of local geometry optimisation in a triatomic cluster, where four distinct local minima exist. The accuracy of the predictions is compared for fits using data from single and multiple points in the series of atomic configurations resulting from local geometry optimisation and for alternative neural networks. The machine learning solution landscapes are visualised using disconnectivity graphs, and signatures in the effective heat capacity are analysed in terms of distributions of local minima and their properties.

  18. Advances in independent component analysis and learning machines

    CERN Document Server

    Bingham, Ella; Laaksonen, Jorma; Lampinen, Jouko

    2015-01-01

    In honour of Professor Erkki Oja, one of the pioneers of Independent Component Analysis (ICA), this book reviews key advances in the theory and application of ICA, as well as its influence on signal processing, pattern recognition, machine learning, and data mining. Examples of topics which have developed from the advances of ICA, which are covered in the book are: A unifying probabilistic model for PCA and ICA Optimization methods for matrix decompositions Insights into the FastICA algorithmUnsupervised deep learning Machine vision and image retrieval A review of developments in the t

  19. Advances in machine learning and data mining for astronomy

    CERN Document Server

    Way, Michael J

    2012-01-01

    Advances in Machine Learning and Data Mining for Astronomy documents numerous successful collaborations among computer scientists, statisticians, and astronomers who illustrate the application of state-of-the-art machine learning and data mining techniques in astronomy. Due to the massive amount and complexity of data in most scientific disciplines, the material discussed in this text transcends traditional boundaries between various areas in the sciences and computer science. The book's introductory part provides context to issues in the astronomical sciences that are also important to health

  20. Combining human and machine learning for morphological analysis of galaxy images

    CERN Document Server

    Kuminski, Evan; Wallin, John; Shamir, Lior

    2014-01-01

    The increasing importance of digital sky surveys collecting many millions of galaxy images has reinforced the need for robust methods that can perform morphological analysis of large galaxy image databases. Citizen science initiatives such as Galaxy Zoo showed that large datasets of galaxy images can be analyzed effectively by non-scientist volunteers, but since databases generated by robotic telescopes grow much faster than the processing power of any group of citizen scientists, it is clear that computer analysis is required. Here we propose to use citizen science data for training machine learning systems, and show experimental results demonstrating that machine learning systems can be trained with citizen science data. Our findings show that the performance of machine learning depends on the quality of the data, which can be improved by using samples that have a high degree of agreement between the citizen scientists. The source code of the method is publicly available.

  1. Machine learning bandgaps of double perovskites

    National Research Council Canada - National Science Library

    Pilania, G; Mannodi-Kanakkithodi, A; Uberuaga, B P; Ramprasad, R; Gubernatis, J E; Lookman, T

    2016-01-01

    .... While quantum mechanical computations for high-fidelity bandgaps are enormously computation-time intensive and thus impractical in high throughput studies, informatics-based statistical learning...

  2. VIRTUAL MACHINES IN EDUCATION – CNC MILLING MACHINE WITH SINUMERIK 840D CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    Ireneusz Zagórski

    2014-11-01

    Full Text Available Machining process nowadays could not be conducted without its inseparable element: cutting edge and frequently numerically controlled milling machines. Milling and lathe machining centres comprise standard equipment in many companies of the machinery industry, e.g. automotive or aircraft. It is for that reason that tertiary education should account for this rising demand. This entails the introduction into the curricula the forms which enable visualisation of machining, milling process and virtual production as well as virtual machining centres simulation. Siemens Virtual Machine (Virtual Workshop sets an example of such software, whose high functionality offers a range of learning experience, such as: learning the design of machine tools, their configuration, basic operation functions as well as basics of CNC.

  3. Machine-Learning Algorithms to Code Public Health Spending Accounts.

    Science.gov (United States)

    Brady, Eoghan S; Leider, Jonathon P; Resnick, Beth A; Alfonso, Y Natalia; Bishai, David

    Government public health expenditure data sets require time- and labor-intensive manipulation to summarize results that public health policy makers can use. Our objective was to compare the performances of machine-learning algorithms with manual classification of public health expenditures to determine if machines could provide a faster, cheaper alternative to manual classification. We used machine-learning algorithms to replicate the process of manually classifying state public health expenditures, using the standardized public health spending categories from the Foundational Public Health Services model and a large data set from the US Census Bureau. We obtained a data set of 1.9 million individual expenditure items from 2000 to 2013. We collapsed these data into 147 280 summary expenditure records, and we followed a standardized method of manually classifying each expenditure record as public health, maybe public health, or not public health. We then trained 9 machine-learning algorithms to replicate the manual process. We calculated recall, precision, and coverage rates to measure the performance of individual and ensembled algorithms. Compared with manual classification, the machine-learning random forests algorithm produced 84% recall and 91% precision. With algorithm ensembling, we achieved our target criterion of 90% recall by using a consensus ensemble of ≥6 algorithms while still retaining 93% coverage, leaving only 7% of the summary expenditure records unclassified. Machine learning can be a time- and cost-saving tool for estimating public health spending in the United States. It can be used with standardized public health spending categories based on the Foundational Public Health Services model to help parse public health expenditure information from other types of health-related spending, provide data that are more comparable across public health organizations, and evaluate the impact of evidence-based public health resource allocation.

  4. Evaluating the Security of Machine Learning Algorithms

    Science.gov (United States)

    2008-05-20

    description of this setting and several results appear in Cesa -Bianchi and Lugosi [2006]. 2.5 Summary In this chapter we have presented a framework for...Learning Research (JMLR), 3:993–1022, 2003. ISSN 1533-7928. Nicolò Cesa -Bianchi and Gábor Lugosi. Prediction, Learning, and Games. Cambridge University

  5. Outsmarting neural networks: an alternative paradigm for machine learning

    Energy Technology Data Exchange (ETDEWEB)

    Protopopescu, V.; Rao, N.S.V.

    1996-10-01

    We address three problems in machine learning, namely: (i) function learning, (ii) regression estimation, and (iii) sensor fusion, in the Probably and Approximately Correct (PAC) framework. We show that, under certain conditions, one can reduce the three problems above to the regression estimation. The latter is usually tackled with artificial neural networks (ANNs) that satisfy the PAC criteria, but have high computational complexity. We propose several computationally efficient PAC alternatives to ANNs to solve the regression estimation. Thereby we also provide efficient PAC solutions to the function learning and sensor fusion problems. The approach is based on cross-fertilizing concepts and methods from statistical estimation, nonlinear algorithms, and the theory of computational complexity, and is designed as part of a new, coherent paradigm for machine learning.

  6. Feature importance for machine learning redshifts applied to SDSS galaxies

    CERN Document Server

    Hoyle, Ben; Zitlau, Roman; Steiz, Stella; Weller, Jochen

    2014-01-01

    We present an analysis of importance feature selection applied to photometric redshift estimation using the machine learning architecture Random Decision Forests (RDF) with the ensemble learning routine Adaboost. We select a list of 85 easily measured (or derived) photometric quantities (or 'features') and spectroscopic redshifts for almost two million galaxies from the Sloan Digital Sky Survey Data Release 10. After identifying which features have the most predictive power, we use standard artificial Neural Networks (aNN) to show that the addition of these features, in combination with the standard magnitudes and colours, improves the machine learning redshift estimate by 18% and decreases the catastrophic outlier rate by 32%. We further compare the redshift estimate from RDF using the ensemble learning routine Adaboost with those from two different aNNs, and with photometric redshifts available from the SDSS. We find that the RDF requires orders of magnitude less computation time than the aNNs to obtain a m...

  7. Is extreme learning machine feasible? A theoretical assessment (part I).

    Science.gov (United States)

    Liu, Xia; Lin, Shaobo; Fang, Jian; Xu, Zongben

    2015-01-01

    An extreme learning machine (ELM) is a feedforward neural network (FNN) like learning system whose connections with output neurons are adjustable, while the connections with and within hidden neurons are randomly fixed. Numerous applications have demonstrated the feasibility and high efficiency of ELM-like systems. It has, however, been open if this is true for any general applications. In this two-part paper, we conduct a comprehensive feasibility analysis of ELM. In Part I, we provide an answer to the question by theoretically justifying the following: 1) for some suitable activation functions, such as polynomials, Nadaraya-Watson and sigmoid functions, the ELM-like systems can attain the theoretical generalization bound of the FNNs with all connections adjusted, i.e., they do not degrade the generalization capability of the FNNs even when the connections with and within hidden neurons are randomly fixed; 2) the number of hidden neurons needed for an ELM-like system to achieve the theoretical bound can be estimated; and 3) whenever the activation function is taken as polynomial, the deduced hidden layer output matrix is of full column-rank, therefore the generalized inverse technique can be efficiently applied to yield the solution of an ELM-like system, and, furthermore, for the nonpolynomial case, the Tikhonov regularization can be applied to guarantee the weak regularity while not sacrificing the generalization capability. In Part II, however, we reveal a different aspect of the feasibility of ELM: there also exists some activation functions, which makes the corresponding ELM degrade the generalization capability. The obtained results underlie the feasibility and efficiency of ELM-like systems, and yield various generalizations and improvements of the systems as well.

  8. MACHINING OPTIMISATION AND OPERATION ALLOCATION FOR NC LATHE MACHINES IN A JOB SHOP MANUFACTURING SYSTEM

    Directory of Open Access Journals (Sweden)

    MUSSA I. MGWATU

    2013-08-01

    Full Text Available Numerical control (NC machines in a job shop may not be cost and time effective if the assignment of cutting operations and optimisation of machining parameters are overlooked. In order to justify better utilisation and higher productivity of invested NC machine tools, it is necessary to determine the optimum machining parameters and realize effective assignment of cutting operations on machines. This paper presents two mathematical models for optimising machining parameters and effectively allocating turning operations on NC lathe machines in a job shop manufacturing system. The models are developed as non-linear programming problems and solved using a commercial LINGO software package. The results show that the decisions of machining optimisation and operation allocation on NC lathe machines can be simultaneously made while minimising both production cost and cycle time. In addition, the results indicate that production cost and cycle time can be minimised while significantly reducing or totally eliminating idle times among machines.

  9. Stacking for machine learning redshifts applied to SDSS galaxies

    OpenAIRE

    Zitlau, Roman; Hoyle, Ben; Paech, Kerstin; Weller, Jochen; Rau, Markus Michael; Seitz, Stella

    2016-01-01

    We present an analysis of a general machine learning technique called 'stacking' for the estimation of photometric redshifts. Stacking techniques can feed the photometric redshift estimate, as output by a base algorithm, back into the same algorithm as an additional input feature in a subsequent learning round. We shown how all tested base algorithms benefit from at least one additional stacking round (or layer). To demonstrate the benefit of stacking, we apply the method to both unsupervised...

  10. Machine Learning Tools for Geomorphic Mapping of Planetary Surfaces

    OpenAIRE

    Stepinski, Tomasz F.; Vilalta, Ricardo

    2010-01-01

    Geomorphic auto-mapping of planetary surfaces is a challenging problem. Here we have described how machine learning techniques, such as clustering or classification, can be utilized to automate the process of geomorphic mapping for exploratory and exploitation purposes. Relatively coarse resolution of planetary topographic data limits the number of features that can be used in the learning process and makes planetary auto-mapping more challenging than terrestrial auto-mapping. With this cavea...

  11. A 128-Channel Extreme Learning Machine-Based Neural Decoder for Brain Machine Interfaces.

    Science.gov (United States)

    Chen, Yi; Yao, Enyi; Basu, Arindam

    2016-06-01

    Currently, state-of-the-art motor intention decoding algorithms in brain-machine interfaces are mostly implemented on a PC and consume significant amount of power. A machine learning coprocessor in 0.35- μm CMOS for the motor intention decoding in the brain-machine interfaces is presented in this paper. Using Extreme Learning Machine algorithm and low-power analog processing, it achieves an energy efficiency of 3.45 pJ/MAC at a classification rate of 50 Hz. The learning in second stage and corresponding digitally stored coefficients are used to increase robustness of the core analog processor. The chip is verified with neural data recorded in monkey finger movements experiment, achieving a decoding accuracy of 99.3% for movement type. The same coprocessor is also used to decode time of movement from asynchronous neural spikes. With time-delayed feature dimension enhancement, the classification accuracy can be increased by 5% with limited number of input channels. Further, a sparsity promoting training scheme enables reduction of number of programmable weights by ≈ 2X.

  12. Parsing learning in networks using brain-machine interfaces.

    Science.gov (United States)

    Orsborn, Amy L; Pesaran, Bijan

    2017-08-24

    Brain-machine interfaces (BMIs) define new ways to interact with our environment and hold great promise for clinical therapies. Motor BMIs, for instance, re-route neural activity to control movements of a new effector and could restore movement to people with paralysis. Increasing experience shows that interfacing with the brain inevitably changes the brain. BMIs engage and depend on a wide array of innate learning mechanisms to produce meaningful behavior. BMIs precisely define the information streams into and out of the brain, but engage wide-spread learning. We take a network perspective and review existing observations of learning in motor BMIs to show that BMIs engage multiple learning mechanisms distributed across neural networks. Recent studies demonstrate the advantages of BMI for parsing this learning and its underlying neural mechanisms. BMIs therefore provide a powerful tool for studying the neural mechanisms of learning that highlights the critical role of learning in engineered neural therapies. Copyright © 2017. Published by Elsevier Ltd.

  13. Machine learning for adaptive many-core machines a practical approach

    CERN Document Server

    Lopes, Noel

    2015-01-01

    The overwhelming data produced everyday and the increasing performance and cost requirements of applications?are transversal to a wide range of activities in society, from science to industry. In particular, the magnitude and complexity of the tasks that Machine Learning (ML) algorithms have to solve are driving the need to devise adaptive many-core machines that scale well with the volume of data, or in other words, can handle Big Data.This book gives a concise view on how to extend the applicability of well-known ML algorithms in Graphics Processing Unit (GPU) with data scalability in mind.

  14. Automating Construction of Machine Learning Models With Clinical Big Data: Proposal Rationale and Methods

    Science.gov (United States)

    Stone, Bryan L; Johnson, Michael D; Tarczy-Hornoch, Peter; Wilcox, Adam B; Mooney, Sean D; Sheng, Xiaoming; Haug, Peter J; Nkoy, Flory L

    2017-01-01

    Background To improve health outcomes and cut health care costs, we often need to conduct prediction/classification using large clinical datasets (aka, clinical big data), for example, to identify high-risk patients for preventive interventions. Machine learning has been proposed as a key technology for doing this. Machine learning has won most data science competitions and could support many clinical activities, yet only 15% of hospitals use it for even limited purposes. Despite familiarity with data, health care researchers often lack machine learning expertise to directly use clinical big data, creating a hurdle in realizing value from their data. Health care researchers can work with data scientists with deep machine learning knowledge, but it takes time and effort for both parties to communicate effectively. Facing a shortage in the United States of data scientists and hiring competition from companies with deep pockets, health care systems have difficulty recruiting data scientists. Building and generalizing a machine learning model often requires hundreds to thousands of manual iterations by data scientists to select the following: (1) hyper-parameter values and complex algorithms that greatly affect model accuracy and (2) operators and periods for temporally aggregating clinical attributes (eg, whether a patient’s weight kept rising in the past year). This process becomes infeasible with limited budgets. Objective This study’s goal is to enable health care researchers to directly use clinical big data, make machine learning feasible with limited budgets and data scientist resources, and realize value from data. Methods This study will allow us to achieve the following: (1) finish developing the new software, Automated Machine Learning (Auto-ML), to automate model selection for machine learning with clinical big data and validate Auto-ML on seven benchmark modeling problems of clinical importance; (2) apply Auto-ML and novel methodology to two new

  15. Automating Construction of Machine Learning Models With Clinical Big Data: Proposal Rationale and Methods.

    Science.gov (United States)

    Luo, Gang; Stone, Bryan L; Johnson, Michael D; Tarczy-Hornoch, Peter; Wilcox, Adam B; Mooney, Sean D; Sheng, Xiaoming; Haug, Peter J; Nkoy, Flory L

    2017-08-29

    To improve health outcomes and cut health care costs, we often need to conduct prediction/classification using large clinical datasets (aka, clinical big data), for example, to identify high-risk patients for preventive interventions. Machine learning has been proposed as a key technology for doing this. Machine learning has won most data science competitions and could support many clinical activities, yet only 15% of hospitals use it for even limited purposes. Despite familiarity with data, health care researchers often lack machine learning expertise to directly use clinical big data, creating a hurdle in realizing value from their data. Health care researchers can work with data scientists with deep machine learning knowledge, but it takes time and effort for both parties to communicate effectively. Facing a shortage in the United States of data scientists and hiring competition from companies with deep pockets, health care systems have difficulty recruiting data scientists. Building and generalizing a machine learning model often requires hundreds to thousands of manual iterations by data scientists to select the following: (1) hyper-parameter values and complex algorithms that greatly affect model accuracy and (2) operators and periods for temporally aggregating clinical attributes (eg, whether a patient's weight kept rising in the past year). This process becomes infeasible with limited budgets. This study's goal is to enable health care researchers to directly use clinical big data, make machine learning feasible with limited budgets and data scientist resources, and realize value from data. This study will allow us to achieve the following: (1) finish developing the new software, Automated Machine Learning (Auto-ML), to automate model selection for machine learning with clinical big data and validate Auto-ML on seven benchmark modeling problems of clinical importance; (2) apply Auto-ML and novel methodology to two new modeling problems crucial for care

  16. Machine learning for network-based malware detection

    DEFF Research Database (Denmark)

    Stevanovic, Matija

    and based on different, mutually complementary, principles of traffic analysis. The proposed approaches rely on machine learning algorithms (MLAs) for automated and resource-efficient identification of the patterns of malicious network traffic. We evaluated the proposed methods through extensive evaluations...

  17. Machine Learning and Data Mining Methods in Diabetes Research.

    Science.gov (United States)

    Kavakiotis, Ioannis; Tsave, Olga; Salifoglou, Athanasios; Maglaveras, Nicos; Vlahavas, Ioannis; Chouvarda, Ioanna

    2017-01-01

    The remarkable advances in biotechnology and health sciences have led to a significant production of data, such as high throughput genetic data and clinical information, generated from large Electronic Health Records (EHRs). To this end, application of machine learning and data mining methods in biosciences is presently, more than ever before, vital and indispensable in efforts to transform intelligently all available information into valuable knowledge. Diabetes mellitus (DM) is defined as a group of metabolic disorders exerting significant pressure on human health worldwide. Extensive research in all aspects of diabetes (diagnosis, etiopathophysiology, therapy, etc.) has led to the generation of huge amounts of data. The aim of the present study is to conduct a systematic review of the applications of machine learning, data mining techniques and tools in the field of diabetes research with respect to a) Prediction and Diagnosis, b) Diabetic Complications, c) Genetic Background and Environment, and e) Health Care and Management with the first category appearing to be the most popular. A wide range of machine learning algorithms were employed. In general, 85% of those used were characterized by supervised learning approaches and 15% by unsupervised ones, and more specifically, association rules. Support vector machines (SVM) arise as the most successful and widely used algorithm. Concerning the type of data, clinical datasets were mainly used. The title applications in the selected articles project the usefulness of extracting valuable knowledge leading to new hypotheses targeting deeper understanding and further investigation in DM.

  18. An efficient learning procedure for deep Boltzmann machines.

    Science.gov (United States)

    Salakhutdinov, Ruslan; Hinton, Geoffrey

    2012-08-01

    We present a new learning algorithm for Boltzmann machines that contain many layers of hidden variables. Data-dependent statistics are estimated using a variational approximation that tends to focus on a single mode, and data-independent statistics are estimated using persistent Markov chains. The use of two quite different techniques for estimating the two types of statistic that enter into the gradient of the log likelihood makes it practical to learn Boltzmann machines with multiple hidden layers and millions of parameters. The learning can be made more efficient by using a layer-by-layer pretraining phase that initializes the weights sensibly. The pretraining also allows the variational inference to be initialized sensibly with a single bottom-up pass. We present results on the MNIST and NORB data sets showing that deep Boltzmann machines learn very good generative models of handwritten digits and 3D objects. We also show that the features discovered by deep Boltzmann machines are a very effective way to initialize the hidden layers of feedforward neural nets, which are then discriminatively fine-tuned.

  19. Predicting single-molecule conductance through machine learning

    Science.gov (United States)

    Lanzillo, Nicholas A.; Breneman, Curt M.

    2016-10-01

    We present a robust machine learning model that is trained on the experimentally determined electrical conductance values of approximately 120 single-molecule junctions used in scanning tunnelling microscope molecular break junction (STM-MBJ) experiments. Quantum mechanical, chemical, and topological descriptors are used to correlate each molecular structure with a conductance value, and the resulting machine-learning model can predict the corresponding value of conductance with correlation coefficients of r 2 = 0.95 for the training set and r 2 = 0.78 for a blind testing set. While neglecting entirely the effects of the metal contacts, this work demonstrates that single molecule conductance can be qualitatively correlated with a number of molecular descriptors through a suitably trained machine learning model. The dominant features in the machine learning model include those based on the electronic wavefunction, the geometry/topology of the molecule as well as the surface chemistry of the molecule. This model can be used to identify promising molecular structures for use in single-molecule electronic circuits and can guide synthesis and experiments in the future.

  20. Video Quality Assessment and Machine Learning: Performance and Interpretability

    DEFF Research Database (Denmark)

    Søgaard, Jacob; Forchhammer, Søren; Korhonen, Jari

    2015-01-01

    In this work we compare a simple and a complex Machine Learning (ML) method used for the purpose of Video Quality Assessment (VQA). The simple ML method chosen is the Elastic Net (EN), which is a regularized linear regression model and easier to interpret. The more complex method chosen is Support...