WorldWideScience

Sample records for machine learning models

  1. Model-based machine learning.

    Science.gov (United States)

    Bishop, Christopher M

    2013-02-13

    Several decades of research in the field of machine learning have resulted in a multitude of different algorithms for solving a broad range of problems. To tackle a new application, a researcher typically tries to map their problem onto one of these existing methods, often influenced by their familiarity with specific algorithms and by the availability of corresponding software implementations. In this study, we describe an alternative methodology for applying machine learning, in which a bespoke solution is formulated for each new application. The solution is expressed through a compact modelling language, and the corresponding custom machine learning code is then generated automatically. This model-based approach offers several major advantages, including the opportunity to create highly tailored models for specific scenarios, as well as rapid prototyping and comparison of a range of alternative models. Furthermore, newcomers to the field of machine learning do not have to learn about the huge range of traditional methods, but instead can focus their attention on understanding a single modelling environment. In this study, we show how probabilistic graphical models, coupled with efficient inference algorithms, provide a very flexible foundation for model-based machine learning, and we outline a large-scale commercial application of this framework involving tens of millions of users. We also describe the concept of probabilistic programming as a powerful software environment for model-based machine learning, and we discuss a specific probabilistic programming language called Infer.NET, which has been widely used in practical applications.

  2. Student Modeling and Machine Learning

    OpenAIRE

    Sison , Raymund; Shimura , Masamichi

    1998-01-01

    After identifying essential student modeling issues and machine learning approaches, this paper examines how machine learning techniques have been used to automate the construction of student models as well as the background knowledge necessary for student modeling. In the process, the paper sheds light on the difficulty, suitability and potential of using machine learning for student modeling processes, and, to a lesser extent, the potential of using student modeling techniques in machine le...

  3. Learning About Climate and Atmospheric Models Through Machine Learning

    Science.gov (United States)

    Lucas, D. D.

    2017-12-01

    From the analysis of ensemble variability to improving simulation performance, machine learning algorithms can play a powerful role in understanding the behavior of atmospheric and climate models. To learn about model behavior, we create training and testing data sets through ensemble techniques that sample different model configurations and values of input parameters, and then use supervised machine learning to map the relationships between the inputs and outputs. Following this procedure, we have used support vector machines, random forests, gradient boosting and other methods to investigate a variety of atmospheric and climate model phenomena. We have used machine learning to predict simulation crashes, estimate the probability density function of climate sensitivity, optimize simulations of the Madden Julian oscillation, assess the impacts of weather and emissions uncertainty on atmospheric dispersion, and quantify the effects of model resolution changes on precipitation. This presentation highlights recent examples of our applications of machine learning to improve the understanding of climate and atmospheric models. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  4. Model-Agnostic Interpretability of Machine Learning

    OpenAIRE

    Ribeiro, Marco Tulio; Singh, Sameer; Guestrin, Carlos

    2016-01-01

    Understanding why machine learning models behave the way they do empowers both system designers and end-users in many ways: in model selection, feature engineering, in order to trust and act upon the predictions, and in more intuitive user interfaces. Thus, interpretability has become a vital concern in machine learning, and work in the area of interpretable models has found renewed interest. In some applications, such models are as accurate as non-interpretable ones, and thus are preferred f...

  5. On the Conditioning of Machine-Learning-Assisted Turbulence Modeling

    Science.gov (United States)

    Wu, Jinlong; Sun, Rui; Wang, Qiqi; Xiao, Heng

    2017-11-01

    Recently, several researchers have demonstrated that machine learning techniques can be used to improve the RANS modeled Reynolds stress by training on available database of high fidelity simulations. However, obtaining improved mean velocity field remains an unsolved challenge, restricting the predictive capability of current machine-learning-assisted turbulence modeling approaches. In this work we define a condition number to evaluate the model conditioning of data-driven turbulence modeling approaches, and propose a stability-oriented machine learning framework to model Reynolds stress. Two canonical flows, the flow in a square duct and the flow over periodic hills, are investigated to demonstrate the predictive capability of the proposed framework. The satisfactory prediction performance of mean velocity field for both flows demonstrates the predictive capability of the proposed framework for machine-learning-assisted turbulence modeling. With showing the capability of improving the prediction of mean flow field, the proposed stability-oriented machine learning framework bridges the gap between the existing machine-learning-assisted turbulence modeling approaches and the demand of predictive capability of turbulence models in real applications.

  6. Trustless Machine Learning Contracts; Evaluating and Exchanging Machine Learning Models on the Ethereum Blockchain

    OpenAIRE

    Kurtulmus, A. Besir; Daniel, Kenny

    2018-01-01

    Using blockchain technology, it is possible to create contracts that offer a reward in exchange for a trained machine learning model for a particular data set. This would allow users to train machine learning models for a reward in a trustless manner. The smart contract will use the blockchain to automatically validate the solution, so there would be no debate about whether the solution was correct or not. Users who submit the solutions won't have counterparty risk that they won't get paid fo...

  7. Machine learning models in breast cancer survival prediction.

    Science.gov (United States)

    Montazeri, Mitra; Montazeri, Mohadeseh; Montazeri, Mahdieh; Beigzadeh, Amin

    2016-01-01

    Breast cancer is one of the most common cancers with a high mortality rate among women. With the early diagnosis of breast cancer survival will increase from 56% to more than 86%. Therefore, an accurate and reliable system is necessary for the early diagnosis of this cancer. The proposed model is the combination of rules and different machine learning techniques. Machine learning models can help physicians to reduce the number of false decisions. They try to exploit patterns and relationships among a large number of cases and predict the outcome of a disease using historical cases stored in datasets. The objective of this study is to propose a rule-based classification method with machine learning techniques for the prediction of different types of Breast cancer survival. We use a dataset with eight attributes that include the records of 900 patients in which 876 patients (97.3%) and 24 (2.7%) patients were females and males respectively. Naive Bayes (NB), Trees Random Forest (TRF), 1-Nearest Neighbor (1NN), AdaBoost (AD), Support Vector Machine (SVM), RBF Network (RBFN), and Multilayer Perceptron (MLP) machine learning techniques with 10-cross fold technique were used with the proposed model for the prediction of breast cancer survival. The performance of machine learning techniques were evaluated with accuracy, precision, sensitivity, specificity, and area under ROC curve. Out of 900 patients, 803 patients and 97 patients were alive and dead, respectively. In this study, Trees Random Forest (TRF) technique showed better results in comparison to other techniques (NB, 1NN, AD, SVM and RBFN, MLP). The accuracy, sensitivity and the area under ROC curve of TRF are 96%, 96%, 93%, respectively. However, 1NN machine learning technique provided poor performance (accuracy 91%, sensitivity 91% and area under ROC curve 78%). This study demonstrates that Trees Random Forest model (TRF) which is a rule-based classification model was the best model with the highest level of

  8. Machine Learning

    Energy Technology Data Exchange (ETDEWEB)

    Chikkagoudar, Satish; Chatterjee, Samrat; Thomas, Dennis G.; Carroll, Thomas E.; Muller, George

    2017-04-21

    The absence of a robust and unified theory of cyber dynamics presents challenges and opportunities for using machine learning based data-driven approaches to further the understanding of the behavior of such complex systems. Analysts can also use machine learning approaches to gain operational insights. In order to be operationally beneficial, cybersecurity machine learning based models need to have the ability to: (1) represent a real-world system, (2) infer system properties, and (3) learn and adapt based on expert knowledge and observations. Probabilistic models and Probabilistic graphical models provide these necessary properties and are further explored in this chapter. Bayesian Networks and Hidden Markov Models are introduced as an example of a widely used data driven classification/modeling strategy.

  9. Machine learning modelling for predicting soil liquefaction susceptibility

    Directory of Open Access Journals (Sweden)

    P. Samui

    2011-01-01

    Full Text Available This study describes two machine learning techniques applied to predict liquefaction susceptibility of soil based on the standard penetration test (SPT data from the 1999 Chi-Chi, Taiwan earthquake. The first machine learning technique which uses Artificial Neural Network (ANN based on multi-layer perceptions (MLP that are trained with Levenberg-Marquardt backpropagation algorithm. The second machine learning technique uses the Support Vector machine (SVM that is firmly based on the theory of statistical learning theory, uses classification technique. ANN and SVM have been developed to predict liquefaction susceptibility using corrected SPT [(N160] and cyclic stress ratio (CSR. Further, an attempt has been made to simplify the models, requiring only the two parameters [(N160 and peck ground acceleration (amax/g], for the prediction of liquefaction susceptibility. The developed ANN and SVM models have also been applied to different case histories available globally. The paper also highlights the capability of the SVM over the ANN models.

  10. Machine Learning Methods for Analysis of Metabolic Data and Metabolic Pathway Modeling.

    Science.gov (United States)

    Cuperlovic-Culf, Miroslava

    2018-01-11

    Machine learning uses experimental data to optimize clustering or classification of samples or features, or to develop, augment or verify models that can be used to predict behavior or properties of systems. It is expected that machine learning will help provide actionable knowledge from a variety of big data including metabolomics data, as well as results of metabolism models. A variety of machine learning methods has been applied in bioinformatics and metabolism analyses including self-organizing maps, support vector machines, the kernel machine, Bayesian networks or fuzzy logic. To a lesser extent, machine learning has also been utilized to take advantage of the increasing availability of genomics and metabolomics data for the optimization of metabolic network models and their analysis. In this context, machine learning has aided the development of metabolic networks, the calculation of parameters for stoichiometric and kinetic models, as well as the analysis of major features in the model for the optimal application of bioreactors. Examples of this very interesting, albeit highly complex, application of machine learning for metabolism modeling will be the primary focus of this review presenting several different types of applications for model optimization, parameter determination or system analysis using models, as well as the utilization of several different types of machine learning technologies.

  11. Machine Learning Methods for Analysis of Metabolic Data and Metabolic Pathway Modeling

    Science.gov (United States)

    Cuperlovic-Culf, Miroslava

    2018-01-01

    Machine learning uses experimental data to optimize clustering or classification of samples or features, or to develop, augment or verify models that can be used to predict behavior or properties of systems. It is expected that machine learning will help provide actionable knowledge from a variety of big data including metabolomics data, as well as results of metabolism models. A variety of machine learning methods has been applied in bioinformatics and metabolism analyses including self-organizing maps, support vector machines, the kernel machine, Bayesian networks or fuzzy logic. To a lesser extent, machine learning has also been utilized to take advantage of the increasing availability of genomics and metabolomics data for the optimization of metabolic network models and their analysis. In this context, machine learning has aided the development of metabolic networks, the calculation of parameters for stoichiometric and kinetic models, as well as the analysis of major features in the model for the optimal application of bioreactors. Examples of this very interesting, albeit highly complex, application of machine learning for metabolism modeling will be the primary focus of this review presenting several different types of applications for model optimization, parameter determination or system analysis using models, as well as the utilization of several different types of machine learning technologies. PMID:29324649

  12. Statistical and Machine Learning Models to Predict Programming Performance

    OpenAIRE

    Bergin, Susan

    2006-01-01

    This thesis details a longitudinal study on factors that influence introductory programming success and on the development of machine learning models to predict incoming student performance. Although numerous studies have developed models to predict programming success, the models struggled to achieve high accuracy in predicting the likely performance of incoming students. Our approach overcomes this by providing a machine learning technique, using a set of three significant...

  13. Predicting Market Impact Costs Using Nonparametric Machine Learning Models.

    Science.gov (United States)

    Park, Saerom; Lee, Jaewook; Son, Youngdoo

    2016-01-01

    Market impact cost is the most significant portion of implicit transaction costs that can reduce the overall transaction cost, although it cannot be measured directly. In this paper, we employed the state-of-the-art nonparametric machine learning models: neural networks, Bayesian neural network, Gaussian process, and support vector regression, to predict market impact cost accurately and to provide the predictive model that is versatile in the number of variables. We collected a large amount of real single transaction data of US stock market from Bloomberg Terminal and generated three independent input variables. As a result, most nonparametric machine learning models outperformed a-state-of-the-art benchmark parametric model such as I-star model in four error measures. Although these models encounter certain difficulties in separating the permanent and temporary cost directly, nonparametric machine learning models can be good alternatives in reducing transaction costs by considerably improving in prediction performance.

  14. Attacking Machine Learning models as part of a cyber kill chain

    OpenAIRE

    Nguyen, Tam N.

    2017-01-01

    Machine learning is gaining popularity in the network security domain as many more network-enabled devices get connected, as malicious activities become stealthier, and as new technologies like Software Defined Networking emerge. Compromising machine learning model is a desirable goal. In fact, spammers have been quite successful getting through machine learning enabled spam filters for years. While previous works have been done on adversarial machine learning, none has been considered within...

  15. Predicting Market Impact Costs Using Nonparametric Machine Learning Models.

    Directory of Open Access Journals (Sweden)

    Saerom Park

    Full Text Available Market impact cost is the most significant portion of implicit transaction costs that can reduce the overall transaction cost, although it cannot be measured directly. In this paper, we employed the state-of-the-art nonparametric machine learning models: neural networks, Bayesian neural network, Gaussian process, and support vector regression, to predict market impact cost accurately and to provide the predictive model that is versatile in the number of variables. We collected a large amount of real single transaction data of US stock market from Bloomberg Terminal and generated three independent input variables. As a result, most nonparametric machine learning models outperformed a-state-of-the-art benchmark parametric model such as I-star model in four error measures. Although these models encounter certain difficulties in separating the permanent and temporary cost directly, nonparametric machine learning models can be good alternatives in reducing transaction costs by considerably improving in prediction performance.

  16. A comparison of machine learning and Bayesian modelling for molecular serotyping.

    Science.gov (United States)

    Newton, Richard; Wernisch, Lorenz

    2017-08-11

    Streptococcus pneumoniae is a human pathogen that is a major cause of infant mortality. Identifying the pneumococcal serotype is an important step in monitoring the impact of vaccines used to protect against disease. Genomic microarrays provide an effective method for molecular serotyping. Previously we developed an empirical Bayesian model for the classification of serotypes from a molecular serotyping array. With only few samples available, a model driven approach was the only option. In the meanwhile, several thousand samples have been made available to us, providing an opportunity to investigate serotype classification by machine learning methods, which could complement the Bayesian model. We compare the performance of the original Bayesian model with two machine learning algorithms: Gradient Boosting Machines and Random Forests. We present our results as an example of a generic strategy whereby a preliminary probabilistic model is complemented or replaced by a machine learning classifier once enough data are available. Despite the availability of thousands of serotyping arrays, a problem encountered when applying machine learning methods is the lack of training data containing mixtures of serotypes; due to the large number of possible combinations. Most of the available training data comprises samples with only a single serotype. To overcome the lack of training data we implemented an iterative analysis, creating artificial training data of serotype mixtures by combining raw data from single serotype arrays. With the enhanced training set the machine learning algorithms out perform the original Bayesian model. However, for serotypes currently lacking sufficient training data the best performing implementation was a combination of the results of the Bayesian Model and the Gradient Boosting Machine. As well as being an effective method for classifying biological data, machine learning can also be used as an efficient method for revealing subtle biological

  17. Mastering machine learning with scikit-learn

    CERN Document Server

    Hackeling, Gavin

    2014-01-01

    If you are a software developer who wants to learn how machine learning models work and how to apply them effectively, this book is for you. Familiarity with machine learning fundamentals and Python will be helpful, but is not essential.

  18. Modeling Geomagnetic Variations using a Machine Learning Framework

    Science.gov (United States)

    Cheung, C. M. M.; Handmer, C.; Kosar, B.; Gerules, G.; Poduval, B.; Mackintosh, G.; Munoz-Jaramillo, A.; Bobra, M.; Hernandez, T.; McGranaghan, R. M.

    2017-12-01

    We present a framework for data-driven modeling of Heliophysics time series data. The Solar Terrestrial Interaction Neural net Generator (STING) is an open source python module built on top of state-of-the-art statistical learning frameworks (traditional machine learning methods as well as deep learning). To showcase the capability of STING, we deploy it for the problem of predicting the temporal variation of geomagnetic fields. The data used includes solar wind measurements from the OMNI database and geomagnetic field data taken by magnetometers at US Geological Survey observatories. We examine the predictive capability of different machine learning techniques (recurrent neural networks, support vector machines) for a range of forecasting times (minutes to 12 hours). STING is designed to be extensible to other types of data. We show how STING can be used on large sets of data from different sensors/observatories and adapted to tackle other problems in Heliophysics.

  19. A machine learning model with human cognitive biases capable of learning from small and biased datasets.

    Science.gov (United States)

    Taniguchi, Hidetaka; Sato, Hiroshi; Shirakawa, Tomohiro

    2018-05-09

    Human learners can generalize a new concept from a small number of samples. In contrast, conventional machine learning methods require large amounts of data to address the same types of problems. Humans have cognitive biases that promote fast learning. Here, we developed a method to reduce the gap between human beings and machines in this type of inference by utilizing cognitive biases. We implemented a human cognitive model into machine learning algorithms and compared their performance with the currently most popular methods, naïve Bayes, support vector machine, neural networks, logistic regression and random forests. We focused on the task of spam classification, which has been studied for a long time in the field of machine learning and often requires a large amount of data to obtain high accuracy. Our models achieved superior performance with small and biased samples in comparison with other representative machine learning methods.

  20. Prototype-based models in machine learning

    NARCIS (Netherlands)

    Biehl, Michael; Hammer, Barbara; Villmann, Thomas

    2016-01-01

    An overview is given of prototype-based models in machine learning. In this framework, observations, i.e., data, are stored in terms of typical representatives. Together with a suitable measure of similarity, the systems can be employed in the context of unsupervised and supervised analysis of

  1. Quasilinear Extreme Learning Machine Model Based Internal Model Control for Nonlinear Process

    Directory of Open Access Journals (Sweden)

    Dazi Li

    2015-01-01

    Full Text Available A new strategy for internal model control (IMC is proposed using a regression algorithm of quasilinear model with extreme learning machine (QL-ELM. Aimed at the chemical process with nonlinearity, the learning process of the internal model and inverse model is derived. The proposed QL-ELM is constructed as a linear ARX model with a complicated nonlinear coefficient. It shows some good approximation ability and fast convergence. The complicated coefficients are separated into two parts. The linear part is determined by recursive least square (RLS, while the nonlinear part is identified through extreme learning machine. The parameters of linear part and the output weights of ELM are estimated iteratively. The proposed internal model control is applied to CSTR process. The effectiveness and accuracy of the proposed method are extensively verified through numerical results.

  2. Comparing and Validating Machine Learning Models for Mycobacterium tuberculosis Drug Discovery.

    Science.gov (United States)

    Lane, Thomas; Russo, Daniel P; Zorn, Kimberley M; Clark, Alex M; Korotcov, Alexandru; Tkachenko, Valery; Reynolds, Robert C; Perryman, Alexander L; Freundlich, Joel S; Ekins, Sean

    2018-04-26

    Tuberculosis is a global health dilemma. In 2016, the WHO reported 10.4 million incidences and 1.7 million deaths. The need to develop new treatments for those infected with Mycobacterium tuberculosis ( Mtb) has led to many large-scale phenotypic screens and many thousands of new active compounds identified in vitro. However, with limited funding, efforts to discover new active molecules against Mtb needs to be more efficient. Several computational machine learning approaches have been shown to have good enrichment and hit rates. We have curated small molecule Mtb data and developed new models with a total of 18,886 molecules with activity cutoffs of 10 μM, 1 μM, and 100 nM. These data sets were used to evaluate different machine learning methods (including deep learning) and metrics and to generate predictions for additional molecules published in 2017. One Mtb model, a combined in vitro and in vivo data Bayesian model at a 100 nM activity yielded the following metrics for 5-fold cross validation: accuracy = 0.88, precision = 0.22, recall = 0.91, specificity = 0.88, kappa = 0.31, and MCC = 0.41. We have also curated an evaluation set ( n = 153 compounds) published in 2017, and when used to test our model, it showed the comparable statistics (accuracy = 0.83, precision = 0.27, recall = 1.00, specificity = 0.81, kappa = 0.36, and MCC = 0.47). We have also compared these models with additional machine learning algorithms showing Bayesian machine learning models constructed with literature Mtb data generated by different laboratories generally were equivalent to or outperformed deep neural networks with external test sets. Finally, we have also compared our training and test sets to show they were suitably diverse and different in order to represent useful evaluation sets. Such Mtb machine learning models could help prioritize compounds for testing in vitro and in vivo.

  3. An introduction to machine learning with Scikit-Learn

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    This tutorial gives an introduction to the scientific ecosystem for data analysis and machine learning in Python. After a short introduction of machine learning concepts, we will demonstrate on High Energy Physics data how a basic supervised learning analysis can be carried out using the Scikit-Learn library. Topics covered include data loading facilities and data representation, supervised learning algorithms, pipelines, model selection and evaluation, and model introspection.

  4. Prototype-based models in machine learning.

    Science.gov (United States)

    Biehl, Michael; Hammer, Barbara; Villmann, Thomas

    2016-01-01

    An overview is given of prototype-based models in machine learning. In this framework, observations, i.e., data, are stored in terms of typical representatives. Together with a suitable measure of similarity, the systems can be employed in the context of unsupervised and supervised analysis of potentially high-dimensional, complex datasets. We discuss basic schemes of competitive vector quantization as well as the so-called neural gas approach and Kohonen's topology-preserving self-organizing map. Supervised learning in prototype systems is exemplified in terms of learning vector quantization. Most frequently, the familiar Euclidean distance serves as a dissimilarity measure. We present extensions of the framework to nonstandard measures and give an introduction to the use of adaptive distances in relevance learning. © 2016 Wiley Periodicals, Inc.

  5. Runtime Optimizations for Tree-Based Machine Learning Models

    NARCIS (Netherlands)

    N. Asadi; J.J.P. Lin (Jimmy); A.P. de Vries (Arjen)

    2014-01-01

    htmlabstractTree-based models have proven to be an effective solution for web ranking as well as other machine learning problems in diverse domains. This paper focuses on optimizing the runtime performance of applying such models to make predictions, specifically using gradient-boosted regression

  6. Machine Learning Algorithms Outperform Conventional Regression Models in Predicting Development of Hepatocellular Carcinoma

    Science.gov (United States)

    Singal, Amit G.; Mukherjee, Ashin; Elmunzer, B. Joseph; Higgins, Peter DR; Lok, Anna S.; Zhu, Ji; Marrero, Jorge A; Waljee, Akbar K

    2015-01-01

    Background Predictive models for hepatocellular carcinoma (HCC) have been limited by modest accuracy and lack of validation. Machine learning algorithms offer a novel methodology, which may improve HCC risk prognostication among patients with cirrhosis. Our study's aim was to develop and compare predictive models for HCC development among cirrhotic patients, using conventional regression analysis and machine learning algorithms. Methods We enrolled 442 patients with Child A or B cirrhosis at the University of Michigan between January 2004 and September 2006 (UM cohort) and prospectively followed them until HCC development, liver transplantation, death, or study termination. Regression analysis and machine learning algorithms were used to construct predictive models for HCC development, which were tested on an independent validation cohort from the Hepatitis C Antiviral Long-term Treatment against Cirrhosis (HALT-C) Trial. Both models were also compared to the previously published HALT-C model. Discrimination was assessed using receiver operating characteristic curve analysis and diagnostic accuracy was assessed with net reclassification improvement and integrated discrimination improvement statistics. Results After a median follow-up of 3.5 years, 41 patients developed HCC. The UM regression model had a c-statistic of 0.61 (95%CI 0.56-0.67), whereas the machine learning algorithm had a c-statistic of 0.64 (95%CI 0.60–0.69) in the validation cohort. The machine learning algorithm had significantly better diagnostic accuracy as assessed by net reclassification improvement (pmachine learning algorithm (p=0.047). Conclusion Machine learning algorithms improve the accuracy of risk stratifying patients with cirrhosis and can be used to accurately identify patients at high-risk for developing HCC. PMID:24169273

  7. Book review: A first course in Machine Learning

    DEFF Research Database (Denmark)

    Ortiz-Arroyo, Daniel

    2016-01-01

    "The new edition of A First Course in Machine Learning by Rogers and Girolami is an excellent introduction to the use of statistical methods in machine learning. The book introduces concepts such as mathematical modeling, inference, and prediction, providing ‘just in time’ the essential background...... to change models and parameter values to make [it] easier to understand and apply these models in real applications. The authors [also] introduce more advanced, state-of-the-art machine learning methods, such as Gaussian process models and advanced mixture models, which are used across machine learning....... This makes the book interesting not only to students with little or no background in machine learning but also to more advanced graduate students interested in statistical approaches to machine learning." —Daniel Ortiz-Arroyo, Associate Professor, Aalborg University Esbjerg, Denmark...

  8. Progressive sampling-based Bayesian optimization for efficient and automatic machine learning model selection.

    Science.gov (United States)

    Zeng, Xueqiang; Luo, Gang

    2017-12-01

    Machine learning is broadly used for clinical data analysis. Before training a model, a machine learning algorithm must be selected. Also, the values of one or more model parameters termed hyper-parameters must be set. Selecting algorithms and hyper-parameter values requires advanced machine learning knowledge and many labor-intensive manual iterations. To lower the bar to machine learning, miscellaneous automatic selection methods for algorithms and/or hyper-parameter values have been proposed. Existing automatic selection methods are inefficient on large data sets. This poses a challenge for using machine learning in the clinical big data era. To address the challenge, this paper presents progressive sampling-based Bayesian optimization, an efficient and automatic selection method for both algorithms and hyper-parameter values. We report an implementation of the method. We show that compared to a state of the art automatic selection method, our method can significantly reduce search time, classification error rate, and standard deviation of error rate due to randomization. This is major progress towards enabling fast turnaround in identifying high-quality solutions required by many machine learning-based clinical data analysis tasks.

  9. Machine learning and medical imaging

    CERN Document Server

    Shen, Dinggang; Sabuncu, Mert

    2016-01-01

    Machine Learning and Medical Imaging presents state-of- the-art machine learning methods in medical image analysis. It first summarizes cutting-edge machine learning algorithms in medical imaging, including not only classical probabilistic modeling and learning methods, but also recent breakthroughs in deep learning, sparse representation/coding, and big data hashing. In the second part leading research groups around the world present a wide spectrum of machine learning methods with application to different medical imaging modalities, clinical domains, and organs. The biomedical imaging modalities include ultrasound, magnetic resonance imaging (MRI), computed tomography (CT), histology, and microscopy images. The targeted organs span the lung, liver, brain, and prostate, while there is also a treatment of examining genetic associations. Machine Learning and Medical Imaging is an ideal reference for medical imaging researchers, industry scientists and engineers, advanced undergraduate and graduate students, a...

  10. Diagnostic Machine Learning Models for Acute Abdominal Pain: Towards an e-Learning Tool for Medical Students.

    Science.gov (United States)

    Khumrin, Piyapong; Ryan, Anna; Judd, Terry; Verspoor, Karin

    2017-01-01

    Computer-aided learning systems (e-learning systems) can help medical students gain more experience with diagnostic reasoning and decision making. Within this context, providing feedback that matches students' needs (i.e. personalised feedback) is both critical and challenging. In this paper, we describe the development of a machine learning model to support medical students' diagnostic decisions. Machine learning models were trained on 208 clinical cases presenting with abdominal pain, to predict five diagnoses. We assessed which of these models are likely to be most effective for use in an e-learning tool that allows students to interact with a virtual patient. The broader goal is to utilise these models to generate personalised feedback based on the specific patient information requested by students and their active diagnostic hypotheses.

  11. Soft computing in machine learning

    CERN Document Server

    Park, Jooyoung; Inoue, Atsushi

    2014-01-01

    As users or consumers are now demanding smarter devices, intelligent systems are revolutionizing by utilizing machine learning. Machine learning as part of intelligent systems is already one of the most critical components in everyday tools ranging from search engines and credit card fraud detection to stock market analysis. You can train machines to perform some things, so that they can automatically detect, diagnose, and solve a variety of problems. The intelligent systems have made rapid progress in developing the state of the art in machine learning based on smart and deep perception. Using machine learning, the intelligent systems make widely applications in automated speech recognition, natural language processing, medical diagnosis, bioinformatics, and robot locomotion. This book aims at introducing how to treat a substantial amount of data, to teach machines and to improve decision making models. And this book specializes in the developments of advanced intelligent systems through machine learning. It...

  12. Probabilistic machine learning and artificial intelligence.

    Science.gov (United States)

    Ghahramani, Zoubin

    2015-05-28

    How can a machine learn from experience? Probabilistic modelling provides a framework for understanding what learning is, and has therefore emerged as one of the principal theoretical and practical approaches for designing machines that learn from data acquired through experience. The probabilistic framework, which describes how to represent and manipulate uncertainty about models and predictions, has a central role in scientific data analysis, machine learning, robotics, cognitive science and artificial intelligence. This Review provides an introduction to this framework, and discusses some of the state-of-the-art advances in the field, namely, probabilistic programming, Bayesian optimization, data compression and automatic model discovery.

  13. Probabilistic machine learning and artificial intelligence

    Science.gov (United States)

    Ghahramani, Zoubin

    2015-05-01

    How can a machine learn from experience? Probabilistic modelling provides a framework for understanding what learning is, and has therefore emerged as one of the principal theoretical and practical approaches for designing machines that learn from data acquired through experience. The probabilistic framework, which describes how to represent and manipulate uncertainty about models and predictions, has a central role in scientific data analysis, machine learning, robotics, cognitive science and artificial intelligence. This Review provides an introduction to this framework, and discusses some of the state-of-the-art advances in the field, namely, probabilistic programming, Bayesian optimization, data compression and automatic model discovery.

  14. Probabilistic models and machine learning in structural bioinformatics

    DEFF Research Database (Denmark)

    Hamelryck, Thomas

    2009-01-01

    . Recently, probabilistic models and machine learning methods based on Bayesian principles are providing efficient and rigorous solutions to challenging problems that were long regarded as intractable. In this review, I will highlight some important recent developments in the prediction, analysis...

  15. Guidelines for Developing and Reporting Machine Learning Predictive Models in Biomedical Research: A Multidisciplinary View.

    Science.gov (United States)

    Luo, Wei; Phung, Dinh; Tran, Truyen; Gupta, Sunil; Rana, Santu; Karmakar, Chandan; Shilton, Alistair; Yearwood, John; Dimitrova, Nevenka; Ho, Tu Bao; Venkatesh, Svetha; Berk, Michael

    2016-12-16

    As more and more researchers are turning to big data for new opportunities of biomedical discoveries, machine learning models, as the backbone of big data analysis, are mentioned more often in biomedical journals. However, owing to the inherent complexity of machine learning methods, they are prone to misuse. Because of the flexibility in specifying machine learning models, the results are often insufficiently reported in research articles, hindering reliable assessment of model validity and consistent interpretation of model outputs. To attain a set of guidelines on the use of machine learning predictive models within clinical settings to make sure the models are correctly applied and sufficiently reported so that true discoveries can be distinguished from random coincidence. A multidisciplinary panel of machine learning experts, clinicians, and traditional statisticians were interviewed, using an iterative process in accordance with the Delphi method. The process produced a set of guidelines that consists of (1) a list of reporting items to be included in a research article and (2) a set of practical sequential steps for developing predictive models. A set of guidelines was generated to enable correct application of machine learning models and consistent reporting of model specifications and results in biomedical research. We believe that such guidelines will accelerate the adoption of big data analysis, particularly with machine learning methods, in the biomedical research community. ©Wei Luo, Dinh Phung, Truyen Tran, Sunil Gupta, Santu Rana, Chandan Karmakar, Alistair Shilton, John Yearwood, Nevenka Dimitrova, Tu Bao Ho, Svetha Venkatesh, Michael Berk. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 16.12.2016.

  16. Application of Machine Learning Techniques in Aquaculture

    OpenAIRE

    Rahman, Akhlaqur; Tasnim, Sumaira

    2014-01-01

    In this paper we present applications of different machine learning algorithms in aquaculture. Machine learning algorithms learn models from historical data. In aquaculture historical data are obtained from farm practices, yields, and environmental data sources. Associations between these different variables can be obtained by applying machine learning algorithms to historical data. In this paper we present applications of different machine learning algorithms in aquaculture applications.

  17. Machine-Learning Research

    OpenAIRE

    Dietterich, Thomas G.

    1997-01-01

    Machine-learning research has been making great progress in many directions. This article summarizes four of these directions and discusses some current open problems. The four directions are (1) the improvement of classification accuracy by learning ensembles of classifiers, (2) methods for scaling up supervised learning algorithms, (3) reinforcement learning, and (4) the learning of complex stochastic models.

  18. TF.Learn: TensorFlow's High-level Module for Distributed Machine Learning

    OpenAIRE

    Tang, Yuan

    2016-01-01

    TF.Learn is a high-level Python module for distributed machine learning inside TensorFlow. It provides an easy-to-use Scikit-learn style interface to simplify the process of creating, configuring, training, evaluating, and experimenting a machine learning model. TF.Learn integrates a wide range of state-of-art machine learning algorithms built on top of TensorFlow's low level APIs for small to large-scale supervised and unsupervised problems. This module focuses on bringing machine learning t...

  19. From machine learning to deep learning: progress in machine intelligence for rational drug discovery.

    Science.gov (United States)

    Zhang, Lu; Tan, Jianjun; Han, Dan; Zhu, Hao

    2017-11-01

    Machine intelligence, which is normally presented as artificial intelligence, refers to the intelligence exhibited by computers. In the history of rational drug discovery, various machine intelligence approaches have been applied to guide traditional experiments, which are expensive and time-consuming. Over the past several decades, machine-learning tools, such as quantitative structure-activity relationship (QSAR) modeling, were developed that can identify potential biological active molecules from millions of candidate compounds quickly and cheaply. However, when drug discovery moved into the era of 'big' data, machine learning approaches evolved into deep learning approaches, which are a more powerful and efficient way to deal with the massive amounts of data generated from modern drug discovery approaches. Here, we summarize the history of machine learning and provide insight into recently developed deep learning approaches and their applications in rational drug discovery. We suggest that this evolution of machine intelligence now provides a guide for early-stage drug design and discovery in the current big data era. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Automating Construction of Machine Learning Models With Clinical Big Data: Proposal Rationale and Methods.

    Science.gov (United States)

    Luo, Gang; Stone, Bryan L; Johnson, Michael D; Tarczy-Hornoch, Peter; Wilcox, Adam B; Mooney, Sean D; Sheng, Xiaoming; Haug, Peter J; Nkoy, Flory L

    2017-08-29

    To improve health outcomes and cut health care costs, we often need to conduct prediction/classification using large clinical datasets (aka, clinical big data), for example, to identify high-risk patients for preventive interventions. Machine learning has been proposed as a key technology for doing this. Machine learning has won most data science competitions and could support many clinical activities, yet only 15% of hospitals use it for even limited purposes. Despite familiarity with data, health care researchers often lack machine learning expertise to directly use clinical big data, creating a hurdle in realizing value from their data. Health care researchers can work with data scientists with deep machine learning knowledge, but it takes time and effort for both parties to communicate effectively. Facing a shortage in the United States of data scientists and hiring competition from companies with deep pockets, health care systems have difficulty recruiting data scientists. Building and generalizing a machine learning model often requires hundreds to thousands of manual iterations by data scientists to select the following: (1) hyper-parameter values and complex algorithms that greatly affect model accuracy and (2) operators and periods for temporally aggregating clinical attributes (eg, whether a patient's weight kept rising in the past year). This process becomes infeasible with limited budgets. This study's goal is to enable health care researchers to directly use clinical big data, make machine learning feasible with limited budgets and data scientist resources, and realize value from data. This study will allow us to achieve the following: (1) finish developing the new software, Automated Machine Learning (Auto-ML), to automate model selection for machine learning with clinical big data and validate Auto-ML on seven benchmark modeling problems of clinical importance; (2) apply Auto-ML and novel methodology to two new modeling problems crucial for care

  1. Machine Learning

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Machine learning, which builds on ideas in computer science, statistics, and optimization, focuses on developing algorithms to identify patterns and regularities in data, and using these learned patterns to make predictions on new observations. Boosted by its industrial and commercial applications, the field of machine learning is quickly evolving and expanding. Recent advances have seen great success in the realms of computer vision, natural language processing, and broadly in data science. Many of these techniques have already been applied in particle physics, for instance for particle identification, detector monitoring, and the optimization of computer resources. Modern machine learning approaches, such as deep learning, are only just beginning to be applied to the analysis of High Energy Physics data to approach more and more complex problems. These classes will review the framework behind machine learning and discuss recent developments in the field.

  2. Machine Learning an algorithmic perspective

    CERN Document Server

    Marsland, Stephen

    2009-01-01

    Traditional books on machine learning can be divided into two groups - those aimed at advanced undergraduates or early postgraduates with reasonable mathematical knowledge and those that are primers on how to code algorithms. The field is ready for a text that not only demonstrates how to use the algorithms that make up machine learning methods, but also provides the background needed to understand how and why these algorithms work. Machine Learning: An Algorithmic Perspective is that text.Theory Backed up by Practical ExamplesThe book covers neural networks, graphical models, reinforcement le

  3. MLBCD: a machine learning tool for big clinical data.

    Science.gov (United States)

    Luo, Gang

    2015-01-01

    Predictive modeling is fundamental for extracting value from large clinical data sets, or "big clinical data," advancing clinical research, and improving healthcare. Machine learning is a powerful approach to predictive modeling. Two factors make machine learning challenging for healthcare researchers. First, before training a machine learning model, the values of one or more model parameters called hyper-parameters must typically be specified. Due to their inexperience with machine learning, it is hard for healthcare researchers to choose an appropriate algorithm and hyper-parameter values. Second, many clinical data are stored in a special format. These data must be iteratively transformed into the relational table format before conducting predictive modeling. This transformation is time-consuming and requires computing expertise. This paper presents our vision for and design of MLBCD (Machine Learning for Big Clinical Data), a new software system aiming to address these challenges and facilitate building machine learning predictive models using big clinical data. The paper describes MLBCD's design in detail. By making machine learning accessible to healthcare researchers, MLBCD will open the use of big clinical data and increase the ability to foster biomedical discovery and improve care.

  4. Hybrid forecasting of chaotic processes: Using machine learning in conjunction with a knowledge-based model

    Science.gov (United States)

    Pathak, Jaideep; Wikner, Alexander; Fussell, Rebeckah; Chandra, Sarthak; Hunt, Brian R.; Girvan, Michelle; Ott, Edward

    2018-04-01

    A model-based approach to forecasting chaotic dynamical systems utilizes knowledge of the mechanistic processes governing the dynamics to build an approximate mathematical model of the system. In contrast, machine learning techniques have demonstrated promising results for forecasting chaotic systems purely from past time series measurements of system state variables (training data), without prior knowledge of the system dynamics. The motivation for this paper is the potential of machine learning for filling in the gaps in our underlying mechanistic knowledge that cause widely-used knowledge-based models to be inaccurate. Thus, we here propose a general method that leverages the advantages of these two approaches by combining a knowledge-based model and a machine learning technique to build a hybrid forecasting scheme. Potential applications for such an approach are numerous (e.g., improving weather forecasting). We demonstrate and test the utility of this approach using a particular illustrative version of a machine learning known as reservoir computing, and we apply the resulting hybrid forecaster to a low-dimensional chaotic system, as well as to a high-dimensional spatiotemporal chaotic system. These tests yield extremely promising results in that our hybrid technique is able to accurately predict for a much longer period of time than either its machine-learning component or its model-based component alone.

  5. Quantum machine learning.

    Science.gov (United States)

    Biamonte, Jacob; Wittek, Peter; Pancotti, Nicola; Rebentrost, Patrick; Wiebe, Nathan; Lloyd, Seth

    2017-09-13

    Fuelled by increasing computer power and algorithmic advances, machine learning techniques have become powerful tools for finding patterns in data. Quantum systems produce atypical patterns that classical systems are thought not to produce efficiently, so it is reasonable to postulate that quantum computers may outperform classical computers on machine learning tasks. The field of quantum machine learning explores how to devise and implement quantum software that could enable machine learning that is faster than that of classical computers. Recent work has produced quantum algorithms that could act as the building blocks of machine learning programs, but the hardware and software challenges are still considerable.

  6. Gaussian processes for machine learning.

    Science.gov (United States)

    Seeger, Matthias

    2004-04-01

    Gaussian processes (GPs) are natural generalisations of multivariate Gaussian random variables to infinite (countably or continuous) index sets. GPs have been applied in a large number of fields to a diverse range of ends, and very many deep theoretical analyses of various properties are available. This paper gives an introduction to Gaussian processes on a fairly elementary level with special emphasis on characteristics relevant in machine learning. It draws explicit connections to branches such as spline smoothing models and support vector machines in which similar ideas have been investigated. Gaussian process models are routinely used to solve hard machine learning problems. They are attractive because of their flexible non-parametric nature and computational simplicity. Treated within a Bayesian framework, very powerful statistical methods can be implemented which offer valid estimates of uncertainties in our predictions and generic model selection procedures cast as nonlinear optimization problems. Their main drawback of heavy computational scaling has recently been alleviated by the introduction of generic sparse approximations.13,78,31 The mathematical literature on GPs is large and often uses deep concepts which are not required to fully understand most machine learning applications. In this tutorial paper, we aim to present characteristics of GPs relevant to machine learning and to show up precise connections to other "kernel machines" popular in the community. Our focus is on a simple presentation, but references to more detailed sources are provided.

  7. Game-powered machine learning.

    Science.gov (United States)

    Barrington, Luke; Turnbull, Douglas; Lanckriet, Gert

    2012-04-24

    Searching for relevant content in a massive amount of multimedia information is facilitated by accurately annotating each image, video, or song with a large number of relevant semantic keywords, or tags. We introduce game-powered machine learning, an integrated approach to annotating multimedia content that combines the effectiveness of human computation, through online games, with the scalability of machine learning. We investigate this framework for labeling music. First, a socially-oriented music annotation game called Herd It collects reliable music annotations based on the "wisdom of the crowds." Second, these annotated examples are used to train a supervised machine learning system. Third, the machine learning system actively directs the annotation games to collect new data that will most benefit future model iterations. Once trained, the system can automatically annotate a corpus of music much larger than what could be labeled using human computation alone. Automatically annotated songs can be retrieved based on their semantic relevance to text-based queries (e.g., "funky jazz with saxophone," "spooky electronica," etc.). Based on the results presented in this paper, we find that actively coupling annotation games with machine learning provides a reliable and scalable approach to making searchable massive amounts of multimedia data.

  8. A Data Flow Model to Solve the Data Distribution Changing Problem in Machine Learning

    Directory of Open Access Journals (Sweden)

    Shang Bo-Wen

    2016-01-01

    Full Text Available Continuous prediction is widely used in broad communities spreading from social to business and the machine learning method is an important method in this problem.When we use the machine learning method to predict a problem. We use the data in the training set to fit the model and estimate the distribution of data in the test set.But when we use machine learning to do the continuous prediction we get new data as time goes by and use the data to predict the future data, there may be a problem. As the size of the data set increasing over time, the distribution changes and there will be many garbage data in the training set.We should remove the garbage data as it reduces the accuracy of the prediction. The main contribution of this article is using the new data to detect the timeliness of historical data and remove the garbage data.We build a data flow model to describe how the data flow among the test set, training set, validation set and the garbage set and improve the accuracy of prediction. As the change of the data set, the best machine learning model will change.We design a hybrid voting algorithm to fit the data set better that uses seven machine learning models predicting the same problem and uses the validation set putting different weights on the learning models to give better model more weights. Experimental results show that, when the distribution of the data set changes over time, our time flow model can remove most of the garbage data and get a better result than the traditional method that adds all the data to the data set; our hybrid voting algorithm has a better prediction result than the average accuracy of other predict models

  9. Assessing Implicit Knowledge in BIM Models with Machine Learning

    DEFF Research Database (Denmark)

    Krijnen, Thomas; Tamke, Martin

    2015-01-01

    architects and engineers are able to deduce non-explicitly explicitly stated information, which is often the core of the transported architectural information. This paper investigates how machine learning approaches allow a computational system to deduce implicit knowledge from a set of BIM models....

  10. A comparative study of machine learning models for ethnicity classification

    Science.gov (United States)

    Trivedi, Advait; Bessie Amali, D. Geraldine

    2017-11-01

    This paper endeavours to adopt a machine learning approach to solve the problem of ethnicity recognition. Ethnicity identification is an important vision problem with its use cases being extended to various domains. Despite the multitude of complexity involved, ethnicity identification comes naturally to humans. This meta information can be leveraged to make several decisions, be it in target marketing or security. With the recent development of intelligent systems a sub module to efficiently capture ethnicity would be useful in several use cases. Several attempts to identify an ideal learning model to represent a multi-ethnic dataset have been recorded. A comparative study of classifiers such as support vector machines, logistic regression has been documented. Experimental results indicate that the logical classifier provides a much accurate classification than the support vector machine.

  11. Modeling Music Emotion Judgments Using Machine Learning Methods

    Directory of Open Access Journals (Sweden)

    Naresh N. Vempala

    2018-01-01

    Full Text Available Emotion judgments and five channels of physiological data were obtained from 60 participants listening to 60 music excerpts. Various machine learning (ML methods were used to model the emotion judgments inclusive of neural networks, linear regression, and random forests. Input for models of perceived emotion consisted of audio features extracted from the music recordings. Input for models of felt emotion consisted of physiological features extracted from the physiological recordings. Models were trained and interpreted with consideration of the classic debate in music emotion between cognitivists and emotivists. Our models supported a hybrid position wherein emotion judgments were influenced by a combination of perceived and felt emotions. In comparing the different ML approaches that were used for modeling, we conclude that neural networks were optimal, yielding models that were flexible as well as interpretable. Inspection of a committee machine, encompassing an ensemble of networks, revealed that arousal judgments were predominantly influenced by felt emotion, whereas valence judgments were predominantly influenced by perceived emotion.

  12. Building Customer Churn Prediction Models in Fitness Industry with Machine Learning Methods

    OpenAIRE

    Shan, Min

    2017-01-01

    With the rapid growth of digital systems, churn management has become a major focus within customer relationship management in many industries. Ample research has been conducted for churn prediction in different industries with various machine learning methods. This thesis aims to combine feature selection and supervised machine learning methods for defining models of churn prediction and apply them on fitness industry. Forward selection is chosen as feature selection methods. Support Vector ...

  13. Sensitivity analysis of machine-learning models of hydrologic time series

    Science.gov (United States)

    O'Reilly, A. M.

    2017-12-01

    Sensitivity analysis traditionally has been applied to assessing model response to perturbations in model parameters, where the parameters are those model input variables adjusted during calibration. Unlike physics-based models where parameters represent real phenomena, the equivalent of parameters for machine-learning models are simply mathematical "knobs" that are automatically adjusted during training/testing/verification procedures. Thus the challenge of extracting knowledge of hydrologic system functionality from machine-learning models lies in their very nature, leading to the label "black box." Sensitivity analysis of the forcing-response behavior of machine-learning models, however, can provide understanding of how the physical phenomena represented by model inputs affect the physical phenomena represented by model outputs.As part of a previous study, hybrid spectral-decomposition artificial neural network (ANN) models were developed to simulate the observed behavior of hydrologic response contained in multidecadal datasets of lake water level, groundwater level, and spring flow. Model inputs used moving window averages (MWA) to represent various frequencies and frequency-band components of time series of rainfall and groundwater use. Using these forcing time series, the MWA-ANN models were trained to predict time series of lake water level, groundwater level, and spring flow at 51 sites in central Florida, USA. A time series of sensitivities for each MWA-ANN model was produced by perturbing forcing time-series and computing the change in response time-series per unit change in perturbation. Variations in forcing-response sensitivities are evident between types (lake, groundwater level, or spring), spatially (among sites of the same type), and temporally. Two generally common characteristics among sites are more uniform sensitivities to rainfall over time and notable increases in sensitivities to groundwater usage during significant drought periods.

  14. Machine learning for evolution strategies

    CERN Document Server

    Kramer, Oliver

    2016-01-01

    This book introduces numerous algorithmic hybridizations between both worlds that show how machine learning can improve and support evolution strategies. The set of methods comprises covariance matrix estimation, meta-modeling of fitness and constraint functions, dimensionality reduction for search and visualization of high-dimensional optimization processes, and clustering-based niching. After giving an introduction to evolution strategies and machine learning, the book builds the bridge between both worlds with an algorithmic and experimental perspective. Experiments mostly employ a (1+1)-ES and are implemented in Python using the machine learning library scikit-learn. The examples are conducted on typical benchmark problems illustrating algorithmic concepts and their experimental behavior. The book closes with a discussion of related lines of research.

  15. Integrating Machine Learning into a Crowdsourced Model for Earthquake-Induced Damage Assessment

    Science.gov (United States)

    Rebbapragada, Umaa; Oommen, Thomas

    2011-01-01

    On January 12th, 2010, a catastrophic 7.0M earthquake devastated the country of Haiti. In the aftermath of an earthquake, it is important to rapidly assess damaged areas in order to mobilize the appropriate resources. The Haiti damage assessment effort introduced a promising model that uses crowdsourcing to map damaged areas in freely available remotely-sensed data. This paper proposes the application of machine learning methods to improve this model. Specifically, we apply work on learning from multiple, imperfect experts to the assessment of volunteer reliability, and propose the use of image segmentation to automate the detection of damaged areas. We wrap both tasks in an active learning framework in order to shift volunteer effort from mapping a full catalog of images to the generation of high-quality training data. We hypothesize that the integration of machine learning into this model improves its reliability, maintains the speed of damage assessment, and allows the model to scale to higher data volumes.

  16. Machine learning of molecular properties: Locality and active learning

    Science.gov (United States)

    Gubaev, Konstantin; Podryabinkin, Evgeny V.; Shapeev, Alexander V.

    2018-06-01

    In recent years, the machine learning techniques have shown great potent1ial in various problems from a multitude of disciplines, including materials design and drug discovery. The high computational speed on the one hand and the accuracy comparable to that of density functional theory on another hand make machine learning algorithms efficient for high-throughput screening through chemical and configurational space. However, the machine learning algorithms available in the literature require large training datasets to reach the chemical accuracy and also show large errors for the so-called outliers—the out-of-sample molecules, not well-represented in the training set. In the present paper, we propose a new machine learning algorithm for predicting molecular properties that addresses these two issues: it is based on a local model of interatomic interactions providing high accuracy when trained on relatively small training sets and an active learning algorithm of optimally choosing the training set that significantly reduces the errors for the outliers. We compare our model to the other state-of-the-art algorithms from the literature on the widely used benchmark tests.

  17. Machine learning enhanced optical distance sensor

    Science.gov (United States)

    Amin, M. Junaid; Riza, N. A.

    2018-01-01

    Presented for the first time is a machine learning enhanced optical distance sensor. The distance sensor is based on our previously demonstrated distance measurement technique that uses an Electronically Controlled Variable Focus Lens (ECVFL) with a laser source to illuminate a target plane with a controlled optical beam spot. This spot with varying spot sizes is viewed by an off-axis camera and the spot size data is processed to compute the distance. In particular, proposed and demonstrated in this paper is the use of a regularized polynomial regression based supervised machine learning algorithm to enhance the accuracy of the operational sensor. The algorithm uses the acquired features and corresponding labels that are the actual target distance values to train a machine learning model. The optimized training model is trained over a 1000 mm (or 1 m) experimental target distance range. Using the machine learning algorithm produces a training set and testing set distance measurement errors of learning. Applications for the proposed sensor include industrial scenario distance sensing where target material specific training models can be generated to realize low <1% measurement error distance measurements.

  18. Comparing statistical and machine learning classifiers: alternatives for predictive modeling in human factors research.

    Science.gov (United States)

    Carnahan, Brian; Meyer, Gérard; Kuntz, Lois-Ann

    2003-01-01

    Multivariate classification models play an increasingly important role in human factors research. In the past, these models have been based primarily on discriminant analysis and logistic regression. Models developed from machine learning research offer the human factors professional a viable alternative to these traditional statistical classification methods. To illustrate this point, two machine learning approaches--genetic programming and decision tree induction--were used to construct classification models designed to predict whether or not a student truck driver would pass his or her commercial driver license (CDL) examination. The models were developed and validated using the curriculum scores and CDL exam performances of 37 student truck drivers who had completed a 320-hr driver training course. Results indicated that the machine learning classification models were superior to discriminant analysis and logistic regression in terms of predictive accuracy. Actual or potential applications of this research include the creation of models that more accurately predict human performance outcomes.

  19. Statistical and Machine-Learning Data Mining Techniques for Better Predictive Modeling and Analysis of Big Data

    CERN Document Server

    Ratner, Bruce

    2011-01-01

    The second edition of a bestseller, Statistical and Machine-Learning Data Mining: Techniques for Better Predictive Modeling and Analysis of Big Data is still the only book, to date, to distinguish between statistical data mining and machine-learning data mining. The first edition, titled Statistical Modeling and Analysis for Database Marketing: Effective Techniques for Mining Big Data, contained 17 chapters of innovative and practical statistical data mining techniques. In this second edition, renamed to reflect the increased coverage of machine-learning data mining techniques, the author has

  20. Machine Learning for Neuroimaging with Scikit-Learn

    Directory of Open Access Journals (Sweden)

    Alexandre eAbraham

    2014-02-01

    Full Text Available Statistical machine learning methods are increasingly used for neuroimaging data analysis. Their main virtue is their ability to model high-dimensional datasets, e.g. multivariate analysis of activation images or resting-state time series. Supervised learning is typically used in decoding or encoding settings to relate brain images to behavioral or clinical observations, while unsupervised learning can uncover hidden structures in sets of images (e.g. resting state functional MRI or find sub-populations in large cohorts. By considering different functional neuroimaging applications, we illustrate how scikit-learn, a Python machine learning library, can be used to perform some key analysis steps. Scikit-learn contains a very large set of statistical learning algorithms, both supervised and unsupervised, and its application to neuroimaging data provides a versatile tool to study the brain.

  1. Machine learning for neuroimaging with scikit-learn.

    Science.gov (United States)

    Abraham, Alexandre; Pedregosa, Fabian; Eickenberg, Michael; Gervais, Philippe; Mueller, Andreas; Kossaifi, Jean; Gramfort, Alexandre; Thirion, Bertrand; Varoquaux, Gaël

    2014-01-01

    Statistical machine learning methods are increasingly used for neuroimaging data analysis. Their main virtue is their ability to model high-dimensional datasets, e.g., multivariate analysis of activation images or resting-state time series. Supervised learning is typically used in decoding or encoding settings to relate brain images to behavioral or clinical observations, while unsupervised learning can uncover hidden structures in sets of images (e.g., resting state functional MRI) or find sub-populations in large cohorts. By considering different functional neuroimaging applications, we illustrate how scikit-learn, a Python machine learning library, can be used to perform some key analysis steps. Scikit-learn contains a very large set of statistical learning algorithms, both supervised and unsupervised, and its application to neuroimaging data provides a versatile tool to study the brain.

  2. Emerging Paradigms in Machine Learning

    CERN Document Server

    Jain, Lakhmi; Howlett, Robert

    2013-01-01

    This  book presents fundamental topics and algorithms that form the core of machine learning (ML) research, as well as emerging paradigms in intelligent system design. The  multidisciplinary nature of machine learning makes it a very fascinating and popular area for research.  The book is aiming at students, practitioners and researchers and captures the diversity and richness of the field of machine learning and intelligent systems.  Several chapters are devoted to computational learning models such as granular computing, rough sets and fuzzy sets An account of applications of well-known learning methods in biometrics, computational stylistics, multi-agent systems, spam classification including an extremely well-written survey on Bayesian networks shed light on the strengths and weaknesses of the methods. Practical studies yielding insight into challenging problems such as learning from incomplete and imbalanced data, pattern recognition of stochastic episodic events and on-line mining of non-stationary ...

  3. A Novel Machine Learning Strategy Based on Two-Dimensional Numerical Models in Financial Engineering

    Directory of Open Access Journals (Sweden)

    Qingzhen Xu

    2013-01-01

    Full Text Available Machine learning is the most commonly used technique to address larger and more complex tasks by analyzing the most relevant information already present in databases. In order to better predict the future trend of the index, this paper proposes a two-dimensional numerical model for machine learning to simulate major U.S. stock market index and uses a nonlinear implicit finite-difference method to find numerical solutions of the two-dimensional simulation model. The proposed machine learning method uses partial differential equations to predict the stock market and can be extensively used to accelerate large-scale data processing on the history database. The experimental results show that the proposed algorithm reduces the prediction error and improves forecasting precision.

  4. Machine Learning.

    Science.gov (United States)

    Kirrane, Diane E.

    1990-01-01

    As scientists seek to develop machines that can "learn," that is, solve problems by imitating the human brain, a gold mine of information on the processes of human learning is being discovered, expert systems are being improved, and human-machine interactions are being enhanced. (SK)

  5. Machine learning, computer vision, and probabilistic models in jet physics

    CERN Multimedia

    CERN. Geneva; NACHMAN, Ben

    2015-01-01

    In this talk we present recent developments in the application of machine learning, computer vision, and probabilistic models to the analysis and interpretation of LHC events. First, we will introduce the concept of jet-images and computer vision techniques for jet tagging. Jet images enabled the connection between jet substructure and tagging with the fields of computer vision and image processing for the first time, improving the performance to identify highly boosted W bosons with respect to state-of-the-art methods, and providing a new way to visualize the discriminant features of different classes of jets, adding a new capability to understand the physics within jets and to design more powerful jet tagging methods. Second, we will present Fuzzy jets: a new paradigm for jet clustering using machine learning methods. Fuzzy jets view jet clustering as an unsupervised learning task and incorporate a probabilistic assignment of particles to jets to learn new features of the jet structure. In particular, we wi...

  6. Machine Learning and Deep Learning Models to Predict Runoff Water Quantity and Quality

    Science.gov (United States)

    Bradford, S. A.; Liang, J.; Li, W.; Murata, T.; Simunek, J.

    2017-12-01

    Contaminants can be rapidly transported at the soil surface by runoff to surface water bodies. Physically-based models, which are based on the mathematical description of main hydrological processes, are key tools for predicting surface water impairment. Along with physically-based models, data-driven models are becoming increasingly popular for describing the behavior of hydrological and water resources systems since these models can be used to complement or even replace physically based-models. In this presentation we propose a new data-driven model as an alternative to a physically-based overland flow and transport model. First, we have developed a physically-based numerical model to simulate overland flow and contaminant transport (the HYDRUS-1D overland flow module). A large number of numerical simulations were carried out to develop a database containing information about the impact of various input parameters (weather patterns, surface topography, vegetation, soil conditions, contaminants, and best management practices) on runoff water quantity and quality outputs. This database was used to train data-driven models. Three different methods (Neural Networks, Support Vector Machines, and Recurrence Neural Networks) were explored to prepare input- output functional relations. Results demonstrate the ability and limitations of machine learning and deep learning models to predict runoff water quantity and quality.

  7. Can machine learning explain human learning?

    NARCIS (Netherlands)

    Vahdat, M.; Oneto, L.; Anguita, D.; Funk, M.; Rauterberg, G.W.M.

    2016-01-01

    Learning Analytics (LA) has a major interest in exploring and understanding the learning process of humans and, for this purpose, benefits from both Cognitive Science, which studies how humans learn, and Machine Learning, which studies how algorithms learn from data. Usually, Machine Learning is

  8. Credit Risk Analysis Using Machine and Deep Learning Models

    Directory of Open Access Journals (Sweden)

    Peter Martey Addo

    2018-04-01

    Full Text Available Due to the advanced technology associated with Big Data, data availability and computing power, most banks or lending institutions are renewing their business models. Credit risk predictions, monitoring, model reliability and effective loan processing are key to decision-making and transparency. In this work, we build binary classifiers based on machine and deep learning models on real data in predicting loan default probability. The top 10 important features from these models are selected and then used in the modeling process to test the stability of binary classifiers by comparing their performance on separate data. We observe that the tree-based models are more stable than the models based on multilayer artificial neural networks. This opens several questions relative to the intensive use of deep learning systems in enterprises.

  9. Machine learning in updating predictive models of planning and scheduling transportation projects

    Science.gov (United States)

    1997-01-01

    A method combining machine learning and regression analysis to automatically and intelligently update predictive models used in the Kansas Department of Transportations (KDOTs) internal management system is presented. The predictive models used...

  10. Introduction to machine learning.

    Science.gov (United States)

    Baştanlar, Yalin; Ozuysal, Mustafa

    2014-01-01

    The machine learning field, which can be briefly defined as enabling computers make successful predictions using past experiences, has exhibited an impressive development recently with the help of the rapid increase in the storage capacity and processing power of computers. Together with many other disciplines, machine learning methods have been widely employed in bioinformatics. The difficulties and cost of biological analyses have led to the development of sophisticated machine learning approaches for this application area. In this chapter, we first review the fundamental concepts of machine learning such as feature assessment, unsupervised versus supervised learning and types of classification. Then, we point out the main issues of designing machine learning experiments and their performance evaluation. Finally, we introduce some supervised learning methods.

  11. BENCHMARKING MACHINE LEARNING TECHNIQUES FOR SOFTWARE DEFECT DETECTION

    OpenAIRE

    Saiqa Aleem; Luiz Fernando Capretz; Faheem Ahmed

    2015-01-01

    Machine Learning approaches are good in solving problems that have less information. In most cases, the software domain problems characterize as a process of learning that depend on the various circumstances and changes accordingly. A predictive model is constructed by using machine learning approaches and classified them into defective and non-defective modules. Machine learning techniques help developers to retrieve useful information after the classification and enable them to analyse data...

  12. Machine learning in cardiovascular medicine: are we there yet?

    Science.gov (United States)

    Shameer, Khader; Johnson, Kipp W; Glicksberg, Benjamin S; Dudley, Joel T; Sengupta, Partho P

    2018-01-19

    Artificial intelligence (AI) broadly refers to analytical algorithms that iteratively learn from data, allowing computers to find hidden insights without being explicitly programmed where to look. These include a family of operations encompassing several terms like machine learning, cognitive learning, deep learning and reinforcement learning-based methods that can be used to integrate and interpret complex biomedical and healthcare data in scenarios where traditional statistical methods may not be able to perform. In this review article, we discuss the basics of machine learning algorithms and what potential data sources exist; evaluate the need for machine learning; and examine the potential limitations and challenges of implementing machine in the context of cardiovascular medicine. The most promising avenues for AI in medicine are the development of automated risk prediction algorithms which can be used to guide clinical care; use of unsupervised learning techniques to more precisely phenotype complex disease; and the implementation of reinforcement learning algorithms to intelligently augment healthcare providers. The utility of a machine learning-based predictive model will depend on factors including data heterogeneity, data depth, data breadth, nature of modelling task, choice of machine learning and feature selection algorithms, and orthogonal evidence. A critical understanding of the strength and limitations of various methods and tasks amenable to machine learning is vital. By leveraging the growing corpus of big data in medicine, we detail pathways by which machine learning may facilitate optimal development of patient-specific models for improving diagnoses, intervention and outcome in cardiovascular medicine. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  13. Advanced Machine Learning Emulators of Radiative Transfer Models

    Science.gov (United States)

    Camps-Valls, G.; Verrelst, J.; Martino, L.; Vicent, J.

    2017-12-01

    Physically-based model inversion methodologies are based on physical laws and established cause-effect relationships. A plethora of remote sensing applications rely on the physical inversion of a Radiative Transfer Model (RTM), which lead to physically meaningful bio-geo-physical parameter estimates. The process is however computationally expensive, needs expert knowledge for both the selection of the RTM, its parametrization and the the look-up table generation, as well as its inversion. Mimicking complex codes with statistical nonlinear machine learning algorithms has become the natural alternative very recently. Emulators are statistical constructs able to approximate the RTM, although at a fraction of the computational cost, providing an estimation of uncertainty, and estimations of the gradient or finite integral forms. We review the field and recent advances of emulation of RTMs with machine learning models. We posit Gaussian processes (GPs) as the proper framework to tackle the problem. Furthermore, we introduce an automatic methodology to construct emulators for costly RTMs. The Automatic Gaussian Process Emulator (AGAPE) methodology combines the interpolation capabilities of GPs with the accurate design of an acquisition function that favours sampling in low density regions and flatness of the interpolation function. We illustrate the good capabilities of our emulators in toy examples, leaf and canopy levels PROSPECT and PROSAIL RTMs, and for the construction of an optimal look-up-table for atmospheric correction based on MODTRAN5.

  14. Extreme learning machines 2013 algorithms and applications

    CERN Document Server

    Toh, Kar-Ann; Romay, Manuel; Mao, Kezhi

    2014-01-01

    In recent years, ELM has emerged as a revolutionary technique of computational intelligence, and has attracted considerable attentions. An extreme learning machine (ELM) is a single layer feed-forward neural network alike learning system, whose connections from the input layer to the hidden layer are randomly generated, while the connections from the hidden layer to the output layer are learned through linear learning methods. The outstanding merits of extreme learning machine (ELM) are its fast learning speed, trivial human intervene and high scalability.   This book contains some selected papers from the International Conference on Extreme Learning Machine 2013, which was held in Beijing China, October 15-17, 2013. This conference aims to bring together the researchers and practitioners of extreme learning machine from a variety of fields including artificial intelligence, biomedical engineering and bioinformatics, system modelling and control, and signal and image processing, to promote research and discu...

  15. Machine learning applications in genetics and genomics.

    Science.gov (United States)

    Libbrecht, Maxwell W; Noble, William Stafford

    2015-06-01

    The field of machine learning, which aims to develop computer algorithms that improve with experience, holds promise to enable computers to assist humans in the analysis of large, complex data sets. Here, we provide an overview of machine learning applications for the analysis of genome sequencing data sets, including the annotation of sequence elements and epigenetic, proteomic or metabolomic data. We present considerations and recurrent challenges in the application of supervised, semi-supervised and unsupervised machine learning methods, as well as of generative and discriminative modelling approaches. We provide general guidelines to assist in the selection of these machine learning methods and their practical application for the analysis of genetic and genomic data sets.

  16. Hidden physics models: Machine learning of nonlinear partial differential equations

    Science.gov (United States)

    Raissi, Maziar; Karniadakis, George Em

    2018-03-01

    While there is currently a lot of enthusiasm about "big data", useful data is usually "small" and expensive to acquire. In this paper, we present a new paradigm of learning partial differential equations from small data. In particular, we introduce hidden physics models, which are essentially data-efficient learning machines capable of leveraging the underlying laws of physics, expressed by time dependent and nonlinear partial differential equations, to extract patterns from high-dimensional data generated from experiments. The proposed methodology may be applied to the problem of learning, system identification, or data-driven discovery of partial differential equations. Our framework relies on Gaussian processes, a powerful tool for probabilistic inference over functions, that enables us to strike a balance between model complexity and data fitting. The effectiveness of the proposed approach is demonstrated through a variety of canonical problems, spanning a number of scientific domains, including the Navier-Stokes, Schrödinger, Kuramoto-Sivashinsky, and time dependent linear fractional equations. The methodology provides a promising new direction for harnessing the long-standing developments of classical methods in applied mathematics and mathematical physics to design learning machines with the ability to operate in complex domains without requiring large quantities of data.

  17. Quantitative chemogenomics: machine-learning models of protein-ligand interaction.

    Science.gov (United States)

    Andersson, Claes R; Gustafsson, Mats G; Strömbergsson, Helena

    2011-01-01

    Chemogenomics is an emerging interdisciplinary field that lies in the interface of biology, chemistry, and informatics. Most of the currently used drugs are small molecules that interact with proteins. Understanding protein-ligand interaction is therefore central to drug discovery and design. In the subfield of chemogenomics known as proteochemometrics, protein-ligand-interaction models are induced from data matrices that consist of both protein and ligand information along with some experimentally measured variable. The two general aims of this quantitative multi-structure-property-relationship modeling (QMSPR) approach are to exploit sparse/incomplete information sources and to obtain more general models covering larger parts of the protein-ligand space, than traditional approaches that focuses mainly on specific targets or ligands. The data matrices, usually obtained from multiple sparse/incomplete sources, typically contain series of proteins and ligands together with quantitative information about their interactions. A useful model should ideally be easy to interpret and generalize well to new unseen protein-ligand combinations. Resolving this requires sophisticated machine-learning methods for model induction, combined with adequate validation. This review is intended to provide a guide to methods and data sources suitable for this kind of protein-ligand-interaction modeling. An overview of the modeling process is presented including data collection, protein and ligand descriptor computation, data preprocessing, machine-learning-model induction and validation. Concerns and issues specific for each step in this kind of data-driven modeling will be discussed. © 2011 Bentham Science Publishers

  18. Machine Learning and Radiology

    Science.gov (United States)

    Wang, Shijun; Summers, Ronald M.

    2012-01-01

    In this paper, we give a short introduction to machine learning and survey its applications in radiology. We focused on six categories of applications in radiology: medical image segmentation, registration, computer aided detection and diagnosis, brain function or activity analysis and neurological disease diagnosis from fMR images, content-based image retrieval systems for CT or MRI images, and text analysis of radiology reports using natural language processing (NLP) and natural language understanding (NLU). This survey shows that machine learning plays a key role in many radiology applications. Machine learning identifies complex patterns automatically and helps radiologists make intelligent decisions on radiology data such as conventional radiographs, CT, MRI, and PET images and radiology reports. In many applications, the performance of machine learning-based automatic detection and diagnosis systems has shown to be comparable to that of a well-trained and experienced radiologist. Technology development in machine learning and radiology will benefit from each other in the long run. Key contributions and common characteristics of machine learning techniques in radiology are discussed. We also discuss the problem of translating machine learning applications to the radiology clinical setting, including advantages and potential barriers. PMID:22465077

  19. Spatial extreme learning machines: An application on prediction of disease counts.

    Science.gov (United States)

    Prates, Marcos O

    2018-01-01

    Extreme learning machines have gained a lot of attention by the machine learning community because of its interesting properties and computational advantages. With the increase in collection of information nowadays, many sources of data have missing information making statistical analysis harder or unfeasible. In this paper, we present a new model, coined spatial extreme learning machine, that combine spatial modeling with extreme learning machines keeping the nice properties of both methodologies and making it very flexible and robust. As explained throughout the text, the spatial extreme learning machines have many advantages in comparison with the traditional extreme learning machines. By a simulation study and a real data analysis we present how the spatial extreme learning machine can be used to improve imputation of missing data and uncertainty prediction estimation.

  20. Massively collaborative machine learning

    NARCIS (Netherlands)

    Rijn, van J.N.

    2016-01-01

    Many scientists are focussed on building models. We nearly process all information we perceive to a model. There are many techniques that enable computers to build models as well. The field of research that develops such techniques is called Machine Learning. Many research is devoted to develop

  1. Functional networks inference from rule-based machine learning models.

    Science.gov (United States)

    Lazzarini, Nicola; Widera, Paweł; Williamson, Stuart; Heer, Rakesh; Krasnogor, Natalio; Bacardit, Jaume

    2016-01-01

    Functional networks play an important role in the analysis of biological processes and systems. The inference of these networks from high-throughput (-omics) data is an area of intense research. So far, the similarity-based inference paradigm (e.g. gene co-expression) has been the most popular approach. It assumes a functional relationship between genes which are expressed at similar levels across different samples. An alternative to this paradigm is the inference of relationships from the structure of machine learning models. These models are able to capture complex relationships between variables, that often are different/complementary to the similarity-based methods. We propose a protocol to infer functional networks from machine learning models, called FuNeL. It assumes, that genes used together within a rule-based machine learning model to classify the samples, might also be functionally related at a biological level. The protocol is first tested on synthetic datasets and then evaluated on a test suite of 8 real-world datasets related to human cancer. The networks inferred from the real-world data are compared against gene co-expression networks of equal size, generated with 3 different methods. The comparison is performed from two different points of view. We analyse the enriched biological terms in the set of network nodes and the relationships between known disease-associated genes in a context of the network topology. The comparison confirms both the biological relevance and the complementary character of the knowledge captured by the FuNeL networks in relation to similarity-based methods and demonstrates its potential to identify known disease associations as core elements of the network. Finally, using a prostate cancer dataset as a case study, we confirm that the biological knowledge captured by our method is relevant to the disease and consistent with the specialised literature and with an independent dataset not used in the inference process. The

  2. Machine learning: Trends, perspectives, and prospects.

    Science.gov (United States)

    Jordan, M I; Mitchell, T M

    2015-07-17

    Machine learning addresses the question of how to build computers that improve automatically through experience. It is one of today's most rapidly growing technical fields, lying at the intersection of computer science and statistics, and at the core of artificial intelligence and data science. Recent progress in machine learning has been driven both by the development of new learning algorithms and theory and by the ongoing explosion in the availability of online data and low-cost computation. The adoption of data-intensive machine-learning methods can be found throughout science, technology and commerce, leading to more evidence-based decision-making across many walks of life, including health care, manufacturing, education, financial modeling, policing, and marketing. Copyright © 2015, American Association for the Advancement of Science.

  3. Prostate Cancer Probability Prediction By Machine Learning Technique.

    Science.gov (United States)

    Jović, Srđan; Miljković, Milica; Ivanović, Miljan; Šaranović, Milena; Arsić, Milena

    2017-11-26

    The main goal of the study was to explore possibility of prostate cancer prediction by machine learning techniques. In order to improve the survival probability of the prostate cancer patients it is essential to make suitable prediction models of the prostate cancer. If one make relevant prediction of the prostate cancer it is easy to create suitable treatment based on the prediction results. Machine learning techniques are the most common techniques for the creation of the predictive models. Therefore in this study several machine techniques were applied and compared. The obtained results were analyzed and discussed. It was concluded that the machine learning techniques could be used for the relevant prediction of prostate cancer.

  4. Use of machine learning techniques for modeling of snow depth

    Directory of Open Access Journals (Sweden)

    G. V. Ayzel

    2017-01-01

    Full Text Available Snow exerts significant regulating effect on the land hydrological cycle since it controls intensity of heat and water exchange between the soil-vegetative cover and the atmosphere. Estimating of a spring flood runoff or a rain-flood on mountainous rivers requires understanding of the snow cover dynamics on a watershed. In our work, solving a problem of the snow cover depth modeling is based on both available databases of hydro-meteorological observations and easily accessible scientific software that allows complete reproduction of investigation results and further development of this theme by scientific community. In this research we used the daily observational data on the snow cover and surface meteorological parameters, obtained at three stations situated in different geographical regions: Col de Porte (France, Sodankyla (Finland, and Snoquamie Pass (USA.Statistical modeling of the snow cover depth is based on a complex of freely distributed the present-day machine learning models: Decision Trees, Adaptive Boosting, Gradient Boosting. It is demonstrated that use of combination of modern machine learning methods with available meteorological data provides the good accuracy of the snow cover modeling. The best results of snow cover depth modeling for every investigated site were obtained by the ensemble method of gradient boosting above decision trees – this model reproduces well both, the periods of snow cover accumulation and its melting. The purposeful character of learning process for models of the gradient boosting type, their ensemble character, and use of combined redundancy of a test sample in learning procedure makes this type of models a good and sustainable research tool. The results obtained can be used for estimating the snow cover characteristics for river basins where hydro-meteorological information is absent or insufficient.

  5. A Multianalyzer Machine Learning Model for Marine Heterogeneous Data Schema Mapping

    Science.gov (United States)

    Yan, Wang; Jiajin, Le; Yun, Zhang

    2014-01-01

    The main challenges that marine heterogeneous data integration faces are the problem of accurate schema mapping between heterogeneous data sources. In order to improve the schema mapping efficiency and get more accurate learning results, this paper proposes a heterogeneous data schema mapping method basing on multianalyzer machine learning model. The multianalyzer analysis the learning results comprehensively, and a fuzzy comprehensive evaluation system is introduced for output results' evaluation and multi factor quantitative judging. Finally, the data mapping comparison experiment on the East China Sea observing data confirms the effectiveness of the model and shows multianalyzer's obvious improvement of mapping error rate. PMID:25250372

  6. Machine learning and radiology.

    Science.gov (United States)

    Wang, Shijun; Summers, Ronald M

    2012-07-01

    In this paper, we give a short introduction to machine learning and survey its applications in radiology. We focused on six categories of applications in radiology: medical image segmentation, registration, computer aided detection and diagnosis, brain function or activity analysis and neurological disease diagnosis from fMR images, content-based image retrieval systems for CT or MRI images, and text analysis of radiology reports using natural language processing (NLP) and natural language understanding (NLU). This survey shows that machine learning plays a key role in many radiology applications. Machine learning identifies complex patterns automatically and helps radiologists make intelligent decisions on radiology data such as conventional radiographs, CT, MRI, and PET images and radiology reports. In many applications, the performance of machine learning-based automatic detection and diagnosis systems has shown to be comparable to that of a well-trained and experienced radiologist. Technology development in machine learning and radiology will benefit from each other in the long run. Key contributions and common characteristics of machine learning techniques in radiology are discussed. We also discuss the problem of translating machine learning applications to the radiology clinical setting, including advantages and potential barriers. Copyright © 2012. Published by Elsevier B.V.

  7. Machine learning with R

    CERN Document Server

    Lantz, Brett

    2013-01-01

    Written as a tutorial to explore and understand the power of R for machine learning. This practical guide that covers all of the need to know topics in a very systematic way. For each machine learning approach, each step in the process is detailed, from preparing the data for analysis to evaluating the results. These steps will build the knowledge you need to apply them to your own data science tasks.Intended for those who want to learn how to use R's machine learning capabilities and gain insight from your data. Perhaps you already know a bit about machine learning, but have never used R; or

  8. A Novel Extreme Learning Machine Classification Model for e-Nose Application Based on the Multiple Kernel Approach.

    Science.gov (United States)

    Jian, Yulin; Huang, Daoyu; Yan, Jia; Lu, Kun; Huang, Ying; Wen, Tailai; Zeng, Tanyue; Zhong, Shijie; Xie, Qilong

    2017-06-19

    A novel classification model, named the quantum-behaved particle swarm optimization (QPSO)-based weighted multiple kernel extreme learning machine (QWMK-ELM), is proposed in this paper. Experimental validation is carried out with two different electronic nose (e-nose) datasets. Being different from the existing multiple kernel extreme learning machine (MK-ELM) algorithms, the combination coefficients of base kernels are regarded as external parameters of single-hidden layer feedforward neural networks (SLFNs). The combination coefficients of base kernels, the model parameters of each base kernel, and the regularization parameter are optimized by QPSO simultaneously before implementing the kernel extreme learning machine (KELM) with the composite kernel function. Four types of common single kernel functions (Gaussian kernel, polynomial kernel, sigmoid kernel, and wavelet kernel) are utilized to constitute different composite kernel functions. Moreover, the method is also compared with other existing classification methods: extreme learning machine (ELM), kernel extreme learning machine (KELM), k-nearest neighbors (KNN), support vector machine (SVM), multi-layer perceptron (MLP), radical basis function neural network (RBFNN), and probabilistic neural network (PNN). The results have demonstrated that the proposed QWMK-ELM outperforms the aforementioned methods, not only in precision, but also in efficiency for gas classification.

  9. A Review of Current Machine Learning Methods Used for Cancer Recurrence Modeling and Prediction

    Energy Technology Data Exchange (ETDEWEB)

    Hemphill, Geralyn M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-27

    Cancer has been characterized as a heterogeneous disease consisting of many different subtypes. The early diagnosis and prognosis of a cancer type has become a necessity in cancer research. A major challenge in cancer management is the classification of patients into appropriate risk groups for better treatment and follow-up. Such risk assessment is critically important in order to optimize the patient’s health and the use of medical resources, as well as to avoid cancer recurrence. This paper focuses on the application of machine learning methods for predicting the likelihood of a recurrence of cancer. It is not meant to be an extensive review of the literature on the subject of machine learning techniques for cancer recurrence modeling. Other recent papers have performed such a review, and I will rely heavily on the results and outcomes from these papers. The electronic databases that were used for this review include PubMed, Google, and Google Scholar. Query terms used include “cancer recurrence modeling”, “cancer recurrence and machine learning”, “cancer recurrence modeling and machine learning”, and “machine learning for cancer recurrence and prediction”. The most recent and most applicable papers to the topic of this review have been included in the references. It also includes a list of modeling and classification methods to predict cancer recurrence.

  10. Hemodynamic modelling of BOLD fMRI - A machine learning approach

    DEFF Research Database (Denmark)

    Jacobsen, Danjal Jakup

    2007-01-01

    This Ph.D. thesis concerns the application of machine learning methods to hemodynamic models for BOLD fMRI data. Several such models have been proposed by different researchers, and they have in common a basis in physiological knowledge of the hemodynamic processes involved in the generation...... of the BOLD signal. The BOLD signal is modelled as a non-linear function of underlying, hidden (non-measurable) hemodynamic state variables. The focus of this thesis work has been to develop methods for learning the parameters of such models, both in their traditional formulation, and in a state space...... formulation. In the latter, noise enters at the level of the hidden states, as well as in the BOLD measurements themselves. A framework has been developed to allow approximate posterior distributions of model parameters to be learned from real fMRI data. This is accomplished with Markov chain Monte Carlo...

  11. Learning scikit-learn machine learning in Python

    CERN Document Server

    Garreta, Raúl

    2013-01-01

    The book adopts a tutorial-based approach to introduce the user to Scikit-learn.If you are a programmer who wants to explore machine learning and data-based methods to build intelligent applications and enhance your programming skills, this the book for you. No previous experience with machine-learning algorithms is required.

  12. Inverse Problems in Geodynamics Using Machine Learning Algorithms

    Science.gov (United States)

    Shahnas, M. H.; Yuen, D. A.; Pysklywec, R. N.

    2018-01-01

    During the past few decades numerical studies have been widely employed to explore the style of circulation and mixing in the mantle of Earth and other planets. However, in geodynamical studies there are many properties from mineral physics, geochemistry, and petrology in these numerical models. Machine learning, as a computational statistic-related technique and a subfield of artificial intelligence, has rapidly emerged recently in many fields of sciences and engineering. We focus here on the application of supervised machine learning (SML) algorithms in predictions of mantle flow processes. Specifically, we emphasize on estimating mantle properties by employing machine learning techniques in solving an inverse problem. Using snapshots of numerical convection models as training samples, we enable machine learning models to determine the magnitude of the spin transition-induced density anomalies that can cause flow stagnation at midmantle depths. Employing support vector machine algorithms, we show that SML techniques can successfully predict the magnitude of mantle density anomalies and can also be used in characterizing mantle flow patterns. The technique can be extended to more complex geodynamic problems in mantle dynamics by employing deep learning algorithms for putting constraints on properties such as viscosity, elastic parameters, and the nature of thermal and chemical anomalies.

  13. BEBP: An Poisoning Method Against Machine Learning Based IDSs

    OpenAIRE

    Li, Pan; Liu, Qiang; Zhao, Wentao; Wang, Dongxu; Wang, Siqi

    2018-01-01

    In big data era, machine learning is one of fundamental techniques in intrusion detection systems (IDSs). However, practical IDSs generally update their decision module by feeding new data then retraining learning models in a periodical way. Hence, some attacks that comprise the data for training or testing classifiers significantly challenge the detecting capability of machine learning-based IDSs. Poisoning attack, which is one of the most recognized security threats towards machine learning...

  14. Modelling tick abundance using machine learning techniques and satellite imagery

    DEFF Research Database (Denmark)

    Kjær, Lene Jung; Korslund, L.; Kjelland, V.

    satellite images to run Boosted Regression Tree machine learning algorithms to predict overall distribution (presence/absence of ticks) and relative tick abundance of nymphs and larvae in southern Scandinavia. For nymphs, the predicted abundance had a positive correlation with observed abundance...... the predicted distribution of larvae was mostly even throughout Denmark, it was primarily around the coastlines in Norway and Sweden. Abundance was fairly low overall except in some fragmented patches corresponding to forested habitats in the region. Machine learning techniques allow us to predict for larger...... the collected ticks for pathogens and using the same machine learning techniques to develop prevalence maps of the ScandTick region....

  15. A Multianalyzer Machine Learning Model for Marine Heterogeneous Data Schema Mapping

    Directory of Open Access Journals (Sweden)

    Wang Yan

    2014-01-01

    Full Text Available The main challenges that marine heterogeneous data integration faces are the problem of accurate schema mapping between heterogeneous data sources. In order to improve the schema mapping efficiency and get more accurate learning results, this paper proposes a heterogeneous data schema mapping method basing on multianalyzer machine learning model. The multianalyzer analysis the learning results comprehensively, and a fuzzy comprehensive evaluation system is introduced for output results’ evaluation and multi factor quantitative judging. Finally, the data mapping comparison experiment on the East China Sea observing data confirms the effectiveness of the model and shows multianalyzer’s obvious improvement of mapping error rate.

  16. Pattern recognition & machine learning

    CERN Document Server

    Anzai, Y

    1992-01-01

    This is the first text to provide a unified and self-contained introduction to visual pattern recognition and machine learning. It is useful as a general introduction to artifical intelligence and knowledge engineering, and no previous knowledge of pattern recognition or machine learning is necessary. Basic for various pattern recognition and machine learning methods. Translated from Japanese, the book also features chapter exercises, keywords, and summaries.

  17. Machine learning, social learning and the governance of self-driving cars.

    Science.gov (United States)

    Stilgoe, Jack

    2018-02-01

    Self-driving cars, a quintessentially 'smart' technology, are not born smart. The algorithms that control their movements are learning as the technology emerges. Self-driving cars represent a high-stakes test of the powers of machine learning, as well as a test case for social learning in technology governance. Society is learning about the technology while the technology learns about society. Understanding and governing the politics of this technology means asking 'Who is learning, what are they learning and how are they learning?' Focusing on the successes and failures of social learning around the much-publicized crash of a Tesla Model S in 2016, I argue that trajectories and rhetorics of machine learning in transport pose a substantial governance challenge. 'Self-driving' or 'autonomous' cars are misnamed. As with other technologies, they are shaped by assumptions about social needs, solvable problems, and economic opportunities. Governing these technologies in the public interest means improving social learning by constructively engaging with the contingencies of machine learning.

  18. Machine learning and medicine: book review and commentary.

    Science.gov (United States)

    Koprowski, Robert; Foster, Kenneth R

    2018-02-01

    This article is a review of the book "Master machine learning algorithms, discover how they work and implement them from scratch" (ISBN: not available, 37 USD, 163 pages) edited by Jason Brownlee published by the Author, edition, v1.10 http://MachineLearningMastery.com . An accompanying commentary discusses some of the issues that are involved with use of machine learning and data mining techniques to develop predictive models for diagnosis or prognosis of disease, and to call attention to additional requirements for developing diagnostic and prognostic algorithms that are generally useful in medicine. Appendix provides examples that illustrate potential problems with machine learning that are not addressed in the reviewed book.

  19. Acceleration of saddle-point searches with machine learning

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Andrew A., E-mail: andrew-peterson@brown.edu [School of Engineering, Brown University, Providence, Rhode Island 02912 (United States)

    2016-08-21

    In atomistic simulations, the location of the saddle point on the potential-energy surface (PES) gives important information on transitions between local minima, for example, via transition-state theory. However, the search for saddle points often involves hundreds or thousands of ab initio force calls, which are typically all done at full accuracy. This results in the vast majority of the computational effort being spent calculating the electronic structure of states not important to the researcher, and very little time performing the calculation of the saddle point state itself. In this work, we describe how machine learning (ML) can reduce the number of intermediate ab initio calculations needed to locate saddle points. Since machine-learning models can learn from, and thus mimic, atomistic simulations, the saddle-point search can be conducted rapidly in the machine-learning representation. The saddle-point prediction can then be verified by an ab initio calculation; if it is incorrect, this strategically has identified regions of the PES where the machine-learning representation has insufficient training data. When these training data are used to improve the machine-learning model, the estimates greatly improve. This approach can be systematized, and in two simple example problems we demonstrate a dramatic reduction in the number of ab initio force calls. We expect that this approach and future refinements will greatly accelerate searches for saddle points, as well as other searches on the potential energy surface, as machine-learning methods see greater adoption by the atomistics community.

  20. Acceleration of saddle-point searches with machine learning

    International Nuclear Information System (INIS)

    Peterson, Andrew A.

    2016-01-01

    In atomistic simulations, the location of the saddle point on the potential-energy surface (PES) gives important information on transitions between local minima, for example, via transition-state theory. However, the search for saddle points often involves hundreds or thousands of ab initio force calls, which are typically all done at full accuracy. This results in the vast majority of the computational effort being spent calculating the electronic structure of states not important to the researcher, and very little time performing the calculation of the saddle point state itself. In this work, we describe how machine learning (ML) can reduce the number of intermediate ab initio calculations needed to locate saddle points. Since machine-learning models can learn from, and thus mimic, atomistic simulations, the saddle-point search can be conducted rapidly in the machine-learning representation. The saddle-point prediction can then be verified by an ab initio calculation; if it is incorrect, this strategically has identified regions of the PES where the machine-learning representation has insufficient training data. When these training data are used to improve the machine-learning model, the estimates greatly improve. This approach can be systematized, and in two simple example problems we demonstrate a dramatic reduction in the number of ab initio force calls. We expect that this approach and future refinements will greatly accelerate searches for saddle points, as well as other searches on the potential energy surface, as machine-learning methods see greater adoption by the atomistics community.

  1. Acceleration of saddle-point searches with machine learning.

    Science.gov (United States)

    Peterson, Andrew A

    2016-08-21

    In atomistic simulations, the location of the saddle point on the potential-energy surface (PES) gives important information on transitions between local minima, for example, via transition-state theory. However, the search for saddle points often involves hundreds or thousands of ab initio force calls, which are typically all done at full accuracy. This results in the vast majority of the computational effort being spent calculating the electronic structure of states not important to the researcher, and very little time performing the calculation of the saddle point state itself. In this work, we describe how machine learning (ML) can reduce the number of intermediate ab initio calculations needed to locate saddle points. Since machine-learning models can learn from, and thus mimic, atomistic simulations, the saddle-point search can be conducted rapidly in the machine-learning representation. The saddle-point prediction can then be verified by an ab initio calculation; if it is incorrect, this strategically has identified regions of the PES where the machine-learning representation has insufficient training data. When these training data are used to improve the machine-learning model, the estimates greatly improve. This approach can be systematized, and in two simple example problems we demonstrate a dramatic reduction in the number of ab initio force calls. We expect that this approach and future refinements will greatly accelerate searches for saddle points, as well as other searches on the potential energy surface, as machine-learning methods see greater adoption by the atomistics community.

  2. Machine Learning Phases of Strongly Correlated Fermions

    Directory of Open Access Journals (Sweden)

    Kelvin Ch’ng

    2017-08-01

    Full Text Available Machine learning offers an unprecedented perspective for the problem of classifying phases in condensed matter physics. We employ neural-network machine learning techniques to distinguish finite-temperature phases of the strongly correlated fermions on cubic lattices. We show that a three-dimensional convolutional network trained on auxiliary field configurations produced by quantum Monte Carlo simulations of the Hubbard model can correctly predict the magnetic phase diagram of the model at the average density of one (half filling. We then use the network, trained at half filling, to explore the trend in the transition temperature as the system is doped away from half filling. This transfer learning approach predicts that the instability to the magnetic phase extends to at least 5% doping in this region. Our results pave the way for other machine learning applications in correlated quantum many-body systems.

  3. Machine Learning and Inverse Problem in Geodynamics

    Science.gov (United States)

    Shahnas, M. H.; Yuen, D. A.; Pysklywec, R.

    2017-12-01

    During the past few decades numerical modeling and traditional HPC have been widely deployed in many diverse fields for problem solutions. However, in recent years the rapid emergence of machine learning (ML), a subfield of the artificial intelligence (AI), in many fields of sciences, engineering, and finance seems to mark a turning point in the replacement of traditional modeling procedures with artificial intelligence-based techniques. The study of the circulation in the interior of Earth relies on the study of high pressure mineral physics, geochemistry, and petrology where the number of the mantle parameters is large and the thermoelastic parameters are highly pressure- and temperature-dependent. More complexity arises from the fact that many of these parameters that are incorporated in the numerical models as input parameters are not yet well established. In such complex systems the application of machine learning algorithms can play a valuable role. Our focus in this study is the application of supervised machine learning (SML) algorithms in predicting mantle properties with the emphasis on SML techniques in solving the inverse problem. As a sample problem we focus on the spin transition in ferropericlase and perovskite that may cause slab and plume stagnation at mid-mantle depths. The degree of the stagnation depends on the degree of negative density anomaly at the spin transition zone. The training and testing samples for the machine learning models are produced by the numerical convection models with known magnitudes of density anomaly (as the class labels of the samples). The volume fractions of the stagnated slabs and plumes which can be considered as measures for the degree of stagnation are assigned as sample features. The machine learning models can determine the magnitude of the spin transition-induced density anomalies that can cause flow stagnation at mid-mantle depths. Employing support vector machine (SVM) algorithms we show that SML techniques

  4. Human Machine Learning Symbiosis

    Science.gov (United States)

    Walsh, Kenneth R.; Hoque, Md Tamjidul; Williams, Kim H.

    2017-01-01

    Human Machine Learning Symbiosis is a cooperative system where both the human learner and the machine learner learn from each other to create an effective and efficient learning environment adapted to the needs of the human learner. Such a system can be used in online learning modules so that the modules adapt to each learner's learning state both…

  5. Introduction to machine learning

    OpenAIRE

    Baştanlar, Yalın; Özuysal, Mustafa

    2014-01-01

    The machine learning field, which can be briefly defined as enabling computers make successful predictions using past experiences, has exhibited an impressive development recently with the help of the rapid increase in the storage capacity and processing power of computers. Together with many other disciplines, machine learning methods have been widely employed in bioinformatics. The difficulties and cost of biological analyses have led to the development of sophisticated machine learning app...

  6. Deep learning: Using machine learning to study biological vision

    OpenAIRE

    Majaj, Najib; Pelli, Denis

    2017-01-01

    Today most vision-science presentations mention machine learning. Many neuroscientists use machine learning to decode neural responses. Many perception scientists try to understand recognition by living organisms. To them, machine learning offers a reference of attainable performance based on learned stimuli. This brief overview of the use of machine learning in biological vision touches on its strengths, weaknesses, milestones, controversies, and current directions.

  7. Proceedings of the IEEE Machine Learning for Signal Processing XVII

    DEFF Research Database (Denmark)

    The seventeenth of a series of workshops sponsored by the IEEE Signal Processing Society and organized by the Machine Learning for Signal Processing Technical Committee (MLSP-TC). The field of machine learning has matured considerably in both methodology and real-world application domains and has...... become particularly important for solution of problems in signal processing. As reflected in this collection, machine learning for signal processing combines many ideas from adaptive signal/image processing, learning theory and models, and statistics in order to solve complex real-world signal processing......, and two papers from the winners of the Data Analysis Competition. The program included papers in the following areas: genomic signal processing, pattern recognition and classification, image and video processing, blind signal processing, models, learning algorithms, and applications of machine learning...

  8. A Machine LearningFramework to Forecast Wave Conditions

    Science.gov (United States)

    Zhang, Y.; James, S. C.; O'Donncha, F.

    2017-12-01

    Recently, significant effort has been undertaken to quantify and extract wave energy because it is renewable, environmental friendly, abundant, and often close to population centers. However, a major challenge is the ability to accurately and quickly predict energy production, especially across a 48-hour cycle. Accurate forecasting of wave conditions is a challenging undertaking that typically involves solving the spectral action-balance equation on a discretized grid with high spatial resolution. The nature of the computations typically demands high-performance computing infrastructure. Using a case-study site at Monterey Bay, California, a machine learning framework was trained to replicate numerically simulated wave conditions at a fraction of the typical computational cost. Specifically, the physics-based Simulating WAves Nearshore (SWAN) model, driven by measured wave conditions, nowcast ocean currents, and wind data, was used to generate training data for machine learning algorithms. The model was run between April 1st, 2013 and May 31st, 2017 generating forecasts at three-hour intervals yielding 11,078 distinct model outputs. SWAN-generated fields of 3,104 wave heights and a characteristic period could be replicated through simple matrix multiplications using the mapping matrices from machine learning algorithms. In fact, wave-height RMSEs from the machine learning algorithms (9 cm) were less than those for the SWAN model-verification exercise where those simulations were compared to buoy wave data within the model domain (>40 cm). The validated machine learning approach, which acts as an accurate surrogate for the SWAN model, can now be used to perform real-time forecasts of wave conditions for the next 48 hours using available forecasted boundary wave conditions, ocean currents, and winds. This solution has obvious applications to wave-energy generation as accurate wave conditions can be forecasted with over a three-order-of-magnitude reduction in

  9. Machine Learning for Hackers

    CERN Document Server

    Conway, Drew

    2012-01-01

    If you're an experienced programmer interested in crunching data, this book will get you started with machine learning-a toolkit of algorithms that enables computers to train themselves to automate useful tasks. Authors Drew Conway and John Myles White help you understand machine learning and statistics tools through a series of hands-on case studies, instead of a traditional math-heavy presentation. Each chapter focuses on a specific problem in machine learning, such as classification, prediction, optimization, and recommendation. Using the R programming language, you'll learn how to analyz

  10. Virtual Things for Machine Learning Applications

    OpenAIRE

    Bovet , Gérôme; Ridi , Antonio; Hennebert , Jean

    2014-01-01

    International audience; Internet-of-Things (IoT) devices, especially sensors are pro-ducing large quantities of data that can be used for gather-ing knowledge. In this field, machine learning technologies are increasingly used to build versatile data-driven models. In this paper, we present a novel architecture able to ex-ecute machine learning algorithms within the sensor net-work, presenting advantages in terms of privacy and data transfer efficiency. We first argument that some classes of ...

  11. A Parameter Communication Optimization Strategy for Distributed Machine Learning in Sensors.

    Science.gov (United States)

    Zhang, Jilin; Tu, Hangdi; Ren, Yongjian; Wan, Jian; Zhou, Li; Li, Mingwei; Wang, Jue; Yu, Lifeng; Zhao, Chang; Zhang, Lei

    2017-09-21

    In order to utilize the distributed characteristic of sensors, distributed machine learning has become the mainstream approach, but the different computing capability of sensors and network delays greatly influence the accuracy and the convergence rate of the machine learning model. Our paper describes a reasonable parameter communication optimization strategy to balance the training overhead and the communication overhead. We extend the fault tolerance of iterative-convergent machine learning algorithms and propose the Dynamic Finite Fault Tolerance (DFFT). Based on the DFFT, we implement a parameter communication optimization strategy for distributed machine learning, named Dynamic Synchronous Parallel Strategy (DSP), which uses the performance monitoring model to dynamically adjust the parameter synchronization strategy between worker nodes and the Parameter Server (PS). This strategy makes full use of the computing power of each sensor, ensures the accuracy of the machine learning model, and avoids the situation that the model training is disturbed by any tasks unrelated to the sensors.

  12. Machine learning: novel bioinformatics approaches for combating antimicrobial resistance.

    Science.gov (United States)

    Macesic, Nenad; Polubriaginof, Fernanda; Tatonetti, Nicholas P

    2017-12-01

    Antimicrobial resistance (AMR) is a threat to global health and new approaches to combating AMR are needed. Use of machine learning in addressing AMR is in its infancy but has made promising steps. We reviewed the current literature on the use of machine learning for studying bacterial AMR. The advent of large-scale data sets provided by next-generation sequencing and electronic health records make applying machine learning to the study and treatment of AMR possible. To date, it has been used for antimicrobial susceptibility genotype/phenotype prediction, development of AMR clinical decision rules, novel antimicrobial agent discovery and antimicrobial therapy optimization. Application of machine learning to studying AMR is feasible but remains limited. Implementation of machine learning in clinical settings faces barriers to uptake with concerns regarding model interpretability and data quality.Future applications of machine learning to AMR are likely to be laboratory-based, such as antimicrobial susceptibility phenotype prediction.

  13. In silico machine learning methods in drug development.

    Science.gov (United States)

    Dobchev, Dimitar A; Pillai, Girinath G; Karelson, Mati

    2014-01-01

    Machine learning (ML) computational methods for predicting compounds with pharmacological activity, specific pharmacodynamic and ADMET (absorption, distribution, metabolism, excretion and toxicity) properties are being increasingly applied in drug discovery and evaluation. Recently, machine learning techniques such as artificial neural networks, support vector machines and genetic programming have been explored for predicting inhibitors, antagonists, blockers, agonists, activators and substrates of proteins related to specific therapeutic targets. These methods are particularly useful for screening compound libraries of diverse chemical structures, "noisy" and high-dimensional data to complement QSAR methods, and in cases of unavailable receptor 3D structure to complement structure-based methods. A variety of studies have demonstrated the potential of machine-learning methods for predicting compounds as potential drug candidates. The present review is intended to give an overview of the strategies and current progress in using machine learning methods for drug design and the potential of the respective model development tools. We also regard a number of applications of the machine learning algorithms based on common classes of diseases.

  14. Machine learning strategies for systems with invariance properties

    Science.gov (United States)

    Ling, Julia; Jones, Reese; Templeton, Jeremy

    2016-08-01

    In many scientific fields, empirical models are employed to facilitate computational simulations of engineering systems. For example, in fluid mechanics, empirical Reynolds stress closures enable computationally-efficient Reynolds Averaged Navier Stokes simulations. Likewise, in solid mechanics, constitutive relations between the stress and strain in a material are required in deformation analysis. Traditional methods for developing and tuning empirical models usually combine physical intuition with simple regression techniques on limited data sets. The rise of high performance computing has led to a growing availability of high fidelity simulation data. These data open up the possibility of using machine learning algorithms, such as random forests or neural networks, to develop more accurate and general empirical models. A key question when using data-driven algorithms to develop these empirical models is how domain knowledge should be incorporated into the machine learning process. This paper will specifically address physical systems that possess symmetry or invariance properties. Two different methods for teaching a machine learning model an invariance property are compared. In the first method, a basis of invariant inputs is constructed, and the machine learning model is trained upon this basis, thereby embedding the invariance into the model. In the second method, the algorithm is trained on multiple transformations of the raw input data until the model learns invariance to that transformation. Results are discussed for two case studies: one in turbulence modeling and one in crystal elasticity. It is shown that in both cases embedding the invariance property into the input features yields higher performance at significantly reduced computational training costs.

  15. Bypassing the Kohn-Sham equations with machine learning.

    Science.gov (United States)

    Brockherde, Felix; Vogt, Leslie; Li, Li; Tuckerman, Mark E; Burke, Kieron; Müller, Klaus-Robert

    2017-10-11

    Last year, at least 30,000 scientific papers used the Kohn-Sham scheme of density functional theory to solve electronic structure problems in a wide variety of scientific fields. Machine learning holds the promise of learning the energy functional via examples, bypassing the need to solve the Kohn-Sham equations. This should yield substantial savings in computer time, allowing larger systems and/or longer time-scales to be tackled, but attempts to machine-learn this functional have been limited by the need to find its derivative. The present work overcomes this difficulty by directly learning the density-potential and energy-density maps for test systems and various molecules. We perform the first molecular dynamics simulation with a machine-learned density functional on malonaldehyde and are able to capture the intramolecular proton transfer process. Learning density models now allows the construction of accurate density functionals for realistic molecular systems.Machine learning allows electronic structure calculations to access larger system sizes and, in dynamical simulations, longer time scales. Here, the authors perform such a simulation using a machine-learned density functional that avoids direct solution of the Kohn-Sham equations.

  16. Machine Learning for Medical Imaging.

    Science.gov (United States)

    Erickson, Bradley J; Korfiatis, Panagiotis; Akkus, Zeynettin; Kline, Timothy L

    2017-01-01

    Machine learning is a technique for recognizing patterns that can be applied to medical images. Although it is a powerful tool that can help in rendering medical diagnoses, it can be misapplied. Machine learning typically begins with the machine learning algorithm system computing the image features that are believed to be of importance in making the prediction or diagnosis of interest. The machine learning algorithm system then identifies the best combination of these image features for classifying the image or computing some metric for the given image region. There are several methods that can be used, each with different strengths and weaknesses. There are open-source versions of most of these machine learning methods that make them easy to try and apply to images. Several metrics for measuring the performance of an algorithm exist; however, one must be aware of the possible associated pitfalls that can result in misleading metrics. More recently, deep learning has started to be used; this method has the benefit that it does not require image feature identification and calculation as a first step; rather, features are identified as part of the learning process. Machine learning has been used in medical imaging and will have a greater influence in the future. Those working in medical imaging must be aware of how machine learning works. © RSNA, 2017.

  17. Machine learning of frustrated classical spin models. I. Principal component analysis

    Science.gov (United States)

    Wang, Ce; Zhai, Hui

    2017-10-01

    This work aims at determining whether artificial intelligence can recognize a phase transition without prior human knowledge. If this were successful, it could be applied to, for instance, analyzing data from the quantum simulation of unsolved physical models. Toward this goal, we first need to apply the machine learning algorithm to well-understood models and see whether the outputs are consistent with our prior knowledge, which serves as the benchmark for this approach. In this work, we feed the computer data generated by the classical Monte Carlo simulation for the X Y model in frustrated triangular and union jack lattices, which has two order parameters and exhibits two phase transitions. We show that the outputs of the principal component analysis agree very well with our understanding of different orders in different phases, and the temperature dependences of the major components detect the nature and the locations of the phase transitions. Our work offers promise for using machine learning techniques to study sophisticated statistical models, and our results can be further improved by using principal component analysis with kernel tricks and the neural network method.

  18. Application of heuristic and machine-learning approach to engine model calibration

    Science.gov (United States)

    Cheng, Jie; Ryu, Kwang R.; Newman, C. E.; Davis, George C.

    1993-03-01

    Automation of engine model calibration procedures is a very challenging task because (1) the calibration process searches for a goal state in a huge, continuous state space, (2) calibration is often a lengthy and frustrating task because of complicated mutual interference among the target parameters, and (3) the calibration problem is heuristic by nature, and often heuristic knowledge for constraining a search cannot be easily acquired from domain experts. A combined heuristic and machine learning approach has, therefore, been adopted to improve the efficiency of model calibration. We developed an intelligent calibration program called ICALIB. It has been used on a daily basis for engine model applications, and has reduced the time required for model calibrations from many hours to a few minutes on average. In this paper, we describe the heuristic control strategies employed in ICALIB such as a hill-climbing search based on a state distance estimation function, incremental problem solution refinement by using a dynamic tolerance window, and calibration target parameter ordering for guiding the search. In addition, we present the application of a machine learning program called GID3* for automatic acquisition of heuristic rules for ordering target parameters.

  19. Machine learning an artificial intelligence approach

    CERN Document Server

    Banerjee, R; Bradshaw, Gary; Carbonell, Jaime Guillermo; Mitchell, Tom Michael; Michalski, Ryszard Spencer

    1983-01-01

    Machine Learning: An Artificial Intelligence Approach contains tutorial overviews and research papers representative of trends in the area of machine learning as viewed from an artificial intelligence perspective. The book is organized into six parts. Part I provides an overview of machine learning and explains why machines should learn. Part II covers important issues affecting the design of learning programs-particularly programs that learn from examples. It also describes inductive learning systems. Part III deals with learning by analogy, by experimentation, and from experience. Parts IV a

  20. IoT Security Techniques Based on Machine Learning

    OpenAIRE

    Xiao, Liang; Wan, Xiaoyue; Lu, Xiaozhen; Zhang, Yanyong; Wu, Di

    2018-01-01

    Internet of things (IoT) that integrate a variety of devices into networks to provide advanced and intelligent services have to protect user privacy and address attacks such as spoofing attacks, denial of service attacks, jamming and eavesdropping. In this article, we investigate the attack model for IoT systems, and review the IoT security solutions based on machine learning techniques including supervised learning, unsupervised learning and reinforcement learning. We focus on the machine le...

  1. Large-Scale Machine Learning for Classification and Search

    Science.gov (United States)

    Liu, Wei

    2012-01-01

    With the rapid development of the Internet, nowadays tremendous amounts of data including images and videos, up to millions or billions, can be collected for training machine learning models. Inspired by this trend, this thesis is dedicated to developing large-scale machine learning techniques for the purpose of making classification and nearest…

  2. Coupling machine learning with mechanistic models to study runoff production and river flow at the hillslope scale

    Science.gov (United States)

    Marçais, J.; Gupta, H. V.; De Dreuzy, J. R.; Troch, P. A. A.

    2016-12-01

    Geomorphological structure and geological heterogeneity of hillslopes are major controls on runoff responses. The diversity of hillslopes (morphological shapes and geological structures) on one hand, and the highly non linear runoff mechanism response on the other hand, make it difficult to transpose what has been learnt at one specific hillslope to another. Therefore, making reliable predictions on runoff appearance or river flow for a given hillslope is a challenge. Applying a classic model calibration (based on inverse problems technique) requires doing it for each specific hillslope and having some data available for calibration. When applied to thousands of cases it cannot always be promoted. Here we propose a novel modeling framework based on coupling process based models with data based approach. First we develop a mechanistic model, based on hillslope storage Boussinesq equations (Troch et al. 2003), able to model non linear runoff responses to rainfall at the hillslope scale. Second we set up a model database, representing thousands of non calibrated simulations. These simulations investigate different hillslope shapes (real ones obtained by analyzing 5m digital elevation model of Brittany and synthetic ones), different hillslope geological structures (i.e. different parametrizations) and different hydrologic forcing terms (i.e. different infiltration chronicles). Then, we use this model library to train a machine learning model on this physically based database. Machine learning model performance is then assessed by a classic validating phase (testing it on new hillslopes and comparing machine learning with mechanistic outputs). Finally we use this machine learning model to learn what are the hillslope properties controlling runoffs. This methodology will be further tested combining synthetic datasets with real ones.

  3. Large-scale Machine Learning in High-dimensional Datasets

    DEFF Research Database (Denmark)

    Hansen, Toke Jansen

    Over the last few decades computers have gotten to play an essential role in our daily life, and data is now being collected in various domains at a faster pace than ever before. This dissertation presents research advances in four machine learning fields that all relate to the challenges imposed...... are better at modeling local heterogeneities. In the field of machine learning for neuroimaging, we introduce learning protocols for real-time functional Magnetic Resonance Imaging (fMRI) that allow for dynamic intervention in the human decision process. Specifically, the model exploits the structure of f...

  4. Machine learning molecular dynamics for the simulation of infrared spectra.

    Science.gov (United States)

    Gastegger, Michael; Behler, Jörg; Marquetand, Philipp

    2017-10-01

    Machine learning has emerged as an invaluable tool in many research areas. In the present work, we harness this power to predict highly accurate molecular infrared spectra with unprecedented computational efficiency. To account for vibrational anharmonic and dynamical effects - typically neglected by conventional quantum chemistry approaches - we base our machine learning strategy on ab initio molecular dynamics simulations. While these simulations are usually extremely time consuming even for small molecules, we overcome these limitations by leveraging the power of a variety of machine learning techniques, not only accelerating simulations by several orders of magnitude, but also greatly extending the size of systems that can be treated. To this end, we develop a molecular dipole moment model based on environment dependent neural network charges and combine it with the neural network potential approach of Behler and Parrinello. Contrary to the prevalent big data philosophy, we are able to obtain very accurate machine learning models for the prediction of infrared spectra based on only a few hundreds of electronic structure reference points. This is made possible through the use of molecular forces during neural network potential training and the introduction of a fully automated sampling scheme. We demonstrate the power of our machine learning approach by applying it to model the infrared spectra of a methanol molecule, n -alkanes containing up to 200 atoms and the protonated alanine tripeptide, which at the same time represents the first application of machine learning techniques to simulate the dynamics of a peptide. In all of these case studies we find an excellent agreement between the infrared spectra predicted via machine learning models and the respective theoretical and experimental spectra.

  5. Machine Learning Principles Can Improve Hip Fracture Prediction

    DEFF Research Database (Denmark)

    Kruse, Christian; Eiken, Pia; Vestergaard, Peter

    2017-01-01

    Apply machine learning principles to predict hip fractures and estimate predictor importance in Dual-energy X-ray absorptiometry (DXA)-scanned men and women. Dual-energy X-ray absorptiometry data from two Danish regions between 1996 and 2006 were combined with national Danish patient data.......89 [0.82; 0.95], but with poor calibration in higher probabilities. A ten predictor subset (BMD, biochemical cholesterol and liver function tests, penicillin use and osteoarthritis diagnoses) achieved a test AUC of 0.86 [0.78; 0.94] using an “xgbTree” model. Machine learning can improve hip fracture...... prediction beyond logistic regression using ensemble models. Compiling data from international cohorts of longer follow-up and performing similar machine learning procedures has the potential to further improve discrimination and calibration....

  6. A Combination of Machine Learning and Cerebellar Models for the Motor Control and Learning of a Modular Robot

    DEFF Research Database (Denmark)

    Baira Ojeda, Ismael; Tolu, Silvia; Pacheco, Moises

    2017-01-01

    We scaled up a bio-inspired control architecture for the motor control and motor learning of a real modular robot. In our approach, the Locally Weighted Projection Regression algorithm (LWPR) and a cerebellar microcircuit coexist, forming a Unit Learning Machine. The LWPR optimizes the input space...... and learns the internal model of a single robot module to command the robot to follow a desired trajectory with its end-effector. The cerebellar microcircuit refines the LWPR output delivering corrective commands. We contrasted distinct cerebellar circuits including analytical models and spiking models...

  7. Online transfer learning with extreme learning machine

    Science.gov (United States)

    Yin, Haibo; Yang, Yun-an

    2017-05-01

    In this paper, we propose a new transfer learning algorithm for online training. The proposed algorithm, which is called Online Transfer Extreme Learning Machine (OTELM), is based on Online Sequential Extreme Learning Machine (OSELM) while it introduces Semi-Supervised Extreme Learning Machine (SSELM) to transfer knowledge from the source to the target domain. With the manifold regularization, SSELM picks out instances from the source domain that are less relevant to those in the target domain to initialize the online training, so as to improve the classification performance. Experimental results demonstrate that the proposed OTELM can effectively use instances in the source domain to enhance the learning performance.

  8. Microsoft Azure machine learning

    CERN Document Server

    Mund, Sumit

    2015-01-01

    The book is intended for those who want to learn how to use Azure Machine Learning. Perhaps you already know a bit about Machine Learning, but have never used ML Studio in Azure; or perhaps you are an absolute newbie. In either case, this book will get you up-and-running quickly.

  9. Creativity in Machine Learning

    OpenAIRE

    Thoma, Martin

    2016-01-01

    Recent machine learning techniques can be modified to produce creative results. Those results did not exist before; it is not a trivial combination of the data which was fed into the machine learning system. The obtained results come in multiple forms: As images, as text and as audio. This paper gives a high level overview of how they are created and gives some examples. It is meant to be a summary of the current work and give people who are new to machine learning some starting points.

  10. Contemporary machine learning: techniques for practitioners in the physical sciences

    Science.gov (United States)

    Spears, Brian

    2017-10-01

    Machine learning is the science of using computers to find relationships in data without explicitly knowing or programming those relationships in advance. Often without realizing it, we employ machine learning every day as we use our phones or drive our cars. Over the last few years, machine learning has found increasingly broad application in the physical sciences. This most often involves building a model relationship between a dependent, measurable output and an associated set of controllable, but complicated, independent inputs. The methods are applicable both to experimental observations and to databases of simulated output from large, detailed numerical simulations. In this tutorial, we will present an overview of current tools and techniques in machine learning - a jumping-off point for researchers interested in using machine learning to advance their work. We will discuss supervised learning techniques for modeling complicated functions, beginning with familiar regression schemes, then advancing to more sophisticated decision trees, modern neural networks, and deep learning methods. Next, we will cover unsupervised learning and techniques for reducing the dimensionality of input spaces and for clustering data. We'll show example applications from both magnetic and inertial confinement fusion. Along the way, we will describe methods for practitioners to help ensure that their models generalize from their training data to as-yet-unseen test data. We will finally point out some limitations to modern machine learning and speculate on some ways that practitioners from the physical sciences may be particularly suited to help. This work was performed by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  11. Introduction to Machine Learning: Class Notes 67577

    OpenAIRE

    Shashua, Amnon

    2009-01-01

    Introduction to Machine learning covering Statistical Inference (Bayes, EM, ML/MaxEnt duality), algebraic and spectral methods (PCA, LDA, CCA, Clustering), and PAC learning (the Formal model, VC dimension, Double Sampling theorem).

  12. Big data - modelling of midges in Europa using machine learning techniques and satellite imagery

    DEFF Research Database (Denmark)

    Cuellar, Ana Carolina; Kjær, Lene Jung; Skovgaard, Henrik

    2017-01-01

    coordinates of each trap, start and end dates of trapping. We used 120 environmental predictor variables together with Random Forest machine learning algorithms to predict the overall species distribution (probability of occurrence) and monthly abundance in Europe. We generated maps for every month...... and the Obsoletus group, although abundance was generally higher for a longer period of time for C. imicula than for the Obsoletus group. Using machine learning techniques, we were able to model the spatial distribution in Europe for C. imicola and the Obsoletus group in terms of abundance and suitability...

  13. Studying depression using imaging and machine learning methods.

    Science.gov (United States)

    Patel, Meenal J; Khalaf, Alexander; Aizenstein, Howard J

    2016-01-01

    Depression is a complex clinical entity that can pose challenges for clinicians regarding both accurate diagnosis and effective timely treatment. These challenges have prompted the development of multiple machine learning methods to help improve the management of this disease. These methods utilize anatomical and physiological data acquired from neuroimaging to create models that can identify depressed patients vs. non-depressed patients and predict treatment outcomes. This article (1) presents a background on depression, imaging, and machine learning methodologies; (2) reviews methodologies of past studies that have used imaging and machine learning to study depression; and (3) suggests directions for future depression-related studies.

  14. Novel Automatic Filter-Class Feature Selection for Machine Learning Regression

    DEFF Research Database (Denmark)

    Wollsen, Morten Gill; Hallam, John; Jørgensen, Bo Nørregaard

    2017-01-01

    With the increased focus on application of Big Data in all sectors of society, the performance of machine learning becomes essential. Efficient machine learning depends on efficient feature selection algorithms. Filter feature selection algorithms are model-free and therefore very fast, but require...... model in the feature selection process. PCA is often used in machine learning litterature and can be considered the default feature selection method. RDESF outperformed PCA in both experiments in both prediction error and computational speed. RDESF is a new step into filter-based automatic feature...

  15. Machine learning methods without tears: a primer for ecologists.

    Science.gov (United States)

    Olden, Julian D; Lawler, Joshua J; Poff, N LeRoy

    2008-06-01

    Machine learning methods, a family of statistical techniques with origins in the field of artificial intelligence, are recognized as holding great promise for the advancement of understanding and prediction about ecological phenomena. These modeling techniques are flexible enough to handle complex problems with multiple interacting elements and typically outcompete traditional approaches (e.g., generalized linear models), making them ideal for modeling ecological systems. Despite their inherent advantages, a review of the literature reveals only a modest use of these approaches in ecology as compared to other disciplines. One potential explanation for this lack of interest is that machine learning techniques do not fall neatly into the class of statistical modeling approaches with which most ecologists are familiar. In this paper, we provide an introduction to three machine learning approaches that can be broadly used by ecologists: classification and regression trees, artificial neural networks, and evolutionary computation. For each approach, we provide a brief background to the methodology, give examples of its application in ecology, describe model development and implementation, discuss strengths and weaknesses, explore the availability of statistical software, and provide an illustrative example. Although the ecological application of machine learning approaches has increased, there remains considerable skepticism with respect to the role of these techniques in ecology. Our review encourages a greater understanding of machin learning approaches and promotes their future application and utilization, while also providing a basis from which ecologists can make informed decisions about whether to select or avoid these approaches in their future modeling endeavors.

  16. A Comparison of a Machine Learning Model with EuroSCORE II in Predicting Mortality after Elective Cardiac Surgery: A Decision Curve Analysis.

    Science.gov (United States)

    Allyn, Jérôme; Allou, Nicolas; Augustin, Pascal; Philip, Ivan; Martinet, Olivier; Belghiti, Myriem; Provenchere, Sophie; Montravers, Philippe; Ferdynus, Cyril

    2017-01-01

    The benefits of cardiac surgery are sometimes difficult to predict and the decision to operate on a given individual is complex. Machine Learning and Decision Curve Analysis (DCA) are recent methods developed to create and evaluate prediction models. We conducted a retrospective cohort study using a prospective collected database from December 2005 to December 2012, from a cardiac surgical center at University Hospital. The different models of prediction of mortality in-hospital after elective cardiac surgery, including EuroSCORE II, a logistic regression model and a machine learning model, were compared by ROC and DCA. Of the 6,520 patients having elective cardiac surgery with cardiopulmonary bypass, 6.3% died. Mean age was 63.4 years old (standard deviation 14.4), and mean EuroSCORE II was 3.7 (4.8) %. The area under ROC curve (IC95%) for the machine learning model (0.795 (0.755-0.834)) was significantly higher than EuroSCORE II or the logistic regression model (respectively, 0.737 (0.691-0.783) and 0.742 (0.698-0.785), p machine learning model, in this monocentric study, has a greater benefit whatever the probability threshold. According to ROC and DCA, machine learning model is more accurate in predicting mortality after elective cardiac surgery than EuroSCORE II. These results confirm the use of machine learning methods in the field of medical prediction.

  17. Issues of Application of Machine Learning Models for Virtual and Real-Life Buildings

    Directory of Open Access Journals (Sweden)

    Young Min Kim

    2016-06-01

    Full Text Available The current Building Energy Performance Simulation (BEPS tools are based on first principles. For the correct use of BEPS tools, simulationists should have an in-depth understanding of building physics, numerical methods, control logics of building systems, etc. However, it takes significant time and effort to develop a first principles-based simulation model for existing buildings—mainly due to the laborious process of data gathering, uncertain inputs, model calibration, etc. Rather than resorting to an expert’s effort, a data-driven approach (so-called “inverse” approach has received growing attention for the simulation of existing buildings. This paper reports a cross-comparison of three popular machine learning models (Artificial Neural Network (ANN, Support Vector Machine (SVM, and Gaussian Process (GP for predicting a chiller’s energy consumption in a virtual and a real-life building. The predictions based on the three models are sufficiently accurate compared to the virtual and real measurements. This paper addresses the following issues for the successful development of machine learning models: reproducibility, selection of inputs, training period, outlying data obtained from the building energy management system (BEMS, and validation of the models. From the result of this comparative study, it was found that SVM has a disadvantage in computation time compared to ANN and GP. GP is the most sensitive to a training period among the three models.

  18. A machine learning approach to the accurate prediction of monitor units for a compact proton machine.

    Science.gov (United States)

    Sun, Baozhou; Lam, Dao; Yang, Deshan; Grantham, Kevin; Zhang, Tiezhi; Mutic, Sasa; Zhao, Tianyu

    2018-05-01

    Clinical treatment planning systems for proton therapy currently do not calculate monitor units (MUs) in passive scatter proton therapy due to the complexity of the beam delivery systems. Physical phantom measurements are commonly employed to determine the field-specific output factors (OFs) but are often subject to limited machine time, measurement uncertainties and intensive labor. In this study, a machine learning-based approach was developed to predict output (cGy/MU) and derive MUs, incorporating the dependencies on gantry angle and field size for a single-room proton therapy system. The goal of this study was to develop a secondary check tool for OF measurements and eventually eliminate patient-specific OF measurements. The OFs of 1754 fields previously measured in a water phantom with calibrated ionization chambers and electrometers for patient-specific fields with various range and modulation width combinations for 23 options were included in this study. The training data sets for machine learning models in three different methods (Random Forest, XGBoost and Cubist) included 1431 (~81%) OFs. Ten-fold cross-validation was used to prevent "overfitting" and to validate each model. The remaining 323 (~19%) OFs were used to test the trained models. The difference between the measured and predicted values from machine learning models was analyzed. Model prediction accuracy was also compared with that of the semi-empirical model developed by Kooy (Phys. Med. Biol. 50, 2005). Additionally, gantry angle dependence of OFs was measured for three groups of options categorized on the selection of the second scatters. Field size dependence of OFs was investigated for the measurements with and without patient-specific apertures. All three machine learning methods showed higher accuracy than the semi-empirical model which shows considerably large discrepancy of up to 7.7% for the treatment fields with full range and full modulation width. The Cubist-based solution

  19. Machine learning with R cookbook

    CERN Document Server

    Chiu, Yu-Wei

    2015-01-01

    If you want to learn how to use R for machine learning and gain insights from your data, then this book is ideal for you. Regardless of your level of experience, this book covers the basics of applying R to machine learning through to advanced techniques. While it is helpful if you are familiar with basic programming or machine learning concepts, you do not require prior experience to benefit from this book.

  20. Machine Learning and Conflict Prediction: A Use Case

    Directory of Open Access Journals (Sweden)

    Chris Perry

    2013-10-01

    Full Text Available For at least the last two decades, the international community in general and the United Nations specifically have attempted to develop robust, accurate and effective conflict early warning system for conflict prevention. One potential and promising component of integrated early warning systems lies in the field of machine learning. This paper aims at giving conflict analysis a basic understanding of machine learning methodology as well as to test the feasibility and added value of such an approach. The paper finds that the selection of appropriate machine learning methodologies can offer substantial improvements in accuracy and performance. It also finds that even at this early stage in testing machine learning on conflict prediction, full models offer more predictive power than simply using a prior outbreak of violence as the leading indicator of current violence. This suggests that a refined data selection methodology combined with strategic use of machine learning algorithms could indeed offer a significant addition to the early warning toolkit. Finally, the paper suggests a number of steps moving forward to improve upon this initial test methodology.

  1. Four wind speed multi-step forecasting models using extreme learning machines and signal decomposing algorithms

    International Nuclear Information System (INIS)

    Liu, Hui; Tian, Hong-qi; Li, Yan-fei

    2015-01-01

    Highlights: • A hybrid architecture is proposed for the wind speed forecasting. • Four algorithms are used for the wind speed multi-scale decomposition. • The extreme learning machines are employed for the wind speed forecasting. • All the proposed hybrid models can generate the accurate results. - Abstract: Realization of accurate wind speed forecasting is important to guarantee the safety of wind power utilization. In this paper, a new hybrid forecasting architecture is proposed to realize the wind speed accurate forecasting. In this architecture, four different hybrid models are presented by combining four signal decomposing algorithms (e.g., Wavelet Decomposition/Wavelet Packet Decomposition/Empirical Mode Decomposition/Fast Ensemble Empirical Mode Decomposition) and Extreme Learning Machines. The originality of the study is to investigate the promoted percentages of the Extreme Learning Machines by those mainstream signal decomposing algorithms in the multiple step wind speed forecasting. The results of two forecasting experiments indicate that: (1) the method of Extreme Learning Machines is suitable for the wind speed forecasting; (2) by utilizing the decomposing algorithms, all the proposed hybrid algorithms have better performance than the single Extreme Learning Machines; (3) in the comparisons of the decomposing algorithms in the proposed hybrid architecture, the Fast Ensemble Empirical Mode Decomposition has the best performance in the three-step forecasting results while the Wavelet Packet Decomposition has the best performance in the one and two step forecasting results. At the same time, the Wavelet Packet Decomposition and the Fast Ensemble Empirical Mode Decomposition are better than the Wavelet Decomposition and the Empirical Mode Decomposition in all the step predictions, respectively; and (4) the proposed algorithms are effective in the wind speed accurate predictions

  2. A comparative study of machine learning classifiers for modeling travel mode choice

    NARCIS (Netherlands)

    Hagenauer, J; Helbich, M

    2017-01-01

    The analysis of travel mode choice is an important task in transportation planning and policy making in order to understand and predict travel demands. While advances in machine learning have led to numerous powerful classifiers, their usefulness for modeling travel mode choice remains largely

  3. Transductive and matched-pair machine learning for difficult target detection problems

    Science.gov (United States)

    Theiler, James

    2014-06-01

    This paper will describe the application of two non-traditional kinds of machine learning (transductive machine learning and the more recently proposed matched-pair machine learning) to the target detection problem. The approach combines explicit domain knowledge to model the target signal with a more agnostic machine-learning approach to characterize the background. The concept is illustrated with simulated data from an elliptically-contoured background distribution, on which a subpixel target of known spectral signature but unknown spatial extent has been implanted.

  4. Interactive Algorithms for Unsupervised Machine Learning

    Science.gov (United States)

    2015-06-01

    in Neural Information Processing Systems, 2013. 14 [3] Louigi Addario-Berry, Nicolas Broutin, Luc Devroye, and Gábor Lugosi. On combinato- rial...Myung Jin Choi, Vincent Y F Tan , Animashree Anandkumar, and Alan S Willsky. Learn- ing Latent Tree Graphical Models. Journal of Machine Learning

  5. Application of Machine Learning to Rotorcraft Health Monitoring

    Science.gov (United States)

    Cody, Tyler; Dempsey, Paula J.

    2017-01-01

    Machine learning is a powerful tool for data exploration and model building with large data sets. This project aimed to use machine learning techniques to explore the inherent structure of data from rotorcraft gear tests, relationships between features and damage states, and to build a system for predicting gear health for future rotorcraft transmission applications. Classical machine learning techniques are difficult, if not irresponsible to apply to time series data because many make the assumption of independence between samples. To overcome this, Hidden Markov Models were used to create a binary classifier for identifying scuffing transitions and Recurrent Neural Networks were used to leverage long distance relationships in predicting discrete damage states. When combined in a workflow, where the binary classifier acted as a filter for the fatigue monitor, the system was able to demonstrate accuracy in damage state prediction and scuffing identification. The time dependent nature of the data restricted data exploration to collecting and analyzing data from the model selection process. The limited amount of available data was unable to give useful information, and the division of training and testing sets tended to heavily influence the scores of the models across combinations of features and hyper-parameters. This work built a framework for tracking scuffing and fatigue on streaming data and demonstrates that machine learning has much to offer rotorcraft health monitoring by using Bayesian learning and deep learning methods to capture the time dependent nature of the data. Suggested future work is to implement the framework developed in this project using a larger variety of data sets to test the generalization capabilities of the models and allow for data exploration.

  6. Scikit-learn: Machine Learning in Python

    OpenAIRE

    Pedregosa, Fabian; Varoquaux, Gaël; Gramfort, Alexandre; Michel, Vincent; Thirion, Bertrand; Grisel, Olivier; Blondel, Mathieu; Prettenhofer, Peter; Weiss, Ron; Dubourg, Vincent; Vanderplas, Jake; Passos, Alexandre; Cournapeau, David; Brucher, Matthieu; Perrot, Matthieu

    2011-01-01

    International audience; Scikit-learn is a Python module integrating a wide range of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised problems. This package focuses on bringing machine learning to non-specialists using a general-purpose high-level language. Emphasis is put on ease of use, performance, documentation, and API consistency. It has minimal dependencies and is distributed under the simplified BSD license, encouraging its use in both academic ...

  7. Scikit-learn: Machine Learning in Python

    OpenAIRE

    Pedregosa, Fabian; Varoquaux, Gaël; Gramfort, Alexandre; Michel, Vincent; Thirion, Bertrand; Grisel, Olivier; Blondel, Mathieu; Louppe, Gilles; Prettenhofer, Peter; Weiss, Ron; Dubourg, Vincent; Vanderplas, Jake; Passos, Alexandre; Cournapeau, David; Brucher, Matthieu

    2012-01-01

    Scikit-learn is a Python module integrating a wide range of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised problems. This package focuses on bringing machine learning to non-specialists using a general-purpose high-level language. Emphasis is put on ease of use, performance, documentation, and API consistency. It has minimal dependencies and is distributed under the simplified BSD license, encouraging its use in both academic and commercial settings....

  8. Using Machine Learning to Search for MSSM Higgs Bosons

    CERN Document Server

    Diesing, Rebecca

    2016-01-01

    This paper examines the performance of machine learning in the identification of Minimally Su- persymmetric Standard Model (MSSM) Higgs Bosons, and compares this performance to that of traditional cut strategies. Two boosted decision tree algorithms were tested, scikit-learn and XGBoost. These tests indicated that machine learning can perform significantly better than traditional cuts. However, since machine learning in this form cannot be directly implemented in a real MSSM Higgs analysis, this performance information was instead used to better understand the relationships between training variables. Further studies might use this information to construct an improved cut strategy.

  9. Financial signal processing and machine learning

    CERN Document Server

    Kulkarni,Sanjeev R; Dmitry M. Malioutov

    2016-01-01

    The modern financial industry has been required to deal with large and diverse portfolios in a variety of asset classes often with limited market data available. Financial Signal Processing and Machine Learning unifies a number of recent advances made in signal processing and machine learning for the design and management of investment portfolios and financial engineering. This book bridges the gap between these disciplines, offering the latest information on key topics including characterizing statistical dependence and correlation in high dimensions, constructing effective and robust risk measures, and their use in portfolio optimization and rebalancing. The book focuses on signal processing approaches to model return, momentum, and mean reversion, addressing theoretical and implementation aspects. It highlights the connections between portfolio theory, sparse learning and compressed sensing, sparse eigen-portfolios, robust optimization, non-Gaussian data-driven risk measures, graphical models, causal analy...

  10. Application of Machine-Learning Models to Predict Tacrolimus Stable Dose in Renal Transplant Recipients

    Science.gov (United States)

    Tang, Jie; Liu, Rong; Zhang, Yue-Li; Liu, Mou-Ze; Hu, Yong-Fang; Shao, Ming-Jie; Zhu, Li-Jun; Xin, Hua-Wen; Feng, Gui-Wen; Shang, Wen-Jun; Meng, Xiang-Guang; Zhang, Li-Rong; Ming, Ying-Zi; Zhang, Wei

    2017-02-01

    Tacrolimus has a narrow therapeutic window and considerable variability in clinical use. Our goal was to compare the performance of multiple linear regression (MLR) and eight machine learning techniques in pharmacogenetic algorithm-based prediction of tacrolimus stable dose (TSD) in a large Chinese cohort. A total of 1,045 renal transplant patients were recruited, 80% of which were randomly selected as the “derivation cohort” to develop dose-prediction algorithm, while the remaining 20% constituted the “validation cohort” to test the final selected algorithm. MLR, artificial neural network (ANN), regression tree (RT), multivariate adaptive regression splines (MARS), boosted regression tree (BRT), support vector regression (SVR), random forest regression (RFR), lasso regression (LAR) and Bayesian additive regression trees (BART) were applied and their performances were compared in this work. Among all the machine learning models, RT performed best in both derivation [0.71 (0.67-0.76)] and validation cohorts [0.73 (0.63-0.82)]. In addition, the ideal rate of RT was 4% higher than that of MLR. To our knowledge, this is the first study to use machine learning models to predict TSD, which will further facilitate personalized medicine in tacrolimus administration in the future.

  11. Active learning machine learns to create new quantum experiments.

    Science.gov (United States)

    Melnikov, Alexey A; Poulsen Nautrup, Hendrik; Krenn, Mario; Dunjko, Vedran; Tiersch, Markus; Zeilinger, Anton; Briegel, Hans J

    2018-02-06

    How useful can machine learning be in a quantum laboratory? Here we raise the question of the potential of intelligent machines in the context of scientific research. A major motivation for the present work is the unknown reachability of various entanglement classes in quantum experiments. We investigate this question by using the projective simulation model, a physics-oriented approach to artificial intelligence. In our approach, the projective simulation system is challenged to design complex photonic quantum experiments that produce high-dimensional entangled multiphoton states, which are of high interest in modern quantum experiments. The artificial intelligence system learns to create a variety of entangled states and improves the efficiency of their realization. In the process, the system autonomously (re)discovers experimental techniques which are only now becoming standard in modern quantum optical experiments-a trait which was not explicitly demanded from the system but emerged through the process of learning. Such features highlight the possibility that machines could have a significantly more creative role in future research.

  12. Studying depression using imaging and machine learning methods

    Directory of Open Access Journals (Sweden)

    Meenal J. Patel

    2016-01-01

    Full Text Available Depression is a complex clinical entity that can pose challenges for clinicians regarding both accurate diagnosis and effective timely treatment. These challenges have prompted the development of multiple machine learning methods to help improve the management of this disease. These methods utilize anatomical and physiological data acquired from neuroimaging to create models that can identify depressed patients vs. non-depressed patients and predict treatment outcomes. This article (1 presents a background on depression, imaging, and machine learning methodologies; (2 reviews methodologies of past studies that have used imaging and machine learning to study depression; and (3 suggests directions for future depression-related studies.

  13. Novel Breast Imaging and Machine Learning: Predicting Breast Lesion Malignancy at Cone-Beam CT Using Machine Learning Techniques.

    Science.gov (United States)

    Uhlig, Johannes; Uhlig, Annemarie; Kunze, Meike; Beissbarth, Tim; Fischer, Uwe; Lotz, Joachim; Wienbeck, Susanne

    2018-05-24

    The purpose of this study is to evaluate the diagnostic performance of machine learning techniques for malignancy prediction at breast cone-beam CT (CBCT) and to compare them to human readers. Five machine learning techniques, including random forests, back propagation neural networks (BPN), extreme learning machines, support vector machines, and K-nearest neighbors, were used to train diagnostic models on a clinical breast CBCT dataset with internal validation by repeated 10-fold cross-validation. Two independent blinded human readers with profound experience in breast imaging and breast CBCT analyzed the same CBCT dataset. Diagnostic performance was compared using AUC, sensitivity, and specificity. The clinical dataset comprised 35 patients (American College of Radiology density type C and D breasts) with 81 suspicious breast lesions examined with contrast-enhanced breast CBCT. Forty-five lesions were histopathologically proven to be malignant. Among the machine learning techniques, BPNs provided the best diagnostic performance, with AUC of 0.91, sensitivity of 0.85, and specificity of 0.82. The diagnostic performance of the human readers was AUC of 0.84, sensitivity of 0.89, and specificity of 0.72 for reader 1 and AUC of 0.72, sensitivity of 0.71, and specificity of 0.67 for reader 2. AUC was significantly higher for BPN when compared with both reader 1 (p = 0.01) and reader 2 (p Machine learning techniques provide a high and robust diagnostic performance in the prediction of malignancy in breast lesions identified at CBCT. BPNs showed the best diagnostic performance, surpassing human readers in terms of AUC and specificity.

  14. Machine learning a Bayesian and optimization perspective

    CERN Document Server

    Theodoridis, Sergios

    2015-01-01

    This tutorial text gives a unifying perspective on machine learning by covering both probabilistic and deterministic approaches, which rely on optimization techniques, as well as Bayesian inference, which is based on a hierarchy of probabilistic models. The book presents the major machine learning methods as they have been developed in different disciplines, such as statistics, statistical and adaptive signal processing and computer science. Focusing on the physical reasoning behind the mathematics, all the various methods and techniques are explained in depth, supported by examples and problems, giving an invaluable resource to the student and researcher for understanding and applying machine learning concepts. The book builds carefully from the basic classical methods to the most recent trends, with chapters written to be as self-contained as possible, making the text suitable for different courses: pattern recognition, statistical/adaptive signal processing, statistical/Bayesian learning, as well as shor...

  15. Measuring and Modelling Delays in Robot Manipulators for Temporally Precise Control using Machine Learning

    DEFF Research Database (Denmark)

    Andersen, Thomas Timm; Amor, Heni Ben; Andersen, Nils Axel

    2015-01-01

    and separate. In this paper, we present a data-driven methodology for separating and modelling inherent delays during robot control. We show how both actuation and response delays can be modelled using modern machine learning methods. The resulting models can be used to predict the delays as well...

  16. Quantum Machine Learning

    OpenAIRE

    Romero García, Cristian

    2017-01-01

    [EN] In a world in which accessible information grows exponentially, the selection of the appropriate information turns out to be an extremely relevant problem. In this context, the idea of Machine Learning (ML), a subfield of Artificial Intelligence, emerged to face problems in data mining, pattern recognition, automatic prediction, among others. Quantum Machine Learning is an interdisciplinary research area combining quantum mechanics with methods of ML, in which quantum properties allow fo...

  17. Toward a Progress Indicator for Machine Learning Model Building and Data Mining Algorithm Execution: A Position Paper

    Science.gov (United States)

    Luo, Gang

    2017-01-01

    For user-friendliness, many software systems offer progress indicators for long-duration tasks. A typical progress indicator continuously estimates the remaining task execution time as well as the portion of the task that has been finished. Building a machine learning model often takes a long time, but no existing machine learning software supplies a non-trivial progress indicator. Similarly, running a data mining algorithm often takes a long time, but no existing data mining software provides a nontrivial progress indicator. In this article, we consider the problem of offering progress indicators for machine learning model building and data mining algorithm execution. We discuss the goals and challenges intrinsic to this problem. Then we describe an initial framework for implementing such progress indicators and two advanced, potential uses of them, with the goal of inspiring future research on this topic. PMID:29177022

  18. Learning Extended Finite State Machines

    Science.gov (United States)

    Cassel, Sofia; Howar, Falk; Jonsson, Bengt; Steffen, Bernhard

    2014-01-01

    We present an active learning algorithm for inferring extended finite state machines (EFSM)s, combining data flow and control behavior. Key to our learning technique is a novel learning model based on so-called tree queries. The learning algorithm uses the tree queries to infer symbolic data constraints on parameters, e.g., sequence numbers, time stamps, identifiers, or even simple arithmetic. We describe sufficient conditions for the properties that the symbolic constraints provided by a tree query in general must have to be usable in our learning model. We have evaluated our algorithm in a black-box scenario, where tree queries are realized through (black-box) testing. Our case studies include connection establishment in TCP and a priority queue from the Java Class Library.

  19. Behavioral Modeling for Mental Health using Machine Learning Algorithms.

    Science.gov (United States)

    Srividya, M; Mohanavalli, S; Bhalaji, N

    2018-04-03

    Mental health is an indicator of emotional, psychological and social well-being of an individual. It determines how an individual thinks, feels and handle situations. Positive mental health helps one to work productively and realize their full potential. Mental health is important at every stage of life, from childhood and adolescence through adulthood. Many factors contribute to mental health problems which lead to mental illness like stress, social anxiety, depression, obsessive compulsive disorder, drug addiction, and personality disorders. It is becoming increasingly important to determine the onset of the mental illness to maintain proper life balance. The nature of machine learning algorithms and Artificial Intelligence (AI) can be fully harnessed for predicting the onset of mental illness. Such applications when implemented in real time will benefit the society by serving as a monitoring tool for individuals with deviant behavior. This research work proposes to apply various machine learning algorithms such as support vector machines, decision trees, naïve bayes classifier, K-nearest neighbor classifier and logistic regression to identify state of mental health in a target group. The responses obtained from the target group for the designed questionnaire were first subject to unsupervised learning techniques. The labels obtained as a result of clustering were validated by computing the Mean Opinion Score. These cluster labels were then used to build classifiers to predict the mental health of an individual. Population from various groups like high school students, college students and working professionals were considered as target groups. The research presents an analysis of applying the aforementioned machine learning algorithms on the target groups and also suggests directions for future work.

  20. Learning Algorithm of Boltzmann Machine Based on Spatial Monte Carlo Integration Method

    Directory of Open Access Journals (Sweden)

    Muneki Yasuda

    2018-04-01

    Full Text Available The machine learning techniques for Markov random fields are fundamental in various fields involving pattern recognition, image processing, sparse modeling, and earth science, and a Boltzmann machine is one of the most important models in Markov random fields. However, the inference and learning problems in the Boltzmann machine are NP-hard. The investigation of an effective learning algorithm for the Boltzmann machine is one of the most important challenges in the field of statistical machine learning. In this paper, we study Boltzmann machine learning based on the (first-order spatial Monte Carlo integration method, referred to as the 1-SMCI learning method, which was proposed in the author’s previous paper. In the first part of this paper, we compare the method with the maximum pseudo-likelihood estimation (MPLE method using a theoretical and a numerical approaches, and show the 1-SMCI learning method is more effective than the MPLE. In the latter part, we compare the 1-SMCI learning method with other effective methods, ratio matching and minimum probability flow, using a numerical experiment, and show the 1-SMCI learning method outperforms them.

  1. RG-inspired machine learning for lattice field theory

    Directory of Open Access Journals (Sweden)

    Foreman Sam

    2018-01-01

    Full Text Available Machine learning has been a fast growing field of research in several areas dealing with large datasets. We report recent attempts to use renormalization group (RG ideas in the context of machine learning. We examine coarse graining procedures for perceptron models designed to identify the digits of the MNIST data. We discuss the correspondence between principal components analysis (PCA and RG flows across the transition for worm configurations of the 2D Ising model. Preliminary results regarding the logarithmic divergence of the leading PCA eigenvalue were presented at the conference. More generally, we discuss the relationship between PCA and observables in Monte Carlo simulations and the possibility of reducing the number of learning parameters in supervised learning based on RG inspired hierarchical ansatzes.

  2. RG-inspired machine learning for lattice field theory

    Science.gov (United States)

    Foreman, Sam; Giedt, Joel; Meurice, Yannick; Unmuth-Yockey, Judah

    2018-03-01

    Machine learning has been a fast growing field of research in several areas dealing with large datasets. We report recent attempts to use renormalization group (RG) ideas in the context of machine learning. We examine coarse graining procedures for perceptron models designed to identify the digits of the MNIST data. We discuss the correspondence between principal components analysis (PCA) and RG flows across the transition for worm configurations of the 2D Ising model. Preliminary results regarding the logarithmic divergence of the leading PCA eigenvalue were presented at the conference. More generally, we discuss the relationship between PCA and observables in Monte Carlo simulations and the possibility of reducing the number of learning parameters in supervised learning based on RG inspired hierarchical ansatzes.

  3. Machine Learning and Applied Linguistics

    OpenAIRE

    Vajjala, Sowmya

    2018-01-01

    This entry introduces the topic of machine learning and provides an overview of its relevance for applied linguistics and language learning. The discussion will focus on giving an introduction to the methods and applications of machine learning in applied linguistics, and will provide references for further study.

  4. Study of Environmental Data Complexity using Extreme Learning Machine

    Science.gov (United States)

    Leuenberger, Michael; Kanevski, Mikhail

    2017-04-01

    The main goals of environmental data science using machine learning algorithm deal, in a broad sense, around the calibration, the prediction and the visualization of hidden relationship between input and output variables. In order to optimize the models and to understand the phenomenon under study, the characterization of the complexity (at different levels) should be taken into account. Therefore, the identification of the linear or non-linear behavior between input and output variables adds valuable information for the knowledge of the phenomenon complexity. The present research highlights and investigates the different issues that can occur when identifying the complexity (linear/non-linear) of environmental data using machine learning algorithm. In particular, the main attention is paid to the description of a self-consistent methodology for the use of Extreme Learning Machines (ELM, Huang et al., 2006), which recently gained a great popularity. By applying two ELM models (with linear and non-linear activation functions) and by comparing their efficiency, quantification of the linearity can be evaluated. The considered approach is accompanied by simulated and real high dimensional and multivariate data case studies. In conclusion, the current challenges and future development in complexity quantification using environmental data mining are discussed. References - Huang, G.-B., Zhu, Q.-Y., Siew, C.-K., 2006. Extreme learning machine: theory and applications. Neurocomputing 70 (1-3), 489-501. - Kanevski, M., Pozdnoukhov, A., Timonin, V., 2009. Machine Learning for Spatial Environmental Data. EPFL Press; Lausanne, Switzerland, p.392. - Leuenberger, M., Kanevski, M., 2015. Extreme Learning Machines for spatial environmental data. Computers and Geosciences 85, 64-73.

  5. New Applications of Learning Machines

    DEFF Research Database (Denmark)

    Larsen, Jan

    * Machine learning framework for sound search * Genre classification * Music separation * MIMO channel estimation and symbol detection......* Machine learning framework for sound search * Genre classification * Music separation * MIMO channel estimation and symbol detection...

  6. A Novel Application of Machine Learning Methods to Model Microcontroller Upset Due to Intentional Electromagnetic Interference

    Science.gov (United States)

    Bilalic, Rusmir

    A novel application of support vector machines (SVMs), artificial neural networks (ANNs), and Gaussian processes (GPs) for machine learning (GPML) to model microcontroller unit (MCU) upset due to intentional electromagnetic interference (IEMI) is presented. In this approach, an MCU performs a counting operation (0-7) while electromagnetic interference in the form of a radio frequency (RF) pulse is direct-injected into the MCU clock line. Injection times with respect to the clock signal are the clock low, clock rising edge, clock high, and the clock falling edge periods in the clock window during which the MCU is performing initialization and executing the counting procedure. The intent is to cause disruption in the counting operation and model the probability of effect (PoE) using machine learning tools. Five experiments were executed as part of this research, each of which contained a set of 38,300 training points and 38,300 test points, for a total of 383,000 total points with the following experiment variables: injection times with respect to the clock signal, injected RF power, injected RF pulse width, and injected RF frequency. For the 191,500 training points, the average training error was 12.47%, while for the 191,500 test points the average test error was 14.85%, meaning that on average, the machine was able to predict MCU upset with an 85.15% accuracy. Leaving out the results for the worst-performing model (SVM with a linear kernel), the test prediction accuracy for the remaining machines is almost 89%. All three machine learning methods (ANNs, SVMs, and GPML) showed excellent and consistent results in their ability to model and predict the PoE on an MCU due to IEMI. The GP approach performed best during training with a 7.43% average training error, while the ANN technique was most accurate during the test with a 10.80% error.

  7. A distributed algorithm for machine learning

    Science.gov (United States)

    Chen, Shihong

    2018-04-01

    This paper considers a distributed learning problem in which a group of machines in a connected network, each learning its own local dataset, aim to reach a consensus at an optimal model, by exchanging information only with their neighbors but without transmitting data. A distributed algorithm is proposed to solve this problem under appropriate assumptions.

  8. Visible Machine Learning for Biomedicine.

    Science.gov (United States)

    Yu, Michael K; Ma, Jianzhu; Fisher, Jasmin; Kreisberg, Jason F; Raphael, Benjamin J; Ideker, Trey

    2018-06-14

    A major ambition of artificial intelligence lies in translating patient data to successful therapies. Machine learning models face particular challenges in biomedicine, however, including handling of extreme data heterogeneity and lack of mechanistic insight into predictions. Here, we argue for "visible" approaches that guide model structure with experimental biology. Copyright © 2018. Published by Elsevier Inc.

  9. Machine learning in healthcare informatics

    CERN Document Server

    Acharya, U; Dua, Prerna

    2014-01-01

    The book is a unique effort to represent a variety of techniques designed to represent, enhance, and empower multi-disciplinary and multi-institutional machine learning research in healthcare informatics. The book provides a unique compendium of current and emerging machine learning paradigms for healthcare informatics and reflects the diversity, complexity and the depth and breath of this multi-disciplinary area. The integrated, panoramic view of data and machine learning techniques can provide an opportunity for novel clinical insights and discoveries.

  10. Machine learning systems

    Energy Technology Data Exchange (ETDEWEB)

    Forsyth, R

    1984-05-01

    With the dramatic rise of expert systems has come a renewed interest in the fuel that drives them-knowledge. For it is specialist knowledge which gives expert systems their power. But extracting knowledge from human experts in symbolic form has proved arduous and labour-intensive. So the idea of machine learning is enjoying a renaissance. Machine learning is any automatic improvement in the performance of a computer system over time, as a result of experience. Thus a learning algorithm seeks to do one or more of the following: cover a wider range of problems, deliver more accurate solutions, obtain answers more cheaply, and simplify codified knowledge. 6 references.

  11. ClearTK 2.0: Design Patterns for Machine Learning in UIMA

    OpenAIRE

    Bethard, Steven; Ogren, Philip; Becker, Lee

    2014-01-01

    ClearTK adds machine learning functionality to the UIMA framework, providing wrappers to popular machine learning libraries, a rich feature extraction library that works across different classifiers, and utilities for applying and evaluating machine learning models. Since its inception in 2008, ClearTK has evolved in response to feedback from developers and the community. This evolution has followed a number of important design principles including: conceptually simple annotator interfaces, r...

  12. Addressing uncertainty in atomistic machine learning

    DEFF Research Database (Denmark)

    Peterson, Andrew A.; Christensen, Rune; Khorshidi, Alireza

    2017-01-01

    Machine-learning regression has been demonstrated to precisely emulate the potential energy and forces that are output from more expensive electronic-structure calculations. However, to predict new regions of the potential energy surface, an assessment must be made of the credibility of the predi......Machine-learning regression has been demonstrated to precisely emulate the potential energy and forces that are output from more expensive electronic-structure calculations. However, to predict new regions of the potential energy surface, an assessment must be made of the credibility...... of the predictions. In this perspective, we address the types of errors that might arise in atomistic machine learning, the unique aspects of atomistic simulations that make machine-learning challenging, and highlight how uncertainty analysis can be used to assess the validity of machine-learning predictions. We...... suggest this will allow researchers to more fully use machine learning for the routine acceleration of large, high-accuracy, or extended-time simulations. In our demonstrations, we use a bootstrap ensemble of neural network-based calculators, and show that the width of the ensemble can provide an estimate...

  13. Machine learning with R

    CERN Document Server

    Lantz, Brett

    2015-01-01

    Perhaps you already know a bit about machine learning but have never used R, or perhaps you know a little R but are new to machine learning. In either case, this book will get you up and running quickly. It would be helpful to have a bit of familiarity with basic programming concepts, but no prior experience is required.

  14. Introduction to machine learning: k-nearest neighbors.

    Science.gov (United States)

    Zhang, Zhongheng

    2016-06-01

    Machine learning techniques have been widely used in many scientific fields, but its use in medical literature is limited partly because of technical difficulties. k-nearest neighbors (kNN) is a simple method of machine learning. The article introduces some basic ideas underlying the kNN algorithm, and then focuses on how to perform kNN modeling with R. The dataset should be prepared before running the knn() function in R. After prediction of outcome with kNN algorithm, the diagnostic performance of the model should be checked. Average accuracy is the mostly widely used statistic to reflect the kNN algorithm. Factors such as k value, distance calculation and choice of appropriate predictors all have significant impact on the model performance.

  15. Machine learning of the reactor core loading pattern critical parameters

    International Nuclear Information System (INIS)

    Trontl, K.; Pevec, D.; Smuc, T.

    2007-01-01

    The usual approach to loading pattern optimization involves high degree of engineering judgment, a set of heuristic rules, an optimization algorithm and a computer code used for evaluating proposed loading patterns. The speed of the optimization process is highly dependent on the computer code used for the evaluation. In this paper we investigate the applicability of a machine learning model which could be used for fast loading pattern evaluation. We employed a recently introduced machine learning technique, Support Vector Regression (SVR), which has a strong theoretical background in statistical learning theory. Superior empirical performance of the method has been reported on difficult regression problems in different fields of science and technology. SVR is a data driven, kernel based, nonlinear modelling paradigm, in which model parameters are automatically determined by solving a quadratic optimization problem. The main objective of the work reported in this paper was to evaluate the possibility of applying SVR method for reactor core loading pattern modelling. The starting set of experimental data for training and testing of the machine learning algorithm was obtained using a two-dimensional diffusion theory reactor physics computer code. We illustrate the performance of the solution and discuss its applicability, i.e., complexity, speed and accuracy, with a projection to a more realistic scenario involving machine learning from the results of more accurate and time consuming three-dimensional core modelling code. (author)

  16. Prediction of drug synergy in cancer using ensemble-based machine learning techniques

    Science.gov (United States)

    Singh, Harpreet; Rana, Prashant Singh; Singh, Urvinder

    2018-04-01

    Drug synergy prediction plays a significant role in the medical field for inhibiting specific cancer agents. It can be developed as a pre-processing tool for therapeutic successes. Examination of different drug-drug interaction can be done by drug synergy score. It needs efficient regression-based machine learning approaches to minimize the prediction errors. Numerous machine learning techniques such as neural networks, support vector machines, random forests, LASSO, Elastic Nets, etc., have been used in the past to realize requirement as mentioned above. However, these techniques individually do not provide significant accuracy in drug synergy score. Therefore, the primary objective of this paper is to design a neuro-fuzzy-based ensembling approach. To achieve this, nine well-known machine learning techniques have been implemented by considering the drug synergy data. Based on the accuracy of each model, four techniques with high accuracy are selected to develop ensemble-based machine learning model. These models are Random forest, Fuzzy Rules Using Genetic Cooperative-Competitive Learning method (GFS.GCCL), Adaptive-Network-Based Fuzzy Inference System (ANFIS) and Dynamic Evolving Neural-Fuzzy Inference System method (DENFIS). Ensembling is achieved by evaluating the biased weighted aggregation (i.e. adding more weights to the model with a higher prediction score) of predicted data by selected models. The proposed and existing machine learning techniques have been evaluated on drug synergy score data. The comparative analysis reveals that the proposed method outperforms others in terms of accuracy, root mean square error and coefficient of correlation.

  17. Accelerated Monte Carlo system reliability analysis through machine-learning-based surrogate models of network connectivity

    International Nuclear Information System (INIS)

    Stern, R.E.; Song, J.; Work, D.B.

    2017-01-01

    The two-terminal reliability problem in system reliability analysis is known to be computationally intractable for large infrastructure graphs. Monte Carlo techniques can estimate the probability of a disconnection between two points in a network by selecting a representative sample of network component failure realizations and determining the source-terminal connectivity of each realization. To reduce the runtime required for the Monte Carlo approximation, this article proposes an approximate framework in which the connectivity check of each sample is estimated using a machine-learning-based classifier. The framework is implemented using both a support vector machine (SVM) and a logistic regression based surrogate model. Numerical experiments are performed on the California gas distribution network using the epicenter and magnitude of the 1989 Loma Prieta earthquake as well as randomly-generated earthquakes. It is shown that the SVM and logistic regression surrogate models are able to predict network connectivity with accuracies of 99% for both methods, and are 1–2 orders of magnitude faster than using a Monte Carlo method with an exact connectivity check. - Highlights: • Surrogate models of network connectivity are developed by machine-learning algorithms. • Developed surrogate models can reduce the runtime required for Monte Carlo simulations. • Support vector machine and logistic regressions are employed to develop surrogate models. • Numerical example of California gas distribution network demonstrate the proposed approach. • The developed models have accuracies 99%, and are 1–2 orders of magnitude faster than MCS.

  18. Machine Learning for ATLAS DDM Network Metrics

    CERN Document Server

    Lassnig, Mario; The ATLAS collaboration; Vamosi, Ralf

    2016-01-01

    The increasing volume of physics data is posing a critical challenge to the ATLAS experiment. In anticipation of high luminosity physics, automation of everyday data management tasks has become necessary. Previously many of these tasks required human decision-making and operation. Recent advances in hardware and software have made it possible to entrust more complicated duties to automated systems using models trained by machine learning algorithms. In this contribution we show results from our ongoing automation efforts. First, we describe our framework for distributed data management and network metrics, automatically extract and aggregate data, train models with various machine learning algorithms, and eventually score the resulting models and parameters. Second, we use these models to forecast metrics relevant for network-aware job scheduling and data brokering. We show the characteristics of the data and evaluate the forecasting accuracy of our models.

  19. Machine learning of network metrics in ATLAS Distributed Data Management

    Science.gov (United States)

    Lassnig, Mario; Toler, Wesley; Vamosi, Ralf; Bogado, Joaquin; ATLAS Collaboration

    2017-10-01

    The increasing volume of physics data poses a critical challenge to the ATLAS experiment. In anticipation of high luminosity physics, automation of everyday data management tasks has become necessary. Previously many of these tasks required human decision-making and operation. Recent advances in hardware and software have made it possible to entrust more complicated duties to automated systems using models trained by machine learning algorithms. In this contribution we show results from one of our ongoing automation efforts that focuses on network metrics. First, we describe our machine learning framework built atop the ATLAS Analytics Platform. This framework can automatically extract and aggregate data, train models with various machine learning algorithms, and eventually score the resulting models and parameters. Second, we use these models to forecast metrics relevant for networkaware job scheduling and data brokering. We show the characteristics of the data and evaluate the forecasting accuracy of our models.

  20. Comparison of machine-learning algorithms to build a predictive model for detecting undiagnosed diabetes - ELSA-Brasil: accuracy study.

    Science.gov (United States)

    Olivera, André Rodrigues; Roesler, Valter; Iochpe, Cirano; Schmidt, Maria Inês; Vigo, Álvaro; Barreto, Sandhi Maria; Duncan, Bruce Bartholow

    2017-01-01

    Type 2 diabetes is a chronic disease associated with a wide range of serious health complications that have a major impact on overall health. The aims here were to develop and validate predictive models for detecting undiagnosed diabetes using data from the Longitudinal Study of Adult Health (ELSA-Brasil) and to compare the performance of different machine-learning algorithms in this task. Comparison of machine-learning algorithms to develop predictive models using data from ELSA-Brasil. After selecting a subset of 27 candidate variables from the literature, models were built and validated in four sequential steps: (i) parameter tuning with tenfold cross-validation, repeated three times; (ii) automatic variable selection using forward selection, a wrapper strategy with four different machine-learning algorithms and tenfold cross-validation (repeated three times), to evaluate each subset of variables; (iii) error estimation of model parameters with tenfold cross-validation, repeated ten times; and (iv) generalization testing on an independent dataset. The models were created with the following machine-learning algorithms: logistic regression, artificial neural network, naïve Bayes, K-nearest neighbor and random forest. The best models were created using artificial neural networks and logistic regression. -These achieved mean areas under the curve of, respectively, 75.24% and 74.98% in the error estimation step and 74.17% and 74.41% in the generalization testing step. Most of the predictive models produced similar results, and demonstrated the feasibility of identifying individuals with highest probability of having undiagnosed diabetes, through easily-obtained clinical data.

  1. Predicting Solar Activity Using Machine-Learning Methods

    Science.gov (United States)

    Bobra, M.

    2017-12-01

    Of all the activity observed on the Sun, two of the most energetic events are flares and coronal mass ejections. However, we do not, as of yet, fully understand the physical mechanism that triggers solar eruptions. A machine-learning algorithm, which is favorable in cases where the amount of data is large, is one way to [1] empirically determine the signatures of this mechanism in solar image data and [2] use them to predict solar activity. In this talk, we discuss the application of various machine learning algorithms - specifically, a Support Vector Machine, a sparse linear regression (Lasso), and Convolutional Neural Network - to image data from the photosphere, chromosphere, transition region, and corona taken by instruments aboard the Solar Dynamics Observatory in order to predict solar activity on a variety of time scales. Such an approach may be useful since, at the present time, there are no physical models of flares available for real-time prediction. We discuss our results (Bobra and Couvidat, 2015; Bobra and Ilonidis, 2016; Jonas et al., 2017) as well as other attempts to predict flares using machine-learning (e.g. Ahmed et al., 2013; Nishizuka et al. 2017) and compare these results with the more traditional techniques used by the NOAA Space Weather Prediction Center (Crown, 2012). We also discuss some of the challenges in using machine-learning algorithms for space science applications.

  2. Machine Learning for Treatment Assignment: Improving Individualized Risk Attribution.

    Science.gov (United States)

    Weiss, Jeremy; Kuusisto, Finn; Boyd, Kendrick; Liu, Jie; Page, David

    2015-01-01

    Clinical studies model the average treatment effect (ATE), but apply this population-level effect to future individuals. Due to recent developments of machine learning algorithms with useful statistical guarantees, we argue instead for modeling the individualized treatment effect (ITE), which has better applicability to new patients. We compare ATE-estimation using randomized and observational analysis methods against ITE-estimation using machine learning, and describe how the ITE theoretically generalizes to new population distributions, whereas the ATE may not. On a synthetic data set of statin use and myocardial infarction (MI), we show that a learned ITE model improves true ITE estimation and outperforms the ATE. We additionally argue that ITE models should be learned with a consistent, nonparametric algorithm from unweighted examples and show experiments in favor of our argument using our synthetic data model and a real data set of D-penicillamine use for primary biliary cirrhosis.

  3. Reverse hypothesis machine learning a practitioner's perspective

    CERN Document Server

    Kulkarni, Parag

    2017-01-01

    This book introduces a paradigm of reverse hypothesis machines (RHM), focusing on knowledge innovation and machine learning. Knowledge- acquisition -based learning is constrained by large volumes of data and is time consuming. Hence Knowledge innovation based learning is the need of time. Since under-learning results in cognitive inabilities and over-learning compromises freedom, there is need for optimal machine learning. All existing learning techniques rely on mapping input and output and establishing mathematical relationships between them. Though methods change the paradigm remains the same—the forward hypothesis machine paradigm, which tries to minimize uncertainty. The RHM, on the other hand, makes use of uncertainty for creative learning. The approach uses limited data to help identify new and surprising solutions. It focuses on improving learnability, unlike traditional approaches, which focus on accuracy. The book is useful as a reference book for machine learning researchers and professionals as ...

  4. High-Risk Breast Lesions: A Machine Learning Model to Predict Pathologic Upgrade and Reduce Unnecessary Surgical Excision.

    Science.gov (United States)

    Bahl, Manisha; Barzilay, Regina; Yedidia, Adam B; Locascio, Nicholas J; Yu, Lili; Lehman, Constance D

    2018-03-01

    Purpose To develop a machine learning model that allows high-risk breast lesions (HRLs) diagnosed with image-guided needle biopsy that require surgical excision to be distinguished from HRLs that are at low risk for upgrade to cancer at surgery and thus could be surveilled. Materials and Methods Consecutive patients with biopsy-proven HRLs who underwent surgery or at least 2 years of imaging follow-up from June 2006 to April 2015 were identified. A random forest machine learning model was developed to identify HRLs at low risk for upgrade to cancer. Traditional features such as age and HRL histologic results were used in the model, as were text features from the biopsy pathologic report. Results One thousand six HRLs were identified, with a cancer upgrade rate of 11.4% (115 of 1006). A machine learning random forest model was developed with 671 HRLs and tested with an independent set of 335 HRLs. Among the most important traditional features were age and HRL histologic results (eg, atypical ductal hyperplasia). An important text feature from the pathologic reports was "severely atypical." Instead of surgical excision of all HRLs, if those categorized with the model to be at low risk for upgrade were surveilled and the remainder were excised, then 97.4% (37 of 38) of malignancies would have been diagnosed at surgery, and 30.6% (91 of 297) of surgeries of benign lesions could have been avoided. Conclusion This study provides proof of concept that a machine learning model can be applied to predict the risk of upgrade of HRLs to cancer. Use of this model could decrease unnecessary surgery by nearly one-third and could help guide clinical decision making with regard to surveillance versus surgical excision of HRLs. © RSNA, 2017.

  5. Advanced Machine Learning for Classification, Regression, and Generation in Jet Physics

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    There is a deep connection between machine learning and jet physics - after all, jets are defined by unsupervised learning algorithms. Jet physics has been a driving force for studying modern machine learning in high energy physics. Domain specific challenges require new techniques to make full use of the algorithms. A key focus is on understanding how and what the algorithms learn. Modern machine learning techniques for jet physics are demonstrated for classification, regression, and generation. In addition to providing powerful baseline performance, we show how to train complex models directly on data and to generate sparse stacked images with non-uniform granularity.

  6. Multi-fidelity machine learning models for accurate bandgap predictions of solids

    International Nuclear Information System (INIS)

    Pilania, Ghanshyam; Gubernatis, James E.; Lookman, Turab

    2016-01-01

    Here, we present a multi-fidelity co-kriging statistical learning framework that combines variable-fidelity quantum mechanical calculations of bandgaps to generate a machine-learned model that enables low-cost accurate predictions of the bandgaps at the highest fidelity level. Additionally, the adopted Gaussian process regression formulation allows us to predict the underlying uncertainties as a measure of our confidence in the predictions. In using a set of 600 elpasolite compounds as an example dataset and using semi-local and hybrid exchange correlation functionals within density functional theory as two levels of fidelities, we demonstrate the excellent learning performance of the method against actual high fidelity quantum mechanical calculations of the bandgaps. The presented statistical learning method is not restricted to bandgaps or electronic structure methods and extends the utility of high throughput property predictions in a significant way.

  7. Machine learning of network metrics in ATLAS Distributed Data Management

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00218873; The ATLAS collaboration; Toler, Wesley; Vamosi, Ralf; Bogado Garcia, Joaquin Ignacio

    2017-01-01

    The increasing volume of physics data poses a critical challenge to the ATLAS experiment. In anticipation of high luminosity physics, automation of everyday data management tasks has become necessary. Previously many of these tasks required human decision-making and operation. Recent advances in hardware and software have made it possible to entrust more complicated duties to automated systems using models trained by machine learning algorithms. In this contribution we show results from one of our ongoing automation efforts that focuses on network metrics. First, we describe our machine learning framework built atop the ATLAS Analytics Platform. This framework can automatically extract and aggregate data, train models with various machine learning algorithms, and eventually score the resulting models and parameters. Second, we use these models to forecast metrics relevant for network-aware job scheduling and data brokering. We show the characteristics of the data and evaluate the forecasting accuracy of our m...

  8. Machine learning in geosciences and remote sensing

    Directory of Open Access Journals (Sweden)

    David J. Lary

    2016-01-01

    Full Text Available Learning incorporates a broad range of complex procedures. Machine learning (ML is a subdivision of artificial intelligence based on the biological learning process. The ML approach deals with the design of algorithms to learn from machine readable data. ML covers main domains such as data mining, difficult-to-program applications, and software applications. It is a collection of a variety of algorithms (e.g. neural networks, support vector machines, self-organizing map, decision trees, random forests, case-based reasoning, genetic programming, etc. that can provide multivariate, nonlinear, nonparametric regression or classification. The modeling capabilities of the ML-based methods have resulted in their extensive applications in science and engineering. Herein, the role of ML as an effective approach for solving problems in geosciences and remote sensing will be highlighted. The unique features of some of the ML techniques will be outlined with a specific attention to genetic programming paradigm. Furthermore, nonparametric regression and classification illustrative examples are presented to demonstrate the efficiency of ML for tackling the geosciences and remote sensing problems.

  9. Machine Learning wins the Higgs Challenge

    CERN Multimedia

    Abha Eli Phoboo

    2014-01-01

    The winner of the four-month-long Higgs Machine Learning Challenge, launched on 12 May, is Gábor Melis from Hungary, followed closely by Tim Salimans from the Netherlands and Pierre Courtiol from France. The challenge explored the potential of advanced machine learning methods to improve the significance of the Higgs discovery.   Winners of the Higgs Machine Learning Challenge: Gábor Melis and Tim Salimans (top row), Tianqi Chen and Tong He (bottom row). Participants in the Higgs Machine Learning Challenge were tasked with developing an algorithm to improve the detection of Higgs boson signal events decaying into two tau particles in a sample of simulated ATLAS data* that contains few signal and a majority of non-Higgs boson “background” events. No knowledge of particle physics was required for the challenge but skills in machine learning - the training of computers to recognise patterns in data – were essential. The Challenge, hosted by Ka...

  10. Machine Learning for Robotic Vision

    OpenAIRE

    Drummond, Tom

    2018-01-01

    Machine learning is a crucial enabling technology for robotics, in particular for unlocking the capabilities afforded by visual sensing. This talk will present research within Prof Drummond’s lab that explores how machine learning can be developed and used within the context of Robotic Vision.

  11. Machine learning in virtual screening.

    Science.gov (United States)

    Melville, James L; Burke, Edmund K; Hirst, Jonathan D

    2009-05-01

    In this review, we highlight recent applications of machine learning to virtual screening, focusing on the use of supervised techniques to train statistical learning algorithms to prioritize databases of molecules as active against a particular protein target. Both ligand-based similarity searching and structure-based docking have benefited from machine learning algorithms, including naïve Bayesian classifiers, support vector machines, neural networks, and decision trees, as well as more traditional regression techniques. Effective application of these methodologies requires an appreciation of data preparation, validation, optimization, and search methodologies, and we also survey developments in these areas.

  12. Quantum Machine Learning

    Science.gov (United States)

    Biswas, Rupak

    2018-01-01

    Quantum computing promises an unprecedented ability to solve intractable problems by harnessing quantum mechanical effects such as tunneling, superposition, and entanglement. The Quantum Artificial Intelligence Laboratory (QuAIL) at NASA Ames Research Center is the space agency's primary facility for conducting research and development in quantum information sciences. QuAIL conducts fundamental research in quantum physics but also explores how best to exploit and apply this disruptive technology to enable NASA missions in aeronautics, Earth and space sciences, and space exploration. At the same time, machine learning has become a major focus in computer science and captured the imagination of the public as a panacea to myriad big data problems. In this talk, we will discuss how classical machine learning can take advantage of quantum computing to significantly improve its effectiveness. Although we illustrate this concept on a quantum annealer, other quantum platforms could be used as well. If explored fully and implemented efficiently, quantum machine learning could greatly accelerate a wide range of tasks leading to new technologies and discoveries that will significantly change the way we solve real-world problems.

  13. Machine-Learning Algorithms to Automate Morphological and Functional Assessments in 2D Echocardiography.

    Science.gov (United States)

    Narula, Sukrit; Shameer, Khader; Salem Omar, Alaa Mabrouk; Dudley, Joel T; Sengupta, Partho P

    2016-11-29

    Machine-learning models may aid cardiac phenotypic recognition by using features of cardiac tissue deformation. This study investigated the diagnostic value of a machine-learning framework that incorporates speckle-tracking echocardiographic data for automated discrimination of hypertrophic cardiomyopathy (HCM) from physiological hypertrophy seen in athletes (ATH). Expert-annotated speckle-tracking echocardiographic datasets obtained from 77 ATH and 62 HCM patients were used for developing an automated system. An ensemble machine-learning model with 3 different machine-learning algorithms (support vector machines, random forests, and artificial neural networks) was developed and a majority voting method was used for conclusive predictions with further K-fold cross-validation. Feature selection using an information gain (IG) algorithm revealed that volume was the best predictor for differentiating between HCM ands. ATH (IG = 0.24) followed by mid-left ventricular segmental (IG = 0.134) and average longitudinal strain (IG = 0.131). The ensemble machine-learning model showed increased sensitivity and specificity compared with early-to-late diastolic transmitral velocity ratio (p 13 mm. In this subgroup analysis, the automated model continued to show equal sensitivity, but increased specificity relative to early-to-late diastolic transmitral velocity ratio, e', and strain. Our results suggested that machine-learning algorithms can assist in the discrimination of physiological versus pathological patterns of hypertrophic remodeling. This effort represents a step toward the development of a real-time, machine-learning-based system for automated interpretation of echocardiographic images, which may help novice readers with limited experience. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  14. Automatically explaining machine learning prediction results: a demonstration on type 2 diabetes risk prediction.

    Science.gov (United States)

    Luo, Gang

    2016-01-01

    Predictive modeling is a key component of solutions to many healthcare problems. Among all predictive modeling approaches, machine learning methods often achieve the highest prediction accuracy, but suffer from a long-standing open problem precluding their widespread use in healthcare. Most machine learning models give no explanation for their prediction results, whereas interpretability is essential for a predictive model to be adopted in typical healthcare settings. This paper presents the first complete method for automatically explaining results for any machine learning predictive model without degrading accuracy. We did a computer coding implementation of the method. Using the electronic medical record data set from the Practice Fusion diabetes classification competition containing patient records from all 50 states in the United States, we demonstrated the method on predicting type 2 diabetes diagnosis within the next year. For the champion machine learning model of the competition, our method explained prediction results for 87.4 % of patients who were correctly predicted by the model to have type 2 diabetes diagnosis within the next year. Our demonstration showed the feasibility of automatically explaining results for any machine learning predictive model without degrading accuracy.

  15. In vitro molecular machine learning algorithm via symmetric internal loops of DNA.

    Science.gov (United States)

    Lee, Ji-Hoon; Lee, Seung Hwan; Baek, Christina; Chun, Hyosun; Ryu, Je-Hwan; Kim, Jin-Woo; Deaton, Russell; Zhang, Byoung-Tak

    2017-08-01

    Programmable biomolecules, such as DNA strands, deoxyribozymes, and restriction enzymes, have been used to solve computational problems, construct large-scale logic circuits, and program simple molecular games. Although studies have shown the potential of molecular computing, the capability of computational learning with DNA molecules, i.e., molecular machine learning, has yet to be experimentally verified. Here, we present a novel molecular learning in vitro model in which symmetric internal loops of double-stranded DNA are exploited to measure the differences between training instances, thus enabling the molecules to learn from small errors. The model was evaluated on a data set of twenty dialogue sentences obtained from the television shows Friends and Prison Break. The wet DNA-computing experiments confirmed that the molecular learning machine was able to generalize the dialogue patterns of each show and successfully identify the show from which the sentences originated. The molecular machine learning model described here opens the way for solving machine learning problems in computer science and biology using in vitro molecular computing with the data encoded in DNA molecules. Copyright © 2017. Published by Elsevier B.V.

  16. Machine Learning Techniques for Modelling Short Term Land-Use Change

    Directory of Open Access Journals (Sweden)

    Mileva Samardžić-Petrović

    2017-11-01

    Full Text Available The representation of land use change (LUC is often achieved by using data-driven methods that include machine learning (ML techniques. The main objectives of this research study are to implement three ML techniques, Decision Trees (DT, Neural Networks (NN, and Support Vector Machines (SVM for LUC modeling, in order to compare these three ML techniques and to find the appropriate data representation. The ML techniques are applied on the case study of LUC in three municipalities of the City of Belgrade, the Republic of Serbia, using historical geospatial data sets and considering nine land use classes. The ML models were built and assessed using two different time intervals. The information gain ranking technique and the recursive attribute elimination procedure were implemented to find the most informative attributes that were related to LUC in the study area. The results indicate that all three ML techniques can be used effectively for short-term forecasting of LUC, but the SVM achieved the highest agreement of predicted changes.

  17. Machine learning derived risk prediction of anorexia nervosa.

    Science.gov (United States)

    Guo, Yiran; Wei, Zhi; Keating, Brendan J; Hakonarson, Hakon

    2016-01-20

    Anorexia nervosa (AN) is a complex psychiatric disease with a moderate to strong genetic contribution. In addition to conventional genome wide association (GWA) studies, researchers have been using machine learning methods in conjunction with genomic data to predict risk of diseases in which genetics play an important role. In this study, we collected whole genome genotyping data on 3940 AN cases and 9266 controls from the Genetic Consortium for Anorexia Nervosa (GCAN), the Wellcome Trust Case Control Consortium 3 (WTCCC3), Price Foundation Collaborative Group and the Children's Hospital of Philadelphia (CHOP), and applied machine learning methods for predicting AN disease risk. The prediction performance is measured by area under the receiver operating characteristic curve (AUC), indicating how well the model distinguishes cases from unaffected control subjects. Logistic regression model with the lasso penalty technique generated an AUC of 0.693, while Support Vector Machines and Gradient Boosted Trees reached AUC's of 0.691 and 0.623, respectively. Using different sample sizes, our results suggest that larger datasets are required to optimize the machine learning models and achieve higher AUC values. To our knowledge, this is the first attempt to assess AN risk based on genome wide genotype level data. Future integration of genomic, environmental and family-based information is likely to improve the AN risk evaluation process, eventually benefitting AN patients and families in the clinical setting.

  18. Modeling the Swift BAT Trigger Algorithm with Machine Learning

    Science.gov (United States)

    Graff, Philip B.; Lien, Amy Y.; Baker, John G.; Sakamoto, Takanori

    2015-01-01

    To draw inferences about gamma-ray burst (GRB) source populations based on Swift observations, it is essential to understand the detection efficiency of the Swift burst alert telescope (BAT). This study considers the problem of modeling the Swift BAT triggering algorithm for long GRBs, a computationally expensive procedure, and models it using machine learning algorithms. A large sample of simulated GRBs from Lien et al. (2014) is used to train various models: random forests, boosted decision trees (with AdaBoost), support vector machines, and artificial neural networks. The best models have accuracies of approximately greater than 97% (approximately less than 3% error), which is a significant improvement on a cut in GRB flux which has an accuracy of 89:6% (10:4% error). These models are then used to measure the detection efficiency of Swift as a function of redshift z, which is used to perform Bayesian parameter estimation on the GRB rate distribution. We find a local GRB rate density of eta(sub 0) approximately 0.48(+0.41/-0.23) Gpc(exp -3) yr(exp -1) with power-law indices of eta(sub 1) approximately 1.7(+0.6/-0.5) and eta(sub 2) approximately -5.9(+5.7/-0.1) for GRBs above and below a break point of z(sub 1) approximately 6.8(+2.8/-3.2). This methodology is able to improve upon earlier studies by more accurately modeling Swift detection and using this for fully Bayesian model fitting. The code used in this is analysis is publicly available online.

  19. Machine learning in genetics and genomics

    Science.gov (United States)

    Libbrecht, Maxwell W.; Noble, William Stafford

    2016-01-01

    The field of machine learning promises to enable computers to assist humans in making sense of large, complex data sets. In this review, we outline some of the main applications of machine learning to genetic and genomic data. In the process, we identify some recurrent challenges associated with this type of analysis and provide general guidelines to assist in the practical application of machine learning to real genetic and genomic data. PMID:25948244

  20. Attention: A Machine Learning Perspective

    DEFF Research Database (Denmark)

    Hansen, Lars Kai

    2012-01-01

    We review a statistical machine learning model of top-down task driven attention based on the notion of ‘gist’. In this framework we consider the task to be represented as a classification problem with two sets of features — a gist of coarse grained global features and a larger set of low...

  1. Improving virtual screening predictive accuracy of Human kallikrein 5 inhibitors using machine learning models.

    Science.gov (United States)

    Fang, Xingang; Bagui, Sikha; Bagui, Subhash

    2017-08-01

    The readily available high throughput screening (HTS) data from the PubChem database provides an opportunity for mining of small molecules in a variety of biological systems using machine learning techniques. From the thousands of available molecular descriptors developed to encode useful chemical information representing the characteristics of molecules, descriptor selection is an essential step in building an optimal quantitative structural-activity relationship (QSAR) model. For the development of a systematic descriptor selection strategy, we need the understanding of the relationship between: (i) the descriptor selection; (ii) the choice of the machine learning model; and (iii) the characteristics of the target bio-molecule. In this work, we employed the Signature descriptor to generate a dataset on the Human kallikrein 5 (hK 5) inhibition confirmatory assay data and compared multiple classification models including logistic regression, support vector machine, random forest and k-nearest neighbor. Under optimal conditions, the logistic regression model provided extremely high overall accuracy (98%) and precision (90%), with good sensitivity (65%) in the cross validation test. In testing the primary HTS screening data with more than 200K molecular structures, the logistic regression model exhibited the capability of eliminating more than 99.9% of the inactive structures. As part of our exploration of the descriptor-model-target relationship, the excellent predictive performance of the combination of the Signature descriptor and the logistic regression model on the assay data of the Human kallikrein 5 (hK 5) target suggested a feasible descriptor/model selection strategy on similar targets. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Machine Learning in Medicine.

    Science.gov (United States)

    Deo, Rahul C

    2015-11-17

    Spurred by advances in processing power, memory, storage, and an unprecedented wealth of data, computers are being asked to tackle increasingly complex learning tasks, often with astonishing success. Computers have now mastered a popular variant of poker, learned the laws of physics from experimental data, and become experts in video games - tasks that would have been deemed impossible not too long ago. In parallel, the number of companies centered on applying complex data analysis to varying industries has exploded, and it is thus unsurprising that some analytic companies are turning attention to problems in health care. The purpose of this review is to explore what problems in medicine might benefit from such learning approaches and use examples from the literature to introduce basic concepts in machine learning. It is important to note that seemingly large enough medical data sets and adequate learning algorithms have been available for many decades, and yet, although there are thousands of papers applying machine learning algorithms to medical data, very few have contributed meaningfully to clinical care. This lack of impact stands in stark contrast to the enormous relevance of machine learning to many other industries. Thus, part of my effort will be to identify what obstacles there may be to changing the practice of medicine through statistical learning approaches, and discuss how these might be overcome. © 2015 American Heart Association, Inc.

  3. Machine Learning in Medicine

    Science.gov (United States)

    Deo, Rahul C.

    2015-01-01

    Spurred by advances in processing power, memory, storage, and an unprecedented wealth of data, computers are being asked to tackle increasingly complex learning tasks, often with astonishing success. Computers have now mastered a popular variant of poker, learned the laws of physics from experimental data, and become experts in video games – tasks which would have been deemed impossible not too long ago. In parallel, the number of companies centered on applying complex data analysis to varying industries has exploded, and it is thus unsurprising that some analytic companies are turning attention to problems in healthcare. The purpose of this review is to explore what problems in medicine might benefit from such learning approaches and use examples from the literature to introduce basic concepts in machine learning. It is important to note that seemingly large enough medical data sets and adequate learning algorithms have been available for many decades – and yet, although there are thousands of papers applying machine learning algorithms to medical data, very few have contributed meaningfully to clinical care. This lack of impact stands in stark contrast to the enormous relevance of machine learning to many other industries. Thus part of my effort will be to identify what obstacles there may be to changing the practice of medicine through statistical learning approaches, and discuss how these might be overcome. PMID:26572668

  4. Machine learning techniques for optical communication system optimization

    DEFF Research Database (Denmark)

    Zibar, Darko; Wass, Jesper; Thrane, Jakob

    In this paper, machine learning techniques relevant to optical communication are presented and discussed. The focus is on applying machine learning tools to optical performance monitoring and performance prediction.......In this paper, machine learning techniques relevant to optical communication are presented and discussed. The focus is on applying machine learning tools to optical performance monitoring and performance prediction....

  5. Machine vision systems using machine learning for industrial product inspection

    Science.gov (United States)

    Lu, Yi; Chen, Tie Q.; Chen, Jie; Zhang, Jian; Tisler, Anthony

    2002-02-01

    Machine vision inspection requires efficient processing time and accurate results. In this paper, we present a machine vision inspection architecture, SMV (Smart Machine Vision). SMV decomposes a machine vision inspection problem into two stages, Learning Inspection Features (LIF), and On-Line Inspection (OLI). The LIF is designed to learn visual inspection features from design data and/or from inspection products. During the OLI stage, the inspection system uses the knowledge learnt by the LIF component to inspect the visual features of products. In this paper we will present two machine vision inspection systems developed under the SMV architecture for two different types of products, Printed Circuit Board (PCB) and Vacuum Florescent Displaying (VFD) boards. In the VFD board inspection system, the LIF component learns inspection features from a VFD board and its displaying patterns. In the PCB board inspection system, the LIF learns the inspection features from the CAD file of a PCB board. In both systems, the LIF component also incorporates interactive learning to make the inspection system more powerful and efficient. The VFD system has been deployed successfully in three different manufacturing companies and the PCB inspection system is the process of being deployed in a manufacturing plant.

  6. Machine learning based switching model for electricity load forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Shu; Lee, Wei-Jen [Energy Systems Research Center, The University of Texas at Arlington, 416 S. College Street, Arlington, TX 76019 (United States); Chen, Luonan [Department of Electronics, Information and Communication Engineering, Osaka Sangyo University, 3-1-1 Nakagaito, Daito, Osaka 574-0013 (Japan)

    2008-06-15

    In deregulated power markets, forecasting electricity loads is one of the most essential tasks for system planning, operation and decision making. Based on an integration of two machine learning techniques: Bayesian clustering by dynamics (BCD) and support vector regression (SVR), this paper proposes a novel forecasting model for day ahead electricity load forecasting. The proposed model adopts an integrated architecture to handle the non-stationarity of time series. Firstly, a BCD classifier is applied to cluster the input data set into several subsets by the dynamics of the time series in an unsupervised manner. Then, groups of SVRs are used to fit the training data of each subset in a supervised way. The effectiveness of the proposed model is demonstrated with actual data taken from the New York ISO and the Western Farmers Electric Cooperative in Oklahoma. (author)

  7. Machine learning based switching model for electricity load forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Fan Shu [Energy Systems Research Center, University of Texas at Arlington, 416 S. College Street, Arlington, TX 76019 (United States); Chen Luonan [Department of Electronics, Information and Communication Engineering, Osaka Sangyo University, 3-1-1 Nakagaito, Daito, Osaka 574-0013 (Japan); Lee, Weijen [Energy Systems Research Center, University of Texas at Arlington, 416 S. College Street, Arlington, TX 76019 (United States)], E-mail: wlee@uta.edu

    2008-06-15

    In deregulated power markets, forecasting electricity loads is one of the most essential tasks for system planning, operation and decision making. Based on an integration of two machine learning techniques: Bayesian clustering by dynamics (BCD) and support vector regression (SVR), this paper proposes a novel forecasting model for day ahead electricity load forecasting. The proposed model adopts an integrated architecture to handle the non-stationarity of time series. Firstly, a BCD classifier is applied to cluster the input data set into several subsets by the dynamics of the time series in an unsupervised manner. Then, groups of SVRs are used to fit the training data of each subset in a supervised way. The effectiveness of the proposed model is demonstrated with actual data taken from the New York ISO and the Western Farmers Electric Cooperative in Oklahoma.

  8. Machine learning based switching model for electricity load forecasting

    International Nuclear Information System (INIS)

    Fan Shu; Chen Luonan; Lee, Weijen

    2008-01-01

    In deregulated power markets, forecasting electricity loads is one of the most essential tasks for system planning, operation and decision making. Based on an integration of two machine learning techniques: Bayesian clustering by dynamics (BCD) and support vector regression (SVR), this paper proposes a novel forecasting model for day ahead electricity load forecasting. The proposed model adopts an integrated architecture to handle the non-stationarity of time series. Firstly, a BCD classifier is applied to cluster the input data set into several subsets by the dynamics of the time series in an unsupervised manner. Then, groups of SVRs are used to fit the training data of each subset in a supervised way. The effectiveness of the proposed model is demonstrated with actual data taken from the New York ISO and the Western Farmers Electric Cooperative in Oklahoma

  9. Estimating the complexity of 3D structural models using machine learning methods

    Science.gov (United States)

    Mejía-Herrera, Pablo; Kakurina, Maria; Royer, Jean-Jacques

    2016-04-01

    Quantifying the complexity of 3D geological structural models can play a major role in natural resources exploration surveys, for predicting environmental hazards or for forecasting fossil resources. This paper proposes a structural complexity index which can be used to help in defining the degree of effort necessary to build a 3D model for a given degree of confidence, and also to identify locations where addition efforts are required to meet a given acceptable risk of uncertainty. In this work, it is considered that the structural complexity index can be estimated using machine learning methods on raw geo-data. More precisely, the metrics for measuring the complexity can be approximated as the difficulty degree associated to the prediction of the geological objects distribution calculated based on partial information on the actual structural distribution of materials. The proposed methodology is tested on a set of 3D synthetic structural models for which the degree of effort during their building is assessed using various parameters (such as number of faults, number of part in a surface object, number of borders, ...), the rank of geological elements contained in each model, and, finally, their level of deformation (folding and faulting). The results show how the estimated complexity in a 3D model can be approximated by the quantity of partial data necessaries to simulated at a given precision the actual 3D model without error using machine learning algorithms.

  10. Making Individual Prognoses in Psychiatry Using Neuroimaging and Machine Learning.

    Science.gov (United States)

    Janssen, Ronald J; Mourão-Miranda, Janaina; Schnack, Hugo G

    2018-04-22

    Psychiatric prognosis is a difficult problem. Making a prognosis requires looking far into the future, as opposed to making a diagnosis, which is concerned with the current state. During the follow-up period, many factors will influence the course of the disease. Combined with the usually scarcer longitudinal data and the variability in the definition of outcomes/transition, this makes prognostic predictions a challenging endeavor. Employing neuroimaging data in this endeavor introduces the additional hurdle of high dimensionality. Machine-learning techniques are especially suited to tackle this challenging problem. This review starts with a brief introduction to machine learning in the context of its application to clinical neuroimaging data. We highlight a few issues that are especially relevant for prediction of outcome and transition using neuroimaging. We then review the literature that discusses the application of machine learning for this purpose. Critical examination of the studies and their results with respect to the relevant issues revealed the following: 1) there is growing evidence for the prognostic capability of machine-learning-based models using neuroimaging; and 2) reported accuracies may be too optimistic owing to small sample sizes and the lack of independent test samples. Finally, we discuss options to improve the reliability of (prognostic) prediction models. These include new methodologies and multimodal modeling. Paramount, however, is our conclusion that future work will need to provide properly (cross-)validated accuracy estimates of models trained on sufficiently large datasets. Nevertheless, with the technological advances enabling acquisition of large databases of patients and healthy subjects, machine learning represents a powerful tool in the search for psychiatric biomarkers. Copyright © 2018 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  11. A review of supervised machine learning applied to ageing research.

    Science.gov (United States)

    Fabris, Fabio; Magalhães, João Pedro de; Freitas, Alex A

    2017-04-01

    Broadly speaking, supervised machine learning is the computational task of learning correlations between variables in annotated data (the training set), and using this information to create a predictive model capable of inferring annotations for new data, whose annotations are not known. Ageing is a complex process that affects nearly all animal species. This process can be studied at several levels of abstraction, in different organisms and with different objectives in mind. Not surprisingly, the diversity of the supervised machine learning algorithms applied to answer biological questions reflects the complexities of the underlying ageing processes being studied. Many works using supervised machine learning to study the ageing process have been recently published, so it is timely to review these works, to discuss their main findings and weaknesses. In summary, the main findings of the reviewed papers are: the link between specific types of DNA repair and ageing; ageing-related proteins tend to be highly connected and seem to play a central role in molecular pathways; ageing/longevity is linked with autophagy and apoptosis, nutrient receptor genes, and copper and iron ion transport. Additionally, several biomarkers of ageing were found by machine learning. Despite some interesting machine learning results, we also identified a weakness of current works on this topic: only one of the reviewed papers has corroborated the computational results of machine learning algorithms through wet-lab experiments. In conclusion, supervised machine learning has contributed to advance our knowledge and has provided novel insights on ageing, yet future work should have a greater emphasis in validating the predictions.

  12. Field tests and machine learning approaches for refining algorithms and correlations of driver's model parameters.

    Science.gov (United States)

    Tango, Fabio; Minin, Luca; Tesauri, Francesco; Montanari, Roberto

    2010-03-01

    This paper describes the field tests on a driving simulator carried out to validate the algorithms and the correlations of dynamic parameters, specifically driving task demand and drivers' distraction, able to predict drivers' intentions. These parameters belong to the driver's model developed by AIDE (Adaptive Integrated Driver-vehicle InterfacE) European Integrated Project. Drivers' behavioural data have been collected from the simulator tests to model and validate these parameters using machine learning techniques, specifically the adaptive neuro fuzzy inference systems (ANFIS) and the artificial neural network (ANN). Two models of task demand and distraction have been developed, one for each adopted technique. The paper provides an overview of the driver's model, the description of the task demand and distraction modelling and the tests conducted for the validation of these parameters. A test comparing predicted and expected outcomes of the modelled parameters for each machine learning technique has been carried out: for distraction, in particular, promising results (low prediction errors) have been obtained by adopting an artificial neural network.

  13. Predicting the concentration of residual methanol in industrial formalin using machine learning

    OpenAIRE

    Heidkamp, William

    2016-01-01

    In this thesis, a machine learning approach was used to develop a predictive model for residual methanol concentration in industrial formalin produced at the Akzo Nobel factory in Kristinehamn, Sweden. The MATLABTM computational environment supplemented with the Statistics and Machine LearningTM toolbox from the MathWorks were used to test various machine learning algorithms on the formalin production data from Akzo Nobel. As a result, the Gaussian Process Regression algorithm was found to pr...

  14. Machine learning in jet physics

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    High energy collider experiments produce several petabytes of data every year. Given the magnitude and complexity of the raw data, machine learning algorithms provide the best available platform to transform and analyse these data to obtain valuable insights to understand Standard Model and Beyond Standard Model theories. These collider experiments produce both quark and gluon initiated hadronic jets as the core components. Deep learning techniques enable us to classify quark/gluon jets through image recognition and help us to differentiate signals and backgrounds in Beyond Standard Model searches at LHC. We are currently working on quark/gluon jet classification and progressing in our studies to find the bias between event generators using domain adversarial neural networks (DANN). We also plan to investigate top tagging, weak supervision on mixed samples in high energy physics, utilizing transfer learning from simulated data to real experimental data.

  15. Building machines that learn and think like people.

    Science.gov (United States)

    Lake, Brenden M; Ullman, Tomer D; Tenenbaum, Joshua B; Gershman, Samuel J

    2017-01-01

    Recent progress in artificial intelligence has renewed interest in building systems that learn and think like people. Many advances have come from using deep neural networks trained end-to-end in tasks such as object recognition, video games, and board games, achieving performance that equals or even beats that of humans in some respects. Despite their biological inspiration and performance achievements, these systems differ from human intelligence in crucial ways. We review progress in cognitive science suggesting that truly human-like learning and thinking machines will have to reach beyond current engineering trends in both what they learn and how they learn it. Specifically, we argue that these machines should (1) build causal models of the world that support explanation and understanding, rather than merely solving pattern recognition problems; (2) ground learning in intuitive theories of physics and psychology to support and enrich the knowledge that is learned; and (3) harness compositionality and learning-to-learn to rapidly acquire and generalize knowledge to new tasks and situations. We suggest concrete challenges and promising routes toward these goals that can combine the strengths of recent neural network advances with more structured cognitive models.

  16. Using Machine Learning as a fast emulator of physical processes within the Met Office's Unified Model

    Science.gov (United States)

    Prudden, R.; Arribas, A.; Tomlinson, J.; Robinson, N.

    2017-12-01

    The Unified Model is a numerical model of the atmosphere used at the UK Met Office (and numerous partner organisations including Korean Meteorological Agency, Australian Bureau of Meteorology and US Air Force) for both weather and climate applications.Especifically, dynamical models such as the Unified Model are now a central part of weather forecasting. Starting from basic physical laws, these models make it possible to predict events such as storms before they have even begun to form. The Unified Model can be simply described as having two components: one component solves the navier-stokes equations (usually referred to as the "dynamics"); the other solves relevant sub-grid physical processes (usually referred to as the "physics"). Running weather forecasts requires substantial computing resources - for example, the UK Met Office operates the largest operational High Performance Computer in Europe - and the cost of a typical simulation is spent roughly 50% in the "dynamics" and 50% in the "physics". Therefore there is a high incentive to reduce cost of weather forecasts and Machine Learning is a possible option because, once a machine learning model has been trained, it is often much faster to run than a full simulation. This is the motivation for a technique called model emulation, the idea being to build a fast statistical model which closely approximates a far more expensive simulation. In this paper we discuss the use of Machine Learning as an emulator to replace the "physics" component of the Unified Model. Various approaches and options will be presented and the implications for further model development, operational running of forecasting systems, development of data assimilation schemes, and development of ensemble prediction techniques will be discussed.

  17. CHISSL: A Human-Machine Collaboration Space for Unsupervised Learning

    Energy Technology Data Exchange (ETDEWEB)

    Arendt, Dustin L.; Komurlu, Caner; Blaha, Leslie M.

    2017-07-14

    We developed CHISSL, a human-machine interface that utilizes supervised machine learning in an unsupervised context to help the user group unlabeled instances by her own mental model. The user primarily interacts via correction (moving a misplaced instance into its correct group) or confirmation (accepting that an instance is placed in its correct group). Concurrent with the user's interactions, CHISSL trains a classification model guided by the user's grouping of the data. It then predicts the group of unlabeled instances and arranges some of these alongside the instances manually organized by the user. We hypothesize that this mode of human and machine collaboration is more effective than Active Learning, wherein the machine decides for itself which instances should be labeled by the user. We found supporting evidence for this hypothesis in a pilot study where we applied CHISSL to organize a collection of handwritten digits.

  18. Building machine learning systems with Python

    CERN Document Server

    Richert, Willi

    2013-01-01

    This is a tutorial-driven and practical, but well-grounded book showcasing good Machine Learning practices. There will be an emphasis on using existing technologies instead of showing how to write your own implementations of algorithms. This book is a scenario-based, example-driven tutorial. By the end of the book you will have learnt critical aspects of Machine Learning Python projects and experienced the power of ML-based systems by actually working on them.This book primarily targets Python developers who want to learn about and build Machine Learning into their projects, or who want to pro

  19. MEDLINE MeSH Indexing: Lessons Learned from Machine Learning and Future Directions

    DEFF Research Database (Denmark)

    Jimeno-Yepes, Antonio; Mork, James G.; Wilkowski, Bartlomiej

    2012-01-01

    and analyzed the issues when using standard machine learning algorithms. We show that in some cases machine learning can improve the annotations already recommended by MTI, that machine learning based on low variance methods achieves better performance and that each MeSH heading presents a different behavior......Map and a k-NN approach called PubMed Related Citations (PRC). Our motivation is to improve the quality of MTI based on machine learning. Typical machine learning approaches fit this indexing task into text categorization. In this work, we have studied some Medical Subject Headings (MeSH) recommended by MTI...

  20. BELM: Bayesian extreme learning machine.

    Science.gov (United States)

    Soria-Olivas, Emilio; Gómez-Sanchis, Juan; Martín, José D; Vila-Francés, Joan; Martínez, Marcelino; Magdalena, José R; Serrano, Antonio J

    2011-03-01

    The theory of extreme learning machine (ELM) has become very popular on the last few years. ELM is a new approach for learning the parameters of the hidden layers of a multilayer neural network (as the multilayer perceptron or the radial basis function neural network). Its main advantage is the lower computational cost, which is especially relevant when dealing with many patterns defined in a high-dimensional space. This brief proposes a bayesian approach to ELM, which presents some advantages over other approaches: it allows the introduction of a priori knowledge; obtains the confidence intervals (CIs) without the need of applying methods that are computationally intensive, e.g., bootstrap; and presents high generalization capabilities. Bayesian ELM is benchmarked against classical ELM in several artificial and real datasets that are widely used for the evaluation of machine learning algorithms. Achieved results show that the proposed approach produces a competitive accuracy with some additional advantages, namely, automatic production of CIs, reduction of probability of model overfitting, and use of a priori knowledge.

  1. Introducing Machine Learning Concepts with WEKA.

    Science.gov (United States)

    Smith, Tony C; Frank, Eibe

    2016-01-01

    This chapter presents an introduction to data mining with machine learning. It gives an overview of various types of machine learning, along with some examples. It explains how to download, install, and run the WEKA data mining toolkit on a simple data set, then proceeds to explain how one might approach a bioinformatics problem. Finally, it includes a brief summary of machine learning algorithms for other types of data mining problems, and provides suggestions about where to find additional information.

  2. An Introduction to Topic Modeling as an Unsupervised Machine Learning Way to Organize Text Information

    Science.gov (United States)

    Snyder, Robin M.

    2015-01-01

    The field of topic modeling has become increasingly important over the past few years. Topic modeling is an unsupervised machine learning way to organize text (or image or DNA, etc.) information such that related pieces of text can be identified. This paper/session will present/discuss the current state of topic modeling, why it is important, and…

  3. ClearTK 2.0: Design Patterns for Machine Learning in UIMA.

    Science.gov (United States)

    Bethard, Steven; Ogren, Philip; Becker, Lee

    2014-05-01

    ClearTK adds machine learning functionality to the UIMA framework, providing wrappers to popular machine learning libraries, a rich feature extraction library that works across different classifiers, and utilities for applying and evaluating machine learning models. Since its inception in 2008, ClearTK has evolved in response to feedback from developers and the community. This evolution has followed a number of important design principles including: conceptually simple annotator interfaces, readable pipeline descriptions, minimal collection readers, type system agnostic code, modules organized for ease of import, and assisting user comprehension of the complex UIMA framework.

  4. Relationships Between the External and Internal Training Load in Professional Soccer: What Can We Learn From Machine Learning?

    Science.gov (United States)

    Jaspers, Arne; Beéck, Tim Op De; Brink, Michel S; Frencken, Wouter G P; Staes, Filip; Davis, Jesse J; Helsen, Werner F

    2017-12-28

    Machine learning may contribute to understanding the relationship between the external load and internal load in professional soccer. Therefore, the relationship between external load indicators and the rating of perceived exertion (RPE) was examined using machine learning techniques on a group and individual level. Training data were collected from 38 professional soccer players over two seasons. The external load was measured using global positioning system technology and accelerometry. The internal load was obtained using the RPE. Predictive models were constructed using two machine learning techniques, artificial neural networks (ANNs) and least absolute shrinkage and selection operator (LASSO), and one naive baseline method. The predictions were based on a large set of external load indicators. Using each technique, one group model involving all players and one individual model for each player was constructed. These models' performance on predicting the reported RPE values for future training sessions was compared to the naive baseline's performance. Both the ANN and LASSO models outperformed the baseline. Additionally, the LASSO model made more accurate predictions for the RPE than the ANN model. Furthermore, decelerations were identified as important external load indicators. Regardless of the applied machine learning technique, the group models resulted in equivalent or better predictions for the reported RPE values than the individual models. Machine learning techniques may have added value in predicting the RPE for future sessions to optimize training design and evaluation. Additionally, these techniques may be used in conjunction with expert knowledge to select key external load indicators for load monitoring.

  5. An ensemble machine learning approach to predict survival in breast cancer.

    Science.gov (United States)

    Djebbari, Amira; Liu, Ziying; Phan, Sieu; Famili, Fazel

    2008-01-01

    Current breast cancer predictive signatures are not unique. Can we use this fact to our advantage to improve prediction? From the machine learning perspective, it is well known that combining multiple classifiers can improve classification performance. We propose an ensemble machine learning approach which consists of choosing feature subsets and learning predictive models from them. We then combine models based on certain model fusion criteria and we also introduce a tuning parameter to control sensitivity. Our method significantly improves classification performance with a particular emphasis on sensitivity which is critical to avoid misclassifying poor prognosis patients as good prognosis.

  6. Machine-Learning Algorithms to Code Public Health Spending Accounts.

    Science.gov (United States)

    Brady, Eoghan S; Leider, Jonathon P; Resnick, Beth A; Alfonso, Y Natalia; Bishai, David

    Government public health expenditure data sets require time- and labor-intensive manipulation to summarize results that public health policy makers can use. Our objective was to compare the performances of machine-learning algorithms with manual classification of public health expenditures to determine if machines could provide a faster, cheaper alternative to manual classification. We used machine-learning algorithms to replicate the process of manually classifying state public health expenditures, using the standardized public health spending categories from the Foundational Public Health Services model and a large data set from the US Census Bureau. We obtained a data set of 1.9 million individual expenditure items from 2000 to 2013. We collapsed these data into 147 280 summary expenditure records, and we followed a standardized method of manually classifying each expenditure record as public health, maybe public health, or not public health. We then trained 9 machine-learning algorithms to replicate the manual process. We calculated recall, precision, and coverage rates to measure the performance of individual and ensembled algorithms. Compared with manual classification, the machine-learning random forests algorithm produced 84% recall and 91% precision. With algorithm ensembling, we achieved our target criterion of 90% recall by using a consensus ensemble of ≥6 algorithms while still retaining 93% coverage, leaving only 7% of the summary expenditure records unclassified. Machine learning can be a time- and cost-saving tool for estimating public health spending in the United States. It can be used with standardized public health spending categories based on the Foundational Public Health Services model to help parse public health expenditure information from other types of health-related spending, provide data that are more comparable across public health organizations, and evaluate the impact of evidence-based public health resource allocation.

  7. Distributed Extreme Learning Machine for Nonlinear Learning over Network

    Directory of Open Access Journals (Sweden)

    Songyan Huang

    2015-02-01

    Full Text Available Distributed data collection and analysis over a network are ubiquitous, especially over a wireless sensor network (WSN. To our knowledge, the data model used in most of the distributed algorithms is linear. However, in real applications, the linearity of systems is not always guaranteed. In nonlinear cases, the single hidden layer feedforward neural network (SLFN with radial basis function (RBF hidden neurons has the ability to approximate any continuous functions and, thus, may be used as the nonlinear learning system. However, confined by the communication cost, using the distributed version of the conventional algorithms to train the neural network directly is usually prohibited. Fortunately, based on the theorems provided in the extreme learning machine (ELM literature, we only need to compute the output weights of the SLFN. Computing the output weights itself is a linear learning problem, although the input-output mapping of the overall SLFN is still nonlinear. Using the distributed algorithmto cooperatively compute the output weights of the SLFN, we obtain a distributed extreme learning machine (dELM for nonlinear learning in this paper. This dELM is applied to the regression problem and classification problem to demonstrate its effectiveness and advantages.

  8. Machine Learning Techniques in Clinical Vision Sciences.

    Science.gov (United States)

    Caixinha, Miguel; Nunes, Sandrina

    2017-01-01

    This review presents and discusses the contribution of machine learning techniques for diagnosis and disease monitoring in the context of clinical vision science. Many ocular diseases leading to blindness can be halted or delayed when detected and treated at its earliest stages. With the recent developments in diagnostic devices, imaging and genomics, new sources of data for early disease detection and patients' management are now available. Machine learning techniques emerged in the biomedical sciences as clinical decision-support techniques to improve sensitivity and specificity of disease detection and monitoring, increasing objectively the clinical decision-making process. This manuscript presents a review in multimodal ocular disease diagnosis and monitoring based on machine learning approaches. In the first section, the technical issues related to the different machine learning approaches will be present. Machine learning techniques are used to automatically recognize complex patterns in a given dataset. These techniques allows creating homogeneous groups (unsupervised learning), or creating a classifier predicting group membership of new cases (supervised learning), when a group label is available for each case. To ensure a good performance of the machine learning techniques in a given dataset, all possible sources of bias should be removed or minimized. For that, the representativeness of the input dataset for the true population should be confirmed, the noise should be removed, the missing data should be treated and the data dimensionally (i.e., the number of parameters/features and the number of cases in the dataset) should be adjusted. The application of machine learning techniques in ocular disease diagnosis and monitoring will be presented and discussed in the second section of this manuscript. To show the clinical benefits of machine learning in clinical vision sciences, several examples will be presented in glaucoma, age-related macular degeneration

  9. Manifold learning in machine vision and robotics

    Science.gov (United States)

    Bernstein, Alexander

    2017-02-01

    Smart algorithms are used in Machine vision and Robotics to organize or extract high-level information from the available data. Nowadays, Machine learning is an essential and ubiquitous tool to automate extraction patterns or regularities from data (images in Machine vision; camera, laser, and sonar sensors data in Robotics) in order to solve various subject-oriented tasks such as understanding and classification of images content, navigation of mobile autonomous robot in uncertain environments, robot manipulation in medical robotics and computer-assisted surgery, and other. Usually such data have high dimensionality, however, due to various dependencies between their components and constraints caused by physical reasons, all "feasible and usable data" occupy only a very small part in high dimensional "observation space" with smaller intrinsic dimensionality. Generally accepted model of such data is manifold model in accordance with which the data lie on or near an unknown manifold (surface) of lower dimensionality embedded in an ambient high dimensional observation space; real-world high-dimensional data obtained from "natural" sources meet, as a rule, this model. The use of Manifold learning technique in Machine vision and Robotics, which discovers a low-dimensional structure of high dimensional data and results in effective algorithms for solving of a large number of various subject-oriented tasks, is the content of the conference plenary speech some topics of which are in the paper.

  10. Predicting genome-wide redundancy using machine learning

    Directory of Open Access Journals (Sweden)

    Shasha Dennis E

    2010-11-01

    Full Text Available Abstract Background Gene duplication can lead to genetic redundancy, which masks the function of mutated genes in genetic analyses. Methods to increase sensitivity in identifying genetic redundancy can improve the efficiency of reverse genetics and lend insights into the evolutionary outcomes of gene duplication. Machine learning techniques are well suited to classifying gene family members into redundant and non-redundant gene pairs in model species where sufficient genetic and genomic data is available, such as Arabidopsis thaliana, the test case used here. Results Machine learning techniques that combine multiple attributes led to a dramatic improvement in predicting genetic redundancy over single trait classifiers alone, such as BLAST E-values or expression correlation. In withholding analysis, one of the methods used here, Support Vector Machines, was two-fold more precise than single attribute classifiers, reaching a level where the majority of redundant calls were correctly labeled. Using this higher confidence in identifying redundancy, machine learning predicts that about half of all genes in Arabidopsis showed the signature of predicted redundancy with at least one but typically less than three other family members. Interestingly, a large proportion of predicted redundant gene pairs were relatively old duplications (e.g., Ks > 1, suggesting that redundancy is stable over long evolutionary periods. Conclusions Machine learning predicts that most genes will have a functionally redundant paralog but will exhibit redundancy with relatively few genes within a family. The predictions and gene pair attributes for Arabidopsis provide a new resource for research in genetics and genome evolution. These techniques can now be applied to other organisms.

  11. Glucose Oxidase Biosensor Modeling and Predictors Optimization by Machine Learning Methods

    Directory of Open Access Journals (Sweden)

    Felix F. Gonzalez-Navarro

    2016-10-01

    Full Text Available Biosensors are small analytical devices incorporating a biological recognition element and a physico-chemical transducer to convert a biological signal into an electrical reading. Nowadays, their technological appeal resides in their fast performance, high sensitivity and continuous measuring capabilities; however, a full understanding is still under research. This paper aims to contribute to this growing field of biotechnology, with a focus on Glucose-Oxidase Biosensor (GOB modeling through statistical learning methods from a regression perspective. We model the amperometric response of a GOB with dependent variables under different conditions, such as temperature, benzoquinone, pH and glucose concentrations, by means of several machine learning algorithms. Since the sensitivity of a GOB response is strongly related to these dependent variables, their interactions should be optimized to maximize the output signal, for which a genetic algorithm and simulated annealing are used. We report a model that shows a good generalization error and is consistent with the optimization.

  12. Glucose Oxidase Biosensor Modeling and Predictors Optimization by Machine Learning Methods.

    Science.gov (United States)

    Gonzalez-Navarro, Felix F; Stilianova-Stoytcheva, Margarita; Renteria-Gutierrez, Livier; Belanche-Muñoz, Lluís A; Flores-Rios, Brenda L; Ibarra-Esquer, Jorge E

    2016-10-26

    Biosensors are small analytical devices incorporating a biological recognition element and a physico-chemical transducer to convert a biological signal into an electrical reading. Nowadays, their technological appeal resides in their fast performance, high sensitivity and continuous measuring capabilities; however, a full understanding is still under research. This paper aims to contribute to this growing field of biotechnology, with a focus on Glucose-Oxidase Biosensor (GOB) modeling through statistical learning methods from a regression perspective. We model the amperometric response of a GOB with dependent variables under different conditions, such as temperature, benzoquinone, pH and glucose concentrations, by means of several machine learning algorithms. Since the sensitivity of a GOB response is strongly related to these dependent variables, their interactions should be optimized to maximize the output signal, for which a genetic algorithm and simulated annealing are used. We report a model that shows a good generalization error and is consistent with the optimization.

  13. Advances in independent component analysis and learning machines

    CERN Document Server

    Bingham, Ella; Laaksonen, Jorma; Lampinen, Jouko

    2015-01-01

    In honour of Professor Erkki Oja, one of the pioneers of Independent Component Analysis (ICA), this book reviews key advances in the theory and application of ICA, as well as its influence on signal processing, pattern recognition, machine learning, and data mining. Examples of topics which have developed from the advances of ICA, which are covered in the book are: A unifying probabilistic model for PCA and ICA Optimization methods for matrix decompositions Insights into the FastICA algorithmUnsupervised deep learning Machine vision and image retrieval A review of developments in the t

  14. Using Machine Learning to Advance Personality Assessment and Theory.

    Science.gov (United States)

    Bleidorn, Wiebke; Hopwood, Christopher James

    2018-05-01

    Machine learning has led to important advances in society. One of the most exciting applications of machine learning in psychological science has been the development of assessment tools that can powerfully predict human behavior and personality traits. Thus far, machine learning approaches to personality assessment have focused on the associations between social media and other digital records with established personality measures. The goal of this article is to expand the potential of machine learning approaches to personality assessment by embedding it in a more comprehensive construct validation framework. We review recent applications of machine learning to personality assessment, place machine learning research in the broader context of fundamental principles of construct validation, and provide recommendations for how to use machine learning to advance our understanding of personality.

  15. Modeling the Swift Bat Trigger Algorithm with Machine Learning

    Science.gov (United States)

    Graff, Philip B.; Lien, Amy Y.; Baker, John G.; Sakamoto, Takanori

    2016-01-01

    To draw inferences about gamma-ray burst (GRB) source populations based on Swift observations, it is essential to understand the detection efficiency of the Swift burst alert telescope (BAT). This study considers the problem of modeling the Swift / BAT triggering algorithm for long GRBs, a computationally expensive procedure, and models it using machine learning algorithms. A large sample of simulated GRBs from Lien et al. is used to train various models: random forests, boosted decision trees (with AdaBoost), support vector machines, and artificial neural networks. The best models have accuracies of greater than or equal to 97 percent (less than or equal to 3 percent error), which is a significant improvement on a cut in GRB flux, which has an accuracy of 89.6 percent (10.4 percent error). These models are then used to measure the detection efficiency of Swift as a function of redshift z, which is used to perform Bayesian parameter estimation on the GRB rate distribution. We find a local GRB rate density of n (sub 0) approaching 0.48 (sup plus 0.41) (sub minus 0.23) per cubic gigaparsecs per year with power-law indices of n (sub 1) approaching 1.7 (sup plus 0.6) (sub minus 0.5) and n (sub 2) approaching minus 5.9 (sup plus 5.7) (sub minus 0.1) for GRBs above and below a break point of z (redshift) (sub 1) approaching 6.8 (sup plus 2.8) (sub minus 3.2). This methodology is able to improve upon earlier studies by more accurately modeling Swift detection and using this for fully Bayesian model fitting.

  16. Voice based gender classification using machine learning

    Science.gov (United States)

    Raahul, A.; Sapthagiri, R.; Pankaj, K.; Vijayarajan, V.

    2017-11-01

    Gender identification is one of the major problem speech analysis today. Tracing the gender from acoustic data i.e., pitch, median, frequency etc. Machine learning gives promising results for classification problem in all the research domains. There are several performance metrics to evaluate algorithms of an area. Our Comparative model algorithm for evaluating 5 different machine learning algorithms based on eight different metrics in gender classification from acoustic data. Agenda is to identify gender, with five different algorithms: Linear Discriminant Analysis (LDA), K-Nearest Neighbour (KNN), Classification and Regression Trees (CART), Random Forest (RF), and Support Vector Machine (SVM) on basis of eight different metrics. The main parameter in evaluating any algorithms is its performance. Misclassification rate must be less in classification problems, which says that the accuracy rate must be high. Location and gender of the person have become very crucial in economic markets in the form of AdSense. Here with this comparative model algorithm, we are trying to assess the different ML algorithms and find the best fit for gender classification of acoustic data.

  17. Machine learning in laboratory medicine: waiting for the flood?

    Science.gov (United States)

    Cabitza, Federico; Banfi, Giuseppe

    2018-03-28

    This review focuses on machine learning and on how methods and models combining data analytics and artificial intelligence have been applied to laboratory medicine so far. Although still in its infancy, the potential for applying machine learning to laboratory data for both diagnostic and prognostic purposes deserves more attention by the readership of this journal, as well as by physician-scientists who will want to take advantage of this new computer-based support in pathology and laboratory medicine.

  18. MLnet report: training in Europe on machine learning

    OpenAIRE

    Ellebrecht, Mario; Morik, Katharina

    1999-01-01

    Machine learning techniques offer opportunities for a variety of applications and the theory of machine learning investigates problems that are of interest for other fields of computer science (e.g., complexity theory, logic programming, pattern recognition). However, the impacts of machine learning can only be recognized by those who know the techniques and are able to apply them. Hence, teaching machine learning is necessary before this field can diversify computer science. In order ...

  19. Development of a machine learning potential for graphene

    Science.gov (United States)

    Rowe, Patrick; Csányi, Gábor; Alfè, Dario; Michaelides, Angelos

    2018-02-01

    We present an accurate interatomic potential for graphene, constructed using the Gaussian approximation potential (GAP) machine learning methodology. This GAP model obtains a faithful representation of a density functional theory (DFT) potential energy surface, facilitating highly accurate (approaching the accuracy of ab initio methods) molecular dynamics simulations. This is achieved at a computational cost which is orders of magnitude lower than that of comparable calculations which directly invoke electronic structure methods. We evaluate the accuracy of our machine learning model alongside that of a number of popular empirical and bond-order potentials, using both experimental and ab initio data as references. We find that whilst significant discrepancies exist between the empirical interatomic potentials and the reference data—and amongst the empirical potentials themselves—the machine learning model introduced here provides exemplary performance in all of the tested areas. The calculated properties include: graphene phonon dispersion curves at 0 K (which we predict with sub-meV accuracy), phonon spectra at finite temperature, in-plane thermal expansion up to 2500 K as compared to NPT ab initio molecular dynamics simulations and a comparison of the thermally induced dispersion of graphene Raman bands to experimental observations. We have made our potential freely available online at [http://www.libatoms.org].

  20. A Hybrid Short-Term Traffic Flow Prediction Model Based on Singular Spectrum Analysis and Kernel Extreme Learning Machine.

    Directory of Open Access Journals (Sweden)

    Qiang Shang

    Full Text Available Short-term traffic flow prediction is one of the most important issues in the field of intelligent transport system (ITS. Because of the uncertainty and nonlinearity, short-term traffic flow prediction is a challenging task. In order to improve the accuracy of short-time traffic flow prediction, a hybrid model (SSA-KELM is proposed based on singular spectrum analysis (SSA and kernel extreme learning machine (KELM. SSA is used to filter out the noise of traffic flow time series. Then, the filtered traffic flow data is used to train KELM model, the optimal input form of the proposed model is determined by phase space reconstruction, and parameters of the model are optimized by gravitational search algorithm (GSA. Finally, case validation is carried out using the measured data of an expressway in Xiamen, China. And the SSA-KELM model is compared with several well-known prediction models, including support vector machine, extreme learning machine, and single KLEM model. The experimental results demonstrate that performance of the proposed model is superior to that of the comparison models. Apart from accuracy improvement, the proposed model is more robust.

  1. An introduction to quantum machine learning

    Science.gov (United States)

    Schuld, Maria; Sinayskiy, Ilya; Petruccione, Francesco

    2015-04-01

    Machine learning algorithms learn a desired input-output relation from examples in order to interpret new inputs. This is important for tasks such as image and speech recognition or strategy optimisation, with growing applications in the IT industry. In the last couple of years, researchers investigated if quantum computing can help to improve classical machine learning algorithms. Ideas range from running computationally costly algorithms or their subroutines efficiently on a quantum computer to the translation of stochastic methods into the language of quantum theory. This contribution gives a systematic overview of the emerging field of quantum machine learning. It presents the approaches as well as technical details in an accessible way, and discusses the potential of a future theory of quantum learning.

  2. Learning with Support Vector Machines

    CERN Document Server

    Campbell, Colin

    2010-01-01

    Support Vectors Machines have become a well established tool within machine learning. They work well in practice and have now been used across a wide range of applications from recognizing hand-written digits, to face identification, text categorisation, bioinformatics, and database marketing. In this book we give an introductory overview of this subject. We start with a simple Support Vector Machine for performing binary classification before considering multi-class classification and learning in the presence of noise. We show that this framework can be extended to many other scenarios such a

  3. Probability Machines: Consistent Probability Estimation Using Nonparametric Learning Machines

    Science.gov (United States)

    Malley, J. D.; Kruppa, J.; Dasgupta, A.; Malley, K. G.; Ziegler, A.

    2011-01-01

    Summary Background Most machine learning approaches only provide a classification for binary responses. However, probabilities are required for risk estimation using individual patient characteristics. It has been shown recently that every statistical learning machine known to be consistent for a nonparametric regression problem is a probability machine that is provably consistent for this estimation problem. Objectives The aim of this paper is to show how random forests and nearest neighbors can be used for consistent estimation of individual probabilities. Methods Two random forest algorithms and two nearest neighbor algorithms are described in detail for estimation of individual probabilities. We discuss the consistency of random forests, nearest neighbors and other learning machines in detail. We conduct a simulation study to illustrate the validity of the methods. We exemplify the algorithms by analyzing two well-known data sets on the diagnosis of appendicitis and the diagnosis of diabetes in Pima Indians. Results Simulations demonstrate the validity of the method. With the real data application, we show the accuracy and practicality of this approach. We provide sample code from R packages in which the probability estimation is already available. This means that all calculations can be performed using existing software. Conclusions Random forest algorithms as well as nearest neighbor approaches are valid machine learning methods for estimating individual probabilities for binary responses. Freely available implementations are available in R and may be used for applications. PMID:21915433

  4. Kernel methods for interpretable machine learning of order parameters

    Science.gov (United States)

    Ponte, Pedro; Melko, Roger G.

    2017-11-01

    Machine learning is capable of discriminating phases of matter, and finding associated phase transitions, directly from large data sets of raw state configurations. In the context of condensed matter physics, most progress in the field of supervised learning has come from employing neural networks as classifiers. Although very powerful, such algorithms suffer from a lack of interpretability, which is usually desired in scientific applications in order to associate learned features with physical phenomena. In this paper, we explore support vector machines (SVMs), which are a class of supervised kernel methods that provide interpretable decision functions. We find that SVMs can learn the mathematical form of physical discriminators, such as order parameters and Hamiltonian constraints, for a set of two-dimensional spin models: the ferromagnetic Ising model, a conserved-order-parameter Ising model, and the Ising gauge theory. The ability of SVMs to provide interpretable classification highlights their potential for automating feature detection in both synthetic and experimental data sets for condensed matter and other many-body systems.

  5. Continual Learning through Evolvable Neural Turing Machines

    DEFF Research Database (Denmark)

    Lüders, Benno; Schläger, Mikkel; Risi, Sebastian

    2016-01-01

    Continual learning, i.e. the ability to sequentially learn tasks without catastrophic forgetting of previously learned ones, is an important open challenge in machine learning. In this paper we take a step in this direction by showing that the recently proposed Evolving Neural Turing Machine (ENTM...

  6. Considerations upon the Machine Learning Technologies

    OpenAIRE

    Alin Munteanu; Cristina Ofelia Sofran

    2006-01-01

    Artificial intelligence offers superior techniques and methods by which problems from diverse domains may find an optimal solution. The Machine Learning technologies refer to the domain of artificial intelligence aiming to develop the techniques allowing the computers to “learn”. Some systems based on Machine Learning technologies tend to eliminate the necessity of the human intelligence while the others adopt a man-machine collaborative approach.

  7. Stochastic Synapses Enable Efficient Brain-Inspired Learning Machines

    Science.gov (United States)

    Neftci, Emre O.; Pedroni, Bruno U.; Joshi, Siddharth; Al-Shedivat, Maruan; Cauwenberghs, Gert

    2016-01-01

    Recent studies have shown that synaptic unreliability is a robust and sufficient mechanism for inducing the stochasticity observed in cortex. Here, we introduce Synaptic Sampling Machines (S2Ms), a class of neural network models that uses synaptic stochasticity as a means to Monte Carlo sampling and unsupervised learning. Similar to the original formulation of Boltzmann machines, these models can be viewed as a stochastic counterpart of Hopfield networks, but where stochasticity is induced by a random mask over the connections. Synaptic stochasticity plays the dual role of an efficient mechanism for sampling, and a regularizer during learning akin to DropConnect. A local synaptic plasticity rule implementing an event-driven form of contrastive divergence enables the learning of generative models in an on-line fashion. S2Ms perform equally well using discrete-timed artificial units (as in Hopfield networks) or continuous-timed leaky integrate and fire neurons. The learned representations are remarkably sparse and robust to reductions in bit precision and synapse pruning: removal of more than 75% of the weakest connections followed by cursory re-learning causes a negligible performance loss on benchmark classification tasks. The spiking neuron-based S2Ms outperform existing spike-based unsupervised learners, while potentially offering substantial advantages in terms of power and complexity, and are thus promising models for on-line learning in brain-inspired hardware. PMID:27445650

  8. A hybrid machine learning model to estimate nitrate contamination of production zone groundwater in the Central Valley, California

    Science.gov (United States)

    Ransom, K.; Nolan, B. T.; Faunt, C. C.; Bell, A.; Gronberg, J.; Traum, J.; Wheeler, D. C.; Rosecrans, C.; Belitz, K.; Eberts, S.; Harter, T.

    2016-12-01

    A hybrid, non-linear, machine learning statistical model was developed within a statistical learning framework to predict nitrate contamination of groundwater to depths of approximately 500 m below ground surface in the Central Valley, California. A database of 213 predictor variables representing well characteristics, historical and current field and county scale nitrogen mass balance, historical and current landuse, oxidation/reduction conditions, groundwater flow, climate, soil characteristics, depth to groundwater, and groundwater age were assigned to over 6,000 private supply and public supply wells measured previously for nitrate and located throughout the study area. The machine learning method, gradient boosting machine (GBM) was used to screen predictor variables and rank them in order of importance in relation to the groundwater nitrate measurements. The top five most important predictor variables included oxidation/reduction characteristics, historical field scale nitrogen mass balance, climate, and depth to 60 year old water. Twenty-two variables were selected for the final model and final model errors for log-transformed hold-out data were R squared of 0.45 and root mean square error (RMSE) of 1.124. Modeled mean groundwater age was tested separately for error improvement in the model and when included decreased model RMSE by 0.5% compared to the same model without age and by 0.20% compared to the model with all 213 variables. 1D and 2D partial plots were examined to determine how variables behave individually and interact in the model. Some variables behaved as expected: log nitrate decreased with increasing probability of anoxic conditions and depth to 60 year old water, generally decreased with increasing natural landuse surrounding wells and increasing mean groundwater age, generally increased with increased minimum depth to high water table and with increased base flow index value. Other variables exhibited much more erratic or noisy behavior in

  9. Multivariate Mapping of Environmental Data Using Extreme Learning Machines

    Science.gov (United States)

    Leuenberger, Michael; Kanevski, Mikhail

    2014-05-01

    In most real cases environmental data are multivariate, highly variable at several spatio-temporal scales, and are generated by nonlinear and complex phenomena. Mapping - spatial predictions of such data, is a challenging problem. Machine learning algorithms, being universal nonlinear tools, have demonstrated their efficiency in modelling of environmental spatial and space-time data (Kanevski et al. 2009). Recently, a new approach in machine learning - Extreme Learning Machine (ELM), has gained a great popularity. ELM is a fast and powerful approach being a part of the machine learning algorithm category. Developed by G.-B. Huang et al. (2006), it follows the structure of a multilayer perceptron (MLP) with one single-hidden layer feedforward neural networks (SLFNs). The learning step of classical artificial neural networks, like MLP, deals with the optimization of weights and biases by using gradient-based learning algorithm (e.g. back-propagation algorithm). Opposed to this optimization phase, which can fall into local minima, ELM generates randomly the weights between the input layer and the hidden layer and also the biases in the hidden layer. By this initialization, it optimizes just the weight vector between the hidden layer and the output layer in a single way. The main advantage of this algorithm is the speed of the learning step. In a theoretical context and by growing the number of hidden nodes, the algorithm can learn any set of training data with zero error. To avoid overfitting, cross-validation method or "true validation" (by randomly splitting data into training, validation and testing subsets) are recommended in order to find an optimal number of neurons. With its universal property and solid theoretical basis, ELM is a good machine learning algorithm which can push the field forward. The present research deals with an extension of ELM to multivariate output modelling and application of ELM to the real data case study - pollution of the sediments in

  10. A Comparison of Machine Learning Methods in a High-Dimensional Classification Problem

    Directory of Open Access Journals (Sweden)

    Zekić-Sušac Marijana

    2014-09-01

    Full Text Available Background: Large-dimensional data modelling often relies on variable reduction methods in the pre-processing and in the post-processing stage. However, such a reduction usually provides less information and yields a lower accuracy of the model. Objectives: The aim of this paper is to assess the high-dimensional classification problem of recognizing entrepreneurial intentions of students by machine learning methods. Methods/Approach: Four methods were tested: artificial neural networks, CART classification trees, support vector machines, and k-nearest neighbour on the same dataset in order to compare their efficiency in the sense of classification accuracy. The performance of each method was compared on ten subsamples in a 10-fold cross-validation procedure in order to assess computing sensitivity and specificity of each model. Results: The artificial neural network model based on multilayer perceptron yielded a higher classification rate than the models produced by other methods. The pairwise t-test showed a statistical significance between the artificial neural network and the k-nearest neighbour model, while the difference among other methods was not statistically significant. Conclusions: Tested machine learning methods are able to learn fast and achieve high classification accuracy. However, further advancement can be assured by testing a few additional methodological refinements in machine learning methods.

  11. A comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling.

    Science.gov (United States)

    Leger, Stefan; Zwanenburg, Alex; Pilz, Karoline; Lohaus, Fabian; Linge, Annett; Zöphel, Klaus; Kotzerke, Jörg; Schreiber, Andreas; Tinhofer, Inge; Budach, Volker; Sak, Ali; Stuschke, Martin; Balermpas, Panagiotis; Rödel, Claus; Ganswindt, Ute; Belka, Claus; Pigorsch, Steffi; Combs, Stephanie E; Mönnich, David; Zips, Daniel; Krause, Mechthild; Baumann, Michael; Troost, Esther G C; Löck, Steffen; Richter, Christian

    2017-10-16

    Radiomics applies machine learning algorithms to quantitative imaging data to characterise the tumour phenotype and predict clinical outcome. For the development of radiomics risk models, a variety of different algorithms is available and it is not clear which one gives optimal results. Therefore, we assessed the performance of 11 machine learning algorithms combined with 12 feature selection methods by the concordance index (C-Index), to predict loco-regional tumour control (LRC) and overall survival for patients with head and neck squamous cell carcinoma. The considered algorithms are able to deal with continuous time-to-event survival data. Feature selection and model building were performed on a multicentre cohort (213 patients) and validated using an independent cohort (80 patients). We found several combinations of machine learning algorithms and feature selection methods which achieve similar results, e.g. C-Index = 0.71 and BT-COX: C-Index = 0.70 in combination with Spearman feature selection. Using the best performing models, patients were stratified into groups of low and high risk of recurrence. Significant differences in LRC were obtained between both groups on the validation cohort. Based on the presented analysis, we identified a subset of algorithms which should be considered in future radiomics studies to develop stable and clinically relevant predictive models for time-to-event endpoints.

  12. Clojure for machine learning

    CERN Document Server

    Wali, Akhil

    2014-01-01

    A book that brings out the strengths of Clojure programming that have to facilitate machine learning. Each topic is described in substantial detail, and examples and libraries in Clojure are also demonstrated.This book is intended for Clojure developers who want to explore the area of machine learning. Basic understanding of the Clojure programming language is required, but thorough acquaintance with the standard Clojure library or any libraries are not required. Familiarity with theoretical concepts and notation of mathematics and statistics would be an added advantage.

  13. Machine learning topological states

    Science.gov (United States)

    Deng, Dong-Ling; Li, Xiaopeng; Das Sarma, S.

    2017-11-01

    Artificial neural networks and machine learning have now reached a new era after several decades of improvement where applications are to explode in many fields of science, industry, and technology. Here, we use artificial neural networks to study an intriguing phenomenon in quantum physics—the topological phases of matter. We find that certain topological states, either symmetry-protected or with intrinsic topological order, can be represented with classical artificial neural networks. This is demonstrated by using three concrete spin systems, the one-dimensional (1D) symmetry-protected topological cluster state and the 2D and 3D toric code states with intrinsic topological orders. For all three cases, we show rigorously that the topological ground states can be represented by short-range neural networks in an exact and efficient fashion—the required number of hidden neurons is as small as the number of physical spins and the number of parameters scales only linearly with the system size. For the 2D toric-code model, we find that the proposed short-range neural networks can describe the excited states with Abelian anyons and their nontrivial mutual statistics as well. In addition, by using reinforcement learning we show that neural networks are capable of finding the topological ground states of nonintegrable Hamiltonians with strong interactions and studying their topological phase transitions. Our results demonstrate explicitly the exceptional power of neural networks in describing topological quantum states, and at the same time provide valuable guidance to machine learning of topological phases in generic lattice models.

  14. Machine Learning in Production Systems Design Using Genetic Algorithms

    OpenAIRE

    Abu Qudeiri Jaber; Yamamoto Hidehiko Rizauddin Ramli

    2008-01-01

    To create a solution for a specific problem in machine learning, the solution is constructed from the data or by use a search method. Genetic algorithms are a model of machine learning that can be used to find nearest optimal solution. While the great advantage of genetic algorithms is the fact that they find a solution through evolution, this is also the biggest disadvantage. Evolution is inductive, in nature life does not evolve towards a good solution but it evolves aw...

  15. Considerations upon the Machine Learning Technologies

    Directory of Open Access Journals (Sweden)

    Alin Munteanu

    2006-01-01

    Full Text Available Artificial intelligence offers superior techniques and methods by which problems from diverse domains may find an optimal solution. The Machine Learning technologies refer to the domain of artificial intelligence aiming to develop the techniques allowing the computers to “learn”. Some systems based on Machine Learning technologies tend to eliminate the necessity of the human intelligence while the others adopt a man-machine collaborative approach.

  16. Solar Flare Prediction Model with Three Machine-learning Algorithms using Ultraviolet Brightening and Vector Magnetograms

    Science.gov (United States)

    Nishizuka, N.; Sugiura, K.; Kubo, Y.; Den, M.; Watari, S.; Ishii, M.

    2017-02-01

    We developed a flare prediction model using machine learning, which is optimized to predict the maximum class of flares occurring in the following 24 hr. Machine learning is used to devise algorithms that can learn from and make decisions on a huge amount of data. We used solar observation data during the period 2010-2015, such as vector magnetograms, ultraviolet (UV) emission, and soft X-ray emission taken by the Solar Dynamics Observatory and the Geostationary Operational Environmental Satellite. We detected active regions (ARs) from the full-disk magnetogram, from which ˜60 features were extracted with their time differentials, including magnetic neutral lines, the current helicity, the UV brightening, and the flare history. After standardizing the feature database, we fully shuffled and randomly separated it into two for training and testing. To investigate which algorithm is best for flare prediction, we compared three machine-learning algorithms: the support vector machine, k-nearest neighbors (k-NN), and extremely randomized trees. The prediction score, the true skill statistic, was higher than 0.9 with a fully shuffled data set, which is higher than that for human forecasts. It was found that k-NN has the highest performance among the three algorithms. The ranking of the feature importance showed that previous flare activity is most effective, followed by the length of magnetic neutral lines, the unsigned magnetic flux, the area of UV brightening, and the time differentials of features over 24 hr, all of which are strongly correlated with the flux emergence dynamics in an AR.

  17. Solar Flare Prediction Model with Three Machine-learning Algorithms using Ultraviolet Brightening and Vector Magnetograms

    International Nuclear Information System (INIS)

    Nishizuka, N.; Kubo, Y.; Den, M.; Watari, S.; Ishii, M.; Sugiura, K.

    2017-01-01

    We developed a flare prediction model using machine learning, which is optimized to predict the maximum class of flares occurring in the following 24 hr. Machine learning is used to devise algorithms that can learn from and make decisions on a huge amount of data. We used solar observation data during the period 2010–2015, such as vector magnetograms, ultraviolet (UV) emission, and soft X-ray emission taken by the Solar Dynamics Observatory and the Geostationary Operational Environmental Satellite . We detected active regions (ARs) from the full-disk magnetogram, from which ∼60 features were extracted with their time differentials, including magnetic neutral lines, the current helicity, the UV brightening, and the flare history. After standardizing the feature database, we fully shuffled and randomly separated it into two for training and testing. To investigate which algorithm is best for flare prediction, we compared three machine-learning algorithms: the support vector machine, k-nearest neighbors (k-NN), and extremely randomized trees. The prediction score, the true skill statistic, was higher than 0.9 with a fully shuffled data set, which is higher than that for human forecasts. It was found that k-NN has the highest performance among the three algorithms. The ranking of the feature importance showed that previous flare activity is most effective, followed by the length of magnetic neutral lines, the unsigned magnetic flux, the area of UV brightening, and the time differentials of features over 24 hr, all of which are strongly correlated with the flux emergence dynamics in an AR.

  18. Solar Flare Prediction Model with Three Machine-learning Algorithms using Ultraviolet Brightening and Vector Magnetograms

    Energy Technology Data Exchange (ETDEWEB)

    Nishizuka, N.; Kubo, Y.; Den, M.; Watari, S.; Ishii, M. [Applied Electromagnetic Research Institute, National Institute of Information and Communications Technology, 4-2-1, Nukui-Kitamachi, Koganei, Tokyo 184-8795 (Japan); Sugiura, K., E-mail: nishizuka.naoto@nict.go.jp [Advanced Speech Translation Research and Development Promotion Center, National Institute of Information and Communications Technology (Japan)

    2017-02-01

    We developed a flare prediction model using machine learning, which is optimized to predict the maximum class of flares occurring in the following 24 hr. Machine learning is used to devise algorithms that can learn from and make decisions on a huge amount of data. We used solar observation data during the period 2010–2015, such as vector magnetograms, ultraviolet (UV) emission, and soft X-ray emission taken by the Solar Dynamics Observatory and the Geostationary Operational Environmental Satellite . We detected active regions (ARs) from the full-disk magnetogram, from which ∼60 features were extracted with their time differentials, including magnetic neutral lines, the current helicity, the UV brightening, and the flare history. After standardizing the feature database, we fully shuffled and randomly separated it into two for training and testing. To investigate which algorithm is best for flare prediction, we compared three machine-learning algorithms: the support vector machine, k-nearest neighbors (k-NN), and extremely randomized trees. The prediction score, the true skill statistic, was higher than 0.9 with a fully shuffled data set, which is higher than that for human forecasts. It was found that k-NN has the highest performance among the three algorithms. The ranking of the feature importance showed that previous flare activity is most effective, followed by the length of magnetic neutral lines, the unsigned magnetic flux, the area of UV brightening, and the time differentials of features over 24 hr, all of which are strongly correlated with the flux emergence dynamics in an AR.

  19. Using human brain activity to guide machine learning.

    Science.gov (United States)

    Fong, Ruth C; Scheirer, Walter J; Cox, David D

    2018-03-29

    Machine learning is a field of computer science that builds algorithms that learn. In many cases, machine learning algorithms are used to recreate a human ability like adding a caption to a photo, driving a car, or playing a game. While the human brain has long served as a source of inspiration for machine learning, little effort has been made to directly use data collected from working brains as a guide for machine learning algorithms. Here we demonstrate a new paradigm of "neurally-weighted" machine learning, which takes fMRI measurements of human brain activity from subjects viewing images, and infuses these data into the training process of an object recognition learning algorithm to make it more consistent with the human brain. After training, these neurally-weighted classifiers are able to classify images without requiring any additional neural data. We show that our neural-weighting approach can lead to large performance gains when used with traditional machine vision features, as well as to significant improvements with already high-performing convolutional neural network features. The effectiveness of this approach points to a path forward for a new class of hybrid machine learning algorithms which take both inspiration and direct constraints from neuronal data.

  20. A quantum speedup in machine learning: finding an N-bit Boolean function for a classification

    International Nuclear Information System (INIS)

    Yoo, Seokwon; Lee, Jinhyoung; Bang, Jeongho; Lee, Changhyoup

    2014-01-01

    We compare quantum and classical machines designed for learning an N-bit Boolean function in order to address how a quantum system improves the machine learning behavior. The machines of the two types consist of the same number of operations and control parameters, but only the quantum machines utilize the quantum coherence naturally induced by unitary operators. We show that quantum superposition enables quantum learning that is faster than classical learning by expanding the approximate solution regions, i.e., the acceptable regions. This is also demonstrated by means of numerical simulations with a standard feedback model, namely random search, and a practical model, namely differential evolution. (paper)

  1. Teaching machine learning to design students

    NARCIS (Netherlands)

    Vlist, van der B.J.J.; van de Westelaken, H.F.M.; Bartneck, C.; Hu, J.; Ahn, R.M.C.; Barakova, E.I.; Delbressine, F.L.M.; Feijs, L.M.G.; Pan, Z.; Zhang, X.; El Rhalibi, A.

    2008-01-01

    Machine learning is a key technology to design and create intelligent systems, products, and related services. Like many other design departments, we are faced with the challenge to teach machine learning to design students, who often do not have an inherent affinity towards technology. We

  2. Using Machine Learning in Adversarial Environments.

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Warren Leon [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-02-01

    Intrusion/anomaly detection systems are among the first lines of cyber defense. Commonly, they either use signatures or machine learning (ML) to identify threats, but fail to account for sophisticated attackers trying to circumvent them. We propose to embed machine learning within a game theoretic framework that performs adversarial modeling, develops methods for optimizing operational response based on ML, and integrates the resulting optimization codebase into the existing ML infrastructure developed by the Hybrid LDRD. Our approach addresses three key shortcomings of ML in adversarial settings: 1) resulting classifiers are typically deterministic and, therefore, easy to reverse engineer; 2) ML approaches only address the prediction problem, but do not prescribe how one should operationalize predictions, nor account for operational costs and constraints; and 3) ML approaches do not model attackers’ response and can be circumvented by sophisticated adversaries. The principal novelty of our approach is to construct an optimization framework that blends ML, operational considerations, and a model predicting attackers reaction, with the goal of computing optimal moving target defense. One important challenge is to construct a realistic model of an adversary that is tractable, yet realistic. We aim to advance the science of attacker modeling by considering game-theoretic methods, and by engaging experimental subjects with red teaming experience in trying to actively circumvent an intrusion detection system, and learning a predictive model of such circumvention activities. In addition, we will generate metrics to test that a particular model of an adversary is consistent with available data.

  3. Machine-learning-assisted materials discovery using failed experiments

    Science.gov (United States)

    Raccuglia, Paul; Elbert, Katherine C.; Adler, Philip D. F.; Falk, Casey; Wenny, Malia B.; Mollo, Aurelio; Zeller, Matthias; Friedler, Sorelle A.; Schrier, Joshua; Norquist, Alexander J.

    2016-05-01

    Inorganic-organic hybrid materials such as organically templated metal oxides, metal-organic frameworks (MOFs) and organohalide perovskites have been studied for decades, and hydrothermal and (non-aqueous) solvothermal syntheses have produced thousands of new materials that collectively contain nearly all the metals in the periodic table. Nevertheless, the formation of these compounds is not fully understood, and development of new compounds relies primarily on exploratory syntheses. Simulation- and data-driven approaches (promoted by efforts such as the Materials Genome Initiative) provide an alternative to experimental trial-and-error. Three major strategies are: simulation-based predictions of physical properties (for example, charge mobility, photovoltaic properties, gas adsorption capacity or lithium-ion intercalation) to identify promising target candidates for synthetic efforts; determination of the structure-property relationship from large bodies of experimental data, enabled by integration with high-throughput synthesis and measurement tools; and clustering on the basis of similar crystallographic structure (for example, zeolite structure classification or gas adsorption properties). Here we demonstrate an alternative approach that uses machine-learning algorithms trained on reaction data to predict reaction outcomes for the crystallization of templated vanadium selenites. We used information on ‘dark’ reactions—failed or unsuccessful hydrothermal syntheses—collected from archived laboratory notebooks from our laboratory, and added physicochemical property descriptions to the raw notebook information using cheminformatics techniques. We used the resulting data to train a machine-learning model to predict reaction success. When carrying out hydrothermal synthesis experiments using previously untested, commercially available organic building blocks, our machine-learning model outperformed traditional human strategies, and successfully predicted

  4. Splendidly blended: a machine learning set up for CDU control

    Science.gov (United States)

    Utzny, Clemens

    2017-06-01

    As the concepts of machine learning and artificial intelligence continue to grow in importance in the context of internet related applications it is still in its infancy when it comes to process control within the semiconductor industry. Especially the branch of mask manufacturing presents a challenge to the concepts of machine learning since the business process intrinsically induces pronounced product variability on the background of small plate numbers. In this paper we present the architectural set up of a machine learning algorithm which successfully deals with the demands and pitfalls of mask manufacturing. A detailed motivation of this basic set up followed by an analysis of its statistical properties is given. The machine learning set up for mask manufacturing involves two learning steps: an initial step which identifies and classifies the basic global CD patterns of a process. These results form the basis for the extraction of an optimized training set via balanced sampling. A second learning step uses this training set to obtain the local as well as global CD relationships induced by the manufacturing process. Using two production motivated examples we show how this approach is flexible and powerful enough to deal with the exacting demands of mask manufacturing. In one example we show how dedicated covariates can be used in conjunction with increased spatial resolution of the CD map model in order to deal with pathological CD effects at the mask boundary. The other example shows how the model set up enables strategies for dealing tool specific CD signature differences. In this case the balanced sampling enables a process control scheme which allows usage of the full tool park within the specified tight tolerance budget. Overall, this paper shows that the current rapid developments off the machine learning algorithms can be successfully used within the context of semiconductor manufacturing.

  5. Adaptive Machine Aids to Learning.

    Science.gov (United States)

    Starkweather, John A.

    With emphasis on man-machine relationships and on machine evolution, computer-assisted instruction (CAI) is examined in this paper. The discussion includes the background of machine assistance to learning, the current status of CAI, directions of development, the development of criteria for successful instruction, meeting the needs of users,…

  6. Using Machine Learning to Predict Student Performance

    OpenAIRE

    Pojon, Murat

    2017-01-01

    This thesis examines the application of machine learning algorithms to predict whether a student will be successful or not. The specific focus of the thesis is the comparison of machine learning methods and feature engineering techniques in terms of how much they improve the prediction performance. Three different machine learning methods were used in this thesis. They are linear regression, decision trees, and naïve Bayes classification. Feature engineering, the process of modification ...

  7. Amplifying human ability through autonomics and machine learning in IMPACT

    Science.gov (United States)

    Dzieciuch, Iryna; Reeder, John; Gutzwiller, Robert; Gustafson, Eric; Coronado, Braulio; Martinez, Luis; Croft, Bryan; Lange, Douglas S.

    2017-05-01

    Amplifying human ability for controlling complex environments featuring autonomous units can be aided by learned models of human and system performance. In developing a command and control system that allows a small number of people to control a large number of autonomous teams, we employ an autonomics framework to manage the networks that represent mission plans and the networks that are composed of human controllers and their autonomous assistants. Machine learning allows us to build models of human and system performance useful for monitoring plans and managing human attention and task loads. Machine learning also aids in the development of tactics that human supervisors can successfully monitor through the command and control system.

  8. The ATLAS Higgs Machine Learning Challenge

    CERN Document Server

    Cowan, Glen; The ATLAS collaboration; Bourdarios, Claire

    2015-01-01

    High Energy Physics has been using Machine Learning techniques (commonly known as Multivariate Analysis) since the 1990s with Artificial Neural Net and more recently with Boosted Decision Trees, Random Forest etc. Meanwhile, Machine Learning has become a full blown field of computer science. With the emergence of Big Data, data scientists are developing new Machine Learning algorithms to extract meaning from large heterogeneous data. HEP has exciting and difficult problems like the extraction of the Higgs boson signal, and at the same time data scientists have advanced algorithms: the goal of the HiggsML project was to bring the two together by a “challenge”: participants from all over the world and any scientific background could compete online to obtain the best Higgs to tau tau signal significance on a set of ATLAS fully simulated Monte Carlo signal and background. Instead of HEP physicists browsing through machine learning papers and trying to infer which new algorithms might be useful for HEP, then c...

  9. Machine learning-based dual-energy CT parametric mapping.

    Science.gov (United States)

    Su, Kuan-Hao; Kuo, Jung-Wen; Jordan, David W; Van Hedent, Steven; Klahr, Paul; Wei, Zhouping; Al Helo, Rose; Liang, Fan; Qian, Pengjiang; Pereira, Gisele C; Rassouli, Negin; Gilkeson, Robert C; Traughber, Bryan J; Cheng, Chee-Wai; Muzic, Raymond F

    2018-05-22

    The aim is to develop and evaluate machine learning methods for generating quantitative parametric maps of effective atomic number (Zeff), relative electron density (ρe), mean excitation energy (Ix), and relative stopping power (RSP) from clinical dual-energy CT data. The maps could be used for material identification and radiation dose calculation. Machine learning methods of historical centroid (HC), random forest (RF), and artificial neural networks (ANN) were used to learn the relationship between dual-energy CT input data and ideal output parametric maps calculated for phantoms from the known compositions of 13 tissue substitutes. After training and model selection steps, the machine learning predictors were used to generate parametric maps from independent phantom and patient input data. Precision and accuracy were evaluated using the ideal maps. This process was repeated for a range of exposure doses, and performance was compared to that of the clinically-used dual-energy, physics-based method which served as the reference. The machine learning methods generated more accurate and precise parametric maps than those obtained using the reference method. Their performance advantage was particularly evident when using data from the lowest exposure, one-fifth of a typical clinical abdomen CT acquisition. The RF method achieved the greatest accuracy. In comparison, the ANN method was only 1% less accurate but had much better computational efficiency than RF, being able to produce parametric maps in 15 seconds. Machine learning methods outperformed the reference method in terms of accuracy and noise tolerance when generating parametric maps, encouraging further exploration of the techniques. Among the methods we evaluated, ANN is the most suitable for clinical use due to its combination of accuracy, excellent low-noise performance, and computational efficiency. . © 2018 Institute of Physics and Engineering in

  10. Machine Learning Methods to Predict Diabetes Complications.

    Science.gov (United States)

    Dagliati, Arianna; Marini, Simone; Sacchi, Lucia; Cogni, Giulia; Teliti, Marsida; Tibollo, Valentina; De Cata, Pasquale; Chiovato, Luca; Bellazzi, Riccardo

    2018-03-01

    One of the areas where Artificial Intelligence is having more impact is machine learning, which develops algorithms able to learn patterns and decision rules from data. Machine learning algorithms have been embedded into data mining pipelines, which can combine them with classical statistical strategies, to extract knowledge from data. Within the EU-funded MOSAIC project, a data mining pipeline has been used to derive a set of predictive models of type 2 diabetes mellitus (T2DM) complications based on electronic health record data of nearly one thousand patients. Such pipeline comprises clinical center profiling, predictive model targeting, predictive model construction and model validation. After having dealt with missing data by means of random forest (RF) and having applied suitable strategies to handle class imbalance, we have used Logistic Regression with stepwise feature selection to predict the onset of retinopathy, neuropathy, or nephropathy, at different time scenarios, at 3, 5, and 7 years from the first visit at the Hospital Center for Diabetes (not from the diagnosis). Considered variables are gender, age, time from diagnosis, body mass index (BMI), glycated hemoglobin (HbA1c), hypertension, and smoking habit. Final models, tailored in accordance with the complications, provided an accuracy up to 0.838. Different variables were selected for each complication and time scenario, leading to specialized models easy to translate to the clinical practice.

  11. Data Mining Practical Machine Learning Tools and Techniques

    CERN Document Server

    Witten, Ian H; Hall, Mark A

    2011-01-01

    Data Mining: Practical Machine Learning Tools and Techniques offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. This highly anticipated third edition of the most acclaimed work on data mining and machine learning will teach you everything you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining. Thorough updates reflect the technical changes and modernizations that have taken place

  12. Mortality risk prediction in burn injury: Comparison of logistic regression with machine learning approaches.

    Science.gov (United States)

    Stylianou, Neophytos; Akbarov, Artur; Kontopantelis, Evangelos; Buchan, Iain; Dunn, Ken W

    2015-08-01

    Predicting mortality from burn injury has traditionally employed logistic regression models. Alternative machine learning methods have been introduced in some areas of clinical prediction as the necessary software and computational facilities have become accessible. Here we compare logistic regression and machine learning predictions of mortality from burn. An established logistic mortality model was compared to machine learning methods (artificial neural network, support vector machine, random forests and naïve Bayes) using a population-based (England & Wales) case-cohort registry. Predictive evaluation used: area under the receiver operating characteristic curve; sensitivity; specificity; positive predictive value and Youden's index. All methods had comparable discriminatory abilities, similar sensitivities, specificities and positive predictive values. Although some machine learning methods performed marginally better than logistic regression the differences were seldom statistically significant and clinically insubstantial. Random forests were marginally better for high positive predictive value and reasonable sensitivity. Neural networks yielded slightly better prediction overall. Logistic regression gives an optimal mix of performance and interpretability. The established logistic regression model of burn mortality performs well against more complex alternatives. Clinical prediction with a small set of strong, stable, independent predictors is unlikely to gain much from machine learning outside specialist research contexts. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  13. Python for probability, statistics, and machine learning

    CERN Document Server

    Unpingco, José

    2016-01-01

    This book covers the key ideas that link probability, statistics, and machine learning illustrated using Python modules in these areas. The entire text, including all the figures and numerical results, is reproducible using the Python codes and their associated Jupyter/IPython notebooks, which are provided as supplementary downloads. The author develops key intuitions in machine learning by working meaningful examples using multiple analytical methods and Python codes, thereby connecting theoretical concepts to concrete implementations. Modern Python modules like Pandas, Sympy, and Scikit-learn are applied to simulate and visualize important machine learning concepts like the bias/variance trade-off, cross-validation, and regularization. Many abstract mathematical ideas, such as convergence in probability theory, are developed and illustrated with numerical examples. This book is suitable for anyone with an undergraduate-level exposure to probability, statistics, or machine learning and with rudimentary knowl...

  14. Research on machine learning framework based on random forest algorithm

    Science.gov (United States)

    Ren, Qiong; Cheng, Hui; Han, Hai

    2017-03-01

    With the continuous development of machine learning, industry and academia have released a lot of machine learning frameworks based on distributed computing platform, and have been widely used. However, the existing framework of machine learning is limited by the limitations of machine learning algorithm itself, such as the choice of parameters and the interference of noises, the high using threshold and so on. This paper introduces the research background of machine learning framework, and combined with the commonly used random forest algorithm in machine learning classification algorithm, puts forward the research objectives and content, proposes an improved adaptive random forest algorithm (referred to as ARF), and on the basis of ARF, designs and implements the machine learning framework.

  15. Clinical data miner: an electronic case report form system with integrated data preprocessing and machine-learning libraries supporting clinical diagnostic model research.

    Science.gov (United States)

    Installé, Arnaud Jf; Van den Bosch, Thierry; De Moor, Bart; Timmerman, Dirk

    2014-10-20

    Using machine-learning techniques, clinical diagnostic model research extracts diagnostic models from patient data. Traditionally, patient data are often collected using electronic Case Report Form (eCRF) systems, while mathematical software is used for analyzing these data using machine-learning techniques. Due to the lack of integration between eCRF systems and mathematical software, extracting diagnostic models is a complex, error-prone process. Moreover, due to the complexity of this process, it is usually only performed once, after a predetermined number of data points have been collected, without insight into the predictive performance of the resulting models. The objective of the study of Clinical Data Miner (CDM) software framework is to offer an eCRF system with integrated data preprocessing and machine-learning libraries, improving efficiency of the clinical diagnostic model research workflow, and to enable optimization of patient inclusion numbers through study performance monitoring. The CDM software framework was developed using a test-driven development (TDD) approach, to ensure high software quality. Architecturally, CDM's design is split over a number of modules, to ensure future extendability. The TDD approach has enabled us to deliver high software quality. CDM's eCRF Web interface is in active use by the studies of the International Endometrial Tumor Analysis consortium, with over 4000 enrolled patients, and more studies planned. Additionally, a derived user interface has been used in six separate interrater agreement studies. CDM's integrated data preprocessing and machine-learning libraries simplify some otherwise manual and error-prone steps in the clinical diagnostic model research workflow. Furthermore, CDM's libraries provide study coordinators with a method to monitor a study's predictive performance as patient inclusions increase. To our knowledge, CDM is the only eCRF system integrating data preprocessing and machine-learning libraries

  16. Trip Travel Time Forecasting Based on Selective Forgetting Extreme Learning Machine

    Directory of Open Access Journals (Sweden)

    Zhiming Gui

    2014-01-01

    Full Text Available Travel time estimation on road networks is a valuable traffic metric. In this paper, we propose a machine learning based method for trip travel time estimation in road networks. The method uses the historical trip information extracted from taxis trace data as the training data. An optimized online sequential extreme machine, selective forgetting extreme learning machine, is adopted to make the prediction. Its selective forgetting learning ability enables the prediction algorithm to adapt to trip conditions changes well. Experimental results using real-life taxis trace data show that the forecasting model provides an effective and practical way for the travel time forecasting.

  17. Supporting visual quality assessment with machine learning

    NARCIS (Netherlands)

    Gastaldo, P.; Zunino, R.; Redi, J.

    2013-01-01

    Objective metrics for visual quality assessment often base their reliability on the explicit modeling of the highly non-linear behavior of human perception; as a result, they may be complex and computationally expensive. Conversely, machine learning (ML) paradigms allow to tackle the quality

  18. Machine learning in autistic spectrum disorder behavioral research: A review and ways forward.

    Science.gov (United States)

    Thabtah, Fadi

    2018-02-13

    Autistic Spectrum Disorder (ASD) is a mental disorder that retards acquisition of linguistic, communication, cognitive, and social skills and abilities. Despite being diagnosed with ASD, some individuals exhibit outstanding scholastic, non-academic, and artistic capabilities, in such cases posing a challenging task for scientists to provide answers. In the last few years, ASD has been investigated by social and computational intelligence scientists utilizing advanced technologies such as machine learning to improve diagnostic timing, precision, and quality. Machine learning is a multidisciplinary research topic that employs intelligent techniques to discover useful concealed patterns, which are utilized in prediction to improve decision making. Machine learning techniques such as support vector machines, decision trees, logistic regressions, and others, have been applied to datasets related to autism in order to construct predictive models. These models claim to enhance the ability of clinicians to provide robust diagnoses and prognoses of ASD. However, studies concerning the use of machine learning in ASD diagnosis and treatment suffer from conceptual, implementation, and data issues such as the way diagnostic codes are used, the type of feature selection employed, the evaluation measures chosen, and class imbalances in data among others. A more serious claim in recent studies is the development of a new method for ASD diagnoses based on machine learning. This article critically analyses these recent investigative studies on autism, not only articulating the aforementioned issues in these studies but also recommending paths forward that enhance machine learning use in ASD with respect to conceptualization, implementation, and data. Future studies concerning machine learning in autism research are greatly benefitted by such proposals.

  19. Predicting the dissolution kinetics of silicate glasses using machine learning

    Science.gov (United States)

    Anoop Krishnan, N. M.; Mangalathu, Sujith; Smedskjaer, Morten M.; Tandia, Adama; Burton, Henry; Bauchy, Mathieu

    2018-05-01

    Predicting the dissolution rates of silicate glasses in aqueous conditions is a complex task as the underlying mechanism(s) remain poorly understood and the dissolution kinetics can depend on a large number of intrinsic and extrinsic factors. Here, we assess the potential of data-driven models based on machine learning to predict the dissolution rates of various aluminosilicate glasses exposed to a wide range of solution pH values, from acidic to caustic conditions. Four classes of machine learning methods are investigated, namely, linear regression, support vector machine regression, random forest, and artificial neural network. We observe that, although linear methods all fail to describe the dissolution kinetics, the artificial neural network approach offers excellent predictions, thanks to its inherent ability to handle non-linear data. Overall, we suggest that a more extensive use of machine learning approaches could significantly accelerate the design of novel glasses with tailored properties.

  20. A comparative analysis of support vector machines and extreme learning machines.

    Science.gov (United States)

    Liu, Xueyi; Gao, Chuanhou; Li, Ping

    2012-09-01

    The theory of extreme learning machines (ELMs) has recently become increasingly popular. As a new learning algorithm for single-hidden-layer feed-forward neural networks, an ELM offers the advantages of low computational cost, good generalization ability, and ease of implementation. Hence the comparison and model selection between ELMs and other kinds of state-of-the-art machine learning approaches has become significant and has attracted many research efforts. This paper performs a comparative analysis of the basic ELMs and support vector machines (SVMs) from two viewpoints that are different from previous works: one is the Vapnik-Chervonenkis (VC) dimension, and the other is their performance under different training sample sizes. It is shown that the VC dimension of an ELM is equal to the number of hidden nodes of the ELM with probability one. Additionally, their generalization ability and computational complexity are exhibited with changing training sample size. ELMs have weaker generalization ability than SVMs for small sample but can generalize as well as SVMs for large sample. Remarkably, great superiority in computational speed especially for large-scale sample problems is found in ELMs. The results obtained can provide insight into the essential relationship between them, and can also serve as complementary knowledge for their past experimental and theoretical comparisons. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Machine learning approaches in medical image analysis

    DEFF Research Database (Denmark)

    de Bruijne, Marleen

    2016-01-01

    Machine learning approaches are increasingly successful in image-based diagnosis, disease prognosis, and risk assessment. This paper highlights new research directions and discusses three main challenges related to machine learning in medical imaging: coping with variation in imaging protocols......, learning from weak labels, and interpretation and evaluation of results....

  2. DROUGHT FORECASTING BASED ON MACHINE LEARNING OF REMOTE SENSING AND LONG-RANGE FORECAST DATA

    Directory of Open Access Journals (Sweden)

    J. Rhee

    2016-06-01

    Full Text Available The reduction of drought impacts may be achieved through sustainable drought management and proactive measures against drought disaster. Accurate and timely provision of drought information is essential. In this study, drought forecasting models to provide high-resolution drought information based on drought indicators for ungauged areas were developed. The developed models predict drought indices of the 6-month Standardized Precipitation Index (SPI6 and the 6-month Standardized Precipitation Evapotranspiration Index (SPEI6. An interpolation method based on multiquadric spline interpolation method as well as three machine learning models were tested. Three machine learning models of Decision Tree, Random Forest, and Extremely Randomized Trees were tested to enhance the provision of drought initial conditions based on remote sensing data, since initial conditions is one of the most important factors for drought forecasting. Machine learning-based methods performed better than interpolation methods for both classification and regression, and the methods using climatology data outperformed the methods using long-range forecast. The model based on climatological data and the machine learning method outperformed overall.

  3. Machine Learning Approaches in Cardiovascular Imaging.

    Science.gov (United States)

    Henglin, Mir; Stein, Gillian; Hushcha, Pavel V; Snoek, Jasper; Wiltschko, Alexander B; Cheng, Susan

    2017-10-01

    Cardiovascular imaging technologies continue to increase in their capacity to capture and store large quantities of data. Modern computational methods, developed in the field of machine learning, offer new approaches to leveraging the growing volume of imaging data available for analyses. Machine learning methods can now address data-related problems ranging from simple analytic queries of existing measurement data to the more complex challenges involved in analyzing raw images. To date, machine learning has been used in 2 broad and highly interconnected areas: automation of tasks that might otherwise be performed by a human and generation of clinically important new knowledge. Most cardiovascular imaging studies have focused on task-oriented problems, but more studies involving algorithms aimed at generating new clinical insights are emerging. Continued expansion in the size and dimensionality of cardiovascular imaging databases is driving strong interest in applying powerful deep learning methods, in particular, to analyze these data. Overall, the most effective approaches will require an investment in the resources needed to appropriately prepare such large data sets for analyses. Notwithstanding current technical and logistical challenges, machine learning and especially deep learning methods have much to offer and will substantially impact the future practice and science of cardiovascular imaging. © 2017 American Heart Association, Inc.

  4. Machine Learning of Musical Gestures

    OpenAIRE

    Caramiaux, Baptiste; Tanaka, Atau

    2013-01-01

    We present an overview of machine learning (ML) techniques and theirapplication in interactive music and new digital instruments design. We firstgive to the non-specialist reader an introduction to two ML tasks,classification and regression, that are particularly relevant for gesturalinteraction. We then present a review of the literature in current NIMEresearch that uses ML in musical gesture analysis and gestural sound control.We describe the ways in which machine learning is useful for cre...

  5. An introduction to quantum machine learning

    OpenAIRE

    Schuld, M.; Sinayskiy, I.; Petruccione, F.

    2014-01-01

    Machine learning algorithms learn a desired input-output relation from examples in order to interpret new inputs. This is important for tasks such as image and speech recognition or strategy optimisation, with growing applications in the IT industry. In the last couple of years, researchers investigated if quantum computing can help to improve classical machine learning algorithms. Ideas range from running computationally costly algorithms or their subroutines efficiently on a quantum compute...

  6. Trends in Machine Learning for Signal Processing

    DEFF Research Database (Denmark)

    Adali, Tulay; Miller, David J.; Diamantaras, Konstantinos I.

    2011-01-01

    By putting the accent on learning from the data and the environment, the Machine Learning for SP (MLSP) Technical Committee (TC) provides the essential bridge between the machine learning and SP communities. While the emphasis in MLSP is on learning and data-driven approaches, SP defines the main...... applications of interest, and thus the constraints and requirements on solutions, which include computational efficiency, online adaptation, and learning with limited supervision/reference data....

  7. Modeling PM2.5 Urban Pollution Using Machine Learning and Selected Meteorological Parameters

    Directory of Open Access Journals (Sweden)

    Jan Kleine Deters

    2017-01-01

    Full Text Available Outdoor air pollution costs millions of premature deaths annually, mostly due to anthropogenic fine particulate matter (or PM2.5. Quito, the capital city of Ecuador, is no exception in exceeding the healthy levels of pollution. In addition to the impact of urbanization, motorization, and rapid population growth, particulate pollution is modulated by meteorological factors and geophysical characteristics, which complicate the implementation of the most advanced models of weather forecast. Thus, this paper proposes a machine learning approach based on six years of meteorological and pollution data analyses to predict the concentrations of PM2.5 from wind (speed and direction and precipitation levels. The results of the classification model show a high reliability in the classification of low (25 µg/m3 and low (<10 µg/m3 versus moderate (10–25 µg/m3 concentrations of PM2.5. A regression analysis suggests a better prediction of PM2.5 when the climatic conditions are getting more extreme (strong winds or high levels of precipitation. The high correlation between estimated and real data for a time series analysis during the wet season confirms this finding. The study demonstrates that the use of statistical models based on machine learning is relevant to predict PM2.5 concentrations from meteorological data.

  8. Modelling Water Stress in a Shiraz Vineyard Using Hyperspectral Imaging and Machine Learning

    Directory of Open Access Journals (Sweden)

    Kyle Loggenberg

    2018-01-01

    Full Text Available The detection of water stress in vineyards plays an integral role in the sustainability of high-quality grapes and prevention of devastating crop loses. Hyperspectral remote sensing technologies combined with machine learning provides a practical means for modelling vineyard water stress. In this study, we applied two ensemble learners, i.e., random forest (RF and extreme gradient boosting (XGBoost, for discriminating stressed and non-stressed Shiraz vines using terrestrial hyperspectral imaging. Additionally, we evaluated the utility of a spectral subset of wavebands, derived using RF mean decrease accuracy (MDA and XGBoost gain. Our results show that both ensemble learners can effectively analyse the hyperspectral data. When using all wavebands (p = 176, RF produced a test accuracy of 83.3% (KHAT (kappa analysis = 0.67, and XGBoost a test accuracy of 80.0% (KHAT = 0.6. Using the subset of wavebands (p = 18 produced slight increases in accuracy ranging from 1.7% to 5.5% for both RF and XGBoost. We further investigated the effect of smoothing the spectral data using the Savitzky-Golay filter. The results indicated that the Savitzky-Golay filter reduced model accuracies (ranging from 0.7% to 3.3%. The results demonstrate the feasibility of terrestrial hyperspectral imagery and machine learning to create a semi-automated framework for vineyard water stress modelling.

  9. Status Checking System of Home Appliances using machine learning

    Directory of Open Access Journals (Sweden)

    Yoon Chi-Yurl

    2017-01-01

    Full Text Available This paper describes status checking system of home appliances based on machine learning, which can be applied to existing household appliances without networking function. Designed status checking system consists of sensor modules, a wireless communication module, cloud server, android application and a machine learning algorithm. The developed system applied to washing machine analyses and judges the four-kinds of appliance’s status such as staying, washing, rinsing and spin-drying. The measurements of sensor and transmission of sensing data are operated on an Arduino board and the data are transmitted to cloud server in real time. The collected data are parsed by an Android application and injected into the machine learning algorithm for learning the status of the appliances. The machine learning algorithm compares the stored learning data with collected real-time data from the appliances. Our results are expected to contribute as a base technology to design an automatic control system based on machine learning technology for household appliances in real-time.

  10. Developing a dengue forecast model using machine learning: A case study in China.

    Science.gov (United States)

    Guo, Pi; Liu, Tao; Zhang, Qin; Wang, Li; Xiao, Jianpeng; Zhang, Qingying; Luo, Ganfeng; Li, Zhihao; He, Jianfeng; Zhang, Yonghui; Ma, Wenjun

    2017-10-01

    In China, dengue remains an important public health issue with expanded areas and increased incidence recently. Accurate and timely forecasts of dengue incidence in China are still lacking. We aimed to use the state-of-the-art machine learning algorithms to develop an accurate predictive model of dengue. Weekly dengue cases, Baidu search queries and climate factors (mean temperature, relative humidity and rainfall) during 2011-2014 in Guangdong were gathered. A dengue search index was constructed for developing the predictive models in combination with climate factors. The observed year and week were also included in the models to control for the long-term trend and seasonality. Several machine learning algorithms, including the support vector regression (SVR) algorithm, step-down linear regression model, gradient boosted regression tree algorithm (GBM), negative binomial regression model (NBM), least absolute shrinkage and selection operator (LASSO) linear regression model and generalized additive model (GAM), were used as candidate models to predict dengue incidence. Performance and goodness of fit of the models were assessed using the root-mean-square error (RMSE) and R-squared measures. The residuals of the models were examined using the autocorrelation and partial autocorrelation function analyses to check the validity of the models. The models were further validated using dengue surveillance data from five other provinces. The epidemics during the last 12 weeks and the peak of the 2014 large outbreak were accurately forecasted by the SVR model selected by a cross-validation technique. Moreover, the SVR model had the consistently smallest prediction error rates for tracking the dynamics of dengue and forecasting the outbreaks in other areas in China. The proposed SVR model achieved a superior performance in comparison with other forecasting techniques assessed in this study. The findings can help the government and community respond early to dengue epidemics.

  11. Higgs Machine Learning Challenge 2014

    CERN Document Server

    Olivier, A-P; Bourdarios, C ; LAL / Orsay; Goldfarb, S ; University of Michigan

    2014-01-01

    High Energy Physics (HEP) has been using Machine Learning (ML) techniques such as boosted decision trees (paper) and neural nets since the 90s. These techniques are now routinely used for difficult tasks such as the Higgs boson search. Nevertheless, formal connections between the two research fields are rather scarce, with some exceptions such as the AppStat group at LAL, founded in 2006. In collaboration with INRIA, AppStat promotes interdisciplinary research on machine learning, computational statistics, and high-energy particle and astroparticle physics. We are now exploring new ways to improve the cross-fertilization of the two fields by setting up a data challenge, following the footsteps of, among others, the astrophysics community (dark matter and galaxy zoo challenges) and neurobiology (connectomics and decoding the human brain). The organization committee consists of ATLAS physicists and machine learning researchers. The Challenge will run from Monday 12th to September 2014.

  12. Predicting Pre-planting Risk of Stagonospora nodorum blotch in Winter Wheat Using Machine Learning Models

    Directory of Open Access Journals (Sweden)

    Lucky eMehra

    2016-03-01

    Full Text Available Pre-planting factors have been associated with the late-season severity of Stagonospora nodorum blotch (SNB, caused by the fungal pathogen Parastagonospora nodorum, in winter wheat (Triticum aestivum. The relative importance of these factors in the risk of SNB has not been determined and this knowledge can facilitate disease management decisions prior to planting of the wheat crop. In this study, we examined the performance of multiple regression (MR and three machine learning algorithms namely artificial neural networks, categorical and regression trees, and random forests (RF in predicting the pre-planting risk of SNB in wheat. Pre-planting factors tested as potential predictor variables were cultivar resistance, latitude, longitude, previous crop, seeding rate, seed treatment, tillage type, and wheat residue. Disease severity assessed at the end of the growing season was used as the response variable. The models were developed using 431 disease cases (unique combinations of predictors collected from 2012 to 2014 and these cases were randomly divided into training, validation, and test datasets. Models were evaluated based on the regression of observed against predicted severity values of SNB, sensitivity-specificity ROC analysis, and the Kappa statistic. A strong relationship was observed between late-season severity of SNB and specific pre-planting factors in which latitude, longitude, wheat residue, and cultivar resistance were the most important predictors. The MR model explained 33% of variability in the data, while machine learning models explained 47 to 79% of the total variability. Similarly, the MR model correctly classified 74% of the disease cases, while machine learning models correctly classified 81 to 83% of these cases. Results show that the RF algorithm, which explained 79% of the variability within the data, was the most accurate in predicting the risk of SNB, with an accuracy rate of 93%. The RF algorithm could allow early

  13. Predicting Pre-planting Risk of Stagonospora nodorum blotch in Winter Wheat Using Machine Learning Models.

    Science.gov (United States)

    Mehra, Lucky K; Cowger, Christina; Gross, Kevin; Ojiambo, Peter S

    2016-01-01

    Pre-planting factors have been associated with the late-season severity of Stagonospora nodorum blotch (SNB), caused by the fungal pathogen Parastagonospora nodorum, in winter wheat (Triticum aestivum). The relative importance of these factors in the risk of SNB has not been determined and this knowledge can facilitate disease management decisions prior to planting of the wheat crop. In this study, we examined the performance of multiple regression (MR) and three machine learning algorithms namely artificial neural networks, categorical and regression trees, and random forests (RF), in predicting the pre-planting risk of SNB in wheat. Pre-planting factors tested as potential predictor variables were cultivar resistance, latitude, longitude, previous crop, seeding rate, seed treatment, tillage type, and wheat residue. Disease severity assessed at the end of the growing season was used as the response variable. The models were developed using 431 disease cases (unique combinations of predictors) collected from 2012 to 2014 and these cases were randomly divided into training, validation, and test datasets. Models were evaluated based on the regression of observed against predicted severity values of SNB, sensitivity-specificity ROC analysis, and the Kappa statistic. A strong relationship was observed between late-season severity of SNB and specific pre-planting factors in which latitude, longitude, wheat residue, and cultivar resistance were the most important predictors. The MR model explained 33% of variability in the data, while machine learning models explained 47 to 79% of the total variability. Similarly, the MR model correctly classified 74% of the disease cases, while machine learning models correctly classified 81 to 83% of these cases. Results show that the RF algorithm, which explained 79% of the variability within the data, was the most accurate in predicting the risk of SNB, with an accuracy rate of 93%. The RF algorithm could allow early assessment of

  14. Machine Learning: developing an image recognition program : with Python, Scikit Learn and OpenCV

    OpenAIRE

    Nguyen, Minh

    2016-01-01

    Machine Learning is one of the most debated topic in computer world these days, especially after the first Computer Go program has beaten human Go world champion. Among endless application of Machine Learning, image recognition, which problem is processing enormous amount of data from dynamic input. This thesis will present the basic concept of Machine Learning, Machine Learning algorithms, Python programming language and Scikit Learn – a simple and efficient tool for data analysis in P...

  15. Thutmose - Investigation of Machine Learning-Based Intrusion Detection Systems

    Science.gov (United States)

    2016-06-01

    monitoring. This analyzed payload is within the application layer of the OSI model . The analysis tries to establish whether or not the payload is...24 3.2.5 Model Drift Experiments...ADVERSARIAL ENVIRONMENTS (SPIE DSS 2014) .................................................. 58 APPENDIX C - EVALUATING MODEL DRIFT IN MACHINE LEARNING

  16. Designing anticancer peptides by constructive machine learning.

    Science.gov (United States)

    Grisoni, Francesca; Neuhaus, Claudia; Gabernet, Gisela; Müller, Alex; Hiss, Jan; Schneider, Gisbert

    2018-04-21

    Constructive machine learning enables the automated generation of novel chemical structures without the need for explicit molecular design rules. This study presents the experimental application of such a generative model to design membranolytic anticancer peptides (ACPs) de novo. A recurrent neural network with long short-term memory cells was trained on alpha-helical cationic amphipathic peptide sequences and then fine-tuned with 26 known ACPs. This optimized model was used to generate unique and novel amino acid sequences. Twelve of the peptides were synthesized and tested for their activity on MCF7 human breast adenocarcinoma cells and selectivity against human erythrocytes. Ten of these peptides were active against cancer cells. Six of the active peptides killed MCF7 cancer cells without affecting human erythrocytes with at least threefold selectivity. These results advocate constructive machine learning for the automated design of peptides with desired biological activities. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Dropout Prediction in E-Learning Courses through the Combination of Machine Learning Techniques

    Science.gov (United States)

    Lykourentzou, Ioanna; Giannoukos, Ioannis; Nikolopoulos, Vassilis; Mpardis, George; Loumos, Vassili

    2009-01-01

    In this paper, a dropout prediction method for e-learning courses, based on three popular machine learning techniques and detailed student data, is proposed. The machine learning techniques used are feed-forward neural networks, support vector machines and probabilistic ensemble simplified fuzzy ARTMAP. Since a single technique may fail to…

  18. Machine learning in radiation oncology theory and applications

    CERN Document Server

    El Naqa, Issam; Murphy, Martin J

    2015-01-01

    ​This book provides a complete overview of the role of machine learning in radiation oncology and medical physics, covering basic theory, methods, and a variety of applications in medical physics and radiotherapy. An introductory section explains machine learning, reviews supervised and unsupervised learning methods, discusses performance evaluation, and summarizes potential applications in radiation oncology. Detailed individual sections are then devoted to the use of machine learning in quality assurance; computer-aided detection, including treatment planning and contouring; image-guided rad

  19. Medical Dataset Classification: A Machine Learning Paradigm Integrating Particle Swarm Optimization with Extreme Learning Machine Classifier

    Directory of Open Access Journals (Sweden)

    C. V. Subbulakshmi

    2015-01-01

    Full Text Available Medical data classification is a prime data mining problem being discussed about for a decade that has attracted several researchers around the world. Most classifiers are designed so as to learn from the data itself using a training process, because complete expert knowledge to determine classifier parameters is impracticable. This paper proposes a hybrid methodology based on machine learning paradigm. This paradigm integrates the successful exploration mechanism called self-regulated learning capability of the particle swarm optimization (PSO algorithm with the extreme learning machine (ELM classifier. As a recent off-line learning method, ELM is a single-hidden layer feedforward neural network (FFNN, proved to be an excellent classifier with large number of hidden layer neurons. In this research, PSO is used to determine the optimum set of parameters for the ELM, thus reducing the number of hidden layer neurons, and it further improves the network generalization performance. The proposed method is experimented on five benchmarked datasets of the UCI Machine Learning Repository for handling medical dataset classification. Simulation results show that the proposed approach is able to achieve good generalization performance, compared to the results of other classifiers.

  20. Exploration of Machine Learning Approaches to Predict Pavement Performance

    Science.gov (United States)

    2018-03-23

    Machine learning (ML) techniques were used to model and predict pavement condition index (PCI) for various pavement types using a variety of input variables. The primary objective of this research was to develop and assess PCI predictive models for t...

  1. Extreme learning machine for reduced order modeling of turbulent geophysical flows

    Science.gov (United States)

    San, Omer; Maulik, Romit

    2018-04-01

    We investigate the application of artificial neural networks to stabilize proper orthogonal decomposition-based reduced order models for quasistationary geophysical turbulent flows. An extreme learning machine concept is introduced for computing an eddy-viscosity closure dynamically to incorporate the effects of the truncated modes. We consider a four-gyre wind-driven ocean circulation problem as our prototype setting to assess the performance of the proposed data-driven approach. Our framework provides a significant reduction in computational time and effectively retains the dynamics of the full-order model during the forward simulation period beyond the training data set. Furthermore, we show that the method is robust for larger choices of time steps and can be used as an efficient and reliable tool for long time integration of general circulation models.

  2. Improving Satellite Observation Utilization for Model Initialization with Machine Learning: An Introduction and Tackling the "Labeled Dataset" Challenge for Cyclones Around the World

    Science.gov (United States)

    Bonfanti, C. E.; Stewart, J.; Lee, Y. J.; Govett, M.; Trailovic, L.; Etherton, B.

    2017-12-01

    One of the National Oceanic and Atmospheric Administration (NOAA) goals is to provide timely and reliable weather forecasts to support important decisions when and where people need it for safety, emergencies, planning for day-to-day activities. Satellite data is essential for areas lacking in-situ observations for use as initial conditions in Numerical Weather Prediction (NWP) Models, such as spans of the ocean or remote areas of land. Currently only about 7% of total received satellite data is selected for use and from that, an even smaller percentage ever are assimilated into NWP models. With machine learning, the computational and time costs needed for satellite data selection can be greatly reduced. We study various machine learning approaches to process orders of magnitude more satellite data in significantly less time allowing for a greater quantity and more intelligent selection of data to be used for assimilation purposes. Given the future launches of satellites in the upcoming years, machine learning is capable of being applied for better selection of Regions of Interest (ROI) in the magnitudes more of satellite data that will be received. This paper discusses the background of machine learning methods as applied to weather forecasting and the challenges of creating a "labeled dataset" for training and testing purposes. In the training stage of supervised machine learning, labeled data are important to identify a ROI as either true or false so that the model knows what signatures in satellite data to identify. Authors have selected cyclones, including tropical cyclones and mid-latitude lows, as ROI for their machine learning purposes and created a labeled dataset of true or false for ROI from Global Forecast System (GFS) reanalysis data. A dataset like this does not yet exist and given the need for a high quantity of samples, is was decided this was best done with automation. This process was done by developing a program similar to the National Center for

  3. PHOTOMETRIC SUPERNOVA CLASSIFICATION WITH MACHINE LEARNING

    Energy Technology Data Exchange (ETDEWEB)

    Lochner, Michelle; Peiris, Hiranya V.; Lahav, Ofer; Winter, Max K. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); McEwen, Jason D., E-mail: dr.michelle.lochner@gmail.com [Mullard Space Science Laboratory, University College London, Surrey RH5 6NT (United Kingdom)

    2016-08-01

    Automated photometric supernova classification has become an active area of research in recent years in light of current and upcoming imaging surveys such as the Dark Energy Survey (DES) and the Large Synoptic Survey Telescope, given that spectroscopic confirmation of type for all supernovae discovered will be impossible. Here, we develop a multi-faceted classification pipeline, combining existing and new approaches. Our pipeline consists of two stages: extracting descriptive features from the light curves and classification using a machine learning algorithm. Our feature extraction methods vary from model-dependent techniques, namely SALT2 fits, to more independent techniques that fit parametric models to curves, to a completely model-independent wavelet approach. We cover a range of representative machine learning algorithms, including naive Bayes, k -nearest neighbors, support vector machines, artificial neural networks, and boosted decision trees (BDTs). We test the pipeline on simulated multi-band DES light curves from the Supernova Photometric Classification Challenge. Using the commonly used area under the curve (AUC) of the Receiver Operating Characteristic as a metric, we find that the SALT2 fits and the wavelet approach, with the BDTs algorithm, each achieve an AUC of 0.98, where 1 represents perfect classification. We find that a representative training set is essential for good classification, whatever the feature set or algorithm, with implications for spectroscopic follow-up. Importantly, we find that by using either the SALT2 or the wavelet feature sets with a BDT algorithm, accurate classification is possible purely from light curve data, without the need for any redshift information.

  4. PHOTOMETRIC SUPERNOVA CLASSIFICATION WITH MACHINE LEARNING

    International Nuclear Information System (INIS)

    Lochner, Michelle; Peiris, Hiranya V.; Lahav, Ofer; Winter, Max K.; McEwen, Jason D.

    2016-01-01

    Automated photometric supernova classification has become an active area of research in recent years in light of current and upcoming imaging surveys such as the Dark Energy Survey (DES) and the Large Synoptic Survey Telescope, given that spectroscopic confirmation of type for all supernovae discovered will be impossible. Here, we develop a multi-faceted classification pipeline, combining existing and new approaches. Our pipeline consists of two stages: extracting descriptive features from the light curves and classification using a machine learning algorithm. Our feature extraction methods vary from model-dependent techniques, namely SALT2 fits, to more independent techniques that fit parametric models to curves, to a completely model-independent wavelet approach. We cover a range of representative machine learning algorithms, including naive Bayes, k -nearest neighbors, support vector machines, artificial neural networks, and boosted decision trees (BDTs). We test the pipeline on simulated multi-band DES light curves from the Supernova Photometric Classification Challenge. Using the commonly used area under the curve (AUC) of the Receiver Operating Characteristic as a metric, we find that the SALT2 fits and the wavelet approach, with the BDTs algorithm, each achieve an AUC of 0.98, where 1 represents perfect classification. We find that a representative training set is essential for good classification, whatever the feature set or algorithm, with implications for spectroscopic follow-up. Importantly, we find that by using either the SALT2 or the wavelet feature sets with a BDT algorithm, accurate classification is possible purely from light curve data, without the need for any redshift information.

  5. Daily sea level prediction at Chiayi coast, Taiwan using extreme learning machine and relevance vector machine

    Science.gov (United States)

    Imani, Moslem; Kao, Huan-Chin; Lan, Wen-Hau; Kuo, Chung-Yen

    2018-02-01

    The analysis and the prediction of sea level fluctuations are core requirements of marine meteorology and operational oceanography. Estimates of sea level with hours-to-days warning times are especially important for low-lying regions and coastal zone management. The primary purpose of this study is to examine the applicability and capability of extreme learning machine (ELM) and relevance vector machine (RVM) models for predicting sea level variations and compare their performances with powerful machine learning methods, namely, support vector machine (SVM) and radial basis function (RBF) models. The input dataset from the period of January 2004 to May 2011 used in the study was obtained from the Dongshi tide gauge station in Chiayi, Taiwan. Results showed that the ELM and RVM models outperformed the other methods. The performance of the RVM approach was superior in predicting the daily sea level time series given the minimum root mean square error of 34.73 mm and the maximum determination coefficient of 0.93 (R2) during the testing periods. Furthermore, the obtained results were in close agreement with the original tide-gauge data, which indicates that RVM approach is a promising alternative method for time series prediction and could be successfully used for daily sea level forecasts.

  6. Predicting Freeway Work Zone Delays and Costs with a Hybrid Machine-Learning Model

    Directory of Open Access Journals (Sweden)

    Bo Du

    2017-01-01

    Full Text Available A hybrid machine-learning model, integrating an artificial neural network (ANN and a support vector machine (SVM model, is developed to predict spatiotemporal delays, subject to road geometry, number of lane closures, and work zone duration in different periods of a day and in the days of a week. The model is very user friendly, allowing the least inputs from the users. With that the delays caused by a work zone on any location of a New Jersey freeway can be predicted. To this end, tremendous amounts of data from different sources were collected to establish the relationship between the model inputs and outputs. A comparative analysis was conducted, and results indicate that the proposed model outperforms others in terms of the least root mean square error (RMSE. The proposed hybrid model can be used to calculate contractor penalty in terms of cost overruns as well as incentive reward schedule in case of early work competition. Additionally, it can assist work zone planners in determining the best start and end times of a work zone for developing and evaluating traffic mitigation and management plans.

  7. Sparse Machine Learning Methods for Understanding Large Text Corpora

    Data.gov (United States)

    National Aeronautics and Space Administration — Sparse machine learning has recently emerged as powerful tool to obtain models of high-dimensional data with high degree of interpretability, at low computational...

  8. Toward accelerating landslide mapping with interactive machine learning techniques

    Science.gov (United States)

    Stumpf, André; Lachiche, Nicolas; Malet, Jean-Philippe; Kerle, Norman; Puissant, Anne

    2013-04-01

    Despite important advances in the development of more automated methods for landslide mapping from optical remote sensing images, the elaboration of inventory maps after major triggering events still remains a tedious task. Image classification with expert defined rules typically still requires significant manual labour for the elaboration and adaption of rule sets for each particular case. Machine learning algorithm, on the contrary, have the ability to learn and identify complex image patterns from labelled examples but may require relatively large amounts of training data. In order to reduce the amount of required training data active learning has evolved as key concept to guide the sampling for applications such as document classification, genetics and remote sensing. The general underlying idea of most active learning approaches is to initialize a machine learning model with a small training set, and to subsequently exploit the model state and/or the data structure to iteratively select the most valuable samples that should be labelled by the user and added in the training set. With relatively few queries and labelled samples, an active learning strategy should ideally yield at least the same accuracy than an equivalent classifier trained with many randomly selected samples. Our study was dedicated to the development of an active learning approach for landslide mapping from VHR remote sensing images with special consideration of the spatial distribution of the samples. The developed approach is a region-based query heuristic that enables to guide the user attention towards few compact spatial batches rather than distributed points resulting in time savings of 50% and more compared to standard active learning techniques. The approach was tested with multi-temporal and multi-sensor satellite images capturing recent large scale triggering events in Brazil and China and demonstrated balanced user's and producer's accuracies between 74% and 80%. The assessment also

  9. Twin support vector machines models, extensions and applications

    CERN Document Server

    Jayadeva; Chandra, Suresh

    2017-01-01

    This book provides a systematic and focused study of the various aspects of twin support vector machines (TWSVM) and related developments for classification and regression. In addition to presenting most of the basic models of TWSVM and twin support vector regression (TWSVR) available in the literature, it also discusses the important and challenging applications of this new machine learning methodology. A chapter on “Additional Topics” has been included to discuss kernel optimization and support tensor machine topics, which are comparatively new but have great potential in applications. It is primarily written for graduate students and researchers in the area of machine learning and related topics in computer science, mathematics, electrical engineering, management science and finance.

  10. Deep learning versus traditional machine learning methods for aggregated energy demand prediction

    NARCIS (Netherlands)

    Paterakis, N.G.; Mocanu, E.; Gibescu, M.; Stappers, B.; van Alst, W.

    2018-01-01

    In this paper the more advanced, in comparison with traditional machine learning approaches, deep learning methods are explored with the purpose of accurately predicting the aggregated energy consumption. Despite the fact that a wide range of machine learning methods have been applied to

  11. Learning Activity Packets for Milling Machines. Unit I--Introduction to Milling Machines.

    Science.gov (United States)

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This learning activity packet (LAP) outlines the study activities and performance tasks covered in a related curriculum guide on milling machines. The course of study in this LAP is intended to help students learn to identify parts and attachments of vertical and horizontal milling machines, identify work-holding devices, state safety rules, and…

  12. A Novel Hybrid Model Based on Extreme Learning Machine, k-Nearest Neighbor Regression and Wavelet Denoising Applied to Short-Term Electric Load Forecasting

    Directory of Open Access Journals (Sweden)

    Weide Li

    2017-05-01

    Full Text Available Electric load forecasting plays an important role in electricity markets and power systems. Because electric load time series are complicated and nonlinear, it is very difficult to achieve a satisfactory forecasting accuracy. In this paper, a hybrid model, Wavelet Denoising-Extreme Learning Machine optimized by k-Nearest Neighbor Regression (EWKM, which combines k-Nearest Neighbor (KNN and Extreme Learning Machine (ELM based on a wavelet denoising technique is proposed for short-term load forecasting. The proposed hybrid model decomposes the time series into a low frequency-associated main signal and some detailed signals associated with high frequencies at first, then uses KNN to determine the independent and dependent variables from the low-frequency signal. Finally, the ELM is used to get the non-linear relationship between these variables to get the final prediction result for the electric load. Compared with three other models, Extreme Learning Machine optimized by k-Nearest Neighbor Regression (EKM, Wavelet Denoising-Extreme Learning Machine (WKM and Wavelet Denoising-Back Propagation Neural Network optimized by k-Nearest Neighbor Regression (WNNM, the model proposed in this paper can improve the accuracy efficiently. New South Wales is the economic powerhouse of Australia, so we use the proposed model to predict electric demand for that region. The accurate prediction has a significant meaning.

  13. Machine Learning for Security

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Applied statistics, aka ‘Machine Learning’, offers a wealth of techniques for answering security questions. It’s a much hyped topic in the big data world, with many companies now providing machine learning as a service. This talk will demystify these techniques, explain the math, and demonstrate their application to security problems. The presentation will include how-to’s on classifying malware, looking into encrypted tunnels, and finding botnets in DNS data. About the speaker Josiah is a security researcher with HP TippingPoint DVLabs Research Group. He has over 15 years of professional software development experience. Josiah used to do AI, with work focused on graph theory, search, and deductive inference on large knowledge bases. As rules only get you so far, he moved from AI to using machine learning techniques identifying failure modes in email traffic. There followed digressions into clustered data storage and later integrated control systems. Current ...

  14. Prototype Vector Machine for Large Scale Semi-Supervised Learning

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kai; Kwok, James T.; Parvin, Bahram

    2009-04-29

    Practicaldataminingrarelyfalls exactlyinto the supervisedlearning scenario. Rather, the growing amount of unlabeled data poses a big challenge to large-scale semi-supervised learning (SSL). We note that the computationalintensivenessofgraph-based SSLarises largely from the manifold or graph regularization, which in turn lead to large models that are dificult to handle. To alleviate this, we proposed the prototype vector machine (PVM), a highlyscalable,graph-based algorithm for large-scale SSL. Our key innovation is the use of"prototypes vectors" for effcient approximation on both the graph-based regularizer and model representation. The choice of prototypes are grounded upon two important criteria: they not only perform effective low-rank approximation of the kernel matrix, but also span a model suffering the minimum information loss compared with the complete model. We demonstrate encouraging performance and appealing scaling properties of the PVM on a number of machine learning benchmark data sets.

  15. Moving beyond regression techniques in cardiovascular risk prediction: applying machine learning to address analytic challenges.

    Science.gov (United States)

    Goldstein, Benjamin A; Navar, Ann Marie; Carter, Rickey E

    2017-06-14

    Risk prediction plays an important role in clinical cardiology research. Traditionally, most risk models have been based on regression models. While useful and robust, these statistical methods are limited to using a small number of predictors which operate in the same way on everyone, and uniformly throughout their range. The purpose of this review is to illustrate the use of machine-learning methods for development of risk prediction models. Typically presented as black box approaches, most machine-learning methods are aimed at solving particular challenges that arise in data analysis that are not well addressed by typical regression approaches. To illustrate these challenges, as well as how different methods can address them, we consider trying to predicting mortality after diagnosis of acute myocardial infarction. We use data derived from our institution's electronic health record and abstract data on 13 regularly measured laboratory markers. We walk through different challenges that arise in modelling these data and then introduce different machine-learning approaches. Finally, we discuss general issues in the application of machine-learning methods including tuning parameters, loss functions, variable importance, and missing data. Overall, this review serves as an introduction for those working on risk modelling to approach the diffuse field of machine learning. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Cardiology.

  16. 1st International Conference on Machine Learning for Cyber Physical Systems and Industry 4.0

    CERN Document Server

    Beyerer, Jürgen

    2016-01-01

    The work presents new approaches to Machine Learning for Cyber Physical Systems, experiences and visions. It contains some selected papers from the international Conference ML4CPS – Machine Learning for Cyber Physical Systems, which was held in Lemgo, October 1-2, 2015. Cyber Physical Systems are characterized by their ability to adapt and to learn: They analyze their environment and, based on observations, they learn patterns, correlations and predictive models. Typical applications are condition monitoring, predictive maintenance, image processing and diagnosis. Machine Learning is the key technology for these developments.

  17. Machine learning in heart failure: ready for prime time.

    Science.gov (United States)

    Awan, Saqib Ejaz; Sohel, Ferdous; Sanfilippo, Frank Mario; Bennamoun, Mohammed; Dwivedi, Girish

    2018-03-01

    The aim of this review is to present an up-to-date overview of the application of machine learning methods in heart failure including diagnosis, classification, readmissions and medication adherence. Recent studies have shown that the application of machine learning techniques may have the potential to improve heart failure outcomes and management, including cost savings by improving existing diagnostic and treatment support systems. Recently developed deep learning methods are expected to yield even better performance than traditional machine learning techniques in performing complex tasks by learning the intricate patterns hidden in big medical data. The review summarizes the recent developments in the application of machine and deep learning methods in heart failure management.

  18. Research into Financial Position of Listed Companies following Classification via Extreme Learning Machine Based upon DE Optimization

    Directory of Open Access Journals (Sweden)

    Fu Yu

    2016-01-01

    Full Text Available By means of the model of extreme learning machine based upon DE optimization, this article particularly centers on the optimization thinking of such a model as well as its application effect in the field of listed company’s financial position classification. It proves that the improved extreme learning machine algorithm based upon DE optimization eclipses the traditional extreme learning machine algorithm following comparison. Meanwhile, this article also intends to introduce certain research thinking concerning extreme learning machine into the economics classification area so as to fulfill the purpose of computerizing the speedy but effective evaluation of massive financial statements of listed companies pertain to different classes

  19. Research into Financial Position of Listed Companies following Classification via Extreme Learning Machine Based upon DE Optimization

    OpenAIRE

    Fu Yu; Mu Jiong; Duan Xu Liang

    2016-01-01

    By means of the model of extreme learning machine based upon DE optimization, this article particularly centers on the optimization thinking of such a model as well as its application effect in the field of listed company’s financial position classification. It proves that the improved extreme learning machine algorithm based upon DE optimization eclipses the traditional extreme learning machine algorithm following comparison. Meanwhile, this article also intends to introduce certain research...

  20. Finding New Perovskite Halides via Machine learning

    Directory of Open Access Journals (Sweden)

    Ghanshyam ePilania

    2016-04-01

    Full Text Available Advanced materials with improved properties have the potential to fuel future technological advancements. However, identification and discovery of these optimal materials for a specific application is a non-trivial task, because of the vastness of the chemical search space with enormous compositional and configurational degrees of freedom. Materials informatics provides an efficient approach towards rational design of new materials, via learning from known data to make decisions on new and previously unexplored compounds in an accelerated manner. Here, we demonstrate the power and utility of such statistical learning (or machine learning via building a support vector machine (SVM based classifier that uses elemental features (or descriptors to predict the formability of a given ABX3 halide composition (where A and B represent monovalent and divalent cations, respectively, and X is F, Cl, Br or I anion in the perovskite crystal structure. The classification model is built by learning from a dataset of 181 experimentally known ABX3 compounds. After exploring a wide range of features, we identify ionic radii, tolerance factor and octahedral factor to be the most important factors for the classification, suggesting that steric and geometric packing effects govern the stability of these halides. The trained and validated models then predict, with a high degree of confidence, several novel ABX3 compositions with perovskite crystal structure.

  1. Finding New Perovskite Halides via Machine learning

    Science.gov (United States)

    Pilania, Ghanshyam; Balachandran, Prasanna V.; Kim, Chiho; Lookman, Turab

    2016-04-01

    Advanced materials with improved properties have the potential to fuel future technological advancements. However, identification and discovery of these optimal materials for a specific application is a non-trivial task, because of the vastness of the chemical search space with enormous compositional and configurational degrees of freedom. Materials informatics provides an efficient approach towards rational design of new materials, via learning from known data to make decisions on new and previously unexplored compounds in an accelerated manner. Here, we demonstrate the power and utility of such statistical learning (or machine learning) via building a support vector machine (SVM) based classifier that uses elemental features (or descriptors) to predict the formability of a given ABX3 halide composition (where A and B represent monovalent and divalent cations, respectively, and X is F, Cl, Br or I anion) in the perovskite crystal structure. The classification model is built by learning from a dataset of 181 experimentally known ABX3 compounds. After exploring a wide range of features, we identify ionic radii, tolerance factor and octahedral factor to be the most important factors for the classification, suggesting that steric and geometric packing effects govern the stability of these halides. The trained and validated models then predict, with a high degree of confidence, several novel ABX3 compositions with perovskite crystal structure.

  2. Leveraging knowledge engineering and machine learning for microbial bio-manufacturing.

    Science.gov (United States)

    Oyetunde, Tolutola; Bao, Forrest Sheng; Chen, Jiung-Wen; Martin, Hector Garcia; Tang, Yinjie J

    2018-05-03

    Genome scale modeling (GSM) predicts the performance of microbial workhorses and helps identify beneficial gene targets. GSM integrated with intracellular flux dynamics, omics, and thermodynamics have shown remarkable progress in both elucidating complex cellular phenomena and computational strain design (CSD). Nonetheless, these models still show high uncertainty due to a poor understanding of innate pathway regulations, metabolic burdens, and other factors (such as stress tolerance and metabolite channeling). Besides, the engineered hosts may have genetic mutations or non-genetic variations in bioreactor conditions and thus CSD rarely foresees fermentation rate and titer. Metabolic models play important role in design-build-test-learn cycles for strain improvement, and machine learning (ML) may provide a viable complementary approach for driving strain design and deciphering cellular processes. In order to develop quality ML models, knowledge engineering leverages and standardizes the wealth of information in literature (e.g., genomic/phenomic data, synthetic biology strategies, and bioprocess variables). Data driven frameworks can offer new constraints for mechanistic models to describe cellular regulations, to design pathways, to search gene targets, and to estimate fermentation titer/rate/yield under specified growth conditions (e.g., mixing, nutrients, and O 2 ). This review highlights the scope of information collections, database constructions, and machine learning techniques (such as deep learning and transfer learning), which may facilitate "Learn and Design" for strain development. Copyright © 2018. Published by Elsevier Inc.

  3. Fault Tolerance Automotive Air-Ratio Control Using Extreme Learning Machine Model Predictive Controller

    OpenAIRE

    Pak Kin Wong; Hang Cheong Wong; Chi Man Vong; Tong Meng Iong; Ka In Wong; Xianghui Gao

    2015-01-01

    Effective air-ratio control is desirable to maintain the best engine performance. However, traditional air-ratio control assumes the lambda sensor located at the tail pipe works properly and relies strongly on the air-ratio feedback signal measured by the lambda sensor. When the sensor is warming up during cold start or under failure, the traditional air-ratio control no longer works. To address this issue, this paper utilizes an advanced modelling technique, kernel extreme learning machine (...

  4. Machine Learning Approaches for Clinical Psychology and Psychiatry.

    Science.gov (United States)

    Dwyer, Dominic B; Falkai, Peter; Koutsouleris, Nikolaos

    2018-05-07

    Machine learning approaches for clinical psychology and psychiatry explicitly focus on learning statistical functions from multidimensional data sets to make generalizable predictions about individuals. The goal of this review is to provide an accessible understanding of why this approach is important for future practice given its potential to augment decisions associated with the diagnosis, prognosis, and treatment of people suffering from mental illness using clinical and biological data. To this end, the limitations of current statistical paradigms in mental health research are critiqued, and an introduction is provided to critical machine learning methods used in clinical studies. A selective literature review is then presented aiming to reinforce the usefulness of machine learning methods and provide evidence of their potential. In the context of promising initial results, the current limitations of machine learning approaches are addressed, and considerations for future clinical translation are outlined.

  5. Parsimonious Wavelet Kernel Extreme Learning Machine

    Directory of Open Access Journals (Sweden)

    Wang Qin

    2015-11-01

    Full Text Available In this study, a parsimonious scheme for wavelet kernel extreme learning machine (named PWKELM was introduced by combining wavelet theory and a parsimonious algorithm into kernel extreme learning machine (KELM. In the wavelet analysis, bases that were localized in time and frequency to represent various signals effectively were used. Wavelet kernel extreme learning machine (WELM maximized its capability to capture the essential features in “frequency-rich” signals. The proposed parsimonious algorithm also incorporated significant wavelet kernel functions via iteration in virtue of Householder matrix, thus producing a sparse solution that eased the computational burden and improved numerical stability. The experimental results achieved from the synthetic dataset and a gas furnace instance demonstrated that the proposed PWKELM is efficient and feasible in terms of improving generalization accuracy and real time performance.

  6. MACHINE LEARNING TECHNIQUES USED IN BIG DATA

    Directory of Open Access Journals (Sweden)

    STEFANIA LOREDANA NITA

    2016-07-01

    Full Text Available The classical tools used in data analysis are not enough in order to benefit of all advantages of big data. The amount of information is too large for a complete investigation, and the possible connections and relations between data could be missed, because it is difficult or even impossible to verify all assumption over the information. Machine learning is a great solution in order to find concealed correlations or relationships between data, because it runs at scale machine and works very well with large data sets. The more data we have, the more the machine learning algorithm is useful, because it “learns” from the existing data and applies the found rules on new entries. In this paper, we present some machine learning algorithms and techniques used in big data.

  7. Intellectual Property and Machine Learning: An exploratory study

    OpenAIRE

    Øverlier, Lasse

    2017-01-01

    Our research makes a contribution by exemplifying what controls the freedom-to-operate for a company operating in the area of machine learning. Through interviews we demonstrate the industry’s alternating viewpoints to whether copyrighted data used as input to machine learning systems should be viewed differently than copying the data for storage or reproduction. In addition we show that unauthorized use of copyrighted data in machine learning systems is hard to detect with the burden of proo...

  8. Archetypal analysis for machine learning and data mining

    DEFF Research Database (Denmark)

    Mørup, Morten; Hansen, Lars Kai

    2012-01-01

    of the observed data. We further demonstrate that the aa model is relevant for feature extraction and dimensionality reduction for a large variety of machine learning problems taken from computer vision, neuroimaging, chemistry, text mining and collaborative filtering leading to highly interpretable...

  9. Machine learning-based kinetic modeling: a robust and reproducible solution for quantitative analysis of dynamic PET data.

    Science.gov (United States)

    Pan, Leyun; Cheng, Caixia; Haberkorn, Uwe; Dimitrakopoulou-Strauss, Antonia

    2017-05-07

    A variety of compartment models are used for the quantitative analysis of dynamic positron emission tomography (PET) data. Traditionally, these models use an iterative fitting (IF) method to find the least squares between the measured and calculated values over time, which may encounter some problems such as the overfitting of model parameters and a lack of reproducibility, especially when handling noisy data or error data. In this paper, a machine learning (ML) based kinetic modeling method is introduced, which can fully utilize a historical reference database to build a moderate kinetic model directly dealing with noisy data but not trying to smooth the noise in the image. Also, due to the database, the presented method is capable of automatically adjusting the models using a multi-thread grid parameter searching technique. Furthermore, a candidate competition concept is proposed to combine the advantages of the ML and IF modeling methods, which could find a balance between fitting to historical data and to the unseen target curve. The machine learning based method provides a robust and reproducible solution that is user-independent for VOI-based and pixel-wise quantitative analysis of dynamic PET data.

  10. Machine learning-based kinetic modeling: a robust and reproducible solution for quantitative analysis of dynamic PET data

    Science.gov (United States)

    Pan, Leyun; Cheng, Caixia; Haberkorn, Uwe; Dimitrakopoulou-Strauss, Antonia

    2017-05-01

    A variety of compartment models are used for the quantitative analysis of dynamic positron emission tomography (PET) data. Traditionally, these models use an iterative fitting (IF) method to find the least squares between the measured and calculated values over time, which may encounter some problems such as the overfitting of model parameters and a lack of reproducibility, especially when handling noisy data or error data. In this paper, a machine learning (ML) based kinetic modeling method is introduced, which can fully utilize a historical reference database to build a moderate kinetic model directly dealing with noisy data but not trying to smooth the noise in the image. Also, due to the database, the presented method is capable of automatically adjusting the models using a multi-thread grid parameter searching technique. Furthermore, a candidate competition concept is proposed to combine the advantages of the ML and IF modeling methods, which could find a balance between fitting to historical data and to the unseen target curve. The machine learning based method provides a robust and reproducible solution that is user-independent for VOI-based and pixel-wise quantitative analysis of dynamic PET data.

  11. A study of association of Oncotype DX recurrence score with DCE-MRI characteristics using multivariate machine learning models.

    Science.gov (United States)

    Saha, Ashirbani; Harowicz, Michael R; Wang, Weiyao; Mazurowski, Maciej A

    2018-05-01

    To determine whether multivariate machine learning models of algorithmically assessed magnetic resonance imaging (MRI) features from breast cancer patients are associated with Oncotype DX (ODX) test recurrence scores. A set of 261 female patients with invasive breast cancer, pre-operative dynamic contrast enhanced magnetic resonance (DCE-MR) images and available ODX score at our institution was identified. A computer algorithm extracted a comprehensive set of 529 features from the DCE-MR images of these patients. The set of patients was divided into a training set and a test set. Using the training set we developed two machine learning-based models to discriminate (1) high ODX scores from intermediate and low ODX scores, and (2) high and intermediate ODX scores from low ODX scores. The performance of these models was evaluated on the independent test set. High against low and intermediate ODX scores were predicted by the multivariate model with AUC 0.77 (95% CI 0.56-0.98, p replacement of ODX with imaging alone.

  12. Classifying smoking urges via machine learning.

    Science.gov (United States)

    Dumortier, Antoine; Beckjord, Ellen; Shiffman, Saul; Sejdić, Ervin

    2016-12-01

    Smoking is the largest preventable cause of death and diseases in the developed world, and advances in modern electronics and machine learning can help us deliver real-time intervention to smokers in novel ways. In this paper, we examine different machine learning approaches to use situational features associated with having or not having urges to smoke during a quit attempt in order to accurately classify high-urge states. To test our machine learning approaches, specifically, Bayes, discriminant analysis and decision tree learning methods, we used a dataset collected from over 300 participants who had initiated a quit attempt. The three classification approaches are evaluated observing sensitivity, specificity, accuracy and precision. The outcome of the analysis showed that algorithms based on feature selection make it possible to obtain high classification rates with only a few features selected from the entire dataset. The classification tree method outperformed the naive Bayes and discriminant analysis methods, with an accuracy of the classifications up to 86%. These numbers suggest that machine learning may be a suitable approach to deal with smoking cessation matters, and to predict smoking urges, outlining a potential use for mobile health applications. In conclusion, machine learning classifiers can help identify smoking situations, and the search for the best features and classifier parameters significantly improves the algorithms' performance. In addition, this study also supports the usefulness of new technologies in improving the effect of smoking cessation interventions, the management of time and patients by therapists, and thus the optimization of available health care resources. Future studies should focus on providing more adaptive and personalized support to people who really need it, in a minimum amount of time by developing novel expert systems capable of delivering real-time interventions. Copyright © 2016 Elsevier Ireland Ltd. All rights

  13. Broiler chickens can benefit from machine learning: support vector machine analysis of observational epidemiological data.

    Science.gov (United States)

    Hepworth, Philip J; Nefedov, Alexey V; Muchnik, Ilya B; Morgan, Kenton L

    2012-08-07

    Machine-learning algorithms pervade our daily lives. In epidemiology, supervised machine learning has the potential for classification, diagnosis and risk factor identification. Here, we report the use of support vector machine learning to identify the features associated with hock burn on commercial broiler farms, using routinely collected farm management data. These data lend themselves to analysis using machine-learning techniques. Hock burn, dermatitis of the skin over the hock, is an important indicator of broiler health and welfare. Remarkably, this classifier can predict the occurrence of high hock burn prevalence with accuracy of 0.78 on unseen data, as measured by the area under the receiver operating characteristic curve. We also compare the results with those obtained by standard multi-variable logistic regression and suggest that this technique provides new insights into the data. This novel application of a machine-learning algorithm, embedded in poultry management systems could offer significant improvements in broiler health and welfare worldwide.

  14. A review on machine learning principles for multi-view biological data integration.

    Science.gov (United States)

    Li, Yifeng; Wu, Fang-Xiang; Ngom, Alioune

    2018-03-01

    Driven by high-throughput sequencing techniques, modern genomic and clinical studies are in a strong need of integrative machine learning models for better use of vast volumes of heterogeneous information in the deep understanding of biological systems and the development of predictive models. How data from multiple sources (called multi-view data) are incorporated in a learning system is a key step for successful analysis. In this article, we provide a comprehensive review on omics and clinical data integration techniques, from a machine learning perspective, for various analyses such as prediction, clustering, dimension reduction and association. We shall show that Bayesian models are able to use prior information and model measurements with various distributions; tree-based methods can either build a tree with all features or collectively make a final decision based on trees learned from each view; kernel methods fuse the similarity matrices learned from individual views together for a final similarity matrix or learning model; network-based fusion methods are capable of inferring direct and indirect associations in a heterogeneous network; matrix factorization models have potential to learn interactions among features from different views; and a range of deep neural networks can be integrated in multi-modal learning for capturing the complex mechanism of biological systems.

  15. Reinforcement and Systemic Machine Learning for Decision Making

    CERN Document Server

    Kulkarni, Parag

    2012-01-01

    Reinforcement and Systemic Machine Learning for Decision Making There are always difficulties in making machines that learn from experience. Complete information is not always available-or it becomes available in bits and pieces over a period of time. With respect to systemic learning, there is a need to understand the impact of decisions and actions on a system over that period of time. This book takes a holistic approach to addressing that need and presents a new paradigm-creating new learning applications and, ultimately, more intelligent machines. The first book of its kind in this new an

  16. Nonlinear programming for classification problems in machine learning

    Science.gov (United States)

    Astorino, Annabella; Fuduli, Antonio; Gaudioso, Manlio

    2016-10-01

    We survey some nonlinear models for classification problems arising in machine learning. In the last years this field has become more and more relevant due to a lot of practical applications, such as text and web classification, object recognition in machine vision, gene expression profile analysis, DNA and protein analysis, medical diagnosis, customer profiling etc. Classification deals with separation of sets by means of appropriate separation surfaces, which is generally obtained by solving a numerical optimization model. While linear separability is the basis of the most popular approach to classification, the Support Vector Machine (SVM), in the recent years using nonlinear separating surfaces has received some attention. The objective of this work is to recall some of such proposals, mainly in terms of the numerical optimization models. In particular we tackle the polyhedral, ellipsoidal, spherical and conical separation approaches and, for some of them, we also consider the semisupervised versions.

  17. Improved Saturated Hydraulic Conductivity Pedotransfer Functions Using Machine Learning Methods

    Science.gov (United States)

    Araya, S. N.; Ghezzehei, T. A.

    2017-12-01

    Saturated hydraulic conductivity (Ks) is one of the fundamental hydraulic properties of soils. Its measurement, however, is cumbersome and instead pedotransfer functions (PTFs) are often used to estimate it. Despite a lot of progress over the years, generic PTFs that estimate hydraulic conductivity generally don't have a good performance. We develop significantly improved PTFs by applying state of the art machine learning techniques coupled with high-performance computing on a large database of over 20,000 soils—USKSAT and the Florida Soil Characterization databases. We compared the performance of four machine learning algorithms (k-nearest neighbors, gradient boosted model, support vector machine, and relevance vector machine) and evaluated the relative importance of several soil properties in explaining Ks. An attempt is also made to better account for soil structural properties; we evaluated the importance of variables derived from transformations of soil water retention characteristics and other soil properties. The gradient boosted models gave the best performance with root mean square errors less than 0.7 and mean errors in the order of 0.01 on a log scale of Ks [cm/h]. The effective particle size, D10, was found to be the single most important predictor. Other important predictors included percent clay, bulk density, organic carbon percent, coefficient of uniformity and values derived from water retention characteristics. Model performances were consistently better for Ks values greater than 10 cm/h. This study maximizes the extraction of information from a large database to develop generic machine learning based PTFs to estimate Ks. The study also evaluates the importance of various soil properties and their transformations in explaining Ks.

  18. Revisit of Machine Learning Supported Biological and Biomedical Studies.

    Science.gov (United States)

    Yu, Xiang-Tian; Wang, Lu; Zeng, Tao

    2018-01-01

    Generally, machine learning includes many in silico methods to transform the principles underlying natural phenomenon to human understanding information, which aim to save human labor, to assist human judge, and to create human knowledge. It should have wide application potential in biological and biomedical studies, especially in the era of big biological data. To look through the application of machine learning along with biological development, this review provides wide cases to introduce the selection of machine learning methods in different practice scenarios involved in the whole biological and biomedical study cycle and further discusses the machine learning strategies for analyzing omics data in some cutting-edge biological studies. Finally, the notes on new challenges for machine learning due to small-sample high-dimension are summarized from the key points of sample unbalance, white box, and causality.

  19. Conditional High-Order Boltzmann Machines for Supervised Relation Learning.

    Science.gov (United States)

    Huang, Yan; Wang, Wei; Wang, Liang; Tan, Tieniu

    2017-09-01

    Relation learning is a fundamental problem in many vision tasks. Recently, high-order Boltzmann machine and its variants have shown their great potentials in learning various types of data relation in a range of tasks. But most of these models are learned in an unsupervised way, i.e., without using relation class labels, which are not very discriminative for some challenging tasks, e.g., face verification. In this paper, with the goal to perform supervised relation learning, we introduce relation class labels into conventional high-order multiplicative interactions with pairwise input samples, and propose a conditional high-order Boltzmann Machine (CHBM), which can learn to classify the data relation in a binary classification way. To be able to deal with more complex data relation, we develop two improved variants of CHBM: 1) latent CHBM, which jointly performs relation feature learning and classification, by using a set of latent variables to block the pathway from pairwise input samples to output relation labels and 2) gated CHBM, which untangles factors of variation in data relation, by exploiting a set of latent variables to multiplicatively gate the classification of CHBM. To reduce the large number of model parameters generated by the multiplicative interactions, we approximately factorize high-order parameter tensors into multiple matrices. Then, we develop efficient supervised learning algorithms, by first pretraining the models using joint likelihood to provide good parameter initialization, and then finetuning them using conditional likelihood to enhance the discriminant ability. We apply the proposed models to a series of tasks including invariant recognition, face verification, and action similarity labeling. Experimental results demonstrate that by exploiting supervised relation labels, our models can greatly improve the performance.

  20. Statistical and machine learning approaches for network analysis

    CERN Document Server

    Dehmer, Matthias

    2012-01-01

    Explore the multidisciplinary nature of complex networks through machine learning techniques Statistical and Machine Learning Approaches for Network Analysis provides an accessible framework for structurally analyzing graphs by bringing together known and novel approaches on graph classes and graph measures for classification. By providing different approaches based on experimental data, the book uniquely sets itself apart from the current literature by exploring the application of machine learning techniques to various types of complex networks. Comprised of chapters written by internation

  1. Machine Learning in Computer-Aided Synthesis Planning.

    Science.gov (United States)

    Coley, Connor W; Green, William H; Jensen, Klavs F

    2018-05-15

    Computer-aided synthesis planning (CASP) is focused on the goal of accelerating the process by which chemists decide how to synthesize small molecule compounds. The ideal CASP program would take a molecular structure as input and output a sorted list of detailed reaction schemes that each connect that target to purchasable starting materials via a series of chemically feasible reaction steps. Early work in this field relied on expert-crafted reaction rules and heuristics to describe possible retrosynthetic disconnections and selectivity rules but suffered from incompleteness, infeasible suggestions, and human bias. With the relatively recent availability of large reaction corpora (such as the United States Patent and Trademark Office (USPTO), Reaxys, and SciFinder databases), consisting of millions of tabulated reaction examples, it is now possible to construct and validate purely data-driven approaches to synthesis planning. As a result, synthesis planning has been opened to machine learning techniques, and the field is advancing rapidly. In this Account, we focus on two critical aspects of CASP and recent machine learning approaches to both challenges. First, we discuss the problem of retrosynthetic planning, which requires a recommender system to propose synthetic disconnections starting from a target molecule. We describe how the search strategy, necessary to overcome the exponential growth of the search space with increasing number of reaction steps, can be assisted through a learned synthetic complexity metric. We also describe how the recursive expansion can be performed by a straightforward nearest neighbor model that makes clever use of reaction data to generate high quality retrosynthetic disconnections. Second, we discuss the problem of anticipating the products of chemical reactions, which can be used to validate proposed reactions in a computer-generated synthesis plan (i.e., reduce false positives) to increase the likelihood of experimental success

  2. Modelling risk of tick exposure in southern Scandinavia using machine learning techniques, satellite imagery, and human population density maps

    DEFF Research Database (Denmark)

    Kjær, Lene Jung; Korslund, L.; Kjelland, V.

    30 sites (forests and meadows) in each of Denmark, southern Norway and south-eastern Sweden. At each site we measured presence/absence of ticks, and used the data obtained along with environmental satellite images to run Boosted Regression Tree machine learning algorithms to predict overall spatial...... and Sweden), areas with high population densities tend to overlap with these zones.Machine learning techniques allow us to predict for larger areas without having to perform extensive sampling all over the region in question, and we were able to produce models and maps with high predictive value. The results...

  3. Quantifying surgical complexity with machine learning: looking beyond patient factors to improve surgical models.

    Science.gov (United States)

    Van Esbroeck, Alexander; Rubinfeld, Ilan; Hall, Bruce; Syed, Zeeshan

    2014-11-01

    To investigate the use of machine learning to empirically determine the risk of individual surgical procedures and to improve surgical models with this information. American College of Surgeons National Surgical Quality Improvement Program (ACS NSQIP) data from 2005 to 2009 were used to train support vector machine (SVM) classifiers to learn the relationship between textual constructs in current procedural terminology (CPT) descriptions and mortality, morbidity, Clavien 4 complications, and surgical-site infections (SSI) within 30 days of surgery. The procedural risk scores produced by the SVM classifiers were validated on data from 2010 in univariate and multivariate analyses. The procedural risk scores produced by the SVM classifiers achieved moderate-to-high levels of discrimination in univariate analyses (area under receiver operating characteristic curve: 0.871 for mortality, 0.789 for morbidity, 0.791 for SSI, 0.845 for Clavien 4 complications). Addition of these scores also substantially improved multivariate models comprising patient factors and previously proposed correlates of procedural risk (net reclassification improvement and integrated discrimination improvement: 0.54 and 0.001 for mortality, 0.46 and 0.011 for morbidity, 0.68 and 0.022 for SSI, 0.44 and 0.001 for Clavien 4 complications; P risk for individual procedures. This information can be measured in an entirely data-driven manner and substantially improves multifactorial models to predict postoperative complications. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Machine learning methods for planning

    CERN Document Server

    Minton, Steven

    1993-01-01

    Machine Learning Methods for Planning provides information pertinent to learning methods for planning and scheduling. This book covers a wide variety of learning methods and learning architectures, including analogical, case-based, decision-tree, explanation-based, and reinforcement learning.Organized into 15 chapters, this book begins with an overview of planning and scheduling and describes some representative learning systems that have been developed for these tasks. This text then describes a learning apprentice for calendar management. Other chapters consider the problem of temporal credi

  5. A comparison of machine learning algorithms for chemical toxicity classification using a simulated multi-scale data model

    Directory of Open Access Journals (Sweden)

    Li Zhen

    2008-05-01

    Full Text Available Abstract Background Bioactivity profiling using high-throughput in vitro assays can reduce the cost and time required for toxicological screening of environmental chemicals and can also reduce the need for animal testing. Several public efforts are aimed at discovering patterns or classifiers in high-dimensional bioactivity space that predict tissue, organ or whole animal toxicological endpoints. Supervised machine learning is a powerful approach to discover combinatorial relationships in complex in vitro/in vivo datasets. We present a novel model to simulate complex chemical-toxicology data sets and use this model to evaluate the relative performance of different machine learning (ML methods. Results The classification performance of Artificial Neural Networks (ANN, K-Nearest Neighbors (KNN, Linear Discriminant Analysis (LDA, Naïve Bayes (NB, Recursive Partitioning and Regression Trees (RPART, and Support Vector Machines (SVM in the presence and absence of filter-based feature selection was analyzed using K-way cross-validation testing and independent validation on simulated in vitro assay data sets with varying levels of model complexity, number of irrelevant features and measurement noise. While the prediction accuracy of all ML methods decreased as non-causal (irrelevant features were added, some ML methods performed better than others. In the limit of using a large number of features, ANN and SVM were always in the top performing set of methods while RPART and KNN (k = 5 were always in the poorest performing set. The addition of measurement noise and irrelevant features decreased the classification accuracy of all ML methods, with LDA suffering the greatest performance degradation. LDA performance is especially sensitive to the use of feature selection. Filter-based feature selection generally improved performance, most strikingly for LDA. Conclusion We have developed a novel simulation model to evaluate machine learning methods for the

  6. Energy efficiency analysis of steam ejector and electric vacuum pump for a turbine condenser air extraction system based on supervised machine learning modelling

    International Nuclear Information System (INIS)

    Strušnik, Dušan; Marčič, Milan; Golob, Marjan; Hribernik, Aleš; Živić, Marija; Avsec, Jurij

    2016-01-01

    Highlights: • Steam ejector pump and electric liquid ring vacuum pump are analysed and modelled. • A supervised machine learning models by using real process data are applied. • The equation of ejector pumped mass flow from steam turbine condenser was solved. • The loss of specific energy capable of work in a SEPS or LRVP component was analysed. • The economic efficiency analysis per different coal heating values was made. - Abstract: This paper compares the vapour ejector and electric vacuum pump power consumptions with machine learning algorithms by using real process data and presents some novelty guideline for the selection of an appropriate condenser vacuum pump system of a steam turbine power plant. The machine learning algorithms are made by using the supervised machine learning methods such as artificial neural network model and local linear neuro-fuzzy models. The proposed non-linear models are designed by using a wide range of real process operation data sets from the CHP system in the thermal power plant. The novelty guideline for the selection of an appropriate condenser vacuum pumps system is expressed in the comparative analysis of the energy consumption and use of specific energy capable of work. Furthermore, the novelty is expressed in the economic efficiency analysis of the investment taking into consideration the operating costs of the vacuum pump systems and may serve as basic guidelines for the selection of an appropriate condenser vacuum pump system of a steam turbine.

  7. A Machine Learning Approach to Test Data Generation

    DEFF Research Database (Denmark)

    Christiansen, Henning; Dahmcke, Christina Mackeprang

    2007-01-01

    been tested, and a more thorough statistical foundation is required. We propose to use logic-statistical modelling methods for machine-learning for analyzing existing and manually marked up data, integrated with the generation of new, artificial data. More specifically, we suggest to use the PRISM...... system developed by Sato and Kameya. Based on logic programming extended with random variables and parameter learning, PRISM appears as a powerful modelling environment, which subsumes HMMs and a wide range of other methods, all embedded in a declarative language. We illustrate these principles here...

  8. Machine learning in the string landscape

    Science.gov (United States)

    Carifio, Jonathan; Halverson, James; Krioukov, Dmitri; Nelson, Brent D.

    2017-09-01

    We utilize machine learning to study the string landscape. Deep data dives and conjecture generation are proposed as useful frameworks for utilizing machine learning in the landscape, and examples of each are presented. A decision tree accurately predicts the number of weak Fano toric threefolds arising from reflexive polytopes, each of which determines a smooth F-theory compactification, and linear regression generates a previously proven conjecture for the gauge group rank in an ensemble of 4/3× 2.96× {10}^{755} F-theory compactifications. Logistic regression generates a new conjecture for when E 6 arises in the large ensemble of F-theory compactifications, which is then rigorously proven. This result may be relevant for the appearance of visible sectors in the ensemble. Through conjecture generation, machine learning is useful not only for numerics, but also for rigorous results.

  9. Evaluation on knowledge extraction and machine learning in ...

    African Journals Online (AJOL)

    Evaluation on knowledge extraction and machine learning in resolving Malay word ambiguity. ... No 5S (2017) >. Log in or Register to get access to full text downloads. ... Keywords: ambiguity; lexical knowledge; machine learning; Malay word ...

  10. Using Machine Learning for Risky Module Estimation of Safety-Critical Software

    International Nuclear Information System (INIS)

    Kim, Young Mi; Jeong, Choong Heui

    2009-01-01

    With the rapid development of digital computer and information processing technologies, nuclear I and C (Instrument and Control) system which needs safety critical function has adopted digital technologies. Software used in safety-critical system must have high dependability. Highly dependable software needs strict software testing and V and V activities. These days, regulatory demands for nuclear power plants are more and more increasing. But, human resources and time for regulation are limited. So, early software risky module prediction is very useful for software testing and regulation activities. Early estimation can be built from a collection of internal metrics during early development phase. Internal metrics are measures of a product derived from assessment of the product itself, and external metrics are measures of a product derived from assessment of the behavior of the systems. Internal metrics can be collected more easily and early than external metrics. In addition, internal metrics can be useful for estimating fault-prone software modules using machine learning. In this paper, we introduce current research status and techniques related to estimating risky software module using machine learning techniques. Section 2 describes the overview of the estimation model using machine learning and section 3 describes processes of the estimation model. Section 4 describes several estimation models using machine leanings. Section 5 concludes the paper

  11. Machine learning approaches to the social determinants of health in the health and retirement study.

    Science.gov (United States)

    Seligman, Benjamin; Tuljapurkar, Shripad; Rehkopf, David

    2018-04-01

    Social and economic factors are important predictors of health and of recognized importance for health systems. However, machine learning, used elsewhere in the biomedical literature, has not been extensively applied to study relationships between society and health. We investigate how machine learning may add to our understanding of social determinants of health using data from the Health and Retirement Study. A linear regression of age and gender, and a parsimonious theory-based regression additionally incorporating income, wealth, and education, were used to predict systolic blood pressure, body mass index, waist circumference, and telomere length. Prediction, fit, and interpretability were compared across four machine learning methods: linear regression, penalized regressions, random forests, and neural networks. All models had poor out-of-sample prediction. Most machine learning models performed similarly to the simpler models. However, neural networks greatly outperformed the three other methods. Neural networks also had good fit to the data ( R 2 between 0.4-0.6, versus learning models, nine variables were frequently selected or highly weighted as predictors: dental visits, current smoking, self-rated health, serial-seven subtractions, probability of receiving an inheritance, probability of leaving an inheritance of at least $10,000, number of children ever born, African-American race, and gender. Some of the machine learning methods do not improve prediction or fit beyond simpler models, however, neural networks performed well. The predictors identified across models suggest underlying social factors that are important predictors of biological indicators of chronic disease, and that the non-linear and interactive relationships between variables fundamental to the neural network approach may be important to consider.

  12. Spoken language identification based on the enhanced self-adjusting extreme learning machine approach

    Science.gov (United States)

    Tiun, Sabrina; AL-Dhief, Fahad Taha; Sammour, Mahmoud A. M.

    2018-01-01

    Spoken Language Identification (LID) is the process of determining and classifying natural language from a given content and dataset. Typically, data must be processed to extract useful features to perform LID. The extracting features for LID, based on literature, is a mature process where the standard features for LID have already been developed using Mel-Frequency Cepstral Coefficients (MFCC), Shifted Delta Cepstral (SDC), the Gaussian Mixture Model (GMM) and ending with the i-vector based framework. However, the process of learning based on extract features remains to be improved (i.e. optimised) to capture all embedded knowledge on the extracted features. The Extreme Learning Machine (ELM) is an effective learning model used to perform classification and regression analysis and is extremely useful to train a single hidden layer neural network. Nevertheless, the learning process of this model is not entirely effective (i.e. optimised) due to the random selection of weights within the input hidden layer. In this study, the ELM is selected as a learning model for LID based on standard feature extraction. One of the optimisation approaches of ELM, the Self-Adjusting Extreme Learning Machine (SA-ELM) is selected as the benchmark and improved by altering the selection phase of the optimisation process. The selection process is performed incorporating both the Split-Ratio and K-Tournament methods, the improved SA-ELM is named Enhanced Self-Adjusting Extreme Learning Machine (ESA-ELM). The results are generated based on LID with the datasets created from eight different languages. The results of the study showed excellent superiority relating to the performance of the Enhanced Self-Adjusting Extreme Learning Machine LID (ESA-ELM LID) compared with the SA-ELM LID, with ESA-ELM LID achieving an accuracy of 96.25%, as compared to the accuracy of SA-ELM LID of only 95.00%. PMID:29672546

  13. Spoken language identification based on the enhanced self-adjusting extreme learning machine approach.

    Science.gov (United States)

    Albadr, Musatafa Abbas Abbood; Tiun, Sabrina; Al-Dhief, Fahad Taha; Sammour, Mahmoud A M

    2018-01-01

    Spoken Language Identification (LID) is the process of determining and classifying natural language from a given content and dataset. Typically, data must be processed to extract useful features to perform LID. The extracting features for LID, based on literature, is a mature process where the standard features for LID have already been developed using Mel-Frequency Cepstral Coefficients (MFCC), Shifted Delta Cepstral (SDC), the Gaussian Mixture Model (GMM) and ending with the i-vector based framework. However, the process of learning based on extract features remains to be improved (i.e. optimised) to capture all embedded knowledge on the extracted features. The Extreme Learning Machine (ELM) is an effective learning model used to perform classification and regression analysis and is extremely useful to train a single hidden layer neural network. Nevertheless, the learning process of this model is not entirely effective (i.e. optimised) due to the random selection of weights within the input hidden layer. In this study, the ELM is selected as a learning model for LID based on standard feature extraction. One of the optimisation approaches of ELM, the Self-Adjusting Extreme Learning Machine (SA-ELM) is selected as the benchmark and improved by altering the selection phase of the optimisation process. The selection process is performed incorporating both the Split-Ratio and K-Tournament methods, the improved SA-ELM is named Enhanced Self-Adjusting Extreme Learning Machine (ESA-ELM). The results are generated based on LID with the datasets created from eight different languages. The results of the study showed excellent superiority relating to the performance of the Enhanced Self-Adjusting Extreme Learning Machine LID (ESA-ELM LID) compared with the SA-ELM LID, with ESA-ELM LID achieving an accuracy of 96.25%, as compared to the accuracy of SA-ELM LID of only 95.00%.

  14. Source localization in an ocean waveguide using supervised machine learning.

    Science.gov (United States)

    Niu, Haiqiang; Reeves, Emma; Gerstoft, Peter

    2017-09-01

    Source localization in ocean acoustics is posed as a machine learning problem in which data-driven methods learn source ranges directly from observed acoustic data. The pressure received by a vertical linear array is preprocessed by constructing a normalized sample covariance matrix and used as the input for three machine learning methods: feed-forward neural networks (FNN), support vector machines (SVM), and random forests (RF). The range estimation problem is solved both as a classification problem and as a regression problem by these three machine learning algorithms. The results of range estimation for the Noise09 experiment are compared for FNN, SVM, RF, and conventional matched-field processing and demonstrate the potential of machine learning for underwater source localization.

  15. Indicators of ADHD symptoms in virtual learning context using machine learning technics

    Directory of Open Access Journals (Sweden)

    Laura Patricia Mancera Valetts

    2015-12-01

    Full Text Available Rev.esc.adm.neg This paper presents a user model for students performing virtual learning processes. This model is used to infer the presence of Attention Deficit Hyperactivity Disorder (ADHD indicators in a student. The user model is built considering three user characteristics, which can be also used as variables in different contexts. These variables are: behavioral conduct (BC, executive functions performance (EFP, and emotional state (ES. For inferring the ADHD symptomatic profile of a student and his/her emotional alterations, these features are used as input in a set of classification rules. Based on the testing of the proposed model, training examples are obtained. These examples are used to prepare a classification machine learning algorithm for performing, and improving, the task of profiling a student. The proposed user model can provide the first step to adapt learning resources in e-learning platforms to people with attention problems, specifically, young-adult students with ADHD.

  16. Pressure Prediction of Coal Slurry Transportation Pipeline Based on Particle Swarm Optimization Kernel Function Extreme Learning Machine

    Directory of Open Access Journals (Sweden)

    Xue-cun Yang

    2015-01-01

    Full Text Available For coal slurry pipeline blockage prediction problem, through the analysis of actual scene, it is determined that the pressure prediction from each measuring point is the premise of pipeline blockage prediction. Kernel function of support vector machine is introduced into extreme learning machine, the parameters are optimized by particle swarm algorithm, and blockage prediction method based on particle swarm optimization kernel function extreme learning machine (PSOKELM is put forward. The actual test data from HuangLing coal gangue power plant are used for simulation experiments and compared with support vector machine prediction model optimized by particle swarm algorithm (PSOSVM and kernel function extreme learning machine prediction model (KELM. The results prove that mean square error (MSE for the prediction model based on PSOKELM is 0.0038 and the correlation coefficient is 0.9955, which is superior to prediction model based on PSOSVM in speed and accuracy and superior to KELM prediction model in accuracy.

  17. Machine learning methods enable predictive modeling of antibody feature:function relationships in RV144 vaccinees.

    Science.gov (United States)

    Choi, Ickwon; Chung, Amy W; Suscovich, Todd J; Rerks-Ngarm, Supachai; Pitisuttithum, Punnee; Nitayaphan, Sorachai; Kaewkungwal, Jaranit; O'Connell, Robert J; Francis, Donald; Robb, Merlin L; Michael, Nelson L; Kim, Jerome H; Alter, Galit; Ackerman, Margaret E; Bailey-Kellogg, Chris

    2015-04-01

    The adaptive immune response to vaccination or infection can lead to the production of specific antibodies to neutralize the pathogen or recruit innate immune effector cells for help. The non-neutralizing role of antibodies in stimulating effector cell responses may have been a key mechanism of the protection observed in the RV144 HIV vaccine trial. In an extensive investigation of a rich set of data collected from RV144 vaccine recipients, we here employ machine learning methods to identify and model associations between antibody features (IgG subclass and antigen specificity) and effector function activities (antibody dependent cellular phagocytosis, cellular cytotoxicity, and cytokine release). We demonstrate via cross-validation that classification and regression approaches can effectively use the antibody features to robustly predict qualitative and quantitative functional outcomes. This integration of antibody feature and function data within a machine learning framework provides a new, objective approach to discovering and assessing multivariate immune correlates.

  18. Machine learning methods enable predictive modeling of antibody feature:function relationships in RV144 vaccinees.

    Directory of Open Access Journals (Sweden)

    Ickwon Choi

    2015-04-01

    Full Text Available The adaptive immune response to vaccination or infection can lead to the production of specific antibodies to neutralize the pathogen or recruit innate immune effector cells for help. The non-neutralizing role of antibodies in stimulating effector cell responses may have been a key mechanism of the protection observed in the RV144 HIV vaccine trial. In an extensive investigation of a rich set of data collected from RV144 vaccine recipients, we here employ machine learning methods to identify and model associations between antibody features (IgG subclass and antigen specificity and effector function activities (antibody dependent cellular phagocytosis, cellular cytotoxicity, and cytokine release. We demonstrate via cross-validation that classification and regression approaches can effectively use the antibody features to robustly predict qualitative and quantitative functional outcomes. This integration of antibody feature and function data within a machine learning framework provides a new, objective approach to discovering and assessing multivariate immune correlates.

  19. Machine Learning in Radiology: Applications Beyond Image Interpretation.

    Science.gov (United States)

    Lakhani, Paras; Prater, Adam B; Hutson, R Kent; Andriole, Kathy P; Dreyer, Keith J; Morey, Jose; Prevedello, Luciano M; Clark, Toshi J; Geis, J Raymond; Itri, Jason N; Hawkins, C Matthew

    2018-02-01

    Much attention has been given to machine learning and its perceived impact in radiology, particularly in light of recent success with image classification in international competitions. However, machine learning is likely to impact radiology outside of image interpretation long before a fully functional "machine radiologist" is implemented in practice. Here, we describe an overview of machine learning, its application to radiology and other domains, and many cases of use that do not involve image interpretation. We hope that better understanding of these potential applications will help radiology practices prepare for the future and realize performance improvement and efficiency gains. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  20. Feature combination networks for the interpretation of statistical machine learning models: application to Ames mutagenicity.

    Science.gov (United States)

    Webb, Samuel J; Hanser, Thierry; Howlin, Brendan; Krause, Paul; Vessey, Jonathan D

    2014-03-25

    A new algorithm has been developed to enable the interpretation of black box models. The developed algorithm is agnostic to learning algorithm and open to all structural based descriptors such as fragments, keys and hashed fingerprints. The algorithm has provided meaningful interpretation of Ames mutagenicity predictions from both random forest and support vector machine models built on a variety of structural fingerprints.A fragmentation algorithm is utilised to investigate the model's behaviour on specific substructures present in the query. An output is formulated summarising causes of activation and deactivation. The algorithm is able to identify multiple causes of activation or deactivation in addition to identifying localised deactivations where the prediction for the query is active overall. No loss in performance is seen as there is no change in the prediction; the interpretation is produced directly on the model's behaviour for the specific query. Models have been built using multiple learning algorithms including support vector machine and random forest. The models were built on public Ames mutagenicity data and a variety of fingerprint descriptors were used. These models produced a good performance in both internal and external validation with accuracies around 82%. The models were used to evaluate the interpretation algorithm. Interpretation was revealed that links closely with understood mechanisms for Ames mutagenicity. This methodology allows for a greater utilisation of the predictions made by black box models and can expedite further study based on the output for a (quantitative) structure activity model. Additionally the algorithm could be utilised for chemical dataset investigation and knowledge extraction/human SAR development.

  1. Landslide susceptibility modeling applying machine learning methods: A case study from Longju in the Three Gorges Reservoir area, China

    Science.gov (United States)

    Zhou, Chao; Yin, Kunlong; Cao, Ying; Ahmed, Bayes; Li, Yuanyao; Catani, Filippo; Pourghasemi, Hamid Reza

    2018-03-01

    Landslide is a common natural hazard and responsible for extensive damage and losses in mountainous areas. In this study, Longju in the Three Gorges Reservoir area in China was taken as a case study for landslide susceptibility assessment in order to develop effective risk prevention and mitigation strategies. To begin, 202 landslides were identified, including 95 colluvial landslides and 107 rockfalls. Twelve landslide causal factor maps were prepared initially, and the relationship between these factors and each landslide type was analyzed using the information value model. Later, the unimportant factors were selected and eliminated using the information gain ratio technique. The landslide locations were randomly divided into two groups: 70% for training and 30% for verifying. Two machine learning models: the support vector machine (SVM) and artificial neural network (ANN), and a multivariate statistical model: the logistic regression (LR), were applied for landslide susceptibility modeling (LSM) for each type. The LSM index maps, obtained from combining the assessment results of the two landslide types, were classified into five levels. The performance of the LSMs was evaluated using the receiver operating characteristics curve and Friedman test. Results show that the elimination of noise-generating factors and the separated modeling of each landslide type have significantly increased the prediction accuracy. The machine learning models outperformed the multivariate statistical model and SVM model was found ideal for the case study area.

  2. Applications of machine learning in cancer prediction and prognosis.

    Science.gov (United States)

    Cruz, Joseph A; Wishart, David S

    2007-02-11

    Machine learning is a branch of artificial intelligence that employs a variety of statistical, probabilistic and optimization techniques that allows computers to "learn" from past examples and to detect hard-to-discern patterns from large, noisy or complex data sets. This capability is particularly well-suited to medical applications, especially those that depend on complex proteomic and genomic measurements. As a result, machine learning is frequently used in cancer diagnosis and detection. More recently machine learning has been applied to cancer prognosis and prediction. This latter approach is particularly interesting as it is part of a growing trend towards personalized, predictive medicine. In assembling this review we conducted a broad survey of the different types of machine learning methods being used, the types of data being integrated and the performance of these methods in cancer prediction and prognosis. A number of trends are noted, including a growing dependence on protein biomarkers and microarray data, a strong bias towards applications in prostate and breast cancer, and a heavy reliance on "older" technologies such artificial neural networks (ANNs) instead of more recently developed or more easily interpretable machine learning methods. A number of published studies also appear to lack an appropriate level of validation or testing. Among the better designed and validated studies it is clear that machine learning methods can be used to substantially (15-25%) improve the accuracy of predicting cancer susceptibility, recurrence and mortality. At a more fundamental level, it is also evident that machine learning is also helping to improve our basic understanding of cancer development and progression.

  3. A comparison of the stochastic and machine learning approaches in hydrologic time series forecasting

    Science.gov (United States)

    Kim, T.; Joo, K.; Seo, J.; Heo, J. H.

    2016-12-01

    Hydrologic time series forecasting is an essential task in water resources management and it becomes more difficult due to the complexity of runoff process. Traditional stochastic models such as ARIMA family has been used as a standard approach in time series modeling and forecasting of hydrological variables. Due to the nonlinearity in hydrologic time series data, machine learning approaches has been studied with the advantage of discovering relevant features in a nonlinear relation among variables. This study aims to compare the predictability between the traditional stochastic model and the machine learning approach. Seasonal ARIMA model was used as the traditional time series model, and Random Forest model which consists of decision tree and ensemble method using multiple predictor approach was applied as the machine learning approach. In the application, monthly inflow data from 1986 to 2015 of Chungju dam in South Korea were used for modeling and forecasting. In order to evaluate the performances of the used models, one step ahead and multi-step ahead forecasting was applied. Root mean squared error and mean absolute error of two models were compared.

  4. Implementing Machine Learning in Radiology Practice and Research.

    Science.gov (United States)

    Kohli, Marc; Prevedello, Luciano M; Filice, Ross W; Geis, J Raymond

    2017-04-01

    The purposes of this article are to describe concepts that radiologists should understand to evaluate machine learning projects, including common algorithms, supervised as opposed to unsupervised techniques, statistical pitfalls, and data considerations for training and evaluation, and to briefly describe ethical dilemmas and legal risk. Machine learning includes a broad class of computer programs that improve with experience. The complexity of creating, training, and monitoring machine learning indicates that the success of the algorithms will require radiologist involvement for years to come, leading to engagement rather than replacement.

  5. International Conference on Extreme Learning Machines 2014

    CERN Document Server

    Mao, Kezhi; Cambria, Erik; Man, Zhihong; Toh, Kar-Ann

    2015-01-01

    This book contains some selected papers from the International Conference on Extreme Learning Machine 2014, which was held in Singapore, December 8-10, 2014. This conference brought together the researchers and practitioners of Extreme Learning Machine (ELM) from a variety of fields to promote research and development of “learning without iterative tuning”.  The book covers theories, algorithms and applications of ELM. It gives the readers a glance of the most recent advances of ELM.  

  6. International Conference on Extreme Learning Machine 2015

    CERN Document Server

    Mao, Kezhi; Wu, Jonathan; Lendasse, Amaury; ELM 2015; Theory, Algorithms and Applications (I); Theory, Algorithms and Applications (II)

    2016-01-01

    This book contains some selected papers from the International Conference on Extreme Learning Machine 2015, which was held in Hangzhou, China, December 15-17, 2015. This conference brought together researchers and engineers to share and exchange R&D experience on both theoretical studies and practical applications of the Extreme Learning Machine (ELM) technique and brain learning. This book covers theories, algorithms ad applications of ELM. It gives readers a glance of the most recent advances of ELM. .

  7. Development of Predictive QSAR Models of 4-Thiazolidinones Antitrypanosomal Activity using Modern Machine Learning Algorithms.

    Science.gov (United States)

    Kryshchyshyn, Anna; Devinyak, Oleg; Kaminskyy, Danylo; Grellier, Philippe; Lesyk, Roman

    2017-11-14

    This paper presents novel QSAR models for the prediction of antitrypanosomal activity among thiazolidines and related heterocycles. The performance of four machine learning algorithms: Random Forest regression, Stochastic gradient boosting, Multivariate adaptive regression splines and Gaussian processes regression have been studied in order to reach better levels of predictivity. The results for Random Forest and Gaussian processes regression are comparable and outperform other studied methods. The preliminary descriptor selection with Boruta method improved the outcome of machine learning methods. The two novel QSAR-models developed with Random Forest and Gaussian processes regression algorithms have good predictive ability, which was proved by the external evaluation of the test set with corresponding Q 2 ext =0.812 and Q 2 ext =0.830. The obtained models can be used further for in silico screening of virtual libraries in the same chemical domain in order to find new antitrypanosomal agents. Thorough analysis of descriptors influence in the QSAR models and interpretation of their chemical meaning allows to highlight a number of structure-activity relationships. The presence of phenyl rings with electron-withdrawing atoms or groups in para-position, increased number of aromatic rings, high branching but short chains, high HOMO energy, and the introduction of 1-substituted 2-indolyl fragment into the molecular structure have been recognized as trypanocidal activity prerequisites. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Building machine learning systems with Python

    CERN Document Server

    Coelho, Luis Pedro

    2015-01-01

    This book primarily targets Python developers who want to learn and use Python's machine learning capabilities and gain valuable insights from data to develop effective solutions for business problems.

  9. A machine-learning approach for computation of fractional flow reserve from coronary computed tomography.

    Science.gov (United States)

    Itu, Lucian; Rapaka, Saikiran; Passerini, Tiziano; Georgescu, Bogdan; Schwemmer, Chris; Schoebinger, Max; Flohr, Thomas; Sharma, Puneet; Comaniciu, Dorin

    2016-07-01

    Fractional flow reserve (FFR) is a functional index quantifying the severity of coronary artery lesions and is clinically obtained using an invasive, catheter-based measurement. Recently, physics-based models have shown great promise in being able to noninvasively estimate FFR from patient-specific anatomical information, e.g., obtained from computed tomography scans of the heart and the coronary arteries. However, these models have high computational demand, limiting their clinical adoption. In this paper, we present a machine-learning-based model for predicting FFR as an alternative to physics-based approaches. The model is trained on a large database of synthetically generated coronary anatomies, where the target values are computed using the physics-based model. The trained model predicts FFR at each point along the centerline of the coronary tree, and its performance was assessed by comparing the predictions against physics-based computations and against invasively measured FFR for 87 patients and 125 lesions in total. Correlation between machine-learning and physics-based predictions was excellent (0.9994, P machine-learning algorithm with a sensitivity of 81.6%, a specificity of 83.9%, and an accuracy of 83.2%. The correlation was 0.729 (P assessment of FFR. Average execution time went down from 196.3 ± 78.5 s for the CFD model to ∼2.4 ± 0.44 s for the machine-learning model on a workstation with 3.4-GHz Intel i7 8-core processor. Copyright © 2016 the American Physiological Society.

  10. Archetypal Analysis for Machine Learning

    DEFF Research Database (Denmark)

    Mørup, Morten; Hansen, Lars Kai

    2010-01-01

    Archetypal analysis (AA) proposed by Cutler and Breiman in [1] estimates the principal convex hull of a data set. As such AA favors features that constitute representative ’corners’ of the data, i.e. distinct aspects or archetypes. We will show that AA enjoys the interpretability of clustering - ...... for K-means [2]. We demonstrate that the AA model is relevant for feature extraction and dimensional reduction for a large variety of machine learning problems taken from computer vision, neuroimaging, text mining and collaborative filtering....

  11. Advanced Machine learning Algorithm Application for Rotating Machine Health Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kanemoto, Shigeru; Watanabe, Masaya [The University of Aizu, Aizuwakamatsu (Japan); Yusa, Noritaka [Tohoku University, Sendai (Japan)

    2014-08-15

    The present paper tries to evaluate the applicability of conventional sound analysis techniques and modern machine learning algorithms to rotating machine health monitoring. These techniques include support vector machine, deep leaning neural network, etc. The inner ring defect and misalignment anomaly sound data measured by a rotating machine mockup test facility are used to verify the above various kinds of algorithms. Although we cannot find remarkable difference of anomaly discrimination performance, some methods give us the very interesting eigen patterns corresponding to normal and abnormal states. These results will be useful for future more sensitive and robust anomaly monitoring technology.

  12. Advanced Machine learning Algorithm Application for Rotating Machine Health Monitoring

    International Nuclear Information System (INIS)

    Kanemoto, Shigeru; Watanabe, Masaya; Yusa, Noritaka

    2014-01-01

    The present paper tries to evaluate the applicability of conventional sound analysis techniques and modern machine learning algorithms to rotating machine health monitoring. These techniques include support vector machine, deep leaning neural network, etc. The inner ring defect and misalignment anomaly sound data measured by a rotating machine mockup test facility are used to verify the above various kinds of algorithms. Although we cannot find remarkable difference of anomaly discrimination performance, some methods give us the very interesting eigen patterns corresponding to normal and abnormal states. These results will be useful for future more sensitive and robust anomaly monitoring technology

  13. Machine learning application in online lending risk prediction

    OpenAIRE

    Yu, Xiaojiao

    2017-01-01

    Online leading has disrupted the traditional consumer banking sector with more effective loan processing. Risk prediction and monitoring is critical for the success of the business model. Traditional credit score models fall short in applying big data technology in building risk model. In this manuscript, data with various format and size were collected from public website, third-parties and assembled with client's loan application information data. Ensemble machine learning models, random fo...

  14. Machine Learning for Social Services: A Study of Prenatal Case Management in Illinois.

    Science.gov (United States)

    Pan, Ian; Nolan, Laura B; Brown, Rashida R; Khan, Romana; van der Boor, Paul; Harris, Daniel G; Ghani, Rayid

    2017-06-01

    To evaluate the positive predictive value of machine learning algorithms for early assessment of adverse birth risk among pregnant women as a means of improving the allocation of social services. We used administrative data for 6457 women collected by the Illinois Department of Human Services from July 2014 to May 2015 to develop a machine learning model for adverse birth prediction and improve upon the existing paper-based risk assessment. We compared different models and determined the strongest predictors of adverse birth outcomes using positive predictive value as the metric for selection. Machine learning algorithms performed similarly, outperforming the current paper-based risk assessment by up to 36%; a refined paper-based assessment outperformed the current assessment by up to 22%. We estimate that these improvements will allow 100 to 170 additional high-risk pregnant women screened for program eligibility each year to receive services that would have otherwise been unobtainable. Our analysis exhibits the potential for machine learning to move government agencies toward a more data-informed approach to evaluating risk and providing social services. Overall, such efforts will improve the efficiency of allocating resource-intensive interventions.

  15. Machine Learning Methods for Attack Detection in the Smart Grid.

    Science.gov (United States)

    Ozay, Mete; Esnaola, Inaki; Yarman Vural, Fatos Tunay; Kulkarni, Sanjeev R; Poor, H Vincent

    2016-08-01

    Attack detection problems in the smart grid are posed as statistical learning problems for different attack scenarios in which the measurements are observed in batch or online settings. In this approach, machine learning algorithms are used to classify measurements as being either secure or attacked. An attack detection framework is provided to exploit any available prior knowledge about the system and surmount constraints arising from the sparse structure of the problem in the proposed approach. Well-known batch and online learning algorithms (supervised and semisupervised) are employed with decision- and feature-level fusion to model the attack detection problem. The relationships between statistical and geometric properties of attack vectors employed in the attack scenarios and learning algorithms are analyzed to detect unobservable attacks using statistical learning methods. The proposed algorithms are examined on various IEEE test systems. Experimental analyses show that machine learning algorithms can detect attacks with performances higher than attack detection algorithms that employ state vector estimation methods in the proposed attack detection framework.

  16. Using Hierarchical Machine Learning to Improve Player Satisfaction in a Soccer Videogame

    OpenAIRE

    Collins, Brian; Rovatsos, Michael

    2006-01-01

    This paper describes an approach to using a hierarchical machine learning model in a two player 3D physics-based soccer video game to improve human player satisfaction. Learning is accomplished at two layers to form a complete game-playing agent such that higher level strategy learning is dependent on lower-level learning of basic behaviors.Supervised learning is used to train neural networks on human data to model the basic behaviors. The reinforcement learning algorithms Sarsa (λ) and Q(λ) ...

  17. Fairer machine learning in the real world: Mitigating discrimination without collecting sensitive data

    Directory of Open Access Journals (Sweden)

    Michael Veale

    2017-11-01

    Full Text Available Decisions based on algorithmic, machine learning models can be unfair, reproducing biases in historical data used to train them. While computational techniques are emerging to address aspects of these concerns through communities such as discrimination-aware data mining (DADM and fairness, accountability and transparency machine learning (FATML, their practical implementation faces real-world challenges. For legal, institutional or commercial reasons, organisations might not hold the data on sensitive attributes such as gender, ethnicity, sexuality or disability needed to diagnose and mitigate emergent indirect discrimination-by-proxy, such as redlining. Such organisations might also lack the knowledge and capacity to identify and manage fairness issues that are emergent properties of complex sociotechnical systems. This paper presents and discusses three potential approaches to deal with such knowledge and information deficits in the context of fairer machine learning. Trusted third parties could selectively store data necessary for performing discrimination discovery and incorporating fairness constraints into model-building in a privacy-preserving manner. Collaborative online platforms would allow diverse organisations to record, share and access contextual and experiential knowledge to promote fairness in machine learning systems. Finally, unsupervised learning and pedagogically interpretable algorithms might allow fairness hypotheses to be built for further selective testing and exploration. Real-world fairness challenges in machine learning are not abstract, constrained optimisation problems, but are institutionally and contextually grounded. Computational fairness tools are useful, but must be researched and developed in and with the messy contexts that will shape their deployment, rather than just for imagined situations. Not doing so risks real, near-term algorithmic harm.

  18. Machine learning methods in predicting the student academic motivation

    Directory of Open Access Journals (Sweden)

    Ivana Đurđević Babić

    2017-01-01

    Full Text Available Academic motivation is closely related to academic performance. For educators, it is equally important to detect early students with a lack of academic motivation as it is to detect those with a high level of academic motivation. In endeavouring to develop a classification model for predicting student academic motivation based on their behaviour in learning management system (LMS courses, this paper intends to establish links between the predicted student academic motivation and their behaviour in the LMS course. Students from all years at the Faculty of Education in Osijek participated in this research. Three machine learning classifiers (neural networks, decision trees, and support vector machines were used. To establish whether a significant difference in the performance of models exists, a t-test of the difference in proportions was used. Although, all classifiers were successful, the neural network model was shown to be the most successful in detecting the student academic motivation based on their behaviour in LMS course.

  19. Developing a PLC-friendly state machine model: lessons learned

    Science.gov (United States)

    Pessemier, Wim; Deconinck, Geert; Raskin, Gert; Saey, Philippe; Van Winckel, Hans

    2014-07-01

    've learned during the development process of such a "PLC-friendly" state machine model.

  20. Machine learning for the New York City power grid.

    Science.gov (United States)

    Rudin, Cynthia; Waltz, David; Anderson, Roger N; Boulanger, Albert; Salleb-Aouissi, Ansaf; Chow, Maggie; Dutta, Haimonti; Gross, Philip N; Huang, Bert; Ierome, Steve; Isaac, Delfina F; Kressner, Arthur; Passonneau, Rebecca J; Radeva, Axinia; Wu, Leon

    2012-02-01

    Power companies can benefit from the use of knowledge discovery methods and statistical machine learning for preventive maintenance. We introduce a general process for transforming historical electrical grid data into models that aim to predict the risk of failures for components and systems. These models can be used directly by power companies to assist with prioritization of maintenance and repair work. Specialized versions of this process are used to produce 1) feeder failure rankings, 2) cable, joint, terminator, and transformer rankings, 3) feeder Mean Time Between Failure (MTBF) estimates, and 4) manhole events vulnerability rankings. The process in its most general form can handle diverse, noisy, sources that are historical (static), semi-real-time, or realtime, incorporates state-of-the-art machine learning algorithms for prioritization (supervised ranking or MTBF), and includes an evaluation of results via cross-validation and blind test. Above and beyond the ranked lists and MTBF estimates are business management interfaces that allow the prediction capability to be integrated directly into corporate planning and decision support; such interfaces rely on several important properties of our general modeling approach: that machine learning features are meaningful to domain experts, that the processing of data is transparent, and that prediction results are accurate enough to support sound decision making. We discuss the challenges in working with historical electrical grid data that were not designed for predictive purposes. The “rawness” of these data contrasts with the accuracy of the statistical models that can be obtained from the process; these models are sufficiently accurate to assist in maintaining New York City’s electrical grid.

  1. Machine learning with quantum relative entropy

    International Nuclear Information System (INIS)

    Tsuda, Koji

    2009-01-01

    Density matrices are a central tool in quantum physics, but it is also used in machine learning. A positive definite matrix called kernel matrix is used to represent the similarities between examples. Positive definiteness assures that the examples are embedded in an Euclidean space. When a positive definite matrix is learned from data, one has to design an update rule that maintains the positive definiteness. Our update rule, called matrix exponentiated gradient update, is motivated by the quantum relative entropy. Notably, the relative entropy is an instance of Bregman divergences, which are asymmetric distance measures specifying theoretical properties of machine learning algorithms. Using the calculus commonly used in quantum physics, we prove an upperbound of the generalization error of online learning.

  2. Machine learning with quantum relative entropy

    Energy Technology Data Exchange (ETDEWEB)

    Tsuda, Koji [Max Planck Institute for Biological Cybernetics, Spemannstr. 38, Tuebingen, 72076 (Germany)], E-mail: koji.tsuda@tuebingen.mpg.de

    2009-12-01

    Density matrices are a central tool in quantum physics, but it is also used in machine learning. A positive definite matrix called kernel matrix is used to represent the similarities between examples. Positive definiteness assures that the examples are embedded in an Euclidean space. When a positive definite matrix is learned from data, one has to design an update rule that maintains the positive definiteness. Our update rule, called matrix exponentiated gradient update, is motivated by the quantum relative entropy. Notably, the relative entropy is an instance of Bregman divergences, which are asymmetric distance measures specifying theoretical properties of machine learning algorithms. Using the calculus commonly used in quantum physics, we prove an upperbound of the generalization error of online learning.

  3. Machine Learning of the Reactor Core Loading Pattern Critical Parameters

    Directory of Open Access Journals (Sweden)

    Krešimir Trontl

    2008-01-01

    Full Text Available The usual approach to loading pattern optimization involves high degree of engineering judgment, a set of heuristic rules, an optimization algorithm, and a computer code used for evaluating proposed loading patterns. The speed of the optimization process is highly dependent on the computer code used for the evaluation. In this paper, we investigate the applicability of a machine learning model which could be used for fast loading pattern evaluation. We employ a recently introduced machine learning technique, support vector regression (SVR, which is a data driven, kernel based, nonlinear modeling paradigm, in which model parameters are automatically determined by solving a quadratic optimization problem. The main objective of the work reported in this paper was to evaluate the possibility of applying SVR method for reactor core loading pattern modeling. We illustrate the performance of the solution and discuss its applicability, that is, complexity, speed, and accuracy.

  4. Machine Learning of the Reactor Core Loading Pattern Critical Parameters

    International Nuclear Information System (INIS)

    Trontl, K.; Pevec, D.; Smuc, T.

    2008-01-01

    The usual approach to loading pattern optimization involves high degree of engineering judgment, a set of heuristic rules, an optimization algorithm, and a computer code used for evaluating proposed loading patterns. The speed of the optimization process is highly dependent on the computer code used for the evaluation. In this paper, we investigate the applicability of a machine learning model which could be used for fast loading pattern evaluation. We employ a recently introduced machine learning technique, support vector regression (SVR), which is a data driven, kernel based, nonlinear modeling paradigm, in which model parameters are automatically determined by solving a quadratic optimization problem. The main objective of the work reported in this paper was to evaluate the possibility of applying SVR method for reactor core loading pattern modeling. We illustrate the performance of the solution and discuss its applicability, that is, complexity, speed, and accuracy

  5. Fairer machine learning in the real world: Mitigating discrimination without collecting sensitive data

    OpenAIRE

    Veale, M; Binns, RDP

    2017-01-01

    Decisions based on algorithmic, machine learning models can be unfair, reproducing biases in historical data used to train them. While computational techniques are emerging to address aspects of these concerns through communities such as discrimination-aware data mining (DADM) and fairness, accountability and transparency machine learning (FATML), their practical implementation faces real-world challenges. For legal, institutional or commercial reasons, organisations might not hold the data o...

  6. Machine learning for predicting soil classes in three semi-arid landscapes

    Science.gov (United States)

    Brungard, Colby W.; Boettinger, Janis L.; Duniway, Michael C.; Wills, Skye A.; Edwards, Thomas C.

    2015-01-01

    Mapping the spatial distribution of soil taxonomic classes is important for informing soil use and management decisions. Digital soil mapping (DSM) can quantitatively predict the spatial distribution of soil taxonomic classes. Key components of DSM are the method and the set of environmental covariates used to predict soil classes. Machine learning is a general term for a broad set of statistical modeling techniques. Many different machine learning models have been applied in the literature and there are different approaches for selecting covariates for DSM. However, there is little guidance as to which, if any, machine learning model and covariate set might be optimal for predicting soil classes across different landscapes. Our objective was to compare multiple machine learning models and covariate sets for predicting soil taxonomic classes at three geographically distinct areas in the semi-arid western United States of America (southern New Mexico, southwestern Utah, and northeastern Wyoming). All three areas were the focus of digital soil mapping studies. Sampling sites at each study area were selected using conditioned Latin hypercube sampling (cLHS). We compared models that had been used in other DSM studies, including clustering algorithms, discriminant analysis, multinomial logistic regression, neural networks, tree based methods, and support vector machine classifiers. Tested machine learning models were divided into three groups based on model complexity: simple, moderate, and complex. We also compared environmental covariates derived from digital elevation models and Landsat imagery that were divided into three different sets: 1) covariates selected a priori by soil scientists familiar with each area and used as input into cLHS, 2) the covariates in set 1 plus 113 additional covariates, and 3) covariates selected using recursive feature elimination. Overall, complex models were consistently more accurate than simple or moderately complex models. Random

  7. Machine Learning of Fault Friction

    Science.gov (United States)

    Johnson, P. A.; Rouet-Leduc, B.; Hulbert, C.; Marone, C.; Guyer, R. A.

    2017-12-01

    We are applying machine learning (ML) techniques to continuous acoustic emission (AE) data from laboratory earthquake experiments. Our goal is to apply explicit ML methods to this acoustic datathe AE in order to infer frictional properties of a laboratory fault. The experiment is a double direct shear apparatus comprised of fault blocks surrounding fault gouge comprised of glass beads or quartz powder. Fault characteristics are recorded, including shear stress, applied load (bulk friction = shear stress/normal load) and shear velocity. The raw acoustic signal is continuously recorded. We rely on explicit decision tree approaches (Random Forest and Gradient Boosted Trees) that allow us to identify important features linked to the fault friction. A training procedure that employs both the AE and the recorded shear stress from the experiment is first conducted. Then, testing takes place on data the algorithm has never seen before, using only the continuous AE signal. We find that these methods provide rich information regarding frictional processes during slip (Rouet-Leduc et al., 2017a; Hulbert et al., 2017). In addition, similar machine learning approaches predict failure times, as well as slip magnitudes in some cases. We find that these methods work for both stick slip and slow slip experiments, for periodic slip and for aperiodic slip. We also derive a fundamental relationship between the AE and the friction describing the frictional behavior of any earthquake slip cycle in a given experiment (Rouet-Leduc et al., 2017b). Our goal is to ultimately scale these approaches to Earth geophysical data to probe fault friction. References Rouet-Leduc, B., C. Hulbert, N. Lubbers, K. Barros, C. Humphreys and P. A. Johnson, Machine learning predicts laboratory earthquakes, in review (2017). https://arxiv.org/abs/1702.05774Rouet-LeDuc, B. et al., Friction Laws Derived From the Acoustic Emissions of a Laboratory Fault by Machine Learning (2017), AGU Fall Meeting Session S025

  8. Machine Learning Approaches for Predicting Radiation Therapy Outcomes: A Clinician's Perspective

    International Nuclear Information System (INIS)

    Kang, John; Schwartz, Russell; Flickinger, John; Beriwal, Sushil

    2015-01-01

    Radiation oncology has always been deeply rooted in modeling, from the early days of isoeffect curves to the contemporary Quantitative Analysis of Normal Tissue Effects in the Clinic (QUANTEC) initiative. In recent years, medical modeling for both prognostic and therapeutic purposes has exploded thanks to increasing availability of electronic data and genomics. One promising direction that medical modeling is moving toward is adopting the same machine learning methods used by companies such as Google and Facebook to combat disease. Broadly defined, machine learning is a branch of computer science that deals with making predictions from complex data through statistical models. These methods serve to uncover patterns in data and are actively used in areas such as speech recognition, handwriting recognition, face recognition, “spam” filtering (junk email), and targeted advertising. Although multiple radiation oncology research groups have shown the value of applied machine learning (ML), clinical adoption has been slow due to the high barrier to understanding these complex models by clinicians. Here, we present a review of the use of ML to predict radiation therapy outcomes from the clinician's point of view with the hope that it lowers the “barrier to entry” for those without formal training in ML. We begin by describing 7 principles that one should consider when evaluating (or creating) an ML model in radiation oncology. We next introduce 3 popular ML methods—logistic regression (LR), support vector machine (SVM), and artificial neural network (ANN)—and critique 3 seminal papers in the context of these principles. Although current studies are in exploratory stages, the overall methodology has progressively matured, and the field is ready for larger-scale further investigation.

  9. Validation of TGLF in C-Mod and DIII-D using machine learning and integrated modeling tools

    Science.gov (United States)

    Rodriguez-Fernandez, P.; White, Ae; Cao, Nm; Creely, Aj; Greenwald, Mj; Grierson, Ba; Howard, Nt; Meneghini, O.; Petty, Cc; Rice, Je; Sciortino, F.; Yuan, X.

    2017-10-01

    Predictive models for steady-state and perturbative transport are necessary to support burning plasma operations. A combination of machine learning algorithms and integrated modeling tools is used to validate TGLF in C-Mod and DIII-D. First, a new code suite, VITALS, is used to compare SAT1 and SAT0 models in C-Mod. VITALS exploits machine learning and optimization algorithms for the validation of transport codes. Unlike SAT0, the SAT1 saturation rule contains a model to capture cross-scale turbulence coupling. Results show that SAT1 agrees better with experiments, further confirming that multi-scale effects are needed to model heat transport in C-Mod L-modes. VITALS will next be used to analyze past data from DIII-D: L-mode ``Shortfall'' plasma and ECH swing experiments. A second code suite, PRIMA, allows for integrated modeling of the plasma response to Laser Blow-Off cold pulses. Preliminary results show that SAT1 qualitatively reproduces the propagation of cold pulses after LBO injections and SAT0 does not, indicating that cross-scale coupling effects play a role in the plasma response. PRIMA will be used to ``predict-first'' cold pulse experiments using the new LBO system at DIII-D, and analyze existing ECH heat pulse data. Work supported by DE-FC02-99ER54512, DE-FC02-04ER54698.

  10. Machine Learning Applications to Resting-State Functional MR Imaging Analysis.

    Science.gov (United States)

    Billings, John M; Eder, Maxwell; Flood, William C; Dhami, Devendra Singh; Natarajan, Sriraam; Whitlow, Christopher T

    2017-11-01

    Machine learning is one of the most exciting and rapidly expanding fields within computer science. Academic and commercial research entities are investing in machine learning methods, especially in personalized medicine via patient-level classification. There is great promise that machine learning methods combined with resting state functional MR imaging will aid in diagnosis of disease and guide potential treatment for conditions thought to be impossible to identify based on imaging alone, such as psychiatric disorders. We discuss machine learning methods and explore recent advances. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Machine learning-enabled discovery and design of membrane-active peptides.

    Science.gov (United States)

    Lee, Ernest Y; Wong, Gerard C L; Ferguson, Andrew L

    2017-07-08

    Antimicrobial peptides are a class of membrane-active peptides that form a critical component of innate host immunity and possess a diversity of sequence and structure. Machine learning approaches have been profitably employed to efficiently screen sequence space and guide experiment towards promising candidates with high putative activity. In this mini-review, we provide an introduction to antimicrobial peptides and summarize recent advances in machine learning-enabled antimicrobial peptide discovery and design with a focus on a recent work Lee et al. Proc. Natl. Acad. Sci. USA 2016;113(48):13588-13593. This study reports the development of a support vector machine classifier to aid in the design of membrane active peptides. We use this model to discover membrane activity as a multiplexed function in diverse peptide families and provide interpretable understanding of the physicochemical properties and mechanisms governing membrane activity. Experimental validation of the classifier reveals it to have learned membrane activity as a unifying signature of antimicrobial peptides with diverse modes of action. Some of the discriminating rules by which it performs classification are in line with existing "human learned" understanding, but it also unveils new previously unknown determinants and multidimensional couplings governing membrane activity. Integrating machine learning with targeted experimentation can guide both antimicrobial peptide discovery and design and new understanding of the properties and mechanisms underpinning their modes of action. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. On the Safety of Machine Learning: Cyber-Physical Systems, Decision Sciences, and Data Products.

    Science.gov (United States)

    Varshney, Kush R; Alemzadeh, Homa

    2017-09-01

    Machine learning algorithms increasingly influence our decisions and interact with us in all parts of our daily lives. Therefore, just as we consider the safety of power plants, highways, and a variety of other engineered socio-technical systems, we must also take into account the safety of systems involving machine learning. Heretofore, the definition of safety has not been formalized in a machine learning context. In this article, we do so by defining machine learning safety in terms of risk, epistemic uncertainty, and the harm incurred by unwanted outcomes. We then use this definition to examine safety in all sorts of applications in cyber-physical systems, decision sciences, and data products. We find that the foundational principle of modern statistical machine learning, empirical risk minimization, is not always a sufficient objective. We discuss how four different categories of strategies for achieving safety in engineering, including inherently safe design, safety reserves, safe fail, and procedural safeguards can be mapped to a machine learning context. We then discuss example techniques that can be adopted in each category, such as considering interpretability and causality of predictive models, objective functions beyond expected prediction accuracy, human involvement for labeling difficult or rare examples, and user experience design of software and open data.

  13. Learning as a Machine: Crossovers between Humans and Machines

    Science.gov (United States)

    Hildebrandt, Mireille

    2017-01-01

    This article is a revised version of the keynote presented at LAK '16 in Edinburgh. The article investigates some of the assumptions of learning analytics, notably those related to behaviourism. Building on the work of Ivan Pavlov, Herbert Simon, and James Gibson as ways of "learning as a machine," the article then develops two levels of…

  14. MoleculeNet: a benchmark for molecular machine learning.

    Science.gov (United States)

    Wu, Zhenqin; Ramsundar, Bharath; Feinberg, Evan N; Gomes, Joseph; Geniesse, Caleb; Pappu, Aneesh S; Leswing, Karl; Pande, Vijay

    2018-01-14

    Molecular machine learning has been maturing rapidly over the last few years. Improved methods and the presence of larger datasets have enabled machine learning algorithms to make increasingly accurate predictions about molecular properties. However, algorithmic progress has been limited due to the lack of a standard benchmark to compare the efficacy of proposed methods; most new algorithms are benchmarked on different datasets making it challenging to gauge the quality of proposed methods. This work introduces MoleculeNet, a large scale benchmark for molecular machine learning. MoleculeNet curates multiple public datasets, establishes metrics for evaluation, and offers high quality open-source implementations of multiple previously proposed molecular featurization and learning algorithms (released as part of the DeepChem open source library). MoleculeNet benchmarks demonstrate that learnable representations are powerful tools for molecular machine learning and broadly offer the best performance. However, this result comes with caveats. Learnable representations still struggle to deal with complex tasks under data scarcity and highly imbalanced classification. For quantum mechanical and biophysical datasets, the use of physics-aware featurizations can be more important than choice of particular learning algorithm.

  15. The ATLAS Higgs machine learning challenge

    CERN Document Server

    Davey, W; The ATLAS collaboration; Rousseau, D; Cowan, G; Kegl, B; Germain-Renaud, C; Guyon, I

    2014-01-01

    High Energy Physics has been using Machine Learning techniques (commonly known as Multivariate Analysis) since the 90's with Artificial Neural Net for example, more recently with Boosted Decision Trees, Random Forest etc... Meanwhile, Machine Learning has become a full blown field of computer science. With the emergence of Big Data, Data Scientists are developing new Machine Learning algorithms to extract sense from large heterogeneous data. HEP has exciting and difficult problems like the extraction of the Higgs boson signal, data scientists have advanced algorithms: the goal of the HiggsML project is to bring the two together by a “challenge”: participants from all over the world and any scientific background can compete online ( https://www.kaggle.com/c/higgs-boson ) to obtain the best Higgs to tau tau signal significance on a set of ATLAS full simulated Monte Carlo signal and background. Winners with the best scores will receive money prizes ; authors of the best method (most usable) will be invited t...

  16. Adaptive Learning Systems: Beyond Teaching Machines

    Science.gov (United States)

    Kara, Nuri; Sevim, Nese

    2013-01-01

    Since 1950s, teaching machines have changed a lot. Today, we have different ideas about how people learn, what instructor should do to help students during their learning process. We have adaptive learning technologies that can create much more student oriented learning environments. The purpose of this article is to present these changes and its…

  17. Extracting meaning from audio signals - a machine learning approach

    DEFF Research Database (Denmark)

    Larsen, Jan

    2007-01-01

    * Machine learning framework for sound search * Genre classification * Music and audio separation * Wind noise suppression......* Machine learning framework for sound search * Genre classification * Music and audio separation * Wind noise suppression...

  18. Simulation-driven machine learning: Bearing fault classification

    Science.gov (United States)

    Sobie, Cameron; Freitas, Carina; Nicolai, Mike

    2018-01-01

    Increasing the accuracy of mechanical fault detection has the potential to improve system safety and economic performance by minimizing scheduled maintenance and the probability of unexpected system failure. Advances in computational performance have enabled the application of machine learning algorithms across numerous applications including condition monitoring and failure detection. Past applications of machine learning to physical failure have relied explicitly on historical data, which limits the feasibility of this approach to in-service components with extended service histories. Furthermore, recorded failure data is often only valid for the specific circumstances and components for which it was collected. This work directly addresses these challenges for roller bearings with race faults by generating training data using information gained from high resolution simulations of roller bearing dynamics, which is used to train machine learning algorithms that are then validated against four experimental datasets. Several different machine learning methodologies are compared starting from well-established statistical feature-based methods to convolutional neural networks, and a novel application of dynamic time warping (DTW) to bearing fault classification is proposed as a robust, parameter free method for race fault detection.

  19. Modern machine learning techniques and their applications in cartoon animation research

    CERN Document Server

    Yu, Jun

    2013-01-01

    The integration of machine learning techniques and cartoon animation research is fast becoming a hot topic. This book helps readers learn the latest machine learning techniques, including patch alignment framework; spectral clustering, graph cuts, and convex relaxation; ensemble manifold learning; multiple kernel learning; multiview subspace learning; and multiview distance metric learning. It then presents the applications of these modern machine learning techniques in cartoon animation research. With these techniques, users can efficiently utilize the cartoon materials to generate animations

  20. Implementing Machine Learning in the PCWG Tool

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, Andrew; Ding, Yu; Stuart, Peter

    2016-12-13

    The Power Curve Working Group (www.pcwg.org) is an ad-hoc industry-led group to investigate the performance of wind turbines in real-world conditions. As part of ongoing experience-sharing exercises, machine learning has been proposed as a possible way to predict turbine performance. This presentation provides some background information about machine learning and how it might be implemented in the PCWG exercises.

  1. Machine learning and data science in soft materials engineering

    Science.gov (United States)

    Ferguson, Andrew L.

    2018-01-01

    In many branches of materials science it is now routine to generate data sets of such large size and dimensionality that conventional methods of analysis fail. Paradigms and tools from data science and machine learning can provide scalable approaches to identify and extract trends and patterns within voluminous data sets, perform guided traversals of high-dimensional phase spaces, and furnish data-driven strategies for inverse materials design. This topical review provides an accessible introduction to machine learning tools in the context of soft and biological materials by ‘de-jargonizing’ data science terminology, presenting a taxonomy of machine learning techniques, and surveying the mathematical underpinnings and software implementations of popular tools, including principal component analysis, independent component analysis, diffusion maps, support vector machines, and relative entropy. We present illustrative examples of machine learning applications in soft matter, including inverse design of self-assembling materials, nonlinear learning of protein folding landscapes, high-throughput antimicrobial peptide design, and data-driven materials design engines. We close with an outlook on the challenges and opportunities for the field.

  2. Machine learning and data science in soft materials engineering.

    Science.gov (United States)

    Ferguson, Andrew L

    2018-01-31

    In many branches of materials science it is now routine to generate data sets of such large size and dimensionality that conventional methods of analysis fail. Paradigms and tools from data science and machine learning can provide scalable approaches to identify and extract trends and patterns within voluminous data sets, perform guided traversals of high-dimensional phase spaces, and furnish data-driven strategies for inverse materials design. This topical review provides an accessible introduction to machine learning tools in the context of soft and biological materials by 'de-jargonizing' data science terminology, presenting a taxonomy of machine learning techniques, and surveying the mathematical underpinnings and software implementations of popular tools, including principal component analysis, independent component analysis, diffusion maps, support vector machines, and relative entropy. We present illustrative examples of machine learning applications in soft matter, including inverse design of self-assembling materials, nonlinear learning of protein folding landscapes, high-throughput antimicrobial peptide design, and data-driven materials design engines. We close with an outlook on the challenges and opportunities for the field.

  3. A Comparison Study of Machine Learning Based Algorithms for Fatigue Crack Growth Calculation.

    Science.gov (United States)

    Wang, Hongxun; Zhang, Weifang; Sun, Fuqiang; Zhang, Wei

    2017-05-18

    The relationships between the fatigue crack growth rate ( d a / d N ) and stress intensity factor range ( Δ K ) are not always linear even in the Paris region. The stress ratio effects on fatigue crack growth rate are diverse in different materials. However, most existing fatigue crack growth models cannot handle these nonlinearities appropriately. The machine learning method provides a flexible approach to the modeling of fatigue crack growth because of its excellent nonlinear approximation and multivariable learning ability. In this paper, a fatigue crack growth calculation method is proposed based on three different machine learning algorithms (MLAs): extreme learning machine (ELM), radial basis function network (RBFN) and genetic algorithms optimized back propagation network (GABP). The MLA based method is validated using testing data of different materials. The three MLAs are compared with each other as well as the classical two-parameter model ( K * approach). The results show that the predictions of MLAs are superior to those of K * approach in accuracy and effectiveness, and the ELM based algorithms show overall the best agreement with the experimental data out of the three MLAs, for its global optimization and extrapolation ability.

  4. Inverse problems in machine learning: An application to brain activity interpretation

    International Nuclear Information System (INIS)

    Prato, M; Zanni, L

    2008-01-01

    In a typical machine learning problem one has to build a model from a finite training set which is able to generalize the properties characterizing the examples of the training set to new examples. The model has to reflect as much as possible the set of training examples but, especially in real-world problems in which the data are often corrupted by different sources of noise, it has to avoid a too strict dependence on the training examples themselves. Recent studies on the relationship between this kind of learning problem and the regularization theory for ill-posed inverse problems have given rise to new regularized learning algorithms. In this paper we recall some of these learning methods and we propose an accelerated version of the classical Landweber iterative scheme which results particularly efficient from the computational viewpoint. Finally, we compare the performances of these methods with the classical Support Vector Machines learning algorithm on a real-world experiment concerning brain activity interpretation through the analysis of functional magnetic resonance imaging data.

  5. Inverse analysis of turbidites by machine learning

    Science.gov (United States)

    Naruse, H.; Nakao, K.

    2017-12-01

    This study aims to propose a method to estimate paleo-hydraulic conditions of turbidity currents from ancient turbidites by using machine-learning technique. In this method, numerical simulation was repeated under various initial conditions, which produces a data set of characteristic features of turbidites. Then, this data set of turbidites is used for supervised training of a deep-learning neural network (NN). Quantities of characteristic features of turbidites in the training data set are given to input nodes of NN, and output nodes are expected to provide the estimates of initial condition of the turbidity current. The optimization of weight coefficients of NN is then conducted to reduce root-mean-square of the difference between the true conditions and the output values of NN. The empirical relationship with numerical results and the initial conditions is explored in this method, and the discovered relationship is used for inversion of turbidity currents. This machine learning can potentially produce NN that estimates paleo-hydraulic conditions from data of ancient turbidites. We produced a preliminary implementation of this methodology. A forward model based on 1D shallow-water equations with a correction of density-stratification effect was employed. This model calculates a behavior of a surge-like turbidity current transporting mixed-size sediment, and outputs spatial distribution of volume per unit area of each grain-size class on the uniform slope. Grain-size distribution was discretized 3 classes. Numerical simulation was repeated 1000 times, and thus 1000 beds of turbidites were used as the training data for NN that has 21000 input nodes and 5 output nodes with two hidden-layers. After the machine learning finished, independent simulations were conducted 200 times in order to evaluate the performance of NN. As a result of this test, the initial conditions of validation data were successfully reconstructed by NN. The estimated values show very small

  6. Machine Learning Techniques for Prediction of Early Childhood Obesity.

    Science.gov (United States)

    Dugan, T M; Mukhopadhyay, S; Carroll, A; Downs, S

    2015-01-01

    This paper aims to predict childhood obesity after age two, using only data collected prior to the second birthday by a clinical decision support system called CHICA. Analyses of six different machine learning methods: RandomTree, RandomForest, J48, ID3, Naïve Bayes, and Bayes trained on CHICA data show that an accurate, sensitive model can be created. Of the methods analyzed, the ID3 model trained on the CHICA dataset proved the best overall performance with accuracy of 85% and sensitivity of 89%. Additionally, the ID3 model had a positive predictive value of 84% and a negative predictive value of 88%. The structure of the tree also gives insight into the strongest predictors of future obesity in children. Many of the strongest predictors seen in the ID3 modeling of the CHICA dataset have been independently validated in the literature as correlated with obesity, thereby supporting the validity of the model. This study demonstrated that data from a production clinical decision support system can be used to build an accurate machine learning model to predict obesity in children after age two.

  7. Using machine learning to parse breast pathology reports.

    Science.gov (United States)

    Yala, Adam; Barzilay, Regina; Salama, Laura; Griffin, Molly; Sollender, Grace; Bardia, Aditya; Lehman, Constance; Buckley, Julliette M; Coopey, Suzanne B; Polubriaginof, Fernanda; Garber, Judy E; Smith, Barbara L; Gadd, Michele A; Specht, Michelle C; Gudewicz, Thomas M; Guidi, Anthony J; Taghian, Alphonse; Hughes, Kevin S

    2017-01-01

    Extracting information from electronic medical record is a time-consuming and expensive process when done manually. Rule-based and machine learning techniques are two approaches to solving this problem. In this study, we trained a machine learning model on pathology reports to extract pertinent tumor characteristics, which enabled us to create a large database of attribute searchable pathology reports. This database can be used to identify cohorts of patients with characteristics of interest. We collected a total of 91,505 breast pathology reports from three Partners hospitals: Massachusetts General Hospital, Brigham and Women's Hospital, and Newton-Wellesley Hospital, covering the period from 1978 to 2016. We trained our system with annotations from two datasets, consisting of 6295 and 10,841 manually annotated reports. The system extracts 20 separate categories of information, including atypia types and various tumor characteristics such as receptors. We also report a learning curve analysis to show how much annotation our model needs to perform reasonably. The model accuracy was tested on 500 reports that did not overlap with the training set. The model achieved accuracy of 90% for correctly parsing all carcinoma and atypia categories for a given patient. The average accuracy for individual categories was 97%. Using this classifier, we created a database of 91,505 parsed pathology reports. Our learning curve analysis shows that the model can achieve reasonable results even when trained on a few annotations. We developed a user-friendly interface to the database that allows physicians to easily identify patients with target characteristics and export the matching cohort. This model has the potential to reduce the effort required for analyzing large amounts of data from medical records, and to minimize the cost and time required to glean scientific insight from these data.

  8. Applications of Machine Learning in Cancer Prediction and Prognosis

    Directory of Open Access Journals (Sweden)

    Joseph A. Cruz

    2006-01-01

    Full Text Available Machine learning is a branch of artificial intelligence that employs a variety of statistical, probabilistic and optimization techniques that allows computers to “learn” from past examples and to detect hard-to-discern patterns from large, noisy or complex data sets. This capability is particularly well-suited to medical applications, especially those that depend on complex proteomic and genomic measurements. As a result, machine learning is frequently used in cancer diagnosis and detection. More recently machine learning has been applied to cancer prognosis and prediction. This latter approach is particularly interesting as it is part of a growing trend towards personalized, predictive medicine. In assembling this review we conducted a broad survey of the different types of machine learning methods being used, the types of data being integrated and the performance of these methods in cancer prediction and prognosis. A number of trends are noted, including a growing dependence on protein biomarkers and microarray data, a strong bias towards applications in prostate and breast cancer, and a heavy reliance on “older” technologies such artificial neural networks (ANNs instead of more recently developed or more easily interpretable machine learning methods. A number of published studies also appear to lack an appropriate level of validation or testing. Among the better designed and validated studies it is clear that machine learning methods can be used to substantially (15-25% improve the accuracy of predicting cancer susceptibility, recurrence and mortality. At a more fundamental level, it is also evident that machine learning is also helping to improve our basic understanding of cancer development and progression.

  9. A review of machine learning in obesity.

    Science.gov (United States)

    DeGregory, K W; Kuiper, P; DeSilvio, T; Pleuss, J D; Miller, R; Roginski, J W; Fisher, C B; Harness, D; Viswanath, S; Heymsfield, S B; Dungan, I; Thomas, D M

    2018-05-01

    Rich sources of obesity-related data arising from sensors, smartphone apps, electronic medical health records and insurance data can bring new insights for understanding, preventing and treating obesity. For such large datasets, machine learning provides sophisticated and elegant tools to describe, classify and predict obesity-related risks and outcomes. Here, we review machine learning methods that predict and/or classify such as linear and logistic regression, artificial neural networks, deep learning and decision tree analysis. We also review methods that describe and characterize data such as cluster analysis, principal component analysis, network science and topological data analysis. We introduce each method with a high-level overview followed by examples of successful applications. The algorithms were then applied to National Health and Nutrition Examination Survey to demonstrate methodology, utility and outcomes. The strengths and limitations of each method were also evaluated. This summary of machine learning algorithms provides a unique overview of the state of data analysis applied specifically to obesity. © 2018 World Obesity Federation.

  10. Correcting Measurement Error in Satellite Aerosol Optical Depth with Machine Learning for Modeling PM2.5 in the Northeastern USA

    Directory of Open Access Journals (Sweden)

    Allan C. Just

    2018-05-01

    Full Text Available Satellite-derived estimates of aerosol optical depth (AOD are key predictors in particulate air pollution models. The multi-step retrieval algorithms that estimate AOD also produce quality control variables but these have not been systematically used to address the measurement error in AOD. We compare three machine-learning methods: random forests, gradient boosting, and extreme gradient boosting (XGBoost to characterize and correct measurement error in the Multi-Angle Implementation of Atmospheric Correction (MAIAC 1 × 1 km AOD product for Aqua and Terra satellites across the Northeastern/Mid-Atlantic USA versus collocated measures from 79 ground-based AERONET stations over 14 years. Models included 52 quality control, land use, meteorology, and spatially-derived features. Variable importance measures suggest relative azimuth, AOD uncertainty, and the AOD difference in 30–210 km moving windows are among the most important features for predicting measurement error. XGBoost outperformed the other machine-learning approaches, decreasing the root mean squared error in withheld testing data by 43% and 44% for Aqua and Terra. After correction using XGBoost, the correlation of collocated AOD and daily PM2.5 monitors across the region increased by 10 and 9 percentage points for Aqua and Terra. We demonstrate how machine learning with quality control and spatial features substantially improves satellite-derived AOD products for air pollution modeling.

  11. Coupling Matched Molecular Pairs with Machine Learning for Virtual Compound Optimization.

    Science.gov (United States)

    Turk, Samo; Merget, Benjamin; Rippmann, Friedrich; Fulle, Simone

    2017-12-26

    Matched molecular pair (MMP) analyses are widely used in compound optimization projects to gain insights into structure-activity relationships (SAR). The analysis is traditionally done via statistical methods but can also be employed together with machine learning (ML) approaches to extrapolate to novel compounds. The here introduced MMP/ML method combines a fragment-based MMP implementation with different machine learning methods to obtain automated SAR decomposition and prediction. To test the prediction capabilities and model transferability, two different compound optimization scenarios were designed: (1) "new fragments" which occurs when exploring new fragments for a defined compound series and (2) "new static core and transformations" which resembles for instance the identification of a new compound series. Very good results were achieved by all employed machine learning methods especially for the new fragments case, but overall deep neural network models performed best, allowing reliable predictions also for the new static core and transformations scenario, where comprehensive SAR knowledge of the compound series is missing. Furthermore, we show that models trained on all available data have a higher generalizability compared to models trained on focused series and can extend beyond chemical space covered in the training data. Thus, coupling MMP with deep neural networks provides a promising approach to make high quality predictions on various data sets and in different compound optimization scenarios.

  12. Rapid Prediction of Bacterial Heterotrophic Fluxomics Using Machine Learning and Constraint Programming.

    Directory of Open Access Journals (Sweden)

    Stephen Gang Wu

    2016-04-01

    Full Text Available 13C metabolic flux analysis (13C-MFA has been widely used to measure in vivo enzyme reaction rates (i.e., metabolic flux in microorganisms. Mining the relationship between environmental and genetic factors and metabolic fluxes hidden in existing fluxomic data will lead to predictive models that can significantly accelerate flux quantification. In this paper, we present a web-based platform MFlux (http://mflux.org that predicts the bacterial central metabolism via machine learning, leveraging data from approximately 100 13C-MFA papers on heterotrophic bacterial metabolisms. Three machine learning methods, namely Support Vector Machine (SVM, k-Nearest Neighbors (k-NN, and Decision Tree, were employed to study the sophisticated relationship between influential factors and metabolic fluxes. We performed a grid search of the best parameter set for each algorithm and verified their performance through 10-fold cross validations. SVM yields the highest accuracy among all three algorithms. Further, we employed quadratic programming to adjust flux profiles to satisfy stoichiometric constraints. Multiple case studies have shown that MFlux can reasonably predict fluxomes as a function of bacterial species, substrate types, growth rate, oxygen conditions, and cultivation methods. Due to the interest of studying model organism under particular carbon sources, bias of fluxome in the dataset may limit the applicability of machine learning models. This problem can be resolved after more papers on 13C-MFA are published for non-model species.

  13. On the Use of Machine Learning for Identifying Botnet Network Traffic

    DEFF Research Database (Denmark)

    Stevanovic, Matija; Pedersen, Jens Myrup

    2016-01-01

    contemporary approaches use machine learning techniques for identifying malicious traffic. This paper presents a survey of contemporary botnet detection methods that rely on machine learning for identifying botnet network traffic. The paper provides a comprehensive overview on the existing scientific work thus...... contributing to the better understanding of capabilities, limitations and opportunities of using machine learning for identifying botnet traffic. Furthermore, the paper outlines possibilities for the future development of machine learning-based botnet detection systems....

  14. Machine Learning Approaches for Predicting Radiation Therapy Outcomes: A Clinician's Perspective.

    Science.gov (United States)

    Kang, John; Schwartz, Russell; Flickinger, John; Beriwal, Sushil

    2015-12-01

    Radiation oncology has always been deeply rooted in modeling, from the early days of isoeffect curves to the contemporary Quantitative Analysis of Normal Tissue Effects in the Clinic (QUANTEC) initiative. In recent years, medical modeling for both prognostic and therapeutic purposes has exploded thanks to increasing availability of electronic data and genomics. One promising direction that medical modeling is moving toward is adopting the same machine learning methods used by companies such as Google and Facebook to combat disease. Broadly defined, machine learning is a branch of computer science that deals with making predictions from complex data through statistical models. These methods serve to uncover patterns in data and are actively used in areas such as speech recognition, handwriting recognition, face recognition, "spam" filtering (junk email), and targeted advertising. Although multiple radiation oncology research groups have shown the value of applied machine learning (ML), clinical adoption has been slow due to the high barrier to understanding these complex models by clinicians. Here, we present a review of the use of ML to predict radiation therapy outcomes from the clinician's point of view with the hope that it lowers the "barrier to entry" for those without formal training in ML. We begin by describing 7 principles that one should consider when evaluating (or creating) an ML model in radiation oncology. We next introduce 3 popular ML methods--logistic regression (LR), support vector machine (SVM), and artificial neural network (ANN)--and critique 3 seminal papers in the context of these principles. Although current studies are in exploratory stages, the overall methodology has progressively matured, and the field is ready for larger-scale further investigation. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Support vector machine based battery model for electric vehicles

    International Nuclear Information System (INIS)

    Wang Junping; Chen Quanshi; Cao Binggang

    2006-01-01

    The support vector machine (SVM) is a novel type of learning machine based on statistical learning theory that can map a nonlinear function successfully. As a battery is a nonlinear system, it is difficult to establish the relationship between the load voltage and the current under different temperatures and state of charge (SOC). The SVM is used to model the battery nonlinear dynamics in this paper. Tests are performed on an 80Ah Ni/MH battery pack with the Federal Urban Driving Schedule (FUDS) cycle to set up the SVM model. Compared with the Nernst and Shepherd combined model, the SVM model can simulate the battery dynamics better with small amounts of experimental data. The maximum relative error is 3.61%

  16. A Supervised Machine Learning Study of Online Discussion Forums about Type-2 Diabetes

    DEFF Research Database (Denmark)

    Reichert, Jonathan-Raphael; Kristensen, Klaus Langholz; Mukkamala, Raghava Rao

    2017-01-01

    supervised machine learning techniques to analyze the online conversations. In order to analyse these online textual conversations, we have chosen four domain specific models (Emotions, Sentiment, Personality Traits and Patient Journey). As part of text classification, we employed the ensemble learning...... method by using 5 different supervised machine learning algorithms to build a set of text classifiers by using the voting method to predict most probable label for a given textual conversation from the online discussion forums. Our findings show that there is a high amount of trust expressed by a subset...

  17. Towards large-scale FAME-based bacterial species identification using machine learning techniques.

    Science.gov (United States)

    Slabbinck, Bram; De Baets, Bernard; Dawyndt, Peter; De Vos, Paul

    2009-05-01

    In the last decade, bacterial taxonomy witnessed a huge expansion. The swift pace of bacterial species (re-)definitions has a serious impact on the accuracy and completeness of first-line identification methods. Consequently, back-end identification libraries need to be synchronized with the List of Prokaryotic names with Standing in Nomenclature. In this study, we focus on bacterial fatty acid methyl ester (FAME) profiling as a broadly used first-line identification method. From the BAME@LMG database, we have selected FAME profiles of individual strains belonging to the genera Bacillus, Paenibacillus and Pseudomonas. Only those profiles resulting from standard growth conditions have been retained. The corresponding data set covers 74, 44 and 95 validly published bacterial species, respectively, represented by 961, 378 and 1673 standard FAME profiles. Through the application of machine learning techniques in a supervised strategy, different computational models have been built for genus and species identification. Three techniques have been considered: artificial neural networks, random forests and support vector machines. Nearly perfect identification has been achieved at genus level. Notwithstanding the known limited discriminative power of FAME analysis for species identification, the computational models have resulted in good species identification results for the three genera. For Bacillus, Paenibacillus and Pseudomonas, random forests have resulted in sensitivity values, respectively, 0.847, 0.901 and 0.708. The random forests models outperform those of the other machine learning techniques. Moreover, our machine learning approach also outperformed the Sherlock MIS (MIDI Inc., Newark, DE, USA). These results show that machine learning proves very useful for FAME-based bacterial species identification. Besides good bacterial identification at species level, speed and ease of taxonomic synchronization are major advantages of this computational species

  18. Learning Machines Implemented on Non-Deterministic Hardware

    OpenAIRE

    Gupta, Suyog; Sindhwani, Vikas; Gopalakrishnan, Kailash

    2014-01-01

    This paper highlights new opportunities for designing large-scale machine learning systems as a consequence of blurring traditional boundaries that have allowed algorithm designers and application-level practitioners to stay -- for the most part -- oblivious to the details of the underlying hardware-level implementations. The hardware/software co-design methodology advocated here hinges on the deployment of compute-intensive machine learning kernels onto compute platforms that trade-off deter...

  19. Supervised machine learning techniques to predict binding affinity. A study for cyclin-dependent kinase 2.

    Science.gov (United States)

    de Ávila, Maurício Boff; Xavier, Mariana Morrone; Pintro, Val Oliveira; de Azevedo, Walter Filgueira

    2017-12-09

    Here we report the development of a machine-learning model to predict binding affinity based on the crystallographic structures of protein-ligand complexes. We used an ensemble of crystallographic structures (resolution better than 1.5 Å resolution) for which half-maximal inhibitory concentration (IC 50 ) data is available. Polynomial scoring functions were built using as explanatory variables the energy terms present in the MolDock and PLANTS scoring functions. Prediction performance was tested and the supervised machine learning models showed improvement in the prediction power, when compared with PLANTS and MolDock scoring functions. In addition, the machine-learning model was applied to predict binding affinity of CDK2, which showed a better performance when compared with AutoDock4, AutoDock Vina, MolDock, and PLANTS scores. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. An Overview and Evaluation of Recent Machine Learning Imputation Methods Using Cardiac Imaging Data.

    Science.gov (United States)

    Liu, Yuzhe; Gopalakrishnan, Vanathi

    2017-03-01

    Many clinical research datasets have a large percentage of missing values that directly impacts their usefulness in yielding high accuracy classifiers when used for training in supervised machine learning. While missing value imputation methods have been shown to work well with smaller percentages of missing values, their ability to impute sparse clinical research data can be problem specific. We previously attempted to learn quantitative guidelines for ordering cardiac magnetic resonance imaging during the evaluation for pediatric cardiomyopathy, but missing data significantly reduced our usable sample size. In this work, we sought to determine if increasing the usable sample size through imputation would allow us to learn better guidelines. We first review several machine learning methods for estimating missing data. Then, we apply four popular methods (mean imputation, decision tree, k-nearest neighbors, and self-organizing maps) to a clinical research dataset of pediatric patients undergoing evaluation for cardiomyopathy. Using Bayesian Rule Learning (BRL) to learn ruleset models, we compared the performance of imputation-augmented models versus unaugmented models. We found that all four imputation-augmented models performed similarly to unaugmented models. While imputation did not improve performance, it did provide evidence for the robustness of our learned models.

  1. Optimizing Distributed Machine Learning for Large Scale EEG Data Set

    Directory of Open Access Journals (Sweden)

    M Bilal Shaikh

    2017-06-01

    Full Text Available Distributed Machine Learning (DML has gained its importance more than ever in this era of Big Data. There are a lot of challenges to scale machine learning techniques on distributed platforms. When it comes to scalability, improving the processor technology for high level computation of data is at its limit, however increasing machine nodes and distributing data along with computation looks as a viable solution. Different frameworks   and platforms are available to solve DML problems. These platforms provide automated random data distribution of datasets which miss the power of user defined intelligent data partitioning based on domain knowledge. We have conducted an empirical study which uses an EEG Data Set collected through P300 Speller component of an ERP (Event Related Potential which is widely used in BCI problems; it helps in translating the intention of subject w h i l e performing any cognitive task. EEG data contains noise due to waves generated by other activities in the brain which contaminates true P300Speller. Use of Machine Learning techniques could help in detecting errors made by P300 Speller. We are solving this classification problem by partitioning data into different chunks and preparing distributed models using Elastic CV Classifier. To present a case of optimizing distributed machine learning, we propose an intelligent user defined data partitioning approach that could impact on the accuracy of distributed machine learners on average. Our results show better average AUC as compared to average AUC obtained after applying random data partitioning which gives no control to user over data partitioning. It improves the average accuracy of distributed learner due to the domain specific intelligent partitioning by the user. Our customized approach achieves 0.66 AUC on individual sessions and 0.75 AUC on mixed sessions, whereas random / uncontrolled data distribution records 0.63 AUC.

  2. Machine learning a probabilistic perspective

    CERN Document Server

    Murphy, Kevin P

    2012-01-01

    Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach. The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic method...

  3. Exploring Machine Learning to Correct Satellite-Derived Sea Surface Temperatures

    Directory of Open Access Journals (Sweden)

    Stéphane Saux Picart

    2018-02-01

    Full Text Available Machine learning techniques are attractive tools to establish statistical models with a high degree of non linearity. They require a large amount of data to be trained and are therefore particularly suited to analysing remote sensing data. This work is an attempt at using advanced statistical methods of machine learning to predict the bias between Sea Surface Temperature (SST derived from infrared remote sensing and ground “truth” from drifting buoy measurements. A large dataset of collocation between satellite SST and in situ SST is explored. Four regression models are used: Simple multi-linear regression, Least Square Shrinkage and Selection Operator (LASSO, Generalised Additive Model (GAM and random forest. In the case of geostationary satellites for which a large number of collocations is available, results show that the random forest model is the best model to predict the systematic errors and it is computationally fast, making it a good candidate for operational processing. It is able to explain nearly 31% of the total variance of the bias (in comparison to about 24% for the multi-linear regression model.

  4. How can machine-learning methods assist in virtual screening for hyperuricemia? A healthcare machine-learning approach.

    Science.gov (United States)

    Ichikawa, Daisuke; Saito, Toki; Ujita, Waka; Oyama, Hiroshi

    2016-12-01

    Our purpose was to develop a new machine-learning approach (a virtual health check-up) toward identification of those at high risk of hyperuricemia. Applying the system to general health check-ups is expected to reduce medical costs compared with administering an additional test. Data were collected during annual health check-ups performed in Japan between 2011 and 2013 (inclusive). We prepared training and test datasets from the health check-up data to build prediction models; these were composed of 43,524 and 17,789 persons, respectively. Gradient-boosting decision tree (GBDT), random forest (RF), and logistic regression (LR) approaches were trained using the training dataset and were then used to predict hyperuricemia in the test dataset. Undersampling was applied to build the prediction models to deal with the imbalanced class dataset. The results showed that the RF and GBDT approaches afforded the best performances in terms of sensitivity and specificity, respectively. The area under the curve (AUC) values of the models, which reflected the total discriminative ability of the classification, were 0.796 [95% confidence interval (CI): 0.766-0.825] for the GBDT, 0.784 [95% CI: 0.752-0.815] for the RF, and 0.785 [95% CI: 0.752-0.819] for the LR approaches. No significant differences were observed between pairs of each approach. Small changes occurred in the AUCs after applying undersampling to build the models. We developed a virtual health check-up that predicted the development of hyperuricemia using machine-learning methods. The GBDT, RF, and LR methods had similar predictive capability. Undersampling did not remarkably improve predictive power. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Towards a Standard-based Domain-specific Platform to Solve Machine Learning-based Problems

    Directory of Open Access Journals (Sweden)

    Vicente García-Díaz

    2015-12-01

    Full Text Available Machine learning is one of the most important subfields of computer science and can be used to solve a variety of interesting artificial intelligence problems. There are different languages, framework and tools to define the data needed to solve machine learning-based problems. However, there is a great number of very diverse alternatives which makes it difficult the intercommunication, portability and re-usability of the definitions, designs or algorithms that any developer may create. In this paper, we take the first step towards a language and a development environment independent of the underlying technologies, allowing developers to design solutions to solve machine learning-based problems in a simple and fast way, automatically generating code for other technologies. That can be considered a transparent bridge among current technologies. We rely on Model-Driven Engineering approach, focusing on the creation of models to abstract the definition of artifacts from the underlying technologies.

  6. Efficient Prediction of Low-Visibility Events at Airports Using Machine-Learning Regression

    Science.gov (United States)

    Cornejo-Bueno, L.; Casanova-Mateo, C.; Sanz-Justo, J.; Cerro-Prada, E.; Salcedo-Sanz, S.

    2017-11-01

    We address the prediction of low-visibility events at airports using machine-learning regression. The proposed model successfully forecasts low-visibility events in terms of the runway visual range at the airport, with the use of support-vector regression, neural networks (multi-layer perceptrons and extreme-learning machines) and Gaussian-process algorithms. We assess the performance of these algorithms based on real data collected at the Valladolid airport, Spain. We also propose a study of the atmospheric variables measured at a nearby tower related to low-visibility atmospheric conditions, since they are considered as the inputs of the different regressors. A pre-processing procedure of these input variables with wavelet transforms is also described. The results show that the proposed machine-learning algorithms are able to predict low-visibility events well. The Gaussian process is the best algorithm among those analyzed, obtaining over 98% of the correct classification rate in low-visibility events when the runway visual range is {>}1000 m, and about 80% under this threshold. The performance of all the machine-learning algorithms tested is clearly affected in extreme low-visibility conditions ({algorithm performance in daytime and nighttime conditions, and for different prediction time horizons.

  7. Machine learning for identifying botnet network traffic

    DEFF Research Database (Denmark)

    Stevanovic, Matija; Pedersen, Jens Myrup

    2013-01-01

    . Due to promise of non-invasive and resilient detection, botnet detection based on network traffic analysis has drawn a special attention of the research community. Furthermore, many authors have turned their attention to the use of machine learning algorithms as the mean of inferring botnet......-related knowledge from the monitored traffic. This paper presents a review of contemporary botnet detection methods that use machine learning as a tool of identifying botnet-related traffic. The main goal of the paper is to provide a comprehensive overview on the field by summarizing current scientific efforts....... The contribution of the paper is three-fold. First, the paper provides a detailed insight on the existing detection methods by investigating which bot-related heuristic were assumed by the detection systems and how different machine learning techniques were adapted in order to capture botnet-related knowledge...

  8. Quantum machine learning what quantum computing means to data mining

    CERN Document Server

    Wittek, Peter

    2014-01-01

    Quantum Machine Learning bridges the gap between abstract developments in quantum computing and the applied research on machine learning. Paring down the complexity of the disciplines involved, it focuses on providing a synthesis that explains the most important machine learning algorithms in a quantum framework. Theoretical advances in quantum computing are hard to follow for computer scientists, and sometimes even for researchers involved in the field. The lack of a step-by-step guide hampers the broader understanding of this emergent interdisciplinary body of research. Quantum Machine L

  9. A machine learning approach for real-time modelling of tissue deformation in image-guided neurosurgery.

    Science.gov (United States)

    Tonutti, Michele; Gras, Gauthier; Yang, Guang-Zhong

    2017-07-01

    Accurate reconstruction and visualisation of soft tissue deformation in real time is crucial in image-guided surgery, particularly in augmented reality (AR) applications. Current deformation models are characterised by a trade-off between accuracy and computational speed. We propose an approach to derive a patient-specific deformation model for brain pathologies by combining the results of pre-computed finite element method (FEM) simulations with machine learning algorithms. The models can be computed instantaneously and offer an accuracy comparable to FEM models. A brain tumour is used as the subject of the deformation model. Load-driven FEM simulations are performed on a tetrahedral brain mesh afflicted by a tumour. Forces of varying magnitudes, positions, and inclination angles are applied onto the brain's surface. Two machine learning algorithms-artificial neural networks (ANNs) and support vector regression (SVR)-are employed to derive a model that can predict the resulting deformation for each node in the tumour's mesh. The tumour deformation can be predicted in real time given relevant information about the geometry of the anatomy and the load, all of which can be measured instantly during a surgical operation. The models can predict the position of the nodes with errors below 0.3mm, beyond the general threshold of surgical accuracy and suitable for high fidelity AR systems. The SVR models perform better than the ANN's, with positional errors for SVR models reaching under 0.2mm. The results represent an improvement over existing deformation models for real time applications, providing smaller errors and high patient-specificity. The proposed approach addresses the current needs of image-guided surgical systems and has the potential to be employed to model the deformation of any type of soft tissue. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. A Machine Learning Approach to Automated Gait Analysis for the Noldus Catwalk System.

    Science.gov (United States)

    Frohlich, Holger; Claes, Kasper; De Wolf, Catherine; Van Damme, Xavier; Michel, Anne

    2018-05-01

    Gait analysis of animal disease models can provide valuable insights into in vivo compound effects and thus help in preclinical drug development. The purpose of this paper is to establish a computational gait analysis approach for the Noldus Catwalk system, in which footprints are automatically captured and stored. We present a - to our knowledge - first machine learning based approach for the Catwalk system, which comprises a step decomposition, definition and extraction of meaningful features, multivariate step sequence alignment, feature selection, and training of different classifiers (gradient boosting machine, random forest, and elastic net). Using animal-wise leave-one-out cross validation we demonstrate that with our method we can reliable separate movement patterns of a putative Parkinson's disease animal model and several control groups. Furthermore, we show that we can predict the time point after and the type of different brain lesions and can even forecast the brain region, where the intervention was applied. We provide an in-depth analysis of the features involved into our classifiers via statistical techniques for model interpretation. A machine learning method for automated analysis of data from the Noldus Catwalk system was established. Our works shows the ability of machine learning to discriminate pharmacologically relevant animal groups based on their walking behavior in a multivariate manner. Further interesting aspects of the approach include the ability to learn from past experiments, improve with more data arriving and to make predictions for single animals in future studies.

  11. Prediction of skin sensitization potency using machine learning approaches.

    Science.gov (United States)

    Zang, Qingda; Paris, Michael; Lehmann, David M; Bell, Shannon; Kleinstreuer, Nicole; Allen, David; Matheson, Joanna; Jacobs, Abigail; Casey, Warren; Strickland, Judy

    2017-07-01

    The replacement of animal use in testing for regulatory classification of skin sensitizers is a priority for US federal agencies that use data from such testing. Machine learning models that classify substances as sensitizers or non-sensitizers without using animal data have been developed and evaluated. Because some regulatory agencies require that sensitizers be further classified into potency categories, we developed statistical models to predict skin sensitization potency for murine local lymph node assay (LLNA) and human outcomes. Input variables for our models included six physicochemical properties and data from three non-animal test methods: direct peptide reactivity assay; human cell line activation test; and KeratinoSens™ assay. Models were built to predict three potency categories using four machine learning approaches and were validated using external test sets and leave-one-out cross-validation. A one-tiered strategy modeled all three categories of response together while a two-tiered strategy modeled sensitizer/non-sensitizer responses and then classified the sensitizers as strong or weak sensitizers. The two-tiered model using the support vector machine with all assay and physicochemical data inputs provided the best performance, yielding accuracy of 88% for prediction of LLNA outcomes (120 substances) and 81% for prediction of human test outcomes (87 substances). The best one-tiered model predicted LLNA outcomes with 78% accuracy and human outcomes with 75% accuracy. By comparison, the LLNA predicts human potency categories with 69% accuracy (60 of 87 substances correctly categorized). These results suggest that computational models using non-animal methods may provide valuable information for assessing skin sensitization potency. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Learning Machine Learning: A Case Study

    Science.gov (United States)

    Lavesson, N.

    2010-01-01

    This correspondence reports on a case study conducted in the Master's-level Machine Learning (ML) course at Blekinge Institute of Technology, Sweden. The students participated in a self-assessment test and a diagnostic test of prerequisite subjects, and their results on these tests are correlated with their achievement of the course's learning…

  13. Empirical Studies On Machine Learning Based Text Classification Algorithms

    OpenAIRE

    Shweta C. Dharmadhikari; Maya Ingle; Parag Kulkarni

    2011-01-01

    Automatic classification of text documents has become an important research issue now days. Properclassification of text documents requires information retrieval, machine learning and Natural languageprocessing (NLP) techniques. Our aim is to focus on important approaches to automatic textclassification based on machine learning techniques viz. supervised, unsupervised and semi supervised.In this paper we present a review of various text classification approaches under machine learningparadig...

  14. Comparison of Deep Learning With Multiple Machine Learning Methods and Metrics Using Diverse Drug Discovery Data Sets.

    Science.gov (United States)

    Korotcov, Alexandru; Tkachenko, Valery; Russo, Daniel P; Ekins, Sean

    2017-12-04

    Machine learning methods have been applied to many data sets in pharmaceutical research for several decades. The relative ease and availability of fingerprint type molecular descriptors paired with Bayesian methods resulted in the widespread use of this approach for a diverse array of end points relevant to drug discovery. Deep learning is the latest machine learning algorithm attracting attention for many of pharmaceutical applications from docking to virtual screening. Deep learning is based on an artificial neural network with multiple hidden layers and has found considerable traction for many artificial intelligence applications. We have previously suggested the need for a comparison of different machine learning methods with deep learning across an array of varying data sets that is applicable to pharmaceutical research. End points relevant to pharmaceutical research include absorption, distribution, metabolism, excretion, and toxicity (ADME/Tox) properties, as well as activity against pathogens and drug discovery data sets. In this study, we have used data sets for solubility, probe-likeness, hERG, KCNQ1, bubonic plague, Chagas, tuberculosis, and malaria to compare different machine learning methods using FCFP6 fingerprints. These data sets represent whole cell screens, individual proteins, physicochemical properties as well as a data set with a complex end point. Our aim was to assess whether deep learning offered any improvement in testing when assessed using an array of metrics including AUC, F1 score, Cohen's kappa, Matthews correlation coefficient and others. Based on ranked normalized scores for the metrics or data sets Deep Neural Networks (DNN) ranked higher than SVM, which in turn was ranked higher than all the other machine learning methods. Visualizing these properties for training and test sets using radar type plots indicates when models are inferior or perhaps over trained. These results also suggest the need for assessing deep learning further

  15. Quality prediction modeling for sintered ores based on mechanism models of sintering and extreme learning machine based error compensation

    Science.gov (United States)

    Tiebin, Wu; Yunlian, Liu; Xinjun, Li; Yi, Yu; Bin, Zhang

    2018-06-01

    Aiming at the difficulty in quality prediction of sintered ores, a hybrid prediction model is established based on mechanism models of sintering and time-weighted error compensation on the basis of the extreme learning machine (ELM). At first, mechanism models of drum index, total iron, and alkalinity are constructed according to the chemical reaction mechanism and conservation of matter in the sintering process. As the process is simplified in the mechanism models, these models are not able to describe high nonlinearity. Therefore, errors are inevitable. For this reason, the time-weighted ELM based error compensation model is established. Simulation results verify that the hybrid model has a high accuracy and can meet the requirement for industrial applications.

  16. Teraflop-scale Incremental Machine Learning

    OpenAIRE

    Özkural, Eray

    2011-01-01

    We propose a long-term memory design for artificial general intelligence based on Solomonoff's incremental machine learning methods. We use R5RS Scheme and its standard library with a few omissions as the reference machine. We introduce a Levin Search variant based on Stochastic Context Free Grammar together with four synergistic update algorithms that use the same grammar as a guiding probability distribution of programs. The update algorithms include adjusting production probabilities, re-u...

  17. Recent Advances in Predictive (Machine) Learning

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, J

    2004-01-24

    Prediction involves estimating the unknown value of an attribute of a system under study given the values of other measured attributes. In prediction (machine) learning the prediction rule is derived from data consisting of previously solved cases. Most methods for predictive learning were originated many years ago at the dawn of the computer age. Recently two new techniques have emerged that have revitalized the field. These are support vector machines and boosted decision trees. This paper provides an introduction to these two new methods tracing their respective ancestral roots to standard kernel methods and ordinary decision trees.

  18. Development of the self-learning machine for creating models of microprocessor of single-phase earth fault protection devices in networks with isolated neutral voltage above 1000 V

    Science.gov (United States)

    Utegulov, B. B.; Utegulov, A. B.; Meiramova, S.

    2018-02-01

    The paper proposes the development of a self-learning machine for creating models of microprocessor-based single-phase ground fault protection devices in networks with an isolated neutral voltage higher than 1000 V. Development of a self-learning machine for creating models of microprocessor-based single-phase earth fault protection devices in networks with an isolated neutral voltage higher than 1000 V. allows to effectively implement mathematical models of automatic change of protection settings. Single-phase earth fault protection devices.

  19. Osteoporosis risk prediction for bone mineral density assessment of postmenopausal women using machine learning.

    Science.gov (United States)

    Yoo, Tae Keun; Kim, Sung Kean; Kim, Deok Won; Choi, Joon Yul; Lee, Wan Hyung; Oh, Ein; Park, Eun-Cheol

    2013-11-01

    A number of clinical decision tools for osteoporosis risk assessment have been developed to select postmenopausal women for the measurement of bone mineral density. We developed and validated machine learning models with the aim of more accurately identifying the risk of osteoporosis in postmenopausal women compared to the ability of conventional clinical decision tools. We collected medical records from Korean postmenopausal women based on the Korea National Health and Nutrition Examination Surveys. The training data set was used to construct models based on popular machine learning algorithms such as support vector machines (SVM), random forests, artificial neural networks (ANN), and logistic regression (LR) based on simple surveys. The machine learning models were compared to four conventional clinical decision tools: osteoporosis self-assessment tool (OST), osteoporosis risk assessment instrument (ORAI), simple calculated osteoporosis risk estimation (SCORE), and osteoporosis index of risk (OSIRIS). SVM had significantly better area under the curve (AUC) of the receiver operating characteristic than ANN, LR, OST, ORAI, SCORE, and OSIRIS for the training set. SVM predicted osteoporosis risk with an AUC of 0.827, accuracy of 76.7%, sensitivity of 77.8%, and specificity of 76.0% at total hip, femoral neck, or lumbar spine for the testing set. The significant factors selected by SVM were age, height, weight, body mass index, duration of menopause, duration of breast feeding, estrogen therapy, hyperlipidemia, hypertension, osteoarthritis, and diabetes mellitus. Considering various predictors associated with low bone density, the machine learning methods may be effective tools for identifying postmenopausal women at high risk for osteoporosis.

  20. Unsupervised machine learning account of magnetic transitions in the Hubbard model

    Science.gov (United States)

    Ch'ng, Kelvin; Vazquez, Nick; Khatami, Ehsan

    2018-01-01

    We employ several unsupervised machine learning techniques, including autoencoders, random trees embedding, and t -distributed stochastic neighboring ensemble (t -SNE), to reduce the dimensionality of, and therefore classify, raw (auxiliary) spin configurations generated, through Monte Carlo simulations of small clusters, for the Ising and Fermi-Hubbard models at finite temperatures. Results from a convolutional autoencoder for the three-dimensional Ising model can be shown to produce the magnetization and the susceptibility as a function of temperature with a high degree of accuracy. Quantum fluctuations distort this picture and prevent us from making such connections between the output of the autoencoder and physical observables for the Hubbard model. However, we are able to define an indicator based on the output of the t -SNE algorithm that shows a near perfect agreement with the antiferromagnetic structure factor of the model in two and three spatial dimensions in the weak-coupling regime. t -SNE also predicts a transition to the canted antiferromagnetic phase for the three-dimensional model when a strong magnetic field is present. We show that these techniques cannot be expected to work away from half filling when the "sign problem" in quantum Monte Carlo simulations is present.

  1. Machine learning for radioxenon event classification for the Comprehensive Nuclear-Test-Ban Treaty

    Energy Technology Data Exchange (ETDEWEB)

    Stocki, Trevor J., E-mail: trevor_stocki@hc-sc.gc.c [Radiation Protection Bureau, 775 Brookfield Road, A.L. 6302D1, Ottawa, ON, K1A 1C1 (Canada); Li, Guichong; Japkowicz, Nathalie [School of Information Technology and Engineering, University of Ottawa, 800 King Edward Avenue, Ottawa, ON, K1N 6N5 (Canada); Ungar, R. Kurt [Radiation Protection Bureau, 775 Brookfield Road, A.L. 6302D1, Ottawa, ON, K1A 1C1 (Canada)

    2010-01-15

    A method of weapon detection for the Comprehensive nuclear-Test-Ban-Treaty (CTBT) consists of monitoring the amount of radioxenon in the atmosphere by measuring and sampling the activity concentration of {sup 131m}Xe, {sup 133}Xe, {sup 133m}Xe, and {sup 135}Xe by radionuclide monitoring. Several explosion samples were simulated based on real data since the measured data of this type is quite rare. These data sets consisted of different circumstances of a nuclear explosion, and are used as training data sets to establish an effective classification model employing state-of-the-art technologies in machine learning. A study was conducted involving classic induction algorithms in machine learning including Naive Bayes, Neural Networks, Decision Trees, k-Nearest Neighbors, and Support Vector Machines, that revealed that they can successfully be used in this practical application. In particular, our studies show that many induction algorithms in machine learning outperform a simple linear discriminator when a signal is found in a high radioxenon background environment.

  2. Machine learning for radioxenon event classification for the Comprehensive Nuclear-Test-Ban Treaty

    International Nuclear Information System (INIS)

    Stocki, Trevor J.; Li, Guichong; Japkowicz, Nathalie; Ungar, R. Kurt

    2010-01-01

    A method of weapon detection for the Comprehensive nuclear-Test-Ban-Treaty (CTBT) consists of monitoring the amount of radioxenon in the atmosphere by measuring and sampling the activity concentration of 131m Xe, 133 Xe, 133m Xe, and 135 Xe by radionuclide monitoring. Several explosion samples were simulated based on real data since the measured data of this type is quite rare. These data sets consisted of different circumstances of a nuclear explosion, and are used as training data sets to establish an effective classification model employing state-of-the-art technologies in machine learning. A study was conducted involving classic induction algorithms in machine learning including Naive Bayes, Neural Networks, Decision Trees, k-Nearest Neighbors, and Support Vector Machines, that revealed that they can successfully be used in this practical application. In particular, our studies show that many induction algorithms in machine learning outperform a simple linear discriminator when a signal is found in a high radioxenon background environment.

  3. Machine learning methods as a tool to analyse incomplete or irregularly sampled radon time series data.

    Science.gov (United States)

    Janik, M; Bossew, P; Kurihara, O

    2018-07-15

    Machine learning is a class of statistical techniques which has proven to be a powerful tool for modelling the behaviour of complex systems, in which response quantities depend on assumed controls or predictors in a complicated way. In this paper, as our first purpose, we propose the application of machine learning to reconstruct incomplete or irregularly sampled data of time series indoor radon ( 222 Rn). The physical assumption underlying the modelling is that Rn concentration in the air is controlled by environmental variables such as air temperature and pressure. The algorithms "learn" from complete sections of multivariate series, derive a dependence model and apply it to sections where the controls are available, but not the response (Rn), and in this way complete the Rn series. Three machine learning techniques are applied in this study, namely random forest, its extension called the gradient boosting machine and deep learning. For a comparison, we apply the classical multiple regression in a generalized linear model version. Performance of the models is evaluated through different metrics. The performance of the gradient boosting machine is found to be superior to that of the other techniques. By applying learning machines, we show, as our second purpose, that missing data or periods of Rn series data can be reconstructed and resampled on a regular grid reasonably, if data of appropriate physical controls are available. The techniques also identify to which degree the assumed controls contribute to imputing missing Rn values. Our third purpose, though no less important from the viewpoint of physics, is identifying to which degree physical, in this case environmental variables, are relevant as Rn predictors, or in other words, which predictors explain most of the temporal variability of Rn. We show that variables which contribute most to the Rn series reconstruction, are temperature, relative humidity and day of the year. The first two are physical

  4. Prediction of mortality after radical cystectomy for bladder cancer by machine learning techniques.

    Science.gov (United States)

    Wang, Guanjin; Lam, Kin-Man; Deng, Zhaohong; Choi, Kup-Sze

    2015-08-01

    Bladder cancer is a common cancer in genitourinary malignancy. For muscle invasive bladder cancer, surgical removal of the bladder, i.e. radical cystectomy, is in general the definitive treatment which, unfortunately, carries significant morbidities and mortalities. Accurate prediction of the mortality of radical cystectomy is therefore needed. Statistical methods have conventionally been used for this purpose, despite the complex interactions of high-dimensional medical data. Machine learning has emerged as a promising technique for handling high-dimensional data, with increasing application in clinical decision support, e.g. cancer prediction and prognosis. Its ability to reveal the hidden nonlinear interactions and interpretable rules between dependent and independent variables is favorable for constructing models of effective generalization performance. In this paper, seven machine learning methods are utilized to predict the 5-year mortality of radical cystectomy, including back-propagation neural network (BPN), radial basis function (RBFN), extreme learning machine (ELM), regularized ELM (RELM), support vector machine (SVM), naive Bayes (NB) classifier and k-nearest neighbour (KNN), on a clinicopathological dataset of 117 patients of the urology unit of a hospital in Hong Kong. The experimental results indicate that RELM achieved the highest average prediction accuracy of 0.8 at a fast learning speed. The research findings demonstrate the potential of applying machine learning techniques to support clinical decision making. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Efficient tuning in supervised machine learning

    NARCIS (Netherlands)

    Koch, Patrick

    2013-01-01

    The tuning of learning algorithm parameters has become more and more important during the last years. With the fast growth of computational power and available memory databases have grown dramatically. This is very challenging for the tuning of parameters arising in machine learning, since the

  6. Hidden Markov models and other machine learning approaches in computational molecular biology

    Energy Technology Data Exchange (ETDEWEB)

    Baldi, P. [California Inst. of Tech., Pasadena, CA (United States)

    1995-12-31

    This tutorial was one of eight tutorials selected to be presented at the Third International Conference on Intelligent Systems for Molecular Biology which was held in the United Kingdom from July 16 to 19, 1995. Computational tools are increasingly needed to process the massive amounts of data, to organize and classify sequences, to detect weak similarities, to separate coding from non-coding regions, and reconstruct the underlying evolutionary history. The fundamental problem in machine learning is the same as in scientific reasoning in general, as well as statistical modeling: to come up with a good model for the data. In this tutorial four classes of models are reviewed. They are: Hidden Markov models; artificial Neural Networks; Belief Networks; and Stochastic Grammars. When dealing with DNA and protein primary sequences, Hidden Markov models are one of the most flexible and powerful alignments and data base searches. In this tutorial, attention is focused on the theory of Hidden Markov Models, and how to apply them to problems in molecular biology.

  7. Machine learning based cloud mask algorithm driven by radiative transfer modeling

    Science.gov (United States)

    Chen, N.; Li, W.; Tanikawa, T.; Hori, M.; Shimada, R.; Stamnes, K. H.

    2017-12-01

    Cloud detection is a critically important first step required to derive many satellite data products. Traditional threshold based cloud mask algorithms require a complicated design process and fine tuning for each sensor, and have difficulty over snow/ice covered areas. With the advance of computational power and machine learning techniques, we have developed a new algorithm based on a neural network classifier driven by extensive radiative transfer modeling. Statistical validation results obtained by using collocated CALIOP and MODIS data show that its performance is consistent over different ecosystems and significantly better than the MODIS Cloud Mask (MOD35 C6) during the winter seasons over mid-latitude snow covered areas. Simulations using a reduced number of satellite channels also show satisfactory results, indicating its flexibility to be configured for different sensors.

  8. Combining Formal Logic and Machine Learning for Sentiment Analysis

    DEFF Research Database (Denmark)

    Petersen, Niklas Christoffer; Villadsen, Jørgen

    2014-01-01

    This paper presents a formal logical method for deep structural analysis of the syntactical properties of texts using machine learning techniques for efficient syntactical tagging. To evaluate the method it is used for entity level sentiment analysis as an alternative to pure machine learning...

  9. Machine learning for Big Data analytics in plants.

    Science.gov (United States)

    Ma, Chuang; Zhang, Hao Helen; Wang, Xiangfeng

    2014-12-01

    Rapid advances in high-throughput genomic technology have enabled biology to enter the era of 'Big Data' (large datasets). The plant science community not only needs to build its own Big-Data-compatible parallel computing and data management infrastructures, but also to seek novel analytical paradigms to extract information from the overwhelming amounts of data. Machine learning offers promising computational and analytical solutions for the integrative analysis of large, heterogeneous and unstructured datasets on the Big-Data scale, and is gradually gaining popularity in biology. This review introduces the basic concepts and procedures of machine-learning applications and envisages how machine learning could interface with Big Data technology to facilitate basic research and biotechnology in the plant sciences. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Solving a Higgs optimization problem with quantum annealing for machine learning.

    Science.gov (United States)

    Mott, Alex; Job, Joshua; Vlimant, Jean-Roch; Lidar, Daniel; Spiropulu, Maria

    2017-10-18

    The discovery of Higgs-boson decays in a background of standard-model processes was assisted by machine learning methods. The classifiers used to separate signals such as these from background are trained using highly unerring but not completely perfect simulations of the physical processes involved, often resulting in incorrect labelling of background processes or signals (label noise) and systematic errors. Here we use quantum and classical annealing (probabilistic techniques for approximating the global maximum or minimum of a given function) to solve a Higgs-signal-versus-background machine learning optimization problem, mapped to a problem of finding the ground state of a corresponding Ising spin model. We build a set of weak classifiers based on the kinematic observables of the Higgs decay photons, which we then use to construct a strong classifier. This strong classifier is highly resilient against overtraining and against errors in the correlations of the physical observables in the training data. We show that the resulting quantum and classical annealing-based classifier systems perform comparably to the state-of-the-art machine learning methods that are currently used in particle physics. However, in contrast to these methods, the annealing-based classifiers are simple functions of directly interpretable experimental parameters with clear physical meaning. The annealer-trained classifiers use the excited states in the vicinity of the ground state and demonstrate some advantage over traditional machine learning methods for small training datasets. Given the relative simplicity of the algorithm and its robustness to error, this technique may find application in other areas of experimental particle physics, such as real-time decision making in event-selection problems and classification in neutrino physics.

  11. Advances in Machine Learning and Data Mining for Astronomy

    Science.gov (United States)

    Way, Michael J.; Scargle, Jeffrey D.; Ali, Kamal M.; Srivastava, Ashok N.

    2012-03-01

    Advances in Machine Learning and Data Mining for Astronomy documents numerous successful collaborations among computer scientists, statisticians, and astronomers who illustrate the application of state-of-the-art machine learning and data mining techniques in astronomy. Due to the massive amount and complexity of data in most scientific disciplines, the material discussed in this text transcends traditional boundaries between various areas in the sciences and computer science. The book's introductory part provides context to issues in the astronomical sciences that are also important to health, social, and physical sciences, particularly probabilistic and statistical aspects of classification and cluster analysis. The next part describes a number of astrophysics case studies that leverage a range of machine learning and data mining technologies. In the last part, developers of algorithms and practitioners of machine learning and data mining show how these tools and techniques are used in astronomical applications. With contributions from leading astronomers and computer scientists, this book is a practical guide to many of the most important developments in machine learning, data mining, and statistics. It explores how these advances can solve current and future problems in astronomy and looks at how they could lead to the creation of entirely new algorithms within the data mining community.

  12. Machine Learning via Mathematical Programming

    National Research Council Canada - National Science Library

    Mamgasarian, Olivi

    1999-01-01

    Mathematical programming approaches were applied to a variety of problems in machine learning in order to gain deeper understanding of the problems and to come up with new and more efficient computational algorithms...

  13. Machine Learning examples on Invenio

    CERN Document Server

    CERN. Geneva

    2017-01-01

    This talk will present the different Machine Learning tools that the INSPIRE is developing and integrating in order to automatize as much as possible content selection and curation in a subject based repository.

  14. Development of E-Learning Materials for Machining Safety Education

    Science.gov (United States)

    Nakazawa, Tsuyoshi; Mita, Sumiyoshi; Matsubara, Masaaki; Takashima, Takeo; Tanaka, Koichi; Izawa, Satoru; Kawamura, Takashi

    We developed two e-learning materials for Manufacturing Practice safety education: movie learning materials and hazard-detection learning materials. Using these video and sound media, students can learn how to operate machines safely with movie learning materials, which raise the effectiveness of preparation and review for manufacturing practice. Using these materials, students can realize safety operation well. Students can apply knowledge learned in lectures to the detection of hazards and use study methods for hazard detection during machine operation using the hazard-detection learning materials. Particularly, the hazard-detection learning materials raise students‧ safety consciousness and increase students‧ comprehension of knowledge from lectures and comprehension of operations during Manufacturing Practice.

  15. Research on Three-dimensional Motion History Image Model and Extreme Learning Machine for Human Body Movement Trajectory Recognition

    Directory of Open Access Journals (Sweden)

    Zheng Chang

    2015-01-01

    Full Text Available Based on the traditional machine vision recognition technology and traditional artificial neural networks about body movement trajectory, this paper finds out the shortcomings of the traditional recognition technology. By combining the invariant moments of the three-dimensional motion history image (computed as the eigenvector of body movements and the extreme learning machine (constructed as the classification artificial neural network of body movements, the paper applies the method to the machine vision of the body movement trajectory. In detail, the paper gives a detailed introduction about the algorithm and realization scheme of the body movement trajectory recognition based on the three-dimensional motion history image and the extreme learning machine. Finally, by comparing with the results of the recognition experiments, it attempts to verify that the method of body movement trajectory recognition technology based on the three-dimensional motion history image and extreme learning machine has a more accurate recognition rate and better robustness.

  16. Classification of carcinogenic and mutagenic properties using machine learning method

    DEFF Research Database (Denmark)

    Moorthy, N. S.Hari Narayana; Kumar, Surendra; Poongavanam, Vasanthanathan

    2017-01-01

    An accurate calculation of carcinogenicity of chemicals became a serious challenge for the health assessment authority around the globe because of not only increased cost for experiments but also various ethical issues exist using animal models. In this study, we provide machine learning...

  17. Machine learning to predict the occurrence of bisphosphonate-related osteonecrosis of the jaw associated with dental extraction: A preliminary report.

    Science.gov (United States)

    Kim, Dong Wook; Kim, Hwiyoung; Nam, Woong; Kim, Hyung Jun; Cha, In-Ho

    2018-04-23

    The aim of this study was to build and validate five types of machine learning models that can predict the occurrence of BRONJ associated with dental extraction in patients taking bisphosphonates for the management of osteoporosis. A retrospective review of the medical records was conducted to obtain cases and controls for the study. Total 125 patients consisting of 41 cases and 84 controls were selected for the study. Five machine learning prediction algorithms including multivariable logistic regression model, decision tree, support vector machine, artificial neural network, and random forest were implemented. The outputs of these models were compared with each other and also with conventional methods, such as serum CTX level. Area under the receiver operating characteristic (ROC) curve (AUC) was used to compare the results. The performance of machine learning models was significantly superior to conventional statistical methods and single predictors. The random forest model yielded the best performance (AUC = 0.973), followed by artificial neural network (AUC = 0.915), support vector machine (AUC = 0.882), logistic regression (AUC = 0.844), decision tree (AUC = 0.821), drug holiday alone (AUC = 0.810), and CTX level alone (AUC = 0.630). Machine learning methods showed superior performance in predicting BRONJ associated with dental extraction compared to conventional statistical methods using drug holiday and serum CTX level. Machine learning can thus be applied in a wide range of clinical studies. Copyright © 2017. Published by Elsevier Inc.

  18. Applying a machine learning model using a locally preserving projection based feature regeneration algorithm to predict breast cancer risk

    Science.gov (United States)

    Heidari, Morteza; Zargari Khuzani, Abolfazl; Danala, Gopichandh; Mirniaharikandehei, Seyedehnafiseh; Qian, Wei; Zheng, Bin

    2018-03-01

    Both conventional and deep machine learning has been used to develop decision-support tools applied in medical imaging informatics. In order to take advantages of both conventional and deep learning approach, this study aims to investigate feasibility of applying a locally preserving projection (LPP) based feature regeneration algorithm to build a new machine learning classifier model to predict short-term breast cancer risk. First, a computer-aided image processing scheme was used to segment and quantify breast fibro-glandular tissue volume. Next, initially computed 44 image features related to the bilateral mammographic tissue density asymmetry were extracted. Then, an LLP-based feature combination method was applied to regenerate a new operational feature vector using a maximal variance approach. Last, a k-nearest neighborhood (KNN) algorithm based machine learning classifier using the LPP-generated new feature vectors was developed to predict breast cancer risk. A testing dataset involving negative mammograms acquired from 500 women was used. Among them, 250 were positive and 250 remained negative in the next subsequent mammography screening. Applying to this dataset, LLP-generated feature vector reduced the number of features from 44 to 4. Using a leave-onecase-out validation method, area under ROC curve produced by the KNN classifier significantly increased from 0.62 to 0.68 (p breast cancer detected in the next subsequent mammography screening.

  19. An Evolutionary Machine Learning Framework for Big Data Sequence Mining

    Science.gov (United States)

    Kamath, Uday Krishna

    2014-01-01

    Sequence classification is an important problem in many real-world applications. Unlike other machine learning data, there are no "explicit" features or signals in sequence data that can help traditional machine learning algorithms learn and predict from the data. Sequence data exhibits inter-relationships in the elements that are…

  20. Introduction to machine learning for brain imaging.

    Science.gov (United States)

    Lemm, Steven; Blankertz, Benjamin; Dickhaus, Thorsten; Müller, Klaus-Robert

    2011-05-15

    Machine learning and pattern recognition algorithms have in the past years developed to become a working horse in brain imaging and the computational neurosciences, as they are instrumental for mining vast amounts of neural data of ever increasing measurement precision and detecting minuscule signals from an overwhelming noise floor. They provide the means to decode and characterize task relevant brain states and to distinguish them from non-informative brain signals. While undoubtedly this machinery has helped to gain novel biological insights, it also holds the danger of potential unintentional abuse. Ideally machine learning techniques should be usable for any non-expert, however, unfortunately they are typically not. Overfitting and other pitfalls may occur and lead to spurious and nonsensical interpretation. The goal of this review is therefore to provide an accessible and clear introduction to the strengths and also the inherent dangers of machine learning usage in the neurosciences. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Machine learning paradigms applications in recommender systems

    CERN Document Server

    Lampropoulos, Aristomenis S

    2015-01-01

    This timely book presents Applications in Recommender Systems which are making recommendations using machine learning algorithms trained via examples of content the user likes or dislikes. Recommender systems built on the assumption of availability of both positive and negative examples do not perform well when negative examples are rare. It is exactly this problem that the authors address in the monograph at hand. Specifically, the books approach is based on one-class classification methodologies that have been appearing in recent machine learning research. The blending of recommender systems and one-class classification provides a new very fertile field for research, innovation and development with potential applications in “big data” as well as “sparse data” problems. The book will be useful to researchers, practitioners and graduate students dealing with problems of extensive and complex data. It is intended for both the expert/researcher in the fields of Pattern Recognition, Machine Learning and ...

  2. Machine learning approach for the outcome prediction of temporal lobe epilepsy surgery.

    Directory of Open Access Journals (Sweden)

    Rubén Armañanzas

    Full Text Available Epilepsy surgery is effective in reducing both the number and frequency of seizures, particularly in temporal lobe epilepsy (TLE. Nevertheless, a significant proportion of these patients continue suffering seizures after surgery. Here we used a machine learning approach to predict the outcome of epilepsy surgery based on supervised classification data mining taking into account not only the common clinical variables, but also pathological and neuropsychological evaluations. We have generated models capable of predicting whether a patient with TLE secondary to hippocampal sclerosis will fully recover from epilepsy or not. The machine learning analysis revealed that outcome could be predicted with an estimated accuracy of almost 90% using some clinical and neuropsychological features. Importantly, not all the features were needed to perform the prediction; some of them proved to be irrelevant to the prognosis. Personality style was found to be one of the key features to predict the outcome. Although we examined relatively few cases, findings were verified across all data, showing that the machine learning approach described in the present study may be a powerful method. Since neuropsychological assessment of epileptic patients is a standard protocol in the pre-surgical evaluation, we propose to include these specific psychological tests and machine learning tools to improve the selection of candidates for epilepsy surgery.

  3. Comparative Performance Analysis of Machine Learning Techniques for Software Bug Detection

    OpenAIRE

    Saiqa Aleem; Luiz Fernando Capretz; Faheem Ahmed

    2015-01-01

    Machine learning techniques can be used to analyse data from different perspectives and enable developers to retrieve useful information. Machine learning techniques are proven to be useful in terms of software bug prediction. In this paper, a comparative performance analysis of different machine learning techniques is explored f or software bug prediction on public available data sets. Results showed most of the mac ...

  4. Applying machine learning to predict patient-specific current CD 4 ...

    African Journals Online (AJOL)

    This work shows the application of machine learning to predict current CD4 cell count of an HIV-positive patient using genome sequences, viral load and time. A regression model predicting actual CD4 cell counts and a classification model predicting if a patient's CD4 cell count is less than 200 was built using a support ...

  5. Image Classification, Deep Learning and Convolutional Neural Networks : A Comparative Study of Machine Learning Frameworks

    OpenAIRE

    Airola, Rasmus; Hager, Kristoffer

    2017-01-01

    The use of machine learning and specifically neural networks is a growing trend in software development, and has grown immensely in the last couple of years in the light of an increasing need to handle big data and large information flows. Machine learning has a broad area of application, such as human-computer interaction, predicting stock prices, real-time translation, and self driving vehicles. Large companies such as Microsoft and Google have already implemented machine learning in some o...

  6. Machine learning for healthcare technologies

    CERN Document Server

    Clifton, David A

    2016-01-01

    This book brings together chapters on the state-of-the-art in machine learning (ML) as it applies to the development of patient-centred technologies, with a special emphasis on 'big data' and mobile data.

  7. Organizational Learning Supported by Machine Learning Models Coupled with General Explanation Methods: A Case of B2B Sales Forecasting

    Directory of Open Access Journals (Sweden)

    Bohanec Marko

    2017-08-01

    Full Text Available Background and Purpose: The process of business to business (B2B sales forecasting is a complex decision-making process. There are many approaches to support this process, but mainly it is still based on the subjective judgment of a decision-maker. The problem of B2B sales forecasting can be modeled as a classification problem. However, top performing machine learning (ML models are black boxes and do not support transparent reasoning. The purpose of this research is to develop an organizational model using ML model coupled with general explanation methods. The goal is to support the decision-maker in the process of B2B sales forecasting.

  8. Component Pin Recognition Using Algorithms Based on Machine Learning

    Science.gov (United States)

    Xiao, Yang; Hu, Hong; Liu, Ze; Xu, Jiangchang

    2018-04-01

    The purpose of machine vision for a plug-in machine is to improve the machine’s stability and accuracy, and recognition of the component pin is an important part of the vision. This paper focuses on component pin recognition using three different techniques. The first technique involves traditional image processing using the core algorithm for binary large object (BLOB) analysis. The second technique uses the histogram of oriented gradients (HOG), to experimentally compare the effect of the support vector machine (SVM) and the adaptive boosting machine (AdaBoost) learning meta-algorithm classifiers. The third technique is the use of an in-depth learning method known as convolution neural network (CNN), which involves identifying the pin by comparing a sample to its training. The main purpose of the research presented in this paper is to increase the knowledge of learning methods used in the plug-in machine industry in order to achieve better results.

  9. Accuracy comparison among different machine learning techniques for detecting malicious codes

    Science.gov (United States)

    Narang, Komal

    2016-03-01

    In this paper, a machine learning based model for malware detection is proposed. It can detect newly released malware i.e. zero day attack by analyzing operation codes on Android operating system. The accuracy of Naïve Bayes, Support Vector Machine (SVM) and Neural Network for detecting malicious code has been compared for the proposed model. In the experiment 400 benign files, 100 system files and 500 malicious files have been used to construct the model. The model yields the best accuracy 88.9% when neural network is used as classifier and achieved 95% and 82.8% accuracy for sensitivity and specificity respectively.

  10. Machine learning vortices at the Kosterlitz-Thouless transition

    Science.gov (United States)

    Beach, Matthew J. S.; Golubeva, Anna; Melko, Roger G.

    2018-01-01

    Efficient and automated classification of phases from minimally processed data is one goal of machine learning in condensed-matter and statistical physics. Supervised algorithms trained on raw samples of microstates can successfully detect conventional phase transitions via learning a bulk feature such as an order parameter. In this paper, we investigate whether neural networks can learn to classify phases based on topological defects. We address this question on the two-dimensional classical XY model which exhibits a Kosterlitz-Thouless transition. We find significant feature engineering of the raw spin states is required to convincingly claim that features of the vortex configurations are responsible for learning the transition temperature. We further show a single-layer network does not correctly classify the phases of the XY model, while a convolutional network easily performs classification by learning the global magnetization. Finally, we design a deep network capable of learning vortices without feature engineering. We demonstrate the detection of vortices does not necessarily result in the best classification accuracy, especially for lattices of less than approximately 1000 spins. For larger systems, it remains a difficult task to learn vortices.

  11. Machine Learning meets Mathematical Optimization to predict the optimal production of offshore wind parks

    DEFF Research Database (Denmark)

    Fischetti, Martina; Fraccaro, Marco

    2018-01-01

    In this paper we propose a combination of Mathematical Optimization and Machine Learning to estimate the value of optimized solutions. In particular, we investigate if a machine, trained on a large number of optimized solutions, could accurately estimate the value of the optimized solution for new...... in production between optimized/non optimized solutions, it is not trivial to understand the potential value of a new site without running a complete optimization. This could be too time consuming if a lot of sites need to be evaluated, therefore we propose to use Machine Learning to quickly estimate...... the potential of new sites (i.e., to estimate the optimized production of a site without explicitly running the optimization). To do so, we trained and tested different Machine Learning models on a dataset of 3000+ optimized layouts found by the optimizer. Thanks to the close collaboration with a leading...

  12. Predicting DPP-IV inhibitors with machine learning approaches

    Science.gov (United States)

    Cai, Jie; Li, Chanjuan; Liu, Zhihong; Du, Jiewen; Ye, Jiming; Gu, Qiong; Xu, Jun

    2017-04-01

    Dipeptidyl peptidase IV (DPP-IV) is a promising Type 2 diabetes mellitus (T2DM) drug target. DPP-IV inhibitors prolong the action of glucagon-like peptide-1 (GLP-1) and gastric inhibitory peptide (GIP), improve glucose homeostasis without weight gain, edema, and hypoglycemia. However, the marketed DPP-IV inhibitors have adverse effects such as nasopharyngitis, headache, nausea, hypersensitivity, skin reactions and pancreatitis. Therefore, it is still expected for novel DPP-IV inhibitors with minimal adverse effects. The scaffolds of existing DPP-IV inhibitors are structurally diversified. This makes it difficult to build virtual screening models based upon the known DPP-IV inhibitor libraries using conventional QSAR approaches. In this paper, we report a new strategy to predict DPP-IV inhibitors with machine learning approaches involving naïve Bayesian (NB) and recursive partitioning (RP) methods. We built 247 machine learning models based on 1307 known DPP-IV inhibitors with optimized molecular properties and topological fingerprints as descriptors. The overall predictive accuracies of the optimized models were greater than 80%. An external test set, composed of 65 recently reported compounds, was employed to validate the optimized models. The results demonstrated that both NB and RP models have a good predictive ability based on different combinations of descriptors. Twenty "good" and twenty "bad" structural fragments for DPP-IV inhibitors can also be derived from these models for inspiring the new DPP-IV inhibitor scaffold design.

  13. Machine Learning Interface for Medical Image Analysis.

    Science.gov (United States)

    Zhang, Yi C; Kagen, Alexander C

    2017-10-01

    TensorFlow is a second-generation open-source machine learning software library with a built-in framework for implementing neural networks in wide variety of perceptual tasks. Although TensorFlow usage is well established with computer vision datasets, the TensorFlow interface with DICOM formats for medical imaging remains to be established. Our goal is to extend the TensorFlow API to accept raw DICOM images as input; 1513 DaTscan DICOM images were obtained from the Parkinson's Progression Markers Initiative (PPMI) database. DICOM pixel intensities were extracted and shaped into tensors, or n-dimensional arrays, to populate the training, validation, and test input datasets for machine learning. A simple neural network was constructed in TensorFlow to classify images into normal or Parkinson's disease groups. Training was executed over 1000 iterations for each cross-validation set. The gradient descent optimization and Adagrad optimization algorithms were used to minimize cross-entropy between the predicted and ground-truth labels. Cross-validation was performed ten times to produce a mean accuracy of 0.938 ± 0.047 (95 % CI 0.908-0.967). The mean sensitivity was 0.974 ± 0.043 (95 % CI 0.947-1.00) and mean specificity was 0.822 ± 0.207 (95 % CI 0.694-0.950). We extended the TensorFlow API to enable DICOM compatibility in the context of DaTscan image analysis. We implemented a neural network classifier that produces diagnostic accuracies on par with excellent results from previous machine learning models. These results indicate the potential role of TensorFlow as a useful adjunct diagnostic tool in the clinical setting.

  14. Topic categorisation of statements in suicide notes with integrated rules and machine learning.

    Science.gov (United States)

    Kovačević, Aleksandar; Dehghan, Azad; Keane, John A; Nenadic, Goran

    2012-01-01

    We describe and evaluate an automated approach used as part of the i2b2 2011 challenge to identify and categorise statements in suicide notes into one of 15 topics, including Love, Guilt, Thankfulness, Hopelessness and Instructions. The approach combines a set of lexico-syntactic rules with a set of models derived by machine learning from a training dataset. The machine learning models rely on named entities, lexical, lexico-semantic and presentation features, as well as the rules that are applicable to a given statement. On a testing set of 300 suicide notes, the approach showed the overall best micro F-measure of up to 53.36%. The best precision achieved was 67.17% when only rules are used, whereas best recall of 50.57% was with integrated rules and machine learning. While some topics (eg, Sorrow, Anger, Blame) prove challenging, the performance for relatively frequent (eg, Love) and well-scoped categories (eg, Thankfulness) was comparatively higher (precision between 68% and 79%), suggesting that automated text mining approaches can be effective in topic categorisation of suicide notes.

  15. Proceedings of IEEE Machine Learning for Signal Processing Workshop XVI

    DEFF Research Database (Denmark)

    Larsen, Jan

    These proceedings contains refereed papers presented at the sixteenth IEEE Workshop on Machine Learning for Signal Processing (MLSP'2006), held in Maynooth, Co. Kildare, Ireland, September 6-8, 2006. This is a continuation of the IEEE Workshops on Neural Networks for Signal Processing (NNSP......). The name of the Technical Committee, hence of the Workshop, was changed to Machine Learning for Signal Processing in September 2003 to better reflect the areas represented by the Technical Committee. The conference is organized by the Machine Learning for Signal Processing Technical Committee...... the same standard as the printed version and facilitates the reading and searching of the papers. The field of machine learning has matured considerably in both methodology and real-world application domains and has become particularly important for solution of problems in signal processing. As reflected...

  16. Comparison between extreme learning machine and wavelet neural networks in data classification

    Science.gov (United States)

    Yahia, Siwar; Said, Salwa; Jemai, Olfa; Zaied, Mourad; Ben Amar, Chokri

    2017-03-01

    Extreme learning Machine is a well known learning algorithm in the field of machine learning. It's about a feed forward neural network with a single-hidden layer. It is an extremely fast learning algorithm with good generalization performance. In this paper, we aim to compare the Extreme learning Machine with wavelet neural networks, which is a very used algorithm. We have used six benchmark data sets to evaluate each technique. These datasets Including Wisconsin Breast Cancer, Glass Identification, Ionosphere, Pima Indians Diabetes, Wine Recognition and Iris Plant. Experimental results have shown that both extreme learning machine and wavelet neural networks have reached good results.

  17. Constructing and validating readability models: the method of integrating multilevel linguistic features with machine learning.

    Science.gov (United States)

    Sung, Yao-Ting; Chen, Ju-Ling; Cha, Ji-Her; Tseng, Hou-Chiang; Chang, Tao-Hsing; Chang, Kuo-En

    2015-06-01

    Multilevel linguistic features have been proposed for discourse analysis, but there have been few applications of multilevel linguistic features to readability models and also few validations of such models. Most traditional readability formulae are based on generalized linear models (GLMs; e.g., discriminant analysis and multiple regression), but these models have to comply with certain statistical assumptions about data properties and include all of the data in formulae construction without pruning the outliers in advance. The use of such readability formulae tends to produce a low text classification accuracy, while using a support vector machine (SVM) in machine learning can enhance the classification outcome. The present study constructed readability models by integrating multilevel linguistic features with SVM, which is more appropriate for text classification. Taking the Chinese language as an example, this study developed 31 linguistic features as the predicting variables at the word, semantic, syntax, and cohesion levels, with grade levels of texts as the criterion variable. The study compared four types of readability models by integrating unilevel and multilevel linguistic features with GLMs and an SVM. The results indicate that adopting a multilevel approach in readability analysis provides a better representation of the complexities of both texts and the reading comprehension process.

  18. Machine learning for outcome prediction of acute ischemic stroke post intra-arterial therapy.

    Directory of Open Access Journals (Sweden)

    Hamed Asadi

    Full Text Available INTRODUCTION: Stroke is a major cause of death and disability. Accurately predicting stroke outcome from a set of predictive variables may identify high-risk patients and guide treatment approaches, leading to decreased morbidity. Logistic regression models allow for the identification and validation of predictive variables. However, advanced machine learning algorithms offer an alternative, in particular, for large-scale multi-institutional data, with the advantage of easily incorporating newly available data to improve prediction performance. Our aim was to design and compare different machine learning methods, capable of predicting the outcome of endovascular intervention in acute anterior circulation ischaemic stroke. METHOD: We conducted a retrospective study of a prospectively collected database of acute ischaemic stroke treated by endovascular intervention. Using SPSS®, MATLAB®, and Rapidminer®, classical statistics as well as artificial neural network and support vector algorithms were applied to design a supervised machine capable of classifying these predictors into potential good and poor outcomes. These algorithms were trained, validated and tested using randomly divided data. RESULTS: We included 107 consecutive acute anterior circulation ischaemic stroke patients treated by endovascular technique. Sixty-six were male and the mean age of 65.3. All the available demographic, procedural and clinical factors were included into the models. The final confusion matrix of the neural network, demonstrated an overall congruency of ∼ 80% between the target and output classes, with favourable receiving operative characteristics. However, after optimisation, the support vector machine had a relatively better performance, with a root mean squared error of 2.064 (SD: ± 0.408. DISCUSSION: We showed promising accuracy of outcome prediction, using supervised machine learning algorithms, with potential for incorporation of larger multicenter

  19. Estimation of the applicability domain of kernel-based machine learning models for virtual screening

    Directory of Open Access Journals (Sweden)

    Fechner Nikolas

    2010-03-01

    Full Text Available Abstract Background The virtual screening of large compound databases is an important application of structural-activity relationship models. Due to the high structural diversity of these data sets, it is impossible for machine learning based QSAR models, which rely on a specific training set, to give reliable results for all compounds. Thus, it is important to consider the subset of the chemical space in which the model is applicable. The approaches to this problem that have been published so far mostly use vectorial descriptor representations to define this domain of applicability of the model. Unfortunately, these cannot be extended easily to structured kernel-based machine learning models. For this reason, we propose three approaches to estimate the domain of applicability of a kernel-based QSAR model. Results We evaluated three kernel-based applicability domain estimations using three different structured kernels on three virtual screening tasks. Each experiment consisted of the training of a kernel-based QSAR model using support vector regression and the ranking of a disjoint screening data set according to the predicted activity. For each prediction, the applicability of the model for the respective compound is quantitatively described using a score obtained by an applicability domain formulation. The suitability of the applicability domain estimation is evaluated by comparing the model performance on the subsets of the screening data sets obtained by different thresholds for the applicability scores. This comparison indicates that it is possible to separate the part of the chemspace, in which the model gives reliable predictions, from the part consisting of structures too dissimilar to the training set to apply the model successfully. A closer inspection reveals that the virtual screening performance of the model is considerably improved if half of the molecules, those with the lowest applicability scores, are omitted from the screening

  20. Estimation of the applicability domain of kernel-based machine learning models for virtual screening.

    Science.gov (United States)

    Fechner, Nikolas; Jahn, Andreas; Hinselmann, Georg; Zell, Andreas

    2010-03-11

    The virtual screening of large compound databases is an important application of structural-activity relationship models. Due to the high structural diversity of these data sets, it is impossible for machine learning based QSAR models, which rely on a specific training set, to give reliable results for all compounds. Thus, it is important to consider the subset of the chemical space in which the model is applicable. The approaches to this problem that have been published so far mostly use vectorial descriptor representations to define this domain of applicability of the model. Unfortunately, these cannot be extended easily to structured kernel-based machine learning models. For this reason, we propose three approaches to estimate the domain of applicability of a kernel-based QSAR model. We evaluated three kernel-based applicability domain estimations using three different structured kernels on three virtual screening tasks. Each experiment consisted of the training of a kernel-based QSAR model using support vector regression and the ranking of a disjoint screening data set according to the predicted activity. For each prediction, the applicability of the model for the respective compound is quantitatively described using a score obtained by an applicability domain formulation. The suitability of the applicability domain estimation is evaluated by comparing the model performance on the subsets of the screening data sets obtained by different thresholds for the applicability scores. This comparison indicates that it is possible to separate the part of the chemspace, in which the model gives reliable predictions, from the part consisting of structures too dissimilar to the training set to apply the model successfully. A closer inspection reveals that the virtual screening performance of the model is considerably improved if half of the molecules, those with the lowest applicability scores, are omitted from the screening. The proposed applicability domain formulations

  1. Amp: A modular approach to machine learning in atomistic simulations

    Science.gov (United States)

    Khorshidi, Alireza; Peterson, Andrew A.

    2016-10-01

    Electronic structure calculations, such as those employing Kohn-Sham density functional theory or ab initio wavefunction theories, have allowed for atomistic-level understandings of a wide variety of phenomena and properties of matter at small scales. However, the computational cost of electronic structure methods drastically increases with length and time scales, which makes these methods difficult for long time-scale molecular dynamics simulations or large-sized systems. Machine-learning techniques can provide accurate potentials that can match the quality of electronic structure calculations, provided sufficient training data. These potentials can then be used to rapidly simulate large and long time-scale phenomena at similar quality to the parent electronic structure approach. Machine-learning potentials usually take a bias-free mathematical form and can be readily developed for a wide variety of systems. Electronic structure calculations have favorable properties-namely that they are noiseless and targeted training data can be produced on-demand-that make them particularly well-suited for machine learning. This paper discusses our modular approach to atomistic machine learning through the development of the open-source Atomistic Machine-learning Package (Amp), which allows for representations of both the total and atom-centered potential energy surface, in both periodic and non-periodic systems. Potentials developed through the atom-centered approach are simultaneously applicable for systems with various sizes. Interpolation can be enhanced by introducing custom descriptors of the local environment. We demonstrate this in the current work for Gaussian-type, bispectrum, and Zernike-type descriptors. Amp has an intuitive and modular structure with an interface through the python scripting language yet has parallelizable fortran components for demanding tasks; it is designed to integrate closely with the widely used Atomic Simulation Environment (ASE), which

  2. Improved Extreme Learning Machine and Its Application in Image Quality Assessment

    Directory of Open Access Journals (Sweden)

    Li Mao

    2014-01-01

    Full Text Available Extreme learning machine (ELM is a new class of single-hidden layer feedforward neural network (SLFN, which is simple in theory and fast in implementation. Zong et al. propose a weighted extreme learning machine for learning data with imbalanced class distribution, which maintains the advantages from original ELM. However, the current reported ELM and its improved version are only based on the empirical risk minimization principle, which may suffer from overfitting. To solve the overfitting troubles, in this paper, we incorporate the structural risk minimization principle into the (weighted ELM, and propose a modified (weighted extreme learning machine (M-ELM and M-WELM. Experimental results show that our proposed M-WELM outperforms the current reported extreme learning machine algorithm in image quality assessment.

  3. Improving Simulations of Extreme Flows by Coupling a Physically-based Hydrologic Model with a Machine Learning Model

    Science.gov (United States)

    Mohammed, K.; Islam, A. S.; Khan, M. J. U.; Das, M. K.

    2017-12-01

    With the large number of hydrologic models presently available along with the global weather and geographic datasets, streamflows of almost any river in the world can be easily modeled. And if a reasonable amount of observed data from that river is available, then simulations of high accuracy can sometimes be performed after calibrating the model parameters against those observed data through inverse modeling. Although such calibrated models can succeed in simulating the general trend or mean of the observed flows very well, more often than not they fail to adequately simulate the extreme flows. This causes difficulty in tasks such as generating reliable projections of future changes in extreme flows due to climate change, which is obviously an important task due to floods and droughts being closely connected to people's lives and livelihoods. We propose an approach where the outputs of a physically-based hydrologic model are used as an input to a machine learning model to try and better simulate the extreme flows. To demonstrate this offline-coupling approach, the Soil and Water Assessment Tool (SWAT) was selected as the physically-based hydrologic model, the Artificial Neural Network (ANN) as the machine learning model and the Ganges-Brahmaputra-Meghna (GBM) river system as the study area. The GBM river system, located in South Asia, is the third largest in the world in terms of freshwater generated and forms the largest delta in the world. The flows of the GBM rivers were simulated separately in order to test the performance of this proposed approach in accurately simulating the extreme flows generated by different basins that vary in size, climate, hydrology and anthropogenic intervention on stream networks. Results show that by post-processing the simulated flows of the SWAT models with ANN models, simulations of extreme flows can be significantly improved. The mean absolute errors in simulating annual maximum/minimum daily flows were minimized from 4967

  4. An active role for machine learning in drug development

    Science.gov (United States)

    Murphy, Robert F.

    2014-01-01

    Due to the complexity of biological systems, cutting-edge machine-learning methods will be critical for future drug development. In particular, machine-vision methods to extract detailed information from imaging assays and active-learning methods to guide experimentation will be required to overcome the dimensionality problem in drug development. PMID:21587249

  5. Newton Methods for Large Scale Problems in Machine Learning

    Science.gov (United States)

    Hansen, Samantha Leigh

    2014-01-01

    The focus of this thesis is on practical ways of designing optimization algorithms for minimizing large-scale nonlinear functions with applications in machine learning. Chapter 1 introduces the overarching ideas in the thesis. Chapters 2 and 3 are geared towards supervised machine learning applications that involve minimizing a sum of loss…

  6. Risk assessment of atmospheric emissions using machine learning

    OpenAIRE

    Cervone, G.; Franzese, P.; Ezber, Y.; Boybeyi, Z.

    2008-01-01

    Supervised and unsupervised machine learning algorithms are used to perform statistical and logical analysis of several transport and dispersion model runs which simulate emissions from a fixed source under different atmospheric conditions.

    First, a clustering algorithm is used to automatically group the results of different transport and dispersion simulations according to specific cloud characteristics. Then, a symbolic classification algorithm is employed to find compl...

  7. Comparison of Machine Learning Techniques in Inferring Phytoplankton Size Classes

    Directory of Open Access Journals (Sweden)

    Shuibo Hu

    2018-03-01

    Full Text Available The size of phytoplankton not only influences its physiology, metabolic rates and marine food web, but also serves as an indicator of phytoplankton functional roles in ecological and biogeochemical processes. Therefore, some algorithms have been developed to infer the synoptic distribution of phytoplankton cell size, denoted as phytoplankton size classes (PSCs, in surface ocean waters, by the means of remotely sensed variables. This study, using the NASA bio-Optical Marine Algorithm Data set (NOMAD high performance liquid chromatography (HPLC database, and satellite match-ups, aimed to compare the effectiveness of modeling techniques, including partial least square (PLS, artificial neural networks (ANN, support vector machine (SVM and random forests (RF, and feature selection techniques, including genetic algorithm (GA, successive projection algorithm (SPA and recursive feature elimination based on support vector machine (SVM-RFE, for inferring PSCs from remote sensing data. Results showed that: (1 SVM-RFE worked better in selecting sensitive features; (2 RF performed better than PLS, ANN and SVM in calibrating PSCs retrieval models; (3 machine learning techniques produced better performance than the chlorophyll-a based three-component method; (4 sea surface temperature, wind stress, and spectral curvature derived from the remote sensing reflectance at 490, 510, and 555 nm were among the most sensitive features to PSCs; and (5 the combination of SVM-RFE feature selection techniques and random forests regression was recommended for inferring PSCs. This study demonstrated the effectiveness of machine learning techniques in selecting sensitive features and calibrating models for PSCs estimations with remote sensing.

  8. Mutual learning in a tree parity machine and its application to cryptography

    International Nuclear Information System (INIS)

    Rosen-Zvi, Michal; Klein, Einat; Kanter, Ido; Kinzel, Wolfgang

    2002-01-01

    Mutual learning of a pair of tree parity machines with continuous and discrete weight vectors is studied analytically. The analysis is based on a mapping procedure that maps the mutual learning in tree parity machines onto mutual learning in noisy perceptrons. The stationary solution of the mutual learning in the case of continuous tree parity machines depends on the learning rate where a phase transition from partial to full synchronization is observed. In the discrete case the learning process is based on a finite increment and a full synchronized state is achieved in a finite number of steps. The synchronization of discrete parity machines is introduced in order to construct an ephemeral key-exchange protocol. The dynamic learning of a third tree parity machine (an attacker) that tries to imitate one of the two machines while the two still update their weight vectors is also analyzed. In particular, the synchronization times of the naive attacker and the flipping attacker recently introduced in Ref. 9 are analyzed. All analytical results are found to be in good agreement with simulation results

  9. Improving orbit prediction accuracy through supervised machine learning

    Science.gov (United States)

    Peng, Hao; Bai, Xiaoli

    2018-05-01

    Due to the lack of information such as the space environment condition and resident space objects' (RSOs') body characteristics, current orbit predictions that are solely grounded on physics-based models may fail to achieve required accuracy for collision avoidance and have led to satellite collisions already. This paper presents a methodology to predict RSOs' trajectories with higher accuracy than that of the current methods. Inspired by the machine learning (ML) theory through which the models are learned based on large amounts of observed data and the prediction is conducted without explicitly modeling space objects and space environment, the proposed ML approach integrates physics-based orbit prediction algorithms with a learning-based process that focuses on reducing the prediction errors. Using a simulation-based space catalog environment as the test bed, the paper demonstrates three types of generalization capability for the proposed ML approach: (1) the ML model can be used to improve the same RSO's orbit information that is not available during the learning process but shares the same time interval as the training data; (2) the ML model can be used to improve predictions of the same RSO at future epochs; and (3) the ML model based on a RSO can be applied to other RSOs that share some common features.

  10. Bidirectional extreme learning machine for regression problem and its learning effectiveness.

    Science.gov (United States)

    Yang, Yimin; Wang, Yaonan; Yuan, Xiaofang

    2012-09-01

    It is clear that the learning effectiveness and learning speed of neural networks are in general far slower than required, which has been a major bottleneck for many applications. Recently, a simple and efficient learning method, referred to as extreme learning machine (ELM), was proposed by Huang , which has shown that, compared to some conventional methods, the training time of neural networks can be reduced by a thousand times. However, one of the open problems in ELM research is whether the number of hidden nodes can be further reduced without affecting learning effectiveness. This brief proposes a new learning algorithm, called bidirectional extreme learning machine (B-ELM), in which some hidden nodes are not randomly selected. In theory, this algorithm tends to reduce network output error to 0 at an extremely early learning stage. Furthermore, we find a relationship between the network output error and the network output weights in the proposed B-ELM. Simulation results demonstrate that the proposed method can be tens to hundreds of times faster than other incremental ELM algorithms.

  11. Corporate Disruption in the Science of Machine Learning

    OpenAIRE

    Work, Sam

    2016-01-01

    This MSc dissertation considers the effects of the current corporate interest on researchers in the field of machine learning. Situated within the field's cyclical history of academic, public and corporate interest, this dissertation investigates how current researchers view recent developments and negotiate their own research practices within an environment of increased commercial interest and funding. The original research consists of in-depth interviews with 12 machine learning researchers...

  12. Machine Learning Approaches for Predicting Radiation Therapy Outcomes: A Clinician's Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Kang, John [Medical Scientist Training Program, University of Pittsburgh-Carnegie Mellon University, Pittsburgh, Pennsylvania (United States); Schwartz, Russell [Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania (United States); Flickinger, John [Departments of Radiation Oncology and Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (United States); Beriwal, Sushil, E-mail: beriwals@upmc.edu [Department of Radiation Oncology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (United States)

    2015-12-01

    Radiation oncology has always been deeply rooted in modeling, from the early days of isoeffect curves to the contemporary Quantitative Analysis of Normal Tissue Effects in the Clinic (QUANTEC) initiative. In recent years, medical modeling for both prognostic and therapeutic purposes has exploded thanks to increasing availability of electronic data and genomics. One promising direction that medical modeling is moving toward is adopting the same machine learning methods used by companies such as Google and Facebook to combat disease. Broadly defined, machine learning is a branch of computer science that deals with making predictions from complex data through statistical models. These methods serve to uncover patterns in data and are actively used in areas such as speech recognition, handwriting recognition, face recognition, “spam” filtering (junk email), and targeted advertising. Although multiple radiation oncology research groups have shown the value of applied machine learning (ML), clinical adoption has been slow due to the high barrier to understanding these complex models by clinicians. Here, we present a review of the use of ML to predict radiation therapy outcomes from the clinician's point of view with the hope that it lowers the “barrier to entry” for those without formal training in ML. We begin by describing 7 principles that one should consider when evaluating (or creating) an ML model in radiation oncology. We next introduce 3 popular ML methods—logistic regression (LR), support vector machine (SVM), and artificial neural network (ANN)—and critique 3 seminal papers in the context of these principles. Although current studies are in exploratory stages, the overall methodology has progressively matured, and the field is ready for larger-scale further investigation.

  13. SU-F-P-20: Predicting Waiting Times in Radiation Oncology Using Machine Learning

    International Nuclear Information System (INIS)

    Joseph, A; Herrera, D; Hijal, T; Kildea, J; Hendren, L; Leung, A; Wainberg, J; Sawaf, M; Gorshkov, M; Maglieri, R; Keshavarz, M

    2016-01-01

    Purpose: Waiting times remain one of the most vexing patient satisfaction challenges facing healthcare. Waiting time uncertainty can cause patients, who are already sick or in pain, to worry about when they will receive the care they need. These waiting periods are often difficult for staff to predict and only rough estimates are typically provided based on personal experience. This level of uncertainty leaves most patients unable to plan their calendar, making the waiting experience uncomfortable, even painful. In the present era of electronic health records (EHRs), waiting times need not be so uncertain. Extensive EHRs provide unprecedented amounts of data that can statistically cluster towards representative values when appropriate patient cohorts are selected. Predictive modelling, such as machine learning, is a powerful approach that benefits from large, potentially complex, datasets. The essence of machine learning is to predict future outcomes by learning from previous experience. The application of a machine learning algorithm to waiting time data has the potential to produce personalized waiting time predictions such that the uncertainty may be removed from the patient’s waiting experience. Methods: In radiation oncology, patients typically experience several types of waiting (eg waiting at home for treatment planning, waiting in the waiting room for oncologist appointments and daily waiting in the waiting room for radiotherapy treatments). A daily treatment wait time model is discussed in this report. To develop a prediction model using our large dataset (with more than 100k sample points) a variety of machine learning algorithms from the Python package sklearn were tested. Results: We found that the Random Forest Regressor model provides the best predictions for daily radiotherapy treatment waiting times. Using this model, we achieved a median residual (actual value minus predicted value) of 0.25 minutes and a standard deviation residual of 6.5 minutes

  14. SU-F-P-20: Predicting Waiting Times in Radiation Oncology Using Machine Learning

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, A; Herrera, D; Hijal, T; Kildea, J [McGill University Health Centre, Montreal, Quebec (Canada); Hendren, L; Leung, A; Wainberg, J; Sawaf, M; Gorshkov, M; Maglieri, R; Keshavarz, M [McGill University, Montreal, Quebec (Canada)

    2016-06-15

    Purpose: Waiting times remain one of the most vexing patient satisfaction challenges facing healthcare. Waiting time uncertainty can cause patients, who are already sick or in pain, to worry about when they will receive the care they need. These waiting periods are often difficult for staff to predict and only rough estimates are typically provided based on personal experience. This level of uncertainty leaves most patients unable to plan their calendar, making the waiting experience uncomfortable, even painful. In the present era of electronic health records (EHRs), waiting times need not be so uncertain. Extensive EHRs provide unprecedented amounts of data that can statistically cluster towards representative values when appropriate patient cohorts are selected. Predictive modelling, such as machine learning, is a powerful approach that benefits from large, potentially complex, datasets. The essence of machine learning is to predict future outcomes by learning from previous experience. The application of a machine learning algorithm to waiting time data has the potential to produce personalized waiting time predictions such that the uncertainty may be removed from the patient’s waiting experience. Methods: In radiation oncology, patients typically experience several types of waiting (eg waiting at home for treatment planning, waiting in the waiting room for oncologist appointments and daily waiting in the waiting room for radiotherapy treatments). A daily treatment wait time model is discussed in this report. To develop a prediction model using our large dataset (with more than 100k sample points) a variety of machine learning algorithms from the Python package sklearn were tested. Results: We found that the Random Forest Regressor model provides the best predictions for daily radiotherapy treatment waiting times. Using this model, we achieved a median residual (actual value minus predicted value) of 0.25 minutes and a standard deviation residual of 6.5 minutes

  15. Crystal structure representations for machine learning models of formation energies

    Energy Technology Data Exchange (ETDEWEB)

    Faber, Felix [Department of Chemistry, Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials, University of Basel Switzerland; Lindmaa, Alexander [Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping Sweden; von Lilienfeld, O. Anatole [Department of Chemistry, Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials, University of Basel Switzerland; Argonne Leadership Computing Facility, Argonne National Laboratory, 9700 S. Cass Avenue Lemont Illinois 60439; Armiento, Rickard [Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping Sweden

    2015-04-20

    We introduce and evaluate a set of feature vector representations of crystal structures for machine learning (ML) models of formation energies of solids. ML models of atomization energies of organic molecules have been successful using a Coulomb matrix representation of the molecule. We consider three ways to generalize such representations to periodic systems: (i) a matrix where each element is related to the Ewald sum of the electrostatic interaction between two different atoms in the unit cell repeated over the lattice; (ii) an extended Coulomb-like matrix that takes into account a number of neighboring unit cells; and (iii) an ansatz that mimics the periodicity and the basic features of the elements in the Ewald sum matrix using a sine function of the crystal coordinates of the atoms. The representations are compared for a Laplacian kernel with Manhattan norm, trained to reproduce formation energies using a dataset of 3938 crystal structures obtained from the Materials Project. For training sets consisting of 3000 crystals, the generalization error in predicting formation energies of new structures corresponds to (i) 0.49, (ii) 0.64, and (iii) 0.37eV/atom for the respective representations.

  16. FACT. Streamed data analysis and online application of machine learning models

    Energy Technology Data Exchange (ETDEWEB)

    Bruegge, Kai Arno; Buss, Jens [Technische Universitaet Dortmund (Germany). Astroteilchenphysik; Collaboration: FACT-Collaboration

    2016-07-01

    Imaging Atmospheric Cherenkov Telescopes (IACTs) like FACT produce a continuous flow of data during measurements. Analyzing the data in near real time is essential for monitoring sources. One major task of a monitoring system is to detect changes in the gamma-ray flux of a source, and to alert other experiments if some predefined limit is reached. In order to calculate the flux of an observed source, it is necessary to run an entire data analysis process including calibration, image cleaning, parameterization, signal-background separation and flux estimation. Software built on top of a data streaming framework has been implemented for FACT and generalized to work with the data acquisition framework of the Cherenkov Telescope Array (CTA). We present how the streams-framework is used to apply supervised machine learning models to an online data stream from the telescope.

  17. Application of machine learning methods in bioinformatics

    Science.gov (United States)

    Yang, Haoyu; An, Zheng; Zhou, Haotian; Hou, Yawen

    2018-05-01

    Faced with the development of bioinformatics, high-throughput genomic technology have enabled biology to enter the era of big data. [1] Bioinformatics is an interdisciplinary, including the acquisition, management, analysis, interpretation and application of biological information, etc. It derives from the Human Genome Project. The field of machine learning, which aims to develop computer algorithms that improve with experience, holds promise to enable computers to assist humans in the analysis of large, complex data sets.[2]. This paper analyzes and compares various algorithms of machine learning and their applications in bioinformatics.

  18. Machine Learning Optimization of Evolvable Artificial Cells

    DEFF Research Database (Denmark)

    Caschera, F.; Rasmussen, S.; Hanczyc, M.

    2011-01-01

    can be explored. A machine learning approach (Evo-DoE) could be applied to explore this experimental space and define optimal interactions according to a specific fitness function. Herein an implementation of an evolutionary design of experiments to optimize chemical and biochemical systems based...... on a machine learning process is presented. The optimization proceeds over generations of experiments in iterative loop until optimal compositions are discovered. The fitness function is experimentally measured every time the loop is closed. Two examples of complex systems, namely a liposomal drug formulation...

  19. What is the machine learning?

    Science.gov (United States)

    Chang, Spencer; Cohen, Timothy; Ostdiek, Bryan

    2018-03-01

    Applications of machine learning tools to problems of physical interest are often criticized for producing sensitivity at the expense of transparency. To address this concern, we explore a data planing procedure for identifying combinations of variables—aided by physical intuition—that can discriminate signal from background. Weights are introduced to smooth away the features in a given variable(s). New networks are then trained on this modified data. Observed decreases in sensitivity diagnose the variable's discriminating power. Planing also allows the investigation of the linear versus nonlinear nature of the boundaries between signal and background. We demonstrate the efficacy of this approach using a toy example, followed by an application to an idealized heavy resonance scenario at the Large Hadron Collider. By unpacking the information being utilized by these algorithms, this method puts in context what it means for a machine to learn.

  20. Machine learning for micro-tomography

    Science.gov (United States)

    Parkinson, Dilworth Y.; Pelt, Daniël. M.; Perciano, Talita; Ushizima, Daniela; Krishnan, Harinarayan; Barnard, Harold S.; MacDowell, Alastair A.; Sethian, James

    2017-09-01

    Machine learning has revolutionized a number of fields, but many micro-tomography users have never used it for their work. The micro-tomography beamline at the Advanced Light Source (ALS), in collaboration with the Center for Applied Mathematics for Energy Research Applications (CAMERA) at Lawrence Berkeley National Laboratory, has now deployed a series of tools to automate data processing for ALS users using machine learning. This includes new reconstruction algorithms, feature extraction tools, and image classification and recommen- dation systems for scientific image. Some of these tools are either in automated pipelines that operate on data as it is collected or as stand-alone software. Others are deployed on computing resources at Berkeley Lab-from workstations to supercomputers-and made accessible to users through either scripting or easy-to-use graphical interfaces. This paper presents a progress report on this work.