WorldWideScience

Sample records for machine learning applications

  1. Machine Learning applications in CMS

    CERN Document Server

    CERN. Geneva

    2017-01-01

    Machine Learning is used in many aspects of CMS data taking, monitoring, processing and analysis. We review a few of these use cases and the most recent developments, with an outlook to future applications in the LHC Run III and for the High-Luminosity phase.

  2. New Applications of Learning Machines

    DEFF Research Database (Denmark)

    Larsen, Jan

    * Machine learning framework for sound search * Genre classification * Music separation * MIMO channel estimation and symbol detection......* Machine learning framework for sound search * Genre classification * Music separation * MIMO channel estimation and symbol detection...

  3. New Applications of Learning Machines

    DEFF Research Database (Denmark)

    Larsen, Jan

    * Machine learning framework for sound search * Genre classification * Music separation * MIMO channel estimation and symbol detection......* Machine learning framework for sound search * Genre classification * Music separation * MIMO channel estimation and symbol detection...

  4. Advanced Machine learning Algorithm Application for Rotating Machine Health Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kanemoto, Shigeru; Watanabe, Masaya [The University of Aizu, Aizuwakamatsu (Japan); Yusa, Noritaka [Tohoku University, Sendai (Japan)

    2014-08-15

    The present paper tries to evaluate the applicability of conventional sound analysis techniques and modern machine learning algorithms to rotating machine health monitoring. These techniques include support vector machine, deep leaning neural network, etc. The inner ring defect and misalignment anomaly sound data measured by a rotating machine mockup test facility are used to verify the above various kinds of algorithms. Although we cannot find remarkable difference of anomaly discrimination performance, some methods give us the very interesting eigen patterns corresponding to normal and abnormal states. These results will be useful for future more sensitive and robust anomaly monitoring technology.

  5. Machine Learning for Biological Trajectory Classification Applications

    Science.gov (United States)

    Sbalzarini, Ivo F.; Theriot, Julie; Koumoutsakos, Petros

    2002-01-01

    Machine-learning techniques, including clustering algorithms, support vector machines and hidden Markov models, are applied to the task of classifying trajectories of moving keratocyte cells. The different algorithms axe compared to each other as well as to expert and non-expert test persons, using concepts from signal-detection theory. The algorithms performed very well as compared to humans, suggesting a robust tool for trajectory classification in biological applications.

  6. Machine learning paradigms applications in recommender systems

    CERN Document Server

    Lampropoulos, Aristomenis S

    2015-01-01

    This timely book presents Applications in Recommender Systems which are making recommendations using machine learning algorithms trained via examples of content the user likes or dislikes. Recommender systems built on the assumption of availability of both positive and negative examples do not perform well when negative examples are rare. It is exactly this problem that the authors address in the monograph at hand. Specifically, the books approach is based on one-class classification methodologies that have been appearing in recent machine learning research. The blending of recommender systems and one-class classification provides a new very fertile field for research, innovation and development with potential applications in “big data” as well as “sparse data” problems. The book will be useful to researchers, practitioners and graduate students dealing with problems of extensive and complex data. It is intended for both the expert/researcher in the fields of Pattern Recognition, Machine Learning and ...

  7. Ensemble Machine Learning Methods and Applications

    CERN Document Server

    Ma, Yunqian

    2012-01-01

    It is common wisdom that gathering a variety of views and inputs improves the process of decision making, and, indeed, underpins a democratic society. Dubbed “ensemble learning” by researchers in computational intelligence and machine learning, it is known to improve a decision system’s robustness and accuracy. Now, fresh developments are allowing researchers to unleash the power of ensemble learning in an increasing range of real-world applications. Ensemble learning algorithms such as “boosting” and “random forest” facilitate solutions to key computational issues such as face detection and are now being applied in areas as diverse as object trackingand bioinformatics.   Responding to a shortage of literature dedicated to the topic, this volume offers comprehensive coverage of state-of-the-art ensemble learning techniques, including various contributions from researchers in leading industrial research labs. At once a solid theoretical study and a practical guide, the volume is a windfall for r...

  8. Extreme learning machines 2013 algorithms and applications

    CERN Document Server

    Toh, Kar-Ann; Romay, Manuel; Mao, Kezhi

    2014-01-01

    In recent years, ELM has emerged as a revolutionary technique of computational intelligence, and has attracted considerable attentions. An extreme learning machine (ELM) is a single layer feed-forward neural network alike learning system, whose connections from the input layer to the hidden layer are randomly generated, while the connections from the hidden layer to the output layer are learned through linear learning methods. The outstanding merits of extreme learning machine (ELM) are its fast learning speed, trivial human intervene and high scalability.   This book contains some selected papers from the International Conference on Extreme Learning Machine 2013, which was held in Beijing China, October 15-17, 2013. This conference aims to bring together the researchers and practitioners of extreme learning machine from a variety of fields including artificial intelligence, biomedical engineering and bioinformatics, system modelling and control, and signal and image processing, to promote research and discu...

  9. Deep Extreme Learning Machine and Its Application in EEG Classification

    Directory of Open Access Journals (Sweden)

    Shifei Ding

    2015-01-01

    Full Text Available Recently, deep learning has aroused wide interest in machine learning fields. Deep learning is a multilayer perceptron artificial neural network algorithm. Deep learning has the advantage of approximating the complicated function and alleviating the optimization difficulty associated with deep models. Multilayer extreme learning machine (MLELM is a learning algorithm of an artificial neural network which takes advantages of deep learning and extreme learning machine. Not only does MLELM approximate the complicated function but it also does not need to iterate during the training process. We combining with MLELM and extreme learning machine with kernel (KELM put forward deep extreme learning machine (DELM and apply it to EEG classification in this paper. This paper focuses on the application of DELM in the classification of the visual feedback experiment, using MATLAB and the second brain-computer interface (BCI competition datasets. By simulating and analyzing the results of the experiments, effectiveness of the application of DELM in EEG classification is confirmed.

  10. Intelligent Machine Learning Approaches for Aerospace Applications

    Science.gov (United States)

    Sathyan, Anoop

    Machine Learning is a type of artificial intelligence that provides machines or networks the ability to learn from data without the need to explicitly program them. There are different kinds of machine learning techniques. This thesis discusses the applications of two of these approaches: Genetic Fuzzy Logic and Convolutional Neural Networks (CNN). Fuzzy Logic System (FLS) is a powerful tool that can be used for a wide variety of applications. FLS is a universal approximator that reduces the need for complex mathematics and replaces it with expert knowledge of the system to produce an input-output mapping using If-Then rules. The expert knowledge of a system can help in obtaining the parameters for small-scale FLSs, but for larger networks we will need to use sophisticated approaches that can automatically train the network to meet the design requirements. This is where Genetic Algorithms (GA) and EVE come into the picture. Both GA and EVE can tune the FLS parameters to minimize a cost function that is designed to meet the requirements of the specific problem. EVE is an artificial intelligence developed by Psibernetix that is trained to tune large scale FLSs. The parameters of an FLS can include the membership functions and rulebase of the inherent Fuzzy Inference Systems (FISs). The main issue with using the GFS is that the number of parameters in a FIS increase exponentially with the number of inputs thus making it increasingly harder to tune them. To reduce this issue, the FLSs discussed in this thesis consist of 2-input-1-output FISs in cascade (Chapter 4) or as a layer of parallel FISs (Chapter 7). We have obtained extremely good results using GFS for different applications at a reduced computational cost compared to other algorithms that are commonly used to solve the corresponding problems. In this thesis, GFSs have been designed for controlling an inverted double pendulum, a task allocation problem of clustering targets amongst a set of UAVs, a fire

  11. Machine Learning

    CERN Document Server

    CERN. Geneva

    2017-01-01

    Machine learning, which builds on ideas in computer science, statistics, and optimization, focuses on developing algorithms to identify patterns and regularities in data, and using these learned patterns to make predictions on new observations. Boosted by its industrial and commercial applications, the field of machine learning is quickly evolving and expanding. Recent advances have seen great success in the realms of computer vision, natural language processing, and broadly in data science. Many of these techniques have already been applied in particle physics, for instance for particle identification, detector monitoring, and the optimization of computer resources. Modern machine learning approaches, such as deep learning, are only just beginning to be applied to the analysis of High Energy Physics data to approach more and more complex problems. These classes will review the framework behind machine learning and discuss recent developments in the field.

  12. Machine learning in radiation oncology theory and applications

    CERN Document Server

    El Naqa, Issam; Murphy, Martin J

    2015-01-01

    ​This book provides a complete overview of the role of machine learning in radiation oncology and medical physics, covering basic theory, methods, and a variety of applications in medical physics and radiotherapy. An introductory section explains machine learning, reviews supervised and unsupervised learning methods, discusses performance evaluation, and summarizes potential applications in radiation oncology. Detailed individual sections are then devoted to the use of machine learning in quality assurance; computer-aided detection, including treatment planning and contouring; image-guided rad

  13. Conformal prediction for reliable machine learning theory, adaptations and applications

    CERN Document Server

    Balasubramanian, Vineeth; Vovk, Vladimir

    2014-01-01

    The conformal predictions framework is a recent development in machine learning that can associate a reliable measure of confidence with a prediction in any real-world pattern recognition application, including risk-sensitive applications such as medical diagnosis, face recognition, and financial risk prediction. Conformal Predictions for Reliable Machine Learning: Theory, Adaptations and Applications captures the basic theory of the framework, demonstrates how to apply it to real-world problems, and presents several adaptations, including active learning, change detection, and anomaly detecti

  14. Application of machine learning in SNP discovery

    Directory of Open Access Journals (Sweden)

    Cregan Perry B

    2006-01-01

    Full Text Available Abstract Background Single nucleotide polymorphisms (SNP constitute more than 90% of the genetic variation, and hence can account for most trait differences among individuals in a given species. Polymorphism detection software PolyBayes and PolyPhred give high false positive SNP predictions even with stringent parameter values. We developed a machine learning (ML method to augment PolyBayes to improve its prediction accuracy. ML methods have also been successfully applied to other bioinformatics problems in predicting genes, promoters, transcription factor binding sites and protein structures. Results The ML program C4.5 was applied to a set of features in order to build a SNP classifier from training data based on human expert decisions (True/False. The training data were 27,275 candidate SNP generated by sequencing 1973 STS (sequence tag sites (12 Mb in both directions from 6 diverse homozygous soybean cultivars and PolyBayes analysis. Test data of 18,390 candidate SNP were generated similarly from 1359 additional STS (8 Mb. SNP from both sets were classified by experts. After training the ML classifier, it agreed with the experts on 97.3% of test data compared with 7.8% agreement between PolyBayes and experts. The PolyBayes positive predictive values (PPV (i.e., fraction of candidate SNP being real were 7.8% for all predictions and 16.7% for those with 100% posterior probability of being real. Using ML improved the PPV to 84.8%, a 5- to 10-fold increase. While both ML and PolyBayes produced a similar number of true positives, the ML program generated only 249 false positives as compared to 16,955 for PolyBayes. The complexity of the soybean genome may have contributed to high false SNP predictions by PolyBayes and hence results may differ for other genomes. Conclusion A machine learning (ML method was developed as a supplementary feature to the polymorphism detection software for improving prediction accuracies. The results from this study

  15. Applications of Machine Learning in Cancer Prediction and Prognosis

    Directory of Open Access Journals (Sweden)

    Joseph A. Cruz

    2006-01-01

    Full Text Available Machine learning is a branch of artificial intelligence that employs a variety of statistical, probabilistic and optimization techniques that allows computers to “learn” from past examples and to detect hard-to-discern patterns from large, noisy or complex data sets. This capability is particularly well-suited to medical applications, especially those that depend on complex proteomic and genomic measurements. As a result, machine learning is frequently used in cancer diagnosis and detection. More recently machine learning has been applied to cancer prognosis and prediction. This latter approach is particularly interesting as it is part of a growing trend towards personalized, predictive medicine. In assembling this review we conducted a broad survey of the different types of machine learning methods being used, the types of data being integrated and the performance of these methods in cancer prediction and prognosis. A number of trends are noted, including a growing dependence on protein biomarkers and microarray data, a strong bias towards applications in prostate and breast cancer, and a heavy reliance on “older” technologies such artificial neural networks (ANNs instead of more recently developed or more easily interpretable machine learning methods. A number of published studies also appear to lack an appropriate level of validation or testing. Among the better designed and validated studies it is clear that machine learning methods can be used to substantially (15-25% improve the accuracy of predicting cancer susceptibility, recurrence and mortality. At a more fundamental level, it is also evident that machine learning is also helping to improve our basic understanding of cancer development and progression.

  16. Deep Extreme Learning Machine and Its Application in EEG Classification

    OpenAIRE

    Shifei Ding; Nan Zhang; Xinzheng Xu; Lili Guo; Jian Zhang

    2015-01-01

    Recently, deep learning has aroused wide interest in machine learning fields. Deep learning is a multilayer perceptron artificial neural network algorithm. Deep learning has the advantage of approximating the complicated function and alleviating the optimization difficulty associated with deep models. Multilayer extreme learning machine (MLELM) is a learning algorithm of an artificial neural network which takes advantages of deep learning and extreme learning machine. Not only does MLELM appr...

  17. Deep Extreme Learning Machine and Its Application in EEG Classification

    OpenAIRE

    2015-01-01

    Recently, deep learning has aroused wide interest in machine learning fields. Deep learning is a multilayer perceptron artificial neural network algorithm. Deep learning has the advantage of approximating the complicated function and alleviating the optimization difficulty associated with deep models. Multilayer extreme learning machine (MLELM) is a learning algorithm of an artificial neural network which takes advantages of deep learning and extreme learning machine. Not only does MLELM appr...

  18. Modern machine learning techniques and their applications in cartoon animation research

    CERN Document Server

    Yu, Jun

    2013-01-01

    The integration of machine learning techniques and cartoon animation research is fast becoming a hot topic. This book helps readers learn the latest machine learning techniques, including patch alignment framework; spectral clustering, graph cuts, and convex relaxation; ensemble manifold learning; multiple kernel learning; multiview subspace learning; and multiview distance metric learning. It then presents the applications of these modern machine learning techniques in cartoon animation research. With these techniques, users can efficiently utilize the cartoon materials to generate animations

  19. Application of Machine Learning to Rotorcraft Health Monitoring

    Science.gov (United States)

    Cody, Tyler; Dempsey, Paula J.

    2017-01-01

    Machine learning is a powerful tool for data exploration and model building with large data sets. This project aimed to use machine learning techniques to explore the inherent structure of data from rotorcraft gear tests, relationships between features and damage states, and to build a system for predicting gear health for future rotorcraft transmission applications. Classical machine learning techniques are difficult, if not irresponsible to apply to time series data because many make the assumption of independence between samples. To overcome this, Hidden Markov Models were used to create a binary classifier for identifying scuffing transitions and Recurrent Neural Networks were used to leverage long distance relationships in predicting discrete damage states. When combined in a workflow, where the binary classifier acted as a filter for the fatigue monitor, the system was able to demonstrate accuracy in damage state prediction and scuffing identification. The time dependent nature of the data restricted data exploration to collecting and analyzing data from the model selection process. The limited amount of available data was unable to give useful information, and the division of training and testing sets tended to heavily influence the scores of the models across combinations of features and hyper-parameters. This work built a framework for tracking scuffing and fatigue on streaming data and demonstrates that machine learning has much to offer rotorcraft health monitoring by using Bayesian learning and deep learning methods to capture the time dependent nature of the data. Suggested future work is to implement the framework developed in this project using a larger variety of data sets to test the generalization capabilities of the models and allow for data exploration.

  20. Machine learning for epigenetics and future medical applications.

    Science.gov (United States)

    Holder, Lawrence B; Haque, M Muksitul; Skinner, Michael K

    2017-07-03

    Understanding epigenetic processes holds immense promise for medical applications. Advances in Machine Learning (ML) are critical to realize this promise. Previous studies used epigenetic data sets associated with the germline transmission of epigenetic transgenerational inheritance of disease and novel ML approaches to predict genome-wide locations of critical epimutations. A combination of Active Learning (ACL) and Imbalanced Class Learning (ICL) was used to address past problems with ML to develop a more efficient feature selection process and address the imbalance problem in all genomic data sets. The power of this novel ML approach and our ability to predict epigenetic phenomena and associated disease is suggested. The current approach requires extensive computation of features over the genome. A promising new approach is to introduce Deep Learning (DL) for the generation and simultaneous computation of novel genomic features tuned to the classification task. This approach can be used with any genomic or biological data set applied to medicine. The application of molecular epigenetic data in advanced machine learning analysis to medicine is the focus of this review.

  1. Mining the Galaxy Zoo Database: Machine Learning Applications

    Science.gov (United States)

    Borne, Kirk D.; Wallin, J.; Vedachalam, A.; Baehr, S.; Lintott, C.; Darg, D.; Smith, A.; Fortson, L.

    2010-01-01

    The new Zooniverse initiative is addressing the data flood in the sciences through a transformative partnership between professional scientists, volunteer citizen scientists, and machines. As part of this project, we are exploring the application of machine learning techniques to data mining problems associated with the large and growing database of volunteer science results gathered by the Galaxy Zoo citizen science project. We will describe the basic challenge, some machine learning approaches, and early results. One of the motivators for this study is the acquisition (through the Galaxy Zoo results database) of approximately 100 million classification labels for roughly one million galaxies, yielding a tremendously large and rich set of training examples for improving automated galaxy morphological classification algorithms. In our first case study, the goal is to learn which morphological and photometric features in the Sloan Digital Sky Survey (SDSS) database correlate most strongly with user-selected galaxy morphological class. As a corollary to this study, we are also aiming to identify which galaxy parameters in the SDSS database correspond to galaxies that have been the most difficult to classify (based upon large dispersion in their volunter-provided classifications). Our second case study will focus on similar data mining analyses and machine leaning algorithms applied to the Galaxy Zoo catalog of merging and interacting galaxies. The outcomes of this project will have applications in future large sky surveys, such as the LSST (Large Synoptic Survey Telescope) project, which will generate a catalog of 20 billion galaxies and will produce an additional astronomical alert database of approximately 100 thousand events each night for 10 years -- the capabilities and algorithms that we are exploring will assist in the rapid characterization and classification of such massive data streams. This research has been supported in part through NSF award #0941610.

  2. Machine Learning

    Energy Technology Data Exchange (ETDEWEB)

    Chikkagoudar, Satish; Chatterjee, Samrat; Thomas, Dennis G.; Carroll, Thomas E.; Muller, George

    2017-04-21

    The absence of a robust and unified theory of cyber dynamics presents challenges and opportunities for using machine learning based data-driven approaches to further the understanding of the behavior of such complex systems. Analysts can also use machine learning approaches to gain operational insights. In order to be operationally beneficial, cybersecurity machine learning based models need to have the ability to: (1) represent a real-world system, (2) infer system properties, and (3) learn and adapt based on expert knowledge and observations. Probabilistic models and Probabilistic graphical models provide these necessary properties and are further explored in this chapter. Bayesian Networks and Hidden Markov Models are introduced as an example of a widely used data driven classification/modeling strategy.

  3. Extreme learning machine for ranking: generalization analysis and applications.

    Science.gov (United States)

    Chen, Hong; Peng, Jiangtao; Zhou, Yicong; Li, Luoqing; Pan, Zhibin

    2014-05-01

    The extreme learning machine (ELM) has attracted increasing attention recently with its successful applications in classification and regression. In this paper, we investigate the generalization performance of ELM-based ranking. A new regularized ranking algorithm is proposed based on the combinations of activation functions in ELM. The generalization analysis is established for the ELM-based ranking (ELMRank) in terms of the covering numbers of hypothesis space. Empirical results on the benchmark datasets show the competitive performance of the ELMRank over the state-of-the-art ranking methods.

  4. Machine Learning Approaches: From Theory to Application in Schizophrenia

    Directory of Open Access Journals (Sweden)

    Elisa Veronese

    2013-01-01

    Full Text Available In recent years, machine learning approaches have been successfully applied for analysis of neuroimaging data, to help in the context of disease diagnosis. We provide, in this paper, an overview of recent support vector machine-based methods developed and applied in psychiatric neuroimaging for the investigation of schizophrenia. In particular, we focus on the algorithms implemented by our group, which have been applied to classify subjects affected by schizophrenia and healthy controls, comparing them in terms of accuracy results with other recently published studies. First we give a description of the basic terminology used in pattern recognition and machine learning. Then we separately summarize and explain each study, highlighting the main features that characterize each method. Finally, as an outcome of the comparison of the results obtained applying the described different techniques, conclusions are drawn in order to understand how much automatic classification approaches can be considered a useful tool in understanding the biological underpinnings of schizophrenia. We then conclude by discussing the main implications achievable by the application of these methods into clinical practice.

  5. Kernel Methods for Machine Learning with Life Science Applications

    DEFF Research Database (Denmark)

    Abrahamsen, Trine Julie

    Kernel methods refer to a family of widely used nonlinear algorithms for machine learning tasks like classification, regression, and feature extraction. By exploiting the so-called kernel trick straightforward extensions of classical linear algorithms are enabled as long as the data only appear...... models to kernel learning, and means for restoring the generalizability in both kernel Principal Component Analysis and the Support Vector Machine are proposed. Viability is proved on a wide range of benchmark machine learning data sets....... as innerproducts in the model formulation. This dissertation presents research on improving the performance of standard kernel methods like kernel Principal Component Analysis and the Support Vector Machine. Moreover, the goal of the thesis has been two-fold. The first part focuses on the use of kernel Principal...

  6. Introduction to machine learning.

    Science.gov (United States)

    Baştanlar, Yalin; Ozuysal, Mustafa

    2014-01-01

    The machine learning field, which can be briefly defined as enabling computers make successful predictions using past experiences, has exhibited an impressive development recently with the help of the rapid increase in the storage capacity and processing power of computers. Together with many other disciplines, machine learning methods have been widely employed in bioinformatics. The difficulties and cost of biological analyses have led to the development of sophisticated machine learning approaches for this application area. In this chapter, we first review the fundamental concepts of machine learning such as feature assessment, unsupervised versus supervised learning and types of classification. Then, we point out the main issues of designing machine learning experiments and their performance evaluation. Finally, we introduce some supervised learning methods.

  7. Application of machine learning on brain cancer multiclass classification

    Science.gov (United States)

    Panca, V.; Rustam, Z.

    2017-07-01

    Classification of brain cancer is a problem of multiclass classification. One approach to solve this problem is by first transforming it into several binary problems. The microarray gene expression dataset has the two main characteristics of medical data: extremely many features (genes) and only a few number of samples. The application of machine learning on microarray gene expression dataset mainly consists of two steps: feature selection and classification. In this paper, the features are selected using a method based on support vector machine recursive feature elimination (SVM-RFE) principle which is improved to solve multiclass classification, called multiple multiclass SVM-RFE. Instead of using only the selected features on a single classifier, this method combines the result of multiple classifiers. The features are divided into subsets and SVM-RFE is used on each subset. Then, the selected features on each subset are put on separate classifiers. This method enhances the feature selection ability of each single SVM-RFE. Twin support vector machine (TWSVM) is used as the method of the classifier to reduce computational complexity. While ordinary SVM finds single optimum hyperplane, the main objective Twin SVM is to find two non-parallel optimum hyperplanes. The experiment on the brain cancer microarray gene expression dataset shows this method could classify 71,4% of the overall test data correctly, using 100 and 1000 genes selected from multiple multiclass SVM-RFE feature selection method. Furthermore, the per class results show that this method could classify data of normal and MD class with 100% accuracy.

  8. Machine Learning and Radiology

    Science.gov (United States)

    Wang, Shijun; Summers, Ronald M.

    2012-01-01

    In this paper, we give a short introduction to machine learning and survey its applications in radiology. We focused on six categories of applications in radiology: medical image segmentation, registration, computer aided detection and diagnosis, brain function or activity analysis and neurological disease diagnosis from fMR images, content-based image retrieval systems for CT or MRI images, and text analysis of radiology reports using natural language processing (NLP) and natural language understanding (NLU). This survey shows that machine learning plays a key role in many radiology applications. Machine learning identifies complex patterns automatically and helps radiologists make intelligent decisions on radiology data such as conventional radiographs, CT, MRI, and PET images and radiology reports. In many applications, the performance of machine learning-based automatic detection and diagnosis systems has shown to be comparable to that of a well-trained and experienced radiologist. Technology development in machine learning and radiology will benefit from each other in the long run. Key contributions and common characteristics of machine learning techniques in radiology are discussed. We also discuss the problem of translating machine learning applications to the radiology clinical setting, including advantages and potential barriers. PMID:22465077

  9. Energy landscapes for a machine learning application to series data.

    Science.gov (United States)

    Ballard, Andrew J; Stevenson, Jacob D; Das, Ritankar; Wales, David J

    2016-03-28

    Methods developed to explore and characterise potential energy landscapes are applied to the corresponding landscapes obtained from optimisation of a cost function in machine learning. We consider neural network predictions for the outcome of local geometry optimisation in a triatomic cluster, where four distinct local minima exist. The accuracy of the predictions is compared for fits using data from single and multiple points in the series of atomic configurations resulting from local geometry optimisation and for alternative neural networks. The machine learning solution landscapes are visualised using disconnectivity graphs, and signatures in the effective heat capacity are analysed in terms of distributions of local minima and their properties.

  10. Machine learning applications in cancer prognosis and prediction.

    Science.gov (United States)

    Kourou, Konstantina; Exarchos, Themis P; Exarchos, Konstantinos P; Karamouzis, Michalis V; Fotiadis, Dimitrios I

    2015-01-01

    Cancer has been characterized as a heterogeneous disease consisting of many different subtypes. The early diagnosis and prognosis of a cancer type have become a necessity in cancer research, as it can facilitate the subsequent clinical management of patients. The importance of classifying cancer patients into high or low risk groups has led many research teams, from the biomedical and the bioinformatics field, to study the application of machine learning (ML) methods. Therefore, these techniques have been utilized as an aim to model the progression and treatment of cancerous conditions. In addition, the ability of ML tools to detect key features from complex datasets reveals their importance. A variety of these techniques, including Artificial Neural Networks (ANNs), Bayesian Networks (BNs), Support Vector Machines (SVMs) and Decision Trees (DTs) have been widely applied in cancer research for the development of predictive models, resulting in effective and accurate decision making. Even though it is evident that the use of ML methods can improve our understanding of cancer progression, an appropriate level of validation is needed in order for these methods to be considered in the everyday clinical practice. In this work, we present a review of recent ML approaches employed in the modeling of cancer progression. The predictive models discussed here are based on various supervised ML techniques as well as on different input features and data samples. Given the growing trend on the application of ML methods in cancer research, we present here the most recent publications that employ these techniques as an aim to model cancer risk or patient outcomes.

  11. Nonparametric Divergence Estimation with Applications to Machine Learning on Distributions

    CERN Document Server

    Poczos, Barnabas; Schneider, Jeff

    2012-01-01

    Low-dimensional embedding, manifold learning, clustering, classification, and anomaly detection are among the most important problems in machine learning. The existing methods usually consider the case when each instance has a fixed, finite-dimensional feature representation. Here we consider a different setting. We assume that each instance corresponds to a continuous probability distribution. These distributions are unknown, but we are given some i.i.d. samples from each distribution. Our goal is to estimate the distances between these distributions and use these distances to perform low-dimensional embedding, clustering/classification, or anomaly detection for the distributions. We present estimation algorithms, describe how to apply them for machine learning tasks on distributions, and show empirical results on synthetic data, real word images, and astronomical data sets.

  12. Robust Extreme Learning Machine With its Application to Indoor Positioning.

    Science.gov (United States)

    Lu, Xiaoxuan; Zou, Han; Zhou, Hongming; Xie, Lihua; Huang, Guang-Bin

    2016-01-01

    The increasing demands of location-based services have spurred the rapid development of indoor positioning system and indoor localization system interchangeably (IPSs). However, the performance of IPSs suffers from noisy measurements. In this paper, two kinds of robust extreme learning machines (RELMs), corresponding to the close-to-mean constraint, and the small-residual constraint, have been proposed to address the issue of noisy measurements in IPSs. Based on whether the feature mapping in extreme learning machine is explicit, we respectively provide random-hidden-nodes and kernelized formulations of RELMs by second order cone programming. Furthermore, the computation of the covariance in feature space is discussed. Simulations and real-world indoor localization experiments are extensively carried out and the results demonstrate that the proposed algorithms can not only improve the accuracy and repeatability, but also reduce the deviation and worst case error of IPSs compared with other baseline algorithms.

  13. Geological applications of machine learning on hyperspectral remote sensing data

    Science.gov (United States)

    Tse, C. H.; Li, Yi-liang; Lam, Edmund Y.

    2015-02-01

    The CRISM imaging spectrometer orbiting Mars has been producing a vast amount of data in the visible to infrared wavelengths in the form of hyperspectral data cubes. These data, compared with those obtained from previous remote sensing techniques, yield an unprecedented level of detailed spectral resolution in additional to an ever increasing level of spatial information. A major challenge brought about by the data is the burden of processing and interpreting these datasets and extract the relevant information from it. This research aims at approaching the challenge by exploring machine learning methods especially unsupervised learning to achieve cluster density estimation and classification, and ultimately devising an efficient means leading to identification of minerals. A set of software tools have been constructed by Python to access and experiment with CRISM hyperspectral cubes selected from two specific Mars locations. A machine learning pipeline is proposed and unsupervised learning methods were implemented onto pre-processed datasets. The resulting data clusters are compared with the published ASTER spectral library and browse data products from the Planetary Data System (PDS). The result demonstrated that this approach is capable of processing the huge amount of hyperspectral data and potentially providing guidance to scientists for more detailed studies.

  14. Support vector machines applications

    CERN Document Server

    Guo, Guodong

    2014-01-01

    Support vector machines (SVM) have both a solid mathematical background and good performance in practical applications. This book focuses on the recent advances and applications of the SVM in different areas, such as image processing, medical practice, computer vision, pattern recognition, machine learning, applied statistics, business intelligence, and artificial intelligence. The aim of this book is to create a comprehensive source on support vector machine applications, especially some recent advances.

  15. Machine Learning Identification of Protein Properties Useful for Specific Applications

    KAUST Repository

    Khamis, Abdullah

    2016-03-31

    Proteins play critical roles in cellular processes of living organisms. It is therefore important to identify and characterize their key properties associated with their functions. Correlating protein’s structural, sequence and physicochemical properties of its amino acids (aa) with protein functions could identify some of the critical factors governing the specific functionality. We point out that not all functions of even well studied proteins are known. This, complemented by the huge increase in the number of newly discovered and predicted proteins, makes challenging the experimental characterization of the whole spectrum of possible protein functions for all proteins of interest. Consequently, the use of computational methods has become more attractive. Here we address two questions. The first one is how to use protein aa sequence and physicochemical properties to characterize a family of proteins. The second one focuses on how to use transcription factor (TF) protein’s domains to enhance accuracy of predicting TF DNA binding sites (TFBSs). To address the first question, we developed a novel method using computational representation of proteins based on characteristics of different protein regions (N-terminal, M-region and C-terminal) and combined these with the properties of protein aa sequences. We show that this description provides important biological insight about characterization of the protein functional groups. Using feature selection techniques, we identified key properties of proteins that allow for very accurate characterization of different protein families. We demonstrated efficiency of our method in application to a number of antimicrobial peptide families. To address the second question we developed another novel method that uses a combination of aa properties of DNA binding domains of TFs and their TFBS properties to develop machine learning models for predicting TFBSs. Feature selection is used to identify the most relevant characteristics

  16. Application of Machine Learning Approaches for Protein-protein Interactions Prediction.

    Science.gov (United States)

    Zhang, Mengying; Su, Qiang; Lu, Yi; Zhao, Manman; Niu, Bing

    2017-01-01

    Proteomics endeavors to study the structures, functions and interactions of proteins. Information of the protein-protein interactions (PPIs) helps to improve our knowledge of the functions and the 3D structures of proteins. Thus determining the PPIs is essential for the study of the proteomics. In this review, in order to study the application of machine learning in predicting PPI, some machine learning approaches such as support vector machine (SVM), artificial neural networks (ANNs) and random forest (RF) were selected, and the examples of its applications in PPIs were listed. SVM and RF are two commonly used methods. Nowadays, more researchers predict PPIs by combining more than two methods. This review presents the application of machine learning approaches in predicting PPI. Many examples of success in identification and prediction in the area of PPI prediction have been discussed, and the PPIs research is still in progress. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. APPLICATION OF MACHINE LEARNING TO THE PREDICTION OF VEGETATION HEALTH

    Directory of Open Access Journals (Sweden)

    E. Burchfield

    2016-06-01

    Full Text Available This project applies machine learning techniques to remotely sensed imagery to train and validate predictive models of vegetation health in Bangladesh and Sri Lanka. For both locations, we downloaded and processed eleven years of imagery from multiple MODIS datasets which were combined and transformed into two-dimensional matrices. We applied a gradient boosted machines model to the lagged dataset values to forecast future values of the Enhanced Vegetation Index (EVI. The predictive power of raw spectral data MODIS products were compared across time periods and land use categories. Our models have significantly more predictive power on held-out datasets than a baseline. Though the tool was built to increase capacity to monitor vegetation health in data scarce regions like South Asia, users may include ancillary spatiotemporal datasets relevant to their region of interest to increase predictive power and to facilitate interpretation of model results. The tool can automatically update predictions as new MODIS data is made available by NASA. The tool is particularly well-suited for decision makers interested in understanding and predicting vegetation health dynamics in countries in which environmental data is scarce and cloud cover is a significant concern.

  18. Application of Machine Learning to the Prediction of Vegetation Health

    Science.gov (United States)

    Burchfield, Emily; Nay, John J.; Gilligan, Jonathan

    2016-06-01

    This project applies machine learning techniques to remotely sensed imagery to train and validate predictive models of vegetation health in Bangladesh and Sri Lanka. For both locations, we downloaded and processed eleven years of imagery from multiple MODIS datasets which were combined and transformed into two-dimensional matrices. We applied a gradient boosted machines model to the lagged dataset values to forecast future values of the Enhanced Vegetation Index (EVI). The predictive power of raw spectral data MODIS products were compared across time periods and land use categories. Our models have significantly more predictive power on held-out datasets than a baseline. Though the tool was built to increase capacity to monitor vegetation health in data scarce regions like South Asia, users may include ancillary spatiotemporal datasets relevant to their region of interest to increase predictive power and to facilitate interpretation of model results. The tool can automatically update predictions as new MODIS data is made available by NASA. The tool is particularly well-suited for decision makers interested in understanding and predicting vegetation health dynamics in countries in which environmental data is scarce and cloud cover is a significant concern.

  19. Soft computing in machine learning

    CERN Document Server

    Park, Jooyoung; Inoue, Atsushi

    2014-01-01

    As users or consumers are now demanding smarter devices, intelligent systems are revolutionizing by utilizing machine learning. Machine learning as part of intelligent systems is already one of the most critical components in everyday tools ranging from search engines and credit card fraud detection to stock market analysis. You can train machines to perform some things, so that they can automatically detect, diagnose, and solve a variety of problems. The intelligent systems have made rapid progress in developing the state of the art in machine learning based on smart and deep perception. Using machine learning, the intelligent systems make widely applications in automated speech recognition, natural language processing, medical diagnosis, bioinformatics, and robot locomotion. This book aims at introducing how to treat a substantial amount of data, to teach machines and to improve decision making models. And this book specializes in the developments of advanced intelligent systems through machine learning. It...

  20. Machine Learning for Security

    CERN Document Server

    CERN. Geneva

    2015-01-01

    Applied statistics, aka ‘Machine Learning’, offers a wealth of techniques for answering security questions. It’s a much hyped topic in the big data world, with many companies now providing machine learning as a service. This talk will demystify these techniques, explain the math, and demonstrate their application to security problems. The presentation will include how-to’s on classifying malware, looking into encrypted tunnels, and finding botnets in DNS data. About the speaker Josiah is a security researcher with HP TippingPoint DVLabs Research Group. He has over 15 years of professional software development experience. Josiah used to do AI, with work focused on graph theory, search, and deductive inference on large knowledge bases. As rules only get you so far, he moved from AI to using machine learning techniques identifying failure modes in email traffic. There followed digressions into clustered data storage and later integrated control systems. Current ...

  1. e-Learning Application for Machine Maintenance Process using Iterative Method in XYZ Company

    Science.gov (United States)

    Nurunisa, Suaidah; Kurniawati, Amelia; Pramuditya Soesanto, Rayinda; Yunan Kurnia Septo Hediyanto, Umar

    2016-02-01

    XYZ Company is a company based on manufacturing part for airplane, one of the machine that is categorized as key facility in the company is Millac 5H6P. As a key facility, the machines should be assured to work well and in peak condition, therefore, maintenance process is needed periodically. From the data gathering, it is known that there are lack of competency from the maintenance staff to maintain different type of machine which is not assigned by the supervisor, this indicate that knowledge which possessed by maintenance staff are uneven. The purpose of this research is to create knowledge-based e-learning application as a realization from externalization process in knowledge transfer process to maintain the machine. The application feature are adjusted for maintenance purpose using e-learning framework for maintenance process, the content of the application support multimedia for learning purpose. QFD is used in this research to understand the needs from user. The application is built using moodle with iterative method for software development cycle and UML Diagram. The result from this research is e-learning application as sharing knowledge media for maintenance staff in the company. From the test, it is known that the application make maintenance staff easy to understand the competencies.

  2. Human Machine Learning Symbiosis

    Science.gov (United States)

    Walsh, Kenneth R.; Hoque, Md Tamjidul; Williams, Kim H.

    2017-01-01

    Human Machine Learning Symbiosis is a cooperative system where both the human learner and the machine learner learn from each other to create an effective and efficient learning environment adapted to the needs of the human learner. Such a system can be used in online learning modules so that the modules adapt to each learner's learning state both…

  3. Quantum machine learning.

    Science.gov (United States)

    Biamonte, Jacob; Wittek, Peter; Pancotti, Nicola; Rebentrost, Patrick; Wiebe, Nathan; Lloyd, Seth

    2017-09-13

    Fuelled by increasing computer power and algorithmic advances, machine learning techniques have become powerful tools for finding patterns in data. Quantum systems produce atypical patterns that classical systems are thought not to produce efficiently, so it is reasonable to postulate that quantum computers may outperform classical computers on machine learning tasks. The field of quantum machine learning explores how to devise and implement quantum software that could enable machine learning that is faster than that of classical computers. Recent work has produced quantum algorithms that could act as the building blocks of machine learning programs, but the hardware and software challenges are still considerable.

  4. Of Genes and Machines: application of a combination of machine learning tools to astronomy datasets

    CERN Document Server

    Heinis, S; Gezari, S; Burgett, W S; Chambers, K C; Draper, P W; Flewelling, H; Kaiser, N; Magnier, E A; Metcalfe, N; Waters, C

    2016-01-01

    We apply a combination of a Genetic Algorithms (GA) and Support Vector Machines (SVM) machine learning algorithm to solve two important problems faced by the astronomical community: star/galaxy separation, and photometric redshift estimation of galaxies in survey catalogs. We use the GA to select the relevant features in the first step, followed by optimization of SVM parameters in the second step to obtain an optimal set of parameters to classify or regress, in process of which we avoid over-fitting. We apply our method to star/galaxy separation in Pan-STARRS1 data. We show that our method correctly classifies 98% of objects down to i_P1= 24.5, with a completeness (or true positive rate) of 99% for galaxies, and 88% for stars. By combining colors with morphology, our star/classification method yields better results than the new SExtractor classifier spread_model in particular at the faint end (i_P1>22). We also use our method to derive photometric redshifts for galaxies in the COSMOS bright multi-wavelength ...

  5. Social media research: The application of supervised machine learning in organizational communication research

    NARCIS (Netherlands)

    van Zoonen, W.; van der Meer, T.G.L.A.

    2016-01-01

    Despite the online availability of data, analysis of this information in academic research is arduous. This article explores the application of supervised machine learning (SML) to overcome challenges associated with online data analysis. In SML classifiers are used to categorize and code binary dat

  6. Application of Machine Learning to Proteomics Data: Classification and Biomarker Identification in Postgenomics Biology

    Science.gov (United States)

    Swan, Anna Louise; Mobasheri, Ali; Allaway, David; Liddell, Susan

    2013-01-01

    Abstract Mass spectrometry is an analytical technique for the characterization of biological samples and is increasingly used in omics studies because of its targeted, nontargeted, and high throughput abilities. However, due to the large datasets generated, it requires informatics approaches such as machine learning techniques to analyze and interpret relevant data. Machine learning can be applied to MS-derived proteomics data in two ways. First, directly to mass spectral peaks and second, to proteins identified by sequence database searching, although relative protein quantification is required for the latter. Machine learning has been applied to mass spectrometry data from different biological disciplines, particularly for various cancers. The aims of such investigations have been to identify biomarkers and to aid in diagnosis, prognosis, and treatment of specific diseases. This review describes how machine learning has been applied to proteomics tandem mass spectrometry data. This includes how it can be used to identify proteins suitable for use as biomarkers of disease and for classification of samples into disease or treatment groups, which may be applicable for diagnostics. It also includes the challenges faced by such investigations, such as prediction of proteins present, protein quantification, planning for the use of machine learning, and small sample sizes. PMID:24116388

  7. Application of artificial neural network with extreme learning machine for economic growth estimation

    Science.gov (United States)

    Milačić, Ljubiša; Jović, Srđan; Vujović, Tanja; Miljković, Jovica

    2017-01-01

    The purpose of this research is to develop and apply the artificial neural network (ANN) with extreme learning machine (ELM) to forecast gross domestic product (GDP) growth rate. The economic growth forecasting was analyzed based on agriculture, manufacturing, industry and services value added in GDP. The results were compared with ANN with back propagation (BP) learning approach since BP could be considered as conventional learning methodology. The reliability of the computational models was accessed based on simulation results and using several statistical indicators. Based on results, it was shown that ANN with ELM learning methodology can be applied effectively in applications of GDP forecasting.

  8. Machine learning with R

    CERN Document Server

    Lantz, Brett

    2013-01-01

    Written as a tutorial to explore and understand the power of R for machine learning. This practical guide that covers all of the need to know topics in a very systematic way. For each machine learning approach, each step in the process is detailed, from preparing the data for analysis to evaluating the results. These steps will build the knowledge you need to apply them to your own data science tasks.Intended for those who want to learn how to use R's machine learning capabilities and gain insight from your data. Perhaps you already know a bit about machine learning, but have never used R; or

  9. Machine learning in virtual screening.

    Science.gov (United States)

    Melville, James L; Burke, Edmund K; Hirst, Jonathan D

    2009-05-01

    In this review, we highlight recent applications of machine learning to virtual screening, focusing on the use of supervised techniques to train statistical learning algorithms to prioritize databases of molecules as active against a particular protein target. Both ligand-based similarity searching and structure-based docking have benefited from machine learning algorithms, including naïve Bayesian classifiers, support vector machines, neural networks, and decision trees, as well as more traditional regression techniques. Effective application of these methodologies requires an appreciation of data preparation, validation, optimization, and search methodologies, and we also survey developments in these areas.

  10. Microsoft Azure machine learning

    CERN Document Server

    Mund, Sumit

    2015-01-01

    The book is intended for those who want to learn how to use Azure Machine Learning. Perhaps you already know a bit about Machine Learning, but have never used ML Studio in Azure; or perhaps you are an absolute newbie. In either case, this book will get you up-and-running quickly.

  11. Pattern recognition & machine learning

    CERN Document Server

    Anzai, Y

    1992-01-01

    This is the first text to provide a unified and self-contained introduction to visual pattern recognition and machine learning. It is useful as a general introduction to artifical intelligence and knowledge engineering, and no previous knowledge of pattern recognition or machine learning is necessary. Basic for various pattern recognition and machine learning methods. Translated from Japanese, the book also features chapter exercises, keywords, and summaries.

  12. Clustering and Candidate Motif Detection in Exosomal miRNAs by Application of Machine Learning Algorithms.

    Science.gov (United States)

    Gaur, Pallavi; Chaturvedi, Anoop

    2017-07-22

    The clustering pattern and motifs give immense information about any biological data. An application of machine learning algorithms for clustering and candidate motif detection in miRNAs derived from exosomes is depicted in this paper. Recent progress in the field of exosome research and more particularly regarding exosomal miRNAs has led much bioinformatic-based research to come into existence. The information on clustering pattern and candidate motifs in miRNAs of exosomal origin would help in analyzing existing, as well as newly discovered miRNAs within exosomes. Along with obtaining clustering pattern and candidate motifs in exosomal miRNAs, this work also elaborates the usefulness of the machine learning algorithms that can be efficiently used and executed on various programming languages/platforms. Data were clustered and sequence candidate motifs were detected successfully. The results were compared and validated with some available web tools such as 'BLASTN' and 'MEME suite'. The machine learning algorithms for aforementioned objectives were applied successfully. This work elaborated utility of machine learning algorithms and language platforms to achieve the tasks of clustering and candidate motif detection in exosomal miRNAs. With the information on mentioned objectives, deeper insight would be gained for analyses of newly discovered miRNAs in exosomes which are considered to be circulating biomarkers. In addition, the execution of machine learning algorithms on various language platforms gives more flexibility to users to try multiple iterations according to their requirements. This approach can be applied to other biological data-mining tasks as well.

  13. Machine learning with R

    CERN Document Server

    Lantz, Brett

    2015-01-01

    Perhaps you already know a bit about machine learning but have never used R, or perhaps you know a little R but are new to machine learning. In either case, this book will get you up and running quickly. It would be helpful to have a bit of familiarity with basic programming concepts, but no prior experience is required.

  14. Learning thermodynamics with Boltzmann machines

    Science.gov (United States)

    Torlai, Giacomo; Melko, Roger G.

    2016-10-01

    A Boltzmann machine is a stochastic neural network that has been extensively used in the layers of deep architectures for modern machine learning applications. In this paper, we develop a Boltzmann machine that is capable of modeling thermodynamic observables for physical systems in thermal equilibrium. Through unsupervised learning, we train the Boltzmann machine on data sets constructed with spin configurations importance sampled from the partition function of an Ising Hamiltonian at different temperatures using Monte Carlo (MC) methods. The trained Boltzmann machine is then used to generate spin states, for which we compare thermodynamic observables to those computed by direct MC sampling. We demonstrate that the Boltzmann machine can faithfully reproduce the observables of the physical system. Further, we observe that the number of neurons required to obtain accurate results increases as the system is brought close to criticality.

  15. Machine Learning for Hackers

    CERN Document Server

    Conway, Drew

    2012-01-01

    If you're an experienced programmer interested in crunching data, this book will get you started with machine learning-a toolkit of algorithms that enables computers to train themselves to automate useful tasks. Authors Drew Conway and John Myles White help you understand machine learning and statistics tools through a series of hands-on case studies, instead of a traditional math-heavy presentation. Each chapter focuses on a specific problem in machine learning, such as classification, prediction, optimization, and recommendation. Using the R programming language, you'll learn how to analyz

  16. Active Learning for Transductive Support Vector Machines with Applications to Text Classification

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    This paper presents a novel active learning approach for transductive support vector machines with applications to text classification. The concept of the centroid of the support vectors is proposed so that the selective sampling based on measuring the distance from the unlabeled samples to the centroid is feasible and simple to compute. With additional hypothesis, active learning offers better performance with comparison to regular inductive SVMs and transductive SVMs with random sampling,and it is even competitive to transductive SVMs on all available training data. Experimental results prove that our approach is efficient and easy to implement.

  17. Nondegenerate piecewise linear systems: a finite Newton algorithm and applications in machine learning.

    Science.gov (United States)

    Yuan, Xiao-Tong; Yan, Shuicheng

    2012-04-01

    We investigate Newton-type optimization methods for solving piecewise linear systems (PLSs) with nondegenerate coefficient matrix. Such systems arise, for example, from the numerical solution of linear complementarity problem, which is useful to model several learning and optimization problems. In this letter, we propose an effective damped Newton method, PLS-DN, to find the exact (up to machine precision) solution of nondegenerate PLSs. PLS-DN exhibits provable semiiterative property, that is, the algorithm converges globally to the exact solution in a finite number of iterations. The rate of convergence is shown to be at least linear before termination. We emphasize the applications of our method in modeling, from a novel perspective of PLSs, some statistical learning problems such as box-constrained least squares, elitist Lasso (Kowalski & Torreesani, 2008), and support vector machines (Cortes & Vapnik, 1995). Numerical results on synthetic and benchmark data sets are presented to demonstrate the effectiveness and efficiency of PLS-DN on these problems.

  18. Learning scikit-learn machine learning in Python

    CERN Document Server

    Garreta, Raúl

    2013-01-01

    The book adopts a tutorial-based approach to introduce the user to Scikit-learn.If you are a programmer who wants to explore machine learning and data-based methods to build intelligent applications and enhance your programming skills, this the book for you. No previous experience with machine-learning algorithms is required.

  19. Emerging Paradigms in Machine Learning

    CERN Document Server

    Jain, Lakhmi; Howlett, Robert

    2013-01-01

    This  book presents fundamental topics and algorithms that form the core of machine learning (ML) research, as well as emerging paradigms in intelligent system design. The  multidisciplinary nature of machine learning makes it a very fascinating and popular area for research.  The book is aiming at students, practitioners and researchers and captures the diversity and richness of the field of machine learning and intelligent systems.  Several chapters are devoted to computational learning models such as granular computing, rough sets and fuzzy sets An account of applications of well-known learning methods in biometrics, computational stylistics, multi-agent systems, spam classification including an extremely well-written survey on Bayesian networks shed light on the strengths and weaknesses of the methods. Practical studies yielding insight into challenging problems such as learning from incomplete and imbalanced data, pattern recognition of stochastic episodic events and on-line mining of non-stationary ...

  20. Fast learning method for convolutional neural networks using extreme learning machine and its application to lane detection.

    Science.gov (United States)

    Kim, Jihun; Kim, Jonghong; Jang, Gil-Jin; Lee, Minho

    2017-03-01

    Deep learning has received significant attention recently as a promising solution to many problems in the area of artificial intelligence. Among several deep learning architectures, convolutional neural networks (CNNs) demonstrate superior performance when compared to other machine learning methods in the applications of object detection and recognition. We use a CNN for image enhancement and the detection of driving lanes on motorways. In general, the process of lane detection consists of edge extraction and line detection. A CNN can be used to enhance the input images before lane detection by excluding noise and obstacles that are irrelevant to the edge detection result. However, training conventional CNNs requires considerable computation and a big dataset. Therefore, we suggest a new learning algorithm for CNNs using an extreme learning machine (ELM). The ELM is a fast learning method used to calculate network weights between output and hidden layers in a single iteration and thus, can dramatically reduce learning time while producing accurate results with minimal training data. A conventional ELM can be applied to networks with a single hidden layer; as such, we propose a stacked ELM architecture in the CNN framework. Further, we modify the backpropagation algorithm to find the targets of hidden layers and effectively learn network weights while maintaining performance. Experimental results confirm that the proposed method is effective in reducing learning time and improving performance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Learning with Support Vector Machines

    CERN Document Server

    Campbell, Colin

    2010-01-01

    Support Vectors Machines have become a well established tool within machine learning. They work well in practice and have now been used across a wide range of applications from recognizing hand-written digits, to face identification, text categorisation, bioinformatics, and database marketing. In this book we give an introductory overview of this subject. We start with a simple Support Vector Machine for performing binary classification before considering multi-class classification and learning in the presence of noise. We show that this framework can be extended to many other scenarios such a

  2. Extreme Learning Machines on High Dimensional and Large Data Applications: A Survey

    Directory of Open Access Journals (Sweden)

    Jiuwen Cao

    2015-01-01

    Full Text Available Extreme learning machine (ELM has been developed for single hidden layer feedforward neural networks (SLFNs. In ELM algorithm, the connections between the input layer and the hidden neurons are randomly assigned and remain unchanged during the learning process. The output connections are then tuned via minimizing the cost function through a linear system. The computational burden of ELM has been significantly reduced as the only cost is solving a linear system. The low computational complexity attracted a great deal of attention from the research community, especially for high dimensional and large data applications. This paper provides an up-to-date survey on the recent developments of ELM and its applications in high dimensional and large data. Comprehensive reviews on image processing, video processing, medical signal processing, and other popular large data applications with ELM are presented in the paper.

  3. Complex extreme learning machine applications in terahertz pulsed signals feature sets.

    Science.gov (United States)

    Yin, X-X; Hadjiloucas, S; Zhang, Y

    2014-11-01

    This paper presents a novel approach to the automatic classification of very large data sets composed of terahertz pulse transient signals, highlighting their potential use in biochemical, biomedical, pharmaceutical and security applications. Two different types of THz spectra are considered in the classification process. Firstly a binary classification study of poly-A and poly-C ribonucleic acid samples is performed. This is then contrasted with a difficult multi-class classification problem of spectra from six different powder samples that although have fairly indistinguishable features in the optical spectrum, they also possess a few discernable spectral features in the terahertz part of the spectrum. Classification is performed using a complex-valued extreme learning machine algorithm that takes into account features in both the amplitude as well as the phase of the recorded spectra. Classification speed and accuracy are contrasted with that achieved using a support vector machine classifier. The study systematically compares the classifier performance achieved after adopting different Gaussian kernels when separating amplitude and phase signatures. The two signatures are presented as feature vectors for both training and testing purposes. The study confirms the utility of complex-valued extreme learning machine algorithms for classification of the very large data sets generated with current terahertz imaging spectrometers. The classifier can take into consideration heterogeneous layers within an object as would be required within a tomographic setting and is sufficiently robust to detect patterns hidden inside noisy terahertz data sets. The proposed study opens up the opportunity for the establishment of complex-valued extreme learning machine algorithms as new chemometric tools that will assist the wider proliferation of terahertz sensing technology for chemical sensing, quality control, security screening and clinic diagnosis. Furthermore, the proposed

  4. mlpy: Machine Learning Python

    CERN Document Server

    Albanese, Davide; Merler, Stefano; Riccadonna, Samantha; Jurman, Giuseppe; Furlanello, Cesare

    2012-01-01

    mlpy is a Python Open Source Machine Learning library built on top of NumPy/SciPy and the GNU Scientific Libraries. mlpy provides a wide range of state-of-the-art machine learning methods for supervised and unsupervised problems and it is aimed at finding a reasonable compromise among modularity, maintainability, reproducibility, usability and efficiency. mlpy is multiplatform, it works with Python 2 and 3 and it is distributed under GPL3 at the website http://mlpy.fbk.eu.

  5. mlpy: Machine Learning Python

    OpenAIRE

    Albanese, Davide; Visintainer, Roberto; Merler, Stefano; Riccadonna, Samantha; Jurman, Giuseppe; Furlanello, Cesare

    2012-01-01

    mlpy is a Python Open Source Machine Learning library built on top of NumPy/SciPy and the GNU Scientific Libraries. mlpy provides a wide range of state-of-the-art machine learning methods for supervised and unsupervised problems and it is aimed at finding a reasonable compromise among modularity, maintainability, reproducibility, usability and efficiency. mlpy is multiplatform, it works with Python 2 and 3 and it is distributed under GPL3 at the website http://mlpy.fbk.eu.

  6. Machine learning for medical images analysis.

    Science.gov (United States)

    Criminisi, A

    2016-10-01

    This article discusses the application of machine learning for the analysis of medical images. Specifically: (i) We show how a special type of learning models can be thought of as automatically optimized, hierarchically-structured, rule-based algorithms, and (ii) We discuss how the issue of collecting large labelled datasets applies to both conventional algorithms as well as machine learning techniques. The size of the training database is a function of model complexity rather than a characteristic of machine learning methods.

  7. Machine learning in genetics and genomics

    Science.gov (United States)

    Libbrecht, Maxwell W.; Noble, William Stafford

    2016-01-01

    The field of machine learning promises to enable computers to assist humans in making sense of large, complex data sets. In this review, we outline some of the main applications of machine learning to genetic and genomic data. In the process, we identify some recurrent challenges associated with this type of analysis and provide general guidelines to assist in the practical application of machine learning to real genetic and genomic data. PMID:25948244

  8. SMARTbot: A Behavioral Analysis Framework Augmented with Machine Learning to Identify Mobile Botnet Applications.

    Directory of Open Access Journals (Sweden)

    Ahmad Karim

    Full Text Available Botnet phenomenon in smartphones is evolving with the proliferation in mobile phone technologies after leaving imperative impact on personal computers. It refers to the network of computers, laptops, mobile devices or tablets which is remotely controlled by the cybercriminals to initiate various distributed coordinated attacks including spam emails, ad-click fraud, Bitcoin mining, Distributed Denial of Service (DDoS, disseminating other malwares and much more. Likewise traditional PC based botnet, Mobile botnets have the same operational impact except the target audience is particular to smartphone users. Therefore, it is import to uncover this security issue prior to its widespread adaptation. We propose SMARTbot, a novel dynamic analysis framework augmented with machine learning techniques to automatically detect botnet binaries from malicious corpus. SMARTbot is a component based off-device behavioral analysis framework which can generate mobile botnet learning model by inducing Artificial Neural Networks' back-propagation method. Moreover, this framework can detect mobile botnet binaries with remarkable accuracy even in case of obfuscated program code. The results conclude that, a classifier model based on simple logistic regression outperform other machine learning classifier for botnet apps' detection, i.e 99.49% accuracy is achieved. Further, from manual inspection of botnet dataset we have extracted interesting trends in those applications. As an outcome of this research, a mobile botnet dataset is devised which will become the benchmark for future studies.

  9. Application of machine learning methodology for PET-based definition of lung cancer.

    Science.gov (United States)

    Kerhet, A; Small, C; Quon, H; Riauka, T; Schrader, L; Greiner, R; Yee, D; McEwan, A; Roa, W

    2010-02-01

    We applied a learning methodology framework to assist in the threshold-based segmentation of non-small-cell lung cancer (NSCLC) tumours in positron-emission tomography-computed tomography (PET-CT) imaging for use in radiotherapy planning. Gated and standard free-breathing studies of two patients were independently analysed (four studies in total). Each study had a pet-ct and a treatment-planning ct image. The reference gross tumour volume (GTV) was identified by two experienced radiation oncologists who also determined reference standardized uptake value (SUV) thresholds that most closely approximated the GTV contour on each slice. A set of uptake distribution-related attributes was calculated for each PET slice. A machine learning algorithm was trained on a subset of the PET slices to cope with slice-to-slice variation in the optimal suv threshold: that is, to predict the most appropriate suv threshold from the calculated attributes for each slice. The algorithm's performance was evaluated using the remainder of the pet slices. A high degree of geometric similarity was achieved between the areas outlined by the predicted and the reference SUV thresholds (Jaccard index exceeding 0.82). No significant difference was found between the gated and the free-breathing results in the same patient. In this preliminary work, we demonstrated the potential applicability of a machine learning methodology as an auxiliary tool for radiation treatment planning in NSCLC.

  10. Application of machine learning methodology for pet-based definition of lung cancer

    Science.gov (United States)

    Kerhet, A.; Small, C.; Quon, H.; Riauka, T.; Schrader, L.; Greiner, R.; Yee, D.; McEwan, A.; Roa, W.

    2010-01-01

    We applied a learning methodology framework to assist in the threshold-based segmentation of non-small-cell lung cancer (nsclc) tumours in positron-emission tomography–computed tomography (pet–ct) imaging for use in radiotherapy planning. Gated and standard free-breathing studies of two patients were independently analysed (four studies in total). Each study had a pet–ct and a treatment-planning ct image. The reference gross tumour volume (gtv) was identified by two experienced radiation oncologists who also determined reference standardized uptake value (suv) thresholds that most closely approximated the gtv contour on each slice. A set of uptake distribution-related attributes was calculated for each pet slice. A machine learning algorithm was trained on a subset of the pet slices to cope with slice-to-slice variation in the optimal suv threshold: that is, to predict the most appropriate suv threshold from the calculated attributes for each slice. The algorithm’s performance was evaluated using the remainder of the pet slices. A high degree of geometric similarity was achieved between the areas outlined by the predicted and the reference suv thresholds (Jaccard index exceeding 0.82). No significant difference was found between the gated and the free-breathing results in the same patient. In this preliminary work, we demonstrated the potential applicability of a machine learning methodology as an auxiliary tool for radiation treatment planning in nsclc. PMID:20179802

  11. SMARTbot: A Behavioral Analysis Framework Augmented with Machine Learning to Identify Mobile Botnet Applications

    Science.gov (United States)

    Karim, Ahmad; Salleh, Rosli; Khan, Muhammad Khurram

    2016-01-01

    Botnet phenomenon in smartphones is evolving with the proliferation in mobile phone technologies after leaving imperative impact on personal computers. It refers to the network of computers, laptops, mobile devices or tablets which is remotely controlled by the cybercriminals to initiate various distributed coordinated attacks including spam emails, ad-click fraud, Bitcoin mining, Distributed Denial of Service (DDoS), disseminating other malwares and much more. Likewise traditional PC based botnet, Mobile botnets have the same operational impact except the target audience is particular to smartphone users. Therefore, it is import to uncover this security issue prior to its widespread adaptation. We propose SMARTbot, a novel dynamic analysis framework augmented with machine learning techniques to automatically detect botnet binaries from malicious corpus. SMARTbot is a component based off-device behavioral analysis framework which can generate mobile botnet learning model by inducing Artificial Neural Networks’ back-propagation method. Moreover, this framework can detect mobile botnet binaries with remarkable accuracy even in case of obfuscated program code. The results conclude that, a classifier model based on simple logistic regression outperform other machine learning classifier for botnet apps’ detection, i.e 99.49% accuracy is achieved. Further, from manual inspection of botnet dataset we have extracted interesting trends in those applications. As an outcome of this research, a mobile botnet dataset is devised which will become the benchmark for future studies. PMID:26978523

  12. SMARTbot: A Behavioral Analysis Framework Augmented with Machine Learning to Identify Mobile Botnet Applications.

    Science.gov (United States)

    Karim, Ahmad; Salleh, Rosli; Khan, Muhammad Khurram

    2016-01-01

    Botnet phenomenon in smartphones is evolving with the proliferation in mobile phone technologies after leaving imperative impact on personal computers. It refers to the network of computers, laptops, mobile devices or tablets which is remotely controlled by the cybercriminals to initiate various distributed coordinated attacks including spam emails, ad-click fraud, Bitcoin mining, Distributed Denial of Service (DDoS), disseminating other malwares and much more. Likewise traditional PC based botnet, Mobile botnets have the same operational impact except the target audience is particular to smartphone users. Therefore, it is import to uncover this security issue prior to its widespread adaptation. We propose SMARTbot, a novel dynamic analysis framework augmented with machine learning techniques to automatically detect botnet binaries from malicious corpus. SMARTbot is a component based off-device behavioral analysis framework which can generate mobile botnet learning model by inducing Artificial Neural Networks' back-propagation method. Moreover, this framework can detect mobile botnet binaries with remarkable accuracy even in case of obfuscated program code. The results conclude that, a classifier model based on simple logistic regression outperform other machine learning classifier for botnet apps' detection, i.e 99.49% accuracy is achieved. Further, from manual inspection of botnet dataset we have extracted interesting trends in those applications. As an outcome of this research, a mobile botnet dataset is devised which will become the benchmark for future studies.

  13. Machine Learning with Distances

    Science.gov (United States)

    2015-02-16

    and demonstrated their usefulness in experiments. 1 Introduction The goal of machine learning is to find useful knowledge behind data. Many machine...212, 172]. However, direct divergence approximators still suffer from the curse of dimensionality. A possible cure for this problem is to combine them...obtain the global optimal solution or even a good local solution without any prior knowledge . For this reason, we decided to introduce the unit-norm

  14. Improved Extreme Learning Machine and Its Application in Image Quality Assessment

    Directory of Open Access Journals (Sweden)

    Li Mao

    2014-01-01

    Full Text Available Extreme learning machine (ELM is a new class of single-hidden layer feedforward neural network (SLFN, which is simple in theory and fast in implementation. Zong et al. propose a weighted extreme learning machine for learning data with imbalanced class distribution, which maintains the advantages from original ELM. However, the current reported ELM and its improved version are only based on the empirical risk minimization principle, which may suffer from overfitting. To solve the overfitting troubles, in this paper, we incorporate the structural risk minimization principle into the (weighted ELM, and propose a modified (weighted extreme learning machine (M-ELM and M-WELM. Experimental results show that our proposed M-WELM outperforms the current reported extreme learning machine algorithm in image quality assessment.

  15. Automatic classification of written descriptions by healthy adults: An overview of the application of natural language processing and machine learning techniques to clinical discourse analysis

    National Research Council Canada - National Science Library

    Toledo, Cíntia Matsuda; Cunha, Andre; Scarton, Carolina; Aluísio, Sandra

    2014-01-01

    .... A pioneering application of machine learning methods using Brazilian Portuguese for clinical purposes is described, highlighting education as an important variable in the Brazilian scenario.OBJECTIVE...

  16. Machine Learning Markets

    CERN Document Server

    Storkey, Amos

    2011-01-01

    Prediction markets show considerable promise for developing flexible mechanisms for machine learning. Here, machine learning markets for multivariate systems are defined, and a utility-based framework is established for their analysis. This differs from the usual approach of defining static betting functions. It is shown that such markets can implement model combination methods used in machine learning, such as product of expert and mixture of expert approaches as equilibrium pricing models, by varying agent utility functions. They can also implement models composed of local potentials, and message passing methods. Prediction markets also allow for more flexible combinations, by combining multiple different utility functions. Conversely, the market mechanisms implement inference in the relevant probabilistic models. This means that market mechanism can be utilized for implementing parallelized model building and inference for probabilistic modelling.

  17. Machine Learning in Medicine.

    Science.gov (United States)

    Deo, Rahul C

    2015-11-17

    Spurred by advances in processing power, memory, storage, and an unprecedented wealth of data, computers are being asked to tackle increasingly complex learning tasks, often with astonishing success. Computers have now mastered a popular variant of poker, learned the laws of physics from experimental data, and become experts in video games - tasks that would have been deemed impossible not too long ago. In parallel, the number of companies centered on applying complex data analysis to varying industries has exploded, and it is thus unsurprising that some analytic companies are turning attention to problems in health care. The purpose of this review is to explore what problems in medicine might benefit from such learning approaches and use examples from the literature to introduce basic concepts in machine learning. It is important to note that seemingly large enough medical data sets and adequate learning algorithms have been available for many decades, and yet, although there are thousands of papers applying machine learning algorithms to medical data, very few have contributed meaningfully to clinical care. This lack of impact stands in stark contrast to the enormous relevance of machine learning to many other industries. Thus, part of my effort will be to identify what obstacles there may be to changing the practice of medicine through statistical learning approaches, and discuss how these might be overcome.

  18. Deep Convolutional Extreme Learning Machine and Its Application in Handwritten Digit Classification.

    Science.gov (United States)

    Pang, Shan; Yang, Xinyi

    2016-01-01

    In recent years, some deep learning methods have been developed and applied to image classification applications, such as convolutional neuron network (CNN) and deep belief network (DBN). However they are suffering from some problems like local minima, slow convergence rate, and intensive human intervention. In this paper, we propose a rapid learning method, namely, deep convolutional extreme learning machine (DC-ELM), which combines the power of CNN and fast training of ELM. It uses multiple alternate convolution layers and pooling layers to effectively abstract high level features from input images. Then the abstracted features are fed to an ELM classifier, which leads to better generalization performance with faster learning speed. DC-ELM also introduces stochastic pooling in the last hidden layer to reduce dimensionality of features greatly, thus saving much training time and computation resources. We systematically evaluated the performance of DC-ELM on two handwritten digit data sets: MNIST and USPS. Experimental results show that our method achieved better testing accuracy with significantly shorter training time in comparison with deep learning methods and other ELM methods.

  19. Deep Convolutional Extreme Learning Machine and Its Application in Handwritten Digit Classification

    Directory of Open Access Journals (Sweden)

    Shan Pang

    2016-01-01

    Full Text Available In recent years, some deep learning methods have been developed and applied to image classification applications, such as convolutional neuron network (CNN and deep belief network (DBN. However they are suffering from some problems like local minima, slow convergence rate, and intensive human intervention. In this paper, we propose a rapid learning method, namely, deep convolutional extreme learning machine (DC-ELM, which combines the power of CNN and fast training of ELM. It uses multiple alternate convolution layers and pooling layers to effectively abstract high level features from input images. Then the abstracted features are fed to an ELM classifier, which leads to better generalization performance with faster learning speed. DC-ELM also introduces stochastic pooling in the last hidden layer to reduce dimensionality of features greatly, thus saving much training time and computation resources. We systematically evaluated the performance of DC-ELM on two handwritten digit data sets: MNIST and USPS. Experimental results show that our method achieved better testing accuracy with significantly shorter training time in comparison with deep learning methods and other ELM methods.

  20. Deep Convolutional Extreme Learning Machine and Its Application in Handwritten Digit Classification

    Science.gov (United States)

    Yang, Xinyi

    2016-01-01

    In recent years, some deep learning methods have been developed and applied to image classification applications, such as convolutional neuron network (CNN) and deep belief network (DBN). However they are suffering from some problems like local minima, slow convergence rate, and intensive human intervention. In this paper, we propose a rapid learning method, namely, deep convolutional extreme learning machine (DC-ELM), which combines the power of CNN and fast training of ELM. It uses multiple alternate convolution layers and pooling layers to effectively abstract high level features from input images. Then the abstracted features are fed to an ELM classifier, which leads to better generalization performance with faster learning speed. DC-ELM also introduces stochastic pooling in the last hidden layer to reduce dimensionality of features greatly, thus saving much training time and computation resources. We systematically evaluated the performance of DC-ELM on two handwritten digit data sets: MNIST and USPS. Experimental results show that our method achieved better testing accuracy with significantly shorter training time in comparison with deep learning methods and other ELM methods. PMID:27610128

  1. Clojure for machine learning

    CERN Document Server

    Wali, Akhil

    2014-01-01

    A book that brings out the strengths of Clojure programming that have to facilitate machine learning. Each topic is described in substantial detail, and examples and libraries in Clojure are also demonstrated.This book is intended for Clojure developers who want to explore the area of machine learning. Basic understanding of the Clojure programming language is required, but thorough acquaintance with the standard Clojure library or any libraries are not required. Familiarity with theoretical concepts and notation of mathematics and statistics would be an added advantage.

  2. Mastering machine learning with scikit-learn

    CERN Document Server

    Hackeling, Gavin

    2014-01-01

    If you are a software developer who wants to learn how machine learning models work and how to apply them effectively, this book is for you. Familiarity with machine learning fundamentals and Python will be helpful, but is not essential.

  3. Supervised machine learning on a network scale: application to seismic event classification and detection

    Science.gov (United States)

    Reynen, Andrew; Audet, Pascal

    2017-09-01

    A new method using a machine learning technique is applied to event classification and detection at seismic networks. This method is applicable to a variety of network sizes and settings. The algorithm makes use of a small catalogue of known observations across the entire network. Two attributes, the polarization and frequency content, are used as input to regression. These attributes are extracted at predicted arrival times for P and S waves using only an approximate velocity model, as attributes are calculated over large time spans. This method of waveform characterization is shown to be able to distinguish between blasts and earthquakes with 99 per cent accuracy using a network of 13 stations located in Southern California. The combination of machine learning with generalized waveform features is further applied to event detection in Oklahoma, United States. The event detection algorithm makes use of a pair of unique seismic phases to locate events, with a precision directly related to the sampling rate of the generalized waveform features. Over a week of data from 30 stations in Oklahoma, United States are used to automatically detect 25 times more events than the catalogue of the local geological survey, with a false detection rate of less than 2 per cent. This method provides a highly confident way of detecting and locating events. Furthermore, a large number of seismic events can be automatically detected with low false alarm, allowing for a larger automatic event catalogue with a high degree of trust.

  4. Applications of machine learning and high-dimensional visualization in cancer detection, diagnosis, and management.

    Science.gov (United States)

    McCarthy, John F; Marx, Kenneth A; Hoffman, Patrick E; Gee, Alexander G; O'Neil, Philip; Ujwal, M L; Hotchkiss, John

    2004-05-01

    Recent technical advances in combinatorial chemistry, genomics, and proteomics have made available large databases of biological and chemical information that have the potential to dramatically improve our understanding of cancer biology at the molecular level. Such an understanding of cancer biology could have a substantial impact on how we detect, diagnose, and manage cancer cases in the clinical setting. One of the biggest challenges facing clinical oncologists is how to extract clinically useful knowledge from the overwhelming amount of raw molecular data that are currently available. In this paper, we discuss how the exploratory data analysis techniques of machine learning and high-dimensional visualization can be applied to extract clinically useful knowledge from a heterogeneous assortment of molecular data. After an introductory overview of machine learning and visualization techniques, we describe two proprietary algorithms (PURS and RadViz) that we have found to be useful in the exploratory analysis of large biological data sets. We next illustrate, by way of three examples, the applicability of these techniques to cancer detection, diagnosis, and management using three very different types of molecular data. We first discuss the use of our exploratory analysis techniques on proteomic mass spectroscopy data for the detection of ovarian cancer. Next, we discuss the diagnostic use of these techniques on gene expression data to differentiate between squamous and adenocarcinoma of the lung. Finally, we illustrate the use of such techniques in selecting from a database of chemical compounds those most effective in managing patients with melanoma versus leukemia.

  5. The applications of machine learning algorithms in the modeling of estrogen-like chemicals.

    Science.gov (United States)

    Liu, Huanxiang; Yao, Xiaojun; Gramatica, Paola

    2009-06-01

    Increasing concern is being shown by the scientific community, government regulators, and the public about endocrine-disrupting chemicals that, in the environment, are adversely affecting human and wildlife health through a variety of mechanisms, mainly estrogen receptor-mediated mechanisms of toxicity. Because of the large number of such chemicals in the environment, there is a great need for an effective means of rapidly assessing endocrine-disrupting activity in the toxicology assessment process. When faced with the challenging task of screening large libraries of molecules for biological activity, the benefits of computational predictive models based on quantitative structure-activity relationships to identify possible estrogens become immediately obvious. Recently, in order to improve the accuracy of prediction, some machine learning techniques were introduced to build more effective predictive models. In this review we will focus our attention on some recent advances in the use of these methods in modeling estrogen-like chemicals. The advantages and disadvantages of the machine learning algorithms used in solving this problem, the importance of the validation and performance assessment of the built models as well as their applicability domains will be discussed.

  6. Trends in Machine Learning for Signal Processing

    DEFF Research Database (Denmark)

    Adali, Tulay; Miller, David J.; Diamantaras, Konstantinos I.

    2011-01-01

    By putting the accent on learning from the data and the environment, the Machine Learning for SP (MLSP) Technical Committee (TC) provides the essential bridge between the machine learning and SP communities. While the emphasis in MLSP is on learning and data-driven approaches, SP defines the main...... applications of interest, and thus the constraints and requirements on solutions, which include computational efficiency, online adaptation, and learning with limited supervision/reference data....

  7. Massively collaborative machine learning

    NARCIS (Netherlands)

    Rijn, van J.N.

    2016-01-01

    Many scientists are focussed on building models. We nearly process all information we perceive to a model. There are many techniques that enable computers to build models as well. The field of research that develops such techniques is called Machine Learning. Many research is devoted to develop comp

  8. Machine learning in image steganalysis

    CERN Document Server

    Schaathun, Hans Georg

    2012-01-01

    "The only book to look at steganalysis from the perspective of machine learning theory, and to apply the common technique of machine learning to the particular field of steganalysis; ideal for people working in both disciplines"--

  9. Application of two machine learning algorithms to genetic association studies in the presence of covariates

    Directory of Open Access Journals (Sweden)

    Foulkes Andrea S

    2008-11-01

    Full Text Available Abstract Background Population-based investigations aimed at uncovering genotype-trait associations often involve high-dimensional genetic polymorphism data as well as information on multiple environmental and clinical parameters. Machine learning (ML algorithms offer a straightforward analytic approach for selecting subsets of these inputs that are most predictive of a pre-defined trait. The performance of these algorithms, however, in the presence of covariates is not well characterized. Methods and Results In this manuscript, we investigate two approaches: Random Forests (RFs and Multivariate Adaptive Regression Splines (MARS. Through multiple simulation studies, the performance under several underlying models is evaluated. An application to a cohort of HIV-1 infected individuals receiving anti-retroviral therapies is also provided. Conclusion Consistent with more traditional regression modeling theory, our findings highlight the importance of considering the nature of underlying gene-covariate-trait relationships before applying ML algorithms, particularly when there is potential confounding or effect mediation.

  10. Application of machine learning algorithms to the study of noise artifacts in gravitational-wave data

    CERN Document Server

    Biswas, Rahul; Cao, Junwei; Essick, Reed; Hodge, Kari Alison; Katsavounidis, Erotokritos; Kim, Kyungmin; Kim, Young-Min; Bigot, Eric-Olivier Le; Lee, Chang-Hwan; Oh, John J; Oh, Sang Hoon; Son, Edwin J; Vaulin, Ruslan; Wang, Xiaoge; Ye, Tao

    2013-01-01

    The sensitivity of searches for astrophysical transients in data from the LIGO is generally limited by the presence of transient, non-Gaussian noise artifacts, which occur at a high-enough rate such that accidental coincidence across multiple detectors is non-negligible. Furthermore, non-Gaussian noise artifacts typically dominate over the background contributed from stationary noise. These "glitches" can easily be confused for transient gravitational-wave signals, and their robust identification and removal will help any search for astrophysical gravitational-waves. We apply Machine Learning Algorithms (MLAs) to the problem, using data from auxiliary channels within the LIGO detectors that monitor degrees of freedom unaffected by astrophysical signals. The number of auxiliary-channel parameters describing these disturbances may also be extremely large; an area where MLAs are particularly well-suited. We demonstrate the feasibility and applicability of three very different MLAs: Artificial Neural Networks, Su...

  11. Application of two machine learning algorithms to genetic association studies in the presence of covariates.

    Science.gov (United States)

    Nonyane, Bareng A S; Foulkes, Andrea S

    2008-11-14

    Population-based investigations aimed at uncovering genotype-trait associations often involve high-dimensional genetic polymorphism data as well as information on multiple environmental and clinical parameters. Machine learning (ML) algorithms offer a straightforward analytic approach for selecting subsets of these inputs that are most predictive of a pre-defined trait. The performance of these algorithms, however, in the presence of covariates is not well characterized. In this manuscript, we investigate two approaches: Random Forests (RFs) and Multivariate Adaptive Regression Splines (MARS). Through multiple simulation studies, the performance under several underlying models is evaluated. An application to a cohort of HIV-1 infected individuals receiving anti-retroviral therapies is also provided. Consistent with more traditional regression modeling theory, our findings highlight the importance of considering the nature of underlying gene-covariate-trait relationships before applying ML algorithms, particularly when there is potential confounding or effect mediation.

  12. International Conference on Extreme Learning Machine 2015

    CERN Document Server

    Mao, Kezhi; Wu, Jonathan; Lendasse, Amaury; ELM 2015; Theory, Algorithms and Applications (I); Theory, Algorithms and Applications (II)

    2016-01-01

    This book contains some selected papers from the International Conference on Extreme Learning Machine 2015, which was held in Hangzhou, China, December 15-17, 2015. This conference brought together researchers and engineers to share and exchange R&D experience on both theoretical studies and practical applications of the Extreme Learning Machine (ELM) technique and brain learning. This book covers theories, algorithms ad applications of ELM. It gives readers a glance of the most recent advances of ELM. .

  13. Machine learning a probabilistic perspective

    CERN Document Server

    Murphy, Kevin P

    2012-01-01

    Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach. The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic method...

  14. Quantification of histone modification ChIP-seq enrichment for data mining and machine learning applications

    Directory of Open Access Journals (Sweden)

    Bekiranov Stefan

    2011-08-01

    Full Text Available Abstract Background The advent of ChIP-seq technology has made the investigation of epigenetic regulatory networks a computationally tractable problem. Several groups have applied statistical computing methods to ChIP-seq datasets to gain insight into the epigenetic regulation of transcription. However, methods for estimating enrichment levels in ChIP-seq data for these computational studies are understudied and variable. Since the conclusions drawn from these data mining and machine learning applications strongly depend on the enrichment level inputs, a comparison of estimation methods with respect to the performance of statistical models should be made. Results Various methods were used to estimate the gene-wise ChIP-seq enrichment levels for 20 histone methylations and the histone variant H2A.Z. The Multivariate Adaptive Regression Splines (MARS algorithm was applied for each estimation method using the estimation of enrichment levels as predictors and gene expression levels as responses. The methods used to estimate enrichment levels included tag counting and model-based methods that were applied to whole genes and specific gene regions. These methods were also applied to various sizes of estimation windows. The MARS model performance was assessed with the Generalized Cross-Validation Score (GCV. We determined that model-based methods of enrichment estimation that spatially weight enrichment based on average patterns provided an improvement over tag counting methods. Also, methods that included information across the entire gene body provided improvement over methods that focus on a specific sub-region of the gene (e.g., the 5' or 3' region. Conclusion The performance of data mining and machine learning methods when applied to histone modification ChIP-seq data can be improved by using data across the entire gene body, and incorporating the spatial distribution of enrichment. Refinement of enrichment estimation ultimately improved accuracy

  15. Cross-platform normalization of microarray and RNA-seq data for machine learning applications.

    Science.gov (United States)

    Thompson, Jeffrey A; Tan, Jie; Greene, Casey S

    2016-01-01

    Large, publicly available gene expression datasets are often analyzed with the aid of machine learning algorithms. Although RNA-seq is increasingly the technology of choice, a wealth of expression data already exist in the form of microarray data. If machine learning models built from legacy data can be applied to RNA-seq data, larger, more diverse training datasets can be created and validation can be performed on newly generated data. We developed Training Distribution Matching (TDM), which transforms RNA-seq data for use with models constructed from legacy platforms. We evaluated TDM, as well as quantile normalization, nonparanormal transformation, and a simple log 2 transformation, on both simulated and biological datasets of gene expression. Our evaluation included both supervised and unsupervised machine learning approaches. We found that TDM exhibited consistently strong performance across settings and that quantile normalization also performed well in many circumstances. We also provide a TDM package for the R programming language.

  16. Machine Learning at Scale

    OpenAIRE

    Izrailev, Sergei; Stanley, Jeremy M.

    2014-01-01

    It takes skill to build a meaningful predictive model even with the abundance of implementations of modern machine learning algorithms and readily available computing resources. Building a model becomes challenging if hundreds of terabytes of data need to be processed to produce the training data set. In a digital advertising technology setting, we are faced with the need to build thousands of such models that predict user behavior and power advertising campaigns in a 24/7 chaotic real-time p...

  17. Machine Learning Technologies and Their Applications for Science and Engineering Domains Workshop -- Summary Report

    Science.gov (United States)

    Ambur, Manjula; Schwartz, Katherine G.; Mavris, Dimitri N.

    2016-01-01

    The fields of machine learning and big data analytics have made significant advances in recent years, which has created an environment where cross-fertilization of methods and collaborations can achieve previously unattainable outcomes. The Comprehensive Digital Transformation (CDT) Machine Learning and Big Data Analytics team planned a workshop at NASA Langley in August 2016 to unite leading experts the field of machine learning and NASA scientists and engineers. The primary goal for this workshop was to assess the state-of-the-art in this field, introduce these leading experts to the aerospace and science subject matter experts, and develop opportunities for collaboration. The workshop was held over a three day-period with lectures from 15 leading experts followed by significant interactive discussions. This report provides an overview of the 15 invited lectures and a summary of the key discussion topics that arose during both formal and informal discussion sections. Four key workshop themes were identified after the closure of the workshop and are also highlighted in the report. Furthermore, several workshop attendees provided their feedback on how they are already utilizing machine learning algorithms to advance their research, new methods they learned about during the workshop, and collaboration opportunities they identified during the workshop.

  18. Machine learning with R cookbook

    CERN Document Server

    Chiu, Yu-Wei

    2015-01-01

    If you want to learn how to use R for machine learning and gain insights from your data, then this book is ideal for you. Regardless of your level of experience, this book covers the basics of applying R to machine learning through to advanced techniques. While it is helpful if you are familiar with basic programming or machine learning concepts, you do not require prior experience to benefit from this book.

  19. Applied genetic programming and machine learning

    CERN Document Server

    Iba, Hitoshi; Paul, Topon Kumar

    2009-01-01

    What do financial data prediction, day-trading rule development, and bio-marker selection have in common? They are just a few of the tasks that could potentially be resolved with genetic programming and machine learning techniques. Written by leaders in this field, Applied Genetic Programming and Machine Learning delineates the extension of Genetic Programming (GP) for practical applications. Reflecting rapidly developing concepts and emerging paradigms, this book outlines how to use machine learning techniques, make learning operators that efficiently sample a search space, navigate the searc

  20. International Conference on Extreme Learning Machines 2014

    CERN Document Server

    Mao, Kezhi; Cambria, Erik; Man, Zhihong; Toh, Kar-Ann

    2015-01-01

    This book contains some selected papers from the International Conference on Extreme Learning Machine 2014, which was held in Singapore, December 8-10, 2014. This conference brought together the researchers and practitioners of Extreme Learning Machine (ELM) from a variety of fields to promote research and development of “learning without iterative tuning”.  The book covers theories, algorithms and applications of ELM. It gives the readers a glance of the most recent advances of ELM.  

  1. Attractor Control Using Machine Learning

    CERN Document Server

    Duriez, Thomas; Noack, Bernd R; Cordier, Laurent; Segond, Marc; Abel, Markus

    2013-01-01

    We propose a general strategy for feedback control design of complex dynamical systems exploiting the nonlinear mechanisms in a systematic unsupervised manner. These dynamical systems can have a state space of arbitrary dimension with finite number of actuators (multiple inputs) and sensors (multiple outputs). The control law maps outputs into inputs and is optimized with respect to a cost function, containing physics via the dynamical or statistical properties of the attractor to be controlled. Thus, we are capable of exploiting nonlinear mechanisms, e.g. chaos or frequency cross-talk, serving the control objective. This optimization is based on genetic programming, a branch of machine learning. This machine learning control is successfully applied to the stabilization of nonlinearly coupled oscillators and maximization of Lyapunov exponent of a forced Lorenz system. We foresee potential applications to most nonlinear multiple inputs/multiple outputs control problems, particulary in experiments.

  2. Application of Machine Learning Algorithms to the Study of Noise Artifacts in Gravitational-Wave Data

    Science.gov (United States)

    Biswas, Rahul; Blackburn, Lindy L.; Cao, Junwei; Essick, Reed; Hodge, Kari Alison; Katsavounidis, Erotokritos; Kim, Kyungmin; Young-Min, Kim; Le Bigot, Eric-Olivier; Lee, Chang-Hwan; hide

    2014-01-01

    The sensitivity of searches for astrophysical transients in data from the Laser Interferometer Gravitationalwave Observatory (LIGO) is generally limited by the presence of transient, non-Gaussian noise artifacts, which occur at a high-enough rate such that accidental coincidence across multiple detectors is non-negligible. Furthermore, non-Gaussian noise artifacts typically dominate over the background contributed from stationary noise. These "glitches" can easily be confused for transient gravitational-wave signals, and their robust identification and removal will help any search for astrophysical gravitational-waves. We apply Machine Learning Algorithms (MLAs) to the problem, using data from auxiliary channels within the LIGO detectors that monitor degrees of freedom unaffected by astrophysical signals. Terrestrial noise sources may manifest characteristic disturbances in these auxiliary channels, inducing non-trivial correlations with glitches in the gravitational-wave data. The number of auxiliary-channel parameters describing these disturbances may also be extremely large; high dimensionality is an area where MLAs are particularly well-suited. We demonstrate the feasibility and applicability of three very different MLAs: Artificial Neural Networks, Support Vector Machines, and Random Forests. These classifiers identify and remove a substantial fraction of the glitches present in two very different data sets: four weeks of LIGO's fourth science run and one week of LIGO's sixth science run. We observe that all three algorithms agree on which events are glitches to within 10% for the sixth science run data, and support this by showing that the different optimization criteria used by each classifier generate the same decision surface, based on a likelihood-ratio statistic. Furthermore, we find that all classifiers obtain similar limiting performance, suggesting that most of the useful information currently contained in the auxiliary channel parameters we extract

  3. A review of the applications of data mining and machine learning for the prediction of biomedical properties of nanoparticles.

    Science.gov (United States)

    Jones, David E; Ghandehari, Hamidreza; Facelli, Julio C

    2016-08-01

    This article presents a comprehensive review of applications of data mining and machine learning for the prediction of biomedical properties of nanoparticles of medical interest. The papers reviewed here present the results of research using these techniques to predict the biological fate and properties of a variety of nanoparticles relevant to their biomedical applications. These include the influence of particle physicochemical properties on cellular uptake, cytotoxicity, molecular loading, and molecular release in addition to manufacturing properties like nanoparticle size, and polydispersity. Overall, the results are encouraging and suggest that as more systematic data from nanoparticles becomes available, machine learning and data mining would become a powerful aid in the design of nanoparticles for biomedical applications. There is however the challenge of great heterogeneity in nanoparticles, which will make these discoveries more challenging than for traditional small molecule drug design.

  4. Quantum-Enhanced Machine Learning.

    Science.gov (United States)

    Dunjko, Vedran; Taylor, Jacob M; Briegel, Hans J

    2016-09-23

    The emerging field of quantum machine learning has the potential to substantially aid in the problems and scope of artificial intelligence. This is only enhanced by recent successes in the field of classical machine learning. In this work we propose an approach for the systematic treatment of machine learning, from the perspective of quantum information. Our approach is general and covers all three main branches of machine learning: supervised, unsupervised, and reinforcement learning. While quantum improvements in supervised and unsupervised learning have been reported, reinforcement learning has received much less attention. Within our approach, we tackle the problem of quantum enhancements in reinforcement learning as well, and propose a systematic scheme for providing improvements. As an example, we show that quadratic improvements in learning efficiency, and exponential improvements in performance over limited time periods, can be obtained for a broad class of learning problems.

  5. Quantum-Enhanced Machine Learning

    Science.gov (United States)

    Dunjko, Vedran; Taylor, Jacob M.; Briegel, Hans J.

    2016-09-01

    The emerging field of quantum machine learning has the potential to substantially aid in the problems and scope of artificial intelligence. This is only enhanced by recent successes in the field of classical machine learning. In this work we propose an approach for the systematic treatment of machine learning, from the perspective of quantum information. Our approach is general and covers all three main branches of machine learning: supervised, unsupervised, and reinforcement learning. While quantum improvements in supervised and unsupervised learning have been reported, reinforcement learning has received much less attention. Within our approach, we tackle the problem of quantum enhancements in reinforcement learning as well, and propose a systematic scheme for providing improvements. As an example, we show that quadratic improvements in learning efficiency, and exponential improvements in performance over limited time periods, can be obtained for a broad class of learning problems.

  6. Quantum adiabatic machine learning

    CERN Document Server

    Pudenz, Kristen L

    2011-01-01

    We develop an approach to machine learning and anomaly detection via quantum adiabatic evolution. In the training phase we identify an optimal set of weak classifiers, to form a single strong classifier. In the testing phase we adiabatically evolve one or more strong classifiers on a superposition of inputs in order to find certain anomalous elements in the classification space. Both the training and testing phases are executed via quantum adiabatic evolution. We apply and illustrate this approach in detail to the problem of software verification and validation.

  7. Machine learning in healthcare informatics

    CERN Document Server

    Acharya, U; Dua, Prerna

    2014-01-01

    The book is a unique effort to represent a variety of techniques designed to represent, enhance, and empower multi-disciplinary and multi-institutional machine learning research in healthcare informatics. The book provides a unique compendium of current and emerging machine learning paradigms for healthcare informatics and reflects the diversity, complexity and the depth and breath of this multi-disciplinary area. The integrated, panoramic view of data and machine learning techniques can provide an opportunity for novel clinical insights and discoveries.

  8. Quantitative forecasting of PTSD from early trauma responses: A Machine Learning application

    DEFF Research Database (Denmark)

    Galatzer-Levy, I. R.; Karstoft, K. I.; Statnikov, A.

    2014-01-01

    -traumatic stress disorder (PTSD) is plausible given the disorder's salient onset and the abundance of putative biological and clinical risk indicators. This work evaluates the ability of Machine Learning (ML) forecasting approaches to identify and integrate a panel of unique predictive characteristics...... algorithm identified a set of predictors that rendered all others redundant. Support Vector Machines (SVMs) as well as other ML classification algorithms were used to evaluate the forecasting accuracy of i) ML selected features, ii) all available features without selection, and iii) Acute Stress Disorder...

  9. Stacked Extreme Learning Machines.

    Science.gov (United States)

    Zhou, Hongming; Huang, Guang-Bin; Lin, Zhiping; Wang, Han; Soh, Yeng Chai

    2015-09-01

    Extreme learning machine (ELM) has recently attracted many researchers' interest due to its very fast learning speed, good generalization ability, and ease of implementation. It provides a unified solution that can be used directly to solve regression, binary, and multiclass classification problems. In this paper, we propose a stacked ELMs (S-ELMs) that is specially designed for solving large and complex data problems. The S-ELMs divides a single large ELM network into multiple stacked small ELMs which are serially connected. The S-ELMs can approximate a very large ELM network with small memory requirement. To further improve the testing accuracy on big data problems, the ELM autoencoder can be implemented during each iteration of the S-ELMs algorithm. The simulation results show that the S-ELMs even with random hidden nodes can achieve similar testing accuracy to support vector machine (SVM) while having low memory requirements. With the help of ELM autoencoder, the S-ELMs can achieve much better testing accuracy than SVM and slightly better accuracy than deep belief network (DBN) with much faster training speed.

  10. Application of machine learning classification for structural brain MRI in mood disorders: Critical review from a clinical perspective.

    Science.gov (United States)

    Kim, Yong-Ku; Na, Kyoung-Sae

    2018-01-03

    Mood disorders are a highly prevalent group of mental disorders causing substantial socioeconomic burden. There are various methodological approaches for identifying the underlying mechanisms of the etiology, symptomatology, and therapeutics of mood disorders; however, neuroimaging studies have provided the most direct evidence for mood disorder neural substrates by visualizing the brains of living individuals. The prefrontal cortex, hippocampus, amygdala, thalamus, ventral striatum, and corpus callosum are associated with depression and bipolar disorder. Identifying the distinct and common contributions of these anatomical regions to depression and bipolar disorder have broadened and deepened our understanding of mood disorders. However, the extent to which neuroimaging research findings contribute to clinical practice in the real-world setting is unclear. As traditional or non-machine learning MRI studies have analyzed group-level differences, it is not possible to directly translate findings from research to clinical practice; the knowledge gained pertains to the disorder, but not to individuals. On the other hand, a machine learning approach makes it possible to provide individual-level classifications. For the past two decades, many studies have reported on the classification accuracy of machine learning-based neuroimaging studies from the perspective of diagnosis and treatment response. However, for the application of a machine learning-based brain MRI approach in real world clinical settings, several major issues should be considered. Secondary changes due to illness duration and medication, clinical subtypes and heterogeneity, comorbidities, and cost-effectiveness restrict the generalization of the current machine learning findings. Sophisticated classification of clinical and diagnostic subtypes is needed. Additionally, as the approach is inevitably limited by sample size, multi-site participation and data-sharing are needed in the future. Copyright

  11. Extensions and applications of ensemble-of-trees methods in machine learning

    Science.gov (United States)

    Bleich, Justin

    Ensemble-of-trees algorithms have emerged to the forefront of machine learning due to their ability to generate high forecasting accuracy for a wide array of regression and classification problems. Classic ensemble methodologies such as random forests (RF) and stochastic gradient boosting (SGB) rely on algorithmic procedures to generate fits to data. In contrast, more recent ensemble techniques such as Bayesian Additive Regression Trees (BART) and Dynamic Trees (DT) focus on an underlying Bayesian probability model to generate the fits. These new probability model-based approaches show much promise versus their algorithmic counterparts, but also offer substantial room for improvement. The first part of this thesis focuses on methodological advances for ensemble-of-trees techniques with an emphasis on the more recent Bayesian approaches. In particular, we focus on extensions of BART in four distinct ways. First, we develop a more robust implementation of BART for both research and application. We then develop a principled approach to variable selection for BART as well as the ability to naturally incorporate prior information on important covariates into the algorithm. Next, we propose a method for handling missing data that relies on the recursive structure of decision trees and does not require imputation. Last, we relax the assumption of homoskedasticity in the BART model to allow for parametric modeling of heteroskedasticity. The second part of this thesis returns to the classic algorithmic approaches in the context of classification problems with asymmetric costs of forecasting errors. First we consider the performance of RF and SGB more broadly and demonstrate its superiority to logistic regression for applications in criminology with asymmetric costs. Next, we use RF to forecast unplanned hospital readmissions upon patient discharge with asymmetric costs taken into account. Finally, we explore the construction of stable decision trees for forecasts of

  12. Application of Machine Learning Techniques for Amplitude and Phase Noise Characterization

    DEFF Research Database (Denmark)

    Zibar, Darko; de Carvalho, Luis Henrique Hecker; Piels, Molly

    2015-01-01

    In this paper, tools from machine learning community, such as Bayesian filtering and expectation maximization parameter estimation, are presented and employed for laser amplitude and phase noise characterization. We show that phase noise estimation based on Bayesian filtering outperforms...... conventional time-domain approach in the presence of moderate measurement noise. Additionally, carrier synchronization based on Bayesian filtering, in combination with expectation maximization, is demonstrated for the first time experimentally....

  13. Application of Machine-Learning Models to Predict Tacrolimus Stable Dose in Renal Transplant Recipients

    Science.gov (United States)

    Tang, Jie; Liu, Rong; Zhang, Yue-Li; Liu, Mou-Ze; Hu, Yong-Fang; Shao, Ming-Jie; Zhu, Li-Jun; Xin, Hua-Wen; Feng, Gui-Wen; Shang, Wen-Jun; Meng, Xiang-Guang; Zhang, Li-Rong; Ming, Ying-Zi; Zhang, Wei

    2017-01-01

    Tacrolimus has a narrow therapeutic window and considerable variability in clinical use. Our goal was to compare the performance of multiple linear regression (MLR) and eight machine learning techniques in pharmacogenetic algorithm-based prediction of tacrolimus stable dose (TSD) in a large Chinese cohort. A total of 1,045 renal transplant patients were recruited, 80% of which were randomly selected as the “derivation cohort” to develop dose-prediction algorithm, while the remaining 20% constituted the “validation cohort” to test the final selected algorithm. MLR, artificial neural network (ANN), regression tree (RT), multivariate adaptive regression splines (MARS), boosted regression tree (BRT), support vector regression (SVR), random forest regression (RFR), lasso regression (LAR) and Bayesian additive regression trees (BART) were applied and their performances were compared in this work. Among all the machine learning models, RT performed best in both derivation [0.71 (0.67–0.76)] and validation cohorts [0.73 (0.63–0.82)]. In addition, the ideal rate of RT was 4% higher than that of MLR. To our knowledge, this is the first study to use machine learning models to predict TSD, which will further facilitate personalized medicine in tacrolimus administration in the future. PMID:28176850

  14. Application of Machine-Learning Models to Predict Tacrolimus Stable Dose in Renal Transplant Recipients

    Science.gov (United States)

    Tang, Jie; Liu, Rong; Zhang, Yue-Li; Liu, Mou-Ze; Hu, Yong-Fang; Shao, Ming-Jie; Zhu, Li-Jun; Xin, Hua-Wen; Feng, Gui-Wen; Shang, Wen-Jun; Meng, Xiang-Guang; Zhang, Li-Rong; Ming, Ying-Zi; Zhang, Wei

    2017-02-01

    Tacrolimus has a narrow therapeutic window and considerable variability in clinical use. Our goal was to compare the performance of multiple linear regression (MLR) and eight machine learning techniques in pharmacogenetic algorithm-based prediction of tacrolimus stable dose (TSD) in a large Chinese cohort. A total of 1,045 renal transplant patients were recruited, 80% of which were randomly selected as the “derivation cohort” to develop dose-prediction algorithm, while the remaining 20% constituted the “validation cohort” to test the final selected algorithm. MLR, artificial neural network (ANN), regression tree (RT), multivariate adaptive regression splines (MARS), boosted regression tree (BRT), support vector regression (SVR), random forest regression (RFR), lasso regression (LAR) and Bayesian additive regression trees (BART) were applied and their performances were compared in this work. Among all the machine learning models, RT performed best in both derivation [0.71 (0.67–0.76)] and validation cohorts [0.73 (0.63–0.82)]. In addition, the ideal rate of RT was 4% higher than that of MLR. To our knowledge, this is the first study to use machine learning models to predict TSD, which will further facilitate personalized medicine in tacrolimus administration in the future.

  15. Application of machine learning algorithms to the study of noise artifacts in gravitational-wave data

    Science.gov (United States)

    Biswas, Rahul; Blackburn, Lindy; Cao, Junwei; Essick, Reed; Hodge, Kari Alison; Katsavounidis, Erotokritos; Kim, Kyungmin; Kim, Young-Min; Le Bigot, Eric-Olivier; Lee, Chang-Hwan; Oh, John J.; Oh, Sang Hoon; Son, Edwin J.; Tao, Ye; Vaulin, Ruslan; Wang, Xiaoge

    2013-09-01

    The sensitivity of searches for astrophysical transients in data from the Laser Interferometer Gravitational-wave Observatory (LIGO) is generally limited by the presence of transient, non-Gaussian noise artifacts, which occur at a high enough rate such that accidental coincidence across multiple detectors is non-negligible. These “glitches” can easily be mistaken for transient gravitational-wave signals, and their robust identification and removal will help any search for astrophysical gravitational waves. We apply machine-learning algorithms (MLAs) to the problem, using data from auxiliary channels within the LIGO detectors that monitor degrees of freedom unaffected by astrophysical signals. Noise sources may produce artifacts in these auxiliary channels as well as the gravitational-wave channel. The number of auxiliary-channel parameters describing these disturbances may also be extremely large; high dimensionality is an area where MLAs are particularly well suited. We demonstrate the feasibility and applicability of three different MLAs: artificial neural networks, support vector machines, and random forests. These classifiers identify and remove a substantial fraction of the glitches present in two different data sets: four weeks of LIGO’s fourth science run and one week of LIGO’s sixth science run. We observe that all three algorithms agree on which events are glitches to within 10% for the sixth-science-run data, and support this by showing that the different optimization criteria used by each classifier generate the same decision surface, based on a likelihood-ratio statistic. Furthermore, we find that all classifiers obtain similar performance to the benchmark algorithm, the ordered veto list, which is optimized to detect pairwise correlations between transients in LIGO auxiliary channels and glitches in the gravitational-wave data. This suggests that most of the useful information currently extracted from the auxiliary channels is already described

  16. Machine Learning Exciton Dynamics

    CERN Document Server

    Häse, Florian; Pyzer-Knapp, Edward; Aspuru-Guzik, Alán

    2015-01-01

    Obtaining the exciton dynamics of large photosynthetic complexes by using mixed quantum mechanics/molecular mechanics (QM/MM) is computationally demanding. We propose a machine learning technique, multi-layer perceptrons, as a tool to reduce the time required to compute excited state energies. With this approach we predict time-dependent density functional theory (TDDFT) excited state energies of bacteriochlorophylls in the Fenna-Matthews-Olson (FMO) complex. Additionally we compute spectral densities and exciton populations from the predictions. Different methods to determine multi-layer perceptron training sets are introduced, leading to several initial data selections. In addition, we compute spectral densities and exciton populations. Once multi-layer perceptrons are trained, predicting excited state energies was found to be significantly faster than the corresponding QM/MM calculations. We showed that multi-layer perceptrons can successfully reproduce the energies of QM/MM calculations to a high degree o...

  17. Machine Learning for Medical Imaging.

    Science.gov (United States)

    Erickson, Bradley J; Korfiatis, Panagiotis; Akkus, Zeynettin; Kline, Timothy L

    2017-01-01

    Machine learning is a technique for recognizing patterns that can be applied to medical images. Although it is a powerful tool that can help in rendering medical diagnoses, it can be misapplied. Machine learning typically begins with the machine learning algorithm system computing the image features that are believed to be of importance in making the prediction or diagnosis of interest. The machine learning algorithm system then identifies the best combination of these image features for classifying the image or computing some metric for the given image region. There are several methods that can be used, each with different strengths and weaknesses. There are open-source versions of most of these machine learning methods that make them easy to try and apply to images. Several metrics for measuring the performance of an algorithm exist; however, one must be aware of the possible associated pitfalls that can result in misleading metrics. More recently, deep learning has started to be used; this method has the benefit that it does not require image feature identification and calculation as a first step; rather, features are identified as part of the learning process. Machine learning has been used in medical imaging and will have a greater influence in the future. Those working in medical imaging must be aware of how machine learning works. (©)RSNA, 2017.

  18. Food category consumption and obesity prevalence across countries: an application of Machine Learning method to big data analysis

    Science.gov (United States)

    Dunstan, Jocelyn; Fallah-Fini, Saeideh; Nau, Claudia; Glass, Thomas; Global Obesity Prevention Center Team

    The applications of sophisticated mathematical and numerical tools in public health has been demonstrated to be useful in predicting the outcome of public intervention as well as to study, for example, the main causes of obesity without doing experiments with the population. In this project we aim to understand which kind of food consumed in different countries over time best defines the rate of obesity in those countries. The use of Machine Learning is particularly useful because we do not need to create a hypothesis and test it with the data, but instead we learn from the data to find the groups of food that best describe the prevalence of obesity.

  19. A Mobile Health Application to Predict Postpartum Depression Based on Machine Learning.

    Science.gov (United States)

    Jiménez-Serrano, Santiago; Tortajada, Salvador; García-Gómez, Juan Miguel

    2015-07-01

    Postpartum depression (PPD) is a disorder that often goes undiagnosed. The development of a screening program requires considerable and careful effort, where evidence-based decisions have to be taken in order to obtain an effective test with a high level of sensitivity and an acceptable specificity that is quick to perform, easy to interpret, culturally sensitive, and cost-effective. The purpose of this article is twofold: first, to develop classification models for detecting the risk of PPD during the first week after childbirth, thus enabling early intervention; and second, to develop a mobile health (m-health) application (app) for the Android(®) (Google, Mountain View, CA) platform based on the model with best performance for both mothers who have just given birth and clinicians who want to monitor their patient's test. A set of predictive models for estimating the risk of PPD was trained using machine learning techniques and data about postpartum women collected from seven Spanish hospitals. An internal evaluation was carried out using a hold-out strategy. An easy flowchart and architecture for designing the graphical user interface of the m-health app was followed. Naive Bayes showed the best balance between sensitivity and specificity as a predictive model for PPD during the first week after delivery. It was integrated into the clinical decision support system for Android mobile apps. This approach can enable the early prediction and detection of PPD because it fulfills the conditions of an effective screening test with a high level of sensitivity and specificity that is quick to perform, easy to interpret, culturally sensitive, and cost-effective.

  20. Application of Machine Learning in Postural Control Kinematics for the Diagnosis of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Luís Costa

    2016-01-01

    Full Text Available The use of wearable devices to study gait and postural control is a growing field on neurodegenerative disorders such as Alzheimer’s disease (AD. In this paper, we investigate if machine-learning classifiers offer the discriminative power for the diagnosis of AD based on postural control kinematics. We compared Support Vector Machines (SVMs, Multiple Layer Perceptrons (MLPs, Radial Basis Function Neural Networks (RBNs, and Deep Belief Networks (DBNs on 72 participants (36 AD patients and 36 healthy subjects exposed to seven increasingly difficult postural tasks. The decisional space was composed of 18 kinematic variables (adjusted for age, education, height, and weight, with or without neuropsychological evaluation (Montreal cognitive assessment (MoCA score, top ranked in an error incremental analysis. Classification results were based on threefold cross validation of 50 independent and randomized runs sets: training (50%, test (40%, and validation (10%. Having a decisional space relying solely on postural kinematics, accuracy of AD diagnosis ranged from 71.7 to 86.1%. Adding the MoCA variable, the accuracy ranged between 91 and 96.6%. MLP classifier achieved top performance in both decisional spaces. Having comprehended the interdynamic interaction between postural stability and cognitive performance, our results endorse machine-learning models as a useful tool for computer-aided diagnosis of AD based on postural control kinematics.

  1. Application of Machine Learning in Postural Control Kinematics for the Diagnosis of Alzheimer's Disease

    Science.gov (United States)

    Yelshyna, Darya; Bicho, Estela

    2016-01-01

    The use of wearable devices to study gait and postural control is a growing field on neurodegenerative disorders such as Alzheimer's disease (AD). In this paper, we investigate if machine-learning classifiers offer the discriminative power for the diagnosis of AD based on postural control kinematics. We compared Support Vector Machines (SVMs), Multiple Layer Perceptrons (MLPs), Radial Basis Function Neural Networks (RBNs), and Deep Belief Networks (DBNs) on 72 participants (36 AD patients and 36 healthy subjects) exposed to seven increasingly difficult postural tasks. The decisional space was composed of 18 kinematic variables (adjusted for age, education, height, and weight), with or without neuropsychological evaluation (Montreal cognitive assessment (MoCA) score), top ranked in an error incremental analysis. Classification results were based on threefold cross validation of 50 independent and randomized runs sets: training (50%), test (40%), and validation (10%). Having a decisional space relying solely on postural kinematics, accuracy of AD diagnosis ranged from 71.7 to 86.1%. Adding the MoCA variable, the accuracy ranged between 91 and 96.6%. MLP classifier achieved top performance in both decisional spaces. Having comprehended the interdynamic interaction between postural stability and cognitive performance, our results endorse machine-learning models as a useful tool for computer-aided diagnosis of AD based on postural control kinematics. PMID:28074090

  2. Issues of Application of Machine Learning Models for Virtual and Real-Life Buildings

    Directory of Open Access Journals (Sweden)

    Young Min Kim

    2016-06-01

    Full Text Available The current Building Energy Performance Simulation (BEPS tools are based on first principles. For the correct use of BEPS tools, simulationists should have an in-depth understanding of building physics, numerical methods, control logics of building systems, etc. However, it takes significant time and effort to develop a first principles-based simulation model for existing buildings—mainly due to the laborious process of data gathering, uncertain inputs, model calibration, etc. Rather than resorting to an expert’s effort, a data-driven approach (so-called “inverse” approach has received growing attention for the simulation of existing buildings. This paper reports a cross-comparison of three popular machine learning models (Artificial Neural Network (ANN, Support Vector Machine (SVM, and Gaussian Process (GP for predicting a chiller’s energy consumption in a virtual and a real-life building. The predictions based on the three models are sufficiently accurate compared to the virtual and real measurements. This paper addresses the following issues for the successful development of machine learning models: reproducibility, selection of inputs, training period, outlying data obtained from the building energy management system (BEMS, and validation of the models. From the result of this comparative study, it was found that SVM has a disadvantage in computation time compared to ANN and GP. GP is the most sensitive to a training period among the three models.

  3. Application of Machine Learning Approaches for Classifying Sitting Posture Based on Force and Acceleration Sensors

    Directory of Open Access Journals (Sweden)

    Roland Zemp

    2016-01-01

    Full Text Available Occupational musculoskeletal disorders, particularly chronic low back pain (LBP, are ubiquitous due to prolonged static sitting or nonergonomic sitting positions. Therefore, the aim of this study was to develop an instrumented chair with force and acceleration sensors to determine the accuracy of automatically identifying the user’s sitting position by applying five different machine learning methods (Support Vector Machines, Multinomial Regression, Boosting, Neural Networks, and Random Forest. Forty-one subjects were requested to sit four times in seven different prescribed sitting positions (total 1148 samples. Sixteen force sensor values and the backrest angle were used as the explanatory variables (features for the classification. The different classification methods were compared by means of a Leave-One-Out cross-validation approach. The best performance was achieved using the Random Forest classification algorithm, producing a mean classification accuracy of 90.9% for subjects with which the algorithm was not familiar. The classification accuracy varied between 81% and 98% for the seven different sitting positions. The present study showed the possibility of accurately classifying different sitting positions by means of the introduced instrumented office chair combined with machine learning analyses. The use of such novel approaches for the accurate assessment of chair usage could offer insights into the relationships between sitting position, sitting behaviour, and the occurrence of musculoskeletal disorders.

  4. Machine Learning Techniques in Clinical Vision Sciences.

    Science.gov (United States)

    Caixinha, Miguel; Nunes, Sandrina

    2017-01-01

    This review presents and discusses the contribution of machine learning techniques for diagnosis and disease monitoring in the context of clinical vision science. Many ocular diseases leading to blindness can be halted or delayed when detected and treated at its earliest stages. With the recent developments in diagnostic devices, imaging and genomics, new sources of data for early disease detection and patients' management are now available. Machine learning techniques emerged in the biomedical sciences as clinical decision-support techniques to improve sensitivity and specificity of disease detection and monitoring, increasing objectively the clinical decision-making process. This manuscript presents a review in multimodal ocular disease diagnosis and monitoring based on machine learning approaches. In the first section, the technical issues related to the different machine learning approaches will be present. Machine learning techniques are used to automatically recognize complex patterns in a given dataset. These techniques allows creating homogeneous groups (unsupervised learning), or creating a classifier predicting group membership of new cases (supervised learning), when a group label is available for each case. To ensure a good performance of the machine learning techniques in a given dataset, all possible sources of bias should be removed or minimized. For that, the representativeness of the input dataset for the true population should be confirmed, the noise should be removed, the missing data should be treated and the data dimensionally (i.e., the number of parameters/features and the number of cases in the dataset) should be adjusted. The application of machine learning techniques in ocular disease diagnosis and monitoring will be presented and discussed in the second section of this manuscript. To show the clinical benefits of machine learning in clinical vision sciences, several examples will be presented in glaucoma, age-related macular degeneration

  5. Genetic Algorithms for Optimization of Machine-learning Models and their Applications in Bioinformatics

    KAUST Repository

    Magana-Mora, Arturo

    2017-04-29

    Machine-learning (ML) techniques have been widely applied to solve different problems in biology. However, biological data are large and complex, which often result in extremely intricate ML models. Frequently, these models may have a poor performance or may be computationally unfeasible. This study presents a set of novel computational methods and focuses on the application of genetic algorithms (GAs) for the simplification and optimization of ML models and their applications to biological problems. The dissertation addresses the following three challenges. The first is to develop a generalizable classification methodology able to systematically derive competitive models despite the complexity and nature of the data. Although several algorithms for the induction of classification models have been proposed, the algorithms are data dependent. Consequently, we developed OmniGA, a novel and generalizable framework that uses different classification models in a treeXlike decision structure, along with a parallel GA for the optimization of the OmniGA structure. Results show that OmniGA consistently outperformed existing commonly used classification models. The second challenge is the prediction of translation initiation sites (TIS) in plants genomic DNA. We performed a statistical analysis of the genomic DNA and proposed a new set of discriminant features for this problem. We developed a wrapper method based on GAs for selecting an optimal feature subset, which, in conjunction with a classification model, produced the most accurate framework for the recognition of TIS in plants. Finally, results demonstrate that despite the evolutionary distance between different plants, our approach successfully identified conserved genomic elements that may serve as the starting point for the development of a generic model for prediction of TIS in eukaryotic organisms. Finally, the third challenge is the accurate prediction of polyadenylation signals in human genomic DNA. To achieve

  6. Applying Computational Aesthetics to a Video Game Application Using Machine Learning.

    Science.gov (United States)

    Erdem, Ali Naci; Halici, Ugur

    2016-01-01

    The authors have developed a novel approach to evaluating the aesthetic quality of the camera direction in video game scenes rendered in real time while the game is being played. Their goal was to improve the visual aesthetic quality of computer-generated images using a computational aesthetics approach via a regression machine learning model. Considering the challenges and limitations involved, the proposed approach yielded promising prediction performance. The results show that near-real-time aesthetic analysis and visual improvement is possible using a virtual camera director.

  7. Application of machine learning for the evaluation of turfgrass plots using aerial images

    Science.gov (United States)

    Ding, Ke; Raheja, Amar; Bhandari, Subodh; Green, Robert L.

    2016-05-01

    Historically, investigation of turfgrass characteristics have been limited to visual ratings. Although relevant information may result from such evaluations, final inferences may be questionable because of the subjective nature in which the data is collected. Recent advances in computer vision techniques allow researchers to objectively measure turfgrass characteristics such as percent ground cover, turf color, and turf quality from the digital images. This paper focuses on developing a methodology for automated assessment of turfgrass quality from aerial images. Images of several turfgrass plots of varying quality were gathered using a camera mounted on an unmanned aerial vehicle. The quality of these plots were also evaluated based on visual ratings. The goal was to use the aerial images to generate quality evaluations on a regular basis for the optimization of water treatment. Aerial images are used to train a neural network so that appropriate features such as intensity, color, and texture of the turfgrass are extracted from these images. Neural network is a nonlinear classifier commonly used in machine learning. The output of the neural network trained model is the ratings of the grass, which is compared to the visual ratings. Currently, the quality and the color of turfgrass, measured as the greenness of the grass, are evaluated. The textures are calculated using the Gabor filter and co-occurrence matrix. Other classifiers such as support vector machines and simpler linear regression models such as Ridge regression and LARS regression are also used. The performance of each model is compared. The results show encouraging potential for using machine learning techniques for the evaluation of turfgrass quality and color.

  8. Machine learning in motion control

    Science.gov (United States)

    Su, Renjeng; Kermiche, Noureddine

    1989-01-01

    The existing methodologies for robot programming originate primarily from robotic applications to manufacturing, where uncertainties of the robots and their task environment may be minimized by repeated off-line modeling and identification. In space application of robots, however, a higher degree of automation is required for robot programming because of the desire of minimizing the human intervention. We discuss a new paradigm of robotic programming which is based on the concept of machine learning. The goal is to let robots practice tasks by themselves and the operational data are used to automatically improve their motion performance. The underlying mathematical problem is to solve the problem of dynamical inverse by iterative methods. One of the key questions is how to ensure the convergence of the iterative process. There have been a few small steps taken into this important approach to robot programming. We give a representative result on the convergence problem.

  9. Machine learning in motion control

    Science.gov (United States)

    Su, Renjeng; Kermiche, Noureddine

    1989-01-01

    The existing methodologies for robot programming originate primarily from robotic applications to manufacturing, where uncertainties of the robots and their task environment may be minimized by repeated off-line modeling and identification. In space application of robots, however, a higher degree of automation is required for robot programming because of the desire of minimizing the human intervention. We discuss a new paradigm of robotic programming which is based on the concept of machine learning. The goal is to let robots practice tasks by themselves and the operational data are used to automatically improve their motion performance. The underlying mathematical problem is to solve the problem of dynamical inverse by iterative methods. One of the key questions is how to ensure the convergence of the iterative process. There have been a few small steps taken into this important approach to robot programming. We give a representative result on the convergence problem.

  10. Machine Learning examples on Invenio

    CERN Document Server

    CERN. Geneva

    2017-01-01

    This talk will present the different Machine Learning tools that the INSPIRE is developing and integrating in order to automatize as much as possible content selection and curation in a subject based repository.

  11. Machine learning for healthcare technologies

    CERN Document Server

    Clifton, David A

    2016-01-01

    This book brings together chapters on the state-of-the-art in machine learning (ML) as it applies to the development of patient-centred technologies, with a special emphasis on 'big data' and mobile data.

  12. Scikit-learn: Machine Learning in Python

    OpenAIRE

    Pedregosa, Fabian; Varoquaux, Gaël; Gramfort, Alexandre; Michel, Vincent; Thirion, Bertrand; Grisel, Olivier; Blondel, Mathieu; Prettenhofer, Peter; Weiss, Ron; Dubourg, Vincent; Vanderplas, Jake; Passos, Alexandre; Cournapeau, David; Brucher, Matthieu; Perrot, Matthieu

    2011-01-01

    International audience; Scikit-learn is a Python module integrating a wide range of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised problems. This package focuses on bringing machine learning to non-specialists using a general-purpose high-level language. Emphasis is put on ease of use, performance, documentation, and API consistency. It has minimal dependencies and is distributed under the simplified BSD license, encouraging its use in both academic ...

  13. Machine learning methods for planning

    CERN Document Server

    Minton, Steven

    1993-01-01

    Machine Learning Methods for Planning provides information pertinent to learning methods for planning and scheduling. This book covers a wide variety of learning methods and learning architectures, including analogical, case-based, decision-tree, explanation-based, and reinforcement learning.Organized into 15 chapters, this book begins with an overview of planning and scheduling and describes some representative learning systems that have been developed for these tasks. This text then describes a learning apprentice for calendar management. Other chapters consider the problem of temporal credi

  14. Heterogeneous versus Homogeneous Machine Learning Ensembles

    Directory of Open Access Journals (Sweden)

    Petrakova Aleksandra

    2015-12-01

    Full Text Available The research demonstrates efficiency of the heterogeneous model ensemble application for a cancer diagnostic procedure. Machine learning methods used for the ensemble model training are neural networks, random forest, support vector machine and offspring selection genetic algorithm. Training of models and the ensemble design is performed by means of HeuristicLab software. The data used in the research have been provided by the General Hospital of Linz, Austria.

  15. Application of supervised machine learning algorithms for the classification of regulatory RNA riboswitches.

    Science.gov (United States)

    Singh, Swadha; Singh, Raghvendra

    2016-04-03

    Riboswitches, the small structured RNA elements, were discovered about a decade ago. It has been the subject of intense interest to identify riboswitches, understand their mechanisms of action and use them in genetic engineering. The accumulation of genome and transcriptome sequence data and comparative genomics provide unprecedented opportunities to identify riboswitches in the genome. In the present study, we have evaluated the following six machine learning algorithms for their efficiency to classify riboswitches: J48, BayesNet, Naïve Bayes, Multilayer Perceptron, sequential minimal optimization, hidden Markov model (HMM). For determining effective classifier, the algorithms were compared on the statistical measures of specificity, sensitivity, accuracy, F-measure and receiver operating characteristic (ROC) plot analysis. The classifier Multilayer Perceptron achieved the best performance, with the highest specificity, sensitivity, F-score and accuracy, and with the largest area under the ROC curve, whereas HMM was the poorest performer. At present, the available tools for the prediction and classification of riboswitches are based on covariance model, support vector machine and HMM. The present study determines Multilayer Perceptron as a better classifier for the genome-wide riboswitch searches.

  16. Machine Learning: developing an image recognition program : with Python, Scikit Learn and OpenCV

    OpenAIRE

    Nguyen, Minh

    2016-01-01

    Machine Learning is one of the most debated topic in computer world these days, especially after the first Computer Go program has beaten human Go world champion. Among endless application of Machine Learning, image recognition, which problem is processing enormous amount of data from dynamic input. This thesis will present the basic concept of Machine Learning, Machine Learning algorithms, Python programming language and Scikit Learn – a simple and efficient tool for data analysis in P...

  17. Quick Estimation Model for the Concentration of Indoor Airborne Culturable Bacteria: An Application of Machine Learning

    Directory of Open Access Journals (Sweden)

    Zhijian Liu

    2017-07-01

    Full Text Available Indoor airborne culturable bacteria are sometimes harmful to human health. Therefore, a quick estimation of their concentration is particularly necessary. However, measuring the indoor microorganism concentration (e.g., bacteria usually requires a large amount of time, economic cost, and manpower. In this paper, we aim to provide a quick solution: using knowledge-based machine learning to provide quick estimation of the concentration of indoor airborne culturable bacteria only with the inputs of several measurable indoor environmental indicators, including: indoor particulate matter (PM2.5 and PM10, temperature, relative humidity, and CO2 concentration. Our results show that a general regression neural network (GRNN model can sufficiently provide a quick and decent estimation based on the model training and testing using an experimental database with 249 data groups.

  18. Application of Machine Learning Approaches in Intrusion Detection System: A Survey

    Directory of Open Access Journals (Sweden)

    Nutan Farah Haq

    2015-03-01

    Full Text Available Network security is one of the major concerns of the modern era. With the rapid development and massive usage of internet over the past decade, the vulnerabilities of network security have become an important issue. Intrusion detection system is used to identify unauthorized access and unusual attacks over the secured networks. Over the past years, many studies have been conducted on the intrusion detection system. However, in order to understand the current status of implementation of machine learning techniques for solving the intrusion detection problems this survey paper enlisted the 49 related studies in the time frame between 2009 and 2014 focusing on the architecture of the single, hybrid and ensemble classifier design. This survey paper also includes a statistical comparison of classifier algorithms, datasets being used and some other experimental setups as well as consideration of feature selection step.

  19. Quick Estimation Model for the Concentration of Indoor Airborne Culturable Bacteria: An Application of Machine Learning.

    Science.gov (United States)

    Liu, Zhijian; Li, Hao; Cao, Guoqing

    2017-07-30

    Indoor airborne culturable bacteria are sometimes harmful to human health. Therefore, a quick estimation of their concentration is particularly necessary. However, measuring the indoor microorganism concentration (e.g., bacteria) usually requires a large amount of time, economic cost, and manpower. In this paper, we aim to provide a quick solution: using knowledge-based machine learning to provide quick estimation of the concentration of indoor airborne culturable bacteria only with the inputs of several measurable indoor environmental indicators, including: indoor particulate matter (PM2.5 and PM10), temperature, relative humidity, and CO₂ concentration. Our results show that a general regression neural network (GRNN) model can sufficiently provide a quick and decent estimation based on the model training and testing using an experimental database with 249 data groups.

  20. FACT. Streamed data analysis and online application of machine learning models

    Energy Technology Data Exchange (ETDEWEB)

    Bruegge, Kai Arno; Buss, Jens [Technische Universitaet Dortmund (Germany). Astroteilchenphysik; Collaboration: FACT-Collaboration

    2016-07-01

    Imaging Atmospheric Cherenkov Telescopes (IACTs) like FACT produce a continuous flow of data during measurements. Analyzing the data in near real time is essential for monitoring sources. One major task of a monitoring system is to detect changes in the gamma-ray flux of a source, and to alert other experiments if some predefined limit is reached. In order to calculate the flux of an observed source, it is necessary to run an entire data analysis process including calibration, image cleaning, parameterization, signal-background separation and flux estimation. Software built on top of a data streaming framework has been implemented for FACT and generalized to work with the data acquisition framework of the Cherenkov Telescope Array (CTA). We present how the streams-framework is used to apply supervised machine learning models to an online data stream from the telescope.

  1. Machine Learning Phases of Strongly Correlated Fermions

    Directory of Open Access Journals (Sweden)

    Kelvin Ch’ng

    2017-08-01

    Full Text Available Machine learning offers an unprecedented perspective for the problem of classifying phases in condensed matter physics. We employ neural-network machine learning techniques to distinguish finite-temperature phases of the strongly correlated fermions on cubic lattices. We show that a three-dimensional convolutional network trained on auxiliary field configurations produced by quantum Monte Carlo simulations of the Hubbard model can correctly predict the magnetic phase diagram of the model at the average density of one (half filling. We then use the network, trained at half filling, to explore the trend in the transition temperature as the system is doped away from half filling. This transfer learning approach predicts that the instability to the magnetic phase extends to at least 5% doping in this region. Our results pave the way for other machine learning applications in correlated quantum many-body systems.

  2. Machine Learning Phases of Strongly Correlated Fermions

    Science.gov (United States)

    Ch'ng, Kelvin; Carrasquilla, Juan; Melko, Roger G.; Khatami, Ehsan

    2017-07-01

    Machine learning offers an unprecedented perspective for the problem of classifying phases in condensed matter physics. We employ neural-network machine learning techniques to distinguish finite-temperature phases of the strongly correlated fermions on cubic lattices. We show that a three-dimensional convolutional network trained on auxiliary field configurations produced by quantum Monte Carlo simulations of the Hubbard model can correctly predict the magnetic phase diagram of the model at the average density of one (half filling). We then use the network, trained at half filling, to explore the trend in the transition temperature as the system is doped away from half filling. This transfer learning approach predicts that the instability to the magnetic phase extends to at least 5% doping in this region. Our results pave the way for other machine learning applications in correlated quantum many-body systems.

  3. Machine learning for evolution strategies

    CERN Document Server

    Kramer, Oliver

    2016-01-01

    This book introduces numerous algorithmic hybridizations between both worlds that show how machine learning can improve and support evolution strategies. The set of methods comprises covariance matrix estimation, meta-modeling of fitness and constraint functions, dimensionality reduction for search and visualization of high-dimensional optimization processes, and clustering-based niching. After giving an introduction to evolution strategies and machine learning, the book builds the bridge between both worlds with an algorithmic and experimental perspective. Experiments mostly employ a (1+1)-ES and are implemented in Python using the machine learning library scikit-learn. The examples are conducted on typical benchmark problems illustrating algorithmic concepts and their experimental behavior. The book closes with a discussion of related lines of research.

  4. The application of machine learning in multi sensor data fusion for activity recognition in mobile device space

    Science.gov (United States)

    Marhoubi, Asmaa H.; Saravi, Sara; Edirisinghe, Eran A.

    2015-05-01

    The present generation of mobile handheld devices comes equipped with a large number of sensors. The key sensors include the Ambient Light Sensor, Proximity Sensor, Gyroscope, Compass and the Accelerometer. Many mobile applications are driven based on the readings obtained from either one or two of these sensors. However the presence of multiple-sensors will enable the determination of more detailed activities that are carried out by the user of a mobile device, thus enabling smarter mobile applications to be developed that responds more appropriately to user behavior and device usage. In the proposed research we use recent advances in machine learning to fuse together the data obtained from all key sensors of a mobile device. We investigate the possible use of single and ensemble classifier based approaches to identify a mobile device's behavior in the space it is present. Feature selection algorithms are used to remove non-discriminant features that often lead to poor classifier performance. As the sensor readings are noisy and include a significant proportion of missing values and outliers, we use machine learning based approaches to clean the raw data obtained from the sensors, before use. Based on selected practical case studies, we demonstrate the ability to accurately recognize device behavior based on multi-sensor data fusion.

  5. Game-powered machine learning.

    Science.gov (United States)

    Barrington, Luke; Turnbull, Douglas; Lanckriet, Gert

    2012-04-24

    Searching for relevant content in a massive amount of multimedia information is facilitated by accurately annotating each image, video, or song with a large number of relevant semantic keywords, or tags. We introduce game-powered machine learning, an integrated approach to annotating multimedia content that combines the effectiveness of human computation, through online games, with the scalability of machine learning. We investigate this framework for labeling music. First, a socially-oriented music annotation game called Herd It collects reliable music annotations based on the "wisdom of the crowds." Second, these annotated examples are used to train a supervised machine learning system. Third, the machine learning system actively directs the annotation games to collect new data that will most benefit future model iterations. Once trained, the system can automatically annotate a corpus of music much larger than what could be labeled using human computation alone. Automatically annotated songs can be retrieved based on their semantic relevance to text-based queries (e.g., "funky jazz with saxophone," "spooky electronica," etc.). Based on the results presented in this paper, we find that actively coupling annotation games with machine learning provides a reliable and scalable approach to making searchable massive amounts of multimedia data.

  6. An Evolutionary Machine Learning Framework for Big Data Sequence Mining

    Science.gov (United States)

    Kamath, Uday Krishna

    2014-01-01

    Sequence classification is an important problem in many real-world applications. Unlike other machine learning data, there are no "explicit" features or signals in sequence data that can help traditional machine learning algorithms learn and predict from the data. Sequence data exhibits inter-relationships in the elements that are…

  7. An Evolutionary Machine Learning Framework for Big Data Sequence Mining

    Science.gov (United States)

    Kamath, Uday Krishna

    2014-01-01

    Sequence classification is an important problem in many real-world applications. Unlike other machine learning data, there are no "explicit" features or signals in sequence data that can help traditional machine learning algorithms learn and predict from the data. Sequence data exhibits inter-relationships in the elements that are…

  8. Quantitative forecasting of PTSD from early trauma responses: a Machine Learning application.

    Science.gov (United States)

    Galatzer-Levy, Isaac R; Karstoft, Karen-Inge; Statnikov, Alexander; Shalev, Arieh Y

    2014-12-01

    There is broad interest in predicting the clinical course of mental disorders from early, multimodal clinical and biological information. Current computational models, however, constitute a significant barrier to realizing this goal. The early identification of trauma survivors at risk of post-traumatic stress disorder (PTSD) is plausible given the disorder's salient onset and the abundance of putative biological and clinical risk indicators. This work evaluates the ability of Machine Learning (ML) forecasting approaches to identify and integrate a panel of unique predictive characteristics and determine their accuracy in forecasting non-remitting PTSD from information collected within 10 days of a traumatic event. Data on event characteristics, emergency department observations, and early symptoms were collected in 957 trauma survivors, followed for fifteen months. An ML feature selection algorithm identified a set of predictors that rendered all others redundant. Support Vector Machines (SVMs) as well as other ML classification algorithms were used to evaluate the forecasting accuracy of i) ML selected features, ii) all available features without selection, and iii) Acute Stress Disorder (ASD) symptoms alone. SVM also compared the prediction of a) PTSD diagnostic status at 15 months to b) posterior probability of membership in an empirically derived non-remitting PTSD symptom trajectory. Results are expressed as mean Area Under Receiver Operating Characteristics Curve (AUC). The feature selection algorithm identified 16 predictors, present in ≥ 95% cross-validation trials. The accuracy of predicting non-remitting PTSD from that set (AUC = .77) did not differ from predicting from all available information (AUC = .78). Predicting from ASD symptoms was not better then chance (AUC = .60). The prediction of PTSD status was less accurate than that of membership in a non-remitting trajectory (AUC = .71). ML methods may fill a critical gap in forecasting PTSD. The

  9. Machine Learning for Neuroimaging with Scikit-Learn

    Directory of Open Access Journals (Sweden)

    Alexandre eAbraham

    2014-02-01

    Full Text Available Statistical machine learning methods are increasingly used for neuroimaging data analysis. Their main virtue is their ability to model high-dimensional datasets, e.g. multivariate analysis of activation images or resting-state time series. Supervised learning is typically used in decoding or encoding settings to relate brain images to behavioral or clinical observations, while unsupervised learning can uncover hidden structures in sets of images (e.g. resting state functional MRI or find sub-populations in large cohorts. By considering different functional neuroimaging applications, we illustrate how scikit-learn, a Python machine learning library, can be used to perform some key analysis steps. Scikit-learn contains a very large set of statistical learning algorithms, both supervised and unsupervised, and its application to neuroimaging data provides a versatile tool to study the brain.

  10. Machine learning for neuroimaging with scikit-learn.

    Science.gov (United States)

    Abraham, Alexandre; Pedregosa, Fabian; Eickenberg, Michael; Gervais, Philippe; Mueller, Andreas; Kossaifi, Jean; Gramfort, Alexandre; Thirion, Bertrand; Varoquaux, Gaël

    2014-01-01

    Statistical machine learning methods are increasingly used for neuroimaging data analysis. Their main virtue is their ability to model high-dimensional datasets, e.g., multivariate analysis of activation images or resting-state time series. Supervised learning is typically used in decoding or encoding settings to relate brain images to behavioral or clinical observations, while unsupervised learning can uncover hidden structures in sets of images (e.g., resting state functional MRI) or find sub-populations in large cohorts. By considering different functional neuroimaging applications, we illustrate how scikit-learn, a Python machine learning library, can be used to perform some key analysis steps. Scikit-learn contains a very large set of statistical learning algorithms, both supervised and unsupervised, and its application to neuroimaging data provides a versatile tool to study the brain.

  11. Newton Methods for Large Scale Problems in Machine Learning

    Science.gov (United States)

    Hansen, Samantha Leigh

    2014-01-01

    The focus of this thesis is on practical ways of designing optimization algorithms for minimizing large-scale nonlinear functions with applications in machine learning. Chapter 1 introduces the overarching ideas in the thesis. Chapters 2 and 3 are geared towards supervised machine learning applications that involve minimizing a sum of loss…

  12. Newton Methods for Large Scale Problems in Machine Learning

    Science.gov (United States)

    Hansen, Samantha Leigh

    2014-01-01

    The focus of this thesis is on practical ways of designing optimization algorithms for minimizing large-scale nonlinear functions with applications in machine learning. Chapter 1 introduces the overarching ideas in the thesis. Chapters 2 and 3 are geared towards supervised machine learning applications that involve minimizing a sum of loss…

  13. Higgs Machine Learning Challenge 2014

    CERN Multimedia

    Olivier, A-P; Bourdarios, C ; LAL / Orsay; Goldfarb, S ; University of Michigan

    2014-01-01

    High Energy Physics (HEP) has been using Machine Learning (ML) techniques such as boosted decision trees (paper) and neural nets since the 90s. These techniques are now routinely used for difficult tasks such as the Higgs boson search. Nevertheless, formal connections between the two research fields are rather scarce, with some exceptions such as the AppStat group at LAL, founded in 2006. In collaboration with INRIA, AppStat promotes interdisciplinary research on machine learning, computational statistics, and high-energy particle and astroparticle physics. We are now exploring new ways to improve the cross-fertilization of the two fields by setting up a data challenge, following the footsteps of, among others, the astrophysics community (dark matter and galaxy zoo challenges) and neurobiology (connectomics and decoding the human brain). The organization committee consists of ATLAS physicists and machine learning researchers. The Challenge will run from Monday 12th to September 2014.

  14. Machine learning methods in chemoinformatics

    Science.gov (United States)

    Mitchell, John B O

    2014-01-01

    Machine learning algorithms are generally developed in computer science or adjacent disciplines and find their way into chemical modeling by a process of diffusion. Though particular machine learning methods are popular in chemoinformatics and quantitative structure–activity relationships (QSAR), many others exist in the technical literature. This discussion is methods-based and focused on some algorithms that chemoinformatics researchers frequently use. It makes no claim to be exhaustive. We concentrate on methods for supervised learning, predicting the unknown property values of a test set of instances, usually molecules, based on the known values for a training set. Particularly relevant approaches include Artificial Neural Networks, Random Forest, Support Vector Machine, k-Nearest Neighbors and naïve Bayes classifiers. WIREs Comput Mol Sci 2014, 4:468–481. How to cite this article: WIREs Comput Mol Sci 2014, 4:468–481. doi:10.1002/wcms.1183 PMID:25285160

  15. Machine learning phases of matter

    Science.gov (United States)

    Carrasquilla, Juan; Melko, Roger G.

    2017-02-01

    Condensed-matter physics is the study of the collective behaviour of infinitely complex assemblies of electrons, nuclei, magnetic moments, atoms or qubits. This complexity is reflected in the size of the state space, which grows exponentially with the number of particles, reminiscent of the `curse of dimensionality' commonly encountered in machine learning. Despite this curse, the machine learning community has developed techniques with remarkable abilities to recognize, classify, and characterize complex sets of data. Here, we show that modern machine learning architectures, such as fully connected and convolutional neural networks, can identify phases and phase transitions in a variety of condensed-matter Hamiltonians. Readily programmable through modern software libraries, neural networks can be trained to detect multiple types of order parameter, as well as highly non-trivial states with no conventional order, directly from raw state configurations sampled with Monte Carlo.

  16. Machine learning: novel bioinformatics approaches for combating antimicrobial resistance.

    Science.gov (United States)

    Macesic, Nenad; Polubriaginof, Fernanda; Tatonetti, Nicholas P

    2017-09-12

    Antimicrobial resistance (AMR) is a threat to global health and new approaches to combating AMR are needed. Use of machine learning in addressing AMR is in its infancy but has made promising steps. We reviewed the current literature on the use of machine learning for studying bacterial AMR. The advent of large-scale data sets provided by next-generation sequencing and electronic health records make applying machine learning to the study and treatment of AMR possible. To date, it has been used for antimicrobial susceptibility genotype/phenotype prediction, development of AMR clinical decision rules, novel antimicrobial agent discovery and antimicrobial therapy optimization. Application of machine learning to studying AMR is feasible but remains limited. Implementation of machine learning in clinical settings faces barriers to uptake with concerns regarding model interpretability and data quality.Future applications of machine learning to AMR are likely to be laboratory-based, such as antimicrobial susceptibility phenotype prediction.

  17. Are you bleeding? Validation of a machine-learning algorithm for determination of blood volume status: application to remote triage

    National Research Council Canada - National Science Library

    Caroline A. Rickards; Nisarg Vyas; Kathy L. Ryan; Kevin R. Ward; David Andre; Gennifer M. Hurst; Chelsea R. Barrera; Victor A. Convertino

    2014-01-01

    .... The purpose of this study was to test the hypothesis that low-level physiological signals can be used to develop a machine-learning algorithm for tracking changes in central blood volume that will...

  18. A Unified Definition of Mutual Information with Applications in Machine Learning

    Directory of Open Access Journals (Sweden)

    Guoping Zeng

    2015-01-01

    Full Text Available There are various definitions of mutual information. Essentially, these definitions can be divided into two classes: (1 definitions with random variables and (2 definitions with ensembles. However, there are some mathematical flaws in these definitions. For instance, Class 1 definitions either neglect the probability spaces or assume the two random variables have the same probability space. Class 2 definitions redefine marginal probabilities from the joint probabilities. In fact, the marginal probabilities are given from the ensembles and should not be redefined from the joint probabilities. Both Class 1 and Class 2 definitions assume a joint distribution exists. Yet, they all ignore an important fact that the joint or the joint probability measure is not unique. In this paper, we first present a new unified definition of mutual information to cover all the various definitions and to fix their mathematical flaws. Our idea is to define the joint distribution of two random variables by taking the marginal probabilities into consideration. Next, we establish some properties of the newly defined mutual information. We then propose a method to calculate mutual information in machine learning. Finally, we apply our newly defined mutual information to credit scoring.

  19. Integrating Symbolic and Statistical Methods for Testing Intelligent Systems Applications to Machine Learning and Computer Vision

    Energy Technology Data Exchange (ETDEWEB)

    Jha, Sumit Kumar [University of Central Florida, Orlando; Pullum, Laura L [ORNL; Ramanathan, Arvind [ORNL

    2016-01-01

    Embedded intelligent systems ranging from tiny im- plantable biomedical devices to large swarms of autonomous un- manned aerial systems are becoming pervasive in our daily lives. While we depend on the flawless functioning of such intelligent systems, and often take their behavioral correctness and safety for granted, it is notoriously difficult to generate test cases that expose subtle errors in the implementations of machine learning algorithms. Hence, the validation of intelligent systems is usually achieved by studying their behavior on representative data sets, using methods such as cross-validation and bootstrapping.In this paper, we present a new testing methodology for studying the correctness of intelligent systems. Our approach uses symbolic decision procedures coupled with statistical hypothesis testing to. We also use our algorithm to analyze the robustness of a human detection algorithm built using the OpenCV open-source computer vision library. We show that the human detection implementation can fail to detect humans in perturbed video frames even when the perturbations are so small that the corresponding frames look identical to the naked eye.

  20. Application of Machine Learning tools to recognition of molecular patterns in STM images

    Science.gov (United States)

    Maksov, Artem; Ziatdinov, Maxim; Fujii, Shintaro; Kiguchi, Manabu; Higashibayashi, Shuhei; Sakurai, Hidehiro; Kalinin, Sergei; Sumpter, Bobby

    The ability to utilize individual molecules and molecular assemblies as data storage elements has motivated scientist for years, concurrent with the continuous effort to shrink a size of data storage devices in microelectronics industry. One of the critical issues in this effort lies in being able to identify individual molecular assembly units (patterns), on a large scale in an automated fashion of complete information extraction. Here we present a novel method of applying machine learning techniques for extraction of positional and rotational information from scanning tunneling microscopy (STM) images of π-bowl sumanene molecules on gold. We use Markov Random Field (MRF) model to decode the polar rotational states for each molecule in a large scale STM image of molecular film. We further develop an algorithm that uses a convolutional Neural Network combined with MRF and input from density functional theory to classify molecules into different azimuthal rotational classes. Our results demonstrate that a molecular film is partitioned into distinctive azimuthal rotational domains consisting typically of 20-30 molecules. In each domain, the ``bowl-down'' molecules are generally surrounded by six nearest neighbor molecules in ``bowl-up'' configuration, and the resultant overall structure form a periodic lattice of rotational and polar states within each domain. Research was supported by the US Department of Energy.

  1. A machine learning approach to automated structural network analysis: application to neonatal encephalopathy.

    Directory of Open Access Journals (Sweden)

    Etay Ziv

    Full Text Available Neonatal encephalopathy represents a heterogeneous group of conditions associated with life-long developmental disabilities and neurological deficits. Clinical measures and current anatomic brain imaging remain inadequate predictors of outcome in children with neonatal encephalopathy. Some studies have suggested that brain development and, therefore, brain connectivity may be altered in the subgroup of patients who subsequently go on to develop clinically significant neurological abnormalities. Large-scale structural brain connectivity networks constructed using diffusion tractography have been posited to reflect organizational differences in white matter architecture at the mesoscale, and thus offer a unique tool for characterizing brain development in patients with neonatal encephalopathy. In this manuscript we use diffusion tractography to construct structural networks for a cohort of patients with neonatal encephalopathy. We systematically map these networks to a high-dimensional space and then apply standard machine learning algorithms to predict neurological outcome in the cohort. Using nested cross-validation we demonstrate high prediction accuracy that is both statistically significant and robust over a broad range of thresholds. Our algorithm offers a novel tool to evaluate neonates at risk for developing neurological deficit. The described approach can be applied to any brain pathology that affects structural connectivity.

  2. Data Mining and Machine Learning in Astronomy

    CERN Document Server

    Ball, Nicholas M

    2009-01-01

    We review the current state of data mining and machine learning in Astronomy. 'Data Mining' can have a somewhat mixed connotation from the point of view of a researcher in this field. On the one hand, it is a powerful approach, holding the potential to fully exploit the exponentially increasing amount of available data, which promises almost limitless scientific advances. On the other, it can be the application of black-box computing algorithms that at best give little physical insight, and at worst provide questionable results. Here, we give an overview of the entire data mining process, from data collection through the interpretation of results. We cover common machine learning algorithms, such as artificial neural networks and support vector machines; applications from a broad range of Astronomy, with an emphasis on those where data mining resulted in improved physical insights, and important current and future directions, including the construction of full probability density functions, parallel algorithm...

  3. Machine Learning in Medicine

    National Research Council Canada - National Science Library

    Deo, Rahul C

    2015-01-01

    Spurred by advances in processing power, memory, storage, and an unprecedented wealth of data, computers are being asked to tackle increasingly complex learning tasks, often with astonishing success...

  4. Statistical and machine learning approaches for network analysis

    CERN Document Server

    Dehmer, Matthias

    2012-01-01

    Explore the multidisciplinary nature of complex networks through machine learning techniques Statistical and Machine Learning Approaches for Network Analysis provides an accessible framework for structurally analyzing graphs by bringing together known and novel approaches on graph classes and graph measures for classification. By providing different approaches based on experimental data, the book uniquely sets itself apart from the current literature by exploring the application of machine learning techniques to various types of complex networks. Comprised of chapters written by internation

  5. Machine Learning in Parliament Elections

    Directory of Open Access Journals (Sweden)

    Ahmad Esfandiari

    2012-09-01

    Full Text Available Parliament is considered as one of the most important pillars of the country governance. The parliamentary elections and prediction it, had been considered by scholars of from various field like political science long ago. Some important features are used to model the results of consultative parliament elections. These features are as follows: reputation and popularity, political orientation, tradesmen's support, clergymen's support, support from political wings and the type of supportive wing. Two parameters of reputation and popularity and the support of clergymen and religious scholars that have more impact in reducing of prediction error in election results, have been used as input parameters in implementation. In this study, the Iranian parliamentary elections, modeled and predicted using learnable machines of neural network and neuro-fuzzy. Neuro-fuzzy machine combines the ability of knowledge representation of fuzzy sets and the learning power of neural networks simultaneously. In predicting the social and political behavior, the neural network is first trained by two learning algorithms using the training data set and then this machine predict the result on test data. Next, the learning of neuro-fuzzy inference machine is performed. Then, be compared the results of two machines.

  6. Machine Learning for Education: Learning to Teach

    Science.gov (United States)

    2016-12-01

    1 Machine Learning for Education: Learning to Teach Matthew C. Gombolay, Reed Jensen, Sung-Hyun Son Massachusetts Institute of Technology Lincoln...training tools and develop military strategies within their training environment. Second, we develop methods for improving warfighter education: learning to...and do not necessarily reflect the views of the Department of the Navy. RAMS # 1001485 Fig. 1. SGD enables development of automated teaching tools for

  7. A Novel Extreme Learning Machine Classification Model for e-Nose Application Based on the Multiple Kernel Approach.

    Science.gov (United States)

    Jian, Yulin; Huang, Daoyu; Yan, Jia; Lu, Kun; Huang, Ying; Wen, Tailai; Zeng, Tanyue; Zhong, Shijie; Xie, Qilong

    2017-06-19

    A novel classification model, named the quantum-behaved particle swarm optimization (QPSO)-based weighted multiple kernel extreme learning machine (QWMK-ELM), is proposed in this paper. Experimental validation is carried out with two different electronic nose (e-nose) datasets. Being different from the existing multiple kernel extreme learning machine (MK-ELM) algorithms, the combination coefficients of base kernels are regarded as external parameters of single-hidden layer feedforward neural networks (SLFNs). The combination coefficients of base kernels, the model parameters of each base kernel, and the regularization parameter are optimized by QPSO simultaneously before implementing the kernel extreme learning machine (KELM) with the composite kernel function. Four types of common single kernel functions (Gaussian kernel, polynomial kernel, sigmoid kernel, and wavelet kernel) are utilized to constitute different composite kernel functions. Moreover, the method is also compared with other existing classification methods: extreme learning machine (ELM), kernel extreme learning machine (KELM), k-nearest neighbors (KNN), support vector machine (SVM), multi-layer perceptron (MLP), radical basis function neural network (RBFNN), and probabilistic neural network (PNN). The results have demonstrated that the proposed QWMK-ELM outperforms the aforementioned methods, not only in precision, but also in efficiency for gas classification.

  8. Attention: A Machine Learning Perspective

    DEFF Research Database (Denmark)

    Hansen, Lars Kai

    2012-01-01

    We review a statistical machine learning model of top-down task driven attention based on the notion of ‘gist’. In this framework we consider the task to be represented as a classification problem with two sets of features — a gist of coarse grained global features and a larger set of low...

  9. Machine learning an artificial intelligence approach

    CERN Document Server

    Banerjee, R; Bradshaw, Gary; Carbonell, Jaime Guillermo; Mitchell, Tom Michael; Michalski, Ryszard Spencer

    1983-01-01

    Machine Learning: An Artificial Intelligence Approach contains tutorial overviews and research papers representative of trends in the area of machine learning as viewed from an artificial intelligence perspective. The book is organized into six parts. Part I provides an overview of machine learning and explains why machines should learn. Part II covers important issues affecting the design of learning programs-particularly programs that learn from examples. It also describes inductive learning systems. Part III deals with learning by analogy, by experimentation, and from experience. Parts IV a

  10. Multipolar electrostatics based on the Kriging machine learning method: an application to serine.

    Science.gov (United States)

    Yuan, Yongna; Mills, Matthew J L; Popelier, Paul L A

    2014-04-01

    A multipolar, polarizable electrostatic method for future use in a novel force field is described. Quantum Chemical Topology (QCT) is used to partition the electron density of a chemical system into atoms, then the machine learning method Kriging is used to build models that relate the multipole moments of the atoms to the positions of their surrounding nuclei. The pilot system serine is used to study both the influence of the level of theory and the set of data generator methods used. The latter consists of: (i) sampling of protein structures deposited in the Protein Data Bank (PDB), or (ii) normal mode distortion along either (a) Cartesian coordinates, or (b) redundant internal coordinates. Wavefunctions for the sampled geometries were obtained at the HF/6-31G(d,p), B3LYP/apc-1, and MP2/cc-pVDZ levels of theory, prior to calculation of the atomic multipole moments by volume integration. The average absolute error (over an independent test set of conformations) in the total atom-atom electrostatic interaction energy of serine, using Kriging models built with the three data generator methods is 11.3 kJ mol⁻¹ (PDB), 8.2 kJ mol⁻¹ (Cartesian distortion), and 10.1 kJ mol⁻¹ (redundant internal distortion) at the HF/6-31G(d,p) level. At the B3LYP/apc-1 level, the respective errors are 7.7 kJ mol⁻¹, 6.7 kJ mol⁻¹, and 4.9 kJ mol⁻¹, while at the MP2/cc-pVDZ level they are 6.5 kJ mol⁻¹, 5.3 kJ mol⁻¹, and 4.0 kJ mol⁻¹. The ranges of geometries generated by the redundant internal coordinate distortion and by extraction from the PDB are much wider than the range generated by Cartesian distortion. The atomic multipole moment and electrostatic interaction energy predictions for the B3LYP/apc-1 and MP2/cc-pVDZ levels are similar, and both are better than the corresponding predictions at the HF/6-31G(d,p) level.

  11. Proceedings of the IEEE Machine Learning for Signal Processing XVII

    DEFF Research Database (Denmark)

    The seventeenth of a series of workshops sponsored by the IEEE Signal Processing Society and organized by the Machine Learning for Signal Processing Technical Committee (MLSP-TC). The field of machine learning has matured considerably in both methodology and real-world application domains and has...

  12. Machine Learning and Cosmological Simulations

    Science.gov (United States)

    Kamdar, Harshil; Turk, Matthew; Brunner, Robert

    2016-01-01

    We explore the application of machine learning (ML) to the problem of galaxy formation and evolution in a hierarchical universe. Our motivations are two-fold: (1) presenting a new, promising technique to study galaxy formation, and (2) quantitatively evaluating the extent of the influence of dark matter halo properties on small-scale structure formation. For our analyses, we use both semi-analytical models (Millennium simulation) and N-body + hydrodynamical simulations (Illustris simulation). The ML algorithms are trained on important dark matter halo properties (inputs) and galaxy properties (outputs). The trained models are able to robustly predict the gas mass, stellar mass, black hole mass, star formation rate, $g-r$ color, and stellar metallicity. Moreover, the ML simulated galaxies obey fundamental observational constraints implying that the population of ML predicted galaxies is physically and statistically robust. Next, ML algorithms are trained on an N-body + hydrodynamical simulation and applied to an N-body only simulation (Dark Sky simulation, Illustris Dark), populating this new simulation with galaxies. We can examine how structure formation changes with different cosmological parameters and are able to mimic a full-blown hydrodynamical simulation in a computation time that is orders of magnitude smaller. We find that the set of ML simulated galaxies in Dark Sky obey the same observational constraints, further solidifying ML's place as an intriguing and promising technique in future galaxy formation studies and rapid mock galaxy catalog creation.

  13. From machine learning to deep learning: progress in machine intelligence for rational drug discovery.

    Science.gov (United States)

    Zhang, Lu; Tan, Jianjun; Han, Dan; Zhu, Hao

    2017-09-04

    Machine intelligence, which is normally presented as artificial intelligence, refers to the intelligence exhibited by computers. In the history of rational drug discovery, various machine intelligence approaches have been applied to guide traditional experiments, which are expensive and time-consuming. Over the past several decades, machine-learning tools, such as quantitative structure-activity relationship (QSAR) modeling, were developed that can identify potential biological active molecules from millions of candidate compounds quickly and cheaply. However, when drug discovery moved into the era of 'big' data, machine learning approaches evolved into deep learning approaches, which are a more powerful and efficient way to deal with the massive amounts of data generated from modern drug discovery approaches. Here, we summarize the history of machine learning and provide insight into recently developed deep learning approaches and their applications in rational drug discovery. We suggest that this evolution of machine intelligence now provides a guide for early-stage drug design and discovery in the current big data era. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Machine Learning for Biometrics

    NARCIS (Netherlands)

    A.A. Salah (Albert Ali); E. Soria; J.D. Martin; R. Magdalena; M. Martinez; A.J. Serrano

    2009-01-01

    htmlabstractBiometrics aims at reliable and robust identification of humans from their personal traits, mainly for security and authentication purposes, but also for identifying and tracking the users of smarter applications. Frequently considered modalities are fingerprint, face, iris, palmprint

  15. Machine learning analysis of binaural rowing sounds

    DEFF Research Database (Denmark)

    Johard, Leonard; Ruffaldi, Emanuele; Hoffmann, Pablo F.

    2011-01-01

    Techniques for machine hearing are increasing their potentiality due to new application domains. In this work we are addressing the analysis of rowing sounds in natural context for the purpose of supporting a training system based on virtual environments. This paper presents the acquisition metho...... methodology and the evaluation of different machine learning techniques for classifying rowing-sound data. We see that a combination of principal component analysis and shallow networks perform equally well as deep architectures, while being much faster to train....

  16. Machine Learning Analysis of Binaural Rowing Sounds

    Directory of Open Access Journals (Sweden)

    Filippeschi Alessandro

    2011-12-01

    Full Text Available Techniques for machine hearing are increasing their potentiality due to new application domains. In this work we are addressing the analysis of rowing sounds in natural context for the purpose of supporting a training system based on virtual environments. This paper presents the acquisition methodology and the evaluation of different machine learning techniques for classifying rowing-sound data. We see that a combination of principal component analysis and shallow networks perform equally well as deep architectures, while being much faster to train.

  17. Learning Extended Finite State Machines

    Science.gov (United States)

    Cassel, Sofia; Howar, Falk; Jonsson, Bengt; Steffen, Bernhard

    2014-01-01

    We present an active learning algorithm for inferring extended finite state machines (EFSM)s, combining data flow and control behavior. Key to our learning technique is a novel learning model based on so-called tree queries. The learning algorithm uses the tree queries to infer symbolic data constraints on parameters, e.g., sequence numbers, time stamps, identifiers, or even simple arithmetic. We describe sufficient conditions for the properties that the symbolic constraints provided by a tree query in general must have to be usable in our learning model. We have evaluated our algorithm in a black-box scenario, where tree queries are realized through (black-box) testing. Our case studies include connection establishment in TCP and a priority queue from the Java Class Library.

  18. Machine learning in geosciences and remote sensing

    Institute of Scientific and Technical Information of China (English)

    David J. Lary; Amir H. Alavi; Amir H. Gandomi; Annette L. Walker

    2016-01-01

    Learning incorporates a broad range of complex procedures. Machine learning (ML) is a subdivision of artificial intelligence based on the biological learning process. The ML approach deals with the design of algorithms to learn from machine readable data. ML covers main domains such as data mining, difficult-to-program applications, and software applications. It is a collection of a variety of algorithms (e.g. neural networks, support vector machines, self-organizing map, decision trees, random forests, case-based reasoning, genetic programming, etc.) that can provide multivariate, nonlinear, nonparametric regres-sion or classification. The modeling capabilities of the ML-based methods have resulted in their extensive applications in science and engineering. Herein, the role of ML as an effective approach for solving problems in geosciences and remote sensing will be highlighted. The unique features of some of the ML techniques will be outlined with a specific attention to genetic programming paradigm. Furthermore, nonparametric regression and classification illustrative examples are presented to demonstrate the ef-ficiency of ML for tackling the geosciences and remote sensing problems.

  19. Machine learning in geosciences and remote sensing

    Directory of Open Access Journals (Sweden)

    David J. Lary

    2016-01-01

    Full Text Available Learning incorporates a broad range of complex procedures. Machine learning (ML is a subdivision of artificial intelligence based on the biological learning process. The ML approach deals with the design of algorithms to learn from machine readable data. ML covers main domains such as data mining, difficult-to-program applications, and software applications. It is a collection of a variety of algorithms (e.g. neural networks, support vector machines, self-organizing map, decision trees, random forests, case-based reasoning, genetic programming, etc. that can provide multivariate, nonlinear, nonparametric regression or classification. The modeling capabilities of the ML-based methods have resulted in their extensive applications in science and engineering. Herein, the role of ML as an effective approach for solving problems in geosciences and remote sensing will be highlighted. The unique features of some of the ML techniques will be outlined with a specific attention to genetic programming paradigm. Furthermore, nonparametric regression and classification illustrative examples are presented to demonstrate the efficiency of ML for tackling the geosciences and remote sensing problems.

  20. Machine learning analysis of binaural rowing sounds

    DEFF Research Database (Denmark)

    Johard, Leonard; Ruffaldi, Emanuele; Hoffmann, Pablo F.

    2011-01-01

    Techniques for machine hearing are increasing their potentiality due to new application domains. In this work we are addressing the analysis of rowing sounds in natural context for the purpose of supporting a training system based on virtual environments. This paper presents the acquisition metho...... methodology and the evaluation of different machine learning techniques for classifying rowing-sound data. We see that a combination of principal component analysis and shallow networks perform equally well as deep architectures, while being much faster to train.......Techniques for machine hearing are increasing their potentiality due to new application domains. In this work we are addressing the analysis of rowing sounds in natural context for the purpose of supporting a training system based on virtual environments. This paper presents the acquisition...

  1. Classifying smoking urges via machine learning.

    Science.gov (United States)

    Dumortier, Antoine; Beckjord, Ellen; Shiffman, Saul; Sejdić, Ervin

    2016-12-01

    Smoking is the largest preventable cause of death and diseases in the developed world, and advances in modern electronics and machine learning can help us deliver real-time intervention to smokers in novel ways. In this paper, we examine different machine learning approaches to use situational features associated with having or not having urges to smoke during a quit attempt in order to accurately classify high-urge states. To test our machine learning approaches, specifically, Bayes, discriminant analysis and decision tree learning methods, we used a dataset collected from over 300 participants who had initiated a quit attempt. The three classification approaches are evaluated observing sensitivity, specificity, accuracy and precision. The outcome of the analysis showed that algorithms based on feature selection make it possible to obtain high classification rates with only a few features selected from the entire dataset. The classification tree method outperformed the naive Bayes and discriminant analysis methods, with an accuracy of the classifications up to 86%. These numbers suggest that machine learning may be a suitable approach to deal with smoking cessation matters, and to predict smoking urges, outlining a potential use for mobile health applications. In conclusion, machine learning classifiers can help identify smoking situations, and the search for the best features and classifier parameters significantly improves the algorithms' performance. In addition, this study also supports the usefulness of new technologies in improving the effect of smoking cessation interventions, the management of time and patients by therapists, and thus the optimization of available health care resources. Future studies should focus on providing more adaptive and personalized support to people who really need it, in a minimum amount of time by developing novel expert systems capable of delivering real-time interventions. Copyright © 2016 Elsevier Ireland Ltd. All rights

  2. Learning Machine Learning: A Case Study

    Science.gov (United States)

    Lavesson, N.

    2010-01-01

    This correspondence reports on a case study conducted in the Master's-level Machine Learning (ML) course at Blekinge Institute of Technology, Sweden. The students participated in a self-assessment test and a diagnostic test of prerequisite subjects, and their results on these tests are correlated with their achievement of the course's learning…

  3. Learning Machine Learning: A Case Study

    Science.gov (United States)

    Lavesson, N.

    2010-01-01

    This correspondence reports on a case study conducted in the Master's-level Machine Learning (ML) course at Blekinge Institute of Technology, Sweden. The students participated in a self-assessment test and a diagnostic test of prerequisite subjects, and their results on these tests are correlated with their achievement of the course's learning…

  4. Machine learning from computer simulations with applications in rail vehicle dynamics

    Science.gov (United States)

    Taheri, Mehdi; Ahmadian, Mehdi

    2016-05-01

    The application of stochastic modelling for learning the behaviour of a multibody dynamics (MBD) models is investigated. Post-processing data from a simulation run are used to train the stochastic model that estimates the relationship between model inputs (suspension relative displacement and velocity) and the output (sum of suspension forces). The stochastic model can be used to reduce the computational burden of the MBD model by replacing a computationally expensive subsystem in the model (suspension subsystem). With minor changes, the stochastic modelling technique is able to learn the behaviour of a physical system and integrate its behaviour within MBD models. The technique is highly advantageous for MBD models where real-time simulations are necessary, or with models that have a large number of repeated substructures, e.g. modelling a train with a large number of railcars. The fact that the training data are acquired prior to the development of the stochastic model discards the conventional sampling plan strategies like Latin Hypercube sampling plans where simulations are performed using the inputs dictated by the sampling plan. Since the sampling plan greatly influences the overall accuracy and efficiency of the stochastic predictions, a sampling plan suitable for the process is developed where the most space-filling subset of the acquired data with ? number of sample points that best describes the dynamic behaviour of the system under study is selected as the training data. Results indicated that the stochastic modelling technique is effective in improving the computational efficiency of the MBD model without compromising the accuracy of the predictions, although the improvements in the computational efficiency of the technique could not be quantified due to the inefficiencies associated with transferring the data between multiple software packages (SIMPACK, SIMULINK).

  5. Machine Learning for Biometrics

    NARCIS (Netherlands)

    Salah, A.A.; Soria, E.; Martin, J.D.; Magdalena, R.; Martinez, M.; Serrano, A.J.

    2009-01-01

    Biometrics aims at reliable and robust identification of humans from their personal traits, mainly for security and authentication purposes, but also for identifying and tracking the users of smarter applications. Frequently considered modalities are fingerprint, face, iris, palmprint and voice, but

  6. Machine learning phases of matter

    OpenAIRE

    Carrasquilla, Juan; Melko, Roger G.

    2016-01-01

    Neural networks can be used to identify phases and phase transitions in condensed matter systems via supervised machine learning. Readily programmable through modern software libraries, we show that a standard feed-forward neural network can be trained to detect multiple types of order parameter directly from raw state configurations sampled with Monte Carlo. In addition, they can detect highly non-trivial states such as Coulomb phases, and if modified to a convolutional neural network, topol...

  7. Galaxy Classification using Machine Learning

    Science.gov (United States)

    Fowler, Lucas; Schawinski, Kevin; Brandt, Ben-Elias; widmer, Nicole

    2017-01-01

    We present our current research into the use of machine learning to classify galaxy imaging data with various convolutional neural network configurations in TensorFlow. We are investigating how five-band Sloan Digital Sky Survey imaging data can be used to train on physical properties such as redshift, star formation rate, mass and morphology. We also investigate the performance of artificially redshifted images in recovering physical properties as image quality degrades.

  8. Network anomaly detection a machine learning perspective

    CERN Document Server

    Bhattacharyya, Dhruba Kumar

    2013-01-01

    With the rapid rise in the ubiquity and sophistication of Internet technology and the accompanying growth in the number of network attacks, network intrusion detection has become increasingly important. Anomaly-based network intrusion detection refers to finding exceptional or nonconforming patterns in network traffic data compared to normal behavior. Finding these anomalies has extensive applications in areas such as cyber security, credit card and insurance fraud detection, and military surveillance for enemy activities. Network Anomaly Detection: A Machine Learning Perspective presents mach

  9. Fast, Continuous Audiogram Estimation Using Machine Learning.

    Science.gov (United States)

    Song, Xinyu D; Wallace, Brittany M; Gardner, Jacob R; Ledbetter, Noah M; Weinberger, Kilian Q; Barbour, Dennis L

    2015-01-01

    Pure-tone audiometry has been a staple of hearing assessments for decades. Many different procedures have been proposed for measuring thresholds with pure tones by systematically manipulating intensity one frequency at a time until a discrete threshold function is determined. The authors have developed a novel nonparametric approach for estimating a continuous threshold audiogram using Bayesian estimation and machine learning classification. The objective of this study was to assess the accuracy and reliability of this new method relative to a commonly used threshold measurement technique. The authors performed air conduction pure-tone audiometry on 21 participants between the ages of 18 and 90 years with varying degrees of hearing ability. Two repetitions of automated machine learning audiogram estimation and one repetition of conventional modified Hughson-Westlake ascending-descending audiogram estimation were acquired by an audiologist. The estimated hearing thresholds of these two techniques were compared at standard audiogram frequencies (i.e., 0.25, 0.5, 1, 2, 4, 8 kHz). The two threshold estimate methods delivered very similar estimates at standard audiogram frequencies. Specifically, the mean absolute difference between estimates was 4.16 ± 3.76 dB HL. The mean absolute difference between repeated measurements of the new machine learning procedure was 4.51 ± 4.45 dB HL. These values compare favorably with those of other threshold audiogram estimation procedures. Furthermore, the machine learning method generated threshold estimates from significantly fewer samples than the modified Hughson-Westlake procedure while returning a continuous threshold estimate as a function of frequency. The new machine learning audiogram estimation technique produces continuous threshold audiogram estimates accurately, reliably, and efficiently, making it a strong candidate for widespread application in clinical and research audiometry.

  10. Interface Metaphors for Interactive Machine Learning

    Energy Technology Data Exchange (ETDEWEB)

    Jasper, Robert J.; Blaha, Leslie M.

    2017-07-14

    To promote more interactive and dynamic machine learn- ing, we revisit the notion of user-interface metaphors. User-interface metaphors provide intuitive constructs for supporting user needs through interface design elements. A user-interface metaphor provides a visual or action pattern that leverages a user’s knowledge of another domain. Metaphors suggest both the visual representations that should be used in a display as well as the interactions that should be afforded to the user. We argue that user-interface metaphors can also offer a method of extracting interaction-based user feedback for use in machine learning. Metaphors offer indirect, context-based information that can be used in addition to explicit user inputs, such as user-provided labels. Implicit information from user interactions with metaphors can augment explicit user input for active learning paradigms. Or it might be leveraged in systems where explicit user inputs are more challenging to obtain. Each interaction with the metaphor provides an opportunity to gather data and learn. We argue this approach is especially important in streaming applications, where we desire machine learning systems that can adapt to dynamic, changing data.

  11. Broiler chickens can benefit from machine learning: support vector machine analysis of observational epidemiological data.

    Science.gov (United States)

    Hepworth, Philip J; Nefedov, Alexey V; Muchnik, Ilya B; Morgan, Kenton L

    2012-08-07

    Machine-learning algorithms pervade our daily lives. In epidemiology, supervised machine learning has the potential for classification, diagnosis and risk factor identification. Here, we report the use of support vector machine learning to identify the features associated with hock burn on commercial broiler farms, using routinely collected farm management data. These data lend themselves to analysis using machine-learning techniques. Hock burn, dermatitis of the skin over the hock, is an important indicator of broiler health and welfare. Remarkably, this classifier can predict the occurrence of high hock burn prevalence with accuracy of 0.78 on unseen data, as measured by the area under the receiver operating characteristic curve. We also compare the results with those obtained by standard multi-variable logistic regression and suggest that this technique provides new insights into the data. This novel application of a machine-learning algorithm, embedded in poultry management systems could offer significant improvements in broiler health and welfare worldwide.

  12. Continual Learning through Evolvable Neural Turing Machines

    DEFF Research Database (Denmark)

    Lüders, Benno; Schläger, Mikkel; Risi, Sebastian

    2016-01-01

    Continual learning, i.e. the ability to sequentially learn tasks without catastrophic forgetting of previously learned ones, is an important open challenge in machine learning. In this paper we take a step in this direction by showing that the recently proposed Evolving Neural Turing Machine (ENTM......) approach is able to perform one-shot learning in a reinforcement learning task without catastrophic forgetting of previously stored associations....

  13. Reverse hypothesis machine learning a practitioner's perspective

    CERN Document Server

    Kulkarni, Parag

    2017-01-01

    This book introduces a paradigm of reverse hypothesis machines (RHM), focusing on knowledge innovation and machine learning. Knowledge- acquisition -based learning is constrained by large volumes of data and is time consuming. Hence Knowledge innovation based learning is the need of time. Since under-learning results in cognitive inabilities and over-learning compromises freedom, there is need for optimal machine learning. All existing learning techniques rely on mapping input and output and establishing mathematical relationships between them. Though methods change the paradigm remains the same—the forward hypothesis machine paradigm, which tries to minimize uncertainty. The RHM, on the other hand, makes use of uncertainty for creative learning. The approach uses limited data to help identify new and surprising solutions. It focuses on improving learnability, unlike traditional approaches, which focus on accuracy. The book is useful as a reference book for machine learning researchers and professionals as ...

  14. Application of Machine Learning Techniques to High-Dimensional Clinical Data to Forecast Postoperative Complications.

    Directory of Open Access Journals (Sweden)

    Paul Thottakkara

    Full Text Available To compare performance of risk prediction models for forecasting postoperative sepsis and acute kidney injury.Retrospective single center cohort study of adult surgical patients admitted between 2000 and 2010.50,318 adult patients undergoing major surgery.We evaluated the performance of logistic regression, generalized additive models, naïve Bayes and support vector machines for forecasting postoperative sepsis and acute kidney injury. We assessed the impact of feature reduction techniques on predictive performance. Model performance was determined using the area under the receiver operating characteristic curve, accuracy, and positive predicted value. The results were reported based on a 70/30 cross validation procedure where the data were randomly split into 70% used for training the model and the 30% for validation.The areas under the receiver operating characteristic curve for different models ranged between 0.797 and 0.858 for acute kidney injury and between 0.757 and 0.909 for severe sepsis. Logistic regression, generalized additive model, and support vector machines had better performance compared to Naïve Bayes model. Generalized additive models additionally accounted for non-linearity of continuous clinical variables as depicted in their risk patterns plots. Reducing the input feature space with LASSO had minimal effect on prediction performance, while feature extraction using principal component analysis improved performance of the models.Generalized additive models and support vector machines had good performance as risk prediction model for postoperative sepsis and AKI. Feature extraction using principal component analysis improved the predictive performance of all models.

  15. Reinforcement and Systemic Machine Learning for Decision Making

    CERN Document Server

    Kulkarni, Parag

    2012-01-01

    Reinforcement and Systemic Machine Learning for Decision Making There are always difficulties in making machines that learn from experience. Complete information is not always available-or it becomes available in bits and pieces over a period of time. With respect to systemic learning, there is a need to understand the impact of decisions and actions on a system over that period of time. This book takes a holistic approach to addressing that need and presents a new paradigm-creating new learning applications and, ultimately, more intelligent machines. The first book of its kind in this new an

  16. On-the-Fly Learning in a Perpetual Learning Machine

    OpenAIRE

    2015-01-01

    Despite the promise of brain-inspired machine learning, deep neural networks (DNN) have frustratingly failed to bridge the deceptively large gap between learning and memory. Here, we introduce a Perpetual Learning Machine; a new type of DNN that is capable of brain-like dynamic 'on the fly' learning because it exists in a self-supervised state of Perpetual Stochastic Gradient Descent. Thus, we provide the means to unify learning and memory within a machine learning framework. We also explore ...

  17. Machine learning approaches in medical image analysis

    DEFF Research Database (Denmark)

    de Bruijne, Marleen

    2016-01-01

    Machine learning approaches are increasingly successful in image-based diagnosis, disease prognosis, and risk assessment. This paper highlights new research directions and discusses three main challenges related to machine learning in medical imaging: coping with variation in imaging protocols......, learning from weak labels, and interpretation and evaluation of results....

  18. Archetypal Analysis for Machine Learning

    DEFF Research Database (Denmark)

    Mørup, Morten; Hansen, Lars Kai

    2010-01-01

    Archetypal analysis (AA) proposed by Cutler and Breiman in [1] estimates the principal convex hull of a data set. As such AA favors features that constitute representative ’corners’ of the data, i.e. distinct aspects or archetypes. We will show that AA enjoys the interpretability of clustering - ...... for K-means [2]. We demonstrate that the AA model is relevant for feature extraction and dimensional reduction for a large variety of machine learning problems taken from computer vision, neuroimaging, text mining and collaborative filtering....

  19. EEG classification for motor imagery and resting state in BCI applications using multi-class Adaboost extreme learning machine

    Science.gov (United States)

    Gao, Lin; Cheng, Wei; Zhang, Jinhua; Wang, Jue

    2016-08-01

    Brain-computer interface (BCI) systems provide an alternative communication and control approach for people with limited motor function. Therefore, the feature extraction and classification approach should differentiate the relative unusual state of motion intention from a common resting state. In this paper, we sought a novel approach for multi-class classification in BCI applications. We collected electroencephalographic (EEG) signals registered by electrodes placed over the scalp during left hand motor imagery, right hand motor imagery, and resting state for ten healthy human subjects. We proposed using the Kolmogorov complexity (Kc) for feature extraction and a multi-class Adaboost classifier with extreme learning machine as base classifier for classification, in order to classify the three-class EEG samples. An average classification accuracy of 79.5% was obtained for ten subjects, which greatly outperformed commonly used approaches. Thus, it is concluded that the proposed method could improve the performance for classification of motor imagery tasks for multi-class samples. It could be applied in further studies to generate the control commands to initiate the movement of a robotic exoskeleton or orthosis, which finally facilitates the rehabilitation of disabled people.

  20. Extreme Learning Machine for land cover classification

    OpenAIRE

    Pal, Mahesh

    2008-01-01

    This paper explores the potential of extreme learning machine based supervised classification algorithm for land cover classification. In comparison to a backpropagation neural network, which requires setting of several user-defined parameters and may produce local minima, extreme learning machine require setting of one parameter and produce a unique solution. ETM+ multispectral data set (England) was used to judge the suitability of extreme learning machine for remote sensing classifications...

  1. Introducing Machine Learning Concepts with WEKA.

    Science.gov (United States)

    Smith, Tony C; Frank, Eibe

    2016-01-01

    This chapter presents an introduction to data mining with machine learning. It gives an overview of various types of machine learning, along with some examples. It explains how to download, install, and run the WEKA data mining toolkit on a simple data set, then proceeds to explain how one might approach a bioinformatics problem. Finally, it includes a brief summary of machine learning algorithms for other types of data mining problems, and provides suggestions about where to find additional information.

  2. Electrical machines & their applications

    CERN Document Server

    Hindmarsh, J

    1984-01-01

    A self-contained, comprehensive and unified treatment of electrical machines, including consideration of their control characteristics in both conventional and semiconductor switched circuits. This new edition has been expanded and updated to include material which reflects current thinking and practice. All references have been updated to conform to the latest national (BS) and international (IEC) recommendations and a new appendix has been added which deals more fully with the theory of permanent-magnets, recognising the growing importance of permanent-magnet machines. The text is so arra

  3. Automatic QSO Selection Using Machine Learning: Application on Massive Astronomical Database

    Science.gov (United States)

    Kim, D.-W.; Protopapas, P.; Alcock, C.; Byun, Y.-I.; Khardon, R.

    2011-07-01

    We present a new QSO (Quasi-Stellar Object) selection algorithm using Support Vector Machine (SVM), a supervised classification method, on a set of multiple extracted times series features such as period, amplitude, color, and autocorrelation value. We train a model that separates QSOs from variable stars, non-variable stars and microlensing events using the richest possible training set consisting of all known types of variables including QSOs from the MAssive Compact Halo Object (MACHO) database. We applied the trained model on the MACHO Large Magellanic Cloud (LMC) dataset, which consists of 40 million lightcurves, and found 1,620 QSO candidates. During the selection none of the 33,242 known MACHO variables were misclassified as QSO candidates. In order to estimate the true false positive rate, we crossmatched the candidates with astronomical catalogs including the Spitzer Surveying the Agents of a Galaxy's Evolution (SAGE) LMC catalog. The results further suggest that the majority of the candidates, more than 70%, are QSOs.

  4. Scalable Machine Learning for Massive Astronomical Datasets

    Science.gov (United States)

    Ball, Nicholas M.; Gray, A.

    2014-04-01

    We present the ability to perform data mining and machine learning operations on a catalog of half a billion astronomical objects. This is the result of the combination of robust, highly accurate machine learning algorithms with linear scalability that renders the applications of these algorithms to massive astronomical data tractable. We demonstrate the core algorithms kernel density estimation, K-means clustering, linear regression, nearest neighbors, random forest and gradient-boosted decision tree, singular value decomposition, support vector machine, and two-point correlation function. Each of these is relevant for astronomical applications such as finding novel astrophysical objects, characterizing artifacts in data, object classification (including for rare objects), object distances, finding the important features describing objects, density estimation of distributions, probabilistic quantities, and exploring the unknown structure of new data. The software, Skytree Server, runs on any UNIX-based machine, a virtual machine, or cloud-based and distributed systems including Hadoop. We have integrated it on the cloud computing system of the Canadian Astronomical Data Centre, the Canadian Advanced Network for Astronomical Research (CANFAR), creating the world's first cloud computing data mining system for astronomy. We demonstrate results showing the scaling of each of our major algorithms on large astronomical datasets, including the full 470,992,970 objects of the 2 Micron All-Sky Survey (2MASS) Point Source Catalog. We demonstrate the ability to find outliers in the full 2MASS dataset utilizing multiple methods, e.g., nearest neighbors. This is likely of particular interest to the radio astronomy community given, for example, that survey projects contain groups dedicated to this topic. 2MASS is used as a proof-of-concept dataset due to its convenience and availability. These results are of interest to any astronomical project with large and/or complex

  5. Machine learning in medicine cookbook

    CERN Document Server

    Cleophas, Ton J

    2014-01-01

    The amount of data in medical databases doubles every 20 months, and physicians are at a loss to analyze them. Also, traditional methods of data analysis have difficulty to identify outliers and patterns in big data and data with multiple exposure / outcome variables and analysis-rules for surveys and questionnaires, currently common methods of data collection, are, essentially, missing. Obviously, it is time that medical and health professionals mastered their reluctance to use machine learning and the current 100 page cookbook should be helpful to that aim. It covers in a condensed form the subjects reviewed in the 750 page three volume textbook by the same authors, entitled “Machine Learning in Medicine I-III” (ed. by Springer, Heidelberg, Germany, 2013) and was written as a hand-hold presentation and must-read publication. It was written not only to investigators and students in the fields, but also to jaded clinicians new to the methods and lacking time to read the entire textbooks. General purposes ...

  6. The application of machine learning techniques as an adjunct to clinical decision making in alcohol dependence treatment.

    Science.gov (United States)

    Connor, J P; Symons, M; Feeney, G F X; Young, R McD; Wiles, J

    2007-01-01

    With few exceptions, research in the addictive sciences has relied on linear statistics and methodologies. Addiction involves a complex array of nonlinear behaviors. This study applies two machine learning techniques, Bayesian and decision tree classifiers, in the assessment of outcome of an alcohol dependence treatment program. These nonlinear approaches are compared to a standard linear analysis. Seventy-three alcohol-dependent subjects undertaking a 12-week cognitive-behavioral therapy (CBT) program and 66 subjects undertaking an identical program but also prescribed the relapse prevention agent Acamprosate were employed in this study. Demographic, alcohol use, dependence severity, craving, health-related quality of life, and psychological measures at baseline were used to predict abstinence at 12 weeks. Decision trees had a 77% predictive accuracy across both data sets, Bayesian networks 73%, and discriminant analysis 42%. Combined with clinical experience, machine learning approaches offer promise in understanding the complex relationships that underlie treatment outcome for abstinence-based alcohol treatment programs.

  7. Sparse extreme learning machine for classification.

    Science.gov (United States)

    Bai, Zuo; Huang, Guang-Bin; Wang, Danwei; Wang, Han; Westover, M Brandon

    2014-10-01

    Extreme learning machine (ELM) was initially proposed for single-hidden-layer feedforward neural networks (SLFNs). In the hidden layer (feature mapping), nodes are randomly generated independently of training data. Furthermore, a unified ELM was proposed, providing a single framework to simplify and unify different learning methods, such as SLFNs, least square support vector machines, proximal support vector machines, and so on. However, the solution of unified ELM is dense, and thus, usually plenty of storage space and testing time are required for large-scale applications. In this paper, a sparse ELM is proposed as an alternative solution for classification, reducing storage space and testing time. In addition, unified ELM obtains the solution by matrix inversion, whose computational complexity is between quadratic and cubic with respect to the training size. It still requires plenty of training time for large-scale problems, even though it is much faster than many other traditional methods. In this paper, an efficient training algorithm is specifically developed for sparse ELM. The quadratic programming problem involved in sparse ELM is divided into a series of smallest possible sub-problems, each of which are solved analytically. Compared with SVM, sparse ELM obtains better generalization performance with much faster training speed. Compared with unified ELM, sparse ELM achieves similar generalization performance for binary classification applications, and when dealing with large-scale binary classification problems, sparse ELM realizes even faster training speed than unified ELM.

  8. 机器学习方法及应用研究%Machine Learning Method and Application

    Institute of Scientific and Technical Information of China (English)

    马健喆

    2015-01-01

    The paper introduces machine game technology, gives how to enhance the computer intelligence is the focus of computer game, designs a gobang game algorithm, due to algorithm design determines the degree of computer intelligence, the algorithm does not use machine learning, the computer has no intelligence. Analyze the different characteristics of Kasparov and "Deep Blue", give a revelation of the"Deep Blue"defeated the world champion, only a computer with the learning ability developed by machine learning technology has the intelligence.%该文介绍了机器博弈技术,给出了提升计算机的智能程度是研究机器博弈技术的重点.设计了五子棋游戏算法,由于算法设计决定了计算机的智能程度,该算法没有用到机器学习,计算机不具有智能.分析了卡斯帕罗夫和"深蓝"的不同特点,给出了"深蓝"战胜世界冠军的启示,只有利用机器学习技术开发的具备学习能力的计算机才具有智能.

  9. Implementation of an iPod wireless accelerometer application using machine learning to classify disparity of hemiplegic and healthy patellar tendon reflex pair.

    Science.gov (United States)

    LeMoyne, Robert; Kerr, Wesley T; Zanjani, Kevin; Mastroianni, Timothy

    2014-03-01

    The characteristics of the patellar tendon reflex provide fundamental insight regarding the diagnosis of neurological status. Based on the features of the tendon reflex response, a clinician may establish preliminary perspective regarding the global condition of the nervous system. Current techniques for quantifying the observations of the reflex response involve the application of ordinal scales, requiring the expertise of a highly skilled clinician. However, the reliability of the ordinal scale approach is debatable. Highly skilled clinicians have even disputed the presence of asymmetric reflex pairs. An alternative strategy was the implementation of an iPod wireless accelerometer application to quantify the reflex response acceleration waveform. An application enabled the recording of the acceleration waveform and later wireless transmission as an email attachment by connectivity to the Internet. A potential energy impact pendulum enabled the patellar tendon reflex to be evoked in a predetermined and targeted manner. Three feature categories of the reflex response acceleration waveform (global parameters, temporal organization, and spectral features) were incorporated into machine learning to distinguish a subject's hemiplegic and healthy reflex pair. Machine learning attained perfect classification of the hemiplegic and healthy reflex pair. The research findings implicate the promise of machine learning for providing increased diagnostic acuity regarding the acceleration waveform of the tendon reflex response.

  10. Building machine learning systems with Python

    CERN Document Server

    Coelho, Luis Pedro

    2015-01-01

    This book primarily targets Python developers who want to learn and use Python's machine learning capabilities and gain valuable insights from data to develop effective solutions for business problems.

  11. Learning as a Machine: Crossovers between Humans and Machines

    Science.gov (United States)

    Hildebrandt, Mireille

    2017-01-01

    This article is a revised version of the keynote presented at LAK '16 in Edinburgh. The article investigates some of the assumptions of learning analytics, notably those related to behaviourism. Building on the work of Ivan Pavlov, Herbert Simon, and James Gibson as ways of "learning as a machine," the article then develops two levels of…

  12. Finding New Perovskite Halides via Machine learning

    Directory of Open Access Journals (Sweden)

    Ghanshyam ePilania

    2016-04-01

    Full Text Available Advanced materials with improved properties have the potential to fuel future technological advancements. However, identification and discovery of these optimal materials for a specific application is a non-trivial task, because of the vastness of the chemical search space with enormous compositional and configurational degrees of freedom. Materials informatics provides an efficient approach towards rational design of new materials, via learning from known data to make decisions on new and previously unexplored compounds in an accelerated manner. Here, we demonstrate the power and utility of such statistical learning (or machine learning via building a support vector machine (SVM based classifier that uses elemental features (or descriptors to predict the formability of a given ABX3 halide composition (where A and B represent monovalent and divalent cations, respectively, and X is F, Cl, Br or I anion in the perovskite crystal structure. The classification model is built by learning from a dataset of 181 experimentally known ABX3 compounds. After exploring a wide range of features, we identify ionic radii, tolerance factor and octahedral factor to be the most important factors for the classification, suggesting that steric and geometric packing effects govern the stability of these halides. The trained and validated models then predict, with a high degree of confidence, several novel ABX3 compositions with perovskite crystal structure.

  13. Finding New Perovskite Halides via Machine learning

    Science.gov (United States)

    Pilania, Ghanshyam; Balachandran, Prasanna V.; Kim, Chiho; Lookman, Turab

    2016-04-01

    Advanced materials with improved properties have the potential to fuel future technological advancements. However, identification and discovery of these optimal materials for a specific application is a non-trivial task, because of the vastness of the chemical search space with enormous compositional and configurational degrees of freedom. Materials informatics provides an efficient approach towards rational design of new materials, via learning from known data to make decisions on new and previously unexplored compounds in an accelerated manner. Here, we demonstrate the power and utility of such statistical learning (or machine learning) via building a support vector machine (SVM) based classifier that uses elemental features (or descriptors) to predict the formability of a given ABX3 halide composition (where A and B represent monovalent and divalent cations, respectively, and X is F, Cl, Br or I anion) in the perovskite crystal structure. The classification model is built by learning from a dataset of 181 experimentally known ABX3 compounds. After exploring a wide range of features, we identify ionic radii, tolerance factor and octahedral factor to be the most important factors for the classification, suggesting that steric and geometric packing effects govern the stability of these halides. The trained and validated models then predict, with a high degree of confidence, several novel ABX3 compositions with perovskite crystal structure.

  14. Estimation and scaling of hydrostratigraphic units: application of unsupervised machine learning and multivariate statistical techniques to hydrogeophysical data

    Science.gov (United States)

    Friedel, Michael J.

    2016-08-01

    Numerical models provide a way to evaluate groundwater systems, but determining the hydrostratigraphic units (HSUs) used in constructing these models remains subjective, nonunique, and uncertain. A three-step machine-learning approach is proposed in which fusion, estimation, and clustering operations are performed on different data sets to arrive at HSUs at different scales. In step one, data fusion is performed by training a self-organizing map (SOM) with sparse borehole hydrogeologic (lithology, hydraulic conductivity, aqueous field parameters, dissolved constituents) and geophysical (gamma, spontaneous potential, and resistivity) measurements. Estimation is handled by iterative least-squares minimization of the SOM quantization and topographical errors. Application of the Davies-Bouldin criteria to k-means clustering of SOM nodes is used to determine the number and location of discontinuous borehole HSUs with low lateral density (based on borehole spacing at 100 s m) and high vertical density (based on cm-scale logging). In step two, a scaling network is trained using the estimated borehole HSUs, airborne electromagnetic measurements, and numerically inverted resistivity profiles. In step three, independent airborne electromagnetic measurements are applied to the scaling network, and the estimation performed to arrive at a set of continuous HSUs with high lateral density (based on sounding locations at meter (m) spacing) and medium vertical density (based on m-layer modeled structure). Performance metrics are used to evaluate each step of the approach. Efficacy of the proposed approach is demonstrated to map local-to-regional scale HSUs using hydrogeophysical data collected at a heterogeneous surficial aquifer in northwestern Nebraska, USA.

  15. Estimation and scaling of hydrostratigraphic units: application of unsupervised machine learning and multivariate statistical techniques to hydrogeophysical data

    Science.gov (United States)

    Friedel, Michael J.

    2016-12-01

    Numerical models provide a way to evaluate groundwater systems, but determining the hydrostratigraphic units (HSUs) used in constructing these models remains subjective, nonunique, and uncertain. A three-step machine-learning approach is proposed in which fusion, estimation, and clustering operations are performed on different data sets to arrive at HSUs at different scales. In step one, data fusion is performed by training a self-organizing map (SOM) with sparse borehole hydrogeologic (lithology, hydraulic conductivity, aqueous field parameters, dissolved constituents) and geophysical (gamma, spontaneous potential, and resistivity) measurements. Estimation is handled by iterative least-squares minimization of the SOM quantization and topographical errors. Application of the Davies-Bouldin criteria to k-means clustering of SOM nodes is used to determine the number and location of discontinuous borehole HSUs with low lateral density (based on borehole spacing at 100 s m) and high vertical density (based on cm-scale logging). In step two, a scaling network is trained using the estimated borehole HSUs, airborne electromagnetic measurements, and numerically inverted resistivity profiles. In step three, independent airborne electromagnetic measurements are applied to the scaling network, and the estimation performed to arrive at a set of continuous HSUs with high lateral density (based on sounding locations at meter (m) spacing) and medium vertical density (based on m-layer modeled structure). Performance metrics are used to evaluate each step of the approach. Efficacy of the proposed approach is demonstrated to map local-to-regional scale HSUs using hydrogeophysical data collected at a heterogeneous surficial aquifer in northwestern Nebraska, USA.

  16. Double/Debiased/Neyman Machine Learning of Treatment Effects

    OpenAIRE

    Chernozhukov, Victor; Chetverikov, Denis; Demirer, Mert; Duflo, Esther; Hansen, Christian; Newey, Whitney

    2017-01-01

    Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, and Newey (2016) provide a generic double/de-biased machine learning (DML) approach for obtaining valid inferential statements about focal parameters, using Neyman-orthogonal scores and cross-fitting, in settings where nuisance parameters are estimated using a new generation of nonparametric fitting methods for high-dimensional data, called machine learning methods. In this note, we illustrate the application of this method in the context of ...

  17. Machine Learning wins the Higgs Challenge

    CERN Multimedia

    Abha Eli Phoboo

    2014-01-01

    The winner of the four-month-long Higgs Machine Learning Challenge, launched on 12 May, is Gábor Melis from Hungary, followed closely by Tim Salimans from the Netherlands and Pierre Courtiol from France. The challenge explored the potential of advanced machine learning methods to improve the significance of the Higgs discovery.   Winners of the Higgs Machine Learning Challenge: Gábor Melis and Tim Salimans (top row), Tianqi Chen and Tong He (bottom row). Participants in the Higgs Machine Learning Challenge were tasked with developing an algorithm to improve the detection of Higgs boson signal events decaying into two tau particles in a sample of simulated ATLAS data* that contains few signal and a majority of non-Higgs boson “background” events. No knowledge of particle physics was required for the challenge but skills in machine learning - the training of computers to recognise patterns in data – were essential. The Challenge, hosted by Ka...

  18. Machine learning in sedimentation modelling.

    Science.gov (United States)

    Bhattacharya, B; Solomatine, D P

    2006-03-01

    The paper presents machine learning (ML) models that predict sedimentation in the harbour basin of the Port of Rotterdam. The important factors affecting the sedimentation process such as waves, wind, tides, surge, river discharge, etc. are studied, the corresponding time series data is analysed, missing values are estimated and the most important variables behind the process are chosen as the inputs. Two ML methods are used: MLP ANN and M5 model tree. The latter is a collection of piece-wise linear regression models, each being an expert for a particular region of the input space. The models are trained on the data collected during 1992-1998 and tested by the data of 1999-2000. The predictive accuracy of the models is found to be adequate for the potential use in the operational decision making.

  19. Probabilistic machine learning and artificial intelligence.

    Science.gov (United States)

    Ghahramani, Zoubin

    2015-05-28

    How can a machine learn from experience? Probabilistic modelling provides a framework for understanding what learning is, and has therefore emerged as one of the principal theoretical and practical approaches for designing machines that learn from data acquired through experience. The probabilistic framework, which describes how to represent and manipulate uncertainty about models and predictions, has a central role in scientific data analysis, machine learning, robotics, cognitive science and artificial intelligence. This Review provides an introduction to this framework, and discusses some of the state-of-the-art advances in the field, namely, probabilistic programming, Bayesian optimization, data compression and automatic model discovery.

  20. Probabilistic machine learning and artificial intelligence

    Science.gov (United States)

    Ghahramani, Zoubin

    2015-05-01

    How can a machine learn from experience? Probabilistic modelling provides a framework for understanding what learning is, and has therefore emerged as one of the principal theoretical and practical approaches for designing machines that learn from data acquired through experience. The probabilistic framework, which describes how to represent and manipulate uncertainty about models and predictions, has a central role in scientific data analysis, machine learning, robotics, cognitive science and artificial intelligence. This Review provides an introduction to this framework, and discusses some of the state-of-the-art advances in the field, namely, probabilistic programming, Bayesian optimization, data compression and automatic model discovery.

  1. Building machine learning systems with Python

    CERN Document Server

    Richert, Willi

    2013-01-01

    This is a tutorial-driven and practical, but well-grounded book showcasing good Machine Learning practices. There will be an emphasis on using existing technologies instead of showing how to write your own implementations of algorithms. This book is a scenario-based, example-driven tutorial. By the end of the book you will have learnt critical aspects of Machine Learning Python projects and experienced the power of ML-based systems by actually working on them.This book primarily targets Python developers who want to learn about and build Machine Learning into their projects, or who want to pro

  2. Adaptive Learning Systems: Beyond Teaching Machines

    Science.gov (United States)

    Kara, Nuri; Sevim, Nese

    2013-01-01

    Since 1950s, teaching machines have changed a lot. Today, we have different ideas about how people learn, what instructor should do to help students during their learning process. We have adaptive learning technologies that can create much more student oriented learning environments. The purpose of this article is to present these changes and its…

  3. Machine learning techniques and drug design.

    Science.gov (United States)

    Gertrudes, J C; Maltarollo, V G; Silva, R A; Oliveira, P R; Honório, K M; da Silva, A B F

    2012-01-01

    The interest in the application of machine learning techniques (MLT) as drug design tools is growing in the last decades. The reason for this is related to the fact that the drug design is very complex and requires the use of hybrid techniques. A brief review of some MLT such as self-organizing maps, multilayer perceptron, bayesian neural networks, counter-propagation neural network and support vector machines is described in this paper. A comparison between the performance of the described methods and some classical statistical methods (such as partial least squares and multiple linear regression) shows that MLT have significant advantages. Nowadays, the number of studies in medicinal chemistry that employ these techniques has considerably increased, in particular the use of support vector machines. The state of the art and the future trends of MLT applications encompass the use of these techniques to construct more reliable QSAR models. The models obtained from MLT can be used in virtual screening studies as well as filters to develop/discovery new chemicals. An important challenge in the drug design field is the prediction of pharmacokinetic and toxicity properties, which can avoid failures in the clinical phases. Therefore, this review provides a critical point of view on the main MLT and shows their potential ability as a valuable tool in drug design.

  4. Machine learning a theoretical approach

    CERN Document Server

    Natarajan, Balas K

    2014-01-01

    This is the first comprehensive introduction to computational learning theory. The author's uniform presentation of fundamental results and their applications offers AI researchers a theoretical perspective on the problems they study. The book presents tools for the analysis of probabilistic models of learning, tools that crisply classify what is and is not efficiently learnable. After a general introduction to Valiant's PAC paradigm and the important notion of the Vapnik-Chervonenkis dimension, the author explores specific topics such as finite automata and neural networks. The presentation

  5. Parameter Identifiability in Statistical Machine Learning: A Review.

    Science.gov (United States)

    Ran, Zhi-Yong; Hu, Bao-Gang

    2017-05-01

    This review examines the relevance of parameter identifiability for statistical models used in machine learning. In addition to defining main concepts, we address several issues of identifiability closely related to machine learning, showing the advantages and disadvantages of state-of-the-art research and demonstrating recent progress. First, we review criteria for determining the parameter structure of models from the literature. This has three related issues: parameter identifiability, parameter redundancy, and reparameterization. Second, we review the deep influence of identifiability on various aspects of machine learning from theoretical and application viewpoints. In addition to illustrating the utility and influence of identifiability, we emphasize the interplay among identifiability theory, machine learning, mathematical statistics, information theory, optimization theory, information geometry, Riemann geometry, symbolic computation, Bayesian inference, algebraic geometry, and others. Finally, we present a new perspective together with the associated challenges.

  6. Python for probability, statistics, and machine learning

    CERN Document Server

    Unpingco, José

    2016-01-01

    This book covers the key ideas that link probability, statistics, and machine learning illustrated using Python modules in these areas. The entire text, including all the figures and numerical results, is reproducible using the Python codes and their associated Jupyter/IPython notebooks, which are provided as supplementary downloads. The author develops key intuitions in machine learning by working meaningful examples using multiple analytical methods and Python codes, thereby connecting theoretical concepts to concrete implementations. Modern Python modules like Pandas, Sympy, and Scikit-learn are applied to simulate and visualize important machine learning concepts like the bias/variance trade-off, cross-validation, and regularization. Many abstract mathematical ideas, such as convergence in probability theory, are developed and illustrated with numerical examples. This book is suitable for anyone with an undergraduate-level exposure to probability, statistics, or machine learning and with rudimentary knowl...

  7. Problematic internet use (PIU): Associations with the impulsive-compulsive spectrum. An application of machine learning in psychiatry.

    Science.gov (United States)

    Ioannidis, Konstantinos; Chamberlain, Samuel R; Treder, Matthias S; Kiraly, Franz; Leppink, Eric W; Redden, Sarah A; Stein, Dan J; Lochner, Christine; Grant, Jon E

    2016-12-01

    Problematic internet use is common, functionally impairing, and in need of further study. Its relationship with obsessive-compulsive and impulsive disorders is unclear. Our objective was to evaluate whether problematic internet use can be predicted from recognised forms of impulsive and compulsive traits and symptomatology. We recruited volunteers aged 18 and older using media advertisements at two sites (Chicago USA, and Stellenbosch, South Africa) to complete an extensive online survey. State-of-the-art out-of-sample evaluation of machine learning predictive models was used, which included Logistic Regression, Random Forests and Naïve Bayes. Problematic internet use was identified using the Internet Addiction Test (IAT). 2006 complete cases were analysed, of whom 181 (9.0%) had moderate/severe problematic internet use. Using Logistic Regression and Naïve Bayes we produced a classification prediction with a receiver operating characteristic area under the curve (ROC-AUC) of 0.83 (SD 0.03) whereas using a Random Forests algorithm the prediction ROC-AUC was 0.84 (SD 0.03) [all three models superior to baseline models p internet use was possible using specific measures of impulsivity and compulsivity in a population of volunteers. Moreover, this study offers proof-of-concept in support of using machine learning in psychiatry to demonstrate replicability of results across geographically and culturally distinct settings. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  8. An introduction to machine learning with Scikit-Learn

    CERN Document Server

    CERN. Geneva

    2015-01-01

    This tutorial gives an introduction to the scientific ecosystem for data analysis and machine learning in Python. After a short introduction of machine learning concepts, we will demonstrate on High Energy Physics data how a basic supervised learning analysis can be carried out using the Scikit-Learn library. Topics covered include data loading facilities and data representation, supervised learning algorithms, pipelines, model selection and evaluation, and model introspection.

  9. Machine Learning Techniques for Optical Performance Monitoring from Directly Detected PDM-QAM Signals

    DEFF Research Database (Denmark)

    Thrane, Jakob; Wass, Jesper; Piels, Molly

    2017-01-01

    Linear signal processing algorithms are effective in dealing with linear transmission channel and linear signal detection, while the nonlinear signal processing algorithms, from the machine learning community, are effective in dealing with nonlinear transmission channel and nonlinear signal...... detection. In this paper, a brief overview of the various machine learning methods and their application in optical communication is presented and discussed. Moreover, supervised machine learning methods, such as neural networks and support vector machine, are experimentally demonstrated for in-band optical...

  10. Proceedings of the IEEE Machine Learning for Signal Processing XVII

    DEFF Research Database (Denmark)

    , and two papers from the winners of the Data Analysis Competition. The program included papers in the following areas: genomic signal processing, pattern recognition and classification, image and video processing, blind signal processing, models, learning algorithms, and applications of machine learning......The seventeenth of a series of workshops sponsored by the IEEE Signal Processing Society and organized by the Machine Learning for Signal Processing Technical Committee (MLSP-TC). The field of machine learning has matured considerably in both methodology and real-world application domains and has....... The program featured a Special Session on Genomic Signal Processing, chaired by Prof. Man-Wai Mak from Hong Kong Polytechnic University, Hong Kong. The session included four refereed papers by leading experts in the field. We also continued the tradition of the Data Analysis Competition thanks to the efforts...

  11. Distributed Extreme Learning Machine for Nonlinear Learning over Network

    Directory of Open Access Journals (Sweden)

    Songyan Huang

    2015-02-01

    Full Text Available Distributed data collection and analysis over a network are ubiquitous, especially over a wireless sensor network (WSN. To our knowledge, the data model used in most of the distributed algorithms is linear. However, in real applications, the linearity of systems is not always guaranteed. In nonlinear cases, the single hidden layer feedforward neural network (SLFN with radial basis function (RBF hidden neurons has the ability to approximate any continuous functions and, thus, may be used as the nonlinear learning system. However, confined by the communication cost, using the distributed version of the conventional algorithms to train the neural network directly is usually prohibited. Fortunately, based on the theorems provided in the extreme learning machine (ELM literature, we only need to compute the output weights of the SLFN. Computing the output weights itself is a linear learning problem, although the input-output mapping of the overall SLFN is still nonlinear. Using the distributed algorithmto cooperatively compute the output weights of the SLFN, we obtain a distributed extreme learning machine (dELM for nonlinear learning in this paper. This dELM is applied to the regression problem and classification problem to demonstrate its effectiveness and advantages.

  12. Machine learning techniques in optical communication

    DEFF Research Database (Denmark)

    Zibar, Darko; Piels, Molly; Jones, Rasmus Thomas

    2015-01-01

    Techniques from the machine learning community are reviewed and employed for laser characterization, signal detection in the presence of nonlinear phase noise, and nonlinearity mitigation. Bayesian filtering and expectation maximization are employed within nonlinear state-space framework...

  13. Machine learning techniques in optical communication

    DEFF Research Database (Denmark)

    Zibar, Darko; Piels, Molly; Jones, Rasmus Thomas

    2016-01-01

    Machine learning techniques relevant for nonlinearity mitigation, carrier recovery, and nanoscale device characterization are reviewed and employed. Markov Chain Monte Carlo in combination with Bayesian filtering is employed within the nonlinear state-space framework and demonstrated for parameter...

  14. Lane Detection Based on Machine Learning Algorithm

    National Research Council Canada - National Science Library

    Chao Fan; Jingbo Xu; Shuai Di

    2013-01-01

    In order to improve accuracy and robustness of the lane detection in complex conditions, such as the shadows and illumination changing, a novel detection algorithm was proposed based on machine learning...

  15. PCP-ML: protein characterization package for machine learning.

    Science.gov (United States)

    Eickholt, Jesse; Wang, Zheng

    2014-11-18

    Machine Learning (ML) has a number of demonstrated applications in protein prediction tasks such as protein structure prediction. To speed further development of machine learning based tools and their release to the community, we have developed a package which characterizes several aspects of a protein commonly used for protein prediction tasks with machine learning. A number of software libraries and modules exist for handling protein related data. The package we present in this work, PCP-ML, is unique in its small footprint and emphasis on machine learning. Its primary focus is on characterizing various aspects of a protein through sets of numerical data. The generated data can then be used with machine learning tools and/or techniques. PCP-ML is very flexible in how the generated data is formatted and as a result is compatible with a variety of existing machine learning packages. Given its small size, it can be directly packaged and distributed with community developed tools for protein prediction tasks. Source code and example programs are available under a BSD license at http://mlid.cps.cmich.edu/eickh1jl/tools/PCPML/. The package is implemented in C++ and accessible as a Python module.

  16. A Fast Reduced Kernel Extreme Learning Machine.

    Science.gov (United States)

    Deng, Wan-Yu; Ong, Yew-Soon; Zheng, Qing-Hua

    2016-04-01

    In this paper, we present a fast and accurate kernel-based supervised algorithm referred to as the Reduced Kernel Extreme Learning Machine (RKELM). In contrast to the work on Support Vector Machine (SVM) or Least Square SVM (LS-SVM), which identifies the support vectors or weight vectors iteratively, the proposed RKELM randomly selects a subset of the available data samples as support vectors (or mapping samples). By avoiding the iterative steps of SVM, significant cost savings in the training process can be readily attained, especially on Big datasets. RKELM is established based on the rigorous proof of universal learning involving reduced kernel-based SLFN. In particular, we prove that RKELM can approximate any nonlinear functions accurately under the condition of support vectors sufficiency. Experimental results on a wide variety of real world small instance size and large instance size applications in the context of binary classification, multi-class problem and regression are then reported to show that RKELM can perform at competitive level of generalized performance as the SVM/LS-SVM at only a fraction of the computational effort incurred.

  17. Implementing Machine Learning in the PCWG Tool

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, Andrew; Ding, Yu; Stuart, Peter

    2016-12-13

    The Power Curve Working Group (www.pcwg.org) is an ad-hoc industry-led group to investigate the performance of wind turbines in real-world conditions. As part of ongoing experience-sharing exercises, machine learning has been proposed as a possible way to predict turbine performance. This presentation provides some background information about machine learning and how it might be implemented in the PCWG exercises.

  18. Development of Machine Learning Tools in ROOT

    Science.gov (United States)

    Gleyzer, S. V.; Moneta, L.; Zapata, Omar A.

    2016-10-01

    ROOT is a framework for large-scale data analysis that provides basic and advanced statistical methods used by the LHC experiments. These include machine learning algorithms from the ROOT-integrated Toolkit for Multivariate Analysis (TMVA). We present several recent developments in TMVA, including a new modular design, new algorithms for variable importance and cross-validation, interfaces to other machine-learning software packages and integration of TMVA with Jupyter, making it accessible with a browser.

  19. 2015 International Conference on Machine Learning and Signal Processing

    CERN Document Server

    Woo, Wai; Sulaiman, Hamzah; Othman, Mohd; Saat, Mohd

    2016-01-01

    This book presents important research findings and recent innovations in the field of machine learning and signal processing. A wide range of topics relating to machine learning and signal processing techniques and their applications are addressed in order to provide both researchers and practitioners with a valuable resource documenting the latest advances and trends. The book comprises a careful selection of the papers submitted to the 2015 International Conference on Machine Learning and Signal Processing (MALSIP 2015), which was held on 15–17 December 2015 in Ho Chi Minh City, Vietnam with the aim of offering researchers, academicians, and practitioners an ideal opportunity to disseminate their findings and achievements. All of the included contributions were chosen by expert peer reviewers from across the world on the basis of their interest to the community. In addition to presenting the latest in design, development, and research, the book provides access to numerous new algorithms for machine learni...

  20. Automatic classification of written descriptions by healthy adults: An overview of the application of natural language processing and machine learning techniques to clinical discourse analysis

    Directory of Open Access Journals (Sweden)

    Cíntia Matsuda Toledo

    Full Text Available Discourse production is an important aspect in the evaluation of brain-injured individuals. We believe that studies comparing the performance of brain-injured subjects with that of healthy controls must use groups with compatible education. A pioneering application of machine learning methods using Brazilian Portuguese for clinical purposes is described, highlighting education as an important variable in the Brazilian scenario.OBJECTIVE: The aims were to describe how to: (i develop machine learning classifiers using features generated by natural language processing tools to distinguish descriptions produced by healthy individuals into classes based on their years of education; and (ii automatically identify the features that best distinguish the groups.METHODS: The approach proposed here extracts linguistic features automatically from the written descriptions with the aid of two Natural Language Processing tools: Coh-Metrix-Port and AIC. It also includes nine task-specific features (three new ones, two extracted manually, besides description time; type of scene described - simple or complex; presentation order - which type of picture was described first; and age. In this study, the descriptions by 144 of the subjects studied in Toledo18 were used, which included 200 healthy Brazilians of both genders.RESULTS AND CONCLUSION:A Support Vector Machine (SVM with a radial basis function (RBF kernel is the most recommended approach for the binary classification of our data, classifying three of the four initial classes. CfsSubsetEval (CFS is a strong candidate to replace manual feature selection methods.

  1. Addressing uncertainty in atomistic machine learning

    DEFF Research Database (Denmark)

    Peterson, Andrew A.; Christensen, Rune; Khorshidi, Alireza

    2017-01-01

    Machine-learning regression has been demonstrated to precisely emulate the potential energy and forces that are output from more expensive electronic-structure calculations. However, to predict new regions of the potential energy surface, an assessment must be made of the credibility of the predi......Machine-learning regression has been demonstrated to precisely emulate the potential energy and forces that are output from more expensive electronic-structure calculations. However, to predict new regions of the potential energy surface, an assessment must be made of the credibility...... of the predictions. In this perspective, we address the types of errors that might arise in atomistic machine learning, the unique aspects of atomistic simulations that make machine-learning challenging, and highlight how uncertainty analysis can be used to assess the validity of machine-learning predictions. We...... suggest this will allow researchers to more fully use machine learning for the routine acceleration of large, high-accuracy, or extended-time simulations. In our demonstrations, we use a bootstrap ensemble of neural network-based calculators, and show that the width of the ensemble can provide an estimate...

  2. Addressing uncertainty in atomistic machine learning.

    Science.gov (United States)

    Peterson, Andrew A; Christensen, Rune; Khorshidi, Alireza

    2017-05-10

    Machine-learning regression has been demonstrated to precisely emulate the potential energy and forces that are output from more expensive electronic-structure calculations. However, to predict new regions of the potential energy surface, an assessment must be made of the credibility of the predictions. In this perspective, we address the types of errors that might arise in atomistic machine learning, the unique aspects of atomistic simulations that make machine-learning challenging, and highlight how uncertainty analysis can be used to assess the validity of machine-learning predictions. We suggest this will allow researchers to more fully use machine learning for the routine acceleration of large, high-accuracy, or extended-time simulations. In our demonstrations, we use a bootstrap ensemble of neural network-based calculators, and show that the width of the ensemble can provide an estimate of the uncertainty when the width is comparable to that in the training data. Intriguingly, we also show that the uncertainty can be localized to specific atoms in the simulation, which may offer hints for the generation of training data to strategically improve the machine-learned representation.

  3. Defining multivariate normative rules for healthy aging using neuroimaging and machine learning: an application to Alzheimer's disease.

    Science.gov (United States)

    Andrade de Oliveira, Ailton; Carthery-Goulart, Maria Teresa; Oliveira Júnior, Pedro Paulo de Magalhães; Carrettiero, Daniel Carneiro; Sato, João Ricardo

    2015-01-01

    Neuroimaging techniques combined with computational neuroanatomy have been playing a role in the investigation of healthy aging and Alzheimer's disease (AD). The definition of normative rules for brain features is a crucial step to establish typical and atypical aging trajectories. To introduce an unsupervised pattern recognition method; to define multivariate normative rules of neuroanatomical measures; and to propose a brain abnormality index. This study was based on a machine learning approach (one class classification or novelty detection) to neuroanatomical measures (brain regions, volume, and cortical thickness) extracted from the Alzheimer's Disease Neuroimaging Initiative (ADNI)'s database. We applied a ν-One-Class Support Vector Machine (ν-OC-SVM) trained with data from healthy subjects to build an abnormality index, which was compared with subjects diagnosed with mild cognitive impairment and AD. The method was able to classify AD subjects as outliers with an accuracy of 84.3% at a false alarm rate of 32.5%. The proposed brain abnormality index was found to be significantly associated with group diagnosis, clinical data, biomarkers, and future conversion to AD. These results suggest that one-class classification may be a promising approach to help in the detection of disease conditions. Our findings support a framework considering the continuum of brain abnormalities from healthy aging to AD, which is correlated with cognitive impairment and biomarkers measurements.

  4. Machine learning methods without tears: a primer for ecologists.

    Science.gov (United States)

    Olden, Julian D; Lawler, Joshua J; Poff, N LeRoy

    2008-06-01

    Machine learning methods, a family of statistical techniques with origins in the field of artificial intelligence, are recognized as holding great promise for the advancement of understanding and prediction about ecological phenomena. These modeling techniques are flexible enough to handle complex problems with multiple interacting elements and typically outcompete traditional approaches (e.g., generalized linear models), making them ideal for modeling ecological systems. Despite their inherent advantages, a review of the literature reveals only a modest use of these approaches in ecology as compared to other disciplines. One potential explanation for this lack of interest is that machine learning techniques do not fall neatly into the class of statistical modeling approaches with which most ecologists are familiar. In this paper, we provide an introduction to three machine learning approaches that can be broadly used by ecologists: classification and regression trees, artificial neural networks, and evolutionary computation. For each approach, we provide a brief background to the methodology, give examples of its application in ecology, describe model development and implementation, discuss strengths and weaknesses, explore the availability of statistical software, and provide an illustrative example. Although the ecological application of machine learning approaches has increased, there remains considerable skepticism with respect to the role of these techniques in ecology. Our review encourages a greater understanding of machin learning approaches and promotes their future application and utilization, while also providing a basis from which ecologists can make informed decisions about whether to select or avoid these approaches in their future modeling endeavors.

  5. Machine learning in cell biology - teaching computers to recognize phenotypes.

    Science.gov (United States)

    Sommer, Christoph; Gerlich, Daniel W

    2013-12-15

    Recent advances in microscope automation provide new opportunities for high-throughput cell biology, such as image-based screening. High-complex image analysis tasks often make the implementation of static and predefined processing rules a cumbersome effort. Machine-learning methods, instead, seek to use intrinsic data structure, as well as the expert annotations of biologists to infer models that can be used to solve versatile data analysis tasks. Here, we explain how machine-learning methods work and what needs to be considered for their successful application in cell biology. We outline how microscopy images can be converted into a data representation suitable for machine learning, and then introduce various state-of-the-art machine-learning algorithms, highlighting recent applications in image-based screening. Our Commentary aims to provide the biologist with a guide to the application of machine learning to microscopy assays and we therefore include extensive discussion on how to optimize experimental workflow as well as the data analysis pipeline.

  6. Machining dynamics fundamentals, applications and practices

    CERN Document Server

    Cheng, Kai

    2008-01-01

    Machining dynamics are vital to the performance of machine tools and machining processes in manufacturing. This book discusses the state-of-the-art applications, practices and research in machining dynamics. It presents basic theory, analysis and control methodology. It is useful for manufacturing engineers, supervisors, engineers and designers.

  7. MACHINE LEARNING TECHNIQUES USED IN BIG DATA

    Directory of Open Access Journals (Sweden)

    STEFANIA LOREDANA NITA

    2016-07-01

    Full Text Available The classical tools used in data analysis are not enough in order to benefit of all advantages of big data. The amount of information is too large for a complete investigation, and the possible connections and relations between data could be missed, because it is difficult or even impossible to verify all assumption over the information. Machine learning is a great solution in order to find concealed correlations or relationships between data, because it runs at scale machine and works very well with large data sets. The more data we have, the more the machine learning algorithm is useful, because it “learns” from the existing data and applies the found rules on new entries. In this paper, we present some machine learning algorithms and techniques used in big data.

  8. A Machine Learning Perspective on Predictive Coding with PAQ

    CERN Document Server

    Knoll, Byron

    2011-01-01

    PAQ8 is an open source lossless data compression algorithm that currently achieves the best compression rates on many benchmarks. This report presents a detailed description of PAQ8 from a statistical machine learning perspective. It shows that it is possible to understand some of the modules of PAQ8 and use this understanding to improve the method. However, intuitive statistical explanations of the behavior of other modules remain elusive. We hope the description in this report will be a starting point for discussions that will increase our understanding, lead to improvements to PAQ8, and facilitate a transfer of knowledge from PAQ8 to other machine learning methods, such a recurrent neural networks and stochastic memoizers. Finally, the report presents a broad range of new applications of PAQ to machine learning tasks including language modeling and adaptive text prediction, adaptive game playing, classification, and compression using features from the field of deep learning.

  9. A Machine-Learning-Driven Sky Model.

    Science.gov (United States)

    Satylmys, Pynar; Bashford-Rogers, Thomas; Chalmers, Alan; Debattista, Kurt

    2017-01-01

    Sky illumination is responsible for much of the lighting in a virtual environment. A machine-learning-based approach can compactly represent sky illumination from both existing analytic sky models and from captured environment maps. The proposed approach can approximate the captured lighting at a significantly reduced memory cost and enable smooth transitions of sky lighting to be created from a small set of environment maps captured at discrete times of day. The author's results demonstrate accuracy close to the ground truth for both analytical and capture-based methods. The approach has a low runtime overhead, so it can be used as a generic approach for both offline and real-time applications.

  10. CD process control through machine learning

    Science.gov (United States)

    Utzny, Clemens

    2016-10-01

    For the specific requirements of the 14nm and 20nm site applications a new CD map approach was developed at the AMTC. This approach relies on a well established machine learning technique called recursive partitioning. Recursive partitioning is a powerful technique which creates a decision tree by successively testing whether the quantity of interest can be explained by one of the supplied covariates. The test performed is generally a statistical test with a pre-supplied significance level. Once the test indicates significant association between the variable of interest and a covariate a split performed at a threshold value which minimizes the variation within the newly attained groups. This partitioning is recurred until either no significant association can be detected or the resulting sub group size falls below a pre-supplied level.

  11. Teraflop-scale Incremental Machine Learning

    CERN Document Server

    Özkural, Eray

    2011-01-01

    We propose a long-term memory design for artificial general intelligence based on Solomonoff's incremental machine learning methods. We use R5RS Scheme and its standard library with a few omissions as the reference machine. We introduce a Levin Search variant based on Stochastic Context Free Grammar together with four synergistic update algorithms that use the same grammar as a guiding probability distribution of programs. The update algorithms include adjusting production probabilities, re-using previous solutions, learning programming idioms and discovery of frequent subprograms. Experiments with two training sequences demonstrate that our approach to incremental learning is effective.

  12. Machine learning a Bayesian and optimization perspective

    CERN Document Server

    Theodoridis, Sergios

    2015-01-01

    This tutorial text gives a unifying perspective on machine learning by covering both probabilistic and deterministic approaches, which rely on optimization techniques, as well as Bayesian inference, which is based on a hierarchy of probabilistic models. The book presents the major machine learning methods as they have been developed in different disciplines, such as statistics, statistical and adaptive signal processing and computer science. Focusing on the physical reasoning behind the mathematics, all the various methods and techniques are explained in depth, supported by examples and problems, giving an invaluable resource to the student and researcher for understanding and applying machine learning concepts. The book builds carefully from the basic classical methods to the most recent trends, with chapters written to be as self-contained as possible, making the text suitable for different courses: pattern recognition, statistical/adaptive signal processing, statistical/Bayesian learning, as well as shor...

  13. Machine learning: Trends, perspectives, and prospects.

    Science.gov (United States)

    Jordan, M I; Mitchell, T M

    2015-07-17

    Machine learning addresses the question of how to build computers that improve automatically through experience. It is one of today's most rapidly growing technical fields, lying at the intersection of computer science and statistics, and at the core of artificial intelligence and data science. Recent progress in machine learning has been driven both by the development of new learning algorithms and theory and by the ongoing explosion in the availability of online data and low-cost computation. The adoption of data-intensive machine-learning methods can be found throughout science, technology and commerce, leading to more evidence-based decision-making across many walks of life, including health care, manufacturing, education, financial modeling, policing, and marketing.

  14. A robust hybrid model integrating enhanced inputs based extreme learning machine with PLSR (PLSR-EIELM) and its application to intelligent measurement.

    Science.gov (United States)

    He, Yan-Lin; Geng, Zhi-Qiang; Xu, Yuan; Zhu, Qun-Xiong

    2015-09-01

    In this paper, a robust hybrid model integrating an enhanced inputs based extreme learning machine with the partial least square regression (PLSR-EIELM) was proposed. The proposed PLSR-EIELM model can overcome two main flaws in the extreme learning machine (ELM), i.e. the intractable problem in determining the optimal number of the hidden layer neurons and the over-fitting phenomenon. First, a traditional extreme learning machine (ELM) is selected. Second, a method of randomly assigning is applied to the weights between the input layer and the hidden layer, and then the nonlinear transformation for independent variables can be obtained from the output of the hidden layer neurons. Especially, the original input variables are regarded as enhanced inputs; then the enhanced inputs and the nonlinear transformed variables are tied together as the whole independent variables. In this way, the PLSR can be carried out to identify the PLS components not only from the nonlinear transformed variables but also from the original input variables, which can remove the correlation among the whole independent variables and the expected outputs. Finally, the optimal relationship model of the whole independent variables with the expected outputs can be achieved by using PLSR. Thus, the PLSR-EIELM model is developed. Then the PLSR-EIELM model served as an intelligent measurement tool for the key variables of the Purified Terephthalic Acid (PTA) process and the High Density Polyethylene (HDPE) process. The experimental results show that the predictive accuracy of PLSR-EIELM is stable, which indicate that PLSR-EIELM has good robust character. Moreover, compared with ELM, PLSR, hierarchical ELM (HELM), and PLSR-ELM, PLSR-EIELM can achieve much smaller predicted relative errors in these two applications.

  15. A Comparison Study of Extreme Learning Machine and Least Squares Support Vector Machine for Structural Impact Localization

    OpenAIRE

    Qingsong Xu

    2014-01-01

    Extreme learning machine (ELM) is a learning algorithm for single-hidden layer feedforward neural network dedicated to an extremely fast learning. However, the performance of ELM in structural impact localization is unknown yet. In this paper, a comparison study of ELM with least squares support vector machine (LSSVM) is presented for the application on impact localization of a plate structure with surface-mounted piezoelectric sensors. Both basic and kernel-based ELM regression models have b...

  16. Application of machine learning methods to describe the effects of conjugated equine estrogens therapy on region-specific brain volumes.

    Science.gov (United States)

    Casanova, Ramon; Espeland, Mark A; Goveas, Joseph S; Davatzikos, Christos; Gaussoin, Sarah A; Maldjian, Joseph A; Brunner, Robert L; Kuller, Lewis H; Johnson, Karen C; Mysiw, W Jerry; Wagner, Benjamin; Resnick, Susan M

    2011-05-01

    Use of conjugated equine estrogens (CEE) has been linked to smaller regional brain volumes in women aged ≥65 years; however, it is unknown whether this results in a broad-based characteristic pattern of effects. Structural magnetic resonance imaging was used to assess regional volumes of normal tissue and ischemic lesions among 513 women who had been enrolled in a randomized clinical trial of CEE therapy for an average of 6.6 years, beginning at ages 65-80 years. A multivariate pattern analysis, based on a machine learning technique that combined Random Forest and logistic regression with L(1) penalty, was applied to identify patterns among regional volumes associated with therapy and whether patterns discriminate between treatment groups. The multivariate pattern analysis detected smaller regional volumes of normal tissue within the limbic and temporal lobes among women that had been assigned to CEE therapy. Mean decrements ranged as high as 7% in the left entorhinal cortex and 5% in the left perirhinal cortex, which exceeded the effect sizes reported previously in frontal lobe and hippocampus. Overall accuracy of classification based on these patterns, however, was projected to be only 54.5%. Prescription of CEE therapy for an average of 6.6 years is associated with lower regional brain volumes, but it does not induce a characteristic spatial pattern of changes in brain volumes of sufficient magnitude to discriminate users and nonusers. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Advances in independent component analysis and learning machines

    CERN Document Server

    Bingham, Ella; Laaksonen, Jorma; Lampinen, Jouko

    2015-01-01

    In honour of Professor Erkki Oja, one of the pioneers of Independent Component Analysis (ICA), this book reviews key advances in the theory and application of ICA, as well as its influence on signal processing, pattern recognition, machine learning, and data mining. Examples of topics which have developed from the advances of ICA, which are covered in the book are: A unifying probabilistic model for PCA and ICA Optimization methods for matrix decompositions Insights into the FastICA algorithmUnsupervised deep learning Machine vision and image retrieval A review of developments in the t

  18. Advances in machine learning and data mining for astronomy

    CERN Document Server

    Way, Michael J

    2012-01-01

    Advances in Machine Learning and Data Mining for Astronomy documents numerous successful collaborations among computer scientists, statisticians, and astronomers who illustrate the application of state-of-the-art machine learning and data mining techniques in astronomy. Due to the massive amount and complexity of data in most scientific disciplines, the material discussed in this text transcends traditional boundaries between various areas in the sciences and computer science. The book's introductory part provides context to issues in the astronomical sciences that are also important to health

  19. Analog neural network for support vector machine learning.

    Science.gov (United States)

    Perfetti, Renzo; Ricci, Elisa

    2006-07-01

    An analog neural network for support vector machine learning is proposed, based on a partially dual formulation of the quadratic programming problem. It results in a simpler circuit implementation with respect to existing neural solutions for the same application. The effectiveness of the proposed network is shown through some computer simulations concerning benchmark problems.

  20. Testing and Validating Machine Learning Classifiers by Metamorphic Testing☆

    Science.gov (United States)

    Xie, Xiaoyuan; Ho, Joshua W. K.; Murphy, Christian; Kaiser, Gail; Xu, Baowen; Chen, Tsong Yueh

    2011-01-01

    Machine Learning algorithms have provided core functionality to many application domains - such as bioinformatics, computational linguistics, etc. However, it is difficult to detect faults in such applications because often there is no “test oracle” to verify the correctness of the computed outputs. To help address the software quality, in this paper we present a technique for testing the implementations of machine learning classification algorithms which support such applications. Our approach is based on the technique “metamorphic testing”, which has been shown to be effective to alleviate the oracle problem. Also presented include a case study on a real-world machine learning application framework, and a discussion of how programmers implementing machine learning algorithms can avoid the common pitfalls discovered in our study. We also conduct mutation analysis and cross-validation, which reveal that our method has high effectiveness in killing mutants, and that observing expected cross-validation result alone is not sufficiently effective to detect faults in a supervised classification program. The effectiveness of metamorphic testing is further confirmed by the detection of real faults in a popular open-source classification program. PMID:21532969

  1. Acquiring Software Design Schemas: A Machine Learning Perspective

    Science.gov (United States)

    Harandi, Mehdi T.; Lee, Hing-Yan

    1991-01-01

    In this paper, we describe an approach based on machine learning that acquires software design schemas from design cases of existing applications. An overview of the technique, design representation, and acquisition system are presented. the paper also addresses issues associated with generalizing common features such as biases. The generalization process is illustrated using an example.

  2. Machine learning for adaptive many-core machines a practical approach

    CERN Document Server

    Lopes, Noel

    2015-01-01

    The overwhelming data produced everyday and the increasing performance and cost requirements of applications?are transversal to a wide range of activities in society, from science to industry. In particular, the magnitude and complexity of the tasks that Machine Learning (ML) algorithms have to solve are driving the need to devise adaptive many-core machines that scale well with the volume of data, or in other words, can handle Big Data.This book gives a concise view on how to extend the applicability of well-known ML algorithms in Graphics Processing Unit (GPU) with data scalability in mind.

  3. Machine learning for identifying botnet network traffic

    DEFF Research Database (Denmark)

    Stevanovic, Matija; Pedersen, Jens Myrup

    2013-01-01

    . Due to promise of non-invasive and resilient detection, botnet detection based on network traffic analysis has drawn a special attention of the research community. Furthermore, many authors have turned their attention to the use of machine learning algorithms as the mean of inferring botnet......-related knowledge from the monitored traffic. This paper presents a review of contemporary botnet detection methods that use machine learning as a tool of identifying botnet-related traffic. The main goal of the paper is to provide a comprehensive overview on the field by summarizing current scientific efforts....... The contribution of the paper is three-fold. First, the paper provides a detailed insight on the existing detection methods by investigating which bot-related heuristic were assumed by the detection systems and how different machine learning techniques were adapted in order to capture botnet-related knowledge...

  4. Photometric classification of emission line galaxies with Machine Learning methods

    CERN Document Server

    Cavuoti, Stefano; D'Abrusco, Raffaele; Longo, Giuseppe; Paolillo, Maurizio

    2013-01-01

    In this paper we discuss an application of machine learning based methods to the identification of candidate AGN from optical survey data and to the automatic classification of AGNs in broad classes. We applied four different machine learning algorithms, namely the Multi Layer Perceptron (MLP), trained respectively with the Conjugate Gradient, Scaled Conjugate Gradient and Quasi Newton learning rules, and the Support Vector Machines (SVM), to tackle the problem of the classification of emission line galaxies in different classes, mainly AGNs vs non-AGNs, obtained using optical photometry in place of the diagnostics based on line intensity ratios which are classically used in the literature. Using the same photometric features we discuss also the behavior of the classifiers on finer AGN classification tasks, namely Seyfert I vs Seyfert II and Seyfert vs LINER. Furthermore we describe the algorithms employed, the samples of spectroscopically classified galaxies used to train the algorithms, the procedure follow...

  5. Machine learning for Big Data analytics in plants.

    Science.gov (United States)

    Ma, Chuang; Zhang, Hao Helen; Wang, Xiangfeng

    2014-12-01

    Rapid advances in high-throughput genomic technology have enabled biology to enter the era of 'Big Data' (large datasets). The plant science community not only needs to build its own Big-Data-compatible parallel computing and data management infrastructures, but also to seek novel analytical paradigms to extract information from the overwhelming amounts of data. Machine learning offers promising computational and analytical solutions for the integrative analysis of large, heterogeneous and unstructured datasets on the Big-Data scale, and is gradually gaining popularity in biology. This review introduces the basic concepts and procedures of machine-learning applications and envisages how machine learning could interface with Big Data technology to facilitate basic research and biotechnology in the plant sciences.

  6. Feasibility of Active Machine Learning for Multiclass Compound Classification.

    Science.gov (United States)

    Lang, Tobias; Flachsenberg, Florian; von Luxburg, Ulrike; Rarey, Matthias

    2016-01-25

    A common task in the hit-to-lead process is classifying sets of compounds into multiple, usually structural classes, which build the groundwork for subsequent SAR studies. Machine learning techniques can be used to automate this process by learning classification models from training compounds of each class. Gathering class information for compounds can be cost-intensive as the required data needs to be provided by human experts or experiments. This paper studies whether active machine learning can be used to reduce the required number of training compounds. Active learning is a machine learning method which processes class label data in an iterative fashion. It has gained much attention in a broad range of application areas. In this paper, an active learning method for multiclass compound classification is proposed. This method selects informative training compounds so as to optimally support the learning progress. The combination with human feedback leads to a semiautomated interactive multiclass classification procedure. This method was investigated empirically on 15 compound classification tasks containing 86-2870 compounds in 3-38 classes. The empirical results show that active learning can solve these classification tasks using 10-80% of the data which would be necessary for standard learning techniques.

  7. Machine Learning Optimization of Evolvable Artificial Cells

    DEFF Research Database (Denmark)

    Caschera, F.; Rasmussen, S.; Hanczyc, M.

    2011-01-01

    can be explored. A machine learning approach (Evo-DoE) could be applied to explore this experimental space and define optimal interactions according to a specific fitness function. Herein an implementation of an evolutionary design of experiments to optimize chemical and biochemical systems based...... on a machine learning process is presented. The optimization proceeds over generations of experiments in iterative loop until optimal compositions are discovered. The fitness function is experimentally measured every time the loop is closed. Two examples of complex systems, namely a liposomal drug formulation...

  8. Paradigms for Realizing Machine Learning Algorithms.

    Science.gov (United States)

    Agneeswaran, Vijay Srinivas; Tonpay, Pranay; Tiwary, Jayati

    2013-12-01

    The article explains the three generations of machine learning algorithms-with all three trying to operate on big data. The first generation tools are SAS, SPSS, etc., while second generation realizations include Mahout and RapidMiner (that work over Hadoop), and the third generation paradigms include Spark and GraphLab, among others. The essence of the article is that for a number of machine learning algorithms, it is important to look beyond the Hadoop's Map-Reduce paradigm in order to make them work on big data. A number of promising contenders have emerged in the third generation that can be exploited to realize deep analytics on big data.

  9. A Machine Learning Approach to Automated Negotiation

    Institute of Scientific and Technical Information of China (English)

    Zhang Huaxiang(张化祥); Zhang Liang; Huang Shangteng; Ma Fanyuan

    2004-01-01

    Automated negotiation between two competitive agents is analyzed, and a multi-issue negotiation model based on machine learning, time belief, offer belief and state-action pair expected Q value is developed. Unlike the widely used approaches such as game theory approach, heuristic approach and argumentation approach, This paper uses a machine learning method to compute agents' average Q values in each negotiation stage. The delayed reward is used to generate agents' offer and counteroffer of every issue. The effect of time and discount rate on negotiation outcome is analyzed. Theory analysis and experimental data show this negotiation model is practical.

  10. Machine learning methods for nanolaser characterization

    CERN Document Server

    Zibar, Darko; Winther, Ole; Moerk, Jesper; Schaeffer, Christian

    2016-01-01

    Nanocavity lasers, which are an integral part of an on-chip integrated photonic network, are setting stringent requirements on the sensitivity of the techniques used to characterize the laser performance. Current characterization tools cannot provide detailed knowledge about nanolaser noise and dynamics. In this progress article, we will present tools and concepts from the Bayesian machine learning and digital coherent detection that offer novel approaches for highly-sensitive laser noise characterization and inference of laser dynamics. The goal of the paper is to trigger new research directions that combine the fields of machine learning and nanophotonics for characterizing nanolasers and eventually integrated photonic networks

  11. A Machine Learning Based Framework for Adaptive Mobile Learning

    Science.gov (United States)

    Al-Hmouz, Ahmed; Shen, Jun; Yan, Jun

    Advances in wireless technology and handheld devices have created significant interest in mobile learning (m-learning) in recent years. Students nowadays are able to learn anywhere and at any time. Mobile learning environments must also cater for different user preferences and various devices with limited capability, where not all of the information is relevant and critical to each learning environment. To address this issue, this paper presents a framework that depicts the process of adapting learning content to satisfy individual learner characteristics by taking into consideration his/her learning style. We use a machine learning based algorithm for acquiring, representing, storing, reasoning and updating each learner acquired profile.

  12. GEOLOGICAL MAPPING USING MACHINE LEARNING ALGORITHMS

    Directory of Open Access Journals (Sweden)

    A. S. Harvey

    2016-06-01

    Full Text Available Remotely sensed spectral imagery, geophysical (magnetic and gravity, and geodetic (elevation data are useful in a variety of Earth science applications such as environmental monitoring and mineral exploration. Using these data with Machine Learning Algorithms (MLA, which are widely used in image analysis and statistical pattern recognition applications, may enhance preliminary geological mapping and interpretation. This approach contributes towards a rapid and objective means of geological mapping in contrast to conventional field expedition techniques. In this study, four supervised MLAs (naïve Bayes, k-nearest neighbour, random forest, and support vector machines are compared in order to assess their performance for correctly identifying geological rocktypes in an area with complete ground validation information. Geological maps of the Sudbury region are used for calibration and validation. Percent of correct classifications was used as indicators of performance. Results show that random forest is the best approach. As expected, MLA performance improves with more calibration clusters, i.e. a more uniform distribution of calibration data over the study region. Performance is generally low, though geological trends that correspond to a ground validation map are visualized. Low performance may be the result of poor spectral images of bare rock which can be covered by vegetation or water. The distribution of calibration clusters and MLA input parameters affect the performance of the MLAs. Generally, performance improves with more uniform sampling, though this increases required computational effort and time. With the achievable performance levels in this study, the technique is useful in identifying regions of interest and identifying general rocktype trends. In particular, phase I geological site investigations will benefit from this approach and lead to the selection of sites for advanced surveys.

  13. Geological Mapping Using Machine Learning Algorithms

    Science.gov (United States)

    Harvey, A. S.; Fotopoulos, G.

    2016-06-01

    Remotely sensed spectral imagery, geophysical (magnetic and gravity), and geodetic (elevation) data are useful in a variety of Earth science applications such as environmental monitoring and mineral exploration. Using these data with Machine Learning Algorithms (MLA), which are widely used in image analysis and statistical pattern recognition applications, may enhance preliminary geological mapping and interpretation. This approach contributes towards a rapid and objective means of geological mapping in contrast to conventional field expedition techniques. In this study, four supervised MLAs (naïve Bayes, k-nearest neighbour, random forest, and support vector machines) are compared in order to assess their performance for correctly identifying geological rocktypes in an area with complete ground validation information. Geological maps of the Sudbury region are used for calibration and validation. Percent of correct classifications was used as indicators of performance. Results show that random forest is the best approach. As expected, MLA performance improves with more calibration clusters, i.e. a more uniform distribution of calibration data over the study region. Performance is generally low, though geological trends that correspond to a ground validation map are visualized. Low performance may be the result of poor spectral images of bare rock which can be covered by vegetation or water. The distribution of calibration clusters and MLA input parameters affect the performance of the MLAs. Generally, performance improves with more uniform sampling, though this increases required computational effort and time. With the achievable performance levels in this study, the technique is useful in identifying regions of interest and identifying general rocktype trends. In particular, phase I geological site investigations will benefit from this approach and lead to the selection of sites for advanced surveys.

  14. Machine Learning and Data Mining Methods in Diabetes Research.

    Science.gov (United States)

    Kavakiotis, Ioannis; Tsave, Olga; Salifoglou, Athanasios; Maglaveras, Nicos; Vlahavas, Ioannis; Chouvarda, Ioanna

    2017-01-01

    The remarkable advances in biotechnology and health sciences have led to a significant production of data, such as high throughput genetic data and clinical information, generated from large Electronic Health Records (EHRs). To this end, application of machine learning and data mining methods in biosciences is presently, more than ever before, vital and indispensable in efforts to transform intelligently all available information into valuable knowledge. Diabetes mellitus (DM) is defined as a group of metabolic disorders exerting significant pressure on human health worldwide. Extensive research in all aspects of diabetes (diagnosis, etiopathophysiology, therapy, etc.) has led to the generation of huge amounts of data. The aim of the present study is to conduct a systematic review of the applications of machine learning, data mining techniques and tools in the field of diabetes research with respect to a) Prediction and Diagnosis, b) Diabetic Complications, c) Genetic Background and Environment, and e) Health Care and Management with the first category appearing to be the most popular. A wide range of machine learning algorithms were employed. In general, 85% of those used were characterized by supervised learning approaches and 15% by unsupervised ones, and more specifically, association rules. Support vector machines (SVM) arise as the most successful and widely used algorithm. Concerning the type of data, clinical datasets were mainly used. The title applications in the selected articles project the usefulness of extracting valuable knowledge leading to new hypotheses targeting deeper understanding and further investigation in DM.

  15. Machine Learning for Vision-Based Motion Analysis

    CERN Document Server

    Wang, Liang; Cheng, Li; Pietikainen, Matti

    2011-01-01

    Techniques of vision-based motion analysis aim to detect, track, identify, and generally understand the behavior of objects in image sequences. With the growth of video data in a wide range of applications from visual surveillance to human-machine interfaces, the ability to automatically analyze and understand object motions from video footage is of increasing importance. Among the latest developments in this field is the application of statistical machine learning algorithms for object tracking, activity modeling, and recognition. Developed from expert contributions to the first and second In

  16. Machine learning with quantum relative entropy

    Energy Technology Data Exchange (ETDEWEB)

    Tsuda, Koji [Max Planck Institute for Biological Cybernetics, Spemannstr. 38, Tuebingen, 72076 (Germany)], E-mail: koji.tsuda@tuebingen.mpg.de

    2009-12-01

    Density matrices are a central tool in quantum physics, but it is also used in machine learning. A positive definite matrix called kernel matrix is used to represent the similarities between examples. Positive definiteness assures that the examples are embedded in an Euclidean space. When a positive definite matrix is learned from data, one has to design an update rule that maintains the positive definiteness. Our update rule, called matrix exponentiated gradient update, is motivated by the quantum relative entropy. Notably, the relative entropy is an instance of Bregman divergences, which are asymmetric distance measures specifying theoretical properties of machine learning algorithms. Using the calculus commonly used in quantum physics, we prove an upperbound of the generalization error of online learning.

  17. Photometric Supernova Classification With Machine Learning

    CERN Document Server

    Lochner, Michelle; Peiris, Hiranya V; Lahav, Ofer; Winter, Max K

    2016-01-01

    Automated photometric supernova classification has become an active area of research in recent years in light of current and upcoming imaging surveys such as the Dark Energy Survey (DES) and the Large Synoptic Telescope (LSST), given that spectroscopic confirmation of type for all supernovae discovered with these surveys will be impossible. Here, we develop a multi-faceted classification pipeline, combining existing and new approaches. Our pipeline consists of two stages: extracting descriptive features from the light curves and classification using a machine learning algorithm. Our feature extraction methods vary from model-dependent techniques, namely SALT2 fits, to more independent techniques fitting parametric models to curves, to a completely model-independent wavelet approach. We cover a range of representative machine learning algorithms, including naive Bayes, k-nearest neighbors, support vector machines, artificial neural networks and boosted decision trees. We test the pipeline on simulated multi-ba...

  18. Tracking by Machine Learning Methods

    CERN Document Server

    Jofrehei, Arash

    2015-01-01

    Current track reconstructing methods start with two points and then for each layer loop through all possible hits to find proper hits to add to that track. Another idea would be to use this large number of already reconstructed events and/or simulated data and train a machine on this data to find tracks given hit pixels. Training time could be long but real time tracking is really fast Simulation might not be as realistic as real data but tacking has been done for that with 100 percent efficiency while by using real data we would probably be limited to current efficiency.

  19. Perspective: Machine learning potentials for atomistic simulations

    Science.gov (United States)

    Behler, Jörg

    2016-11-01

    Nowadays, computer simulations have become a standard tool in essentially all fields of chemistry, condensed matter physics, and materials science. In order to keep up with state-of-the-art experiments and the ever growing complexity of the investigated problems, there is a constantly increasing need for simulations of more realistic, i.e., larger, model systems with improved accuracy. In many cases, the availability of sufficiently efficient interatomic potentials providing reliable energies and forces has become a serious bottleneck for performing these simulations. To address this problem, currently a paradigm change is taking place in the development of interatomic potentials. Since the early days of computer simulations simplified potentials have been derived using physical approximations whenever the direct application of electronic structure methods has been too demanding. Recent advances in machine learning (ML) now offer an alternative approach for the representation of potential-energy surfaces by fitting large data sets from electronic structure calculations. In this perspective, the central ideas underlying these ML potentials, solved problems and remaining challenges are reviewed along with a discussion of their current applicability and limitations.

  20. Prototype-based models in machine learning

    NARCIS (Netherlands)

    Biehl, Michael; Hammer, Barbara; Villmann, Thomas

    2016-01-01

    An overview is given of prototype-based models in machine learning. In this framework, observations, i.e., data, are stored in terms of typical representatives. Together with a suitable measure of similarity, the systems can be employed in the context of unsupervised and supervised analysis of poten

  1. Parallelization of TMVA Machine Learning Algorithms

    CERN Document Server

    Hajili, Mammad

    2017-01-01

    This report reflects my work on Parallelization of TMVA Machine Learning Algorithms integrated to ROOT Data Analysis Framework during summer internship at CERN. The report consists of 4 impor- tant part - data set used in training and validation, algorithms that multiprocessing applied on them, parallelization techniques and re- sults of execution time changes due to number of workers.

  2. Supporting visual quality assessment with machine learning

    NARCIS (Netherlands)

    Gastaldo, P.; Zunino, R.; Redi, J.

    2013-01-01

    Objective metrics for visual quality assessment often base their reliability on the explicit modeling of the highly non-linear behavior of human perception; as a result, they may be complex and computationally expensive. Conversely, machine learning (ML) paradigms allow to tackle the quality

  3. Prototype-based models in machine learning

    NARCIS (Netherlands)

    Biehl, Michael; Hammer, Barbara; Villmann, Thomas

    2016-01-01

    An overview is given of prototype-based models in machine learning. In this framework, observations, i.e., data, are stored in terms of typical representatives. Together with a suitable measure of similarity, the systems can be employed in the context of unsupervised and supervised analysis of

  4. Machine learning approximation techniques using dual trees

    OpenAIRE

    Ergashbaev, Denis

    2015-01-01

    This master thesis explores a dual-tree framework as applied to a particular class of machine learning problems that are collectively referred to as generalized n-body problems. It builds a new algorithm on top of it and improves existing Boosted OGE classifier.

  5. The ATLAS Higgs Machine Learning Challenge

    CERN Document Server

    Cowan, Glen; The ATLAS collaboration; Bourdarios, Claire

    2015-01-01

    High Energy Physics has been using Machine Learning techniques (commonly known as Multivariate Analysis) since the 1990s with Artificial Neural Net and more recently with Boosted Decision Trees, Random Forest etc. Meanwhile, Machine Learning has become a full blown field of computer science. With the emergence of Big Data, data scientists are developing new Machine Learning algorithms to extract meaning from large heterogeneous data. HEP has exciting and difficult problems like the extraction of the Higgs boson signal, and at the same time data scientists have advanced algorithms: the goal of the HiggsML project was to bring the two together by a “challenge”: participants from all over the world and any scientific background could compete online to obtain the best Higgs to tau tau signal significance on a set of ATLAS fully simulated Monte Carlo signal and background. Instead of HEP physicists browsing through machine learning papers and trying to infer which new algorithms might be useful for HEP, then c...

  6. Extracting meaning from audio signals - a machine learning approach

    DEFF Research Database (Denmark)

    Larsen, Jan

    2007-01-01

    * Machine learning framework for sound search * Genre classification * Music and audio separation * Wind noise suppression......* Machine learning framework for sound search * Genre classification * Music and audio separation * Wind noise suppression...

  7. Extracting meaning from audio signals - a machine learning approach

    DEFF Research Database (Denmark)

    Larsen, Jan

    2007-01-01

    * Machine learning framework for sound search * Genre classification * Music and audio separation * Wind noise suppression......* Machine learning framework for sound search * Genre classification * Music and audio separation * Wind noise suppression...

  8. Twin support vector machines models, extensions and applications

    CERN Document Server

    Jayadeva; Chandra, Suresh

    2017-01-01

    This book provides a systematic and focused study of the various aspects of twin support vector machines (TWSVM) and related developments for classification and regression. In addition to presenting most of the basic models of TWSVM and twin support vector regression (TWSVR) available in the literature, it also discusses the important and challenging applications of this new machine learning methodology. A chapter on “Additional Topics” has been included to discuss kernel optimization and support tensor machine topics, which are comparatively new but have great potential in applications. It is primarily written for graduate students and researchers in the area of machine learning and related topics in computer science, mathematics, electrical engineering, management science and finance.

  9. Improvement and application of extreme learning machine algorithm%极端学习机算法的改进及应用研究

    Institute of Scientific and Technical Information of China (English)

    牛培峰; 马云鹏; 刘魏岩; 卢青; 杨潇

    2015-01-01

    极端学习机是一种新型的单隐藏层前馈神经网络模型,其输入权值和隐藏层阈值随机设置,其输出权值解析计算得到。因此,其运算速度是传统的 BP 神经网络的数千倍,而且具有良好的模型辨识能力。然而,极端学习机的输入权值和隐藏层阈值是随机设定的,可能不是使网络训练目标能达到全局最小值时的最优模型参数。针对此不足,本文采用最小二乘思想确定极端学习机的输入权值和隐藏层阈值。同时,将改进的极端学习机算法应用于电站锅炉的燃烧热效率建模,并与 BP、原始极端学习机、粒子群优化极端学习机和“教与学”优化极端学习机算法进行比较,证明了改进算法的有效性。%Extreme learning machine is a novel single hidden layer feed⁃forward neural network model,whose input weights and the bias of hidden nodes are generated randomly.And its output weights are computed analytically.Consequently,the extreme learning machine owns extremely fast speed and good identification ability,which is faster than conventional BP neural network thousands times.However,the stochastic input weights and the bias of the extreme learning machine are not the best model parameters possibly when the objective function gets the global minimum value.Therefore,the least square method is adopted to seek the appropriate pa⁃rameters of extreme learning machine.The improved extreme learning machine is applied to build the combustion thermal efficiency model of the plant boiler.Compared with other algorithms,such as BP,conventional extreme learning machine,particle swarm opti⁃mization extreme learning machine,teaching⁃learning⁃based optimization extreme learning machine,the result shows that the im⁃proved extreme learning machine is effective.

  10. Financial signal processing and machine learning

    CERN Document Server

    Kulkarni,Sanjeev R; Dmitry M. Malioutov

    2016-01-01

    The modern financial industry has been required to deal with large and diverse portfolios in a variety of asset classes often with limited market data available. Financial Signal Processing and Machine Learning unifies a number of recent advances made in signal processing and machine learning for the design and management of investment portfolios and financial engineering. This book bridges the gap between these disciplines, offering the latest information on key topics including characterizing statistical dependence and correlation in high dimensions, constructing effective and robust risk measures, and their use in portfolio optimization and rebalancing. The book focuses on signal processing approaches to model return, momentum, and mean reversion, addressing theoretical and implementation aspects. It highlights the connections between portfolio theory, sparse learning and compressed sensing, sparse eigen-portfolios, robust optimization, non-Gaussian data-driven risk measures, graphical models, causal analy...

  11. Learning from Distributions via Support Measure Machines

    CERN Document Server

    Muandet, Krikamol; Fukumizu, Kenji; Dinuzzo, Francesco

    2012-01-01

    This paper presents a kernel-based discriminative learning framework on probability measures. Rather than relying on large collections of vectorial training examples, our framework learns using a collection of probability distributions that have been constructed to meaningfully represent training data. By representing these probability distributions as mean embeddings in the reproducing kernel Hilbert space (RKHS), we are able to apply many standard kernel-based learning techniques in straightforward fashion. To accomplish this, we construct a generalization of the support vector machine (SVM) called a support measure machine (SMM). Our analyses of SMMs provides several insights into their relationship to traditional SVMs. Based on such insights, we propose a flexible SVM (Flex-SVM) that places different kernel functions on each training example. Experimental results on both synthetic and real-world data demonstrate the effectiveness of our proposed framework.

  12. Machine Learning for Computer Vision

    CERN Document Server

    Battiato, Sebastiano; Farinella, Giovanni

    2013-01-01

    Computer vision is the science and technology of making machines that see. It is concerned with the theory, design and implementation of algorithms that can automatically process visual data to recognize objects, track and recover their shape and spatial layout. The International Computer Vision Summer School - ICVSS was established in 2007 to provide both an objective and clear overview and an in-depth analysis of the state-of-the-art research in Computer Vision. The courses are delivered by world renowned experts in the field, from both academia and industry, and cover both theoretical and practical aspects of real Computer Vision problems. The school is organized every year by University of Cambridge (Computer Vision and Robotics Group) and University of Catania (Image Processing Lab). Different topics are covered each year. A summary of the past Computer Vision Summer Schools can be found at: http://www.dmi.unict.it/icvss This edited volume contains a selection of articles covering some of the talks and t...

  13. Reduced multiple empirical kernel learning machine.

    Science.gov (United States)

    Wang, Zhe; Lu, MingZhe; Gao, Daqi

    2015-02-01

    Multiple kernel learning (MKL) is demonstrated to be flexible and effective in depicting heterogeneous data sources since MKL can introduce multiple kernels rather than a single fixed kernel into applications. However, MKL would get a high time and space complexity in contrast to single kernel learning, which is not expected in real-world applications. Meanwhile, it is known that the kernel mapping ways of MKL generally have two forms including implicit kernel mapping and empirical kernel mapping (EKM), where the latter is less attracted. In this paper, we focus on the MKL with the EKM, and propose a reduced multiple empirical kernel learning machine named RMEKLM for short. To the best of our knowledge, it is the first to reduce both time and space complexity of the MKL with EKM. Different from the existing MKL, the proposed RMEKLM adopts the Gauss Elimination technique to extract a set of feature vectors, which is validated that doing so does not lose much information of the original feature space. Then RMEKLM adopts the extracted feature vectors to span a reduced orthonormal subspace of the feature space, which is visualized in terms of the geometry structure. It can be demonstrated that the spanned subspace is isomorphic to the original feature space, which means that the dot product of two vectors in the original feature space is equal to that of the two corresponding vectors in the generated orthonormal subspace. More importantly, the proposed RMEKLM brings a simpler computation and meanwhile needs a less storage space, especially in the processing of testing. Finally, the experimental results show that RMEKLM owns a much efficient and effective performance in terms of both complexity and classification. The contributions of this paper can be given as follows: (1) by mapping the input space into an orthonormal subspace, the geometry of the generated subspace is visualized; (2) this paper first reduces both the time and space complexity of the EKM-based MKL; (3

  14. 1st International Conference on Machine Learning for Cyber Physical Systems and Industry 4.0

    CERN Document Server

    Beyerer, Jürgen

    2016-01-01

    The work presents new approaches to Machine Learning for Cyber Physical Systems, experiences and visions. It contains some selected papers from the international Conference ML4CPS – Machine Learning for Cyber Physical Systems, which was held in Lemgo, October 1-2, 2015. Cyber Physical Systems are characterized by their ability to adapt and to learn: They analyze their environment and, based on observations, they learn patterns, correlations and predictive models. Typical applications are condition monitoring, predictive maintenance, image processing and diagnosis. Machine Learning is the key technology for these developments.

  15. Machine Learning with Operational Costs

    CERN Document Server

    Tulabandhula, Theja

    2011-01-01

    This work concerns the way that statistical models are used to make decisions. In particular, we aim to merge the way estimation algorithms are designed with how they are used for a subsequent task. Our methodology considers the operational cost of carrying out a policy, based on a predictive model. The operational cost becomes a regularization term in the learning algorithm's objective function, allowing either an \\textit{optimistic} or \\textit{pessimistic} view of possible costs. Limiting the operational cost reduces the hypothesis space for the predictive model, and can thus improve generalization. We show that different types of operational problems can lead to the same type of restriction on the hypothesis space, namely the restriction to an intersection of an $\\ell_{q}$ ball with a halfspace. We bound the complexity of such hypothesis spaces by proposing a technique that involves counting integer points in polyhedrons.

  16. Machine Learning for ATLAS DDM Network Metrics

    CERN Document Server

    Lassnig, Mario; The ATLAS collaboration; Vamosi, Ralf

    2016-01-01

    The increasing volume of physics data is posing a critical challenge to the ATLAS experiment. In anticipation of high luminosity physics, automation of everyday data management tasks has become necessary. Previously many of these tasks required human decision-making and operation. Recent advances in hardware and software have made it possible to entrust more complicated duties to automated systems using models trained by machine learning algorithms. In this contribution we show results from our ongoing automation efforts. First, we describe our framework for distributed data management and network metrics, automatically extract and aggregate data, train models with various machine learning algorithms, and eventually score the resulting models and parameters. Second, we use these models to forecast metrics relevant for network-aware job scheduling and data brokering. We show the characteristics of the data and evaluate the forecasting accuracy of our models.

  17. Discharge estimation based on machine learning

    Institute of Scientific and Technical Information of China (English)

    Zhu JIANG; Hui-yan WANG; Wen-wu SONG

    2013-01-01

    To overcome the limitations of the traditional stage-discharge models in describing the dynamic characteristics of a river, a machine learning method of non-parametric regression, the locally weighted regression method was used to estimate discharge. With the purpose of improving the precision and efficiency of river discharge estimation, a novel machine learning method is proposed:the clustering-tree weighted regression method. First, the training instances are clustered. Second, the k-nearest neighbor method is used to cluster new stage samples into the best-fit cluster. Finally, the daily discharge is estimated. In the estimation process, the interference of irrelevant information can be avoided, so that the precision and efficiency of daily discharge estimation are improved. Observed data from the Luding Hydrological Station were used for testing. The simulation results demonstrate that the precision of this method is high. This provides a new effective method for discharge estimation.

  18. Parallelization of the ROOT Machine Learning Methods

    CERN Document Server

    Vakilipourtakalou, Pourya

    2016-01-01

    Today computation is an inseparable part of scientific research. Specially in Particle Physics when there is a classification problem like discrimination of Signals from Backgrounds originating from the collisions of particles. On the other hand, Monte Carlo simulations can be used in order to generate a known data set of Signals and Backgrounds based on theoretical physics. The aim of Machine Learning is to train some algorithms on known data set and then apply these trained algorithms to the unknown data sets. However, the most common framework for data analysis in Particle Physics is ROOT. In order to use Machine Learning methods, a Toolkit for Multivariate Data Analysis (TMVA) has been added to ROOT. The major consideration in this report is the parallelization of some TMVA methods, specially Cross-Validation and BDT.

  19. Study of Virtual Machine and its application

    Directory of Open Access Journals (Sweden)

    Rohaan Chandra

    2013-07-01

    Full Text Available A virtual machine is software that’s capable of executing programs as if it were a physical machine—it’s a computer within a computer. A virtual machine (VM is a software implemented abstraction of the underlying hardware, which is presented to the application layer of the system. Virtual machines may be based on specifications of a hypothetical computer or emulate the computer architecture and functions of a real world computer.

  20. Ozone ensemble forecast with machine learning algorithms

    OpenAIRE

    Mallet, Vivien; Stoltz, Gilles; Mauricette, Boris

    2009-01-01

    International audience; We apply machine learning algorithms to perform sequential aggregation of ozone forecasts. The latter rely on a multimodel ensemble built for ozone forecasting with the modeling system Polyphemus. The ensemble simulations are obtained by changes in the physical parameterizations, the numerical schemes, and the input data to the models. The simulations are carried out for summer 2001 over western Europe in order to forecast ozone daily peaks and ozone hourly concentrati...

  1. Machine Learning of the Reactor Core Loading Pattern Critical Parameters

    Directory of Open Access Journals (Sweden)

    Krešimir Trontl

    2008-01-01

    Full Text Available The usual approach to loading pattern optimization involves high degree of engineering judgment, a set of heuristic rules, an optimization algorithm, and a computer code used for evaluating proposed loading patterns. The speed of the optimization process is highly dependent on the computer code used for the evaluation. In this paper, we investigate the applicability of a machine learning model which could be used for fast loading pattern evaluation. We employ a recently introduced machine learning technique, support vector regression (SVR, which is a data driven, kernel based, nonlinear modeling paradigm, in which model parameters are automatically determined by solving a quadratic optimization problem. The main objective of the work reported in this paper was to evaluate the possibility of applying SVR method for reactor core loading pattern modeling. We illustrate the performance of the solution and discuss its applicability, that is, complexity, speed, and accuracy.

  2. The ATLAS Higgs machine learning challenge

    CERN Document Server

    Davey, W; The ATLAS collaboration; Rousseau, D; Cowan, G; Kegl, B; Germain-Renaud, C; Guyon, I

    2014-01-01

    High Energy Physics has been using Machine Learning techniques (commonly known as Multivariate Analysis) since the 90's with Artificial Neural Net for example, more recently with Boosted Decision Trees, Random Forest etc... Meanwhile, Machine Learning has become a full blown field of computer science. With the emergence of Big Data, Data Scientists are developing new Machine Learning algorithms to extract sense from large heterogeneous data. HEP has exciting and difficult problems like the extraction of the Higgs boson signal, data scientists have advanced algorithms: the goal of the HiggsML project is to bring the two together by a “challenge”: participants from all over the world and any scientific background can compete online ( https://www.kaggle.com/c/higgs-boson ) to obtain the best Higgs to tau tau signal significance on a set of ATLAS full simulated Monte Carlo signal and background. Winners with the best scores will receive money prizes ; authors of the best method (most usable) will be invited t...

  3. Quantum Loop Topography for Machine Learning

    Science.gov (United States)

    Zhang, Yi; Kim, Eun-Ah

    2017-05-01

    Despite rapidly growing interest in harnessing machine learning in the study of quantum many-body systems, training neural networks to identify quantum phases is a nontrivial challenge. The key challenge is in efficiently extracting essential information from the many-body Hamiltonian or wave function and turning the information into an image that can be fed into a neural network. When targeting topological phases, this task becomes particularly challenging as topological phases are defined in terms of nonlocal properties. Here, we introduce quantum loop topography (QLT): a procedure of constructing a multidimensional image from the "sample" Hamiltonian or wave function by evaluating two-point operators that form loops at independent Monte Carlo steps. The loop configuration is guided by the characteristic response for defining the phase, which is Hall conductivity for the cases at hand. Feeding QLT to a fully connected neural network with a single hidden layer, we demonstrate that the architecture can be effectively trained to distinguish the Chern insulator and the fractional Chern insulator from trivial insulators with high fidelity. In addition to establishing the first case of obtaining a phase diagram with a topological quantum phase transition with machine learning, the perspective of bridging traditional condensed matter theory with machine learning will be broadly valuable.

  4. AZOrange - High performance open source machine learning for QSAR modeling in a graphical programming environment

    Directory of Open Access Journals (Sweden)

    Stålring Jonna C

    2011-07-01

    Full Text Available Abstract Background Machine learning has a vast range of applications. In particular, advanced machine learning methods are routinely and increasingly used in quantitative structure activity relationship (QSAR modeling. QSAR data sets often encompass tens of thousands of compounds and the size of proprietary, as well as public data sets, is rapidly growing. Hence, there is a demand for computationally efficient machine learning algorithms, easily available to researchers without extensive machine learning knowledge. In granting the scientific principles of transparency and reproducibility, Open Source solutions are increasingly acknowledged by regulatory authorities. Thus, an Open Source state-of-the-art high performance machine learning platform, interfacing multiple, customized machine learning algorithms for both graphical programming and scripting, to be used for large scale development of QSAR models of regulatory quality, is of great value to the QSAR community. Results This paper describes the implementation of the Open Source machine learning package AZOrange. AZOrange is specially developed to support batch generation of QSAR models in providing the full work flow of QSAR modeling, from descriptor calculation to automated model building, validation and selection. The automated work flow relies upon the customization of the machine learning algorithms and a generalized, automated model hyper-parameter selection process. Several high performance machine learning algorithms are interfaced for efficient data set specific selection of the statistical method, promoting model accuracy. Using the high performance machine learning algorithms of AZOrange does not require programming knowledge as flexible applications can be created, not only at a scripting level, but also in a graphical programming environment. Conclusions AZOrange is a step towards meeting the needs for an Open Source high performance machine learning platform, supporting the

  5. Machine Learning Approaches for analysis of League of Legends

    OpenAIRE

    Janežič, Simon

    2016-01-01

    Our goal is to use machine learning for predicting winners of League of Legends matches. League of Legends is a multiplayer game that combines elements from strategic and action games. Every year, multiple professional League of Legends competitions are being held acros the globe. We try to predict both professional and non-professional matches. Getting data for both types of matches is already a challenge. For non-professional matches official application programming interface is used, whil...

  6. Probabilistic forecasting of wind power generation using extreme learning machine

    DEFF Research Database (Denmark)

    Wan, Can; Xu, Zhao; Pinson, Pierre

    2014-01-01

    an extreme learning machine (ELM)-based probabilistic forecasting method for wind power generation. To account for the uncertainties in the forecasting results, several bootstrapmethods have been compared for modeling the regression uncertainty, based on which the pairs bootstrap method is identified...... demonstrate that the proposed method is effective for probabilistic forecasting of wind power generation with a high potential for practical applications in power systems....

  7. Machine-to-machine communications architectures, technology, standards, and applications

    CERN Document Server

    Misic, Vojislav B

    2014-01-01

    With the number of machine-to-machine (M2M)-enabled devices projected to reach 20 to 50 billion by 2020, there is a critical need to understand the demands imposed by such systems. Machine-to-Machine Communications: Architectures, Technology, Standards, and Applications offers rigorous treatment of the many facets of M2M communication, including its integration with current technology.Presenting the work of a different group of international experts in each chapter, the book begins by supplying an overview of M2M technology. It considers proposed standards, cutting-edge applications, architectures, and traffic modeling and includes case studies that highlight the differences between traditional and M2M communications technology.Details a practical scheme for the forward error correction code designInvestigates the effectiveness of the IEEE 802.15.4 low data rate wireless personal area network standard for use in M2M communicationsIdentifies algorithms that will ensure functionality, performance, reliability, ...

  8. Nonlinear programming for classification problems in machine learning

    Science.gov (United States)

    Astorino, Annabella; Fuduli, Antonio; Gaudioso, Manlio

    2016-10-01

    We survey some nonlinear models for classification problems arising in machine learning. In the last years this field has become more and more relevant due to a lot of practical applications, such as text and web classification, object recognition in machine vision, gene expression profile analysis, DNA and protein analysis, medical diagnosis, customer profiling etc. Classification deals with separation of sets by means of appropriate separation surfaces, which is generally obtained by solving a numerical optimization model. While linear separability is the basis of the most popular approach to classification, the Support Vector Machine (SVM), in the recent years using nonlinear separating surfaces has received some attention. The objective of this work is to recall some of such proposals, mainly in terms of the numerical optimization models. In particular we tackle the polyhedral, ellipsoidal, spherical and conical separation approaches and, for some of them, we also consider the semisupervised versions.

  9. Estimating extinction using unsupervised machine learning

    Science.gov (United States)

    Meingast, Stefan; Lombardi, Marco; Alves, João

    2017-05-01

    Dust extinction is the most robust tracer of the gas distribution in the interstellar medium, but measuring extinction is limited by the systematic uncertainties involved in estimating the intrinsic colors to background stars. In this paper we present a new technique, Pnicer, that estimates intrinsic colors and extinction for individual stars using unsupervised machine learning algorithms. This new method aims to be free from any priors with respect to the column density and intrinsic color distribution. It is applicable to any combination of parameters and works in arbitrary numbers of dimensions. Furthermore, it is not restricted to color space. Extinction toward single sources is determined by fitting Gaussian mixture models along the extinction vector to (extinction-free) control field observations. In this way it becomes possible to describe the extinction for observed sources with probability densities, rather than a single value. Pnicer effectively eliminates known biases found in similar methods and outperforms them in cases of deep observational data where the number of background galaxies is significant, or when a large number of parameters is used to break degeneracies in the intrinsic color distributions. This new method remains computationally competitive, making it possible to correctly de-redden millions of sources within a matter of seconds. With the ever-increasing number of large-scale high-sensitivity imaging surveys, Pnicer offers a fast and reliable way to efficiently calculate extinction for arbitrary parameter combinations without prior information on source characteristics. The Pnicer software package also offers access to the well-established Nicer technique in a simple unified interface and is capable of building extinction maps including the Nicest correction for cloud substructure. Pnicer is offered to the community as an open-source software solution and is entirely written in Python.

  10. BENCHMARKING MACHINE LEARNING TECHNIQUES FOR SOFTWARE DEFECT DETECTION

    Directory of Open Access Journals (Sweden)

    Saiqa Aleem

    2015-06-01

    Full Text Available Machine Learning approaches are good in solving problems that have less information. In most cases, the software domain problems characterize as a process of learning that depend on the various circumstances and changes accordingly. A predictive model is constructed by using machine learning approaches and classified them into defective and non-defective modules. Machine learning techniques help developers to retrieve useful information after the classification and enable them to analyse data from different perspectives. Machine learning techniques are proven to be useful in terms of software bug prediction. This study used public available data sets of software modules and provides comparative performance analysis of different machine learning techniques for software bug prediction. Results showed most of the machine learning methods performed well on software bug datasets.

  11. Entanglement-based machine learning on a quantum computer.

    Science.gov (United States)

    Cai, X-D; Wu, D; Su, Z-E; Chen, M-C; Wang, X-L; Li, Li; Liu, N-L; Lu, C-Y; Pan, J-W

    2015-03-20

    Machine learning, a branch of artificial intelligence, learns from previous experience to optimize performance, which is ubiquitous in various fields such as computer sciences, financial analysis, robotics, and bioinformatics. A challenge is that machine learning with the rapidly growing "big data" could become intractable for classical computers. Recently, quantum machine learning algorithms [Lloyd, Mohseni, and Rebentrost, arXiv.1307.0411] were proposed which could offer an exponential speedup over classical algorithms. Here, we report the first experimental entanglement-based classification of two-, four-, and eight-dimensional vectors to different clusters using a small-scale photonic quantum computer, which are then used to implement supervised and unsupervised machine learning. The results demonstrate the working principle of using quantum computers to manipulate and classify high-dimensional vectors, the core mathematical routine in machine learning. The method can, in principle, be scaled to larger numbers of qubits, and may provide a new route to accelerate machine learning.

  12. 机器学习的研究%Research on Machine Learning

    Institute of Scientific and Technical Information of China (English)

    侯树范; 孙英娟

    2012-01-01

    The paper has a deep research on machine learning. We discussed the development and application about machine learning from four aspects of machine learning development, research, system structure and its application.%本文对机器学习进行了深入研究,从机器学习的发展历程、研究领域、系统构成及其在分类上的应用四个方面论述了机器学习的发展和应用。

  13. Multilevel Cognitive Machine-Learning-Based Concept for Artificial Awareness: Application to Humanoid Robot Awareness Using Visual Saliency

    Directory of Open Access Journals (Sweden)

    Kurosh Madani

    2012-01-01

    Full Text Available As part of “intelligence,” the “awareness” is the state or ability to perceive, feel, or be mindful of events, objects, or sensory patterns: in other words, to be conscious of the surrounding environment and its interactions. Inspired by early-ages human skills developments and especially by early-ages awareness maturation, the present paper accosts the robots intelligence from a different slant directing the attention to combining both “cognitive” and “perceptual” abilities. Within such a slant, the machine (robot shrewdness is constructed on the basis of a multilevel cognitive concept attempting to handle complex artificial behaviors. The intended complex behavior is the autonomous discovering of objects by robot exploring an unknown environment: in other words, proffering the robot autonomy and awareness in and about unknown backdrop.

  14. Stochastic Local Interaction (SLI) model: Bridging machine learning and geostatistics

    Science.gov (United States)

    Hristopulos, Dionissios T.

    2015-12-01

    Machine learning and geostatistics are powerful mathematical frameworks for modeling spatial data. Both approaches, however, suffer from poor scaling of the required computational resources for large data applications. We present the Stochastic Local Interaction (SLI) model, which employs a local representation to improve computational efficiency. SLI combines geostatistics and machine learning with ideas from statistical physics and computational geometry. It is based on a joint probability density function defined by an energy functional which involves local interactions implemented by means of kernel functions with adaptive local kernel bandwidths. SLI is expressed in terms of an explicit, typically sparse, precision (inverse covariance) matrix. This representation leads to a semi-analytical expression for interpolation (prediction), which is valid in any number of dimensions and avoids the computationally costly covariance matrix inversion.

  15. Hydrological data assimilation using Extreme Learning Machines

    Science.gov (United States)

    Boucher, Marie-Amélie; Quilty, John; Adamowski, Jan

    2017-04-01

    state variables (snow calorific deficit and the percentage of the watershed covered by snow). In order to verify the general applicability of the proposed method, it is applied to five watersheds in contrasting hydro-climatic contexts (e.g., nordic, semi-arid, humid, and temperate). We show that the ELMs can be used to successfully update GR4J's state variables, in all cases. Considering the ensemble mean as a deterministic forecast, the Mean Absolute Error between simulated and observed streamflow can be reduced by up to 30 %. We also show that the success of the method is highly dependent on adequate selection of input variables for the ELMs. Overall, this new data assimilation method offers good performance with low computational costs. References Thiboult, A., Anctil, F. and Boucher, M.-A. (2016) Accounting for three sources of uncertainty in ensemble hydrological forecasting, Hydrology and Earth System Sciences, 20(5), 1809-1825. Zang, K. and Liu, M. (2015) Outlier-robust extreme learning machine for regression problems, Neurocomputing, 151, part 3, 1519-1527.

  16. Automated quantification of cerebral edema following hemispheric infarction: Application of a machine-learning algorithm to evaluate CSF shifts on serial head CTs.

    Science.gov (United States)

    Chen, Yasheng; Dhar, Rajat; Heitsch, Laura; Ford, Andria; Fernandez-Cadenas, Israel; Carrera, Caty; Montaner, Joan; Lin, Weili; Shen, Dinggang; An, Hongyu; Lee, Jin-Moo

    2016-01-01

    Although cerebral edema is a major cause of death and deterioration following hemispheric stroke, there remains no validated biomarker that captures the full spectrum of this critical complication. We recently demonstrated that reduction in intracranial cerebrospinal fluid (CSF) volume (∆ CSF) on serial computed tomography (CT) scans provides an accurate measure of cerebral edema severity, which may aid in early triaging of stroke patients for craniectomy. However, application of such a volumetric approach would be too cumbersome to perform manually on serial scans in a real-world setting. We developed and validated an automated technique for CSF segmentation via integration of random forest (RF) based machine learning with geodesic active contour (GAC) segmentation. The proposed RF + GAC approach was compared to conventional Hounsfield Unit (HU) thresholding and RF segmentation methods using Dice similarity coefficient (DSC) and the correlation of volumetric measurements, with manual delineation serving as the ground truth. CSF spaces were outlined on scans performed at baseline (line of identity in RF + GAC. When we applied the algorithm trained from images of one stroke center to segment CTs from another center, similar findings held. In conclusion, we have developed and validated an accurate automated approach to segment CSF and calculate its shifts on serial CT scans. This algorithm will allow us to efficiently and accurately measure the evolution of cerebral edema in future studies including large multi-site patient populations.

  17. Applying Machine Learning to Star Cluster Classification

    Science.gov (United States)

    Fedorenko, Kristina; Grasha, Kathryn; Calzetti, Daniela; Mahadevan, Sridhar

    2016-01-01

    Catalogs describing populations of star clusters are essential in investigating a range of important issues, from star formation to galaxy evolution. Star cluster catalogs are typically created in a two-step process: in the first step, a catalog of sources is automatically produced; in the second step, each of the extracted sources is visually inspected by 3-to-5 human classifiers and assigned a category. Classification by humans is labor-intensive and time consuming, thus it creates a bottleneck, and substantially slows down progress in star cluster research.We seek to automate the process of labeling star clusters (the second step) through applying supervised machine learning techniques. This will provide a fast, objective, and reproducible classification. Our data is HST (WFC3 and ACS) images of galaxies in the distance range of 3.5-12 Mpc, with a few thousand star clusters already classified by humans as a part of the LEGUS (Legacy ExtraGalactic UV Survey) project. The classification is based on 4 labels (Class 1 - symmetric, compact cluster; Class 2 - concentrated object with some degree of asymmetry; Class 3 - multiple peak system, diffuse; and Class 4 - spurious detection). We start by looking at basic machine learning methods such as decision trees. We then proceed to evaluate performance of more advanced techniques, focusing on convolutional neural networks and other Deep Learning methods. We analyze the results, and suggest several directions for further improvement.

  18. Using Machine Learning in Adversarial Environments.

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Warren Leon [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-02-01

    Intrusion/anomaly detection systems are among the first lines of cyber defense. Commonly, they either use signatures or machine learning (ML) to identify threats, but fail to account for sophisticated attackers trying to circumvent them. We propose to embed machine learning within a game theoretic framework that performs adversarial modeling, develops methods for optimizing operational response based on ML, and integrates the resulting optimization codebase into the existing ML infrastructure developed by the Hybrid LDRD. Our approach addresses three key shortcomings of ML in adversarial settings: 1) resulting classifiers are typically deterministic and, therefore, easy to reverse engineer; 2) ML approaches only address the prediction problem, but do not prescribe how one should operationalize predictions, nor account for operational costs and constraints; and 3) ML approaches do not model attackers’ response and can be circumvented by sophisticated adversaries. The principal novelty of our approach is to construct an optimization framework that blends ML, operational considerations, and a model predicting attackers reaction, with the goal of computing optimal moving target defense. One important challenge is to construct a realistic model of an adversary that is tractable, yet realistic. We aim to advance the science of attacker modeling by considering game-theoretic methods, and by engaging experimental subjects with red teaming experience in trying to actively circumvent an intrusion detection system, and learning a predictive model of such circumvention activities. In addition, we will generate metrics to test that a particular model of an adversary is consistent with available data.

  19. Machine Learning Interface for Medical Image Analysis.

    Science.gov (United States)

    Zhang, Yi C; Kagen, Alexander C

    2016-10-11

    TensorFlow is a second-generation open-source machine learning software library with a built-in framework for implementing neural networks in wide variety of perceptual tasks. Although TensorFlow usage is well established with computer vision datasets, the TensorFlow interface with DICOM formats for medical imaging remains to be established. Our goal is to extend the TensorFlow API to accept raw DICOM images as input; 1513 DaTscan DICOM images were obtained from the Parkinson's Progression Markers Initiative (PPMI) database. DICOM pixel intensities were extracted and shaped into tensors, or n-dimensional arrays, to populate the training, validation, and test input datasets for machine learning. A simple neural network was constructed in TensorFlow to classify images into normal or Parkinson's disease groups. Training was executed over 1000 iterations for each cross-validation set. The gradient descent optimization and Adagrad optimization algorithms were used to minimize cross-entropy between the predicted and ground-truth labels. Cross-validation was performed ten times to produce a mean accuracy of 0.938 ± 0.047 (95 % CI 0.908-0.967). The mean sensitivity was 0.974 ± 0.043 (95 % CI 0.947-1.00) and mean specificity was 0.822 ± 0.207 (95 % CI 0.694-0.950). We extended the TensorFlow API to enable DICOM compatibility in the context of DaTscan image analysis. We implemented a neural network classifier that produces diagnostic accuracies on par with excellent results from previous machine learning models. These results indicate the potential role of TensorFlow as a useful adjunct diagnostic tool in the clinical setting.

  20. Machine Learning Algorithms in Web Page Classification

    Directory of Open Access Journals (Sweden)

    W.A.AWAD

    2012-11-01

    Full Text Available In this paper we use machine learning algorithms like SVM, KNN and GIS to perform a behaviorcomparison on the web pages classifications problem, from the experiment we see in the SVM with smallnumber of negative documents to build the centroids has the smallest storage requirement and the least online test computation cost. But almost all GIS with different number of nearest neighbors have an evenhigher storage requirement and on line test computation cost than KNN. This suggests that some futurework should be done to try to reduce the storage requirement and on list test cost of GIS.

  1. Medical Dataset Classification: A Machine Learning Paradigm Integrating Particle Swarm Optimization with Extreme Learning Machine Classifier

    OpenAIRE

    C. V. Subbulakshmi; Deepa, S. N.

    2015-01-01

    Medical data classification is a prime data mining problem being discussed about for a decade that has attracted several researchers around the world. Most classifiers are designed so as to learn from the data itself using a training process, because complete expert knowledge to determine classifier parameters is impracticable. This paper proposes a hybrid methodology based on machine learning paradigm. This paradigm integrates the successful exploration mechanism called self-regulated learni...

  2. Predicting Networked Strategic Behavior via Machine Learning and Game Theory

    Science.gov (United States)

    2015-01-13

    Report: Predicting Networked Strategic Behavior via Machine Learning and Game Theory The views, opinions and/or findings contained in this report...2211 machine learning, game theory , microeconomics, behavioral data REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR...Strategic Behavior via Machine Learning and Game Theory Report Title The funding for this project was used to develop basic models, methodology

  3. Performance of machine learning methods for classification tasks

    OpenAIRE

    B. Krithika; Dr. V. Ramalingam; Rajan, K

    2013-01-01

    In this paper, the performance of various machine learning methods on pattern classification and recognition tasks are proposed. The proposed method for evaluating performance will be based on the feature representation, feature selection and setting model parameters. The nature of the data, the methods of feature extraction and feature representation are discussed. The results of the Machine Learning algorithms on the classification task are analysed. The performance of Machine Learning meth...

  4. Medical Dataset Classification: A Machine Learning Paradigm Integrating Particle Swarm Optimization with Extreme Learning Machine Classifier

    Directory of Open Access Journals (Sweden)

    C. V. Subbulakshmi

    2015-01-01

    Full Text Available Medical data classification is a prime data mining problem being discussed about for a decade that has attracted several researchers around the world. Most classifiers are designed so as to learn from the data itself using a training process, because complete expert knowledge to determine classifier parameters is impracticable. This paper proposes a hybrid methodology based on machine learning paradigm. This paradigm integrates the successful exploration mechanism called self-regulated learning capability of the particle swarm optimization (PSO algorithm with the extreme learning machine (ELM classifier. As a recent off-line learning method, ELM is a single-hidden layer feedforward neural network (FFNN, proved to be an excellent classifier with large number of hidden layer neurons. In this research, PSO is used to determine the optimum set of parameters for the ELM, thus reducing the number of hidden layer neurons, and it further improves the network generalization performance. The proposed method is experimented on five benchmarked datasets of the UCI Machine Learning Repository for handling medical dataset classification. Simulation results show that the proposed approach is able to achieve good generalization performance, compared to the results of other classifiers.

  5. Medical Dataset Classification: A Machine Learning Paradigm Integrating Particle Swarm Optimization with Extreme Learning Machine Classifier.

    Science.gov (United States)

    Subbulakshmi, C V; Deepa, S N

    2015-01-01

    Medical data classification is a prime data mining problem being discussed about for a decade that has attracted several researchers around the world. Most classifiers are designed so as to learn from the data itself using a training process, because complete expert knowledge to determine classifier parameters is impracticable. This paper proposes a hybrid methodology based on machine learning paradigm. This paradigm integrates the successful exploration mechanism called self-regulated learning capability of the particle swarm optimization (PSO) algorithm with the extreme learning machine (ELM) classifier. As a recent off-line learning method, ELM is a single-hidden layer feedforward neural network (FFNN), proved to be an excellent classifier with large number of hidden layer neurons. In this research, PSO is used to determine the optimum set of parameters for the ELM, thus reducing the number of hidden layer neurons, and it further improves the network generalization performance. The proposed method is experimented on five benchmarked datasets of the UCI Machine Learning Repository for handling medical dataset classification. Simulation results show that the proposed approach is able to achieve good generalization performance, compared to the results of other classifiers.

  6. Machine learning techniques to select Be star candidates. An application in the OGLE-IV Gaia south ecliptic pole field

    Science.gov (United States)

    Pérez-Ortiz, M. F.; García-Varela, A.; Quiroz, A. J.; Sabogal, B. E.; Hernández, J.

    2017-09-01

    Context. Optical and infrared variability surveys produce a large number of high quality light curves. Statistical pattern recognition methods have provided competitive solutions for variable star classification at a relatively low computational cost. In order to perform supervised classification, a set of features is proposed and used to train an automatic classification system. Quantities related to the magnitude density of the light curves and their Fourier coefficients have been chosen as features in previous studies. However, some of these features are not robust to the presence of outliers and the calculation of Fourier coefficients is computationally expensive for large data sets. Aims: We propose and evaluate the performance of a new robust set of features using supervised classifiers in order to look for new Be star candidates in the OGLE-IV Gaia south ecliptic pole field. Methods: We calculated the proposed set of features on six types of variable stars and also on a set of Be star candidates reported in the literature. We evaluated the performance of these features using classification trees and random forests along with the K-nearest neighbours, support vector machines, and gradient boosted trees methods. We tuned the classifiers with a 10-fold cross-validation and grid search. We then validated the performance of the best classifier on a set of OGLE-IV light curves and applied this to find new Be star candidates. Results: The random forest classifier outperformed the others. By using the random forest classifier and colours criteria we found 50 Be star candidates in the direction of the Gaia south ecliptic pole field, four of which have infrared colours that are consistent with Herbig Ae/Be stars. Conclusions: Supervised methods are very useful in order to obtain preliminary samples of variable stars extracted from large databases. As usual, the stars classified as Be stars candidates must be checked for the colours and spectroscopic characteristics

  7. Quantum cloning machines and the applications

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Heng, E-mail: hfan@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100190 (China); Wang, Yi-Nan; Jing, Li [School of Physics, Peking University, Beijing 100871 (China); Yue, Jie-Dong [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Shi, Han-Duo; Zhang, Yong-Liang; Mu, Liang-Zhu [School of Physics, Peking University, Beijing 100871 (China)

    2014-11-20

    No-cloning theorem is fundamental for quantum mechanics and for quantum information science that states an unknown quantum state cannot be cloned perfectly. However, we can try to clone a quantum state approximately with the optimal fidelity, or instead, we can try to clone it perfectly with the largest probability. Thus various quantum cloning machines have been designed for different quantum information protocols. Specifically, quantum cloning machines can be designed to analyze the security of quantum key distribution protocols such as BB84 protocol, six-state protocol, B92 protocol and their generalizations. Some well-known quantum cloning machines include universal quantum cloning machine, phase-covariant cloning machine, the asymmetric quantum cloning machine and the probabilistic quantum cloning machine. In the past years, much progress has been made in studying quantum cloning machines and their applications and implementations, both theoretically and experimentally. In this review, we will give a complete description of those important developments about quantum cloning and some related topics. On the other hand, this review is self-consistent, and in particular, we try to present some detailed formulations so that further study can be taken based on those results.

  8. Visual quality assessment by machine learning

    CERN Document Server

    Xu, Long; Kuo, C -C Jay

    2015-01-01

    The book encompasses the state-of-the-art visual quality assessment (VQA) and learning based visual quality assessment (LB-VQA) by providing a comprehensive overview of the existing relevant methods. It delivers the readers the basic knowledge, systematic overview and new development of VQA. It also encompasses the preliminary knowledge of Machine Learning (ML) to VQA tasks and newly developed ML techniques for the purpose. Hence, firstly, it is particularly helpful to the beginner-readers (including research students) to enter into VQA field in general and LB-VQA one in particular. Secondly, new development in VQA and LB-VQA particularly are detailed in this book, which will give peer researchers and engineers new insights in VQA.

  9. Formation enthalpies for transition metal alloys using machine learning

    Science.gov (United States)

    Ubaru, Shashanka; Miedlar, Agnieszka; Saad, Yousef; Chelikowsky, James R.

    2017-06-01

    The enthalpy of formation is an important thermodynamic property. Developing fast and accurate methods for its prediction is of practical interest in a variety of applications. Material informatics techniques based on machine learning have recently been introduced in the literature as an inexpensive means of exploiting materials data, and can be used to examine a variety of thermodynamics properties. We investigate the use of such machine learning tools for predicting the formation enthalpies of binary intermetallic compounds that contain at least one transition metal. We consider certain easily available properties of the constituting elements complemented by some basic properties of the compounds, to predict the formation enthalpies. We show how choosing these properties (input features) based on a literature study (using prior physics knowledge) seems to outperform machine learning based feature selection methods such as sensitivity analysis and LASSO (least absolute shrinkage and selection operator) based methods. A nonlinear kernel based support vector regression method is employed to perform the predictions. The predictive ability of our model is illustrated via several experiments on a dataset containing 648 binary alloys. We train and validate the model using the formation enthalpies calculated using a model by Miedema, which is a popular semiempirical model used for the prediction of formation enthalpies of metal alloys.

  10. WORMHOLE: Novel Least Diverged Ortholog Prediction through Machine Learning.

    Science.gov (United States)

    Sutphin, George L; Mahoney, J Matthew; Sheppard, Keith; Walton, David O; Korstanje, Ron

    2016-11-01

    The rapid advancement of technology in genomics and targeted genetic manipulation has made comparative biology an increasingly prominent strategy to model human disease processes. Predicting orthology relationships between species is a vital component of comparative biology. Dozens of strategies for predicting orthologs have been developed using combinations of gene and protein sequence, phylogenetic history, and functional interaction with progressively increasing accuracy. A relatively new class of orthology prediction strategies combines aspects of multiple methods into meta-tools, resulting in improved prediction performance. Here we present WORMHOLE, a novel ortholog prediction meta-tool that applies machine learning to integrate 17 distinct ortholog prediction algorithms to identify novel least diverged orthologs (LDOs) between 6 eukaryotic species-humans, mice, zebrafish, fruit flies, nematodes, and budding yeast. Machine learning allows WORMHOLE to intelligently incorporate predictions from a wide-spectrum of strategies in order to form aggregate predictions of LDOs with high confidence. In this study we demonstrate the performance of WORMHOLE across each combination of query and target species. We show that WORMHOLE is particularly adept at improving LDO prediction performance between distantly related species, expanding the pool of LDOs while maintaining low evolutionary distance and a high level of functional relatedness between genes in LDO pairs. We present extensive validation, including cross-validated prediction of PANTHER LDOs and evaluation of evolutionary divergence and functional similarity, and discuss future applications of machine learning in ortholog prediction. A WORMHOLE web tool has been developed and is available at http://wormhole.jax.org/.

  11. WORMHOLE: Novel Least Diverged Ortholog Prediction through Machine Learning.

    Directory of Open Access Journals (Sweden)

    George L Sutphin

    2016-11-01

    Full Text Available The rapid advancement of technology in genomics and targeted genetic manipulation has made comparative biology an increasingly prominent strategy to model human disease processes. Predicting orthology relationships between species is a vital component of comparative biology. Dozens of strategies for predicting orthologs have been developed using combinations of gene and protein sequence, phylogenetic history, and functional interaction with progressively increasing accuracy. A relatively new class of orthology prediction strategies combines aspects of multiple methods into meta-tools, resulting in improved prediction performance. Here we present WORMHOLE, a novel ortholog prediction meta-tool that applies machine learning to integrate 17 distinct ortholog prediction algorithms to identify novel least diverged orthologs (LDOs between 6 eukaryotic species-humans, mice, zebrafish, fruit flies, nematodes, and budding yeast. Machine learning allows WORMHOLE to intelligently incorporate predictions from a wide-spectrum of strategies in order to form aggregate predictions of LDOs with high confidence. In this study we demonstrate the performance of WORMHOLE across each combination of query and target species. We show that WORMHOLE is particularly adept at improving LDO prediction performance between distantly related species, expanding the pool of LDOs while maintaining low evolutionary distance and a high level of functional relatedness between genes in LDO pairs. We present extensive validation, including cross-validated prediction of PANTHER LDOs and evaluation of evolutionary divergence and functional similarity, and discuss future applications of machine learning in ortholog prediction. A WORMHOLE web tool has been developed and is available at http://wormhole.jax.org/.

  12. Measure Transformer Semantics for Bayesian Machine Learning

    Science.gov (United States)

    Borgström, Johannes; Gordon, Andrew D.; Greenberg, Michael; Margetson, James; van Gael, Jurgen

    The Bayesian approach to machine learning amounts to inferring posterior distributions of random variables from a probabilistic model of how the variables are related (that is, a prior distribution) and a set of observations of variables. There is a trend in machine learning towards expressing Bayesian models as probabilistic programs. As a foundation for this kind of programming, we propose a core functional calculus with primitives for sampling prior distributions and observing variables. We define combinators for measure transformers, based on theorems in measure theory, and use these to give a rigorous semantics to our core calculus. The original features of our semantics include its support for discrete, continuous, and hybrid measures, and, in particular, for observations of zero-probability events. We compile our core language to a small imperative language that has a straightforward semantics via factor graphs, data structures that enable many efficient inference algorithms. We use an existing inference engine for efficient approximate inference of posterior marginal distributions, treating thousands of observations per second for large instances of realistic models.

  13. Photometric Supernova Classification with Machine Learning

    Science.gov (United States)

    Lochner, Michelle; McEwen, Jason D.; Peiris, Hiranya V.; Lahav, Ofer; Winter, Max K.

    2016-08-01

    Automated photometric supernova classification has become an active area of research in recent years in light of current and upcoming imaging surveys such as the Dark Energy Survey (DES) and the Large Synoptic Survey Telescope, given that spectroscopic confirmation of type for all supernovae discovered will be impossible. Here, we develop a multi-faceted classification pipeline, combining existing and new approaches. Our pipeline consists of two stages: extracting descriptive features from the light curves and classification using a machine learning algorithm. Our feature extraction methods vary from model-dependent techniques, namely SALT2 fits, to more independent techniques that fit parametric models to curves, to a completely model-independent wavelet approach. We cover a range of representative machine learning algorithms, including naive Bayes, k-nearest neighbors, support vector machines, artificial neural networks, and boosted decision trees (BDTs). We test the pipeline on simulated multi-band DES light curves from the Supernova Photometric Classification Challenge. Using the commonly used area under the curve (AUC) of the Receiver Operating Characteristic as a metric, we find that the SALT2 fits and the wavelet approach, with the BDTs algorithm, each achieve an AUC of 0.98, where 1 represents perfect classification. We find that a representative training set is essential for good classification, whatever the feature set or algorithm, with implications for spectroscopic follow-up. Importantly, we find that by using either the SALT2 or the wavelet feature sets with a BDT algorithm, accurate classification is possible purely from light curve data, without the need for any redshift information.

  14. Novel Automatic Filter-Class Feature Selection for Machine Learning Regression

    DEFF Research Database (Denmark)

    Wollsen, Morten Gill; Hallam, John; Jørgensen, Bo Nørregaard

    2017-01-01

    With the increased focus on application of Big Data in all sectors of society, the performance of machine learning becomes essential. Efficient machine learning depends on efficient feature selection algorithms. Filter feature selection algorithms are model-free and therefore very fast, but require...... model in the feature selection process. PCA is often used in machine learning litterature and can be considered the default feature selection method. RDESF outperformed PCA in both experiments in both prediction error and computational speed. RDESF is a new step into filter-based automatic feature...

  15. Intelligent sensor networks the integration of sensor networks, signal processing and machine learning

    CERN Document Server

    Hu, Fei

    2012-01-01

    Although governments worldwide have invested significantly in intelligent sensor network research and applications, few books cover intelligent sensor networks from a machine learning and signal processing perspective. Filling this void, Intelligent Sensor Networks: The Integration of Sensor Networks, Signal Processing and Machine Learning focuses on the close integration of sensing, networking, and smart signal processing via machine learning. Based on the world-class research of award-winning authors, the book provides a firm grounding in the fundamentals of intelligent sensor networks, incl

  16. Novel Automatic Filter-Class Feature Selection for Machine Learning Regression

    DEFF Research Database (Denmark)

    Wollsen, Morten Gill; Hallam, John; Jørgensen, Bo Nørregaard

    2016-01-01

    With the increased focus on application of Big Data in all sectors of society, the performance of machine learning becomes essential. Efficient machine learning depends on efficient feature selection algorithms. Filter feature selection algorithms are model-free and therefore very fast, but require...... model in the feature selection process. PCA is often used in machine learning litterature and can be considered the default feature selection method. RDESF outperformed PCA in both experiments in both prediction error and computational speed. RDESF is a new step into filter-based automatic feature...

  17. Refining fuzzy logic controllers with machine learning

    Science.gov (United States)

    Berenji, Hamid R.

    1994-01-01

    In this paper, we describe the GARIC (Generalized Approximate Reasoning-Based Intelligent Control) architecture, which learns from its past performance and modifies the labels in the fuzzy rules to improve performance. It uses fuzzy reinforcement learning which is a hybrid method of fuzzy logic and reinforcement learning. This technology can simplify and automate the application of fuzzy logic control to a variety of systems. GARIC has been applied in simulation studies of the Space Shuttle rendezvous and docking experiments. It has the potential of being applied in other aerospace systems as well as in consumer products such as appliances, cameras, and cars.

  18. Fifty years of computer analysis in chest imaging: rule-based, machine learning, deep learning.

    Science.gov (United States)

    van Ginneken, Bram

    2017-03-01

    Half a century ago, the term "computer-aided diagnosis" (CAD) was introduced in the scientific literature. Pulmonary imaging, with chest radiography and computed tomography, has always been one of the focus areas in this field. In this study, I describe how machine learning became the dominant technology for tackling CAD in the lungs, generally producing better results than do classical rule-based approaches, and how the field is now rapidly changing: in the last few years, we have seen how even better results can be obtained with deep learning. The key differences among rule-based processing, machine learning, and deep learning are summarized and illustrated for various applications of CAD in the chest.

  19. Quantum machine learning what quantum computing means to data mining

    CERN Document Server

    Wittek, Peter

    2014-01-01

    Quantum Machine Learning bridges the gap between abstract developments in quantum computing and the applied research on machine learning. Paring down the complexity of the disciplines involved, it focuses on providing a synthesis that explains the most important machine learning algorithms in a quantum framework. Theoretical advances in quantum computing are hard to follow for computer scientists, and sometimes even for researchers involved in the field. The lack of a step-by-step guide hampers the broader understanding of this emergent interdisciplinary body of research. Quantum Machine L

  20. Fundamentals of Machine Learning for Neural Machine Translation

    OpenAIRE

    Kelleher, John

    2016-01-01

    This paper presents a short introduction to neural networks and how they are used for machine translation and concludes with some discussion on the current research challenges being addressed by neural machine translation (NMT) research. The primary goal of this paper is to give a no-tears introduction to NMT to readers that do not have a computer science or mathematical background. The secondary goal is to provide the reader with a deep enough understanding of NMT that they can appreciate th...

  1. Knowledge discovery via machine learning for neurodegenerative disease researchers.

    Science.gov (United States)

    Ozyurt, I Burak; Brown, Gregory G

    2009-01-01

    Ever-increasing size of the biomedical literature makes more precise information retrieval and tapping into implicit knowledge in scientific literature a necessity. In this chapter, first, three new variants of the expectation-maximization (EM) method for semisupervised document classification (Machine Learning 39:103-134, 2000) are introduced to refine biomedical literature meta-searches. The retrieval performance of a multi-mixture per class EM variant with Agglomerative Information Bottleneck clustering (Slonim and Tishby (1999) Agglomerative information bottleneck. In Proceedings of NIPS-12) using Davies-Bouldin cluster validity index (IEEE Transactions on Pattern Analysis and Machine Intelligence 1:224-227, 1979), rivaled the state-of-the-art transductive support vector machines (TSVM) (Joachims (1999) Transductive inference for text classification using support vector machines. In Proceedings of the International Conference on Machine Learning (ICML)). Moreover, the multi-mixture per class EM variant refined search results more quickly with more than one order of magnitude improvement in execution time compared with TSVM. A second tool, CRFNER, uses conditional random fields (Lafferty et al. (2001) Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In Proceedings of ICML-2001) to recognize 15 types of named entities from schizophrenia abstracts outperforming ABNER (Settles (2004) Biomedical named entity recognition using conditional random fields and rich feature sets. In Proceedings of COLING 2004 International Joint Workshop on Natural Language Processing in Biomedicine and its Applications (NLPBA)) in biological named entity recognition and reaching F(1) performance of 82.5% on the second set of named entities.

  2. Parameterized Machine Learning for High-Energy Physics

    CERN Document Server

    Baldi, Pierre; Faucett, Taylor; Sadowski, Peter; Whiteson, Daniel

    2016-01-01

    We investigate a new structure for machine learning classifiers applied to problems in high-energy physics by expanding the inputs to include not only measured features but also physics parameters. The physics parameters represent a smoothly varying learning task, and the resulting parameterized classifier can smoothly interpolate between them and replace sets of classifiers trained at individual values. This simplifies the training process and gives improved performance at intermediate values, even for complex problems requiring deep learning. Applications include tools parameterized in terms of theoretical model parameters, such as the mass of a particle, which allow for a single network to provide improved discrimination across a range of masses. This concept is simple to implement and allows for optimized interpolatable results.

  3. Combining Formal Logic and Machine Learning for Sentiment Analysis

    DEFF Research Database (Denmark)

    Petersen, Niklas Christoffer; Villadsen, Jørgen

    2014-01-01

    This paper presents a formal logical method for deep structural analysis of the syntactical properties of texts using machine learning techniques for efficient syntactical tagging. To evaluate the method it is used for entity level sentiment analysis as an alternative to pure machine learning...

  4. An active role for machine learning in drug development

    Science.gov (United States)

    Murphy, Robert F.

    2014-01-01

    Due to the complexity of biological systems, cutting-edge machine-learning methods will be critical for future drug development. In particular, machine-vision methods to extract detailed information from imaging assays and active-learning methods to guide experimentation will be required to overcome the dimensionality problem in drug development. PMID:21587249

  5. Applying Machine Learning to Facilitate Autism Diagnostics: Pitfalls and Promises

    Science.gov (United States)

    Bone, Daniel; Goodwin, Matthew S.; Black, Matthew P.; Lee, Chi-Chun; Audhkhasi, Kartik; Narayanan, Shrikanth

    2015-01-01

    Machine learning has immense potential to enhance diagnostic and intervention research in the behavioral sciences, and may be especially useful in investigations involving the highly prevalent and heterogeneous syndrome of autism spectrum disorder. However, use of machine learning in the absence of clinical domain expertise can be tenuous and lead…

  6. Large-Scale Machine Learning for Classification and Search

    Science.gov (United States)

    Liu, Wei

    2012-01-01

    With the rapid development of the Internet, nowadays tremendous amounts of data including images and videos, up to millions or billions, can be collected for training machine learning models. Inspired by this trend, this thesis is dedicated to developing large-scale machine learning techniques for the purpose of making classification and nearest…

  7. Large-Scale Machine Learning for Classification and Search

    Science.gov (United States)

    Liu, Wei

    2012-01-01

    With the rapid development of the Internet, nowadays tremendous amounts of data including images and videos, up to millions or billions, can be collected for training machine learning models. Inspired by this trend, this thesis is dedicated to developing large-scale machine learning techniques for the purpose of making classification and nearest…

  8. Applying Machine Learning to Facilitate Autism Diagnostics: Pitfalls and Promises

    Science.gov (United States)

    Bone, Daniel; Goodwin, Matthew S.; Black, Matthew P.; Lee, Chi-Chun; Audhkhasi, Kartik; Narayanan, Shrikanth

    2015-01-01

    Machine learning has immense potential to enhance diagnostic and intervention research in the behavioral sciences, and may be especially useful in investigations involving the highly prevalent and heterogeneous syndrome of autism spectrum disorder. However, use of machine learning in the absence of clinical domain expertise can be tenuous and lead…

  9. IEEE International Workshop on Machine Learning for Signal Processing: Preface

    DEFF Research Database (Denmark)

    Tao, Jianhua

    The 21st IEEE International Workshop on Machine Learning for Signal Processing will be held in Beijing, China, on September 18–21, 2011. The workshop series is the major annual technical event of the IEEE Signal Processing Society's Technical Committee on Machine Learning for Signal Processing...

  10. IEEE International Workshop on Machine Learning for Signal Processing: Preface

    DEFF Research Database (Denmark)

    Tao, Jianhua

    The 21st IEEE International Workshop on Machine Learning for Signal Processing will be held in Beijing, China, on September 18–21, 2011. The workshop series is the major annual technical event of the IEEE Signal Processing Society's Technical Committee on Machine Learning for Signal Processing...

  11. Using financial risk measures for analyzing generalization performance of machine learning models.

    Science.gov (United States)

    Takeda, Akiko; Kanamori, Takafumi

    2014-09-01

    We propose a unified machine learning model (UMLM) for two-class classification, regression and outlier (or novelty) detection via a robust optimization approach. The model embraces various machine learning models such as support vector machine-based and minimax probability machine-based classification and regression models. The unified framework makes it possible to compare and contrast existing learning models and to explain their differences and similarities. In this paper, after relating existing learning models to UMLM, we show some theoretical properties for UMLM. Concretely, we show an interpretation of UMLM as minimizing a well-known financial risk measure (worst-case value-at risk (VaR) or conditional VaR), derive generalization bounds for UMLM using such a risk measure, and prove that solving problems of UMLM leads to estimators with the minimized generalization bounds. Those theoretical properties are applicable to related existing learning models.

  12. Dropout Prediction in E-Learning Courses through the Combination of Machine Learning Techniques

    Science.gov (United States)

    Lykourentzou, Ioanna; Giannoukos, Ioannis; Nikolopoulos, Vassilis; Mpardis, George; Loumos, Vassili

    2009-01-01

    In this paper, a dropout prediction method for e-learning courses, based on three popular machine learning techniques and detailed student data, is proposed. The machine learning techniques used are feed-forward neural networks, support vector machines and probabilistic ensemble simplified fuzzy ARTMAP. Since a single technique may fail to…

  13. Dropout Prediction in E-Learning Courses through the Combination of Machine Learning Techniques

    Science.gov (United States)

    Lykourentzou, Ioanna; Giannoukos, Ioannis; Nikolopoulos, Vassilis; Mpardis, George; Loumos, Vassili

    2009-01-01

    In this paper, a dropout prediction method for e-learning courses, based on three popular machine learning techniques and detailed student data, is proposed. The machine learning techniques used are feed-forward neural networks, support vector machines and probabilistic ensemble simplified fuzzy ARTMAP. Since a single technique may fail to…

  14. Color in machine vision and its application

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Color is the phenomenon of human visual perception and the module of machine vision. Color information is widely used in the areas of virtual reality and humancomputer interaction. Color is the product of a visual environment, illumination and the human brain. Research on color information representation and its processing is typically interdisciplinary. Based on our research work on human color perception and machine color vision and its application, we summarized the hotspots of color studies in recent developments and new approaches to color vision,including basic theories and the application of color information in virtual reality, content-based image retrieval, and face recognition.

  15. An Android malware detection system based on machine learning

    Science.gov (United States)

    Wen, Long; Yu, Haiyang

    2017-08-01

    The Android smartphone, with its open source character and excellent performance, has attracted many users. However, the convenience of the Android platform also has motivated the development of malware. The traditional method which detects the malware based on the signature is unable to detect unknown applications. The article proposes a machine learning-based lightweight system that is capable of identifying malware on Android devices. In this system we extract features based on the static analysis and the dynamitic analysis, then a new feature selection approach based on principle component analysis (PCA) and relief are presented in the article to decrease the dimensions of the features. After that, a model will be constructed with support vector machine (SVM) for classification. Experimental results show that our system provides an effective method in Android malware detection.

  16. Machine learning, computer vision, and probabilistic models in jet physics

    CERN Document Server

    CERN. Geneva; NACHMAN, Ben

    2015-01-01

    In this talk we present recent developments in the application of machine learning, computer vision, and probabilistic models to the analysis and interpretation of LHC events. First, we will introduce the concept of jet-images and computer vision techniques for jet tagging. Jet images enabled the connection between jet substructure and tagging with the fields of computer vision and image processing for the first time, improving the performance to identify highly boosted W bosons with respect to state-of-the-art methods, and providing a new way to visualize the discriminant features of different classes of jets, adding a new capability to understand the physics within jets and to design more powerful jet tagging methods. Second, we will present Fuzzy jets: a new paradigm for jet clustering using machine learning methods. Fuzzy jets view jet clustering as an unsupervised learning task and incorporate a probabilistic assignment of particles to jets to learn new features of the jet structure. In particular, we wi...

  17. A Machine Learning Framework for Gait Classification Using Inertial Sensors: Application to Elderly, Post-Stroke and Huntington’s Disease Patients

    Directory of Open Access Journals (Sweden)

    Andrea Mannini

    2016-01-01

    Full Text Available Machine learning methods have been widely used for gait assessment through the estimation of spatio-temporal parameters. As a further step, the objective of this work is to propose and validate a general probabilistic modeling approach for the classification of different pathological gaits. Specifically, the presented methodology was tested on gait data recorded on two pathological populations (Huntington’s disease and post-stroke subjects and healthy elderly controls using data from inertial measurement units placed at shank and waist. By extracting features from group-specific Hidden Markov Models (HMMs and signal information in time and frequency domain, a Support Vector Machines classifier (SVM was designed and validated. The 90.5% of subjects was assigned to the right group after leave-one-subject–out cross validation and majority voting. The long-term goal we point to is the gait assessment in everyday life to early detect gait alterations.

  18. Combining generative and discriminative representation learning for lung CT analysis with convolutional restricted Boltzmann machines

    DEFF Research Database (Denmark)

    van Tulder, Gijs; de Bruijne, Marleen

    2016-01-01

    unlabeled data, but does not necessarily produce features that are optimal for classification. In this paper we propose the convolutional classification restricted Boltzmann machine, which combines a generative and a discriminative learning objective. This allows it to learn filters that are good both......The choice of features greatly influences the performance of a tissue classification system. Despite this, many systems are built with standard, predefined filter banks that are not optimized for that particular application. Representation learning methods such as restricted Boltzmann machines may...... outperform these standard filter banks because they learn a feature description directly from the training data. Like many other representation learning methods, restricted Boltzmann machines are unsupervised and are trained with a generative learning objective; this allows them to learn representations from...

  19. Machine learning of Calabi-Yau volumes

    Science.gov (United States)

    Krefl, Daniel; Seong, Rak-Kyeong

    2017-09-01

    We employ machine learning techniques to investigate the volume minimum of Sasaki-Einstein base manifolds of noncompact toric Calabi-Yau three-folds. We find that the minimum volume can be approximated via a second-order multiple linear regression on standard topological quantities obtained from the corresponding toric diagram. The approximation improves further after invoking a convolutional neural network with the full toric diagram of the Calabi-Yau three-folds as the input. We are thereby able to circumvent any minimization procedure that was previously necessary and find an explicit mapping between the minimum volume and the topological quantities of the toric diagram. Under the AdS/CFT correspondence, the minimum volumes of Sasaki-Einstein manifolds correspond to central charges of a class of 4 d N =1 superconformal field theories. We therefore find empirical evidence for a function that gives values of central charges without the usual extremization procedure.

  20. Optimal sensor placement using machine learning

    CERN Document Server

    Semaan, Richard

    2016-01-01

    A new method for optimal sensor placement based on variable importance of machine learned models is proposed. With its simplicity, adaptivity, and low computational cost, the method offers many advantages over existing approaches. The new method is implemented on an airfoil equipped with a Coanda actuator. The analysis is based on flow field data obtained from 2D unsteady Reynolds averaged Navier-Stokes (URANS) simulations with different actuation conditions. The optimal sensor locations is compared against the current de-facto standard of maximum POD modal amplitude location, and against a brute force approach that scans all possible sensor combinations. The results show that both the flow conditions and the type of sensor have an effect on the optimal sensor placement, whereas the choice of the response function appears to have limited influence.

  1. Machine learning research 1989-90

    Science.gov (United States)

    Porter, Bruce W.; Souther, Arthur

    1990-01-01

    Multifunctional knowledge bases offer a significant advance in artificial intelligence because they can support numerous expert tasks within a domain. As a result they amortize the costs of building a knowledge base over multiple expert systems and they reduce the brittleness of each system. Due to the inevitable size and complexity of multifunctional knowledge bases, their construction and maintenance require knowledge engineering and acquisition tools that can automatically identify interactions between new and existing knowledge. Furthermore, their use requires software for accessing those portions of the knowledge base that coherently answer questions. Considerable progress was made in developing software for building and accessing multifunctional knowledge bases. A language was developed for representing knowledge, along with software tools for editing and displaying knowledge, a machine learning program for integrating new information into existing knowledge, and a question answering system for accessing the knowledge base.

  2. Lane Detection Based on Machine Learning Algorithm

    Directory of Open Access Journals (Sweden)

    Chao Fan

    2013-09-01

    Full Text Available In order to improve accuracy and robustness of the lane detection in complex conditions, such as the shadows and illumination changing, a novel detection algorithm was proposed based on machine learning. After pretreatment, a set of haar-like filters were used to calculate the eigenvalue in the gray image f(x,y and edge e(x,y. Then these features were trained by using improved boosting algorithm and the final class function g(x was obtained, which was used to judge whether the point x belonging to the lane or not. To avoid the over fitting in traditional boosting, Fisher discriminant analysis was used to initialize the weights of samples. After testing by many road in all conditions, it showed that this algorithm had good robustness and real-time to recognize the lane in all challenging conditions.

  3. Guidelines for Developing and Reporting Machine Learning Predictive Models in Biomedical Research: A Multidisciplinary View.

    Science.gov (United States)

    Luo, Wei; Phung, Dinh; Tran, Truyen; Gupta, Sunil; Rana, Santu; Karmakar, Chandan; Shilton, Alistair; Yearwood, John; Dimitrova, Nevenka; Ho, Tu Bao; Venkatesh, Svetha; Berk, Michael

    2016-12-16

    As more and more researchers are turning to big data for new opportunities of biomedical discoveries, machine learning models, as the backbone of big data analysis, are mentioned more often in biomedical journals. However, owing to the inherent complexity of machine learning methods, they are prone to misuse. Because of the flexibility in specifying machine learning models, the results are often insufficiently reported in research articles, hindering reliable assessment of model validity and consistent interpretation of model outputs. To attain a set of guidelines on the use of machine learning predictive models within clinical settings to make sure the models are correctly applied and sufficiently reported so that true discoveries can be distinguished from random coincidence. A multidisciplinary panel of machine learning experts, clinicians, and traditional statisticians were interviewed, using an iterative process in accordance with the Delphi method. The process produced a set of guidelines that consists of (1) a list of reporting items to be included in a research article and (2) a set of practical sequential steps for developing predictive models. A set of guidelines was generated to enable correct application of machine learning models and consistent reporting of model specifications and results in biomedical research. We believe that such guidelines will accelerate the adoption of big data analysis, particularly with machine learning methods, in the biomedical research community.

  4. Coordinated machine learning and decision support for situation awareness.

    Energy Technology Data Exchange (ETDEWEB)

    Draelos, Timothy John; Zhang, Peng-Chu.; Wunsch, Donald C. (University of Missouri, Rolla, MO); Seiffertt, John (University of Missouri, Rolla, MO); Conrad, Gregory N.; Brannon, Nathan Gregory

    2007-09-01

    For applications such as force protection, an effective decision maker needs to maintain an unambiguous grasp of the environment. Opportunities exist to leverage computational mechanisms for the adaptive fusion of diverse information sources. The current research employs neural networks and Markov chains to process information from sources including sensors, weather data, and law enforcement. Furthermore, the system operator's input is used as a point of reference for the machine learning algorithms. More detailed features of the approach are provided, along with an example force protection scenario.

  5. Amp: A modular approach to machine learning in atomistic simulations

    Science.gov (United States)

    Khorshidi, Alireza; Peterson, Andrew A.

    2016-10-01

    Electronic structure calculations, such as those employing Kohn-Sham density functional theory or ab initio wavefunction theories, have allowed for atomistic-level understandings of a wide variety of phenomena and properties of matter at small scales. However, the computational cost of electronic structure methods drastically increases with length and time scales, which makes these methods difficult for long time-scale molecular dynamics simulations or large-sized systems. Machine-learning techniques can provide accurate potentials that can match the quality of electronic structure calculations, provided sufficient training data. These potentials can then be used to rapidly simulate large and long time-scale phenomena at similar quality to the parent electronic structure approach. Machine-learning potentials usually take a bias-free mathematical form and can be readily developed for a wide variety of systems. Electronic structure calculations have favorable properties-namely that they are noiseless and targeted training data can be produced on-demand-that make them particularly well-suited for machine learning. This paper discusses our modular approach to atomistic machine learning through the development of the open-source Atomistic Machine-learning Package (Amp), which allows for representations of both the total and atom-centered potential energy surface, in both periodic and non-periodic systems. Potentials developed through the atom-centered approach are simultaneously applicable for systems with various sizes. Interpolation can be enhanced by introducing custom descriptors of the local environment. We demonstrate this in the current work for Gaussian-type, bispectrum, and Zernike-type descriptors. Amp has an intuitive and modular structure with an interface through the python scripting language yet has parallelizable fortran components for demanding tasks; it is designed to integrate closely with the widely used Atomic Simulation Environment (ASE), which

  6. Strategies and Principles of Distributed Machine Learning on Big Data

    Directory of Open Access Journals (Sweden)

    Eric P. Xing

    2016-06-01

    Full Text Available The rise of big data has led to new demands for machine learning (ML systems to learn complex models, with millions to billions of parameters, that promise adequate capacity to digest massive datasets and offer powerful predictive analytics (such as high-dimensional latent features, intermediate representations, and decision functions thereupon. In order to run ML algorithms at such scales, on a distributed cluster with tens to thousands of machines, it is often the case that significant engineering efforts are required—and one might fairly ask whether such engineering truly falls within the domain of ML research. Taking the view that “big” ML systems can benefit greatly from ML-rooted statistical and algorithmic insights—and that ML researchers should therefore not shy away from such systems design—we discuss a series of principles and strategies distilled from our recent efforts on industrial-scale ML solutions. These principles and strategies span a continuum from application, to engineering, and to theoretical research and development of big ML systems and architectures, with the goal of understanding how to make them efficient, generally applicable, and supported with convergence and scaling guarantees. They concern four key questions that traditionally receive little attention in ML research: How can an ML program be distributed over a cluster? How can ML computation be bridged with inter-machine communication? How can such communication be performed? What should be communicated between machines? By exposing underlying statistical and algorithmic characteristics unique to ML programs but not typically seen in traditional computer programs, and by dissecting successful cases to reveal how we have harnessed these principles to design and develop both high-performance distributed ML software as well as general-purpose ML frameworks, we present opportunities for ML researchers and practitioners to further shape and enlarge the area

  7. Tracking medical genetic literature through machine learning.

    Science.gov (United States)

    Bornstein, Aaron T; McLoughlin, Matthew H; Aguilar, Jesus; Wong, Wendy S W; Solomon, Benjamin D

    2016-08-01

    There has been remarkable progress in identifying the causes of genetic conditions as well as understanding how changes in specific genes cause disease. Though difficult (and often superficial) to parse, an interesting tension involves emphasis on basic research aimed to dissect normal and abnormal biology versus more clearly clinical and therapeutic investigations. To examine one facet of this question and to better understand progress in Mendelian-related research, we developed an algorithm that classifies medical literature into three categories (Basic, Clinical, and Management) and conducted a retrospective analysis. We built a supervised machine learning classification model using the Azure Machine Learning (ML) Platform and analyzed the literature (1970-2014) from NCBI's Entrez Gene2Pubmed Database (http://www.ncbi.nlm.nih.gov/gene) using genes from the NHGRI's Clinical Genomics Database (http://research.nhgri.nih.gov/CGD/). We applied our model to 376,738 articles: 288,639 (76.6%) were classified as Basic, 54,178 (14.4%) as Clinical, and 24,569 (6.5%) as Management. The average classification accuracy was 92.2%. The rate of Clinical publication was significantly higher than Basic or Management. The rate of publication of article types differed significantly when divided into key eras: Human Genome Project (HGP) planning phase (1984-1990); HGP launch (1990) to publication (2001); following HGP completion to the "Next Generation" advent (2009); the era following 2009. In conclusion, in addition to the findings regarding the pace and focus of genetic progress, our algorithm produced a database that can be used in a variety of contexts including automating the identification of management-related literature.

  8. Using Machine Learning to Search for MSSM Higgs Bosons

    CERN Document Server

    Diesing, Rebecca

    2016-01-01

    This paper examines the performance of machine learning in the identification of Minimally Su- persymmetric Standard Model (MSSM) Higgs Bosons, and compares this performance to that of traditional cut strategies. Two boosted decision tree algorithms were tested, scikit-learn and XGBoost. These tests indicated that machine learning can perform significantly better than traditional cuts. However, since machine learning in this form cannot be directly implemented in a real MSSM Higgs analysis, this performance information was instead used to better understand the relationships between training variables. Further studies might use this information to construct an improved cut strategy.

  9. Fixed-memory extreme learning machine and its applications%限定记忆极端学习机及其应用

    Institute of Scientific and Technical Information of China (English)

    张弦; 王宏力

    2012-01-01

    为了实现极端学习机(ELM)的在线训练,提出一种限定记忆极端学习机(FM-ELM).FM-ELM以逐次增加新训练样本与删除旧训练样本的方式,提高其对于系统动态变化特性的自适应性,并根据矩阵求逆引理实现了网络输出权值的递推求解,减小了在线训练过程的计算代价.应用于具有动态变化特性的非线性系统在线状态预测表明,FM-ELM是一种有效的ELM在线训练模式,相比于在线贯序极端学习机,FM-ELM具有更快的调节速度和更高的预测精度.%To solve the problem of extreme learning machine(ELM) on-line training, an algorithm, fixed-memory extreme learning machine(FM-ELM), is proposed. FM-ELM adopts the latest training sample and abandons the oldest training sample iteratively to enhance its adaptive capacity. The output weights of FM-ELM are determined recursively based on Sherman-Morrison formula. Thus, the computational cost of FM-ELM training procedure is effectively reduced. Numerical experiments on nonlinear system on-line condition prediction show that FM-ELM has better performance in adjusting speed and prediction accuracy in comparison with on-line sequential extreme learning machine(OS-ELM) .

  10. Machine learning techniques in dialogue act recognition

    Directory of Open Access Journals (Sweden)

    Mark Fišel

    2007-05-01

    Full Text Available This report addresses dialogue acts, their existing applications and techniques of automatically recognizing them, in Estonia as well as elsewhere. Three main applications are described: in dialogue systems to determine the intention of the speaker, in dialogue systems with machine translation to resolve ambiguities in the possible translation variants and in speech recognition to reduce word recognition error rate. Several recognition techniques are described on the surface level: how they work and how they are trained. A summary of the corresponding representation methods is provided for each technique. The paper also includes examples of applying the techniques to dialogue act recognition.The author comes to the conclusion that using the current evaluation metric it is impossible to compare dialogue act recognition techniques when these are applied to different dialogue act tag sets. Dialogue acts remain an open research area, with space and need for developing new recognition techniques and methods of evaluation.

  11. Research into Financial Position of Listed Companies following Classification via Extreme Learning Machine Based upon DE Optimization

    Directory of Open Access Journals (Sweden)

    Fu Yu

    2016-01-01

    Full Text Available By means of the model of extreme learning machine based upon DE optimization, this article particularly centers on the optimization thinking of such a model as well as its application effect in the field of listed company’s financial position classification. It proves that the improved extreme learning machine algorithm based upon DE optimization eclipses the traditional extreme learning machine algorithm following comparison. Meanwhile, this article also intends to introduce certain research thinking concerning extreme learning machine into the economics classification area so as to fulfill the purpose of computerizing the speedy but effective evaluation of massive financial statements of listed companies pertain to different classes

  12. Supervised Machine Learning Methods Applied to Predict Ligand- Binding Affinity.

    Science.gov (United States)

    Heck, Gabriela S; Pintro, Val O; Pereira, Richard R; de Ávila, Mauricio B; Levin, Nayara M B; de Azevedo, Walter F

    2017-01-01

    Calculation of ligand-binding affinity is an open problem in computational medicinal chemistry. The ability to computationally predict affinities has a beneficial impact in the early stages of drug development, since it allows a mathematical model to assess protein-ligand interactions. Due to the availability of structural and binding information, machine learning methods have been applied to generate scoring functions with good predictive power. Our goal here is to review recent developments in the application of machine learning methods to predict ligand-binding affinity. We focus our review on the application of computational methods to predict binding affinity for protein targets. In addition, we also describe the major available databases for experimental binding constants and protein structures. Furthermore, we explain the most successful methods to evaluate the predictive power of scoring functions. Association of structural information with ligand-binding affinity makes it possible to generate scoring functions targeted to a specific biological system. Through regression analysis, this data can be used as a base to generate mathematical models to predict ligandbinding affinities, such as inhibition constant, dissociation constant and binding energy. Experimental biophysical techniques were able to determine the structures of over 120,000 macromolecules. Considering also the evolution of binding affinity information, we may say that we have a promising scenario for development of scoring functions, making use of machine learning techniques. Recent developments in this area indicate that building scoring functions targeted to the biological systems of interest shows superior predictive performance, when compared with other approaches. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Using machine learning to model dose-response relationships.

    Science.gov (United States)

    Linden, Ariel; Yarnold, Paul R; Nallamothu, Brahmajee K

    2016-12-01

    Establishing the relationship between various doses of an exposure and a response variable is integral to many studies in health care. Linear parametric models, widely used for estimating dose-response relationships, have several limitations. This paper employs the optimal discriminant analysis (ODA) machine-learning algorithm to determine the degree to which exposure dose can be distinguished based on the distribution of the response variable. By framing the dose-response relationship as a classification problem, machine learning can provide the same functionality as conventional models, but can additionally make individual-level predictions, which may be helpful in practical applications like establishing responsiveness to prescribed drug regimens. Using data from a study measuring the responses of blood flow in the forearm to the intra-arterial administration of isoproterenol (separately for 9 black and 13 white men, and pooled), we compare the results estimated from a generalized estimating equations (GEE) model with those estimated using ODA. Generalized estimating equations and ODA both identified many statistically significant dose-response relationships, separately by race and for pooled data. Post hoc comparisons between doses indicated ODA (based on exact P values) was consistently more conservative than GEE (based on estimated P values). Compared with ODA, GEE produced twice as many instances of paradoxical confounding (findings from analysis of pooled data that are inconsistent with findings from analyses stratified by race). Given its unique advantages and greater analytic flexibility, maximum-accuracy machine-learning methods like ODA should be considered as the primary analytic approach in dose-response applications. © 2016 John Wiley & Sons, Ltd.

  14. Systematic Poisoning Attacks on and Defenses for Machine Learning in Healthcare.

    Science.gov (United States)

    Mozaffari-Kermani, Mehran; Sur-Kolay, Susmita; Raghunathan, Anand; Jha, Niraj K

    2015-11-01

    Machine learning is being used in a wide range of application domains to discover patterns in large datasets. Increasingly, the results of machine learning drive critical decisions in applications related to healthcare and biomedicine. Such health-related applications are often sensitive, and thus, any security breach would be catastrophic. Naturally, the integrity of the results computed by machine learning is of great importance. Recent research has shown that some machine-learning algorithms can be compromised by augmenting their training datasets with malicious data, leading to a new class of attacks called poisoning attacks. Hindrance of a diagnosis may have life-threatening consequences and could cause distrust. On the other hand, not only may a false diagnosis prompt users to distrust the machine-learning algorithm and even abandon the entire system but also such a false positive classification may cause patient distress. In this paper, we present a systematic, algorithm-independent approach for mounting poisoning attacks across a wide range of machine-learning algorithms and healthcare datasets. The proposed attack procedure generates input data, which, when added to the training set, can either cause the results of machine learning to have targeted errors (e.g., increase the likelihood of classification into a specific class), or simply introduce arbitrary errors (incorrect classification). These attacks may be applied to both fixed and evolving datasets. They can be applied even when only statistics of the training dataset are available or, in some cases, even without access to the training dataset, although at a lower efficacy. We establish the effectiveness of the proposed attacks using a suite of six machine-learning algorithms and five healthcare datasets. Finally, we present countermeasures against the proposed generic attacks that are based on tracking and detecting deviations in various accuracy metrics, and benchmark their effectiveness.

  15. MEDLINE MeSH Indexing: Lessons Learned from Machine Learning and Future Directions

    DEFF Research Database (Denmark)

    Jimeno-Yepes, Antonio; Mork, James G.; Wilkowski, Bartlomiej

    2012-01-01

    Map and a k-NN approach called PubMed Related Citations (PRC). Our motivation is to improve the quality of MTI based on machine learning. Typical machine learning approaches fit this indexing task into text categorization. In this work, we have studied some Medical Subject Headings (MeSH) recommended by MTI...... and analyzed the issues when using standard machine learning algorithms. We show that in some cases machine learning can improve the annotations already recommended by MTI, that machine learning based on low variance methods achieves better performance and that each MeSH heading presents a different behavior...

  16. Application of advanced materials to rotating machines

    Science.gov (United States)

    Triner, J. E.

    1983-01-01

    In discussing the application of advanced materials to rotating machinery, the following topics are covered: the torque speed characteristics of ac and dc machines, motor and transformer losses, the factors affecting core loss in motors, advanced magnetic materials and conductors, and design tradeoffs for samarium cobalt motors.

  17. Machine Learning and the Traveling Repairman

    CERN Document Server

    Tulabandhula, Theja; Jaillet, Patrick

    2011-01-01

    The goal of the Machine Learning and Traveling Repairman Problem (ML&TRP) is to determine a route for a "repair crew," which repairs nodes on a graph. The repair crew aims to minimize the cost of failures at the nodes, but as in many real situations, the failure probabilities are not known and must be estimated. We introduce two formulations for the ML&TRP, where the first formulation is sequential: failure probabilities are estimated at each node, and then a weighted version of the traveling repairman problem is used to construct the route from the failure cost. We develop two models for the failure cost, based on whether repeat failures are considered, or only the first failure on a node. Our second formulation is a multi-objective learning problem for ranking on graphs. Here, we are estimating failure probabilities simultaneously with determining the graph traversal route; the choice of route influences the estimated failure probabilities. This is in accordance with a prior belief that probabilitie...

  18. Active Learning of Nondeterministic Finite State Machines

    Directory of Open Access Journals (Sweden)

    Warawoot Pacharoen

    2013-01-01

    Full Text Available We consider the problem of learning nondeterministic finite state machines (NFSMs from systems where their internal structures are implicit and nondeterministic. Recently, an algorithm for inferring observable NFSMs (ONFSMs, which are the potentially learnable subclass of NFSMs, has been proposed based on the hypothesis that the complete testing assumption is satisfied. According to this assumption, with an input sequence (query, the complete set of all possible output sequences is given by the so-called Teacher, so the number of times for asking the same query is not taken into account in the algorithm. In this paper, we propose LNM*, a refined ONFSM learning algorithm that considers the amount for repeating the same query as one parameter. Unlike the previous work, our approach does not require all possible output sequences in one answer. Instead, it tries to observe the possible output sequences by asking the same query many times to the Teacher. We have proved that LNM* can infer the corresponding ONFSMs of the unknown systems when the number of tries for the same query is adequate to guarantee the complete testing assumption. Moreover, the proof shows that our algorithm will eventually terminate no matter whether the assumption is fulfilled or not. We also present the theoretical time complexity analysis of LNM*. In addition, experimental results demonstrate the practical efficiency of our approach.

  19. Teaching an Old Log New Tricks with Machine Learning.

    Science.gov (United States)

    Schnell, Krista; Puri, Colin; Mahler, Paul; Dukatz, Carl

    2014-03-01

    To most people, the log file would not be considered an exciting area in technology today. However, these relatively benign, slowly growing data sources can drive large business transformations when combined with modern-day analytics. Accenture Technology Labs has built a new framework that helps to expand existing vendor solutions to create new methods of gaining insights from these benevolent information springs. This framework provides a systematic and effective machine-learning mechanism to understand, analyze, and visualize heterogeneous log files. These techniques enable an automated approach to analyzing log content in real time, learning relevant behaviors, and creating actionable insights applicable in traditionally reactive situations. Using this approach, companies can now tap into a wealth of knowledge residing in log file data that is currently being collected but underutilized because of its overwhelming variety and volume. By using log files as an important data input into the larger enterprise data supply chain, businesses have the opportunity to enhance their current operational log management solution and generate entirely new business insights-no longer limited to the realm of reactive IT management, but extending from proactive product improvement to defense from attacks. As we will discuss, this solution has immediate relevance in the telecommunications and security industries. However, the most forward-looking companies can take it even further. How? By thinking beyond the log file and applying the same machine-learning framework to other log file use cases (including logistics, social media, and consumer behavior) and any other transactional data source.

  20. Self-configuration from a Machine-Learning Perspective

    CERN Document Server

    Konen, Wolfgang

    2011-01-01

    The goal of machine learning is to provide solutions which are trained by data or by experience coming from the environment. Many training algorithms exist and some brilliant successes were achieved. But even in structured environments for machine learning (e.g. data mining or board games), most applications beyond the level of toy problems need careful hand-tuning or human ingenuity (i.e. detection of interesting patterns) or both. We discuss several aspects how self-configuration can help to alleviate these problems. One aspect is the self-configuration by tuning of algorithms, where recent advances have been made in the area of SPO (Sequen- tial Parameter Optimization). Another aspect is the self-configuration by pattern detection or feature construction. Forming multiple features (e.g. random boolean functions) and using algorithms (e.g. random forests) which easily digest many fea- tures can largely increase learning speed. However, a full-fledged theory of feature construction is not yet available and f...

  1. MLBCD: a machine learning tool for big clinical data.

    Science.gov (United States)

    Luo, Gang

    2015-01-01

    Predictive modeling is fundamental for extracting value from large clinical data sets, or "big clinical data," advancing clinical research, and improving healthcare. Machine learning is a powerful approach to predictive modeling. Two factors make machine learning challenging for healthcare researchers. First, before training a machine learning model, the values of one or more model parameters called hyper-parameters must typically be specified. Due to their inexperience with machine learning, it is hard for healthcare researchers to choose an appropriate algorithm and hyper-parameter values. Second, many clinical data are stored in a special format. These data must be iteratively transformed into the relational table format before conducting predictive modeling. This transformation is time-consuming and requires computing expertise. This paper presents our vision for and design of MLBCD (Machine Learning for Big Clinical Data), a new software system aiming to address these challenges and facilitate building machine learning predictive models using big clinical data. The paper describes MLBCD's design in detail. By making machine learning accessible to healthcare researchers, MLBCD will open the use of big clinical data and increase the ability to foster biomedical discovery and improve care.

  2. Combining Psychological Models with Machine Learning to Better Predict People’s Decisions

    Science.gov (United States)

    2012-03-09

    in some applications (Kaelbling, Littman, & Cassandra, 1998; Neumann & Morgenstern, 1944; Russell & Norvig , 2003). However, research into people’s...scientists often model peoples’ decisions through machine learning techniques (Russell & Norvig , 2003). These models are based on statistical methods such as...A., & Kraus, S. (2011). Using aspiration adaptation theory to improve learning. In Aamas (p. 423-430). Russell, S. J., & Norvig , P. (2003

  3. Time-series prediction and applications a machine intelligence approach

    CERN Document Server

    Konar, Amit

    2017-01-01

    This book presents machine learning and type-2 fuzzy sets for the prediction of time-series with a particular focus on business forecasting applications. It also proposes new uncertainty management techniques in an economic time-series using type-2 fuzzy sets for prediction of the time-series at a given time point from its preceding value in fluctuating business environments. It employs machine learning to determine repetitively occurring similar structural patterns in the time-series and uses stochastic automaton to predict the most probabilistic structure at a given partition of the time-series. Such predictions help in determining probabilistic moves in a stock index time-series Primarily written for graduate students and researchers in computer science, the book is equally useful for researchers/professionals in business intelligence and stock index prediction. A background of undergraduate level mathematics is presumed, although not mandatory, for most of the sections. Exercises with tips are provided at...

  4. Machine learning control taming nonlinear dynamics and turbulence

    CERN Document Server

    Duriez, Thomas; Noack, Bernd R

    2017-01-01

    This is the first book on a generally applicable control strategy for turbulence and other complex nonlinear systems. The approach of the book employs powerful methods of machine learning for optimal nonlinear control laws. This machine learning control (MLC) is motivated and detailed in Chapters 1 and 2. In Chapter 3, methods of linear control theory are reviewed. In Chapter 4, MLC is shown to reproduce known optimal control laws for linear dynamics (LQR, LQG). In Chapter 5, MLC detects and exploits a strongly nonlinear actuation mechanism of a low-dimensional dynamical system when linear control methods are shown to fail. Experimental control demonstrations from a laminar shear-layer to turbulent boundary-layers are reviewed in Chapter 6, followed by general good practices for experiments in Chapter 7. The book concludes with an outlook on the vast future applications of MLC in Chapter 8. Matlab codes are provided for easy reproducibility of the presented results. The book includes interviews with leading r...

  5. Automated quantification of cerebral edema following hemispheric infarction: Application of a machine-learning algorithm to evaluate CSF shifts on serial head CTs

    Directory of Open Access Journals (Sweden)

    Yasheng Chen

    2016-01-01

    Full Text Available Although cerebral edema is a major cause of death and deterioration following hemispheric stroke, there remains no validated biomarker that captures the full spectrum of this critical complication. We recently demonstrated that reduction in intracranial cerebrospinal fluid (CSF volume (∆CSF on serial computed tomography (CT scans provides an accurate measure of cerebral edema severity, which may aid in early triaging of stroke patients for craniectomy. However, application of such a volumetric approach would be too cumbersome to perform manually on serial scans in a real-world setting. We developed and validated an automated technique for CSF segmentation via integration of random forest (RF based machine learning with geodesic active contour (GAC segmentation. The proposed RF + GAC approach was compared to conventional Hounsfield Unit (HU thresholding and RF segmentation methods using Dice similarity coefficient (DSC and the correlation of volumetric measurements, with manual delineation serving as the ground truth. CSF spaces were outlined on scans performed at baseline (<6 h after stroke onset and early follow-up (FU (closest to 24 h in 38 acute ischemic stroke patients. RF performed significantly better than optimized HU thresholding (p < 10−4 in baseline and p < 10−5 in FU and RF + GAC performed significantly better than RF (p < 10−3 in baseline and p < 10−5 in FU. Pearson correlation coefficients between the automatically detected ∆CSF and the ground truth were r = 0.178 (p = 0.285, r = 0.876 (p < 10−6 and r = 0.879 (p < 10−6 for thresholding, RF and RF + GAC, respectively, with a slope closer to the line of identity in RF + GAC. When we applied the algorithm trained from images of one stroke center to segment CTs from another center, similar findings held. In conclusion, we have developed and validated an accurate automated approach to segment CSF and calculate its shifts on serial CT scans

  6. Modelling tick abundance using machine learning techniques and satellite imagery

    DEFF Research Database (Denmark)

    Kjær, Lene Jung; Korslund, L.; Kjelland, V.

    satellite images to run Boosted Regression Tree machine learning algorithms to predict overall distribution (presence/absence of ticks) and relative tick abundance of nymphs and larvae in southern Scandinavia. For nymphs, the predicted abundance had a positive correlation with observed abundance...... the predicted distribution of larvae was mostly even throughout Denmark, it was primarily around the coastlines in Norway and Sweden. Abundance was fairly low overall except in some fragmented patches corresponding to forested habitats in the region. Machine learning techniques allow us to predict for larger...... the collected ticks for pathogens and using the same machine learning techniques to develop prevalence maps of the ScandTick region....

  7. Implementing Machine Learning in Radiology Practice and Research.

    Science.gov (United States)

    Kohli, Marc; Prevedello, Luciano M; Filice, Ross W; Geis, J Raymond

    2017-04-01

    The purposes of this article are to describe concepts that radiologists should understand to evaluate machine learning projects, including common algorithms, supervised as opposed to unsupervised techniques, statistical pitfalls, and data considerations for training and evaluation, and to briefly describe ethical dilemmas and legal risk. Machine learning includes a broad class of computer programs that improve with experience. The complexity of creating, training, and monitoring machine learning indicates that the success of the algorithms will require radiologist involvement for years to come, leading to engagement rather than replacement.

  8. Studying depression using imaging and machine learning methods.

    Science.gov (United States)

    Patel, Meenal J; Khalaf, Alexander; Aizenstein, Howard J

    2016-01-01

    Depression is a complex clinical entity that can pose challenges for clinicians regarding both accurate diagnosis and effective timely treatment. These challenges have prompted the development of multiple machine learning methods to help improve the management of this disease. These methods utilize anatomical and physiological data acquired from neuroimaging to create models that can identify depressed patients vs. non-depressed patients and predict treatment outcomes. This article (1) presents a background on depression, imaging, and machine learning methodologies; (2) reviews methodologies of past studies that have used imaging and machine learning to study depression; and (3) suggests directions for future depression-related studies.

  9. How the machine ‘thinks’: Understanding opacity in machine learning algorithms

    Directory of Open Access Journals (Sweden)

    Jenna Burrell

    2016-01-01

    Full Text Available This article considers the issue of opacity as a problem for socially consequential mechanisms of classification and ranking, such as spam filters, credit card fraud detection, search engines, news trends, market segmentation and advertising, insurance or loan qualification, and credit scoring. These mechanisms of classification all frequently rely on computational algorithms, and in many cases on machine learning algorithms to do this work. In this article, I draw a distinction between three forms of opacity: (1 opacity as intentional corporate or state secrecy, (2 opacity as technical illiteracy, and (3 an opacity that arises from the characteristics of machine learning algorithms and the scale required to apply them usefully. The analysis in this article gets inside the algorithms themselves. I cite existing literatures in computer science, known industry practices (as they are publicly presented, and do some testing and manipulation of code as a form of lightweight code audit. I argue that recognizing the distinct forms of opacity that may be coming into play in a given application is a key to determining which of a variety of technical and non-technical solutions could help to prevent harm.

  10. How the machine ‘thinks’: Understanding opacity in machine learning algorithms

    Directory of Open Access Journals (Sweden)

    Jenna Burrell

    2016-01-01

    Full Text Available This article considers the issue of opacity as a problem for socially consequential mechanisms of classification and ranking, such as spam filters, credit card fraud detection, search engines, news trends, market segmentation and advertising, insurance or loan qualification, and credit scoring. These mechanisms of classification all frequently rely on computational algorithms, and in many cases on machine learning algorithms to do this work. In this article, I draw a distinction between three forms of opacity: (1 opacity as intentional corporate or state secrecy, (2 opacity as technical illiteracy, and (3 an opacity that arises from the characteristics of machine learning algorithms and the scale required to apply them usefully. The analysis in this article gets inside the algorithms themselves. I cite existing literatures in computer science, known industry practices (as they are publicly presented, and do some testing and manipulation of code as a form of lightweight code audit. I argue that recognizing the distinct forms of opacity that may be coming into play in a given application is a key to determining which of a variety of technical and non-technical solutions could help to prevent harm.

  11. The application of discriminant analysis and Machine Learning methods as tools to identify and classify compounds with potential as transdermal enhancers.

    Science.gov (United States)

    Moss, G P; Shah, A J; Adams, R G; Davey, N; Wilkinson, S C; Pugh, W J; Sun, Y

    2012-01-23

    Discriminant analysis (DA) has previously been shown to allow the proposal of simple guidelines for the classification of 73 chemical enhancers of percutaneous absorption. Pugh et al. employed DA to classify such enhancers into simple categories, based on the physicochemical properties of the enhancer molecules (Pugh et al., 2005). While this approach provided a reasonable accuracy of classification it was unable to provide a consistently reliable estimate of enhancement ratio (ER, defined as the amount of hydrocortisone transferred after 24h, relative to control). Machine Learning methods, including Gaussian process (GP) regression, have recently been employed in the prediction of percutaneous absorption of exogenous chemicals (Moss et al., 2009; Lam et al., 2010; Sun et al., 2011). They have shown that they provide more accurate predictions of these phenomena. In this study several Machine Learning methods, including the K-nearest-neighbour (KNN) regression, single layer networks, radial basis function networks and the SVM classifier were applied to an enhancer dataset reported previously. The SMOTE sampling method was used to oversample chemical compounds with ER>10 in each training set in order to improve estimation of GP and KNN. Results show that models using five physicochemical descriptors exhibit better performance than those with three features. The best classification result was obtained by using the SVM method without dealing with imbalanced data. Following over-sampling, GP gives the best result. It correctly assigned 8 of the 12 "good" (ER>10) enhancers and 56 of the 59 "poor" enhancers (ERMachine Learning methods are that they can provide more accurate classification of enhancer type with fewer false-positive results and that, unlike discriminant analysis, they are able to make predictions of enhancer ability.

  12. Housing Value Forecasting Based on Machine Learning Methods

    Directory of Open Access Journals (Sweden)

    Jingyi Mu

    2014-01-01

    Full Text Available In the era of big data, many urgent issues to tackle in all walks of life all can be solved via big data technique. Compared with the Internet, economy, industry, and aerospace fields, the application of big data in the area of architecture is relatively few. In this paper, on the basis of the actual data, the values of Boston suburb houses are forecast by several machine learning methods. According to the predictions, the government and developers can make decisions about whether developing the real estate on corresponding regions or not. In this paper, support vector machine (SVM, least squares support vector machine (LSSVM, and partial least squares (PLS methods are used to forecast the home values. And these algorithms are compared according to the predicted results. Experiment shows that although the data set exists serious nonlinearity, the experiment result also show SVM and LSSVM methods are superior to PLS on dealing with the problem of nonlinearity. The global optimal solution can be found and best forecasting effect can be achieved by SVM because of solving a quadratic programming problem. In this paper, the different computation efficiencies of the algorithms are compared according to the computing times of relevant algorithms.

  13. Predicting Increased Blood Pressure Using Machine Learning

    Science.gov (United States)

    Golino, Hudson Fernandes; Amaral, Liliany Souza de Brito; Duarte, Stenio Fernando Pimentel; Soares, Telma de Jesus; dos Reis, Luciana Araujo

    2014-01-01

    The present study investigates the prediction of increased blood pressure by body mass index (BMI), waist (WC) and hip circumference (HC), and waist hip ratio (WHR) using a machine learning technique named classification tree. Data were collected from 400 college students (56.3% women) from 16 to 63 years old. Fifteen trees were calculated in the training group for each sex, using different numbers and combinations of predictors. The result shows that for women BMI, WC, and WHR are the combination that produces the best prediction, since it has the lowest deviance (87.42), misclassification (.19), and the higher pseudo R2 (.43). This model presented a sensitivity of 80.86% and specificity of 81.22% in the training set and, respectively, 45.65% and 65.15% in the test sample. For men BMI, WC, HC, and WHC showed the best prediction with the lowest deviance (57.25), misclassification (.16), and the higher pseudo R2 (.46). This model had a sensitivity of 72% and specificity of 86.25% in the training set and, respectively, 58.38% and 69.70% in the test set. Finally, the result from the classification tree analysis was compared with traditional logistic regression, indicating that the former outperformed the latter in terms of predictive power. PMID:24669313

  14. Optimal interference code based on machine learning

    Science.gov (United States)

    Qian, Ye; Chen, Qian; Hu, Xiaobo; Cao, Ercong; Qian, Weixian; Gu, Guohua

    2016-10-01

    In this paper, we analyze the characteristics of pseudo-random code, by the case of m sequence. Depending on the description of coding theory, we introduce the jamming methods. We simulate the interference effect or probability model by the means of MATLAB to consolidate. In accordance with the length of decoding time the adversary spends, we find out the optimal formula and optimal coefficients based on machine learning, then we get the new optimal interference code. First, when it comes to the phase of recognition, this study judges the effect of interference by the way of simulating the length of time over the decoding period of laser seeker. Then, we use laser active deception jamming simulate interference process in the tracking phase in the next block. In this study we choose the method of laser active deception jamming. In order to improve the performance of the interference, this paper simulates the model by MATLAB software. We find out the least number of pulse intervals which must be received, then we can make the conclusion that the precise interval number of the laser pointer for m sequence encoding. In order to find the shortest space, we make the choice of the greatest common divisor method. Then, combining with the coding regularity that has been found before, we restore pulse interval of pseudo-random code, which has been already received. Finally, we can control the time period of laser interference, get the optimal interference code, and also increase the probability of interference as well.

  15. Image Segmentation for Connectomics Using Machine Learning

    Energy Technology Data Exchange (ETDEWEB)

    Tasdizen, Tolga; Seyedhosseini, Mojtaba; Liu, TIng; Jones, Cory; Jurrus, Elizabeth R.

    2014-12-01

    Reconstruction of neural circuits at the microscopic scale of individual neurons and synapses, also known as connectomics, is an important challenge for neuroscience. While an important motivation of connectomics is providing anatomical ground truth for neural circuit models, the ability to decipher neural wiring maps at the individual cell level is also important in studies of many neurodegenerative diseases. Reconstruction of a neural circuit at the individual neuron level requires the use of electron microscopy images due to their extremely high resolution. Computational challenges include pixel-by-pixel annotation of these images into classes such as cell membrane, mitochondria and synaptic vesicles and the segmentation of individual neurons. State-of-the-art image analysis solutions are still far from the accuracy and robustness of human vision and biologists are still limited to studying small neural circuits using mostly manual analysis. In this chapter, we describe our image analysis pipeline that makes use of novel supervised machine learning techniques to tackle this problem.

  16. Predicting Increased Blood Pressure Using Machine Learning

    Directory of Open Access Journals (Sweden)

    Hudson Fernandes Golino

    2014-01-01

    Full Text Available The present study investigates the prediction of increased blood pressure by body mass index (BMI, waist (WC and hip circumference (HC, and waist hip ratio (WHR using a machine learning technique named classification tree. Data were collected from 400 college students (56.3% women from 16 to 63 years old. Fifteen trees were calculated in the training group for each sex, using different numbers and combinations of predictors. The result shows that for women BMI, WC, and WHR are the combination that produces the best prediction, since it has the lowest deviance (87.42, misclassification (.19, and the higher pseudo R2 (.43. This model presented a sensitivity of 80.86% and specificity of 81.22% in the training set and, respectively, 45.65% and 65.15% in the test sample. For men BMI, WC, HC, and WHC showed the best prediction with the lowest deviance (57.25, misclassification (.16, and the higher pseudo R2 (.46. This model had a sensitivity of 72% and specificity of 86.25% in the training set and, respectively, 58.38% and 69.70% in the test set. Finally, the result from the classification tree analysis was compared with traditional logistic regression, indicating that the former outperformed the latter in terms of predictive power.

  17. Combining Generative and Discriminative Representation Learning for Lung CT Analysis With Convolutional Restricted Boltzmann Machines.

    Science.gov (United States)

    van Tulder, Gijs; de Bruijne, Marleen

    2016-05-01

    The choice of features greatly influences the performance of a tissue classification system. Despite this, many systems are built with standard, predefined filter banks that are not optimized for that particular application. Representation learning methods such as restricted Boltzmann machines may outperform these standard filter banks because they learn a feature description directly from the training data. Like many other representation learning methods, restricted Boltzmann machines are unsupervised and are trained with a generative learning objective; this allows them to learn representations from unlabeled data, but does not necessarily produce features that are optimal for classification. In this paper we propose the convolutional classification restricted Boltzmann machine, which combines a generative and a discriminative learning objective. This allows it to learn filters that are good both for describing the training data and for classification. We present experiments with feature learning for lung texture classification and airway detection in CT images. In both applications, a combination of learning objectives outperformed purely discriminative or generative learning, increasing, for instance, the lung tissue classification accuracy by 1 to 8 percentage points. This shows that discriminative learning can help an otherwise unsupervised feature learner to learn filters that are optimized for classification.

  18. Acceleration of saddle-point searches with machine learning.

    Science.gov (United States)

    Peterson, Andrew A

    2016-08-21

    In atomistic simulations, the location of the saddle point on the potential-energy surface (PES) gives important information on transitions between local minima, for example, via transition-state theory. However, the search for saddle points often involves hundreds or thousands of ab initio force calls, which are typically all done at full accuracy. This results in the vast majority of the computational effort being spent calculating the electronic structure of states not important to the researcher, and very little time performing the calculation of the saddle point state itself. In this work, we describe how machine learning (ML) can reduce the number of intermediate ab initio calculations needed to locate saddle points. Since machine-learning models can learn from, and thus mimic, atomistic simulations, the saddle-point search can be conducted rapidly in the machine-learning representation. The saddle-point prediction can then be verified by an ab initio calculation; if it is incorrect, this strategically has identified regions of the PES where the machine-learning representation has insufficient training data. When these training data are used to improve the machine-learning model, the estimates greatly improve. This approach can be systematized, and in two simple example problems we demonstrate a dramatic reduction in the number of ab initio force calls. We expect that this approach and future refinements will greatly accelerate searches for saddle points, as well as other searches on the potential energy surface, as machine-learning methods see greater adoption by the atomistics community.

  19. Acceleration of saddle-point searches with machine learning

    Science.gov (United States)

    Peterson, Andrew A.

    2016-08-01

    In atomistic simulations, the location of the saddle point on the potential-energy surface (PES) gives important information on transitions between local minima, for example, via transition-state theory. However, the search for saddle points often involves hundreds or thousands of ab initio force calls, which are typically all done at full accuracy. This results in the vast majority of the computational effort being spent calculating the electronic structure of states not important to the researcher, and very little time performing the calculation of the saddle point state itself. In this work, we describe how machine learning (ML) can reduce the number of intermediate ab initio calculations needed to locate saddle points. Since machine-learning models can learn from, and thus mimic, atomistic simulations, the saddle-point search can be conducted rapidly in the machine-learning representation. The saddle-point prediction can then be verified by an ab initio calculation; if it is incorrect, this strategically has identified regions of the PES where the machine-learning representation has insufficient training data. When these training data are used to improve the machine-learning model, the estimates greatly improve. This approach can be systematized, and in two simple example problems we demonstrate a dramatic reduction in the number of ab initio force calls. We expect that this approach and future refinements will greatly accelerate searches for saddle points, as well as other searches on the potential energy surface, as machine-learning methods see greater adoption by the atomistics community.

  20. A Protein Classification Benchmark collection for machine learning

    NARCIS (Netherlands)

    Sonego, P.; Pacurar, M.; Dhir, S.; Kertész-Farkas, A.; Kocsor, A.; Gáspári, Z.; Leunissen, J.A.M.; Pongor, S.

    2007-01-01

    Protein classification by machine learning algorithms is now widely used in structural and functional annotation of proteins. The Protein Classification Benchmark collection (http://hydra.icgeb.trieste.it/benchmark) was created in order to provide standard datasets on which the performance of machin

  1. FRC Separatrix inference using machine-learning techniques

    Science.gov (United States)

    Romero, Jesus; Roche, Thomas; the TAE Team

    2016-10-01

    As Field Reversed Configuration (FRC) devices approach lifetimes exceeding the characteristic time of conductive structures external to the plasma, plasma stabilization cannot be achieved solely by the flux conserving effect of the external structures, and active control systems are then necessary. An essential component of such control systems is a reconstruction method for the plasma separatrix suitable for real time. We report on a method to infer the separatrix in an FRC using the information of magnetic probes located externally to the plasma. The method uses machine learning methods, namely Bayesian inference of Gaussian Processes, to obtain the most likely plasma current density distribution given the measurements of magnetic field external to the plasma. From the current sources, flux function and in particular separatrix are easily computed. The reconstruction method is non iterative and hence suitable for deterministic real time applications. Validation results with numerical simulations and application to separatrix inference of C-2U plasma discharges will be presented.

  2. SDM applications to machine tools and engines

    Indian Academy of Sciences (India)

    A Sestieri

    2000-06-01

    The method of structural dynamic optimization is applied here to two real-life structures, a small two-cylinder, air-cooled gasoline engine and a high speed machine tool. The aim of the first application isthe reduction of the kinematic vibration transmission path composed of a piston-connecting rod, a crankshaft and an engine block, while the goal of the second application is the lowering of the peaks of the spindle-drive point FRFs measured along two orthogonal directions.It is shown how the addition of a small amount of mass at a few points on the engine block, and a small dynamic absorber with highly damped elastic connections provides the required improvements for the engine and the machine tool respectively.

  3. Probabilistic models and machine learning in structural bioinformatics

    DEFF Research Database (Denmark)

    Hamelryck, Thomas

    2009-01-01

    . Recently, probabilistic models and machine learning methods based on Bayesian principles are providing efficient and rigorous solutions to challenging problems that were long regarded as intractable. In this review, I will highlight some important recent developments in the prediction, analysis...

  4. Sparse Machine Learning Methods for Understanding Large Text Corpora

    Data.gov (United States)

    National Aeronautics and Space Administration — Sparse machine learning has recently emerged as powerful tool to obtain models of high-dimensional data with high degree of interpretability, at low computational...

  5. Machine Learning Strategy for Accelerated Design of Polymer Dielectrics

    National Research Council Canada - National Science Library

    Mannodi-Kanakkithodi, Arun; Pilania, Ghanshyam; Huan, Tran Doan; Lookman, Turab; Ramprasad, Rampi

    2016-01-01

    .... The polymers are 'fingerprinted' as simple, easily attainable numerical representations, which are mapped to the properties of interest using a machine learning algorithm to develop an on-demand...

  6. Scaling Datalog for Machine Learning on Big Data

    CERN Document Server

    Bu, Yingyi; Carey, Michael J; Rosen, Joshua; Polyzotis, Neoklis; Condie, Tyson; Weimer, Markus; Ramakrishnan, Raghu

    2012-01-01

    In this paper, we present the case for a declarative foundation for data-intensive machine learning systems. Instead of creating a new system for each specific flavor of machine learning task, or hardcoding new optimizations, we argue for the use of recursive queries to program a variety of machine learning systems. By taking this approach, database query optimization techniques can be utilized to identify effective execution plans, and the resulting runtime plans can be executed on a single unified data-parallel query processing engine. As a proof of concept, we consider two programming models--Pregel and Iterative Map-Reduce-Update---from the machine learning domain, and show how they can be captured in Datalog, tuned for a specific task, and then compiled into an optimized physical plan. Experiments performed on a large computing cluster with real data demonstrate that this declarative approach can provide very good performance while offering both increased generality and programming ease.

  7. A Machine Learning System for Recognizing Subclasses (Demo)

    Energy Technology Data Exchange (ETDEWEB)

    Vatsavai, Raju [ORNL

    2012-01-01

    Thematic information extraction from remote sensing images is a complex task. In this demonstration, we present *Miner machine learning system. In particular, we demonstrate an advanced subclass recognition algorithm that is specifically designed to extract finer classes from aggregate classes.

  8. Performance of machine learning methods for classification tasks

    Directory of Open Access Journals (Sweden)

    B. Krithika

    2013-06-01

    Full Text Available In this paper, the performance of various machine learning methods on pattern classification and recognition tasks are proposed. The proposed method for evaluating performance will be based on the feature representation, feature selection and setting model parameters. The nature of the data, the methods of feature extraction and feature representation are discussed. The results of the Machine Learning algorithms on the classification task are analysed. The performance of Machine Learning methods on classifying Tamil word patterns, i.e., classification of noun and verbs are analysed.The software WEKA (data mining tool is used for evaluating the performance. WEKA has several machine learning algorithms like Bayes, Trees, Lazy, Rule based classifiers.

  9. Graphs in machine learning: an introduction

    CERN Document Server

    Latouche, Pierre

    2015-01-01

    Graphs are commonly used to characterise interactions between objects of interest. Because they are based on a straightforward formalism, they are used in many scientific fields from computer science to historical sciences. In this paper, we give an introduction to some methods relying on graphs for learning. This includes both unsupervised and supervised methods. Unsupervised learning algorithms usually aim at visualising graphs in latent spaces and/or clustering the nodes. Both focus on extracting knowledge from graph topologies. While most existing techniques are only applicable to static graphs, where edges do not evolve through time, recent developments have shown that they could be extended to deal with evolving networks. In a supervised context, one generally aims at inferring labels or numerical values attached to nodes using both the graph and, when they are available, node characteristics. Balancing the two sources of information can be challenging, especially as they can disagree locally or globall...

  10. On the Safety of Machine Learning: Cyber-Physical Systems, Decision Sciences, and Data Products.

    Science.gov (United States)

    Varshney, Kush R; Alemzadeh, Homa

    2017-09-01

    Machine learning algorithms increasingly influence our decisions and interact with us in all parts of our daily lives. Therefore, just as we consider the safety of power plants, highways, and a variety of other engineered socio-technical systems, we must also take into account the safety of systems involving machine learning. Heretofore, the definition of safety has not been formalized in a machine learning context. In this article, we do so by defining machine learning safety in terms of risk, epistemic uncertainty, and the harm incurred by unwanted outcomes. We then use this definition to examine safety in all sorts of applications in cyber-physical systems, decision sciences, and data products. We find that the foundational principle of modern statistical machine learning, empirical risk minimization, is not always a sufficient objective. We discuss how four different categories of strategies for achieving safety in engineering, including inherently safe design, safety reserves, safe fail, and procedural safeguards can be mapped to a machine learning context. We then discuss example techniques that can be adopted in each category, such as considering interpretability and causality of predictive models, objective functions beyond expected prediction accuracy, human involvement for labeling difficult or rare examples, and user experience design of software and open data.

  11. Biochemical Profile of Heritage and Modern Apple Cultivars and Application of Machine Learning Methods To Predict Usage, Age, and Harvest Season.

    Science.gov (United States)

    Anastasiadi, Maria; Mohareb, Fady; Redfern, Sally P; Berry, Mark; Simmonds, Monique S J; Terry, Leon A

    2017-07-05

    The present study represents the first major attempt to characterize the biochemical profile in different tissues of a large selection of apple cultivars sourced from the United Kingdom's National Fruit Collection comprising dessert, ornamental, cider, and culinary apples. Furthermore, advanced machine learning methods were applied with the objective to identify whether the phenolic and sugar composition of an apple cultivar could be used as a biomarker fingerprint to differentiate between heritage and mainstream commercial cultivars as well as govern the separation among primary usage groups and harvest season. A prediction accuracy of >90% was achieved with the random forest method for all three models. The results highlighted the extraordinary phytochemical potency and unique profile of some heritage, cider, and ornamental apple cultivars, especially in comparison to more mainstream apple cultivars. Therefore, these findings could guide future cultivar selection on the basis of health-promoting phytochemical content.

  12. Estimation of Alpine Skier Posture Using Machine Learning Techniques

    Directory of Open Access Journals (Sweden)

    Bojan Nemec

    2014-10-01

    Full Text Available High precision Global Navigation Satellite System (GNSS measurements are becoming more and more popular in alpine skiing due to the relatively undemanding setup and excellent performance. However, GNSS provides only single-point measurements that are defined with the antenna placed typically behind the skier’s neck. A key issue is how to estimate other more relevant parameters of the skier’s body, like the center of mass (COM and ski trajectories. Previously, these parameters were estimated by modeling the skier’s body with an inverted-pendulum model that oversimplified the skier’s body. In this study, we propose two machine learning methods that overcome this shortcoming and estimate COM and skis trajectories based on a more faithful approximation of the skier’s body with nine degrees-of-freedom. The first method utilizes a well-established approach of artificial neural networks, while the second method is based on a state-of-the-art statistical generalization method. Both methods were evaluated using the reference measurements obtained on a typical giant slalom course and compared with the inverted-pendulum method. Our results outperform the results of commonly used inverted-pendulum methods and demonstrate the applicability of machine learning techniques in biomechanical measurements of alpine skiing.

  13. Parsimonious kernel extreme learning machine in primal via Cholesky factorization.

    Science.gov (United States)

    Zhao, Yong-Ping

    2016-08-01

    Recently, extreme learning machine (ELM) has become a popular topic in machine learning community. By replacing the so-called ELM feature mappings with the nonlinear mappings induced by kernel functions, two kernel ELMs, i.e., P-KELM and D-KELM, are obtained from primal and dual perspectives, respectively. Unfortunately, both P-KELM and D-KELM possess the dense solutions in direct proportion to the number of training data. To this end, a constructive algorithm for P-KELM (CCP-KELM) is first proposed by virtue of Cholesky factorization, in which the training data incurring the largest reductions on the objective function are recruited as significant vectors. To reduce its training cost further, PCCP-KELM is then obtained with the application of a probabilistic speedup scheme into CCP-KELM. Corresponding to CCP-KELM, a destructive P-KELM (CDP-KELM) is presented using a partial Cholesky factorization strategy, where the training data incurring the smallest reductions on the objective function after their removals are pruned from the current set of significant vectors. Finally, to verify the efficacy and feasibility of the proposed algorithms in this paper, experiments on both small and large benchmark data sets are investigated.

  14. Machine learning techniques applied to system characterization and equalization

    DEFF Research Database (Denmark)

    Zibar, Darko; Thrane, Jakob; Wass, Jesper

    2016-01-01

    Linear signal processing algorithms are effective in combating linear fibre channel impairments. We demonstrate the ability of machine learning algorithms to combat nonlinear fibre channel impairments and perform parameter extraction from directly detected signals.......Linear signal processing algorithms are effective in combating linear fibre channel impairments. We demonstrate the ability of machine learning algorithms to combat nonlinear fibre channel impairments and perform parameter extraction from directly detected signals....

  15. Machine learning concepts in coherent optical communication systems

    DEFF Research Database (Denmark)

    Zibar, Darko; Schäffer, Christian G.

    2014-01-01

    Powerful statistical signal processing methods, used by the machine learning community, are addressed and linked to current problems in coherent optical communication. Bayesian filtering methods are presented and applied for nonlinear dynamic state tracking. © 2014 OSA.......Powerful statistical signal processing methods, used by the machine learning community, are addressed and linked to current problems in coherent optical communication. Bayesian filtering methods are presented and applied for nonlinear dynamic state tracking. © 2014 OSA....

  16. Designing Contestability: Interaction Design, Machine Learning, and Mental Health.

    Science.gov (United States)

    Hirsch, Tad; Merced, Kritzia; Narayanan, Shrikanth; Imel, Zac E; Atkins, David C

    2017-06-01

    We describe the design of an automated assessment and training tool for psychotherapists to illustrate challenges with creating interactive machine learning (ML) systems, particularly in contexts where human life, livelihood, and wellbeing are at stake. We explore how existing theories of interaction design and machine learning apply to the psychotherapy context, and identify "contestability" as a new principle for designing systems that evaluate human behavior. Finally, we offer several strategies for making ML systems more accountable to human actors.

  17. Machine learning concepts in coherent optical communication systems

    DEFF Research Database (Denmark)

    Zibar, Darko; Schäffer, Christian G.

    2014-01-01

    Powerful statistical signal processing methods, used by the machine learning community, are addressed and linked to current problems in coherent optical communication. Bayesian filtering methods are presented and applied for nonlinear dynamic state tracking. © 2014 OSA.......Powerful statistical signal processing methods, used by the machine learning community, are addressed and linked to current problems in coherent optical communication. Bayesian filtering methods are presented and applied for nonlinear dynamic state tracking. © 2014 OSA....

  18. A machine learning-based automatic currency trading system

    OpenAIRE

    Brvar, Anže

    2012-01-01

    The main goal of this thesis was to develop an automated trading system for Forex trading, which would use machine learning methods and their prediction models for deciding about trading actions. A training data set was obtained from exchange rates and values of technical indicators, which describe conditions on currency market. We estimated selected machine learning algorithms and their parameters with validation with sampling. We have prepared a set of automated trading systems with various...

  19. Application of advanced machine learning methods on resting-state fMRI network for identification of mild cognitive impairment and Alzheimer's disease.

    Science.gov (United States)

    Khazaee, Ali; Ebrahimzadeh, Ata; Babajani-Feremi, Abbas

    2016-09-01

    The study of brain networks by resting-state functional magnetic resonance imaging (rs-fMRI) is a promising method for identifying patients with dementia from healthy controls (HC). Using graph theory, different aspects of the brain network can be efficiently characterized by calculating measures of integration and segregation. In this study, we combined a graph theoretical approach with advanced machine learning methods to study the brain network in 89 patients with mild cognitive impairment (MCI), 34 patients with Alzheimer's disease (AD), and 45 age-matched HC. The rs-fMRI connectivity matrix was constructed using a brain parcellation based on a 264 putative functional areas. Using the optimal features extracted from the graph measures, we were able to accurately classify three groups (i.e., HC, MCI, and AD) with accuracy of 88.4 %. We also investigated performance of our proposed method for a binary classification of a group (e.g., MCI) from two other groups (e.g., HC and AD). The classification accuracies for identifying HC from AD and MCI, AD from HC and MCI, and MCI from HC and AD, were 87.3, 97.5, and 72.0 %, respectively. In addition, results based on the parcellation of 264 regions were compared to that of the automated anatomical labeling atlas (AAL), consisted of 90 regions. The accuracy of classification of three groups using AAL was degraded to 83.2 %. Our results show that combining the graph measures with the machine learning approach, on the basis of the rs-fMRI connectivity analysis, may assist in diagnosis of AD and MCI.

  20. Generative Modeling for Machine Learning on the D-Wave

    Energy Technology Data Exchange (ETDEWEB)

    Thulasidasan, Sunil [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Information Sciences Group

    2016-11-15

    These are slides on Generative Modeling for Machine Learning on the D-Wave. The following topics are detailed: generative models; Boltzmann machines: a generative model; restricted Boltzmann machines; learning parameters: RBM training; practical ways to train RBM; D-Wave as a Boltzmann sampler; mapping RBM onto the D-Wave; Chimera restricted RBM; mapping binary RBM to Ising model; experiments; data; D-Wave effective temperature, parameters noise, etc.; experiments: contrastive divergence (CD) 1 step; after 50 steps of CD; after 100 steps of CD; D-Wave (experiments 1, 2, 3); D-Wave observations.

  1. MLitB: machine learning in the browser

    Directory of Open Access Journals (Sweden)

    Edward Meeds

    2015-07-01

    Full Text Available With few exceptions, the field of Machine Learning (ML research has largely ignored the browser as a computational engine. Beyond an educational resource for ML, the browser has vast potential to not only improve the state-of-the-art in ML research, but also, inexpensively and on a massive scale, to bring sophisticated ML learning and prediction to the public at large. This paper introduces MLitB, a prototype ML framework written entirely in Javascript, capable of performing large-scale distributed computing with heterogeneous classes of devices. The development of MLitB has been driven by several underlying objectives whose aim is to make ML learning and usage ubiquitous (by using ubiquitous compute devices, cheap and effortlessly distributed, and collaborative. This is achieved by allowing every internet capable device to run training algorithms and predictive models with no software installation and by saving models in universally readable formats. Our prototype library is capable of training deep neural networks with synchronized, distributed stochastic gradient descent. MLitB offers several important opportunities for novel ML research, including: development of distributed learning algorithms, advancement of web GPU algorithms, novel field and mobile applications, privacy preserving computing, and green grid-computing. MLitB is available as open source software.

  2. Machine learning methods for metabolic pathway prediction

    Directory of Open Access Journals (Sweden)

    Karp Peter D

    2010-01-01

    Full Text Available Abstract Background A key challenge in systems biology is the reconstruction of an organism's metabolic network from its genome sequence. One strategy for addressing this problem is to predict which metabolic pathways, from a reference database of known pathways, are present in the organism, based on the annotated genome of the organism. Results To quantitatively validate methods for pathway prediction, we developed a large "gold standard" dataset of 5,610 pathway instances known to be present or absent in curated metabolic pathway databases for six organisms. We defined a collection of 123 pathway features, whose information content we evaluated with respect to the gold standard. Feature data were used as input to an extensive collection of machine learning (ML methods, including naïve Bayes, decision trees, and logistic regression, together with feature selection and ensemble methods. We compared the ML methods to the previous PathoLogic algorithm for pathway prediction using the gold standard dataset. We found that ML-based prediction methods can match the performance of the PathoLogic algorithm. PathoLogic achieved an accuracy of 91% and an F-measure of 0.786. The ML-based prediction methods achieved accuracy as high as 91.2% and F-measure as high as 0.787. The ML-based methods output a probability for each predicted pathway, whereas PathoLogic does not, which provides more information to the user and facilitates filtering of predicted pathways. Conclusions ML methods for pathway prediction perform as well as existing methods, and have qualitative advantages in terms of extensibility, tunability, and explainability. More advanced prediction methods and/or more sophisticated input features may improve the performance of ML methods. However, pathway prediction performance appears to be limited largely by the ability to correctly match enzymes to the reactions they catalyze based on genome annotations.

  3. Machine Learning Assessments of Soil Drying

    Science.gov (United States)

    Coopersmith, E. J.; Minsker, B. S.; Wenzel, C.; Gilmore, B. J.

    2011-12-01

    Agricultural activities require the use of heavy equipment and vehicles on unpaved farmlands. When soil conditions are wet, equipment can cause substantial damage, leaving deep ruts. In extreme cases, implements can sink and become mired, causing considerable delays and expense to extricate the equipment. Farm managers, who are often located remotely, cannot assess sites before allocating equipment, causing considerable difficulty in reliably assessing conditions of countless sites with any reliability and frequency. For example, farmers often trace serpentine paths of over one hundred miles each day to assess the overall status of various tracts of land spanning thirty, forty, or fifty miles in each direction. One means of assessing the moisture content of a field lies in the strategic positioning of remotely-monitored in situ sensors. Unfortunately, land owners are often reluctant to place sensors across their properties due to the significant monetary cost and complexity. This work aspires to overcome these limitations by modeling the process of wetting and drying statistically - remotely assessing field readiness using only information that is publically accessible. Such data includes Nexrad radar and state climate network sensors, as well as Twitter-based reports of field conditions for validation. Three algorithms, classification trees, k-nearest-neighbors, and boosted perceptrons are deployed to deliver statistical field readiness assessments of an agricultural site located in Urbana, IL. Two of the three algorithms performed with 92-94% accuracy, with the majority of misclassifications falling within the calculated margins of error. This demonstrates the feasibility of using a machine learning framework with only public data, knowledge of system memory from previous conditions, and statistical tools to assess "readiness" without the need for real-time, on-site physical observation. Future efforts will produce a workflow assimilating Nexrad, climate network

  4. Pulsar Search Using Supervised Machine Learning

    Science.gov (United States)

    Ford, John M.

    2017-05-01

    Pulsars are rapidly rotating neutron stars which emit a strong beam of energy through mechanisms that are not entirely clear to physicists. These very dense stars are used by astrophysicists to study many basic physical phenomena, such as the behavior of plasmas in extremely dense environments, behavior of pulsar-black hole pairs, and tests of general relativity. Many of these tasks require a large ensemble of pulsars to provide enough statistical information to answer the scientific questions posed by physicists. In order to provide more pulsars to study, there are several large-scale pulsar surveys underway, which are generating a huge backlog of unprocessed data. Searching for pulsars is a very labor-intensive process, currently requiring skilled people to examine and interpret plots of data output by analysis programs. An automated system for screening the plots will speed up the search for pulsars by a very large factor. Research to date on using machine learning and pattern recognition has not yielded a completely satisfactory system, as systems with the desired near 100% recall have false positive rates that are higher than desired, causing more manual labor in the classification of pulsars. This work proposed to research, identify, propose and develop methods to overcome the barriers to building an improved classification system with a false positive rate of less than 1% and a recall of near 100% that will be useful for the current and next generation of large pulsar surveys. The results show that it is possible to generate classifiers that perform as needed from the available training data. While a false positive rate of 1% was not reached, recall of over 99% was achieved with a false positive rate of less than 2%. Methods of mitigating the imbalanced training and test data were explored and found to be highly effective in enhancing classification accuracy.

  5. Machine Learning Predictions of Flash Floods

    Science.gov (United States)

    Clark, R. A., III; Flamig, Z.; Gourley, J. J.; Hong, Y.

    2016-12-01

    This study concerns the development, assessment, and use of machine learning (ML) algorithms to automatically generate predictions of flash floods around the world from numerical weather prediction (NWP) output. Using an archive of NWP outputs from the Global Forecast System (GFS) model and a historical archive of reports of flash floods across the U.S. and Europe, we developed a set of ML models that output forecasts of the probability of a flash flood given a certain set of atmospheric conditions. Using these ML models, real-time global flash flood predictions from NWP data have been generated in research mode since February 2016. These ML models provide information about which atmospheric variables are most important in the flash flood prediction process. The raw ML predictions can be calibrated against historical events to generate reliable flash flood probabilities. The automatic system was tested in a research-to-operations testbed enviroment with National Weather Service forecasters. The ML models are quite successful at incorporating large amounts of information in a computationally-efficient manner and and result in reasonably skillful predictions. The system is largely successful at identifying flash floods resulting from synoptically-forced events, but struggles with isolated flash floods that arise as a result of weather systems largely unresolvable by the coarse resolution of a global NWP system. The results from this collection of studies suggest that automatic probabilistic predictions of flash floods are a plausible way forward in operational forecasting, but that future research could focus upon applying these methods to finer-scale NWP guidance, to NWP ensembles, and to forecast lead times beyond 24 hours.

  6. Tensor Decomposition for Signal Processing and Machine Learning

    Science.gov (United States)

    Sidiropoulos, Nicholas D.; De Lathauwer, Lieven; Fu, Xiao; Huang, Kejun; Papalexakis, Evangelos E.; Faloutsos, Christos

    2017-07-01

    Tensors or {\\em multi-way arrays} are functions of three or more indices $(i,j,k,\\cdots)$ -- similar to matrices (two-way arrays), which are functions of two indices $(r,c)$ for (row,column). Tensors have a rich history, stretching over almost a century, and touching upon numerous disciplines; but they have only recently become ubiquitous in signal and data analytics at the confluence of signal processing, statistics, data mining and machine learning. This overview article aims to provide a good starting point for researchers and practitioners interested in learning about and working with tensors. As such, it focuses on fundamentals and motivation (using various application examples), aiming to strike an appropriate balance of breadth {\\em and depth} that will enable someone having taken first graduate courses in matrix algebra and probability to get started doing research and/or developing tensor algorithms and software. Some background in applied optimization is useful but not strictly required. The material covered includes tensor rank and rank decomposition; basic tensor factorization models and their relationships and properties (including fairly good coverage of identifiability); broad coverage of algorithms ranging from alternating optimization to stochastic gradient; statistical performance analysis; and applications ranging from source separation to collaborative filtering, mixture and topic modeling, classification, and multilinear subspace learning.

  7. Challenges for coexistence of machine to machine and human to human applications in mobile network

    DEFF Research Database (Denmark)

    Sanyal, R.; Cianca, E.; Prasad, Ramjee

    2012-01-01

    be evolved to address various nuances of the mobile devices used by man and machines. The bigger question is as follows. Is the state-of-the-art mobile network designed optimally to cater both the Human-to-Human and Machine-to-Machine applications? This paper presents the primary challenges...

  8. Development of an artificial neural network based multi-model ensemble to estimate the northeast monsoon rainfall over south peninsular India: an application of extreme learning machine

    Science.gov (United States)

    Acharya, Nachiketa; Shrivastava, Nitin Anand; Panigrahi, B. K.; Mohanty, U. C.

    2014-09-01

    The south peninsular part of India gets maximum amount of rainfall during the northeast monsoon (NEM) season [October to November (OND)] which is the primary source of water for the agricultural activities in this region. A nonlinear method viz., Extreme learning machine (ELM) has been employed on general circulation model (GCM) products to make the multi-model ensemble (MME) based estimation of NEM rainfall (NEMR). The ELM is basically is an improved learning algorithm for the single feed-forward neural network (SLFN) architecture. The 27 year (1982-2008) lead-1 (using initial conditions of September for forecasting the mean rainfall of OND) hindcast runs (1982-2008) from seven GCM has been used to make MME. The improvement of the proposed method with respect to other regular MME (simple arithmetic mean of GCMs (EM) and singular value decomposition based multiple linear regressions based MME) has been assessed through several skill metrics like Spread distribution, multiplicative bias, prediction errors, the yield of prediction, Pearson's and Kendal's correlation coefficient and Wilmort's index of agreement. The efficiency of ELM estimated rainfall is established by all the stated skill scores. The performance of ELM in extreme NEMR years, out of which 4 years are characterized by deficit rainfall and 5 years are identified as excess, is also examined. It is found that the ELM could expeditiously capture these extremes reasonably well as compared to the other MME approaches.

  9. A review of supervised machine learning applied to ageing research.

    Science.gov (United States)

    Fabris, Fabio; Magalhães, João Pedro de; Freitas, Alex A

    2017-04-01

    Broadly speaking, supervised machine learning is the computational task of learning correlations between variables in annotated data (the training set), and using this information to create a predictive model capable of inferring annotations for new data, whose annotations are not known. Ageing is a complex process that affects nearly all animal species. This process can be studied at several levels of abstraction, in different organisms and with different objectives in mind. Not surprisingly, the diversity of the supervised machine learning algorithms applied to answer biological questions reflects the complexities of the underlying ageing processes being studied. Many works using supervised machine learning to study the ageing process have been recently published, so it is timely to review these works, to discuss their main findings and weaknesses. In summary, the main findings of the reviewed papers are: the link between specific types of DNA repair and ageing; ageing-related proteins tend to be highly connected and seem to play a central role in molecular pathways; ageing/longevity is linked with autophagy and apoptosis, nutrient receptor genes, and copper and iron ion transport. Additionally, several biomarkers of ageing were found by machine learning. Despite some interesting machine learning results, we also identified a weakness of current works on this topic: only one of the reviewed papers has corroborated the computational results of machine learning algorithms through wet-lab experiments. In conclusion, supervised machine learning has contributed to advance our knowledge and has provided novel insights on ageing, yet future work should have a greater emphasis in validating the predictions.

  10. A Review for Detecting Gene-Gene Interactions Using Machine Learning Methods in Genetic Epidemiology

    Directory of Open Access Journals (Sweden)

    Ching Lee Koo

    2013-01-01

    Full Text Available Recently, the greatest statistical computational challenge in genetic epidemiology is to identify and characterize the genes that interact with other genes and environment factors that bring the effect on complex multifactorial disease. These gene-gene interactions are also denoted as epitasis in which this phenomenon cannot be solved by traditional statistical method due to the high dimensionality of the data and the occurrence of multiple polymorphism. Hence, there are several machine learning methods to solve such problems by identifying such susceptibility gene which are neural networks (NNs, support vector machine (SVM, and random forests (RFs in such common and multifactorial disease. This paper gives an overview on machine learning methods, describing the methodology of each machine learning methods and its application in detecting gene-gene and gene-environment interactions. Lastly, this paper discussed each machine learning method and presents the strengths and weaknesses of each machine learning method in detecting gene-gene interactions in complex human disease.

  11. Prediction of antiepileptic drug treatment outcomes using machine learning

    Science.gov (United States)

    Colic, Sinisa; Wither, Robert G.; Lang, Min; Zhang, Liang; Eubanks, James H.; Bardakjian, Berj L.

    2017-02-01

    Objective. Antiepileptic drug (AED) treatments produce inconsistent outcomes, often necessitating patients to go through several drug trials until a successful treatment can be found. This study proposes the use of machine learning techniques to predict epilepsy treatment outcomes of commonly used AEDs. Approach. Machine learning algorithms were trained and evaluated using features obtained from intracranial electroencephalogram (iEEG) recordings of the epileptiform discharges observed in Mecp2-deficient mouse model of the Rett Syndrome. Previous work have linked the presence of cross-frequency coupling (I CFC) of the delta (2-5 Hz) rhythm with the fast ripple (400-600 Hz) rhythm in epileptiform discharges. Using the I CFC to label post-treatment outcomes we compared support vector machines (SVMs) and random forest (RF) machine learning classifiers for providing likelihood scores of successful treatment outcomes. Main results. (a) There was heterogeneity in AED treatment outcomes, (b) machine learning techniques could be used to rank the efficacy of AEDs by estimating likelihood scores for successful treatment outcome, (c) I CFC features yielded the most effective a priori identification of appropriate AED treatment, and (d) both classifiers performed comparably. Significance. Machine learning approaches yielded predictions of successful drug treatment outcomes which in turn could reduce the burdens of drug trials and lead to substantial improvements in patient quality of life.

  12. Cross-person activity recognition using reduced kernel extreme learning machine.

    Science.gov (United States)

    Deng, Wan-Yu; Zheng, Qing-Hua; Wang, Zhong-Min

    2014-05-01

    Activity recognition based on mobile embedded accelerometer is very important for developing human-centric pervasive applications such as healthcare, personalized recommendation and so on. However, the distribution of accelerometer data is heavily affected by varying users. The performance will degrade when the model trained on one person is used to others. To solve this problem, we propose a fast and accurate cross-person activity recognition model, known as TransRKELM (Transfer learning Reduced Kernel Extreme Learning Machine) which uses RKELM (Reduced Kernel Extreme Learning Machine) to realize initial activity recognition model. In the online phase OS-RKELM (Online Sequential Reduced Kernel Extreme Learning Machine) is applied to update the initial model and adapt the recognition model to new device users based on recognition results with high confidence level efficiently. Experimental results show that, the proposed model can adapt the classifier to new device users quickly and obtain good recognition performance.

  13. TRANSLATOR OF FINITE STATE MACHINE MODEL PARAMETERS FROM MATLAB ENVIRONMENT INTO HUMAN-MACHINE INTERFACE APPLICATION

    OpenAIRE

    2012-01-01

    Technology and means for automatic translation of FSM model parameters from Matlab application to human-machine interface application is proposed. The example of technology application to the electric apparatus model is described.

  14. Recent progresses in the exploration of machine learning methods as in-silico ADME prediction tools.

    Science.gov (United States)

    Tao, L; Zhang, P; Qin, C; Chen, S Y; Zhang, C; Chen, Z; Zhu, F; Yang, S Y; Wei, Y Q; Chen, Y Z

    2015-06-23

    In-silico methods have been explored as potential tools for assessing ADME and ADME regulatory properties particularly in early drug discovery stages. Machine learning methods, with their ability in classifying diverse structures and complex mechanisms, are well suited for predicting ADME and ADME regulatory properties. Recent efforts have been directed at the broadening of application scopes and the improvement of predictive performance with particular focuses on the coverage of ADME properties, and exploration of more diversified training data, appropriate molecular features, and consensus modeling. Moreover, several online machine learning ADME prediction servers have emerged. Here we review these progresses and discuss the performances, application prospects and challenges of exploring machine learning methods as useful tools in predicting ADME and ADME regulatory properties.

  15. Opinion Mining in Latvian Text Using Semantic Polarity Analysis and Machine Learning Approach

    Directory of Open Access Journals (Sweden)

    Gatis Špats

    2016-07-01

    Full Text Available In this paper we demonstrate approaches for opinion mining in Latvian text. Authors have applied, combined and extended results of several previous studies and public resources to perform opinion mining in Latvian text using two approaches, namely, semantic polarity analysis and machine learning. One of the most significant constraints that make application of opinion mining for written content classification in Latvian text challenging is the limited publicly available text corpora for classifier training. We have joined several sources and created a publically available extended lexicon. Our results are comparable to or outperform current achievements in opinion mining in Latvian. Experiments show that lexicon-based methods provide more accurate opinion mining than the application of Naive Bayes machine learning classifier on Latvian tweets. Methods used during this study could be further extended using human annotators, unsupervised machine learning and bootstrapping to create larger corpora of classified text.

  16. Using machine learning to speed up manual image annotation: application to a 3D imaging protocol for measuring single cell gene expression in the developing C. elegans embryo

    Directory of Open Access Journals (Sweden)

    Waterston Robert H

    2010-02-01

    Full Text Available Abstract Background Image analysis is an essential component in many biological experiments that study gene expression, cell cycle progression, and protein localization. A protocol for tracking the expression of individual C. elegans genes was developed that collects image samples of a developing embryo by 3-D time lapse microscopy. In this protocol, a program called StarryNite performs the automatic recognition of fluorescently labeled cells and traces their lineage. However, due to the amount of noise present in the data and due to the challenges introduced by increasing number of cells in later stages of development, this program is not error free. In the current version, the error correction (i.e., editing is performed manually using a graphical interface tool named AceTree, which is specifically developed for this task. For a single experiment, this manual annotation task takes several hours. Results In this paper, we reduce the time required to correct errors made by StarryNite. We target one of the most frequent error types (movements annotated as divisions and train a support vector machine (SVM classifier to decide whether a division call made by StarryNite is correct or not. We show, via cross-validation experiments on several benchmark data sets, that the SVM successfully identifies this type of error significantly. A new version of StarryNite that includes the trained SVM classifier is available at http://starrynite.sourceforge.net. Conclusions We demonstrate the utility of a machine learning approach to error annotation for StarryNite. In the process, we also provide some general methodologies for developing and validating a classifier with respect to a given pattern recognition task.

  17. Combining satellite imagery and machine learning to predict poverty.

    Science.gov (United States)

    Jean, Neal; Burke, Marshall; Xie, Michael; Davis, W Matthew; Lobell, David B; Ermon, Stefano

    2016-08-19

    Reliable data on economic livelihoods remain scarce in the developing world, hampering efforts to study these outcomes and to design policies that improve them. Here we demonstrate an accurate, inexpensive, and scalable method for estimating consumption expenditure and asset wealth from high-resolution satellite imagery. Using survey and satellite data from five African countries--Nigeria, Tanzania, Uganda, Malawi, and Rwanda--we show how a convolutional neural network can be trained to identify image features that can explain up to 75% of the variation in local-level economic outcomes. Our method, which requires only publicly available data, could transform efforts to track and target poverty in developing countries. It also demonstrates how powerful machine learning techniques can be applied in a setting with limited training data, suggesting broad potential application across many scientific domains.

  18. Robust Machine Learning Applied to Terascale Astronomical Datasets

    CERN Document Server

    Ball, Nicholas M; Myers, Adam D

    2007-01-01

    We present recent results from the Laboratory for Cosmological Data Mining (http://lcdm.astro.uiuc.edu) at the National Center for Supercomputing Applications (NCSA) to provide robust classifications and photometric redshifts for objects in the terascale-class Sloan Digital Sky Survey (SDSS). Through a combination of machine learning in the form of decision trees, k-nearest neighbor, and genetic algorithms, the use of supercomputing resources at NCSA, and the cyberenvironment Data-to-Knowledge, we are able to provide improved classifications for over 100 million objects in the SDSS, improved photometric redshifts, and a full exploitation of the powerful k-nearest neighbor algorithm. This work is the first to apply the full power of these algorithms to contemporary terascale astronomical datasets, and the improvement over existing results is demonstrable. We discuss issues that we have encountered in dealing with data on the terascale, and possible solutions that can be implemented to deal with upcoming petasc...

  19. Robust Machine Learning Applied to Terascale Astronomical Datasets

    Science.gov (United States)

    Ball, N. M.; Brunner, R. J.; Myers, A. D.

    2008-08-01

    We present recent results from the Laboratory for Cosmological Data Mining {http://lcdm.astro.uiuc.edu} at the National Center for Supercomputing Applications (NCSA) to provide robust classifications and photometric redshifts for objects in the terascale-class Sloan Digital Sky Survey (SDSS). Through a combination of machine learning in the form of decision trees, k-nearest neighbor, and genetic algorithms, the use of supercomputing resources at NCSA, and the cyberenvironment Data-to-Knowledge, we are able to provide improved classifications for over 100 million objects in the SDSS, improved photometric redshifts, and a full exploitation of the powerful k-nearest neighbor algorithm. This work is the first to apply the full power of these algorithms to contemporary terascale astronomical datasets, and the improvement over existing results is demonstrable. We discuss issues that we have encountered in dealing with data on the terascale, and possible solutions that can be implemented to deal with upcoming petascale datasets.

  20. Robust Machine Learning Applied to Terascale Astronomical Datasets

    CERN Document Server

    Ball, Nicholas M; Myers, Adam D

    2008-01-01

    We present recent results from the LCDM (Laboratory for Cosmological Data Mining; http://lcdm.astro.uiuc.edu) collaboration between UIUC Astronomy and NCSA to deploy supercomputing cluster resources and machine learning algorithms for the mining of terascale astronomical datasets. This is a novel application in the field of astronomy, because we are using such resources for data mining, and not just performing simulations. Via a modified implementation of the NCSA cyberenvironment Data-to-Knowledge, we are able to provide improved classifications for over 100 million stars and galaxies in the Sloan Digital Sky Survey, improved distance measures, and a full exploitation of the simple but powerful k-nearest neighbor algorithm. A driving principle of this work is that our methods should be extensible from current terascale datasets to upcoming petascale datasets and beyond. We discuss issues encountered to-date, and further issues for the transition to petascale. In particular, disk I/O will become a major limit...

  1. Aero Engine Fault Diagnosis Using an Optimized Extreme Learning Machine

    Directory of Open Access Journals (Sweden)

    Xinyi Yang

    2016-01-01

    Full Text Available A new extreme learning machine optimized by quantum-behaved particle swarm optimization (QPSO is developed in this paper. It uses QPSO to select optimal network parameters including the number of hidden layer neurons according to both the root mean square error on validation data set and the norm of output weights. The proposed Q-ELM was applied to real-world classification applications and a gas turbine fan engine diagnostic problem and was compared with two other optimized ELM methods and original ELM, SVM, and BP method. Results show that the proposed Q-ELM is a more reliable and suitable method than conventional neural network and other ELM methods for the defect diagnosis of the gas turbine engine.

  2. Liquid intake monitoring through breathing signal using machine learning

    Science.gov (United States)

    Dong, Bo; Biswas, Subir

    2013-05-01

    This paper presents the design, system structure and performance for a wireless and wearable diet monitoring system. Food and drink intake can be detected by the way of detecting a person's swallow events. The system works based on the key observation that a person's otherwise continuous breathing process is interrupted by a short apnea when she or he swallows as a part of solid or liquid intake process. We detect the swallows through the difference between normal breathing cycle and breathing cycle with swallows using a wearable chest-belt. Three popular machine learning algorithms have been applied on both time and frequency domain features. Discrimination power of features is then analyzed for applications where only small number of features is allowed. It is shown that high detection performance can be achieved with only few features.

  3. Defending Malicious Script Attacks Using Machine Learning Classifiers

    Directory of Open Access Journals (Sweden)

    Nayeem Khan

    2017-01-01

    Full Text Available The web application has become a primary target for cyber criminals by injecting malware especially JavaScript to perform malicious activities for impersonation. Thus, it becomes an imperative to detect such malicious code in real time before any malicious activity is performed. This study proposes an efficient method of detecting previously unknown malicious java scripts using an interceptor at the client side by classifying the key features of the malicious code. Feature subset was obtained by using wrapper method for dimensionality reduction. Supervised machine learning classifiers were used on the dataset for achieving high accuracy. Experimental results show that our method can efficiently classify malicious code from benign code with promising results.

  4. Harnessing Disordered-Ensemble Quantum Dynamics for Machine Learning

    Science.gov (United States)

    Fujii, Keisuke; Nakajima, Kohei

    2017-08-01

    The quantum computer has an amazing potential of fast information processing. However, the realization of a digital quantum computer is still a challenging problem requiring highly accurate controls and key application strategies. Here we propose a platform, quantum reservoir computing, to solve these issues successfully by exploiting the natural quantum dynamics of ensemble systems, which are ubiquitous in laboratories nowadays, for machine learning. This framework enables ensemble quantum systems to universally emulate nonlinear dynamical systems including classical chaos. A number of numerical experiments show that quantum systems consisting of 5-7 qubits possess computational capabilities comparable to conventional recurrent neural networks of 100-500 nodes. This discovery opens up a paradigm for information processing with artificial intelligence powered by quantum physics.

  5. Counterfeit Electronics Detection Using Image Processing and Machine Learning

    Science.gov (United States)

    Asadizanjani, Navid; Tehranipoor, Mark; Forte, Domenic

    2017-01-01

    Counterfeiting is an increasing concern for businesses and governments as greater numbers of counterfeit integrated circuits (IC) infiltrate the global market. There is an ongoing effort in experimental and national labs inside the United States to detect and prevent such counterfeits in the most efficient time period. However, there is still a missing piece to automatically detect and properly keep record of detected counterfeit ICs. Here, we introduce a web application database that allows users to share previous examples of counterfeits through an online database and to obtain statistics regarding the prevalence of known defects. We also investigate automated techniques based on image processing and machine learning to detect different physical defects and to determine whether or not an IC is counterfeit.

  6. Machine learning, medical diagnosis, and biomedical engineering research - commentary.

    Science.gov (United States)

    Foster, Kenneth R; Koprowski, Robert; Skufca, Joseph D

    2014-07-05

    A large number of papers are appearing in the biomedical engineering literature that describe the use of machine learning techniques to develop classifiers for detection or diagnosis of disease. However, the usefulness of this approach in developing clinically validated diagnostic techniques so far has been limited and the methods are prone to overfitting and other problems which may not be immediately apparent to the investigators. This commentary is intended to help sensitize investigators as well as readers and reviewers of papers to some potential pitfalls in the development of classifiers, and suggests steps that researchers can take to help avoid these problems. Building classifiers should be viewed not simply as an add-on statistical analysis, but as part and parcel of the experimental process. Validation of classifiers for diagnostic applications should be considered as part of a much larger process of establishing the clinical validity of the diagnostic technique.

  7. Closed-Loop Turbulence Control Using Machine Learning

    CERN Document Server

    Duriez, Thomas; Cordier, Laurent; Noack, Bernd R; Delville, Joël; Bonnet, Jean-Paul; Segond, Marc; Abel, Markus

    2014-01-01

    We propose a general model-free strategy for feedback control design of turbulent flows. This strategy called 'machine learning control' (MLC) is capable of exploiting nonlinear mechanisms in a systematic unsupervised manner. It relies on an evolutionary algorithm that is used to evolve an ensemble of feedback control laws until minimization of a targeted cost function. This methodology can be applied to any non-linear multiple-input multiple-output (MIMO) system to derive an optimal closed-loop control law. MLC is successfully applied to the stabilization of nonlinearly coupled oscillators exhibiting frequency cross-talk, to the maximization of the largest Lyapunov exponent of a forced Lorenz system, and to the mixing enhancement in an experimental mixing layer flow. We foresee numerous potential applications to most nonlinear MIMO control problems, particularly in experiments.

  8. Uncertainty-Aware Estimation of Population Abundance using Machine Learning

    NARCIS (Netherlands)

    Boom, B.J.; Beauxis-Aussalet, E.M.A.L.; Hardman, L.; Fisher, R.B.

    2015-01-01

    Machine Learning is widely used for mining collections, such as images, sounds, or texts, by classifying their elements into categories. Automatic classication based on supervised learning requires groundtruth datasets for modeling the elements to classify, and for testing the quality of the classic

  9. Comparison of Machine Learning Techniques for Target Detection

    NARCIS (Netherlands)

    Vink, J.P.; Haan, G. de

    2013-01-01

    This paper focuses on machine learning techniques for real-time detection. Although many supervised learning techniques have been described in the literature, no technique always performs best. Several comparative studies are available, but have not always been performedcarefully, leading to invalid

  10. Comparison of Machine Learning Techniques for Target Detection

    NARCIS (Netherlands)

    Vink, J.P.; Haan, G. de

    2013-01-01

    This paper focuses on machine learning techniques for real-time detection. Although many supervised learning techniques have been described in the literature, no technique always performs best. Several comparative studies are available, but have not always been performedcarefully, leading to invalid

  11. Distribution Learning in Evolutionary Strategies and Restricted Boltzmann Machines

    DEFF Research Database (Denmark)

    Krause, Oswin

    The thesis is concerned with learning distributions in the two settings of Evolutionary Strategies (ESs) and Restricted Boltzmann Machines (RBMs). In both cases, the distributions are learned from samples, albeit with different goals. Evolutionary Strategies are concerned with finding an optimum ...

  12. Large-scale Machine Learning in High-dimensional Datasets

    DEFF Research Database (Denmark)

    Hansen, Toke Jansen

    Over the last few decades computers have gotten to play an essential role in our daily life, and data is now being collected in various domains at a faster pace than ever before. This dissertation presents research advances in four machine learning fields that all relate to the challenges imposed...... are better at modeling local heterogeneities. In the field of machine learning for neuroimaging, we introduce learning protocols for real-time functional Magnetic Resonance Imaging (fMRI) that allow for dynamic intervention in the human decision process. Specifically, the model exploits the structure of f...

  13. Machine learning in Python essential techniques for predictive analysis

    CERN Document Server

    Bowles, Michael

    2015-01-01

    Learn a simpler and more effective way to analyze data and predict outcomes with Python Machine Learning in Python shows you how to successfully analyze data using only two core machine learning algorithms, and how to apply them using Python. By focusing on two algorithm families that effectively predict outcomes, this book is able to provide full descriptions of the mechanisms at work, and the examples that illustrate the machinery with specific, hackable code. The algorithms are explained in simple terms with no complex math and applied using Python, with guidance on algorithm selection, d

  14. Amplifying human ability through autonomics and machine learning in IMPACT

    Science.gov (United States)

    Dzieciuch, Iryna; Reeder, John; Gutzwiller, Robert; Gustafson, Eric; Coronado, Braulio; Martinez, Luis; Croft, Bryan; Lange, Douglas S.

    2017-05-01

    Amplifying human ability for controlling complex environments featuring autonomous units can be aided by learned models of human and system performance. In developing a command and control system that allows a small number of people to control a large number of autonomous teams, we employ an autonomics framework to manage the networks that represent mission plans and the networks that are composed of human controllers and their autonomous assistants. Machine learning allows us to build models of human and system performance useful for monitoring plans and managing human attention and task loads. Machine learning also aids in the development of tactics that human supervisors can successfully monitor through the command and control system.

  15. Less is more: regularization perspectives on large scale machine learning

    CERN Document Server

    CERN. Geneva

    2017-01-01

    Deep learning based techniques provide a possible solution at the expanse of theoretical guidance and, especially, of computational requirements. It is then a key challenge for large scale machine learning to devise approaches guaranteed to be accurate and yet computationally efficient. In this talk, we will consider a regularization perspectives on machine learning appealing to classical ideas in linear algebra and inverse problems to scale-up dramatically nonparametric methods such as kernel methods, often dismissed because of prohibitive costs. Our analysis derives optimal theoretical guarantees while providing experimental results at par or out-performing state of the art approaches.

  16. Machine Learning Based Diagnosis of Lithium Batteries

    Science.gov (United States)

    Ibe-Ekeocha, Chinemerem Christopher

    The depletion of the world's current petroleum reserve, coupled with the negative effects of carbon monoxide and other harmful petrochemical by-products on the environment, is the driving force behind the movement towards renewable and sustainable energy sources. Furthermore, the growing transportation sector consumes a significant portion of the total energy used in the United States. A complete electrification of this sector would require a significant development in electric vehicles (EVs) and hybrid electric vehicles (HEVs), thus translating to a reduction in the carbon footprint. As the market for EVs and HEVs grows, their battery management systems (BMS) need to be improved accordingly. The BMS is not only responsible for optimally charging and discharging the battery, but also monitoring battery's state of charge (SOC) and state of health (SOH). SOC, similar to an energy gauge, is a representation of a battery's remaining charge level as a percentage of its total possible charge at full capacity. Similarly, SOH is a measure of deterioration of a battery; thus it is a representation of the battery's age. Both SOC and SOH are not measurable, so it is important that these quantities are estimated accurately. An inaccurate estimation could not only be inconvenient for EV consumers, but also potentially detrimental to battery's performance and life. Such estimations could be implemented either online, while battery is in use, or offline when battery is at rest. This thesis presents intelligent online SOC and SOH estimation methods using machine learning tools such as artificial neural network (ANN). ANNs are a powerful generalization tool if programmed and trained effectively. Unlike other estimation strategies, the techniques used require no battery modeling or knowledge of battery internal parameters but rather uses battery's voltage, charge/discharge current, and ambient temperature measurements to accurately estimate battery's SOC and SOH. The developed

  17. Software Aging Prediction Based on Extreme Learning Machine

    Directory of Open Access Journals (Sweden)

    Xiaozhi Du

    2013-11-01

    Full Text Available In the research on software aging and rejuvenation, one of the most important questions is when to trigger the rejuvenation action. And it is useful to predict the system resource utilization state efficiently for determining the rejuvenation time. In this paper, we propose software aging prediction model based on extreme learning machine (ELM for a real VOD system. First, the data on the parameters of system resources and application server are collected. Then, the data is preprocessed by normalization and principal component analysis (PCA. Then, ELMs are constructed to model the extracted data series of systematic parameters. Finally, we get the predicted data of system resource by computing the sum of the outputs of these ELMs. Experiments show that the proposed software aging prediction method based on wavelet transform and ELM is superior to the artificial neural network (ANN and support vector machine (SVM in the aspects of prediction precision and efficiency. Based on the models employed here, software rejuvenation policies can be triggered by actual measurements.  

  18. Machine Learning and Conflict Prediction: A Use Case

    Directory of Open Access Journals (Sweden)

    Chris Perry

    2013-10-01

    Full Text Available For at least the last two decades, the international community in general and the United Nations specifically have attempted to develop robust, accurate and effective conflict early warning system for conflict prevention. One potential and promising component of integrated early warning systems lies in the field of machine learning. This paper aims at giving conflict analysis a basic understanding of machine learning methodology as well as to test the feasibility and added value of such an approach. The paper finds that the selection of appropriate machine learning methodologies can offer substantial improvements in accuracy and performance. It also finds that even at this early stage in testing machine learning on conflict prediction, full models offer more predictive power than simply using a prior outbreak of violence as the leading indicator of current violence. This suggests that a refined data selection methodology combined with strategic use of machine learning algorithms could indeed offer a significant addition to the early warning toolkit. Finally, the paper suggests a number of steps moving forward to improve upon this initial test methodology.

  19. Data Triage of Astronomical Transients: A Machine Learning Approach

    Science.gov (United States)

    Rebbapragada, U.

    This talk presents real-time machine learning systems for triage of big data streams generated by photometric and image-differencing pipelines. Our first system is a transient event detection system in development for the Palomar Transient Factory (PTF), a fully-automated synoptic sky survey that has demonstrated real-time discovery of optical transient events. The system is tasked with discriminating between real astronomical objects and bogus objects, which are usually artifacts of the image differencing pipeline. We performed a machine learning forensics investigation on PTF’s initial system that led to training data improvements that decreased both false positive and negative rates. The second machine learning system is a real-time classification engine of transients and variables in development for the Australian Square Kilometre Array Pathfinder (ASKAP), an upcoming wide-field radio survey with unprecedented ability to investigate the radio transient sky. The goal of our system is to classify light curves into known classes with as few observations as possible in order to trigger follow-up on costlier assets. We discuss the violation of standard machine learning assumptions incurred by this task, and propose the use of ensemble and hierarchical machine learning classifiers that make predictions most robustly.

  20. Machine learning for the automatic detection of anomalous events

    Science.gov (United States)

    Fisher, Wendy D.

    In this dissertation, we describe our research contributions for a novel approach to the application of machine learning for the automatic detection of anomalous events. We work in two different domains to ensure a robust data-driven workflow that could be generalized for monitoring other systems. Specifically, in our first domain, we begin with the identification of internal erosion events in earth dams and levees (EDLs) using geophysical data collected from sensors located on the surface of the levee. As EDLs across the globe reach the end of their design lives, effectively monitoring their structural integrity is of critical importance. The second domain of interest is related to mobile telecommunications, where we investigate a system for automatically detecting non-commercial base station routers (BSRs) operating in protected frequency space. The presence of non-commercial BSRs can disrupt the connectivity of end users, cause service issues for the commercial providers, and introduce significant security concerns. We provide our motivation, experimentation, and results from investigating a generalized novel data-driven workflow using several machine learning techniques. In Chapter 2, we present results from our performance study that uses popular unsupervised clustering algorithms to gain insights to our real-world problems, and evaluate our results using internal and external validation techniques. Using EDL passive seismic data from an experimental laboratory earth embankment, results consistently show a clear separation of events from non-events in four of the five clustering algorithms applied. Chapter 3 uses a multivariate Gaussian machine learning model to identify anomalies in our experimental data sets. For the EDL work, we used experimental data from two different laboratory earth embankments. Additionally, we explore five wavelet transform methods for signal denoising. The best performance is achieved with the Haar wavelets. We achieve up to 97

  1. Fast Affinity Propagation Clustering based on Machine Learning

    OpenAIRE

    Shailendra Kumar Shrivastava; J. L. Rana; DR.R.C.JAIN

    2013-01-01

    Affinity propagation (AP) was recently introduced as an un-supervised learning algorithm for exemplar based clustering. In this paper a novel Fast Affinity Propagation clustering Approach based on Machine Learning (FAPML) has been proposed. FAPML tries to put data points into clusters based on the history of the data points belonging to clusters in early stages. In FAPML we introduce affinity learning constant and dispersion constant which supervise the clustering process. FAPML also enforces...

  2. Single-Machine Scheduling with Accelerating Learning Effects

    Directory of Open Access Journals (Sweden)

    T. C. E. Cheng

    2013-01-01

    Full Text Available Scheduling with learning effects has been widely studied. However, there are situations where the learning effect might accelerate. In this paper, we propose a new model where the learning effect accelerates as time goes by. We derive the optimal solutions for the single-machine problems to minimize the makespan, total completion time, total weighted completion time, maximum lateness, maximum tardiness, and total tardiness.

  3. Learning from minimum entropy queries in a large committee machine

    CERN Document Server

    Sollich, P

    1996-01-01

    In supervised learning, the redundancy contained in random examples can be avoided by learning from queries. Using statistical mechanics, we study learning from minimum entropy queries in a large tree-committee machine. The generalization error decreases exponentially with the number of training examples, providing a significant improvement over the algebraic decay for random examples. The connection between entropy and generalization error in multi-layer networks is discussed, and a computationally cheap algorithm for constructing queries is suggested and analysed.

  4. CHISSL: A Human-Machine Collaboration Space for Unsupervised Learning

    Energy Technology Data Exchange (ETDEWEB)

    Arendt, Dustin L.; Komurlu, Caner; Blaha, Leslie M.

    2017-07-14

    We developed CHISSL, a human-machine interface that utilizes supervised machine learning in an unsupervised context to help the user group unlabeled instances by her own mental model. The user primarily interacts via correction (moving a misplaced instance into its correct group) or confirmation (accepting that an instance is placed in its correct group). Concurrent with the user's interactions, CHISSL trains a classification model guided by the user's grouping of the data. It then predicts the group of unlabeled instances and arranges some of these alongside the instances manually organized by the user. We hypothesize that this mode of human and machine collaboration is more effective than Active Learning, wherein the machine decides for itself which instances should be labeled by the user. We found supporting evidence for this hypothesis in a pilot study where we applied CHISSL to organize a collection of handwritten digits.

  5. Machine learning techniques for energy optimization in mobile embedded systems

    Science.gov (United States)

    Donohoo, Brad Kyoshi

    Mobile smartphones and other portable battery operated embedded systems (PDAs, tablets) are pervasive computing devices that have emerged in recent years as essential instruments for communication, business, and social interactions. While performance, capabilities, and design are all important considerations when purchasing a mobile device, a long battery lifetime is one of the most desirable attributes. Battery technology and capacity has improved over the years, but it still cannot keep pace with the power consumption demands of today's mobile devices. This key limiter has led to a strong research emphasis on extending battery lifetime by minimizing energy consumption, primarily using software optimizations. This thesis presents two strategies that attempt to optimize mobile device energy consumption with negligible impact on user perception and quality of service (QoS). The first strategy proposes an application and user interaction aware middleware framework that takes advantage of user idle time between interaction events of the foreground application to optimize CPU and screen backlight energy consumption. The framework dynamically classifies mobile device applications based on their received interaction patterns, then invokes a number of different power management algorithms to adjust processor frequency and screen backlight levels accordingly. The second strategy proposes the usage of machine learning techniques to learn a user's mobile device usage pattern pertaining to spatiotemporal and device contexts, and then predict energy-optimal data and location interface configurations. By learning where and when a mobile device user uses certain power-hungry interfaces (3G, WiFi, and GPS), the techniques, which include variants of linear discriminant analysis, linear logistic regression, non-linear logistic regression, and k-nearest neighbor, are able to dynamically turn off unnecessary interfaces at runtime in order to save energy.

  6. Recognition of printed Arabic text using machine learning

    Science.gov (United States)

    Amin, Adnan

    1998-04-01

    Many papers have been concerned with the recognition of Latin, Chinese and Japanese characters. However, although almost a third of a billion people worldwide, in several different languages, use Arabic characters for writing, little research progress, in both on-line and off-line has been achieved towards the automatic recognition of Arabic characters. This is a result of the lack of adequate support in terms of funding, and other utilities such as Arabic text database, dictionaries, etc. and of course of the cursive nature of its writing rules. The main theme of this paper is the automatic recognition of Arabic printed text using machine learning C4.5. Symbolic machine learning algorithms are designed to accept example descriptions in the form of feature vectors which include a label that identifies the class to which an example belongs. The output of the algorithm is a set of rules that classifies unseen examples based on generalization from the training set. This ability to generalize is the main attraction of machine learning for handwriting recognition. Samples of a character can be preprocessed into a feature vector representation for presentation to a machine learning algorithm that creates rules for recognizing characters of the same class. Symbolic machine learning has several advantages over other learning methods. It is fast in training and in recognition, generalizes well, is noise tolerant and the symbolic representation is easy to understand. The technique can be divided into three major steps: the first step is pre- processing in which the original image is transformed into a binary image utilizing a 300 dpi scanner and then forming the connected component. Second, global features of the input Arabic word are then extracted such as number subwords, number of peaks within the subword, number and position of the complementary character, etc. Finally, machine learning C4.5 is used for character classification to generate a decision tree.

  7. Applications and modelling of bulk HTSs in brushless ac machines

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, G.J. [Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ (United Kingdom). E-mail: gary.barnes at eng.ox.ac.uk; McCulloch, M.D.; Dew-Hughes, D. [Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ (United Kingdom)

    2000-06-01

    The use of high temperature superconducting material in its bulk form for engineering applications is attractive due to the large power densities that can be achieved. In brushless electrical machines, there are essentially four properties that can be exploited; their hysteretic nature, their flux shielding properties, their ability to trap large flux densities and their ability to produce levitation. These properties translate to hysteresis machines, reluctance machines, trapped-field synchronous machines and linear motors respectively. Each one of these machines is addressed separately and computer simulations that reveal the current and field distributions within the machines are used to explain their operation. (author)

  8. Applications and modelling of bulk HTSs in brushless ac machines

    Science.gov (United States)

    Barnes, G. J.; McCulloch, M. D.; Dew-Hughes, D.

    2000-06-01

    The use of high temperature superconducting material in its bulk form for engineering applications is attractive due to the large power densities that can be achieved. In brushless electrical machines, there are essentially four properties that can be exploited; their hysteretic nature, their flux shielding properties, their ability to trap large flux densities and their ability to produce levitation. These properties translate to hysteresis machines, reluctance machines, trapped-field synchronous machines and linear motors respectively. Each one of these machines is addressed separately and computer simulations that reveal the current and field distributions within the machines are used to explain their operation.

  9. Building Artificial Vision Systems with Machine Learning

    Energy Technology Data Exchange (ETDEWEB)

    LeCun, Yann [New York University

    2011-02-23

    Three questions pose the next challenge for Artificial Intelligence (AI), robotics, and neuroscience. How do we learn perception (e.g. vision)? How do we learn representations of the perceptual world? How do we learn visual categories from just a few examples?

  10. PREZICEREA PERFORMANŢELOR STUDENŢILOR FOLOSIND ÎNVĂŢAREA AUTOMATĂ (Machine Learning

    Directory of Open Access Journals (Sweden)

    Maria CRISTEI

    2017-08-01

    Full Text Available În prezent, învăţarea automată (machine learning ocupă un loc important în inteligenţa artificială, preocupându-se de dezvoltarea algoritmilor ce permit unui sistem informatic să înveţe date, reguli şi algoritmi. Învăţarea automată pre­supune în primul rând identificarea şi implementarea unei modalităţi cât mai eficiente de reprezentare a informaţiilor, în sensul facilitării căutării, reorganizării şi modificării acestora. În acest sens, în prezentul articol se descrie utilitatea şi aplicabilitatea tehnicilor de învăţare automată supervizată la problemele de predicţie şi implementarea acestora în dez­vol­tarea aplicaţiilor informatice. Aplicaţia elaborată este unică prin felul ei de executare a modelului machine learning de predicţie. Metodologia folosită în aplicaţia elaborată este mixtă, cuprinzând tehnologii complexe de ultimă oră: mediul de dezvoltare Jupyter Notebook, limbajul de programare Python împreună cu cele mai populare librării ale acestuia utilizate în machine learning, instrumente de dezvoltare a aplicaţiei web Flask.PREDICTING STUDENT PERFORMANCE USING MACHINE LEARNINGAt present, machine learning occupies an important place in artificial intelligence, and is concerned with the development of algorithms that allow an information system to learn data, rules, and algorithms. Automatic learning involves first and foremost the identification and implementation of a more efficient way of representing information in order to facilitate search, reorganization and change. In this respect, this article describes the utility and applicability of supervised auto­mated learning techniques to prediction problems and their implementation in the development of computer applications. The elaborate application is unique in its way of executing the Machine learning prediction model. The methodology used in the developed application is mixed, including state-of-the-art complex

  11. Rossler Nonlinear Dynamical Machine for Cryptography Applications

    CERN Document Server

    Pandey, Sunil; Shrivastava, Dr S C

    2009-01-01

    In many of the cryptography applications like password or IP address encryption schemes, symmetric cryptography is useful. In these relatively simpler applications of cryptography, asymmetric cryptography is difficult to justify on account of the computational and implementation complexities associated with asymmetric cryptography. Symmetric schemes make use of a single shared key known only between the two communicating hosts. This shared key is used both for the encryption as well as the decryption of data. This key has to be small in size besides being a subset of a potentially large keyspace making it convenient for the communicating hosts while at the same time making cryptanalysis difficult for the potential attackers. In the present work, an abstract Rossler nonlinear dynamical machine has been described first. The Rossler system exhibits chaotic dynamics for certain values of system parameters and initial conditions. The chaotic dynamics of the Rossler system with its apparently erratic and irregular ...

  12. Multi-script handwritten character recognition : Using feature descriptors and machine learning

    NARCIS (Netherlands)

    Surinta, Olarik

    2016-01-01

    Handwritten character recognition plays an important role in transforming raw visual image data obtained from handwritten documents using for example scanners to a format which is understandable by a computer. It is an important application in the field of pattern recognition, machine learning and a

  13. Two Projection Pursuit Algorithms for Machine Learning under Non-Stationarity

    CERN Document Server

    Blythe, Duncan A J

    2011-01-01

    This thesis derives, tests and applies two linear projection algorithms for machine learning under non-stationarity. The first finds a direction in a linear space upon which a data set is maximally non-stationary. The second aims to robustify two-way classification against non-stationarity. The algorithm is tested on a key application scenario, namely Brain Computer Interfacing.

  14. A novel method to estimate model uncertainty using machine learning techniques

    NARCIS (Netherlands)

    Solomatine, D.P.; Lal Shrestha, D.

    2009-01-01

    A novel method is presented for model uncertainty estimation using machine learning techniques and its application in rainfall runoff modeling. In this method, first, the probability distribution of the model error is estimated separately for different hydrological situations and second, the

  15. Multi-script handwritten character recognition : Using feature descriptors and machine learning

    NARCIS (Netherlands)

    Surinta, Olarik

    2016-01-01

    Handwritten character recognition plays an important role in transforming raw visual image data obtained from handwritten documents using for example scanners to a format which is understandable by a computer. It is an important application in the field of pattern recognition, machine learning and

  16. Prediction of mortality after radical cystectomy for bladder cancer by machine learning techniques.

    Science.gov (United States)

    Wang, Guanjin; Lam, Kin-Man; Deng, Zhaohong; Choi, Kup-Sze

    2015-08-01

    Bladder cancer is a common cancer in genitourinary malignancy. For muscle invasive bladder cancer, surgical removal of the bladder, i.e. radical cystectomy, is in general the definitive treatment which, unfortunately, carries significant morbidities and mortalities. Accurate prediction of the mortality of radical cystectomy is therefore needed. Statistical methods have conventionally been used for this purpose, despite the complex interactions of high-dimensional medical data. Machine learning has emerged as a promising technique for handling high-dimensional data, with increasing application in clinical decision support, e.g. cancer prediction and prognosis. Its ability to reveal the hidden nonlinear interactions and interpretable rules between dependent and independent variables is favorable for constructing models of effective generalization performance. In this paper, seven machine learning methods are utilized to predict the 5-year mortality of radical cystectomy, including back-propagation neural network (BPN), radial basis function (RBFN), extreme learning machine (ELM), regularized ELM (RELM), support vector machine (SVM), naive Bayes (NB) classifier and k-nearest neighbour (KNN), on a clinicopathological dataset of 117 patients of the urology unit of a hospital in Hong Kong. The experimental results indicate that RELM achieved the highest average prediction accuracy of 0.8 at a fast learning speed. The research findings demonstrate the potential of applying machine learning techniques to support clinical decision making. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Moving beyond regression techniques in cardiovascular risk prediction: applying machine learning to address analytic challenges.

    Science.gov (United States)

    Goldstein, Benjamin A; Navar, Ann Marie; Carter, Rickey E

    2016-07-19

    Risk prediction plays an important role in clinical cardiology research. Traditionally, most risk models have been based on regression models. While useful and robust, these statistical methods are limited to using a small number of predictors which operate in the same way on everyone, and uniformly throughout their range. The purpose of this review is to illustrate the use of machine-learning methods for development of risk prediction models. Typically presented as black box approaches, most machine-learning methods are aimed at solving particular challenges that arise in data analysis that are not well addressed by typical regression approaches. To illustrate these challenges, as well as how different methods can address them, we consider trying to predicting mortality after diagnosis of acute myocardial infarction. We use data derived from our institution's electronic health record and abstract data on 13 regularly measured laboratory markers. We walk through different challenges that arise in modelling these data and then introduce different machine-learning approaches. Finally, we discuss general issues in the application of machine-learning methods including tuning parameters, loss functions, variable importance, and missing data. Overall, this review serves as an introduction for those working on risk modelling to approach the diffuse field of machine learning.

  18. Air quality monitoring using mobile microscopy and machine learning

    KAUST Repository

    Wu, Yi-Chen

    2017-09-08

    Rapid, accurate and high-throughput sizing and quantification of particulate matter (PM) in air is crucial for monitoring and improving air quality. In fact, particles in air with a diameter of ≤2.5 μm have been classified as carcinogenic by the World Health Organization. Here we present a field-portable cost-effective platform for high-throughput quantification of particulate matter using computational lens-free microscopy and machine-learning. This platform, termed c-Air, is also integrated with a smartphone application for device control and display of results. This mobile device rapidly screens 6.5 L of air in 30 s and generates microscopic images of the aerosols in air. It provides statistics of the particle size and density distribution with a sizing accuracy of ~93%. We tested this mobile platform by measuring the air quality at different indoor and outdoor environments and measurement times, and compared our results to those of an Environmental Protection Agency–approved device based on beta-attenuation monitoring, which showed strong correlation to c-Air measurements. Furthermore, we used c-Air to map the air quality around Los Angeles International Airport (LAX) over 24 h to confirm that the impact of LAX on increased PM concentration was present even at >7 km away from the airport, especially along the direction of landing flights. With its machine-learning-based computational microscopy interface, c-Air can be adaptively tailored to detect specific particles in air, for example, various types of pollen and mold and provide a cost-effective mobile solution for highly accurate and distributed sensing of air quality.

  19. Machine Learning Principles Can Improve Hip Fracture Prediction

    DEFF Research Database (Denmark)

    Kruse, Christian; Eiken, Pia; Vestergaard, Peter

    2017-01-01

    Apply machine learning principles to predict hip fractures and estimate predictor importance in Dual-energy X-ray absorptiometry (DXA)-scanned men and women. Dual-energy X-ray absorptiometry data from two Danish regions between 1996 and 2006 were combined with national Danish patient data.......89 [0.82; 0.95], but with poor calibration in higher probabilities. A ten predictor subset (BMD, biochemical cholesterol and liver function tests, penicillin use and osteoarthritis diagnoses) achieved a test AUC of 0.86 [0.78; 0.94] using an "xgbTree" model. Machine learning can improve hip fracture...... prediction beyond logistic regression using ensemble models. Compiling data from international cohorts of longer follow-up and performing similar machine learning procedures has the potential to further improve discrimination and calibration....

  20. Machine learning of network metrics in ATLAS Distributed Data Management

    CERN Document Server

    Lassnig, Mario; The ATLAS collaboration

    2017-01-01

    The increasing volume of physics data poses a critical challenge to the ATLAS experiment. In anticipation of high luminosity physics, automation of everyday data management tasks has become necessary. Previously many of these tasks required human decision-making and operation. Recent advances in hardware and software have made it possible to entrust more complicated duties to automated systems using models trained by machine learning algorithms. In this contribution we show results from one of our ongoing automation efforts that focuses on network metrics. First, we describe our machine learning framework built atop the ATLAS Analytics Platform. This framework can automatically extract and aggregate data, train models with various machine learning algorithms, and eventually score the resulting models and parameters. Second, we use these models to forecast metrics relevant for network-aware job scheduling and data brokering. We show the characteristics of the data and evaluate the forecasting accuracy of our m...

  1. Accurate Identification of Cancerlectins through Hybrid Machine Learning Technology

    Directory of Open Access Journals (Sweden)

    Jieru Zhang

    2016-01-01

    Full Text Available Cancerlectins are cancer-related proteins that function as lectins. They have been identified through computational identification techniques, but these techniques have sometimes failed to identify proteins because of sequence diversity among the cancerlectins. Advanced machine learning identification methods, such as support vector machine and basic sequence features (n-gram, have also been used to identify cancerlectins. In this study, various protein fingerprint features and advanced classifiers, including ensemble learning techniques, were utilized to identify this group of proteins. We improved the prediction accuracy of the original feature extraction methods and classification algorithms by more than 10% on average. Our work provides a basis for the computational identification of cancerlectins and reveals the power of hybrid machine learning techniques in computational proteomics.

  2. Predicting Market Impact Costs Using Nonparametric Machine Learning Models.

    Directory of Open Access Journals (Sweden)

    Saerom Park

    Full Text Available Market impact cost is the most significant portion of implicit transaction costs that can reduce the overall transaction cost, although it cannot be measured directly. In this paper, we employed the state-of-the-art nonparametric machine learning models: neural networks, Bayesian neural network, Gaussian process, and support vector regression, to predict market impact cost accurately and to provide the predictive model that is versatile in the number of variables. We collected a large amount of real single transaction data of US stock market from Bloomberg Terminal and generated three independent input variables. As a result, most nonparametric machine learning models outperformed a-state-of-the-art benchmark parametric model such as I-star model in four error measures. Although these models encounter certain difficulties in separating the permanent and temporary cost directly, nonparametric machine learning models can be good alternatives in reducing transaction costs by considerably improving in prediction performance.

  3. Predicting Market Impact Costs Using Nonparametric Machine Learning Models.

    Science.gov (United States)

    Park, Saerom; Lee, Jaewook; Son, Youngdoo

    2016-01-01

    Market impact cost is the most significant portion of implicit transaction costs that can reduce the overall transaction cost, although it cannot be measured directly. In this paper, we employed the state-of-the-art nonparametric machine learning models: neural networks, Bayesian neural network, Gaussian process, and support vector regression, to predict market impact cost accurately and to provide the predictive model that is versatile in the number of variables. We collected a large amount of real single transaction data of US stock market from Bloomberg Terminal and generated three independent input variables. As a result, most nonparametric machine learning models outperformed a-state-of-the-art benchmark parametric model such as I-star model in four error measures. Although these models encounter certain difficulties in separating the permanent and temporary cost directly, nonparametric machine learning models can be good alternatives in reducing transaction costs by considerably improving in prediction performance.

  4. Proceedings of IEEE Machine Learning for Signal Processing Workshop XV

    DEFF Research Database (Denmark)

    Larsen, Jan

    These proceedings contains refereed papers presented at the Fifteenth IEEE Workshop on Machine Learning for Signal Processing (MLSP’2005), held in Mystic, Connecticut, USA, September 28-30, 2005. This is a continuation of the IEEE Workshops on Neural Networks for Signal Processing (NNSP) organized...... by the NNSP Technical Committee of the IEEE Signal Processing Society. The name of the Technical Committee, hence of the Workshop, was changed to Machine Learning for Signal Processing in September 2003 to better reflect the areas represented by the Technical Committee. The conference is organized...... by the Machine Learning for Signal Processing Technical Committee with sponsorship of the IEEE Signal Processing Society. Following the practice started two years ago, the bound volume of the proceedings is going to be published by IEEE following the Workshop, and we are pleased to offer to conference attendees...

  5. Proceedings of IEEE Machine Learning for Signal Processing Workshop XV

    DEFF Research Database (Denmark)

    Larsen, Jan

    These proceedings contains refereed papers presented at the Fifteenth IEEE Workshop on Machine Learning for Signal Processing (MLSP’2005), held in Mystic, Connecticut, USA, September 28-30, 2005. This is a continuation of the IEEE Workshops on Neural Networks for Signal Processing (NNSP) organized...... by the NNSP Technical Committee of the IEEE Signal Processing Society. The name of the Technical Committee, hence of the Workshop, was changed to Machine Learning for Signal Processing in September 2003 to better reflect the areas represented by the Technical Committee. The conference is organized...... by the Machine Learning for Signal Processing Technical Committee with sponsorship of the IEEE Signal Processing Society. Following the practice started two years ago, the bound volume of the proceedings is going to be published by IEEE following the Workshop, and we are pleased to offer to conference attendees...

  6. Machine Learning: A Crucial Tool for Sensor Design

    Directory of Open Access Journals (Sweden)

    Weixiang Zhao

    2008-12-01

    Full Text Available Sensors have been widely used for disease diagnosis, environmental quality monitoring, food quality control, industrial process analysis and control, and other related fields. As a key tool for sensor data analysis, machine learning is becoming a core part of novel sensor design. Dividing a complete machine learning process into three steps: data pre-treatment, feature extraction and dimension reduction, and system modeling, this paper provides a review of the methods that are widely used for each step. For each method, the principles and the key issues that affect modeling results are discussed. After reviewing the potential problems in machine learning processes, this paper gives a summary of current algorithms in this field and provides some feasible directions for future studies.

  7. Galaxy Zoo: Reproducing Galaxy Morphologies Via Machine Learning

    CERN Document Server

    Banerji, Manda; Lintott, Chris J; Abdalla, Filipe B; Schawinski, Kevin; Andreescu, Dan; Bamford, Steven; Murray, Phil; Raddick, M Jordan; Slosar, Anze; Szalay, Alex; Thomas, Daniel; Vandenberg, Jan

    2009-01-01

    We present morphological classifications obtained using machine learning for objects in SDSS DR7 that have been classified by Galaxy Zoo into three classes namely spirals, ellipticals and stars/unique objects. An artificial neural network is trained on a subset of objects classified by the human eye and we test whether the machine learning algorithm can reproduce the human classifications for the rest of the sample. We find that the success of the neural network in matching the human classifications depends crucially on the set of input parameters chosen for the machine-learning algorithm. The colours, concentrations and parameters associated with profile-fitting are reasonable in seperating the stars and galaxies into three classes. However, these results are considerably improved when adding adaptive shape parameters as well as texture. The adaptive moments and texture parameters alone cannot distinguish between stars and elliptical galaxies. Using a set of thirteen distance-independant parameters, the neur...

  8. A Machine Learning Based Analytical Framework for Semantic Annotation Requirements

    CERN Document Server

    Hassanzadeh, Hamed; 10.5121/ijwest.2011.2203

    2011-01-01

    The Semantic Web is an extension of the current web in which information is given well-defined meaning. The perspective of Semantic Web is to promote the quality and intelligence of the current web by changing its contents into machine understandable form. Therefore, semantic level information is one of the cornerstones of the Semantic Web. The process of adding semantic metadata to web resources is called Semantic Annotation. There are many obstacles against the Semantic Annotation, such as multilinguality, scalability, and issues which are related to diversity and inconsistency in content of different web pages. Due to the wide range of domains and the dynamic environments that the Semantic Annotation systems must be performed on, the problem of automating annotation process is one of the significant challenges in this domain. To overcome this problem, different machine learning approaches such as supervised learning, unsupervised learning and more recent ones like, semi-supervised learning and active learn...

  9. Analysis of characteristics and applications of electron beam machining

    Institute of Scientific and Technical Information of China (English)

    何宇; 刘军

    2014-01-01

    This paper reveals the great potential of electron beam machining which is high-energy beam machining by describing its principle and characteristics, and shows the feather of electron beam machining through introducing the applications of it in drilling,welding, heat treatment and so on. From two aspects above, its outstanding advantages in machining can be found and a new thought will be given out.

  10. A New Three-DOF Parallel Mechanism: Milling Machine Applications

    CERN Document Server

    Chablat, Damien

    2000-01-01

    This paper describes a new parallel kinematic architecture for machining applications, namely, the orthoglide. This machine features three fixed parallel linear joints which are mounted orthogonally and a mobile platform which moves in the Cartesian x-y-z space with fixed orientation. The main interest of the orthoglide is that it takes benefit from the advantages of the popular PPP serial machines (regular Cartesian workspace shape and uniform performances) as well as from the parallel kinematic arrangement of the links (less inertia and better dynamic performances), which makes the orthoglide well suited to high-speed machining applications. Possible extension of the orthoglide to 5-axis machining is also investigated.

  11. Deep learning of support vector machines with class probability output networks.

    Science.gov (United States)

    Kim, Sangwook; Yu, Zhibin; Kil, Rhee Man; Lee, Minho

    2015-04-01

    Deep learning methods endeavor to learn features automatically at multiple levels and allow systems to learn complex functions mapping from the input space to the output space for the given data. The ability to learn powerful features automatically is increasingly important as the volume of data and range of applications of machine learning methods continues to grow. This paper proposes a new deep architecture that uses support vector machines (SVMs) with class probability output networks (CPONs) to provide better generalization power for pattern classification problems. As a result, deep features are extracted without additional feature engineering steps, using multiple layers of the SVM classifiers with CPONs. The proposed structure closely approaches the ideal Bayes classifier as the number of layers increases. Using a simulation of classification problems, the effectiveness of the proposed method is demonstrated.

  12. SPAM CLASSIFICATION BASED ON SUPERVISED LEARNING USING MACHINE LEARNING TECHNIQUES

    Directory of Open Access Journals (Sweden)

    T. Hamsapriya

    2011-12-01

    Full Text Available E-mail is one of the most popular and frequently used ways of communication due to its worldwide accessibility, relatively fast message transfer, and low sending cost. The flaws in the e-mail protocols and the increasing amount of electronic business and financial transactions directly contribute to the increase in e-mail-based threats. Email spam is one of the major problems of the today’s Internet, bringing financial damage to companies and annoying individual users. Spam emails are invading users without their consent and filling their mail boxes. They consume more network capacity as well as time in checking and deleting spam mails. The vast majority of Internet users are outspoken in their disdain for spam, although enough of them respond to commercial offers that spam remains a viable source of income to spammers. While most of the users want to do right think to avoid and get rid of spam, they need clear and simple guidelines on how to behave. In spite of all the measures taken to eliminate spam, they are not yet eradicated. Also when the counter measures are over sensitive, even legitimate emails will be eliminated. Among the approaches developed to stop spam, filtering is the one of the most important technique. Many researches in spam filtering have been centered on the more sophisticated classifier-related issues. In recent days, Machine learning for spam classification is an important research issue. The effectiveness of the proposed work is explores and identifies the use of different learning algorithms for classifying spam messages from e-mail. A comparative analysis among the algorithms has also been presented.

  13. 3D Visualization of Machine Learning Algorithms with Astronomical Data

    Science.gov (United States)

    Kent, Brian R.

    2016-01-01

    We present innovative machine learning (ML) methods using unsupervised clustering with minimum spanning trees (MSTs) to study 3D astronomical catalogs. Utilizing Python code to build trees based on galaxy catalogs, we can render the results with the visualization suite Blender to produce interactive 360 degree panoramic videos. The catalogs and their ML results can be explored in a 3D space using mobile devices, tablets or desktop browsers. We compare the statistics of the MST results to a number of machine learning methods relating to optimization and efficiency.

  14. Machine Learning: When and Where the Horses Went Astray?

    CERN Document Server

    Diamant, Emanuel

    2009-01-01

    Machine Learning is usually defined as a subfield of AI, which is busy with information extraction from raw data sets. Despite of its common acceptance and widespread recognition, this definition is wrong and groundless. Meaningful information does not belong to the data that bear it. It belongs to the observers of the data and it is a shared agreement and a convention among them. Therefore, this private information cannot be extracted from the data by any means. Therefore, all further attempts of Machine Learning apologists to justify their funny business are inappropriate.

  15. Oceanic eddy detection and lifetime forecast using machine learning methods

    Science.gov (United States)

    Ashkezari, Mohammad D.; Hill, Christopher N.; Follett, Christopher N.; Forget, Gaël.; Follows, Michael J.

    2016-12-01

    We report a novel altimetry-based machine learning approach for eddy identification and characterization. The machine learning models use daily maps of geostrophic velocity anomalies and are trained according to the phase angle between the zonal and meridional components at each grid point. The trained models are then used to identify the corresponding eddy phase patterns and to predict the lifetime of a detected eddy structure. The performance of the proposed method is examined at two dynamically different regions to demonstrate its robust behavior and region independency.

  16. Is extreme learning machine feasible? A theoretical assessment (part II).

    Science.gov (United States)

    Lin, Shaobo; Liu, Xia; Fang, Jian; Xu, Zongben

    2015-01-01

    An extreme learning machine (ELM) can be regarded as a two-stage feed-forward neural network (FNN) learning system that randomly assigns the connections with and within hidden neurons in the first stage and tunes the connections with output neurons in the second stage. Therefore, ELM training is essentially a linear learning problem, which significantly reduces the computational burden. Numerous applications show that such a computation burden reduction does not degrade the generalization capability. It has, however, been open that whether this is true in theory. The aim of this paper is to study the theoretical feasibility of ELM by analyzing the pros and cons of ELM. In the previous part of this topic, we pointed out that via appropriately selected activation functions, ELM does not degrade the generalization capability in the sense of expectation. In this paper, we launch the study in a different direction and show that the randomness of ELM also leads to certain negative consequences. On one hand, we find that the randomness causes an additional uncertainty problem of ELM, both in approximation and learning. On the other hand, we theoretically justify that there also exist activation functions such that the corresponding ELM degrades the generalization capability. In particular, we prove that the generalization capability of ELM with Gaussian kernel is essentially worse than that of FNN with Gaussian kernel. To facilitate the use of ELM, we also provide a remedy to such a degradation. We find that the well-developed coefficient regularization technique can essentially improve the generalization capability. The obtained results reveal the essential characteristic of ELM in a certain sense and give theoretical guidance concerning how to use ELM.

  17. Pattern Recognition in Collective Cognitive Systems: Hybrid Human-Machine Learning (HHML) By Heterogeneous Ensembles

    CERN Document Server

    Dashti, Hesam T; Siahpirani, Alireza F; Tonejc, Jernej; Uilecan, Ioan V; Simas, Tiago; Miranda, Bruno; Ribeiro, Rita; Wang, Liya; Assadi, Amir H

    2010-01-01

    The ubiquitous role of the cyber-infrastructures, such as the WWW, provides myriad opportunities for machine learning and its broad spectrum of application domains taking advantage of digital communication. Pattern classification and feature extraction are among the first applications of machine learning that have received extensive attention. The most remarkable achievements have addressed data sets of moderate-to-large size. The 'data deluge' in the last decade or two has posed new challenges for AI researchers to design new, effective and accurate algorithms for similar tasks using ultra-massive data sets and complex (natural or synthetic) dynamical systems. We propose a novel principled approach to feature extraction in hybrid architectures comprised of humans and machines in networked communication, who collaborate to solve a pre-assigned pattern recognition (feature extraction) task. There are two practical considerations addressed below: (1) Human experts, such as plant biologists or astronomers, often...

  18. The cerebellum: a neuronal learning machine?

    Science.gov (United States)

    Raymond, J. L.; Lisberger, S. G.; Mauk, M. D.

    1996-01-01

    Comparison of two seemingly quite different behaviors yields a surprisingly consistent picture of the role of the cerebellum in motor learning. Behavioral and physiological data about classical conditioning of the eyelid response and motor learning in the vestibulo-ocular reflex suggests that (i) plasticity is distributed between the cerebellar cortex and the deep cerebellar nuclei; (ii) the cerebellar cortex plays a special role in learning the timing of movement; and (iii) the cerebellar cortex guides learning in the deep nuclei, which may allow learning to be transferred from the cortex to the deep nuclei. Because many of the similarities in the data from the two systems typify general features of cerebellar organization, the cerebellar mechanisms of learning in these two systems may represent principles that apply to many motor systems.

  19. Machine learning bandgaps of double perovskites

    National Research Council Canada - National Science Library

    Pilania, G; Mannodi-Kanakkithodi, A; Uberuaga, B P; Ramprasad, R; Gubernatis, J E; Lookman, T

    2016-01-01

    .... While quantum mechanical computations for high-fidelity bandgaps are enormously computation-time intensive and thus impractical in high throughput studies, informatics-based statistical learning...

  20. Foreword for the special issue of selected papers from the 1st ECML/PKDD Workshop on Privacy and Security issues in Data Mining and Machine Learning

    OpenAIRE

    Aris Gkoulalas-Divanis; Yucel Saygin; Verykios, Vassilios S.

    2011-01-01

    The first Workshop on Privacy and Security issues in Data Mining and Machine Learning (PSDML 2010) was organized on September 24, 2010 at Barcelona, Spain, in conjunction with the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD). Privacy and security-related aspects of data mining and machine learning have been the topic of active research during the last decade due to the existence of numerous applications with privacy and/or...