WorldWideScience

Sample records for machine learning algorithm

  1. Lane Detection Based on Machine Learning Algorithm

    National Research Council Canada - National Science Library

    Chao Fan; Jingbo Xu; Shuai Di

    2013-01-01

    In order to improve accuracy and robustness of the lane detection in complex conditions, such as the shadows and illumination changing, a novel detection algorithm was proposed based on machine learning...

  2. Parallelization of TMVA Machine Learning Algorithms

    CERN Document Server

    Hajili, Mammad

    2017-01-01

    This report reflects my work on Parallelization of TMVA Machine Learning Algorithms integrated to ROOT Data Analysis Framework during summer internship at CERN. The report consists of 4 impor- tant part - data set used in training and validation, algorithms that multiprocessing applied on them, parallelization techniques and re- sults of execution time changes due to number of workers.

  3. Advanced Machine learning Algorithm Application for Rotating Machine Health Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kanemoto, Shigeru; Watanabe, Masaya [The University of Aizu, Aizuwakamatsu (Japan); Yusa, Noritaka [Tohoku University, Sendai (Japan)

    2014-08-15

    The present paper tries to evaluate the applicability of conventional sound analysis techniques and modern machine learning algorithms to rotating machine health monitoring. These techniques include support vector machine, deep leaning neural network, etc. The inner ring defect and misalignment anomaly sound data measured by a rotating machine mockup test facility are used to verify the above various kinds of algorithms. Although we cannot find remarkable difference of anomaly discrimination performance, some methods give us the very interesting eigen patterns corresponding to normal and abnormal states. These results will be useful for future more sensitive and robust anomaly monitoring technology.

  4. Paradigms for Realizing Machine Learning Algorithms.

    Science.gov (United States)

    Agneeswaran, Vijay Srinivas; Tonpay, Pranay; Tiwary, Jayati

    2013-12-01

    The article explains the three generations of machine learning algorithms-with all three trying to operate on big data. The first generation tools are SAS, SPSS, etc., while second generation realizations include Mahout and RapidMiner (that work over Hadoop), and the third generation paradigms include Spark and GraphLab, among others. The essence of the article is that for a number of machine learning algorithms, it is important to look beyond the Hadoop's Map-Reduce paradigm in order to make them work on big data. A number of promising contenders have emerged in the third generation that can be exploited to realize deep analytics on big data.

  5. Ozone ensemble forecast with machine learning algorithms

    OpenAIRE

    Mallet, Vivien; Stoltz, Gilles; Mauricette, Boris

    2009-01-01

    International audience; We apply machine learning algorithms to perform sequential aggregation of ozone forecasts. The latter rely on a multimodel ensemble built for ozone forecasting with the modeling system Polyphemus. The ensemble simulations are obtained by changes in the physical parameterizations, the numerical schemes, and the input data to the models. The simulations are carried out for summer 2001 over western Europe in order to forecast ozone daily peaks and ozone hourly concentrati...

  6. Lane Detection Based on Machine Learning Algorithm

    Directory of Open Access Journals (Sweden)

    Chao Fan

    2013-09-01

    Full Text Available In order to improve accuracy and robustness of the lane detection in complex conditions, such as the shadows and illumination changing, a novel detection algorithm was proposed based on machine learning. After pretreatment, a set of haar-like filters were used to calculate the eigenvalue in the gray image f(x,y and edge e(x,y. Then these features were trained by using improved boosting algorithm and the final class function g(x was obtained, which was used to judge whether the point x belonging to the lane or not. To avoid the over fitting in traditional boosting, Fisher discriminant analysis was used to initialize the weights of samples. After testing by many road in all conditions, it showed that this algorithm had good robustness and real-time to recognize the lane in all challenging conditions.

  7. Machine Learning Algorithms in Web Page Classification

    Directory of Open Access Journals (Sweden)

    W.A.AWAD

    2012-11-01

    Full Text Available In this paper we use machine learning algorithms like SVM, KNN and GIS to perform a behaviorcomparison on the web pages classifications problem, from the experiment we see in the SVM with smallnumber of negative documents to build the centroids has the smallest storage requirement and the least online test computation cost. But almost all GIS with different number of nearest neighbors have an evenhigher storage requirement and on line test computation cost than KNN. This suggests that some futurework should be done to try to reduce the storage requirement and on list test cost of GIS.

  8. Extreme learning machines 2013 algorithms and applications

    CERN Document Server

    Toh, Kar-Ann; Romay, Manuel; Mao, Kezhi

    2014-01-01

    In recent years, ELM has emerged as a revolutionary technique of computational intelligence, and has attracted considerable attentions. An extreme learning machine (ELM) is a single layer feed-forward neural network alike learning system, whose connections from the input layer to the hidden layer are randomly generated, while the connections from the hidden layer to the output layer are learned through linear learning methods. The outstanding merits of extreme learning machine (ELM) are its fast learning speed, trivial human intervene and high scalability.   This book contains some selected papers from the International Conference on Extreme Learning Machine 2013, which was held in Beijing China, October 15-17, 2013. This conference aims to bring together the researchers and practitioners of extreme learning machine from a variety of fields including artificial intelligence, biomedical engineering and bioinformatics, system modelling and control, and signal and image processing, to promote research and discu...

  9. GEOLOGICAL MAPPING USING MACHINE LEARNING ALGORITHMS

    Directory of Open Access Journals (Sweden)

    A. S. Harvey

    2016-06-01

    Full Text Available Remotely sensed spectral imagery, geophysical (magnetic and gravity, and geodetic (elevation data are useful in a variety of Earth science applications such as environmental monitoring and mineral exploration. Using these data with Machine Learning Algorithms (MLA, which are widely used in image analysis and statistical pattern recognition applications, may enhance preliminary geological mapping and interpretation. This approach contributes towards a rapid and objective means of geological mapping in contrast to conventional field expedition techniques. In this study, four supervised MLAs (naïve Bayes, k-nearest neighbour, random forest, and support vector machines are compared in order to assess their performance for correctly identifying geological rocktypes in an area with complete ground validation information. Geological maps of the Sudbury region are used for calibration and validation. Percent of correct classifications was used as indicators of performance. Results show that random forest is the best approach. As expected, MLA performance improves with more calibration clusters, i.e. a more uniform distribution of calibration data over the study region. Performance is generally low, though geological trends that correspond to a ground validation map are visualized. Low performance may be the result of poor spectral images of bare rock which can be covered by vegetation or water. The distribution of calibration clusters and MLA input parameters affect the performance of the MLAs. Generally, performance improves with more uniform sampling, though this increases required computational effort and time. With the achievable performance levels in this study, the technique is useful in identifying regions of interest and identifying general rocktype trends. In particular, phase I geological site investigations will benefit from this approach and lead to the selection of sites for advanced surveys.

  10. Geological Mapping Using Machine Learning Algorithms

    Science.gov (United States)

    Harvey, A. S.; Fotopoulos, G.

    2016-06-01

    Remotely sensed spectral imagery, geophysical (magnetic and gravity), and geodetic (elevation) data are useful in a variety of Earth science applications such as environmental monitoring and mineral exploration. Using these data with Machine Learning Algorithms (MLA), which are widely used in image analysis and statistical pattern recognition applications, may enhance preliminary geological mapping and interpretation. This approach contributes towards a rapid and objective means of geological mapping in contrast to conventional field expedition techniques. In this study, four supervised MLAs (naïve Bayes, k-nearest neighbour, random forest, and support vector machines) are compared in order to assess their performance for correctly identifying geological rocktypes in an area with complete ground validation information. Geological maps of the Sudbury region are used for calibration and validation. Percent of correct classifications was used as indicators of performance. Results show that random forest is the best approach. As expected, MLA performance improves with more calibration clusters, i.e. a more uniform distribution of calibration data over the study region. Performance is generally low, though geological trends that correspond to a ground validation map are visualized. Low performance may be the result of poor spectral images of bare rock which can be covered by vegetation or water. The distribution of calibration clusters and MLA input parameters affect the performance of the MLAs. Generally, performance improves with more uniform sampling, though this increases required computational effort and time. With the achievable performance levels in this study, the technique is useful in identifying regions of interest and identifying general rocktype trends. In particular, phase I geological site investigations will benefit from this approach and lead to the selection of sites for advanced surveys.

  11. Machine-Learning Algorithms to Code Public Health Spending Accounts.

    Science.gov (United States)

    Brady, Eoghan S; Leider, Jonathon P; Resnick, Beth A; Alfonso, Y Natalia; Bishai, David

    Government public health expenditure data sets require time- and labor-intensive manipulation to summarize results that public health policy makers can use. Our objective was to compare the performances of machine-learning algorithms with manual classification of public health expenditures to determine if machines could provide a faster, cheaper alternative to manual classification. We used machine-learning algorithms to replicate the process of manually classifying state public health expenditures, using the standardized public health spending categories from the Foundational Public Health Services model and a large data set from the US Census Bureau. We obtained a data set of 1.9 million individual expenditure items from 2000 to 2013. We collapsed these data into 147 280 summary expenditure records, and we followed a standardized method of manually classifying each expenditure record as public health, maybe public health, or not public health. We then trained 9 machine-learning algorithms to replicate the manual process. We calculated recall, precision, and coverage rates to measure the performance of individual and ensembled algorithms. Compared with manual classification, the machine-learning random forests algorithm produced 84% recall and 91% precision. With algorithm ensembling, we achieved our target criterion of 90% recall by using a consensus ensemble of ≥6 algorithms while still retaining 93% coverage, leaving only 7% of the summary expenditure records unclassified. Machine learning can be a time- and cost-saving tool for estimating public health spending in the United States. It can be used with standardized public health spending categories based on the Foundational Public Health Services model to help parse public health expenditure information from other types of health-related spending, provide data that are more comparable across public health organizations, and evaluate the impact of evidence-based public health resource allocation.

  12. Machine learning algorithms for datasets popularity prediction

    CERN Document Server

    Kancys, Kipras

    2016-01-01

    This report represents continued study where ML algorithms were used to predict databases popularity. Three topics were covered. First of all, there was a discrepancy between old and new meta-data collection procedures, so a reason for that had to be found. Secondly, different parameters were analysed and dropped to make algorithms perform better. And third, it was decided to move modelling part on Spark.

  13. Evaluating the Security of Machine Learning Algorithms

    Science.gov (United States)

    2008-05-20

    description of this setting and several results appear in Cesa -Bianchi and Lugosi [2006]. 2.5 Summary In this chapter we have presented a framework for...Learning Research (JMLR), 3:993–1022, 2003. ISSN 1533-7928. Nicolò Cesa -Bianchi and Gábor Lugosi. Prediction, Learning, and Games. Cambridge University

  14. Dermoscopic Image Segmentation using Machine Learning Algorithm

    Directory of Open Access Journals (Sweden)

    L. P. Suresh

    2011-01-01

    Full Text Available Problem statement: Malignant melanoma is the most frequent type of skin cancer. Its incidence has been rapidly increasing over the last few decades. Medical image segmentation is the most essential and crucial process in order to facilitate the characterization and visualization of the structure of interest in medical images. Approach: This study explains the task of segmenting skin lesions in Dermoscopy images based on intelligent systems such as Fuzzy and Neural Networks clustering techniques for the early diagnosis of Malignant Melanoma. The various intelligent system based clustering techniques used are Fuzzy C Means Algorithm (FCM, Possibilistic C Means Algorithm (PCM, Hierarchical C Means Algorithm (HCM; C-mean based Fuzzy Hopfield Neural Network, Adaline Neural Network and Regression Neural Network. Results: The segmented images are compared with the ground truth image using various parameters such as False Positive Error (FPE, False Negative Error (FNE Coefficient of similarity, spatial overlap and their performance is evaluated. Conclusion: The experimental results show that the Hierarchical C Means algorithm( Fuzzy provides better segmentation than other (Fuzzy C Means, Possibilistic C Means, Adaline Neural Network, FHNN and GRNN clustering algorithms. Thus Hierarchical C Means approach can handle uncertainties that exist in the data efficiently and useful for the lesion segmentation in a computer aided diagnosis system to assist the clinical diagnosis of dermatologists.

  15. Interactive Algorithms for Unsupervised Machine Learning

    Science.gov (United States)

    2015-06-01

    Copetas, and Diane Stidle who greatly enriched my life at CMU. I am thankful to Zeeshan Syed and Eu-Jin Goh who supported me during my internship at Google...for a fun and productive internship . I am looking forward to spending another year at MSR and continuing to collaborate with and learn from everyone at...the nuclear norm minimization program to exactly 1As before this could equivalently be the column space with assumption on the maximal row coherence. 12

  16. Towards the compression of parton densities through machine learning algorithms

    CERN Document Server

    Carrazza, Stefano

    2016-01-01

    One of the most fascinating challenges in the context of parton density function (PDF) is the determination of the best combined PDF uncertainty from individual PDF sets. Since 2014 multiple methodologies have been developed to achieve this goal. In this proceedings we first summarize the strategy adopted by the PDF4LHC15 recommendation and then, we discuss about a new approach to Monte Carlo PDF compression based on clustering through machine learning algorithms.

  17. Behavioral Profiling of Scada Network Traffic Using Machine Learning Algorithms

    Science.gov (United States)

    2014-03-27

    encryption [37]. As an alternative to traditional classification approaches, machine learning (ML) algorithms (e.g., Naı̈ve Bayes) have successfully used...systems, and conducting physical security surveys of remote sites. Eliminating possible backdoor entry into a SCADA network can be a daunting task...notify the master of an issue. Furthermore, SCADA protocols generally lack authentication and encryption due to operating requirements and use of

  18. A Comparison of the Effects of K-Anonymity on Machine Learning Algorithms

    Directory of Open Access Journals (Sweden)

    Hayden Wimmer

    2014-11-01

    Full Text Available While research has been conducted in machine learning algorithms and in privacy preserving in data mining (PPDM, a gap in the literature exists which combines the aforementioned areas to determine how PPDM affects common machine learning algorithms. The aim of this research is to narrow this literature gap by investigating how a common PPDM algorithm, K-Anonymity, affects common machine learning and data mining algorithms, namely neural networks, logistic regression, decision trees, and Bayesian classifiers. This applied research reveals practical implications for applying PPDM to data mining and machine learning and serves as a critical first step learning how to apply PPDM to machine learning algorithms and the effects of PPDM on machine learning. Results indicate that certain machine learning algorithms are more suited for use with PPDM techniques.

  19. Comparison of machine learning algorithms for detecting coral reef

    Directory of Open Access Journals (Sweden)

    Eduardo Tusa

    2014-09-01

    Full Text Available (Received: 2014/07/31 - Accepted: 2014/09/23This work focuses on developing a fast coral reef detector, which is used for an autonomous underwater vehicle, AUV. A fast detection secures the AUV stabilization respect to an area of reef as fast as possible, and prevents devastating collisions. We use the algorithm of Purser et al. (2009 because of its precision. This detector has two parts: feature extraction that uses Gabor Wavelet filters, and feature classification that uses machine learning based on Neural Networks. Due to the extensive time of the Neural Networks, we exchange for a classification algorithm based on Decision Trees. We use a database of 621 images of coral reef in Belize (110 images for training and 511 images for testing. We implement the bank of Gabor Wavelets filters using C++ and the OpenCV library. We compare the accuracy and running time of 9 machine learning algorithms, whose result was the selection of the Decision Trees algorithm. Our coral detector performs 70ms of running time in comparison to 22s executed by the algorithm of Purser et al. (2009.

  20. Fall detection using supervised machine learning algorithms: A comparative study

    KAUST Repository

    Zerrouki, Nabil

    2017-01-05

    Fall incidents are considered as the leading cause of disability and even mortality among older adults. To address this problem, fall detection and prevention fields receive a lot of intention over the past years and attracted many researcher efforts. We present in the current study an overall performance comparison between fall detection systems using the most popular machine learning approaches which are: Naïve Bayes, K nearest neighbor, neural network, and support vector machine. The analysis of the classification power associated to these most widely utilized algorithms is conducted on two fall detection databases namely FDD and URFD. Since the performance of the classification algorithm is inherently dependent on the features, we extracted and used the same features for all classifiers. The classification evaluation is conducted using different state of the art statistical measures such as the overall accuracy, the F-measure coefficient, and the area under ROC curve (AUC) value.

  1. Alignment of Custom Standards by Machine Learning Algorithms

    Directory of Open Access Journals (Sweden)

    Adela Sirbu

    2010-09-01

    Full Text Available Building an efficient model for automatic alignment of terminologies would bring a significant improvement to the information retrieval process. We have developed and compared two machine learning based algorithms whose aim is to align 2 custom standards built on a 3 level taxonomy, using kNN and SVM classifiers that work on a vector representation consisting of several similarity measures. The weights utilized by the kNN were optimized with an evolutionary algorithm, while the SVM classifier's hyper-parameters were optimized with a grid search algorithm. The database used for train was semi automatically obtained by using the Coma++ tool. The performance of our aligners is shown by the results obtained on the test set.

  2. Machine learning based global particle indentification algorithms at LHCb experiment

    CERN Multimedia

    Derkach, Denis; Likhomanenko, Tatiana; Rogozhnikov, Aleksei; Ratnikov, Fedor

    2017-01-01

    One of the most important aspects of data processing at LHC experiments is the particle identification (PID) algorithm. In LHCb, several different sub-detector systems provide PID information: the Ring Imaging CHerenkov (RICH) detector, the hadronic and electromagnetic calorimeters, and the muon chambers. To improve charged particle identification, several neural networks including a deep architecture and gradient boosting have been applied to data. These new approaches provide higher identification efficiencies than existing implementations for all charged particle types. It is also necessary to achieve a flat dependency between efficiencies and spectator variables such as particle momentum, in order to reduce systematic uncertainties during later stages of data analysis. For this purpose, "flat” algorithms that guarantee the flatness property for efficiencies have also been developed. This talk presents this new approach based on machine learning and its performance.

  3. Protein sequence classification with improved extreme learning machine algorithms.

    Science.gov (United States)

    Cao, Jiuwen; Xiong, Lianglin

    2014-01-01

    Precisely classifying a protein sequence from a large biological protein sequences database plays an important role for developing competitive pharmacological products. Comparing the unseen sequence with all the identified protein sequences and returning the category index with the highest similarity scored protein, conventional methods are usually time-consuming. Therefore, it is urgent and necessary to build an efficient protein sequence classification system. In this paper, we study the performance of protein sequence classification using SLFNs. The recent efficient extreme learning machine (ELM) and its invariants are utilized as the training algorithms. The optimal pruned ELM is first employed for protein sequence classification in this paper. To further enhance the performance, the ensemble based SLFNs structure is constructed where multiple SLFNs with the same number of hidden nodes and the same activation function are used as ensembles. For each ensemble, the same training algorithm is adopted. The final category index is derived using the majority voting method. Two approaches, namely, the basic ELM and the OP-ELM, are adopted for the ensemble based SLFNs. The performance is analyzed and compared with several existing methods using datasets obtained from the Protein Information Resource center. The experimental results show the priority of the proposed algorithms.

  4. Machine Learning

    CERN Document Server

    CERN. Geneva

    2017-01-01

    Machine learning, which builds on ideas in computer science, statistics, and optimization, focuses on developing algorithms to identify patterns and regularities in data, and using these learned patterns to make predictions on new observations. Boosted by its industrial and commercial applications, the field of machine learning is quickly evolving and expanding. Recent advances have seen great success in the realms of computer vision, natural language processing, and broadly in data science. Many of these techniques have already been applied in particle physics, for instance for particle identification, detector monitoring, and the optimization of computer resources. Modern machine learning approaches, such as deep learning, are only just beginning to be applied to the analysis of High Energy Physics data to approach more and more complex problems. These classes will review the framework behind machine learning and discuss recent developments in the field.

  5. Understanding Neural Networks for Machine Learning using Microsoft Neural Network Algorithm

    National Research Council Canada - National Science Library

    Nagesh Ramprasad

    2016-01-01

    .... In this research, focus is on the Microsoft Neural System Algorithm. The Microsoft Neural System Algorithm is a simple implementation of the adaptable and popular neural networks that are used in the machine learning...

  6. Modeling the Swift BAT Trigger Algorithm with Machine Learning

    Science.gov (United States)

    Graff, Philip B.; Lien, Amy Y.; Baker, John G.; Sakamoto, Takanori

    2015-01-01

    To draw inferences about gamma-ray burst (GRB) source populations based on Swift observations, it is essential to understand the detection efficiency of the Swift burst alert telescope (BAT). This study considers the problem of modeling the Swift BAT triggering algorithm for long GRBs, a computationally expensive procedure, and models it using machine learning algorithms. A large sample of simulated GRBs from Lien et al. (2014) is used to train various models: random forests, boosted decision trees (with AdaBoost), support vector machines, and artificial neural networks. The best models have accuracies of approximately greater than 97% (approximately less than 3% error), which is a significant improvement on a cut in GRB flux which has an accuracy of 89:6% (10:4% error). These models are then used to measure the detection efficiency of Swift as a function of redshift z, which is used to perform Bayesian parameter estimation on the GRB rate distribution. We find a local GRB rate density of eta(sub 0) approximately 0.48(+0.41/-0.23) Gpc(exp -3) yr(exp -1) with power-law indices of eta(sub 1) approximately 1.7(+0.6/-0.5) and eta(sub 2) approximately -5.9(+5.7/-0.1) for GRBs above and below a break point of z(sub 1) approximately 6.8(+2.8/-3.2). This methodology is able to improve upon earlier studies by more accurately modeling Swift detection and using this for fully Bayesian model fitting. The code used in this is analysis is publicly available online.

  7. Modeling the Swift Bat Trigger Algorithm with Machine Learning

    Science.gov (United States)

    Graff, Philip B.; Lien, Amy Y.; Baker, John G.; Sakamoto, Takanori

    2016-01-01

    To draw inferences about gamma-ray burst (GRB) source populations based on Swift observations, it is essential to understand the detection efficiency of the Swift burst alert telescope (BAT). This study considers the problem of modeling the Swift / BAT triggering algorithm for long GRBs, a computationally expensive procedure, and models it using machine learning algorithms. A large sample of simulated GRBs from Lien et al. is used to train various models: random forests, boosted decision trees (with AdaBoost), support vector machines, and artificial neural networks. The best models have accuracies of greater than or equal to 97 percent (less than or equal to 3 percent error), which is a significant improvement on a cut in GRB flux, which has an accuracy of 89.6 percent (10.4 percent error). These models are then used to measure the detection efficiency of Swift as a function of redshift z, which is used to perform Bayesian parameter estimation on the GRB rate distribution. We find a local GRB rate density of n (sub 0) approaching 0.48 (sup plus 0.41) (sub minus 0.23) per cubic gigaparsecs per year with power-law indices of n (sub 1) approaching 1.7 (sup plus 0.6) (sub minus 0.5) and n (sub 2) approaching minus 5.9 (sup plus 5.7) (sub minus 0.1) for GRBs above and below a break point of z (redshift) (sub 1) approaching 6.8 (sup plus 2.8) (sub minus 3.2). This methodology is able to improve upon earlier studies by more accurately modeling Swift detection and using this for fully Bayesian model fitting.

  8. MODIS Aerosol Optical Depth Bias Adjustment Using Machine Learning Algorithms

    Science.gov (United States)

    Albayrak, A.; Wei, J. C.; Petrenko, M.; Lary, D. J.; Leptoukh, G. G.

    2011-12-01

    Over the past decade, global aerosol observations have been conducted by space-borne sensors, airborne instruments, and ground-base network measurements. Unfortunately, quite often we encounter the differences of aerosol measurements by different well-calibrated instruments, even with a careful collocation in time and space. The differences might be rather substantial, and need to be better understood and accounted for when merging data from many sensors. The possible causes for these differences come from instrumental bias, different satellite viewing geometries, calibration issues, dynamically changing atmospheric and the surface conditions, and other "regressors", resulting in random and systematic errors in the final aerosol products. In this study, we will concentrate on the subject of removing biases and the systematic errors from MODIS (both Terra and Aqua) aerosol product, using Machine Learning algorithms. While we are assessing our regressors in our system when comparing global aerosol products, the Aerosol Robotic Network of sun-photometers (AERONET) will be used as a baseline for evaluating the MODIS aerosol products (Dark Target for land and ocean, and Deep Blue retrieval algorithms). The results of bias adjustment for MODIS Terra and Aqua are planned to be incorporated into the AeroStat Giovanni as part of the NASA ACCESS funded AeroStat project.

  9. Effective and efficient optics inspection approach using machine learning algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Abdulla, G; Kegelmeyer, L; Liao, Z; Carr, W

    2010-11-02

    The Final Optics Damage Inspection (FODI) system automatically acquires and utilizes the Optics Inspection (OI) system to analyze images of the final optics at the National Ignition Facility (NIF). During each inspection cycle up to 1000 images acquired by FODI are examined by OI to identify and track damage sites on the optics. The process of tracking growing damage sites on the surface of an optic can be made more effective by identifying and removing signals associated with debris or reflections. The manual process to filter these false sites is daunting and time consuming. In this paper we discuss the use of machine learning tools and data mining techniques to help with this task. We describe the process to prepare a data set that can be used for training and identifying hardware reflections in the image data. In order to collect training data, the images are first automatically acquired and analyzed with existing software and then relevant features such as spatial, physical and luminosity measures are extracted for each site. A subset of these sites is 'truthed' or manually assigned a class to create training data. A supervised classification algorithm is used to test if the features can predict the class membership of new sites. A suite of self-configuring machine learning tools called 'Avatar Tools' is applied to classify all sites. To verify, we used 10-fold cross correlation and found the accuracy was above 99%. This substantially reduces the number of false alarms that would otherwise be sent for more extensive investigation.

  10. How the machine ‘thinks’: Understanding opacity in machine learning algorithms

    Directory of Open Access Journals (Sweden)

    Jenna Burrell

    2016-01-01

    Full Text Available This article considers the issue of opacity as a problem for socially consequential mechanisms of classification and ranking, such as spam filters, credit card fraud detection, search engines, news trends, market segmentation and advertising, insurance or loan qualification, and credit scoring. These mechanisms of classification all frequently rely on computational algorithms, and in many cases on machine learning algorithms to do this work. In this article, I draw a distinction between three forms of opacity: (1 opacity as intentional corporate or state secrecy, (2 opacity as technical illiteracy, and (3 an opacity that arises from the characteristics of machine learning algorithms and the scale required to apply them usefully. The analysis in this article gets inside the algorithms themselves. I cite existing literatures in computer science, known industry practices (as they are publicly presented, and do some testing and manipulation of code as a form of lightweight code audit. I argue that recognizing the distinct forms of opacity that may be coming into play in a given application is a key to determining which of a variety of technical and non-technical solutions could help to prevent harm.

  11. How the machine ‘thinks’: Understanding opacity in machine learning algorithms

    Directory of Open Access Journals (Sweden)

    Jenna Burrell

    2016-01-01

    Full Text Available This article considers the issue of opacity as a problem for socially consequential mechanisms of classification and ranking, such as spam filters, credit card fraud detection, search engines, news trends, market segmentation and advertising, insurance or loan qualification, and credit scoring. These mechanisms of classification all frequently rely on computational algorithms, and in many cases on machine learning algorithms to do this work. In this article, I draw a distinction between three forms of opacity: (1 opacity as intentional corporate or state secrecy, (2 opacity as technical illiteracy, and (3 an opacity that arises from the characteristics of machine learning algorithms and the scale required to apply them usefully. The analysis in this article gets inside the algorithms themselves. I cite existing literatures in computer science, known industry practices (as they are publicly presented, and do some testing and manipulation of code as a form of lightweight code audit. I argue that recognizing the distinct forms of opacity that may be coming into play in a given application is a key to determining which of a variety of technical and non-technical solutions could help to prevent harm.

  12. 3D Visualization of Machine Learning Algorithms with Astronomical Data

    Science.gov (United States)

    Kent, Brian R.

    2016-01-01

    We present innovative machine learning (ML) methods using unsupervised clustering with minimum spanning trees (MSTs) to study 3D astronomical catalogs. Utilizing Python code to build trees based on galaxy catalogs, we can render the results with the visualization suite Blender to produce interactive 360 degree panoramic videos. The catalogs and their ML results can be explored in a 3D space using mobile devices, tablets or desktop browsers. We compare the statistics of the MST results to a number of machine learning methods relating to optimization and efficiency.

  13. Advanced Credit-Assignment CMAC Algorithm for Robust Self-Learning and Self-Maintenance Machine

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lei(张蕾); LEE Jay; CAO Qixin(曹其新); WANG Lei(王磊)

    2004-01-01

    Smart machine necessitates self-learning capabilities to assess its own performance and predict its behavior. To achieve self-maintenance intelligence, robust and fast learning algorithms need to be embedded in machine for real-time decision. This paper presents a credit-assignment cerebellar model articulation controller (CA-CMAC) algorithm to reduce learning interference in machine learning. The developed algorithms on credit matrix and the credit correlation matrix are presented. The error of the training sample distributed to the activated memory cell is proportional to the cell's credibility, which is determined by its activated times. The convergence processes of CA-CMAC in cyclic learning are further analyzed with two convergence theorems. In addition, simulation results on the inverse kinematics of 2-degree-of-freedom planar robot arm are used to prove the convergence theorems and show that CA-CMAC converges faster than conventional machine learning.

  14. Validating Machine Learning Algorithms for Twitter Data Against Established Measures of Suicidality.

    Science.gov (United States)

    Braithwaite, Scott R; Giraud-Carrier, Christophe; West, Josh; Barnes, Michael D; Hanson, Carl Lee

    2016-05-16

    One of the leading causes of death in the United States (US) is suicide and new methods of assessment are needed to track its risk in real time. Our objective is to validate the use of machine learning algorithms for Twitter data against empirically validated measures of suicidality in the US population. Using a machine learning algorithm, the Twitter feeds of 135 Mechanical Turk (MTurk) participants were compared with validated, self-report measures of suicide risk. Our findings show that people who are at high suicidal risk can be easily differentiated from those who are not by machine learning algorithms, which accurately identify the clinically significant suicidal rate in 92% of cases (sensitivity: 53%, specificity: 97%, positive predictive value: 75%, negative predictive value: 93%). Machine learning algorithms are efficient in differentiating people who are at a suicidal risk from those who are not. Evidence for suicidality can be measured in nonclinical populations using social media data.

  15. Experimental analysis of the performance of machine learning algorithms in the classification of navigation accident records

    Directory of Open Access Journals (Sweden)

    REIS, M V. S. de A.

    2017-06-01

    Full Text Available This paper aims to evaluate the use of machine learning techniques in a database of marine accidents. We analyzed and evaluated the main causes and types of marine accidents in the Northern Fluminense region. For this, machine learning techniques were used. The study showed that the modeling can be done in a satisfactory manner using different configurations of classification algorithms, varying the activation functions and training parameters. The SMO (Sequential Minimal Optimization algorithm showed the best performance result.

  16. Solar Flare Prediction Model with Three Machine-Learning Algorithms Using Ultraviolet Brightening and Vector Magnetogram

    CERN Document Server

    Nishizuka, N; Kubo, Y; Den, M; Watari, S; Ishii, M

    2016-01-01

    We developed a flare prediction model using machine learning, which is optimized to predict the maximum class of flares occurring in the following 24 h. Machine learning is used to devise algorithms that can learn from and make decisions on a huge amount of data. We used solar observation data during the period 2010-2015, such as vector magnetogram, ultraviolet (UV) emission, and soft X-ray emission taken by the Solar Dynamics Observatory and the Geostationary Operational Environmental Satellite. We detected active regions from the full-disk magnetogram, from which 60 features were extracted with their time differentials, including magnetic neutral lines, the current helicity, the UV brightening, and the flare history. After standardizing the feature database, we fully shuffled and randomly separated it into two for training and testing. To investigate which algorithm is best for flare prediction, we compared three machine learning algorithms: the support vector machine (SVM), k-nearest neighbors (k-NN), and ...

  17. A method for classification of network traffic based on C5.0 Machine Learning Algorithm

    DEFF Research Database (Denmark)

    Bujlow, Tomasz; Riaz, M. Tahir; Pedersen, Jens Myrup

    2012-01-01

    current network traffic. To overcome the drawbacks of existing methods for traffic classification, usage of C5.0 Machine Learning Algorithm (MLA) was proposed. On the basis of statistical traffic information received from volunteers and C5.0 algorithm we constructed a boosted classifier, which was shown...

  18. Two Projection Pursuit Algorithms for Machine Learning under Non-Stationarity

    CERN Document Server

    Blythe, Duncan A J

    2011-01-01

    This thesis derives, tests and applies two linear projection algorithms for machine learning under non-stationarity. The first finds a direction in a linear space upon which a data set is maximally non-stationary. The second aims to robustify two-way classification against non-stationarity. The algorithm is tested on a key application scenario, namely Brain Computer Interfacing.

  19. Quantum machine learning.

    Science.gov (United States)

    Biamonte, Jacob; Wittek, Peter; Pancotti, Nicola; Rebentrost, Patrick; Wiebe, Nathan; Lloyd, Seth

    2017-09-13

    Fuelled by increasing computer power and algorithmic advances, machine learning techniques have become powerful tools for finding patterns in data. Quantum systems produce atypical patterns that classical systems are thought not to produce efficiently, so it is reasonable to postulate that quantum computers may outperform classical computers on machine learning tasks. The field of quantum machine learning explores how to devise and implement quantum software that could enable machine learning that is faster than that of classical computers. Recent work has produced quantum algorithms that could act as the building blocks of machine learning programs, but the hardware and software challenges are still considerable.

  20. Machine-Learning Algorithms to Automate Morphological and Functional Assessments in 2D Echocardiography.

    Science.gov (United States)

    Narula, Sukrit; Shameer, Khader; Salem Omar, Alaa Mabrouk; Dudley, Joel T; Sengupta, Partho P

    2016-11-29

    Machine-learning models may aid cardiac phenotypic recognition by using features of cardiac tissue deformation. This study investigated the diagnostic value of a machine-learning framework that incorporates speckle-tracking echocardiographic data for automated discrimination of hypertrophic cardiomyopathy (HCM) from physiological hypertrophy seen in athletes (ATH). Expert-annotated speckle-tracking echocardiographic datasets obtained from 77 ATH and 62 HCM patients were used for developing an automated system. An ensemble machine-learning model with 3 different machine-learning algorithms (support vector machines, random forests, and artificial neural networks) was developed and a majority voting method was used for conclusive predictions with further K-fold cross-validation. Feature selection using an information gain (IG) algorithm revealed that volume was the best predictor for differentiating between HCM ands. ATH (IG = 0.24) followed by mid-left ventricular segmental (IG = 0.134) and average longitudinal strain (IG = 0.131). The ensemble machine-learning model showed increased sensitivity and specificity compared with early-to-late diastolic transmitral velocity ratio (p 13 mm. In this subgroup analysis, the automated model continued to show equal sensitivity, but increased specificity relative to early-to-late diastolic transmitral velocity ratio, e', and strain. Our results suggested that machine-learning algorithms can assist in the discrimination of physiological versus pathological patterns of hypertrophic remodeling. This effort represents a step toward the development of a real-time, machine-learning-based system for automated interpretation of echocardiographic images, which may help novice readers with limited experience. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  1. Prediction of Employee Turnover in Organizations using Machine Learning Algorithms

    Directory of Open Access Journals (Sweden)

    Rohit Punnoose

    2016-10-01

    Full Text Available Employee turnover has been identified as a key issue for organizations because of its adverse impact on work place productivity and long term growth strategies. To solve this problem, organizations use machine learning techniques to predict employee turnover. Accurate predictions enable organizations to take action for retention or succession planning of employees. However, the data for this modeling problem comes from HR Information Systems (HRIS; these are typically under-funded compared to the Information Systems of other domains in the organization which are directly related to its priorities. This leads to the prevalence of noise in the data that renders predictive models prone to over-fitting and hence inaccurate. This is the key challenge that is the focus of this paper, and one that has not been addressed historically. The novel contribution of this paper is to explore the application of Extreme Gradient Boosting (XGBoost technique which is more robust because of its regularization formulation. Data from the HRIS of a global retailer is used to compare XGBoost against six historically used supervised classifiers and demonstrate its significantly higher accuracy for predicting employee turnover.

  2. Network Intrusion Detection System Based On Machine Learning Algorithms

    Directory of Open Access Journals (Sweden)

    Vipin Das

    2010-12-01

    Full Text Available Network and system security is of paramount importance in the present data communication environment. Hackers and intruders can create many successful attempts to cause the crash of the networks and web services by unauthorized intrusion. New threats and associated solutions to prevent these threats are emerging together with the secured system evolution. Intrusion Detection Systems (IDS are one of these solutions. The main function of Intrusion Detection System is to protect the resources from threats. It analyzes and predicts the behaviours of users, and then these behaviours will be considered an attack or a normal behaviour. We use Rough Set Theory (RST and Support Vector Machine (SVM to detect network intrusions. First, packets are captured from the network, RST is used to pre-process the data and reduce the dimensions. The features selected by RST will be sent to SVM model to learn and test respectively. The method is effective to decrease the space density of data. The experiments compare the results with Principal Component Analysis (PCA and show RST and SVM schema could reduce the false positive rate and increase the accuracy.

  3. A new machine learning algorithm for removal of salt and pepper noise

    Science.gov (United States)

    Wang, Yi; Adhami, Reza; Fu, Jian

    2015-07-01

    Supervised machine learning algorithm has been extensively studied and applied to different fields of image processing in past decades. This paper proposes a new machine learning algorithm, called margin setting (MS), for restoring images that are corrupted by salt and pepper impulse noise. Margin setting generates decision surface to classify the noise pixels and non-noise pixels. After the noise pixels are detected, a modified ranked order mean (ROM) filter is used to replace the corrupted pixels for images reconstruction. Margin setting algorithm is tested with grayscale and color images for different noise densities. The experimental results are compared with those of the support vector machine (SVM) and standard median filter (SMF). The results show that margin setting outperforms these methods with higher Peak Signal-to-Noise Ratio (PSNR), lower mean square error (MSE), higher image enhancement factor (IEF) and higher Structural Similarity Index (SSIM).

  4. New Dandelion Algorithm Optimizes Extreme Learning Machine for Biomedical Classification Problems

    Directory of Open Access Journals (Sweden)

    Xiguang Li

    2017-01-01

    Full Text Available Inspired by the behavior of dandelion sowing, a new novel swarm intelligence algorithm, namely, dandelion algorithm (DA, is proposed for global optimization of complex functions in this paper. In DA, the dandelion population will be divided into two subpopulations, and different subpopulations will undergo different sowing behaviors. Moreover, another sowing method is designed to jump out of local optimum. In order to demonstrate the validation of DA, we compare the proposed algorithm with other existing algorithms, including bat algorithm, particle swarm optimization, and enhanced fireworks algorithm. Simulations show that the proposed algorithm seems much superior to other algorithms. At the same time, the proposed algorithm can be applied to optimize extreme learning machine (ELM for biomedical classification problems, and the effect is considerable. At last, we use different fusion methods to form different fusion classifiers, and the fusion classifiers can achieve higher accuracy and better stability to some extent.

  5. Performance Evaluation of Machine Learning Algorithms for Urban Pattern Recognition from Multi-spectral Satellite Images

    Directory of Open Access Journals (Sweden)

    Marc Wieland

    2014-03-01

    Full Text Available In this study, a classification and performance evaluation framework for the recognition of urban patterns in medium (Landsat ETM, TM and MSS and very high resolution (WorldView-2, Quickbird, Ikonos multi-spectral satellite images is presented. The study aims at exploring the potential of machine learning algorithms in the context of an object-based image analysis and to thoroughly test the algorithm’s performance under varying conditions to optimize their usage for urban pattern recognition tasks. Four classification algorithms, Normal Bayes, K Nearest Neighbors, Random Trees and Support Vector Machines, which represent different concepts in machine learning (probabilistic, nearest neighbor, tree-based, function-based, have been selected and implemented on a free and open-source basis. Particular focus is given to assess the generalization ability of machine learning algorithms and the transferability of trained learning machines between different image types and image scenes. Moreover, the influence of the number and choice of training data, the influence of the size and composition of the feature vector and the effect of image segmentation on the classification accuracy is evaluated.

  6. Clustering and Candidate Motif Detection in Exosomal miRNAs by Application of Machine Learning Algorithms.

    Science.gov (United States)

    Gaur, Pallavi; Chaturvedi, Anoop

    2017-07-22

    The clustering pattern and motifs give immense information about any biological data. An application of machine learning algorithms for clustering and candidate motif detection in miRNAs derived from exosomes is depicted in this paper. Recent progress in the field of exosome research and more particularly regarding exosomal miRNAs has led much bioinformatic-based research to come into existence. The information on clustering pattern and candidate motifs in miRNAs of exosomal origin would help in analyzing existing, as well as newly discovered miRNAs within exosomes. Along with obtaining clustering pattern and candidate motifs in exosomal miRNAs, this work also elaborates the usefulness of the machine learning algorithms that can be efficiently used and executed on various programming languages/platforms. Data were clustered and sequence candidate motifs were detected successfully. The results were compared and validated with some available web tools such as 'BLASTN' and 'MEME suite'. The machine learning algorithms for aforementioned objectives were applied successfully. This work elaborated utility of machine learning algorithms and language platforms to achieve the tasks of clustering and candidate motif detection in exosomal miRNAs. With the information on mentioned objectives, deeper insight would be gained for analyses of newly discovered miRNAs in exosomes which are considered to be circulating biomarkers. In addition, the execution of machine learning algorithms on various language platforms gives more flexibility to users to try multiple iterations according to their requirements. This approach can be applied to other biological data-mining tasks as well.

  7. Robust algorithm for arrhythmia classification in ECG using extreme learning machine

    Directory of Open Access Journals (Sweden)

    Shin Kwangsoo

    2009-10-01

    Full Text Available Abstract Background Recently, extensive studies have been carried out on arrhythmia classification algorithms using artificial intelligence pattern recognition methods such as neural network. To improve practicality, many studies have focused on learning speed and the accuracy of neural networks. However, algorithms based on neural networks still have some problems concerning practical application, such as slow learning speeds and unstable performance caused by local minima. Methods In this paper we propose a novel arrhythmia classification algorithm which has a fast learning speed and high accuracy, and uses Morphology Filtering, Principal Component Analysis and Extreme Learning Machine (ELM. The proposed algorithm can classify six beat types: normal beat, left bundle branch block, right bundle branch block, premature ventricular contraction, atrial premature beat, and paced beat. Results The experimental results of the entire MIT-BIH arrhythmia database demonstrate that the performances of the proposed algorithm are 98.00% in terms of average sensitivity, 97.95% in terms of average specificity, and 98.72% in terms of average accuracy. These accuracy levels are higher than or comparable with those of existing methods. We make a comparative study of algorithm using an ELM, back propagation neural network (BPNN, radial basis function network (RBFN, or support vector machine (SVM. Concerning the aspect of learning time, the proposed algorithm using ELM is about 290, 70, and 3 times faster than an algorithm using a BPNN, RBFN, and SVM, respectively. Conclusion The proposed algorithm shows effective accuracy performance with a short learning time. In addition we ascertained the robustness of the proposed algorithm by evaluating the entire MIT-BIH arrhythmia database.

  8. The evaluation of functional heart condition with machine learning algorithms

    Science.gov (United States)

    Overchuk, K. V.; Lezhnina, I. A.; Uvarov, A. A.; Perchatkin, V. A.; Lvova, A. B.

    2017-08-01

    This paper is considering the most suitable algorithms to build a classifier for evaluating of the functional heart condition with the ability to estimate the direction and progress of the patient’s treatment. The cons and pros of algorithms was analyzed with respect to the problem posed. The most optimal solution has been given and justified.

  9. Autoclassification of the Variable 3XMM Sources Using the Random Forest Machine Learning Algorithm

    CERN Document Server

    Farrell, Sean A; Lo, Kitty K

    2015-01-01

    In the current era of large surveys and massive data sets, autoclassification of astrophysical sources using intelligent algorithms is becoming increasingly important. In this paper we present the catalog of variable sources in the Third XMM-Newton Serendipitous Source catalog (3XMM) autoclassified using the Random Forest machine learning algorithm. We used a sample of manually classified variable sources from the second data release of the XMM-Newton catalogs (2XMMi-DR2) to train the classifier, obtaining an accuracy of ~92%. We also evaluated the effectiveness of identifying spurious detections using a sample of spurious sources, achieving an accuracy of ~95%. Manual investigation of a random sample of classified sources confirmed these accuracy levels and showed that the Random Forest machine learning algorithm is highly effective at automatically classifying 3XMM sources. Here we present the catalog of classified 3XMM variable sources. We also present three previously unidentified unusual sources that wer...

  10. Developing Fire Detection Algorithms by Geostationary Orbiting Platforms and Machine Learning Techniques

    Science.gov (United States)

    Salvador, Pablo; Sanz, Julia; Garcia, Miguel; Casanova, Jose Luis

    2016-08-01

    Fires in general and forest fires specific are a major concern in terms of economical and biological loses. Remote sensing technologies have been focusing on developing several algorithms, adapted to a large kind of sensors, platforms and regions in order to obtain hotspots as faster as possible. The aim of this study is to establish an automatic methodology to develop hotspots detection algorithms with Spinning Enhanced Visible and Infrared Imager (SEVIRI) sensor on board Meteosat Second Generation platform (MSG) based on machine learning techniques that can be exportable to others geostationary platforms and sensors and to any area of the Earth. The sensitivity (SE), specificity (SP) and accuracy (AC) parameters have been analyzed in order to develop the final machine learning algorithm taking into account the preferences and final use of the predicted data.

  11. Machine Learning Algorithms for Automatic Classification of Marmoset Vocalizations

    Science.gov (United States)

    Ribeiro, Sidarta; Pereira, Danillo R.; Papa, João P.; de Albuquerque, Victor Hugo C.

    2016-01-01

    Automatic classification of vocalization type could potentially become a useful tool for acoustic the monitoring of captive colonies of highly vocal primates. However, for classification to be useful in practice, a reliable algorithm that can be successfully trained on small datasets is necessary. In this work, we consider seven different classification algorithms with the goal of finding a robust classifier that can be successfully trained on small datasets. We found good classification performance (accuracy > 0.83 and F1-score > 0.84) using the Optimum Path Forest classifier. Dataset and algorithms are made publicly available. PMID:27654941

  12. 基于支持向量机的分段线性学习方法%A Subsection Learning Algorithm Based on Support Vector Machines

    Institute of Scientific and Technical Information of China (English)

    杨强; 吴中福; 王茜

    2003-01-01

    In this paper, we discuss drawback of traditional subsection learning algorithm in pattern recognition and exiting support vector machines (including kernel functions), the necessity of using subsection learning algorithm based on support vector machines as well as. In turn, a subsection learning algorithm based on support vector machines, is proposed in this paper.

  13. A Comparison Study of Machine Learning Based Algorithms for Fatigue Crack Growth Calculation.

    Science.gov (United States)

    Wang, Hongxun; Zhang, Weifang; Sun, Fuqiang; Zhang, Wei

    2017-05-18

    The relationships between the fatigue crack growth rate ( d a / d N ) and stress intensity factor range ( Δ K ) are not always linear even in the Paris region. The stress ratio effects on fatigue crack growth rate are diverse in different materials. However, most existing fatigue crack growth models cannot handle these nonlinearities appropriately. The machine learning method provides a flexible approach to the modeling of fatigue crack growth because of its excellent nonlinear approximation and multivariable learning ability. In this paper, a fatigue crack growth calculation method is proposed based on three different machine learning algorithms (MLAs): extreme learning machine (ELM), radial basis function network (RBFN) and genetic algorithms optimized back propagation network (GABP). The MLA based method is validated using testing data of different materials. The three MLAs are compared with each other as well as the classical two-parameter model ( K * approach). The results show that the predictions of MLAs are superior to those of K * approach in accuracy and effectiveness, and the ELM based algorithms show overall the best agreement with the experimental data out of the three MLAs, for its global optimization and extrapolation ability.

  14. Breast Cancer Diagnosis Using Machine Learning Algorithms - A Survey

    Directory of Open Access Journals (Sweden)

    B.M.Gayathri

    2013-06-01

    Full Text Available Breast cancer has become a common factor now-a-days. Despite the fact, not all general hospitalshave the facilities to diagnose breast cancer through mammograms. Waiting for diagnosing a breastcancer for a long time may increase the possibility of the cancer spreading. Therefore a computerizedbreast cancer diagnosis has been developed to reduce the time taken to diagnose the breast cancer andreduce the death rate. This paper summarizes the survey on breast cancer diagnosis using various machinelearning algorithms and methods, which are used to improve the accuracy of predicting cancer. This surveycan also help us to know about number of papers that are implemented to diagnose the breast cancer.

  15. Solar Flare Prediction Model with Three Machine-learning Algorithms using Ultraviolet Brightening and Vector Magnetograms

    Science.gov (United States)

    Nishizuka, N.; Sugiura, K.; Kubo, Y.; Den, M.; Watari, S.; Ishii, M.

    2017-02-01

    We developed a flare prediction model using machine learning, which is optimized to predict the maximum class of flares occurring in the following 24 hr. Machine learning is used to devise algorithms that can learn from and make decisions on a huge amount of data. We used solar observation data during the period 2010–2015, such as vector magnetograms, ultraviolet (UV) emission, and soft X-ray emission taken by the Solar Dynamics Observatory and the Geostationary Operational Environmental Satellite. We detected active regions (ARs) from the full-disk magnetogram, from which ∼60 features were extracted with their time differentials, including magnetic neutral lines, the current helicity, the UV brightening, and the flare history. After standardizing the feature database, we fully shuffled and randomly separated it into two for training and testing. To investigate which algorithm is best for flare prediction, we compared three machine-learning algorithms: the support vector machine, k-nearest neighbors (k-NN), and extremely randomized trees. The prediction score, the true skill statistic, was higher than 0.9 with a fully shuffled data set, which is higher than that for human forecasts. It was found that k-NN has the highest performance among the three algorithms. The ranking of the feature importance showed that previous flare activity is most effective, followed by the length of magnetic neutral lines, the unsigned magnetic flux, the area of UV brightening, and the time differentials of features over 24 hr, all of which are strongly correlated with the flux emergence dynamics in an AR.

  16. Performance Evaluation of Machine Learning Algorithms for Urban Pattern Recognition from Multi-spectral Satellite Images

    OpenAIRE

    Marc Wieland; Massimiliano Pittore

    2014-01-01

    In this study, a classification and performance evaluation framework for the recognition of urban patterns in medium (Landsat ETM, TM and MSS) and very high resolution (WorldView-2, Quickbird, Ikonos) multi-spectral satellite images is presented. The study aims at exploring the potential of machine learning algorithms in the context of an object-based image analysis and to thoroughly test the algorithm’s performance under varying conditions to optimize their usage for urban pattern recognitio...

  17. Evaluating data distribution and drift vulnerabilities of machine learning algorithms in secure and adversarial environments

    Science.gov (United States)

    Nelson, Kevin; Corbin, George; Blowers, Misty

    2014-05-01

    Machine learning is continuing to gain popularity due to its ability to solve problems that are difficult to model using conventional computer programming logic. Much of the current and past work has focused on algorithm development, data processing, and optimization. Lately, a subset of research has emerged which explores issues related to security. This research is gaining traction as systems employing these methods are being applied to both secure and adversarial environments. One of machine learning's biggest benefits, its data-driven versus logic-driven approach, is also a weakness if the data on which the models rely are corrupted. Adversaries could maliciously influence systems which address drift and data distribution changes using re-training and online learning. Our work is focused on exploring the resilience of various machine learning algorithms to these data-driven attacks. In this paper, we present our initial findings using Monte Carlo simulations, and statistical analysis, to explore the maximal achievable shift to a classification model, as well as the required amount of control over the data.

  18. Are you bleeding? Validation of a machine-learning algorithm for determination of blood volume status: application to remote triage

    National Research Council Canada - National Science Library

    Caroline A. Rickards; Nisarg Vyas; Kathy L. Ryan; Kevin R. Ward; David Andre; Gennifer M. Hurst; Chelsea R. Barrera; Victor A. Convertino

    2014-01-01

    .... The purpose of this study was to test the hypothesis that low-level physiological signals can be used to develop a machine-learning algorithm for tracking changes in central blood volume that will...

  19. Processing of rock core microtomography images: Using seven different machine learning algorithms

    Science.gov (United States)

    Chauhan, Swarup; Rühaak, Wolfram; Khan, Faisal; Enzmann, Frieder; Mielke, Philipp; Kersten, Michael; Sass, Ingo

    2016-01-01

    The abilities of machine learning algorithms to process X-ray microtomographic rock images were determined. The study focused on the use of unsupervised, supervised, and ensemble clustering techniques, to segment X-ray computer microtomography rock images and to estimate the pore spaces and pore size diameters in the rocks. The unsupervised k-means technique gave the fastest processing time and the supervised least squares support vector machine technique gave the slowest processing time. Multiphase assemblages of solid phases (minerals and finely grained minerals) and the pore phase were found on visual inspection of the images. In general, the accuracy in terms of porosity values and pore size distribution was found to be strongly affected by the feature vectors selected. Relative porosity average value of 15.92±1.77% retrieved from all the seven machine learning algorithm is in very good agreement with the experimental results of 17±2%, obtained using gas pycnometer. Of the supervised techniques, the least square support vector machine technique is superior to feed forward artificial neural network because of its ability to identify a generalized pattern. In the ensemble classification techniques boosting technique converged faster compared to bragging technique. The k-means technique outperformed the fuzzy c-means and self-organized maps techniques in terms of accuracy and speed.

  20. Machine Learning Algorithms for $b$-Jet Tagging at the ATLAS Experiment

    CERN Document Server

    Paganini, Michela; The ATLAS collaboration

    2017-01-01

    The separation of b-quark initiated jets from those coming from lighter quark flavours (b-tagging) is a fundamental tool for the ATLAS physics program at the CERN Large Hadron Collider. The most powerful b-tagging algorithms combine information from low-level taggers exploiting reconstructed track and vertex information using a multivariate classifier. The potential of modern Machine Learning techniques such as Recurrent Neural Networks and Deep Learning is explored using simulated events, and compared to that achievable from more traditional classifiers such as boosted decision trees.

  1. Machine Learning

    Energy Technology Data Exchange (ETDEWEB)

    Chikkagoudar, Satish; Chatterjee, Samrat; Thomas, Dennis G.; Carroll, Thomas E.; Muller, George

    2017-04-21

    The absence of a robust and unified theory of cyber dynamics presents challenges and opportunities for using machine learning based data-driven approaches to further the understanding of the behavior of such complex systems. Analysts can also use machine learning approaches to gain operational insights. In order to be operationally beneficial, cybersecurity machine learning based models need to have the ability to: (1) represent a real-world system, (2) infer system properties, and (3) learn and adapt based on expert knowledge and observations. Probabilistic models and Probabilistic graphical models provide these necessary properties and are further explored in this chapter. Bayesian Networks and Hidden Markov Models are introduced as an example of a widely used data driven classification/modeling strategy.

  2. Identifying presence of correlated errors in GRACE monthly harmonic coefficients using machine learning algorithms

    Science.gov (United States)

    Piretzidis, Dimitrios; Sra, Gurveer; Karantaidis, George; Sideris, Michael G.

    2017-04-01

    A new method for identifying correlated errors in Gravity Recovery and Climate Experiment (GRACE) monthly harmonic coefficients has been developed and tested. Correlated errors are present in the differences between monthly GRACE solutions, and can be suppressed using a de-correlation filter. In principle, the de-correlation filter should be implemented only on coefficient series with correlated errors to avoid losing useful geophysical information. In previous studies, two main methods of implementing the de-correlation filter have been utilized. In the first one, the de-correlation filter is implemented starting from a specific minimum order until the maximum order of the monthly solution examined. In the second one, the de-correlation filter is implemented only on specific coefficient series, the selection of which is based on statistical testing. The method proposed in the present study exploits the capabilities of supervised machine learning algorithms such as neural networks and support vector machines (SVMs). The pattern of correlated errors can be described by several numerical and geometric features of the harmonic coefficient series. The features of extreme cases of both correlated and uncorrelated coefficients are extracted and used for the training of the machine learning algorithms. The trained machine learning algorithms are later used to identify correlated errors and provide the probability of a coefficient series to be correlated. Regarding SVMs algorithms, an extensive study is performed with various kernel functions in order to find the optimal training model for prediction. The selection of the optimal training model is based on the classification accuracy of the trained SVM algorithm on the same samples used for training. Results show excellent performance of all algorithms with a classification accuracy of 97% - 100% on a pre-selected set of training samples, both in the validation stage of the training procedure and in the subsequent use of

  3. A New Incremental Support Vector Machine Algorithm

    Directory of Open Access Journals (Sweden)

    Wenjuan Zhao

    2012-10-01

    Full Text Available Support vector machine is a popular method in machine learning. Incremental support vector machine algorithm is ideal selection in the face of large learning data set. In this paper a new incremental support vector machine learning algorithm is proposed to improve efficiency of large scale data processing. The model of this incremental learning algorithm is similar to the standard support vector machine. The goal concept is updated by incremental learning. Each training procedure only includes new training data. The time complexity is independent of whole training set. Compared with the other incremental version, the training speed of this approach is improved and the change of hyperplane is reduced.

  4. Classification and authentication of unknown water samples using machine learning algorithms.

    Science.gov (United States)

    Kundu, Palash K; Panchariya, P C; Kundu, Madhusree

    2011-07-01

    This paper proposes the development of water sample classification and authentication, in real life which is based on machine learning algorithms. The proposed techniques used experimental measurements from a pulse voltametry method which is based on an electronic tongue (E-tongue) instrumentation system with silver and platinum electrodes. E-tongue include arrays of solid state ion sensors, transducers even of different types, data collectors and data analysis tools, all oriented to the classification of liquid samples and authentication of unknown liquid samples. The time series signal and the corresponding raw data represent the measurement from a multi-sensor system. The E-tongue system, implemented in a laboratory environment for 6 numbers of different ISI (Bureau of Indian standard) certified water samples (Aquafina, Bisleri, Kingfisher, Oasis, Dolphin, and McDowell) was the data source for developing two types of machine learning algorithms like classification and regression. A water data set consisting of 6 numbers of sample classes containing 4402 numbers of features were considered. A PCA (principal component analysis) based classification and authentication tool was developed in this study as the machine learning component of the E-tongue system. A proposed partial least squares (PLS) based classifier, which was dedicated as well; to authenticate a specific category of water sample evolved out as an integral part of the E-tongue instrumentation system. The developed PCA and PLS based E-tongue system emancipated an overall encouraging authentication percentage accuracy with their excellent performances for the aforesaid categories of water samples.

  5. Nondegenerate piecewise linear systems: a finite Newton algorithm and applications in machine learning.

    Science.gov (United States)

    Yuan, Xiao-Tong; Yan, Shuicheng

    2012-04-01

    We investigate Newton-type optimization methods for solving piecewise linear systems (PLSs) with nondegenerate coefficient matrix. Such systems arise, for example, from the numerical solution of linear complementarity problem, which is useful to model several learning and optimization problems. In this letter, we propose an effective damped Newton method, PLS-DN, to find the exact (up to machine precision) solution of nondegenerate PLSs. PLS-DN exhibits provable semiiterative property, that is, the algorithm converges globally to the exact solution in a finite number of iterations. The rate of convergence is shown to be at least linear before termination. We emphasize the applications of our method in modeling, from a novel perspective of PLSs, some statistical learning problems such as box-constrained least squares, elitist Lasso (Kowalski & Torreesani, 2008), and support vector machines (Cortes & Vapnik, 1995). Numerical results on synthetic and benchmark data sets are presented to demonstrate the effectiveness and efficiency of PLS-DN on these problems.

  6. Sensitivity study using machine learning algorithms on simulated r-mode gravitational wave signals from newborn neutron stars

    CERN Document Server

    Mytidis, Antonis; Panagopoulos, Orestis P; Whiting, Bernard

    2015-01-01

    This is a follow-up sensitivity study on r-mode gravitational wave signals from newborn neutron stars illustrating the applicability of machine learning algorithms for the detection of long-lived gravitational-wave transients. In this sensitivity study we examine three machine learning algorithms (MLAs): artificial neural networks (ANNs), support vector machines (SVMs) and constrained subspace classifiers (CSCs). The objective of this study is to compare the detection efficiency that MLAs can achieve with the efficiency of conventional detection algorithms discussed in an earlier paper. Comparisons are made using 2 distinct r-mode waveforms. For the training of the MLAs we assumed that some information about the distance to the source is given so that the training was performed over distance ranges not wider than half an order of magnitude. The results of this study suggest that machine learning algorithms are suitable for the detection of long-lived gravitational-wave transients and that when assuming knowle...

  7. Machine Learning for Information Retrieval: Neural Networks, Symbolic Learning, and Genetic Algorithms.

    Science.gov (United States)

    Chen, Hsinchun

    1995-01-01

    Presents an overview of artificial-intelligence-based inductive learning techniques and their use in information science research. Three methods are discussed: the connectionist Hopfield network; the symbolic ID3/ID5R; evolution-based genetic algorithms. The knowledge representations and algorithms of these methods are examined in the context of…

  8. Machine Learning for Information Retrieval: Neural Networks, Symbolic Learning, and Genetic Algorithms.

    Science.gov (United States)

    Chen, Hsinchun

    1995-01-01

    Presents an overview of artificial-intelligence-based inductive learning techniques and their use in information science research. Three methods are discussed: the connectionist Hopfield network; the symbolic ID3/ID5R; evolution-based genetic algorithms. The knowledge representations and algorithms of these methods are examined in the context of…

  9. Machine Learning for Hackers

    CERN Document Server

    Conway, Drew

    2012-01-01

    If you're an experienced programmer interested in crunching data, this book will get you started with machine learning-a toolkit of algorithms that enables computers to train themselves to automate useful tasks. Authors Drew Conway and John Myles White help you understand machine learning and statistics tools through a series of hands-on case studies, instead of a traditional math-heavy presentation. Each chapter focuses on a specific problem in machine learning, such as classification, prediction, optimization, and recommendation. Using the R programming language, you'll learn how to analyz

  10. Application of two machine learning algorithms to genetic association studies in the presence of covariates

    Directory of Open Access Journals (Sweden)

    Foulkes Andrea S

    2008-11-01

    Full Text Available Abstract Background Population-based investigations aimed at uncovering genotype-trait associations often involve high-dimensional genetic polymorphism data as well as information on multiple environmental and clinical parameters. Machine learning (ML algorithms offer a straightforward analytic approach for selecting subsets of these inputs that are most predictive of a pre-defined trait. The performance of these algorithms, however, in the presence of covariates is not well characterized. Methods and Results In this manuscript, we investigate two approaches: Random Forests (RFs and Multivariate Adaptive Regression Splines (MARS. Through multiple simulation studies, the performance under several underlying models is evaluated. An application to a cohort of HIV-1 infected individuals receiving anti-retroviral therapies is also provided. Conclusion Consistent with more traditional regression modeling theory, our findings highlight the importance of considering the nature of underlying gene-covariate-trait relationships before applying ML algorithms, particularly when there is potential confounding or effect mediation.

  11. Application of two machine learning algorithms to genetic association studies in the presence of covariates.

    Science.gov (United States)

    Nonyane, Bareng A S; Foulkes, Andrea S

    2008-11-14

    Population-based investigations aimed at uncovering genotype-trait associations often involve high-dimensional genetic polymorphism data as well as information on multiple environmental and clinical parameters. Machine learning (ML) algorithms offer a straightforward analytic approach for selecting subsets of these inputs that are most predictive of a pre-defined trait. The performance of these algorithms, however, in the presence of covariates is not well characterized. In this manuscript, we investigate two approaches: Random Forests (RFs) and Multivariate Adaptive Regression Splines (MARS). Through multiple simulation studies, the performance under several underlying models is evaluated. An application to a cohort of HIV-1 infected individuals receiving anti-retroviral therapies is also provided. Consistent with more traditional regression modeling theory, our findings highlight the importance of considering the nature of underlying gene-covariate-trait relationships before applying ML algorithms, particularly when there is potential confounding or effect mediation.

  12. Classifying spatially heterogeneous wetland communities using machine learning algorithms and spectral and textural features.

    Science.gov (United States)

    Szantoi, Zoltan; Escobedo, Francisco J; Abd-Elrahman, Amr; Pearlstine, Leonard; Dewitt, Bon; Smith, Scot

    2015-05-01

    Mapping of wetlands (marsh vs. swamp vs. upland) is a common remote sensing application.Yet, discriminating between similar freshwater communities such as graminoid/sedge fromremotely sensed imagery is more difficult. Most of this activity has been performed using medium to low resolution imagery. There are only a few studies using highspatial resolutionimagery and machine learning image classification algorithms for mapping heterogeneouswetland plantcommunities. This study addresses this void by analyzing whether machine learning classifierssuch as decisiontrees (DT) and artificial neural networks (ANN) can accurately classify graminoid/sedgecommunities usinghigh resolution aerial imagery and image texture data in the Everglades National Park, Florida.In addition tospectral bands, the normalized difference vegetation index, and first- and second-order texturefeatures derivedfrom the near-infrared band were analyzed. Classifier accuracies were assessed using confusiontablesand the calculated kappa coefficients of the resulting maps. The results indicated that an ANN(multilayerperceptron based on backpropagation) algorithm produced a statistically significantly higheraccuracy(82.04%) than the DT (QUEST) algorithm (80.48%) or the maximum likelihood (80.56%)classifier (α<0.05). Findings show that using multiple window sizes provided the best results. First-ordertexture featuresalso provided computational advantages and results that were not significantly different fromthose usingsecond-order texture features.

  13. Prediction of microRNA-regulated protein interaction pathways in Arabidopsis using machine learning algorithms.

    Science.gov (United States)

    Kurubanjerdjit, Nilubon; Huang, Chien-Hung; Lee, Yu-Liang; Tsai, Jeffrey J P; Ng, Ka-Lok

    2013-11-01

    MicroRNAs are small, endogenous RNAs found in many different species and are known to have an influence on diverse biological phenomena. They also play crucial roles in plant biological processes, such as metabolism, leaf sidedness and flower development. However, the functional roles of most microRNAs are still unknown. The identification of closely related microRNAs and target genes can be an essential first step towards the discovery of their combinatorial effects on different cellular states. A lot of research has tried to discover microRNAs and target gene interactions by implementing machine learning classifiers with target prediction algorithms. However, high rates of false positives have been reported as a result of undetermined factors which will affect recognition. Therefore, integrating diverse techniques could improve the prediction. In this paper we propose identifying microRNAs target of Arabidopsis thaliana by integrating prediction scores from PITA, miRanda and RNAHybrid algorithms used as a feature vector of microRNA-target interactions, and then implementing SVM, random forest tree and neural network machine learning algorithms to make final predictions by majority voting. Furthermore, microRNA target genes are linked with their protein-protein interaction (PPI) partners. We focus on plant resistance genes and transcription factor information to provide new insights into plant pathogen interaction networks. Downstream pathways are characterized by the Jaccard coefficient, which is implemented based on Gene Ontology. The database is freely accessible at http://ppi.bioinfo.asia.edu.tw/At_miRNA/.

  14. Machine learning algorithms for mode-of-action classification in toxicity assessment.

    Science.gov (United States)

    Zhang, Yile; Wong, Yau Shu; Deng, Jian; Anton, Cristina; Gabos, Stephan; Zhang, Weiping; Huang, Dorothy Yu; Jin, Can

    2016-01-01

    Real Time Cell Analysis (RTCA) technology is used to monitor cellular changes continuously over the entire exposure period. Combining with different testing concentrations, the profiles have potential in probing the mode of action (MOA) of the testing substances. In this paper, we present machine learning approaches for MOA assessment. Computational tools based on artificial neural network (ANN) and support vector machine (SVM) are developed to analyze the time-concentration response curves (TCRCs) of human cell lines responding to tested chemicals. The techniques are capable of learning data from given TCRCs with known MOA information and then making MOA classification for the unknown toxicity. A novel data processing step based on wavelet transform is introduced to extract important features from the original TCRC data. From the dose response curves, time interval leading to higher classification success rate can be selected as input to enhance the performance of the machine learning algorithm. This is particularly helpful when handling cases with limited and imbalanced data. The validation of the proposed method is demonstrated by the supervised learning algorithm applied to the exposure data of HepG2 cell line to 63 chemicals with 11 concentrations in each test case. Classification success rate in the range of 85 to 95 % are obtained using SVM for MOA classification with two clusters to cases up to four clusters. Wavelet transform is capable of capturing important features of TCRCs for MOA classification. The proposed SVM scheme incorporated with wavelet transform has a great potential for large scale MOA classification and high-through output chemical screening.

  15. Monthly prediction of air temperature in Australia and New Zealand with machine learning algorithms

    Science.gov (United States)

    Salcedo-Sanz, S.; Deo, R. C.; Carro-Calvo, L.; Saavedra-Moreno, B.

    2016-07-01

    Long-term air temperature prediction is of major importance in a large number of applications, including climate-related studies, energy, agricultural, or medical. This paper examines the performance of two Machine Learning algorithms (Support Vector Regression (SVR) and Multi-layer Perceptron (MLP)) in a problem of monthly mean air temperature prediction, from the previous measured values in observational stations of Australia and New Zealand, and climate indices of importance in the region. The performance of the two considered algorithms is discussed in the paper and compared to alternative approaches. The results indicate that the SVR algorithm is able to obtain the best prediction performance among all the algorithms compared in the paper. Moreover, the results obtained have shown that the mean absolute error made by the two algorithms considered is significantly larger for the last 20 years than in the previous decades, in what can be interpreted as a change in the relationship among the prediction variables involved in the training of the algorithms.

  16. Semi-supervised prediction of gene regulatory networks using machine learning algorithms

    Indian Academy of Sciences (India)

    Nihir Patel; T L Wang

    2015-10-01

    Use of computational methods to predict gene regulatory networks (GRNs) from gene expression data is a challenging task. Many studies have been conducted using unsupervised methods to fulfill the task; however, such methods usually yield low prediction accuracies due to the lack of training data. In this article, we propose semi-supervised methods for GRN prediction by utilizing two machine learning algorithms, namely, support vector machines (SVM) and random forests (RF). The semi-supervised methods make use of unlabelled data for training. We investigated inductive and transductive learning approaches, both of which adopt an iterative procedure to obtain reliable negative training data from the unlabelled data. We then applied our semi-supervised methods to gene expression data of Escherichia coli and Saccharomyces cerevisiae, and evaluated the performance of our methods using the expression data. Our analysis indicated that the transductive learning approach outperformed the inductive learning approach for both organisms. However, there was no conclusive difference identified in the performance of SVM and RF. Experimental results also showed that the proposed semi-supervised methods performed better than existing supervised methods for both organisms.

  17. A pruning algorithm with L1/2 regularizer for extreme learning machine

    Institute of Scientific and Technical Information of China (English)

    Ye-tian FAN; Wei WU; Wen-yu YANG; Qin-wei FAN; Jian WANG

    2014-01-01

    Compared with traditional learning methods such as the back propagation (BP) method, extreme learning machine provides much faster learning speed and needs less human intervention, and thus has been widely used. In this paper we combine the L1/2 regularization method with extreme learning machine to prune extreme learning machine. A variable learning coefficient is employed to prevent too large a learning increment. A numerical experiment demonstrates that a network pruned by L1/2 regularization has fewer hidden nodes but provides better performance than both the original network and the network pruned by L2 regularization.

  18. A fast and precise indoor localization algorithm based on an online sequential extreme learning machine.

    Science.gov (United States)

    Zou, Han; Lu, Xiaoxuan; Jiang, Hao; Xie, Lihua

    2015-01-15

    Nowadays, developing indoor positioning systems (IPSs) has become an attractive research topic due to the increasing demands on location-based service (LBS) in indoor environments. WiFi technology has been studied and explored to provide indoor positioning service for years in view of the wide deployment and availability of existing WiFi infrastructures in indoor environments. A large body of WiFi-based IPSs adopt fingerprinting approaches for localization. However, these IPSs suffer from two major problems: the intensive costs of manpower and time for offline site survey and the inflexibility to environmental dynamics. In this paper, we propose an indoor localization algorithm based on an online sequential extreme learning machine (OS-ELM) to address the above problems accordingly. The fast learning speed of OS-ELM can reduce the time and manpower costs for the offline site survey. Meanwhile, its online sequential learning ability enables the proposed localization algorithm to adapt in a timely manner to environmental dynamics. Experiments under specific environmental changes, such as variations of occupancy distribution and events of opening or closing of doors, are conducted to evaluate the performance of OS-ELM. The simulation and experimental results show that the proposed localization algorithm can provide higher localization accuracy than traditional approaches, due to its fast adaptation to various environmental dynamics.

  19. A Fast and Precise Indoor Localization Algorithm Based on an Online Sequential Extreme Learning Machine

    Directory of Open Access Journals (Sweden)

    Han Zou

    2015-01-01

    Full Text Available Nowadays, developing indoor positioning systems (IPSs has become an attractive research topic due to the increasing demands on location-based service (LBS in indoor environments. WiFi technology has been studied and explored to provide indoor positioning service for years in view of the wide deployment and availability of existing WiFi infrastructures in indoor environments. A large body of WiFi-based IPSs adopt fingerprinting approaches for localization. However, these IPSs suffer from two major problems: the intensive costs of manpower and time for offline site survey and the inflexibility to environmental dynamics. In this paper, we propose an indoor localization algorithm based on an online sequential extreme learning machine (OS-ELM to address the above problems accordingly. The fast learning speed of OS-ELM can reduce the time and manpower costs for the offline site survey. Meanwhile, its online sequential learning ability enables the proposed localization algorithm to adapt in a timely manner to environmental dynamics. Experiments under specific environmental changes, such as variations of occupancy distribution and events of opening or closing of doors, are conducted to evaluate the performance of OS-ELM. The simulation and experimental results show that the proposed localization algorithm can provide higher localization accuracy than traditional approaches, due to its fast adaptation to various environmental dynamics.

  20. Automated Quality Assessment of Structural Magnetic Resonance Brain Images Based on a Supervised Machine Learning Algorithm

    Directory of Open Access Journals (Sweden)

    Ricardo Andres Pizarro

    2016-12-01

    Full Text Available High-resolution three-dimensional magnetic resonance imaging (3D-MRI is being increasingly used to delineate morphological changes underlying neuropsychiatric disorders. Unfortunately, artifacts frequently compromise the utility of 3D-MRI yielding irreproducible results, from both type I and type II errors. It is therefore critical to screen 3D-MRIs for artifacts before use. Currently, quality assessment involves slice-wise visual inspection of 3D-MRI volumes, a procedure that is both subjective and time consuming. Automating the quality rating of 3D-MRI could improve the efficiency and reproducibility of the procedure. The present study is one of the first efforts to apply a support vector machine (SVM algorithm in the quality assessment of structural brain images, using global and region of interest (ROI automated image quality features developed in-house. SVM is a supervised machine-learning algorithm that can predict the category of test datasets based on the knowledge acquired from a learning dataset. The performance (accuracy of the automated SVM approach was assessed, by comparing the SVM-predicted quality labels to investigator-determined quality labels. The accuracy for classifying 1457 3D-MRI volumes from our database using the SVM approach is around 80%. These results are promising and illustrate the possibility of using SVM as an automated quality assessment tool for 3D-MRI.

  1. Teaching a Machine to Feel Postoperative Pain: Combining High-Dimensional Clinical Data with Machine Learning Algorithms to Forecast Acute Postoperative Pain.

    Science.gov (United States)

    Tighe, Patrick J; Harle, Christopher A; Hurley, Robert W; Aytug, Haldun; Boezaart, Andre P; Fillingim, Roger B

    2015-07-01

    Given their ability to process highly dimensional datasets with hundreds of variables, machine learning algorithms may offer one solution to the vexing challenge of predicting postoperative pain. Here, we report on the application of machine learning algorithms to predict postoperative pain outcomes in a retrospective cohort of 8,071 surgical patients using 796 clinical variables. Five algorithms were compared in terms of their ability to forecast moderate to severe postoperative pain: Least Absolute Shrinkage and Selection Operator (LASSO), gradient-boosted decision tree, support vector machine, neural network, and k-nearest neighbor (k-NN), with logistic regression included for baseline comparison. In forecasting moderate to severe postoperative pain for postoperative day (POD) 1, the LASSO algorithm, using all 796 variables, had the highest accuracy with an area under the receiver-operating curve (ROC) of 0.704. Next, the gradient-boosted decision tree had an ROC of 0.665 and the k-NN algorithm had an ROC of 0.643. For POD 3, the LASSO algorithm, using all variables, again had the highest accuracy, with an ROC of 0.727. Logistic regression had a lower ROC of 0.5 for predicting pain outcomes on POD 1 and 3. Machine learning algorithms, when combined with complex and heterogeneous data from electronic medical record systems, can forecast acute postoperative pain outcomes with accuracies similar to methods that rely only on variables specifically collected for pain outcome prediction. Wiley Periodicals, Inc.

  2. Robust signal recognition algorithm based on machine learning in heterogeneous networks

    Institute of Scientific and Technical Information of China (English)

    Xiaokai Liu; Rong Li; Chenglin Zhao; Pengbiao Wang

    2016-01-01

    There are various heterogeneous networks for terminals to deliver a better quality of service. Signal system recognition and classification contribute a lot to the process. However, in low signal to noise ratio (SNR) circumstances or under time-varying multipath channels, the majority of the existing algorithms for signal recognition are already facing limitations. In this series, we present a robust signal recogni-tion method based upon the original and latest updated ver-sion of the extreme learning machine (ELM) to help users to switch between networks. The ELM utilizes signal characte- ristics to distinguish systems. The superiority of this algorithm lies in the random choices of hidden nodes and in the fact that it determines the output weights analyticaly, which result in lower complexity. Theoreticaly, the algorithm tends to ofer a good generalization performance at an extremely fast speed of learning. Moreover, we implement the GSM/WCDMA/LTE mod-els in the Matlab environment by using the Simulink tools. The simulations reveal that the signals can be recognized suc-cessfuly to achieve a 95% accuracy in a low SNR (0 dB) environment in the time-varying multipath Rayleigh fading channel.

  3. Classification of frontal cortex haemodynamic responses during cognitive tasks using wavelet transforms and machine learning algorithms.

    Science.gov (United States)

    Abibullaev, Berdakh; An, Jinung

    2012-12-01

    Recent advances in neuroimaging demonstrate the potential of functional near-infrared spectroscopy (fNIRS) for use in brain-computer interfaces (BCIs). fNIRS uses light in the near-infrared range to measure brain surface haemoglobin concentrations and thus determine human neural activity. Our primary goal in this study is to analyse brain haemodynamic responses for application in a BCI. Specifically, we develop an efficient signal processing algorithm to extract important mental-task-relevant neural features and obtain the best possible classification performance. We recorded brain haemodynamic responses due to frontal cortex brain activity from nine subjects using a 19-channel fNIRS system. Our algorithm is based on continuous wavelet transforms (CWTs) for multi-scale decomposition and a soft thresholding algorithm for de-noising. We adopted three machine learning algorithms and compared their performance. Good performance can be achieved by using the de-noised wavelet coefficients as input features for the classifier. Moreover, the classifier performance varied depending on the type of mother wavelet used for wavelet decomposition. Our quantitative results showed that CWTs can be used efficiently to extract important brain haemodynamic features at multiple frequencies if an appropriate mother wavelet function is chosen. The best classification results were obtained by a specific combination of input feature type and classifier.

  4. PROSODIC FEATURE BASED TEXT DEPENDENT SPEAKER RECOGNITION USING MACHINE LEARNING ALGORITHMS

    Directory of Open Access Journals (Sweden)

    Sunil Agrawal

    2010-10-01

    Full Text Available Most of us are aware of the fact that voices of different individuals do not sound alike. The ability of recognizing a person solely from his voice is known as speaker recognition. Speaker recognition can not only assist in building better access control systems and security apparatus, it can be a useful tool in many other areas such as forensic speech analysis. The choice of features plays an important role in the performance of ML algorithm. Here we propose prosodic features based text dependent speaker recognition where the prosodic features can be extracted through linear predictive coding. Formants are efficient parameters to characterize a speaker’s voice. Formants are combined with their corresponding amplitudes, fundamental frequency, duration of speech utterance and energy ofthe windowed section. This feature vector is input to machine learning (ML algorithms for recognition. We investigate the performance of four ML algorithms namely MLP, RBFN, C4.5 decision tree, and BayesNet. Out of these ML algorithms, C4.5 decision tree performance is consistent. MLP performs better for gender recognition and experimental results show that RBFN gives better performance for increased population size.

  5. Machine learning algorithms for predicting roadside fine particulate matter concentration level in Hong Kong Central

    Directory of Open Access Journals (Sweden)

    Yin Zhao

    2013-09-01

    Full Text Available Data mining is an approach to discover knowledge from large data. Pollutant forecasting is an important problem in the environmental sciences. This paper tries to use data mining methods to forecast fine particles (PM2.5 concentration level in Hong Kong Central, which is a famous business centre in Asia. There are several classification algorithms available in data mining, such as Artificial Neural Network (ANN and Support Vector Machine (SVM. ANN and SVM are both machine learning algorithm used in variant area. This paper builds PM2.5 concentration level predictive models based on ANN and SVM by using R packages. The data set includes 2008-2011 period meteorological data and PM2.5 data. The PM2.5 concentration is divided into 2 levels: low and high. The critical point is 40ug/cubic meter (24 hours mean, which is based on the standard of US Environmental Protection Agency (EPA. The parameters of both models are selected by multiple cross validation. According to 100 times 10-fold cross validation, the testing accuracy of SVM is around 0.803-0.820, which is much better than ANN whose accuracy is around 0.746-0.793.

  6. Application of supervised machine learning algorithms for the classification of regulatory RNA riboswitches.

    Science.gov (United States)

    Singh, Swadha; Singh, Raghvendra

    2016-04-03

    Riboswitches, the small structured RNA elements, were discovered about a decade ago. It has been the subject of intense interest to identify riboswitches, understand their mechanisms of action and use them in genetic engineering. The accumulation of genome and transcriptome sequence data and comparative genomics provide unprecedented opportunities to identify riboswitches in the genome. In the present study, we have evaluated the following six machine learning algorithms for their efficiency to classify riboswitches: J48, BayesNet, Naïve Bayes, Multilayer Perceptron, sequential minimal optimization, hidden Markov model (HMM). For determining effective classifier, the algorithms were compared on the statistical measures of specificity, sensitivity, accuracy, F-measure and receiver operating characteristic (ROC) plot analysis. The classifier Multilayer Perceptron achieved the best performance, with the highest specificity, sensitivity, F-score and accuracy, and with the largest area under the ROC curve, whereas HMM was the poorest performer. At present, the available tools for the prediction and classification of riboswitches are based on covariance model, support vector machine and HMM. The present study determines Multilayer Perceptron as a better classifier for the genome-wide riboswitch searches.

  7. Machine Learning Model of the Swift/BAT Trigger Algorithm for Long GRB Population Studies

    CERN Document Server

    Graff, Philip B; Baker, John G; Sakamoto, Takanori

    2015-01-01

    To draw inferences about gamma-ray burst (GRB) source populations based on Swift observations, it is essential to understand the detection efficiency of the Swift burst alert telescope (BAT). This study considers the problem of modeling the Swift/BAT triggering algorithm for long GRBs, a computationally expensive procedure, and models it using machine learning algorithms. A large sample of simulated GRBs from Lien 2014 is used to train various models: random forests, boosted decision trees (with AdaBoost), support vector machines, and artificial neural networks. The best models have accuracies of $\\gtrsim97\\%$ ($\\lesssim 3\\%$ error), which is a significant improvement on a cut in GRB flux which has an accuracy of $89.6\\%$ ($10.4\\%$ error). These models are then used to measure the detection efficiency of Swift as a function of redshift $z$, which is used to perform Bayesian parameter estimation on the GRB rate distribution. We find a local GRB rate density of $n_0 \\sim 0.48^{+0.41}_{-0.23} \\ {\\rm Gpc}^{-3} {\\...

  8. The applications of machine learning algorithms in the modeling of estrogen-like chemicals.

    Science.gov (United States)

    Liu, Huanxiang; Yao, Xiaojun; Gramatica, Paola

    2009-06-01

    Increasing concern is being shown by the scientific community, government regulators, and the public about endocrine-disrupting chemicals that, in the environment, are adversely affecting human and wildlife health through a variety of mechanisms, mainly estrogen receptor-mediated mechanisms of toxicity. Because of the large number of such chemicals in the environment, there is a great need for an effective means of rapidly assessing endocrine-disrupting activity in the toxicology assessment process. When faced with the challenging task of screening large libraries of molecules for biological activity, the benefits of computational predictive models based on quantitative structure-activity relationships to identify possible estrogens become immediately obvious. Recently, in order to improve the accuracy of prediction, some machine learning techniques were introduced to build more effective predictive models. In this review we will focus our attention on some recent advances in the use of these methods in modeling estrogen-like chemicals. The advantages and disadvantages of the machine learning algorithms used in solving this problem, the importance of the validation and performance assessment of the built models as well as their applicability domains will be discussed.

  9. Application of machine learning algorithms to the study of noise artifacts in gravitational-wave data

    CERN Document Server

    Biswas, Rahul; Cao, Junwei; Essick, Reed; Hodge, Kari Alison; Katsavounidis, Erotokritos; Kim, Kyungmin; Kim, Young-Min; Bigot, Eric-Olivier Le; Lee, Chang-Hwan; Oh, John J; Oh, Sang Hoon; Son, Edwin J; Vaulin, Ruslan; Wang, Xiaoge; Ye, Tao

    2013-01-01

    The sensitivity of searches for astrophysical transients in data from the LIGO is generally limited by the presence of transient, non-Gaussian noise artifacts, which occur at a high-enough rate such that accidental coincidence across multiple detectors is non-negligible. Furthermore, non-Gaussian noise artifacts typically dominate over the background contributed from stationary noise. These "glitches" can easily be confused for transient gravitational-wave signals, and their robust identification and removal will help any search for astrophysical gravitational-waves. We apply Machine Learning Algorithms (MLAs) to the problem, using data from auxiliary channels within the LIGO detectors that monitor degrees of freedom unaffected by astrophysical signals. The number of auxiliary-channel parameters describing these disturbances may also be extremely large; an area where MLAs are particularly well-suited. We demonstrate the feasibility and applicability of three very different MLAs: Artificial Neural Networks, Su...

  10. Synthetic tests of passive microwave brightness temperature assimilation over snow covered land using machine learning algorithms

    Science.gov (United States)

    Forman, B. A.

    2015-12-01

    A novel data assimilation framework is evaluated that assimilates passive microwave (PMW) brightness temperature (Tb) observations into an advanced land surface model for the purpose of improving snow depth and snow water equivalent (SWE) estimates across regional- and continental-scales. The multifrequency, multipolarization framework employs machine learning algorithms to predict PMW Tb as a function of land surface model state information and subsequently merges the predicted PMW Tb with observed PMW Tb from the Advanced Microwave Scanning Radiometer (AMSR-E). The merging procedure is predicated on conditional probabilities computed within a Bayesian statistical framework using either an Ensemble Kalman Filter (EnKF) or an Ensemble Kalman Smoother (EnKS). The data assimilation routine produces a conditioned (updated) estimate of modeled SWE that is more accurate and contains less uncertainty than the model without assimilation. A synthetic case study is presented for select locations in North America that compares model results with and without assimilation against synthetic observations of snow depth and SWE. It is shown that the data assimilation framework improves modeled estimates of snow depth and SWE during both the accumulation and ablation phases of the snow season. Further, it is demonstrated that the EnKS outperforms the EnKF implementation due to its ability to better modulate high frequency noise into the conditioned estimates. The overarching findings from this study demonstrate the feasibility of machine learning algorithms for use as an observation model operator within a data assimilation framework in order to improve model estimates of snow depth and SWE across regional- and continental-scales.

  11. How to measure metallicity from five-band photometry with supervised machine learning algorithms

    CERN Document Server

    Acquaviva, Viviana

    2015-01-01

    We demonstrate that it is possible to measure metallicity from the SDSS five-band photometry to better than 0.1 dex using supervised machine learning algorithms. Using spectroscopic estimates of metallicity as ground truth, we build, optimize and train several estimators to predict metallicity. We use the observed photometry, as well as derived quantities such as stellar mass and photometric redshift, as features, and we build two sample data sets at median redshifts of 0.103 and 0.218 and median r-band magnitude of 17.5 and 18.3 respectively. We find that ensemble methods, such as Random Forests of Trees and Extremely Randomized Trees, and Support Vector Machines all perform comparably well and can measure metallicity with a Root Mean Square Error (RMSE) of 0.081 and 0.090 for the two data sets when all objects are included. The fraction of outliers (objects for which the difference between true and predicted metallicity is larger than 0.2 dex) is only 2.2 and 3.9% respectively, and the RMSE decreases to 0.0...

  12. Application of Machine Learning Algorithms to the Study of Noise Artifacts in Gravitational-Wave Data

    Science.gov (United States)

    Biswas, Rahul; Blackburn, Lindy L.; Cao, Junwei; Essick, Reed; Hodge, Kari Alison; Katsavounidis, Erotokritos; Kim, Kyungmin; Young-Min, Kim; Le Bigot, Eric-Olivier; Lee, Chang-Hwan; hide

    2014-01-01

    The sensitivity of searches for astrophysical transients in data from the Laser Interferometer Gravitationalwave Observatory (LIGO) is generally limited by the presence of transient, non-Gaussian noise artifacts, which occur at a high-enough rate such that accidental coincidence across multiple detectors is non-negligible. Furthermore, non-Gaussian noise artifacts typically dominate over the background contributed from stationary noise. These "glitches" can easily be confused for transient gravitational-wave signals, and their robust identification and removal will help any search for astrophysical gravitational-waves. We apply Machine Learning Algorithms (MLAs) to the problem, using data from auxiliary channels within the LIGO detectors that monitor degrees of freedom unaffected by astrophysical signals. Terrestrial noise sources may manifest characteristic disturbances in these auxiliary channels, inducing non-trivial correlations with glitches in the gravitational-wave data. The number of auxiliary-channel parameters describing these disturbances may also be extremely large; high dimensionality is an area where MLAs are particularly well-suited. We demonstrate the feasibility and applicability of three very different MLAs: Artificial Neural Networks, Support Vector Machines, and Random Forests. These classifiers identify and remove a substantial fraction of the glitches present in two very different data sets: four weeks of LIGO's fourth science run and one week of LIGO's sixth science run. We observe that all three algorithms agree on which events are glitches to within 10% for the sixth science run data, and support this by showing that the different optimization criteria used by each classifier generate the same decision surface, based on a likelihood-ratio statistic. Furthermore, we find that all classifiers obtain similar limiting performance, suggesting that most of the useful information currently contained in the auxiliary channel parameters we extract

  13. Water quality of Danube Delta systems: ecological status and prediction using machine-learning algorithms.

    Science.gov (United States)

    Stoica, C; Camejo, J; Banciu, A; Nita-Lazar, M; Paun, I; Cristofor, S; Pacheco, O R; Guevara, M

    2016-01-01

    Environmental issues have a worldwide impact on water bodies, including the Danube Delta, the largest European wetland. The Water Framework Directive (2000/60/EC) implementation operates toward solving environmental issues from European and national level. As a consequence, the water quality and the biocenosis structure was altered, especially the composition of the macro invertebrate community which is closely related to habitat and substrate heterogeneity. This study aims to assess the ecological status of Southern Branch of the Danube Delta, Saint Gheorghe, using benthic fauna and a computational method as an alternative for monitoring the water quality in real time. The analysis of spatial and temporal variability of unicriterial and multicriterial indices were used to assess the current status of aquatic systems. In addition, chemical status was characterized. Coliform bacteria and several chemical parameters were used to feed machine-learning (ML) algorithms to simulate a real-time classification method. Overall, the assessment of the water bodies indicated a moderate ecological status based on the biological quality elements or a good ecological status based on chemical and ML algorithms criteria.

  14. The use of machine learning algorithms to design a generalized simplified denitrification model

    Science.gov (United States)

    Oehler, F.; Rutherford, J. C.; Coco, G.

    2010-10-01

    We propose to use machine learning (ML) algorithms to design a simplified denitrification model. Boosted regression trees (BRT) and artificial neural networks (ANN) were used to analyse the relationships and the relative influences of different input variables towards total denitrification, and an ANN was designed as a simplified model to simulate total nitrogen emissions from the denitrification process. To calibrate the BRT and ANN models and test this method, we used a database obtained collating datasets from the literature. We used bootstrapping to compute confidence intervals for the calibration and validation process. Both ML algorithms clearly outperformed a commonly used simplified model of nitrogen emissions, NEMIS, which is based on denitrification potential, temperature, soil water content and nitrate concentration. The ML models used soil organic matter % in place of a denitrification potential and pH as a fifth input variable. The BRT analysis reaffirms the importance of temperature, soil water content and nitrate concentration. Generalization, although limited to the data space of the database used to build the ML models, could be improved if pH is used to differentiate between soil types. Further improvements in model performance and generalization could be achieved by adding more data.

  15. Sentiment Analysis on Movie Reviews: A Comparative Study of Machine Learning Algorithms and Open Source Technologies

    Directory of Open Access Journals (Sweden)

    B. Narendra

    2016-08-01

    Full Text Available Social Networks such as Facebook, Twitter, Linked In etc… are rich in opinion data and thus Sentiment Analysis has gained a great attention due to the abundance of this ever growing opinion data. In this research paper our target set is movie reviews. There are diverge range of mechanisms to express their data which may be either subjective, objective or a mixture of both. Besides the data collected from World Wide Web consists of lot of noisy data. It is very much true that we are going to apply some pre-processing techniques and compare the accuracy using Machine Learning algorithm Naïve Bayes Classifier. With ever growing demand to mine the Big Data the open source software technologies such as Hadoop using map reducing paradigm has gained a lot of pragmatic importance. This paper illustrates a comparitive study of sentiment analysis of movie reviews using Naïve Bayes Classifier and Apache Hadoop in order to calculate the performance of the algorithms and show that Map Reduce paradigm of Apache Hadoop performed better than Naïve Bayes Classifier.

  16. The use of machine learning algorithms to design a generalized simplified denitrification model

    Directory of Open Access Journals (Sweden)

    F. Oehler

    2010-04-01

    Full Text Available We designed generalized simplified models using machine learning algorithms (ML to assess denitrification at the catchment scale. In particular, we designed an artificial neural network (ANN to simulate total nitrogen emissions from the denitrification process. Boosted regression trees (BRT, another ML was also used to analyse the relationships and the relative influences of different input variables towards total denitrification. To calibrate the ANN and BRT models, we used a large database obtained by collating datasets from the literature. We developed a simple methodology to give confidence intervals for the calibration and validation process. Both ML algorithms clearly outperformed a commonly used simplified model of nitrogen emissions, NEMIS. NEMIS is based on denitrification potential, temperature, soil water content and nitrate concentration. The ML models used soil organic matter % in place of a denitrification potential and pH as a fifth input variable. The BRT analysis reaffirms the importance of temperature, soil water content and nitrate concentration. Generality of the ANN model may also be improved if pH is used to differentiate between soil types. Further improvements in model performance can be achieved by lessening dataset effects.

  17. Application of machine learning algorithms to the study of noise artifacts in gravitational-wave data

    Science.gov (United States)

    Biswas, Rahul; Blackburn, Lindy; Cao, Junwei; Essick, Reed; Hodge, Kari Alison; Katsavounidis, Erotokritos; Kim, Kyungmin; Kim, Young-Min; Le Bigot, Eric-Olivier; Lee, Chang-Hwan; Oh, John J.; Oh, Sang Hoon; Son, Edwin J.; Tao, Ye; Vaulin, Ruslan; Wang, Xiaoge

    2013-09-01

    The sensitivity of searches for astrophysical transients in data from the Laser Interferometer Gravitational-wave Observatory (LIGO) is generally limited by the presence of transient, non-Gaussian noise artifacts, which occur at a high enough rate such that accidental coincidence across multiple detectors is non-negligible. These “glitches” can easily be mistaken for transient gravitational-wave signals, and their robust identification and removal will help any search for astrophysical gravitational waves. We apply machine-learning algorithms (MLAs) to the problem, using data from auxiliary channels within the LIGO detectors that monitor degrees of freedom unaffected by astrophysical signals. Noise sources may produce artifacts in these auxiliary channels as well as the gravitational-wave channel. The number of auxiliary-channel parameters describing these disturbances may also be extremely large; high dimensionality is an area where MLAs are particularly well suited. We demonstrate the feasibility and applicability of three different MLAs: artificial neural networks, support vector machines, and random forests. These classifiers identify and remove a substantial fraction of the glitches present in two different data sets: four weeks of LIGO’s fourth science run and one week of LIGO’s sixth science run. We observe that all three algorithms agree on which events are glitches to within 10% for the sixth-science-run data, and support this by showing that the different optimization criteria used by each classifier generate the same decision surface, based on a likelihood-ratio statistic. Furthermore, we find that all classifiers obtain similar performance to the benchmark algorithm, the ordered veto list, which is optimized to detect pairwise correlations between transients in LIGO auxiliary channels and glitches in the gravitational-wave data. This suggests that most of the useful information currently extracted from the auxiliary channels is already described

  18. Machine Learning in Medicine.

    Science.gov (United States)

    Deo, Rahul C

    2015-11-17

    Spurred by advances in processing power, memory, storage, and an unprecedented wealth of data, computers are being asked to tackle increasingly complex learning tasks, often with astonishing success. Computers have now mastered a popular variant of poker, learned the laws of physics from experimental data, and become experts in video games - tasks that would have been deemed impossible not too long ago. In parallel, the number of companies centered on applying complex data analysis to varying industries has exploded, and it is thus unsurprising that some analytic companies are turning attention to problems in health care. The purpose of this review is to explore what problems in medicine might benefit from such learning approaches and use examples from the literature to introduce basic concepts in machine learning. It is important to note that seemingly large enough medical data sets and adequate learning algorithms have been available for many decades, and yet, although there are thousands of papers applying machine learning algorithms to medical data, very few have contributed meaningfully to clinical care. This lack of impact stands in stark contrast to the enormous relevance of machine learning to many other industries. Thus, part of my effort will be to identify what obstacles there may be to changing the practice of medicine through statistical learning approaches, and discuss how these might be overcome.

  19. A novel kernel extreme learning machine algorithm based on self-adaptive artificial bee colony optimisation strategy

    Science.gov (United States)

    Ma, Chao; Ouyang, Jihong; Chen, Hui-Ling; Ji, Jin-Chao

    2016-04-01

    In this paper, we propose a novel learning algorithm, named SABC-MKELM, based on a kernel extreme learning machine (KELM) method for single-hidden-layer feedforward networks. In SABC-MKELM, the combination of Gaussian kernels is used as the activate function of KELM instead of simple fixed kernel learning, where the related parameters of kernels and the weights of kernels can be optimised by a novel self-adaptive artificial bee colony (SABC) approach simultaneously. SABC-MKELM outperforms six other state-of-the-art approaches in general, as it could effectively determine solution updating strategies and suitable parameters to produce a flexible kernel function involved in SABC. Simulations have demonstrated that the proposed algorithm not only self-adaptively determines suitable parameters and solution updating strategies learning from the previous experiences, but also achieves better generalisation performances than several related methods, and the results show good stability of the proposed algorithm.

  20. Prediction errors in learning drug response from gene expression data - influence of labeling, sample size, and machine learning algorithm.

    Science.gov (United States)

    Bayer, Immanuel; Groth, Philip; Schneckener, Sebastian

    2013-01-01

    Model-based prediction is dependent on many choices ranging from the sample collection and prediction endpoint to the choice of algorithm and its parameters. Here we studied the effects of such choices, exemplified by predicting sensitivity (as IC50) of cancer cell lines towards a variety of compounds. For this, we used three independent sample collections and applied several machine learning algorithms for predicting a variety of endpoints for drug response. We compared all possible models for combinations of sample collections, algorithm, drug, and labeling to an identically generated null model. The predictability of treatment effects varies among compounds, i.e. response could be predicted for some but not for all. The choice of sample collection plays a major role towards lowering the prediction error, as does sample size. However, we found that no algorithm was able to consistently outperform the other and there was no significant difference between regression and two- or three class predictors in this experimental setting. These results indicate that response-modeling projects should direct efforts mainly towards sample collection and data quality, rather than method adjustment.

  1. Machine Learning Algorithms For Predicting the Instability Timescales of Compact Planetary Systems

    Science.gov (United States)

    Tamayo, Daniel; Ali-Dib, Mohamad; Cloutier, Ryan; Huang, Chelsea; Van Laerhoven, Christa L.; Leblanc, Rejean; Menou, Kristen; Murray, Norman; Obertas, Alysa; Paradise, Adiv; Petrovich, Cristobal; Rachkov, Aleksandar; Rein, Hanno; Silburt, Ari; Tacik, Nick; Valencia, Diana

    2016-10-01

    The Kepler mission has uncovered hundreds of compact multi-planet systems. The dynamical pathways to instability in these compact systems and their associated timescales are not well understood theoretically. However, long-term stability is often used as a constraint to narrow down the space of orbital solutions from the transit data. This requires a large suite of N-body integrations that can each take several weeks to complete. This computational bottleneck is therefore an important limitation in our ability to characterize compact multi-planet systems.From suites of numerical simulations, previous studies have fit simple scaling relations between the instability timescale and various system parameters. However, the numerically simulated systems can deviate strongly from these empirical fits.We present a new approach to the problem using machine learning algorithms that have enjoyed success across a broad range of high-dimensional industry applications. In particular, we have generated large training sets of direct N-body integrations of synthetic compact planetary systems to train several regression models (support vector machine, gradient boost) that predict the instability timescale. We find that ensembling these models predicts the instability timescale of planetary systems better than previous approaches using the simple scaling relations mentioned above.Finally, we will discuss how these models provide a powerful tool for not only understanding the current Kepler multi-planet sample, but also for characterizing and shaping the radial-velocity follow-up strategies of multi-planet systems from the upcoming Transiting Exoplanet Survey Satellite (TESS) mission, given its shorter observation baselines.

  2. In vitro molecular machine learning algorithm via symmetric internal loops of DNA.

    Science.gov (United States)

    Lee, Ji-Hoon; Lee, Seung Hwan; Baek, Christina; Chun, Hyosun; Ryu, Je-Hwan; Kim, Jin-Woo; Deaton, Russell; Zhang, Byoung-Tak

    2017-08-01

    Programmable biomolecules, such as DNA strands, deoxyribozymes, and restriction enzymes, have been used to solve computational problems, construct large-scale logic circuits, and program simple molecular games. Although studies have shown the potential of molecular computing, the capability of computational learning with DNA molecules, i.e., molecular machine learning, has yet to be experimentally verified. Here, we present a novel molecular learning in vitro model in which symmetric internal loops of double-stranded DNA are exploited to measure the differences between training instances, thus enabling the molecules to learn from small errors. The model was evaluated on a data set of twenty dialogue sentences obtained from the television shows Friends and Prison Break. The wet DNA-computing experiments confirmed that the molecular learning machine was able to generalize the dialogue patterns of each show and successfully identify the show from which the sentences originated. The molecular machine learning model described here opens the way for solving machine learning problems in computer science and biology using in vitro molecular computing with the data encoded in DNA molecules. Copyright © 2017. Published by Elsevier B.V.

  3. Detecting anomalies in astronomical signals using machine learning algorithms embedded in an FPGA

    Science.gov (United States)

    Saez, Alejandro F.; Herrera, Daniel E.

    2016-07-01

    Taking a large interferometer for radio astronomy, such as the ALMA1 telescope, where the amount of stations (50 in the case of ALMA's main array, which can extend to 64 antennas) produces an enormous amount of data in a short period of time - visibilities can be produced every 16msec or total power information every 1msec (this means up to 2016 baselines). With the aforementioned into account it is becoming more difficult to detect problems in the signal produced by each antenna in a timely manner (one antenna produces 4 x 2GHz spectral windows x 2 polarizations, which means a 16 GHz bandwidth signal which is later digitized using 3-bits samplers). This work will present an approach based on machine learning algorithms for detecting problems in the already digitized signal produced by the active antennas (the set of antennas which is being used in an observation). The aim of this work is to detect unsuitable, or totally corrupted, signals. In addition, this development also provides an almost real time warning which finally helps stop and investigate the problem in order to avoid collecting useless information.

  4. Malware Detection Module using Machine Learning Algorithms to Assist in Centralized Security in Enterprise Networks

    Directory of Open Access Journals (Sweden)

    Priyank Singhal

    2012-02-01

    Full Text Available Malicious software is abundant in a world of innumerable computer users, who are constantly faced withthese threats from various sources like the internet, local networks and portable drives. Malware is potentially low to high risk and can cause systems to function incorrectly, steal data and even crash.Malware may be executable or system library files in the form of viruses, worms, Trojans, all aimed atbreaching the security of the system and compromising user privacy. Typically, anti-virus software is based on a signature definition system which keeps updating from the internet and thus keeping track of known viruses. While this may be sufficient for home-users, a security risk from a new virus could threaten an entire enterprise network. This paper proposes a new and more sophisticated antivirus engine that can not only scan files, but also build knowledge and detect files as potential viruses. This is done by extracting system API calls made by various normal and harmful executable, and using machine learning algorithms to classify and hence, rank files on a scale of security risk. While such a system is processor heavy, it is very effective when used centrally to protect an enterprise network which maybe more prone to such threats.

  5. Machine learning algorithms for modeling groundwater level changes in agricultural regions of the U.S.

    Science.gov (United States)

    Sahoo, S.; Russo, T. A.; Elliott, J.; Foster, I.

    2017-05-01

    Climate, groundwater extraction, and surface water flows have complex nonlinear relationships with groundwater level in agricultural regions. To better understand the relative importance of each driver and predict groundwater level change, we develop a new ensemble modeling framework based on spectral analysis, machine learning, and uncertainty analysis, as an alternative to complex and computationally expensive physical models. We apply and evaluate this new approach in the context of two aquifer systems supporting agricultural production in the United States: the High Plains aquifer (HPA) and the Mississippi River Valley alluvial aquifer (MRVA). We select input data sets by using a combination of mutual information, genetic algorithms, and lag analysis, and then use the selected data sets in a Multilayer Perceptron network architecture to simulate seasonal groundwater level change. As expected, model results suggest that irrigation demand has the highest influence on groundwater level change for a majority of the wells. The subset of groundwater observations not used in model training or cross-validation correlates strongly (R > 0.8) with model results for 88 and 83% of the wells in the HPA and MRVA, respectively. In both aquifer systems, the error in the modeled cumulative groundwater level change during testing (2003-2012) was less than 2 m over a majority of the area. We conclude that our modeling framework can serve as an alternative approach to simulating groundwater level change and water availability, especially in regions where subsurface properties are unknown.

  6. Automated EEG artifact elimination by applying machine learning algorithms to ICA-based features

    Science.gov (United States)

    Radüntz, Thea; Scouten, Jon; Hochmuth, Olaf; Meffert, Beate

    2017-08-01

    Objective. Biological and non-biological artifacts cause severe problems when dealing with electroencephalogram (EEG) recordings. Independent component analysis (ICA) is a widely used method for eliminating various artifacts from recordings. However, evaluating and classifying the calculated independent components (IC) as artifact or EEG is not fully automated at present. Approach. In this study, we propose a new approach for automated artifact elimination, which applies machine learning algorithms to ICA-based features. Main results. We compared the performance of our classifiers with the visual classification results given by experts. The best result with an accuracy rate of 95% was achieved using features obtained by range filtering of the topoplots and IC power spectra combined with an artificial neural network. Significance. Compared with the existing automated solutions, our proposed method is not limited to specific types of artifacts, electrode configurations, or number of EEG channels. The main advantages of the proposed method is that it provides an automatic, reliable, real-time capable, and practical tool, which avoids the need for the time-consuming manual selection of ICs during artifact removal.

  7. Back Analysis of Geomechanical Parameters Using Hybrid Algorithm Based on Difference Evolution and Extreme Learning Machine

    Directory of Open Access Journals (Sweden)

    Zhan-ping Song

    2015-01-01

    Full Text Available Since the geological bodies where tunnels are located have uncertain and complex characteristics, the inverse problem plays an important role in geotechnical engineering. In order to improve the accuracy and speed of surrounding rock identification, the back analysis objective function with usage of the displacement and stress monitoring data has been constructed, with a hybrid algorithm proposed. An extreme learning machine (ELM is employed with optimal architecture trained by the difference evolution (DE arithmetic. First, the three-dimensional numerical simulation is used in the creation of training and testing samples for ELM model construction. Second, the nonlinear relationship between rock parameters and displacement is constructed by numerical simulation. Finally, the geophysics parameters are obtained by DE optimization arithmetic taking into consideration the monitoring data including both displacement and pressure. This method had been applied in the Fusong highway tunnel in Fusong City of China’s Jilin Province, with a good effect obtained. It takes full advantage of DE and ELM and has both calculation speed and precision in the back analysis.

  8. Machine Learning-Based Parameter Tuned Genetic Algorithm for Energy Minimizing Vehicle Routing Problem

    Directory of Open Access Journals (Sweden)

    P. L. N. U. Cooray

    2017-01-01

    Full Text Available During the last decade, tremendous focus has been given to sustainable logistics practices to overcome environmental concerns of business practices. Since transportation is a prominent area of logistics, a new area of literature known as Green Transportation and Green Vehicle Routing has emerged. Vehicle Routing Problem (VRP has been a very active area of the literature with contribution from many researchers over the last three decades. With the computational constraints of solving VRP which is NP-hard, metaheuristics have been applied successfully to solve VRPs in the recent past. This is a threefold study. First, it critically reviews the current literature on EMVRP and the use of metaheuristics as a solution approach. Second, the study implements a genetic algorithm (GA to solve the EMVRP formulation using the benchmark instances listed on the repository of CVRPLib. Finally, the GA developed in Phase 2 was enhanced through machine learning techniques to tune its parameters. The study reveals that, by identifying the underlying characteristics of data, a particular GA can be tuned significantly to outperform any generic GA with competitive computational times. The scrutiny identifies several knowledge gaps where new methodologies can be developed to solve the EMVRPs and develops propositions for future research.

  9. Evaluation of machine learning algorithms for treatment outcome prediction in patients with epilepsy based on structural connectome data.

    Science.gov (United States)

    Munsell, Brent C; Wee, Chong-Yaw; Keller, Simon S; Weber, Bernd; Elger, Christian; da Silva, Laura Angelica Tomaz; Nesland, Travis; Styner, Martin; Shen, Dinggang; Bonilha, Leonardo

    2015-09-01

    The objective of this study is to evaluate machine learning algorithms aimed at predicting surgical treatment outcomes in groups of patients with temporal lobe epilepsy (TLE) using only the structural brain connectome. Specifically, the brain connectome is reconstructed using white matter fiber tracts from presurgical diffusion tensor imaging. To achieve our objective, a two-stage connectome-based prediction framework is developed that gradually selects a small number of abnormal network connections that contribute to the surgical treatment outcome, and in each stage a linear kernel operation is used to further improve the accuracy of the learned classifier. Using a 10-fold cross validation strategy, the first stage in the connectome-based framework is able to separate patients with TLE from normal controls with 80% accuracy, and second stage in the connectome-based framework is able to correctly predict the surgical treatment outcome of patients with TLE with 70% accuracy. Compared to existing state-of-the-art methods that use VBM data, the proposed two-stage connectome-based prediction framework is a suitable alternative with comparable prediction performance. Our results additionally show that machine learning algorithms that exclusively use structural connectome data can predict treatment outcomes in epilepsy with similar accuracy compared with "expert-based" clinical decision. In summary, using the unprecedented information provided in the brain connectome, machine learning algorithms may uncover pathological changes in brain network organization and improve outcome forecasting in the context of epilepsy. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. A Scalable Neuro-inspired Robot Controller Integrating a Machine Learning Algorithm and a Spiking Cerebellar-like Network

    DEFF Research Database (Denmark)

    Baira Ojeda, Ismael; Tolu, Silvia; Lund, Henrik Hautop

    2017-01-01

    Combining Fable robot, a modular robot, with a neuroinspired controller, we present the proof of principle of a system that can scale to several neurally controlled compliant modules. The motor control and learning of a robot module are carried out by a Unit Learning Machine (ULM) that embeds...... the Locally Weighted Projection Regression algorithm (LWPR) and a spiking cerebellar-like microcircuit. The LWPR guarantees both an optimized representation of the input space and the learning of the dynamic internal model (IM) of the robot. However, the cerebellar-like sub-circuit integrates LWPR input...

  11. Comparison of machine-learning algorithms to build a predictive model for detecting undiagnosed diabetes - ELSA-Brasil: accuracy study.

    Science.gov (United States)

    Olivera, André Rodrigues; Roesler, Valter; Iochpe, Cirano; Schmidt, Maria Inês; Vigo, Álvaro; Barreto, Sandhi Maria; Duncan, Bruce Bartholow

    2017-01-01

    Type 2 diabetes is a chronic disease associated with a wide range of serious health complications that have a major impact on overall health. The aims here were to develop and validate predictive models for detecting undiagnosed diabetes using data from the Longitudinal Study of Adult Health (ELSA-Brasil) and to compare the performance of different machine-learning algorithms in this task. Comparison of machine-learning algorithms to develop predictive models using data from ELSA-Brasil. After selecting a subset of 27 candidate variables from the literature, models were built and validated in four sequential steps: (i) parameter tuning with tenfold cross-validation, repeated three times; (ii) automatic variable selection using forward selection, a wrapper strategy with four different machine-learning algorithms and tenfold cross-validation (repeated three times), to evaluate each subset of variables; (iii) error estimation of model parameters with tenfold cross-validation, repeated ten times; and (iv) generalization testing on an independent dataset. The models were created with the following machine-learning algorithms: logistic regression, artificial neural network, naïve Bayes, K-nearest neighbor and random forest. The best models were created using artificial neural networks and logistic regression. -These achieved mean areas under the curve of, respectively, 75.24% and 74.98% in the error estimation step and 74.17% and 74.41% in the generalization testing step. Most of the predictive models produced similar results, and demonstrated the feasibility of identifying individuals with highest probability of having undiagnosed diabetes, through easily-obtained clinical data.

  12. Machine Learning at Scale

    OpenAIRE

    Izrailev, Sergei; Stanley, Jeremy M.

    2014-01-01

    It takes skill to build a meaningful predictive model even with the abundance of implementations of modern machine learning algorithms and readily available computing resources. Building a model becomes challenging if hundreds of terabytes of data need to be processed to produce the training data set. In a digital advertising technology setting, we are faced with the need to build thousands of such models that predict user behavior and power advertising campaigns in a 24/7 chaotic real-time p...

  13. Cognitive Machine-Learning Algorithm for Cardiac Imaging: A Pilot Study for Differentiating Constrictive Pericarditis From Restrictive Cardiomyopathy.

    Science.gov (United States)

    Sengupta, Partho P; Huang, Yen-Min; Bansal, Manish; Ashrafi, Ali; Fisher, Matt; Shameer, Khader; Gall, Walt; Dudley, Joel T

    2016-06-01

    Associating a patient's profile with the memories of prototypical patients built through previous repeat clinical experience is a key process in clinical judgment. We hypothesized that a similar process using a cognitive computing tool would be well suited for learning and recalling multidimensional attributes of speckle tracking echocardiography data sets derived from patients with known constrictive pericarditis and restrictive cardiomyopathy. Clinical and echocardiographic data of 50 patients with constrictive pericarditis and 44 with restrictive cardiomyopathy were used for developing an associative memory classifier-based machine-learning algorithm. The speckle tracking echocardiography data were normalized in reference to 47 controls with no structural heart disease, and the diagnostic area under the receiver operating characteristic curve of the associative memory classifier was evaluated for differentiating constrictive pericarditis from restrictive cardiomyopathy. Using only speckle tracking echocardiography variables, associative memory classifier achieved a diagnostic area under the curve of 89.2%, which improved to 96.2% with addition of 4 echocardiographic variables. In comparison, the area under the curve of early diastolic mitral annular velocity and left ventricular longitudinal strain were 82.1% and 63.7%, respectively. Furthermore, the associative memory classifier demonstrated greater accuracy and shorter learning curves than other machine-learning approaches, with accuracy asymptotically approaching 90% after a training fraction of 0.3 and remaining flat at higher training fractions. This study demonstrates feasibility of a cognitive machine-learning approach for learning and recalling patterns observed during echocardiographic evaluations. Incorporation of machine-learning algorithms in cardiac imaging may aid standardized assessments and support the quality of interpretations, particularly for novice readers with limited experience. © 2016

  14. Machine Learning for Medical Imaging.

    Science.gov (United States)

    Erickson, Bradley J; Korfiatis, Panagiotis; Akkus, Zeynettin; Kline, Timothy L

    2017-01-01

    Machine learning is a technique for recognizing patterns that can be applied to medical images. Although it is a powerful tool that can help in rendering medical diagnoses, it can be misapplied. Machine learning typically begins with the machine learning algorithm system computing the image features that are believed to be of importance in making the prediction or diagnosis of interest. The machine learning algorithm system then identifies the best combination of these image features for classifying the image or computing some metric for the given image region. There are several methods that can be used, each with different strengths and weaknesses. There are open-source versions of most of these machine learning methods that make them easy to try and apply to images. Several metrics for measuring the performance of an algorithm exist; however, one must be aware of the possible associated pitfalls that can result in misleading metrics. More recently, deep learning has started to be used; this method has the benefit that it does not require image feature identification and calculation as a first step; rather, features are identified as part of the learning process. Machine learning has been used in medical imaging and will have a greater influence in the future. Those working in medical imaging must be aware of how machine learning works. (©)RSNA, 2017.

  15. Evaluation of supervised machine-learning algorithms to distinguish between inflammatory bowel disease and alimentary lymphoma in cats.

    Science.gov (United States)

    Awaysheh, Abdullah; Wilcke, Jeffrey; Elvinger, François; Rees, Loren; Fan, Weiguo; Zimmerman, Kurt L

    2016-11-01

    Inflammatory bowel disease (IBD) and alimentary lymphoma (ALA) are common gastrointestinal diseases in cats. The very similar clinical signs and histopathologic features of these diseases make the distinction between them diagnostically challenging. We tested the use of supervised machine-learning algorithms to differentiate between the 2 diseases using data generated from noninvasive diagnostic tests. Three prediction models were developed using 3 machine-learning algorithms: naive Bayes, decision trees, and artificial neural networks. The models were trained and tested on data from complete blood count (CBC) and serum chemistry (SC) results for the following 3 groups of client-owned cats: normal, inflammatory bowel disease (IBD), or alimentary lymphoma (ALA). Naive Bayes and artificial neural networks achieved higher classification accuracy (sensitivities of 70.8% and 69.2%, respectively) than the decision tree algorithm (63%, p machine learning provided a method for distinguishing between ALA-IBD, ALA-normal, and IBD-normal. The naive Bayes and artificial neural networks classifiers used 10 and 4 of the CBC and SC variables, respectively, to outperform the C4.5 decision tree, which used 5 CBC and SC variables in classifying cats into the 3 classes. These models can provide another noninvasive diagnostic tool to assist clinicians with differentiating between IBD and ALA, and between diseased and nondiseased cats. © 2016 The Author(s).

  16. Genetic Algorithms for Optimization of Machine-learning Models and their Applications in Bioinformatics

    KAUST Repository

    Magana-Mora, Arturo

    2017-04-29

    Machine-learning (ML) techniques have been widely applied to solve different problems in biology. However, biological data are large and complex, which often result in extremely intricate ML models. Frequently, these models may have a poor performance or may be computationally unfeasible. This study presents a set of novel computational methods and focuses on the application of genetic algorithms (GAs) for the simplification and optimization of ML models and their applications to biological problems. The dissertation addresses the following three challenges. The first is to develop a generalizable classification methodology able to systematically derive competitive models despite the complexity and nature of the data. Although several algorithms for the induction of classification models have been proposed, the algorithms are data dependent. Consequently, we developed OmniGA, a novel and generalizable framework that uses different classification models in a treeXlike decision structure, along with a parallel GA for the optimization of the OmniGA structure. Results show that OmniGA consistently outperformed existing commonly used classification models. The second challenge is the prediction of translation initiation sites (TIS) in plants genomic DNA. We performed a statistical analysis of the genomic DNA and proposed a new set of discriminant features for this problem. We developed a wrapper method based on GAs for selecting an optimal feature subset, which, in conjunction with a classification model, produced the most accurate framework for the recognition of TIS in plants. Finally, results demonstrate that despite the evolutionary distance between different plants, our approach successfully identified conserved genomic elements that may serve as the starting point for the development of a generic model for prediction of TIS in eukaryotic organisms. Finally, the third challenge is the accurate prediction of polyadenylation signals in human genomic DNA. To achieve

  17. Machine learning in virtual screening.

    Science.gov (United States)

    Melville, James L; Burke, Edmund K; Hirst, Jonathan D

    2009-05-01

    In this review, we highlight recent applications of machine learning to virtual screening, focusing on the use of supervised techniques to train statistical learning algorithms to prioritize databases of molecules as active against a particular protein target. Both ligand-based similarity searching and structure-based docking have benefited from machine learning algorithms, including naïve Bayesian classifiers, support vector machines, neural networks, and decision trees, as well as more traditional regression techniques. Effective application of these methodologies requires an appreciation of data preparation, validation, optimization, and search methodologies, and we also survey developments in these areas.

  18. Comparison of supervised machine learning algorithms for waterborne pathogen detection using mobile phone fluorescence microscopy

    Science.gov (United States)

    Ceylan Koydemir, Hatice; Feng, Steve; Liang, Kyle; Nadkarni, Rohan; Benien, Parul; Ozcan, Aydogan

    2017-06-01

    Giardia lamblia is a waterborne parasite that affects millions of people every year worldwide, causing a diarrheal illness known as giardiasis. Timely detection of the presence of the cysts of this parasite in drinking water is important to prevent the spread of the disease, especially in resource-limited settings. Here we provide extended experimental testing and evaluation of the performance and repeatability of a field-portable and cost-effective microscopy platform for automated detection and counting of Giardia cysts in water samples, including tap water, non-potable water, and pond water. This compact platform is based on our previous work, and is composed of a smartphone-based fluorescence microscope, a disposable sample processing cassette, and a custom-developed smartphone application. Our mobile phone microscope has a large field of view of 0.8 cm2 and weighs only 180 g, excluding the phone. A custom-developed smartphone application provides a user-friendly graphical interface, guiding the users to capture a fluorescence image of the sample filter membrane and analyze it automatically at our servers using an image processing algorithm and training data, consisting of >30,000 images of cysts and >100,000 images of other fluorescent particles that are captured, including, e.g. dust. The total time that it takes from sample preparation to automated cyst counting is less than an hour for each 10 ml of water sample that is tested. We compared the sensitivity and the specificity of our platform using multiple supervised classification models, including support vector machines and nearest neighbors, and demonstrated that a bootstrap aggregating (i.e. bagging) approach using raw image file format provides the best performance for automated detection of Giardia cysts. We evaluated the performance of this machine learning enabled pathogen detection device with water samples taken from different sources (e.g. tap water, non-potable water, pond water) and achieved a

  19. Comparison of supervised machine learning algorithms for waterborne pathogen detection using mobile phone fluorescence microscopy

    Directory of Open Access Journals (Sweden)

    Ceylan Koydemir Hatice

    2017-06-01

    Full Text Available Giardia lamblia is a waterborne parasite that affects millions of people every year worldwide, causing a diarrheal illness known as giardiasis. Timely detection of the presence of the cysts of this parasite in drinking water is important to prevent the spread of the disease, especially in resource-limited settings. Here we provide extended experimental testing and evaluation of the performance and repeatability of a field-portable and cost-effective microscopy platform for automated detection and counting of Giardia cysts in water samples, including tap water, non-potable water, and pond water. This compact platform is based on our previous work, and is composed of a smartphone-based fluorescence microscope, a disposable sample processing cassette, and a custom-developed smartphone application. Our mobile phone microscope has a large field of view of ~0.8 cm2 and weighs only ~180 g, excluding the phone. A custom-developed smartphone application provides a user-friendly graphical interface, guiding the users to capture a fluorescence image of the sample filter membrane and analyze it automatically at our servers using an image processing algorithm and training data, consisting of >30,000 images of cysts and >100,000 images of other fluorescent particles that are captured, including, e.g. dust. The total time that it takes from sample preparation to automated cyst counting is less than an hour for each 10 ml of water sample that is tested. We compared the sensitivity and the specificity of our platform using multiple supervised classification models, including support vector machines and nearest neighbors, and demonstrated that a bootstrap aggregating (i.e. bagging approach using raw image file format provides the best performance for automated detection of Giardia cysts. We evaluated the performance of this machine learning enabled pathogen detection device with water samples taken from different sources (e.g. tap water, non-potable water, pond

  20. Comparison of supervised machine learning algorithms for waterborne pathogen detection using mobile phone fluorescence microscopy

    KAUST Repository

    Ceylan Koydemir, Hatice

    2017-06-14

    Giardia lamblia is a waterborne parasite that affects millions of people every year worldwide, causing a diarrheal illness known as giardiasis. Timely detection of the presence of the cysts of this parasite in drinking water is important to prevent the spread of the disease, especially in resource-limited settings. Here we provide extended experimental testing and evaluation of the performance and repeatability of a field-portable and cost-effective microscopy platform for automated detection and counting of Giardia cysts in water samples, including tap water, non-potable water, and pond water. This compact platform is based on our previous work, and is composed of a smartphone-based fluorescence microscope, a disposable sample processing cassette, and a custom-developed smartphone application. Our mobile phone microscope has a large field of view of ~0.8 cm2 and weighs only ~180 g, excluding the phone. A custom-developed smartphone application provides a user-friendly graphical interface, guiding the users to capture a fluorescence image of the sample filter membrane and analyze it automatically at our servers using an image processing algorithm and training data, consisting of >30,000 images of cysts and >100,000 images of other fluorescent particles that are captured, including, e.g. dust. The total time that it takes from sample preparation to automated cyst counting is less than an hour for each 10 ml of water sample that is tested. We compared the sensitivity and the specificity of our platform using multiple supervised classification models, including support vector machines and nearest neighbors, and demonstrated that a bootstrap aggregating (i.e. bagging) approach using raw image file format provides the best performance for automated detection of Giardia cysts. We evaluated the performance of this machine learning enabled pathogen detection device with water samples taken from different sources (e.g. tap water, non-potable water, pond water) and achieved

  1. Automated Detection of P. falciparum Using Machine Learning Algorithms with Quantitative Phase Images of Unstained Cells

    Science.gov (United States)

    Park, Han Sang; Rinehart, Matthew T.; Walzer, Katelyn A.; Chi, Jen-Tsan Ashley; Wax, Adam

    2016-01-01

    Malaria detection through microscopic examination of stained blood smears is a diagnostic challenge that heavily relies on the expertise of trained microscopists. This paper presents an automated analysis method for detection and staging of red blood cells infected by the malaria parasite Plasmodium falciparum at trophozoite or schizont stage. Unlike previous efforts in this area, this study uses quantitative phase images of unstained cells. Erythrocytes are automatically segmented using thresholds of optical phase and refocused to enable quantitative comparison of phase images. Refocused images are analyzed to extract 23 morphological descriptors based on the phase information. While all individual descriptors are highly statistically different between infected and uninfected cells, each descriptor does not enable separation of populations at a level satisfactory for clinical utility. To improve the diagnostic capacity, we applied various machine learning techniques, including linear discriminant classification (LDC), logistic regression (LR), and k-nearest neighbor classification (NNC), to formulate algorithms that combine all of the calculated physical parameters to distinguish cells more effectively. Results show that LDC provides the highest accuracy of up to 99.7% in detecting schizont stage infected cells compared to uninfected RBCs. NNC showed slightly better accuracy (99.5%) than either LDC (99.0%) or LR (99.1%) for discriminating late trophozoites from uninfected RBCs. However, for early trophozoites, LDC produced the best accuracy of 98%. Discrimination of infection stage was less accurate, producing high specificity (99.8%) but only 45.0%-66.8% sensitivity with early trophozoites most often mistaken for late trophozoite or schizont stage and late trophozoite and schizont stage most often confused for each other. Overall, this methodology points to a significant clinical potential of using quantitative phase imaging to detect and stage malaria infection

  2. A Comparison of Supervised Machine Learning Algorithms and Feature Vectors for MS Lesion Segmentation Using Multimodal Structural MRI

    Science.gov (United States)

    Sweeney, Elizabeth M.; Vogelstein, Joshua T.; Cuzzocreo, Jennifer L.; Calabresi, Peter A.; Reich, Daniel S.; Crainiceanu, Ciprian M.; Shinohara, Russell T.

    2014-01-01

    Machine learning is a popular method for mining and analyzing large collections of medical data. We focus on a particular problem from medical research, supervised multiple sclerosis (MS) lesion segmentation in structural magnetic resonance imaging (MRI). We examine the extent to which the choice of machine learning or classification algorithm and feature extraction function impacts the performance of lesion segmentation methods. As quantitative measures derived from structural MRI are important clinical tools for research into the pathophysiology and natural history of MS, the development of automated lesion segmentation methods is an active research field. Yet, little is known about what drives performance of these methods. We evaluate the performance of automated MS lesion segmentation methods, which consist of a supervised classification algorithm composed with a feature extraction function. These feature extraction functions act on the observed T1-weighted (T1-w), T2-weighted (T2-w) and fluid-attenuated inversion recovery (FLAIR) MRI voxel intensities. Each MRI study has a manual lesion segmentation that we use to train and validate the supervised classification algorithms. Our main finding is that the differences in predictive performance are due more to differences in the feature vectors, rather than the machine learning or classification algorithms. Features that incorporate information from neighboring voxels in the brain were found to increase performance substantially. For lesion segmentation, we conclude that it is better to use simple, interpretable, and fast algorithms, such as logistic regression, linear discriminant analysis, and quadratic discriminant analysis, and to develop the features to improve performance. PMID:24781953

  3. SOLAR FLARE PREDICTION USING SDO/HMI VECTOR MAGNETIC FIELD DATA WITH A MACHINE-LEARNING ALGORITHM

    Energy Technology Data Exchange (ETDEWEB)

    Bobra, M. G.; Couvidat, S., E-mail: couvidat@stanford.edu [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States)

    2015-01-10

    We attempt to forecast M- and X-class solar flares using a machine-learning algorithm, called support vector machine (SVM), and four years of data from the Solar Dynamics Observatory's Helioseismic and Magnetic Imager, the first instrument to continuously map the full-disk photospheric vector magnetic field from space. Most flare forecasting efforts described in the literature use either line-of-sight magnetograms or a relatively small number of ground-based vector magnetograms. This is the first time a large data set of vector magnetograms has been used to forecast solar flares. We build a catalog of flaring and non-flaring active regions sampled from a database of 2071 active regions, comprised of 1.5 million active region patches of vector magnetic field data, and characterize each active region by 25 parameters. We then train and test the machine-learning algorithm and we estimate its performances using forecast verification metrics with an emphasis on the true skill statistic (TSS). We obtain relatively high TSS scores and overall predictive abilities. We surmise that this is partly due to fine-tuning the SVM for this purpose and also to an advantageous set of features that can only be calculated from vector magnetic field data. We also apply a feature selection algorithm to determine which of our 25 features are useful for discriminating between flaring and non-flaring active regions and conclude that only a handful are needed for good predictive abilities.

  4. Distinguishing age-related cognitive decline from dementias: A study based on machine learning algorithms.

    Science.gov (United States)

    Er, Füsun; Iscen, Pınar; Sahin, Sevki; Çinar, Nilgun; Karsidag, Sibel; Goularas, Dionysis

    2017-08-01

    This study aims to examine the distinguishability of age-related cognitive decline (ARCD) from dementias based on some neurocognitive tests using machine learning. 106 subjects were divided into four groups: ARCD (n=30), probable Alzheimer's disease (AD) (n=20), vascular dementia (VD) (n=21) and amnestic mild cognitive impairment (MCI) (n=35). The following tests were applied to all subjects: The Wechsler memory scale-revised, a clock-drawing, the dual similarities, interpretation of proverbs, word fluency, the Stroop, the Boston naming (BNT), the Benton face recognition, a copying-drawings and Öktem verbal memory processes (Ö-VMPT) tests. A multilayer perceptron, a support vector machine and a classification via regression with M5-model trees were employed for classification. The pairwise classification results show that ARCD is completely separable from AD with a success rate of 100% and highly separable from MCI and VD with success rates of 95.4% and 86.30%, respectively. The neurocognitive tests with the higher merit values were Ö-VMPT recognition (ARCD vs. AD), Ö-VMPT total learning (ARCD vs. MCI) and semantic fluency, proverbs, Stroop interference and naming BNT (ARCD vs. VD). The findings show that machine learning can be successfully utilized for distinguishing ARCD from dementias based on neurocognitive tests. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Supervised Machine Learning Algorithms Can Classify Open-Text Feedback of Doctor Performance With Human-Level Accuracy.

    Science.gov (United States)

    Gibbons, Chris; Richards, Suzanne; Valderas, Jose Maria; Campbell, John

    2017-03-15

    Machine learning techniques may be an effective and efficient way to classify open-text reports on doctor's activity for the purposes of quality assurance, safety, and continuing professional development. The objective of the study was to evaluate the accuracy of machine learning algorithms trained to classify open-text reports of doctor performance and to assess the potential for classifications to identify significant differences in doctors' professional performance in the United Kingdom. We used 1636 open-text comments (34,283 words) relating to the performance of 548 doctors collected from a survey of clinicians' colleagues using the General Medical Council Colleague Questionnaire (GMC-CQ). We coded 77.75% (1272/1636) of the comments into 5 global themes (innovation, interpersonal skills, popularity, professionalism, and respect) using a qualitative framework. We trained 8 machine learning algorithms to classify comments and assessed their performance using several training samples. We evaluated doctor performance using the GMC-CQ and compared scores between doctors with different classifications using t tests. Individual algorithm performance was high (range F score=.68 to .83). Interrater agreement between the algorithms and the human coder was highest for codes relating to "popular" (recall=.97), "innovator" (recall=.98), and "respected" (recall=.87) codes and was lower for the "interpersonal" (recall=.80) and "professional" (recall=.82) codes. A 10-fold cross-validation demonstrated similar performance in each analysis. When combined together into an ensemble of multiple algorithms, mean human-computer interrater agreement was .88. Comments that were classified as "respected," "professional," and "interpersonal" related to higher doctor scores on the GMC-CQ compared with comments that were not classified (Pdoctors who were rated as popular or innovative and those who were not rated at all (P>.05). Machine learning algorithms can classify open-text feedback

  6. Automated condition-invariable neurite segmentation and synapse classification using textural analysis-based machine-learning algorithms.

    Science.gov (United States)

    Kandaswamy, Umasankar; Rotman, Ziv; Watt, Dana; Schillebeeckx, Ian; Cavalli, Valeria; Klyachko, Vitaly A

    2013-02-15

    High-resolution live-cell imaging studies of neuronal structure and function are characterized by large variability in image acquisition conditions due to background and sample variations as well as low signal-to-noise ratio. The lack of automated image analysis tools that can be generalized for varying image acquisition conditions represents one of the main challenges in the field of biomedical image analysis. Specifically, segmentation of the axonal/dendritic arborizations in brightfield or fluorescence imaging studies is extremely labor-intensive and still performed mostly manually. Here we describe a fully automated machine-learning approach based on textural analysis algorithms for segmenting neuronal arborizations in high-resolution brightfield images of live cultured neurons. We compare performance of our algorithm to manual segmentation and show that it combines 90% accuracy, with similarly high levels of specificity and sensitivity. Moreover, the algorithm maintains high performance levels under a wide range of image acquisition conditions indicating that it is largely condition-invariable. We further describe an application of this algorithm to fully automated synapse localization and classification in fluorescence imaging studies based on synaptic activity. Textural analysis-based machine-learning approach thus offers a high performance condition-invariable tool for automated neurite segmentation.

  7. Scikit-learn: Machine Learning in Python

    OpenAIRE

    Pedregosa, Fabian; Varoquaux, Gaël; Gramfort, Alexandre; Michel, Vincent; Thirion, Bertrand; Grisel, Olivier; Blondel, Mathieu; Prettenhofer, Peter; Weiss, Ron; Dubourg, Vincent; Vanderplas, Jake; Passos, Alexandre; Cournapeau, David; Brucher, Matthieu; Perrot, Matthieu

    2011-01-01

    International audience; Scikit-learn is a Python module integrating a wide range of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised problems. This package focuses on bringing machine learning to non-specialists using a general-purpose high-level language. Emphasis is put on ease of use, performance, documentation, and API consistency. It has minimal dependencies and is distributed under the simplified BSD license, encouraging its use in both academic ...

  8. Human Machine Learning Symbiosis

    Science.gov (United States)

    Walsh, Kenneth R.; Hoque, Md Tamjidul; Williams, Kim H.

    2017-01-01

    Human Machine Learning Symbiosis is a cooperative system where both the human learner and the machine learner learn from each other to create an effective and efficient learning environment adapted to the needs of the human learner. Such a system can be used in online learning modules so that the modules adapt to each learner's learning state both…

  9. Machine learning for medical images analysis.

    Science.gov (United States)

    Criminisi, A

    2016-10-01

    This article discusses the application of machine learning for the analysis of medical images. Specifically: (i) We show how a special type of learning models can be thought of as automatically optimized, hierarchically-structured, rule-based algorithms, and (ii) We discuss how the issue of collecting large labelled datasets applies to both conventional algorithms as well as machine learning techniques. The size of the training database is a function of model complexity rather than a characteristic of machine learning methods.

  10. Solar Flare Prediction Using SDO/HMI Vector Magnetic Field Data with a Machine-Learning Algorithm

    CERN Document Server

    Bobra, Monica G

    2014-01-01

    We attempt to forecast M-and X-class solar flares using a machine-learning algorithm, called Support Vector Machine (SVM), and four years of data from the Solar Dynamics Observatory's Helioseismic and Magnetic Imager, the first instrument to continuously map the full-disk photospheric vector magnetic field from space. Most flare forecasting efforts described in the literature use either line-of-sight magnetograms or a relatively small number of ground-based vector magnetograms. This is the first time a large dataset of vector magnetograms has been used to forecast solar flares. We build a catalog of flaring and non-flaring active regions sampled from a database of 2,071 active regions, comprised of 1.5 million active region patches of vector magnetic field data, and characterize each active region by 25 parameters. We then train and test the machine-learning algorithm and we estimate its performances using forecast verification metrics with an emphasis on the True Skill Statistic (TSS). We obtain relatively h...

  11. A Machine-Learning Algorithm Toward Color Analysis for Chronic Liver Disease Classification, Employing Ultrasound Shear Wave Elastography.

    Science.gov (United States)

    Gatos, Ilias; Tsantis, Stavros; Spiliopoulos, Stavros; Karnabatidis, Dimitris; Theotokas, Ioannis; Zoumpoulis, Pavlos; Loupas, Thanasis; Hazle, John D; Kagadis, George C

    2017-09-01

    The purpose of the present study was to employ a computer-aided diagnosis system that classifies chronic liver disease (CLD) using ultrasound shear wave elastography (SWE) imaging, with a stiffness value-clustering and machine-learning algorithm. A clinical data set of 126 patients (56 healthy controls, 70 with CLD) was analyzed. First, an RGB-to-stiffness inverse mapping technique was employed. A five-cluster segmentation was then performed associating corresponding different-color regions with certain stiffness value ranges acquired from the SWE manufacturer-provided color bar. Subsequently, 35 features (7 for each cluster), indicative of physical characteristics existing within the SWE image, were extracted. A stepwise regression analysis toward feature reduction was used to derive a reduced feature subset that was fed into the support vector machine classification algorithm to classify CLD from healthy cases. The highest accuracy in classification of healthy to CLD subject discrimination from the support vector machine model was 87.3% with sensitivity and specificity values of 93.5% and 81.2%, respectively. Receiver operating characteristic curve analysis gave an area under the curve value of 0.87 (confidence interval: 0.77-0.92). A machine-learning algorithm that quantifies color information in terms of stiffness values from SWE images and discriminates CLD from healthy cases is introduced. New objective parameters and criteria for CLD diagnosis employing SWE images provided by the present study can be considered an important step toward color-based interpretation, and could assist radiologists' diagnostic performance on a daily basis after being installed in a PC and employed retrospectively, immediately after the examination. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  12. Machine learning for evolution strategies

    CERN Document Server

    Kramer, Oliver

    2016-01-01

    This book introduces numerous algorithmic hybridizations between both worlds that show how machine learning can improve and support evolution strategies. The set of methods comprises covariance matrix estimation, meta-modeling of fitness and constraint functions, dimensionality reduction for search and visualization of high-dimensional optimization processes, and clustering-based niching. After giving an introduction to evolution strategies and machine learning, the book builds the bridge between both worlds with an algorithmic and experimental perspective. Experiments mostly employ a (1+1)-ES and are implemented in Python using the machine learning library scikit-learn. The examples are conducted on typical benchmark problems illustrating algorithmic concepts and their experimental behavior. The book closes with a discussion of related lines of research.

  13. Classification of caesarean section and normal vaginal deliveries using foetal heart rate signals and advanced machine learning algorithms.

    Science.gov (United States)

    Fergus, Paul; Hussain, Abir; Al-Jumeily, Dhiya; Huang, De-Shuang; Bouguila, Nizar

    2017-07-06

    Visual inspection of cardiotocography traces by obstetricians and midwives is the gold standard for monitoring the wellbeing of the foetus during antenatal care. However, inter- and intra-observer variability is high with only a 30% positive predictive value for the classification of pathological outcomes. This has a significant negative impact on the perinatal foetus and often results in cardio-pulmonary arrest, brain and vital organ damage, cerebral palsy, hearing, visual and cognitive defects and in severe cases, death. This paper shows that using machine learning and foetal heart rate signals provides direct information about the foetal state and helps to filter the subjective opinions of medical practitioners when used as a decision support tool. The primary aim is to provide a proof-of-concept that demonstrates how machine learning can be used to objectively determine when medical intervention, such as caesarean section, is required and help avoid preventable perinatal deaths. This is evidenced using an open dataset that comprises 506 controls (normal virginal deliveries) and 46 cases (caesarean due to pH ≤ 7.20-acidosis, n = 18; pH > 7.20 and pH machine-learning algorithms are trained, and validated, using binary classifier performance measures. The findings show that deep learning classification achieves sensitivity = 94%, specificity = 91%, Area under the curve = 99%, F-score = 100%, and mean square error = 1%. The results demonstrate that machine learning significantly improves the efficiency for the detection of caesarean section and normal vaginal deliveries using foetal heart rate signals compared with obstetrician and midwife predictions and systems reported in previous studies.

  14. Physicochemical descriptors to discriminate protein-protein interactions in permanent and transient complexes selected by means of machine learning algorithms.

    Science.gov (United States)

    Block, Peter; Paern, Juri; Hüllermeier, Eyke; Sanschagrin, Paul; Sotriffer, Christoph A; Klebe, Gerhard

    2006-11-15

    Analyzing protein-protein interactions at the atomic level is critical for our understanding of the principles governing the interactions involved in protein-protein recognition. For this purpose, descriptors explaining the nature of different protein-protein complexes are desirable. In this work, the authors introduced Epic Protein Interface Classification as a framework handling the preparation, processing, and analysis of protein-protein complexes for classification with machine learning algorithms. We applied four different machine learning algorithms: Support Vector Machines, C4.5 Decision Trees, K Nearest Neighbors, and Naïve Bayes algorithm in combination with three feature selection methods, Filter (Relief F), Wrapper, and Genetic Algorithms, to extract discriminating features from the protein-protein complexes. To compare protein-protein complexes to each other, the authors represented the physicochemical characteristics of their interfaces in four different ways, using two different atomic contact vectors, DrugScore pair potential vectors and SFCscore descriptor vectors. We classified two different datasets: (A) 172 protein-protein complexes comprising 96 monomers, forming contacts enforced by the crystallographic packing environment (crystal contacts), and 76 biologically functional homodimer complexes; (B) 345 protein-protein complexes containing 147 permanent complexes and 198 transient complexes. We were able to classify up to 94.8% of the packing enforced/functional and up to 93.6% of the permanent/transient complexes correctly. Furthermore, we were able to extract relevant features from the different protein-protein complexes and introduce an approach for scoring the importance of the extracted features. (c) 2006 Wiley-Liss, Inc.

  15. Solar Flare Prediction Using SDO/HMI Vector Magnetic Field Data with a Machine-Learning Algorithm

    Science.gov (United States)

    Bobra, M.; Couvidat, S. P.

    2014-12-01

    We attempt to forecast M-and X-class solar flares using a machine-learning algorithm, called Support Vector Machine (SVM), and four years of data from the Solar Dynamics Observatory's Helioseismic and Magnetic Imager, the first instrument to continuously map the full-disk photospheric vector magnetic field from space (Schou et al., 2012). Most flare forecasting efforts described in the literature use either line-of-sight magnetograms or a relatively small number of ground-based vector magnetograms. This is the first time such a large dataset of vector magnetograms has been used to forecast solar flares. We build a catalog of flaring and non-flaring active regions sampled from a database of 2,071 active regions, comprised of 1.5 million active region patches of vector magnetic field data, and characterize each active region by 25 parameters --- which include the flux, energy, shear, current, helicity, gradient, geometry, and Lorentz force. We then train and test the machine-learning algorithm. Finally, we estimate the performance of this algorithm using forecast verification metrics with an emphasis on the true skill statistic (TSS). Bloomfield et al. (2012) suggest the use of the TSS as it is not sensitive to the class imbalance problem. Indeed, there are many more non-flaring active regions in a given time interval than flaring ones: this class imbalance distorts many performance metrics and renders comparison between various studies somewhat unreliable. We obtain relatively high TSS scores and overall predictive abilities. We surmise that this is partly due to fine-tuning the SVM for this purpose and also to an advantageous set of features that can only be calculated from vector magnetic field data. We also apply a feature selection algorithm to determine which of our 25 features are useful for discriminating between flaring and non-flaring active regions and conclude that only a handful are needed for good predictive abilities.

  16. Learning scikit-learn machine learning in Python

    CERN Document Server

    Garreta, Raúl

    2013-01-01

    The book adopts a tutorial-based approach to introduce the user to Scikit-learn.If you are a programmer who wants to explore machine learning and data-based methods to build intelligent applications and enhance your programming skills, this the book for you. No previous experience with machine-learning algorithms is required.

  17. Analysis of image content recognition algorithm based on sparse coding and machine learning

    Science.gov (United States)

    Xiao, Yu

    2017-03-01

    This paper presents an image classification algorithm based on spatial sparse coding model and random forest. Firstly, SIFT feature extraction of the image; and then use the sparse encoding theory to generate visual vocabulary based on SIFT features, and using the visual vocabulary of SIFT features into a sparse vector; through the combination of regional integration and spatial sparse vector, the sparse vector gets a fixed dimension is used to represent the image; at last random forest classifier for image sparse vectors for training and testing, using the experimental data set for standard test Caltech-101 and Scene-15. The experimental results show that the proposed algorithm can effectively represent the features of the image and improve the classification accuracy. In this paper, we propose an innovative image recognition algorithm based on image segmentation, sparse coding and multi instance learning. This algorithm introduces the concept of multi instance learning, the image as a multi instance bag, sparse feature transformation by SIFT images as instances, sparse encoding model generation visual vocabulary as the feature space is mapped to the feature space through the statistics on the number of instances in bags, and then use the 1-norm SVM to classify images and generate sample weights to select important image features.

  18. Machine learning with R

    CERN Document Server

    Lantz, Brett

    2013-01-01

    Written as a tutorial to explore and understand the power of R for machine learning. This practical guide that covers all of the need to know topics in a very systematic way. For each machine learning approach, each step in the process is detailed, from preparing the data for analysis to evaluating the results. These steps will build the knowledge you need to apply them to your own data science tasks.Intended for those who want to learn how to use R's machine learning capabilities and gain insight from your data. Perhaps you already know a bit about machine learning, but have never used R; or

  19. Parameterization of typhoon-induced ocean cooling using temperature equation and machine learning algorithms: an example of typhoon Soulik (2013)

    Science.gov (United States)

    Wei, Jun; Jiang, Guo-Qing; Liu, Xin

    2017-09-01

    This study proposed three algorithms that can potentially be used to provide sea surface temperature (SST) conditions for typhoon prediction models. Different from traditional data assimilation approaches, which provide prescribed initial/boundary conditions, our proposed algorithms aim to resolve a flow-dependent SST feedback between growing typhoons and oceans in the future time. Two of these algorithms are based on linear temperature equations (TE-based), and the other is based on an innovative technique involving machine learning (ML-based). The algorithms are then implemented into a Weather Research and Forecasting model for the simulation of typhoon to assess their effectiveness, and the results show significant improvement in simulated storm intensities by including ocean cooling feedback. The TE-based algorithm I considers wind-induced ocean vertical mixing and upwelling processes only, and thus obtained a synoptic and relatively smooth sea surface temperature cooling. The TE-based algorithm II incorporates not only typhoon winds but also ocean information, and thus resolves more cooling features. The ML-based algorithm is based on a neural network, consisting of multiple layers of input variables and neurons, and produces the best estimate of the cooling structure, in terms of its amplitude and position. Sensitivity analysis indicated that the typhoon-induced ocean cooling is a nonlinear process involving interactions of multiple atmospheric and oceanic variables. Therefore, with an appropriate selection of input variables and neuron sizes, the ML-based algorithm appears to be more efficient in prognosing the typhoon-induced ocean cooling and in predicting typhoon intensity than those algorithms based on linear regression methods.

  20. Identifying the Enzymatic Mode of Action for Cellulase Enzymes by Means of Docking Calculations and a Machine Learning Algorithm

    Directory of Open Access Journals (Sweden)

    Somisetti V. Sambasivarao

    2014-01-01

    Full Text Available Docking calculations have been conducted on 36 cellulase enzymes and the results were evaluated by a machine learning algorithm to determine the nature of the enzyme (i.e. endo- or exo- enzymatic activity. The docking calculations have also been used to identify crucial substrate-enzyme interactions, and establish structure-function relationships. The use of carboxymethyl cellulose as a docking substrate is found to correctly identify the endo- or exo- behavior of cellulase enzymes with 92% accuracy while cellobiose docking calculations resulted in an 86% predictive accuracy. The binding distributions for cellobiose have been classified into two distinct types; distributions with a single maximum or distributions with a bi-modal structure. It is found that the uni-modal distributions correspond to exo- type enzyme while a bi-modal substrate docking distribution corresponds to endo- type enzyme. These results indicate that the use of docking calculations and machine learning algorithms are a fast and computationally inexpensive method for predicting if a cellulase enzyme possesses primarily endo- or exo- type behavior, while also revealing critical enzyme-substrate interactions.

  1. Simultaneous Multi-vehicle Detection and Tracking Framework with Pavement Constraints Based on Machine Learning and Particle Filter Algorithm

    Institute of Scientific and Technical Information of China (English)

    WANG Ke; HUANG Zhi; ZHONG Zhihua

    2014-01-01

    Due to the large variations of environment with ever-changing background and vehicles with different shapes, colors and appearances, to implement a real-time on-board vehicle recognition system with high adaptability, efficiency and robustness in complicated environments, remains challenging. This paper introduces a simultaneous detection and tracking framework for robust on-board vehicle recognition based on monocular vision technology. The framework utilizes a novel layered machine learning and particle filter to build a multi-vehicle detection and tracking system. In the vehicle detection stage, a layered machine learning method is presented, which combines coarse-search and fine-search to obtain the target using the AdaBoost-based training algorithm. The pavement segmentation method based on characteristic similarity is proposed to estimate the most likely pavement area. Efficiency and accuracy are enhanced by restricting vehicle detection within the downsized area of pavement. In vehicle tracking stage, a multi-objective tracking algorithm based on target state management and particle filter is proposed. The proposed system is evaluated by roadway video captured in a variety of traffics, illumination, and weather conditions. The evaluating results show that, under conditions of proper illumination and clear vehicle appearance, the proposed system achieves 91.2% detection rate and 2.6% false detection rate. Experiments compared to typical algorithms show that, the presented algorithm reduces the false detection rate nearly by half at the cost of decreasing 2.7%–8.6% detection rate. This paper proposes a multi-vehicle detection and tracking system, which is promising for implementation in an on-board vehicle recognition system with high precision, strong robustness and low computational cost.

  2. Microsoft Azure machine learning

    CERN Document Server

    Mund, Sumit

    2015-01-01

    The book is intended for those who want to learn how to use Azure Machine Learning. Perhaps you already know a bit about Machine Learning, but have never used ML Studio in Azure; or perhaps you are an absolute newbie. In either case, this book will get you up-and-running quickly.

  3. Emerging Paradigms in Machine Learning

    CERN Document Server

    Jain, Lakhmi; Howlett, Robert

    2013-01-01

    This  book presents fundamental topics and algorithms that form the core of machine learning (ML) research, as well as emerging paradigms in intelligent system design. The  multidisciplinary nature of machine learning makes it a very fascinating and popular area for research.  The book is aiming at students, practitioners and researchers and captures the diversity and richness of the field of machine learning and intelligent systems.  Several chapters are devoted to computational learning models such as granular computing, rough sets and fuzzy sets An account of applications of well-known learning methods in biometrics, computational stylistics, multi-agent systems, spam classification including an extremely well-written survey on Bayesian networks shed light on the strengths and weaknesses of the methods. Practical studies yielding insight into challenging problems such as learning from incomplete and imbalanced data, pattern recognition of stochastic episodic events and on-line mining of non-stationary ...

  4. Investigating the Use of Machine Learning Algorithms in Detecting Gender of the Arabic Tweet Author

    Directory of Open Access Journals (Sweden)

    Emad AlSukhni

    2016-07-01

    Full Text Available Twitter is one of the most popular social network sites on the Internet to share opinions and knowledge extensively. Many advertisers use these Tweets to collect some features and attributes of Tweeters to target specific groups of highly engaged people. Gender detection is a sub-field of sentiment analysis for extracting and predicting the gender of a Tweet author. In this paper, we aim to investigate the gender of Tweet authors using different classification mining techniques on Arabic language, such as Naïve Bayes (NB, Support vector machine (SVM, Naïve Bayes Multinomial (NBM, J48 decision tree, KNN. The results show that the NBM, SVM, and J48 classifiers can achieve accuracy above to 98%, by adding names of Tweet author as a feature. The results also show that the preprocessing approach has negative effect on the accuracy of gender detection. In nutshell, this study shows that the ability of using machine learning classifiers in detecting the gender of Arabic Tweet author.

  5. Prediction of assets behavior in financial series using machine learning algorithms

    Directory of Open Access Journals (Sweden)

    Diego Esteves da Silva

    2013-11-01

    Full Text Available The prediction of financial assets using either classification or regression models, is a challenge that has been growing in the recent years, despite the large number of publications of forecasting models for this task. Basically, the non-linear tendency of the series and the unexpected behavior of assets (compared to forecasts generated in studies of fundamental analysis or technical analysis make this problem very hard to solve. In this work, we present for this task some modeling techniques using Support Vector Machines (SVM and a comparative performance analysis against other basic machine learning approaches, such as Logistic Regression and Naive Bayes. We use an evaluation set based on company stocks of the BVM&F, the official stock market in Brazil, the third largest in the world. We show good prediction results, and we conclude that it is not possible to find a single model that generates good results for every asset. We also present how to evaluate such parameters for each model. The generated model can also provide additional information to other approaches, such as regression models.

  6. Investigation into machine learning algorithms as applied to motor cortex signals for classification of movement stages.

    Science.gov (United States)

    Hollingshead, Robert L; Putrino, David; Ghosh, Soumya; Tan, Tele

    2014-01-01

    Neuroinformatics has recently emerged as a powerful field for the statistical analysis of neural data. This study uses machine learning techniques to analyze neural spiking activities within a population of neurons with the aim of finding spiking patterns associated with different stages of movement. Neural data was recorded during many experimental trials of a cat performing a skilled reach and withdrawal task. Using Weka and the LibSVM classifier, movement stages of the skilled task were identified with a high degree of certainty achieving an area-under-curve (AUC) of the Receiver Operating Characteristic of between 0.900 and 0.997 for the combined data set. Through feature selection, the identification of significant neurons has been made easier. Given this encouraging classification performance, the extension to automatic classification and updating of control models for use with neural prostheses will enable regular adjustments capable of compensating for neural changes.

  7. Pattern recognition & machine learning

    CERN Document Server

    Anzai, Y

    1992-01-01

    This is the first text to provide a unified and self-contained introduction to visual pattern recognition and machine learning. It is useful as a general introduction to artifical intelligence and knowledge engineering, and no previous knowledge of pattern recognition or machine learning is necessary. Basic for various pattern recognition and machine learning methods. Translated from Japanese, the book also features chapter exercises, keywords, and summaries.

  8. Introduction to machine learning.

    Science.gov (United States)

    Baştanlar, Yalin; Ozuysal, Mustafa

    2014-01-01

    The machine learning field, which can be briefly defined as enabling computers make successful predictions using past experiences, has exhibited an impressive development recently with the help of the rapid increase in the storage capacity and processing power of computers. Together with many other disciplines, machine learning methods have been widely employed in bioinformatics. The difficulties and cost of biological analyses have led to the development of sophisticated machine learning approaches for this application area. In this chapter, we first review the fundamental concepts of machine learning such as feature assessment, unsupervised versus supervised learning and types of classification. Then, we point out the main issues of designing machine learning experiments and their performance evaluation. Finally, we introduce some supervised learning methods.

  9. Multispectral imaging burn wound tissue classification system: a comparison of test accuracies between several common machine learning algorithms

    Science.gov (United States)

    Squiers, John J.; Li, Weizhi; King, Darlene R.; Mo, Weirong; Zhang, Xu; Lu, Yang; Sellke, Eric W.; Fan, Wensheng; DiMaio, J. Michael; Thatcher, Jeffrey E.

    2016-03-01

    The clinical judgment of expert burn surgeons is currently the standard on which diagnostic and therapeutic decisionmaking regarding burn injuries is based. Multispectral imaging (MSI) has the potential to increase the accuracy of burn depth assessment and the intraoperative identification of viable wound bed during surgical debridement of burn injuries. A highly accurate classification model must be developed using machine-learning techniques in order to translate MSI data into clinically-relevant information. An animal burn model was developed to build an MSI training database and to study the burn tissue classification ability of several models trained via common machine-learning algorithms. The algorithms tested, from least to most complex, were: K-nearest neighbors (KNN), decision tree (DT), linear discriminant analysis (LDA), weighted linear discriminant analysis (W-LDA), quadratic discriminant analysis (QDA), ensemble linear discriminant analysis (EN-LDA), ensemble K-nearest neighbors (EN-KNN), and ensemble decision tree (EN-DT). After the ground-truth database of six tissue types (healthy skin, wound bed, blood, hyperemia, partial injury, full injury) was generated by histopathological analysis, we used 10-fold cross validation to compare the algorithms' performances based on their accuracies in classifying data against the ground truth, and each algorithm was tested 100 times. The mean test accuracy of the algorithms were KNN 68.3%, DT 61.5%, LDA 70.5%, W-LDA 68.1%, QDA 68.9%, EN-LDA 56.8%, EN-KNN 49.7%, and EN-DT 36.5%. LDA had the highest test accuracy, reflecting the bias-variance tradeoff over the range of complexities inherent to the algorithms tested. Several algorithms were able to match the current standard in burn tissue classification, the clinical judgment of expert burn surgeons. These results will guide further development of an MSI burn tissue classification system. Given that there are few surgeons and facilities specializing in burn care

  10. Machine learning methods in chemoinformatics

    Science.gov (United States)

    Mitchell, John B O

    2014-01-01

    Machine learning algorithms are generally developed in computer science or adjacent disciplines and find their way into chemical modeling by a process of diffusion. Though particular machine learning methods are popular in chemoinformatics and quantitative structure–activity relationships (QSAR), many others exist in the technical literature. This discussion is methods-based and focused on some algorithms that chemoinformatics researchers frequently use. It makes no claim to be exhaustive. We concentrate on methods for supervised learning, predicting the unknown property values of a test set of instances, usually molecules, based on the known values for a training set. Particularly relevant approaches include Artificial Neural Networks, Random Forest, Support Vector Machine, k-Nearest Neighbors and naïve Bayes classifiers. WIREs Comput Mol Sci 2014, 4:468–481. How to cite this article: WIREs Comput Mol Sci 2014, 4:468–481. doi:10.1002/wcms.1183 PMID:25285160

  11. Monitoring mangrove biomass change in Vietnam using SPOT images and an object-based approach combined with machine learning algorithms

    Science.gov (United States)

    Pham, Lien T. H.; Brabyn, Lars

    2017-06-01

    Mangrove forests are well-known for their provision of ecosystem services and capacity to reduce carbon dioxide concentrations in the atmosphere. Mapping and quantifying mangrove biomass is useful for the effective management of these forests and maximizing their ecosystem service performance. The objectives of this research were to model, map, and analyse the biomass change between 2000 and 2011 of mangrove forests in the Cangio region in Vietnam. SPOT 4 and 5 images were used in conjunction with object-based image analysis and machine learning algorithms. The study area included natural and planted mangroves of diverse species. After image preparation, three different mangrove associations were identified using two levels of image segmentation followed by a Support Vector Machine classifier and a range of spectral, texture and GIS information for classification. The overall classification accuracy for the 2000 and 2011 images were 77.1% and 82.9%, respectively. Random Forest regression algorithms were then used for modelling and mapping biomass. The model that integrated spectral, vegetation association type, texture, and vegetation indices obtained the highest accuracy (R2adj = 0.73). Among the different variables, vegetation association type was the most important variable identified by the Random Forest model. Based on the biomass maps generated from the Random Forest, total biomass in the Cangio mangrove forest increased by 820,136 tons over this period, although this change varied between the three different mangrove associations.

  12. Machine learning with R

    CERN Document Server

    Lantz, Brett

    2015-01-01

    Perhaps you already know a bit about machine learning but have never used R, or perhaps you know a little R but are new to machine learning. In either case, this book will get you up and running quickly. It would be helpful to have a bit of familiarity with basic programming concepts, but no prior experience is required.

  13. Stacked Extreme Learning Machines.

    Science.gov (United States)

    Zhou, Hongming; Huang, Guang-Bin; Lin, Zhiping; Wang, Han; Soh, Yeng Chai

    2015-09-01

    Extreme learning machine (ELM) has recently attracted many researchers' interest due to its very fast learning speed, good generalization ability, and ease of implementation. It provides a unified solution that can be used directly to solve regression, binary, and multiclass classification problems. In this paper, we propose a stacked ELMs (S-ELMs) that is specially designed for solving large and complex data problems. The S-ELMs divides a single large ELM network into multiple stacked small ELMs which are serially connected. The S-ELMs can approximate a very large ELM network with small memory requirement. To further improve the testing accuracy on big data problems, the ELM autoencoder can be implemented during each iteration of the S-ELMs algorithm. The simulation results show that the S-ELMs even with random hidden nodes can achieve similar testing accuracy to support vector machine (SVM) while having low memory requirements. With the help of ELM autoencoder, the S-ELMs can achieve much better testing accuracy than SVM and slightly better accuracy than deep belief network (DBN) with much faster training speed.

  14. REAL TIME CLASSIFICATION AND CLUSTERING OF IDS ALERTS USING MACHINE LEARNING ALGORITHMS

    Directory of Open Access Journals (Sweden)

    T. Subbulakshmi

    2010-01-01

    Full Text Available Intrusion Detection Systems (IDS monitor a secured network for the evidence of malicious activities originating either inside or outside. Upon identifying a suspicious traffic, IDS generates and logs an alert. Unfortunately, most of the alerts generated are either false positive, i.e. benign traffic that has been classified as intrusions, or irrelevant, i.e. attacks that are not successful. The abundance of false positive alerts makes it difficult for the security analyst to find successful attacks and take remedial action. This paper describes a two phase automatic alert classification system to assist the human analyst in identifying the false positives. In the first phase, the alerts collected from one or more sensors are normalized and similar alerts are grouped to form a meta-alert. These meta-alerts are passively verified with an asset database to find out irrelevant alerts. In addition, an optional alert generalization is also performed for root cause analysis and thereby reduces false positives with human interaction. In the second phase, the reduced alerts are labeled and passed to an alert classifier which uses machine learning techniques for building the classification rules. This helps the analyst in automatic classification of the alerts. The system is tested in real environments and found to be effective in reducing the number of alerts as well as false positives dramatically, and thereby reducing the workload of human analyst.

  15. Evaluating machine learning algorithms estimating tremor severity ratings on the Bain-Findley scale

    Science.gov (United States)

    Yohanandan, Shivanthan A. C.; Jones, Mary; Peppard, Richard; Tan, Joy L.; McDermott, Hugh J.; Perera, Thushara

    2016-12-01

    Tremor is a debilitating symptom of some movement disorders. Effective treatment, such as deep brain stimulation (DBS), is contingent upon frequent clinical assessments using instruments such as the Bain-Findley tremor rating scale (BTRS). Many patients, however, do not have access to frequent clinical assessments. Wearable devices have been developed to provide patients with access to frequent objective assessments outside the clinic via telemedicine. Nevertheless, the information they report is not in the form of BTRS ratings. One way to transform this information into BTRS ratings is through linear regression models (LRMs). Another, potentially more accurate method is through machine learning classifiers (MLCs). This study aims to compare MLCs and LRMs, and identify the most accurate model that can transform objective tremor information into tremor severity ratings on the BTRS. Nine participants with upper limb tremor had their DBS stimulation amplitude varied while they performed clinical upper-extremity exercises. Tremor features were acquired using the tremor biomechanics analysis laboratory (TREMBAL). Movement disorder specialists rated tremor severity on the BTRS from video recordings. Seven MLCs and 6 LRMs transformed TREMBAL features into tremor severity ratings on the BTRS using the specialists’ ratings as training data. The weighted Cohen’s kappa ({κ\\text{w}} ) defined the models’ rating accuracy. This study shows that the Random Forest MLC was the most accurate model ({κ\\text{w}}   =  0.81) at transforming tremor information into BTRS ratings, thereby improving the clinical interpretation of tremor information obtained from wearable devices.

  16. Deep Extreme Learning Machine and Its Application in EEG Classification

    OpenAIRE

    Shifei Ding; Nan Zhang; Xinzheng Xu; Lili Guo; Jian Zhang

    2015-01-01

    Recently, deep learning has aroused wide interest in machine learning fields. Deep learning is a multilayer perceptron artificial neural network algorithm. Deep learning has the advantage of approximating the complicated function and alleviating the optimization difficulty associated with deep models. Multilayer extreme learning machine (MLELM) is a learning algorithm of an artificial neural network which takes advantages of deep learning and extreme learning machine. Not only does MLELM appr...

  17. Deep Extreme Learning Machine and Its Application in EEG Classification

    OpenAIRE

    2015-01-01

    Recently, deep learning has aroused wide interest in machine learning fields. Deep learning is a multilayer perceptron artificial neural network algorithm. Deep learning has the advantage of approximating the complicated function and alleviating the optimization difficulty associated with deep models. Multilayer extreme learning machine (MLELM) is a learning algorithm of an artificial neural network which takes advantages of deep learning and extreme learning machine. Not only does MLELM appr...

  18. Learning Extended Finite State Machines

    Science.gov (United States)

    Cassel, Sofia; Howar, Falk; Jonsson, Bengt; Steffen, Bernhard

    2014-01-01

    We present an active learning algorithm for inferring extended finite state machines (EFSM)s, combining data flow and control behavior. Key to our learning technique is a novel learning model based on so-called tree queries. The learning algorithm uses the tree queries to infer symbolic data constraints on parameters, e.g., sequence numbers, time stamps, identifiers, or even simple arithmetic. We describe sufficient conditions for the properties that the symbolic constraints provided by a tree query in general must have to be usable in our learning model. We have evaluated our algorithm in a black-box scenario, where tree queries are realized through (black-box) testing. Our case studies include connection establishment in TCP and a priority queue from the Java Class Library.

  19. Classification of Suicide Attempts through a Machine Learning Algorithm Based on Multiple Systemic Psychiatric Scales

    Directory of Open Access Journals (Sweden)

    Jihoon Oh

    2017-09-01

    Full Text Available Classification and prediction of suicide attempts in high-risk groups is important for preventing suicide. The purpose of this study was to investigate whether the information from multiple clinical scales has classification power for identifying actual suicide attempts. Patients with depression and anxiety disorders (N = 573 were included, and each participant completed 31 self-report psychiatric scales and questionnaires about their history of suicide attempts. We then trained an artificial neural network classifier with 41 variables (31 psychiatric scales and 10 sociodemographic elements and ranked the contribution of each variable for the classification of suicide attempts. To evaluate the clinical applicability of our model, we measured classification performance with top-ranked predictors. Our model had an overall accuracy of 93.7% in 1-month, 90.8% in 1-year, and 87.4% in lifetime suicide attempts detection. The area under the receiver operating characteristic curve (AUROC was the highest for 1-month suicide attempts detection (0.93, followed by lifetime (0.89, and 1-year detection (0.87. Among all variables, the Emotion Regulation Questionnaire had the highest contribution, and the positive and negative characteristics of the scales similarly contributed to classification performance. Performance on suicide attempts classification was largely maintained when we only used the top five ranked variables for training (AUROC; 1-month, 0.75, 1-year, 0.85, lifetime suicide attempts detection, 0.87. Our findings indicate that information from self-report clinical scales can be useful for the classification of suicide attempts. Based on the reliable performance of the top five predictors alone, this machine learning approach could help clinicians identify high-risk patients in clinical settings.

  20. Extreme Learning Machine for land cover classification

    OpenAIRE

    Pal, Mahesh

    2008-01-01

    This paper explores the potential of extreme learning machine based supervised classification algorithm for land cover classification. In comparison to a backpropagation neural network, which requires setting of several user-defined parameters and may produce local minima, extreme learning machine require setting of one parameter and produce a unique solution. ETM+ multispectral data set (England) was used to judge the suitability of extreme learning machine for remote sensing classifications...

  1. Introducing Machine Learning Concepts with WEKA.

    Science.gov (United States)

    Smith, Tony C; Frank, Eibe

    2016-01-01

    This chapter presents an introduction to data mining with machine learning. It gives an overview of various types of machine learning, along with some examples. It explains how to download, install, and run the WEKA data mining toolkit on a simple data set, then proceeds to explain how one might approach a bioinformatics problem. Finally, it includes a brief summary of machine learning algorithms for other types of data mining problems, and provides suggestions about where to find additional information.

  2. Machine Learning and Radiology

    Science.gov (United States)

    Wang, Shijun; Summers, Ronald M.

    2012-01-01

    In this paper, we give a short introduction to machine learning and survey its applications in radiology. We focused on six categories of applications in radiology: medical image segmentation, registration, computer aided detection and diagnosis, brain function or activity analysis and neurological disease diagnosis from fMR images, content-based image retrieval systems for CT or MRI images, and text analysis of radiology reports using natural language processing (NLP) and natural language understanding (NLU). This survey shows that machine learning plays a key role in many radiology applications. Machine learning identifies complex patterns automatically and helps radiologists make intelligent decisions on radiology data such as conventional radiographs, CT, MRI, and PET images and radiology reports. In many applications, the performance of machine learning-based automatic detection and diagnosis systems has shown to be comparable to that of a well-trained and experienced radiologist. Technology development in machine learning and radiology will benefit from each other in the long run. Key contributions and common characteristics of machine learning techniques in radiology are discussed. We also discuss the problem of translating machine learning applications to the radiology clinical setting, including advantages and potential barriers. PMID:22465077

  3. A Machine Learning Approach to Predicting the Smoothed Complexity of Sorting Algorithms

    OpenAIRE

    Shi, Bichen; Schellekens, Michel; Ifrim, Georgiana

    2015-01-01

    Smoothed analysis is a framework for analyzing the complexity of an algorithm, acting as a bridge between average and worst-case behaviour. For example, Quicksort and the Simplex algorithm are widely used in practical applications, despite their heavy worst-case complexity. Smoothed complexity aims to better characterize such algorithms. Existing theoretical bounds for the smoothed complexity of sorting algorithms are still quite weak. Furthermore, empirically computing the smoothed complexit...

  4. Identification of Forested Landslides Using LiDar Data, Object-based Image Analysis, and Machine Learning Algorithms

    Directory of Open Access Journals (Sweden)

    Xianju Li

    2015-07-01

    Full Text Available For identification of forested landslides, most studies focus on knowledge-based and pixel-based analysis (PBA of LiDar data, while few studies have examined (semi- automated methods and object-based image analysis (OBIA. Moreover, most of them are focused on soil-covered areas with gentle hillslopes. In bedrock-covered mountains with steep and rugged terrain, it is so difficult to identify landslides that there is currently no research on whether combining semi-automated methods and OBIA with only LiDar derivatives could be more effective. In this study, a semi-automatic object-based landslide identification approach was developed and implemented in a forested area, the Three Gorges of China. Comparisons of OBIA and PBA, two different machine learning algorithms and their respective sensitivity to feature selection (FS, were first investigated. Based on the classification result, the landslide inventory was finally obtained according to (1 inclusion of holes encircled by the landslide body; (2 removal of isolated segments, and (3 delineation of closed envelope curves for landslide objects by manual digitizing operation. The proposed method achieved the following: (1 the filter features of surface roughness were first applied for calculating object features, and proved useful; (2 FS improved classification accuracy and reduced features; (3 the random forest algorithm achieved higher accuracy and was less sensitive to FS than a support vector machine; (4 compared to PBA, OBIA was more sensitive to FS, remarkably reduced computing time, and depicted more contiguous terrain segments; (5 based on the classification result with an overall accuracy of 89.11% ± 0.03%, the obtained inventory map was consistent with the referenced landslide inventory map, with a position mismatch value of 9%. The outlined approach would be helpful for forested landslide identification in steep and rugged terrain.

  5. Improving the Performance of Machine Learning Based Multi Attribute Face Recognition Algorithm Using Wavelet Based Image Decomposition Technique

    Directory of Open Access Journals (Sweden)

    S. Sakthivel

    2011-01-01

    Full Text Available Problem statement: Recognizing a face based attributes is an easy task for a human to perform; it is closely automated and requires little mental effort. A computer, on the other hand, has no innate ability to recognize a face or a facial feature and must be programmed with an algorithm to do so. Generally, to recognize a face, different kinds of the facial features were used separately or in a combined manner. In the previous work, we have developed a machine learning based multi attribute face recognition algorithm and evaluated it different set of weights to each input attribute and performance wise it is low compared to proposed wavelet decomposition technique. Approach: In this study, wavelet decomposition technique has been applied as a preprocessing technique to enhance the input face images in order to reduce the loss of classification performance due to changes in facial appearance. The Experiment was specifically designed to investigate the gain in robustness against illumination and facial expression changes. Results: In this study, a wavelet based image decomposition technique has been proposed to enhance the performance by 8.54 percent of the previously designed system. Conclusion: The proposed model has been tested on face images with difference in expression and illumination condition with a dataset obtained from face image databases from Olivetti Research Laboratory.

  6. Machine learning algorithm for automatic detection of CT-identifiable hyperdense lesions associated with traumatic brain injury

    Science.gov (United States)

    Keshavamurthy, Krishna N.; Leary, Owen P.; Merck, Lisa H.; Kimia, Benjamin; Collins, Scott; Wright, David W.; Allen, Jason W.; Brock, Jeffrey F.; Merck, Derek

    2017-03-01

    Traumatic brain injury (TBI) is a major cause of death and disability in the United States. Time to treatment is often related to patient outcome. Access to cerebral imaging data in a timely manner is a vital component of patient care. Current methods of detecting and quantifying intracranial pathology can be time-consuming and require careful review of 2D/3D patient images by a radiologist. Additional time is needed for image protocoling, acquisition, and processing. These steps often occur in series, adding more time to the process and potentially delaying time-dependent management decisions for patients with traumatic brain injury. Our team adapted machine learning and computer vision methods to develop a technique that rapidly and automatically detects CT-identifiable lesions. Specifically, we use scale invariant feature transform (SIFT)1 and deep convolutional neural networks (CNN)2 to identify important image features that can distinguish TBI lesions from background data. Our learning algorithm is a linear support vector machine (SVM)3. Further, we also employ tools from topological data analysis (TDA) for gleaning insights into the correlation patterns between healthy and pathological data. The technique was validated using 409 CT scans of the brain, acquired via the Progesterone for the Treatment of Traumatic Brain Injury phase III clinical trial (ProTECT_III) which studied patients with moderate to severe TBI4. CT data were annotated by a central radiologist and included patients with positive and negative scans. Additionally, the largest lesion on each positive scan was manually segmented. We reserved 80% of the data for training the SVM and used the remaining 20% for testing. Preliminary results are promising with 92.55% prediction accuracy (sensitivity = 91.15%, specificity = 93.45%), indicating the potential usefulness of this technique in clinical scenarios.

  7. mlpy: Machine Learning Python

    CERN Document Server

    Albanese, Davide; Merler, Stefano; Riccadonna, Samantha; Jurman, Giuseppe; Furlanello, Cesare

    2012-01-01

    mlpy is a Python Open Source Machine Learning library built on top of NumPy/SciPy and the GNU Scientific Libraries. mlpy provides a wide range of state-of-the-art machine learning methods for supervised and unsupervised problems and it is aimed at finding a reasonable compromise among modularity, maintainability, reproducibility, usability and efficiency. mlpy is multiplatform, it works with Python 2 and 3 and it is distributed under GPL3 at the website http://mlpy.fbk.eu.

  8. mlpy: Machine Learning Python

    OpenAIRE

    Albanese, Davide; Visintainer, Roberto; Merler, Stefano; Riccadonna, Samantha; Jurman, Giuseppe; Furlanello, Cesare

    2012-01-01

    mlpy is a Python Open Source Machine Learning library built on top of NumPy/SciPy and the GNU Scientific Libraries. mlpy provides a wide range of state-of-the-art machine learning methods for supervised and unsupervised problems and it is aimed at finding a reasonable compromise among modularity, maintainability, reproducibility, usability and efficiency. mlpy is multiplatform, it works with Python 2 and 3 and it is distributed under GPL3 at the website http://mlpy.fbk.eu.

  9. Evaluation of machine learning algorithms for classification of primary biological aerosol using a new UV-LIF spectrometer

    Science.gov (United States)

    Ruske, Simon; Topping, David O.; Foot, Virginia E.; Kaye, Paul H.; Stanley, Warren R.; Crawford, Ian; Morse, Andrew P.; Gallagher, Martin W.

    2017-03-01

    Characterisation of bioaerosols has important implications within environment and public health sectors. Recent developments in ultraviolet light-induced fluorescence (UV-LIF) detectors such as the Wideband Integrated Bioaerosol Spectrometer (WIBS) and the newly introduced Multiparameter Bioaerosol Spectrometer (MBS) have allowed for the real-time collection of fluorescence, size and morphology measurements for the purpose of discriminating between bacteria, fungal spores and pollen.This new generation of instruments has enabled ever larger data sets to be compiled with the aim of studying more complex environments. In real world data sets, particularly those from an urban environment, the population may be dominated by non-biological fluorescent interferents, bringing into question the accuracy of measurements of quantities such as concentrations. It is therefore imperative that we validate the performance of different algorithms which can be used for the task of classification.For unsupervised learning we tested hierarchical agglomerative clustering with various different linkages. For supervised learning, 11 methods were tested, including decision trees, ensemble methods (random forests, gradient boosting and AdaBoost), two implementations for support vector machines (libsvm and liblinear) and Gaussian methods (Gaussian naïve Bayesian, quadratic and linear discriminant analysis, the k-nearest neighbours algorithm and artificial neural networks).The methods were applied to two different data sets produced using the new MBS, which provides multichannel UV-LIF fluorescence signatures for single airborne biological particles. The first data set contained mixed PSLs and the second contained a variety of laboratory-generated aerosol.Clustering in general performs slightly worse than the supervised learning methods, correctly classifying, at best, only 67. 6 and 91. 1 % for the two data sets respectively. For supervised learning the gradient boosting algorithm was

  10. Development of Machine Learning Tools in ROOT

    Science.gov (United States)

    Gleyzer, S. V.; Moneta, L.; Zapata, Omar A.

    2016-10-01

    ROOT is a framework for large-scale data analysis that provides basic and advanced statistical methods used by the LHC experiments. These include machine learning algorithms from the ROOT-integrated Toolkit for Multivariate Analysis (TMVA). We present several recent developments in TMVA, including a new modular design, new algorithms for variable importance and cross-validation, interfaces to other machine-learning software packages and integration of TMVA with Jupyter, making it accessible with a browser.

  11. Machine Learning for Biological Trajectory Classification Applications

    Science.gov (United States)

    Sbalzarini, Ivo F.; Theriot, Julie; Koumoutsakos, Petros

    2002-01-01

    Machine-learning techniques, including clustering algorithms, support vector machines and hidden Markov models, are applied to the task of classifying trajectories of moving keratocyte cells. The different algorithms axe compared to each other as well as to expert and non-expert test persons, using concepts from signal-detection theory. The algorithms performed very well as compared to humans, suggesting a robust tool for trajectory classification in biological applications.

  12. A Heuristic Approach to the Disease Diagnose System Using Machine Learning Algorithms (An Expert Advisory System for EMU Bird’s Diseases

    Directory of Open Access Journals (Sweden)

    P.Naga Jyothi,

    2010-03-01

    Full Text Available The paper deals with the concepts of expert system and data mining belongs to the Artificial Intelligence fields. The main task of expert system is to ratiocination, while the machine learning algorithm is to find the better optimal solution. This paper mainly focuses on diagnoses of the disease which is effected to the Emu bird by mechanism of Particle Swarm Optimization (PSO algorithm and Artificial Bee Colony(ABC algorithm. The decisive rules of database is mined and that could be applied in expert system. Thus, by applying optimization techniques resulting to best global optimized solution.

  13. Spatiotemporal prediction of continuous daily PM2.5 concentrations across China using a spatially explicit machine learning algorithm

    Science.gov (United States)

    Zhan, Yu; Luo, Yuzhou; Deng, Xunfei; Chen, Huajin; Grieneisen, Michael L.; Shen, Xueyou; Zhu, Lizhong; Zhang, Minghua

    2017-04-01

    A high degree of uncertainty associated with the emission inventory for China tends to degrade the performance of chemical transport models in predicting PM2.5 concentrations especially on a daily basis. In this study a novel machine learning algorithm, Geographically-Weighted Gradient Boosting Machine (GW-GBM), was developed by improving GBM through building spatial smoothing kernels to weigh the loss function. This modification addressed the spatial nonstationarity of the relationships between PM2.5 concentrations and predictor variables such as aerosol optical depth (AOD) and meteorological conditions. GW-GBM also overcame the estimation bias of PM2.5 concentrations due to missing AOD retrievals, and thus potentially improved subsequent exposure analyses. GW-GBM showed good performance in predicting daily PM2.5 concentrations (R2 = 0.76, RMSE = 23.0 μg/m3) even with partially missing AOD data, which was better than the original GBM model (R2 = 0.71, RMSE = 25.3 μg/m3). On the basis of the continuous spatiotemporal prediction of PM2.5 concentrations, it was predicted that 95% of the population lived in areas where the estimated annual mean PM2.5 concentration was higher than 35 μg/m3, and 45% of the population was exposed to PM2.5 >75 μg/m3 for over 100 days in 2014. GW-GBM accurately predicted continuous daily PM2.5 concentrations in China for assessing acute human health effects.

  14. Machine vision theory, algorithms, practicalities

    CERN Document Server

    Davies, E R

    2005-01-01

    In the last 40 years, machine vision has evolved into a mature field embracing a wide range of applications including surveillance, automated inspection, robot assembly, vehicle guidance, traffic monitoring and control, signature verification, biometric measurement, and analysis of remotely sensed images. While researchers and industry specialists continue to document their work in this area, it has become increasingly difficult for professionals and graduate students to understand the essential theory and practicalities well enough to design their own algorithms and systems. This book directl

  15. OpenMP Parallelization and Optimization of Graph-based Machine Learning Algorithms

    Science.gov (United States)

    2016-05-01

    Wagner, F.: A simple min-cut algorithm. Journal of the ACM (JACM) 44.4 : 585-591 (1997) 3. Szlam, A., Bresson, X.: A total variation-based graph...model for multicore architectures. Communications of the ACM 52.4: 65-76 (2009) 15. Roofline Toolkit: https://bitbucket.org/berkeleylab/cs-roofline

  16. Machine Learning in Parliament Elections

    Directory of Open Access Journals (Sweden)

    Ahmad Esfandiari

    2012-09-01

    Full Text Available Parliament is considered as one of the most important pillars of the country governance. The parliamentary elections and prediction it, had been considered by scholars of from various field like political science long ago. Some important features are used to model the results of consultative parliament elections. These features are as follows: reputation and popularity, political orientation, tradesmen's support, clergymen's support, support from political wings and the type of supportive wing. Two parameters of reputation and popularity and the support of clergymen and religious scholars that have more impact in reducing of prediction error in election results, have been used as input parameters in implementation. In this study, the Iranian parliamentary elections, modeled and predicted using learnable machines of neural network and neuro-fuzzy. Neuro-fuzzy machine combines the ability of knowledge representation of fuzzy sets and the learning power of neural networks simultaneously. In predicting the social and political behavior, the neural network is first trained by two learning algorithms using the training data set and then this machine predict the result on test data. Next, the learning of neuro-fuzzy inference machine is performed. Then, be compared the results of two machines.

  17. PRGPred: A platform for prediction of domains of resistance gene analogue (RGA in Arecaceae developed using machine learning algorithms

    Directory of Open Access Journals (Sweden)

    MATHODIYIL S. MANJULA

    2015-12-01

    Full Text Available Plant disease resistance genes (R-genes are responsible for initiation of defense mechanism against various phytopathogens. The majority of plant R-genes are members of very large multi-gene families, which encode structurally related proteins containing nucleotide binding site domains (NBS and C-terminal leucine rich repeats (LRR. Other classes possess' an extracellular LRR domain, a transmembrane domain and sometimes, an intracellular serine/threonine kinase domain. R-proteins work in pathogen perception and/or the activation of conserved defense signaling networks. In the present study, sequences representing resistance gene analogues (RGAs of coconut, arecanut, oil palm and date palm were collected from NCBI, sorted based on domains and assembled into a database. The sequences were analyzed in PRINTS database to find out the conserved domains and their motifs present in the RGAs. Based on these domains, we have also developed a tool to predict the domains of palm R-genes using various machine learning algorithms. The model files were selected based on the performance of the best classifier in training and testing. All these information is stored and made available in the online ‘PRGpred' database and prediction tool.

  18. Search for gamma-ray emitting AGN among unidentified Fermi-LAT sources using machine learning algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Doert, Marlene [Technische Universitaet Dortmund (Germany); Ruhr-Universitaet Bochum (Germany); Einecke, Sabrina [Technische Universitaet Dortmund (Germany); Errando, Manel [Barnard College, Columbia University, New York City (United States)

    2015-07-01

    The second Fermi-LAT source catalog (2FGL) is the deepest all-sky survey of the gamma-ray sky currently available to the community. Out of the 1873 catalog sources, 576 remain unassociated. We present a search for active galactic nuclei (AGN) among these unassociated objects, which aims at a reduction of the number of unassociated gamma-ray sources and a more complete characterization of the population of gamma-ray emitting AGN. Our study uses two complimentary machine learning algorithms which are individually trained on the gamma-ray properties of associated 2FGL sources and thereafter applied to the unassociated sample. The intersection of the two methods yields a high-confidence sample of 231 AGN candidate sources. We estimate the performance of the classification by taking inherent differences between the samples of associated and unassociated 2FGL sources into account. A search for infra-red counterparts and first results from follow-up studies in the X-ray band using Swift satellite data for a subset of our AGN candidates are also presented.

  19. Machine Learning with Distances

    Science.gov (United States)

    2015-02-16

    and demonstrated their usefulness in experiments. 1 Introduction The goal of machine learning is to find useful knowledge behind data. Many machine...212, 172]. However, direct divergence approximators still suffer from the curse of dimensionality. A possible cure for this problem is to combine them...obtain the global optimal solution or even a good local solution without any prior knowledge . For this reason, we decided to introduce the unit-norm

  20. An introduction to machine learning with Scikit-Learn

    CERN Document Server

    CERN. Geneva

    2015-01-01

    This tutorial gives an introduction to the scientific ecosystem for data analysis and machine learning in Python. After a short introduction of machine learning concepts, we will demonstrate on High Energy Physics data how a basic supervised learning analysis can be carried out using the Scikit-Learn library. Topics covered include data loading facilities and data representation, supervised learning algorithms, pipelines, model selection and evaluation, and model introspection.

  1. Exploiting machine learning algorithms for tree species classification in a semiarid woodland using RapidEye image

    CSIR Research Space (South Africa)

    Adelabu, S

    2013-11-01

    Full Text Available in semiarid environments. In this study, we examined the suitability of 5-band RapidEye satellite data for the classification of five tree species in mopane woodland of Botswana using machine leaning algorithms with limited training samples. We performed...

  2. Classification of juvenile myoclonic epilepsy data acquired through scanning electromyography with machine learning algorithms.

    Science.gov (United States)

    Goker, Imran; Osman, Onur; Ozekes, Serhat; Baslo, M Baris; Ertas, Mustafa; Ulgen, Yekta

    2012-10-01

    In this paper, classification of Juvenile Myoclonic Epilepsy (JME) patients and healthy volunteers included into Normal Control (NC) groups was established using Feed-Forward Neural Networks (NN), Support Vector Machines (SVM), Decision Trees (DT), and Naïve Bayes (NB) methods by utilizing the data obtained through the scanning EMG method used in a clinical study. An experimental setup was built for this purpose. 105 motor units were measured. 44 of them belonged to JME group consisting of 9 patients and 61 of them belonged to NC group comprising ten healthy volunteers. k-fold cross validation was applied to train and test the models. ROC curves were drawn for k values of 4, 6, 8 and 10. 100% of detection sensitivity was obtained for DT, NN, and NB classification methods. The lowest FP number, which was obtained by NN, was 5.

  3. Classification of HTTP traffic based on C5.0 Machine Learning Algorithm

    DEFF Research Database (Denmark)

    Bujlow, Tomasz; Riaz, Tahir; Pedersen, Jens Myrup

    2012-01-01

    Our previous work demonstrated the possibility of distinguishing several groups of traffic with accuracy of over 99%. Today, most of the traffic is generated by web browsers, which provide different kinds of services based on the HTTP protocol: web browsing, file downloads, audio and voice...... streaming through third-party plugins, etc. This paper suggests and evaluates two approaches to distinguish various types of HTTP traffic based on the content: distributed among volunteers' machines and centralized running in the core of the network. We also assess the accuracy of the centralized classifier...... for both the HTTP traffic and mixed HTTP/non-HTTP traffic. In the latter case, we achieved the accuracy of 94%. Finally, we provide graphical characteristics of different kinds of HTTP traffic....

  4. Multi–GPU Implementation of Machine Learning Algorithm using CUDA and OpenCL

    Directory of Open Access Journals (Sweden)

    Jan Masek

    2016-06-01

    Full Text Available Using modern Graphic Processing Units (GPUs becomes very useful for computing complex and time consuming processes. GPUs provide high–performance computation capabilities with a good price. This paper deals with a multi–GPU OpenCL and CUDA implementations of k–Nearest Neighbor (k–NN algorithm. This work compares performances of OpenCLand CUDA implementations where each of them is suitable for different number of used attributes. The proposed CUDA algorithm achieves acceleration up to 880x in comparison witha single thread CPU version. The common k-NN was modified to be faster when the lower number of k neighbors is set. The performance of algorithm was verified with two GPUs dual-core NVIDIA GeForce GTX 690 and CPU Intel Core i7 3770 with 4.1 GHz frequency. The results of speed up were measured for one GPU, two GPUs, three and four GPUs. We performed several tests with data sets containing up to 4 million elements with various number of attributes.

  5. Machine learning a probabilistic perspective

    CERN Document Server

    Murphy, Kevin P

    2012-01-01

    Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach. The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic method...

  6. Fast, Simple and Accurate Handwritten Digit Classification by Training Shallow Neural Network Classifiers with the 'Extreme Learning Machine' Algorithm.

    Science.gov (United States)

    McDonnell, Mark D; Tissera, Migel D; Vladusich, Tony; van Schaik, André; Tapson, Jonathan

    2015-01-01

    Recent advances in training deep (multi-layer) architectures have inspired a renaissance in neural network use. For example, deep convolutional networks are becoming the default option for difficult tasks on large datasets, such as image and speech recognition. However, here we show that error rates below 1% on the MNIST handwritten digit benchmark can be replicated with shallow non-convolutional neural networks. This is achieved by training such networks using the 'Extreme Learning Machine' (ELM) approach, which also enables a very rapid training time (∼ 10 minutes). Adding distortions, as is common practise for MNIST, reduces error rates even further. Our methods are also shown to be capable of achieving less than 5.5% error rates on the NORB image database. To achieve these results, we introduce several enhancements to the standard ELM algorithm, which individually and in combination can significantly improve performance. The main innovation is to ensure each hidden-unit operates only on a randomly sized and positioned patch of each image. This form of random 'receptive field' sampling of the input ensures the input weight matrix is sparse, with about 90% of weights equal to zero. Furthermore, combining our methods with a small number of iterations of a single-batch backpropagation method can significantly reduce the number of hidden-units required to achieve a particular performance. Our close to state-of-the-art results for MNIST and NORB suggest that the ease of use and accuracy of the ELM algorithm for designing a single-hidden-layer neural network classifier should cause it to be given greater consideration either as a standalone method for simpler problems, or as the final classification stage in deep neural networks applied to more difficult problems.

  7. Fast, Simple and Accurate Handwritten Digit Classification by Training Shallow Neural Network Classifiers with the 'Extreme Learning Machine' Algorithm.

    Directory of Open Access Journals (Sweden)

    Mark D McDonnell

    Full Text Available Recent advances in training deep (multi-layer architectures have inspired a renaissance in neural network use. For example, deep convolutional networks are becoming the default option for difficult tasks on large datasets, such as image and speech recognition. However, here we show that error rates below 1% on the MNIST handwritten digit benchmark can be replicated with shallow non-convolutional neural networks. This is achieved by training such networks using the 'Extreme Learning Machine' (ELM approach, which also enables a very rapid training time (∼ 10 minutes. Adding distortions, as is common practise for MNIST, reduces error rates even further. Our methods are also shown to be capable of achieving less than 5.5% error rates on the NORB image database. To achieve these results, we introduce several enhancements to the standard ELM algorithm, which individually and in combination can significantly improve performance. The main innovation is to ensure each hidden-unit operates only on a randomly sized and positioned patch of each image. This form of random 'receptive field' sampling of the input ensures the input weight matrix is sparse, with about 90% of weights equal to zero. Furthermore, combining our methods with a small number of iterations of a single-batch backpropagation method can significantly reduce the number of hidden-units required to achieve a particular performance. Our close to state-of-the-art results for MNIST and NORB suggest that the ease of use and accuracy of the ELM algorithm for designing a single-hidden-layer neural network classifier should cause it to be given greater consideration either as a standalone method for simpler problems, or as the final classification stage in deep neural networks applied to more difficult problems.

  8. Advancing of Land Surface Temperature Retrieval Using Extreme Learning Machine and Spatio-Temporal Adaptive Data Fusion Algorithm

    Directory of Open Access Journals (Sweden)

    Yang Bai

    2015-04-01

    Full Text Available As a critical variable to characterize the biophysical processes in ecological environment, and as a key indicator in the surface energy balance, evapotranspiration and urban heat islands, Land Surface Temperature (LST retrieved from Thermal Infra-Red (TIR images at both high temporal and spatial resolution is in urgent need. However, due to the limitations of the existing satellite sensors, there is no earth observation which can obtain TIR at detailed spatial- and temporal-resolution simultaneously. Thus, several attempts of image fusion by blending the TIR data from high temporal resolution sensor with data from high spatial resolution sensor have been studied. This paper presents a novel data fusion method by integrating image fusion and spatio-temporal fusion techniques, for deriving LST datasets at 30 m spatial resolution from daily MODIS image and Landsat ETM+ images. The Landsat ETM+ TIR data were firstly enhanced based on extreme learning machine (ELM algorithm using neural network regression model, from 60 m to 30 m resolution. Then, the MODIS LST and enhanced Landsat ETM+ TIR data were fused by Spatio-temporal Adaptive Data Fusion Algorithm for Temperature mapping (SADFAT in order to derive high resolution synthetic data. The synthetic images were evaluated for both testing and simulated satellite images. The average difference (AD and absolute average difference (AAD are smaller than 1.7 K, where the correlation coefficient (CC and root-mean-square error (RMSE are 0.755 and 1.824, respectively, showing that the proposed method enhances the spatial resolution of the predicted LST images and preserves the spectral information at the same time.

  9. Machine Learning Markets

    CERN Document Server

    Storkey, Amos

    2011-01-01

    Prediction markets show considerable promise for developing flexible mechanisms for machine learning. Here, machine learning markets for multivariate systems are defined, and a utility-based framework is established for their analysis. This differs from the usual approach of defining static betting functions. It is shown that such markets can implement model combination methods used in machine learning, such as product of expert and mixture of expert approaches as equilibrium pricing models, by varying agent utility functions. They can also implement models composed of local potentials, and message passing methods. Prediction markets also allow for more flexible combinations, by combining multiple different utility functions. Conversely, the market mechanisms implement inference in the relevant probabilistic models. This means that market mechanism can be utilized for implementing parallelized model building and inference for probabilistic modelling.

  10. Improvement and application of extreme learning machine algorithm%极端学习机算法的改进及应用研究

    Institute of Scientific and Technical Information of China (English)

    牛培峰; 马云鹏; 刘魏岩; 卢青; 杨潇

    2015-01-01

    极端学习机是一种新型的单隐藏层前馈神经网络模型,其输入权值和隐藏层阈值随机设置,其输出权值解析计算得到。因此,其运算速度是传统的 BP 神经网络的数千倍,而且具有良好的模型辨识能力。然而,极端学习机的输入权值和隐藏层阈值是随机设定的,可能不是使网络训练目标能达到全局最小值时的最优模型参数。针对此不足,本文采用最小二乘思想确定极端学习机的输入权值和隐藏层阈值。同时,将改进的极端学习机算法应用于电站锅炉的燃烧热效率建模,并与 BP、原始极端学习机、粒子群优化极端学习机和“教与学”优化极端学习机算法进行比较,证明了改进算法的有效性。%Extreme learning machine is a novel single hidden layer feed⁃forward neural network model,whose input weights and the bias of hidden nodes are generated randomly.And its output weights are computed analytically.Consequently,the extreme learning machine owns extremely fast speed and good identification ability,which is faster than conventional BP neural network thousands times.However,the stochastic input weights and the bias of the extreme learning machine are not the best model parameters possibly when the objective function gets the global minimum value.Therefore,the least square method is adopted to seek the appropriate pa⁃rameters of extreme learning machine.The improved extreme learning machine is applied to build the combustion thermal efficiency model of the plant boiler.Compared with other algorithms,such as BP,conventional extreme learning machine,particle swarm opti⁃mization extreme learning machine,teaching⁃learning⁃based optimization extreme learning machine,the result shows that the im⁃proved extreme learning machine is effective.

  11. A hybrid feature selection algorithm integrating an extreme learning machine for landslide susceptibility modeling of Mt. Woomyeon, South Korea

    Science.gov (United States)

    Vasu, Nikhil N.; Lee, Seung-Rae

    2016-06-01

    An ever-increasing trend of extreme rainfall events in South Korea owing to climate change is causing shallow landslides and debris flows in mountains that cover 70% of the total land area of the nation. These catastrophic, gravity-driven processes cost the government several billion KRW (South Korean Won) in losses in addition to fatalities every year. The most common type of landslide observed is the shallow landslide, which occurs at 1-3 m depth, and may mobilize into more catastrophic flow-type landslides. Hence, to predict potential landslide areas, susceptibility maps are developed in a geographical information system (GIS) environment utilizing available morphological, hydrological, geotechnical, and geological data. Landslide susceptibility models were developed using 163 landslide points and an equal number of nonlandslide points in Mt. Woomyeon, Seoul, and 23 landslide conditioning factors. However, because not all of the factors contribute to the determination of the spatial probability for landslide initiation, and a simple filter or wrapper-based approach is not efficient in identifying all of the relevant features, a feedback-loop-based hybrid algorithm was implemented in conjunction with a learning scheme called an extreme learning machine, which is based on a single-layer, feed-forward network. Validation of the constructed susceptibility model was conducted using a testing set of landslide inventory data through a prediction rate curve. The model selected 13 relevant conditioning factors out of the initial 23; and the resulting susceptibility map shows a success rate of 85% and a prediction rate of 89.45%, indicating a good performance, in contrast to the low success and prediction rate of 69.19% and 56.19%, respectively, as obtained using a wrapper technique.

  12. International Conference on Extreme Learning Machines 2014

    CERN Document Server

    Mao, Kezhi; Cambria, Erik; Man, Zhihong; Toh, Kar-Ann

    2015-01-01

    This book contains some selected papers from the International Conference on Extreme Learning Machine 2014, which was held in Singapore, December 8-10, 2014. This conference brought together the researchers and practitioners of Extreme Learning Machine (ELM) from a variety of fields to promote research and development of “learning without iterative tuning”.  The book covers theories, algorithms and applications of ELM. It gives the readers a glance of the most recent advances of ELM.  

  13. International Conference on Extreme Learning Machine 2015

    CERN Document Server

    Mao, Kezhi; Wu, Jonathan; Lendasse, Amaury; ELM 2015; Theory, Algorithms and Applications (I); Theory, Algorithms and Applications (II)

    2016-01-01

    This book contains some selected papers from the International Conference on Extreme Learning Machine 2015, which was held in Hangzhou, China, December 15-17, 2015. This conference brought together researchers and engineers to share and exchange R&D experience on both theoretical studies and practical applications of the Extreme Learning Machine (ELM) technique and brain learning. This book covers theories, algorithms ad applications of ELM. It gives readers a glance of the most recent advances of ELM. .

  14. Clojure for machine learning

    CERN Document Server

    Wali, Akhil

    2014-01-01

    A book that brings out the strengths of Clojure programming that have to facilitate machine learning. Each topic is described in substantial detail, and examples and libraries in Clojure are also demonstrated.This book is intended for Clojure developers who want to explore the area of machine learning. Basic understanding of the Clojure programming language is required, but thorough acquaintance with the standard Clojure library or any libraries are not required. Familiarity with theoretical concepts and notation of mathematics and statistics would be an added advantage.

  15. Automatic classification of pathological gait patterns using ground reaction forces and machine learning algorithms.

    Science.gov (United States)

    Alaqtash, Murad; Sarkodie-Gyan, Thompson; Yu, Huiying; Fuentes, Olac; Brower, Richard; Abdelgawad, Amr

    2011-01-01

    An automated gait classification method is developed in this study, which can be applied to analysis and to classify pathological gait patterns using 3D ground reaction force (GRFs) data. The study involved the discrimination of gait patterns of healthy, cerebral palsy (CP) and multiple sclerosis subjects. The acquired 3D GRFs data were categorized into three groups. Two different algorithms were used to extract the gait features; the GRFs parameters and the discrete wavelet transform (DWT), respectively. Nearest neighbor classifier (NNC) and artificial neural networks (ANN) were also investigated for the classification of gait features in this study. Furthermore, different feature sets were formed using a combination of the 3D GRFs components (mediolateral, anterioposterior, and vertical) and their various impacts on the acquired results were evaluated. The best leave-one-out (LOO) classification accuracy 85% was achieved. The results showed some improvement through the application of a features selection algorithm based on M-shaped value of vertical force and the statistical test ANOVA of mediolateral and anterioposterior forces. The optimal feature set of six features enhanced the accuracy to 95%. This work can provide an automated gait classification tool that may be useful to the clinician in the diagnosis and identification of pathological gait impairments.

  16. Real Time Classification and Clustering Of IDS Alerts Using Machine Learning Algorithms

    Directory of Open Access Journals (Sweden)

    T. Subbulakshmi

    2010-01-01

    Full Text Available Intrusion Detection Systems (IDS monitor a secured network for the evidence of maliciousactivities originating either inside or outside. Upon identifying a suspicious traffic, IDSgenerates and logs an alert. Unfortunately, most of the alerts generated are either false positive,i.e. benign traffic that has been classified as intrusions, or irrelevant, i.e. attacks that are notsuccessful. The abundance of false positive alerts makes it difficult for the security analyst tofind successful attacks and take remedial action. This paper describes a two phase automaticalert classification system to assist the human analyst in identifying the false positives. In thefirst phase, the alerts collected from one or more sensors are normalized and similar alerts aregrouped to form a meta-alert. These meta-alerts are passively verified with an asset database tofind out irrelevant alerts. In addition, an optional alert generalization is also performed for rootcause analysis and thereby reduces false positives with human interaction. In the second phase,the reduced alerts are labeled and passed to an alert classifier which uses machine learningtechniques for building the classification rules. This helps the analyst in automatic classificationof the alerts. The system is tested in real environments and found to be effective in reducing thenumber of alerts as well as false positives dramatically, and thereby reducing the workload ofhuman analyst.

  17. Malware Detection Module using Machine Learning Algorithms to Assist in Centralized Security in Enterprise Networks

    CERN Document Server

    Singhal, Priyank; 10.5121/ijnsa.2012.4106

    2012-01-01

    Malicious software is abundant in a world of innumerable computer users, who are constantly faced with these threats from various sources like the internet, local networks and portable drives. Malware is potentially low to high risk and can cause systems to function incorrectly, steal data and even crash. Malware may be executable or system library files in the form of viruses, worms, Trojans, all aimed at breaching the security of the system and compromising user privacy. Typically, anti-virus software is based on a signature definition system which keeps updating from the internet and thus keeping track of known viruses. While this may be sufficient for home-users, a security risk from a new virus could threaten an entire enterprise network. This paper proposes a new and more sophisticated antivirus engine that can not only scan files, but also build knowledge and detect files as potential viruses. This is done by extracting system API calls made by various normal and harmful executable, and using machine l...

  18. Mastering machine learning with scikit-learn

    CERN Document Server

    Hackeling, Gavin

    2014-01-01

    If you are a software developer who wants to learn how machine learning models work and how to apply them effectively, this book is for you. Familiarity with machine learning fundamentals and Python will be helpful, but is not essential.

  19. Building machine learning systems with Python

    CERN Document Server

    Richert, Willi

    2013-01-01

    This is a tutorial-driven and practical, but well-grounded book showcasing good Machine Learning practices. There will be an emphasis on using existing technologies instead of showing how to write your own implementations of algorithms. This book is a scenario-based, example-driven tutorial. By the end of the book you will have learnt critical aspects of Machine Learning Python projects and experienced the power of ML-based systems by actually working on them.This book primarily targets Python developers who want to learn about and build Machine Learning into their projects, or who want to pro

  20. Machine Learning for Security

    CERN Document Server

    CERN. Geneva

    2015-01-01

    Applied statistics, aka ‘Machine Learning’, offers a wealth of techniques for answering security questions. It’s a much hyped topic in the big data world, with many companies now providing machine learning as a service. This talk will demystify these techniques, explain the math, and demonstrate their application to security problems. The presentation will include how-to’s on classifying malware, looking into encrypted tunnels, and finding botnets in DNS data. About the speaker Josiah is a security researcher with HP TippingPoint DVLabs Research Group. He has over 15 years of professional software development experience. Josiah used to do AI, with work focused on graph theory, search, and deductive inference on large knowledge bases. As rules only get you so far, he moved from AI to using machine learning techniques identifying failure modes in email traffic. There followed digressions into clustered data storage and later integrated control systems. Current ...

  1. Massively collaborative machine learning

    NARCIS (Netherlands)

    Rijn, van J.N.

    2016-01-01

    Many scientists are focussed on building models. We nearly process all information we perceive to a model. There are many techniques that enable computers to build models as well. The field of research that develops such techniques is called Machine Learning. Many research is devoted to develop comp

  2. Machine learning in image steganalysis

    CERN Document Server

    Schaathun, Hans Georg

    2012-01-01

    "The only book to look at steganalysis from the perspective of machine learning theory, and to apply the common technique of machine learning to the particular field of steganalysis; ideal for people working in both disciplines"--

  3. New Applications of Learning Machines

    DEFF Research Database (Denmark)

    Larsen, Jan

    * Machine learning framework for sound search * Genre classification * Music separation * MIMO channel estimation and symbol detection......* Machine learning framework for sound search * Genre classification * Music separation * MIMO channel estimation and symbol detection...

  4. New Applications of Learning Machines

    DEFF Research Database (Denmark)

    Larsen, Jan

    * Machine learning framework for sound search * Genre classification * Music separation * MIMO channel estimation and symbol detection......* Machine learning framework for sound search * Genre classification * Music separation * MIMO channel estimation and symbol detection...

  5. Machine Learning wins the Higgs Challenge

    CERN Multimedia

    Abha Eli Phoboo

    2014-01-01

    The winner of the four-month-long Higgs Machine Learning Challenge, launched on 12 May, is Gábor Melis from Hungary, followed closely by Tim Salimans from the Netherlands and Pierre Courtiol from France. The challenge explored the potential of advanced machine learning methods to improve the significance of the Higgs discovery.   Winners of the Higgs Machine Learning Challenge: Gábor Melis and Tim Salimans (top row), Tianqi Chen and Tong He (bottom row). Participants in the Higgs Machine Learning Challenge were tasked with developing an algorithm to improve the detection of Higgs boson signal events decaying into two tau particles in a sample of simulated ATLAS data* that contains few signal and a majority of non-Higgs boson “background” events. No knowledge of particle physics was required for the challenge but skills in machine learning - the training of computers to recognise patterns in data – were essential. The Challenge, hosted by Ka...

  6. A Survey of Machine Learning Algorithms for Big Data%大数据下的机器学习算法综述

    Institute of Scientific and Technical Information of China (English)

    何清; 李宁; 罗文娟; 史忠植

    2014-01-01

    With the explosive growth of the industry data, more and more attention is paid to big data. However, due to the volume, complex and fast-changing characteristics of big data, traditional machine learning algorithms for small data are not applicable. Therefore, developing machine learning algorithms for big data is a research focus. In this paper, the state-of-the-art machine learning techniques for big data are introduced and analyzed. As parallelism is a mainstream strategy for applying machine learning algorithms to big data, some parallelism strategies are described in detail as well. Finally, the challenges of applying machine learning to big data and some interesting research trends of machine learning in big data are pointed out.%随着产业界数据量的爆炸式增长,大数据概念受到越来越多的关注。由于大数据的海量、复杂多样、变化快的特性,对于大数据环境下的应用问题,传统的在小数据上的机器学习算法很多已不再适用。因此,研究大数据环境下的机器学习算法成为学术界和产业界共同关注的话题。文中主要分析和总结当前用于处理大数据的机器学习算法的研究现状。此外,并行是处理大数据的主流方法,因此介绍一些并行算法,并引出大数据环境下机器学习研究所面临的问题。最后指出大数据机器学习的研究趋势。

  7. Hybrid Pareto artificial bee colony algorithm for multi-objective single machine group scheduling problem with sequence-dependent setup times and learning effects.

    Science.gov (United States)

    Yue, Lei; Guan, Zailin; Saif, Ullah; Zhang, Fei; Wang, Hao

    2016-01-01

    Group scheduling is significant for efficient and cost effective production system. However, there exist setup times between the groups, which require to decrease it by sequencing groups in an efficient way. Current research is focused on a sequence dependent group scheduling problem with an aim to minimize the makespan in addition to minimize the total weighted tardiness simultaneously. In most of the production scheduling problems, the processing time of jobs is assumed as fixed. However, the actual processing time of jobs may be reduced due to "learning effect". The integration of sequence dependent group scheduling problem with learning effects has been rarely considered in literature. Therefore, current research considers a single machine group scheduling problem with sequence dependent setup times and learning effects simultaneously. A novel hybrid Pareto artificial bee colony algorithm (HPABC) with some steps of genetic algorithm is proposed for current problem to get Pareto solutions. Furthermore, five different sizes of test problems (small, small medium, medium, large medium, large) are tested using proposed HPABC. Taguchi method is used to tune the effective parameters of the proposed HPABC for each problem category. The performance of HPABC is compared with three famous multi objective optimization algorithms, improved strength Pareto evolutionary algorithm (SPEA2), non-dominated sorting genetic algorithm II (NSGAII) and particle swarm optimization algorithm (PSO). Results indicate that HPABC outperforms SPEA2, NSGAII and PSO and gives better Pareto optimal solutions in terms of diversity and quality for almost all the instances of the different sizes of problems.

  8. Teraflop-scale Incremental Machine Learning

    CERN Document Server

    Özkural, Eray

    2011-01-01

    We propose a long-term memory design for artificial general intelligence based on Solomonoff's incremental machine learning methods. We use R5RS Scheme and its standard library with a few omissions as the reference machine. We introduce a Levin Search variant based on Stochastic Context Free Grammar together with four synergistic update algorithms that use the same grammar as a guiding probability distribution of programs. The update algorithms include adjusting production probabilities, re-using previous solutions, learning programming idioms and discovery of frequent subprograms. Experiments with two training sequences demonstrate that our approach to incremental learning is effective.

  9. Using Machine Learning and Natural Language Processing Algorithms to Automate the Evaluation of Clinical Decision Support in Electronic Medical Record Systems.

    Science.gov (United States)

    Szlosek, Donald A; Ferrett, Jonathan

    2016-01-01

    As the number of clinical decision support systems (CDSSs) incorporated into electronic medical records (EMRs) increases, so does the need to evaluate their effectiveness. The use of medical record review and similar manual methods for evaluating decision rules is laborious and inefficient. The authors use machine learning and Natural Language Processing (NLP) algorithms to accurately evaluate a clinical decision support rule through an EMR system, and they compare it against manual evaluation. Modeled after the EMR system EPIC at Maine Medical Center, we developed a dummy data set containing physician notes in free text for 3,621 artificial patients records undergoing a head computed tomography (CT) scan for mild traumatic brain injury after the incorporation of an electronic best practice approach. We validated the accuracy of the Best Practice Advisories (BPA) using three machine learning algorithms-C-Support Vector Classification (SVC), Decision Tree Classifier (DecisionTreeClassifier), k-nearest neighbors classifier (KNeighborsClassifier)-by comparing their accuracy for adjudicating the occurrence of a mild traumatic brain injury against manual review. We then used the best of the three algorithms to evaluate the effectiveness of the BPA, and we compared the algorithm's evaluation of the BPA to that of manual review. The electronic best practice approach was found to have a sensitivity of 98.8 percent (96.83-100.0), specificity of 10.3 percent, PPV = 7.3 percent, and NPV = 99.2 percent when reviewed manually by abstractors. Though all the machine learning algorithms were observed to have a high level of prediction, the SVC displayed the highest with a sensitivity 93.33 percent (92.49-98.84), specificity of 97.62 percent (96.53-98.38), PPV = 50.00, NPV = 99.83. The SVC algorithm was observed to have a sensitivity of 97.9 percent (94.7-99.86), specificity 10.30 percent, PPV 7.25 percent, and NPV 99.2 percent for evaluating the best practice approach, after

  10. MACHINE LEARNING TECHNIQUES USED IN BIG DATA

    Directory of Open Access Journals (Sweden)

    STEFANIA LOREDANA NITA

    2016-07-01

    Full Text Available The classical tools used in data analysis are not enough in order to benefit of all advantages of big data. The amount of information is too large for a complete investigation, and the possible connections and relations between data could be missed, because it is difficult or even impossible to verify all assumption over the information. Machine learning is a great solution in order to find concealed correlations or relationships between data, because it runs at scale machine and works very well with large data sets. The more data we have, the more the machine learning algorithm is useful, because it “learns” from the existing data and applies the found rules on new entries. In this paper, we present some machine learning algorithms and techniques used in big data.

  11. Investigation of the effect of the hyperparameter optimization and the time lag selection in time series forecasting using machine learning algorithms

    Science.gov (United States)

    Papacharalampous, Georgia; Tyralis, Hristos; Koutsoyiannis, Demetris

    2017-04-01

    The hyperparameter optimization and the time lag selection are considered to be of great importance in time series forecasting using machine learning (ML) algorithms. To investigate their effect on the ML forecasting performance we conduct several large-scale simulation experiments. Within each of the latter we compare 12 methods on 2 000 simulated time series from the family of Autoregressive Fractionally Integrated Moving Average (ARFIMA) models. The methods are defined by the set {ML algorithm, hyperparameter selection procedure, time lags}. We compare three ML algorithms, i.e. Neural Networks (NN), Random Forests (RF) and Support Vector Machines (SVM), two procedures for hyperparameter selection i.e. predefined hyperparameters or defined after optimization and two regression matrices (using time lag 1 or 1, …, 21). After splitting each simulated time series into a fitting and a testing set, we fit the models to the former set and compare their performance on the latter one. We quantify the methods' performance using several metrics proposed in the literature and benchmark methods. Furthermore, we conduct a sensitivity analysis on the length of the fitting set to examine how it affects the robustness of our results. The findings indicate that the hyperparameter optimization mostly has a small effect on the forecasting performance. This is particularly important, because the hyperparameter optimization is computationally intensive. On the other hand, the time lag selection seems to mostly significantly affect the methods performance when using the NN algorithm, while we observe a similar behaviour for the RF algorithm albeit to a smaller extent.

  12. Spectrum Assignment Algorithm for Cognitive Machine-to-Machine Networks

    Directory of Open Access Journals (Sweden)

    Soheil Rostami

    2016-01-01

    Full Text Available A novel aggregation-based spectrum assignment algorithm for Cognitive Machine-To-Machine (CM2M networks is proposed. The introduced algorithm takes practical constraints including interference to the Licensed Users (LUs, co-channel interference (CCI among CM2M devices, and Maximum Aggregation Span (MAS into consideration. Simulation results show clearly that the proposed algorithm outperforms State-Of-The-Art (SOTA algorithms in terms of spectrum utilisation and network capacity. Furthermore, the convergence analysis of the proposed algorithm verifies its high convergence rate.

  13. Machine learning with R cookbook

    CERN Document Server

    Chiu, Yu-Wei

    2015-01-01

    If you want to learn how to use R for machine learning and gain insights from your data, then this book is ideal for you. Regardless of your level of experience, this book covers the basics of applying R to machine learning through to advanced techniques. While it is helpful if you are familiar with basic programming or machine learning concepts, you do not require prior experience to benefit from this book.

  14. Soft computing in machine learning

    CERN Document Server

    Park, Jooyoung; Inoue, Atsushi

    2014-01-01

    As users or consumers are now demanding smarter devices, intelligent systems are revolutionizing by utilizing machine learning. Machine learning as part of intelligent systems is already one of the most critical components in everyday tools ranging from search engines and credit card fraud detection to stock market analysis. You can train machines to perform some things, so that they can automatically detect, diagnose, and solve a variety of problems. The intelligent systems have made rapid progress in developing the state of the art in machine learning based on smart and deep perception. Using machine learning, the intelligent systems make widely applications in automated speech recognition, natural language processing, medical diagnosis, bioinformatics, and robot locomotion. This book aims at introducing how to treat a substantial amount of data, to teach machines and to improve decision making models. And this book specializes in the developments of advanced intelligent systems through machine learning. It...

  15. Can Statistical Machine Learning Algorithms Help for Classification of Obstructive Sleep Apnea Severity to Optimal Utilization of Polysomnography Resources?

    Science.gov (United States)

    Bozkurt, Selen; Bostanci, Asli; Turhan, Murat

    2017-08-11

    The goal of this study is to evaluate the results of machine learning methods for the classification of OSA severity of patients with suspected sleep disorder breathing as normal, mild, moderate and severe based on non-polysomnographic variables: 1) clinical data, 2) symptoms and 3) physical examination. In order to produce classification models for OSA severity, five different machine learning methods (Bayesian network, Decision Tree, Random Forest, Neural Networks and Logistic Regression) were trained while relevant variables and their relationships were derived empirically from observed data. Each model was trained and evaluated using 10-fold cross-validation and to evaluate classification performances of all methods, true positive rate (TPR), false positive rate (FPR), Positive Predictive Value (PPV), F measure and Area Under Receiver Operating Characteristics curve (ROC-AUC) were used. Results of 10-fold cross validated tests with different variable settings promisingly indicated that the OSA severity of suspected OSA patients can be classified, using non-polysomnographic features, with 0.71 true positive rate as the highest and, 0.15 false positive rate as the lowest, respectively. Moreover, the test results of different variables settings revealed that the accuracy of the classification models was significantly improved when physical examination variables were added to the model. Study results showed that machine learning methods can be used to estimate the probabilities of no, mild, moderate, and severe obstructive sleep apnea and such approaches may improve accurate initial OSA screening and help referring only the suspected moderate or severe OSA patients to sleep laboratories for the expensive tests.

  16. Comparison of Different Machine Learning Algorithms for Lithological Mapping Using Remote Sensing Data and Morphological Features: A Case Study in Kurdistan Region, NE Iraq

    Science.gov (United States)

    Othman, Arsalan; Gloaguen, Richard

    2015-04-01

    Topographic effects and complex vegetation cover hinder lithology classification in mountain regions based not only in field, but also in reflectance remote sensing data. The area of interest "Bardi-Zard" is located in the NE of Iraq. It is part of the Zagros orogenic belt, where seven lithological units outcrop and is known for its chromite deposit. The aim of this study is to compare three machine learning algorithms (MLAs): Maximum Likelihood (ML), Support Vector Machines (SVM), and Random Forest (RF) in the context of a supervised lithology classification task using Advanced Space-borne Thermal Emission and Reflection radiometer (ASTER) satellite, its derived, spatial information (spatial coordinates) and geomorphic data. We emphasize the enhancement in remote sensing lithological mapping accuracy that arises from the integration of geomorphic features and spatial information (spatial coordinates) in classifications. This study identifies that RF is better than ML and SVM algorithms in almost the sixteen combination datasets, which were tested. The overall accuracy of the best dataset combination with the RF map for the all seven classes reach ~80% and the producer and user's accuracies are ~73.91% and 76.09% respectively while the kappa coefficient is ~0.76. TPI is more effective with SVM algorithm than an RF algorithm. This paper demonstrates that adding geomorphic indices such as TPI and spatial information in the dataset increases the lithological classification accuracy.

  17. Quantum-Enhanced Machine Learning.

    Science.gov (United States)

    Dunjko, Vedran; Taylor, Jacob M; Briegel, Hans J

    2016-09-23

    The emerging field of quantum machine learning has the potential to substantially aid in the problems and scope of artificial intelligence. This is only enhanced by recent successes in the field of classical machine learning. In this work we propose an approach for the systematic treatment of machine learning, from the perspective of quantum information. Our approach is general and covers all three main branches of machine learning: supervised, unsupervised, and reinforcement learning. While quantum improvements in supervised and unsupervised learning have been reported, reinforcement learning has received much less attention. Within our approach, we tackle the problem of quantum enhancements in reinforcement learning as well, and propose a systematic scheme for providing improvements. As an example, we show that quadratic improvements in learning efficiency, and exponential improvements in performance over limited time periods, can be obtained for a broad class of learning problems.

  18. Quantum-Enhanced Machine Learning

    Science.gov (United States)

    Dunjko, Vedran; Taylor, Jacob M.; Briegel, Hans J.

    2016-09-01

    The emerging field of quantum machine learning has the potential to substantially aid in the problems and scope of artificial intelligence. This is only enhanced by recent successes in the field of classical machine learning. In this work we propose an approach for the systematic treatment of machine learning, from the perspective of quantum information. Our approach is general and covers all three main branches of machine learning: supervised, unsupervised, and reinforcement learning. While quantum improvements in supervised and unsupervised learning have been reported, reinforcement learning has received much less attention. Within our approach, we tackle the problem of quantum enhancements in reinforcement learning as well, and propose a systematic scheme for providing improvements. As an example, we show that quadratic improvements in learning efficiency, and exponential improvements in performance over limited time periods, can be obtained for a broad class of learning problems.

  19. Quantum adiabatic machine learning

    CERN Document Server

    Pudenz, Kristen L

    2011-01-01

    We develop an approach to machine learning and anomaly detection via quantum adiabatic evolution. In the training phase we identify an optimal set of weak classifiers, to form a single strong classifier. In the testing phase we adiabatically evolve one or more strong classifiers on a superposition of inputs in order to find certain anomalous elements in the classification space. Both the training and testing phases are executed via quantum adiabatic evolution. We apply and illustrate this approach in detail to the problem of software verification and validation.

  20. Machine learning in healthcare informatics

    CERN Document Server

    Acharya, U; Dua, Prerna

    2014-01-01

    The book is a unique effort to represent a variety of techniques designed to represent, enhance, and empower multi-disciplinary and multi-institutional machine learning research in healthcare informatics. The book provides a unique compendium of current and emerging machine learning paradigms for healthcare informatics and reflects the diversity, complexity and the depth and breath of this multi-disciplinary area. The integrated, panoramic view of data and machine learning techniques can provide an opportunity for novel clinical insights and discoveries.

  1. Machine learning techniques applied to system characterization and equalization

    DEFF Research Database (Denmark)

    Zibar, Darko; Thrane, Jakob; Wass, Jesper

    2016-01-01

    Linear signal processing algorithms are effective in combating linear fibre channel impairments. We demonstrate the ability of machine learning algorithms to combat nonlinear fibre channel impairments and perform parameter extraction from directly detected signals.......Linear signal processing algorithms are effective in combating linear fibre channel impairments. We demonstrate the ability of machine learning algorithms to combat nonlinear fibre channel impairments and perform parameter extraction from directly detected signals....

  2. A comparison of machine learning algorithms for chemical toxicity classification using a simulated multi-scale data model

    Directory of Open Access Journals (Sweden)

    Li Zhen

    2008-05-01

    Full Text Available Abstract Background Bioactivity profiling using high-throughput in vitro assays can reduce the cost and time required for toxicological screening of environmental chemicals and can also reduce the need for animal testing. Several public efforts are aimed at discovering patterns or classifiers in high-dimensional bioactivity space that predict tissue, organ or whole animal toxicological endpoints. Supervised machine learning is a powerful approach to discover combinatorial relationships in complex in vitro/in vivo datasets. We present a novel model to simulate complex chemical-toxicology data sets and use this model to evaluate the relative performance of different machine learning (ML methods. Results The classification performance of Artificial Neural Networks (ANN, K-Nearest Neighbors (KNN, Linear Discriminant Analysis (LDA, Naïve Bayes (NB, Recursive Partitioning and Regression Trees (RPART, and Support Vector Machines (SVM in the presence and absence of filter-based feature selection was analyzed using K-way cross-validation testing and independent validation on simulated in vitro assay data sets with varying levels of model complexity, number of irrelevant features and measurement noise. While the prediction accuracy of all ML methods decreased as non-causal (irrelevant features were added, some ML methods performed better than others. In the limit of using a large number of features, ANN and SVM were always in the top performing set of methods while RPART and KNN (k = 5 were always in the poorest performing set. The addition of measurement noise and irrelevant features decreased the classification accuracy of all ML methods, with LDA suffering the greatest performance degradation. LDA performance is especially sensitive to the use of feature selection. Filter-based feature selection generally improved performance, most strikingly for LDA. Conclusion We have developed a novel simulation model to evaluate machine learning methods for the

  3. Deep Extreme Learning Machine and Its Application in EEG Classification

    Directory of Open Access Journals (Sweden)

    Shifei Ding

    2015-01-01

    Full Text Available Recently, deep learning has aroused wide interest in machine learning fields. Deep learning is a multilayer perceptron artificial neural network algorithm. Deep learning has the advantage of approximating the complicated function and alleviating the optimization difficulty associated with deep models. Multilayer extreme learning machine (MLELM is a learning algorithm of an artificial neural network which takes advantages of deep learning and extreme learning machine. Not only does MLELM approximate the complicated function but it also does not need to iterate during the training process. We combining with MLELM and extreme learning machine with kernel (KELM put forward deep extreme learning machine (DELM and apply it to EEG classification in this paper. This paper focuses on the application of DELM in the classification of the visual feedback experiment, using MATLAB and the second brain-computer interface (BCI competition datasets. By simulating and analyzing the results of the experiments, effectiveness of the application of DELM in EEG classification is confirmed.

  4. Self-learning Algorithm for Robot Based on Boltzamnn Machine%基于Boltzamnn机的机器人自主学习算法

    Institute of Scientific and Technical Information of China (English)

    任红格; 阮晓钢

    2012-01-01

    针对两轮机器人自平衡运动控制问题,提出了一种基于Boltzamnn机的Skinner操作条件反射学习机制作为机器人仿生自主学习的算法.该算法利用Boltzamnn机中Metropolis判据平衡Skinner操作条件反射学习中探索和利用的比例,并依据概率取向机制以一定的概率选择最优行为,从而使机器人在未知环境下可获得像人或动物一样的仿生自主学习技能,实现机器人的自平衡运动控制.最后,分别用基于Boltzamnn机的Skinner操作条件反射的学习算法和基于贪婪策略的Skinner操作条件反射的学习算法做了仿真实验并进行了比较.结果表明,基于Boltzamnn机的Skinner操作条件反射的学习算法能使机器人获得较强的运动平衡控制技能和较好的动态性能,体现了机器人的自主学习特性.%In view of the self-balancing movement control problem of the two-wheeled robot,a bionic self-learning algorithm of the robot is proposed as a study mechanism of Skinner's operant conditioning reflection based on the Boltzamnn machine.This algorithm uses the Metropolis criterion in Boltzamnn machine to balance in the proportion of the exploration and the exploitation in the study of Skinner's operant conditioning reflection,and chooses the most superior behavior through certain probability depending on the probability tropism mechanism.Thus the robot can obtain the skill of bionic self-learning like the human or the animal under the unknown environment,and realize the self-balancing movement control of the robot.Finally,the simulation experiments were conducted and the Skinner's operant conditioning reflection study algorithms based on the Boltzamnn machine and the greedy strategy were compared,separately.Results show that the Skinner's operant conditioning reflection study algorithm based on the Boltzamnn machine can obtain the stronger movement balancing control skill and the better dynamic performance,and manifest the self-learning

  5. Data Mining and Machine Learning in Astronomy

    CERN Document Server

    Ball, Nicholas M

    2009-01-01

    We review the current state of data mining and machine learning in Astronomy. 'Data Mining' can have a somewhat mixed connotation from the point of view of a researcher in this field. On the one hand, it is a powerful approach, holding the potential to fully exploit the exponentially increasing amount of available data, which promises almost limitless scientific advances. On the other, it can be the application of black-box computing algorithms that at best give little physical insight, and at worst provide questionable results. Here, we give an overview of the entire data mining process, from data collection through the interpretation of results. We cover common machine learning algorithms, such as artificial neural networks and support vector machines; applications from a broad range of Astronomy, with an emphasis on those where data mining resulted in improved physical insights, and important current and future directions, including the construction of full probability density functions, parallel algorithm...

  6. Heterogeneous versus Homogeneous Machine Learning Ensembles

    Directory of Open Access Journals (Sweden)

    Petrakova Aleksandra

    2015-12-01

    Full Text Available The research demonstrates efficiency of the heterogeneous model ensemble application for a cancer diagnostic procedure. Machine learning methods used for the ensemble model training are neural networks, random forest, support vector machine and offspring selection genetic algorithm. Training of models and the ensemble design is performed by means of HeuristicLab software. The data used in the research have been provided by the General Hospital of Linz, Austria.

  7. Machine Learning: developing an image recognition program : with Python, Scikit Learn and OpenCV

    OpenAIRE

    Nguyen, Minh

    2016-01-01

    Machine Learning is one of the most debated topic in computer world these days, especially after the first Computer Go program has beaten human Go world champion. Among endless application of Machine Learning, image recognition, which problem is processing enormous amount of data from dynamic input. This thesis will present the basic concept of Machine Learning, Machine Learning algorithms, Python programming language and Scikit Learn – a simple and efficient tool for data analysis in P...

  8. Hungarian contribution to the Global Soil Organic Carbon Map (GSOC17) using advanced machine learning algorithms and geostatistics

    Science.gov (United States)

    Szatmári, Gábor; Laborczi, Annamária; Takács, Katalin; Pásztor, László

    2017-04-01

    The knowledge about soil organic carbon (SOC) baselines and changes, and the detection of vulnerable hot spots for SOC losses and gains under climate change and changed land management is still fairly limited. Thus Global Soil Partnership (GSP) has been requested to develop a global SOC mapping campaign by 2017. GSPs concept builds on official national data sets, therefore, a bottom-up (country-driven) approach is pursued. The elaborated Hungarian methodology suits the general specifications of GSOC17 provided by GSP. The input data for GSOC17@HU mapping approach has involved legacy soil data bases, as well as proper environmental covariates related to the main soil forming factors, such as climate, organisms, relief and parent material. Nowadays, digital soil mapping (DSM) highly relies on the assumption that soil properties of interest can be modelled as a sum of a deterministic and stochastic component, which can be treated and modelled separately. We also adopted this assumption in our methodology. In practice, multiple regression techniques are commonly used to model the deterministic part. However, this global (and usually linear) models commonly oversimplify the often complex and non-linear relationship, which has a crucial effect on the resulted soil maps. Thus, we integrated machine learning algorithms (namely random forest and quantile regression forest) in the elaborated methodology, supposing then to be more suitable for the problem in hand. This approach has enable us to model the GSOC17 soil properties in that complex and non-linear forms as the soil itself. Furthermore, it has enable us to model and assess the uncertainty of the results, which is highly relevant in decision making. The applied methodology has used geostatistical approach to model the stochastic part of the spatial variability of the soil properties of interest. We created GSOC17@HU map with 1 km grid resolution according to the GSPs specifications. The map contributes to the GSPs

  9. Algorithmic learning in a random world

    CERN Document Server

    Vovk, Vladimir; Shafer, Glenn

    2005-01-01

    A new scientific monograph developing significant new algorithmic foundations in machine learning theory. Researchers and postgraduates in CS, statistics, and A.I. will find the book an authoritative and formal presentation of some of the most promising theoretical developments in machine learning.

  10. A method for the evaluation of image quality according to the recognition effectiveness of objects in the optical remote sensing image using machine learning algorithm.

    Directory of Open Access Journals (Sweden)

    Tao Yuan

    Full Text Available Objective and effective image quality assessment (IQA is directly related to the application of optical remote sensing images (ORSI. In this study, a new IQA method of standardizing the target object recognition rate (ORR is presented to reflect quality. First, several quality degradation treatments with high-resolution ORSIs are implemented to model the ORSIs obtained in different imaging conditions; then, a machine learning algorithm is adopted for recognition experiments on a chosen target object to obtain ORRs; finally, a comparison with commonly used IQA indicators was performed to reveal their applicability and limitations. The results showed that the ORR of the original ORSI was calculated to be up to 81.95%, whereas the ORR ratios of the quality-degraded images to the original images were 65.52%, 64.58%, 71.21%, and 73.11%. The results show that these data can more accurately reflect the advantages and disadvantages of different images in object identification and information extraction when compared with conventional digital image assessment indexes. By recognizing the difference in image quality from the application effect perspective, using a machine learning algorithm to extract regional gray scale features of typical objects in the image for analysis, and quantitatively assessing quality of ORSI according to the difference, this method provides a new approach for objective ORSI assessment.

  11. An Evolutionary Machine Learning Framework for Big Data Sequence Mining

    Science.gov (United States)

    Kamath, Uday Krishna

    2014-01-01

    Sequence classification is an important problem in many real-world applications. Unlike other machine learning data, there are no "explicit" features or signals in sequence data that can help traditional machine learning algorithms learn and predict from the data. Sequence data exhibits inter-relationships in the elements that are…

  12. An Evolutionary Machine Learning Framework for Big Data Sequence Mining

    Science.gov (United States)

    Kamath, Uday Krishna

    2014-01-01

    Sequence classification is an important problem in many real-world applications. Unlike other machine learning data, there are no "explicit" features or signals in sequence data that can help traditional machine learning algorithms learn and predict from the data. Sequence data exhibits inter-relationships in the elements that are…

  13. Integration of spectral, spatial and morphometric data into lithological mapping: A comparison of different Machine Learning Algorithms in the Kurdistan Region, NE Iraq

    Science.gov (United States)

    Othman, Arsalan A.; Gloaguen, Richard

    2017-09-01

    Lithological mapping in mountainous regions is often impeded by limited accessibility due to relief. This study aims to evaluate (1) the performance of different supervised classification approaches using remote sensing data and (2) the use of additional information such as geomorphology. We exemplify the methodology in the Bardi-Zard area in NE Iraq, a part of the Zagros Fold - Thrust Belt, known for its chromite deposits. We highlighted the improvement of remote sensing geological classification by integrating geomorphic features and spatial information in the classification scheme. We performed a Maximum Likelihood (ML) classification method besides two Machine Learning Algorithms (MLA): Support Vector Machine (SVM) and Random Forest (RF) to allow the joint use of geomorphic features, Band Ratio (BR), Principal Component Analysis (PCA), spatial information (spatial coordinates) and multispectral data of the Advanced Space-borne Thermal Emission and Reflection radiometer (ASTER) satellite. The RF algorithm showed reliable results and discriminated serpentinite, talus and terrace deposits, red argillites with conglomerates and limestone, limy conglomerates and limestone conglomerates, tuffites interbedded with basic lavas, limestone and Metamorphosed limestone and reddish green shales. The best overall accuracy (∼80%) was achieved by Random Forest (RF) algorithms in the majority of the sixteen tested combination datasets.

  14. Entanglement-based machine learning on a quantum computer.

    Science.gov (United States)

    Cai, X-D; Wu, D; Su, Z-E; Chen, M-C; Wang, X-L; Li, Li; Liu, N-L; Lu, C-Y; Pan, J-W

    2015-03-20

    Machine learning, a branch of artificial intelligence, learns from previous experience to optimize performance, which is ubiquitous in various fields such as computer sciences, financial analysis, robotics, and bioinformatics. A challenge is that machine learning with the rapidly growing "big data" could become intractable for classical computers. Recently, quantum machine learning algorithms [Lloyd, Mohseni, and Rebentrost, arXiv.1307.0411] were proposed which could offer an exponential speedup over classical algorithms. Here, we report the first experimental entanglement-based classification of two-, four-, and eight-dimensional vectors to different clusters using a small-scale photonic quantum computer, which are then used to implement supervised and unsupervised machine learning. The results demonstrate the working principle of using quantum computers to manipulate and classify high-dimensional vectors, the core mathematical routine in machine learning. The method can, in principle, be scaled to larger numbers of qubits, and may provide a new route to accelerate machine learning.

  15. A Machine Learning Based Framework for Adaptive Mobile Learning

    Science.gov (United States)

    Al-Hmouz, Ahmed; Shen, Jun; Yan, Jun

    Advances in wireless technology and handheld devices have created significant interest in mobile learning (m-learning) in recent years. Students nowadays are able to learn anywhere and at any time. Mobile learning environments must also cater for different user preferences and various devices with limited capability, where not all of the information is relevant and critical to each learning environment. To address this issue, this paper presents a framework that depicts the process of adapting learning content to satisfy individual learner characteristics by taking into consideration his/her learning style. We use a machine learning based algorithm for acquiring, representing, storing, reasoning and updating each learner acquired profile.

  16. Machine learning approximation techniques using dual trees

    OpenAIRE

    Ergashbaev, Denis

    2015-01-01

    This master thesis explores a dual-tree framework as applied to a particular class of machine learning problems that are collectively referred to as generalized n-body problems. It builds a new algorithm on top of it and improves existing Boosted OGE classifier.

  17. Machine Learning Exciton Dynamics

    CERN Document Server

    Häse, Florian; Pyzer-Knapp, Edward; Aspuru-Guzik, Alán

    2015-01-01

    Obtaining the exciton dynamics of large photosynthetic complexes by using mixed quantum mechanics/molecular mechanics (QM/MM) is computationally demanding. We propose a machine learning technique, multi-layer perceptrons, as a tool to reduce the time required to compute excited state energies. With this approach we predict time-dependent density functional theory (TDDFT) excited state energies of bacteriochlorophylls in the Fenna-Matthews-Olson (FMO) complex. Additionally we compute spectral densities and exciton populations from the predictions. Different methods to determine multi-layer perceptron training sets are introduced, leading to several initial data selections. In addition, we compute spectral densities and exciton populations. Once multi-layer perceptrons are trained, predicting excited state energies was found to be significantly faster than the corresponding QM/MM calculations. We showed that multi-layer perceptrons can successfully reproduce the energies of QM/MM calculations to a high degree o...

  18. Machine learning: Trends, perspectives, and prospects.

    Science.gov (United States)

    Jordan, M I; Mitchell, T M

    2015-07-17

    Machine learning addresses the question of how to build computers that improve automatically through experience. It is one of today's most rapidly growing technical fields, lying at the intersection of computer science and statistics, and at the core of artificial intelligence and data science. Recent progress in machine learning has been driven both by the development of new learning algorithms and theory and by the ongoing explosion in the availability of online data and low-cost computation. The adoption of data-intensive machine-learning methods can be found throughout science, technology and commerce, leading to more evidence-based decision-making across many walks of life, including health care, manufacturing, education, financial modeling, policing, and marketing.

  19. Linear Time Algorithms for Parallel Machine Scheduling

    Institute of Scientific and Technical Information of China (English)

    Zhi Yi TAN; Yong HE

    2007-01-01

    This paper addresses linear time algorithms for parallel machine scheduling problems. We introduce a kind of threshold algorithms and discuss their main features. Three linear time threshold algorithm classes DT, PT and DTm are studied thoroughly. For all classes, we study their best possible algorithms among each class. We also present their application to several scheduling problems.The new algorithms are better than classical algorithms in time complexity and/or worst-case ratio.Computer-aided proof technique is used in the proof of main results, which greatly simplifies the proof and decreases case by case analysis.

  20. A NEW HYPERSPHERE SUPPORT VECTOR MACHINE ALGORITHM

    Institute of Scientific and Technical Information of China (English)

    Zhang Xinfeng; Shen Lansun

    2006-01-01

    The hypersphere support vector machine is a new algorithm in pattern recognition. By studying three kinds ofhypersphere support vector machines, it is found that their solutions are identical and the margin between two classes of samples is zero or is not unique. In this letter, a new kind ofhypersphere support vector machine is proposed. By introducing a parameter n(n>l), a unique solution of the margin can be obtained.Theoretical analysis and experimental results show that the proposed algorithm can achieve better generalization performance.

  1. Photometric Supernova Classification With Machine Learning

    CERN Document Server

    Lochner, Michelle; Peiris, Hiranya V; Lahav, Ofer; Winter, Max K

    2016-01-01

    Automated photometric supernova classification has become an active area of research in recent years in light of current and upcoming imaging surveys such as the Dark Energy Survey (DES) and the Large Synoptic Telescope (LSST), given that spectroscopic confirmation of type for all supernovae discovered with these surveys will be impossible. Here, we develop a multi-faceted classification pipeline, combining existing and new approaches. Our pipeline consists of two stages: extracting descriptive features from the light curves and classification using a machine learning algorithm. Our feature extraction methods vary from model-dependent techniques, namely SALT2 fits, to more independent techniques fitting parametric models to curves, to a completely model-independent wavelet approach. We cover a range of representative machine learning algorithms, including naive Bayes, k-nearest neighbors, support vector machines, artificial neural networks and boosted decision trees. We test the pipeline on simulated multi-ba...

  2. Performance of machine learning methods for classification tasks

    OpenAIRE

    B. Krithika; Dr. V. Ramalingam; Rajan, K

    2013-01-01

    In this paper, the performance of various machine learning methods on pattern classification and recognition tasks are proposed. The proposed method for evaluating performance will be based on the feature representation, feature selection and setting model parameters. The nature of the data, the methods of feature extraction and feature representation are discussed. The results of the Machine Learning algorithms on the classification task are analysed. The performance of Machine Learning meth...

  3. QSO Selection Algorithm Using Time Variability and Machine Learning: Selection of 1,620 QSO Candidates from MACHO LMC Database

    CERN Document Server

    Kim, Dae-Won; Byun, Yong-Ik; Alcock, Charles; Khardon, Roni

    2011-01-01

    We present a new QSO selection algorithm using a Support Vector Machine (SVM), a supervised classification method, on a set of extracted times series features including period, amplitude, color, and autocorrelation value. We train a model that separates QSOs from variable stars, non-variable stars and microlensing events using 58 known QSOs, 1,629 variable stars and 4,288 non-variables using the MAssive Compact Halo Object (MACHO) database as a training set. To estimate the efficiency and the accuracy of the model, we perform a cross-validation test using the training set. The test shows that the model correctly identifies ~80% of known QSOs with a 25% false positive rate. The majority of the false positives are Be stars. We applied the trained model to the MACHO Large Magellanic Cloud (LMC) dataset, which consists of 40 million lightcurves, and found 1,620 QSO candidates. During the selection none of the 33,242 known MACHO variables were misclassified as QSO candidates. In order to estimate the true false po...

  4. The ATLAS Higgs Machine Learning Challenge

    CERN Document Server

    Cowan, Glen; The ATLAS collaboration; Bourdarios, Claire

    2015-01-01

    High Energy Physics has been using Machine Learning techniques (commonly known as Multivariate Analysis) since the 1990s with Artificial Neural Net and more recently with Boosted Decision Trees, Random Forest etc. Meanwhile, Machine Learning has become a full blown field of computer science. With the emergence of Big Data, data scientists are developing new Machine Learning algorithms to extract meaning from large heterogeneous data. HEP has exciting and difficult problems like the extraction of the Higgs boson signal, and at the same time data scientists have advanced algorithms: the goal of the HiggsML project was to bring the two together by a “challenge”: participants from all over the world and any scientific background could compete online to obtain the best Higgs to tau tau signal significance on a set of ATLAS fully simulated Monte Carlo signal and background. Instead of HEP physicists browsing through machine learning papers and trying to infer which new algorithms might be useful for HEP, then c...

  5. Learning thermodynamics with Boltzmann machines

    Science.gov (United States)

    Torlai, Giacomo; Melko, Roger G.

    2016-10-01

    A Boltzmann machine is a stochastic neural network that has been extensively used in the layers of deep architectures for modern machine learning applications. In this paper, we develop a Boltzmann machine that is capable of modeling thermodynamic observables for physical systems in thermal equilibrium. Through unsupervised learning, we train the Boltzmann machine on data sets constructed with spin configurations importance sampled from the partition function of an Ising Hamiltonian at different temperatures using Monte Carlo (MC) methods. The trained Boltzmann machine is then used to generate spin states, for which we compare thermodynamic observables to those computed by direct MC sampling. We demonstrate that the Boltzmann machine can faithfully reproduce the observables of the physical system. Further, we observe that the number of neurons required to obtain accurate results increases as the system is brought close to criticality.

  6. Performance evaluation of the machine learning algorithms used in inference mechanism of a medical decision support system.

    Science.gov (United States)

    Bal, Mert; Amasyali, M Fatih; Sever, Hayri; Kose, Guven; Demirhan, Ayse

    2014-01-01

    The importance of the decision support systems is increasingly supporting the decision making process in cases of uncertainty and the lack of information and they are widely used in various fields like engineering, finance, medicine, and so forth, Medical decision support systems help the healthcare personnel to select optimal method during the treatment of the patients. Decision support systems are intelligent software systems that support decision makers on their decisions. The design of decision support systems consists of four main subjects called inference mechanism, knowledge-base, explanation module, and active memory. Inference mechanism constitutes the basis of decision support systems. There are various methods that can be used in these mechanisms approaches. Some of these methods are decision trees, artificial neural networks, statistical methods, rule-based methods, and so forth. In decision support systems, those methods can be used separately or a hybrid system, and also combination of those methods. In this study, synthetic data with 10, 100, 1000, and 2000 records have been produced to reflect the probabilities on the ALARM network. The accuracy of 11 machine learning methods for the inference mechanism of medical decision support system is compared on various data sets.

  7. Performance Evaluation of the Machine Learning Algorithms Used in Inference Mechanism of a Medical Decision Support System

    Directory of Open Access Journals (Sweden)

    Mert Bal

    2014-01-01

    Full Text Available The importance of the decision support systems is increasingly supporting the decision making process in cases of uncertainty and the lack of information and they are widely used in various fields like engineering, finance, medicine, and so forth, Medical decision support systems help the healthcare personnel to select optimal method during the treatment of the patients. Decision support systems are intelligent software systems that support decision makers on their decisions. The design of decision support systems consists of four main subjects called inference mechanism, knowledge-base, explanation module, and active memory. Inference mechanism constitutes the basis of decision support systems. There are various methods that can be used in these mechanisms approaches. Some of these methods are decision trees, artificial neural networks, statistical methods, rule-based methods, and so forth. In decision support systems, those methods can be used separately or a hybrid system, and also combination of those methods. In this study, synthetic data with 10, 100, 1000, and 2000 records have been produced to reflect the probabilities on the ALARM network. The accuracy of 11 machine learning methods for the inference mechanism of medical decision support system is compared on various data sets.

  8. Performance Evaluation of the Machine Learning Algorithms Used in Inference Mechanism of a Medical Decision Support System

    Science.gov (United States)

    Bal, Mert; Amasyali, M. Fatih; Sever, Hayri; Kose, Guven; Demirhan, Ayse

    2014-01-01

    The importance of the decision support systems is increasingly supporting the decision making process in cases of uncertainty and the lack of information and they are widely used in various fields like engineering, finance, medicine, and so forth, Medical decision support systems help the healthcare personnel to select optimal method during the treatment of the patients. Decision support systems are intelligent software systems that support decision makers on their decisions. The design of decision support systems consists of four main subjects called inference mechanism, knowledge-base, explanation module, and active memory. Inference mechanism constitutes the basis of decision support systems. There are various methods that can be used in these mechanisms approaches. Some of these methods are decision trees, artificial neural networks, statistical methods, rule-based methods, and so forth. In decision support systems, those methods can be used separately or a hybrid system, and also combination of those methods. In this study, synthetic data with 10, 100, 1000, and 2000 records have been produced to reflect the probabilities on the ALARM network. The accuracy of 11 machine learning methods for the inference mechanism of medical decision support system is compared on various data sets. PMID:25295291

  9. Machine learning for identifying botnet network traffic

    DEFF Research Database (Denmark)

    Stevanovic, Matija; Pedersen, Jens Myrup

    2013-01-01

    . Due to promise of non-invasive and resilient detection, botnet detection based on network traffic analysis has drawn a special attention of the research community. Furthermore, many authors have turned their attention to the use of machine learning algorithms as the mean of inferring botnet......-related knowledge from the monitored traffic. This paper presents a review of contemporary botnet detection methods that use machine learning as a tool of identifying botnet-related traffic. The main goal of the paper is to provide a comprehensive overview on the field by summarizing current scientific efforts....... The contribution of the paper is three-fold. First, the paper provides a detailed insight on the existing detection methods by investigating which bot-related heuristic were assumed by the detection systems and how different machine learning techniques were adapted in order to capture botnet-related knowledge...

  10. Machine learning paradigms applications in recommender systems

    CERN Document Server

    Lampropoulos, Aristomenis S

    2015-01-01

    This timely book presents Applications in Recommender Systems which are making recommendations using machine learning algorithms trained via examples of content the user likes or dislikes. Recommender systems built on the assumption of availability of both positive and negative examples do not perform well when negative examples are rare. It is exactly this problem that the authors address in the monograph at hand. Specifically, the books approach is based on one-class classification methodologies that have been appearing in recent machine learning research. The blending of recommender systems and one-class classification provides a new very fertile field for research, innovation and development with potential applications in “big data” as well as “sparse data” problems. The book will be useful to researchers, practitioners and graduate students dealing with problems of extensive and complex data. It is intended for both the expert/researcher in the fields of Pattern Recognition, Machine Learning and ...

  11. Classification models for clear cell renal carcinoma stage progression, based on tumor RNAseq expression trained supervised machine learning algorithms.

    Science.gov (United States)

    Jagga, Zeenia; Gupta, Dinesh

    2014-01-01

    Clear-cell Renal Cell Carcinoma (ccRCC) is the most- prevalent, chemotherapy resistant and lethal adult kidney cancer. There is a need for novel diagnostic and prognostic biomarkers for ccRCC, due to its heterogeneous molecular profiles and asymptomatic early stage. This study aims to develop classification models to distinguish early stage and late stage of ccRCC based on gene expression profiles. We employed supervised learning algorithms- J48, Random Forest, SMO and Naïve Bayes; with enriched model learning by fast correlation based feature selection to develop classification models trained on sequencing based gene expression data of RNAseq experiments, obtained from The Cancer Genome Atlas. Different models developed in the study were evaluated on the basis of 10 fold cross validations and independent dataset testing. Random Forest based prediction model performed best amongst the models developed in the study, with a sensitivity of 89%, accuracy of 77% and area under Receivers Operating Curve of 0.8. We anticipate that the prioritized subset of 62 genes and prediction models developed in this study will aid experimental oncologists to expedite understanding of the molecular mechanisms of stage progression and discovery of prognostic factors for ccRCC tumors.

  12. Stochastic Descent Analysis of Representation Learning Algorithms

    OpenAIRE

    Golden, Richard M.

    2014-01-01

    Although stochastic approximation learning methods have been widely used in the machine learning literature for over 50 years, formal theoretical analyses of specific machine learning algorithms are less common because stochastic approximation theorems typically possess assumptions which are difficult to communicate and verify. This paper presents a new stochastic approximation theorem for state-dependent noise with easily verifiable assumptions applicable to the analysis and design of import...

  13. Newton Methods for Large Scale Problems in Machine Learning

    Science.gov (United States)

    Hansen, Samantha Leigh

    2014-01-01

    The focus of this thesis is on practical ways of designing optimization algorithms for minimizing large-scale nonlinear functions with applications in machine learning. Chapter 1 introduces the overarching ideas in the thesis. Chapters 2 and 3 are geared towards supervised machine learning applications that involve minimizing a sum of loss…

  14. Newton Methods for Large Scale Problems in Machine Learning

    Science.gov (United States)

    Hansen, Samantha Leigh

    2014-01-01

    The focus of this thesis is on practical ways of designing optimization algorithms for minimizing large-scale nonlinear functions with applications in machine learning. Chapter 1 introduces the overarching ideas in the thesis. Chapters 2 and 3 are geared towards supervised machine learning applications that involve minimizing a sum of loss…

  15. Machine Learning examples on Invenio

    CERN Document Server

    CERN. Geneva

    2017-01-01

    This talk will present the different Machine Learning tools that the INSPIRE is developing and integrating in order to automatize as much as possible content selection and curation in a subject based repository.

  16. Machine learning for healthcare technologies

    CERN Document Server

    Clifton, David A

    2016-01-01

    This book brings together chapters on the state-of-the-art in machine learning (ML) as it applies to the development of patient-centred technologies, with a special emphasis on 'big data' and mobile data.

  17. A Novel Flavour Tagging Algorithm using Machine Learning Techniques and a Precision Measurement of the $B^0 - \\overline{B^0}$ Oscillation Frequency at the LHCb Experiment

    CERN Document Server

    Kreplin, Katharina

    This thesis presents a novel flavour tagging algorithm using machine learning techniques and a precision measurement of the $B^0 -\\overline{B^0}$ oscillation frequency $\\Delta m_d$ using semileptonic $B^0$ decays. The LHC Run I data set is used which corresponds to $3 \\textrm{fb}^{-1}$ of data taken by the LHCb experiment at a center-of-mass energy of 7 TeV and 8 TeV. The performance of flavour tagging algorithms, exploiting the $b\\bar{b}$ pair production and the $b$ quark hadronization, is relatively low at the LHC due to the large amount of soft QCD background in inelastic proton-proton collisions. The standard approach is a cut-based selection of particles, whose charges are correlated to the production flavour of the $B$ meson. The novel tagging algorithm classifies the particles using an artificial neural network (ANN). It assigns higher weights to particles, which are likely to be correlated to the $b$ flavour. A second ANN combines the particles with the highest weights to derive the tagging decision. ...

  18. Algorithms for Reinforcement Learning

    CERN Document Server

    Szepesvari, Csaba

    2010-01-01

    Reinforcement learning is a learning paradigm concerned with learning to control a system so as to maximize a numerical performance measure that expresses a long-term objective. What distinguishes reinforcement learning from supervised learning is that only partial feedback is given to the learner about the learner's predictions. Further, the predictions may have long term effects through influencing the future state of the controlled system. Thus, time plays a special role. The goal in reinforcement learning is to develop efficient learning algorithms, as well as to understand the algorithms'

  19. Machine Learning and Cosmological Simulations

    Science.gov (United States)

    Kamdar, Harshil; Turk, Matthew; Brunner, Robert

    2016-01-01

    We explore the application of machine learning (ML) to the problem of galaxy formation and evolution in a hierarchical universe. Our motivations are two-fold: (1) presenting a new, promising technique to study galaxy formation, and (2) quantitatively evaluating the extent of the influence of dark matter halo properties on small-scale structure formation. For our analyses, we use both semi-analytical models (Millennium simulation) and N-body + hydrodynamical simulations (Illustris simulation). The ML algorithms are trained on important dark matter halo properties (inputs) and galaxy properties (outputs). The trained models are able to robustly predict the gas mass, stellar mass, black hole mass, star formation rate, $g-r$ color, and stellar metallicity. Moreover, the ML simulated galaxies obey fundamental observational constraints implying that the population of ML predicted galaxies is physically and statistically robust. Next, ML algorithms are trained on an N-body + hydrodynamical simulation and applied to an N-body only simulation (Dark Sky simulation, Illustris Dark), populating this new simulation with galaxies. We can examine how structure formation changes with different cosmological parameters and are able to mimic a full-blown hydrodynamical simulation in a computation time that is orders of magnitude smaller. We find that the set of ML simulated galaxies in Dark Sky obey the same observational constraints, further solidifying ML's place as an intriguing and promising technique in future galaxy formation studies and rapid mock galaxy catalog creation.

  20. Broiler chickens can benefit from machine learning: support vector machine analysis of observational epidemiological data.

    Science.gov (United States)

    Hepworth, Philip J; Nefedov, Alexey V; Muchnik, Ilya B; Morgan, Kenton L

    2012-08-07

    Machine-learning algorithms pervade our daily lives. In epidemiology, supervised machine learning has the potential for classification, diagnosis and risk factor identification. Here, we report the use of support vector machine learning to identify the features associated with hock burn on commercial broiler farms, using routinely collected farm management data. These data lend themselves to analysis using machine-learning techniques. Hock burn, dermatitis of the skin over the hock, is an important indicator of broiler health and welfare. Remarkably, this classifier can predict the occurrence of high hock burn prevalence with accuracy of 0.78 on unseen data, as measured by the area under the receiver operating characteristic curve. We also compare the results with those obtained by standard multi-variable logistic regression and suggest that this technique provides new insights into the data. This novel application of a machine-learning algorithm, embedded in poultry management systems could offer significant improvements in broiler health and welfare worldwide.

  1. Machine learning methods for planning

    CERN Document Server

    Minton, Steven

    1993-01-01

    Machine Learning Methods for Planning provides information pertinent to learning methods for planning and scheduling. This book covers a wide variety of learning methods and learning architectures, including analogical, case-based, decision-tree, explanation-based, and reinforcement learning.Organized into 15 chapters, this book begins with an overview of planning and scheduling and describes some representative learning systems that have been developed for these tasks. This text then describes a learning apprentice for calendar management. Other chapters consider the problem of temporal credi

  2. Learning with Support Vector Machines

    CERN Document Server

    Campbell, Colin

    2010-01-01

    Support Vectors Machines have become a well established tool within machine learning. They work well in practice and have now been used across a wide range of applications from recognizing hand-written digits, to face identification, text categorisation, bioinformatics, and database marketing. In this book we give an introductory overview of this subject. We start with a simple Support Vector Machine for performing binary classification before considering multi-class classification and learning in the presence of noise. We show that this framework can be extended to many other scenarios such a

  3. Machine learning in Python essential techniques for predictive analysis

    CERN Document Server

    Bowles, Michael

    2015-01-01

    Learn a simpler and more effective way to analyze data and predict outcomes with Python Machine Learning in Python shows you how to successfully analyze data using only two core machine learning algorithms, and how to apply them using Python. By focusing on two algorithm families that effectively predict outcomes, this book is able to provide full descriptions of the mechanisms at work, and the examples that illustrate the machinery with specific, hackable code. The algorithms are explained in simple terms with no complex math and applied using Python, with guidance on algorithm selection, d

  4. Machine Learning for Neuroimaging with Scikit-Learn

    Directory of Open Access Journals (Sweden)

    Alexandre eAbraham

    2014-02-01

    Full Text Available Statistical machine learning methods are increasingly used for neuroimaging data analysis. Their main virtue is their ability to model high-dimensional datasets, e.g. multivariate analysis of activation images or resting-state time series. Supervised learning is typically used in decoding or encoding settings to relate brain images to behavioral or clinical observations, while unsupervised learning can uncover hidden structures in sets of images (e.g. resting state functional MRI or find sub-populations in large cohorts. By considering different functional neuroimaging applications, we illustrate how scikit-learn, a Python machine learning library, can be used to perform some key analysis steps. Scikit-learn contains a very large set of statistical learning algorithms, both supervised and unsupervised, and its application to neuroimaging data provides a versatile tool to study the brain.

  5. Machine learning for neuroimaging with scikit-learn.

    Science.gov (United States)

    Abraham, Alexandre; Pedregosa, Fabian; Eickenberg, Michael; Gervais, Philippe; Mueller, Andreas; Kossaifi, Jean; Gramfort, Alexandre; Thirion, Bertrand; Varoquaux, Gaël

    2014-01-01

    Statistical machine learning methods are increasingly used for neuroimaging data analysis. Their main virtue is their ability to model high-dimensional datasets, e.g., multivariate analysis of activation images or resting-state time series. Supervised learning is typically used in decoding or encoding settings to relate brain images to behavioral or clinical observations, while unsupervised learning can uncover hidden structures in sets of images (e.g., resting state functional MRI) or find sub-populations in large cohorts. By considering different functional neuroimaging applications, we illustrate how scikit-learn, a Python machine learning library, can be used to perform some key analysis steps. Scikit-learn contains a very large set of statistical learning algorithms, both supervised and unsupervised, and its application to neuroimaging data provides a versatile tool to study the brain.

  6. A simple and practical control of the authenticity of organic sugarcane samples based on the use of machine-learning algorithms and trace elements determination by inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Barbosa, Rommel M; Batista, Bruno L; Barião, Camila V; Varrique, Renan M; Coelho, Vinicius A; Campiglia, Andres D; Barbosa, Fernando

    2015-10-01

    A practical and easy control of the authenticity of organic sugarcane samples based on the use of machine-learning algorithms and trace elements determination by inductively coupled plasma mass spectrometry is proposed. Reference ranges for 32 chemical elements in 22 samples of sugarcane (13 organic and 9 non organic) were established and then two algorithms, Naive Bayes (NB) and Random Forest (RF), were evaluated to classify the samples. Accurate results (>90%) were obtained when using all variables (i.e., 32 elements). However, accuracy was improved (95.4% for NB) when only eight minerals (Rb, U, Al, Sr, Dy, Nb, Ta, Mo), chosen by a feature selection algorithm, were employed. Thus, the use of a fingerprint based on trace element levels associated with classification machine learning algorithms may be used as a simple alternative for authenticity evaluation of organic sugarcane samples.

  7. Machine learning with quantum relative entropy

    Energy Technology Data Exchange (ETDEWEB)

    Tsuda, Koji [Max Planck Institute for Biological Cybernetics, Spemannstr. 38, Tuebingen, 72076 (Germany)], E-mail: koji.tsuda@tuebingen.mpg.de

    2009-12-01

    Density matrices are a central tool in quantum physics, but it is also used in machine learning. A positive definite matrix called kernel matrix is used to represent the similarities between examples. Positive definiteness assures that the examples are embedded in an Euclidean space. When a positive definite matrix is learned from data, one has to design an update rule that maintains the positive definiteness. Our update rule, called matrix exponentiated gradient update, is motivated by the quantum relative entropy. Notably, the relative entropy is an instance of Bregman divergences, which are asymmetric distance measures specifying theoretical properties of machine learning algorithms. Using the calculus commonly used in quantum physics, we prove an upperbound of the generalization error of online learning.

  8. Machine Learning Strategy for Accelerated Design of Polymer Dielectrics

    National Research Council Canada - National Science Library

    Mannodi-Kanakkithodi, Arun; Pilania, Ghanshyam; Huan, Tran Doan; Lookman, Turab; Ramprasad, Rampi

    2016-01-01

    .... The polymers are 'fingerprinted' as simple, easily attainable numerical representations, which are mapped to the properties of interest using a machine learning algorithm to develop an on-demand...

  9. A Machine Learning System for Recognizing Subclasses (Demo)

    Energy Technology Data Exchange (ETDEWEB)

    Vatsavai, Raju [ORNL

    2012-01-01

    Thematic information extraction from remote sensing images is a complex task. In this demonstration, we present *Miner machine learning system. In particular, we demonstrate an advanced subclass recognition algorithm that is specifically designed to extract finer classes from aggregate classes.

  10. Classifying smoking urges via machine learning.

    Science.gov (United States)

    Dumortier, Antoine; Beckjord, Ellen; Shiffman, Saul; Sejdić, Ervin

    2016-12-01

    Smoking is the largest preventable cause of death and diseases in the developed world, and advances in modern electronics and machine learning can help us deliver real-time intervention to smokers in novel ways. In this paper, we examine different machine learning approaches to use situational features associated with having or not having urges to smoke during a quit attempt in order to accurately classify high-urge states. To test our machine learning approaches, specifically, Bayes, discriminant analysis and decision tree learning methods, we used a dataset collected from over 300 participants who had initiated a quit attempt. The three classification approaches are evaluated observing sensitivity, specificity, accuracy and precision. The outcome of the analysis showed that algorithms based on feature selection make it possible to obtain high classification rates with only a few features selected from the entire dataset. The classification tree method outperformed the naive Bayes and discriminant analysis methods, with an accuracy of the classifications up to 86%. These numbers suggest that machine learning may be a suitable approach to deal with smoking cessation matters, and to predict smoking urges, outlining a potential use for mobile health applications. In conclusion, machine learning classifiers can help identify smoking situations, and the search for the best features and classifier parameters significantly improves the algorithms' performance. In addition, this study also supports the usefulness of new technologies in improving the effect of smoking cessation interventions, the management of time and patients by therapists, and thus the optimization of available health care resources. Future studies should focus on providing more adaptive and personalized support to people who really need it, in a minimum amount of time by developing novel expert systems capable of delivering real-time interventions. Copyright © 2016 Elsevier Ireland Ltd. All rights

  11. MEDLINE MeSH Indexing: Lessons Learned from Machine Learning and Future Directions

    DEFF Research Database (Denmark)

    Jimeno-Yepes, Antonio; Mork, James G.; Wilkowski, Bartlomiej

    2012-01-01

    Map and a k-NN approach called PubMed Related Citations (PRC). Our motivation is to improve the quality of MTI based on machine learning. Typical machine learning approaches fit this indexing task into text categorization. In this work, we have studied some Medical Subject Headings (MeSH) recommended by MTI...... and analyzed the issues when using standard machine learning algorithms. We show that in some cases machine learning can improve the annotations already recommended by MTI, that machine learning based on low variance methods achieves better performance and that each MeSH heading presents a different behavior...

  12. Machine Learning for ATLAS DDM Network Metrics

    CERN Document Server

    Lassnig, Mario; The ATLAS collaboration; Vamosi, Ralf

    2016-01-01

    The increasing volume of physics data is posing a critical challenge to the ATLAS experiment. In anticipation of high luminosity physics, automation of everyday data management tasks has become necessary. Previously many of these tasks required human decision-making and operation. Recent advances in hardware and software have made it possible to entrust more complicated duties to automated systems using models trained by machine learning algorithms. In this contribution we show results from our ongoing automation efforts. First, we describe our framework for distributed data management and network metrics, automatically extract and aggregate data, train models with various machine learning algorithms, and eventually score the resulting models and parameters. Second, we use these models to forecast metrics relevant for network-aware job scheduling and data brokering. We show the characteristics of the data and evaluate the forecasting accuracy of our models.

  13. Parallelization of the ROOT Machine Learning Methods

    CERN Document Server

    Vakilipourtakalou, Pourya

    2016-01-01

    Today computation is an inseparable part of scientific research. Specially in Particle Physics when there is a classification problem like discrimination of Signals from Backgrounds originating from the collisions of particles. On the other hand, Monte Carlo simulations can be used in order to generate a known data set of Signals and Backgrounds based on theoretical physics. The aim of Machine Learning is to train some algorithms on known data set and then apply these trained algorithms to the unknown data sets. However, the most common framework for data analysis in Particle Physics is ROOT. In order to use Machine Learning methods, a Toolkit for Multivariate Data Analysis (TMVA) has been added to ROOT. The major consideration in this report is the parallelization of some TMVA methods, specially Cross-Validation and BDT.

  14. Automated quantification of cerebral edema following hemispheric infarction: Application of a machine-learning algorithm to evaluate CSF shifts on serial head CTs.

    Science.gov (United States)

    Chen, Yasheng; Dhar, Rajat; Heitsch, Laura; Ford, Andria; Fernandez-Cadenas, Israel; Carrera, Caty; Montaner, Joan; Lin, Weili; Shen, Dinggang; An, Hongyu; Lee, Jin-Moo

    2016-01-01

    Although cerebral edema is a major cause of death and deterioration following hemispheric stroke, there remains no validated biomarker that captures the full spectrum of this critical complication. We recently demonstrated that reduction in intracranial cerebrospinal fluid (CSF) volume (∆ CSF) on serial computed tomography (CT) scans provides an accurate measure of cerebral edema severity, which may aid in early triaging of stroke patients for craniectomy. However, application of such a volumetric approach would be too cumbersome to perform manually on serial scans in a real-world setting. We developed and validated an automated technique for CSF segmentation via integration of random forest (RF) based machine learning with geodesic active contour (GAC) segmentation. The proposed RF + GAC approach was compared to conventional Hounsfield Unit (HU) thresholding and RF segmentation methods using Dice similarity coefficient (DSC) and the correlation of volumetric measurements, with manual delineation serving as the ground truth. CSF spaces were outlined on scans performed at baseline (line of identity in RF + GAC. When we applied the algorithm trained from images of one stroke center to segment CTs from another center, similar findings held. In conclusion, we have developed and validated an accurate automated approach to segment CSF and calculate its shifts on serial CT scans. This algorithm will allow us to efficiently and accurately measure the evolution of cerebral edema in future studies including large multi-site patient populations.

  15. Computer and machine vision theory, algorithms, practicalities

    CERN Document Server

    Davies, E R

    2012-01-01

    Computer and Machine Vision: Theory, Algorithms, Practicalities (previously entitled Machine Vision) clearly and systematically presents the basic methodology of computer and machine vision, covering the essential elements of the theory while emphasizing algorithmic and practical design constraints. This fully revised fourth edition has brought in more of the concepts and applications of computer vision, making it a very comprehensive and up-to-date tutorial text suitable for graduate students, researchers and R&D engineers working in this vibrant subject. Key features include: Practical examples and case studies give the 'ins and outs' of developing real-world vision systems, giving engineers the realities of implementing the principles in practice New chapters containing case studies on surveillance and driver assistance systems give practical methods on these cutting-edge applications in computer vision Necessary mathematics and essential theory are made approachable by careful explanations and well-il...

  16. Implementing Machine Learning in Radiology Practice and Research.

    Science.gov (United States)

    Kohli, Marc; Prevedello, Luciano M; Filice, Ross W; Geis, J Raymond

    2017-04-01

    The purposes of this article are to describe concepts that radiologists should understand to evaluate machine learning projects, including common algorithms, supervised as opposed to unsupervised techniques, statistical pitfalls, and data considerations for training and evaluation, and to briefly describe ethical dilemmas and legal risk. Machine learning includes a broad class of computer programs that improve with experience. The complexity of creating, training, and monitoring machine learning indicates that the success of the algorithms will require radiologist involvement for years to come, leading to engagement rather than replacement.

  17. Game-powered machine learning.

    Science.gov (United States)

    Barrington, Luke; Turnbull, Douglas; Lanckriet, Gert

    2012-04-24

    Searching for relevant content in a massive amount of multimedia information is facilitated by accurately annotating each image, video, or song with a large number of relevant semantic keywords, or tags. We introduce game-powered machine learning, an integrated approach to annotating multimedia content that combines the effectiveness of human computation, through online games, with the scalability of machine learning. We investigate this framework for labeling music. First, a socially-oriented music annotation game called Herd It collects reliable music annotations based on the "wisdom of the crowds." Second, these annotated examples are used to train a supervised machine learning system. Third, the machine learning system actively directs the annotation games to collect new data that will most benefit future model iterations. Once trained, the system can automatically annotate a corpus of music much larger than what could be labeled using human computation alone. Automatically annotated songs can be retrieved based on their semantic relevance to text-based queries (e.g., "funky jazz with saxophone," "spooky electronica," etc.). Based on the results presented in this paper, we find that actively coupling annotation games with machine learning provides a reliable and scalable approach to making searchable massive amounts of multimedia data.

  18. Quantum machine learning what quantum computing means to data mining

    CERN Document Server

    Wittek, Peter

    2014-01-01

    Quantum Machine Learning bridges the gap between abstract developments in quantum computing and the applied research on machine learning. Paring down the complexity of the disciplines involved, it focuses on providing a synthesis that explains the most important machine learning algorithms in a quantum framework. Theoretical advances in quantum computing are hard to follow for computer scientists, and sometimes even for researchers involved in the field. The lack of a step-by-step guide hampers the broader understanding of this emergent interdisciplinary body of research. Quantum Machine L

  19. Scalable Machine Learning for Massive Astronomical Datasets

    Science.gov (United States)

    Ball, Nicholas M.; Gray, A.

    2014-04-01

    We present the ability to perform data mining and machine learning operations on a catalog of half a billion astronomical objects. This is the result of the combination of robust, highly accurate machine learning algorithms with linear scalability that renders the applications of these algorithms to massive astronomical data tractable. We demonstrate the core algorithms kernel density estimation, K-means clustering, linear regression, nearest neighbors, random forest and gradient-boosted decision tree, singular value decomposition, support vector machine, and two-point correlation function. Each of these is relevant for astronomical applications such as finding novel astrophysical objects, characterizing artifacts in data, object classification (including for rare objects), object distances, finding the important features describing objects, density estimation of distributions, probabilistic quantities, and exploring the unknown structure of new data. The software, Skytree Server, runs on any UNIX-based machine, a virtual machine, or cloud-based and distributed systems including Hadoop. We have integrated it on the cloud computing system of the Canadian Astronomical Data Centre, the Canadian Advanced Network for Astronomical Research (CANFAR), creating the world's first cloud computing data mining system for astronomy. We demonstrate results showing the scaling of each of our major algorithms on large astronomical datasets, including the full 470,992,970 objects of the 2 Micron All-Sky Survey (2MASS) Point Source Catalog. We demonstrate the ability to find outliers in the full 2MASS dataset utilizing multiple methods, e.g., nearest neighbors. This is likely of particular interest to the radio astronomy community given, for example, that survey projects contain groups dedicated to this topic. 2MASS is used as a proof-of-concept dataset due to its convenience and availability. These results are of interest to any astronomical project with large and/or complex

  20. Machine learning in geosciences and remote sensing

    Institute of Scientific and Technical Information of China (English)

    David J. Lary; Amir H. Alavi; Amir H. Gandomi; Annette L. Walker

    2016-01-01

    Learning incorporates a broad range of complex procedures. Machine learning (ML) is a subdivision of artificial intelligence based on the biological learning process. The ML approach deals with the design of algorithms to learn from machine readable data. ML covers main domains such as data mining, difficult-to-program applications, and software applications. It is a collection of a variety of algorithms (e.g. neural networks, support vector machines, self-organizing map, decision trees, random forests, case-based reasoning, genetic programming, etc.) that can provide multivariate, nonlinear, nonparametric regres-sion or classification. The modeling capabilities of the ML-based methods have resulted in their extensive applications in science and engineering. Herein, the role of ML as an effective approach for solving problems in geosciences and remote sensing will be highlighted. The unique features of some of the ML techniques will be outlined with a specific attention to genetic programming paradigm. Furthermore, nonparametric regression and classification illustrative examples are presented to demonstrate the ef-ficiency of ML for tackling the geosciences and remote sensing problems.

  1. Machine learning in geosciences and remote sensing

    Directory of Open Access Journals (Sweden)

    David J. Lary

    2016-01-01

    Full Text Available Learning incorporates a broad range of complex procedures. Machine learning (ML is a subdivision of artificial intelligence based on the biological learning process. The ML approach deals with the design of algorithms to learn from machine readable data. ML covers main domains such as data mining, difficult-to-program applications, and software applications. It is a collection of a variety of algorithms (e.g. neural networks, support vector machines, self-organizing map, decision trees, random forests, case-based reasoning, genetic programming, etc. that can provide multivariate, nonlinear, nonparametric regression or classification. The modeling capabilities of the ML-based methods have resulted in their extensive applications in science and engineering. Herein, the role of ML as an effective approach for solving problems in geosciences and remote sensing will be highlighted. The unique features of some of the ML techniques will be outlined with a specific attention to genetic programming paradigm. Furthermore, nonparametric regression and classification illustrative examples are presented to demonstrate the efficiency of ML for tackling the geosciences and remote sensing problems.

  2. Higgs Machine Learning Challenge 2014

    CERN Multimedia

    Olivier, A-P; Bourdarios, C ; LAL / Orsay; Goldfarb, S ; University of Michigan

    2014-01-01

    High Energy Physics (HEP) has been using Machine Learning (ML) techniques such as boosted decision trees (paper) and neural nets since the 90s. These techniques are now routinely used for difficult tasks such as the Higgs boson search. Nevertheless, formal connections between the two research fields are rather scarce, with some exceptions such as the AppStat group at LAL, founded in 2006. In collaboration with INRIA, AppStat promotes interdisciplinary research on machine learning, computational statistics, and high-energy particle and astroparticle physics. We are now exploring new ways to improve the cross-fertilization of the two fields by setting up a data challenge, following the footsteps of, among others, the astrophysics community (dark matter and galaxy zoo challenges) and neurobiology (connectomics and decoding the human brain). The organization committee consists of ATLAS physicists and machine learning researchers. The Challenge will run from Monday 12th to September 2014.

  3. Machine learning phases of matter

    Science.gov (United States)

    Carrasquilla, Juan; Melko, Roger G.

    2017-02-01

    Condensed-matter physics is the study of the collective behaviour of infinitely complex assemblies of electrons, nuclei, magnetic moments, atoms or qubits. This complexity is reflected in the size of the state space, which grows exponentially with the number of particles, reminiscent of the `curse of dimensionality' commonly encountered in machine learning. Despite this curse, the machine learning community has developed techniques with remarkable abilities to recognize, classify, and characterize complex sets of data. Here, we show that modern machine learning architectures, such as fully connected and convolutional neural networks, can identify phases and phase transitions in a variety of condensed-matter Hamiltonians. Readily programmable through modern software libraries, neural networks can be trained to detect multiple types of order parameter, as well as highly non-trivial states with no conventional order, directly from raw state configurations sampled with Monte Carlo.

  4. Digital VLSI algorithms and architectures for support vector machines.

    Science.gov (United States)

    Anguita, D; Boni, A; Ridella, S

    2000-06-01

    In this paper, we propose some very simple algorithms and architectures for a digital VLSI implementation of Support Vector Machines. We discuss the main aspects concerning the realization of the learning phase of SVMs, with special attention on the effects of fixed-point math for computing and storing the parameters of the network. Some experiments on two classification problems are described that show the efficiency of the proposed methods in reaching optimal solutions with reasonable hardware requirements.

  5. Machine Learning in Medicine

    National Research Council Canada - National Science Library

    Deo, Rahul C

    2015-01-01

    Spurred by advances in processing power, memory, storage, and an unprecedented wealth of data, computers are being asked to tackle increasingly complex learning tasks, often with astonishing success...

  6. Unsupervised learning algorithms

    CERN Document Server

    Aydin, Kemal

    2016-01-01

    This book summarizes the state-of-the-art in unsupervised learning. The contributors discuss how with the proliferation of massive amounts of unlabeled data, unsupervised learning algorithms, which can automatically discover interesting and useful patterns in such data, have gained popularity among researchers and practitioners. The authors outline how these algorithms have found numerous applications including pattern recognition, market basket analysis, web mining, social network analysis, information retrieval, recommender systems, market research, intrusion detection, and fraud detection. They present how the difficulty of developing theoretically sound approaches that are amenable to objective evaluation have resulted in the proposal of numerous unsupervised learning algorithms over the past half-century. The intended audience includes researchers and practitioners who are increasingly using unsupervised learning algorithms to analyze their data. Topics of interest include anomaly detection, clustering,...

  7. Using Machine Learning to Search for MSSM Higgs Bosons

    CERN Document Server

    Diesing, Rebecca

    2016-01-01

    This paper examines the performance of machine learning in the identification of Minimally Su- persymmetric Standard Model (MSSM) Higgs Bosons, and compares this performance to that of traditional cut strategies. Two boosted decision tree algorithms were tested, scikit-learn and XGBoost. These tests indicated that machine learning can perform significantly better than traditional cuts. However, since machine learning in this form cannot be directly implemented in a real MSSM Higgs analysis, this performance information was instead used to better understand the relationships between training variables. Further studies might use this information to construct an improved cut strategy.

  8. A Protein Classification Benchmark collection for machine learning

    NARCIS (Netherlands)

    Sonego, P.; Pacurar, M.; Dhir, S.; Kertész-Farkas, A.; Kocsor, A.; Gáspári, Z.; Leunissen, J.A.M.; Pongor, S.

    2007-01-01

    Protein classification by machine learning algorithms is now widely used in structural and functional annotation of proteins. The Protein Classification Benchmark collection (http://hydra.icgeb.trieste.it/benchmark) was created in order to provide standard datasets on which the performance of machin

  9. In Silico Calculation of Infinite Dilution Activity Coefficients of Molecular Solutes in Ionic Liquids: Critical Review of Current Methods and New Models Based on Three Machine Learning Algorithms.

    Science.gov (United States)

    Paduszyński, Kamil

    2016-08-22

    The aim of the paper is to address all the disadvantages of currently available models for calculating infinite dilution activity coefficients (γ(∞)) of molecular solutes in ionic liquids (ILs)-a relevant property from the point of view of many applications of ILs, particularly in separations. Three new models are proposed, each of them based on distinct machine learning algorithm: stepwise multiple linear regression (SWMLR), feed-forward artificial neural network (FFANN), and least-squares support vector machine (LSSVM). The models were established based on the most comprehensive γ(∞) data bank reported so far (>34 000 data points for 188 ILs and 128 solutes). Following the paper published previously [J. Chem. Inf. Model 2014, 54, 1311-1324], the ILs were treated in terms of group contributions, whereas the Abraham solvation parameters were used to quantify an impact of solute structure. Temperature is also included in the input data of the models so that they can be utilized to obtain temperature-dependent data and thus related thermodynamic functions. Both internal and external validation techniques were applied to assess the statistical significance and explanatory power of the final correlations. A comparative study of the overall performance of the investigated SWMLR/FFANN/LSSVM approaches is presented in terms of root-mean-square error and average absolute relative deviation between calculated and experimental γ(∞), evaluated for different families of ILs and solutes, as well as between calculated and experimental infinite dilution selectivity for separation problems benzene from n-hexane and thiophene from n-heptane. LSSVM is shown to be a method with the lowest values of both training and generalization errors. It is finally demonstrated that the established models exhibit an improved accuracy compared to the state-of-the-art model, namely, temperature-dependent group contribution linear solvation energy relationship, published in 2011 [J. Chem

  10. Machine Learning Techniques for Optical Performance Monitoring from Directly Detected PDM-QAM Signals

    DEFF Research Database (Denmark)

    Thrane, Jakob; Wass, Jesper; Piels, Molly

    2017-01-01

    Linear signal processing algorithms are effective in dealing with linear transmission channel and linear signal detection, while the nonlinear signal processing algorithms, from the machine learning community, are effective in dealing with nonlinear transmission channel and nonlinear signal...... detection. In this paper, a brief overview of the various machine learning methods and their application in optical communication is presented and discussed. Moreover, supervised machine learning methods, such as neural networks and support vector machine, are experimentally demonstrated for in-band optical...

  11. Machine Learning for Education: Learning to Teach

    Science.gov (United States)

    2016-12-01

    1 Machine Learning for Education: Learning to Teach Matthew C. Gombolay, Reed Jensen, Sung-Hyun Son Massachusetts Institute of Technology Lincoln...training tools and develop military strategies within their training environment. Second, we develop methods for improving warfighter education: learning to...and do not necessarily reflect the views of the Department of the Navy. RAMS # 1001485 Fig. 1. SGD enables development of automated teaching tools for

  12. The ATLAS Higgs machine learning challenge

    CERN Document Server

    Davey, W; The ATLAS collaboration; Rousseau, D; Cowan, G; Kegl, B; Germain-Renaud, C; Guyon, I

    2014-01-01

    High Energy Physics has been using Machine Learning techniques (commonly known as Multivariate Analysis) since the 90's with Artificial Neural Net for example, more recently with Boosted Decision Trees, Random Forest etc... Meanwhile, Machine Learning has become a full blown field of computer science. With the emergence of Big Data, Data Scientists are developing new Machine Learning algorithms to extract sense from large heterogeneous data. HEP has exciting and difficult problems like the extraction of the Higgs boson signal, data scientists have advanced algorithms: the goal of the HiggsML project is to bring the two together by a “challenge”: participants from all over the world and any scientific background can compete online ( https://www.kaggle.com/c/higgs-boson ) to obtain the best Higgs to tau tau signal significance on a set of ATLAS full simulated Monte Carlo signal and background. Winners with the best scores will receive money prizes ; authors of the best method (most usable) will be invited t...

  13. Stacking for machine learning redshifts applied to SDSS galaxies

    OpenAIRE

    Zitlau, Roman; Hoyle, Ben; Paech, Kerstin; Weller, Jochen; Rau, Markus Michael; Seitz, Stella

    2016-01-01

    We present an analysis of a general machine learning technique called 'stacking' for the estimation of photometric redshifts. Stacking techniques can feed the photometric redshift estimate, as output by a base algorithm, back into the same algorithm as an additional input feature in a subsequent learning round. We shown how all tested base algorithms benefit from at least one additional stacking round (or layer). To demonstrate the benefit of stacking, we apply the method to both unsupervised...

  14. Attention: A Machine Learning Perspective

    DEFF Research Database (Denmark)

    Hansen, Lars Kai

    2012-01-01

    We review a statistical machine learning model of top-down task driven attention based on the notion of ‘gist’. In this framework we consider the task to be represented as a classification problem with two sets of features — a gist of coarse grained global features and a larger set of low...

  15. Machine Learning applications in CMS

    CERN Document Server

    CERN. Geneva

    2017-01-01

    Machine Learning is used in many aspects of CMS data taking, monitoring, processing and analysis. We review a few of these use cases and the most recent developments, with an outlook to future applications in the LHC Run III and for the High-Luminosity phase.

  16. Kernel learning algorithms for face recognition

    CERN Document Server

    Li, Jun-Bao; Pan, Jeng-Shyang

    2013-01-01

    Kernel Learning Algorithms for Face Recognition covers the framework of kernel based face recognition. This book discusses the advanced kernel learning algorithms and its application on face recognition. This book also focuses on the theoretical deviation, the system framework and experiments involving kernel based face recognition. Included within are algorithms of kernel based face recognition, and also the feasibility of the kernel based face recognition method. This book provides researchers in pattern recognition and machine learning area with advanced face recognition methods and its new

  17. Machine learning an artificial intelligence approach

    CERN Document Server

    Banerjee, R; Bradshaw, Gary; Carbonell, Jaime Guillermo; Mitchell, Tom Michael; Michalski, Ryszard Spencer

    1983-01-01

    Machine Learning: An Artificial Intelligence Approach contains tutorial overviews and research papers representative of trends in the area of machine learning as viewed from an artificial intelligence perspective. The book is organized into six parts. Part I provides an overview of machine learning and explains why machines should learn. Part II covers important issues affecting the design of learning programs-particularly programs that learn from examples. It also describes inductive learning systems. Part III deals with learning by analogy, by experimentation, and from experience. Parts IV a

  18. Photometric Supernova Classification with Machine Learning

    Science.gov (United States)

    Lochner, Michelle; McEwen, Jason D.; Peiris, Hiranya V.; Lahav, Ofer; Winter, Max K.

    2016-08-01

    Automated photometric supernova classification has become an active area of research in recent years in light of current and upcoming imaging surveys such as the Dark Energy Survey (DES) and the Large Synoptic Survey Telescope, given that spectroscopic confirmation of type for all supernovae discovered will be impossible. Here, we develop a multi-faceted classification pipeline, combining existing and new approaches. Our pipeline consists of two stages: extracting descriptive features from the light curves and classification using a machine learning algorithm. Our feature extraction methods vary from model-dependent techniques, namely SALT2 fits, to more independent techniques that fit parametric models to curves, to a completely model-independent wavelet approach. We cover a range of representative machine learning algorithms, including naive Bayes, k-nearest neighbors, support vector machines, artificial neural networks, and boosted decision trees (BDTs). We test the pipeline on simulated multi-band DES light curves from the Supernova Photometric Classification Challenge. Using the commonly used area under the curve (AUC) of the Receiver Operating Characteristic as a metric, we find that the SALT2 fits and the wavelet approach, with the BDTs algorithm, each achieve an AUC of 0.98, where 1 represents perfect classification. We find that a representative training set is essential for good classification, whatever the feature set or algorithm, with implications for spectroscopic follow-up. Importantly, we find that by using either the SALT2 or the wavelet feature sets with a BDT algorithm, accurate classification is possible purely from light curve data, without the need for any redshift information.

  19. Ensemble Machine Learning Methods and Applications

    CERN Document Server

    Ma, Yunqian

    2012-01-01

    It is common wisdom that gathering a variety of views and inputs improves the process of decision making, and, indeed, underpins a democratic society. Dubbed “ensemble learning” by researchers in computational intelligence and machine learning, it is known to improve a decision system’s robustness and accuracy. Now, fresh developments are allowing researchers to unleash the power of ensemble learning in an increasing range of real-world applications. Ensemble learning algorithms such as “boosting” and “random forest” facilitate solutions to key computational issues such as face detection and are now being applied in areas as diverse as object trackingand bioinformatics.   Responding to a shortage of literature dedicated to the topic, this volume offers comprehensive coverage of state-of-the-art ensemble learning techniques, including various contributions from researchers in leading industrial research labs. At once a solid theoretical study and a practical guide, the volume is a windfall for r...

  20. Performance of machine learning methods for classification tasks

    Directory of Open Access Journals (Sweden)

    B. Krithika

    2013-06-01

    Full Text Available In this paper, the performance of various machine learning methods on pattern classification and recognition tasks are proposed. The proposed method for evaluating performance will be based on the feature representation, feature selection and setting model parameters. The nature of the data, the methods of feature extraction and feature representation are discussed. The results of the Machine Learning algorithms on the classification task are analysed. The performance of Machine Learning methods on classifying Tamil word patterns, i.e., classification of noun and verbs are analysed.The software WEKA (data mining tool is used for evaluating the performance. WEKA has several machine learning algorithms like Bayes, Trees, Lazy, Rule based classifiers.

  1. Learning Algorithms of Multilayer Neural Networks

    OpenAIRE

    Fujiki, Sumiyoshi; FUJIKI, Nahomi, M.

    1996-01-01

    A positive reinforcement type learning algorithm is formulated for a stochastic feed-forward multilayer neural network, with far interlayer synaptic connections, and we obtain a learning rule similar to that of the Boltzmann machine on the same multilayer structure. By applying a mean field approximation to the stochastic feed-forward neural network, the generalized error back-propagation learning rule is derived for a deterministic analog feed-forward multilayer network with the far interlay...

  2. Modelling tick abundance using machine learning techniques and satellite imagery

    DEFF Research Database (Denmark)

    Kjær, Lene Jung; Korslund, L.; Kjelland, V.

    satellite images to run Boosted Regression Tree machine learning algorithms to predict overall distribution (presence/absence of ticks) and relative tick abundance of nymphs and larvae in southern Scandinavia. For nymphs, the predicted abundance had a positive correlation with observed abundance...... the predicted distribution of larvae was mostly even throughout Denmark, it was primarily around the coastlines in Norway and Sweden. Abundance was fairly low overall except in some fragmented patches corresponding to forested habitats in the region. Machine learning techniques allow us to predict for larger...... the collected ticks for pathogens and using the same machine learning techniques to develop prevalence maps of the ScandTick region....

  3. A machine learning-based automatic currency trading system

    OpenAIRE

    Brvar, Anže

    2012-01-01

    The main goal of this thesis was to develop an automated trading system for Forex trading, which would use machine learning methods and their prediction models for deciding about trading actions. A training data set was obtained from exchange rates and values of technical indicators, which describe conditions on currency market. We estimated selected machine learning algorithms and their parameters with validation with sampling. We have prepared a set of automated trading systems with various...

  4. A comparison of accuracy of fall detection algorithms (threshold-based vs. machine learning) using waist-mounted tri-axial accelerometer signals from a comprehensive set of falls and non-fall trials.

    Science.gov (United States)

    Aziz, Omar; Musngi, Magnus; Park, Edward J; Mori, Greg; Robinovitch, Stephen N

    2017-01-01

    Falls are the leading cause of injury-related morbidity and mortality among older adults. Over 90 % of hip and wrist fractures and 60 % of traumatic brain injuries in older adults are due to falls. Another serious consequence of falls among older adults is the 'long lie' experienced by individuals who are unable to get up and remain on the ground for an extended period of time after a fall. Considerable research has been conducted over the past decade on the design of wearable sensor systems that can automatically detect falls and send an alert to care providers to reduce the frequency and severity of long lies. While most systems described to date incorporate threshold-based algorithms, machine learning algorithms may offer increased accuracy in detecting falls. In the current study, we compared the accuracy of these two approaches in detecting falls by conducting a comprehensive set of falling experiments with 10 young participants. Participants wore waist-mounted tri-axial accelerometers and simulated the most common causes of falls observed in older adults, along with near-falls and activities of daily living. The overall performance of five machine learning algorithms was greater than the performance of five threshold-based algorithms described in the literature, with support vector machines providing the highest combination of sensitivity and specificity.

  5. Testing a machine-learning algorithm to predict the persistence and severity of major depressive disorder from baseline self-reports

    NARCIS (Netherlands)

    Kessler, R. C.; van Loo, H. M.; Wardenaar, K. J.; Bossarte, R. M.; Brenner, L. A.; Cai, T.; Ebert, D. D.; Hwang, I.; Li, J.; de Jonge, P.; Nierenberg, A. A.; Petukhova, M. V.; Rosellini, A. J.; Sampson, N. A.; Schoevers, R. A.; Wilcox, M. A.; Zaslavsky, A. M.

    2016-01-01

    Heterogeneity of major depressive disorder (MDD) illness course complicates clinical decision-making. Although efforts to use symptom profiles or biomarkers to develop clinically useful prognostic subtypes have had limited success, a recent report showed that machine-learning (ML) models developed f

  6. Retrieval of aerosol optical depth from surface solar radiation measurements using machine learning algorithms, non-linear regression and a radiative transfer-based look-up table

    Science.gov (United States)

    Huttunen, Jani; Kokkola, Harri; Mielonen, Tero; Esa Juhani Mononen, Mika; Lipponen, Antti; Reunanen, Juha; Vilhelm Lindfors, Anders; Mikkonen, Santtu; Erkki Juhani Lehtinen, Kari; Kouremeti, Natalia; Bais, Alkiviadis; Niska, Harri; Arola, Antti

    2016-07-01

    In order to have a good estimate of the current forcing by anthropogenic aerosols, knowledge on past aerosol levels is needed. Aerosol optical depth (AOD) is a good measure for aerosol loading. However, dedicated measurements of AOD are only available from the 1990s onward. One option to lengthen the AOD time series beyond the 1990s is to retrieve AOD from surface solar radiation (SSR) measurements taken with pyranometers. In this work, we have evaluated several inversion methods designed for this task. We compared a look-up table method based on radiative transfer modelling, a non-linear regression method and four machine learning methods (Gaussian process, neural network, random forest and support vector machine) with AOD observations carried out with a sun photometer at an Aerosol Robotic Network (AERONET) site in Thessaloniki, Greece. Our results show that most of the machine learning methods produce AOD estimates comparable to the look-up table and non-linear regression methods. All of the applied methods produced AOD values that corresponded well to the AERONET observations with the lowest correlation coefficient value being 0.87 for the random forest method. While many of the methods tended to slightly overestimate low AODs and underestimate high AODs, neural network and support vector machine showed overall better correspondence for the whole AOD range. The differences in producing both ends of the AOD range seem to be caused by differences in the aerosol composition. High AODs were in most cases those with high water vapour content which might affect the aerosol single scattering albedo (SSA) through uptake of water into aerosols. Our study indicates that machine learning methods benefit from the fact that they do not constrain the aerosol SSA in the retrieval, whereas the LUT method assumes a constant value for it. This would also mean that machine learning methods could have potential in reproducing AOD from SSR even though SSA would have changed during

  7. Learning Machine Learning: A Case Study

    Science.gov (United States)

    Lavesson, N.

    2010-01-01

    This correspondence reports on a case study conducted in the Master's-level Machine Learning (ML) course at Blekinge Institute of Technology, Sweden. The students participated in a self-assessment test and a diagnostic test of prerequisite subjects, and their results on these tests are correlated with their achievement of the course's learning…

  8. Learning Machine Learning: A Case Study

    Science.gov (United States)

    Lavesson, N.

    2010-01-01

    This correspondence reports on a case study conducted in the Master's-level Machine Learning (ML) course at Blekinge Institute of Technology, Sweden. The students participated in a self-assessment test and a diagnostic test of prerequisite subjects, and their results on these tests are correlated with their achievement of the course's learning…

  9. A Learning Algorithm based on High School Teaching Wisdom

    CERN Document Server

    Philip, Ninan Sajeeth

    2010-01-01

    A learning algorithm based on primary school teaching and learning is presented. The methodology is to continuously evaluate a student and to give them training on the examples for which they repeatedly fail, until, they can correctly answer all types of questions. This incremental learning procedure produces better learning curves by demanding the student to optimally dedicate their learning time on the failed examples. When used in machine learning, the algorithm is found to train a machine on a data with maximum variance in the feature space so that the generalization ability of the network improves. The algorithm has interesting applications in data mining, model evaluations and rare objects discovery.

  10. Attractor Control Using Machine Learning

    CERN Document Server

    Duriez, Thomas; Noack, Bernd R; Cordier, Laurent; Segond, Marc; Abel, Markus

    2013-01-01

    We propose a general strategy for feedback control design of complex dynamical systems exploiting the nonlinear mechanisms in a systematic unsupervised manner. These dynamical systems can have a state space of arbitrary dimension with finite number of actuators (multiple inputs) and sensors (multiple outputs). The control law maps outputs into inputs and is optimized with respect to a cost function, containing physics via the dynamical or statistical properties of the attractor to be controlled. Thus, we are capable of exploiting nonlinear mechanisms, e.g. chaos or frequency cross-talk, serving the control objective. This optimization is based on genetic programming, a branch of machine learning. This machine learning control is successfully applied to the stabilization of nonlinearly coupled oscillators and maximization of Lyapunov exponent of a forced Lorenz system. We foresee potential applications to most nonlinear multiple inputs/multiple outputs control problems, particulary in experiments.

  11. Online algorithms for scheduling with machine activation cost on two uniform machines

    Institute of Scientific and Technical Information of China (English)

    HAN Shu-guang; JIANG Yi-wei; HU Jue-liang

    2007-01-01

    In this paper we investigate a variant of the scheduling problem on two uniform machines with speeds 1 and s. For this problem, we are given two potential uniform machines to process a sequence of independent jobs. Machines need to be activated before starting to process, and each machine activated incurs a fixed machine activation cost. No machines are initially activated,and when a job is revealed, the algorithm has the option to activate new machines. The objective is to minimize the sum of the makespan and the machine activation cost. We design optimal online algorithms with competitive ratio of (2s+1)/(s+1) for every s≥1.

  12. Machine learning phases of matter

    OpenAIRE

    Carrasquilla, Juan; Melko, Roger G.

    2016-01-01

    Neural networks can be used to identify phases and phase transitions in condensed matter systems via supervised machine learning. Readily programmable through modern software libraries, we show that a standard feed-forward neural network can be trained to detect multiple types of order parameter directly from raw state configurations sampled with Monte Carlo. In addition, they can detect highly non-trivial states such as Coulomb phases, and if modified to a convolutional neural network, topol...

  13. Galaxy Classification using Machine Learning

    Science.gov (United States)

    Fowler, Lucas; Schawinski, Kevin; Brandt, Ben-Elias; widmer, Nicole

    2017-01-01

    We present our current research into the use of machine learning to classify galaxy imaging data with various convolutional neural network configurations in TensorFlow. We are investigating how five-band Sloan Digital Sky Survey imaging data can be used to train on physical properties such as redshift, star formation rate, mass and morphology. We also investigate the performance of artificially redshifted images in recovering physical properties as image quality degrades.

  14. A Comparison of Machine Learning Algorithms for Mapping of Complex Surface-Mined and Agricultural Landscapes Using ZiYuan-3 Stereo Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Xianju Li

    2016-06-01

    Full Text Available Land cover mapping (LCM in complex surface-mined and agricultural landscapes could contribute greatly to regulating mine exploitation and protecting mine geo-environments. However, there are some special and spectrally similar land covers in these landscapes which increase the difficulty in LCM when employing high spatial resolution images. There is currently no research on these mixed complex landscapes. The present study focused on LCM in such a mixed complex landscape located in Wuhan City, China. A procedure combining ZiYuan-3 (ZY-3 stereo satellite imagery, the feature selection (FS method, and machine learning algorithms (MLAs (random forest, RF; support vector machine, SVM; artificial neural network, ANN was proposed and first examined for both LCM of surface-mined and agricultural landscapes (MSMAL and classification of surface-mined land (CSML, respectively. The mean and standard deviation filters of spectral bands and topographic features derived from ZY-3 stereo images were newly introduced. Comparisons of three MLAs, including their sensitivities to FS and whether FS resulted in significant influences, were conducted for the first time in the present study. The following conclusions are drawn. Textures were of little use, and the novel features contributed to improve classification accuracy. Regarding the influence of FS: FS substantially reduced feature set (by 68% for MSMAL and 87% for CSML, and often improved classification accuracies (with an average value of 4.48% for MSMAL using three MLAs, and 11.39% for CSML using RF and SVM; FS showed statistically significant improvements except for ANN-based MSMAL; SVM was most sensitive to FS, followed by ANN and RF. Regarding comparisons of MLAs: for MSMAL based on feature subset, RF achieved the greatest overall accuracy of 77.57%, followed by SVM and ANN; for CSML, SVM had the highest accuracies (87.34%, followed by RF and ANN; based on the feature subsets, significant differences were

  15. Optimization of machining processes using pattern search algorithm

    Directory of Open Access Journals (Sweden)

    Miloš Madić

    2014-04-01

    Full Text Available Optimization of machining processes not only increases machining efficiency and economics, but also the end product quality. In recent years, among the traditional optimization methods, stochastic direct search optimization methods such as meta-heuristic algorithms are being increasingly applied for solving machining optimization problems. Their ability to deal with complex, multi-dimensional and ill-behaved optimization problems made them the preferred optimization tool by most researchers and practitioners. This paper introduces the use of pattern search (PS algorithm, as a deterministic direct search optimization method, for solving machining optimization problems. To analyze the applicability and performance of the PS algorithm, six case studies of machining optimization problems, both single and multi-objective, were considered. The PS algorithm was employed to determine optimal combinations of machining parameters for different machining processes such as abrasive waterjet machining, turning, turn-milling, drilling, electrical discharge machining and wire electrical discharge machining. In each case study the optimization solutions obtained by the PS algorithm were compared with the optimization solutions that had been determined by past researchers using meta-heuristic algorithms. Analysis of obtained optimization results indicates that the PS algorithm is very applicable for solving machining optimization problems showing good competitive potential against stochastic direct search methods such as meta-heuristic algorithms. Specific features and merits of the PS algorithm were also discussed.

  16. Prediction of compounds activity in nuclear receptor signaling and stress pathway assays using machine learning algorithms and low dimensional molecular descriptors

    Directory of Open Access Journals (Sweden)

    Filip eStefaniak

    2015-12-01

    Full Text Available Toxicity evaluation of newly synthesized or used compounds is one of the main challenges during product development in many areas of industry. For example, toxicity is the second reason - after lack of efficacy - for failure in preclinical and clinical studies of drug candidates. To avoid attrition at the late stage of the drug development process, the toxicity analyses are employed at the early stages of a discovery pipeline, along with activity and selectivity enhancing. Although many assays for screening in vitro toxicity are available, their massive application is not always time and cost effective. Thus the need for fast and reliable in silico tools, which can be used not only for toxicity prediction of existing compounds, but also for prioritization of compounds planned for synthesis or acquisition. Here I present the benchmark results of the combination of various attribute selection methods and machine learning algorithms and their application to the data sets of the Tox21 Data Challenge. The best performing method: Best First for attribute selection with the Rotation Forest/ADTree classifier offers good accuracy for most tested cases. For 11 out of 12 targets, the AUROC value for the final evaluation set was ≥0.72, while for three targets the AUROC value was ≥ 0.80, with the average AUROC being 0.784±0.069. The use of two-dimensional descriptors sets enables fast screening and compound prioritization even for a very large database. Open source tools used in this project make the presented approach widely available and encourage the community to further improve the presented scheme.

  17. Optimizing placements of ground-based snow sensors for areal snow cover estimation using a machine-learning algorithm and melt-season snow-LiDAR data

    Science.gov (United States)

    Oroza, C.; Zheng, Z.; Glaser, S. D.; Bales, R. C.; Conklin, M. H.

    2016-12-01

    We present a structured, analytical approach to optimize ground-sensor placements based on time-series remotely sensed (LiDAR) data and machine-learning algorithms. We focused on catchments within the Merced and Tuolumne river basins, covered by the JPL Airborne Snow Observatory LiDAR program. First, we used a Gaussian mixture model to identify representative sensor locations in the space of independent variables for each catchment. Multiple independent variables that govern the distribution of snow depth were used, including elevation, slope, and aspect. Second, we used a Gaussian process to estimate the areal distribution of snow depth from the initial set of measurements. This is a covariance-based model that also estimates the areal distribution of model uncertainty based on the independent variable weights and autocorrelation. The uncertainty raster was used to strategically add sensors to minimize model uncertainty. We assessed the temporal accuracy of the method using LiDAR-derived snow-depth rasters collected in water-year 2014. In each area, optimal sensor placements were determined using the first available snow raster for the year. The accuracy in the remaining LiDAR surveys was compared to 100 configurations of sensors selected at random. We found the accuracy of the model from the proposed placements to be higher and more consistent in each remaining survey than the average random configuration. We found that a relatively small number of sensors can be used to accurately reproduce the spatial patterns of snow depth across the basins, when placed using spatial snow data. Our approach also simplifies sensor placement. At present, field surveys are required to identify representative locations for such networks, a process that is labor intensive and provides limited guarantees on the networks' representation of catchment independent variables.

  18. Kernel Methods for Machine Learning with Life Science Applications

    DEFF Research Database (Denmark)

    Abrahamsen, Trine Julie

    Kernel methods refer to a family of widely used nonlinear algorithms for machine learning tasks like classification, regression, and feature extraction. By exploiting the so-called kernel trick straightforward extensions of classical linear algorithms are enabled as long as the data only appear...... models to kernel learning, and means for restoring the generalizability in both kernel Principal Component Analysis and the Support Vector Machine are proposed. Viability is proved on a wide range of benchmark machine learning data sets....... as innerproducts in the model formulation. This dissertation presents research on improving the performance of standard kernel methods like kernel Principal Component Analysis and the Support Vector Machine. Moreover, the goal of the thesis has been two-fold. The first part focuses on the use of kernel Principal...

  19. Automated training for algorithms that learn from genomic data.

    Science.gov (United States)

    Cilingir, Gokcen; Broschat, Shira L

    2015-01-01

    Supervised machine learning algorithms are used by life scientists for a variety of objectives. Expert-curated public gene and protein databases are major resources for gathering data to train these algorithms. While these data resources are continuously updated, generally, these updates are not incorporated into published machine learning algorithms which thereby can become outdated soon after their introduction. In this paper, we propose a new model of operation for supervised machine learning algorithms that learn from genomic data. By defining these algorithms in a pipeline in which the training data gathering procedure and the learning process are automated, one can create a system that generates a classifier or predictor using information available from public resources. The proposed model is explained using three case studies on SignalP, MemLoci, and ApicoAP in which existing machine learning models are utilized in pipelines. Given that the vast majority of the procedures described for gathering training data can easily be automated, it is possible to transform valuable machine learning algorithms into self-evolving learners that benefit from the ever-changing data available for gene products and to develop new machine learning algorithms that are similarly capable.

  20. Online Pairwise Learning Algorithms.

    Science.gov (United States)

    Ying, Yiming; Zhou, Ding-Xuan

    2016-04-01

    Pairwise learning usually refers to a learning task that involves a loss function depending on pairs of examples, among which the most notable ones are bipartite ranking, metric learning, and AUC maximization. In this letter we study an online algorithm for pairwise learning with a least-square loss function in an unconstrained setting of a reproducing kernel Hilbert space (RKHS) that we refer to as the Online Pairwise lEaRning Algorithm (OPERA). In contrast to existing works (Kar, Sriperumbudur, Jain, & Karnick, 2013 ; Wang, Khardon, Pechyony, & Jones, 2012 ), which require that the iterates are restricted to a bounded domain or the loss function is strongly convex, OPERA is associated with a non-strongly convex objective function and learns the target function in an unconstrained RKHS. Specifically, we establish a general theorem that guarantees the almost sure convergence for the last iterate of OPERA without any assumptions on the underlying distribution. Explicit convergence rates are derived under the condition of polynomially decaying step sizes. We also establish an interesting property for a family of widely used kernels in the setting of pairwise learning and illustrate the convergence results using such kernels. Our methodology mainly depends on the characterization of RKHSs using its associated integral operators and probability inequalities for random variables with values in a Hilbert space.

  1. Effect of Co-segregating Markers on High-Density Genetic Maps and Prediction of Map Expansion Using Machine Learning Algorithms

    Directory of Open Access Journals (Sweden)

    Amidou N’Diaye

    2017-08-01

    Full Text Available Advances in sequencing and genotyping methods have enable cost-effective production of high throughput single nucleotide polymorphism (SNP markers, making them the choice for linkage mapping. As a result, many laboratories have developed high-throughput SNP assays and built high-density genetic maps. However, the number of markers may, by orders of magnitude, exceed the resolution of recombination for a given population size so that only a minority of markers can accurately be ordered. Another issue attached to the so-called ‘large p, small n’ problem is that high-density genetic maps inevitably result in many markers clustering at the same position (co-segregating markers. While there are a number of related papers, none have addressed the impact of co-segregating markers on genetic maps. In the present study, we investigated the effects of co-segregating markers on high-density genetic map length and marker order using empirical data from two populations of wheat, Mohawk × Cocorit (durum wheat and Norstar × Cappelle Desprez (bread wheat. The maps of both populations consisted of 85% co-segregating markers. Our study clearly showed that excess of co-segregating markers can lead to map expansion, but has little effect on markers order. To estimate the inflation factor (IF, we generated a total of 24,473 linkage maps (8,203 maps for Mohawk × Cocorit and 16,270 maps for Norstar × Cappelle Desprez. Using seven machine learning algorithms, we were able to predict with an accuracy of 0.7 the map expansion due to the proportion of co-segregating markers. For example in Mohawk × Cocorit, with 10 and 80% co-segregating markers the length of the map inflated by 4.5 and 16.6%, respectively. Similarly, the map of Norstar × Cappelle Desprez expanded by 3.8 and 11.7% with 10 and 80% co-segregating markers. With the increasing number of markers on SNP-chips, the proportion of co-segregating markers in high-density maps will continue to increase

  2. Automated quantification of cerebral edema following hemispheric infarction: Application of a machine-learning algorithm to evaluate CSF shifts on serial head CTs

    Directory of Open Access Journals (Sweden)

    Yasheng Chen

    2016-01-01

    Full Text Available Although cerebral edema is a major cause of death and deterioration following hemispheric stroke, there remains no validated biomarker that captures the full spectrum of this critical complication. We recently demonstrated that reduction in intracranial cerebrospinal fluid (CSF volume (∆CSF on serial computed tomography (CT scans provides an accurate measure of cerebral edema severity, which may aid in early triaging of stroke patients for craniectomy. However, application of such a volumetric approach would be too cumbersome to perform manually on serial scans in a real-world setting. We developed and validated an automated technique for CSF segmentation via integration of random forest (RF based machine learning with geodesic active contour (GAC segmentation. The proposed RF + GAC approach was compared to conventional Hounsfield Unit (HU thresholding and RF segmentation methods using Dice similarity coefficient (DSC and the correlation of volumetric measurements, with manual delineation serving as the ground truth. CSF spaces were outlined on scans performed at baseline (<6 h after stroke onset and early follow-up (FU (closest to 24 h in 38 acute ischemic stroke patients. RF performed significantly better than optimized HU thresholding (p < 10−4 in baseline and p < 10−5 in FU and RF + GAC performed significantly better than RF (p < 10−3 in baseline and p < 10−5 in FU. Pearson correlation coefficients between the automatically detected ∆CSF and the ground truth were r = 0.178 (p = 0.285, r = 0.876 (p < 10−6 and r = 0.879 (p < 10−6 for thresholding, RF and RF + GAC, respectively, with a slope closer to the line of identity in RF + GAC. When we applied the algorithm trained from images of one stroke center to segment CTs from another center, similar findings held. In conclusion, we have developed and validated an accurate automated approach to segment CSF and calculate its shifts on serial CT scans

  3. Photometric classification of emission line galaxies with Machine Learning methods

    CERN Document Server

    Cavuoti, Stefano; D'Abrusco, Raffaele; Longo, Giuseppe; Paolillo, Maurizio

    2013-01-01

    In this paper we discuss an application of machine learning based methods to the identification of candidate AGN from optical survey data and to the automatic classification of AGNs in broad classes. We applied four different machine learning algorithms, namely the Multi Layer Perceptron (MLP), trained respectively with the Conjugate Gradient, Scaled Conjugate Gradient and Quasi Newton learning rules, and the Support Vector Machines (SVM), to tackle the problem of the classification of emission line galaxies in different classes, mainly AGNs vs non-AGNs, obtained using optical photometry in place of the diagnostics based on line intensity ratios which are classically used in the literature. Using the same photometric features we discuss also the behavior of the classifiers on finer AGN classification tasks, namely Seyfert I vs Seyfert II and Seyfert vs LINER. Furthermore we describe the algorithms employed, the samples of spectroscopically classified galaxies used to train the algorithms, the procedure follow...

  4. A Sparse Bayesian Learning Algorithm for Longitudinal Image Data.

    Science.gov (United States)

    Sabuncu, Mert R

    2015-10-01

    Longitudinal imaging studies, where serial (multiple) scans are collected on each individual, are becoming increasingly widespread. The field of machine learning has in general neglected the longitudinal design, since many algorithms are built on the assumption that each datapoint is an independent sample. Thus, the application of general purpose machine learning tools to longitudinal image data can be sub-optimal. Here, we present a novel machine learning algorithm designed to handle longitudinal image datasets. Our approach builds on a sparse Bayesian image-based prediction algorithm. Our empirical results demonstrate that the proposed method can offer a significant boost in prediction performance with longitudinal clinical data.

  5. Continual Learning through Evolvable Neural Turing Machines

    DEFF Research Database (Denmark)

    Lüders, Benno; Schläger, Mikkel; Risi, Sebastian

    2016-01-01

    Continual learning, i.e. the ability to sequentially learn tasks without catastrophic forgetting of previously learned ones, is an important open challenge in machine learning. In this paper we take a step in this direction by showing that the recently proposed Evolving Neural Turing Machine (ENTM......) approach is able to perform one-shot learning in a reinforcement learning task without catastrophic forgetting of previously stored associations....

  6. Reverse hypothesis machine learning a practitioner's perspective

    CERN Document Server

    Kulkarni, Parag

    2017-01-01

    This book introduces a paradigm of reverse hypothesis machines (RHM), focusing on knowledge innovation and machine learning. Knowledge- acquisition -based learning is constrained by large volumes of data and is time consuming. Hence Knowledge innovation based learning is the need of time. Since under-learning results in cognitive inabilities and over-learning compromises freedom, there is need for optimal machine learning. All existing learning techniques rely on mapping input and output and establishing mathematical relationships between them. Though methods change the paradigm remains the same—the forward hypothesis machine paradigm, which tries to minimize uncertainty. The RHM, on the other hand, makes use of uncertainty for creative learning. The approach uses limited data to help identify new and surprising solutions. It focuses on improving learnability, unlike traditional approaches, which focus on accuracy. The book is useful as a reference book for machine learning researchers and professionals as ...

  7. Medical Dataset Classification: A Machine Learning Paradigm Integrating Particle Swarm Optimization with Extreme Learning Machine Classifier

    Directory of Open Access Journals (Sweden)

    C. V. Subbulakshmi

    2015-01-01

    Full Text Available Medical data classification is a prime data mining problem being discussed about for a decade that has attracted several researchers around the world. Most classifiers are designed so as to learn from the data itself using a training process, because complete expert knowledge to determine classifier parameters is impracticable. This paper proposes a hybrid methodology based on machine learning paradigm. This paradigm integrates the successful exploration mechanism called self-regulated learning capability of the particle swarm optimization (PSO algorithm with the extreme learning machine (ELM classifier. As a recent off-line learning method, ELM is a single-hidden layer feedforward neural network (FFNN, proved to be an excellent classifier with large number of hidden layer neurons. In this research, PSO is used to determine the optimum set of parameters for the ELM, thus reducing the number of hidden layer neurons, and it further improves the network generalization performance. The proposed method is experimented on five benchmarked datasets of the UCI Machine Learning Repository for handling medical dataset classification. Simulation results show that the proposed approach is able to achieve good generalization performance, compared to the results of other classifiers.

  8. Medical Dataset Classification: A Machine Learning Paradigm Integrating Particle Swarm Optimization with Extreme Learning Machine Classifier.

    Science.gov (United States)

    Subbulakshmi, C V; Deepa, S N

    2015-01-01

    Medical data classification is a prime data mining problem being discussed about for a decade that has attracted several researchers around the world. Most classifiers are designed so as to learn from the data itself using a training process, because complete expert knowledge to determine classifier parameters is impracticable. This paper proposes a hybrid methodology based on machine learning paradigm. This paradigm integrates the successful exploration mechanism called self-regulated learning capability of the particle swarm optimization (PSO) algorithm with the extreme learning machine (ELM) classifier. As a recent off-line learning method, ELM is a single-hidden layer feedforward neural network (FFNN), proved to be an excellent classifier with large number of hidden layer neurons. In this research, PSO is used to determine the optimum set of parameters for the ELM, thus reducing the number of hidden layer neurons, and it further improves the network generalization performance. The proposed method is experimented on five benchmarked datasets of the UCI Machine Learning Repository for handling medical dataset classification. Simulation results show that the proposed approach is able to achieve good generalization performance, compared to the results of other classifiers.

  9. On-line least squares support vector machine algorithm in gas prediction

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xiao-hu; WANG Gang; ZHAO Ke-ke; TAN De-jian

    2009-01-01

    Traditional coal mine safety prediction methods are off-line and do not have dynamic prediction functions. The Support Vector Machine (SVM) is a new machine learning algorithm that has excellent properties. The least squares support vector machine (LS-SVM) algorithm is an improved algorithm of SVM. But the common LS-SVM algorithm, used directly in safety predictions, has some problems. We have first studied gas prediction problems and the basic theory of LS-SVM. Given these problems, we have investigated the affect of the time factor about safety prediction and present an on-line prediction algorithm, based on LS-SVM. Finally, given our observed data, we used the on-line algorithm to predict gas emissions and used other related algorithm to com- pare its performance. The simulation results have verified the validity of the new algorithm.

  10. A new decision tree learning algorithm

    Institute of Scientific and Technical Information of China (English)

    FANG Yong; QI Fei-hu

    2005-01-01

    In order to improve the generalization ability of binary decision trees, a new learning algorithm, the MMDT algorithm, is presented. Based on statistical learning theory the generalization performance of binary decision trees is analyzed, and the assessment rule is proposed. Under the direction of the assessment rule, the MMDT algorithm is implemented. The algorithm maps training examples from an original space to a high dimension featurespace, and constructs a decision tree in it. In the feature space, a new decision node splitting criterion, the max-min rule, is used, and the margin of each decision node is maximized using a support vector machine, to improve the generalization performance. Experimental results show that the new learning algorithm is much superior to others such as C4. 5 and OC1.

  11. Geometry Algorisms of Dynkin Diagrams in Lie Group Machine Learning

    Institute of Scientific and Technical Information of China (English)

    Huan Xu; Fanzhang Li

    2006-01-01

    This paper uses the geometric method to describe Lie group machine learning (LML)based on the theoretical framework of LML, which gives the geometric algorithms of Dynkin diagrams in LML. It includes the basic conceptions of Dynkin diagrams in LML ,the classification theorems of Dynkin diagrams in LML, the classification algorithm of Dynkin diagrams in LML and the verification of the classification algorithm with experimental results.

  12. Distributed Extreme Learning Machine for Nonlinear Learning over Network

    Directory of Open Access Journals (Sweden)

    Songyan Huang

    2015-02-01

    Full Text Available Distributed data collection and analysis over a network are ubiquitous, especially over a wireless sensor network (WSN. To our knowledge, the data model used in most of the distributed algorithms is linear. However, in real applications, the linearity of systems is not always guaranteed. In nonlinear cases, the single hidden layer feedforward neural network (SLFN with radial basis function (RBF hidden neurons has the ability to approximate any continuous functions and, thus, may be used as the nonlinear learning system. However, confined by the communication cost, using the distributed version of the conventional algorithms to train the neural network directly is usually prohibited. Fortunately, based on the theorems provided in the extreme learning machine (ELM literature, we only need to compute the output weights of the SLFN. Computing the output weights itself is a linear learning problem, although the input-output mapping of the overall SLFN is still nonlinear. Using the distributed algorithmto cooperatively compute the output weights of the SLFN, we obtain a distributed extreme learning machine (dELM for nonlinear learning in this paper. This dELM is applied to the regression problem and classification problem to demonstrate its effectiveness and advantages.

  13. MLBCD: a machine learning tool for big clinical data.

    Science.gov (United States)

    Luo, Gang

    2015-01-01

    Predictive modeling is fundamental for extracting value from large clinical data sets, or "big clinical data," advancing clinical research, and improving healthcare. Machine learning is a powerful approach to predictive modeling. Two factors make machine learning challenging for healthcare researchers. First, before training a machine learning model, the values of one or more model parameters called hyper-parameters must typically be specified. Due to their inexperience with machine learning, it is hard for healthcare researchers to choose an appropriate algorithm and hyper-parameter values. Second, many clinical data are stored in a special format. These data must be iteratively transformed into the relational table format before conducting predictive modeling. This transformation is time-consuming and requires computing expertise. This paper presents our vision for and design of MLBCD (Machine Learning for Big Clinical Data), a new software system aiming to address these challenges and facilitate building machine learning predictive models using big clinical data. The paper describes MLBCD's design in detail. By making machine learning accessible to healthcare researchers, MLBCD will open the use of big clinical data and increase the ability to foster biomedical discovery and improve care.

  14. Sparse extreme learning machine for classification.

    Science.gov (United States)

    Bai, Zuo; Huang, Guang-Bin; Wang, Danwei; Wang, Han; Westover, M Brandon

    2014-10-01

    Extreme learning machine (ELM) was initially proposed for single-hidden-layer feedforward neural networks (SLFNs). In the hidden layer (feature mapping), nodes are randomly generated independently of training data. Furthermore, a unified ELM was proposed, providing a single framework to simplify and unify different learning methods, such as SLFNs, least square support vector machines, proximal support vector machines, and so on. However, the solution of unified ELM is dense, and thus, usually plenty of storage space and testing time are required for large-scale applications. In this paper, a sparse ELM is proposed as an alternative solution for classification, reducing storage space and testing time. In addition, unified ELM obtains the solution by matrix inversion, whose computational complexity is between quadratic and cubic with respect to the training size. It still requires plenty of training time for large-scale problems, even though it is much faster than many other traditional methods. In this paper, an efficient training algorithm is specifically developed for sparse ELM. The quadratic programming problem involved in sparse ELM is divided into a series of smallest possible sub-problems, each of which are solved analytically. Compared with SVM, sparse ELM obtains better generalization performance with much faster training speed. Compared with unified ELM, sparse ELM achieves similar generalization performance for binary classification applications, and when dealing with large-scale binary classification problems, sparse ELM realizes even faster training speed than unified ELM.

  15. Active Learning of Nondeterministic Finite State Machines

    Directory of Open Access Journals (Sweden)

    Warawoot Pacharoen

    2013-01-01

    Full Text Available We consider the problem of learning nondeterministic finite state machines (NFSMs from systems where their internal structures are implicit and nondeterministic. Recently, an algorithm for inferring observable NFSMs (ONFSMs, which are the potentially learnable subclass of NFSMs, has been proposed based on the hypothesis that the complete testing assumption is satisfied. According to this assumption, with an input sequence (query, the complete set of all possible output sequences is given by the so-called Teacher, so the number of times for asking the same query is not taken into account in the algorithm. In this paper, we propose LNM*, a refined ONFSM learning algorithm that considers the amount for repeating the same query as one parameter. Unlike the previous work, our approach does not require all possible output sequences in one answer. Instead, it tries to observe the possible output sequences by asking the same query many times to the Teacher. We have proved that LNM* can infer the corresponding ONFSMs of the unknown systems when the number of tries for the same query is adequate to guarantee the complete testing assumption. Moreover, the proof shows that our algorithm will eventually terminate no matter whether the assumption is fulfilled or not. We also present the theoretical time complexity analysis of LNM*. In addition, experimental results demonstrate the practical efficiency of our approach.

  16. Advancing Research in Second Language Writing through Computational Tools and Machine Learning Techniques: A Research Agenda

    Science.gov (United States)

    Crossley, Scott A.

    2013-01-01

    This paper provides an agenda for replication studies focusing on second language (L2) writing and the use of natural language processing (NLP) tools and machine learning algorithms. Specifically, it introduces a range of the available NLP tools and machine learning algorithms and demonstrates how these could be used to replicate seminal studies…

  17. Advancing Research in Second Language Writing through Computational Tools and Machine Learning Techniques: A Research Agenda

    Science.gov (United States)

    Crossley, Scott A.

    2013-01-01

    This paper provides an agenda for replication studies focusing on second language (L2) writing and the use of natural language processing (NLP) tools and machine learning algorithms. Specifically, it introduces a range of the available NLP tools and machine learning algorithms and demonstrates how these could be used to replicate seminal studies…

  18. A Semisupervised Support Vector Machines Algorithm for BCI Systems

    Directory of Open Access Journals (Sweden)

    Jianzhao Qin

    2007-07-01

    Full Text Available As an emerging technology, brain-computer interfaces (BCIs bring us new communication interfaces which translate brain activities into control signals for devices like computers, robots, and so forth. In this study, we propose a semisupervised support vector machine (SVM algorithm for brain-computer interface (BCI systems, aiming at reducing the time-consuming training process. In this algorithm, we apply a semisupervised SVM for translating the features extracted from the electrical recordings of brain into control signals. This SVM classifier is built from a small labeled data set and a large unlabeled data set. Meanwhile, to reduce the time for training semisupervised SVM, we propose a batch-mode incremental learning method, which can also be easily applied to the online BCI systems. Additionally, it is suggested in many studies that common spatial pattern (CSP is very effective in discriminating two different brain states. However, CSP needs a sufficient labeled data set. In order to overcome the drawback of CSP, we suggest a two-stage feature extraction method for the semisupervised learning algorithm. We apply our algorithm to two BCI experimental data sets. The offline data analysis results demonstrate the effectiveness of our algorithm.

  19. On-the-Fly Learning in a Perpetual Learning Machine

    OpenAIRE

    2015-01-01

    Despite the promise of brain-inspired machine learning, deep neural networks (DNN) have frustratingly failed to bridge the deceptively large gap between learning and memory. Here, we introduce a Perpetual Learning Machine; a new type of DNN that is capable of brain-like dynamic 'on the fly' learning because it exists in a self-supervised state of Perpetual Stochastic Gradient Descent. Thus, we provide the means to unify learning and memory within a machine learning framework. We also explore ...

  20. Machine learning approaches in medical image analysis

    DEFF Research Database (Denmark)

    de Bruijne, Marleen

    2016-01-01

    Machine learning approaches are increasingly successful in image-based diagnosis, disease prognosis, and risk assessment. This paper highlights new research directions and discusses three main challenges related to machine learning in medical imaging: coping with variation in imaging protocols......, learning from weak labels, and interpretation and evaluation of results....

  1. Archetypal Analysis for Machine Learning

    DEFF Research Database (Denmark)

    Mørup, Morten; Hansen, Lars Kai

    2010-01-01

    Archetypal analysis (AA) proposed by Cutler and Breiman in [1] estimates the principal convex hull of a data set. As such AA favors features that constitute representative ’corners’ of the data, i.e. distinct aspects or archetypes. We will show that AA enjoys the interpretability of clustering - ...... for K-means [2]. We demonstrate that the AA model is relevant for feature extraction and dimensional reduction for a large variety of machine learning problems taken from computer vision, neuroimaging, text mining and collaborative filtering....

  2. Machine learning in genetics and genomics

    Science.gov (United States)

    Libbrecht, Maxwell W.; Noble, William Stafford

    2016-01-01

    The field of machine learning promises to enable computers to assist humans in making sense of large, complex data sets. In this review, we outline some of the main applications of machine learning to genetic and genomic data. In the process, we identify some recurrent challenges associated with this type of analysis and provide general guidelines to assist in the practical application of machine learning to real genetic and genomic data. PMID:25948244

  3. Automating parallel implementation of neural learning algorithms.

    Science.gov (United States)

    Rana, O F

    2000-06-01

    Neural learning algorithms generally involve a number of identical processing units, which are fully or partially connected, and involve an update function, such as a ramp, a sigmoid or a Gaussian function for instance. Some variations also exist, where units can be heterogeneous, or where an alternative update technique is employed, such as a pulse stream generator. Associated with connections are numerical values that must be adjusted using a learning rule, and and dictated by parameters that are learning rule specific, such as momentum, a learning rate, a temperature, amongst others. Usually, neural learning algorithms involve local updates, and a global interaction between units is often discouraged, except in instances where units are fully connected, or involve synchronous updates. In all of these instances, concurrency within a neural algorithm cannot be fully exploited without a suitable implementation strategy. A design scheme is described for translating a neural learning algorithm from inception to implementation on a parallel machine using PVM or MPI libraries, or onto programmable logic such as FPGAs. A designer must first describe the algorithm using a specialised Neural Language, from which a Petri net (PN) model is constructed automatically for verification, and building a performance model. The PN model can be used to study issues such as synchronisation points, resource sharing and concurrency within a learning rule. Specialised constructs are provided to enable a designer to express various aspects of a learning rule, such as the number and connectivity of neural nodes, the interconnection strategies, and information flows required by the learning algorithm. A scheduling and mapping strategy is then used to translate this PN model onto a multiprocessor template. We demonstrate our technique using a Kohonen and backpropagation learning rules, implemented on a loosely coupled workstation cluster, and a dedicated parallel machine, with PVM libraries.

  4. Trends in Machine Learning for Signal Processing

    DEFF Research Database (Denmark)

    Adali, Tulay; Miller, David J.; Diamantaras, Konstantinos I.

    2011-01-01

    By putting the accent on learning from the data and the environment, the Machine Learning for SP (MLSP) Technical Committee (TC) provides the essential bridge between the machine learning and SP communities. While the emphasis in MLSP is on learning and data-driven approaches, SP defines the main...... applications of interest, and thus the constraints and requirements on solutions, which include computational efficiency, online adaptation, and learning with limited supervision/reference data....

  5. Challenges in the Verification of Reinforcement Learning Algorithms

    Science.gov (United States)

    Van Wesel, Perry; Goodloe, Alwyn E.

    2017-01-01

    Machine learning (ML) is increasingly being applied to a wide array of domains from search engines to autonomous vehicles. These algorithms, however, are notoriously complex and hard to verify. This work looks at the assumptions underlying machine learning algorithms as well as some of the challenges in trying to verify ML algorithms. Furthermore, we focus on the specific challenges of verifying reinforcement learning algorithms. These are highlighted using a specific example. Ultimately, we do not offer a solution to the complex problem of ML verification, but point out possible approaches for verification and interesting research opportunities.

  6. Fast Affinity Propagation Clustering based on Machine Learning

    OpenAIRE

    Shailendra Kumar Shrivastava; J. L. Rana; DR.R.C.JAIN

    2013-01-01

    Affinity propagation (AP) was recently introduced as an un-supervised learning algorithm for exemplar based clustering. In this paper a novel Fast Affinity Propagation clustering Approach based on Machine Learning (FAPML) has been proposed. FAPML tries to put data points into clusters based on the history of the data points belonging to clusters in early stages. In FAPML we introduce affinity learning constant and dispersion constant which supervise the clustering process. FAPML also enforces...

  7. Learning from minimum entropy queries in a large committee machine

    CERN Document Server

    Sollich, P

    1996-01-01

    In supervised learning, the redundancy contained in random examples can be avoided by learning from queries. Using statistical mechanics, we study learning from minimum entropy queries in a large tree-committee machine. The generalization error decreases exponentially with the number of training examples, providing a significant improvement over the algebraic decay for random examples. The connection between entropy and generalization error in multi-layer networks is discussed, and a computationally cheap algorithm for constructing queries is suggested and analysed.

  8. Hybrid genetic algorithm for minimizing non productive machining ...

    African Journals Online (AJOL)

    user

    A Bi-criteria M-Machine SDST Flow Shop Scheduling using Modified Heuristic Genetic ... He has more than 35 research papers in international/national journals and ... supply chain management, inventory management, machine learning, etc.

  9. Machine learning in medicine cookbook

    CERN Document Server

    Cleophas, Ton J

    2014-01-01

    The amount of data in medical databases doubles every 20 months, and physicians are at a loss to analyze them. Also, traditional methods of data analysis have difficulty to identify outliers and patterns in big data and data with multiple exposure / outcome variables and analysis-rules for surveys and questionnaires, currently common methods of data collection, are, essentially, missing. Obviously, it is time that medical and health professionals mastered their reluctance to use machine learning and the current 100 page cookbook should be helpful to that aim. It covers in a condensed form the subjects reviewed in the 750 page three volume textbook by the same authors, entitled “Machine Learning in Medicine I-III” (ed. by Springer, Heidelberg, Germany, 2013) and was written as a hand-hold presentation and must-read publication. It was written not only to investigators and students in the fields, but also to jaded clinicians new to the methods and lacking time to read the entire textbooks. General purposes ...

  10. Machine learning of network metrics in ATLAS Distributed Data Management

    CERN Document Server

    Lassnig, Mario; The ATLAS collaboration

    2017-01-01

    The increasing volume of physics data poses a critical challenge to the ATLAS experiment. In anticipation of high luminosity physics, automation of everyday data management tasks has become necessary. Previously many of these tasks required human decision-making and operation. Recent advances in hardware and software have made it possible to entrust more complicated duties to automated systems using models trained by machine learning algorithms. In this contribution we show results from one of our ongoing automation efforts that focuses on network metrics. First, we describe our machine learning framework built atop the ATLAS Analytics Platform. This framework can automatically extract and aggregate data, train models with various machine learning algorithms, and eventually score the resulting models and parameters. Second, we use these models to forecast metrics relevant for network-aware job scheduling and data brokering. We show the characteristics of the data and evaluate the forecasting accuracy of our m...

  11. Galaxy Zoo: Reproducing Galaxy Morphologies Via Machine Learning

    CERN Document Server

    Banerji, Manda; Lintott, Chris J; Abdalla, Filipe B; Schawinski, Kevin; Andreescu, Dan; Bamford, Steven; Murray, Phil; Raddick, M Jordan; Slosar, Anze; Szalay, Alex; Thomas, Daniel; Vandenberg, Jan

    2009-01-01

    We present morphological classifications obtained using machine learning for objects in SDSS DR7 that have been classified by Galaxy Zoo into three classes namely spirals, ellipticals and stars/unique objects. An artificial neural network is trained on a subset of objects classified by the human eye and we test whether the machine learning algorithm can reproduce the human classifications for the rest of the sample. We find that the success of the neural network in matching the human classifications depends crucially on the set of input parameters chosen for the machine-learning algorithm. The colours, concentrations and parameters associated with profile-fitting are reasonable in seperating the stars and galaxies into three classes. However, these results are considerably improved when adding adaptive shape parameters as well as texture. The adaptive moments and texture parameters alone cannot distinguish between stars and elliptical galaxies. Using a set of thirteen distance-independant parameters, the neur...

  12. Building machine learning systems with Python

    CERN Document Server

    Coelho, Luis Pedro

    2015-01-01

    This book primarily targets Python developers who want to learn and use Python's machine learning capabilities and gain valuable insights from data to develop effective solutions for business problems.

  13. 2015 International Conference on Machine Learning and Signal Processing

    CERN Document Server

    Woo, Wai; Sulaiman, Hamzah; Othman, Mohd; Saat, Mohd

    2016-01-01

    This book presents important research findings and recent innovations in the field of machine learning and signal processing. A wide range of topics relating to machine learning and signal processing techniques and their applications are addressed in order to provide both researchers and practitioners with a valuable resource documenting the latest advances and trends. The book comprises a careful selection of the papers submitted to the 2015 International Conference on Machine Learning and Signal Processing (MALSIP 2015), which was held on 15–17 December 2015 in Ho Chi Minh City, Vietnam with the aim of offering researchers, academicians, and practitioners an ideal opportunity to disseminate their findings and achievements. All of the included contributions were chosen by expert peer reviewers from across the world on the basis of their interest to the community. In addition to presenting the latest in design, development, and research, the book provides access to numerous new algorithms for machine learni...

  14. Machine Learning Interface for Medical Image Analysis.

    Science.gov (United States)

    Zhang, Yi C; Kagen, Alexander C

    2016-10-11

    TensorFlow is a second-generation open-source machine learning software library with a built-in framework for implementing neural networks in wide variety of perceptual tasks. Although TensorFlow usage is well established with computer vision datasets, the TensorFlow interface with DICOM formats for medical imaging remains to be established. Our goal is to extend the TensorFlow API to accept raw DICOM images as input; 1513 DaTscan DICOM images were obtained from the Parkinson's Progression Markers Initiative (PPMI) database. DICOM pixel intensities were extracted and shaped into tensors, or n-dimensional arrays, to populate the training, validation, and test input datasets for machine learning. A simple neural network was constructed in TensorFlow to classify images into normal or Parkinson's disease groups. Training was executed over 1000 iterations for each cross-validation set. The gradient descent optimization and Adagrad optimization algorithms were used to minimize cross-entropy between the predicted and ground-truth labels. Cross-validation was performed ten times to produce a mean accuracy of 0.938 ± 0.047 (95 % CI 0.908-0.967). The mean sensitivity was 0.974 ± 0.043 (95 % CI 0.947-1.00) and mean specificity was 0.822 ± 0.207 (95 % CI 0.694-0.950). We extended the TensorFlow API to enable DICOM compatibility in the context of DaTscan image analysis. We implemented a neural network classifier that produces diagnostic accuracies on par with excellent results from previous machine learning models. These results indicate the potential role of TensorFlow as a useful adjunct diagnostic tool in the clinical setting.

  15. A review of supervised machine learning applied to ageing research.

    Science.gov (United States)

    Fabris, Fabio; Magalhães, João Pedro de; Freitas, Alex A

    2017-04-01

    Broadly speaking, supervised machine learning is the computational task of learning correlations between variables in annotated data (the training set), and using this information to create a predictive model capable of inferring annotations for new data, whose annotations are not known. Ageing is a complex process that affects nearly all animal species. This process can be studied at several levels of abstraction, in different organisms and with different objectives in mind. Not surprisingly, the diversity of the supervised machine learning algorithms applied to answer biological questions reflects the complexities of the underlying ageing processes being studied. Many works using supervised machine learning to study the ageing process have been recently published, so it is timely to review these works, to discuss their main findings and weaknesses. In summary, the main findings of the reviewed papers are: the link between specific types of DNA repair and ageing; ageing-related proteins tend to be highly connected and seem to play a central role in molecular pathways; ageing/longevity is linked with autophagy and apoptosis, nutrient receptor genes, and copper and iron ion transport. Additionally, several biomarkers of ageing were found by machine learning. Despite some interesting machine learning results, we also identified a weakness of current works on this topic: only one of the reviewed papers has corroborated the computational results of machine learning algorithms through wet-lab experiments. In conclusion, supervised machine learning has contributed to advance our knowledge and has provided novel insights on ageing, yet future work should have a greater emphasis in validating the predictions.

  16. Stacking for machine learning redshifts applied to SDSS galaxies

    Science.gov (United States)

    Zitlau, Roman; Hoyle, Ben; Paech, Kerstin; Weller, Jochen; Rau, Markus Michael; Seitz, Stella

    2016-08-01

    We present an analysis of a general machine learning technique called `stacking' for the estimation of photometric redshifts. Stacking techniques can feed the photometric redshift estimate, as output by a base algorithm, back into the same algorithm as an additional input feature in a subsequent learning round. We show how all tested base algorithms benefit from at least one additional stacking round (or layer). To demonstrate the benefit of stacking, we apply the method to both unsupervised machine learning techniques based on self-organizing maps (SOMs), and supervised machine learning methods based on decision trees. We explore a range of stacking architectures, such as the number of layers and the number of base learners per layer. Finally we explore the effectiveness of stacking even when using a successful algorithm such as AdaBoost. We observe a significant improvement of between 1.9 per cent and 21 per cent on all computed metrics when stacking is applied to weak learners (such as SOMs and decision trees). When applied to strong learning algorithms (such as AdaBoost) the ratio of improvement shrinks, but still remains positive and is between 0.4 per cent and 2.5 per cent for the explored metrics and comes at almost no additional computational cost.

  17. Machine learning for adaptive many-core machines a practical approach

    CERN Document Server

    Lopes, Noel

    2015-01-01

    The overwhelming data produced everyday and the increasing performance and cost requirements of applications?are transversal to a wide range of activities in society, from science to industry. In particular, the magnitude and complexity of the tasks that Machine Learning (ML) algorithms have to solve are driving the need to devise adaptive many-core machines that scale well with the volume of data, or in other words, can handle Big Data.This book gives a concise view on how to extend the applicability of well-known ML algorithms in Graphics Processing Unit (GPU) with data scalability in mind.

  18. Support Vector Machine Ensemble Based on Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    LI Ye; YIN Ru-po; CAI Yun-ze; XU Xiao-ming

    2006-01-01

    Support vector machines (SVMs) have been introduced as effective methods for solving classification problems.However, due to some limitations in practical applications,their generalization performance is sometimes far from the expected level. Therefore, it is meaningful to study SVM ensemble learning. In this paper, a novel genetic algorithm based ensemble learning method, namely Direct Genetic Ensemble (DGE), is proposed. DGE adopts the predictive accuracy of ensemble as the fitness function and searches a good ensemble from the ensemble space. In essence, DGE is also a selective ensemble learning method because the base classifiers of the ensemble are selected according to the solution of genetic algorithm. In comparison with other ensemble learning methods, DGE works on a higher level and is more direct. Different strategies of constructing diverse base classifiers can be utilized in DGE.Experimental results show that SVM ensembles constructed by DGE can achieve better performance than single SVMs,bagged and boosted SVM ensembles. In addition, some valuable conclusions are obtained.

  19. Learning as a Machine: Crossovers between Humans and Machines

    Science.gov (United States)

    Hildebrandt, Mireille

    2017-01-01

    This article is a revised version of the keynote presented at LAK '16 in Edinburgh. The article investigates some of the assumptions of learning analytics, notably those related to behaviourism. Building on the work of Ivan Pavlov, Herbert Simon, and James Gibson as ways of "learning as a machine," the article then develops two levels of…

  20. Machine Learning Methods for Attack Detection in the Smart Grid.

    Science.gov (United States)

    Ozay, Mete; Esnaola, Inaki; Yarman Vural, Fatos Tunay; Kulkarni, Sanjeev R; Poor, H Vincent

    2016-08-01

    Attack detection problems in the smart grid are posed as statistical learning problems for different attack scenarios in which the measurements are observed in batch or online settings. In this approach, machine learning algorithms are used to classify measurements as being either secure or attacked. An attack detection framework is provided to exploit any available prior knowledge about the system and surmount constraints arising from the sparse structure of the problem in the proposed approach. Well-known batch and online learning algorithms (supervised and semisupervised) are employed with decision- and feature-level fusion to model the attack detection problem. The relationships between statistical and geometric properties of attack vectors employed in the attack scenarios and learning algorithms are analyzed to detect unobservable attacks using statistical learning methods. The proposed algorithms are examined on various IEEE test systems. Experimental analyses show that machine learning algorithms can detect attacks with performances higher than attack detection algorithms that employ state vector estimation methods in the proposed attack detection framework.

  1. Machine learning for network-based malware detection

    DEFF Research Database (Denmark)

    Stevanovic, Matija

    and based on different, mutually complementary, principles of traffic analysis. The proposed approaches rely on machine learning algorithms (MLAs) for automated and resource-efficient identification of the patterns of malicious network traffic. We evaluated the proposed methods through extensive evaluations...

  2. Extracting Information from Spoken User Input. A Machine Learning Approach

    NARCIS (Netherlands)

    Lendvai, P.K.

    2004-01-01

    We propose a module that performs automatic analysis of user input in spoken dialogue systems using machine learning algorithms. The input to the module is material received from the speech recogniser and the dialogue manager of the spoken dialogue system, the output is a four-level

  3. A Comparison Study of Extreme Learning Machine and Least Squares Support Vector Machine for Structural Impact Localization

    OpenAIRE

    Qingsong Xu

    2014-01-01

    Extreme learning machine (ELM) is a learning algorithm for single-hidden layer feedforward neural network dedicated to an extremely fast learning. However, the performance of ELM in structural impact localization is unknown yet. In this paper, a comparison study of ELM with least squares support vector machine (LSSVM) is presented for the application on impact localization of a plate structure with surface-mounted piezoelectric sensors. Both basic and kernel-based ELM regression models have b...

  4. Machine Learning with Operational Costs

    CERN Document Server

    Tulabandhula, Theja

    2011-01-01

    This work concerns the way that statistical models are used to make decisions. In particular, we aim to merge the way estimation algorithms are designed with how they are used for a subsequent task. Our methodology considers the operational cost of carrying out a policy, based on a predictive model. The operational cost becomes a regularization term in the learning algorithm's objective function, allowing either an \\textit{optimistic} or \\textit{pessimistic} view of possible costs. Limiting the operational cost reduces the hypothesis space for the predictive model, and can thus improve generalization. We show that different types of operational problems can lead to the same type of restriction on the hypothesis space, namely the restriction to an intersection of an $\\ell_{q}$ ball with a halfspace. We bound the complexity of such hypothesis spaces by proposing a technique that involves counting integer points in polyhedrons.

  5. A Fast Reduced Kernel Extreme Learning Machine.

    Science.gov (United States)

    Deng, Wan-Yu; Ong, Yew-Soon; Zheng, Qing-Hua

    2016-04-01

    In this paper, we present a fast and accurate kernel-based supervised algorithm referred to as the Reduced Kernel Extreme Learning Machine (RKELM). In contrast to the work on Support Vector Machine (SVM) or Least Square SVM (LS-SVM), which identifies the support vectors or weight vectors iteratively, the proposed RKELM randomly selects a subset of the available data samples as support vectors (or mapping samples). By avoiding the iterative steps of SVM, significant cost savings in the training process can be readily attained, especially on Big datasets. RKELM is established based on the rigorous proof of universal learning involving reduced kernel-based SLFN. In particular, we prove that RKELM can approximate any nonlinear functions accurately under the condition of support vectors sufficiency. Experimental results on a wide variety of real world small instance size and large instance size applications in the context of binary classification, multi-class problem and regression are then reported to show that RKELM can perform at competitive level of generalized performance as the SVM/LS-SVM at only a fraction of the computational effort incurred.

  6. Measure Transformer Semantics for Bayesian Machine Learning

    Science.gov (United States)

    Borgström, Johannes; Gordon, Andrew D.; Greenberg, Michael; Margetson, James; van Gael, Jurgen

    The Bayesian approach to machine learning amounts to inferring posterior distributions of random variables from a probabilistic model of how the variables are related (that is, a prior distribution) and a set of observations of variables. There is a trend in machine learning towards expressing Bayesian models as probabilistic programs. As a foundation for this kind of programming, we propose a core functional calculus with primitives for sampling prior distributions and observing variables. We define combinators for measure transformers, based on theorems in measure theory, and use these to give a rigorous semantics to our core calculus. The original features of our semantics include its support for discrete, continuous, and hybrid measures, and, in particular, for observations of zero-probability events. We compile our core language to a small imperative language that has a straightforward semantics via factor graphs, data structures that enable many efficient inference algorithms. We use an existing inference engine for efficient approximate inference of posterior marginal distributions, treating thousands of observations per second for large instances of realistic models.

  7. Recognition of printed Arabic text using machine learning

    Science.gov (United States)

    Amin, Adnan

    1998-04-01

    Many papers have been concerned with the recognition of Latin, Chinese and Japanese characters. However, although almost a third of a billion people worldwide, in several different languages, use Arabic characters for writing, little research progress, in both on-line and off-line has been achieved towards the automatic recognition of Arabic characters. This is a result of the lack of adequate support in terms of funding, and other utilities such as Arabic text database, dictionaries, etc. and of course of the cursive nature of its writing rules. The main theme of this paper is the automatic recognition of Arabic printed text using machine learning C4.5. Symbolic machine learning algorithms are designed to accept example descriptions in the form of feature vectors which include a label that identifies the class to which an example belongs. The output of the algorithm is a set of rules that classifies unseen examples based on generalization from the training set. This ability to generalize is the main attraction of machine learning for handwriting recognition. Samples of a character can be preprocessed into a feature vector representation for presentation to a machine learning algorithm that creates rules for recognizing characters of the same class. Symbolic machine learning has several advantages over other learning methods. It is fast in training and in recognition, generalizes well, is noise tolerant and the symbolic representation is easy to understand. The technique can be divided into three major steps: the first step is pre- processing in which the original image is transformed into a binary image utilizing a 300 dpi scanner and then forming the connected component. Second, global features of the input Arabic word are then extracted such as number subwords, number of peaks within the subword, number and position of the complementary character, etc. Finally, machine learning C4.5 is used for character classification to generate a decision tree.

  8. Machine learning in sedimentation modelling.

    Science.gov (United States)

    Bhattacharya, B; Solomatine, D P

    2006-03-01

    The paper presents machine learning (ML) models that predict sedimentation in the harbour basin of the Port of Rotterdam. The important factors affecting the sedimentation process such as waves, wind, tides, surge, river discharge, etc. are studied, the corresponding time series data is analysed, missing values are estimated and the most important variables behind the process are chosen as the inputs. Two ML methods are used: MLP ANN and M5 model tree. The latter is a collection of piece-wise linear regression models, each being an expert for a particular region of the input space. The models are trained on the data collected during 1992-1998 and tested by the data of 1999-2000. The predictive accuracy of the models is found to be adequate for the potential use in the operational decision making.

  9. Machine learning in motion control

    Science.gov (United States)

    Su, Renjeng; Kermiche, Noureddine

    1989-01-01

    The existing methodologies for robot programming originate primarily from robotic applications to manufacturing, where uncertainties of the robots and their task environment may be minimized by repeated off-line modeling and identification. In space application of robots, however, a higher degree of automation is required for robot programming because of the desire of minimizing the human intervention. We discuss a new paradigm of robotic programming which is based on the concept of machine learning. The goal is to let robots practice tasks by themselves and the operational data are used to automatically improve their motion performance. The underlying mathematical problem is to solve the problem of dynamical inverse by iterative methods. One of the key questions is how to ensure the convergence of the iterative process. There have been a few small steps taken into this important approach to robot programming. We give a representative result on the convergence problem.

  10. Machine learning in motion control

    Science.gov (United States)

    Su, Renjeng; Kermiche, Noureddine

    1989-01-01

    The existing methodologies for robot programming originate primarily from robotic applications to manufacturing, where uncertainties of the robots and their task environment may be minimized by repeated off-line modeling and identification. In space application of robots, however, a higher degree of automation is required for robot programming because of the desire of minimizing the human intervention. We discuss a new paradigm of robotic programming which is based on the concept of machine learning. The goal is to let robots practice tasks by themselves and the operational data are used to automatically improve their motion performance. The underlying mathematical problem is to solve the problem of dynamical inverse by iterative methods. One of the key questions is how to ensure the convergence of the iterative process. There have been a few small steps taken into this important approach to robot programming. We give a representative result on the convergence problem.

  11. Elucidating a magnetic resonance imaging-based neuroanatomic biomarker for psychosis: classification analysis using probabilistic brain atlas and machine learning algorithms.

    Science.gov (United States)

    Sun, Daqiang; van Erp, Theo G M; Thompson, Paul M; Bearden, Carrie E; Daley, Melita; Kushan, Leila; Hardt, Molly E; Nuechterlein, Keith H; Toga, Arthur W; Cannon, Tyrone D

    2009-12-01

    No objective diagnostic biomarkers or laboratory tests have yet been developed for psychotic illness. Magnetic resonance imaging (MRI) studies consistently find significant abnormalities in multiple brain structures in psychotic patients relative to healthy control subjects, but these abnormalities show substantial overlap with anatomic variation that is in the normal range and therefore nondiagnostic. Recently, efforts have been made to discriminate psychotic patients from healthy individuals using machine-learning-based pattern classification methods on MRI data. Three-dimensional cortical gray matter density (GMD) maps were generated for 36 patients with recent-onset psychosis and 36 sex- and age-matched control subjects using a cortical pattern matching method. Between-group differences in GMD were evaluated. Second, the sparse multinomial logistic regression classifier included in the Multivariate Pattern Analysis in Python machine-learning package was applied to the cortical GMD maps to discriminate psychotic patients from control subjects. Patients showed significantly lower GMD, particularly in prefrontal, cingulate, and lateral temporal brain regions. Pattern classification analysis achieved 86.1% accuracy in discriminating patients from controls using leave-one-out cross-validation. These results suggest that even at the early stage of illness, psychotic patients present distinct patterns of regional cortical gray matter changes that can be discriminated from the normal pattern. These findings indicate that we can detect complex patterns of brain abnormality in early stages of psychotic illness, which has critical implications for early identification and intervention in individuals at ultra-high risk for developing psychosis/schizophrenia.

  12. Probabilistic machine learning and artificial intelligence.

    Science.gov (United States)

    Ghahramani, Zoubin

    2015-05-28

    How can a machine learn from experience? Probabilistic modelling provides a framework for understanding what learning is, and has therefore emerged as one of the principal theoretical and practical approaches for designing machines that learn from data acquired through experience. The probabilistic framework, which describes how to represent and manipulate uncertainty about models and predictions, has a central role in scientific data analysis, machine learning, robotics, cognitive science and artificial intelligence. This Review provides an introduction to this framework, and discusses some of the state-of-the-art advances in the field, namely, probabilistic programming, Bayesian optimization, data compression and automatic model discovery.

  13. Probabilistic machine learning and artificial intelligence

    Science.gov (United States)

    Ghahramani, Zoubin

    2015-05-01

    How can a machine learn from experience? Probabilistic modelling provides a framework for understanding what learning is, and has therefore emerged as one of the principal theoretical and practical approaches for designing machines that learn from data acquired through experience. The probabilistic framework, which describes how to represent and manipulate uncertainty about models and predictions, has a central role in scientific data analysis, machine learning, robotics, cognitive science and artificial intelligence. This Review provides an introduction to this framework, and discusses some of the state-of-the-art advances in the field, namely, probabilistic programming, Bayesian optimization, data compression and automatic model discovery.

  14. Applied genetic programming and machine learning

    CERN Document Server

    Iba, Hitoshi; Paul, Topon Kumar

    2009-01-01

    What do financial data prediction, day-trading rule development, and bio-marker selection have in common? They are just a few of the tasks that could potentially be resolved with genetic programming and machine learning techniques. Written by leaders in this field, Applied Genetic Programming and Machine Learning delineates the extension of Genetic Programming (GP) for practical applications. Reflecting rapidly developing concepts and emerging paradigms, this book outlines how to use machine learning techniques, make learning operators that efficiently sample a search space, navigate the searc

  15. Adaptive Learning Systems: Beyond Teaching Machines

    Science.gov (United States)

    Kara, Nuri; Sevim, Nese

    2013-01-01

    Since 1950s, teaching machines have changed a lot. Today, we have different ideas about how people learn, what instructor should do to help students during their learning process. We have adaptive learning technologies that can create much more student oriented learning environments. The purpose of this article is to present these changes and its…

  16. A Machine Learning Perspective on Predictive Coding with PAQ

    CERN Document Server

    Knoll, Byron

    2011-01-01

    PAQ8 is an open source lossless data compression algorithm that currently achieves the best compression rates on many benchmarks. This report presents a detailed description of PAQ8 from a statistical machine learning perspective. It shows that it is possible to understand some of the modules of PAQ8 and use this understanding to improve the method. However, intuitive statistical explanations of the behavior of other modules remain elusive. We hope the description in this report will be a starting point for discussions that will increase our understanding, lead to improvements to PAQ8, and facilitate a transfer of knowledge from PAQ8 to other machine learning methods, such a recurrent neural networks and stochastic memoizers. Finally, the report presents a broad range of new applications of PAQ to machine learning tasks including language modeling and adaptive text prediction, adaptive game playing, classification, and compression using features from the field of deep learning.

  17. Proceedings of the IEEE Machine Learning for Signal Processing XVII

    DEFF Research Database (Denmark)

    , and two papers from the winners of the Data Analysis Competition. The program included papers in the following areas: genomic signal processing, pattern recognition and classification, image and video processing, blind signal processing, models, learning algorithms, and applications of machine learning......The seventeenth of a series of workshops sponsored by the IEEE Signal Processing Society and organized by the Machine Learning for Signal Processing Technical Committee (MLSP-TC). The field of machine learning has matured considerably in both methodology and real-world application domains and has....... The program featured a Special Session on Genomic Signal Processing, chaired by Prof. Man-Wai Mak from Hong Kong Polytechnic University, Hong Kong. The session included four refereed papers by leading experts in the field. We also continued the tradition of the Data Analysis Competition thanks to the efforts...

  18. Tracking medical genetic literature through machine learning.

    Science.gov (United States)

    Bornstein, Aaron T; McLoughlin, Matthew H; Aguilar, Jesus; Wong, Wendy S W; Solomon, Benjamin D

    2016-08-01

    There has been remarkable progress in identifying the causes of genetic conditions as well as understanding how changes in specific genes cause disease. Though difficult (and often superficial) to parse, an interesting tension involves emphasis on basic research aimed to dissect normal and abnormal biology versus more clearly clinical and therapeutic investigations. To examine one facet of this question and to better understand progress in Mendelian-related research, we developed an algorithm that classifies medical literature into three categories (Basic, Clinical, and Management) and conducted a retrospective analysis. We built a supervised machine learning classification model using the Azure Machine Learning (ML) Platform and analyzed the literature (1970-2014) from NCBI's Entrez Gene2Pubmed Database (http://www.ncbi.nlm.nih.gov/gene) using genes from the NHGRI's Clinical Genomics Database (http://research.nhgri.nih.gov/CGD/). We applied our model to 376,738 articles: 288,639 (76.6%) were classified as Basic, 54,178 (14.4%) as Clinical, and 24,569 (6.5%) as Management. The average classification accuracy was 92.2%. The rate of Clinical publication was significantly higher than Basic or Management. The rate of publication of article types differed significantly when divided into key eras: Human Genome Project (HGP) planning phase (1984-1990); HGP launch (1990) to publication (2001); following HGP completion to the "Next Generation" advent (2009); the era following 2009. In conclusion, in addition to the findings regarding the pace and focus of genetic progress, our algorithm produced a database that can be used in a variety of contexts including automating the identification of management-related literature.

  19. Prediction of antiepileptic drug treatment outcomes using machine learning

    Science.gov (United States)

    Colic, Sinisa; Wither, Robert G.; Lang, Min; Zhang, Liang; Eubanks, James H.; Bardakjian, Berj L.

    2017-02-01

    Objective. Antiepileptic drug (AED) treatments produce inconsistent outcomes, often necessitating patients to go through several drug trials until a successful treatment can be found. This study proposes the use of machine learning techniques to predict epilepsy treatment outcomes of commonly used AEDs. Approach. Machine learning algorithms were trained and evaluated using features obtained from intracranial electroencephalogram (iEEG) recordings of the epileptiform discharges observed in Mecp2-deficient mouse model of the Rett Syndrome. Previous work have linked the presence of cross-frequency coupling (I CFC) of the delta (2-5 Hz) rhythm with the fast ripple (400-600 Hz) rhythm in epileptiform discharges. Using the I CFC to label post-treatment outcomes we compared support vector machines (SVMs) and random forest (RF) machine learning classifiers for providing likelihood scores of successful treatment outcomes. Main results. (a) There was heterogeneity in AED treatment outcomes, (b) machine learning techniques could be used to rank the efficacy of AEDs by estimating likelihood scores for successful treatment outcome, (c) I CFC features yielded the most effective a priori identification of appropriate AED treatment, and (d) both classifiers performed comparably. Significance. Machine learning approaches yielded predictions of successful drug treatment outcomes which in turn could reduce the burdens of drug trials and lead to substantial improvements in patient quality of life.

  20. Advances in independent component analysis and learning machines

    CERN Document Server

    Bingham, Ella; Laaksonen, Jorma; Lampinen, Jouko

    2015-01-01

    In honour of Professor Erkki Oja, one of the pioneers of Independent Component Analysis (ICA), this book reviews key advances in the theory and application of ICA, as well as its influence on signal processing, pattern recognition, machine learning, and data mining. Examples of topics which have developed from the advances of ICA, which are covered in the book are: A unifying probabilistic model for PCA and ICA Optimization methods for matrix decompositions Insights into the FastICA algorithmUnsupervised deep learning Machine vision and image retrieval A review of developments in the t

  1. 基于机器学习的围棋死活问题算法设计%Algorithm Design of Life and Death Problems in the Game of″go″Based on Machine Learning

    Institute of Scientific and Technical Information of China (English)

    李汝光

    2013-01-01

    Computer game is an important field of artificial intelligence research,in order to improve the″go″chess,the machine learning of the basic types and regular types of life and death problems are dis-cussed.A computer algorithm for life and death problems was discussed,to illustrate the importance of basic types and regular types in the algorithm for solving the problem.%计算机博弈是人工智能研究的一个重要领域,为了提高围棋的人机对弈水平,对死活问题的基本型和常型的机器学习进行了探讨。对死活问题计算机算法的探讨,说明基本型和常型在算法求解中的重要性。

  2. Testing and Validating Machine Learning Classifiers by Metamorphic Testing☆

    Science.gov (United States)

    Xie, Xiaoyuan; Ho, Joshua W. K.; Murphy, Christian; Kaiser, Gail; Xu, Baowen; Chen, Tsong Yueh

    2011-01-01

    Machine Learning algorithms have provided core functionality to many application domains - such as bioinformatics, computational linguistics, etc. However, it is difficult to detect faults in such applications because often there is no “test oracle” to verify the correctness of the computed outputs. To help address the software quality, in this paper we present a technique for testing the implementations of machine learning classification algorithms which support such applications. Our approach is based on the technique “metamorphic testing”, which has been shown to be effective to alleviate the oracle problem. Also presented include a case study on a real-world machine learning application framework, and a discussion of how programmers implementing machine learning algorithms can avoid the common pitfalls discovered in our study. We also conduct mutation analysis and cross-validation, which reveal that our method has high effectiveness in killing mutants, and that observing expected cross-validation result alone is not sufficiently effective to detect faults in a supervised classification program. The effectiveness of metamorphic testing is further confirmed by the detection of real faults in a popular open-source classification program. PMID:21532969

  3. Support Vector Machine Optimized by Improved Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Xiang Chang Sheng

    2013-07-01

    Full Text Available Parameters of support vector machines (SVM which is optimized by standard genetic algorithm is easy to trap into the local minimum, in order to get the optimal parameters of support vector machine, this paper proposed a parameters optimization method for support vector machines based on improved genetic algorithm, the simulation experiment is carried out on 5 benchmark datasets. The simulation show that the proposed method not only can assure the classification precision, but also can reduce training time markedly compared with standard genetic algorithm.

  4. Multi-classification algorithm and its realization based on least square support vector machine algorithm

    Institute of Scientific and Technical Information of China (English)

    Fan Youping; Chen Yunping; Sun Wansheng; Li Yu

    2005-01-01

    As a new type of learning machine developed on the basis of statistics learning theory, support vector machine (SVM) plays an important role in knowledge discovering and knowledge updating by constructing non-linear optimal classifier. However, realizing SVM requires resolving quadratic programming under constraints of inequality, which results in calculation difficulty while learning samples gets larger. Besides, standard SVM is incapable of tackling multi-classification. To overcome the bottleneck of populating SVM, with training algorithm presented, the problem of quadratic programming is converted into that of resolving a linear system of equations composed of a group of equation constraints by adopting the least square SVM(LS-SVM) and introducing a modifying variable which can change inequality constraints into equation constraints, which simplifies the calculation. With regard to multi-classification, an LS-SVM applicable in multi-classification is deduced. Finally, efficiency of the algorithm is checked by using universal Circle in square and two-spirals to measure the performance of the classifier.

  5. Machine Learning for Computer Vision

    CERN Document Server

    Battiato, Sebastiano; Farinella, Giovanni

    2013-01-01

    Computer vision is the science and technology of making machines that see. It is concerned with the theory, design and implementation of algorithms that can automatically process visual data to recognize objects, track and recover their shape and spatial layout. The International Computer Vision Summer School - ICVSS was established in 2007 to provide both an objective and clear overview and an in-depth analysis of the state-of-the-art research in Computer Vision. The courses are delivered by world renowned experts in the field, from both academia and industry, and cover both theoretical and practical aspects of real Computer Vision problems. The school is organized every year by University of Cambridge (Computer Vision and Robotics Group) and University of Catania (Image Processing Lab). Different topics are covered each year. A summary of the past Computer Vision Summer Schools can be found at: http://www.dmi.unict.it/icvss This edited volume contains a selection of articles covering some of the talks and t...

  6. [Comparative efficiency of algorithms based on support vector machines for binary classification].

    Science.gov (United States)

    Kadyrova, N O; Pavlova, L V

    2015-01-01

    Methods of construction of support vector machines require no further a priori infoimation and provide big data processing, what is especially important for various problems in computational biology. The question of the quality of learning algorithms is considered. The main algorithms of support vector machines for binary classification are reviewed and they were comparatively explored for their efficiencies. The critical analysis of the results of this study revealed the most effective support-vector-classifiers. The description of the recommended algorithms, sufficient for their practical implementation, is presented.

  7. Python for probability, statistics, and machine learning

    CERN Document Server

    Unpingco, José

    2016-01-01

    This book covers the key ideas that link probability, statistics, and machine learning illustrated using Python modules in these areas. The entire text, including all the figures and numerical results, is reproducible using the Python codes and their associated Jupyter/IPython notebooks, which are provided as supplementary downloads. The author develops key intuitions in machine learning by working meaningful examples using multiple analytical methods and Python codes, thereby connecting theoretical concepts to concrete implementations. Modern Python modules like Pandas, Sympy, and Scikit-learn are applied to simulate and visualize important machine learning concepts like the bias/variance trade-off, cross-validation, and regularization. Many abstract mathematical ideas, such as convergence in probability theory, are developed and illustrated with numerical examples. This book is suitable for anyone with an undergraduate-level exposure to probability, statistics, or machine learning and with rudimentary knowl...

  8. AZOrange - High performance open source machine learning for QSAR modeling in a graphical programming environment

    Directory of Open Access Journals (Sweden)

    Stålring Jonna C

    2011-07-01

    Full Text Available Abstract Background Machine learning has a vast range of applications. In particular, advanced machine learning methods are routinely and increasingly used in quantitative structure activity relationship (QSAR modeling. QSAR data sets often encompass tens of thousands of compounds and the size of proprietary, as well as public data sets, is rapidly growing. Hence, there is a demand for computationally efficient machine learning algorithms, easily available to researchers without extensive machine learning knowledge. In granting the scientific principles of transparency and reproducibility, Open Source solutions are increasingly acknowledged by regulatory authorities. Thus, an Open Source state-of-the-art high performance machine learning platform, interfacing multiple, customized machine learning algorithms for both graphical programming and scripting, to be used for large scale development of QSAR models of regulatory quality, is of great value to the QSAR community. Results This paper describes the implementation of the Open Source machine learning package AZOrange. AZOrange is specially developed to support batch generation of QSAR models in providing the full work flow of QSAR modeling, from descriptor calculation to automated model building, validation and selection. The automated work flow relies upon the customization of the machine learning algorithms and a generalized, automated model hyper-parameter selection process. Several high performance machine learning algorithms are interfaced for efficient data set specific selection of the statistical method, promoting model accuracy. Using the high performance machine learning algorithms of AZOrange does not require programming knowledge as flexible applications can be created, not only at a scripting level, but also in a graphical programming environment. Conclusions AZOrange is a step towards meeting the needs for an Open Source high performance machine learning platform, supporting the

  9. Machine Learning Techniques in Clinical Vision Sciences.

    Science.gov (United States)

    Caixinha, Miguel; Nunes, Sandrina

    2017-01-01

    This review presents and discusses the contribution of machine learning techniques for diagnosis and disease monitoring in the context of clinical vision science. Many ocular diseases leading to blindness can be halted or delayed when detected and treated at its earliest stages. With the recent developments in diagnostic devices, imaging and genomics, new sources of data for early disease detection and patients' management are now available. Machine learning techniques emerged in the biomedical sciences as clinical decision-support techniques to improve sensitivity and specificity of disease detection and monitoring, increasing objectively the clinical decision-making process. This manuscript presents a review in multimodal ocular disease diagnosis and monitoring based on machine learning approaches. In the first section, the technical issues related to the different machine learning approaches will be present. Machine learning techniques are used to automatically recognize complex patterns in a given dataset. These techniques allows creating homogeneous groups (unsupervised learning), or creating a classifier predicting group membership of new cases (supervised learning), when a group label is available for each case. To ensure a good performance of the machine learning techniques in a given dataset, all possible sources of bias should be removed or minimized. For that, the representativeness of the input dataset for the true population should be confirmed, the noise should be removed, the missing data should be treated and the data dimensionally (i.e., the number of parameters/features and the number of cases in the dataset) should be adjusted. The application of machine learning techniques in ocular disease diagnosis and monitoring will be presented and discussed in the second section of this manuscript. To show the clinical benefits of machine learning in clinical vision sciences, several examples will be presented in glaucoma, age-related macular degeneration

  10. Machine Learning Method Applied in Readout System of Superheated Droplet Detector

    Science.gov (United States)

    Liu, Yi; Sullivan, Clair Julia; d'Errico, Francesco

    2017-07-01

    Direct readability is one advantage of superheated droplet detectors in neutron dosimetry. Utilizing such a distinct characteristic, an imaging readout system analyzes image of the detector for neutron dose readout. To improve the accuracy and precision of algorithms in the imaging readout system, machine learning algorithms were developed. Deep learning neural network and support vector machine algorithms are applied and compared with generally used Hough transform and curvature analysis methods. The machine learning methods showed a much higher accuracy and better precision in recognizing circular gas bubbles.

  11. Stacking for machine learning redshifts applied to SDSS galaxies

    CERN Document Server

    Zitlau, Roman; Paech, Kerstin; Weller, Jochen; Rau, Markus Michael; Seitz, Stella

    2016-01-01

    We present an analysis of a general machine learning technique called 'stacking' for the estimation of photometric redshifts. Stacking techniques can feed the photometric redshift estimate, as output by a base algorithm, back into the same algorithm as an additional input feature in a subsequent learning round. We shown how all tested base algorithms benefit from at least one additional stacking round (or layer). To demonstrate the benefit of stacking, we apply the method to both unsupervised machine learning techniques based on self-organising maps (SOMs), and supervised machine learning methods based on decision trees. We explore a range of stacking architectures, such as the number of layers and the number of base learners per layer. Finally we explore the effectiveness of stacking even when using a successful algorithm such as AdaBoost. We observe a significant improvement of between 1.9% and 21% on all computed metrics when stacking is applied to weak learners (such as SOMs and decision trees). When appl...

  12. Accurate Identification of Cancerlectins through Hybrid Machine Learning Technology

    Directory of Open Access Journals (Sweden)

    Jieru Zhang

    2016-01-01

    Full Text Available Cancerlectins are cancer-related proteins that function as lectins. They have been identified through computational identification techniques, but these techniques have sometimes failed to identify proteins because of sequence diversity among the cancerlectins. Advanced machine learning identification methods, such as support vector machine and basic sequence features (n-gram, have also been used to identify cancerlectins. In this study, various protein fingerprint features and advanced classifiers, including ensemble learning techniques, were utilized to identify this group of proteins. We improved the prediction accuracy of the original feature extraction methods and classification algorithms by more than 10% on average. Our work provides a basis for the computational identification of cancerlectins and reveals the power of hybrid machine learning techniques in computational proteomics.

  13. Machine Learning: A Crucial Tool for Sensor Design

    Directory of Open Access Journals (Sweden)

    Weixiang Zhao

    2008-12-01

    Full Text Available Sensors have been widely used for disease diagnosis, environmental quality monitoring, food quality control, industrial process analysis and control, and other related fields. As a key tool for sensor data analysis, machine learning is becoming a core part of novel sensor design. Dividing a complete machine learning process into three steps: data pre-treatment, feature extraction and dimension reduction, and system modeling, this paper provides a review of the methods that are widely used for each step. For each method, the principles and the key issues that affect modeling results are discussed. After reviewing the potential problems in machine learning processes, this paper gives a summary of current algorithms in this field and provides some feasible directions for future studies.

  14. Empirical Prediction of Leaf Area Index (LAI of Endangered Tree Species in Intact and Fragmented Indigenous Forests Ecosystems Using WorldView-2 Data and Two Robust Machine Learning Algorithms

    Directory of Open Access Journals (Sweden)

    Galal Omer

    2016-04-01

    Full Text Available Leaf area index (LAI is an important biophysical trait for forest ecosystem and ecological modeling, as it plays a key role for the forest productivity and structural characteristics. The ground-based methods like the handheld optical instruments for predicting LAI are subjective, pricy and time-consuming. The advent of very high spatial resolutions multispectral data and robust machine learning regression algorithms like support vector machines (SVM and artificial neural networks (ANN has provided an opportunity to estimate LAI at tree species level. The objective of the this study was therefore to test the utility of spectral vegetation indices (SVI calculated from the multispectral WorldView-2 (WV-2 data in predicting LAI at tree species level using the SVM and ANN machine learning regression algorithms. We further tested whether there are significant differences between LAI of intact and fragmented (open indigenous forest ecosystems at tree species level. The study shows that LAI at tree species level could accurately be estimated using the fragmented stratum data compared with the intact stratum data. Specifically, our study shows that the accurate LAI predictions were achieved for Hymenocardia ulmoides using the fragmented stratum data and SVM regression model based on a validation dataset (R2Val = 0.75, RMSEVal = 0.05 (1.37% of the mean. Our study further showed that SVM regression approach achieved more accurate models for predicting the LAI of the six endangered tree species compared with ANN regression method. It is concluded that the successful application of the WV-2 data, SVM and ANN methods in predicting LAI of six endangered tree species in the Dukuduku indigenous forest could help in making informed decisions and policies regarding management, protection and conservation of these endangered tree species.

  15. Study on Applying Hybrid Machine Learning into Family Apparel Expenditure

    Institute of Scientific and Technical Information of China (English)

    SHEN Lei

    2008-01-01

    Hybrid Machine Learning (HMD is a kind of advanced algorithm in the field of intelligent information process.It combines the induced learning based-on decision-making tree with the blocking neural network.And it provides a useful intelligent knowledge-based data mining technique.Its core algorithm is ID3 and Field Theory based ART (FTART).The paper introduces the principals of hybrid machine learning firstly, and then applies it into analyzing family apparel expenditures and their influencing factors systematically.Finally, compared with those from the traditional statistic methods, the results from HML is more friendly and easily to be understood.Besides, the forecasting by HML is more correct than by the traditional ways.

  16. Machines are benchmarked by code, not algorithms

    NARCIS (Netherlands)

    Poss, R.

    2013-01-01

    This article highlights how small modifications to either the source code of a benchmark program or the compilation options may impact its behavior on a specific machine. It argues that for evaluating machines, benchmark providers and users be careful to ensure reproducibility of results based on th

  17. Polyceptron: A Polyhedral Learning Algorithm

    CERN Document Server

    Manwani, Naresh

    2011-01-01

    In this paper we propose a new algorithm for learning polyhedral classifiers which we call as Polyceptron. It is a Perception like algorithm which updates the parameters only when the current classifier misclassifies any training data. We give both batch and online version of Polyceptron algorithm. Finally we give experimental results to show the effectiveness of our approach.

  18. Optimization of machining processes using pattern search algorithm

    OpenAIRE

    Miloš Madić; Miroslav Radovanović

    2014-01-01

    Optimization of machining processes not only increases machining efficiency and economics, but also the end product quality. In recent years, among the traditional optimization methods, stochastic direct search optimization methods such as meta-heuristic algorithms are being increasingly applied for solving machining optimization problems. Their ability to deal with complex, multi-dimensional and ill-behaved optimization problems made them the preferred optimization tool by most researchers a...

  19. Optimal Placement Algorithms for Virtual Machines

    CERN Document Server

    Bellur, Umesh; SD, Madhu Kumar

    2010-01-01

    Cloud computing provides a computing platform for the users to meet their demands in an efficient, cost-effective way. Virtualization technologies are used in the clouds to aid the efficient usage of hardware. Virtual machines (VMs) are utilized to satisfy the user needs and are placed on physical machines (PMs) of the cloud for effective usage of hardware resources and electricity in the cloud. Optimizing the number of PMs used helps in cutting down the power consumption by a substantial amount. In this paper, we present an optimal technique to map virtual machines to physical machines (nodes) such that the number of required nodes is minimized. We provide two approaches based on linear programming and quadratic programming techniques that significantly improve over the existing theoretical bounds and efficiently solve the problem of virtual machine (VM) placement in data centers.

  20. Saudi License Plate Recognition Algorithm Based on Support Vector Machine

    Institute of Scientific and Technical Information of China (English)

    Khaled Suwais; Rana Al-Otaibi; Ali Alshahrani

    2013-01-01

    License plate recognition (LPR) is an image processing technology that is used to identify vehicles by their license plates. This paper presents a license plate recognition algorithm for Saudi car plates based on the support vector machine (SVM) algorithm. The new algorithm is efficient in recognizing the vehicles from the Arabic part of the plate. The performance of the system has been investigated and analyzed. The recognition accuracy of the algorithm is about 93.3%.

  1. Machine learning techniques in optical communication

    DEFF Research Database (Denmark)

    Zibar, Darko; Piels, Molly; Jones, Rasmus Thomas

    2015-01-01

    Techniques from the machine learning community are reviewed and employed for laser characterization, signal detection in the presence of nonlinear phase noise, and nonlinearity mitigation. Bayesian filtering and expectation maximization are employed within nonlinear state-space framework...

  2. Machine learning techniques in optical communication

    DEFF Research Database (Denmark)

    Zibar, Darko; Piels, Molly; Jones, Rasmus Thomas

    2016-01-01

    Machine learning techniques relevant for nonlinearity mitigation, carrier recovery, and nanoscale device characterization are reviewed and employed. Markov Chain Monte Carlo in combination with Bayesian filtering is employed within the nonlinear state-space framework and demonstrated for parameter...

  3. Machine Learning and Conflict Prediction: A Use Case

    Directory of Open Access Journals (Sweden)

    Chris Perry

    2013-10-01

    Full Text Available For at least the last two decades, the international community in general and the United Nations specifically have attempted to develop robust, accurate and effective conflict early warning system for conflict prevention. One potential and promising component of integrated early warning systems lies in the field of machine learning. This paper aims at giving conflict analysis a basic understanding of machine learning methodology as well as to test the feasibility and added value of such an approach. The paper finds that the selection of appropriate machine learning methodologies can offer substantial improvements in accuracy and performance. It also finds that even at this early stage in testing machine learning on conflict prediction, full models offer more predictive power than simply using a prior outbreak of violence as the leading indicator of current violence. This suggests that a refined data selection methodology combined with strategic use of machine learning algorithms could indeed offer a significant addition to the early warning toolkit. Finally, the paper suggests a number of steps moving forward to improve upon this initial test methodology.

  4. Machine learning in cell biology - teaching computers to recognize phenotypes.

    Science.gov (United States)

    Sommer, Christoph; Gerlich, Daniel W

    2013-12-15

    Recent advances in microscope automation provide new opportunities for high-throughput cell biology, such as image-based screening. High-complex image analysis tasks often make the implementation of static and predefined processing rules a cumbersome effort. Machine-learning methods, instead, seek to use intrinsic data structure, as well as the expert annotations of biologists to infer models that can be used to solve versatile data analysis tasks. Here, we explain how machine-learning methods work and what needs to be considered for their successful application in cell biology. We outline how microscopy images can be converted into a data representation suitable for machine learning, and then introduce various state-of-the-art machine-learning algorithms, highlighting recent applications in image-based screening. Our Commentary aims to provide the biologist with a guide to the application of machine learning to microscopy assays and we therefore include extensive discussion on how to optimize experimental workflow as well as the data analysis pipeline.

  5. Implementing Machine Learning in the PCWG Tool

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, Andrew; Ding, Yu; Stuart, Peter

    2016-12-13

    The Power Curve Working Group (www.pcwg.org) is an ad-hoc industry-led group to investigate the performance of wind turbines in real-world conditions. As part of ongoing experience-sharing exercises, machine learning has been proposed as a possible way to predict turbine performance. This presentation provides some background information about machine learning and how it might be implemented in the PCWG exercises.

  6. Addressing uncertainty in atomistic machine learning

    DEFF Research Database (Denmark)

    Peterson, Andrew A.; Christensen, Rune; Khorshidi, Alireza

    2017-01-01

    Machine-learning regression has been demonstrated to precisely emulate the potential energy and forces that are output from more expensive electronic-structure calculations. However, to predict new regions of the potential energy surface, an assessment must be made of the credibility of the predi......Machine-learning regression has been demonstrated to precisely emulate the potential energy and forces that are output from more expensive electronic-structure calculations. However, to predict new regions of the potential energy surface, an assessment must be made of the credibility...... of the predictions. In this perspective, we address the types of errors that might arise in atomistic machine learning, the unique aspects of atomistic simulations that make machine-learning challenging, and highlight how uncertainty analysis can be used to assess the validity of machine-learning predictions. We...... suggest this will allow researchers to more fully use machine learning for the routine acceleration of large, high-accuracy, or extended-time simulations. In our demonstrations, we use a bootstrap ensemble of neural network-based calculators, and show that the width of the ensemble can provide an estimate...

  7. Addressing uncertainty in atomistic machine learning.

    Science.gov (United States)

    Peterson, Andrew A; Christensen, Rune; Khorshidi, Alireza

    2017-05-10

    Machine-learning regression has been demonstrated to precisely emulate the potential energy and forces that are output from more expensive electronic-structure calculations. However, to predict new regions of the potential energy surface, an assessment must be made of the credibility of the predictions. In this perspective, we address the types of errors that might arise in atomistic machine learning, the unique aspects of atomistic simulations that make machine-learning challenging, and highlight how uncertainty analysis can be used to assess the validity of machine-learning predictions. We suggest this will allow researchers to more fully use machine learning for the routine acceleration of large, high-accuracy, or extended-time simulations. In our demonstrations, we use a bootstrap ensemble of neural network-based calculators, and show that the width of the ensemble can provide an estimate of the uncertainty when the width is comparable to that in the training data. Intriguingly, we also show that the uncertainty can be localized to specific atoms in the simulation, which may offer hints for the generation of training data to strategically improve the machine-learned representation.

  8. Quasi-stellar Object Selection Algorithm Using Time Variability and Machine Learning: Selection of 1620 Quasi-stellar Object Candidates from MACHO Large Magellanic Cloud Database

    Science.gov (United States)

    Kim, Dae-Won; Protopapas, Pavlos; Byun, Yong-Ik; Alcock, Charles; Khardon, Roni; Trichas, Markos

    2011-07-01

    We present a new quasi-stellar object (QSO) selection algorithm using a Support Vector Machine, a supervised classification method, on a set of extracted time series features including period, amplitude, color, and autocorrelation value. We train a model that separates QSOs from variable stars, non-variable stars, and microlensing events using 58 known QSOs, 1629 variable stars, and 4288 non-variables in the MAssive Compact Halo Object (MACHO) database as a training set. To estimate the efficiency and the accuracy of the model, we perform a cross-validation test using the training set. The test shows that the model correctly identifies ~80% of known QSOs with a 25% false-positive rate. The majority of the false positives are Be stars. We applied the trained model to the MACHO Large Magellanic Cloud (LMC) data set, which consists of 40 million light curves, and found 1620 QSO candidates. During the selection none of the 33,242 known MACHO variables were misclassified as QSO candidates. In order to estimate the true false-positive rate, we crossmatched the candidates with astronomical catalogs including the Spitzer Surveying the Agents of a Galaxy's Evolution LMC catalog and a few X-ray catalogs. The results further suggest that the majority of the candidates, more than 70%, are QSOs.

  9. Machine Learning and Data Mining Methods in Diabetes Research.

    Science.gov (United States)

    Kavakiotis, Ioannis; Tsave, Olga; Salifoglou, Athanasios; Maglaveras, Nicos; Vlahavas, Ioannis; Chouvarda, Ioanna

    2017-01-01

    The remarkable advances in biotechnology and health sciences have led to a significant production of data, such as high throughput genetic data and clinical information, generated from large Electronic Health Records (EHRs). To this end, application of machine learning and data mining methods in biosciences is presently, more than ever before, vital and indispensable in efforts to transform intelligently all available information into valuable knowledge. Diabetes mellitus (DM) is defined as a group of metabolic disorders exerting significant pressure on human health worldwide. Extensive research in all aspects of diabetes (diagnosis, etiopathophysiology, therapy, etc.) has led to the generation of huge amounts of data. The aim of the present study is to conduct a systematic review of the applications of machine learning, data mining techniques and tools in the field of diabetes research with respect to a) Prediction and Diagnosis, b) Diabetic Complications, c) Genetic Background and Environment, and e) Health Care and Management with the first category appearing to be the most popular. A wide range of machine learning algorithms were employed. In general, 85% of those used were characterized by supervised learning approaches and 15% by unsupervised ones, and more specifically, association rules. Support vector machines (SVM) arise as the most successful and widely used algorithm. Concerning the type of data, clinical datasets were mainly used. The title applications in the selected articles project the usefulness of extracting valuable knowledge leading to new hypotheses targeting deeper understanding and further investigation in DM.

  10. Plasma disruption prediction using machine learning methods: DIII-D

    Science.gov (United States)

    Lupin-Jimenez, L.; Kolemen, E.; Eldon, D.; Eidietis, N.

    2016-10-01

    Plasma disruption prediction is becoming more important with the development of larger tokamaks, due to the larger amount of thermal and magnetic energy that can be stored. By accurately predicting an impending disruption, the disruption's impact can be mitigated or, better, prevented. Recent approaches to disruption prediction have been through implementation of machine learning methods, which characterize raw and processed diagnostic data to develop accurate prediction models. Using disruption trials from the DIII-D database, the effectiveness of different machine learning methods are characterized. Developed real time disruption prediction approaches are focused on tearing and locking modes. Machine learning methods used include random forests, multilayer perceptrons, and traditional regression analysis. The algorithms are trained with data within short time frames, and whether or not a disruption occurs within the time window after the end of the frame. Initial results from the machine learning algorithms will be presented. Work supported by US DOE under the Science Undergraduate Laboratory Internship (SULI) program, DE-FC02-04ER54698, and DE-AC02-09CH11466.

  11. Machine Learning for Flood Prediction in Google Earth Engine

    Science.gov (United States)

    Kuhn, C.; Tellman, B.; Max, S. A.; Schwarz, B.

    2015-12-01

    With the increasing availability of high-resolution satellite imagery, dynamic flood mapping in near real time is becoming a reachable goal for decision-makers. This talk describes a newly developed framework for predicting biophysical flood vulnerability using public data, cloud computing and machine learning. Our objective is to define an approach to flood inundation modeling using statistical learning methods deployed in a cloud-based computing platform. Traditionally, static flood extent maps grounded in physically based hydrologic models can require hours of human expertise to construct at significant financial cost. In addition, desktop modeling software and limited local server storage can impose restraints on the size and resolution of input datasets. Data-driven, cloud-based processing holds promise for predictive watershed modeling at a wide range of spatio-temporal scales. However, these benefits come with constraints. In particular, parallel computing limits a modeler's ability to simulate the flow of water across a landscape, rendering traditional routing algorithms unusable in this platform. Our project pushes these limits by testing the performance of two machine learning algorithms, Support Vector Machine (SVM) and Random Forests, at predicting flood extent. Constructed in Google Earth Engine, the model mines a suite of publicly available satellite imagery layers to use as algorithm inputs. Results are cross-validated using MODIS-based flood maps created using the Dartmouth Flood Observatory detection algorithm. Model uncertainty highlights the difficulty of deploying unbalanced training data sets based on rare extreme events.

  12. A 128-Channel Extreme Learning Machine-Based Neural Decoder for Brain Machine Interfaces.

    Science.gov (United States)

    Chen, Yi; Yao, Enyi; Basu, Arindam

    2016-06-01

    Currently, state-of-the-art motor intention decoding algorithms in brain-machine interfaces are mostly implemented on a PC and consume significant amount of power. A machine learning coprocessor in 0.35- μm CMOS for the motor intention decoding in the brain-machine interfaces is presented in this paper. Using Extreme Learning Machine algorithm and low-power analog processing, it achieves an energy efficiency of 3.45 pJ/MAC at a classification rate of 50 Hz. The learning in second stage and corresponding digitally stored coefficients are used to increase robustness of the core analog processor. The chip is verified with neural data recorded in monkey finger movements experiment, achieving a decoding accuracy of 99.3% for movement type. The same coprocessor is also used to decode time of movement from asynchronous neural spikes. With time-delayed feature dimension enhancement, the classification accuracy can be increased by 5% with limited number of input channels. Further, a sparsity promoting training scheme enables reduction of number of programmable weights by ≈ 2X.

  13. Outsmarting neural networks: an alternative paradigm for machine learning

    Energy Technology Data Exchange (ETDEWEB)

    Protopopescu, V.; Rao, N.S.V.

    1996-10-01

    We address three problems in machine learning, namely: (i) function learning, (ii) regression estimation, and (iii) sensor fusion, in the Probably and Approximately Correct (PAC) framework. We show that, under certain conditions, one can reduce the three problems above to the regression estimation. The latter is usually tackled with artificial neural networks (ANNs) that satisfy the PAC criteria, but have high computational complexity. We propose several computationally efficient PAC alternatives to ANNs to solve the regression estimation. Thereby we also provide efficient PAC solutions to the function learning and sensor fusion problems. The approach is based on cross-fertilizing concepts and methods from statistical estimation, nonlinear algorithms, and the theory of computational complexity, and is designed as part of a new, coherent paradigm for machine learning.

  14. Intelligent Machine Learning Approaches for Aerospace Applications

    Science.gov (United States)

    Sathyan, Anoop

    Machine Learning is a type of artificial intelligence that provides machines or networks the ability to learn from data without the need to explicitly program them. There are different kinds of machine learning techniques. This thesis discusses the applications of two of these approaches: Genetic Fuzzy Logic and Convolutional Neural Networks (CNN). Fuzzy Logic System (FLS) is a powerful tool that can be used for a wide variety of applications. FLS is a universal approximator that reduces the need for complex mathematics and replaces it with expert knowledge of the system to produce an input-output mapping using If-Then rules. The expert knowledge of a system can help in obtaining the parameters for small-scale FLSs, but for larger networks we will need to use sophisticated approaches that can automatically train the network to meet the design requirements. This is where Genetic Algorithms (GA) and EVE come into the picture. Both GA and EVE can tune the FLS parameters to minimize a cost function that is designed to meet the requirements of the specific problem. EVE is an artificial intelligence developed by Psibernetix that is trained to tune large scale FLSs. The parameters of an FLS can include the membership functions and rulebase of the inherent Fuzzy Inference Systems (FISs). The main issue with using the GFS is that the number of parameters in a FIS increase exponentially with the number of inputs thus making it increasingly harder to tune them. To reduce this issue, the FLSs discussed in this thesis consist of 2-input-1-output FISs in cascade (Chapter 4) or as a layer of parallel FISs (Chapter 7). We have obtained extremely good results using GFS for different applications at a reduced computational cost compared to other algorithms that are commonly used to solve the corresponding problems. In this thesis, GFSs have been designed for controlling an inverted double pendulum, a task allocation problem of clustering targets amongst a set of UAVs, a fire

  15. A comparative study of the SVM and K-nn machine learning algorithms for the diagnosis of respiratory pathologies using pulmonary acoustic signals.

    Science.gov (United States)

    Palaniappan, Rajkumar; Sundaraj, Kenneth; Sundaraj, Sebastian

    2014-06-27

    Pulmonary acoustic parameters extracted from recorded respiratory sounds provide valuable information for the detection of respiratory pathologies. The automated analysis of pulmonary acoustic signals can serve as a differential diagnosis tool for medical professionals, a learning tool for medical students, and a self-management tool for patients. In this context, we intend to evaluate and compare the performance of the support vector machine (SVM) and K-nearest neighbour (K-nn) classifiers in diagnosis respiratory pathologies using respiratory sounds from R.A.L.E database. The pulmonary acoustic signals used in this study were obtained from the R.A.L.E lung sound database. The pulmonary acoustic signals were manually categorised into three different groups, namely normal, airway obstruction pathology, and parenchymal pathology. The mel-frequency cepstral coefficient (MFCC) features were extracted from the pre-processed pulmonary acoustic signals. The MFCC features were analysed by one-way ANOVA and then fed separately into the SVM and K-nn classifiers. The performances of the classifiers were analysed using the confusion matrix technique. The statistical analysis of the MFCC features using one-way ANOVA showed that the extracted MFCC features are significantly different (p train and test the classifiers are limited, the classification accuracies found are satisfactory. The K-nn classifier was better than the SVM classifier for the discrimination of pulmonary acoustic signals from pathological and normal subjects obtained from the RALE database.

  16. Wrapped Progressive Sampling Search for Optimizing Learning Algorithm Parameters

    NARCIS (Netherlands)

    Bosch, Antal van den

    2005-01-01

    We present a heuristic meta-learning search method for finding a set of optimized algorithmic parameters for a range of machine learning algo- rithms. The method, wrapped progressive sampling, is a combination of classifier wrapping and progressive sampling of training data. A series of experiments

  17. Wrapped Progressive Sampling Search for Optimizing Learning Algorithm Parameters

    NARCIS (Netherlands)

    Bosch, Antal van den

    2005-01-01

    We present a heuristic meta-learning search method for finding a set of optimized algorithmic parameters for a range of machine learning algo- rithms. The method, wrapped progressive sampling, is a combination of classifier wrapping and progressive sampling of training data. A series of experiments

  18. Step Characterization using Sensor Information Fusion and Machine Learning

    Directory of Open Access Journals (Sweden)

    Ricardo Anacleto

    2015-12-01

    Full Text Available A pedestrian inertial navigation system is typically used to suppress the Global Navigation Satellite System limitation to track persons in indoor or in dense environments. However, low- cost inertial systems provide huge location estimation errors due to sensors and pedestrian dead reckoning inherent characteristics. To suppress some of these errors we propose a system that uses two inertial measurement units spread in person’s body, which measurements are aggregated using learning algorithms that learn the gait behaviors. In this work we present our results on using different machine learning algorithms which are used to characterize the step according to its direction and length. This characterization is then used to adapt the navigation algorithm according to the performed classifications.

  19. Machine Learning for Vision-Based Motion Analysis

    CERN Document Server

    Wang, Liang; Cheng, Li; Pietikainen, Matti

    2011-01-01

    Techniques of vision-based motion analysis aim to detect, track, identify, and generally understand the behavior of objects in image sequences. With the growth of video data in a wide range of applications from visual surveillance to human-machine interfaces, the ability to automatically analyze and understand object motions from video footage is of increasing importance. Among the latest developments in this field is the application of statistical machine learning algorithms for object tracking, activity modeling, and recognition. Developed from expert contributions to the first and second In

  20. Dynamical Mass Measurements of Contaminated Galaxy Clusters Using Machine Learning

    CERN Document Server

    Ntampaka, M; Sutherland, D J; Fromenteau, S; Poczos, B; Schneider, J

    2015-01-01

    We study dynamical mass measurements of galaxy clusters contaminated by interlopers and show that a modern machine learning (ML) algorithm can predict masses by better than a factor of two compared to a standard scaling relation approach. We create two mock catalogs from Multidark's publicly-available N-body MDPL1 simulation, one with perfect galaxy cluster membership information and the other where a simple cylindrical cut around the cluster center allows interlopers to contaminate the clusters. In the standard approach, we use a power law scaling relation to infer cluster mass from galaxy line of sight (LOS) velocity dispersion. Assuming perfect membership knowledge, this unrealistic case produces a wide fractional mass error distribution, with width = 0.87. Interlopers introduce additional scatter, significantly widening the error distribution further (width = 2.13). We employ the Support Distribution Machine (SDM) class of algorithms to learn from distributions of data to predict single values. Applied to...

  1. Robust Extreme Learning Machine With its Application to Indoor Positioning.

    Science.gov (United States)

    Lu, Xiaoxuan; Zou, Han; Zhou, Hongming; Xie, Lihua; Huang, Guang-Bin

    2016-01-01

    The increasing demands of location-based services have spurred the rapid development of indoor positioning system and indoor localization system interchangeably (IPSs). However, the performance of IPSs suffers from noisy measurements. In this paper, two kinds of robust extreme learning machines (RELMs), corresponding to the close-to-mean constraint, and the small-residual constraint, have been proposed to address the issue of noisy measurements in IPSs. Based on whether the feature mapping in extreme learning machine is explicit, we respectively provide random-hidden-nodes and kernelized formulations of RELMs by second order cone programming. Furthermore, the computation of the covariance in feature space is discussed. Simulations and real-world indoor localization experiments are extensively carried out and the results demonstrate that the proposed algorithms can not only improve the accuracy and repeatability, but also reduce the deviation and worst case error of IPSs compared with other baseline algorithms.

  2. Machine learning a Bayesian and optimization perspective

    CERN Document Server

    Theodoridis, Sergios

    2015-01-01

    This tutorial text gives a unifying perspective on machine learning by covering both probabilistic and deterministic approaches, which rely on optimization techniques, as well as Bayesian inference, which is based on a hierarchy of probabilistic models. The book presents the major machine learning methods as they have been developed in different disciplines, such as statistics, statistical and adaptive signal processing and computer science. Focusing on the physical reasoning behind the mathematics, all the various methods and techniques are explained in depth, supported by examples and problems, giving an invaluable resource to the student and researcher for understanding and applying machine learning concepts. The book builds carefully from the basic classical methods to the most recent trends, with chapters written to be as self-contained as possible, making the text suitable for different courses: pattern recognition, statistical/adaptive signal processing, statistical/Bayesian learning, as well as shor...

  3. Machine Learning Phases of Strongly Correlated Fermions

    Directory of Open Access Journals (Sweden)

    Kelvin Ch’ng

    2017-08-01

    Full Text Available Machine learning offers an unprecedented perspective for the problem of classifying phases in condensed matter physics. We employ neural-network machine learning techniques to distinguish finite-temperature phases of the strongly correlated fermions on cubic lattices. We show that a three-dimensional convolutional network trained on auxiliary field configurations produced by quantum Monte Carlo simulations of the Hubbard model can correctly predict the magnetic phase diagram of the model at the average density of one (half filling. We then use the network, trained at half filling, to explore the trend in the transition temperature as the system is doped away from half filling. This transfer learning approach predicts that the instability to the magnetic phase extends to at least 5% doping in this region. Our results pave the way for other machine learning applications in correlated quantum many-body systems.

  4. Machine Learning Phases of Strongly Correlated Fermions

    Science.gov (United States)

    Ch'ng, Kelvin; Carrasquilla, Juan; Melko, Roger G.; Khatami, Ehsan

    2017-07-01

    Machine learning offers an unprecedented perspective for the problem of classifying phases in condensed matter physics. We employ neural-network machine learning techniques to distinguish finite-temperature phases of the strongly correlated fermions on cubic lattices. We show that a three-dimensional convolutional network trained on auxiliary field configurations produced by quantum Monte Carlo simulations of the Hubbard model can correctly predict the magnetic phase diagram of the model at the average density of one (half filling). We then use the network, trained at half filling, to explore the trend in the transition temperature as the system is doped away from half filling. This transfer learning approach predicts that the instability to the magnetic phase extends to at least 5% doping in this region. Our results pave the way for other machine learning applications in correlated quantum many-body systems.

  5. Studies of Machine Learning Photometric Classification of Supernovae

    Science.gov (United States)

    Macaluso, Joseph Nicholas; Cunningham, John; Kuhlmann, Stephen; Gupta, Ravi; Kovacs, Eve

    2017-01-01

    We studied the use of machine learning for the photometuric classification of Type Ia (SNIa) and core collapse (SNcc) supernovae. We used a combination of simulated data for the Dark Energy survey (DES) and real data from SDSS and chose our metrics to be the sample purity and the efficiency of identifying SNIa supernovae. Our focus was to quantify the effects of varying the training and parameters for random-forest decision-tree algorithms.

  6. A Machine Learning Perspective on Predictive Coding with PAQ

    OpenAIRE

    Knoll, Byron; de Freitas, Nando

    2011-01-01

    PAQ8 is an open source lossless data compression algorithm that currently achieves the best compression rates on many benchmarks. This report presents a detailed description of PAQ8 from a statistical machine learning perspective. It shows that it is possible to understand some of the modules of PAQ8 and use this understanding to improve the method. However, intuitive statistical explanations of the behavior of other modules remain elusive. We hope the description in this report will be a sta...

  7. AstroML: Machine learning and data mining in astronomy

    Science.gov (United States)

    VanderPlas, Jacob; Fouesneau, Morgan; Taylor, Julia

    2014-07-01

    Written in Python, AstroML is a library of statistical and machine learning routines for analyzing astronomical data in python, loaders for several open astronomical datasets, and a large suite of examples of analyzing and visualizing astronomical datasets. An optional companion library, astroML_addons, is available; it requires a C compiler and contains faster and more efficient implementations of certain algorithms in compiled code.

  8. Novel Automatic Filter-Class Feature Selection for Machine Learning Regression

    DEFF Research Database (Denmark)

    Wollsen, Morten Gill; Hallam, John; Jørgensen, Bo Nørregaard

    2017-01-01

    With the increased focus on application of Big Data in all sectors of society, the performance of machine learning becomes essential. Efficient machine learning depends on efficient feature selection algorithms. Filter feature selection algorithms are model-free and therefore very fast, but require...... model in the feature selection process. PCA is often used in machine learning litterature and can be considered the default feature selection method. RDESF outperformed PCA in both experiments in both prediction error and computational speed. RDESF is a new step into filter-based automatic feature...

  9. Novel Automatic Filter-Class Feature Selection for Machine Learning Regression

    DEFF Research Database (Denmark)

    Wollsen, Morten Gill; Hallam, John; Jørgensen, Bo Nørregaard

    2016-01-01

    With the increased focus on application of Big Data in all sectors of society, the performance of machine learning becomes essential. Efficient machine learning depends on efficient feature selection algorithms. Filter feature selection algorithms are model-free and therefore very fast, but require...... model in the feature selection process. PCA is often used in machine learning litterature and can be considered the default feature selection method. RDESF outperformed PCA in both experiments in both prediction error and computational speed. RDESF is a new step into filter-based automatic feature...

  10. Comparison of Supervised and Unsupervised Learning Algorithms for Pattern Classification

    Directory of Open Access Journals (Sweden)

    R. Sathya

    2013-02-01

    Full Text Available This paper presents a comparative account of unsupervised and supervised learning models and their pattern classification evaluations as applied to the higher education scenario. Classification plays a vital role in machine based learning algorithms and in the present study, we found that, though the error back-propagation learning algorithm as provided by supervised learning model is very efficient for a number of non-linear real-time problems, KSOM of unsupervised learning model, offers efficient solution and classification in the present study.

  11. Committee of machine learning predictors of hydrological models uncertainty

    Science.gov (United States)

    Kayastha, Nagendra; Solomatine, Dimitri

    2014-05-01

    In prediction of uncertainty based on machine learning methods, the results of various sampling schemes namely, Monte Carlo sampling (MCS), generalized likelihood uncertainty estimation (GLUE), Markov chain Monte Carlo (MCMC), shuffled complex evolution metropolis algorithm (SCEMUA), differential evolution adaptive metropolis (DREAM), particle swarm optimization (PSO) and adaptive cluster covering (ACCO)[1] used to build a predictive models. These models predict the uncertainty (quantiles of pdf) of a deterministic output from hydrological model [2]. Inputs to these models are the specially identified representative variables (past events precipitation and flows). The trained machine learning models are then employed to predict the model output uncertainty which is specific for the new input data. For each sampling scheme three machine learning methods namely, artificial neural networks, model tree, locally weighted regression are applied to predict output uncertainties. The problem here is that different sampling algorithms result in different data sets used to train different machine learning models which leads to several models (21 predictive uncertainty models). There is no clear evidence which model is the best since there is no basis for comparison. A solution could be to form a committee of all models and to sue a dynamic averaging scheme to generate the final output [3]. This approach is applied to estimate uncertainty of streamflows simulation from a conceptual hydrological model HBV in the Nzoia catchment in Kenya. [1] N. Kayastha, D. L. Shrestha and D. P. Solomatine. Experiments with several methods of parameter uncertainty estimation in hydrological modeling. Proc. 9th Intern. Conf. on Hydroinformatics, Tianjin, China, September 2010. [2] D. L. Shrestha, N. Kayastha, and D. P. Solomatine, and R. Price. Encapsulation of parameteric uncertainty statistics by various predictive machine learning models: MLUE method, Journal of Hydroinformatic, in press

  12. Some multigrid algorithms for SIMD machines

    Energy Technology Data Exchange (ETDEWEB)

    Dendy, J.E. Jr. [Los Alamos National Lab., NM (United States)

    1996-12-31

    Previously a semicoarsening multigrid algorithm suitable for use on SIMD architectures was investigated. Through the use of new software tools, the performance of this algorithm has been considerably improved. The method has also been extended to three space dimensions. The method performs well for strongly anisotropic problems and for problems with coefficients jumping by orders of magnitude across internal interfaces. The parallel efficiency of this method is analyzed, and its actual performance on the CM-5 is compared with its performance on the CRAY-YMP. A standard coarsening multigrid algorithm is also considered, and we compare its performance on these two platforms as well.

  13. Machine learning strategies for systems with invariance properties

    Science.gov (United States)

    Ling, Julia; Jones, Reese; Templeton, Jeremy

    2016-08-01

    In many scientific fields, empirical models are employed to facilitate computational simulations of engineering systems. For example, in fluid mechanics, empirical Reynolds stress closures enable computationally-efficient Reynolds Averaged Navier Stokes simulations. Likewise, in solid mechanics, constitutive relations between the stress and strain in a material are required in deformation analysis. Traditional methods for developing and tuning empirical models usually combine physical intuition with simple regression techniques on limited data sets. The rise of high performance computing has led to a growing availability of high fidelity simulation data. These data open up the possibility of using machine learning algorithms, such as random forests or neural networks, to develop more accurate and general empirical models. A key question when using data-driven algorithms to develop these empirical models is how domain knowledge should be incorporated into the machine learning process. This paper will specifically address physical systems that possess symmetry or invariance properties. Two different methods for teaching a machine learning model an invariance property are compared. In the first method, a basis of invariant inputs is constructed, and the machine learning model is trained upon this basis, thereby embedding the invariance into the model. In the second method, the algorithm is trained on multiple transformations of the raw input data until the model learns invariance to that transformation. Results are discussed for two case studies: one in turbulence modeling and one in crystal elasticity. It is shown that in both cases embedding the invariance property into the input features yields higher performance at significantly reduced computational training costs.

  14. A hybrid algorithm for unrelated parallel machines scheduling

    Directory of Open Access Journals (Sweden)

    Mohsen Shafiei Nikabadi

    2016-09-01

    Full Text Available In this paper, a new hybrid algorithm based on multi-objective genetic algorithm (MOGA using simulated annealing (SA is proposed for scheduling unrelated parallel machines with sequence-dependent setup times, varying due dates, ready times and precedence relations among jobs. Our objective is to minimize makespan (Maximum completion time of all machines, number of tardy jobs, total tardiness and total earliness at the same time which can be more advantageous in real environment than considering each of objectives separately. For obtaining an optimal solution, hybrid algorithm based on MOGA and SA has been proposed in order to gain both good global and local search abilities. Simulation results and four well-known multi-objective performance metrics, indicate that the proposed hybrid algorithm outperforms the genetic algorithm (GA and SA in terms of each objective and significantly in minimizing the total cost of the weighted function.

  15. [Algorithms, machine intelligence, big data : general considerations].

    Science.gov (United States)

    Radermacher, F J

    2015-08-01

    We are experiencing astonishing developments in the areas of big data and artificial intelligence. They follow a pattern that we have now been observing for decades: according to Moore's Law,the performance and efficiency in the area of elementary arithmetic operations increases a thousand-fold every 20 years. Although we have not achieved the status where in the singular sense machines have become as "intelligent" as people, machines are becoming increasingly better. The Internet of Things has again helped to massively increase the efficiency of machines. Big data and suitable analytics do the same. If we let these processes simply continue, our civilization may be endangerd in many instances. If the "containment" of these processes succeeds in the context of a reasonable political global governance, a worldwide eco-social market economy, andan economy of green and inclusive markets, many desirable developments that are advantageous for our future may result. Then, at some point in time, the constant need for more and faster innovation may even stop. However, this is anything but certain. We are facing huge challenges.

  16. Nonparametric Divergence Estimation with Applications to Machine Learning on Distributions

    CERN Document Server

    Poczos, Barnabas; Schneider, Jeff

    2012-01-01

    Low-dimensional embedding, manifold learning, clustering, classification, and anomaly detection are among the most important problems in machine learning. The existing methods usually consider the case when each instance has a fixed, finite-dimensional feature representation. Here we consider a different setting. We assume that each instance corresponds to a continuous probability distribution. These distributions are unknown, but we are given some i.i.d. samples from each distribution. Our goal is to estimate the distances between these distributions and use these distances to perform low-dimensional embedding, clustering/classification, or anomaly detection for the distributions. We present estimation algorithms, describe how to apply them for machine learning tasks on distributions, and show empirical results on synthetic data, real word images, and astronomical data sets.

  17. Support vector machines optimization based theory, algorithms, and extensions

    CERN Document Server

    Deng, Naiyang; Zhang, Chunhua

    2013-01-01

    Support Vector Machines: Optimization Based Theory, Algorithms, and Extensions presents an accessible treatment of the two main components of support vector machines (SVMs)-classification problems and regression problems. The book emphasizes the close connection between optimization theory and SVMs since optimization is one of the pillars on which SVMs are built.The authors share insight on many of their research achievements. They give a precise interpretation of statistical leaning theory for C-support vector classification. They also discuss regularized twi

  18. 论机器学习%On Machine Learning

    Institute of Scientific and Technical Information of China (English)

    赵玉鹏

    2011-01-01

    Machine learning is the important branch of Artificial Intelligence and is a scientific discipline concerned with the design and development of algorithms that allow computers to evolve behaviors based on empirical data.The research of machine learning has two purpose:or to improve the performance of robot,other is to discover the new knowledge from database.The scientific community of machine learning is divided tow group: one is to improve the algorithm of classification,the other is the computational learning theory.%机器学习是一门人工智能的科学,同时也是实现人工智能的一个重要途径。相应地,机器学习的研究目的有两个:一是用于提高机器人的性能;二是从数据库中发现新的知识。机器学习的研究队伍可以分为两个科学共同体:一个群体用于分类算法的改进;另一个群体主要进行从事计算学习理论的分析。

  19. Machine learning methods for metabolic pathway prediction

    Directory of Open Access Journals (Sweden)

    Karp Peter D

    2010-01-01

    Full Text Available Abstract Background A key challenge in systems biology is the reconstruction of an organism's metabolic network from its genome sequence. One strategy for addressing this problem is to predict which metabolic pathways, from a reference database of known pathways, are present in the organism, based on the annotated genome of the organism. Results To quantitatively validate methods for pathway prediction, we developed a large "gold standard" dataset of 5,610 pathway instances known to be present or absent in curated metabolic pathway databases for six organisms. We defined a collection of 123 pathway features, whose information content we evaluated with respect to the gold standard. Feature data were used as input to an extensive collection of machine learning (ML methods, including naïve Bayes, decision trees, and logistic regression, together with feature selection and ensemble methods. We compared the ML methods to the previous PathoLogic algorithm for pathway prediction using the gold standard dataset. We found that ML-based prediction methods can match the performance of the PathoLogic algorithm. PathoLogic achieved an accuracy of 91% and an F-measure of 0.786. The ML-based prediction methods achieved accuracy as high as 91.2% and F-measure as high as 0.787. The ML-based methods output a probability for each predicted pathway, whereas PathoLogic does not, which provides more information to the user and facilitates filtering of predicted pathways. Conclusions ML methods for pathway prediction perform as well as existing methods, and have qualitative advantages in terms of extensibility, tunability, and explainability. More advanced prediction methods and/or more sophisticated input features may improve the performance of ML methods. However, pathway prediction performance appears to be limited largely by the ability to correctly match enzymes to the reactions they catalyze based on genome annotations.

  20. Machine Learning Assessments of Soil Drying

    Science.gov (United States)

    Coopersmith, E. J.; Minsker, B. S.; Wenzel, C.; Gilmore, B. J.

    2011-12-01

    Agricultural activities require the use of heavy equipment and vehicles on unpaved farmlands. When soil conditions are wet, equipment can cause substantial damage, leaving deep ruts. In extreme cases, implements can sink and become mired, causing considerable delays and expense to extricate the equipment. Farm managers, who are often located remotely, cannot assess sites before allocating equipment, causing considerable difficulty in reliably assessing conditions of countless sites with any reliability and frequency. For example, farmers often trace serpentine paths of over one hundred miles each day to assess the overall status of various tracts of land spanning thirty, forty, or fifty miles in each direction. One means of assessing the moisture content of a field lies in the strategic positioning of remotely-monitored in situ sensors. Unfortunately, land owners are often reluctant to place sensors across their properties due to the significant monetary cost and complexity. This work aspires to overcome these limitations by modeling the process of wetting and drying statistically - remotely assessing field readiness using only information that is publically accessible. Such data includes Nexrad radar and state climate network sensors, as well as Twitter-based reports of field conditions for validation. Three algorithms, classification trees, k-nearest-neighbors, and boosted perceptrons are deployed to deliver statistical field readiness assessments of an agricultural site located in Urbana, IL. Two of the three algorithms performed with 92-94% accuracy, with the majority of misclassifications falling within the calculated margins of error. This demonstrates the feasibility of using a machine learning framework with only public data, knowledge of system memory from previous conditions, and statistical tools to assess "readiness" without the need for real-time, on-site physical observation. Future efforts will produce a workflow assimilating Nexrad, climate network

  1. Classifying BCI signals from novice users with extreme learning machine

    Science.gov (United States)

    Rodríguez-Bermúdez, Germán; Bueno-Crespo, Andrés; José Martinez-Albaladejo, F.

    2017-07-01

    Brain computer interface (BCI) allows to control external devices only with the electrical activity of the brain. In order to improve the system, several approaches have been proposed. However it is usual to test algorithms with standard BCI signals from experts users or from repositories available on Internet. In this work, extreme learning machine (ELM) has been tested with signals from 5 novel users to compare with standard classification algorithms. Experimental results show that ELM is a suitable method to classify electroencephalogram signals from novice users.

  2. Classifying BCI signals from novice users with extreme learning machine

    Directory of Open Access Journals (Sweden)

    Rodríguez-Bermúdez Germán

    2017-07-01

    Full Text Available Brain computer interface (BCI allows to control external devices only with the electrical activity of the brain. In order to improve the system, several approaches have been proposed. However it is usual to test algorithms with standard BCI signals from experts users or from repositories available on Internet. In this work, extreme learning machine (ELM has been tested with signals from 5 novel users to compare with standard classification algorithms. Experimental results show that ELM is a suitable method to classify electroencephalogram signals from novice users.

  3. Semi-Online Algorithms for Scheduling with Machine Cost

    Institute of Scientific and Technical Information of China (English)

    Yi-Wei Jiang; Yong He

    2006-01-01

    In this paper, we consider the following semi-online List Model problem with known total size. We are given a sequence of independent jobs with positive sizes, which must be assigned to be processed on machines. No machines are initially provided, and when a job is revealed the algorithm has the option to purchase new machines. By normalizing all job sizes and machine cost, we assume that the cost of purchasing one machine is 1. We further know the total size of all jobs in advance. The objective is to minimize the sum of the makespan and the number of machines to be purchased. Both non-preemptive and preemptive versions are considered. For the non-preemptive version, we present a new lower bound 6/5 which improves the known lower bound 1.161. For the preemptive version, we present an optimal semi-online algorithm with a competitive ratio of 1 in the case that the total size is not greater than 4, and an algorithm with a competitive ratio of 5/4 otherwise, while a lower bound 1.0957 is also presented for general case.

  4. An efficient learning procedure for deep Boltzmann machines.

    Science.gov (United States)

    Salakhutdinov, Ruslan; Hinton, Geoffrey

    2012-08-01

    We present a new learning algorithm for Boltzmann machines that contain many layers of hidden variables. Data-dependent statistics are estimated using a variational approximation that tends to focus on a single mode, and data-independent statistics are estimated using persistent Markov chains. The use of two quite different techniques for estimating the two types of statistic that enter into the gradient of the log likelihood makes it practical to learn Boltzmann machines with multiple hidden layers and millions of parameters. The learning can be made more efficient by using a layer-by-layer pretraining phase that initializes the weights sensibly. The pretraining also allows the variational inference to be initialized sensibly with a single bottom-up pass. We present results on the MNIST and NORB data sets showing that deep Boltzmann machines learn very good generative models of handwritten digits and 3D objects. We also show that the features discovered by deep Boltzmann machines are a very effective way to initialize the hidden layers of feedforward neural nets, which are then discriminatively fine-tuned.

  5. Machine Learning Optimization of Evolvable Artificial Cells

    DEFF Research Database (Denmark)

    Caschera, F.; Rasmussen, S.; Hanczyc, M.

    2011-01-01

    can be explored. A machine learning approach (Evo-DoE) could be applied to explore this experimental space and define optimal interactions according to a specific fitness function. Herein an implementation of an evolutionary design of experiments to optimize chemical and biochemical systems based...... on a machine learning process is presented. The optimization proceeds over generations of experiments in iterative loop until optimal compositions are discovered. The fitness function is experimentally measured every time the loop is closed. Two examples of complex systems, namely a liposomal drug formulation...

  6. A Machine Learning Approach to Automated Negotiation

    Institute of Scientific and Technical Information of China (English)

    Zhang Huaxiang(张化祥); Zhang Liang; Huang Shangteng; Ma Fanyuan

    2004-01-01

    Automated negotiation between two competitive agents is analyzed, and a multi-issue negotiation model based on machine learning, time belief, offer belief and state-action pair expected Q value is developed. Unlike the widely used approaches such as game theory approach, heuristic approach and argumentation approach, This paper uses a machine learning method to compute agents' average Q values in each negotiation stage. The delayed reward is used to generate agents' offer and counteroffer of every issue. The effect of time and discount rate on negotiation outcome is analyzed. Theory analysis and experimental data show this negotiation model is practical.

  7. Machine learning methods for nanolaser characterization

    CERN Document Server

    Zibar, Darko; Winther, Ole; Moerk, Jesper; Schaeffer, Christian

    2016-01-01

    Nanocavity lasers, which are an integral part of an on-chip integrated photonic network, are setting stringent requirements on the sensitivity of the techniques used to characterize the laser performance. Current characterization tools cannot provide detailed knowledge about nanolaser noise and dynamics. In this progress article, we will present tools and concepts from the Bayesian machine learning and digital coherent detection that offer novel approaches for highly-sensitive laser noise characterization and inference of laser dynamics. The goal of the paper is to trigger new research directions that combine the fields of machine learning and nanophotonics for characterizing nanolasers and eventually integrated photonic networks

  8. Improving diagnostic recognition of primary hyperparathyroidism with machine learning.

    Science.gov (United States)

    Somnay, Yash R; Craven, Mark; McCoy, Kelly L; Carty, Sally E; Wang, Tracy S; Greenberg, Caprice C; Schneider, David F

    2017-04-01

    Parathyroidectomy offers the only cure for primary hyperparathyroidism, but today only 50% of primary hyperparathyroidism patients are referred for operation, in large part, because the condition is widely under-recognized. The diagnosis of primary hyperparathyroidism can be especially challenging with mild biochemical indices. Machine learning is a collection of methods in which computers build predictive algorithms based on labeled examples. With the aim of facilitating diagnosis, we tested the ability of machine learning to distinguish primary hyperparathyroidism from normal physiology using clinical and laboratory data. This retrospective cohort study used a labeled training set and 10-fold cross-validation to evaluate accuracy of the algorithm. Measures of accuracy included area under the receiver operating characteristic curve, precision (sensitivity), and positive and negative predictive value. Several different algorithms and ensembles of algorithms were tested using the Weka platform. Among 11,830 patients managed operatively at 3 high-volume endocrine surgery programs from March 2001 to August 2013, 6,777 underwent parathyroidectomy for confirmed primary hyperparathyroidism, and 5,053 control patients without primary hyperparathyroidism underwent thyroidectomy. Test-set accuracies for machine learning models were determined using 10-fold cross-validation. Age, sex, and serum levels of preoperative calcium, phosphate, parathyroid hormone, vitamin D, and creatinine were defined as potential predictors of primary hyperparathyroidism. Mild primary hyperparathyroidism was defined as primary hyperparathyroidism with normal preoperative calcium or parathyroid hormone levels. After testing a variety of machine learning algorithms, Bayesian network models proved most accurate, classifying correctly 95.2% of all primary hyperparathyroidism patients (area under receiver operating characteristic = 0.989). Omitting parathyroid hormone from the model did not

  9. Research and improvement of multiclass pattern classifier based on vector machine learning algorithm%基于向量机学习算法的多模式分类器的研究及改进

    Institute of Scientific and Technical Information of China (English)

    柳长源; 毕晓君; 韦琦

    2013-01-01

    In order to improve classification efficiency of multiclass pattern recognition based on " one a-gainst one" learning algorithm in vector machine, investigated the method of support vector machine and relevance vector machine algorithm in multi-mode classification, and found that comparison for too many times was the main reason for large amount of calculation. Proposed a way that eliminated the most dissimilar class in each round of comparison. Comparison times were reduced step by step per cycle. The classification number was more, and the decrease in the total calculation amount was more obvious. The theory analysis and the experimental results of data classification show that compared with traditional classifier , the training times and the recognition times of the method are greatly reduced under the premise of hardly influencing classification accuracy, and the algorithm running speed is improved obviously.%为了提高向量机“一对一”学习算法在多模式识别中的分类效率,对基于支持向量机和相关向量机算法进行多模式分类的方法进行研究,发现比较次数过多是该方法计算量大的主要原因.提出了一种在每轮比较中,排除最差类别的新方法.该方法使比较次数逐级减少,并且当类别数较多时,总计算量减少尤其明显.通过理论分析和对数据分类的实验结果表明,新方法与传统分类器相比,在基本不影响分类正确率的前提下,机器训练与识别次数显著减少,算法运行速度明显提高.

  10. Risk assessment of atmospheric emissions using machine learning

    Directory of Open Access Journals (Sweden)

    G. Cervone

    2008-09-01

    Full Text Available Supervised and unsupervised machine learning algorithms are used to perform statistical and logical analysis of several transport and dispersion model runs which simulate emissions from a fixed source under different atmospheric conditions.

    First, a clustering algorithm is used to automatically group the results of different transport and dispersion simulations according to specific cloud characteristics. Then, a symbolic classification algorithm is employed to find complex non-linear relationships between the meteorological input conditions and each cluster of clouds. The patterns discovered are provided in the form of probabilistic measures of contamination, thus suitable for result interpretation and dissemination.

    The learned patterns can be used for quick assessment of the areas at risk and of the fate of potentially hazardous contaminants released in the atmosphere.

  11. Weka machine learning for predicting the phospholipidosis inducing potential.

    Science.gov (United States)

    Ivanciuc, Ovidiu

    2008-01-01

    The drug discovery and development process is lengthy and expensive, and bringing a drug to market may take up to 18 years and may cost up to 2 billion $US. The extensive use of computer-assisted drug design techniques may considerably increase the chances of finding valuable drug candidates, thus decreasing the drug discovery time and costs. The most important computational approach is represented by structure-activity relationships that can discriminate between sets of chemicals that are active/inactive towards a certain biological receptor. An adverse effect of some cationic amphiphilic drugs is phospholipidosis that manifests as an intracellular accumulation of phospholipids and formation of concentric lamellar bodies. Here we present structure-activity relationships (SAR) computed with a wide variety of machine learning algorithms trained to identify drugs that have phospholipidosis inducing potential. All SAR models are developed with the machine learning software Weka, and include both classical algorithms, such as k-nearest neighbors and decision trees, as well as recently introduced methods, such as support vector machines and artificial immune systems. The best predictions are obtained with support vector machines, followed by perceptron artificial neural network, logistic regression, and k-nearest neighbors.

  12. Research into Financial Position of Listed Companies following Classification via Extreme Learning Machine Based upon DE Optimization

    Directory of Open Access Journals (Sweden)

    Fu Yu

    2016-01-01

    Full Text Available By means of the model of extreme learning machine based upon DE optimization, this article particularly centers on the optimization thinking of such a model as well as its application effect in the field of listed company’s financial position classification. It proves that the improved extreme learning machine algorithm based upon DE optimization eclipses the traditional extreme learning machine algorithm following comparison. Meanwhile, this article also intends to introduce certain research thinking concerning extreme learning machine into the economics classification area so as to fulfill the purpose of computerizing the speedy but effective evaluation of massive financial statements of listed companies pertain to different classes

  13. Machine Learning for Email Spam Filtering and Priority Inbox

    CERN Document Server

    Conway, Drew

    2011-01-01

    If you're an experienced programmer willing to crunch data, this concise guide will show you how to use machine learning to work with email. You'll learn how to write algorithms that automatically sort and redirect email based on statistical patterns. Authors Drew Conway and John Myles White approach the process in a practical fashion, using a case-study driven approach rather than a traditional math-heavy presentation. This book also includes a short tutorial on using the popular R language to manipulate and analyze data. You'll get clear examples for analyzing sample data and writing machi

  14. Novel Newton's learning algorithm of neural networks

    Institute of Scientific and Technical Information of China (English)

    Long Ning; Zhang Fengli

    2006-01-01

    Newton's learning algorithm of NN is presented and realized. In theory, the convergence rate of learning algorithm of NN based on Newton's method must be faster than BP's and other learning algorithms, because the gradient method is linearly convergent while Newton's method has second order convergence rate.The fast computing algorithm of Hesse matrix of the cost function of NN is proposed and it is the theory basis of the improvement of Newton's learning algorithm. Simulation results show that the convergence rate of Newton's learning algorithm is high and apparently faster than the traditional BP method's, and the robustness of Newton's learning algorithm is also better than BP method's.

  15. A Machine Learning Framework for Plan Payment Risk Adjustment.

    Science.gov (United States)

    Rose, Sherri

    2016-12-01

    To introduce cross-validation and a nonparametric machine learning framework for plan payment risk adjustment and then assess whether they have the potential to improve risk adjustment. 2011-2012 Truven MarketScan database. We compare the performance of multiple statistical approaches within a broad machine learning framework for estimation of risk adjustment formulas. Total annual expenditure was predicted using age, sex, geography, inpatient diagnoses, and hierarchical condition category variables. The methods included regression, penalized regression, decision trees, neural networks, and an ensemble super learner, all in concert with screening algorithms that reduce the set of variables considered. The performance of these methods was compared based on cross-validated R(2) . Our results indicate that a simplified risk adjustment formula selected via this nonparametric framework maintains much of the efficiency of a traditional larger formula. The ensemble approach also outperformed classical regression and all other algorithms studied. The implementation of cross-validated machine learning techniques provides novel insight into risk adjustment estimation, possibly allowing for a simplified formula, thereby reducing incentives for increased coding intensity as well as the ability of insurers to "game" the system with aggressive diagnostic upcoding. © Health Research and Educational Trust.

  16. Tracking by Machine Learning Methods

    CERN Document Server

    Jofrehei, Arash

    2015-01-01

    Current track reconstructing methods start with two points and then for each layer loop through all possible hits to find proper hits to add to that track. Another idea would be to use this large number of already reconstructed events and/or simulated data and train a machine on this data to find tracks given hit pixels. Training time could be long but real time tracking is really fast Simulation might not be as realistic as real data but tacking has been done for that with 100 percent efficiency while by using real data we would probably be limited to current efficiency.

  17. Prototype-based models in machine learning

    NARCIS (Netherlands)

    Biehl, Michael; Hammer, Barbara; Villmann, Thomas

    2016-01-01

    An overview is given of prototype-based models in machine learning. In this framework, observations, i.e., data, are stored in terms of typical representatives. Together with a suitable measure of similarity, the systems can be employed in the context of unsupervised and supervised analysis of poten

  18. Supporting visual quality assessment with machine learning

    NARCIS (Netherlands)

    Gastaldo, P.; Zunino, R.; Redi, J.

    2013-01-01

    Objective metrics for visual quality assessment often base their reliability on the explicit modeling of the highly non-linear behavior of human perception; as a result, they may be complex and computationally expensive. Conversely, machine learning (ML) paradigms allow to tackle the quality

  19. Prototype-based models in machine learning

    NARCIS (Netherlands)

    Biehl, Michael; Hammer, Barbara; Villmann, Thomas

    2016-01-01

    An overview is given of prototype-based models in machine learning. In this framework, observations, i.e., data, are stored in terms of typical representatives. Together with a suitable measure of similarity, the systems can be employed in the context of unsupervised and supervised analysis of

  20. Extracting meaning from audio signals - a machine learning approach

    DEFF Research Database (Denmark)

    Larsen, Jan

    2007-01-01

    * Machine learning framework for sound search * Genre classification * Music and audio separation * Wind noise suppression......* Machine learning framework for sound search * Genre classification * Music and audio separation * Wind noise suppression...

  1. Extracting meaning from audio signals - a machine learning approach

    DEFF Research Database (Denmark)

    Larsen, Jan

    2007-01-01

    * Machine learning framework for sound search * Genre classification * Music and audio separation * Wind noise suppression......* Machine learning framework for sound search * Genre classification * Music and audio separation * Wind noise suppression...

  2. Machine Learning Based Malware Detection

    Science.gov (United States)

    2015-05-18

    algorithms analyze records designated for training to generate a mathematical model that maps the relationship of file features and labels. That...Microsoft Windows: - Windows Vista Enterprise - Windows 7 Professional - Windows Server 2008 R2 Standard - Windows 8.1 Professional Additionally, we

  3. Mining the Galaxy Zoo Database: Machine Learning Applications

    Science.gov (United States)

    Borne, Kirk D.; Wallin, J.; Vedachalam, A.; Baehr, S.; Lintott, C.; Darg, D.; Smith, A.; Fortson, L.

    2010-01-01

    The new Zooniverse initiative is addressing the data flood in the sciences through a transformative partnership between professional scientists, volunteer citizen scientists, and machines. As part of this project, we are exploring the application of machine learning techniques to data mining problems associated with the large and growing database of volunteer science results gathered by the Galaxy Zoo citizen science project. We will describe the basic challenge, some machine learning approaches, and early results. One of the motivators for this study is the acquisition (through the Galaxy Zoo results database) of approximately 100 million classification labels for roughly one million galaxies, yielding a tremendously large and rich set of training examples for improving automated galaxy morphological classification algorithms. In our first case study, the goal is to learn which morphological and photometric features in the Sloan Digital Sky Survey (SDSS) database correlate most strongly with user-selected galaxy morphological class. As a corollary to this study, we are also aiming to identify which galaxy parameters in the SDSS database correspond to galaxies that have been the most difficult to classify (based upon large dispersion in their volunter-provided classifications). Our second case study will focus on similar data mining analyses and machine leaning algorithms applied to the Galaxy Zoo catalog of merging and interacting galaxies. The outcomes of this project will have applications in future large sky surveys, such as the LSST (Large Synoptic Survey Telescope) project, which will generate a catalog of 20 billion galaxies and will produce an additional astronomical alert database of approximately 100 thousand events each night for 10 years -- the capabilities and algorithms that we are exploring will assist in the rapid characterization and classification of such massive data streams. This research has been supported in part through NSF award #0941610.

  4. A Parameter Communication Optimization Strategy for Distributed Machine Learning in Sensors

    Directory of Open Access Journals (Sweden)

    Jilin Zhang

    2017-09-01

    Full Text Available In order to utilize the distributed characteristic of sensors, distributed machine learning has become the mainstream approach, but the different computing capability of sensors and network delays greatly influence the accuracy and the convergence rate of the machine learning model. Our paper describes a reasonable parameter communication optimization strategy to balance the training overhead and the communication overhead. We extend the fault tolerance of iterative-convergent machine learning algorithms and propose the Dynamic Finite Fault Tolerance (DFFT. Based on the DFFT, we implement a parameter communication optimization strategy for distributed machine learning, named Dynamic Synchronous Parallel Strategy (DSP, which uses the performance monitoring model to dynamically adjust the parameter synchronization strategy between worker nodes and the Parameter Server (PS. This strategy makes full use of the computing power of each sensor, ensures the accuracy of the machine learning model, and avoids the situation that the model training is disturbed by any tasks unrelated to the sensors.

  5. A Parameter Communication Optimization Strategy for Distributed Machine Learning in Sensors.

    Science.gov (United States)

    Zhang, Jilin; Tu, Hangdi; Ren, Yongjian; Wan, Jian; Zhou, Li; Li, Mingwei; Wang, Jue; Yu, Lifeng; Zhao, Chang; Zhang, Lei

    2017-09-21

    In order to utilize the distributed characteristic of sensors, distributed machine learning has become the mainstream approach, but the different computing capability of sensors and network delays greatly influence the accuracy and the convergence rate of the machine learning model. Our paper describes a reasonable parameter communication optimization strategy to balance the training overhead and the communication overhead. We extend the fault tolerance of iterative-convergent machine learning algorithms and propose the Dynamic Finite Fault Tolerance (DFFT). Based on the DFFT, we implement a parameter communication optimization strategy for distributed machine learning, named Dynamic Synchronous Parallel Strategy (DSP), which uses the performance monitoring model to dynamically adjust the parameter synchronization strategy between worker nodes and the Parameter Server (PS). This strategy makes full use of the computing power of each sensor, ensures the accuracy of the machine learning model, and avoids the situation that the model training is disturbed by any tasks unrelated to the sensors.

  6. Systematic Poisoning Attacks on and Defenses for Machine Learning in Healthcare.

    Science.gov (United States)

    Mozaffari-Kermani, Mehran; Sur-Kolay, Susmita; Raghunathan, Anand; Jha, Niraj K

    2015-11-01

    Machine learning is being used in a wide range of application domains to discover patterns in large datasets. Increasingly, the results of machine learning drive critical decisions in applications related to healthcare and biomedicine. Such health-related applications are often sensitive, and thus, any security breach would be catastrophic. Naturally, the integrity of the results computed by machine learning is of great importance. Recent research has shown that some machine-learning algorithms can be compromised by augmenting their training datasets with malicious data, leading to a new class of attacks called poisoning attacks. Hindrance of a diagnosis may have life-threatening consequences and could cause distrust. On the other hand, not only may a false diagnosis prompt users to distrust the machine-learning algorithm and even abandon the entire system but also such a false positive classification may cause patient distress. In this paper, we present a systematic, algorithm-independent approach for mounting poisoning attacks across a wide range of machine-learning algorithms and healthcare datasets. The proposed attack procedure generates input data, which, when added to the training set, can either cause the results of machine learning to have targeted errors (e.g., increase the likelihood of classification into a specific class), or simply introduce arbitrary errors (incorrect classification). These attacks may be applied to both fixed and evolving datasets. They can be applied even when only statistics of the training dataset are available or, in some cases, even without access to the training dataset, although at a lower efficacy. We establish the effectiveness of the proposed attacks using a suite of six machine-learning algorithms and five healthcare datasets. Finally, we present countermeasures against the proposed generic attacks that are based on tracking and detecting deviations in various accuracy metrics, and benchmark their effectiveness.

  7. Machine Learning of the Reactor Core Loading Pattern Critical Parameters

    Directory of Open Access Journals (Sweden)

    Krešimir Trontl

    2008-01-01

    Full Text Available The usual approach to loading pattern optimization involves high degree of engineering judgment, a set of heuristic rules, an optimization algorithm, and a computer code used for evaluating proposed loading patterns. The speed of the optimization process is highly dependent on the computer code used for the evaluation. In this paper, we investigate the applicability of a machine learning model which could be used for fast loading pattern evaluation. We employ a recently introduced machine learning technique, support vector regression (SVR, which is a data driven, kernel based, nonlinear modeling paradigm, in which model parameters are automatically determined by solving a quadratic optimization problem. The main objective of the work reported in this paper was to evaluate the possibility of applying SVR method for reactor core loading pattern modeling. We illustrate the performance of the solution and discuss its applicability, that is, complexity, speed, and accuracy.

  8. How the machine learning conquers reconstruction in neutrino experiments

    CERN Document Server

    CERN. Geneva

    2017-01-01

    An evolution from the purely algorithmic approaches towards the machine learning solutions started a few years ago in the neutrino experiments. Now, this process turns into a true boom, especially in the experiments based on the imaging technologies, such as LArTPC’s used in MicroBooNE and DUNE experiments or liquid scintillator detector implemented by the NOvA Collaboration. High resolution, image-like projections of events obtained with these detectors proved to be hard pattern recognition problems for the conventional reconstruction techniques. In the seminar, I will present why the neutrino events are so challenging and how the essential difficulties are now being attacked with the machine learning.

  9. Machine Learning and Cosmological Simulations II: Hydrodynamical Simulations

    CERN Document Server

    Kamdar, Harshil M; Brunner, Robert J

    2015-01-01

    We extend a machine learning (ML) framework presented previously to model galaxy formation and evolution in a hierarchical universe using N-body + hydrodynamical simulations. In this work, we show that ML is a promising technique to study galaxy formation in the backdrop of a hydrodynamical simulation. We use the Illustris Simulation to train and test various sophisticated machine learning algorithms. By using only essential dark matter halo physical properties and no merger history, our model predicts the gas mass, stellar mass, black hole mass, star formation rate, $g-r$ color, and stellar metallicity fairly robustly. Our results provide a unique and powerful phenomenological framework to explore the galaxy-halo connection that is built upon a solid hydrodynamical simulation. The promising reproduction of the listed galaxy properties demonstrably place ML as a promising and a significantly more computationally efficient tool to study small-scale structure formation. We find that ML mimics a full-blown hydro...

  10. Yarn Properties Prediction Based on Machine Learning Method

    Institute of Scientific and Technical Information of China (English)

    YANG Jian-guo; L(U) Zhi-jun; LI Bei-zhi

    2007-01-01

    Although many works have been done to constructprediction models on yarn processing quality, the relationbetween spinning variables and yam properties has not beenestablished conclusively so far. Support vector machines(SVMs), based on statistical learning theory, are gainingapplications in the areas of machine learning and patternrecognition because of the high accuracy and goodgeneralization capability. This study briefly introduces theSVM regression algorithms, and presents the SVM basedsystem architecture for predicting yam properties. Model.selection which amounts to search in hyper-parameter spaceis performed for study of suitable parameters with grid-research method. Experimental results have been comparedwith those of artificial neural network(ANN) models. Theinvestigation indicates that in the small data sets and real-life production, SVM models are capable of remaining thestability of predictive accuracy, and more suitable for noisyand dynamic spinning process.

  11. Prototype Vector Machine for Large Scale Semi-Supervised Learning

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kai; Kwok, James T.; Parvin, Bahram

    2009-04-29

    Practicaldataminingrarelyfalls exactlyinto the supervisedlearning scenario. Rather, the growing amount of unlabeled data poses a big challenge to large-scale semi-supervised learning (SSL). We note that the computationalintensivenessofgraph-based SSLarises largely from the manifold or graph regularization, which in turn lead to large models that are dificult to handle. To alleviate this, we proposed the prototype vector machine (PVM), a highlyscalable,graph-based algorithm for large-scale SSL. Our key innovation is the use of"prototypes vectors" for effcient approximation on both the graph-based regularizer and model representation. The choice of prototypes are grounded upon two important criteria: they not only perform effective low-rank approximation of the kernel matrix, but also span a model suffering the minimum information loss compared with the complete model. We demonstrate encouraging performance and appealing scaling properties of the PVM on a number of machine learning benchmark data sets.

  12. Fast, Continuous Audiogram Estimation Using Machine Learning.

    Science.gov (United States)

    Song, Xinyu D; Wallace, Brittany M; Gardner, Jacob R; Ledbetter, Noah M; Weinberger, Kilian Q; Barbour, Dennis L

    2015-01-01

    Pure-tone audiometry has been a staple of hearing assessments for decades. Many different procedures have been proposed for measuring thresholds with pure tones by systematically manipulating intensity one frequency at a time until a discrete threshold function is determined. The authors have developed a novel nonparametric approach for estimating a continuous threshold audiogram using Bayesian estimation and machine learning classification. The objective of this study was to assess the accuracy and reliability of this new method relative to a commonly used threshold measurement technique. The authors performed air conduction pure-tone audiometry on 21 participants between the ages of 18 and 90 years with varying degrees of hearing ability. Two repetitions of automated machine learning audiogram estimation and one repetition of conventional modified Hughson-Westlake ascending-descending audiogram estimation were acquired by an audiologist. The estimated hearing thresholds of these two techniques were compared at standard audiogram frequencies (i.e., 0.25, 0.5, 1, 2, 4, 8 kHz). The two threshold estimate methods delivered very similar estimates at standard audiogram frequencies. Specifically, the mean absolute difference between estimates was 4.16 ± 3.76 dB HL. The mean absolute difference between repeated measurements of the new machine learning procedure was 4.51 ± 4.45 dB HL. These values compare favorably with those of other threshold audiogram estimation procedures. Furthermore, the machine learning method generated threshold estimates from significantly fewer samples than the modified Hughson-Westlake procedure while returning a continuous threshold estimate as a function of frequency. The new machine learning audiogram estimation technique produces continuous threshold audiogram estimates accurately, reliably, and efficiently, making it a strong candidate for widespread application in clinical and research audiometry.

  13. Machine learning a theoretical approach

    CERN Document Server

    Natarajan, Balas K

    2014-01-01

    This is the first comprehensive introduction to computational learning theory. The author's uniform presentation of fundamental results and their applications offers AI researchers a theoretical perspective on the problems they study. The book presents tools for the analysis of probabilistic models of learning, tools that crisply classify what is and is not efficiently learnable. After a general introduction to Valiant's PAC paradigm and the important notion of the Vapnik-Chervonenkis dimension, the author explores specific topics such as finite automata and neural networks. The presentation

  14. Harmonic Theory and Machine Learning

    OpenAIRE

    Nanclares, Jorge; Rapallini, Ulises Mario Alberto

    2007-01-01

    A natural inference mechanism is presented : the Black Box problem is transformed into a Dirichlet's problem on the closed cube. Then it is solved in closed polynomial form, together with a Mean-Value theorem and a Maximum Principle.A generalization to Polytopes and a reduction of any Dirichlet problem on compacta is mapp ed into a unit cub e in more dimensions.An algorithm for calculating the solution is suggested. Facultad de Informática

  15. Self-configuration from a Machine-Learning Perspective

    CERN Document Server

    Konen, Wolfgang

    2011-01-01

    The goal of machine learning is to provide solutions which are trained by data or by experience coming from the environment. Many training algorithms exist and some brilliant successes were achieved. But even in structured environments for machine learning (e.g. data mining or board games), most applications beyond the level of toy problems need careful hand-tuning or human ingenuity (i.e. detection of interesting patterns) or both. We discuss several aspects how self-configuration can help to alleviate these problems. One aspect is the self-configuration by tuning of algorithms, where recent advances have been made in the area of SPO (Sequen- tial Parameter Optimization). Another aspect is the self-configuration by pattern detection or feature construction. Forming multiple features (e.g. random boolean functions) and using algorithms (e.g. random forests) which easily digest many fea- tures can largely increase learning speed. However, a full-fledged theory of feature construction is not yet available and f...

  16. SPAM CLASSIFICATION BASED ON SUPERVISED LEARNING USING MACHINE LEARNING TECHNIQUES

    Directory of Open Access Journals (Sweden)

    T. Hamsapriya

    2011-12-01

    Full Text Available E-mail is one of the most popular and frequently used ways of communication due to its worldwide accessibility, relatively fast message transfer, and low sending cost. The flaws in the e-mail protocols and the increasing amount of electronic business and financial transactions directly contribute to the increase in e-mail-based threats. Email spam is one of the major problems of the today’s Internet, bringing financial damage to companies and annoying individual users. Spam emails are invading users without their consent and filling their mail boxes. They consume more network capacity as well as time in checking and deleting spam mails. The vast majority of Internet users are outspoken in their disdain for spam, although enough of them respond to commercial offers that spam remains a viable source of income to spammers. While most of the users want to do right think to avoid and get rid of spam, they need clear and simple guidelines on how to behave. In spite of all the measures taken to eliminate spam, they are not yet eradicated. Also when the counter measures are over sensitive, even legitimate emails will be eliminated. Among the approaches developed to stop spam, filtering is the one of the most important technique. Many researches in spam filtering have been centered on the more sophisticated classifier-related issues. In recent days, Machine learning for spam classification is an important research issue. The effectiveness of the proposed work is explores and identifies the use of different learning algorithms for classifying spam messages from e-mail. A comparative analysis among the algorithms has also been presented.

  17. Interface Metaphors for Interactive Machine Learning

    Energy Technology Data Exchange (ETDEWEB)

    Jasper, Robert J.; Blaha, Leslie M.

    2017-07-14

    To promote more interactive and dynamic machine learn- ing, we revisit the notion of user-interface metaphors. User-interface metaphors provide intuitive constructs for supporting user needs through interface design elements. A user-interface metaphor provides a visual or action pattern that leverages a user’s knowledge of another domain. Metaphors suggest both the visual representations that should be used in a display as well as the interactions that should be afforded to the user. We argue that user-interface metaphors can also offer a method of extracting interaction-based user feedback for use in machine learning. Metaphors offer indirect, context-based information that can be used in addition to explicit user inputs, such as user-provided labels. Implicit information from user interactions with metaphors can augment explicit user input for active learning paradigms. Or it might be leveraged in systems where explicit user inputs are more challenging to obtain. Each interaction with the metaphor provides an opportunity to gather data and learn. We argue this approach is especially important in streaming applications, where we desire machine learning systems that can adapt to dynamic, changing data.

  18. Intra-and-Inter Species Biomass Prediction in a Plantation Forest: Testing the Utility of High Spatial Resolution Spaceborne Multispectral RapidEye Sensor and Advanced Machine Learning Algorithms

    Directory of Open Access Journals (Sweden)

    Timothy Dube

    2014-08-01

    Full Text Available The quantification of aboveground biomass using remote sensing is critical for better understanding the role of forests in carbon sequestration and for informed sustainable management. Although remote sensing techniques have been proven useful in assessing forest biomass in general, more is required to investigate their capabilities in predicting intra-and-inter species biomass which are mainly characterised by non-linear relationships. In this study, we tested two machine learning algorithms, Stochastic Gradient Boosting (SGB and Random Forest (RF regression trees to predict intra-and-inter species biomass using high resolution RapidEye reflectance bands as well as the derived vegetation indices in a commercial plantation. The results showed that the SGB algorithm yielded the best performance for intra-and-inter species biomass prediction; using all the predictor variables as well as based on the most important selected variables. For example using the most important variables the algorithm produced an R2 of 0.80 and RMSE of 16.93 t·ha−1 for E. grandis; R2 of 0.79, RMSE of 17.27 t·ha−1 for P. taeda and R2 of 0.61, RMSE of 43.39 t·ha−1 for the combined species data sets. Comparatively, RF yielded plausible results only for E. dunii (R2 of 0.79; RMSE of 7.18 t·ha−1. We demonstrated that although the two statistical methods were able to predict biomass accurately, RF produced weaker results as compared to SGB when applied to combined species dataset. The result underscores the relevance of stochastic models in predicting biomass drawn from different species and genera using the new generation high resolution RapidEye sensor with strategically positioned bands.

  19. Intra-and-Inter Species Biomass Prediction in a Plantation Forest: Testing the Utility of High Spatial Resolution Spaceborne Multispectral RapidEye Sensor and Advanced Machine Learning Algorithms

    Science.gov (United States)

    Dube, Timothy; Mutanga, Onisimo; Adam, Elhadi; Ismail, Riyad

    2014-01-01

    The quantification of aboveground biomass using remote sensing is critical for better understanding the role of forests in carbon sequestration and for informed sustainable management. Although remote sensing techniques have been proven useful in assessing forest biomass in general, more is required to investigate their capabilities in predicting intra-and-inter species biomass which are mainly characterised by non-linear relationships. In this study, we tested two machine learning algorithms, Stochastic Gradient Boosting (SGB) and Random Forest (RF) regression trees to predict intra-and-inter species biomass using high resolution RapidEye reflectance bands as well as the derived vegetation indices in a commercial plantation. The results showed that the SGB algorithm yielded the best performance for intra-and-inter species biomass prediction; using all the predictor variables as well as based on the most important selected variables. For example using the most important variables the algorithm produced an R2 of 0.80 and RMSE of 16.93 t·ha−1 for E. grandis; R2 of 0.79, RMSE of 17.27 t·ha−1 for P. taeda and R2 of 0.61, RMSE of 43.39 t·ha−1 for the combined species data sets. Comparatively, RF yielded plausible results only for E. dunii (R2 of 0.79; RMSE of 7.18 t·ha−1). We demonstrated that although the two statistical methods were able to predict biomass accurately, RF produced weaker results as compared to SGB when applied to combined species dataset. The result underscores the relevance of stochastic models in predicting biomass drawn from different species and genera using the new generation high resolution RapidEye sensor with strategically positioned bands. PMID:25140631

  20. Financial signal processing and machine learning

    CERN Document Server

    Kulkarni,Sanjeev R; Dmitry M. Malioutov

    2016-01-01

    The modern financial industry has been required to deal with large and diverse portfolios in a variety of asset classes often with limited market data available. Financial Signal Processing and Machine Learning unifies a number of recent advances made in signal processing and machine learning for the design and management of investment portfolios and financial engineering. This book bridges the gap between these disciplines, offering the latest information on key topics including characterizing statistical dependence and correlation in high dimensions, constructing effective and robust risk measures, and their use in portfolio optimization and rebalancing. The book focuses on signal processing approaches to model return, momentum, and mean reversion, addressing theoretical and implementation aspects. It highlights the connections between portfolio theory, sparse learning and compressed sensing, sparse eigen-portfolios, robust optimization, non-Gaussian data-driven risk measures, graphical models, causal analy...

  1. Learning from Distributions via Support Measure Machines

    CERN Document Server

    Muandet, Krikamol; Fukumizu, Kenji; Dinuzzo, Francesco

    2012-01-01

    This paper presents a kernel-based discriminative learning framework on probability measures. Rather than relying on large collections of vectorial training examples, our framework learns using a collection of probability distributions that have been constructed to meaningfully represent training data. By representing these probability distributions as mean embeddings in the reproducing kernel Hilbert space (RKHS), we are able to apply many standard kernel-based learning techniques in straightforward fashion. To accomplish this, we construct a generalization of the support vector machine (SVM) called a support measure machine (SMM). Our analyses of SMMs provides several insights into their relationship to traditional SVMs. Based on such insights, we propose a flexible SVM (Flex-SVM) that places different kernel functions on each training example. Experimental results on both synthetic and real-world data demonstrate the effectiveness of our proposed framework.

  2. Estimating extinction using unsupervised machine learning

    Science.gov (United States)

    Meingast, Stefan; Lombardi, Marco; Alves, João

    2017-05-01

    Dust extinction is the most robust tracer of the gas distribution in the interstellar medium, but measuring extinction is limited by the systematic uncertainties involved in estimating the intrinsic colors to background stars. In this paper we present a new technique, Pnicer, that estimates intrinsic colors and extinction for individual stars using unsupervised machine learning algorithms. This new method aims to be free from any priors with respect to the column density and intrinsic color distribution. It is applicable to any combination of parameters and works in arbitrary numbers of dimensions. Furthermore, it is not restricted to color space. Extinction toward single sources is determined by fitting Gaussian mixture models along the extinction vector to (extinction-free) control field observations. In this way it becomes possible to describe the extinction for observed sources with probability densities, rather than a single value. Pnicer effectively eliminates known biases found in similar methods and outperforms them in cases of deep observational data where the number of background galaxies is significant, or when a large number of parameters is used to break degeneracies in the intrinsic color distributions. This new method remains computationally competitive, making it possible to correctly de-redden millions of sources within a matter of seconds. With the ever-increasing number of large-scale high-sensitivity imaging surveys, Pnicer offers a fast and reliable way to efficiently calculate extinction for arbitrary parameter combinations without prior information on source characteristics. The Pnicer software package also offers access to the well-established Nicer technique in a simple unified interface and is capable of building extinction maps including the Nicest correction for cloud substructure. Pnicer is offered to the community as an open-source software solution and is entirely written in Python.

  3. Machine Learning Predictions of Flash Floods

    Science.gov (United States)

    Clark, R. A., III; Flamig, Z.; Gourley, J. J.; Hong, Y.

    2016-12-01

    This study concerns the development, assessment, and use of machine learning (ML) algorithms to automatically generate predictions of flash floods around the world from numerical weather prediction (NWP) output. Using an archive of NWP outputs from the Global Forecast System (GFS) model and a historical archive of reports of flash floods across the U.S. and Europe, we developed a set of ML models that output forecasts of the probability of a flash flood given a certain set of atmospheric conditions. Using these ML models, real-time global flash flood predictions from NWP data have been generated in research mode since February 2016. These ML models provide information about which atmospheric variables are most important in the flash flood prediction process. The raw ML predictions can be calibrated against historical events to generate reliable flash flood probabilities. The automatic system was tested in a research-to-operations testbed enviroment with National Weather Service forecasters. The ML models are quite successful at incorporating large amounts of information in a computationally-efficient manner and and result in reasonably skillful predictions. The system is largely successful at identifying flash floods resulting from synoptically-forced events, but struggles with isolated flash floods that arise as a result of weather systems largely unresolvable by the coarse resolution of a global NWP system. The results from this collection of studies suggest that automatic probabilistic predictions of flash floods are a plausible way forward in operational forecasting, but that future research could focus upon applying these methods to finer-scale NWP guidance, to NWP ensembles, and to forecast lead times beyond 24 hours.

  4. Unsupervised Feature Learning Classification With Radial Basis Function Extreme Learning Machine Using Graphic Processors.

    Science.gov (United States)

    Lam, Dao; Wunsch, Donald

    2017-01-01

    Ever-increasing size and complexity of data sets create challenges and potential tradeoffs of accuracy and speed in learning algorithms. This paper offers progress on both fronts. It presents a mechanism to train the unsupervised learning features learned from only one layer to improve performance in both speed and accuracy. The features are learned by an unsupervised feature learning (UFL) algorithm. Then, those features are trained by a fast radial basis function (RBF) extreme learning machine (ELM). By exploiting the massive parallel computing attribute of modern graphics processing unit, a customized compute unified device architecture (CUDA) kernel is developed to further speed up the computing of the RBF kernel in the ELM. Results tested on Canadian Institute for Advanced Research and Mixed National Institute of Standards and Technology data sets confirm the UFL RBF ELM achieves high accuracy, and the CUDA implementation is up to 20 times faster than CPU and the naive parallel approach.

  5. Machine learning analysis of binaural rowing sounds

    DEFF Research Database (Denmark)

    Johard, Leonard; Ruffaldi, Emanuele; Hoffmann, Pablo F.

    2011-01-01

    Techniques for machine hearing are increasing their potentiality due to new application domains. In this work we are addressing the analysis of rowing sounds in natural context for the purpose of supporting a training system based on virtual environments. This paper presents the acquisition metho...... methodology and the evaluation of different machine learning techniques for classifying rowing-sound data. We see that a combination of principal component analysis and shallow networks perform equally well as deep architectures, while being much faster to train....

  6. Machine Learning Analysis of Binaural Rowing Sounds

    Directory of Open Access Journals (Sweden)

    Filippeschi Alessandro

    2011-12-01

    Full Text Available Techniques for machine hearing are increasing their potentiality due to new application domains. In this work we are addressing the analysis of rowing sounds in natural context for the purpose of supporting a training system based on virtual environments. This paper presents the acquisition methodology and the evaluation of different machine learning techniques for classifying rowing-sound data. We see that a combination of principal component analysis and shallow networks perform equally well as deep architectures, while being much faster to train.

  7. Machine Learning in the Big Data Era: Are We There Yet?

    Energy Technology Data Exchange (ETDEWEB)

    Sukumar, Sreenivas Rangan [ORNL

    2014-01-01

    In this paper, we discuss the machine learning challenges of the Big Data era. We observe that recent innovations in being able to collect, access, organize, integrate, and query massive amounts of data from a wide variety of data sources have brought statistical machine learning under more scrutiny and evaluation for gleaning insights from the data than ever before. In that context, we pose and debate the question - Are machine learning algorithms scaling with the ability to store and compute? If yes, how? If not, why not? We survey recent developments in the state-of-the-art to discuss emerging and outstanding challenges in the design and implementation of machine learning algorithms at scale. We leverage experience from real-world Big Data knowledge discovery projects across domains of national security and healthcare to suggest our efforts be focused along the following axes: (i) the data science challenge - designing scalable and flexible computational architectures for machine learning (beyond just data-retrieval); (ii) the science of data challenge the ability to understand characteristics of data before applying machine learning algorithms and tools; and (iii) the scalable predictive functions challenge the ability to construct, learn and infer with increasing sample size, dimensionality, and categories of labels. We conclude with a discussion of opportunities and directions for future research.

  8. Analysis of Machine Learning Techniques for Heart Failure Readmissions.

    Science.gov (United States)

    Mortazavi, Bobak J; Downing, Nicholas S; Bucholz, Emily M; Dharmarajan, Kumar; Manhapra, Ajay; Li, Shu-Xia; Negahban, Sahand N; Krumholz, Harlan M

    2016-11-01

    The current ability to predict readmissions in patients with heart failure is modest at best. It is unclear whether machine learning techniques that address higher dimensional, nonlinear relationships among variables would enhance prediction. We sought to compare the effectiveness of several machine learning algorithms for predicting readmissions. Using data from the Telemonitoring to Improve Heart Failure Outcomes trial, we compared the effectiveness of random forests, boosting, random forests combined hierarchically with support vector machines or logistic regression (LR), and Poisson regression against traditional LR to predict 30- and 180-day all-cause readmissions and readmissions because of heart failure. We randomly selected 50% of patients for a derivation set, and a validation set comprised the remaining patients, validated using 100 bootstrapped iterations. We compared C statistics for discrimination and distributions of observed outcomes in risk deciles for predictive range. In 30-day all-cause readmission prediction, the best performing machine learning model, random forests, provided a 17.8% improvement over LR (mean C statistics, 0.628 and 0.533, respectively). For readmissions because of heart failure, boosting improved the C statistic by 24.9% over LR (mean C statistic 0.678 and 0.543, respectively). For 30-day all-cause readmission, the observed readmission rates in the lowest and highest deciles of predicted risk with random forests (7.8% and 26.2%, respectively) showed a much wider separation than LR (14.2% and 16.4%, respectively). Machine learning methods improved the prediction of readmission after hospitalization for heart failure compared with LR and provided the greatest predictive range in observed readmission rates. © 2016 American Heart Association, Inc.

  9. Algorithm for Modeling Wire Cut Electrical Discharge Machine Parameters using Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    G.Sankara Narayanan

    2014-03-01

    Full Text Available Unconventional machining process finds lot of application in aerospace and precision industries. It is preferred over other conventional methods because of the advent of composite and high strength to weight ratio materials, complex parts and also because of its high accuracy and precision. Usually in unconventional machine tools, trial and error method is used to fix the values of process parameters which increase the production time and material wastage. A mathematical model functionally relating process parameters and operating parameters of a wire cut electric discharge machine (WEDM is developed incorporating Artificial neural network (ANN and the work piece material is SKD11 tool steel. This is accomplished by training a feed forward neural network with back propagation learning Levenberg-Marquardt algorithm. The required data used for training and testing the ANN are obtained by conducting trial runs in wire cut electric discharge machine in a small scale industry from South India. The programs for training and testing the neural network are developed, using matlab 7.0.1 package. In this work, we have considered the parameters such as thickness, time and wear as the input values and from that the values of the process parameters are related and a algorithm is arrived. Hence, the proposed algorithm reduces the time taken by trial runs to set the input process parameters of WEDM and thus reduces the production time along with reduction in material wastage. Thus the cost of machining processes is reduced and thereby increases the overall productivity.

  10. Machine Learning Based Diagnosis of Lithium Batteries

    Science.gov (United States)

    Ibe-Ekeocha, Chinemerem Christopher

    The depletion of the world's current petroleum reserve, coupled with the negative effects of carbon monoxide and other harmful petrochemical by-products on the environment, is the driving force behind the movement towards renewable and sustainable energy sources. Furthermore, the growing transportation sector consumes a significant portion of the total energy used in the United States. A complete electrification of this sector would require a significant development in electric vehicles (EVs) and hybrid electric vehicles (HEVs), thus translating to a reduction in the carbon footprint. As the market for EVs and HEVs grows, their battery management systems (BMS) need to be improved accordingly. The BMS is not only responsible for optimally charging and discharging the battery, but also monitoring battery's state of charge (SOC) and state of health (SOH). SOC, similar to an energy gauge, is a representation of a battery's remaining charge level as a percentage of its total possible charge at full capacity. Similarly, SOH is a measure of deterioration of a battery; thus it is a representation of the battery's age. Both SOC and SOH are not measurable, so it is important that these quantities are estimated accurately. An inaccurate estimation could not only be inconvenient for EV consumers, but also potentially detrimental to battery's performance and life. Such estimations could be implemented either online, while battery is in use, or offline when battery is at rest. This thesis presents intelligent online SOC and SOH estimation methods using machine learning tools such as artificial neural network (ANN). ANNs are a powerful generalization tool if programmed and trained effectively. Unlike other estimation strategies, the techniques used require no battery modeling or knowledge of battery internal parameters but rather uses battery's voltage, charge/discharge current, and ambient temperature measurements to accurately estimate battery's SOC and SOH. The developed

  11. A novel flavour tagging algorithm using machine learning techniques and a precision measurement of the B{sup 0}- anti B{sup 0} oscillation frequency at the LHCb experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kreplin, Katharina

    2015-06-10

    This thesis presents a novel flavour tagging algorithm using machine learning techniques and a precision measurement of the B{sup 0}- anti B{sup 0} oscillation frequency Δm{sub d} using semileptonic B{sup 0} decays. The LHC Run I data set is used which corresponds to 3 fb{sup -1} of data taken by the LHCb experiment at a center-of-mass energy of 7 TeV and 8 TeV. The performance of flavour tagging algorithms, exploiting the b anti b pair production and the b quark hadronization, is relatively low at the LHC due to the large amount of soft QCD background in inelastic proton-proton collisions. The standard approach is a cut-based selection of particles, whose charges are correlated to the production flavour of the B meson. The novel tagging algorithm classifies the particles using an artificial neural network (ANN). It assigns higher weights to particles, which are likely to be correlated to the b flavour. A second ANN combines the particles with the highest weights to derive the tagging decision. An increase of the opposite side kaon tagging performance of 50% and 30% is achieved on B{sup +} → J/ψK{sup +} data. The second number corresponds to a readjustment of the algorithm to the B{sup 0}{sub s} production topology. This algorithm is employed in the precision measurement of Δm{sub d}. A data set of 3.2 x 10{sup 6} semileptonic B{sup 0} decays is analysed, where the B{sup 0} decays into a D{sup -}(K{sup +}π{sup -}π{sup -}) or D{sup *-} (π{sup -} anti D{sup 0}(K{sup +} π{sup -})) and a μ{sup +}ν{sub μ} pair. The ν{sub μ} is not reconstructed, therefore, the B{sup 0} momentum needs to be statistically corrected for the missing momentum of the neutrino to compute the correct B{sup 0} decay time. A result of Δm{sub d}=0.503±0.002(stat.)±0.001(syst.) ps{sup -1} is obtained. This is the world's best measurement of this quantity.

  12. From machine learning to deep learning: progress in machine intelligence for rational drug discovery.

    Science.gov (United States)

    Zhang, Lu; Tan, Jianjun; Han, Dan; Zhu, Hao

    2017-09-04

    Machine intelligence, which is normally presented as artificial intelligence, refers to the intelligence exhibited by computers. In the history of rational drug discovery, various machine intelligence approaches have been applied to guide traditional experiments, which are expensive and time-consuming. Over the past several decades, machine-learning tools, such as quantitative structure-activity relationship (QSAR) modeling, were developed that can identify potential biological active molecules from millions of candidate compounds quickly and cheaply. However, when drug discovery moved into the era of 'big' data, machine learning approaches evolved into deep learning approaches, which are a more powerful and efficient way to deal with the massive amounts of data generated from modern drug discovery approaches. Here, we summarize the history of machine learning and provide insight into recently developed deep learning approaches and their applications in rational drug discovery. We suggest that this evolution of machine intelligence now provides a guide for early-stage drug design and discovery in the current big data era. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Machine Learning Classification of SDSS Transient Survey Images

    CERN Document Server

    Buisson, L du; Bassett, B A; Smith, M

    2014-01-01

    We show that multiple machine learning algorithms can match human performance in classifying transient imaging data from the SDSS supernova survey into real objects and artefacts. This is the first step in any transient science pipeline and is currently still done by humans, but future surveys such as LSST will necessitate fully machine-enabled solutions. Using features trained from eigenimage analysis (PCA) of single-epoch g, r, i-difference images we can reach a completeness (recall) of 95%, while only incorrectly classifying 18% of artefacts as real objects, corresponding to a precision (purity) of 85%. In general the k-nearest neighbour and the SkyNet artificial neural net algorithms performed most robustly compared to other methods such as naive Bayes and kernel SVM. Our results show that PCA-based machine learning can match human success levels and can naturally be extended by including multiple epochs of data, transient colours and host galaxy information which should allow for significant further impr...

  14. Approximation algorithms for scheduling unrelated parallel machines with release dates

    Science.gov (United States)

    Avdeenko, T. V.; Mesentsev, Y. A.; Estraykh, I. V.

    2017-01-01

    In this paper we propose approaches to optimal scheduling of unrelated parallel machines with release dates. One approach is based on the scheme of dynamic programming modified with adaptive narrowing of search domain ensuring its computational effectiveness. We discussed complexity of the exact schedules synthesis and compared it with approximate, close to optimal, solutions. Also we explain how the algorithm works for the example of two unrelated parallel machines and five jobs with release dates. Performance results that show the efficiency of the proposed approach have been given.

  15. Linguistically motivated statistical machine translation models and algorithms

    CERN Document Server

    Xiong, Deyi

    2015-01-01

    This book provides a wide variety of algorithms and models to integrate linguistic knowledge into Statistical Machine Translation (SMT). It helps advance conventional SMT to linguistically motivated SMT by enhancing the following three essential components: translation, reordering and bracketing models. It also serves the purpose of promoting the in-depth study of the impacts of linguistic knowledge on machine translation. Finally it provides a systematic introduction of Bracketing Transduction Grammar (BTG) based SMT, one of the state-of-the-art SMT formalisms, as well as a case study of linguistically motivated SMT on a BTG-based platform.

  16. Strategies and Principles of Distributed Machine Learning on Big Data

    Directory of Open Access Journals (Sweden)

    Eric P. Xing

    2016-06-01

    Full Text Available The rise of big data has led to new demands for machine learning (ML systems to learn complex models, with millions to billions of parameters, that promise adequate capacity to digest massive datasets and offer powerful predictive analytics (such as high-dimensional latent features, intermediate representations, and decision functions thereupon. In order to run ML algorithms at such scales, on a distributed cluster with tens to thousands of machines, it is often the case that significant engineering efforts are required—and one might fairly ask whether such engineering truly falls within the domain of ML research. Taking the view that “big” ML systems can benefit greatly from ML-rooted statistical and algorithmic insights—and that ML researchers should therefore not shy away from such systems design—we discuss a series of principles and strategies distilled from our recent efforts on industrial-scale ML solutions. These principles and strategies span a continuum from application, to engineering, and to theoretical research and development of big ML systems and architectures, with the goal of understanding how to make them efficient, generally applicable, and supported with convergence and scaling guarantees. They concern four key questions that traditionally receive little attention in ML research: How can an ML program be distributed over a cluster? How can ML computation be bridged with inter-machine communication? How can such communication be performed? What should be communicated between machines? By exposing underlying statistical and algorithmic characteristics unique to ML programs but not typically seen in traditional computer programs, and by dissecting successful cases to reveal how we have harnessed these principles to design and develop both high-performance distributed ML software as well as general-purpose ML frameworks, we present opportunities for ML researchers and practitioners to further shape and enlarge the area

  17. Support Vector Machine active learning for 3D model retrieval

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper, we present a novel Support Vector Machine active learning algorithm for effective 3D model retrieval using the concept of relevance feedback. The proposed method learns from the most informative objects which are marked by the user, and then creates a boundary separating the relevant models from irrelevant ones. What it needs is only a small number of 3D models labelled by the user. It can grasp the user's semantic knowledge rapidly and accurately. Experimental results showed that the proposed algorithm significantly improves the retrieval effectiveness. Compared with four state-of-the-art query refinement schemes for 3D model retrieval, it provides superior retrieval performance after no more than two rounds of relevance feedback.

  18. Distribution Learning in Evolutionary Strategies and Restricted Boltzmann Machines

    DEFF Research Database (Denmark)

    Krause, Oswin

    of the thesis is concerned with RBMs that are fitted to a dataset using maximum log-likelihood. As the computation of the distribution's normalization constant is intractable, Markov Chain Monte Carlo methods are required to estimate and follow the log-likelihood gradient. The thesis investigates...... the approximation properties of stacked RBMs used to model the distribution of real valued data. Further, estimation algorithms of the normalization constant of an RBM are compared and a theoretical framework is introduced from which a number of well known algorithms can be derived. Lastly, a method based......The thesis is concerned with learning distributions in the two settings of Evolutionary Strategies (ESs) and Restricted Boltzmann Machines (RBMs). In both cases, the distributions are learned from samples, albeit with different goals. Evolutionary Strategies are concerned with finding an optimum...

  19. Machine learning analysis of binaural rowing sounds

    DEFF Research Database (Denmark)

    Johard, Leonard; Ruffaldi, Emanuele; Hoffmann, Pablo F.

    2011-01-01

    Techniques for machine hearing are increasing their potentiality due to new application domains. In this work we are addressing the analysis of rowing sounds in natural context for the purpose of supporting a training system based on virtual environments. This paper presents the acquisition metho...... methodology and the evaluation of different machine learning techniques for classifying rowing-sound data. We see that a combination of principal component analysis and shallow networks perform equally well as deep architectures, while being much faster to train.......Techniques for machine hearing are increasing their potentiality due to new application domains. In this work we are addressing the analysis of rowing sounds in natural context for the purpose of supporting a training system based on virtual environments. This paper presents the acquisition...

  20. Housing Value Forecasting Based on Machine Learning Methods

    Directory of Open Access Journals (Sweden)

    Jingyi Mu

    2014-01-01

    Full Text Available In the era of big data, many urgent issues to tackle in all walks of life all can be solved via big data technique. Compared with the Internet, economy, industry, and aerospace fields, the application of big data in the area of architecture is relatively few. In this paper, on the basis of the actual data, the values of Boston suburb houses are forecast by several machine learning methods. According to the predictions, the government and developers can make decisions about whether developing the real estate on corresponding regions or not. In this paper, support vector machine (SVM, least squares support vector machine (LSSVM, and partial least squares (PLS methods are used to forecast the home values. And these algorithms are compared according to the predicted results. Experiment shows that although the data set exists serious nonlinearity, the experiment result also show SVM and LSSVM methods are superior to PLS on dealing with the problem of nonlinearity. The global optimal solution can be found and best forecasting effect can be achieved by SVM because of solving a quadratic programming problem. In this paper, the different computation efficiencies of the algorithms are compared according to the computing times of relevant algorithms.