WorldWideScience

Sample records for machine interface mmi

  1. Design Integration of Man-Machine Interface (MMI) Display Drawings and MMI Database

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Jun; Seo, Kwang Rak; Song, Jeong Woog; Kim, Dae Ho; Han, Jung A [KEPCO Engineering and Construction Co., Deajeon (Korea, Republic of)

    2016-10-15

    The conventional Main Control Room (MCR) was designed using hardwired controllers and analog indications mounted on control boards for control and acquisition of plant information. This is compared with advanced MCR design where Flat Panel Displays (FPDs) with soft controls and mimic displays are used. The advanced design needs MMI display drawings replacing the conventional control board layout drawings and component lists. The data is linked to related object of the MMI displays. Compilation of the data into the DB is generally done manually, which tends to introduce errors and discrepancies. Also, updating and managing is difficult due to a huge number of entries in the DB and the update must closely track the changes in the associated drawing. Therefore, automating the DB update whenever a related drawing is updated would be quite beneficial. An attempt is made to develop a new method to integrate the MMIS display drawing design and the DB management. This would significantly reduce the amount of errors and improve design quality. The design integration of the MMI Display drawing and MMI DB is explained briefly but concisely in this paper. The existing method involved individually and separately inputting design data for the MMI display drawings. This caused to the potential problem of data discrepancies and errors as well as the update time lag between related drawings and the DB. This led to development of an integration of design process which automates the design data input activity.

  2. Man-machine interfaces analysis system based on computer simulation

    International Nuclear Information System (INIS)

    Chen Xiaoming; Gao Zuying; Zhou Zhiwei; Zhao Bingquan

    2004-01-01

    The paper depicts a software assessment system, Dynamic Interaction Analysis Support (DIAS), based on computer simulation technology for man-machine interfaces (MMI) of a control room. It employs a computer to simulate the operation procedures of operations on man-machine interfaces in a control room, provides quantified assessment, and at the same time carries out analysis on operational error rate of operators by means of techniques for human error rate prediction. The problems of placing man-machine interfaces in a control room and of arranging instruments can be detected from simulation results. DIAS system can provide good technical supports to the design and improvement of man-machine interfaces of the main control room of a nuclear power plant

  3. Study on HRA-based method for assessing digital man-machine interface

    International Nuclear Information System (INIS)

    Li Pengcheng; Dai Licao; Zhang Li; Zhao Ming; Hu Hong

    2014-01-01

    In order to identify the design flaws of digital man-machine interface (MMI) that may trigger human errors or weaken the performance of operators, a HRA-based method (namely HCR + CREAM + HEC) for assessing digital MMI was established. Firstly, the HCR method was used to identify the risk scenarios of high human error probability from the overall event as a whole perspective. Then, for the identified high-risk scenarios, the CREAM was adopted to determine the various error modes and its error probability, and the failure probability was ranked. Finally, the human factors engineering checklist of digital MMI was established according to the characteristics of digital MMI, it was used to check the digital MMI with high error probability in order to identify the design flaws of digital MMI, and the suggestions of optimization were provided. The results show that the provided assessment method can quickly and efficiently identify the design flaws of digital MMI which easily trigger human errors, and the safety of operation of the digital control system for nuclear power plants can be enhanced by optimization of design. (authors)

  4. Human reliability analysis in the man-machine interface design review

    International Nuclear Information System (INIS)

    Kim, I.S.

    2001-01-01

    Advanced, computer-based man-machine interface (MMI) is emerging as part of the new design of nuclear power plants. The impact of advanced MMI on the operator performance, and as a result, on plant safety should be thoroughly evaluated before such technology is actually adopted in the plants. This paper discusses the applicability of human reliability analysis (HRA) to support the design review process. Both the first-generation and the second-generation HRA methods are considered focusing on a couple of promising HRA methods, i.e. ATHEANA and CREAM, with the potential to assist the design review process

  5. Design approach of soft control system for implementation of advanced MMI in KNGR

    International Nuclear Information System (INIS)

    Kim, J. K.; Choi, M. J.; Choe, I. N.

    1999-01-01

    To overcome the inherent inflexibility of spatially dedicated man-machine interface (MMI) in conventional control room, computer based MMI technologies, along with compact workstation concept, are adopted in KNGR control room target design. In order to achieve the compact workstation design, a large number of spatially dedicated control switches and manual/auto stations in a traditional control room have to be replaced by a few common multi-function devices. These control devices, so called Soft Control System, consist of a personal computer based Flat Panel Display (FPD) device with touch sensitive screen which provides control MMI for the component selected among a number of plant components. Soft Control System is MMI device to allow control of continuous and discrete control device from single panel device. Soft Control System allows a standard interface device to assume the role of numerous control switch and analog control devices via software configuration. This has the advantage of following operator access to all plant control from a single control compact workstation. (author)

  6. A study on advanced man-machine interface system for autonomous nuclear power plants

    International Nuclear Information System (INIS)

    Matsuoka, Takeshi; Numano, Masayoshi; Fukuto, Junji; Sugasawa, Shinobu; Miyazaki, Keiko; Someya, Minoru; Haraki, Nobuo

    1994-01-01

    A man-machine interface(MMI) system of an autonomous nuclear power plant has an advanced function compared with that of the present nuclear power plants. The MMI has a function model of a plant state, and updates and revises this function model by itself. This paper describes the concept of autonomous nuclear power plants, a plant simulator of an autonomous power plant, a contracted function model of a plant state, three-dimensional color graphic display of a plant state, and an event-tree like expression for plant states. (author)

  7. Possibilities and expectations for improved man-machine interface in power system control

    Energy Technology Data Exchange (ETDEWEB)

    Asal, H; Burrow, R K; Lindstrom, K; Mocenigo, M; Schellstede, G; Schaffer, G; Serrani, A

    1992-05-01

    The paper describes the hardware, equipment and functions provided to operators for supervising and controlling HVAC power systems. It analyzes the main elements of the man-machine interface (MMI) with particular attention to the recent possibilities afforded by computer technology and full graphic screens. Alarm management and remote control operation are briefly described.

  8. Grouping of the design issues for KNGR MMI evaluation

    International Nuclear Information System (INIS)

    Oh, In Seok; Lee, Dong Young; Lee, Jung Woon; Lee, Hyn Chul; Park, Jae Chang

    2001-05-01

    The Korean Next Generation Reactor(KNGR) man-machine interface(MMI) design adopting digital technologies has been developed since 1997. The KNGR MMI consists of CRT-based operator workstations, large display panel(LDP), alarm System, soft control and computerized procedure system. Westinghouse tried to systematically identify and evaluate human factor potential issues of advanced control room. The KNGR MMI design features are very similar with those of the Westinghouse AP-600. The KNGR will try to reflect the evaluation results of 15 issues that the Westinghouse has developed. But it needs much time and costs to evaluate the 15 issues during this design phase. In this study, we analyzed evaluation issues of the AP-600 and classified the 13 issues, which the Westinghouse developed, into 5 groups to simultaneously except 2 issues which can not evaluate in this design phase

  9. Applicability of HRA to support advanced MMI design review

    International Nuclear Information System (INIS)

    Kim, Inn Seock

    2000-01-01

    More than half of all incidents in large complex technological systems, particularly in nuclear power or aviation industries, were attributable in some way to human erroneous actions. These incidents were largely due to the human engineering deficiencies of man-machine interface (MMI). In nuclear industry, advanced computer-based MMI designs are emerging as part of new reactor designs. The impact of advanced MMI technology on the operator performance, and as a result, on plant safety should be thoroughly evaluated before such technology is actually adopted in nuclear power plants. This paper discusses the applicability of human reliability analysis (HRA) to support the design review process. Both the first-generation and the second-generation HRA methods are considered focusing on a couple of promising HRA methods, i.e., ATHEANA and CREAM, with the potential to assist the design review process. (author)

  10. Role of the man-machine interface in accident management strategies

    International Nuclear Information System (INIS)

    Oewre, Fridtjov

    2001-01-01

    First, this paper gives a short general review on important safety issues in the field of man-machine interaction as expressed by important nuclear safety organisations. Then follows a summary discussion on what constitutes a modern Man-Machine Interface (MMI) and what is normally meant with accident management and accident management strategies. Furthermore, the paper focuses on three major issues in the context of accident management. First, the need for reliable information in accidents and how this can be obtained by additional computer technology. Second, the use of procedures is discussed, and basic MMI aspects of computer support for procedure presentation are identified followed by a presentation of a new approach on how to computerise procedures. Third, typical information needs for characteristic end-users in accidents, such as the control room operators, technical support staff and plant emergency teams, is discussed. Some ideas on how to apply virtual reality technology in accident management is also presented

  11. Man--machine interface issues for space nuclear power systems

    International Nuclear Information System (INIS)

    Nelson, W.R.; Haugset, K.

    1991-01-01

    The deployment of nuclear reactors in space necessitates an entirely new set of guidelines for the design of the man--machine interface (MMI) when compared to earth-based applications such as commerical nuclear power plants. Although the design objectives of earth- and space-based nuclear power systems are the same, that is, to produce electrical power, the differences in the application environments mean that the operator's role will be significantly different for space-based systems. This paper explores the issues associated with establishing the necessary MMI guidelines for space nuclear power systems. The generic human performance requirements for space-based systems are described, and the operator roles that are utilized for the operation of current and advanced earth-based reactors are briefly summarized. The development of a prototype advanced control room, the Integrated Surveillance and Control System (ISACS) at the Organization for Economic Cooperation and Development (OECD) Halden Reactor Project is introduced. Finally, preliminary ideas for the use of the ISACS system as a test bed for establishing MMI guidelines for space nuclear systems are presented

  12. Affective Man-Machine Interface: Unveiling Human Emotions through Biosignals

    Science.gov (United States)

    van den Broek, Egon L.; Lisý, Viliam; Janssen, Joris H.; Westerink, Joyce H. D. M.; Schut, Marleen H.; Tuinenbreijer, Kees

    As is known for centuries, humans exhibit an electrical profile. This profile is altered through various psychological and physiological proce-sses, which can be measured through biosignals; e.g., electromyography (EMG) and electrodermal activity (EDA). These biosignals can reveal our emotions and, as such, can serve as an advanced man-machine interface (MMI) for empathic consumer products. However, such a MMI requires the correct classification of biosignals to emotion classes. This chapter starts with an introduction on biosignals for emotion detection. Next, a state-of-the-art review is presented on automatic emotion classification. Moreover, guidelines are presented for affective MMI. Subsequently, a research is presented that explores the use of EDA and three facial EMG signals to determine neutral, positive, negative, and mixed emotions, using recordings of 21 people. A range of techniques is tested, which resulted in a generic framework for automated emotion classification with up to 61.31% correct classification of the four emotion classes, without the need of personal profiles. Among various other directives for future research, the results emphasize the need for parallel processing of multiple biosignals.

  13. Man-machine interface in a submarine command and weapon control system: features and design experience

    Directory of Open Access Journals (Sweden)

    Johan H. Aas

    1989-01-01

    Full Text Available Important man-machine interface (MMI issues concerning a submarine command and weapon control system (CWCS such as crew organization, automation level and decision support are discussed in this paper. Generic submarine CWCS functions and operating conditions are outlined. Detailed, dynamic and real-time prototypes were used to support the MMI design. The prototypes are described and experience with detailed prototyping is discussed. Some of the main interaction principles are summarized and a restricted example of the resulting design is given. Our design experience and current work have been used to outline future perspectives of MMI design in naval CWCSs. The need for both formal and experimental approaches is emphasized.

  14. Human factors evaluation of man-machine interface for periodic safety review of nuclear power plants

    International Nuclear Information System (INIS)

    Lee, Yong Hee; Lee, Jung Woon; Park, Jae Chang; Hwang, In Koo; Lee, Hyun Cheol; Jang, Tong Il; Ku, Jin Young; Kim, Soo Jin

    2004-12-01

    This report describes the research results of human factors assessment on the MMI(Man Machine Interface) equipment as part of Periodic Safety Review(PSR) of Nuclear Power Plants(NPPs). As MMI is a key factor among human factors to be reviewed in PSR, we reviewed the MMI components of nuclear power plants in aspect of human factors engineering. The availability, suitability, and effectiveness of the MMI devices were chosen to be reviewed. The MMI devices were investigated through the review of design documents related to the MMI, survey of control panels, evaluation of experts, and experimental assessment. Checklists were used to perform this assessment and record the review results. The items mentioned by the expert comments to review in detail in relation with task procedures were tested by experiments with operators' participation. For some questionable issues arisen during this MMI review, operator workload and possibility of errors in operator actions were analysed. The reviewed MMI devices contain MCR(Main Control Room), SPDS(Safety Parameter Display System), RSP(Remote Shutdown Panel), and the selected LCBs(Local Control Boards) importantly related to safety. As results of the assessments, any significant problem challenging the safety was not found on human factors in the MMI devices. However, several small items to be changed and improved in suitability of MMI devices were discovered. An action plan is recommended to accommodate the suggestions and review comments. It will enhance the plant safety on MMI area

  15. The Engineering Design of Man-Machine Interface for RTS

    International Nuclear Information System (INIS)

    Yenn, T.-C.

    2002-01-01

    The purpose of this paper is to present the engineering design of the advanced Man-Machine Interface (MMI) of the Integrated system for Radwaste Treatment and Storage (RTS) facility in Institute of Nuclear Energy Research (INER) Taiwan, ROC. To build the RTS, a multi-function radwaste facility with a total storage of about 10,000 drums, is a five-year project starting in 2000 including intermediate activity waste treatment and combustible waste storage. The completed engineering design of the MMI is based on proven technologies and digital control systems, enhancing the radwaste management efficiency and reliability of operator's performance as well as assuring the dose exposure of personnel meeting the regulation standard. Over past few years, INER has accumulated extensive experience in the area of radwaste treatment and storage. Therefore, we are confident that we will complete this project with fulfillment of the requirements of RTS

  16. Human Factors Evaluation of Man-Machine Interface for Periodic Safety Review of Yonggwang Unit no. 1, 2

    International Nuclear Information System (INIS)

    Lee, Yong Hee; Lee, Jung Woon; Park, Jae Chang

    2006-01-01

    This report describes the research results of human factors assessment on the MMI(Man Machine Interface) equipment as part of Periodic Safety Review(PSR) of Yonggwang Unit no. 1, 2. As MMI is a key factor among human factors to be reviewed in PSR, we reviewed the MMI components of nuclear power plants in aspect of human factors engineering. The availability, suitability, and effectiveness of the MMI devices were chosen to be reviewed. The MMI devices were investigated through the review of design documents related to the MMI, survey of control panels, evaluation of experts, and experimental assessment. Checklists were used to perform this assessment and record the review results. The items mentioned by the expert comments to review in detail in relation with task procedures were tested by experiments with operators' participation. For some questionable issues arisen during this MMI review, operator workload and possibility of errors in operator actions were analysed. The reviewed MMI devices contain MCR(Main Control Room), SPDS(Safety Parameter Display System), RSP(Remote Shutdown Panel), and the selected LCBs(Local Control Boards) importantly related to safety. As results of the assessments, any significant problem challenging the safety was not found on human factors in the MMI devices. However, several small items to be changed and improved in suitability of MMI devices were discovered. An action plan is recommended to accommodate the suggestions and review comments. It will enhance the plant safety on MMI area

  17. Human Factors Evaluation of Man-Machine Interface for Periodic Safety Review of Yonggwang Unit no. 1, 2

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Hee; Lee, Jung Woon; Park, Jae Chang (and others)

    2006-01-15

    This report describes the research results of human factors assessment on the MMI(Man Machine Interface) equipment as part of Periodic Safety Review(PSR) of Yonggwang Unit no. 1, 2. As MMI is a key factor among human factors to be reviewed in PSR, we reviewed the MMI components of nuclear power plants in aspect of human factors engineering. The availability, suitability, and effectiveness of the MMI devices were chosen to be reviewed. The MMI devices were investigated through the review of design documents related to the MMI, survey of control panels, evaluation of experts, and experimental assessment. Checklists were used to perform this assessment and record the review results. The items mentioned by the expert comments to review in detail in relation with task procedures were tested by experiments with operators' participation. For some questionable issues arisen during this MMI review, operator workload and possibility of errors in operator actions were analysed. The reviewed MMI devices contain MCR(Main Control Room), SPDS(Safety Parameter Display System), RSP(Remote Shutdown Panel), and the selected LCBs(Local Control Boards) importantly related to safety. As results of the assessments, any significant problem challenging the safety was not found on human factors in the MMI devices. However, several small items to be changed and improved in suitability of MMI devices were discovered. An action plan is recommended to accommodate the suggestions and review comments. It will enhance the plant safety on MMI area.

  18. Development of nuclear power plant operator simulator for man-machine interface evaluation

    International Nuclear Information System (INIS)

    Nakagawa, Takashi; Nakatani, Yoshio; Sasaki, Kazunori; Yoshikawa, Hidekazu; Takahashi, Makoto; Furuta, Tomihiko; Hasegawa, Akira.

    1997-01-01

    The operational safety in nuclear power plants depends strongly on man machine interfaces (MMI), such as assignment of equipment on control boards and operation procedures in emergency situations. Therefore, the evaluation and analysis methods for the MMI are important. In order for the methods to be practical, the methods should be executed in each step of design and be easy for designers to use. We aim to develop SEAMAID system: a computer supported system for evaluating and analyzing the MMI by simulating the interaction between the operator and the machine. In this paper, we discuss problems of the conventional methods and the required functions of the operator simulator for the SEAMAID. The operator simulator executes not human errors but correct behavior which follows the operational procedure. The SEAMAID evaluates the MMI by finding potential human errors which could occur in the simulated interactions and points out the problematic interaction parts which could induce human errors. We construct the operator simulator by combining the human model which was proposed by Prof. Reason, and the knowledge base model based on the Petri net model. This simulator can treat frequency parameter which represents the degree of frequency of using a certain knowledge. We conduct two sample simulations in different frequency parameters in the same scenario. These simulation results show that even if the operator behaves correctly following the procedure, there are alternative task sequences. We verify that the simulated interactions are in good agreement with the actual one. Also, we propose the method to point out the problematic parts in the interactions based on the working memory consumption. (author)

  19. Development of nuclear power plant operator simulator for man-machine interface evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Takashi; Nakatani, Yoshio; Sasaki, Kazunori [Mitsubishi Electric Corp., Amagasaki, Hyogo (Japan). Industrial Electronics and Systems Development Lab.; Yoshikawa, Hidekazu; Takahashi, Makoto; Furuta, Tomihiko; Hasegawa, Akira

    1997-08-01

    The operational safety in nuclear power plants depends strongly on man machine interfaces (MMI), such as assignment of equipment on control boards and operation procedures in emergency situations. Therefore, the evaluation and analysis methods for the MMI are important. In order for the methods to be practical, the methods should be executed in each step of design and be easy for designers to use. We aim to develop SEAMAID system: a computer supported system for evaluating and analyzing the MMI by simulating the interaction between the operator and the machine. In this paper, we discuss problems of the conventional methods and the required functions of the operator simulator for the SEAMAID. The operator simulator executes not human errors but correct behavior which follows the operational procedure. The SEAMAID evaluates the MMI by finding potential human errors which could occur in the simulated interactions and points out the problematic interaction parts which could induce human errors. We construct the operator simulator by combining the human model which was proposed by Prof. Reason, and the knowledge base model based on the Petri net model. This simulator can treat frequency parameter which represents the degree of frequency of using a certain knowledge. We conduct two sample simulations in different frequency parameters in the same scenario. These simulation results show that even if the operator behaves correctly following the procedure, there are alternative task sequences. We verify that the simulated interactions are in good agreement with the actual one. Also, we propose the method to point out the problematic parts in the interactions based on the working memory consumption. (author)

  20. Man/machine interface algorithm for advanced delayed-neutron signal characterization system

    International Nuclear Information System (INIS)

    Gross, K.C.

    1985-01-01

    The present failed-element rupture detector (FERD) at Experimental Breeder Reactor II (EBR-II) consists of a single bank of delayed-neutron (DN) detectors at a fixed transit time from the core. Plans are currently under way to upgrade the FERD in 1986 and provide advanced DN signal characterization capability that is embodied in an equivalent-recoil-area (ERA) meter. The new configuration will make available to the operator a wealth of quantitative diagnostic information related to the condition and dynamic evolution of a fuel breach. The diagnostic parameters will include a continuous reading of the ERA value for the breach; the transit time, T/sub tr/, for DN emitters traveling from the core to the FERD; and the isotopic holdup time, T/sub h/, for the source. To enhance the processing, interpretation, and display of these parameters to the reactor operator, a man/machine interface (MMI) algorithm has been developed to run in the background on EBR-II's data acquisition system (DAS). The purpose of this paper is to describe the features and implementation of this newly developed MMI algorithm

  1. Development of a Human Performance Evaluation Support System for Human Factors Validation of MCR MMI Design in APR-1400

    International Nuclear Information System (INIS)

    Ha, Jun Su; Seong, Poong Hyun

    2005-01-01

    As CRT-based display and advanced information technology were applied to advanced reactors such as APR-1400 (Advanced Power Reactor-1400), human operators' tasks became more cognitive works. As a results, Human Factors Engineering (HFE) became more important in designing the MCR (Main Control Room) MMI (Man-Machine Interface) of an advanced reactor. According to the Human Factors Engineering Program Review Model, human factors validation of MCR MMI design should be performed through performance-based tests to determine whether it acceptably supports safe operation of the plant. In order to support the evaluation of the performance, a HUman Performance Evaluation Support System (HUPESS) is in development

  2. Audi Multi Media Interface (MMI) - A multidisciplinary development process for in car operating concepts based on new specification tools; Audi Multi Media Interface (MMI) - Neue Spezifikationsmethoden zur interdisziplinaeren Bedienkonzeptentwicklung

    Energy Technology Data Exchange (ETDEWEB)

    Hamberger, W.; Mauter, G. [Audi AG, Ingolstadt (Germany)

    2003-07-01

    The Audi MMI, proprietary development of the AUDI AG, resulted from the close and efficient collaboration of a multidisciplinary so-called ''MMI-Team'' formed by members of the design, ergonomics and electronics divisions. How to ensure an effective communication among engineers, software developers, designers and ergonomists turned out to be a challenge as no commonly comprehensible specification tools existed. While designers express themselves mainly using graphics and animations, ergonomists tend to call for abstract requirements. The other end is formed by the software developers who demand precise menu specifications. This problem was solved by developing a new specification environment. (orig.) [German] Das Audi MMI ist von einem interdisziplinaeren, dem sogen. ''MMI-Team'' in enger, effizienter Zusammenarbeit der Bereiche Design, Ergonomie und Elektronik bei der AUDI AG in Eigenentwicklung entstanden. Die Herausforderung war die Gewaehrleistung einer effektiven Kommunikation zwischen Ingenieurwesen, Softwareentwicklern, Designern und Ergonomen. Das Problem dabei bestand im Fehlen von allgemein verstaendlichen Spezifikationsmitteln. Waehrend sich die Designer vorwiegend in Grafiken und Animationen ausdruecken, kommen von den Ergonomen groesstenteils abstrakte Forderungen. Den Gegenpol bilden die Softwareentwickler, die konkrete Menuespezifikationen fordern. Geloest wurde dieses Problem durch eine neue Spezifikationslandschaft. (orig.)

  3. Upper limb functional electrical stimulation devices and their man-machine interfaces.

    Science.gov (United States)

    Venugopalan, L; Taylor, P N; Cobb, J E; Swain, I D

    2015-01-01

    Functional Electrical Stimulation (FES) is a technique that uses electricity to activate the nerves of a muscle that is paralysed due to hemiplegia, multiple sclerosis, Parkinson's disease or spinal cord injury (SCI). FES has been widely used to restore upper limb functions in people with hemiplegia and C5-C7 tetraplegia and has improved their ability to perform their activities of daily living (ADL). At the time of writing, a detailed literature review of the existing upper limb FES devices and their man-machine interfaces (MMI) showed that only the NESS H200 was commercially available. However, the rigid arm splint doesn't fit everyone and prevents the use of a tenodesis grip. Hence, a robust and versatile upper limb FES device that can be used by a wider group of people is required.

  4. Human-machine interface upgrade

    International Nuclear Information System (INIS)

    Kropik, M.; Matejka, K.; Sklenka, L.; Chab, V.

    2002-01-01

    The article describes a new human-machine interface that was installed at the VR-1 training reactor. The human-machine interface upgrade was completed in the summer 2001. The interface was designed with respect to functional, ergonomic and aesthetic requirements. The interface is based on a personal computer equipped with two displays. One display enables alphanumeric communication between the reactor operator and the nuclear reactor I and C. The second display is a graphical one. It presents the status of the reactor, principal parameters (as power, period), control rods positions, course of the reactor power. Furthermore, it is possible to set parameters, to show the active core configuration, to perform reactivity calculations, etc. The software for the new human-machine interface was produced with the InTouch developing tool of the Wonder-Ware Company. It is possible to switch the language of the interface between Czech and English because of many foreign students and visitors to the reactor. Microcomputer based communication units with proper software were developed to connect the new human-machine interface with the present reactor I and C. The new human-machine interface at the VR-1 training reactor improves the comfort and safety of the reactor utilisation, facilitates experiments and training, and provides better support for foreign visitors. (orig.)

  5. Man-machine design integration

    Energy Technology Data Exchange (ETDEWEB)

    Carrera, J.P. [Westinghouse Electric Corp., Monroeville, PA (United States). Nuclear Technology Div.; Haentjens, J. [Westinghouse Electric Corp., Brussels (Belgium). Nuclear Technology Div.

    1995-12-31

    The presentation overviews the bases for Man-Machine Interface (MMI) designs that are part of three other presentations during the same conference: Advanced Alarm Management System, Functional Displays and System for Emergency Procedure Execution Monitoring. The MMD group history, team and goals are summarized to give some context to the core of the MMD philosophy and integration. (10 refs., 5 figs.).

  6. Code coverage measurement methodology for MMI software of safety-class I and C system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Hyung; Jung, Beom Young; Choi, Seok Joo [Suresofttech, Seoul (Korea, Republic of)

    2016-10-15

    MMI (Man-Machine Interface) software of the safety instrumentation and control system used in nuclear power plants carry out an important functions, such as displaying and transmitting the commend to another system, and change setpoints the safety-related information. Yet, this has been recognized reliability of the MMI software plays an important role in enhancing nuclear power plants are operating, regulatory standards have been strengthened with it. Strengthening of regulatory standards has affected even perform software testing soon, and accordingly, the current regulatory require the measurement of code coverage with legal standard. In this paper, it poses a problem of the conventional method used for measuring the above-mentioned code coverage, presents a new coverage measuring method for solving the exposed problems. In this paper, we checked the problems such as limit and the low efficiency of the existing test coverage measuring method on the MMI software using in nuclear power instrumentation and control systems, and it proposed a new test coverage measuring method as a solution for this. If you apply a new method of Top-Down approach, can mitigate all of the problems of existing test coverage measurement methods and possible coverage achievement of the desired objectives. Of course, it is still necessary to secure more cases, and the methodology should be systematization based on the cases. Thus, if later the efficient and reliable are ensured through the application in many cases, as well as nuclear power instrumentation and control, may be used to ensure code coverage of software of the many areas where the GUI is utilized.

  7. Ultra-short silicon MMI duplexer

    Science.gov (United States)

    Yi, Huaxiang; Huang, Yawen; Wang, Xingjun; Zhou, Zhiping

    2012-11-01

    The fiber-to-the-home (FTTH) systems are growing fast these days, where two different wavelengths are used for upstream and downstream traffic, typically 1310nm and 1490nm. The duplexers are the key elements to separate these wavelengths into different path in central offices (CO) and optical network unit (ONU) in passive optical network (PON). Multimode interference (MMI) has some benefits to be a duplexer including large fabrication tolerance, low-temperature dependence, and low-polarization dependence, but its size is too large to integrate in conventional case. Based on the silicon photonics platform, ultra-short silicon MMI duplexer was demonstrated to separate the 1310nm and 1490nm lights. By studying the theory of self-image phenomena in MMI, the first order images are adopted in order to keep the device short. A cascaded MMI structure was investigated to implement the wavelength splitting, where both the light of 1310nm and 1490nm was input from the same port, and the 1490nm light was coupling cross the first MMI and output at the cross-port in the device while the 1310nm light was coupling through the first and second MMI and output at the bar-port in the device. The experiment was carried on with the SOI wafer of 340nm top silicon. The cascaded MMI was investigated to fold the length of the duplexer as short as 117μm with the extinct ratio over 10dB.

  8. The development of KNGR control room man-machine interface design

    International Nuclear Information System (INIS)

    Sung-Jae Cho; Yeong-Cheol Shin

    2000-01-01

    KNGR MMI design has been developed for the last 7 years as a part of Korea Next Generation Reactor (KNGR) design development. The KNGR control room has the common features of advanced control room such as large display panel, redundant compact workstations, soft control, and computerized procedure system. A conventional type safety console is provided as a backup when operation at the workstations is impossible. The strong points of an advanced control room are based on the powerful information processing and flexible graphic presentation capability of computer technology. On the other hand, workstation based design has a weak point that the amount of information to be presented in one VDU is limited. This can cause navigational overload and inconsistent interfaces and provide chances for performance errors/failures, if not designed carefully. From this background, the regulators require licensees to follow strict top-down human factor engineering design process. Analysis of operating experiences and iterative evaluations are used to address the potential problems of the KNGR advanced control room MMI design. But, further study is necessary in design area like CPS design, where experiences or design guidance is insufficient. Further study topics for KNGR advanced control room MMI design development are discussed briefly in this paper. (author)

  9. Human factors evaluation of the 1998 NORS MMI in HAMMLAB

    International Nuclear Information System (INIS)

    Sebok, Angelia; Beere, Barnaby; Chung, Kyung-Hun

    1999-05-01

    The following document describes a Human Factors evaluation of NORS MMI in HAMMLAB. The purpose of this evaluation was to offer feedback on the usability of the current interface, to offer suggestions for improvement, and to provide useful input for MMI design in the HAMMLAB 2000 project. The evaluation was conducted using a variety of techniques: comparing the design to human factors guidelines, interviewing various HAMMLAB personnel, reviewing operator comments on the NORS interface, and assessing videotapes of operator performance in HAMMLAB. Based on this evaluation, strengths and weaknesses of the interface have been identified. Strengths include the overview display, the process format layout, the dedicated interaction areas, use of coding techniques, opportunities for comparing parameter trends, and flexibility of use. Issues for improvement have been identified regarding controls, feedback, consistency, navigation, information presentation, colour coding, symbols, naming conventions, labelling, and readability. Issues have also been identified specifically for the trend displays, logic diagrams, alarm system, and overview displays. To improve the interface, several approaches may be considered. The problems in the interface may be classified according to how realistic they are to modify. Some problems can be fixed by design changes, some require changes to the simulator data base, and others require additional hardware. Once problems are classified, they can be fixed or handled appropriately. Potential strategies for handling the more complicated design problems include personnel selection, training, procedures, job performance aids, or a help system (author) (ml)

  10. Future developments in brain-machine interface research.

    Science.gov (United States)

    Lebedev, Mikhail A; Tate, Andrew J; Hanson, Timothy L; Li, Zheng; O'Doherty, Joseph E; Winans, Jesse A; Ifft, Peter J; Zhuang, Katie Z; Fitzsimmons, Nathan A; Schwarz, David A; Fuller, Andrew M; An, Je Hi; Nicolelis, Miguel A L

    2011-01-01

    Neuroprosthetic devices based on brain-machine interface technology hold promise for the restoration of body mobility in patients suffering from devastating motor deficits caused by brain injury, neurologic diseases and limb loss. During the last decade, considerable progress has been achieved in this multidisciplinary research, mainly in the brain-machine interface that enacts upper-limb functionality. However, a considerable number of problems need to be resolved before fully functional limb neuroprostheses can be built. To move towards developing neuroprosthetic devices for humans, brain-machine interface research has to address a number of issues related to improving the quality of neuronal recordings, achieving stable, long-term performance, and extending the brain-machine interface approach to a broad range of motor and sensory functions. Here, we review the future steps that are part of the strategic plan of the Duke University Center for Neuroengineering, and its partners, the Brazilian National Institute of Brain-Machine Interfaces and the École Polytechnique Fédérale de Lausanne (EPFL) Center for Neuroprosthetics, to bring this new technology to clinical fruition.

  11. Future developments in brain-machine interface research

    Directory of Open Access Journals (Sweden)

    Mikhail A. Lebedev

    2011-01-01

    Full Text Available Neuroprosthetic devices based on brain-machine interface technology hold promise for the restoration of body mobility in patients suffering from devastating motor deficits caused by brain injury, neurologic diseases and limb loss. During the last decade, considerable progress has been achieved in this multidisciplinary research, mainly in the brain-machine interface that enacts upper-limb functionality. However, a considerable number of problems need to be resolved before fully functional limb neuroprostheses can be built. To move towards developing neuroprosthetic devices for humans, brain-machine interface research has to address a number of issues related to improving the quality of neuronal recordings, achieving stable, long-term performance, and extending the brain-machine interface approach to a broad range of motor and sensory functions. Here, we review the future steps that are part of the strategic plan of the Duke University Center for Neuroengineering, and its partners, the Brazilian National Institute of Brain-Machine Interfaces and the École Polytechnique Fédérale de Lausanne (EPFL Center for Neuroprosthetics, to bring this new technology to clinical fruition.

  12. A basic experimental study on mental workload for human cognitive work at man-machine interface

    International Nuclear Information System (INIS)

    Yoshikawa, Hidekazu; Shimoda, Hiroshi; Wakamori, Osamu; Nagai, Yoshinori

    1995-01-01

    The nature and measurement methods of mental workload (MWL) for human cognitive activity at man-machine interface (MMI) were firstly discussed from the viewpoint of human information process model. Then, a model VDT experiment which simplifies the actual human-computer-interaction situation at MMI, was conducted for several subjects, where two subjects participated in experiment series and tried to solve the same cognitive task in competition. Adopted experimental parameters were (i)different kinds of cognitive task, and (ii)cycle time of information display, to see the influence on MWL characteristics from psycho-physiological viewpoint. A special processing unit for eye camera was developed and used for measuring subjects' eye movement characteristics. Concerning data analysis, total number of display presentation until problem solving (ie., total information needed for problem solving) was assumed as anchoring objective measure for MWL, and the investigations were conducted from two aspects; (i)global interpretation on MWL characteristics seen in the subjects' behavior from viewpoint of human information process model, and (ii)applicability of MWL by means of biocybernetic method. As regards to applicability of biocybernetic method, the nature of MWL characteristics was first divided into two aspects : (i)efficiency of visual information acquisition, and (ii)difficulty of inner cognitive process to solve problem, both in time pressure situation. Then, the data analysis results for eye movement characteristics were correlated to (i), while for heart rate characteristics, (ii). (author)

  13. Man machine interface and its implementation

    International Nuclear Information System (INIS)

    Hills, B.G.; Boettcher, D.B.; Reed, R.

    1992-01-01

    Sizewell B is the latest nuclear power station to be constructed in the United Kingdom: its Man-Machine Interfaces are therefore, by definition, the state-of-the-art. This paper discusses the principal Man-Machine Interfaces used in the operation of the station, and the systems that implement them. The Man-Machine Interface facilities discussed are: in the Main Control Room, which is used for normal operation and shutdown of the plant: in the Auxiliary Shutdown Room, which allows shutdown of the reactor if evacuation of the main Control Room is necessary: and in the Technical Support Centre, which is used for remote monitoring of the plant. The Man-Machine Interfaces that are described are parts of a station-wide group of interlinked computer systems called the Data Processing and Control System. This system collects data from the plant and displays it to the operators via discrete devices and on graphical computer displays. It also acquires control inputs from the operators via switches, which are then used to provide remote manual control, modulating control and sequence control. The computer system that handles the plant process data and alarm information displays uses a windowing interface with keyboard and trackerball navigation to allow easy retrieval and viewing of information. It is this system that is the main topic of this paper. (author)

  14. Human-machine interface in mobile teleoperators

    International Nuclear Information System (INIS)

    Draper, J.V.

    1985-01-01

    In this document the following point has been made: human-machine interface is not ideal, and may be improved upon: telepresence is ideal but not required; current interfaces degrade normal human inputs/outputs; available and developing technology can improve interfaces

  15. Understanding and modelling man-machine interaction

    International Nuclear Information System (INIS)

    Cacciabue, P.C.

    1996-01-01

    This paper gives an overview of the current state of the art in man-machine system interaction studies, focusing on the problems derived from highly automated working environments and the role of humans in the control loop. In particular, it is argued that there is a need for sound approaches to the design and analysis of man-machine interaction (MMI), which stem from the contribution of three expertises in interfacing domains, namely engineering, computer science and psychology: engineering for understanding and modelling plants and their material and energy conservation principles; psychology for understanding and modelling humans an their cognitive behaviours; computer science for converting models in sound simulations running in appropriate computer architectures. (orig.)

  16. Understanding and modelling Man-Machine Interaction

    International Nuclear Information System (INIS)

    Cacciabue, P.C.

    1991-01-01

    This paper gives an overview of the current state of the art in man machine systems interaction studies, focusing on the problems derived from highly automated working environments and the role of humans in the control loop. In particular, it is argued that there is a need for sound approaches to design and analysis of Man-Machine Interaction (MMI), which stem from the contribution of three expertises in interfacing domains, namely engineering, computer science and psychology: engineering for understanding and modelling plants and their material and energy conservation principles; psychology for understanding and modelling humans and their cognitive behaviours; computer science for converting models in sound simulations running in appropriate computer architectures. (author)

  17. Graphic man-machine interface applied to nuclear reactor designs

    International Nuclear Information System (INIS)

    Pereira, Claudio M.N.A; Mol, Antonio Carlos A.

    1999-01-01

    The Man-Machine Interfaces have been of interest of many researchers in the area of nuclear human factors engineering, principally applied to monitoring systems. The clarity of information provides best adaptation of the men to the machine. This work proposes the development of a Graphic Man-Machine Interface applied to nuclear reactor designs as a tool to optimize them. Here is present a prototype of a graphic man-machine interface for the Hammer code developed for PC under the Windows environment. The results of its application are commented. (author)

  18. Man-machine interface for the MFTF

    International Nuclear Information System (INIS)

    Speckert, G.C.

    1979-01-01

    In any complex system, the interesting problems occur at the interface of dissimilar subsystems. Control of the Mirror Fusion Test Facility (MFTF) begins with the US Congress, which controls the dollars, which control the people, who control the nine top-level minicomputers, which control the 65 microprocessors, which control the hardware that controls the physics experiment. There are many interesting boundaries across which control must pass, and the one that this paper addresses is the man-machine one. For the MFTF, the man-machine interface consists of a system of seven control consoles, each allowing one operator to communicate with one minicomputer. These consoles are arranged in a hierarchical manner, and both hardware and software were designed in a top-down fashion. This paper describes the requirements and the design of the console system as a whole, as well as the design and operation of the hardware and software of each console, and examines the possible form of a future man-machine interface

  19. Man-machine interface for the MFTF

    Energy Technology Data Exchange (ETDEWEB)

    Speckert, G.C.

    1979-11-09

    In any complex system, the interesting problems occur at the interface of dissimilar subsystems. Control of the Mirror Fusion Test Facility (MFTF) begins with the US Congress, which controls the dollars, which control the people, who control the nine top-level minicomputers, which control the 65 microprocessors, which control the hardware that controls the physics experiment. There are many interesting boundaries across which control must pass, and the one that this paper addresses is the man-machine one. For the MFTF, the man-machine interface consists of a system of seven control consoles, each allowing one operator to communicate with one minicomputer. These consoles are arranged in a hierarchical manner, and both hardware and software were designed in a top-down fashion. This paper describes the requirements and the design of the console system as a whole, as well as the design and operation of the hardware and software of each console, and examines the possible form of a future man-machine interface.

  20. New human machine interface for VR-1 training reactor

    International Nuclear Information System (INIS)

    Kropik, M.; Matejka, K.; Sklenka, L.; Chab, V.

    2002-01-01

    The contribution describes a new human machine interface that was installed at the VR-1 training reactor. The human machine interface update was completed in the summer 2001. The human machine interface enables to operate the training reactor. The interface was designed with respect to functional, ergonomic and aesthetic requirements. The interface is based on a personal computer equipped with two displays. One display enables alphanumeric communication between a reactor operator and the control and safety system of the nuclear reactor. Messages appear from the control system, the operator can write commands and send them there. The second display is a graphical one. It is possible to represent there the status of the reactor, principle parameters (as power, period), control rods' positions, the course of the reactor power. Furthermore, it is possible to set parameters, to show the active core configuration, to perform reactivity calculations, etc. The software for the new human machine interface was produced in the InTouch developing environment of the WonderWare Company. It is possible to switch the language of the interface between Czech and English because of many foreign students and visitors at the reactor. The former operator's desk was completely removed and superseded with a new one. Besides of the computer and the two displays, there are control buttons, indicators and individual numerical displays of instrumentation there. Utilised components guarantee high quality of the new equipment. Microcomputer based communication units with proper software were developed to connect the contemporary control and safety system with the personal computer of the human machine interface and the individual displays. New human machine interface at the VR-1 training reactor improves the safety and comfort of the reactor utilisation, facilitates experiments and training, and provides better support of foreign visitors.(author)

  1. Development of core technology for KNGR system design; detailed analysis and related issue evaluation for MMI testing data

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dhong Ha [Suwon University, Whasung (Korea)

    2002-03-01

    This study evaluated man-machine interface (MMI) features of the advanced control room of Korea Next Generation Reactor. Major issues to be evaluated included: (1) supportability of large display panel (LDP) during passive monitoring (2) supportability of work station display (WSD) for interpretation and planning (3) supportability of combination of alarm, WSD, LDP and computerized procedure system (CPS) for interpretation and planning during single and multiple fault event, (4) supportability of softcontrol (SC) during simple operator-paced control task, (5) supportability of softcontrol (SC) during conditional operator-paced control task, and (6) supportability of alarm system for emergent operation procedure. Four operator teams of RO, TO, and SRO participated the test scenarios consisting of AOP and EOP. Performance data measuring situation awareness, workload, operation errors, and team work and operators' opinions for MMI features of advanced control room were collected during the experiment. Operators showed positive responses for issues (1) supportability of LDP during passive monitoring (2) supportability of WSD for interpretation and planning (3) supportability of combination of alarm, WSD, LDP and CPS for interpretation and planning during single and multiple fault event, (4) supportability of alarm system for normal operation procedure, while they suggested some needs to improve for issues: (1) supportability of softcontrol (SC) during simple and conditional operator-paced control task, (2) supportability of alarm system for emergent situation. 7 refs., 36 figs., 83 tabs. (Author)

  2. Brain-machine and brain-computer interfaces.

    Science.gov (United States)

    Friehs, Gerhard M; Zerris, Vasilios A; Ojakangas, Catherine L; Fellows, Mathew R; Donoghue, John P

    2004-11-01

    The idea of connecting the human brain to a computer or machine directly is not novel and its potential has been explored in science fiction. With the rapid advances in the areas of information technology, miniaturization and neurosciences there has been a surge of interest in turning fiction into reality. In this paper the authors review the current state-of-the-art of brain-computer and brain-machine interfaces including neuroprostheses. The general principles and requirements to produce a successful connection between human and artificial intelligence are outlined and the authors' preliminary experience with a prototype brain-computer interface is reported.

  3. Guards: An approach safety-related systems using cots example of MMI and reactor automation in nuclear submarine application

    International Nuclear Information System (INIS)

    Brun, M.

    1998-01-01

    For at least 10 years, the nuclear industry designs and licences specific digital safety-critical systems (IEC 1226 class A). One key issue for future programs is to design and licence safety-related systems providing more complex functions and using Commercial-Off-The-Shelf components. This issue is especially raised for Reactor automation and Man-Machine-Interface. The usual I and C (Instrumentation and Control) organisation for these functions is based on redundancy between a commercial, up-to-date, unclassified > system and a simplified classified > system using traditional technologies. It clearly appears that such organisation is not satisfying from the point of view of people who have actually to operate these systems: The operator is supposed not to trust the normal system and rely on the back-up system which is less helpful and that he use very few. This paper presents a new approach to that problem using COTS components in low-level layers, safety architecture and mechanisms at medium level layer (GUARDS architecture developed in the current ESPRIT project number 20716), and a pre-validated functional layer. The aim of this solution is to comply with the > IEC 1226 class B requirements, at lower overall cost (design, implementation, licensing, long term confidence). This approach is illustrated by its application in Man-Machine-Interface (MMI) for our future program of Nuclear submarine. (author)

  4. Analysis of the rectangular resonator with butterfly MMI coupler using SOI

    Science.gov (United States)

    Kim, Sun-Ho; Park, Jun-Hee; Kim, Eudum; Jeon, Su-Jin; Kim, Ji-Hoon; Choi, Young-Wan

    2018-02-01

    We propose a rectangular resonator sensor structure with butterfly MMI coupler using SOI. It consists of the rectangular resonator, total internal reflection (TIR) mirror, and the butterfly MMI coupler. The rectangular resonator is expected to be used as bio and chemical sensors because of the advantages of using MMI coupler and the absence of bending loss unlike ring resonators. The butterfly MMI coupler can miniaturize the device compared to conventional MMI by using a linear butterfly shape instead of a square in the MMI part. The width, height, and slab height of the rib type waveguide are designed to be 1.5 μm, 1.5 μm, and 0.9 μm, respectively. This structure is designed as a single mode. When designing a TIR mirror, we considered the Goos-Hänchen shift and critical angle. We designed 3:1 MMI coupler because rectangular resonator has no bending loss. The width of MMI is designed to be 4.5 μm and we optimize the length of the butterfly MMI coupler using finite-difference time-domain (FDTD) method for higher Q-factor. It has the equal performance with conventional MMI even though the length is reduced by 1/3. As a result of the simulation, Qfactor of rectangular resonator can be obtained as 7381.

  5. Integrated Human Factors Design Guidelines for Sound Interface

    International Nuclear Information System (INIS)

    Lee, Jung Woon; Lee, Yong Hee; Oh, In Seok; Lee, Hyun Chul; Cha, Woo Chang

    2004-05-01

    Digital MMI, such as CRT, LCD etc., has been used increasingly in the design of main control room of the Korean standard nuclear power plants following the YGN units 3 and 4. The utilization of digital MMI may introduce various kind of sound interface into the control room design. In this project, for five top-level guideline items, including Sound Formats, Alarms, Sound Controls, Communications, and Environments, a total of 147 detail guidelines were developed and a database system for these guidelines was developed. The integrated human factors design guidelines for sound interface and the database system developed in this project will be useful for the design of sound interface of digital MMI in Korean NPPs

  6. Integrated Human Factors Design Guidelines for Sound Interface

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Woon; Lee, Yong Hee; Oh, In Seok; Lee, Hyun Chul [KAERI, Daejeon (Korea, Republic of); Cha, Woo Chang [Kumoh National Univ. of Technology, Gumi (Korea, Republic of)

    2004-05-15

    Digital MMI, such as CRT, LCD etc., has been used increasingly in the design of main control room of the Korean standard nuclear power plants following the YGN units 3 and 4. The utilization of digital MMI may introduce various kind of sound interface into the control room design. In this project, for five top-level guideline items, including Sound Formats, Alarms, Sound Controls, Communications, and Environments, a total of 147 detail guidelines were developed and a database system for these guidelines was developed. The integrated human factors design guidelines for sound interface and the database system developed in this project will be useful for the design of sound interface of digital MMI in Korean NPPs.

  7. The MMI Semantic Framework: Rosetta Stones for Earth Sciences

    Science.gov (United States)

    Rueda, C.; Bermudez, L. E.; Graybeal, J.; Alexander, P.

    2009-12-01

    Semantic interoperability—the exchange of meaning among computer systems—is needed to successfully share data in Ocean Science and across all Earth sciences. The best approach toward semantic interoperability requires a designed framework, and operationally tested tools and infrastructure within that framework. Currently available technologies make a scientific semantic framework feasible, but its development requires sustainable architectural vision and development processes. This presentation outlines the MMI Semantic Framework, including recent progress on it and its client applications. The MMI Semantic Framework consists of tools, infrastructure, and operational and community procedures and best practices, to meet short-term and long-term semantic interoperability goals. The design and prioritization of the semantic framework capabilities are based on real-world scenarios in Earth observation systems. We describe some key uses cases, as well as the associated requirements for building the overall infrastructure, which is realized through the MMI Ontology Registry and Repository. This system includes support for community creation and sharing of semantic content, ontology registration, version management, and seamless integration of user-friendly tools and application programming interfaces. The presentation describes the architectural components for semantic mediation, registry and repository for vocabularies, ontology, and term mappings. We show how the technologies and approaches in the framework can address community needs for managing and exchanging semantic information. We will demonstrate how different types of users and client applications exploit the tools and services for data aggregation, visualization, archiving, and integration. Specific examples from OOSTethys (http://www.oostethys.org) and the Ocean Observatories Initiative Cyberinfrastructure (http://www.oceanobservatories.org) will be cited. Finally, we show how semantic augmentation of web

  8. Adaptive Training and Collective Decision Support Based on Man-Machine Interface

    Science.gov (United States)

    2016-03-02

    Based on Man -machine Interface The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an...ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 adaptive training, EEG, man -machine interface...non peer-reviewed journals: Final Report: Adaptive Training and Collective Decision Support Based on Man -machine Interface Report Title The existence of

  9. Anti-invasive and antiangiogenic effects of MMI-166 on malignant glioma cells

    International Nuclear Information System (INIS)

    Nakabayashi, Hiromichi; Yawata, Toshio; Shimizu, Keiji

    2010-01-01

    The constitutive overexpression of matrix metalloproteinases (MMPs) is frequently observed in malignant tumours. In particular, MMP-2 and MMP-9 have been reported to be closely associated with invasion and angiogenesis in malignant gliomas. Our study aimed to evaluate the antitumour effects of MMI-166 (Nalpha-[4-(2-Phenyl-2H- tetrazole-5-yl) phenyl sulfonyl]-D-tryptophan), a third generation MMP inhibitor, on three human glioma cell lines (T98G, U87MG, and ONS12) in vitro and in vivo. The effects of MMI-166 on the gelatinolytic activity was analysed by gelatine zymography. The anti-invasive effect of MMI-166 was analysed by an in vitro invasion assay. An in vitro angiogenesis assay was also performed. In vitro growth inhibition of glioma cells by MMI-166 was determined by the MTT assay. The effect of MMI-166 on an orthotropic implantation model using athymic mice was also evaluated. Gelatine zymography revealed that MMP-2 and MMP-9 activities were suppressed by MMI-166. The invasion of glioma cells was suppressed by MMI-166. The angiogenesis assay showed that MMI-166 had a suppressive effect on glioma cell-induced angiogenesis. However, MMI-166 did not suppress glioma cell proliferation in the MTT assay. In vivo, MMI-166 suppressed tumour growth in athymic mice implanted orthotropically with T98G cells and showed an inhibitory effect on tumour-induced angiogenesis and tumour growth. This is the first report of the effect of a third generation MMP inhibitor on malignant glioma cells. These results suggest that MMI-166 may have potentially suppressive effects on the invasion and angiogenesis of malignant gliomas

  10. Different protein-protein interface patterns predicted by different machine learning methods.

    Science.gov (United States)

    Wang, Wei; Yang, Yongxiao; Yin, Jianxin; Gong, Xinqi

    2017-11-22

    Different types of protein-protein interactions make different protein-protein interface patterns. Different machine learning methods are suitable to deal with different types of data. Then, is it the same situation that different interface patterns are preferred for prediction by different machine learning methods? Here, four different machine learning methods were employed to predict protein-protein interface residue pairs on different interface patterns. The performances of the methods for different types of proteins are different, which suggest that different machine learning methods tend to predict different protein-protein interface patterns. We made use of ANOVA and variable selection to prove our result. Our proposed methods taking advantages of different single methods also got a good prediction result compared to single methods. In addition to the prediction of protein-protein interactions, this idea can be extended to other research areas such as protein structure prediction and design.

  11. The Properties of Intelligent Human-Machine Interface

    Directory of Open Access Journals (Sweden)

    Alexander Alfimtsev

    2012-04-01

    Full Text Available Intelligent human-machine interfaces based on multimodal interaction are developed separately in different application areas. No unified opinion exists about the issue of what properties should these interfaces have to provide an intuitive and natural interaction. Having carried out an analytical survey of the papers that deal with intelligent interfaces a set of properties are presented, which are necessary for intelligent interface between an information system and a human: absolute response, justification, training, personification, adaptiveness, collectivity, security, hidden persistence, portability, filtering.

  12. Man-machine interface builders at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Anderson, M.D.

    1991-01-01

    Argonne National Laboratory is constructing a 7-GeV Advanced Photon Source for use as a synchrotron radiation source in basic and applied research. The controls and computing environment for this accelerator complex includes graphical operator interfaces to the machine based on Motif, X11, and PHIGS/PEX. Construction and operation of the control system for this accelerator relies upon interactive interface builder and diagram/editor type tools, as well as a run-time environment for the constructed displays which communicate with the physical machine via network connections. This paper discusses our experience with several commercial CUI builders, the inadequacies found in these, motivation for the development of an application- specific builder, and design and implementation strategies employed in the development of our own Man-Machine Interface builder. 5 refs

  13. Correlation between MMI performance and OSCE performance – a pilot study

    Directory of Open Access Journals (Sweden)

    Adetokunbo Oluwasanjo

    2015-06-01

    Full Text Available Objective: The multiple mini-interview (MMI has been shown to have a positive correlation with early medical school performance, clerkship evaluations, and national licensing examinations. There is limited data on its predictive validity at the postgraduate level. Methods: Six hundred and nineteen internship candidates were interviewed using the MMI format by the internal medicine residency program of The Reading Health System, between September 2011 and February 2014. Fifty-two interns were recruited. Each intern participated in an objective structured clinical examination (OSCE 3–4 months after the start of the program. The OSCE score of each intern was used as the independent variable to test the relationship with both the MMI interpersonal score and the MMI overall score. Results: There was a moderate positive correlation between the average MMI interpersonal score and the communication score on the OSCE, r=0.384, n=52, p=0.005, and a negligible relationship between the average MMI overall score and the communication score on the OSCE, r=0.175, n=52, p=0.214. Conclusion: The MMI is a useful tool for residency programs to assess interpersonal and communication skills prior to matriculation into residency training. This study provides evidence for its validity in assessing these competencies.

  14. Nano Trek Beyond: Driving Nanocars/Molecular Machines at Interfaces.

    Science.gov (United States)

    Ariga, Katsuhiko; Mori, Taizo; Nakanishi, Waka

    2018-03-09

    In 2016, the Nobel Prize in Chemistry was awarded for pioneering work on molecular machines. Half a year later, in Toulouse, the first molecular car race, a "nanocar race", was held by using the tip of a scanning tunneling microscope as an electrical remote control. In this Focus Review, we discuss the current state-of-the-art in research on molecular machines at interfaces. In the first section, we briefly explain the science behind the nanocar race, followed by a selection of recent examples of controlling molecules on surfaces. Finally, motion synchronization and the functions of molecular machines at liquid interfaces are discussed. This new concept of molecular tuning at interfaces is also introduced as a method for the continuous modification and optimization of molecular structure for target functions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Control room MMI 2000 for NORS simulator in HAMMLAB

    International Nuclear Information System (INIS)

    Saarni, R.; Foerdestroemmen, N.T.; Meyer, B.D.; Skjerve, A.B.M.

    2001-03-01

    The report presents the control room MMI as of year 2000 for the NORS simulator in HAMMLAB. It consists of two main parts: NORS Reference Control Room MMI and NORS Experimental Control Room MMI. They are both utilised in human factors experiments in HAMMLAB. The HAMMLAB Experimental Control Room 2000 is presented together with the NORS Reference CR MMI, which includes the following display types: Overview displays, process and control displays, trend displays, supplementary alarm displays and logic displays for the protection system and other automatic control systems. User experiences based on feedback from professional Loviisa NPP operators are also given. For the Experimental Control Room MMI, main emphasis is on presenting the design of a new large screen overview display called; experimental Automatic Information Presentation (AIP) display. It was used for the first time last year in the HCA-2000 experiment in HAMMLAB. The design is quite different from previous overview displays being developed and used in HAMMLAB. The display presents the overall dynamic status of both the process and the automatic systems. The plans for the future include to develop and user test an upgraded AIP overview display, and to enhance and user test a limited set of task-based display prototypes. (Author)

  16. Visually Coupled Systems (VCS): The Virtual Panoramic Display (VPD) System

    National Research Council Canada - National Science Library

    Kocian, Dean F

    1991-01-01

    .... VCS represents an advanced man-machine interface (MMI). Its potential to improve aircrew situational awareness seems enormous, but its superiority over the conventional cockpit MMI has not been established in a conclusive and rigorous fashion...

  17. An Integrated User Interface Style Guide for the ESF-CCS, RPS and CPCS display design

    International Nuclear Information System (INIS)

    Park, Jae Kyu; Lee, Hyun Chul; Hwang, Seong Hwan; Jang, Tong Il; Kang, Suk Ho; Lee, Jung Woon; Lee, Yong Hee

    2009-01-01

    The human machine interface (HMI) design process is important to enhance the safety and reliability of a Nuclear Power Plant (NPP) operation. Various MMI activities are achieved with progress of MMI and environment of NPP. These activities are impossible to utilize when upgrade of environment because most of these activities emphasize hardware aspect. Also, the human factors guidelines mostly describe the human factors principles so the designer has to adapt them to apply them to his design. The design-specific guideline that is specially dedicated to a unique system and derived from the general guidelines is called style guide. The style guide provides easy to use templates to help the user interface design, and these templates help ensure a consistent look and behavior throughout the design products. However, it could be difficult for a designer to select the human factors guideline items related to a target system and to derive a style guide from the items. This paper describes human factors activities carried out to develop a style guide for the ESF-CCS, RPS and CPCS system

  18. The APS intranet as a man-machine interface

    International Nuclear Information System (INIS)

    Ciarlette, D.; Gerig, R.; McDowell, W.

    1997-01-01

    The Advanced Photon Source at Argonne National Laboratory has implemented a number of methods for people to interact with the accelerator systems. The accelerator operators use Sun workstations running MEDM and WCL to interface interactively with the accelerator, however, many people need to view information rather than interact with the machine. One of the most common interfaces for viewing information at the Advanced Photon Source is the World Wide Web. Information such as operations logbook entries, machine status updates, and displays of archived and current data are easily available to APS personnel. This interface between people and the accelerator has proven to be quite useful. Because the Intranet is operating-system independent and inherently unidirectional, ensuring the prevention of unauthorized or accidental control of the accelerators is straightforward

  19. The MMI Device Ontology: Enabling Sensor Integration

    Science.gov (United States)

    Rueda, C.; Galbraith, N.; Morris, R. A.; Bermudez, L. E.; Graybeal, J.; Arko, R. A.; Mmi Device Ontology Working Group

    2010-12-01

    The Marine Metadata Interoperability (MMI) project has developed an ontology for devices to describe sensors and sensor networks. This ontology is implemented in the W3C Web Ontology Language (OWL) and provides an extensible conceptual model and controlled vocabularies for describing heterogeneous instrument types, with different data characteristics, and their attributes. It can help users populate metadata records for sensors; associate devices with their platforms, deployments, measurement capabilities and restrictions; aid in discovery of sensor data, both historic and real-time; and improve the interoperability of observational oceanographic data sets. We developed the MMI Device Ontology following a community-based approach. By building on and integrating other models and ontologies from related disciplines, we sought to facilitate semantic interoperability while avoiding duplication. Key concepts and insights from various communities, including the Open Geospatial Consortium (eg., SensorML and Observations and Measurements specifications), Semantic Web for Earth and Environmental Terminology (SWEET), and W3C Semantic Sensor Network Incubator Group, have significantly enriched the development of the ontology. Individuals ranging from instrument designers, science data producers and consumers to ontology specialists and other technologists contributed to the work. Applications of the MMI Device Ontology are underway for several community use cases. These include vessel-mounted multibeam mapping sonars for the Rolling Deck to Repository (R2R) program and description of diverse instruments on deepwater Ocean Reference Stations for the OceanSITES program. These trials involve creation of records completely describing instruments, either by individual instances or by manufacturer and model. Individual terms in the MMI Device Ontology can be referenced with their corresponding Uniform Resource Identifiers (URIs) in sensor-related metadata specifications (e

  20. Human machine interface for research reactor instrumentation and control system

    International Nuclear Information System (INIS)

    Mohd Sabri Minhat; Mohd Idris Taib; Izhar Abu Hussin; Zareen Khan Abdul Jalil Khan; Nurfarhana Ayuni Joha

    2010-01-01

    Most present design of Human Machine Interface for Research Reactor Instrumentation and Control System is modular-based, comprise of several cabinets such as Reactor Protection System, Control Console, Information Console as well as Communication Console. The safety, engineering and human factor will be concerned for the design. Redundancy and separation of signal and power supply are the main factor for safety consideration. The design of Operator Interface absolutely takes consideration of human and environmental factors. Physical parameters, experiences, trainability and long-established habit patterns are very important for user interface, instead of the Aesthetic and Operator-Interface Geometry. Physical design for New Instrumentation and Control System of RTP are proposed base on the state-of- the-art Human Machine Interface design. (author)

  1. The CANDU man-machine interface and simulator training

    International Nuclear Information System (INIS)

    Hinchley, E.M.; Yanofsky, N.

    1982-09-01

    The most significant features of the man-machine interface for CANDU power stations are the extensive use of computer-driven colour graphics displays and the small number of manual controls. The man-machine interface in CANDU stations is designed to present the operator with concise, easy-to-understand information. Future developments in the use of computers in safety shutdown systems, and the use of data highway technologies in plant regulating systems will present special requirements and new opportunities in the application of human factors engineering to the control room. Good man-machine interaction depends on operator training as much as on control room design. In Canada computerized training simulators, which indicate plant response to operator action, are being introducted for operator training. Such simulators support training in normal operation of all plant systems and also in the fault management tasks following malfunctions

  2. Framework for man-machine interface design evaluation system considering cognitive factor

    International Nuclear Information System (INIS)

    Itoh, Toru; Sasaki, Kazunori; Yoshikawa, Hidekazu; Takahashi, Makoto; Furuta, Tomihiko.

    1994-01-01

    It is necessary to improve human reliability in order to gain a higher reliability of the total plant system taking an account of development of plant automation and improvement of machine reliability. Therefore, the role of the man-machine system will come to be important. Accordingly, the evaluation of the man-machine system design information is desired in order to solve the mismatch problem between plant information presented by the man-machine system and information required by the operator comprehensively. This paper discusses required functions and software framework for the man-machine interface design evaluation system. The man-machine interface design evaluation system has features to extract the potential matters which are inherent on the design information of man-machine system by simulating the operator behavior, the plant system and the man-machine system, considering the operator's cognitive performance and time dependency. (author)

  3. Attempt on construction of human friendly man-machine interface. Study and apply about human communication; Human friendly na man machine interface kochiku no kokoromi. Ningen no communication no kento to sono oyo

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuno, J. [Tokyo University of Agriculture, Tokyo (Japan); Kokubo, Y.; Matsumura, I.; Kobayashi, H. [Hosei University, Tokyo (Japan)

    1998-04-01

    This paper describes an attempt on a construction way of human friendly man-machine interface. At first, we do a simple experiment to find out the characteristic of human verbal communication. From the experimental results, we get some rules in case in human verbal communication. We construct the man-machine interface which is based on these rules. Through teaching process, we examine our verbal communication interface comparing with conventional interfaces. From this comparison, we recognize that the verbal communication interface is valid to construct the user-friendly man-machine interface. 12 refs., 9 figs., 2 tabs.

  4. Development of a new graphical interface for the LABIHS simulator using LABVIEW

    Energy Technology Data Exchange (ETDEWEB)

    Augusto, Silas C.; Jaime, Guilherme D.; Farias, Marcos S., E-mail: silas@ien.gov.br, E-mail: gdjaime@ien.gov.br, E-mail: msantana@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN/RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    The LABIHS (Human-System Interfaces Laboratory) compact nuclear power plant (NPP) simulator is, since 2002, operating at the Nuclear Engineering Institute (IEN), Brazil. Due to the processing power required by the simulator software and the hardware available at the time, the simulator was developed under a PA-RISC architecture server (HPC3700), using the HP-UX operating system. All mathematical modeling components were written using the HP Fortran-77 programming language with a shared memory to exchange data from/to all simulator modules. In 2008, this hardware/software framework was discontinued, with customer support ceasing in 2013, what makes it difficult to maintain and expand. On the other hand, technological progress during this period enabled cheaper and more accessible computers, such as the PC (Personal Computer) architecture, to have enough processing power to run the simulator framework. It turns out that the PA-RISC computer architecture is incompatible with the PC one. Thus, our work group has been working, for some years, to port the simulator to the PC architecture. Part of this effort includes completely rebuilding all the MMI (Man- Machine Interface) using modern software tools and programming languages which are compatible with the PC architecture. In this work, we present two important steps for the NPP simulator migration from the obsolete architecture to the PC one. Firstly, we provide a new inter-process communication library which allows the data exchange between the NPP simulator currently running at the old PA-RISC architecture and other software running on modern PCs. This step is important because it allows to work on the new Graphical Interface while the older NPP simulator is still operating. Secondly, we present the all-new MMI for the LABIHS simulator, currently under development using LabVIEW software suit. We then provide a comparison between the original and the proposed MMI development process. (author)

  5. Development of a new graphical interface for the LABIHS simulator using LABVIEW

    International Nuclear Information System (INIS)

    Augusto, Silas C.; Jaime, Guilherme D.; Farias, Marcos S.

    2017-01-01

    The LABIHS (Human-System Interfaces Laboratory) compact nuclear power plant (NPP) simulator is, since 2002, operating at the Nuclear Engineering Institute (IEN), Brazil. Due to the processing power required by the simulator software and the hardware available at the time, the simulator was developed under a PA-RISC architecture server (HPC3700), using the HP-UX operating system. All mathematical modeling components were written using the HP Fortran-77 programming language with a shared memory to exchange data from/to all simulator modules. In 2008, this hardware/software framework was discontinued, with customer support ceasing in 2013, what makes it difficult to maintain and expand. On the other hand, technological progress during this period enabled cheaper and more accessible computers, such as the PC (Personal Computer) architecture, to have enough processing power to run the simulator framework. It turns out that the PA-RISC computer architecture is incompatible with the PC one. Thus, our work group has been working, for some years, to port the simulator to the PC architecture. Part of this effort includes completely rebuilding all the MMI (Man- Machine Interface) using modern software tools and programming languages which are compatible with the PC architecture. In this work, we present two important steps for the NPP simulator migration from the obsolete architecture to the PC one. Firstly, we provide a new inter-process communication library which allows the data exchange between the NPP simulator currently running at the old PA-RISC architecture and other software running on modern PCs. This step is important because it allows to work on the new Graphical Interface while the older NPP simulator is still operating. Secondly, we present the all-new MMI for the LABIHS simulator, currently under development using LabVIEW software suit. We then provide a comparison between the original and the proposed MMI development process. (author)

  6. Effects of digital human-machine interface characteristics on human error in nuclear power plants

    International Nuclear Information System (INIS)

    Li Pengcheng; Zhang Li; Dai Licao; Huang Weigang

    2011-01-01

    In order to identify the effects of digital human-machine interface characteristics on human error in nuclear power plants, the new characteristics of digital human-machine interface are identified by comparing with the traditional analog control systems in the aspects of the information display, user interface interaction and management, control systems, alarm systems and procedures system, and the negative effects of digital human-machine interface characteristics on human error are identified by field research and interviewing with operators such as increased cognitive load and workload, mode confusion, loss of situation awareness. As to the adverse effects related above, the corresponding prevention and control measures of human errors are provided to support the prevention and minimization of human errors and the optimization of human-machine interface design. (authors)

  7. A new man-machine-interface at BESSY

    International Nuclear Information System (INIS)

    Mueller, R.; Doll, H.D.; Donasch, I.J.; Marxen, H.; Pause, H.

    1991-01-01

    A UIMS (user interface management system) has been developed, that is completely based on non-proprietary software. Central part of the UIMS are processes (mapper) that act as universal X-clients for each specified X-server. Mapper (graphic server) and applications (graphic clients) exchange requests by an event driven interface. The communication protocol is free from any graphical information. The most powerful mapper client is a form interpreter, that can be programmed to act as an equipment access server. Mapper and form interpreter allow to compose control panels and synoptic views of the machine with statements in a simple and comprehensible UIDL (user interface definition language)

  8. Control rooms and man-machine interface in nuclear power plants

    International Nuclear Information System (INIS)

    1990-08-01

    The importance of man-machine interface for ensuring safe and reliable operation of nuclear power plants has always been recognized. Since the early 1970's, the concepts of operator support and human factors have been increasingly used to better define the role of control rooms. In the late 1970's, the lessons learned from experience considerably accelerated the development of recommendations and regulatory requirements governing the resources and data available to operators in nuclear power plant control rooms, and specified the expertise required to assist them in case of need. This document summarizes the steps which have been taken and are being planned around the world to improve the man-machine interface for safe and economic power generation. It intends to present to the reader useful examples on some selected control room design and man-machine interface practices for operation and surveillance of nuclear power plants. 53 refs, 94 figs, 27 tabs

  9. MMI's Metadata and Vocabulary Solutions: 10 Years and Growing

    Science.gov (United States)

    Graybeal, J.; Gayanilo, F.; Rueda-Velasquez, C. A.

    2014-12-01

    The Marine Metadata Interoperability project (http://marinemetadata.org) held its public opening at AGU's 2004 Fall Meeting. For 10 years since that debut, the MMI guidance and vocabulary sites have served over 100,000 visitors, with 525 community members and continuous Steering Committee leadership. Originally funded by the National Science Foundation, over the years multiple organizations have supported the MMI mission: "Our goal is to support collaborative research in the marine science domain, by simplifying the incredibly complex world of metadata into specific, straightforward guidance. MMI encourages scientists and data managers at all levels to apply good metadata practices from the start of a project, by providing the best guidance and resources for data management, and developing advanced metadata tools and services needed by the community." Now hosted by the Harte Research Institute at Texas A&M University at Corpus Christi, MMI continues to provide guidance and services to the community, and is planning for marine science and technology needs for the next 10 years. In this presentation we will highlight our major accomplishments, describe our recent achievements and imminent goals, and propose a vision for improving marine data interoperability for the next 10 years, including Ontology Registry and Repository (http://mmisw.org/orr) advancements and applications (http://mmisw.org/cfsn).

  10. Operator-machine interface at a large laser-fusion facility

    International Nuclear Information System (INIS)

    Sutton, J.G.; Howell, J.A.

    1982-01-01

    The operator-machine interface at the Antares Laser Facility provides the operator with a means of controlling the laser system and obtaining operational and performance information. The goal of this interface is to provide an operator with access to the control system in a comfortable way, and to facilitate meeting operational requirements. We describe the philosophy and requirements behind this interface, the hardware used in building it, and the software environment

  11. Ecological Design of Cooperative Human-Machine Interfaces for Safety of Intelligent Transport Systems

    Directory of Open Access Journals (Sweden)

    Orekhov Aleksandr

    2016-01-01

    Full Text Available The paper describes research results in the domain of cooperative intelligent transport systems. The requirements for human-machine interface considering safety issue of for intelligent transport systems (ITSare analyzed. Profiling of the requirements to cooperative human-machine interface (CHMI for such systems including requirements to usability and safety is based on a set of standards for ITSs. An approach and design technique of cooperative human-machine interface for ITSs are suggested. The architecture of cloud-based CHMI for intelligent transport systems has been developed. The prototype of software system CHMI4ITSis described.

  12. Flexible human machine interface for process diagnostics

    International Nuclear Information System (INIS)

    Reifman, J.; Graham, G.E.; Wei, T.Y.C.; Brown, K.R.; Chin, R.Y.

    1996-01-01

    A flexible human machine interface to design and display graphical and textual process diagnostic information is presented. The system operates on different computer hardware platforms, including PCs under MS Windows and UNIX Workstations under X-Windows, in a client-server architecture. The interface system is customized for specific process applications in a graphical user interface development environment by overlaying the image of the process piping and instrumentation diagram with display objects that are highlighted in color during diagnostic display. Customization of the system is presented for Commonwealth Edison's Braidwood PWR Chemical and Volume Control System with transients simulated by a full-scale operator-training simulator and diagnosed by a computer-based system

  13. Qualitative analysis of MMI raters' scorings of medical school candidates: A matter of taste?

    Science.gov (United States)

    Christensen, Mette K; Lykkegaard, Eva; Lund, Ole; O'Neill, Lotte D

    2018-05-01

    Recent years have seen leading medical educationalists repeatedly call for a paradigm shift in the way we view, value and use subjectivity in assessment. The argument is that subjective expert raters generally bring desired quality, not just noise, to performance evaluations. While several reviews document the psychometric qualities of the Multiple Mini-Interview (MMI), we currently lack qualitative studies examining what we can learn from MMI raters' subjectivity. The present qualitative study therefore investigates rater subjectivity or taste in MMI selection interview. Taste (Bourdieu 1984) is a practical sense, which makes it possible at a pre-reflective level to apply 'invisible' or 'tacit' categories of perception for distinguishing between good and bad. The study draws on data from explorative in-depth interviews with 12 purposefully selected MMI raters. We find that MMI raters spontaneously applied subjective criteria-their taste-enabling them to assess the candidates' interpersonal attributes and to predict the candidates' potential. In addition, MMI raters seemed to share a taste for certain qualities in the candidates (e.g. reflectivity, resilience, empathy, contact, alikeness, 'the good colleague'); hence, taste may be the result of an ongoing enculturation in medical education and healthcare systems. This study suggests that taste is an inevitable condition in the assessment of students' performance. The MMI set-up should therefore make room for MMI raters' taste and their connoisseurship, i.e. their ability to taste, to improve the quality of their assessment of medical school candidates.

  14. Design Control Systems of Human Machine Interface in the NTVS-2894 Seat Grinder Machine to Increase the Productivity

    Science.gov (United States)

    Ardi, S.; Ardyansyah, D.

    2018-02-01

    In the Manufacturing of automotive spare parts, increased sales of vehicles is resulted in increased demand for production of engine valve of the customer. To meet customer demand, we carry out improvement and overhaul of the NTVS-2894 seat grinder machine on a machining line. NTVS-2894 seat grinder machine has been decreased machine productivity, the amount of trouble, and the amount of downtime. To overcome these problems on overhaul the NTVS-2984 seat grinder machine include mechanical and programs, is to do the design and manufacture of HMI (Human Machine Interface) GP-4501T program. Because of the time prior to the overhaul, NTVS-2894 seat grinder machine does not have a backup HMI (Human Machine Interface) program. The goal of the design and manufacture in this program is to improve the achievement of production, and allows an operator to operate beside it easier to troubleshoot the NTVS-2894 seat grinder machine thereby reducing downtime on the NTVS-2894 seat grinder machine. The results after the design are HMI program successfully made it back, machine productivity increased by 34.8%, the amount of trouble, and downtime decreased 40% decrease from 3,160 minutes to 1,700 minutes. The implication of our design, it could facilitate the operator in operating machine and the technician easer to maintain and do the troubleshooting the machine problems.

  15. Academic Training: The LHC machine /experiment interface

    CERN Multimedia

    Françoise Benz

    2005-01-01

    2004-2005 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 18, 19, 20, 21 & 22 April from 11.00 to 12.00 hrs - Main Auditorium, bldg. 500 The LHC machine /experiment interface S. TAPPROGGE, Univ. of Mainz, D, R. ASSMANN, CERN-AB E. TSESMELIS and D. MACINA, CERN-TS This series of lectures will cover some of the major issues at the boundary between the LHC machine and the experiments: 1) The physics motivation and expectations of the experiments regarding the machine operation. This will include an overview of the LHC physics programme (in pp and PbPb collisions), of the experimental signatures (from high pT objects to leading nucleons) and of the expected trigger rates as well as the data sets needed for specific measurements. Furthermore, issues related to various modes of operation of the machine (e.g. bunch spacings of 25 ns. vs. 75 ns.) and special requirements of the detectors for their commissioning will be described. 2) The LHC machine aspects: introduction of the main LHC parameters and discu...

  16. Academic Training: The LHC machine /experiment interface

    CERN Multimedia

    Françoise Benz

    2005-01-01

    2004-2005 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 18, 19, 20, 21 & 22 April from 11.00 to 12.00 hrs - Main Auditorium, bldg. 500 The LHC machine /experiment interface S. TAPPROGGE, Univ. of Mainz, D, R. ASSMANN, CERN-AB E. TSESMELIS and D. MACINA, CERN-TS This series of lectures will cover some of the major issues at the boundary between the LHC machine and the experiments: 1) The physics motivation and expectations of the experiments regarding the machine operation. This will include an overview of the LHC physics programme (in pp and PbPb collisions), of the experimental signatures (from high pT objects to leading nucleons) and of the expected trigger rates as well as the data sets needed for specific measurements. Furthermore, issues related to various modes of operation of the machine (e.g. bunch spacings of 25 ns. vs. 75 ns.) and special requirements of the detectors for their commissioning will be described. 2) The LHC machine aspects: introduction of the main LHC parameters and disc...

  17. Implementation of Simulator Functions with Stimulated Commercial MMI for Full Scope Simulators

    International Nuclear Information System (INIS)

    Shin, Yeong Cheol; Kang, Sung Kon; Park, Jun Mo; Kim, Jang Hwan

    2014-01-01

    In order to train and qualify the operators and validate control room ensembles including MMIs and operating procedures, the utility must acquire a full scope simulator that is highly faithful to meet the requirements in ANSI/ANS 3.5. For Shin-Kori 3,4 nuclear power plant, so called stimulation approach has been adopted for developing control room MMIs and control logic of the full scope simulator. In stimulation approach, the actual plant (i. e. SKN 3,4) software and configuration data are used for implementing the simulator. The modeling of the MMI using the emulation method is very difficult and often infeasible for highly complex MMI software not only because the development cost is prohibitively high but also achieving the faithful modeling of the look and feel of the reference MMI software, particularly the timing requirements associated with the interactions between operators and system is extremely difficult. However, there are challenges in this stimulation approach. It is difficult or sometimes impossible to add functions for simulation purposes such as simulator control (i. e., Freeze/Run) and malfunctions by modifying the actual plant MMI software containing Commercial Black-box Software (CBSW). These days, DCS MMI software is highly likely to contain commercial software that is a black-box for simulator developer because the supplier of the plant MMI software does not open the source codes and its associated technology to protect their business interests

  18. Flexible software architecture for user-interface and machine control in laboratory automation.

    Science.gov (United States)

    Arutunian, E B; Meldrum, D R; Friedman, N A; Moody, S E

    1998-10-01

    We describe a modular, layered software architecture for automated laboratory instruments. The design consists of a sophisticated user interface, a machine controller and multiple individual hardware subsystems, each interacting through a client-server architecture built entirely on top of open Internet standards. In our implementation, the user-interface components are built as Java applets that are downloaded from a server integrated into the machine controller. The user-interface client can thereby provide laboratory personnel with a familiar environment for experiment design through a standard World Wide Web browser. Data management and security are seamlessly integrated at the machine-controller layer using QNX, a real-time operating system. This layer also controls hardware subsystems through a second client-server interface. This architecture has proven flexible and relatively easy to implement and allows users to operate laboratory automation instruments remotely through an Internet connection. The software architecture was implemented and demonstrated on the Acapella, an automated fluid-sample-processing system that is under development at the University of Washington.

  19. Man-machine interface requirements - advanced technology

    Science.gov (United States)

    Remington, R. W.; Wiener, E. L.

    1984-01-01

    Research issues and areas are identified where increased understanding of the human operator and the interaction between the operator and the avionics could lead to improvements in the performance of current and proposed helicopters. Both current and advanced helicopter systems and avionics are considered. Areas critical to man-machine interface requirements include: (1) artificial intelligence; (2) visual displays; (3) voice technology; (4) cockpit integration; and (5) pilot work loads and performance.

  20. Participation in the ABWR Man-Machine interface design. Applicability to the Spanish Electrical Sector

    International Nuclear Information System (INIS)

    Rodriguez, C.; Manrique Martin, A.; Nunez, J.

    1997-01-01

    Project coordinated by DTN within the advanced reactor programme. Participation in the design activities for the Advanced Boiling Water Reactor (ABWR) man-machine interface was divided into two phases: Phase I: Preparation of drawings for designing, developing and assessing the advanced control room Phase II: Application of these drawings in design activities Participation in this programme has led to the following possible future applications to the electrical sector: 1. Design and implementation of man-machine interfaces 2. Human factor criteria 3. Assessment of man-machine interfaces 4. Functional specification, computerised operating procedures 5. Computerised alarm prototypes. (Author)

  1. Layout Design of Human-Machine Interaction Interface of Cabin Based on Cognitive Ergonomics and GA-ACA

    Directory of Open Access Journals (Sweden)

    Li Deng

    2016-01-01

    Full Text Available In order to consider the psychological cognitive characteristics affecting operating comfort and realize the automatic layout design, cognitive ergonomics and GA-ACA (genetic algorithm and ant colony algorithm were introduced into the layout design of human-machine interaction interface. First, from the perspective of cognitive psychology, according to the information processing process, the cognitive model of human-machine interaction interface was established. Then, the human cognitive characteristics were analyzed, and the layout principles of human-machine interaction interface were summarized as the constraints in layout design. Again, the expression form of fitness function, pheromone, and heuristic information for the layout optimization of cabin was studied. The layout design model of human-machine interaction interface was established based on GA-ACA. At last, a layout design system was developed based on this model. For validation, the human-machine interaction interface layout design of drilling rig control room was taken as an example, and the optimization result showed the feasibility and effectiveness of the proposed method.

  2. Layout Design of Human-Machine Interaction Interface of Cabin Based on Cognitive Ergonomics and GA-ACA.

    Science.gov (United States)

    Deng, Li; Wang, Guohua; Yu, Suihuai

    2016-01-01

    In order to consider the psychological cognitive characteristics affecting operating comfort and realize the automatic layout design, cognitive ergonomics and GA-ACA (genetic algorithm and ant colony algorithm) were introduced into the layout design of human-machine interaction interface. First, from the perspective of cognitive psychology, according to the information processing process, the cognitive model of human-machine interaction interface was established. Then, the human cognitive characteristics were analyzed, and the layout principles of human-machine interaction interface were summarized as the constraints in layout design. Again, the expression form of fitness function, pheromone, and heuristic information for the layout optimization of cabin was studied. The layout design model of human-machine interaction interface was established based on GA-ACA. At last, a layout design system was developed based on this model. For validation, the human-machine interaction interface layout design of drilling rig control room was taken as an example, and the optimization result showed the feasibility and effectiveness of the proposed method.

  3. Some trends in man-machine interface design for industrial process plants

    DEFF Research Database (Denmark)

    Rasmussen, Jens

    1980-01-01

    . In the paper, problems related to interface design, operator training and human reliability are discussed in the light of this technological development, and an integrated approach to system design based on a consistent model or framework describing the man-machine interaction is advocated.The work presented......The demands for an efficient and reliable man-machine inter-face in industrial process plant are increasing due to the steadily growing size and complexity of installations. At the same time, computerized technology offers the possibility of powerful and effective solutions to designers...

  4. Activities of IAEA related to human interface in man-machine system

    International Nuclear Information System (INIS)

    Nishiwaki, Yasushi

    1988-01-01

    The present paper outlines some activities of IAEA related to human interface in man-machine systems. It has been recognized for quite some time that in large and complex man-machine interactive systems human errors can contribute substantially to failures of these systems, and that the improvement in the human interface in man-machine systems is essential for the safety of the plant. Many important surveys have been made in some member countries. These studies and operational experience have shown that it is possible to substantially reduce this adverse impact of human errors in nuclear power plant operations by the application of human factors technology. This technology. This technology includes: (1) selection of people with the requisite skills and knowledge and providing them with job-relevant training, (2) maintenance of the necessary job qualifications for each person in the plant, (3) design of man-machine interfaces which are fully compatible with the capabilities and limitations of the people in the system, and (4) design of job operations, including written materials, to facilitate required quality of human performance. A review is made of education/training, operator support systems, human error data collection, analysis of safety significant events and future activities. (Nogami, K.)

  5. Intelligent Human Machine Interface Design for Advanced Product Life Cycle Management Systems

    OpenAIRE

    Ahmed, Zeeshan

    2010-01-01

    Designing and implementing an intelligent and user friendly human machine interface for any kind of software or hardware oriented application is always be a challenging task for the designers and developers because it is very difficult to understand the psychology of the user, nature of the work and best suit of the environment. This research paper is basically about to propose an intelligent, flexible and user friendly machine interface for Product Life Cycle Management products or PDM Syste...

  6. Knowledge-based support for design and operational use of human-machine interfaces

    International Nuclear Information System (INIS)

    Johannsen, G.

    1994-01-01

    The possibilities for knowledge support of different human user classes, namely operators, operational engineers and designers of human-machine interfaces, are discussed. Several human-machine interface functionalities are briefly explained. The paper deals with such questions as which type of knowledge is needed for design and operation, how to represent it, where to get it from, how to process it, and how to consider and use it. The relationships between design and operational use are thereby emphasised. (author)

  7. Robotic devices and brain-machine interfaces for hand rehabilitation post-stroke.

    Science.gov (United States)

    McConnell, Alistair C; Moioli, Renan C; Brasil, Fabricio L; Vallejo, Marta; Corne, David W; Vargas, Patricia A; Stokes, Adam A

    2017-06-28

    To review the state of the art of robotic-aided hand physiotherapy for post-stroke rehabilitation, including the use of brain-machine interfaces. Each patient has a unique clinical history and, in response to personalized treatment needs, research into individualized and at-home treatment options has expanded rapidly in recent years. This has resulted in the development of many devices and design strategies for use in stroke rehabilitation. The development progression of robotic-aided hand physiotherapy devices and brain-machine interface systems is outlined, focussing on those with mechanisms and control strategies designed to improve recovery outcomes of the hand post-stroke. A total of 110 commercial and non-commercial hand and wrist devices, spanning the 2 major core designs: end-effector and exoskeleton are reviewed. The growing body of evidence on the efficacy and relevance of incorporating brain-machine interfaces in stroke rehabilitation is summarized. The challenges involved in integrating robotic rehabilitation into the healthcare system are discussed. This review provides novel insights into the use of robotics in physiotherapy practice, and may help system designers to develop new devices.

  8. Human-machine interface software package

    International Nuclear Information System (INIS)

    Liu, D.K.; Zhang, C.Z.

    1992-01-01

    The Man-Machine Interface software Package (MMISP) is designed to configure the console software of PLS 60 Mev LINAC control system. The control system of PLS 60 Mev LINAC is a distributed control system which includes the main computer (Intel 310) four local station, and two sets of industrial level console computer. The MMISP provides the operator with the display page editor, various I/O configuration such as digital signals In/Out, analog signal In/Out, waveform TV graphic display, and interactive with operator through graphic picture display, voice explanation, and touch panel. This paper describes its function and application. (author)

  9. Design for the human-machine interface of a digitalized reactor control-room

    International Nuclear Information System (INIS)

    Qu Ronghong; Zhang Liangju; Li Duo; Yu Hui

    2005-01-01

    Digitalized technology is implemented in the instrumentation and control system of an in-construction research reactor, which advances information display in both contents and styles in a nuclear reactor control-room, and greatly improves human-machine interface. In the design for a digitalized nuclear reactor control-room there are a series of new problems and technologies should be considered seriously. This paper mainly introduces the design for the digitalized control-room of the research nuclear reactor and covered topics include design principle of human-machine interface, organization and classification of interface graphics, technologies and principles based on human factors engineering and implemented in the graphics design. (authors)

  10. Energetic optimization of a piezo-based touch-operated button for man–machine interfaces

    International Nuclear Information System (INIS)

    Sun, Hao; De Vries, Theo J A; De Vries, Rene; Van Dalen, Harry

    2012-01-01

    This paper discusses the optimization of a touch-operated button for man–machine interfaces based on piezoelectric energy harvesting techniques. In the mechanical button, a common piezoelectric diaphragm, is assembled to harvest the ambient energy from the source, i.e. the operator’s touch. Under touch force load, the integrated diaphragm will have a bending deformation. Then, its mechanical strain is converted into the required electrical energy by means of the piezoelectric effect presented to the diaphragm. Structural design (i) makes the piezoceramic work under static compressive stress instead of static or dynamic tensile stress, (ii) achieves a satisfactory stress level and (iii) provides the diaphragm and the button with a fatigue lifetime in excess of millions of touch operations. To improve the button’s function, the effect of some key properties consisting of dimension, boundary condition and load condition on electrical behavior of the piezoelectric diaphragm are evaluated by electromechanical coupling analysis in ANSYS. The finite element analysis (FEA) results indicate that the modification of these properties could enhance the diaphragm significantly. Based on the key properties’ different contributions to the improvement of the diaphragm’s electrical energy output, they are incorporated into the piezoelectric diaphragm’s redesign or the structural design of the piezo-based button. The comparison of the original structure and the optimal result shows that electrical energy stored in the diaphragm and the voltage output are increased by 1576% and 120%, respectively, and the volume of the piezoceramic is reduced to 33.6%. These results will be adopted to update the design of the self-powered button, thus enabling a large decrease of energy consumption and lifetime cost of the MMI. (paper)

  11. Human-machine interface for a VR-based medical imaging environment

    Science.gov (United States)

    Krapichler, Christian; Haubner, Michael; Loesch, Andreas; Lang, Manfred K.; Englmeier, Karl-Hans

    1997-05-01

    Modern 3D scanning techniques like magnetic resonance imaging (MRI) or computed tomography (CT) produce high- quality images of the human anatomy. Virtual environments open new ways to display and to analyze those tomograms. Compared with today's inspection of 2D image sequences, physicians are empowered to recognize spatial coherencies and examine pathological regions more facile, diagnosis and therapy planning can be accelerated. For that purpose a powerful human-machine interface is required, which offers a variety of tools and features to enable both exploration and manipulation of the 3D data. Man-machine communication has to be intuitive and efficacious to avoid long accustoming times and to enhance familiarity with and acceptance of the interface. Hence, interaction capabilities in virtual worlds should be comparable to those in the real work to allow utilization of our natural experiences. In this paper the integration of hand gestures and visual focus, two important aspects in modern human-computer interaction, into a medical imaging environment is shown. With the presented human- machine interface, including virtual reality displaying and interaction techniques, radiologists can be supported in their work. Further, virtual environments can even alleviate communication between specialists from different fields or in educational and training applications.

  12. PENGGUNAAN MULTIMEDIA INTERAKTIF (MMI UNTUK MENINGKATKAN PENGUASAAN KONSEP, BERPIKIR KRITIS, DAN RETENSI KONSEP SISTEM REPRODUKSI MANUSIA PADA SISWA SMA

    Directory of Open Access Journals (Sweden)

    IPIN ARIPIN

    2012-11-01

    Full Text Available Penelitian ini bertujuan untuk mengkaji efektivitas penggunaan multi media interaktif (MMI dalam meningkatkan penguasaan konsep, berpikir kritis, dan retensi  siswa pada konsep sistem reproduksi manusia.  Desain penelitian yang digunakan, yaitu “pretest-post-test control group design” dengan melibatkan 82 siswa kelas XI IPA. Data yang dijaring adalah penguasaan konsep, berpikir kritis, dan retensi siswa pada konsep sistem reproduksi manusia yang belajar dengan menggunakan MMI dinamis (pada kelas eksperimen dan MMI statis (kelas kontrol. Instrumen berupa soal tes objektif, kuesioner, observasi dan wawancara. Hasil uji Z dan uji Mann-Whitney pada taraf α = 0,05 menunjukkan perbedaan yang signifikan penguasaan konsep siswa dengan N-gain 0,50 pada kelas MMI dinamis dan N-gain 0,34 pada kelas MMI statis. Demikian juga pada kemampuan berpikir kritis siswa mengalami peningkatan dengan N-gain 0,51 pada kelas MMI dinamis dan N-gain 0,21 pada kelas MMI statis. Tidak terdapat perbedaan signifikan retensi siswa yang belajar dengan MMI dinamis dan MMI statis. Hasil kuesioner menunjukkan bahwa pembelajaran berbantuan MMI disukai siswa dan membantu siswa dalam belajar. Analisis terhadap observasi kegiatan pembelajaran pada kelas MMI dinamis lebih aktif dalam bertanya berkaitan dengan materi maupun meminta penjelasan guru dari animasi yang ditampilkan dalam CD pembelajaran. Beberapa kendala yang dihadapi dalam pembelajaran berbantuan komputer antara lain: keterbatasan jumlah dan kelengkapan komputer seperti headset/speaker, keterampilan guru dan siswa menggunakan komputer, serta ketahanan software terhadap ganggung virus, trojan, spam, dan lain-lain.Keyword: Multimedia Interaktif (MMI, Penguasaan Konsep, Berpikir Kritis, Retensi

  13. Selectivity and Longevity of Peripheral-Nerve and Machine Interfaces: A Review

    Directory of Open Access Journals (Sweden)

    Usman Ghafoor

    2017-10-01

    Full Text Available For those individuals with upper-extremity amputation, a daily normal living activity is no longer possible or it requires additional effort and time. With the aim of restoring their sensory and motor functions, theoretical and technological investigations have been carried out in the field of neuroprosthetic systems. For transmission of sensory feedback, several interfacing modalities including indirect (non-invasive, direct-to-peripheral-nerve (invasive, and cortical stimulation have been applied. Peripheral nerve interfaces demonstrate an edge over the cortical interfaces due to the sensitivity in attaining cortical brain signals. The peripheral nerve interfaces are highly dependent on interface designs and are required to be biocompatible with the nerves to achieve prolonged stability and longevity. Another criterion is the selection of nerves that allows minimal invasiveness and damages as well as high selectivity for a large number of nerve fascicles. In this paper, we review the nerve-machine interface modalities noted above with more focus on peripheral nerve interfaces, which are responsible for provision of sensory feedback. The invasive interfaces for recording and stimulation of electro-neurographic signals include intra-fascicular, regenerative-type interfaces that provide multiple contact channels to a group of axons inside the nerve and the extra-neural-cuff-type interfaces that enable interaction with many axons around the periphery of the nerve. Section Current Prosthetic Technology summarizes the advancements made to date in the field of neuroprosthetics toward the achievement of a bidirectional nerve-machine interface with more focus on sensory feedback. In the Discussion section, the authors propose a hybrid interface technique for achieving better selectivity and long-term stability using the available nerve interfacing techniques.

  14. Selectivity and Longevity of Peripheral-Nerve and Machine Interfaces: A Review

    Science.gov (United States)

    Ghafoor, Usman; Kim, Sohee; Hong, Keum-Shik

    2017-01-01

    For those individuals with upper-extremity amputation, a daily normal living activity is no longer possible or it requires additional effort and time. With the aim of restoring their sensory and motor functions, theoretical and technological investigations have been carried out in the field of neuroprosthetic systems. For transmission of sensory feedback, several interfacing modalities including indirect (non-invasive), direct-to-peripheral-nerve (invasive), and cortical stimulation have been applied. Peripheral nerve interfaces demonstrate an edge over the cortical interfaces due to the sensitivity in attaining cortical brain signals. The peripheral nerve interfaces are highly dependent on interface designs and are required to be biocompatible with the nerves to achieve prolonged stability and longevity. Another criterion is the selection of nerves that allows minimal invasiveness and damages as well as high selectivity for a large number of nerve fascicles. In this paper, we review the nerve-machine interface modalities noted above with more focus on peripheral nerve interfaces, which are responsible for provision of sensory feedback. The invasive interfaces for recording and stimulation of electro-neurographic signals include intra-fascicular, regenerative-type interfaces that provide multiple contact channels to a group of axons inside the nerve and the extra-neural-cuff-type interfaces that enable interaction with many axons around the periphery of the nerve. Section Current Prosthetic Technology summarizes the advancements made to date in the field of neuroprosthetics toward the achievement of a bidirectional nerve-machine interface with more focus on sensory feedback. In the Discussion section, the authors propose a hybrid interface technique for achieving better selectivity and long-term stability using the available nerve interfacing techniques. PMID:29163122

  15. Brain Machine Interfaces : technology status, applications and the way to the future

    NARCIS (Netherlands)

    Erp, J.B.F. van; Duistermaat, M.; Philippens, I.H.C.H.M.; Veen, H.A.H.C. van; Werkhoven, P.J.

    2006-01-01

    Brain Machine Interfaces (BMIs) enable direct communication between the brain or nervous system and a machine without involving the sensory-motor system. BMIs are an embryonic technology and remarkable accomplishments have recently been reported. BMIs have a high potential and possibly an enormous

  16. Use of models and mockups in verifying man-machine interfaces

    International Nuclear Information System (INIS)

    Seminara, J.L.

    1985-01-01

    The objective of Human Factors Engineering is to tailor the design of facilities and equipment systems to match the capabilities and limitations of the personnel who will operate and maintain the system. This optimization of the man-machine interface is undertaken to enhance the prospects for safe, reliable, timely, and error-free human performance in meeting system objectives. To ensure the eventual success of a complex man-machine system it is important to systematically and progressively test and verify the adequacy of man-machine interfaces from initial design concepts to system operation. Human factors specialists employ a variety of methods to evaluate the quality of the human-system interface. These methods include: (1) Reviews of two-dimensional drawings using appropriately scaled transparent overlays of personnel spanning the anthropometric range, considering clothing and protective gear encumbrances (2) Use of articulated, scaled, plastic templates or manikins that are overlayed on equipment or facility drawings (3) Development of computerized manikins in computer aided design approaches (4) Use of three-dimensional scale models to better conceptualize work stations, control rooms or maintenance facilities (5) Full or half-scale mockups of system components to evaluate operator/maintainer interfaces (6) Part of full-task dynamic simulation of operator or maintainer tasks and interactive system responses (7) Laboratory and field research to establish human performance capabilities with alternative system design concepts or configurations. Of the design verification methods listed above, this paper will only consider the use of models and mockups in the design process

  17. Survey of the problems posed by the man-machine interface, as seen from the angle of facility operators

    International Nuclear Information System (INIS)

    Heinbuch, R.

    1995-01-01

    The man-machine interface in nuclear power plants is an area very much influenced by the vigorous progress in computer technology. The paper describes the causes underlying the innovative power in this field and its impacts on the man-machine interface in nuclear power plants. The benefits brought by the advanced computer systems in the design of the man-machine interface as well as the problems posed through application in practice to safety-relevant plant systems are discussed, and examples are given showing the experience accumulated so far, and the significant changes effected in the man-machine interface. (orig.) [de

  18. Consolidated fuel-reprocessing program:: man/machine interface development for the REMOTEX concept

    International Nuclear Information System (INIS)

    Garin, J.; Clarke, M.M.

    1981-01-01

    This paper describes ongoing research at ORNL to develop a man/machine interface system that can be used to remotely control a system composed of a transporter base and a force-reflecting, servo-controlled manipulator. A unique feature of the concept is the incorporation of totally remote operation. Thus, a major objective is the requirement that an operator have a sense of presence in the remote environment. Man/machine interface requirements for this totally remote operation remain to be developed. Therefore, a simulator is being built to optimize such requirements and the developments are discussed

  19. Human Machine Interfaces for Teleoperators and Virtual Environments

    Science.gov (United States)

    Durlach, Nathaniel I. (Compiler); Sheridan, Thomas B. (Compiler); Ellis, Stephen R. (Compiler)

    1991-01-01

    In Mar. 1990, a meeting organized around the general theme of teleoperation research into virtual environment display technology was conducted. This is a collection of conference-related fragments that will give a glimpse of the potential of the following fields and how they interplay: sensorimotor performance; human-machine interfaces; teleoperation; virtual environments; performance measurement and evaluation methods; and design principles and predictive models.

  20. Neuro-robotics from brain machine interfaces to rehabilitation robotics

    CERN Document Server

    Artemiadis

    2014-01-01

    Neuro-robotics is one of the most multidisciplinary fields of the last decades, fusing information and knowledge from neuroscience, engineering and computer science. This book focuses on the results from the strategic alliance between Neuroscience and Robotics that help the scientific community to better understand the brain as well as design robotic devices and algorithms for interfacing humans and robots. The first part of the book introduces the idea of neuro-robotics, by presenting state-of-the-art bio-inspired devices. The second part of the book focuses on human-machine interfaces for pe

  1. Methymazole (MMI) effects on seric levels of thyroid hormones in rats and mices; Influencia do metimazol (MMI) sob os niveis sericos dos hormonios da tireoide em rato e camundongos

    Energy Technology Data Exchange (ETDEWEB)

    Lima Filho, G.L.; Carvalho, E.B.; Lima, G.M.S.; Neves, S.R.S.; Catanho, M.T.J.A. [Pernambuco Univ., Recife, PE (Brazil). Dept. de Biofisica e Radiobiologia; Lima, G.M.T. [Pernambuco Univ., Recife, PE (Brazil). DMC

    1997-12-01

    The thyroid gland secretes the metabolic hormones thyroxine (T4) and triiodothyronine (T3) which regulate the oxygen consumption of the majority of cells in the body. Their synthesis and release are controlled by the anterior pituitary hormone and also for drugs that mediated the serum concentration of T4 and T3 in the thyroid gland or in the peripheral tissues. The present study evaluates the sinergic effect on the basal secretion of the T4 and T3 after administration of throidal and nonthyroidal drugs in rats and mice. The study achievements with the oral administration of methymazole (MMI) in rats and mice. The study achievements with the oral administration of Methymazole (MMI) in rats and mice resulted in the reduction of the T4 and T3 serum levels, obtained through kinertic treatment. there was a significant reduction in T4 serum values among treated rats and mice for up to 14 days of MMI. Moreover, increased T3 serum concentration was found in rats treated with MMI, after 7 days of treatment, when compared to the serum level of treated mice. The serie levels of T3 and T4 were determined by radioimmunoassay. (author). 11 refs., 2 figs.

  2. Human Reliability and the Current Dilemma in Human-Machine Interface Design Strategies

    International Nuclear Information System (INIS)

    Passalacqua, Roberto; Yamada, Fumiaki

    2002-01-01

    Since human error dominates the probability of failures of still-existing human-requiring systems (as the Monju reactor), the human-machine interface needs to be improved. Several rationales may lead to the conclusion that 'humans' should limit themselves to monitor the 'machine'. For example, this is the trend in the aviation industry: newest aircrafts are designed to be able to return to a safe state by the use of control systems, which do not need human intervention. Thus, the dilemma whether we really need operators (for example in the nuclear industry) might arise. However, social-technical approaches in recent human error analyses are pointing out the so-called 'organizational errors' and the importance of a human-machine interface harmonization. Typically plant's operators are a 'redundant' safety system with a much lower reliability (than the machine): organizational factors and harmonization requirements suggest designing the human-machine interface in a way that allows improvement of operator's reliability. In addition, taxonomy studies of accident databases have also proved that operators' training should promote processes of decision-making. This is accomplished in the latest trends of PSA technology by introducing the concept of a 'Safety Monitor' that is a computer-based tool that uses a level 1 PSA model of the plant. Operators and maintenance schedulers of the Monju FBR will be able to perform real-time estimations of the plant risk level. The main benefits are risk awareness and improvements in decision-making by operators. Also scheduled maintenance can be approached in a more rational (safe and economic) way. (authors)

  3. Design of Human – Machine Interface and Altering of Pelvic Obliquity with RGR Trainer

    OpenAIRE

    Pietrusinski, Maciej; Unluhisarcikli, Ozer; Mavroidis, Constantinos; Cajigas, Iahn; Bonato, Paolo

    2011-01-01

    The Robotic Gait Rehabilitation (RGR) Trainer targets secondary gait deviations in stroke survivors undergoing rehabilitation. Using an impedance control strategy and a linear electromagnetic actuator, the device generates a force field to control pelvic obliquity through a Human-Machine Interface (i.e. a lower body exoskeleton). Herein we describe the design of the RGR Trainer Human-Machine Interface (HMI) and we demonstrate the system’s ability to alter the pattern of movement of the pelvis...

  4. A new workstation based man/machine interface system for the JT-60 Upgrade

    International Nuclear Information System (INIS)

    Yonekawa, I.; Shimono, M.; Totsuka, T.; Yamagishi, K.

    1992-01-01

    Development of a new man/machine interface system was stimulated by the requirements of making the JT-60 operator interface more 'friendly' on the basis of the past five-year operational experience. Eleven Sun/3 workstations and their supervisory mini-computer HIDIC V90/45 are connected through the standard network; Ethernet. The network is also connected to the existing 'ZENKEI' mini-computer system through the shared memory on the HIDIC V90/45 mini-computer. Improved software, such as automatic setting of the discharge conditions, consistency check among the related parameters and easy operation for discharge result data display, offered the 'user-friendly' environments. This new man/machine interface system leads to the efficient operation of the JT-60. (author)

  5. A Function-Behavior-State Approach to Designing Human Machine Interface for Nuclear Power Plant Operators

    Science.gov (United States)

    Lin, Y.; Zhang, W. J.

    2005-02-01

    This paper presents an approach to human-machine interface design for control room operators of nuclear power plants. The first step in designing an interface for a particular application is to determine information content that needs to be displayed. The design methodology for this step is called the interface design framework (called framework ). Several frameworks have been proposed for applications at varying levels, including process plants. However, none is based on the design and manufacture of a plant system for which the interface is designed. This paper presents an interface design framework which originates from design theory and methodology for general technical systems. Specifically, the framework is based on a set of core concepts of a function-behavior-state model originally proposed by the artificial intelligence research community and widely applied in the design research community. Benefits of this new framework include the provision of a model-based fault diagnosis facility, and the seamless integration of the design (manufacture, maintenance) of plants and the design of human-machine interfaces. The missing linkage between design and operation of a plant was one of the causes of the Three Mile Island nuclear reactor incident. A simulated plant system is presented to explain how to apply this framework in designing an interface. The resulting human-machine interface is discussed; specifically, several fault diagnosis examples are elaborated to demonstrate how this interface could support operators' fault diagnosis in an unanticipated situation.

  6. Brain Machine Interfaces for Robotic Control in Space Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR will study the application of a brain machine interface (BMI) to enable crew to remotely operate and monitor robots from inside a flight vehicle, habitat...

  7. Human-Machine interface for off normal and emergency situations in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kee Choon [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-01-01

    Many nuclear power plants (NPPs) have reported that a high percentage of all major failures in the plants are caused by human errors. Therefore, there has been much focus on elimination of human errors, enhancement of human performance, and general improvement of human machine interface (HMI). Both the utility management and the regulators are demanding improvement in this area. The International Atomic Energy Agency (IAEA) Specialists' Meeting on 'Human-Machine Interface for Off Normal and Emergency Situations in Nuclear Power Plants' was co-organized by the Korea Atomic Energy Research Institute (KAERI) and the Korea Power Engineering Company, INC (KOPEC), and took place in Taejeon, Republic of Korea, 1999 October 26-28. Fifty eight participants, representing nine member countries reviewed recent developments and discussed directions for future efforts in the Human-Machine Interface for Off Normal and Emergency Situations in NPPs. Twenty papers were presented, covering a wide spectrum of technical and scientific subjects including recent experience and benefits from Operational Experience with HMI, Development of HMI System, Licensing Issues for HMI and Future Development and Trends. (Author)

  8. Human-Machine interface for off normal and emergency situations in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kee Choon [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-01-01

    Many nuclear power plants (NPPs) have reported that a high percentage of all major failures in the plants are caused by human errors. Therefore, there has been much focus on elimination of human errors, enhancement of human performance, and general improvement of human machine interface (HMI). Both the utility management and the regulators are demanding improvement in this area. The International Atomic Energy Agency (IAEA) Specialists' Meeting on 'Human-Machine Interface for Off Normal and Emergency Situations in Nuclear Power Plants' was co-organized by the Korea Atomic Energy Research Institute (KAERI) and the Korea Power Engineering Company, INC (KOPEC), and took place in Taejeon, Republic of Korea, 1999 October 26-28. Fifty eight participants, representing nine member countries reviewed recent developments and discussed directions for future efforts in the Human-Machine Interface for Off Normal and Emergency Situations in NPPs. Twenty papers were presented, covering a wide spectrum of technical and scientific subjects including recent experience and benefits from Operational Experience with HMI, Development of HMI System, Licensing Issues for HMI and Future Development and Trends. (Author)

  9. How artificial intelligence can help [man-machine interface

    International Nuclear Information System (INIS)

    Elm, W.C.

    1988-01-01

    The operator is ultimately responsible for the safe and economical operation of the plant, and must evaluate the accuracy of any system-recommended action or other output. Decision support systems offer a means to improve the man-machine interface by explicitly supporting operator problem solving, rather than complicating decision-making by the need to request an explanation of the rationale behind an expert system's advice during a high stress situation. (author)

  10. All printed touchless human-machine interface based on only five functional materials

    Science.gov (United States)

    Scheipl, G.; Zirkl, M.; Sawatdee, A.; Helbig, U.; Krause, M.; Kraker, E.; Andersson Ersman, P.; Nilsson, D.; Platt, D.; Bodö, P.; Bauer, S.; Domann, G.; Mogessie, A.; Hartmann, Paul; Stadlober, B.

    2012-02-01

    We demonstrate the printing of a complex smart integrated system using only five functional inks: the fluoropolymer P(VDF:TrFE) (Poly(vinylidene fluoride trifluoroethylene) sensor ink, the conductive polymer PEDOT:PSS (poly(3,4 ethylenedioxythiophene):poly(styrene sulfonic acid) ink, a conductive carbon paste, a polymeric electrolyte and SU8 for separation. The result is a touchless human-machine interface, including piezo- and pyroelectric sensor pixels (sensitive to pressure changes and impinging infrared light), transistors for impedance matching and signal conditioning, and an electrochromic display. Applications may not only emerge in human-machine interfaces, but also in transient temperature or pressure sensing used in safety technology, in artificial skins and in disposable sensor labels.

  11. Man-machine interface versus full automation

    International Nuclear Information System (INIS)

    Hatton, V.

    1984-01-01

    As accelerators grow in size and complexity of operation there is an increasing economical as well as an operational incentive for the controls and operations teams to use computers to help the man-machine interface. At first the computer network replaced the traditional controls racks filled with knobs, buttons and digital displays of voltages and potentiometer readings. The computer system provided the operator with the extension of his hands and eyes. It was quickly found that much more could be achieved. Where previously it was necessary for the human operator to decide the order of the actions to be executed by the computer as a result of a visual indication of malfunctioning of the accelerator, now the operation is becoming more and more under the direct control of the computer system. Expert knowledge is programmed into the system to help the non-specialist make decision and to safeguard the equipment. Machine physics concepts have been incorporated and critical machine parameters can be optimised easily by the physicists or operators without any detailed knowledge of the intervening medium or of the equipment being controlled. As confidence grows and reliability improves, more and more automation can be added. How far can this process of automation replace the skilled operator. Can the accelerators of tomorrow be run like the ever increasing robotic assembly plants of today. How is the role of the operator changing in this new environment

  12. A man-machine interface for simulation purposes

    International Nuclear Information System (INIS)

    Galan, J.M.; Almeida, J.M.; Duque, J.M.

    1990-01-01

    This paper describes a man-machine interface, to link any simulator program to a control panel made up of an array of color graphic screens. This task is performed by a communications program which extracts the data from the simulator program, sorts the data, and sends it, through the network, to graphics programs running in workstations. There, the data is displayed on color graphic screens. A graphics package was specifically designed to assist the user handling of complex circuits, and the formatting and display of data on the screens. (author)

  13. A study on the human factors of nuclear power plants man-machine interface

    International Nuclear Information System (INIS)

    Shin, Hyun Kook; Lee, Jeong Woon; Lee, Yong Hee; Oh, In Suk; Park, Geun Ok

    1991-01-01

    Approaches of the MMIS design were analysed in this project. Both systems approach and experimental approach were studied. In addition, guidelines for the design of MMI are discussed. The methodology of experimental approach studied in this project can be useful for establishing experimental criteria on MMI design items. The framework of a computer code was developed by utilizing function-based task analysis and procedure information requirements. This can be further developed as a tool useful for the verification and validation of MMI designs. A test facility was designed in compliance with the purpose of experimental approach by considering specific conditions and factors inherent in nuclear power plants. Test facility can be used for conducting experiments which provide detailed human performance and characteristics data at the low level of systems approach. An experimental study was performed to obtain a range of illumination levels suitable for the operation in VDU-based control rooms. Existing design guidelines were tested by this experimental study. A conceptual design of MMIS was developed in accordance with the established MMIS design approach and was evaluated through the comparison to other advanced control room designs. (Author)

  14. Quantitative evaluation of impedance perception characteristics of humans in the man-machine interface

    International Nuclear Information System (INIS)

    Onish, Keiichi; Kim, Young Woo; Obinata, Goro; Hase, Kazunori

    2013-01-01

    We investigated impedance perception characteristics of humans in the man-machine interface. Sensibility or operational feel about physical properties of machine dynamics is obtained through perception process. We evaluated the impedance perception characteristics of humans who are operating a mechanical system, based on extended Scheffe's subjective evaluation method in full consideration of the influence of impedance level, impedance difference, experiment order, individual difference and so on. Constant method based quantitative evaluation was adopted to investigate the influence of motion frequency and change of the impedance on human impedance perception characteristics. Experimental results indicate that humans perceive impedance of mechanical systems based on comparison process of the dynamical characteristics of the systems. The proposed method can be applied to quantify the design requirement of man-machine interface. The effectiveness of the proposed method is verified through experimental results.

  15. Quantitative evaluation of impedance perception characteristics of humans in the man-machine interface

    Energy Technology Data Exchange (ETDEWEB)

    Onish, Keiichi [Yamaha Motor Co., Shizuoka (Japan); Kim, Young Woo [Daegu Techno Park R and D Center, Seoul (Korea, Republic of); Obinata, Goro [Nagoya University, Nagoya (Japan); Hase, Kazunori [Tokyo Metropolitan University, Tokyo (Japan)

    2013-05-15

    We investigated impedance perception characteristics of humans in the man-machine interface. Sensibility or operational feel about physical properties of machine dynamics is obtained through perception process. We evaluated the impedance perception characteristics of humans who are operating a mechanical system, based on extended Scheffe's subjective evaluation method in full consideration of the influence of impedance level, impedance difference, experiment order, individual difference and so on. Constant method based quantitative evaluation was adopted to investigate the influence of motion frequency and change of the impedance on human impedance perception characteristics. Experimental results indicate that humans perceive impedance of mechanical systems based on comparison process of the dynamical characteristics of the systems. The proposed method can be applied to quantify the design requirement of man-machine interface. The effectiveness of the proposed method is verified through experimental results.

  16. Visualization tool for human-machine interface designers

    Science.gov (United States)

    Prevost, Michael P.; Banda, Carolyn P.

    1991-06-01

    As modern human-machine systems continue to grow in capabilities and complexity, system operators are faced with integrating and managing increased quantities of information. Since many information components are highly related to each other, optimizing the spatial and temporal aspects of presenting information to the operator has become a formidable task for the human-machine interface (HMI) designer. The authors describe a tool in an early stage of development, the Information Source Layout Editor (ISLE). This tool is to be used for information presentation design and analysis; it uses human factors guidelines to assist the HMI designer in the spatial layout of the information required by machine operators to perform their tasks effectively. These human factors guidelines address such areas as the functional and physical relatedness of information sources. By representing these relationships with metaphors such as spring tension, attractors, and repellers, the tool can help designers visualize the complex constraint space and interacting effects of moving displays to various alternate locations. The tool contains techniques for visualizing the relative 'goodness' of a configuration, as well as mechanisms such as optimization vectors to provide guidance toward a more optimal design. Also available is a rule-based design checker to determine compliance with selected human factors guidelines.

  17. Body-Machine Interfaces after Spinal Cord Injury: Rehabilitation and Brain Plasticity

    Directory of Open Access Journals (Sweden)

    Ismael Seáñez-González

    2016-12-01

    Full Text Available The purpose of this study was to identify rehabilitative effects and changes in white matter microstructure in people with high-level spinal cord injury following bilateral upper-extremity motor skill training. Five subjects with high-level (C5–C6 spinal cord injury (SCI performed five visuo-spatial motor training tasks over 12 sessions (2–3 sessions per week. Subjects controlled a two-dimensional cursor with bilateral simultaneous movements of the shoulders using a non-invasive inertial measurement unit-based body-machine interface. Subjects’ upper-body ability was evaluated before the start, in the middle and a day after the completion of training. MR imaging data were acquired before the start and within two days of the completion of training. Subjects learned to use upper-body movements that survived the injury to control the body-machine interface and improved their performance with practice. Motor training increased Manual Muscle Test scores and the isometric force of subjects’ shoulders and upper arms. Moreover, motor training increased fractional anisotropy (FA values in the cingulum of the left hemisphere by 6.02% on average, indicating localized white matter microstructure changes induced by activity-dependent modulation of axon diameter, myelin thickness or axon number. This body-machine interface may serve as a platform to develop a new generation of assistive-rehabilitative devices that promote the use of, and that re-strengthen, the motor and sensory functions that survived the injury.

  18. Layout Design of Human-Machine Interaction Interface of Cabin Based on Cognitive Ergonomics and GA-ACA

    OpenAIRE

    Deng, Li; Wang, Guohua; Yu, Suihuai

    2016-01-01

    In order to consider the psychological cognitive characteristics affecting operating comfort and realize the automatic layout design, cognitive ergonomics and GA-ACA (genetic algorithm and ant colony algorithm) were introduced into the layout design of human-machine interaction interface. First, from the perspective of cognitive psychology, according to the information processing process, the cognitive model of human-machine interaction interface was established. Then, the human cognitive cha...

  19. A Machine Learning Approach for Hot-Spot Detection at Protein-Protein Interfaces

    Directory of Open Access Journals (Sweden)

    Rita Melo

    2016-07-01

    Full Text Available Understanding protein-protein interactions is a key challenge in biochemistry. In this work, we describe a more accurate methodology to predict Hot-Spots (HS in protein-protein interfaces from their native complex structure compared to previous published Machine Learning (ML techniques. Our model is trained on a large number of complexes and on a significantly larger number of different structural- and evolutionary sequence-based features. In particular, we added interface size, type of interaction between residues at the interface of the complex, number of different types of residues at the interface and the Position-Specific Scoring Matrix (PSSM, for a total of 79 features. We used twenty-seven algorithms from a simple linear-based function to support-vector machine models with different cost functions. The best model was achieved by the use of the conditional inference random forest (c-forest algorithm with a dataset pre-processed by the normalization of features and with up-sampling of the minor class. The method has an overall accuracy of 0.80, an F1-score of 0.73, a sensitivity of 0.76 and a specificity of 0.82 for the independent test set.

  20. Evolution of MMI for 500 MWe PHWR plant

    International Nuclear Information System (INIS)

    Surendar, Ch.; Sharma, M.P.; Jayanthi, S.

    1994-01-01

    The Indian nuclear power programme for building Pressurized Heavy Water Reactors began with the construction of two units at Kota, Rajasthan. Although the concept of a centralized control room has been used since the beginning, the man-machine interface design has evolved with technological developments. The man-machine interaction in the earliest plants imposed a considerable burden on the operators and led to a need for more sophisticated instrumentation. Several microprocessor and computer based systems were identified and developed and many were retrofitted into existing plants providing immediate advantages. This paper traces the evolution of many of these systems and also describes the basis and the architecture for the man-machine interaction scheme in the 500 MWe nuclear power plants currently being designed. (author). 7 refs., 2 figs., 1 tab

  1. Techniques and applications for binaural sound manipulation in human-machine interfaces

    Science.gov (United States)

    Begault, Durand R.; Wenzel, Elizabeth M.

    1992-01-01

    The implementation of binaural sound to speech and auditory sound cues (auditory icons) is addressed from both an applications and technical standpoint. Techniques overviewed include processing by means of filtering with head-related transfer functions. Application to advanced cockpit human interface systems is discussed, although the techniques are extendable to any human-machine interface. Research issues pertaining to three-dimensional sound displays under investigation at the Aerospace Human Factors Division at NASA Ames Research Center are described.

  2. NET remote workstation

    International Nuclear Information System (INIS)

    Leinemann, K.

    1990-10-01

    The goal of this NET study was to define the functionality of a remote handling workstation and its hardware and software architecture. The remote handling workstation has to fulfill two basic functions: (1) to provide the man-machine interface (MMI), that means the interface to the control system of the maintenance equipment and to the working environment (telepresence) and (2) to provide high level (task level) supporting functions (software tools) during the maintenance work and in the preparation phase. Concerning the man-machine interface, an important module of the remote handling workstation besides the standard components of man-machine interfacing is a module for graphical scene presentation supplementing viewing by TV. The technique of integrated viewing is well known from JET BOOM and TARM control using the GBsim and KISMET software. For integration of equipment dependent MMI functions the remote handling workstation provides a special software module interface. Task level support of the operator is based on (1) spatial (geometric/kinematic) models, (2) remote handling procedure models, and (3) functional models of the equipment. These models and the related simulation modules are used for planning, programming, execution monitoring, and training. The workstation provides an intelligent handbook guiding the operator through planned procedures illustrated by animated graphical sequences. For unplanned situations decision aids are available. A central point of the architectural design was to guarantee a high flexibility with respect to hardware and software. Therefore the remote handling workstation is designed as an open system based on widely accepted standards allowing the stepwise integration of the various modules starting with the basic MMI and the spatial simulation as standard components. (orig./HP) [de

  3. Development of effective tool for iterative design of human machine interfaces in nuclear power plant

    International Nuclear Information System (INIS)

    Nakagawa, Takashi; Matsuo, Satoko; Yoshikawa, Hidekazu; Wu, Wei; Kameda, Akiyuki; Fumizawa, Motoo

    2000-01-01

    The authors have developed SEAMAID, which is a Simulation-based Evaluation and Analysis support system for MAn-machine Interface Design (SEAMAID) in the domain of nuclear power plants. The SEAMAID simulated the interaction between an operator and human machine interfaces (HMI), and supports to evaluate the HMI by using the simulation results. In this paper, a case study of evaluation for conventional center control room design was conducted. The authors were confirmed that SEAMAID is a useful tool for improvements of HMI design (J.P.N.)

  4. Man machine interface based on speech recognition

    International Nuclear Information System (INIS)

    Jorge, Carlos A.F.; Aghina, Mauricio A.C.; Mol, Antonio C.A.; Pereira, Claudio M.N.A.

    2007-01-01

    This work reports the development of a Man Machine Interface based on speech recognition. The system must recognize spoken commands, and execute the desired tasks, without manual interventions of operators. The range of applications goes from the execution of commands in an industrial plant's control room, to navigation and interaction in virtual environments. Results are reported for isolated word recognition, the isolated words corresponding to the spoken commands. For the pre-processing stage, relevant parameters are extracted from the speech signals, using the cepstral analysis technique, that are used for isolated word recognition, and corresponds to the inputs of an artificial neural network, that performs recognition tasks. (author)

  5. Analysis and design of arrayed waveguide gratings with MMI couplers.

    Science.gov (United States)

    Munoz, P; Pastor, D; Capmany, J

    2001-09-24

    We present an extension of the AWG model and design procedure described in [1] to incorporate multimode interference, MMI, couplers. For the first time to our knowledge, a closed formula for the passing bands bandwidth and crosstalk estimation plots are derived.

  6. reduction of temperature dependent drift in on- line wear debris hall ...

    African Journals Online (AJOL)

    USER

    2013-07-02

    Jul 2, 2013 ... LABVIEW MMI (man-machine interface) and LABVIEW was used for all simulations and ... In a Hall transducer, the velocity of charge is ... magnetic field forces the charge carriers to ... converted to discrete signal – 600steps.

  7. US Liquid Metal Fast Breeder Reactor man-machine interface program

    International Nuclear Information System (INIS)

    Vaurio, J.K.; Change, S.A.

    1982-01-01

    The US LMFBR Man-Machine Interface Program is supportive to and an integral part of the LMFBR Safety Program. This paper describes the goal and objectives of the program, and the necessary research and development efforts with a logical structure for the orderly and timely implementation of the prgoram. Current status and near-term and long-term priority activities are also summarized

  8. Interface unit and software of X-ray television automatic machine

    International Nuclear Information System (INIS)

    Molodykh, V.A.; Yamanaev, M.S.

    1983-01-01

    Description of the interface unit and specialized software of X-ray television automatic machine is presented. An algorithm for automatic defect survey, measuring of defect geometric parameters with a successive estimate of control quality in accordance with technical norms is proposed. Experimental investigation results on the quality of welded joints of steel tubes obtained using the above system are summarized

  9. The LHC machine-experiment interface

    CERN Multimedia

    CERN. Geneva; Tsesmelis, Emmanuel; Brüning, Oliver Sim

    2002-01-01

    This series of three lectures will provide an overview of issues arising at the interface between the LHC machine and the experiments, which are required for guiding the interaction between the collider and the experiments when operation of the LHC commences. A basic description of the LHC Collider and its operating parameters, such as its energy, currents, bunch structure and luminosity, as well as variations on these parameters, will be given. Furthermore, the optics foreseen for the experimental insertions, the sources and intensities of beam losses and the running-in scenarios for the various phases of operation will be discussed. A second module will cover the specific requirements and expectations of each experiment in terms of the layout of experimental areas, the matters related to radiation monitoring and shielding, the design of the beam pipe and the vacuum system, alignment issues and the measurement of the total cross-section and absolute luminosity by the experiments. Finally an analysis of infor...

  10. Feasibility of task-specific brain-machine interface training for upper-extremity paralysis in patients with chronic hemiparetic stroke.

    Science.gov (United States)

    Nishimoto, Atsuko; Kawakami, Michiyuki; Fujiwara, Toshiyuki; Hiramoto, Miho; Honaga, Kaoru; Abe, Kaoru; Mizuno, Katsuhiro; Ushiba, Junichi; Liu, Meigen

    2018-01-10

    Brain-machine interface training was developed for upper-extremity rehabilitation for patients with severe hemiparesis. Its clinical application, however, has been limited because of its lack of feasibility in real-world rehabilitation settings. We developed a new compact task-specific brain-machine interface system that enables task-specific training, including reach-and-grasp tasks, and studied its clinical feasibility and effectiveness for upper-extremity motor paralysis in patients with stroke. Prospective beforeâ€"after study. Twenty-six patients with severe chronic hemiparetic stroke. Participants were trained with the brain-machine interface system to pick up and release pegs during 40-min sessions and 40 min of standard occupational therapy per day for 10 days. Fugl-Meyer upper-extremity motor (FMA) and Motor Activity Log-14 amount of use (MAL-AOU) scores were assessed before and after the intervention. To test its feasibility, 4 occupational therapists who operated the system for the first time assessed it with the Quebec User Evaluation of Satisfaction with assistive Technology (QUEST) 2.0. FMA and MAL-AOU scores improved significantly after brain-machine interface training, with the effect sizes being medium and large, respectively (pmachine interface system is feasible for use in real-world clinical settings.

  11. The fission yeast RNA binding protein Mmi1 regulates meiotic genes by controlling intron specific splicing and polyadenylation coupled RNA turnover.

    Directory of Open Access Journals (Sweden)

    Huei-Mei Chen

    Full Text Available The polyA tails of mRNAs are monitored by the exosome as a quality control mechanism. We find that fission yeast, Schizosaccharomyces pombe, adopts this RNA quality control mechanism to regulate a group of 30 or more meiotic genes at the level of both splicing and RNA turnover. In vegetative cells the RNA binding protein Mmi1 binds to the primary transcripts of these genes. We find the novel motif U(U/C/GAAAC highly over-represented in targets of Mmi1. Mmi1 can specifically regulate the splicing of particular introns in a transcript: it inhibits the splicing of introns that are in the vicinity of putative Mmi1 binding sites, while allowing the splicing of other introns that are far from such sites. In addition, binding of Mmi1, particularly near the 3' end, alters 3' processing to promote extremely long polyA tails of up to a kilobase. The hyperadenylated transcripts are then targeted for degradation by the nuclear exonuclease Rrp6. The nuclear polyA binding protein Pab2 assists this hyperadenylation-mediated RNA decay. Rrp6 also targets other hyperadenylated transcripts, which become hyperadenylated in an unknown, but Mmi1-independent way. Thus, hyperadenylation may be a general signal for RNA degradation. In addition, binding of Mmi1 can affect the efficiency of 3' cleavage. Inactivation of Mmi1 in meiosis allows meiotic expression, through splicing and RNA stabilization, of at least 29 target genes, which are apparently constitutively transcribed.

  12. CONTROL OF A ROBOTIC ARM THROUGH A BRAIN MACHINE INTERFACE WITH MUTUAL LEARNING

    OpenAIRE

    ALEXANDRE ORMIGA GALVAO BARBOSA

    2010-01-01

    Esse trabalho apresenta o desenvolvimento de uma interface cérebro-máquina (Brain Machine Interface - BMI) como um meio alternativo de comunicação para uso na robótica. O trabalho engloba o projeto e construção de um eletroencefalógrafo (EEG), assim como o desenvolvimento de todos os algoritmos computacionais e demais técnicas necessárias para o reconhecimento de atividades mentais. A interface cérebro-máquina desenvolvida é utilizada para comandar os movimentos de um manipulador robótico MA2...

  13. A Machine Learning Approach for Hot-Spot Detection at Protein-Protein Interfaces

    NARCIS (Netherlands)

    Melo, Rita; Fieldhouse, Robert; Melo, André; Correia, João D G; Cordeiro, Maria Natália D S; Gümüş, Zeynep H; Costa, Joaquim; Bonvin, Alexandre M J J; de Sousa Moreira, Irina

    2016-01-01

    Understanding protein-protein interactions is a key challenge in biochemistry. In this work, we describe a more accurate methodology to predict Hot-Spots (HS) in protein-protein interfaces from their native complex structure compared to previous published Machine Learning (ML) techniques. Our model

  14. Design of Human-Machine Interface and altering of pelvic obliquity with RGR Trainer.

    Science.gov (United States)

    Pietrusinski, Maciej; Unluhisarcikli, Ozer; Mavroidis, Constantinos; Cajigas, Iahn; Bonato, Paolo

    2011-01-01

    The Robotic Gait Rehabilitation (RGR) Trainer targets secondary gait deviations in stroke survivors undergoing rehabilitation. Using an impedance control strategy and a linear electromagnetic actuator, the device generates a force field to control pelvic obliquity through a Human-Machine Interface (i.e. a lower body exoskeleton). Herein we describe the design of the RGR Trainer Human-Machine Interface (HMI) and we demonstrate the system's ability to alter the pattern of movement of the pelvis during gait in a healthy subject. Results are shown for experiments during which we induced hip-hiking - in healthy subjects. Our findings indicate that the RGR Trainer has the ability of affecting pelvic obliquity during gait. Furthermore, we provide preliminary evidence of short-term retention of the modified pelvic obliquity pattern induced by the RGR Trainer. © 2011 IEEE

  15. The impact of dementia and mild memory impairment (MMI) on intimacy and sexuality in spousal relationships.

    Science.gov (United States)

    Davies, Helen D; Newkirk, Lori A; Pitts, Christiane B; Coughlin, Christine A; Sridhar, Sneha B; Zeiss, L McKenzie; Zeiss, Antonette M

    2010-06-01

    Sexuality and intimacy in couples in which one partner is affected by dementia has been widely researched. Few studies have explored these issues in couples where one partner is affected by mild memory impairment (MMI) or mild cognitive impairment (MCI). The objectives of this study were to (1) identify and contrast issues of intimacy and sexuality that spousal caregivers of persons with MMI and dementia may experience, and (2) identify future lines of research in this population. Fourteen dementia and nine MMI spousal caregivers participated in focus groups conducted between 2008 and 2009 at the Stanford/VA Alzheimer's Research Center. Content analyses were conducted to identify themes. Five themes emerged: communication, marital cohesion, affectional expression, caregiver burden, and ambiguity concerning the future of the relationship. Dementia caregivers reported more difficulties with communication, cohesion, and perceptions of increased burden than their MMI counterparts. Both groups indicated reduced sexual expression due to physical limitations; substitute activities including hand-holding, massaging, and hugging were noted. Both groups reported difficulty anticipating the future of the relationship due to present stressors. While dementia caregivers could consider future romantic relationships with others, MMI caregivers were primarily able to consider future relationships only for companionship and emotional intimacy. Early therapeutic interventions may assist couples in modifying activities, behaviors, and expectations about the future of the relationship. Such modifications may help maintain relationship satisfaction, decrease burden, preserve quality of life, and delay time-to-placement. Extending time-to-placement could have cost savings implications for families and the healthcare system.

  16. Regulation of mRNA Levels by Decay-Promoting Introns that Recruit the Exosome Specificity Factor Mmi1

    Directory of Open Access Journals (Sweden)

    Cornelia Kilchert

    2015-12-01

    Full Text Available In eukaryotic cells, inefficient splicing is surprisingly common and leads to the degradation of transcripts with retained introns. How pre-mRNAs are committed to nuclear decay is unknown. Here, we uncover a mechanism by which specific intron-containing transcripts are targeted for nuclear degradation in fission yeast. Sequence elements within these “decay-promoting” introns co-transcriptionally recruit the exosome specificity factor Mmi1, which induces degradation of the unspliced precursor and leads to a reduction in the levels of the spliced mRNA. This mechanism negatively regulates levels of the RNA helicase DDX5/Dbp2 to promote cell survival in response to stress. In contrast, fast removal of decay-promoting introns by co-transcriptional splicing precludes Mmi1 recruitment and relieves negative expression regulation. We propose that decay-promoting introns facilitate the regulation of gene expression. Based on the identification of multiple additional Mmi1 targets, including mRNAs, long non-coding RNAs, and sn/snoRNAs, we suggest a general role in RNA regulation for Mmi1 through transcript degradation.

  17. European public deliberation on brain machine interface technology: five convergence seminars.

    Science.gov (United States)

    Jebari, Karim; Hansson, Sven-Ove

    2013-09-01

    We present a novel procedure to engage the public in ethical deliberations on the potential impacts of brain machine interface technology. We call this procedure a convergence seminar, a form of scenario-based group discussion that is founded on the idea of hypothetical retrospection. The theoretical background of this procedure and the results of five seminars are presented.

  18. Proposal for fabrication-tolerant SOI polarization splitter-rotator based on cascaded MMI couplers and an assisted bi-level taper.

    Science.gov (United States)

    Wang, Jing; Qi, Minghao; Xuan, Yi; Huang, Haiyang; Li, You; Li, Ming; Chen, Xin; Jia, Qi; Sheng, Zhen; Wu, Aimin; Li, Wei; Wang, Xi; Zou, Shichang; Gan, Fuwan

    2014-11-17

    A novel silicon-on-insulator (SOI) polarization splitter-rotator (PSR) with a large fabrication tolerance is proposed based on cascaded multimode interference (MMI) couplers and an assisted mode-evolution taper. The tapers are designed to adiabatically convert the input TM(0) mode into the TE(1) mode, which will output as the TE(0) mode after processed by the subsequent MMI mode converter, 90-degree phase shifter (PS) and MMI 3 dB coupler. The numerical simulation results show that the proposed device has a silicon photonics technology.

  19. Software and man-machine interface considerations for a nuclear plant computer replacement and upgrade project

    International Nuclear Information System (INIS)

    Diamond, G.; Robinson, E.

    1984-01-01

    Some of the key software functions and Man-Machine Interface considerations in a computer replacement and upgrade project for a nuclear power plant are described. The project involves the installation of two separate computer systems: an Emergency Response Facilities Computer System (ERFCS) and a Plant Process Computer System (PPCS). These systems employ state-of-the-art computer hardware and software. The ERFCS is a new system intended to provide enhanced functions to meet NRC post-TMI guidelines. The PPCS is intended to replace and upgrade an existing obsolete plant computer system. A general overview of the hardware and software aspects of the replacement and upgrade is presented. The work done to develop the upgraded Man-Machine Interface is described. For the ERFCS, a detailed discussion is presented of the work done to develop logic to evaluate the readiness and performance of safety systems and their supporting functions. The Man-Machine Interface considerations of reporting readiness and performance to the operator are discussed. Finally, the considerations involved in the implementation of this logic in real-time software are discussed.. For the PPCS, a detailed discussion is presented of some new features

  20. Chiral spiral waveguides based on MMI crossings: theory and experiments

    Science.gov (United States)

    Cherchi, Matteo; Ylinen, Sami; Harjanne, Mikko; Kapulainen, Markku; Vehmas, Tapani; Aalto, Timo

    2016-03-01

    We introduce a novel type of chiral spiral waveguide where the usual waveguide crossings are replaced by 100:0 Multimode Interferometers (MMIs), i.e. 2x2 splitters that couple all the input light in the cross output port. Despite the topological equivalence with the standard configuration, we show how resorting to long MMIs has non-trivial advantages in terms of footprint and propagation length. An accurate analytic model is also introduced to show the impact of nonidealities on the spiral performances, including propagation loss and cross-talk. We have designed and fabricated three chiral spirals on our platform, based on 3 μm thick silicon strip waveguides with 0.13 dB/cm propagation loss, and 1.58 mm long MMIs. The fabricated spirals have 7, 13 and 49 loops respectively, corresponding to the effective lengths 6.6 cm, 12.5 cm and 47.9 cm. The proposed model is successfully applied to the experimental results, highlighting MMI extinction ratio of about 16.5 dB and MMI loss of about 0.08 dB, that are much worse compared to the simulated 50 dB extinction and 0.01 dB loss. This imposes an upper limit to the number of rounds, because light takes shortcuts through the bar MMI ports. Nevertheless, the novel chiral spiral waveguides outperform what is achievable in mainstream silicon photonics platforms based on submicron waveguides in terms of length and propagation losses, and they are promising candidates for the realization of integrated gyroscopes. They can be significantly further improved by replacing the MMIs with adiabatic 100:0 splitters, ensuring lower cross-talk and broader bandwidth.

  1. Toward FRP-Based Brain-Machine Interfaces-Single-Trial Classification of Fixation-Related Potentials.

    Directory of Open Access Journals (Sweden)

    Andrea Finke

    Full Text Available The co-registration of eye tracking and electroencephalography provides a holistic measure of ongoing cognitive processes. Recently, fixation-related potentials have been introduced to quantify the neural activity in such bi-modal recordings. Fixation-related potentials are time-locked to fixation onsets, just like event-related potentials are locked to stimulus onsets. Compared to existing electroencephalography-based brain-machine interfaces that depend on visual stimuli, fixation-related potentials have the advantages that they can be used in free, unconstrained viewing conditions and can also be classified on a single-trial level. Thus, fixation-related potentials have the potential to allow for conceptually different brain-machine interfaces that directly interpret cortical activity related to the visual processing of specific objects. However, existing research has investigated fixation-related potentials only with very restricted and highly unnatural stimuli in simple search tasks while participant's body movements were restricted. We present a study where we relieved many of these restrictions while retaining some control by using a gaze-contingent visual search task. In our study, participants had to find a target object out of 12 complex and everyday objects presented on a screen while the electrical activity of the brain and eye movements were recorded simultaneously. Our results show that our proposed method for the classification of fixation-related potentials can clearly discriminate between fixations on relevant, non-relevant and background areas. Furthermore, we show that our classification approach generalizes not only to different test sets from the same participant, but also across participants. These results promise to open novel avenues for exploiting fixation-related potentials in electroencephalography-based brain-machine interfaces and thus providing a novel means for intuitive human-machine interaction.

  2. Human reliability and the man/machine interface: what do we do after the control room review

    International Nuclear Information System (INIS)

    Folley, J.D. Jr.; Schurman, D.L.

    1983-01-01

    The nuclear industry has focused on only one aspect of the man/machine interface--human factors engineering of control rooms - to enhance nuclear power plant (NPP) safety. There are other factors that profoundly affect the reliability of the operators and maintenance personnel of NPP which, thus, affect NPP safety and availability. This paper discusses the factors of training, selection, job engineering, and work satisfaction, describing the potential effects on reactor safety of these factors at the man/machine interface. The impact of these factors on safety and plant availability is illustrated with examples of results obtained in other fields

  3. Gesture-controlled interfaces for self-service machines and other applications

    Science.gov (United States)

    Cohen, Charles J. (Inventor); Beach, Glenn (Inventor); Cavell, Brook (Inventor); Foulk, Gene (Inventor); Jacobus, Charles J. (Inventor); Obermark, Jay (Inventor); Paul, George (Inventor)

    2004-01-01

    A gesture recognition interface for use in controlling self-service machines and other devices is disclosed. A gesture is defined as motions and kinematic poses generated by humans, animals, or machines. Specific body features are tracked, and static and motion gestures are interpreted. Motion gestures are defined as a family of parametrically delimited oscillatory motions, modeled as a linear-in-parameters dynamic system with added geometric constraints to allow for real-time recognition using a small amount of memory and processing time. A linear least squares method is preferably used to determine the parameters which represent each gesture. Feature position measure is used in conjunction with a bank of predictor bins seeded with the gesture parameters, and the system determines which bin best fits the observed motion. Recognizing static pose gestures is preferably performed by localizing the body/object from the rest of the image, describing that object, and identifying that description. The disclosure details methods for gesture recognition, as well as the overall architecture for using gesture recognition to control of devices, including self-service machines.

  4. Augmented growth inhibition of B16-BL6 melanoma by combined treatment with a selective matrix metalloproteinase inhibitor, MMI-166, and cytotoxic agents.

    Science.gov (United States)

    Hojo, Kanji; Maki, Hideo; Sawada, Takuko Yamada; Maekawa, Ryuji; Yoshioka, Takayuki

    2002-01-01

    MMI-166 is a selective matrix metalloproteinase (MMP) inhibitor. The purpose of this study was to evaluate the antitumor efficacy of the combined treatment of MMI-166 with paclitaxel or carboplatin. Mice bearing B16-BL6 melanoma were treated p.o. with MMI-166 from 1 day after tumor inoculation. The mice were administered i.v. with either paclitaxel or carboplatin at the maximum tolerated dose (MTD). MMI-166 monotherapy inhibited in vivo growth of the B16-BL6 tumor to an extent similar to that of paclitaxel or carboplatin monotherapy. When MMI-166 was combined with paclitaxel or carboplatin, the antitumor efficacy was significantly (p B16-BL6 tumor cells nor does it augment the cytotoxicity of paclitaxel or carboplatin. These results indicate that augmented antitumor activity of the combination treatment was not simply due to the augmentation of direct cytotoxic activity, but was rather an additive effect of the antitumor activities of different mechanisms. They suggest the effectiveness of a combination therapy of MMI-166 with paclitaxel or carboplatin in clinical therapy.

  5. Machine Learning Interface for Medical Image Analysis.

    Science.gov (United States)

    Zhang, Yi C; Kagen, Alexander C

    2017-10-01

    TensorFlow is a second-generation open-source machine learning software library with a built-in framework for implementing neural networks in wide variety of perceptual tasks. Although TensorFlow usage is well established with computer vision datasets, the TensorFlow interface with DICOM formats for medical imaging remains to be established. Our goal is to extend the TensorFlow API to accept raw DICOM images as input; 1513 DaTscan DICOM images were obtained from the Parkinson's Progression Markers Initiative (PPMI) database. DICOM pixel intensities were extracted and shaped into tensors, or n-dimensional arrays, to populate the training, validation, and test input datasets for machine learning. A simple neural network was constructed in TensorFlow to classify images into normal or Parkinson's disease groups. Training was executed over 1000 iterations for each cross-validation set. The gradient descent optimization and Adagrad optimization algorithms were used to minimize cross-entropy between the predicted and ground-truth labels. Cross-validation was performed ten times to produce a mean accuracy of 0.938 ± 0.047 (95 % CI 0.908-0.967). The mean sensitivity was 0.974 ± 0.043 (95 % CI 0.947-1.00) and mean specificity was 0.822 ± 0.207 (95 % CI 0.694-0.950). We extended the TensorFlow API to enable DICOM compatibility in the context of DaTscan image analysis. We implemented a neural network classifier that produces diagnostic accuracies on par with excellent results from previous machine learning models. These results indicate the potential role of TensorFlow as a useful adjunct diagnostic tool in the clinical setting.

  6. Design of Human – Machine Interface and Altering of Pelvic Obliquity with RGR Trainer

    Science.gov (United States)

    Pietrusinski, Maciej; Unluhisarcikli, Ozer; Mavroidis, Constantinos; Cajigas, Iahn; Bonato, Paolo

    2012-01-01

    The Robotic Gait Rehabilitation (RGR) Trainer targets secondary gait deviations in stroke survivors undergoing rehabilitation. Using an impedance control strategy and a linear electromagnetic actuator, the device generates a force field to control pelvic obliquity through a Human-Machine Interface (i.e. a lower body exoskeleton). Herein we describe the design of the RGR Trainer Human-Machine Interface (HMI) and we demonstrate the system’s ability to alter the pattern of movement of the pelvis during gait in a healthy subject. Results are shown for experiments during which we induced hip-hiking – in healthy subjects. Our findings indicate that the RGR Trainer has the ability of affecting pelvic obliquity during gait. Furthermore, we provide preliminary evidence of short-term retention of the modified pelvic obliquity pattern induced by the RGR Trainer. PMID:22275693

  7. Integration of an intelligent systems behavior simulator and a scalable soldier-machine interface

    Science.gov (United States)

    Johnson, Tony; Manteuffel, Chris; Brewster, Benjamin; Tierney, Terry

    2007-04-01

    As the Army's Future Combat Systems (FCS) introduce emerging technologies and new force structures to the battlefield, soldiers will increasingly face new challenges in workload management. The next generation warfighter will be responsible for effectively managing robotic assets in addition to performing other missions. Studies of future battlefield operational scenarios involving the use of automation, including the specification of existing and proposed technologies, will provide significant insight into potential problem areas regarding soldier workload. The US Army Tank Automotive Research, Development, and Engineering Center (TARDEC) is currently executing an Army technology objective program to analyze and evaluate the effect of automated technologies and their associated control devices with respect to soldier workload. The Human-Robotic Interface (HRI) Intelligent Systems Behavior Simulator (ISBS) is a human performance measurement simulation system that allows modelers to develop constructive simulations of military scenarios with various deployments of interface technologies in order to evaluate operator effectiveness. One such interface is TARDEC's Scalable Soldier-Machine Interface (SMI). The scalable SMI provides a configurable machine interface application that is capable of adapting to several hardware platforms by recognizing the physical space limitations of the display device. This paper describes the integration of the ISBS and Scalable SMI applications, which will ultimately benefit both systems. The ISBS will be able to use the Scalable SMI to visualize the behaviors of virtual soldiers performing HRI tasks, such as route planning, and the scalable SMI will benefit from stimuli provided by the ISBS simulation environment. The paper describes the background of each system and details of the system integration approach.

  8. Evaluasi Human Machine Interface Menggunakan Kriteria Usability Pada Sistem E-learning Perguruan Tinggi

    Directory of Open Access Journals (Sweden)

    Akhmad Qashlim

    2016-01-01

    Full Text Available Integration HMI with usability in user interface design process is a standart of the success of a website. The design process is done through the approach to the end user to find a problem solution of human machine interface phenomena. It can also generate the maximum level of satisfaction and success of implementation of the website. The purpose of this research is to evaluate HMI using usabilitycriteria to know the application of HMI concept in e-learning and provide proposals for improvements to the HMI. Questionnaire Data were processed using a descriptive analysis and methods of CFA to know the variables that are weakest and which indicators have an important role in shaping the research variables. Evaluation results indicate the application concept of HMI in the e-learning had been done but not the maximum. Data analysis of the results obtained that the main problem lies in the accessibility criteria in the meantime indicator latent variables from forming error prevention, learnability, memorability, visibility and accessibility of influential factor loading values indicated significantly (unidimensionalitas in shaping the criteria of latent variables in first-order CFA. The end result of this research is the proposal of improvement as a HMI solution in the form of principles and technicsuser interface design. This solution is focused on the development of standards for the quality of the interface in e-learning systems and not on the digital learning content presented on the e-learning system. Keywords: Descriptive analisis; Human machine interface; Usability; Confirmatory factor analisys; Elearning

  9. A novel device for head gesture measurement system in combination with eye-controlled human machine interface

    Science.gov (United States)

    Lin, Chern-Sheng; Ho, Chien-Wa; Chang, Kai-Chieh; Hung, San-Shan; Shei, Hung-Jung; Yeh, Mau-Shiun

    2006-06-01

    This study describes the design and combination of an eye-controlled and a head-controlled human-machine interface system. This system is a highly effective human-machine interface, detecting head movement by changing positions and numbers of light sources on the head. When the users utilize the head-mounted display to browse a computer screen, the system will catch the images of the user's eyes with CCD cameras, which can also measure the angle and position of the light sources. In the eye-tracking system, the program in the computer will locate each center point of the pupils in the images, and record the information on moving traces and pupil diameters. In the head gesture measurement system, the user wears a double-source eyeglass frame, so the system catches images of the user's head by using a CCD camera in front of the user. The computer program will locate the center point of the head, transferring it to the screen coordinates, and then the user can control the cursor by head motions. We combine the eye-controlled and head-controlled human-machine interface system for the virtual reality applications.

  10. Outline of human machine interface at Rokkasho reprocessing plant

    International Nuclear Information System (INIS)

    Niioka, T.; Miyazaki, T.; Fujita, D.; Esashika, A.; Yoshida, Y.; Nakamura, W.; Tochigi, T.; Yoshimoto, A.; Yokoi, M.

    2006-01-01

    The Japan Nuclear Fuel Limited (JNFL) has been performing the active tests since the end of March, 2006, for its Rokkasho Reprocessing Plant using the spent fuels retrieved from the Light Water Reactors. At the early stage of the tests relatively low burn-up fuels have been used, and the burn-up will be increased at later stages until the start of commercial operation planned next year. The plant is operated from the main control room in the Control Building, where two types of operator consoles are located for plant monitoring and operation. The Operator Interface Station (OIS) driven by computer systems is chiefly used for instrumentation and control for production activities during normal operation. In addition to this, safety panels composed of hardware circuits are installed for nuclear safety functions such as criticality safety management, explosion protection, and confinement of radioactive materials. This paper outlines the Human Machine Interface features applied to the Rokkasho Reprocessing Plant. (authors)

  11. A review on progress of man-machine interface system designs for Japanese PWRs

    International Nuclear Information System (INIS)

    Yoshikawa, Hidekazu; Yamamoto, Yoshihiro; Magari, Takayuki.

    1994-01-01

    Historical development of Instrumentation and Control (I and C) system designing for the PWR plants in Kansai Electric Co. Ltd is firstly reviewed with respect to the conventional PWRs in the past, brand-new PWRs (Ohi 3/4 units) and advanced PWRs (APWR) in Japan. The major features of the APWR I and C system design are extensive application of digital computer control technology and advanced man-machine interface in order to enhance safety and reliability of total I and C system and to improve human factors in nuclear power plant operation. Comparative study of the APWR's I and C system design with the EPRI's User Requirement Definitions (URD) resulted in that the current Japanese APWR I and C system design meets generally with the EPRI URD conditions except for those items mainly set by the present national regulatory guidelines. The remaining problems in the current I and C system design are discussed which include the issues on future direction of man-machine interface development. (author)

  12. Materials and optimized designs for human-machine interfaces via epidermal electronics.

    Science.gov (United States)

    Jeong, Jae-Woong; Yeo, Woon-Hong; Akhtar, Aadeel; Norton, James J S; Kwack, Young-Jin; Li, Shuo; Jung, Sung-Young; Su, Yewang; Lee, Woosik; Xia, Jing; Cheng, Huanyu; Huang, Yonggang; Choi, Woon-Seop; Bretl, Timothy; Rogers, John A

    2013-12-17

    Thin, soft, and elastic electronics with physical properties well matched to the epidermis can be conformally and robustly integrated with the skin. Materials and optimized designs for such devices are presented for surface electromyography (sEMG). The findings enable sEMG from wide ranging areas of the body. The measurements have quality sufficient for advanced forms of human-machine interface. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. DESIGN AND EVALUATION OF INDIVIDUAL ELEMENTS OF THE INTERFACE FOR AN AGRICULTURAL MACHINE.

    Science.gov (United States)

    Rakhra, Aadesh K; Mann, Danny D

    2018-01-29

    If a user-centered approach is not used to design information displays, the quantity and quality of information presented to the user may not match the needs of the user, or it may exceed the capability of the human operator for processing and using that information. The result may be an excessive mental workload and reduced situation awareness of the operator, which can negatively affect the machine performance and operational outcomes. The increasing use of technology in agricultural machines may expose the human operator to excessive and undesirable information if the operator's information needs and information processing capabilities are ignored. In this study, a user-centered approach was used to design specific interface elements for an agricultural air seeder. Designs of the interface elements were evaluated in a laboratory environment by developing high-fidelity prototypes. Evaluations of the user interface elements yielded significant improvement in situation awareness (up to 11%; overall mean difference = 5.0 (4.8%), 95% CI (6.4728, 3.5939), p 0.0001). Mental workload was reduced by up to 19.7% (overall mean difference = -5.2 (-7.9%), n = 30, a = 0.05). Study participants rated the overall performance of the newly designed user-centered interface elements higher in comparison to the previous designs (overall mean difference = 27.3 (189.8%), 99% CI (35.150, 19.384), p 0.0001. Copyright© by the American Society of Agricultural Engineers.

  14. Computerized operator support system with new man-machine interface for BWR power plants

    International Nuclear Information System (INIS)

    Monta, K.; Naito, N.; Sugawara, M.; Sato, N.; Mori, N.; Tai, I.; Fukumoto, A.; Tsuchida, M.

    1984-01-01

    Improvement of the man-machine interface of nuclear power plants is an important contribution to the further enhancement of operational safety. In addition, recent advances in computer technology seem to offer the greatest opportunity to date for achieving improvement in the man-machine interface. The development of a computerized operator support system for BWRs has been undertaken since 1980 with the support of the Japanese Government. The conceptual design of this system is based on the role of the operators. The main functions are standby system management, disturbance analysis and post-trip operational guidance. The objective of the standby system management is to monitor the standby status of the engineered safety feature during normal operation to assure its proper functioning at the onset of emergency situations. The disturbance analysis system detects disturbances in the plant in their early stages and informs the plant operators about, for example, the cause of the disturbances, the plant status and possible propagations. Consequently, operators can take corrective actions to prevent unnecessary plant shutdown. The objective of the post trip operational guide is to support operators in diagnosis and corrective action after a plant trip. Its functions are to monitor the performance of the engineered safety feature, to identify the plant status and to guide the appropriate corrective action to achieve safe plant shutdown. The information from the computerized operator support system is supplied to operators through a colour CRT operator console. The authors have evaluated the performance of various new man-machine interfacing tools and proposed a new operator console design. A prototype system has been developed and verification/validation is proceeding with a BWR plant simulator. (author)

  15. The development of an automatic classification system of nuclear power plant states

    International Nuclear Information System (INIS)

    Mitomo, Nobuo; Matsuoka, Takeshi

    2000-01-01

    For the future autonomous plant, automatic control and diagnostics are being incorporated and operators are mainly engaged in the high levels of diagnosis and decision-making in emergencies. Therefore these matters will be performed through the Man-Machine Interface(MMI). Ship Research Institute has been carrying out the research on the MMI system for autonomous power plants. The automatic classification system of plant states is one of the functions of this MMI and the system utilizes COBWEB, which is known as a way of clustering data to acquire concepts. In this paper, many plant states produced by a plant simulator we examined in order to confirm the effectiveness of this system. The system has well classified plant states produced by a plant simulator. (author)

  16. Mechanically Compliant Electronic Materials for Wearable Photovoltaics and Human-Machine Interfaces

    Science.gov (United States)

    O'Connor, Timothy Francis, III

    Applications of stretchable electronic materials for human-machine interfaces are described herein. Intrinsically stretchable organic conjugated polymers and stretchable electronic composites were used to develop stretchable organic photovoltaics (OPVs), mechanically robust wearable OPVs, and human-machine interfaces for gesture recognition, American Sign Language Translation, haptic control of robots, and touch emulation for virtual reality, augmented reality, and the transmission of touch. The stretchable and wearable OPVs comprise active layers of poly-3-alkylthiophene:phenyl-C61-butyric acid methyl ester (P3AT:PCBM) and transparent conductive electrodes of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) and devices could only be fabricated through a deep understanding of the connection between molecular structure and the co-engineering of electronic performance with mechanical resilience. The talk concludes with the use of composite piezoresistive sensors two smart glove prototypes. The first integrates stretchable strain sensors comprising a carbon-elastomer composite, a wearable microcontroller, low energy Bluetooth, and a 6-axis accelerometer/gyroscope to construct a fully functional gesture recognition glove capable of wirelessly translating American Sign Language to text on a cell phone screen. The second creates a system for the haptic control of a 3D printed robot arm, as well as the transmission of touch and temperature information.

  17. Robotic devices and brain-machine interfaces for hand rehabilitation post-stroke

    OpenAIRE

    McConnell, Alistair C; Moioli, Renan C; Brasil, Fabricio L; Vallejo, Marta; Corne, David W; Vargas, Patricia A; Stokes, Adam A

    2017-01-01

    OBJECTIVE: To review the state of the art of robotic-aided hand physiotherapy for post-stroke rehabilitation, including the use of brain-machine interfaces. Each patient has a unique clinical history and, in response to personalized treatment needs, research into individualized and at-home treatment options has expanded rapidly in recent years. This has resulted in the development of many devices and design strategies for use in stroke rehabilitation.METHODS: The development progression of ro...

  18. A friend man-machine interface for thermo-hydraulic simulation codes of nuclear installations

    International Nuclear Information System (INIS)

    Araujo Filho, F. de; Belchior Junior, A.; Barroso, A.C.O.; Gebrim, A.

    1994-01-01

    This work presents the development of a Man-Machine Interface to the TRAC-PF1 code, a computer program to perform best estimate analysis of transients and accidents at nuclear power plants. The results were considered satisfactory and a considerable productivity gain was achieved in the activity of preparing and analyzing simulations. (author)

  19. Analysis of man-machine interaction for control and display system in main control room of light water reactor

    International Nuclear Information System (INIS)

    Santosa, Kussigit; Supriatna, Piping; Karlina, Itjeu; Widagdo, Suharyo; Darlis; Sudiono, Bambang

    1998-01-01

    One of potential hazard in Nuclear Power Plant is the failure of its operation. The accident or operation failure in the reactor must be concerned event its probability is low. The important thing should be concerned is 'Analysis of Man-Machine Interaction (MMI) for Control and Display System in Main Control Room (MCR) of Nuclear Power Reactor', especially LWR type. Control and Display System in MCR of Reactor is the main part of MMI link process in Reactor MCR work system. Signal from display system showed performance process in reactor, while this signal will be received by operator. This signal will be described through central nerve for making decision what kind must be done. Then the operator manage the next process of reactor operation through control system. So by knowing Analysis of Man-Machine Interaction for Control and Display System in Main Control Room of Power Reactor, we can understand human error probability of the operator in reactor operation

  20. Bi-directional triplexer with butterfly MMI coupler using SU-8 polymer waveguides

    Science.gov (United States)

    Mareš, David; Jeřábek, Vítězslav; Prajzler, Václav

    2015-01-01

    We report about a design of a bi-directional planar optical multiplex/demultiplex filter (triplexer) for the optical part of planar hybrid WDM bi-directional transceiver in fiber-to-the-home (FTTH) PON applications. The triplex lightwave circuit is based on the Epoxy Novolak Resin SU-8 waveguides on the silica-on-silicon substrate with Polymethylmethacrylate cladding layer. The triplexer is comprised of a linear butterfly concept of multimode interference (MMI) coupler separating downstream optical signals of 1490 nm and 1550 nm. For the upstream channel of 1310 nm, an additional directional coupler (DC) is used to add optical signal of 1310 nm propagating in opposite direction. The optical triplexer was designed and optimized using beam propagation method. The insertion losses, crosstalk attenuation, and extinction ratio for all three inputs/outputs were investigated. The intended triplexer was designed using the parameters of the separated DC and MMI filter to approximate the idealized direct connection of both devices.

  1. Soft brain-machine interfaces for assistive robotics: A novel control approach.

    Science.gov (United States)

    Schiatti, Lucia; Tessadori, Jacopo; Barresi, Giacinto; Mattos, Leonardo S; Ajoudani, Arash

    2017-07-01

    Robotic systems offer the possibility of improving the life quality of people with severe motor disabilities, enhancing the individual's degree of independence and interaction with the external environment. In this direction, the operator's residual functions must be exploited for the control of the robot movements and the underlying dynamic interaction through intuitive and effective human-robot interfaces. Towards this end, this work aims at exploring the potential of a novel Soft Brain-Machine Interface (BMI), suitable for dynamic execution of remote manipulation tasks for a wide range of patients. The interface is composed of an eye-tracking system, for an intuitive and reliable control of a robotic arm system's trajectories, and a Brain-Computer Interface (BCI) unit, for the control of the robot Cartesian stiffness, which determines the interaction forces between the robot and environment. The latter control is achieved by estimating in real-time a unidimensional index from user's electroencephalographic (EEG) signals, which provides the probability of a neutral or active state. This estimated state is then translated into a stiffness value for the robotic arm, allowing a reliable modulation of the robot's impedance. A preliminary evaluation of this hybrid interface concept provided evidence on the effective execution of tasks with dynamic uncertainties, demonstrating the great potential of this control method in BMI applications for self-service and clinical care.

  2. Operation of micro and molecular machines: a new concept with its origins in interface science.

    Science.gov (United States)

    Ariga, Katsuhiko; Ishihara, Shinsuke; Izawa, Hironori; Xia, Hong; Hill, Jonathan P

    2011-03-21

    A landmark accomplishment of nanotechnology would be successful fabrication of ultrasmall machines that can work like tweezers, motors, or even computing devices. Now we must consider how operation of micro- and molecular machines might be implemented for a wide range of applications. If these machines function only under limited conditions and/or require specialized apparatus then they are useless for practical applications. Therefore, it is important to carefully consider the access of functionality of the molecular or nanoscale systems by conventional stimuli at the macroscopic level. In this perspective, we will outline the position of micro- and molecular machines in current science and technology. Most of these machines are operated by light irradiation, application of electrical or magnetic fields, chemical reactions, and thermal fluctuations, which cannot always be applied in remote machine operation. We also propose strategies for molecular machine operation using the most conventional of stimuli, that of macroscopic mechanical force, achieved through mechanical operation of molecular machines located at an air-water interface. The crucial roles of the characteristics of an interfacial environment, i.e. connection between macroscopic dimension and nanoscopic function, and contact of media with different dielectric natures, are also described.

  3. A novel human-machine interface based on recognition of multi-channel facial bioelectric signals

    International Nuclear Information System (INIS)

    Razazadeh, Iman Mohammad; Firoozabadi, S. Mohammad; Golpayegani, S.M.R.H.; Hu, H.

    2011-01-01

    Full text: This paper presents a novel human-machine interface for disabled people to interact with assistive systems for a better quality of life. It is based on multichannel forehead bioelectric signals acquired by placing three pairs of electrodes (physical channels) on the Fron-tails and Temporalis facial muscles. The acquired signals are passes through a parallel filter bank to explore three different sub-bands related to facial electromyogram, electrooculogram and electroencephalogram. The root mean features of the bioelectric signals analyzed within non-overlapping 256 ms windows were extracted. The subtractive fuzzy c-means clustering method (SFCM) was applied to segment the feature space and generate initial fuzzy based Takagi-Sugeno rules. Then, an adaptive neuro-fuzzy inference system is exploited to tune up the premises and consequence parameters of the extracted SFCMs. rules. The average classifier discriminating ratio for eight different facial gestures (smiling, frowning, pulling up left/right lips corner, eye movement to left/right/up/down is between 93.04% and 96.99% according to different combinations and fusions of logical features. Experimental results show that the proposed interface has a high degree of accuracy and robustness for discrimination of 8 fundamental facial gestures. Some potential and further capabilities of our approach in human-machine interfaces are also discussed. (author)

  4. A Tool for Assessing the Text Legibility of Digital Human Machine Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Roger Lew; Ronald L. Boring; Thomas A. Ulrich

    2015-08-01

    A tool intended to aid qualified professionals in the assessment of the legibility of text presented on a digital display is described. The assessment of legibility is primarily for the purposes of designing and analyzing human machine interfaces in accordance with NUREG-0700 and MIL-STD 1472G. The tool addresses shortcomings of existing guidelines by providing more accurate metrics of text legibility with greater sensitivity to design alternatives.

  5. Experimental Characterization and Modeling of Thermal Contact Resistance of Electric Machine Stator-to-Cooling Jacket Interface Under Interference Fit Loading

    Energy Technology Data Exchange (ETDEWEB)

    Cousineau, Justine E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bennion, Kevin S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Chieduko, Victor [UQM Technologies, Inc.; Lall, Rajiv [UQM Technologies, Inc.; Gilbert, Alan [UQM Technologies, Inc.

    2018-05-08

    Cooling of electric machines is a key to increasing power density and improving reliability. This paper focuses on the design of a machine using a cooling jacket wrapped around the stator. The thermal contact resistance (TCR) between the electric machine stator and cooling jacket is a significant factor in overall performance and is not well characterized. This interface is typically an interference fit subject to compressive pressure exceeding 5 MPa. An experimental investigation of this interface was carried out using a thermal transmittance setup using pressures between 5 and 10 MPa. The results were compared to currently available models for contact resistance, and one model was adapted for prediction of TCR in future motor designs.

  6. Development of an evaluation technique for human-machine interface

    Energy Technology Data Exchange (ETDEWEB)

    Min, Dae Hwan; Koo, Sang Hui; Ahn, Won Yeong; Ryu, Yeong Shin [Korea Univ., Seoul (Korea, Republic of)

    1997-07-15

    The purpose of this study is two-fold : firstly to establish an evaluation technique for HMI(Human Machine Interface) in NPPs(Nuclear Power Plants) and secondly to develop an architecture of a support system which can be used for the evaluation of HMI. In order to establish an evaluation technique, this study conducted literature review on basic theories of cognitive science studies and summarized the cognitive characteristics of humans. This study also surveyed evaluation techniques of HMI in general, and reviewed studies on the evaluation of HMI in NPPs. On the basis of this survey, the study established a procedure for the evaluation of HMI in NPPs in Korea and laid a foundation for empirical verification.

  7. Development of an evaluation technique for human-machine interface

    International Nuclear Information System (INIS)

    Min, Dae Hwan; Koo, Sang Hui; Ahn, Won Yeong; Ryu, Yeong Shin

    1997-07-01

    The purpose of this study is two-fold : firstly to establish an evaluation technique for HMI(Human Machine Interface) in NPPs(Nuclear Power Plants) and secondly to develop an architecture of a support system which can be used for the evaluation of HMI. In order to establish an evaluation technique, this study conducted literature review on basic theories of cognitive science studies and summarized the cognitive characteristics of humans. This study also surveyed evaluation techniques of HMI in general, and reviewed studies on the evaluation of HMI in NPPs. On the basis of this survey, the study established a procedure for the evaluation of HMI in NPPs in Korea and laid a foundation for empirical verification

  8. Cognitive Human-Machine Interface Applied in Remote Support for Industrial Robot Systems

    Directory of Open Access Journals (Sweden)

    Tomasz Kosicki

    2013-10-01

    Full Text Available An attempt is currently being made to widely introduce industrial robots to Small-Medium Enterprises (SMEs. Since the enterprises usually employ too small number of robot units to afford specialized departments for robot maintenance, they must be provided with inexpensive and immediate support remotely. This paper evaluates whether the support can be provided by means of Cognitive Info-communication – communication in which human cognitive capabilities are extended irrespectively of geographical distances. The evaluations are given with an aid of experimental system that consists of local and remote rooms, which are physically separated – a six-degree-of-freedom NACHI SH133-03 industrial robot is situated in the local room, while the operator, who supervises the robot by means of audio-visual Cognitive Human-Machine Interface, is situated in the remote room. The results of simple experiments show that Cognitive Info-communication is not only efficient mean to provide the support remotely, but is probably also a powerful tool to enhance interaction with any data-rich environment that require good conceptual understanding of system's state and careful attention management. Furthermore, the paper discusses data presentation and reduction methods for data-rich environments, as well as introduces the concepts of Naturally Acquired Data and Cognitive Human-Machine Interfaces.

  9. Man-machine interface systems for the Sizewell B Nuclear Power Station

    International Nuclear Information System (INIS)

    Boettcher, D.B.

    2004-01-01

    Sizewell B is the first nuclear power station to be built in the United Kingdom using the Pressurised Water Reactor or PWR system. The design is based on stations operating in the United States, but many changes and new features have been introduced to bring it up to date, and to meet United Kingdom practice and regulatory requirements. The Man-Machine Interfaces (MMIs) in the control rooms have been newly designed from first principles, with special attention paid to human factors and the role of the operators. The instrumentation and control (1 and C) systems which interface the MMIs to the process plant, and automate the operation of the station, use advanced technology to achieve high performance and availability. This paper describes the development of the control rooms and 1 and C systems, explaining the thinking that lay behind the principal decisions. (author)

  10. Charting the energy landscape of metal/organic interfaces via machine learning

    Science.gov (United States)

    Scherbela, Michael; Hörmann, Lukas; Jeindl, Andreas; Obersteiner, Veronika; Hofmann, Oliver T.

    2018-04-01

    The rich polymorphism exhibited by inorganic/organic interfaces is a major challenge for materials design. In this work, we present a method to efficiently explore the potential energy surface and predict the formation energies of polymorphs and defects. This is achieved by training a machine learning model on a list of only 100 candidate structures that are evaluated via dispersion-corrected density functional theory (DFT) calculations. We demonstrate the power of this approach for tetracyanoethylene on Ag(100) and explain the anisotropic ordering that is observed experimentally.

  11. A video, text, and speech-driven realistic 3-d virtual head for human-machine interface.

    Science.gov (United States)

    Yu, Jun; Wang, Zeng-Fu

    2015-05-01

    A multiple inputs-driven realistic facial animation system based on 3-D virtual head for human-machine interface is proposed. The system can be driven independently by video, text, and speech, thus can interact with humans through diverse interfaces. The combination of parameterized model and muscular model is used to obtain a tradeoff between computational efficiency and high realism of 3-D facial animation. The online appearance model is used to track 3-D facial motion from video in the framework of particle filtering, and multiple measurements, i.e., pixel color value of input image and Gabor wavelet coefficient of illumination ratio image, are infused to reduce the influence of lighting and person dependence for the construction of online appearance model. The tri-phone model is used to reduce the computational consumption of visual co-articulation in speech synchronized viseme synthesis without sacrificing any performance. The objective and subjective experiments show that the system is suitable for human-machine interaction.

  12. Controlling a virtual forehand prosthesis using an adaptive and affective Human-Machine Interface.

    Science.gov (United States)

    Rezazadeh, I Mohammad; Firoozabadi, S M P; Golpayegani, S M R Hashemi; Hu, H

    2011-01-01

    This paper presents the design of an adaptable Human-Machine Interface (HMI) for controlling virtual forearm prosthesis. Direct physical performance measures (obtained score and completion time) for the requested tasks were calculated. Furthermore, bioelectric signals from the forehead were recorded using one pair of electrodes placed on the frontal region of the subject head to extract the mental (affective) measures while performing the tasks. By employing the proposed algorithm and above measures, the proposed HMI can adapt itself to the subject's mental states, thus improving the usability of the interface. The quantitative results from 15 subjects show that the proposed HMI achieved better physical performance measures in comparison to a conventional non-adaptive myoelectric controller (p < 0.001).

  13. Characterizing water-metal interfaces and machine learning potential energy surfaces

    Science.gov (United States)

    Ryczko, Kevin

    In this thesis, we first discuss the fundamentals of ab initio electronic structure theory and density functional theory (DFT). We also discuss statistics related to computing thermodynamic averages of molecular dynamics (MD). We then use this theory to analyze and compare the structural, dynamical, and electronic properties of liquid water next to prototypical metals including platinum, graphite, and graphene. Our results are built on Born-Oppenheimer molecular dynamics (BOMD) generated using density functional theory (DFT) which explicitly include van der Waals (vdW) interactions within a first principles approach. All calculations reported use large simulation cells, allowing for an accurate treatment of the water-electrode interfaces. We have included vdW interactions through the use of the optB86b-vdW exchange correlation functional. Comparisons with the Perdew-Burke-Ernzerhof (PBE) exchange correlation functional are also shown. We find an initial peak, due to chemisorption, in the density profile of the liquid water-Pt interface not seen in the liquid water-graphite interface, liquid watergraphene interface, nor interfaces studied previously. To further investigate this chemisorption peak, we also report differences in the electronic structure of single water molecules on both Pt and graphite surfaces. We find that a covalent bond forms between the single water molecule and the platinum surface, but not between the single water molecule and the graphite surface. We also discuss the effects that defects and dopants in the graphite and graphene surfaces have on the structure and dynamics of liquid water. Lastly, we introduce artificial neural networks (ANNs), and demonstrate how they can be used to machine learn electronic structure calculations. As a proof of principle, we show the success of an ANN potential energy surfaces for a dimer molecule with a Lennard-Jones potential.

  14. MMI concept and I and C architecture

    International Nuclear Information System (INIS)

    Maillart, H.

    1997-01-01

    The basic design of the I and C for the European pressurized water reactor (EPR) will establish the basis for a preliminary safety assessment and cost and feasibility evaluation. In order to avoid a premature link to a rapidly aging technology, the design aims as far as possible to establish product independent requirements, open to off-the-shelf equipment and thus benefitting from the latest progress in I and C technology in the moment of plant erection. The field of man-machine interface design serves as example to explain the approach, and the resulting overall I and C architecture is outlined. The design team comprising the active participation of designers and utilities, leads to optimal integration of feedback of experience from running plants and other design projects. (orig.)

  15. Man/machine interface for a nuclear cask remote handling control station: system design requirements

    International Nuclear Information System (INIS)

    Clarke, M.M.; Kreifeldt, J.G.; Draper, J.V.

    1984-01-01

    Design requirements are presented for a control station of a proposed semi-automated facility for remote handling of nuclear waste casks. Functional and operational man/machine interface: controls, displays, software format, station architecture, and work environment. In addition, some input is given to the design of remote sensing systems in the cask handling areas. 18 references, 9 figures, 12 tables

  16. Detecting Mental States by Machine Learning Techniques: The Berlin Brain-Computer Interface

    Science.gov (United States)

    Blankertz, Benjamin; Tangermann, Michael; Vidaurre, Carmen; Dickhaus, Thorsten; Sannelli, Claudia; Popescu, Florin; Fazli, Siamac; Danóczy, Márton; Curio, Gabriel; Müller, Klaus-Robert

    The Berlin Brain-Computer Interface Brain-Computer Interface (BBCI) uses a machine learning approach to extract user-specific patterns from high-dimensional EEG-features optimized for revealing the user's mental state. Classical BCI applications are brain actuated tools for patients such as prostheses (see Section 4.1) or mental text entry systems ([1] and see [2-5] for an overview on BCI). In these applications, the BBCI uses natural motor skills of the users and specifically tailored pattern recognition algorithms for detecting the user's intent. But beyond rehabilitation, there is a wide range of possible applications in which BCI technology is used to monitor other mental states, often even covert ones (see also [6] in the fMRI realm). While this field is still largely unexplored, two examples from our studies are exemplified in Sections 4.3 and 4.4.

  17. An intelligent human-machine system based on an ecological interface design concept

    International Nuclear Information System (INIS)

    Naito, N.

    1995-01-01

    It seems both necessary and promising to develop an intelligent human-machine system, considering the objective of the human-machine system and the recent advance in cognitive engineering and artificial intelligence together with the ever-increasing importance of human factor issues in nuclear power plant operation and maintenance. It should support human operators in their knowledge-based behaviour and allow them to cope with unanticipated abnormal events, including recovery from erroneous human actions. A top-down design approach has been adopted based on cognitive work analysis, and (1) an ecological interface, (2) a cognitive model-based advisor and (3) a robust automatic sequence controller have been established. These functions have been integrated into an experimental control room. A validation test was carried out by the participation of experienced operators and engineers. The results showed the usefulness of this system in supporting the operator's supervisory plant control tasks. ((orig.))

  18. Operating Comfort Prediction Model of Human-Machine Interface Layout for Cabin Based on GEP

    Directory of Open Access Journals (Sweden)

    Li Deng

    2015-01-01

    Full Text Available In view of the evaluation and decision-making problem of human-machine interface layout design for cabin, the operating comfort prediction model is proposed based on GEP (Gene Expression Programming, using operating comfort to evaluate layout scheme. Through joint angles to describe operating posture of upper limb, the joint angles are taken as independent variables to establish the comfort model of operating posture. Factor analysis is adopted to decrease the variable dimension; the model’s input variables are reduced from 16 joint angles to 4 comfort impact factors, and the output variable is operating comfort score. The Chinese virtual human body model is built by CATIA software, which will be used to simulate and evaluate the operators’ operating comfort. With 22 groups of evaluation data as training sample and validation sample, GEP algorithm is used to obtain the best fitting function between the joint angles and the operating comfort; then, operating comfort can be predicted quantitatively. The operating comfort prediction result of human-machine interface layout of driller control room shows that operating comfort prediction model based on GEP is fast and efficient, it has good prediction effect, and it can improve the design efficiency.

  19. Operating Comfort Prediction Model of Human-Machine Interface Layout for Cabin Based on GEP.

    Science.gov (United States)

    Deng, Li; Wang, Guohua; Chen, Bo

    2015-01-01

    In view of the evaluation and decision-making problem of human-machine interface layout design for cabin, the operating comfort prediction model is proposed based on GEP (Gene Expression Programming), using operating comfort to evaluate layout scheme. Through joint angles to describe operating posture of upper limb, the joint angles are taken as independent variables to establish the comfort model of operating posture. Factor analysis is adopted to decrease the variable dimension; the model's input variables are reduced from 16 joint angles to 4 comfort impact factors, and the output variable is operating comfort score. The Chinese virtual human body model is built by CATIA software, which will be used to simulate and evaluate the operators' operating comfort. With 22 groups of evaluation data as training sample and validation sample, GEP algorithm is used to obtain the best fitting function between the joint angles and the operating comfort; then, operating comfort can be predicted quantitatively. The operating comfort prediction result of human-machine interface layout of driller control room shows that operating comfort prediction model based on GEP is fast and efficient, it has good prediction effect, and it can improve the design efficiency.

  20. SVM Classifier - a comprehensive java interface for support vector machine classification of microarray data.

    Science.gov (United States)

    Pirooznia, Mehdi; Deng, Youping

    2006-12-12

    Graphical user interface (GUI) software promotes novelty by allowing users to extend the functionality. SVM Classifier is a cross-platform graphical application that handles very large datasets well. The purpose of this study is to create a GUI application that allows SVM users to perform SVM training, classification and prediction. The GUI provides user-friendly access to state-of-the-art SVM methods embodied in the LIBSVM implementation of Support Vector Machine. We implemented the java interface using standard swing libraries. We used a sample data from a breast cancer study for testing classification accuracy. We achieved 100% accuracy in classification among the BRCA1-BRCA2 samples with RBF kernel of SVM. We have developed a java GUI application that allows SVM users to perform SVM training, classification and prediction. We have demonstrated that support vector machines can accurately classify genes into functional categories based upon expression data from DNA microarray hybridization experiments. Among the different kernel functions that we examined, the SVM that uses a radial basis kernel function provides the best performance. The SVM Classifier is available at http://mfgn.usm.edu/ebl/svm/.

  1. Soft Material-Enabled, Flexible Hybrid Electronics for Medicine, Healthcare, and Human-Machine Interfaces.

    Science.gov (United States)

    Herbert, Robert; Kim, Jong-Hoon; Kim, Yun Soung; Lee, Hye Moon; Yeo, Woon-Hong

    2018-01-24

    Flexible hybrid electronics (FHE), designed in wearable and implantable configurations, have enormous applications in advanced healthcare, rapid disease diagnostics, and persistent human-machine interfaces. Soft, contoured geometries and time-dynamic deformation of the targeted tissues require high flexibility and stretchability of the integrated bioelectronics. Recent progress in developing and engineering soft materials has provided a unique opportunity to design various types of mechanically compliant and deformable systems. Here, we summarize the required properties of soft materials and their characteristics for configuring sensing and substrate components in wearable and implantable devices and systems. Details of functionality and sensitivity of the recently developed FHE are discussed with the application areas in medicine, healthcare, and machine interactions. This review concludes with a discussion on limitations of current materials, key requirements for next generation materials, and new application areas.

  2. What turns assistive into restorative brain-machine interfaces?

    Directory of Open Access Journals (Sweden)

    Alireza Gharabaghi

    2016-10-01

    Full Text Available Brain-machine interfaces (BMI may support motor impaired patients during activities of daily living by controlling external devices such as prostheses (assistive BMI. Moreover, BMIs are applied in conjunction with robotic orthoses for rehabilitation of lost motor function via neurofeedback training (restorative BMI. Using assistive BMI in a rehabilitation context does not automatically turn them into restorative devices. This perspective article suggests key features of restorative BMI and provides the supporting evidence:In summary, BMI may be referred to as restorative tools when demonstrating subsequently (i operant learning and progressive evolution of specific brain states/dynamics, (ii correlated modulations of functional networks related to the therapeutic goal, (iii subsequent improvement in a specific task, and (iv an explicit correlation between the modulated brain dynamics and the achieved behavioral gains. Such findings would provide the rationale for translating BMI-based interventions into clinical settings for reinforcement learning and motor rehabilitation following stroke.

  3. Soft Material-Enabled, Flexible Hybrid Electronics for Medicine, Healthcare, and Human-Machine Interfaces

    Science.gov (United States)

    Herbert, Robert; Kim, Jong-Hoon; Kim, Yun Soung; Lee, Hye Moon

    2018-01-01

    Flexible hybrid electronics (FHE), designed in wearable and implantable configurations, have enormous applications in advanced healthcare, rapid disease diagnostics, and persistent human-machine interfaces. Soft, contoured geometries and time-dynamic deformation of the targeted tissues require high flexibility and stretchability of the integrated bioelectronics. Recent progress in developing and engineering soft materials has provided a unique opportunity to design various types of mechanically compliant and deformable systems. Here, we summarize the required properties of soft materials and their characteristics for configuring sensing and substrate components in wearable and implantable devices and systems. Details of functionality and sensitivity of the recently developed FHE are discussed with the application areas in medicine, healthcare, and machine interactions. This review concludes with a discussion on limitations of current materials, key requirements for next generation materials, and new application areas. PMID:29364861

  4. Soft Material-Enabled, Flexible Hybrid Electronics for Medicine, Healthcare, and Human-Machine Interfaces

    Directory of Open Access Journals (Sweden)

    Robert Herbert

    2018-01-01

    Full Text Available Flexible hybrid electronics (FHE, designed in wearable and implantable configurations, have enormous applications in advanced healthcare, rapid disease diagnostics, and persistent human-machine interfaces. Soft, contoured geometries and time-dynamic deformation of the targeted tissues require high flexibility and stretchability of the integrated bioelectronics. Recent progress in developing and engineering soft materials has provided a unique opportunity to design various types of mechanically compliant and deformable systems. Here, we summarize the required properties of soft materials and their characteristics for configuring sensing and substrate components in wearable and implantable devices and systems. Details of functionality and sensitivity of the recently developed FHE are discussed with the application areas in medicine, healthcare, and machine interactions. This review concludes with a discussion on limitations of current materials, key requirements for next generation materials, and new application areas.

  5. Toward an autonomous brain machine interface: integrating sensorimotor reward modulation and reinforcement learning.

    Science.gov (United States)

    Marsh, Brandi T; Tarigoppula, Venkata S Aditya; Chen, Chen; Francis, Joseph T

    2015-05-13

    For decades, neurophysiologists have worked on elucidating the function of the cortical sensorimotor control system from the standpoint of kinematics or dynamics. Recently, computational neuroscientists have developed models that can emulate changes seen in the primary motor cortex during learning. However, these simulations rely on the existence of a reward-like signal in the primary sensorimotor cortex. Reward modulation of the primary sensorimotor cortex has yet to be characterized at the level of neural units. Here we demonstrate that single units/multiunits and local field potentials in the primary motor (M1) cortex of nonhuman primates (Macaca radiata) are modulated by reward expectation during reaching movements and that this modulation is present even while subjects passively view cursor motions that are predictive of either reward or nonreward. After establishing this reward modulation, we set out to determine whether we could correctly classify rewarding versus nonrewarding trials, on a moment-to-moment basis. This reward information could then be used in collaboration with reinforcement learning principles toward an autonomous brain-machine interface. The autonomous brain-machine interface would use M1 for both decoding movement intention and extraction of reward expectation information as evaluative feedback, which would then update the decoding algorithm as necessary. In the work presented here, we show that this, in theory, is possible. Copyright © 2015 the authors 0270-6474/15/357374-14$15.00/0.

  6. Body machine interfaces for neuromotor rehabilitation: a case study.

    Science.gov (United States)

    Pierella, Camilla; Abdollahi, Farnaz; Farshchiansadegh, Ali; Pedersen, Jessica; Chen, David; Mussa-Ivaldi, Ferdinando A; Casadio, Maura

    2014-01-01

    High-level spinal cord injury (SCI) survivors face every day two related problems: recovering motor skills and regaining functional independence. Body machine interfaces (BoMIs) empower people with sever motor disabilities with the ability to control an external device, but they also offer the opportunity to focus concurrently on achieving rehabilitative goals. In this study we developed a portable, and low-cost BoMI that addresses both problems. The BoMI remaps the user's residual upper body mobility to the two coordinates of a cursor on a computer monitor. By controlling the cursor, the user can perform functional tasks, such as entering text and playing games. This framework also allows the mapping between the body and the cursor space to be modified, gradually challenging the user to exercise more impaired movements. With this approach, we were able to change the behavior of our SCI subject, who initially used almost exclusively his less impaired degrees of freedom - on the left side - for controlling the BoMI. At the end of the few practice sessions he had restored symmetry between left and right side of the body, with an increase of mobility and strength of all the degrees of freedom involved in the control of the interface. This is the first proof of concept that our BoMI can be used to control assistive devices and reach specific rehabilitative goals simultaneously.

  7. Roadmap for Research, Development, and Demonstration of Instrumentation, Controls, and Human-Machine Interface Technologies

    International Nuclear Information System (INIS)

    Miller, Don W.; Arndt, Steven A.; Bond, Leonard J.; Dudenhoeffer, Donald D.; Hallbert, Bruce P.; Holcomb, David E.; Wood, Richard T.; Naser, Joseph A.; O'Hara, John M.; Quinn, Edward L.

    2008-01-01

    Instrumentation, controls, and human-machine interfaces are essential enabling technologies that strongly influence nuclear power plant performance and operational costs. The nuclear power industry is currently engaged in a transition from traditional analog-based instrumentation, controls, and human-machine interface (ICHMI) systems to implementations employing digital technologies. This transition has primarily occurred in an ad hoc fashion through individual system upgrades at existing plants and has been constrained by a number of concerns. Although international implementation of evolutionary nuclear power plants and the progression toward new plants in the United States have spurred design of more fully digital plant-wide ICHMI systems, the experience base in the nuclear power application domain is limited. Additionally, design and development programs by the U.S. Department of Energy (DOE) for advanced reactor concepts, such as the Generation IV Program and Next Generation Nuclear Plant (NGNP), introduce different plant conditions and unique plant configurations that increase the need for enhanced ICHMI capabilities to fully achieve programmatic goals related to economic competitiveness, safety and reliability, sustainability, and proliferation resistance and physical protection. As a result, there are challenges that need to be addressed to enable the nuclear power industry to effectively and efficiently complete the transition to safe and comprehensive use of digital technology

  8. SVM Classifier – a comprehensive java interface for support vector machine classification of microarray data

    Science.gov (United States)

    Pirooznia, Mehdi; Deng, Youping

    2006-01-01

    Motivation Graphical user interface (GUI) software promotes novelty by allowing users to extend the functionality. SVM Classifier is a cross-platform graphical application that handles very large datasets well. The purpose of this study is to create a GUI application that allows SVM users to perform SVM training, classification and prediction. Results The GUI provides user-friendly access to state-of-the-art SVM methods embodied in the LIBSVM implementation of Support Vector Machine. We implemented the java interface using standard swing libraries. We used a sample data from a breast cancer study for testing classification accuracy. We achieved 100% accuracy in classification among the BRCA1–BRCA2 samples with RBF kernel of SVM. Conclusion We have developed a java GUI application that allows SVM users to perform SVM training, classification and prediction. We have demonstrated that support vector machines can accurately classify genes into functional categories based upon expression data from DNA microarray hybridization experiments. Among the different kernel functions that we examined, the SVM that uses a radial basis kernel function provides the best performance. The SVM Classifier is available at . PMID:17217518

  9. Data management and communication networks for Man-Machine Interface System in Korea Advanced Liquid MEtal Reactor : its functionality and design requirements

    International Nuclear Information System (INIS)

    Cha, Kyung Ho; Park, Gun Ok; Suh, Sang Moon; Kim, Jang Yeol; Kwon, Kee Choon

    1998-01-01

    The DAta management and Communication NETworks(DACONET), which it is designed as a subsystem for Man-Machine Interface System of Korea Advanced LIquid MEtal Reactor(KALIMER MMIS) and advanced design concept is approached, is described. The DACONET has its roles of providing the real-time data transmission and communication paths between MMIS systems, providing the quality data for protection, monitoring and control of KALIMER and logging the static and dynamic behavioral data during KALIMER operation. The DACONET is characterized as the distributed real-time system architecture with high performance. Future direction, in which advanced technology is being continually applied to Man-Machine Interface System development and communication networks of KALIMER MMIS

  10. Data management and communication networks for Man-Machine Interface System in Korea Advanced Liquid MEtal Reactor : its functionality and design requirements

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Kyung Ho; Park, Gun Ok; Suh, Sang Moon; Kim, Jang Yeol; Kwon, Kee Choon [KAERI, Taejon (Korea, Republic of)

    1998-05-01

    The DAta management and Communication NETworks(DACONET), which it is designed as a subsystem for Man-Machine Interface System of Korea Advanced LIquid MEtal Reactor(KALIMER MMIS) and advanced design concept is approached, is described. The DACONET has its roles of providing the real-time data transmission and communication paths between MMIS systems, providing the quality data for protection, monitoring and control of KALIMER and logging the static and dynamic behavioral data during KALIMER operation. The DACONET is characterized as the distributed real-time system architecture with high performance. Future direction, in which advanced technology is being continually applied to Man-Machine Interface System development and communication networks of KALIMER MMIS.

  11. Theory and design of CNC systems

    CERN Document Server

    Suh, Suk-Hwan; Chung, Dae-Hyuk; Stroud, Ian

    2008-01-01

    Computer Numerical Control (CNC) controllers are high value-added products counting for over 30% of the price of machine tools. The development of CNC technology depends on the integration of technologies from many different industries, and requires strategic long-term support. a oeTheory and Design of CNC Systemsa covers the elements of control, the design of control systems, and modern open-architecture control systems. Topics covered include Numerical Control Kernel (NCK) design of CNC, Programmable Logic Control (PLC), and the Man-Machine Interface (MMI), as well as the major modules for t

  12. Wireless sEMG-Based Body-Machine Interface for Assistive Technology Devices.

    Science.gov (United States)

    Fall, Cheikh Latyr; Gagnon-Turcotte, Gabriel; Dube, Jean-Francois; Gagne, Jean Simon; Delisle, Yanick; Campeau-Lecours, Alexandre; Gosselin, Clement; Gosselin, Benoit

    2017-07-01

    Assistive technology (AT) tools and appliances are being more and more widely used and developed worldwide to improve the autonomy of people living with disabilities and ease the interaction with their environment. This paper describes an intuitive and wireless surface electromyography (sEMG) based body-machine interface for AT tools. Spinal cord injuries at C5-C8 levels affect patients' arms, forearms, hands, and fingers control. Thus, using classical AT control interfaces (keypads, joysticks, etc.) is often difficult or impossible. The proposed system reads the AT users' residual functional capacities through their sEMG activity, and converts them into appropriate commands using a threshold-based control algorithm. It has proven to be suitable as a control alternative for assistive devices and has been tested with the JACO arm, an articulated assistive device of which the vocation is to help people living with upper-body disabilities in their daily life activities. The wireless prototype, the architecture of which is based on a 3-channel sEMG measurement system and a 915-MHz wireless transceiver built around a low-power microcontroller, uses low-cost off-the-shelf commercial components. The embedded controller is compared with JACO's regular joystick-based interface, using combinations of forearm, pectoral, masseter, and trapeze muscles. The measured index of performance values is 0.88, 0.51, and 0.41 bits/s, respectively, for correlation coefficients with the Fitt's model of 0.75, 0.85, and 0.67. These results demonstrate that the proposed controller offers an attractive alternative to conventional interfaces, such as joystick devices, for upper-body disabled people using ATs such as JACO.

  13. Ultra-low-cost 3D gaze estimation: an intuitive high information throughput compliment to direct brain-machine interfaces

    Science.gov (United States)

    Abbott, W. W.; Faisal, A. A.

    2012-08-01

    Eye movements are highly correlated with motor intentions and are often retained by patients with serious motor deficiencies. Despite this, eye tracking is not widely used as control interface for movement in impaired patients due to poor signal interpretation and lack of control flexibility. We propose that tracking the gaze position in 3D rather than 2D provides a considerably richer signal for human machine interfaces by allowing direct interaction with the environment rather than via computer displays. We demonstrate here that by using mass-produced video-game hardware, it is possible to produce an ultra-low-cost binocular eye-tracker with comparable performance to commercial systems, yet 800 times cheaper. Our head-mounted system has 30 USD material costs and operates at over 120 Hz sampling rate with a 0.5-1 degree of visual angle resolution. We perform 2D and 3D gaze estimation, controlling a real-time volumetric cursor essential for driving complex user interfaces. Our approach yields an information throughput of 43 bits s-1, more than ten times that of invasive and semi-invasive brain-machine interfaces (BMIs) that are vastly more expensive. Unlike many BMIs our system yields effective real-time closed loop control of devices (10 ms latency), after just ten minutes of training, which we demonstrate through a novel BMI benchmark—the control of the video arcade game ‘Pong’.

  14. Autotuning of PID controller by means of human machine interface device

    Directory of Open Access Journals (Sweden)

    Michał Awtoniuk

    2017-06-01

    Full Text Available More and more control systems are based on industry microprocessors like PLC controllers (Programmable Logic Controller. The most commonly used control algorithm is PID (Proportional-Integral-Derivative algorithm. Autotuning procedure is not available in every PLC. These controllers are typically used in cooperation with HMI (Human Machine Interface devices. In the study two procedures of autotuning of the PID controller were implemented in the HMI device: step method and relay method. Six tuning rules for step methods and one for relay method were chosen. The autotuning procedures on simulated controlled object and PLC controller without build-in autotuning were tested. The object of control was first order system plus time delay.

  15. Applications of Brain–Machine Interface Systems in Stroke Recovery and Rehabilitation

    Science.gov (United States)

    Francisco, Gerard E.; Contreras-Vidal, Jose L.

    2014-01-01

    Stroke is a leading cause of disability, significantly impacting the quality of life (QOL) in survivors, and rehabilitation remains the mainstay of treatment in these patients. Recent engineering and technological advances such as brain-machine interfaces (BMI) and robotic rehabilitative devices are promising to enhance stroke neu-rorehabilitation, to accelerate functional recovery and improve QOL. This review discusses the recent applications of BMI and robotic-assisted rehabilitation in stroke patients. We present the framework for integrated BMI and robotic-assisted therapies, and discuss their potential therapeutic, assistive and diagnostic functions in stroke rehabilitation. Finally, we conclude with an outlook on the potential challenges and future directions of these neurotechnologies, and their impact on clinical rehabilitation. PMID:25110624

  16. MITS machine operations

    International Nuclear Information System (INIS)

    Flinchem, J.

    1980-01-01

    This document contains procedures which apply to operations performed on individual P-1c machines in the Machine Interface Test System (MITS) at AiResearch Manufacturing Company's Torrance, California Facility

  17. Cognitive task analysis of nuclear power plant operators for man-machine interface design

    International Nuclear Information System (INIS)

    Itoh, J.I.; Yoshimura, S.; Ohtsuka, T.

    1990-01-01

    This paper aims to ascertain and further develop design guidelines for a man-machine interface compatible with plant operators' problem solving strategies. As the framework for this study, operator's information processing activities were modeled, based on J. Rasmussen's framework for cognitive task analysis. Two experiments were carried out. One was an experiment aimed at gaining an understanding of internal mechanisms involved in mistakes and slips which occurred in operators' responses to incidents and accidents. As a result of fifteen cases of operator performance analysis, sixty one human errors were identified. Further analysis of the errors showed that frequently occurring error mechanisms were absent-mindedness, lack of recognition of patterns in diagnosis and failed procedure formulation due to memory lapses. The other kind of experiment was carried out to identify the envelope of trajectories for the operator's search in the problem space consisting of the two dimensions of means-ends and whole-part relations while dealing with transients. Two cases of experimental sessions were conducted with the thinking-aloud method. From analyses based on verbal protocols, trajectories of operator's search were derived, covering from the whole plant level through the component level in the whole-part dimension and covering from the functional purpose level through the physical form level in the means-ends dimension. The findings obtained from these analyses serve as a basis for developing design guidelines for man-machine interfaces in control rooms of nuclear power plants

  18. Geolocating thermal binoculars based on a software defined camera core incorporating HOT MCT grown by MOVPE

    Science.gov (United States)

    Pillans, Luke; Harmer, Jack; Edwards, Tim; Richardson, Lee

    2016-05-01

    Geolocation is the process of calculating a target position based on bearing and range relative to the known location of the observer. A high performance thermal imager with integrated geolocation functions is a powerful long range targeting device. Firefly is a software defined camera core incorporating a system-on-a-chip processor running the AndroidTM operating system. The processor has a range of industry standard serial interfaces which were used to interface to peripheral devices including a laser rangefinder and a digital magnetic compass. The core has built in Global Positioning System (GPS) which provides the third variable required for geolocation. The graphical capability of Firefly allowed flexibility in the design of the man-machine interface (MMI), so the finished system can give access to extensive functionality without appearing cumbersome or over-complicated to the user. This paper covers both the hardware and software design of the system, including how the camera core influenced the selection of peripheral hardware, and the MMI design process which incorporated user feedback at various stages.

  19. An EOG-Based Human-Machine Interface for Wheelchair Control.

    Science.gov (United States)

    Huang, Qiyun; He, Shenghong; Wang, Qihong; Gu, Zhenghui; Peng, Nengneng; Li, Kai; Zhang, Yuandong; Shao, Ming; Li, Yuanqing

    2017-07-27

    Non-manual human-machine interfaces (HMIs) have been studied for wheelchair control with the aim of helping severely paralyzed individuals regain some mobility. The challenge is to rapidly, accurately and sufficiently produce control commands, such as left and right turns, forward and backward motions, acceleration, deceleration, and stopping. In this paper, a novel electrooculogram (EOG)-based HMI is proposed for wheelchair control. Thirteen flashing buttons are presented in the graphical user interface (GUI), and each of the buttons corresponds to a command. These buttons flash on a one-by-one manner in a pre-defined sequence. The user can select a button by blinking in sync with its flashes. The algorithm detects the eye blinks from a channel of vertical EOG data and determines the user's target button based on the synchronization between the detected blinks and the button's flashes. For healthy subjects/patients with spinal cord injuries (SCIs), the proposed HMI achieved an average accuracy of 96.7%/91.7% and a response time of 3.53 s/3.67 s with 0 false positive rates (FPRs). Using only one channel of vertical EOG signals associated with eye blinks, the proposed HMI can accurately provide sufficient commands with a satisfactory response time. The proposed HMI provides a novel non-manual approach for severely paralyzed individuals to control a wheelchair. Compared with a newly established EOG-based HMI, the proposed HMI can generate more commands with higher accuracy, lower FPR and fewer electrodes.

  20. On the use of peripheral autonomic signals for binary control of body–machine interfaces

    International Nuclear Information System (INIS)

    Falk, Tiago H; Guirgis, Mirna; Power, Sarah; Blain, Stefanie; Chau, Tom

    2010-01-01

    In this work, the potential of using peripheral autonomic (PA) responses as control signals for body–machine interfaces that require no physical movement was investigated. Electrodermal activity, skin temperature, heart rate and respiration rate were collected from six participants and hidden Markov models (HMMs) were used to automatically detect when a subject was performing music imagery as opposed to being at rest. Experiments were performed under controlled silent conditions as well as in the presence of continuous and startle (e.g. door slamming) ambient noise. By developing subject-specific HMMs, music imagery was detected under silent conditions with the average sensitivity and specificity of 94.2% and 93.3%, respectively. In the presence of startle noise stimuli, the system sensitivity and specificity levels of 78.8% and 80.2% were attained, respectively. In environments corrupted by continuous ambient and startle noise, the system specificity further decreased to 75.9%. To improve the system robustness against environmental noise, a startle noise detection and compensation strategy were proposed. Once in place, performance levels were shown to be comparable to those observed in silence. The obtained results suggest that PA signals, combined with HMMs, can be useful tools for the development of body–machine interfaces that allow individuals with severe motor impairments to communicate and/or to interact with their environment

  1. MMI: The man-man interface

    International Nuclear Information System (INIS)

    Frischknecht, A.

    1997-01-01

    An investigation on human performance and job satisfaction of individuals was performed in all Swiss Nuclear Power Plants in 1980/81. The objective of the study was to identify and to remove potential deficiencies that may have a negative impact on the safety of the plants in order to prevent severe nuclear accidents in Switzerland. The analysis indicated a good performance of the plants' staff. No severe deficiencies were recognized but some areas were identified with a potential for improvement. A recent review of the report indicated the lack of communication as a common cause for some of the recognized problems. Possible reasons for the problem and recommendations for solutions are discussed. (author)

  2. Neuromechanism study of insect-machine interface: flight control by neural electrical stimulation.

    Directory of Open Access Journals (Sweden)

    Huixia Zhao

    Full Text Available The insect-machine interface (IMI is a novel approach developed for man-made air vehicles, which directly controls insect flight by either neuromuscular or neural stimulation. In our previous study of IMI, we induced flight initiation and cessation reproducibly in restrained honeybees (Apis mellifera L. via electrical stimulation of the bilateral optic lobes. To explore the neuromechanism underlying IMI, we applied electrical stimulation to seven subregions of the honeybee brain with the aid of a new method for localizing brain regions. Results showed that the success rate for initiating honeybee flight decreased in the order: α-lobe (or β-lobe, ellipsoid body, lobula, medulla and antennal lobe. Based on a comparison with other neurobiological studies in honeybees, we propose that there is a cluster of descending neurons in the honeybee brain that transmits neural excitation from stimulated brain areas to the thoracic ganglia, leading to flight behavior. This neural circuit may involve the higher-order integration center, the primary visual processing center and the suboesophageal ganglion, which is also associated with a possible learning and memory pathway. By pharmacologically manipulating the electrically stimulated honeybee brain, we have shown that octopamine, rather than dopamine, serotonin and acetylcholine, plays a part in the circuit underlying electrically elicited honeybee flight. Our study presents a new brain stimulation protocol for the honeybee-machine interface and has solved one of the questions with regard to understanding which functional divisions of the insect brain participate in flight control. It will support further studies to uncover the involved neurons inside specific brain areas and to test the hypothesized involvement of a visual learning and memory pathway in IMI flight control.

  3. Neuromechanism study of insect-machine interface: flight control by neural electrical stimulation.

    Science.gov (United States)

    Zhao, Huixia; Zheng, Nenggan; Ribi, Willi A; Zheng, Huoqing; Xue, Lei; Gong, Fan; Zheng, Xiaoxiang; Hu, Fuliang

    2014-01-01

    The insect-machine interface (IMI) is a novel approach developed for man-made air vehicles, which directly controls insect flight by either neuromuscular or neural stimulation. In our previous study of IMI, we induced flight initiation and cessation reproducibly in restrained honeybees (Apis mellifera L.) via electrical stimulation of the bilateral optic lobes. To explore the neuromechanism underlying IMI, we applied electrical stimulation to seven subregions of the honeybee brain with the aid of a new method for localizing brain regions. Results showed that the success rate for initiating honeybee flight decreased in the order: α-lobe (or β-lobe), ellipsoid body, lobula, medulla and antennal lobe. Based on a comparison with other neurobiological studies in honeybees, we propose that there is a cluster of descending neurons in the honeybee brain that transmits neural excitation from stimulated brain areas to the thoracic ganglia, leading to flight behavior. This neural circuit may involve the higher-order integration center, the primary visual processing center and the suboesophageal ganglion, which is also associated with a possible learning and memory pathway. By pharmacologically manipulating the electrically stimulated honeybee brain, we have shown that octopamine, rather than dopamine, serotonin and acetylcholine, plays a part in the circuit underlying electrically elicited honeybee flight. Our study presents a new brain stimulation protocol for the honeybee-machine interface and has solved one of the questions with regard to understanding which functional divisions of the insect brain participate in flight control. It will support further studies to uncover the involved neurons inside specific brain areas and to test the hypothesized involvement of a visual learning and memory pathway in IMI flight control.

  4. Neuromechanism Study of Insect–Machine Interface: Flight Control by Neural Electrical Stimulation

    Science.gov (United States)

    Zhao, Huixia; Zheng, Nenggan; Ribi, Willi A.; Zheng, Huoqing; Xue, Lei; Gong, Fan; Zheng, Xiaoxiang; Hu, Fuliang

    2014-01-01

    The insect–machine interface (IMI) is a novel approach developed for man-made air vehicles, which directly controls insect flight by either neuromuscular or neural stimulation. In our previous study of IMI, we induced flight initiation and cessation reproducibly in restrained honeybees (Apis mellifera L.) via electrical stimulation of the bilateral optic lobes. To explore the neuromechanism underlying IMI, we applied electrical stimulation to seven subregions of the honeybee brain with the aid of a new method for localizing brain regions. Results showed that the success rate for initiating honeybee flight decreased in the order: α-lobe (or β-lobe), ellipsoid body, lobula, medulla and antennal lobe. Based on a comparison with other neurobiological studies in honeybees, we propose that there is a cluster of descending neurons in the honeybee brain that transmits neural excitation from stimulated brain areas to the thoracic ganglia, leading to flight behavior. This neural circuit may involve the higher-order integration center, the primary visual processing center and the suboesophageal ganglion, which is also associated with a possible learning and memory pathway. By pharmacologically manipulating the electrically stimulated honeybee brain, we have shown that octopamine, rather than dopamine, serotonin and acetylcholine, plays a part in the circuit underlying electrically elicited honeybee flight. Our study presents a new brain stimulation protocol for the honeybee–machine interface and has solved one of the questions with regard to understanding which functional divisions of the insect brain participate in flight control. It will support further studies to uncover the involved neurons inside specific brain areas and to test the hypothesized involvement of a visual learning and memory pathway in IMI flight control. PMID:25409523

  5. Data management and communication networks for man-machine interface system in Korea Advanced LIquid MEtal Reactor : Its functionality and design requirements

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Kyung Ho; Park, Gun Ok; Suh, Sang Moon; Kim, Jang Yeol; Kwon, Kee Choon [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-12-31

    The DAta management and COmmunication NETworks(DACONET), which it is designed as a subsystem for Man-Machine Interface System of Korea Advanced LIquid MEtal Reactor (KALIMER MMIS) and advanced design concept is approached, is described. The DACONET has its roles of providing the real-time data transmission and communication paths between MMIS systems, providing the quality data for protection, monitoring and control of KALIMER and logging the static and dynamic behavioral data during KALIMER operation. The DACONET is characterized as the distributed real-time system architecture with high performance. Future direction, in which advanced technology is being continually applied to Man-Machine Interface System development of Nuclear Power Plants, will be considered for designing data management and communication networks of KALIMER MMIS. 9 refs., 1 fig. (Author)

  6. Data management and communication networks for man-machine interface system in Korea Advanced LIquid MEtal Reactor : Its functionality and design requirements

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Kyung Ho; Park, Gun Ok; Suh, Sang Moon; Kim, Jang Yeol; Kwon, Kee Choon [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    The DAta management and COmmunication NETworks(DACONET), which it is designed as a subsystem for Man-Machine Interface System of Korea Advanced LIquid MEtal Reactor (KALIMER MMIS) and advanced design concept is approached, is described. The DACONET has its roles of providing the real-time data transmission and communication paths between MMIS systems, providing the quality data for protection, monitoring and control of KALIMER and logging the static and dynamic behavioral data during KALIMER operation. The DACONET is characterized as the distributed real-time system architecture with high performance. Future direction, in which advanced technology is being continually applied to Man-Machine Interface System development of Nuclear Power Plants, will be considered for designing data management and communication networks of KALIMER MMIS. 9 refs., 1 fig. (Author)

  7. Decoding the non-stationary neuron spike trains by dual Monte Carlo point process estimation in motor Brain Machine Interfaces.

    Science.gov (United States)

    Liao, Yuxi; Li, Hongbao; Zhang, Qiaosheng; Fan, Gong; Wang, Yiwen; Zheng, Xiaoxiang

    2014-01-01

    Decoding algorithm in motor Brain Machine Interfaces translates the neural signals to movement parameters. They usually assume the connection between the neural firings and movements to be stationary, which is not true according to the recent studies that observe the time-varying neuron tuning property. This property results from the neural plasticity and motor learning etc., which leads to the degeneration of the decoding performance when the model is fixed. To track the non-stationary neuron tuning during decoding, we propose a dual model approach based on Monte Carlo point process filtering method that enables the estimation also on the dynamic tuning parameters. When applied on both simulated neural signal and in vivo BMI data, the proposed adaptive method performs better than the one with static tuning parameters, which raises a promising way to design a long-term-performing model for Brain Machine Interfaces decoder.

  8. A bidirectional brain-machine interface algorithm that approximates arbitrary force-fields.

    Directory of Open Access Journals (Sweden)

    Alessandro Vato

    Full Text Available We examine bidirectional brain-machine interfaces that control external devices in a closed loop by decoding motor cortical activity to command the device and by encoding the state of the device by delivering electrical stimuli to sensory areas. Although it is possible to design this artificial sensory-motor interaction while maintaining two independent channels of communication, here we propose a rule that closes the loop between flows of sensory and motor information in a way that approximates a desired dynamical policy expressed as a field of forces acting upon the controlled external device. We previously developed a first implementation of this approach based on linear decoding of neural activity recorded from the motor cortex into a set of forces (a force field applied to a point mass, and on encoding of position of the point mass into patterns of electrical stimuli delivered to somatosensory areas. However, this previous algorithm had the limitation that it only worked in situations when the position-to-force map to be implemented is invertible. Here we overcome this limitation by developing a new non-linear form of the bidirectional interface that can approximate a virtually unlimited family of continuous fields. The new algorithm bases both the encoding of position information and the decoding of motor cortical activity on an explicit map between spike trains and the state space of the device computed with Multi-Dimensional-Scaling. We present a detailed computational analysis of the performance of the interface and a validation of its robustness by using synthetic neural responses in a simulated sensory-motor loop.

  9. A Human Machine Interface for EVA

    Science.gov (United States)

    Hartmann, L.

    EVA astronauts work in a challenging environment that includes high rate of muscle fatigue, haptic and proprioception impairment, lack of dexterity and interaction with robotic equipment. Currently they are heavily dependent on support from on-board crew and ground station staff for information and robotics operation. They are limited to the operation of simple controls on the suit exterior and external robot controls that are difficult to operate because of the heavy gloves that are part of the EVA suit. A wearable human machine interface (HMI) inside the suit provides a powerful alternative for robot teleoperation, procedure checklist access, generic equipment operation via virtual control panels and general information retrieval and presentation. The HMI proposed here includes speech input and output, a simple 6 degree of freedom (dof) pointing device and a heads up display (HUD). The essential characteristic of this interface is that it offers an alternative to the standard keyboard and mouse interface of a desktop computer. The astronaut's speech is used as input to command mode changes, execute arbitrary computer commands and generate text. The HMI can respond with speech also in order to confirm selections, provide status and feedback and present text output. A candidate 6 dof pointing device is Measurand's Shapetape, a flexible "tape" substrate to which is attached an optic fiber with embedded sensors. Measurement of the modulation of the light passing through the fiber can be used to compute the shape of the tape and, in particular, the position and orientation of the end of the Shapetape. It can be used to provide any kind of 3d geometric information including robot teleoperation control. The HUD can overlay graphical information onto the astronaut's visual field including robot joint torques, end effector configuration, procedure checklists and virtual control panels. With suitable tracking information about the position and orientation of the EVA suit

  10. Multiple mini interview (MMI) for general practice training selection in Australia: interviewers' motivation.

    Science.gov (United States)

    Burgess, Annette; Roberts, Chris; Sureshkumar, Premala; Mossman, Karyn

    2018-01-25

    Multiple Mini Interviews (MMIs) are being used by a growing number of postgraduate training programs and medical schools as their interview process for selection entry. The Australian General Practice and Training (AGPT) used a National Assessment Centre (NAC) approach to selection into General Practice (GP) Training, which include MMIs. Interviewing is a resource intensive process, and implementation of the MMI requires a large number of interviewers, with a number of candidates being interviewed simultaneously. In 2015, 308 interviewers participated in the MMI process - a decrease from 340 interviewers in 2014, and 310 in 2013. At the same time, the number of applicants has steadily increased, with 1930 applications received in 2013; 2254 in 2014; and 2360 in 2015. This has raised concerns regarding the increasing recruitment needs, and the need to retain interviewers for subsequent years of MMIs. In order to investigate interviewers' reasons for participating in MMIs, we utilised self-determination theory (SDT) to consider interviewers' motivation to take part in MMIs at national selection centres. In 2015, 308 interviewers were recruited from 17 Regional Training Providers (RTPs) to participate in the MMI process at one of 15 NACs. For this study, a convenience sample of NAC sites was used. Forty interviewers were interviewed (n = 40; 40/308 = 13%) from five NACs. Framework analysis was used to code and categorise data into themes. Interviewers' motivation to take part as interviewers were largely related to their sense of duty, their desire to contribute their expertise to the process, and their desire to have input into selection of GP Registrars; a sense of duty to their profession; and an opportunity to meet with colleagues and future trainees. Interviewers also highlighted factors hindering motivation, which sometimes included the large number of candidates seen in one day. Interviewers' motivation for contributing to the MMIs was largely related

  11. Steering a Tractor by Means of an EMG-Based Human-Machine Interface

    Directory of Open Access Journals (Sweden)

    Sergio Alonso-Garcia

    2011-07-01

    Full Text Available An electromiographic (EMG-based human-machine interface (HMI is a communication pathway between a human and a machine that operates by means of the acquisition and processing of EMG signals. This article explores the use of EMG-based HMIs in the steering of farm tractors. An EPOC, a low-cost human-computer interface (HCI from the Emotiv Company, was employed. This device, by means of 14 saline sensors, measures and processes EMG and electroencephalographic (EEG signals from the scalp of the driver. In our tests, the HMI took into account only the detection of four trained muscular events on the driver’s scalp: eyes looking to the right and jaw opened, eyes looking to the right and jaw closed, eyes looking to the left and jaw opened, and eyes looking to the left and jaw closed. The EMG-based HMI guidance was compared with manual guidance and with autonomous GPS guidance. A driver tested these three guidance systems along three different trajectories: a straight line, a step, and a circumference. The accuracy of the EMG-based HMI guidance was lower than the accuracy obtained by manual guidance, which was lower in turn than the accuracy obtained by the autonomous GPS guidance; the computed standard deviations of error to the desired trajectory in the straight line were 16 cm, 9 cm, and 4 cm, respectively. Since the standard deviation between the manual guidance and the EMG-based HMI guidance differed only 7 cm, and this difference is not relevant in agricultural steering, it can be concluded that it is possible to steer a tractor by an EMG-based HMI with almost the same accuracy as with manual steering.

  12. A nonadhesive solid-gel electrode for a non-invasive brain–machine interface

    Directory of Open Access Journals (Sweden)

    Shigeru eToyama

    2012-07-01

    Full Text Available A non-invasive brain–machine interface (BMI or brain-computer interface (BCI is a technology for helping individuals with disabilities and utilizes neurophysiological signals from the brain to control external machines or computers without requiring surgery. However, when applying EEG methodology, users must place EEG electrodes on the scalp each time, and the development of easy-to-use electrodes for clinical use is required. In this study, we developed a conductive nonadhesive solid-gel electrode for practical non-invasive BMIs. We performed basic material testing, including examining the volume resistivity, viscoelasticity, and moisture-retention properties of the solid gel. Then, we compared the performance of the solid gel, a conventional paste, and an in-house metal pin-based electrode using impedance measurements and P300-BMI testing. The solid gel was observed to be conductive (volume resistivity 13.2 Ωcm and soft (complex modulus 105.4 kPa, and it remained wet for a prolonged period (>10 hours in a dry environment. Impedance measurements revealed that the impedance of the solid-gel-based and conventional paste-based electrodes was superior to that of the pin-based electrode. The EEG measurement suggested that the signals obtained with the solid-gel electrode were comparable to those with the conventional paste-based electrode. Moreover, the P300-BMI study suggested that systems using the solid-gel or pin-based electrodes were effective. One of the advantages of the solid gel is that it does not require cleaning after use, whereas the conventional paste adheres to the hair, which requires washing. Furthermore, the solid-gel electrode was not painful compared with a metal-pin electrode. Taken together, the results suggest that the solid-gel electrode worked well for practical BMIs and could be useful for bedridden patients such as those with amyotrophic lateral sclerosis.

  13. Towards Modern Inclusive Factories: A Methodology for the Development of Smart Adaptive Human-Machine Interfaces

    OpenAIRE

    Villani, Valeria; Sabattini, Lorenzo; Czerniak, Julia N.; Mertens, Alexander; Vogel-Heuser, Birgit; Fantuzzi, Cesare

    2017-01-01

    Modern manufacturing systems typically require high degrees of flexibility, in terms of ability to customize the production lines to the constantly changing market requests. For this purpose, manufacturing systems are required to be able to cope with changes in the types of products, and in the size of the production batches. As a consequence, the human-machine interfaces (HMIs) are typically very complex, and include a wide range of possible operational modes and commands. This generally imp...

  14. Integrated Multi-Scale Data Analytics and Machine Learning for the Distribution Grid and Building-to-Grid Interface

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Emma M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hendrix, Val [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chertkov, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Deka, Deepjyoti [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-16

    This white paper introduces the application of advanced data analytics to the modernized grid. In particular, we consider the field of machine learning and where it is both useful, and not useful, for the particular field of the distribution grid and buildings interface. While analytics, in general, is a growing field of interest, and often seen as the golden goose in the burgeoning distribution grid industry, its application is often limited by communications infrastructure, or lack of a focused technical application. Overall, the linkage of analytics to purposeful application in the grid space has been limited. In this paper we consider the field of machine learning as a subset of analytical techniques, and discuss its ability and limitations to enable the future distribution grid and the building-to-grid interface. To that end, we also consider the potential for mixing distributed and centralized analytics and the pros and cons of these approaches. Machine learning is a subfield of computer science that studies and constructs algorithms that can learn from data and make predictions and improve forecasts. Incorporation of machine learning in grid monitoring and analysis tools may have the potential to solve data and operational challenges that result from increasing penetration of distributed and behind-the-meter energy resources. There is an exponentially expanding volume of measured data being generated on the distribution grid, which, with appropriate application of analytics, may be transformed into intelligible, actionable information that can be provided to the right actors – such as grid and building operators, at the appropriate time to enhance grid or building resilience, efficiency, and operations against various metrics or goals – such as total carbon reduction or other economic benefit to customers. While some basic analysis into these data streams can provide a wealth of information, computational and human boundaries on performing the analysis

  15. Asset Analysis Method for the Cyber Security of Man Machine Interface System

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sung Kon; Kim, Hun Hee; Shin, Yeong Cheol [Korea Hydro and Nuclear Power, Daejeon (Korea, Republic of)

    2010-10-15

    As digital MMIS (Man Machine Interface System) is applied in Nuclear Power Plant (NPP), cyber security is becoming more and more important. Regulatory guide (KINS/GT-N27) requires that implementation plan for cyber security be prepared in NPP. Regulatory guide recommends the following 4 processes: 1) an asset analysis of MMIS, 2) a vulnerability analysis of MMIS, 3) establishment of countermeasures, and 4) establishment of operational guideline for cyber security. Conventional method for the asset analysis is mainly performed with a table form for each asset. Conventional method requires a lot of efforts due to the duplication of information. This paper presents an asset analysis method using object oriented approach for the NPP

  16. Asset Analysis Method for the Cyber Security of Man Machine Interface System

    International Nuclear Information System (INIS)

    Kang, Sung Kon; Kim, Hun Hee; Shin, Yeong Cheol

    2010-01-01

    As digital MMIS (Man Machine Interface System) is applied in Nuclear Power Plant (NPP), cyber security is becoming more and more important. Regulatory guide (KINS/GT-N27) requires that implementation plan for cyber security be prepared in NPP. Regulatory guide recommends the following 4 processes: 1) an asset analysis of MMIS, 2) a vulnerability analysis of MMIS, 3) establishment of countermeasures, and 4) establishment of operational guideline for cyber security. Conventional method for the asset analysis is mainly performed with a table form for each asset. Conventional method requires a lot of efforts due to the duplication of information. This paper presents an asset analysis method using object oriented approach for the NPP

  17. Multifunctional systems in vehicles:a usability evaluation

    OpenAIRE

    Rydström, Annie; Bengtsson, Peter; Grane, Camilla; Broström, Robert; Agardh, Johannes; Nilsson, Jennie

    2005-01-01

    Car Human-Machine Interaction (HMI) is becoming increasingly complex as the extension of functionality necessitates new interface concepts. Various multifunctional systems operated by haptic rotary switches, touch screen, and voice control have been developed. A usability study of multifunctional systems available on the market was carried out to evaluate and compare different manual interaction principles. The systems used in the study were the BMW iDrive and the Audi MMI, both operated by a...

  18. Protein-RNA interface residue prediction using machine learning: an assessment of the state of the art.

    Science.gov (United States)

    Walia, Rasna R; Caragea, Cornelia; Lewis, Benjamin A; Towfic, Fadi; Terribilini, Michael; El-Manzalawy, Yasser; Dobbs, Drena; Honavar, Vasant

    2012-05-10

    RNA molecules play diverse functional and structural roles in cells. They function as messengers for transferring genetic information from DNA to proteins, as the primary genetic material in many viruses, as catalysts (ribozymes) important for protein synthesis and RNA processing, and as essential and ubiquitous regulators of gene expression in living organisms. Many of these functions depend on precisely orchestrated interactions between RNA molecules and specific proteins in cells. Understanding the molecular mechanisms by which proteins recognize and bind RNA is essential for comprehending the functional implications of these interactions, but the recognition 'code' that mediates interactions between proteins and RNA is not yet understood. Success in deciphering this code would dramatically impact the development of new therapeutic strategies for intervening in devastating diseases such as AIDS and cancer. Because of the high cost of experimental determination of protein-RNA interfaces, there is an increasing reliance on statistical machine learning methods for training predictors of RNA-binding residues in proteins. However, because of differences in the choice of datasets, performance measures, and data representations used, it has been difficult to obtain an accurate assessment of the current state of the art in protein-RNA interface prediction. We provide a review of published approaches for predicting RNA-binding residues in proteins and a systematic comparison and critical assessment of protein-RNA interface residue predictors trained using these approaches on three carefully curated non-redundant datasets. We directly compare two widely used machine learning algorithms (Naïve Bayes (NB) and Support Vector Machine (SVM)) using three different data representations in which features are encoded using either sequence- or structure-based windows. Our results show that (i) Sequence-based classifiers that use a position-specific scoring matrix (PSSM

  19. Human Machine Interfaces for Teleoperators and Virtual Environments Conference

    Science.gov (United States)

    1990-01-01

    In a teleoperator system the human operator senses, moves within, and operates upon a remote or hazardous environment by means of a slave mechanism (a mechanism often referred to as a teleoperator). In a virtual environment system the interactive human machine interface is retained but the slave mechanism and its environment are replaced by a computer simulation. Video is replaced by computer graphics. The auditory and force sensations imparted to the human operator are similarly computer generated. In contrast to a teleoperator system, where the purpose is to extend the operator's sensorimotor system in a manner that facilitates exploration and manipulation of the physical environment, in a virtual environment system, the purpose is to train, inform, alter, or study the human operator to modify the state of the computer and the information environment. A major application in which the human operator is the target is that of flight simulation. Although flight simulators have been around for more than a decade, they had little impact outside aviation presumably because the application was so specialized and so expensive.

  20. Brain versus Machine Control.

    Directory of Open Access Journals (Sweden)

    Jose M Carmena

    2004-12-01

    Full Text Available Dr. Octopus, the villain of the movie "Spiderman 2", is a fusion of man and machine. Neuroscientist Jose Carmena examines the facts behind this fictional account of a brain- machine interface

  1. A primer on brain-machine interfaces, concepts, and technology: a key element in the future of functional neurorestoration.

    Science.gov (United States)

    Lee, Brian; Liu, Charles Y; Apuzzo, Michael L J

    2013-01-01

    Conventionally, the practice of neurosurgery has been characterized by the removal of pathology, congenital or acquired. The emerging complement to the removal of pathology is surgery for the specific purpose of restoration of function. Advents in neuroscience, technology, and the understanding of neural circuitry are creating opportunities to intervene in disease processes in a reparative manner, thereby advancing toward the long-sought-after concept of neurorestoration. Approaching the issue of neurorestoration from a biomedical engineering perspective is the rapidly growing arena of implantable devices. Implantable devices are becoming more common in medicine and are making significant advancements to improve a patient's functional outcome. Devices such as deep brain stimulators, vagus nerve stimulators, and spinal cord stimulators are now becoming more commonplace in neurosurgery as we utilize our understanding of the nervous system to interpret neural activity and restore function. One of the most exciting prospects in neurosurgery is the technologically driven field of brain-machine interface, also known as brain-computer interface, or neuroprosthetics. The successful development of this technology will have far-reaching implications for patients suffering from a great number of diseases, including but not limited to spinal cord injury, paralysis, stroke, or loss of limb. This article provides an overview of the issues related to neurorestoration using implantable devices with a specific focus on brain-machine interface technology. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Brain–muscle interface

    Indian Academy of Sciences (India)

    2011-05-16

    May 16, 2011 ... Clipboard: Brain–muscle interface: The next-generation BMI. Radhika Rajan Neeraj Jain ... Keywords. Assistive devices; brain–machine interface; motor cortex; paralysis; spinal cord injury ... Journal of Biosciences | News ...

  3. The Java Legacy Interface

    DEFF Research Database (Denmark)

    Korsholm, Stephan

    2007-01-01

    The Java Legacy Interface is designed to use Java for encapsulating native legacy code on small embedded platforms. We discuss why existing technologies for encapsulating legacy code (JNI) is not sufficient for an important range of small embedded platforms, and we show how the Java Legacy...... Interface offers this previously missing functionality. We describe an implementation of the Java Legacy Interface for a particular virtual machine, and how we have used this virtual machine to integrate Java with an existing, commercial, soft real-time, C/C++ legacy platform....

  4. Organic interfaces

    NARCIS (Netherlands)

    Poelman, W.A.; Tempelman, E.

    2014-01-01

    This paper deals with the consequences for product designers resulting from the replacement of traditional interfaces by responsive materials. Part 1 presents a theoretical framework regarding a new paradigm for man-machine interfacing. Part 2 provides an analysis of the opportunities offered by new

  5. Human factor engineering analysis for computerized human machine interface design issues

    International Nuclear Information System (INIS)

    Wang Zhifang; Gu Pengfei; Zhang Jianbo

    2010-01-01

    The application of digital I and C technology in nuclear power plants is a significant improvement in terms of functional performances and flexibility, and it also poses a challenge to operation safety. Most of the new NPPs under construction are adopting advanced control room design which utilizes the computerized human machine interface (HMI) as the main operating means. Thus, it greatly changes the way the operators interact with the plant. This paper introduces the main challenges brought out by computerized technology on the human factor engineering aspect and addresses the main issues to be dealt with in the computerized HMI design process. Based on a operator task-resources-cognitive model, it states that the root cause of human errors is the mismatch between resources demand and their supply. And a task-oriented HMI design principle is discussed. (authors)

  6. Flocking small smart machines: An experiment in cooperative, multi-machine control

    International Nuclear Information System (INIS)

    Klarer, P.R.

    1998-03-01

    The intent and purpose of this work was to investigate and demonstrate cooperative behavior among a group of mobile robot machines. The specific goal of this work was to build a small swarm of identical machines and control them in such a way as to show a coordinated movement of the group in a flocking manner, similar to that observed in nature. Control of the swarm's individual members and its overall configuration is available to the human user via a graphic man-machine interface running on a base station control computer. Any robot may be designated as the nominal leader through the interface tool, which then may be commanded to proceed to a particular geographic destination. The remainder of the flock follows the leader by maintaining their relative positions in formation, as specified by the human controller through the interface. The formation's configuration can be altered manually through an interactive graphic-based tool. An alternative mode of control allows for teleoperation of one robot, with the flock following along as described above

  7. Intention concepts and brain-machine interfacing

    Directory of Open Access Journals (Sweden)

    Franziska eThinnes-Elker

    2012-11-01

    Full Text Available Intentions, including their temporal properties and semantic content, are receiving increased attention, and neuroscientific studies in humans vary with respect to the topography of intention-related neural responses. This may reflect the fact that the kind of intentions investigated in one study may not be exactly the same kind investigated in the other. Fine-grained intention taxonomies developed in the philosophy of mind may be useful to identify the neural correlates of well-defined types of intentions, as well as to disentangle them from other related mental states, such as mere urges to perform an action. Intention-related neural signals may be exploited by brain-machine interfaces (BMIs that are currently being developed to restore speech and motor control in paralyzed subjects. Such BMI devices record the brain activity of the agent, interpret (‘decode’ the agent’s intended action, and send the corresponding execution command to an artificial effector system, e.g., a computer cursor or a robotic arm. In the present paper, we evaluate the potential of intention concepts from philosophy of mind to improve the performance and safety of BMIs based on higher-order, intention-related control signals. To this end, we address the distinction between future-, present-directed, and motor intentions, as well as the organization of intentions in time, specifically to what extent it is sequential or hierarchical. This has consequences as to whether these different types of intentions can be expected to occur simultaneously or not. We further illustrate how it may be useful or even necessary to distinguish types of intentions exposited in philosophy, including yes- vs. no-intentions and oblique vs. direct intentions, to accurately decode the agent’s intentions from neural signals in practical BMI applications.

  8. Intention concepts and brain-machine interfacing.

    Science.gov (United States)

    Thinnes-Elker, Franziska; Iljina, Olga; Apostolides, John Kyle; Kraemer, Felicitas; Schulze-Bonhage, Andreas; Aertsen, Ad; Ball, Tonio

    2012-01-01

    Intentions, including their temporal properties and semantic content, are receiving increased attention, and neuroscientific studies in humans vary with respect to the topography of intention-related neural responses. This may reflect the fact that the kind of intentions investigated in one study may not be exactly the same kind investigated in the other. Fine-grained intention taxonomies developed in the philosophy of mind may be useful to identify the neural correlates of well-defined types of intentions, as well as to disentangle them from other related mental states, such as mere urges to perform an action. Intention-related neural signals may be exploited by brain-machine interfaces (BMIs) that are currently being developed to restore speech and motor control in paralyzed patients. Such BMI devices record the brain activity of the agent, interpret ("decode") the agent's intended action, and send the corresponding execution command to an artificial effector system, e.g., a computer cursor or a robotic arm. In the present paper, we evaluate the potential of intention concepts from philosophy of mind to improve the performance and safety of BMIs based on higher-order, intention-related control signals. To this end, we address the distinction between future-, present-directed, and motor intentions, as well as the organization of intentions in time, specifically to what extent it is sequential or hierarchical. This has consequences as to whether these different types of intentions can be expected to occur simultaneously or not. We further illustrate how it may be useful or even necessary to distinguish types of intentions exposited in philosophy, including yes- vs. no-intentions and oblique vs. direct intentions, to accurately decode the agent's intentions from neural signals in practical BMI applications.

  9. Man-machine dialogue design and challenges

    CERN Document Server

    Landragin, Frederic

    2013-01-01

    This book summarizes the main problems posed by the design of a man-machine dialogue system and offers ideas on how to continue along the path towards efficient, realistic and fluid communication between humans and machines. A culmination of ten years of research, it is based on the author's development, investigation and experimentation covering a multitude of fields, including artificial intelligence, automated language processing, man-machine interfaces and notably multimodal or multimedia interfaces. Contents Part 1. Historical and Methodological Landmarks 1. An Assessment of the Evolution

  10. Parallelization of MCNP Monte Carlo neutron and photon transport code in parallel virtual machine and message passing interface

    International Nuclear Information System (INIS)

    Deng Li; Xie Zhongsheng

    1999-01-01

    The coupled neutron and photon transport Monte Carlo code MCNP (version 3B) has been parallelized in parallel virtual machine (PVM) and message passing interface (MPI) by modifying a previous serial code. The new code has been verified by solving sample problems. The speedup increases linearly with the number of processors and the average efficiency is up to 99% for 12-processor. (author)

  11. Decoder calibration with ultra small current sample set for intracortical brain-machine interface

    Science.gov (United States)

    Zhang, Peng; Ma, Xuan; Chen, Luyao; Zhou, Jin; Wang, Changyong; Li, Wei; He, Jiping

    2018-04-01

    Objective. Intracortical brain-machine interfaces (iBMIs) aim to restore efficient communication and movement ability for paralyzed patients. However, frequent recalibration is required for consistency and reliability, and every recalibration will require relatively large most current sample set. The aim in this study is to develop an effective decoder calibration method that can achieve good performance while minimizing recalibration time. Approach. Two rhesus macaques implanted with intracortical microelectrode arrays were trained separately on movement and sensory paradigm. Neural signals were recorded to decode reaching positions or grasping postures. A novel principal component analysis-based domain adaptation (PDA) method was proposed to recalibrate the decoder with only ultra small current sample set by taking advantage of large historical data, and the decoding performance was compared with other three calibration methods for evaluation. Main results. The PDA method closed the gap between historical and current data effectively, and made it possible to take advantage of large historical data for decoder recalibration in current data decoding. Using only ultra small current sample set (five trials of each category), the decoder calibrated using the PDA method could achieve much better and more robust performance in all sessions than using other three calibration methods in both monkeys. Significance. (1) By this study, transfer learning theory was brought into iBMIs decoder calibration for the first time. (2) Different from most transfer learning studies, the target data in this study were ultra small sample set and were transferred to the source data. (3) By taking advantage of historical data, the PDA method was demonstrated to be effective in reducing recalibration time for both movement paradigm and sensory paradigm, indicating a viable generalization. By reducing the demand for large current training data, this new method may facilitate the application

  12. Ultrasensitive and Highly Stable Resistive Pressure Sensors with Biomaterial-Incorporated Interfacial Layers for Wearable Health-Monitoring and Human-Machine Interfaces.

    Science.gov (United States)

    Chang, Hochan; Kim, Sungwoong; Jin, Sumin; Lee, Seung-Woo; Yang, Gil-Tae; Lee, Ki-Young; Yi, Hyunjung

    2018-01-10

    Flexible piezoresistive sensors have huge potential for health monitoring, human-machine interfaces, prosthetic limbs, and intelligent robotics. A variety of nanomaterials and structural schemes have been proposed for realizing ultrasensitive flexible piezoresistive sensors. However, despite the success of recent efforts, high sensitivity within narrower pressure ranges and/or the challenging adhesion and stability issues still potentially limit their broad applications. Herein, we introduce a biomaterial-based scheme for the development of flexible pressure sensors that are ultrasensitive (resistance change by 5 orders) over a broad pressure range of 0.1-100 kPa, promptly responsive (20 ms), and yet highly stable. We show that employing biomaterial-incorporated conductive networks of single-walled carbon nanotubes as interfacial layers of contact-based resistive pressure sensors significantly enhances piezoresistive response via effective modulation of the interlayer resistance and provides stable interfaces for the pressure sensors. The developed flexible sensor is capable of real-time monitoring of wrist pulse waves under external medium pressure levels and providing pressure profiles applied by a thumb and a forefinger during object manipulation at a low voltage (1 V) and power consumption (<12 μW). This work provides a new insight into the material candidates and approaches for the development of wearable health-monitoring and human-machine interfaces.

  13. Brain-machine interfaces for assistive smart homes: A feasibility study with wearable near-infrared spectroscopy.

    Science.gov (United States)

    Ogawa, Takeshi; Hirayama, Jun-Ichiro; Gupta, Pankaj; Moriya, Hiroki; Yamaguchi, Shumpei; Ishikawa, Akihiro; Inoue, Yoshihiro; Kawanabe, Motoaki; Ishii, Shin

    2015-08-01

    Smart houses for elderly or physically challenged people need a method to understand residents' intentions during their daily-living behaviors. To explore a new possibility, we here developed a novel brain-machine interface (BMI) system integrated with an experimental smart house, based on a prototype of a wearable near-infrared spectroscopy (NIRS) device, and verified the system in a specific task of controlling of the house's equipments with BMI. We recorded NIRS signals of three participants during typical daily-living actions (DLAs), and classified them by linear support vector machine. In our off-line analysis, four DLAs were classified at about 70% mean accuracy, significantly above the chance level of 25%, in every participant. In an online demonstration in the real smart house, one participant successfully controlled three target appliances by BMI at 81.3% accuracy. Thus we successfully demonstrated the feasibility of using NIRS-BMI in real smart houses, which will possibly enhance new assistive smart-home technologies.

  14. Development of Simulation-Based Evaluation System for Iterative Design of Human-Machine Interface in a Nuclear Power Plant - Application for Reducing Workload

    International Nuclear Information System (INIS)

    Fumizawa, Motoo; Kameda, Akiyuki; Nakagawa, Takashi; Wu Wei; Yoshikawa, Hidekazu

    2003-01-01

    Development of simulation-based evaluation and analysis support system for man-machine interface design (SEAMAID) has been conducted in the Nuclear Power Engineering Corporation to simulate the behavior of a few operators and the human-machine interface (HMI) in a commercialized pressurized water reactor plant. The workload is one of the key factors with respect to reducing the human error in the operation of nuclear power plants. In order to produce a high-quality design of HMI, the evaluation method was developed to simulate and analyze the operator's workload. Our method was adopted from the cognition model proposed by Reason. The workload such as the length of the visual point movement and the moving length of the operators was visualized in a monitor image during the simulation, and then recorded as a movie-file. As a consequence, the validation of SEAMAID was clarified

  15. Draft revision of human factors guideline HF-010

    International Nuclear Information System (INIS)

    Lee, Hyun Chul; Lee, Yong Hee; Oh, In Seok; Lee, Jung Woon; Cha, Woo Chang; Lee, Dhong Ha

    2003-05-01

    The Application of Human Factors to the design of Man-Machine Interfaces System(MMIS) in the nuclear power plant is essential to the safety and productivity of the nuclear power plants, human factors standards and guidelines as well as human factors analysis methods and experiments are weightily used to the design application. A Korean engineering company has developed a human factors engineering guideline, so-call HF-010, and has used it for human factors design, however the revision of HF-010 is necessary owing to lack of the contents related to the advanced MMI(Man-Machine Interfaces). As the results of the reviews of HF-010, it is found out that the revision of Section 9. Computer Displays of HF-010 is urgent, thus the revision was drafted on the basis of integrated human factors design guidelines for VDT, human factors design guidelines for PMAS SPADES display, human factors design guidelines for PMAS alarm display, and human factors design guidelines for electronic displays developed by the surveillance and operation support project of KOICS. The draft revision of HF-010 Section 9 proposed in this report can be utilized for the human factors design of the advanced MMI, and the high practical usability of the draft can be kept up through the continuous revision according to the advancement of digital technology

  16. Ecological Interface Design

    DEFF Research Database (Denmark)

    Vicente, Kim J.; Rasmussen, Jens

    1992-01-01

    A theoretical framework for designing interfaces for complex human-machine systems is proposed. The framework, called ecological interface design (EID), is based on the skills, rules, knowledge taxonomy of cognitive control. The basic goal of EID is twofold: first, not to force processing...

  17. Effect of food on the pharmacokinetics of oral MMI270B (CGS 27023A), a novel matrix metalloproteinase inhibitor

    NARCIS (Netherlands)

    F.A.L.M. Eskens (Ferry); N.C. Levitt; A. Sparreboom (Alex); L. Choi; R. Mather; J. Verweij (Jaap); A.L. Harris

    2000-01-01

    textabstractMMI270B is a matrix metalloproteinase inhibitor (MMPI) with in vitro and in vivo activity. To exert optimal target inhibition, MMPI must be given chronically, and therefore, oral bioavailability is important. We analyzed the effect of food intake on AUC0-8

  18. The ELETTRA man-machine interface

    International Nuclear Information System (INIS)

    Potepan, F.; Surace, G.; Mignacco, M.

    1992-01-01

    ELETTRA is a third generation Synchrotron Light Source under construction in Trieste (Italy), with beam energies between 1.5 and 2 GeV. Two networks connect three layers of computers in a fully distributed architecture. An ergonomic and unified approach in the realization of the human interface for the ELETTRA storage ring has led to the adoption of artificial reality criteria for the definition of the system synoptic representation and user interaction. Users can navigate inside a graphic database of the whole system and interactively edit specific virtual control panels to operate on the controlled equipment. UNIX workstations with extended graphic capabilities as operator consoles are used in the implementation of the PSI (Programmable Synoptic Interface), that was developed on top of X11 and PHIGS standards. (author)

  19. Technical Characteristics of the Process Information System - Nuclear Power Plant Krsko

    International Nuclear Information System (INIS)

    Mandic, D.; Smolej, M.

    1998-01-01

    process Information System (PIS) of Nuclear Power Plant Krsko (NEK) is newly installed distributed and redundant process computer system which was built in NEK (Phase I: 1991-1995) to integrate the following main functions: - Signal Data Acquisition from the technological processes and environment - Implementation of the basic SCADA functions on the real time process signals data base - Execution of complex plant specific application programs - Advanced MMI (Man Machine Interface) features for users in MCR - Process data transfer to other than Main Control Room (MCR) locations - Process data archiving and capability to retrieve same data for future analysis PIS NEK architecture consists of three hierarchically interconnected hardware platforms: - PIS Level 1, DAS (Data Acquisition System) Level - PIS Level2, Level for MMI, application programs and process data archiving - PIS Level 3, Level for distribution of process data to remote users of PIS data. (author)

  20. Computer-based diagnostic monitoring to enhance the human-machine interface of complex processes

    International Nuclear Information System (INIS)

    Kim, I.S.

    1992-02-01

    There is a growing interest in introducing an automated, on-line, diagnostic monitoring function into the human-machine interfaces (HMIs) or control rooms of complex process plants. The design of such a system should be properly integrated with other HMI systems in the control room, such as the alarms system or the Safety Parameter Display System (SPDS). This paper provides a conceptual foundation for the development of a Plant-wide Diagnostic Monitoring System (PDMS), along with functional requirements for the system and other advanced HMI systems. Insights are presented into the design of an efficient and robust PDMS, which were gained from a critical review of various methodologies developed in the nuclear power industry, the chemical process industry, and the space technological community

  1. Summary of the snowmass working group on machine-detector interface

    International Nuclear Information System (INIS)

    Bharadwaj, V.; Colestock, P.; Cooper, J.; Goderre, G.; Holt, J.

    1993-01-01

    From the detector point of view, what experimenters need is an outline of the EXPECTED machine parameters tempered with some indication of the POSSIBLE machine parameters. Given guidance from accelerator physicists on the machine, experimenters may get the germ of an idea of how to exploit a particular machine property. Similarly, given some indication of what is important to the experimenters, accelerator physicists may have ideas of how to modify the machine appropriately. The authors discuss a list of machine parameters from the perspective of experimentalists. These include: luminosity; number of bunches/bunch spacing; beam energy; luminosity lifetime; β * /longitudinal emittance; transverse emittance. They also include a summary of tevatron performance - past, present, and projected

  2. On the applicability of brain reading for predictive human-machine interfaces in robotics.

    Science.gov (United States)

    Kirchner, Elsa Andrea; Kim, Su Kyoung; Straube, Sirko; Seeland, Anett; Wöhrle, Hendrik; Krell, Mario Michael; Tabie, Marc; Fahle, Manfred

    2013-01-01

    The ability of today's robots to autonomously support humans in their daily activities is still limited. To improve this, predictive human-machine interfaces (HMIs) can be applied to better support future interaction between human and machine. To infer upcoming context-based behavior relevant brain states of the human have to be detected. This is achieved by brain reading (BR), a passive approach for single trial EEG analysis that makes use of supervised machine learning (ML) methods. In this work we propose that BR is able to detect concrete states of the interacting human. To support this, we show that BR detects patterns in the electroencephalogram (EEG) that can be related to event-related activity in the EEG like the P300, which are indicators of concrete states or brain processes like target recognition processes. Further, we improve the robustness and applicability of BR in application-oriented scenarios by identifying and combining most relevant training data for single trial classification and by applying classifier transfer. We show that training and testing, i.e., application of the classifier, can be carried out on different classes, if the samples of both classes miss a relevant pattern. Classifier transfer is important for the usage of BR in application scenarios, where only small amounts of training examples are available. Finally, we demonstrate a dual BR application in an experimental setup that requires similar behavior as performed during the teleoperation of a robotic arm. Here, target recognition processes and movement preparation processes are detected simultaneously. In summary, our findings contribute to the development of robust and stable predictive HMIs that enable the simultaneous support of different interaction behaviors.

  3. On the applicability of brain reading for predictive human-machine interfaces in robotics.

    Directory of Open Access Journals (Sweden)

    Elsa Andrea Kirchner

    Full Text Available The ability of today's robots to autonomously support humans in their daily activities is still limited. To improve this, predictive human-machine interfaces (HMIs can be applied to better support future interaction between human and machine. To infer upcoming context-based behavior relevant brain states of the human have to be detected. This is achieved by brain reading (BR, a passive approach for single trial EEG analysis that makes use of supervised machine learning (ML methods. In this work we propose that BR is able to detect concrete states of the interacting human. To support this, we show that BR detects patterns in the electroencephalogram (EEG that can be related to event-related activity in the EEG like the P300, which are indicators of concrete states or brain processes like target recognition processes. Further, we improve the robustness and applicability of BR in application-oriented scenarios by identifying and combining most relevant training data for single trial classification and by applying classifier transfer. We show that training and testing, i.e., application of the classifier, can be carried out on different classes, if the samples of both classes miss a relevant pattern. Classifier transfer is important for the usage of BR in application scenarios, where only small amounts of training examples are available. Finally, we demonstrate a dual BR application in an experimental setup that requires similar behavior as performed during the teleoperation of a robotic arm. Here, target recognition processes and movement preparation processes are detected simultaneously. In summary, our findings contribute to the development of robust and stable predictive HMIs that enable the simultaneous support of different interaction behaviors.

  4. Wireless brain-machine interface using EEG and EOG: brain wave classification and robot control

    Science.gov (United States)

    Oh, Sechang; Kumar, Prashanth S.; Kwon, Hyeokjun; Varadan, Vijay K.

    2012-04-01

    A brain-machine interface (BMI) links a user's brain activity directly to an external device. It enables a person to control devices using only thought. Hence, it has gained significant interest in the design of assistive devices and systems for people with disabilities. In addition, BMI has also been proposed to replace humans with robots in the performance of dangerous tasks like explosives handling/diffusing, hazardous materials handling, fire fighting etc. There are mainly two types of BMI based on the measurement method of brain activity; invasive and non-invasive. Invasive BMI can provide pristine signals but it is expensive and surgery may lead to undesirable side effects. Recent advances in non-invasive BMI have opened the possibility of generating robust control signals from noisy brain activity signals like EEG and EOG. A practical implementation of a non-invasive BMI such as robot control requires: acquisition of brain signals with a robust wearable unit, noise filtering and signal processing, identification and extraction of relevant brain wave features and finally, an algorithm to determine control signals based on the wave features. In this work, we developed a wireless brain-machine interface with a small platform and established a BMI that can be used to control the movement of a robot by using the extracted features of the EEG and EOG signals. The system records and classifies EEG as alpha, beta, delta, and theta waves. The classified brain waves are then used to define the level of attention. The acceleration and deceleration or stopping of the robot is controlled based on the attention level of the wearer. In addition, the left and right movements of eye ball control the direction of the robot.

  5. New generation of human machine interfaces for controlling UAV through depth-based gesture recognition

    Science.gov (United States)

    Mantecón, Tomás.; del Blanco, Carlos Roberto; Jaureguizar, Fernando; García, Narciso

    2014-06-01

    New forms of natural interactions between human operators and UAVs (Unmanned Aerial Vehicle) are demanded by the military industry to achieve a better balance of the UAV control and the burden of the human operator. In this work, a human machine interface (HMI) based on a novel gesture recognition system using depth imagery is proposed for the control of UAVs. Hand gesture recognition based on depth imagery is a promising approach for HMIs because it is more intuitive, natural, and non-intrusive than other alternatives using complex controllers. The proposed system is based on a Support Vector Machine (SVM) classifier that uses spatio-temporal depth descriptors as input features. The designed descriptor is based on a variation of the Local Binary Pattern (LBP) technique to efficiently work with depth video sequences. Other major consideration is the especial hand sign language used for the UAV control. A tradeoff between the use of natural hand signs and the minimization of the inter-sign interference has been established. Promising results have been achieved in a depth based database of hand gestures especially developed for the validation of the proposed system.

  6. Optimal Design of an Ultrasmall SOI-Based 1 × 8 Flat-Top AWG by Using an MMI

    Directory of Open Access Journals (Sweden)

    Hongqiang Li

    2013-01-01

    Full Text Available Four methods based on a multimode interference (MMI structure are optimally designed to flatten the spectral response of silicon-on-insulator- (SOI- based arrayed-waveguide grating (AWG applied in a demodulation integration microsystem. In the design for each method, SOI is selected as the material, the beam propagation method is used, and the performances (including the 3 dB passband width, the crosstalk, and the insertion loss of the flat-top AWG are studied. Moreover, the output spectrum responses of AWGs with or without a flattened structure are compared. The results show that low insertion loss, crosstalk, and a flat and efficient spectral response are simultaneously achieved for each kind of structure. By comparing the four designs, the design that combines a tapered MMI with tapered input/output waveguides, which has not been previously reported, was shown to yield better results than others. The optimized design reduced crosstalk to approximately −21.9 dB and had an insertion loss of −4.36 dB and a 3 dB passband width, that is, approximately 65% of the channel spacing.

  7. Remote maintenance systems requirements are being developed to provide design guidelines for machine components, to define maintenance interfaces, and to quantify maintenance equipment and procedures needed

    International Nuclear Information System (INIS)

    Spampinato, P.T.; Tabor, M.A.

    1988-01-01

    Remote maintenance systems requirements are being developed to provide design guidelines for machine components, to define maintenance interfaces, and to quantify maintenance equipment and procedures needed

  8. Emergent coordination underlying learning to reach to grasp with a brain-machine interface.

    Science.gov (United States)

    Vaidya, Mukta; Balasubramanian, Karthikeyan; Southerland, Joshua; Badreldin, Islam; Eleryan, Ahmed; Shattuck, Kelsey; Gururangan, Suchin; Slutzky, Marc; Osborne, Leslie; Fagg, Andrew; Oweiss, Karim; Hatsopoulos, Nicholas G

    2018-04-01

    The development of coordinated reach-to-grasp movement has been well studied in infants and children. However, the role of motor cortex during this development is unclear because it is difficult to study in humans. We took the approach of using a brain-machine interface (BMI) paradigm in rhesus macaques with prior therapeutic amputations to examine the emergence of novel, coordinated reach to grasp. Previous research has shown that after amputation, the cortical area previously involved in the control of the lost limb undergoes reorganization, but prior BMI work has largely relied on finding neurons that already encode specific movement-related information. In this study, we taught macaques to cortically control a robotic arm and hand through operant conditioning, using neurons that were not explicitly reach or grasp related. Over the course of training, stereotypical patterns emerged and stabilized in the cross-covariance between the reaching and grasping velocity profiles, between pairs of neurons involved in controlling reach and grasp, and to a comparable, but lesser, extent between other stable neurons in the network. In fact, we found evidence of this structured coordination between pairs composed of all combinations of neurons decoding reach or grasp and other stable neurons in the network. The degree of and participation in coordination was highly correlated across all pair types. Our approach provides a unique model for studying the development of novel, coordinated reach-to-grasp movement at the behavioral and cortical levels. NEW & NOTEWORTHY Given that motor cortex undergoes reorganization after amputation, our work focuses on training nonhuman primates with chronic amputations to use neurons that are not reach or grasp related to control a robotic arm to reach to grasp through the use of operant conditioning, mimicking early development. We studied the development of a novel, coordinated behavior at the behavioral and cortical level, and the neural

  9. The Python Spectral Analysis Tool (PySAT): A Powerful, Flexible, Preprocessing and Machine Learning Library and Interface

    Science.gov (United States)

    Anderson, R. B.; Finch, N.; Clegg, S. M.; Graff, T. G.; Morris, R. V.; Laura, J.; Gaddis, L. R.

    2017-12-01

    Machine learning is a powerful but underutilized approach that can enable planetary scientists to derive meaningful results from the rapidly-growing quantity of available spectral data. For example, regression methods such as Partial Least Squares (PLS) and Least Absolute Shrinkage and Selection Operator (LASSO), can be used to determine chemical concentrations from ChemCam and SuperCam Laser-Induced Breakdown Spectroscopy (LIBS) data [1]. Many scientists are interested in testing different spectral data processing and machine learning methods, but few have the time or expertise to write their own software to do so. We are therefore developing a free open-source library of software called the Python Spectral Analysis Tool (PySAT) along with a flexible, user-friendly graphical interface to enable scientists to process and analyze point spectral data without requiring significant programming or machine-learning expertise. A related but separately-funded effort is working to develop a graphical interface for orbital data [2]. The PySAT point-spectra tool includes common preprocessing steps (e.g. interpolation, normalization, masking, continuum removal, dimensionality reduction), plotting capabilities, and capabilities to prepare data for machine learning such as creating stratified folds for cross validation, defining training and test sets, and applying calibration transfer so that data collected on different instruments or under different conditions can be used together. The tool leverages the scikit-learn library [3] to enable users to train and compare the results from a variety of multivariate regression methods. It also includes the ability to combine multiple "sub-models" into an overall model, a method that has been shown to improve results and is currently used for ChemCam data [4]. Although development of the PySAT point-spectra tool has focused primarily on the analysis of LIBS spectra, the relevant steps and methods are applicable to any spectral data. The

  10. A bidirectional brain-machine interface featuring a neuromorphic hardware decoder

    Directory of Open Access Journals (Sweden)

    Fabio Boi

    2016-12-01

    Full Text Available Bidirectional brain-machine interfaces (BMIs establish a two-way direct communication link4 between the brain and the external world. A decoder translates recorded neural activity into motor5 commands and an encoder delivers sensory information collected from the environment directly6 to the brain creating a closed-loop system. These two modules are typically integrated in bulky7 external devices. However, the clinical support of patients with severe motor and sensory deficits8 requires compact, low-power, and fully implantable systems that can decode neural signals to9 control external devices. As a first step toward this goal, we developed a modular bidirectional BMI10 setup that uses a compact neuromorphic processor as a decoder. On this chip we implemented11 a network of spiking neurons built using its ultra-low-power mixed-signal analog/digital circuits.12 On-chip on-line spike-timing-dependent plasticity synapse circuits enabled the network to learn13 to decode neural signals recorded from the brain into motor outputs controlling the movements14 of an external device. The modularity of the BMI allowed us to tune the individual components15 of the setup without modifying the whole system. In this paper we present the features of16 this modular BMI, and describe how we configured the network of spiking neuron circuits to17 implement the decoder and to coordinate it with the encoder in an experimental BMI paradigm18 that connects bidirectionally the brain of an anesthetized rat with an external object. We show that19 the chip learned the decoding task correctly, allowing the interfaced brain to control the object’s20 trajectories robustly. Based on our demonstration, we propose that neuromorphic technology is21 mature enough for the development of BMI modules that are sufficiently low-power and compact,22 while being highly computationally powerful and adaptive.

  11. A Bidirectional Brain-Machine Interface Featuring a Neuromorphic Hardware Decoder.

    Science.gov (United States)

    Boi, Fabio; Moraitis, Timoleon; De Feo, Vito; Diotalevi, Francesco; Bartolozzi, Chiara; Indiveri, Giacomo; Vato, Alessandro

    2016-01-01

    Bidirectional brain-machine interfaces (BMIs) establish a two-way direct communication link between the brain and the external world. A decoder translates recorded neural activity into motor commands and an encoder delivers sensory information collected from the environment directly to the brain creating a closed-loop system. These two modules are typically integrated in bulky external devices. However, the clinical support of patients with severe motor and sensory deficits requires compact, low-power, and fully implantable systems that can decode neural signals to control external devices. As a first step toward this goal, we developed a modular bidirectional BMI setup that uses a compact neuromorphic processor as a decoder. On this chip we implemented a network of spiking neurons built using its ultra-low-power mixed-signal analog/digital circuits. On-chip on-line spike-timing-dependent plasticity synapse circuits enabled the network to learn to decode neural signals recorded from the brain into motor outputs controlling the movements of an external device. The modularity of the BMI allowed us to tune the individual components of the setup without modifying the whole system. In this paper, we present the features of this modular BMI and describe how we configured the network of spiking neuron circuits to implement the decoder and to coordinate it with the encoder in an experimental BMI paradigm that connects bidirectionally the brain of an anesthetized rat with an external object. We show that the chip learned the decoding task correctly, allowing the interfaced brain to control the object's trajectories robustly. Based on our demonstration, we propose that neuromorphic technology is mature enough for the development of BMI modules that are sufficiently low-power and compact, while being highly computationally powerful and adaptive.

  12. COSY Control Status. First results with rapid prototyped man-machine interface for accelerator control

    Energy Technology Data Exchange (ETDEWEB)

    Hacker, U [Forschungszentrum Juelich, Postfach 1913, 52425 Juelich (Germany); Haberbosch, C [Forschungszentrum Juelich, Postfach 1913, 52425 Juelich (Germany); Henn, K [Forschungszentrum Juelich, Postfach 1913, 52425 Juelich (Germany); Weinert, A [Forschungszentrum Juelich, Postfach 1913, 52425 Juelich (Germany)

    1994-12-15

    The experience gained with the COSY Control System after a six month commissioning period followed by a six month production period will be presented. The COSY Control System runs approximately 300 VME and VXI target systems using a total of about 1000 CPUs, the systems are driven by the diskless operating environment RT/OS, hosted by eight workcells. Application software is implemented using Object-Orientated programming paradigms. All accelerator components become interface functions as instances of an abstract device model class. Methods defined here present an abstract picture of the accelerator giving immediate access to device states and parameters. Operator interaction is defined by building views and controllers for the model. Higher level functions, such as defining an acceleration cycle, are easily developed and modified with the accelerator connected on-line to the model. In the first year of COSY operation the object based approach for a control system, together with a rapid prototyped man-machine interface has brought to light the potential of new functions such as on-line, real time programming on a running system yielding high programming performance. The advantages of this approach have not been, until now, fully appreciated. ((orig.))

  13. An information theory based approach for quantitative evaluation of man-machine interface complexity

    International Nuclear Information System (INIS)

    Kang, Hyun Gook

    1999-02-01

    In complex and high-risk work conditions, especially such as in nuclear power plants, human understanding of the plant is highly cognitive and thus largely dependent on the effectiveness of the man-machine interface system. In order to provide more effective and reliable operating conditions for future nuclear power plants, developing more credible and easy to use evaluation methods will afford great help in designing interface systems in a more efficient manner. In this study, in order to analyze the human-machine interactions, I propose the Human-processor Communication(HPC) model which is based on the information flow concept. It identifies the information flow around a human-processor. Information flow has two aspects: appearance and content. Based on the HPC model, I propose two kinds of measures for evaluating a user interface from the viewpoint of these two aspects of information flow. They measure the communicative complexity of each aspect. In this study, for the evaluation of the aspect of appearance, I propose three complexity measures: Operation Complexity, Transition Complexity, and Screen Complexity. Each one of these measures has its own physical meaning. Two experiments carried out in this work support the utility of these measures. The result of the quiz game experiment shows that as the complexity of task context increases, the usage of the interface system becomes more complex. The experimental results of the three example systems(digital view, LDP style view and hierarchy view) show the utility of the proposed complexity measures. In this study, for the evaluation of the aspect of content, I propose the degree of informational coincidence, R (K, P) as a measure for the usefulness of an alarm-processing system. It is designed to perform user-oriented evaluation based on the informational entropy concept. It will be especially useful inearly design phase because designers can estimate the usefulness of an alarm system by short calculations instead

  14. An information theory based approach for quantitative evaluation of man-machine interface complexity

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hyun Gook

    1999-02-15

    In complex and high-risk work conditions, especially such as in nuclear power plants, human understanding of the plant is highly cognitive and thus largely dependent on the effectiveness of the man-machine interface system. In order to provide more effective and reliable operating conditions for future nuclear power plants, developing more credible and easy to use evaluation methods will afford great help in designing interface systems in a more efficient manner. In this study, in order to analyze the human-machine interactions, I propose the Human-processor Communication(HPC) model which is based on the information flow concept. It identifies the information flow around a human-processor. Information flow has two aspects: appearance and content. Based on the HPC model, I propose two kinds of measures for evaluating a user interface from the viewpoint of these two aspects of information flow. They measure the communicative complexity of each aspect. In this study, for the evaluation of the aspect of appearance, I propose three complexity measures: Operation Complexity, Transition Complexity, and Screen Complexity. Each one of these measures has its own physical meaning. Two experiments carried out in this work support the utility of these measures. The result of the quiz game experiment shows that as the complexity of task context increases, the usage of the interface system becomes more complex. The experimental results of the three example systems(digital view, LDP style view and hierarchy view) show the utility of the proposed complexity measures. In this study, for the evaluation of the aspect of content, I propose the degree of informational coincidence, R (K, P) as a measure for the usefulness of an alarm-processing system. It is designed to perform user-oriented evaluation based on the informational entropy concept. It will be especially useful inearly design phase because designers can estimate the usefulness of an alarm system by short calculations instead

  15. Research interface on a programmable ultrasound scanner.

    Science.gov (United States)

    Shamdasani, Vijay; Bae, Unmin; Sikdar, Siddhartha; Yoo, Yang Mo; Karadayi, Kerem; Managuli, Ravi; Kim, Yongmin

    2008-07-01

    Commercial ultrasound machines in the past did not provide the ultrasound researchers access to raw ultrasound data. Lack of this ability has impeded evaluation and clinical testing of novel ultrasound algorithms and applications. Recently, we developed a flexible ultrasound back-end where all the processing for the conventional ultrasound modes, such as B, M, color flow and spectral Doppler, was performed in software. The back-end has been incorporated into a commercial ultrasound machine, the Hitachi HiVision 5500. The goal of this work is to develop an ultrasound research interface on the back-end for acquiring raw ultrasound data from the machine. The research interface has been designed as a software module on the ultrasound back-end. To increase the amount of raw ultrasound data that can be spooled in the limited memory available on the back-end, we have developed a method that can losslessly compress the ultrasound data in real time. The raw ultrasound data could be obtained in any conventional ultrasound mode, including duplex and triplex modes. Furthermore, use of the research interface does not decrease the frame rate or otherwise affect the clinical usability of the machine. The lossless compression of the ultrasound data in real time can increase the amount of data spooled by approximately 2.3 times, thus allowing more than 6s of raw ultrasound data to be acquired in all the modes. The interface has been used not only for early testing of new ideas with in vitro data from phantoms, but also for acquiring in vivo data for fine-tuning ultrasound applications and conducting clinical studies. We present several examples of how newer ultrasound applications, such as elastography, vibration imaging and 3D imaging, have benefited from this research interface. Since the research interface is entirely implemented in software, it can be deployed on existing HiVision 5500 ultrasound machines and may be easily upgraded in the future. The developed research

  16. sw-SVM: sensor weighting support vector machines for EEG-based brain-computer interfaces.

    Science.gov (United States)

    Jrad, N; Congedo, M; Phlypo, R; Rousseau, S; Flamary, R; Yger, F; Rakotomamonjy, A

    2011-10-01

    In many machine learning applications, like brain-computer interfaces (BCI), high-dimensional sensor array data are available. Sensor measurements are often highly correlated and signal-to-noise ratio is not homogeneously spread across sensors. Thus, collected data are highly variable and discrimination tasks are challenging. In this work, we focus on sensor weighting as an efficient tool to improve the classification procedure. We present an approach integrating sensor weighting in the classification framework. Sensor weights are considered as hyper-parameters to be learned by a support vector machine (SVM). The resulting sensor weighting SVM (sw-SVM) is designed to satisfy a margin criterion, that is, the generalization error. Experimental studies on two data sets are presented, a P300 data set and an error-related potential (ErrP) data set. For the P300 data set (BCI competition III), for which a large number of trials is available, the sw-SVM proves to perform equivalently with respect to the ensemble SVM strategy that won the competition. For the ErrP data set, for which a small number of trials are available, the sw-SVM shows superior performances as compared to three state-of-the art approaches. Results suggest that the sw-SVM promises to be useful in event-related potentials classification, even with a small number of training trials.

  17. The PennBMBI: Design of a General Purpose Wireless Brain-Machine-Brain Interface System.

    Science.gov (United States)

    Liu, Xilin; Zhang, Milin; Subei, Basheer; Richardson, Andrew G; Lucas, Timothy H; Van der Spiegel, Jan

    2015-04-01

    In this paper, a general purpose wireless Brain-Machine-Brain Interface (BMBI) system is presented. The system integrates four battery-powered wireless devices for the implementation of a closed-loop sensorimotor neural interface, including a neural signal analyzer, a neural stimulator, a body-area sensor node and a graphic user interface implemented on the PC end. The neural signal analyzer features a four channel analog front-end with configurable bandpass filter, gain stage, digitization resolution, and sampling rate. The target frequency band is configurable from EEG to single unit activity. A noise floor of 4.69 μVrms is achieved over a bandwidth from 0.05 Hz to 6 kHz. Digital filtering, neural feature extraction, spike detection, sensing-stimulating modulation, and compressed sensing measurement are realized in a central processing unit integrated in the analyzer. A flash memory card is also integrated in the analyzer. A 2-channel neural stimulator with a compliance voltage up to ± 12 V is included. The stimulator is capable of delivering unipolar or bipolar, charge-balanced current pulses with programmable pulse shape, amplitude, width, pulse train frequency and latency. A multi-functional sensor node, including an accelerometer, a temperature sensor, a flexiforce sensor and a general sensor extension port has been designed. A computer interface is designed to monitor, control and configure all aforementioned devices via a wireless link, according to a custom designed communication protocol. Wireless closed-loop operation between the sensory devices, neural stimulator, and neural signal analyzer can be configured. The proposed system was designed to link two sites in the brain, bridging the brain and external hardware, as well as creating new sensory and motor pathways for clinical practice. Bench test and in vivo experiments are performed to verify the functions and performances of the system.

  18. Software and Human-Machine Interface Development for Environmental Controls Subsystem Support

    Science.gov (United States)

    Dobson, Matthew

    2018-01-01

    The Space Launch System (SLS) is the next premier launch vehicle for NASA. It is the next stage of manned space exploration from American soil, and will be the platform in which we push further beyond Earth orbit. In preparation of the SLS maiden voyage on Exploration Mission 1 (EM-1), the existing ground support architecture at Kennedy Space Center required significant overhaul and updating. A comprehensive upgrade of controls systems was necessary, including programmable logic controller software, as well as Launch Control Center (LCC) firing room and local launch pad displays for technician use. Environmental control acts as an integral component in these systems, being the foremost system for conditioning the pad and extremely sensitive launch vehicle until T-0. The Environmental Controls Subsystem (ECS) required testing and modification to meet the requirements of the designed system, as well as the human factors requirements of NASA software for Validation and Verification (V&V). This term saw significant strides in the progress and functionality of the human-machine interfaces used at the launch pad, and improved integration with the controller code.

  19. Personalized keystroke dynamics for self-powered human--machine interfacing.

    Science.gov (United States)

    Chen, Jun; Zhu, Guang; Yang, Jin; Jing, Qingshen; Bai, Peng; Yang, Weiqing; Qi, Xuewei; Su, Yuanjie; Wang, Zhong Lin

    2015-01-27

    The computer keyboard is one of the most common, reliable, accessible, and effective tools used for human--machine interfacing and information exchange. Although keyboards have been used for hundreds of years for advancing human civilization, studying human behavior by keystroke dynamics using smart keyboards remains a great challenge. Here we report a self-powered, non-mechanical-punching keyboard enabled by contact electrification between human fingers and keys, which converts mechanical stimuli applied to the keyboard into local electronic signals without applying an external power. The intelligent keyboard (IKB) can not only sensitively trigger a wireless alarm system once gentle finger tapping occurs but also trace and record typed content by detecting both the dynamic time intervals between and during the inputting of letters and the force used for each typing action. Such features hold promise for its use as a smart security system that can realize detection, alert, recording, and identification. Moreover, the IKB is able to identify personal characteristics from different individuals, assisted by the behavioral biometric of keystroke dynamics. Furthermore, the IKB can effectively harness typing motions for electricity to charge commercial electronics at arbitrary typing speeds greater than 100 characters per min. Given the above features, the IKB can be potentially applied not only to self-powered electronics but also to artificial intelligence, cyber security, and computer or network access control.

  20. Floating dielectric slab optical interconnection between metal-dielectric interface surface plasmon polariton waveguides.

    Science.gov (United States)

    Kang, Minsu; Park, Junghyun; Lee, Il-Min; Lee, Byoungho

    2009-01-19

    A simple and effective optical interconnection which connects two distanced single metal-dielectric interface surface plasmon waveguides by a floating dielectric slab waveguide (slab bridge) is proposed. Transmission characteristics of the suggested structure are numerically studied using rigorous coupled wave analysis, and design rules based on the study are given. In the wave-guiding part, if the slab bridge can support more than the fundamental mode, then the transmission efficiency of the interconnection shows strong periodic dependency on the length of the bridge, due to the multi-mode interference (MMI) effect. Otherwise, only small fluctuation occurs due to the Fabry-Pérot effect. In addition, light beating happens when the slab bridge is relatively short. In the wave-coupling part, on the other hand, gap-assisted transmission occurs at each overlapping region as a consequence of mode hybridization. Periodic dependency on the length of the overlap region also appears due to the MMI effect. According to these results, we propose design principles for achieving both high transmission efficiency and stability with respect to the variation of the interconnection distance, and we show how to obtain the transmission efficiency of 68.3% for the 1mm-long interconnection.

  1. An implantable integrated low-power amplifier-microelectrode array for Brain-Machine Interfaces.

    Science.gov (United States)

    Patrick, Erin; Sankar, Viswanath; Rowe, William; Sanchez, Justin C; Nishida, Toshikazu

    2010-01-01

    One of the important challenges in designing Brain-Machine Interfaces (BMI) is to build implantable systems that have the ability to reliably process the activity of large ensembles of cortical neurons. In this paper, we report the design, fabrication, and testing of a polyimide-based microelectrode array integrated with a low-power amplifier as part of the Florida Wireless Integrated Recording Electrode (FWIRE) project at the University of Florida developing a fully implantable neural recording system for BMI applications. The electrode array was fabricated using planar micromachining MEMS processes and hybrid packaged with the amplifier die using a flip-chip bonding technique. The system was tested both on bench and in-vivo. Acute and chronic neural recordings were obtained from a rodent for a period of 42 days. The electrode-amplifier performance was analyzed over the chronic recording period with the observation of a noise floor of 4.5 microVrms, and an average signal-to-noise ratio of 3.8.

  2. Man-machine interface systems and operator training program for ABWR in Japan

    International Nuclear Information System (INIS)

    Kunito, Susumu

    2004-01-01

    The Tokyo Electric Power Company (TEPCO) has developed a new Main Control Room design for the Advanced Boiling Water Reactor (ABWR) to improve man-machine interface. New configuration of panels and enhanced automation are some of the features of the ABWR type Main Control Room design. Various technologies such as Cathode Ray Tubes (CRTs) and Flat Displays (FDs) with touch-sensitive operations are contributed to the development of the ABWR type control room design. This design will be first applied to Kashiwazaki-Kariwa Nuclear Power Station unit 6 (K-6). To train the operators sufficiently, TEPCO reviewed the operator training program. Compared with the conventional training, new training menu will be added and the training of ABWR operators will be started 6 months earlier. An ABWR simulator is under construction and training using this simulator is scheduled to be started in August 1994, which is 18 months before fuel loading of K-6. We are reviewing malfunction modes on the simulator. (author)

  3. BMI cyberworkstation: enabling dynamic data-driven brain-machine interface research through cyberinfrastructure.

    Science.gov (United States)

    Zhao, Ming; Rattanatamrong, Prapaporn; DiGiovanna, Jack; Mahmoudi, Babak; Figueiredo, Renato J; Sanchez, Justin C; Príncipe, José C; Fortes, José A B

    2008-01-01

    Dynamic data-driven brain-machine interfaces (DDDBMI) have great potential to advance the understanding of neural systems and improve the design of brain-inspired rehabilitative systems. This paper presents a novel cyberinfrastructure that couples in vivo neurophysiology experimentation with massive computational resources to provide seamless and efficient support of DDDBMI research. Closed-loop experiments can be conducted with in vivo data acquisition, reliable network transfer, parallel model computation, and real-time robot control. Behavioral experiments with live animals are supported with real-time guarantees. Offline studies can be performed with various configurations for extensive analysis and training. A Web-based portal is also provided to allow users to conveniently interact with the cyberinfrastructure, conducting both experimentation and analysis. New motor control models are developed based on this approach, which include recursive least square based (RLS) and reinforcement learning based (RLBMI) algorithms. The results from an online RLBMI experiment shows that the cyberinfrastructure can successfully support DDDBMI experiments and meet the desired real-time requirements.

  4. The desktop interface in intelligent tutoring systems

    Science.gov (United States)

    Baudendistel, Stephen; Hua, Grace

    1987-01-01

    The interface between an Intelligent Tutoring System (ITS) and the person being tutored is critical to the success of the learning process. If the interface to the ITS is confusing or non-supportive of the tutored domain, the effectiveness of the instruction will be diminished or lost entirely. Consequently, the interface to an ITS should be highly integrated with the domain to provide a robust and semantically rich learning environment. In building an ITS for ZetaLISP on a LISP Machine, a Desktop Interface was designed to support a programming learning environment. Using the bitmapped display, windows, and mouse, three desktops were designed to support self-study and tutoring of ZetaLISP. Through organization, well-defined boundaries, and domain support facilities, the desktops provide substantial flexibility and power for the student and facilitate learning ZetaLISP programming while screening the student from the complex LISP Machine environment. The student can concentrate on learning ZetaLISP programming and not on how to operate the interface or a LISP Machine.

  5. Habit learning and brain-machine interfaces (BMI): a tribute to Valentino Braitenberg's "Vehicles".

    Science.gov (United States)

    Birbaumer, Niels; Hummel, Friedhelm C

    2014-10-01

    Brain-Machine Interfaces (BMI) allow manipulation of external devices and computers directly with brain activity without involvement of overt motor actions. The neurophysiological principles of such robotic brain devices and BMIs follow Hebbian learning rules as described and realized by Valentino Braitenberg in his book "Vehicles," in the concept of a "thought pump" residing in subcortical basal ganglia structures. We describe here the application of BMIs for brain communication in totally locked-in patients and argue that the thought pump may extinguish-at least partially-in those people because of extinction of instrumentally learned cognitive responses and brain responses. We show that Pavlovian semantic conditioning may allow brain communication even in the completely paralyzed who does not show response-effect contingencies. Principles of skill learning and habit acquisition as formulated by Braitenberg are the building blocks of BMIs and neuroprostheses.

  6. Human-Machine Interface for the Control of Multi-Function Systems Based on Electrocutaneous Menu: Application to Multi-Grasp Prosthetic Hands.

    Directory of Open Access Journals (Sweden)

    Jose Gonzalez-Vargas

    Full Text Available Modern assistive devices are very sophisticated systems with multiple degrees of freedom. However, an effective and user-friendly control of these systems is still an open problem since conventional human-machine interfaces (HMI cannot easily accommodate the system's complexity. In HMIs, the user is responsible for generating unique patterns of command signals directly triggering the device functions. This approach can be difficult to implement when there are many functions (necessitating many command patterns and/or the user has a considerable impairment (limited number of available signal sources. In this study, we propose a novel concept for a general-purpose HMI where the controller and the user communicate bidirectionally to select the desired function. The system first presents possible choices to the user via electro-tactile stimulation; the user then acknowledges the desired choice by generating a single command signal. Therefore, the proposed approach simplifies the user communication interface (one signal to generate, decoding (one signal to recognize, and allows selecting from a number of options. To demonstrate the new concept the method was used in one particular application, namely, to implement the control of all the relevant functions in a state of the art commercial prosthetic hand without using any myoelectric channels. We performed experiments in healthy subjects and with one amputee to test the feasibility of the novel approach. The results showed that the performance of the novel HMI concept was comparable or, for some outcome measures, better than the classic myoelectric interfaces. The presented approach has a general applicability and the obtained results point out that it could be used to operate various assistive systems (e.g., prosthesis vs. wheelchair, or it could be integrated into other control schemes (e.g., myoelectric control, brain-machine interfaces in order to improve the usability of existing low

  7. Human-Machine Interface for the Control of Multi-Function Systems Based on Electrocutaneous Menu: Application to Multi-Grasp Prosthetic Hands.

    Science.gov (United States)

    Gonzalez-Vargas, Jose; Dosen, Strahinja; Amsuess, Sebastian; Yu, Wenwei; Farina, Dario

    2015-01-01

    Modern assistive devices are very sophisticated systems with multiple degrees of freedom. However, an effective and user-friendly control of these systems is still an open problem since conventional human-machine interfaces (HMI) cannot easily accommodate the system's complexity. In HMIs, the user is responsible for generating unique patterns of command signals directly triggering the device functions. This approach can be difficult to implement when there are many functions (necessitating many command patterns) and/or the user has a considerable impairment (limited number of available signal sources). In this study, we propose a novel concept for a general-purpose HMI where the controller and the user communicate bidirectionally to select the desired function. The system first presents possible choices to the user via electro-tactile stimulation; the user then acknowledges the desired choice by generating a single command signal. Therefore, the proposed approach simplifies the user communication interface (one signal to generate), decoding (one signal to recognize), and allows selecting from a number of options. To demonstrate the new concept the method was used in one particular application, namely, to implement the control of all the relevant functions in a state of the art commercial prosthetic hand without using any myoelectric channels. We performed experiments in healthy subjects and with one amputee to test the feasibility of the novel approach. The results showed that the performance of the novel HMI concept was comparable or, for some outcome measures, better than the classic myoelectric interfaces. The presented approach has a general applicability and the obtained results point out that it could be used to operate various assistive systems (e.g., prosthesis vs. wheelchair), or it could be integrated into other control schemes (e.g., myoelectric control, brain-machine interfaces) in order to improve the usability of existing low-bandwidth HMIs.

  8. User interface design and system integration aspects of core monitoring systems

    International Nuclear Information System (INIS)

    Berg, O.; Bodal, T.; Hornaes, A.; Porsmyr, J.

    2000-01-01

    The present paper describes our experience with the SCORPIO core monitoring system using generic building blocks for the MMI and system integration. In this context the different layers of the software system are discussed starting with the communication system, interfacing of various modules (e.g. physics codes), administration of several modules and generation of graphical user interfaces for different categories of end-users. A method by which re-use of software components can make the system development and maintenance more efficient is described. Examples are given from different system installation projects. The methodology adopted is considered particularly important in the future, as it is anticipated that core monitoring systems will be expanded with new functions (e.g. information from technical specifications, procedures, noise analysis, etc). Further, efficient coupling of off-line tools for core physics calculations and on-line modules in core monitoring can pave the way for cost savings. (authors)

  9. MMI design of K-CPS for preventing human errors and enhancing convenient operation

    International Nuclear Information System (INIS)

    Sung, Chan Ho; Jung, Yeon Sub; Oh, Eoung Se; Shin, Young Chul; Lee, Yong Kwan

    2001-01-01

    In order to supplement defects of paper procedure, reduce human errors and enhance convenient operation, computer-based procedure system is being developed. CPS (Computerized Procedure System) including human-factor engineering design concept for KNGR (Korean Next Generation Reactor) has been also developed with the same object. K-CPS(KNGR CPS) has higher level of automation than paper procedure. It is fully integrated with control and monitoring systems. Combining statements and relevant components, which changes dynamically according to plant status enhances readability of procedure. This paper shows general design criteria on computer-based procedure system, the MMI design characteristics of K-CPS and the results of suitability evaluation for K-CPS by operator

  10. Human-machine Interface for Presentation Robot

    Czech Academy of Sciences Publication Activity Database

    Krejsa, Jiří; Ondroušek, V.

    2012-01-01

    Roč. 6, č. 2 (2012), s. 17-21 ISSN 1897-8649 Institutional research plan: CEZ:AV0Z20760514 Keywords : human-robot interface * mobile robot * presentation robot Subject RIV: JD - Computer Applications, Robotics

  11. Human-machine interfaces based on EMG and EEG applied to robotic systems

    Directory of Open Access Journals (Sweden)

    Sarcinelli-Filho Mario

    2008-03-01

    Full Text Available Abstract Background Two different Human-Machine Interfaces (HMIs were developed, both based on electro-biological signals. One is based on the EMG signal and the other is based on the EEG signal. Two major features of such interfaces are their relatively simple data acquisition and processing systems, which need just a few hardware and software resources, so that they are, computationally and financially speaking, low cost solutions. Both interfaces were applied to robotic systems, and their performances are analyzed here. The EMG-based HMI was tested in a mobile robot, while the EEG-based HMI was tested in a mobile robot and a robotic manipulator as well. Results Experiments using the EMG-based HMI were carried out by eight individuals, who were asked to accomplish ten eye blinks with each eye, in order to test the eye blink detection algorithm. An average rightness rate of about 95% reached by individuals with the ability to blink both eyes allowed to conclude that the system could be used to command devices. Experiments with EEG consisted of inviting 25 people (some of them had suffered cases of meningitis and epilepsy to test the system. All of them managed to deal with the HMI in only one training session. Most of them learnt how to use such HMI in less than 15 minutes. The minimum and maximum training times observed were 3 and 50 minutes, respectively. Conclusion Such works are the initial parts of a system to help people with neuromotor diseases, including those with severe dysfunctions. The next steps are to convert a commercial wheelchair in an autonomous mobile vehicle; to implement the HMI onboard the autonomous wheelchair thus obtained to assist people with motor diseases, and to explore the potentiality of EEG signals, making the EEG-based HMI more robust and faster, aiming at using it to help individuals with severe motor dysfunctions.

  12. Cortical and subcortical mechanisms of brain-machine interfaces.

    Science.gov (United States)

    Marchesotti, Silvia; Martuzzi, Roberto; Schurger, Aaron; Blefari, Maria Laura; Del Millán, José R; Bleuler, Hannes; Blanke, Olaf

    2017-06-01

    Technical advances in the field of Brain-Machine Interfaces (BMIs) enable users to control a variety of external devices such as robotic arms, wheelchairs, virtual entities and communication systems through the decoding of brain signals in real time. Most BMI systems sample activity from restricted brain regions, typically the motor and premotor cortex, with limited spatial resolution. Despite the growing number of applications, the cortical and subcortical systems involved in BMI control are currently unknown at the whole-brain level. Here, we provide a comprehensive and detailed report of the areas active during on-line BMI control. We recorded functional magnetic resonance imaging (fMRI) data while participants controlled an EEG-based BMI inside the scanner. We identified the regions activated during BMI control and how they overlap with those involved in motor imagery (without any BMI control). In addition, we investigated which regions reflect the subjective sense of controlling a BMI, the sense of agency for BMI-actions. Our data revealed an extended cortical-subcortical network involved in operating a motor-imagery BMI. This includes not only sensorimotor regions but also the posterior parietal cortex, the insula and the lateral occipital cortex. Interestingly, the basal ganglia and the anterior cingulate cortex were involved in the subjective sense of controlling the BMI. These results inform basic neuroscience by showing that the mechanisms of BMI control extend beyond sensorimotor cortices. This knowledge may be useful for the development of BMIs that offer a more natural and embodied feeling of control for the user. Hum Brain Mapp 38:2971-2989, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Brain-Machine Interface Enables Bimanual Arm Movements in Monkeys

    Science.gov (United States)

    Ifft, Peter J.; Shokur, Solaiman; Li, Zheng; Lebedev, Mikhail A.; Nicolelis, Miguel A. L.

    2014-01-01

    Brain-machine interfaces (BMIs) are artificial systems that aim to restore sensation and movement to severely paralyzed patients. However, previous BMIs enabled only single arm functionality, and control of bimanual movements was a major challenge. Here, we developed and tested a bimanual BMI that enabled rhesus monkeys to control two avatar arms simultaneously. The bimanual BMI was based on the extracellular activity of 374–497 neurons recorded from several frontal and parietal cortical areas of both cerebral hemispheres. Cortical activity was transformed into movements of the two arms with a decoding algorithm called a 5th order unscented Kalman filter (UKF). The UKF is well-suited for BMI decoding because it accounts for both characteristics of reaching movements and their representation by cortical neurons. The UKF was trained either during a manual task performed with two joysticks or by having the monkeys passively observe the movements of avatar arms. Most cortical neurons changed their modulation patterns when both arms were engaged simultaneously. Representing the two arms jointly in a single UKF decoder resulted in improved decoding performance compared with using separate decoders for each arm. As the animals’ performance in bimanual BMI control improved over time, we observed widespread plasticity in frontal and parietal cortical areas. Neuronal representation of the avatar and reach targets was enhanced with learning, whereas pairwise correlations between neurons initially increased and then decreased. These results suggest that cortical networks may assimilate the two avatar arms through BMI control. PMID:24197735

  14. Human factors and man-machine-interaction

    International Nuclear Information System (INIS)

    Bohr-Bruckmayr, E.

    1985-01-01

    Definitions of the man-machine-interface concept are given. The importance of ergonomics in planning, construction, start-up and operation of a nuclear power plant is highlighted. A comprehensive task analysis is the basis of man-machine-interaction. Personnel performance, work shaping and security are discussed

  15. Investigation of the Machining Stability of a Milling Machine with Hybrid Guideway Systems

    Directory of Open Access Journals (Sweden)

    Jui-Pin Hung

    2016-03-01

    Full Text Available This study was aimed to investigate the machining stability of a horizontal milling machine with hybrid guideway systems by finite element method. To this purpose, we first created finite element model of the milling machine with the introduction of the contact stiffness defined at the sliding and rolling interfaces, respectively. Also, the motorized built-in spindle model was created and implemented in the whole machine model. Results of finite element simulations reveal that linear guides with different preloads greatly affect the dynamic responses and machining stability of the horizontal milling machine. The critical cutting depth predicted at the vibration mode associated with the machine tool structure is about 10 mm and 25 mm in the X and Y direction, respectively, while the cutting depth predicted at the vibration mode associated with the spindle structure is about 6.0 mm. Also, the machining stability can be increased when the preload of linear roller guides of the feeding mechanism is changed from lower to higher amount.

  16. What limits the performance of current invasive Brain Machine Interfaces?

    Directory of Open Access Journals (Sweden)

    Gytis eBaranauskas

    2014-04-01

    Full Text Available The concept of a brain-machine interface (BMI or a computer-brain interface is simple: BMI creates a communication pathway for a direct control by brain of an external device. In reality BMIs are very complex devices and only recently the increase in computing power of microprocessors enabled a boom in BMI research that continues almost unabated to this date, the high point being the insertion of electrode arrays into the brains of 5 human patients in a clinical trial run by Cyberkinetics with few other clinical tests still in progress. Meanwhile several EEG-based BMI devices (non-invasive BMIs were launched commercially. Modern electronics and dry electrode technology made possible to drive the cost of some of these devices below few hundred dollars. However, the initial excitement of the direct control by brain waves of a computer or other equipment is dampened by large efforts required for learning, high error rates and slow response speed. All these problems are directly related to low information transfer rates typical for such EEG-based BMIs. In invasive BMIs employing multiple electrodes inserted into the brain one may expect much higher information transfer rates than in EEG-based BMIs because, in theory, each electrode provides an independent information channel. However, although invasive BMIs require more expensive equipment and have ethical problems related to the need to insert electrodes in the live brain, such financial and ethical costs are often not offset by a dramatic improvement in the information transfer rate. Thus the main topic of this review is why in invasive BMIs an apparently much larger information content obtained with multiple extracellular electrodes does not translate into much higher rates of information transfer? This paper explores possible answers to this question by concluding that more research on what movement parameters are encoded by neurons in motor cortex is needed before we can enjoy the next

  17. Proton storage ring: man/machine interface

    International Nuclear Information System (INIS)

    Lander, R.F.; Clout, P.N.

    1985-01-01

    The human interface of the Proton Storage Ring Control System at Los Alamos is described in some detail, together with the software environment in which operator interaction programs are written. Some examples of operator interaction programs are given

  18. Implementasi Kurikulum Kulliyatul Mu’alimin Al-Islamiyah (KMI Di Pondok Pesantren Tarbiyatul Mu’allimien Al-Islamiyah (TMI Al-Amien Prenduan Dan Ma’hadul Mu’allimien Al-Islamiyah (MMI Mathlabul Ulum Jambu Sumenep

    Directory of Open Access Journals (Sweden)

    Fajriyah Fajriyah

    2017-07-01

    Full Text Available Tujuan penelitian ini mendeskripsikan dan memahami: Kurikulum kulliyatul mu’allimin al-islamiyah; Implementasi kurikulum kulliyatul mu’allimin al-islamiyah; Faktor pendukung dan faktor penghambat kurikulum kulliyatul mu’allimin al-islamiyah; dan Strategi mengatasi faktor penghambat kurikulum kulliyatul mu’allimin al-islamiyah. Penelitian ini menggunakan pendekatan kualitatif dengan rancangan penelitian studi multi situs. Hasil penelitian ini yaitu: kurikulum KMI di TMI dan MMI perumusan kurikulum KMI didasarkan filosofi yang tercermin dari visi dan misi yang diturunkan dalam tujuan dan disusun dalam langkah yang opersional. Faktor pendukung: terdapat kedisiplinan yang ditanamkan kepada guru dan santri; SDM yang berkompeten; kepedulian orang tua dan masyarakat; dan  strategi mengatasi faktor penghambat kurikulum KMI di TMI dan MMI, memaksimalkan penggunaan teknologi informasi (IT dalam proses pembelajaran, peningkatan kualitas SDM dengan mengikutsertakan guru dalam pelatihan dan pendidikan di pesantren maupun di luar pesantren. guru berperan aktif. Kata Kunci: Implementasi, Kurikuilum, KMI.   Abstract:   While the purpose of this research are to describe: The curriculum of  kulliyatul mu’allimin al-islamiyah; Implementation of  curriculum of kulliyatul mu’allimin al-islamiyah; Factor of support and factor pursuer of curriculum of kulliyatul mu’allimin al-islamiyah; and Strategy to overcome factor of pursuer of curriculum of kulliyatul mu’allimin al-islamiyah. Results of this research are: curriculum KMI in TMI and MMI: the first, curriculum formulating of KMI based philosophy that taken by vision and mission applied the aim and arranged  in step operational, the curriculum implementation KMI and MMI boarding house as formal education institution and non formal to do learning process for 24 hour, support factor and pursuer factor of curriculum KMI in TMI and MMI,pursuer factor are: minimize boarding house facility; limited

  19. The Three Pillars of Machine Programming

    OpenAIRE

    Gottschlich, Justin; Solar-Lezama, Armando; Tatbul, Nesime; Carbin, Michael; Rinard, Martin; Barzilay, Regina; Amarasinghe, Saman; Tenenbaum, Joshua B; Mattson, Tim

    2018-01-01

    In this position paper, we describe our vision of the future of machine programming through a categorical examination of three pillars of research. Those pillars are: (i) intention, (ii) invention, and(iii) adaptation. Intention emphasizes advancements in the human-to-computer and computer-to-machine-learning interfaces. Invention emphasizes the creation or refinement of algorithms or core hardware and software building blocks through machine learning (ML). Adaptation emphasizes advances in t...

  20. System support software for TSTA

    International Nuclear Information System (INIS)

    Claborn, G.W.; Mann, L.W.; Nielson, C.W.

    1987-01-01

    The software at the Tritium Systems Test Assembly (TSTA) is logically broken into two parts, the system support software and the subsystem software. The purpose of the system support software is to isolate the subsystem software from the physical hardware. In this sense the system support software forms the kernel of the software at TSTA. The kernel software performs several functions. It gathers data from CAMAC modules and makes that data available for subsystem processes. It services requests to send commands to CAMAC modules. It provides a system of logging functions and provides for a system-wide global program state that allows highly structured interaction between subsystem processes. The kernel's most visible function is to provide the Man-Machine Interface (MMI). The MMI allows the operators a window into the physical hardware and subsystem process state. Finally the kernel provides a data archiving and compression function that allows archival data to be accessed and plotted. Such kernel software as developed and implemented at TSTA is described

  1. Simulator protection, control and supervision systems: a tool for empowerment of operation and maintenance; Simulador de sistemas de protecao, controle e supervisao: uma ferramenta para capacitacao da operacao e manutencao

    Energy Technology Data Exchange (ETDEWEB)

    Moutinho, J.A.P. [Centrais Eletricas do Norte do Brasil S.A. (ELETRONORTE), Belem, PA (Brazil). Regional de Transmissao do Para. Div. de Engenharia de Automacao, Protecao e Medicao], E-mail: beck@eln.gov.br

    2009-07-01

    The use of digital technology in protection, control and supervision equipment has resulted in the electricity sector companies, new behavior in electrical management systems given his versatility in the implementation of protection system as well as cost reduction in traffic information of power equipment to the man-machine interfaces (MMI) to the system operator. With the capabilities of digital technology it is possible provide simulated systems to allow the training of operations teams of the system, providing resources for development for engineers and maintenance technicians, and above all offer platform for analysis of events in the electrical system. This paper presents the development of a simulator protective relays, control and supervision applied to ELETRONORTE substations. The simulator of protective relays, control and supervision consists of information reproduction in the operator's MMI of the electrical system originated in the units of protection, control and supervision. This information is developed from a software that has the same communication protocol with the original units.

  2. Integrated digital control and man-machine interface for complex remote handing systems

    International Nuclear Information System (INIS)

    Rowe, J.C.; Spille, R.F.; Zimmermann, S.D.

    1987-01-01

    The Advanced Integrated Maintenance System (AIMS) is part of a continuing effort within the Consolidated Fuel Reprocessing Program at Oak Ridge National Laboratory to develop and extend the capabilities of remote manipulation and maintenance technology. The AIMS is a totally integrated approach to remote handling in hazardous environments. State-of-the-art computer systems connected through a high-speed distributed control system that supports the flexibility and expandability needed for large integrated maintenance applications. A man-Machine Interface provides high-level human interaction through a powerful color graphics menu-controlled operator console. An auxiliary control system handles the real-time processing needs for a variety of support hardware. A pair of dedicated fiber-optic-linked master/slave computer systems control the Advanced Servomanipulator master/slave arms using powerful distributed digital processing methods. The FORTH language was used as a real-time operating and development environment for the entire system, and all of these components are integrated into a control room concept that represents the latest advancements in the development of remote maintenance facilities for hazardous environments

  3. Integrated digital control and man-machine interface for complex remote handling systems

    International Nuclear Information System (INIS)

    Rowe, J.C.; Spille, R.F.; Zimmermann, S.D.

    1986-12-01

    The Advanced Integrated Maintenance System (AIMS) is part of a continuing effort within the Consolidated Fuel Reprocessing Program at Oak Ridge National Laboratory to develop and extend the capabilities of remote manipulation and maintenance technology. The AIMS is a totally integrated approach to remote handling in hazardous environments. State-of-the-art computer systems connected through a high-speed communication network provide a real-time distributed control system that supports the flexibility and expandability needed for large integrated maintenance applications. A Man-Machine Interface provides high-level human interaction through a powerful color graphics menu-controlled operator console. An auxiliary control system handles the real-time processing needs for a variety of support hardware. A pair of dedicated fiber-optic-linked master/slave computer system control the Advanced Servomanipulator master/slave arms using powerful distributed digital processing methods. The FORTH language was used as a real-time operating and development environment for the entire system, and all of these components are integrated into a control room concept that represents the latest advancements in the development of remote maintenance facilities for hazardous environments

  4. Human-machine interface based on muscular and brain signals applied to a robotic wheelchair

    International Nuclear Information System (INIS)

    Ferreira, A; Silva, R L; Celeste, W C; Filho, T F Bastos; Filho, M Sarcinelli

    2007-01-01

    This paper presents a Human-Machine Interface (HMI) based on the signals generated by eye blinks or brain activity. The system structure and the signal acquisition and processing are shown. The signals used in this work are either the signal associated to the muscular movement corresponding to an eye blink or the brain signal corresponding to visual information processing. The variance is the feature extracted from such signals in order to detect the intention of the user. The classification is performed by a variance threshold which is experimentally determined for each user during the training stage. The command options, which are going to be sent to the commanded device, are presented to the user in the screen of a PDA (Personal Digital Assistant). In the experiments here reported, a robotic wheelchair is used as the device being commanded

  5. Human-machine interface based on muscular and brain signals applied to a robotic wheelchair

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, A; Silva, R L; Celeste, W C; Filho, T F Bastos; Filho, M Sarcinelli [Electrical Engineering Department, Federal University of Espirito Santo (UFES), Av. Fernando Ferrari, 514, Vitoria, 29075-910 (Brazil)

    2007-11-15

    This paper presents a Human-Machine Interface (HMI) based on the signals generated by eye blinks or brain activity. The system structure and the signal acquisition and processing are shown. The signals used in this work are either the signal associated to the muscular movement corresponding to an eye blink or the brain signal corresponding to visual information processing. The variance is the feature extracted from such signals in order to detect the intention of the user. The classification is performed by a variance threshold which is experimentally determined for each user during the training stage. The command options, which are going to be sent to the commanded device, are presented to the user in the screen of a PDA (Personal Digital Assistant). In the experiments here reported, a robotic wheelchair is used as the device being commanded.

  6. Workshops of the Sixth International Brain–Computer Interface Meeting : brain–computer interfaces past, present, and future

    NARCIS (Netherlands)

    Huggins, Jane E.; Guger, Christoph; Ziat, Mounia; Zander, Thorsten O.; Taylor, Denise; Tangermann, Michael; Soria-Frisch, Aureli; Simeral, John; Scherer, Reinhold; Rupp, Rüdiger; Ruffini, Giulio; Robinson, Douglas K.R.; Ramsey, Nick F.; Nijholt, Anton; Müller-Putz, Gernot R.; McFarland, Dennis J.; Mattia, Donatella; Lance, Brent J.; Kindermans, Pieter-Jan; Iturrate, Iñaki; Herff, Christian; Gupta, Disha; Do, An H.; Collinger, Jennifer L.; Chavarriaga, Ricardo; Chasey, Steven M.; Bleichner, Martin G.; Batista, Aaron; Anderson, Charles W.; Aarnoutse, Erik J.

    2017-01-01

    The Sixth International Brain–Computer Interface (BCI) Meeting was held 30 May–3 June 2016 at the Asilomar Conference Grounds, Pacific Grove, California, USA. The conference included 28 workshops covering topics in BCI and brain–machine interface research. Topics included BCI for specific

  7. Craniux: a LabVIEW-based modular software framework for brain-machine interface research.

    Science.gov (United States)

    Degenhart, Alan D; Kelly, John W; Ashmore, Robin C; Collinger, Jennifer L; Tyler-Kabara, Elizabeth C; Weber, Douglas J; Wang, Wei

    2011-01-01

    This paper presents "Craniux," an open-access, open-source software framework for brain-machine interface (BMI) research. Developed in LabVIEW, a high-level graphical programming environment, Craniux offers both out-of-the-box functionality and a modular BMI software framework that is easily extendable. Specifically, it allows researchers to take advantage of multiple features inherent to the LabVIEW environment for on-the-fly data visualization, parallel processing, multithreading, and data saving. This paper introduces the basic features and system architecture of Craniux and describes the validation of the system under real-time BMI operation using simulated and real electrocorticographic (ECoG) signals. Our results indicate that Craniux is able to operate consistently in real time, enabling a seamless work flow to achieve brain control of cursor movement. The Craniux software framework is made available to the scientific research community to provide a LabVIEW-based BMI software platform for future BMI research and development.

  8. Human machine interface to manually drive rhombic like vehicles in remote handling operations

    International Nuclear Information System (INIS)

    Lopes, Pedro; Vale, Alberto; Ventura, Rodrigo

    2015-01-01

    In the thermonuclear experimental reactor ITER, a vehicle named CTS is designed to transport a container with activated components inside the buildings. In nominal operations, the CTS is autonomously guided under supervision. However, in some unexpected situations, such as in rescue and recovery operations, the autonomous mode must be overridden and the CTS must be remotely guided by an operator. The CTS is a rhombic-like vehicle, with two drivable and steerable wheels along its longitudinal axis, providing omni-directional capabilities. The rhombic kinematics correspond to four control variables, which are difficult to manage in manual mode operation. This paper proposes a Human Machine Interface (HMI) to remotely guide the vehicle in manual mode. The proposed solution is implemented using a HMI with an encoder connected to a micro-controller and an analog 2-axis joystick. Experimental results were obtained comparing the proposed solution with other controller devices in different scenarios and using a software platform that simulates the kinematics and dynamics of the vehicle. (authors)

  9. Craniux: A LabVIEW-Based Modular Software Framework for Brain-Machine Interface Research

    Directory of Open Access Journals (Sweden)

    Alan D. Degenhart

    2011-01-01

    Full Text Available This paper presents “Craniux,” an open-access, open-source software framework for brain-machine interface (BMI research. Developed in LabVIEW, a high-level graphical programming environment, Craniux offers both out-of-the-box functionality and a modular BMI software framework that is easily extendable. Specifically, it allows researchers to take advantage of multiple features inherent to the LabVIEW environment for on-the-fly data visualization, parallel processing, multithreading, and data saving. This paper introduces the basic features and system architecture of Craniux and describes the validation of the system under real-time BMI operation using simulated and real electrocorticographic (ECoG signals. Our results indicate that Craniux is able to operate consistently in real time, enabling a seamless work flow to achieve brain control of cursor movement. The Craniux software framework is made available to the scientific research community to provide a LabVIEW-based BMI software platform for future BMI research and development.

  10. Human machine interface to manually drive rhombic like vehicles in remote handling operations

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Pedro; Vale, Alberto [Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Ventura, Rodrigo [Institute for Systems and Robotics, Instituto Superior Tecnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal)

    2015-07-01

    In the thermonuclear experimental reactor ITER, a vehicle named CTS is designed to transport a container with activated components inside the buildings. In nominal operations, the CTS is autonomously guided under supervision. However, in some unexpected situations, such as in rescue and recovery operations, the autonomous mode must be overridden and the CTS must be remotely guided by an operator. The CTS is a rhombic-like vehicle, with two drivable and steerable wheels along its longitudinal axis, providing omni-directional capabilities. The rhombic kinematics correspond to four control variables, which are difficult to manage in manual mode operation. This paper proposes a Human Machine Interface (HMI) to remotely guide the vehicle in manual mode. The proposed solution is implemented using a HMI with an encoder connected to a micro-controller and an analog 2-axis joystick. Experimental results were obtained comparing the proposed solution with other controller devices in different scenarios and using a software platform that simulates the kinematics and dynamics of the vehicle. (authors)

  11. Learning to control a brain-machine interface for reaching and grasping by primates.

    Directory of Open Access Journals (Sweden)

    Jose M Carmena

    2003-11-01

    Full Text Available Reaching and grasping in primates depend on the coordination of neural activity in large frontoparietal ensembles. Here we demonstrate that primates can learn to reach and grasp virtual objects by controlling a robot arm through a closed-loop brain-machine interface (BMIc that uses multiple mathematical models to extract several motor parameters (i.e., hand position, velocity, gripping force, and the EMGs of multiple arm muscles from the electrical activity of frontoparietal neuronal ensembles. As single neurons typically contribute to the encoding of several motor parameters, we observed that high BMIc accuracy required recording from large neuronal ensembles. Continuous BMIc operation by monkeys led to significant improvements in both model predictions and behavioral performance. Using visual feedback, monkeys succeeded in producing robot reach-and-grasp movements even when their arms did not move. Learning to operate the BMIc was paralleled by functional reorganization in multiple cortical areas, suggesting that the dynamic properties of the BMIc were incorporated into motor and sensory cortical representations.

  12. Design Guidelines for Coffee Vending Machines

    OpenAIRE

    Schneidermeier, Tim; Burghardt, Manuel; Wolff, Christian

    2013-01-01

    Walk-up-and-use-systems such as vending and self-service machines request special attention concerning an easy to use and self-explanatory user interface. In this paper we present a set of design guidelines for coffee vending machines based on the results of an expert-based usability evaluation of thirteen different models.

  13. FwWebViewPlus: integration of web technologies into WinCC OA based Human-Machine Interfaces at CERN

    International Nuclear Information System (INIS)

    Golonka, Piotr; Fabian, Wojciech; Gonzalez-Berges, Manuel; Jasiun, Piotr; Varela-Rodriguez, Fernando

    2014-01-01

    The rapid growth in popularity of web applications gives rise to a plethora of reusable graphical components, such as Google Chart Tools and JQuery Sparklines, implemented in JavaScript and run inside a web browser. In the paper we describe the tool that allows for seamless integration of web-based widgets into WinCC Open Architecture, the SCADA system used commonly at CERN to build complex Human-Machine Interfaces. Reuse of widely available widget libraries and pushing the development efforts to a higher abstraction layer based on a scripting language allow for significant reduction in maintenance of the code in multi-platform environments compared to those currently used in C++ visualization plugins. Adequately designed interfaces allow for rapid integration of new web widgets into WinCC OA. At the same time, the mechanisms familiar to HMI developers are preserved, making the use of new widgets n ative . Perspectives for further integration between the realms of WinCC OA and Web development are also discussed.

  14. FwWebViewPlus: integration of web technologies into WinCC OA based Human-Machine Interfaces at CERN

    Science.gov (United States)

    Golonka, Piotr; Fabian, Wojciech; Gonzalez-Berges, Manuel; Jasiun, Piotr; Varela-Rodriguez, Fernando

    2014-06-01

    The rapid growth in popularity of web applications gives rise to a plethora of reusable graphical components, such as Google Chart Tools and JQuery Sparklines, implemented in JavaScript and run inside a web browser. In the paper we describe the tool that allows for seamless integration of web-based widgets into WinCC Open Architecture, the SCADA system used commonly at CERN to build complex Human-Machine Interfaces. Reuse of widely available widget libraries and pushing the development efforts to a higher abstraction layer based on a scripting language allow for significant reduction in maintenance of the code in multi-platform environments compared to those currently used in C++ visualization plugins. Adequately designed interfaces allow for rapid integration of new web widgets into WinCC OA. At the same time, the mechanisms familiar to HMI developers are preserved, making the use of new widgets "native". Perspectives for further integration between the realms of WinCC OA and Web development are also discussed.

  15. Man as a safety element in the operation of a nuclear power plant. IAEA international conference on man-machine interface in the nuclear industry - review paper

    International Nuclear Information System (INIS)

    Ikegame, R.

    1988-01-01

    Nuclear power generation has been steadily developing worldwide and is now playing a very important part in total energy supply. In order to further promote nuclear power generation harmoniously, it is essential to secure the trust of the public by keeping safe and stable operation and to make constant efforts not to repeat such severe accidents as TMI and Chernobyl. These two accidents have caused us to recognize the substantial importance of the Man-Machine interface. With this as a background, the International Conference on the Man-Machine Interface in the Nuclear Industry was held in Tokyo for four days from February 15 th 1988, organized by IAEA and in cooperation with OECD/NEA as well as CEC. I would like to review this conference, for which I was the Vice Chairman of the Japanese Organizing Committee, and to explain my opinion about this issue

  16. The development of functional requirement for integrated test facility

    International Nuclear Information System (INIS)

    Sim, B.S.; Oh, I.S.; Cha, K.H.; Lee, H.C.

    1994-01-01

    An Integrated Test Facility (ITF) is a human factors experimental environment comprised of a nuclear power plant function simulator, man-machine interfaces (MMI), human performance recording systems, and signal control and data analysis systems. In this study, we are going to describe how the functional requirements are developed by identification of both the characteristics of generic advanced control rooms and the research topics of world-wide research interest in human factors community. The functional requirements of user interface developed in this paper together with those of the other elements will be used for the design and implementation of the ITF which will serve as the basis for experimental research on a line of human factors topics. (author). 15 refs, 1 fig

  17. Human machine interface based on labview for vacuum system operation of cyclotron proton DECY-13 MeV

    International Nuclear Information System (INIS)

    Fajar Sidik Permana; Saminto; Kurnia Wibowo; Vika Arwida Fanita Sari

    2016-01-01

    Center of Accelerator Science and Technology (CAST), BATAN is designing DECY-13 MeV Proton Cyclotron. So far, this operation system has been conducted conventionally. In this research, an Human Machine Interface system has been successfully built for simplifying operation and monitoring pressure inside vacuum chamber of cyclotron DECY-13 MeV. HMI system is built with LabVIEW software and integrated with Programmable Logic Controller FX-2424 series and NI cRIO (NI-9025 and NI-9870) module. HMI system consist of turning on/of pumps (rotary and diffusion), opening/ closing valve automatically, and retrieving of data from sensor in real time. (author)

  18. Human-machine interface (HMI) report for 241-SY-101 data acquisition system (DACS) upgrade study

    International Nuclear Information System (INIS)

    Truitt, R.W.

    1997-01-01

    This report provides an independent evaluation of information for a Windows based Human Machine Interface (HMI) to replace the existing DOS based Iconics HMI currently used in the Data Acquisition and Control System (DACS) used at Tank 241-SY-101. A fundamental reason for this evaluation is because of the difficulty of maintaining the system with obsolete, unsupported software. The DACS uses a software operator interface (Genesis for DOS HMI) that is no longer supported by its manufacturer, Iconics. In addition to its obsolescence, it is complex and difficult to train additional personnel on. The FY 1997 budget allocated $40K for phase 1 of a software/hardware upgrade that would have allowed the old DOS based system to be replaced by a current Windows based system. Unfortunately, budget constraints during FY 1997 has prompted deferral of the upgrade. The upgrade needs to be performed at the earliest possible time, before other failures render the system useless. Once completed, the upgrade could alleviate other concerns: spare pump software may be able to be incorporated into the same software as the existing pump, thereby eliminating the parallel path dilemma; and the newer, less complex software should expedite training of future personnel, and in the process, require that less technical time be required to maintain the system

  19. An Improved Unscented Kalman Filter Based Decoder for Cortical Brain-Machine Interfaces.

    Science.gov (United States)

    Li, Simin; Li, Jie; Li, Zheng

    2016-01-01

    Brain-machine interfaces (BMIs) seek to connect brains with machines or computers directly, for application in areas such as prosthesis control. For this application, the accuracy of the decoding of movement intentions is crucial. We aim to improve accuracy by designing a better encoding model of primary motor cortical activity during hand movements and combining this with decoder engineering refinements, resulting in a new unscented Kalman filter based decoder, UKF2, which improves upon our previous unscented Kalman filter decoder, UKF1. The new encoding model includes novel acceleration magnitude, position-velocity interaction, and target-cursor-distance features (the decoder does not require target position as input, it is decoded). We add a novel probabilistic velocity threshold to better determine the user's intent to move. We combine these improvements with several other refinements suggested by others in the field. Data from two Rhesus monkeys indicate that the UKF2 generates offline reconstructions of hand movements (mean CC 0.851) significantly more accurately than the UKF1 (0.833) and the popular position-velocity Kalman filter (0.812). The encoding model of the UKF2 could predict the instantaneous firing rate of neurons (mean CC 0.210), given kinematic variables and past spiking, better than the encoding models of these two decoders (UKF1: 0.138, p-v Kalman: 0.098). In closed-loop experiments where each monkey controlled a computer cursor with each decoder in turn, the UKF2 facilitated faster task completion (mean 1.56 s vs. 2.05 s) and higher Fitts's Law bit rate (mean 0.738 bit/s vs. 0.584 bit/s) than the UKF1. These results suggest that the modeling and decoder engineering refinements of the UKF2 improve decoding performance. We believe they can be used to enhance other decoders as well.

  20. Prediction of hot spot residues at protein-protein interfaces by combining machine learning and energy-based methods

    Directory of Open Access Journals (Sweden)

    Pontil Massimiliano

    2009-10-01

    Full Text Available Abstract Background Alanine scanning mutagenesis is a powerful experimental methodology for investigating the structural and energetic characteristics of protein complexes. Individual amino-acids are systematically mutated to alanine and changes in free energy of binding (ΔΔG measured. Several experiments have shown that protein-protein interactions are critically dependent on just a few residues ("hot spots" at the interface. Hot spots make a dominant contribution to the free energy of binding and if mutated they can disrupt the interaction. As mutagenesis studies require significant experimental efforts, there is a need for accurate and reliable computational methods. Such methods would also add to our understanding of the determinants of affinity and specificity in protein-protein recognition. Results We present a novel computational strategy to identify hot spot residues, given the structure of a complex. We consider the basic energetic terms that contribute to hot spot interactions, i.e. van der Waals potentials, solvation energy, hydrogen bonds and Coulomb electrostatics. We treat them as input features and use machine learning algorithms such as Support Vector Machines and Gaussian Processes to optimally combine and integrate them, based on a set of training examples of alanine mutations. We show that our approach is effective in predicting hot spots and it compares favourably to other available methods. In particular we find the best performances using Transductive Support Vector Machines, a semi-supervised learning scheme. When hot spots are defined as those residues for which ΔΔG ≥ 2 kcal/mol, our method achieves a precision and a recall respectively of 56% and 65%. Conclusion We have developed an hybrid scheme in which energy terms are used as input features of machine learning models. This strategy combines the strengths of machine learning and energy-based methods. Although so far these two types of approaches have mainly been

  1. Function analysis of nuclear power plants for developing of man-machine interface system for Korean next generation reactor

    Energy Technology Data Exchange (ETDEWEB)

    Goo, In Soo; Kim, Jang Yyul; Kim, Jung Soo; Kim, Chang Hoi; Na, Nan Joo; Park, Keun Ok; Park, Won Man; Park, Jae Chang; Suh, Sang Moon; Oh, In Suk; Lee, Dong Young; Lee, Yong Hee; Cha, Kyung Ho; Chun, Se Woo; Hur, Sup [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Jung, Kyung Hoon [Korea Electric Power Co., Seoul (Korea, Republic of); Park, Yeon Sik; Lee, Bum Joo [Korea Power Engineering Company, Inc., Seoul (Korea, Republic of)

    1995-02-01

    In this study, we developed the methodology and implementation plant of function analysis and performed function analysis, which is one of the major activities for the development of Man-Machine Interface System of the KNGR. Identifying the functions of existing plants followed by structuring the functions, we established functions structured at the conceptual and middle levels. This structure was further checked if it would satisfy regulatory requirements and developed to include the aspects of plant performance and other plant features to emphasize its practicality for the application to the design. (Author) 13 refs., 8 figs., 4 tabs.

  2. Function analysis of nuclear power plants for developing of man-machine interface system for Korean next generation reactor

    International Nuclear Information System (INIS)

    Goo, In Soo; Kim, Jang Yyul; Kim, Jung Soo; Kim, Chang Hoi; Na, Nan Joo; Park, Keun Ok; Park, Won Man; Park, Jae Chang; Suh, Sang Moon; Oh, In Suk; Lee, Dong Young; Lee, Yong Hee; Cha, Kyung Ho; Chun, Se Woo; Hur, Sup; Jung, Kyung Hoon; Park, Yeon Sik; Lee, Bum Joo

    1995-02-01

    In this study, we developed the methodology and implementation plant of function analysis and performed function analysis, which is one of the major activities for the development of Man-Machine Interface System of the KNGR. Identifying the functions of existing plants followed by structuring the functions, we established functions structured at the conceptual and middle levels. This structure was further checked if it would satisfy regulatory requirements and developed to include the aspects of plant performance and other plant features to emphasize its practicality for the application to the design. (Author) 13 refs., 8 figs., 4 tabs

  3. Virtual reality hardware and graphic display options for brain-machine interfaces.

    Science.gov (United States)

    Marathe, Amar R; Carey, Holle L; Taylor, Dawn M

    2008-01-15

    Virtual reality hardware and graphic displays are reviewed here as a development environment for brain-machine interfaces (BMIs). Two desktop stereoscopic monitors and one 2D monitor were compared in a visual depth discrimination task and in a 3D target-matching task where able-bodied individuals used actual hand movements to match a virtual hand to different target hands. Three graphic representations of the hand were compared: a plain sphere, a sphere attached to the fingertip of a realistic hand and arm, and a stylized pacman-like hand. Several subjects had great difficulty using either stereo monitor for depth perception when perspective size cues were removed. A mismatch in stereo and size cues generated inappropriate depth illusions. This phenomenon has implications for choosing target and virtual hand sizes in BMI experiments. Target-matching accuracy was about as good with the 2D monitor as with either 3D monitor. However, users achieved this accuracy by exploring the boundaries of the hand in the target with carefully controlled movements. This method of determining relative depth may not be possible in BMI experiments if movement control is more limited. Intuitive depth cues, such as including a virtual arm, can significantly improve depth perception accuracy with or without stereo viewing.

  4. Wireless Cortical Brain-Machine Interface for Whole-Body Navigation in Primates

    Science.gov (United States)

    Rajangam, Sankaranarayani; Tseng, Po-He; Yin, Allen; Lehew, Gary; Schwarz, David; Lebedev, Mikhail A.; Nicolelis, Miguel A. L.

    2016-03-01

    Several groups have developed brain-machine-interfaces (BMIs) that allow primates to use cortical activity to control artificial limbs. Yet, it remains unknown whether cortical ensembles could represent the kinematics of whole-body navigation and be used to operate a BMI that moves a wheelchair continuously in space. Here we show that rhesus monkeys can learn to navigate a robotic wheelchair, using their cortical activity as the main control signal. Two monkeys were chronically implanted with multichannel microelectrode arrays that allowed wireless recordings from ensembles of premotor and sensorimotor cortical neurons. Initially, while monkeys remained seated in the robotic wheelchair, passive navigation was employed to train a linear decoder to extract 2D wheelchair kinematics from cortical activity. Next, monkeys employed the wireless BMI to translate their cortical activity into the robotic wheelchair’s translational and rotational velocities. Over time, monkeys improved their ability to navigate the wheelchair toward the location of a grape reward. The navigation was enacted by populations of cortical neurons tuned to whole-body displacement. During practice with the apparatus, we also noticed the presence of a cortical representation of the distance to reward location. These results demonstrate that intracranial BMIs could restore whole-body mobility to severely paralyzed patients in the future.

  5. Very forward calorimeters readout and machine interface

    Indian Academy of Sciences (India)

    for the instrumentation of the forward region of the future detector at the international linear collider. ... The LumiCal can be used for the measurement of integrated luminosity based on Bhabha scattering process with a relative precision of 10−4. The BeamCal can be used to ... the machine control system. The purpose of ...

  6. MIV TOOL: A RENDEZ-VOUS SIMULATOR FOR MANOEUVRING OF AN INSPECTION VEHICLE IN GEO

    DEFF Research Database (Denmark)

    Ravazzotti, Maria Teresa; Neefs, Marc; Jørgensen, John Leif

    1996-01-01

    In the frame of the studies ESA is currently conducting on the servicing of non-cooperative spacecraft in geostationary orbits, a simulator is being set up to support the analysis and development of safe techniques for Manoeuvring, during approach and circumflight, an Inspection Vehicle (MIV tool......), including on-board and teleoperated control. The main aspects of the study include the design of the automatic and teleoperated GNC, with allocation of tasks to the space and ground segment and to the Human Operator (HO), the Man Machine Interface (MMI), a sophisticated model of the on-board CCD camera...

  7. Dust Emission Induced By Friction Modifications At Tool Chip Interface In Dry Machining In MMCp

    International Nuclear Information System (INIS)

    Kremer, Arnaud; El Mansori, Mohamed

    2011-01-01

    This paper investigates the relationship between dust emission and tribological conditions at the tool-chip interface when machining Metal Matrix composite reinforced with particles (MMCp) in dry mode. Machining generates aerosols that can easily be inhaled by workers. Aerosols may be composed of oil mist, tool material or alloying elements of workpiece material. Bar turning tests were conducted on a 2009 aluminum alloy reinforced with different level of Silicon Carbide particles (15, 25 and 35% of SiCp). Variety of PCD tools and nanostructured diamond coatings were used to analyze their performances on air pollution. A spectrometer was used to detect airborne aerosol particles in the size range between 0.3μm to 20 μm and to sort them in 15 size channels in real time. It was used to compare the effects of test parameters on dust emission. Observations of tool face and chip morphology reveal the importance of friction phenomena. It was demonstrated that level of friction modifies chip curvature and dust emission. The increase of level of reinforcement increase the chip segmentation and decrease the contact length and friction area. A ''running in'' phenomenon with important dust emission appeared with PCD tool due to the tool rake face flatness. In addition dust generation is more sensitive to edge integrity than power consumption.

  8. Dust Emission Induced By Friction Modifications At Tool Chip Interface In Dry Machining In MMCp

    Science.gov (United States)

    Kremer, Arnaud; El Mansori, Mohamed

    2011-01-01

    This paper investigates the relationship between dust emission and tribological conditions at the tool-chip interface when machining Metal Matrix composite reinforced with particles (MMCp) in dry mode. Machining generates aerosols that can easily be inhaled by workers. Aerosols may be composed of oil mist, tool material or alloying elements of workpiece material. Bar turning tests were conducted on a 2009 aluminum alloy reinforced with different level of Silicon Carbide particles (15, 25 and 35% of SiCp). Variety of PCD tools and nanostructured diamond coatings were used to analyze their performances on air pollution. A spectrometer was used to detect airborne aerosol particles in the size range between 0.3μm to 20 μm and to sort them in 15 size channels in real time. It was used to compare the effects of test parameters on dust emission. Observations of tool face and chip morphology reveal the importance of friction phenomena. It was demonstrated that level of friction modifies chip curvature and dust emission. The increase of level of reinforcement increase the chip segmentation and decrease the contact length and friction area. A "running in" phenomenon with important dust emission appeared with PCD tool due to the tool rake face flatness. In addition dust generation is more sensitive to edge integrity than power consumption.

  9. Diamond turning machine controller implementation

    Energy Technology Data Exchange (ETDEWEB)

    Garrard, K.P.; Taylor, L.W.; Knight, B.F.; Fornaro, R.J.

    1988-12-01

    The standard controller for a Pnuemo ASG 2500 Diamond Turning Machine, an Allen Bradley 8200, has been replaced with a custom high-performance design. This controller consists of four major components. Axis position feedback information is provided by a Zygo Axiom 2/20 laser interferometer with 0.1 micro-inch resolution. Hardware interface logic couples the computers digital and analog I/O channels to the diamond turning machine`s analog motor controllers, the laser interferometer, and other machine status and control information. It also provides front panel switches for operator override of the computer controller and implement the emergency stop sequence. The remaining two components, the control computer hardware and software, are discussed in detail below.

  10. Assessment of brain-machine interfaces from the perspective of people with paralysis.

    Science.gov (United States)

    Blabe, Christine H; Gilja, Vikash; Chestek, Cindy A; Shenoy, Krishna V; Anderson, Kim D; Henderson, Jaimie M

    2015-08-01

    One of the main goals of brain-machine interface (BMI) research is to restore function to people with paralysis. Currently, multiple BMI design features are being investigated, based on various input modalities (externally applied and surgically implantable sensors) and output modalities (e.g. control of computer systems, prosthetic arms, and functional electrical stimulation systems). While these technologies may eventually provide some level of benefit, they each carry associated burdens for end-users. We sought to assess the attitudes of people with paralysis toward using various technologies to achieve particular benefits, given the burdens currently associated with the use of each system. We designed and distributed a technology survey to determine the level of benefit necessary for people with tetraplegia due to spinal cord injury to consider using different technologies, given the burdens currently associated with them. The survey queried user preferences for 8 BMI technologies including electroencephalography, electrocorticography, and intracortical microelectrode arrays, as well as a commercially available eye tracking system for comparison. Participants used a 5-point scale to rate their likelihood to adopt these technologies for 13 potential control capabilities. Survey respondents were most likely to adopt BMI technology to restore some of their natural upper extremity function, including restoration of hand grasp and/or some degree of natural arm movement. High speed typing and control of a fast robot arm were also of interest to this population. Surgically implanted wireless technologies were twice as 'likely' to be adopted as their wired equivalents. Assessing end-user preferences is an essential prerequisite to the design and implementation of any assistive technology. The results of this survey suggest that people with tetraplegia would adopt an unobtrusive, autonomous BMI system for both restoration of upper extremity function and control of

  11. Assessment of brain-machine interfaces from the perspective of people with paralysis

    Science.gov (United States)

    Blabe, Christine H.; Gilja, Vikash; Chestek, Cindy A.; Shenoy, Krishna V.; Anderson, Kim D.; Henderson, Jaimie M.

    2015-08-01

    Objective. One of the main goals of brain-machine interface (BMI) research is to restore function to people with paralysis. Currently, multiple BMI design features are being investigated, based on various input modalities (externally applied and surgically implantable sensors) and output modalities (e.g. control of computer systems, prosthetic arms, and functional electrical stimulation systems). While these technologies may eventually provide some level of benefit, they each carry associated burdens for end-users. We sought to assess the attitudes of people with paralysis toward using various technologies to achieve particular benefits, given the burdens currently associated with the use of each system. Approach. We designed and distributed a technology survey to determine the level of benefit necessary for people with tetraplegia due to spinal cord injury to consider using different technologies, given the burdens currently associated with them. The survey queried user preferences for 8 BMI technologies including electroencephalography, electrocorticography, and intracortical microelectrode arrays, as well as a commercially available eye tracking system for comparison. Participants used a 5-point scale to rate their likelihood to adopt these technologies for 13 potential control capabilities. Main Results. Survey respondents were most likely to adopt BMI technology to restore some of their natural upper extremity function, including restoration of hand grasp and/or some degree of natural arm movement. High speed typing and control of a fast robot arm were also of interest to this population. Surgically implanted wireless technologies were twice as ‘likely’ to be adopted as their wired equivalents. Significance. Assessing end-user preferences is an essential prerequisite to the design and implementation of any assistive technology. The results of this survey suggest that people with tetraplegia would adopt an unobtrusive, autonomous BMI system for both

  12. The Portals 4.1 Network Programming Interface

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, Brian; Brightwell, Ronald B.; Grant, Ryan; Hemmert, Karl Scott; Pedretti, Kevin; Wheeler, Kyle; Underwood, Keith D; Riesen, Rolf; Maccabe, Arthur B.; Hudson, Trammel

    2017-04-01

    This report presents a specification for the Portals 4 networ k programming interface. Portals 4 is intended to allow scalable, high-performance network communication betwee n nodes of a parallel computing system. Portals 4 is well suited to massively parallel processing and embedded syste ms. Portals 4 represents an adaption of the data movement layer developed for massively parallel processing platfor ms, such as the 4500-node Intel TeraFLOPS machine. Sandia's Cplant cluster project motivated the development of Version 3.0, which was later extended to Version 3.3 as part of the Cray Red Storm machine and XT line. Version 4 is tar geted to the next generation of machines employing advanced network interface architectures that support enh anced offload capabilities.

  13. The Portals 4.0 network programming interface.

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, Brian W.; Brightwell, Ronald Brian; Pedretti, Kevin; Wheeler, Kyle Bruce; Hemmert, Karl Scott; Riesen, Rolf E.; Underwood, Keith Douglas; Maccabe, Arthur Bernard; Hudson, Trammell B.

    2012-11-01

    This report presents a specification for the Portals 4.0 network programming interface. Portals 4.0 is intended to allow scalable, high-performance network communication between nodes of a parallel computing system. Portals 4.0 is well suited to massively parallel processing and embedded systems. Portals 4.0 represents an adaption of the data movement layer developed for massively parallel processing platforms, such as the 4500-node Intel TeraFLOPS machine. Sandias Cplant cluster project motivated the development of Version 3.0, which was later extended to Version 3.3 as part of the Cray Red Storm machine and XT line. Version 4.0 is targeted to the next generation of machines employing advanced network interface architectures that support enhanced offload capabilities.

  14. An ecological interface design for BWR nuclear power plants

    International Nuclear Information System (INIS)

    Monta, K.; Itoh, J.

    1992-01-01

    An ecological interface design was applied to realize the support function for the operator's direct perception and analytical reasoning in the development of an intelligent man-machine system for BWR nuclear power plants. The abstraction-aggregation functional hierarchy representation of the work domain is a base of the ecological interface design. Another base is the concept of the level of cognitive control. The former was mapped into the interface to externalize the operator's normative mental model of the plants, which will reduce his/her cognitive work load and support knowledge-based problem solving. In addition, the same framework can be used for the analytical evaluation of man-machine interfaces. The information content and structure of a prototype interface were evaluated. This approach seems promising from these experiences. (author)

  15. The reported incidence of man-machine interface issues in Army aviators using the Aviator's Night Vision System (ANVIS) in a combat theatre

    Science.gov (United States)

    Hiatt, Keith L.; Rash, Clarence E.

    2011-06-01

    Background: Army Aviators rely on the ANVIS for night operations. Human factors literature notes that the ANVIS man-machine interface results in reports of visual and spinal complaints. This is the first study that has looked at these issues in the much harsher combat environment. Last year, the authors reported on the statistically significant (pEnduring Freedom (OEF). Results: 82 Aircrew (representing an aggregate of >89,000 flight hours of which >22,000 were with ANVIS) participated. Analysis demonstrated high complaints of almost all levels of back and neck pain. Additionally, the use of body armor and other Aviation Life Support Equipment (ALSE) caused significant ergonomic complaints when used with ANVIS. Conclusions: ANVIS use in a combat environment resulted in higher and different types of reports of spinal symptoms and other man-machine interface issues over what was previously reported. Data from this study may be more operationally relevant than that of the peacetime literature as it is derived from actual combat and not from training flights, and it may have important implications about making combat predictions based on performance in training scenarios. Notably, Aircrew remarked that they could not execute the mission without ANVIS and ALSE and accepted the degraded ergonomic environment.

  16. Volitional enhancement of firing synchrony and oscillation by neuronal operant conditioning: interaction with neurorehabilitation and brain-machine interface.

    Science.gov (United States)

    Sakurai, Yoshio; Song, Kichan; Tachibana, Shota; Takahashi, Susumu

    2014-01-01

    In this review, we focus on neuronal operant conditioning in which increments in neuronal activities are directly rewarded without behaviors. We discuss the potential of this approach to elucidate neuronal plasticity for enhancing specific brain functions and its interaction with the progress in neurorehabilitation and brain-machine interfaces. The key to-be-conditioned activities that this paper emphasizes are synchronous and oscillatory firings of multiple neurons that reflect activities of cell assemblies. First, we introduce certain well-known studies on neuronal operant conditioning in which conditioned enhancements of neuronal firing were reported in animals and humans. These studies demonstrated the feasibility of volitional control over neuronal activity. Second, we refer to the recent studies on operant conditioning of synchrony and oscillation of neuronal activities. In particular, we introduce a recent study showing volitional enhancement of oscillatory activity in monkey motor cortex and our study showing selective enhancement of firing synchrony of neighboring neurons in rat hippocampus. Third, we discuss the reasons for emphasizing firing synchrony and oscillation in neuronal operant conditioning, the main reason being that they reflect the activities of cell assemblies, which have been suggested to be basic neuronal codes representing information in the brain. Finally, we discuss the interaction of neuronal operant conditioning with neurorehabilitation and brain-machine interface (BMI). We argue that synchrony and oscillation of neuronal firing are the key activities required for developing both reliable neurorehabilitation and high-performance BMI. Further, we conclude that research of neuronal operant conditioning, neurorehabilitation, BMI, and system neuroscience will produce findings applicable to these interrelated fields, and neuronal synchrony and oscillation can be a common important bridge among all of them.

  17. Analysis of neural activity in human motor cortex -- Towards brain machine interface system

    Science.gov (United States)

    Secundo, Lavi

    The discovery of directional tuned neurons in the primary motor cortex has advanced motor research in several domains. For instance, in the area of brain machine interface (BMI), researchers have exploited the robust characteristic of tuned motor neurons to allow monkeys to learn control of various machines. In the first chapter of this work we examine whether this phenomena can be observed using the less invasive method of recording electrocorticographic signals (ECoG) from the surface of a human's brain. Our findings reveal that individual ECoG channels contain complex movement information about the neuronal population. While some ECoG channels are tuned to hand movement direction (direction specific channels), others are associated to movement but do not contain information regarding movement direction (non-direction specific channels). More specifically, directionality can vary temporally and by frequency within one channel. In addition, a handful of channels contain no significant information regarding movement at all. These findings strongly suggest that directional and non-directional regions of cortex can be identified with ECoG and provide solutions to decoding movement at the signal resolution provided by ECoG. In the second chapter we examine the influence of movement context on movement reconstruction accuracy. We recorded neuronal signals recorded from electro-corticography (ECoG) during performance of cued- and self-initiated movements. ECoG signals were used to train a reconstruction algorithm to reconstruct continuous hand movement. We found that both cued- and self-initiated movements could be reconstructed with similar accuracy from the ECoG data. However, while an algorithm trained on the cued task could reconstruct performance on a subsequent cued trial, it failed to reconstruct self-initiated arm movement. The same task-specificity was observed when the algorithm was trained with self-initiated movement data and tested on the cued task. Thus

  18. IT-tools for Mechatronic System Engineering and Design

    DEFF Research Database (Denmark)

    Conrad, Finn; Sørensen, Torben; Andersen, T. O.

    2003-01-01

    Companies are facing the on-going challenge that customers always increase their needs for capability of products and machinery. They want improved productivity and efficiency - if possible to lower prices; value for money. The demands often focus on extensions of functionality, faster response......, operation capability, man-machine interface (MMI), robustness, reliability and safety in use. Information Technology (IT) offers both software and hardware for improvement of the engineering design and industrial applications. The latest progress in IT makes integration of an overall design...... the Esprit project SWING on IT-tools for rapid prototyping of fluid power components and systems. A mechatronic test facility for a hydraulic robot and a CNC XY-machine table was implemented. The controller applies digital signal processors (DSPs). The DSP controller utilizes the dSPACE System suitable...

  19. White matter microstructure changes induced by motor skill learning utilizing a body machine interface.

    Science.gov (United States)

    Wang, Xue; Casadio, Maura; Weber, Kenneth A; Mussa-Ivaldi, Ferdinando A; Parrish, Todd B

    2014-03-01

    The purpose of this study is to identify white matter microstructure changes following bilateral upper extremity motor skill training to increase our understanding of learning-induced structural plasticity and enhance clinical strategies in physical rehabilitation. Eleven healthy subjects performed two visuo-spatial motor training tasks over 9 sessions (2-3 sessions per week). Subjects controlled a cursor with bilateral simultaneous movements of the shoulders and upper arms using a body machine interface. Before the start and within 2days of the completion of training, whole brain diffusion tensor MR imaging data were acquired. Motor training increased fractional anisotropy (FA) values in the posterior and anterior limbs of the internal capsule, the corona radiata, and the body of the corpus callosum by 4.19% on average indicating white matter microstructure changes induced by activity-dependent modulation of axon number, axon diameter, or myelin thickness. These changes may underlie the functional reorganization associated with motor skill learning. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Man-machine supervision; Supervision homme-machine

    Energy Technology Data Exchange (ETDEWEB)

    Montmain, J. [CEA Valrho, Dir. de l' Energie Nucleaire (DEN), 30 - Marcoule (France)

    2005-05-01

    Today's complexity of systems where man is involved has led to the development of more and more sophisticated information processing systems where decision making has become more and more difficult. The operator task has moved from operation to supervision and the production tool has become indissociable from its numerical instrumentation and control system. The integration of more and more numerous and sophisticated control indicators in the control room does not necessary fulfill the expectations of the operation team. It is preferable to develop cooperative information systems which are real situation understanding aids. The stake is not the automation of operators' cognitive tasks but the supply of a reasoning help. One of the challenges of interactive information systems is the selection, organisation and dynamical display of information. The efficiency of the whole man-machine system depends on the communication interface efficiency. This article presents the principles and specificities of man-machine supervision systems: 1 - principle: operator's role in control room, operator and automation, monitoring and diagnosis, characteristics of useful models for supervision; 2 - qualitative reasoning: origin, trends, evolutions; 3 - causal reasoning: causality, causal graph representation, causal and diagnostic graph; 4 - multi-points of view reasoning: multi flow modeling method, Sagace method; 5 - approximate reasoning: the symbolic numerical interface, the multi-criteria decision; 6 - example of application: supervision in a spent-fuel reprocessing facility. (J.S.)

  1. Proceedings of the 5. International Topical Meeting on Nuclear Plant Instrumentation Controls, and Human Machine Interface Technology

    International Nuclear Information System (INIS)

    2006-01-01

    Instrumentation, Controls, and Human-Machine Interface (ICHMI) technologies are essential to ensuring delivery and effective operation of nuclear power systems. The ICHMI system, together with plant personnel, is the 'central nervous system' for operating plants. It senses basic parameters, monitors performance, integrates information, and makes adjustments to plant operations as necessary. It also responds to failures and off-normal events, thus ensuring goals of efficient power production and safety. The ICHMI system embodies the sensing, communications, monitoring, control, and presentation and command systems between the process (i.e., the reactor, heat transport, and energy conversion systems) and the plant personnel. It enables plant personnel to more effectively monitor the health of the plant and to identify opportunities to improve the performance of equipment and systems as well as to anticipate, understand, and respond to potential problems. Improved controls provide the basis to operate more closely to performance margins, and the improved integration of automatic and human response enables them to work cooperatively to accomplish production and safety goals. The ICHMI system thus directly impacts the performance of the entire plant and thereby the economics, safety, and security of current and future reactor designs. The 5. International Topical Meeting on Nuclear Plant Instrumentation Control and Human-Machine Interface Technology (NPIC and HMIT 2006) is specifically devoted to advances in these important technologies. In these proceedings, more than 200 papers and panel sessions from all over the world have been assembled to share the most recent information and innovations in ICHMI technology and to discuss the important issues that face the future of the industry. The papers fall into two major groupings: instrumentation and control (I and C) and human-machine interface technology (HMIT). The I and C papers are organized into five tracks. 'Systems

  2. Proceedings of the 5. International Topical Meeting on Nuclear Plant Instrumentation Controls, and Human Machine Interface Technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Instrumentation, Controls, and Human-Machine Interface (ICHMI) technologies are essential to ensuring delivery and effective operation of nuclear power systems. The ICHMI system, together with plant personnel, is the 'central nervous system' for operating plants. It senses basic parameters, monitors performance, integrates information, and makes adjustments to plant operations as necessary. It also responds to failures and off-normal events, thus ensuring goals of efficient power production and safety. The ICHMI system embodies the sensing, communications, monitoring, control, and presentation and command systems between the process (i.e., the reactor, heat transport, and energy conversion systems) and the plant personnel. It enables plant personnel to more effectively monitor the health of the plant and to identify opportunities to improve the performance of equipment and systems as well as to anticipate, understand, and respond to potential problems. Improved controls provide the basis to operate more closely to performance margins, and the improved integration of automatic and human response enables them to work cooperatively to accomplish production and safety goals. The ICHMI system thus directly impacts the performance of the entire plant and thereby the economics, safety, and security of current and future reactor designs. The 5. International Topical Meeting on Nuclear Plant Instrumentation Control and Human-Machine Interface Technology (NPIC and HMIT 2006) is specifically devoted to advances in these important technologies. In these proceedings, more than 200 papers and panel sessions from all over the world have been assembled to share the most recent information and innovations in ICHMI technology and to discuss the important issues that face the future of the industry. The papers fall into two major groupings: instrumentation and control (I and C) and human-machine interface technology (HMIT). The I and C papers are organized into five tracks

  3. Advances in Machine Technology.

    Science.gov (United States)

    Clark, William R; Villa, Gianluca; Neri, Mauro; Ronco, Claudio

    2018-01-01

    Continuous renal replacement therapy (CRRT) machines have evolved into devices specifically designed for critically ill over the past 40 years. In this chapter, a brief history of this evolution is first provided, with emphasis on the manner in which changes have been made to address the specific needs of the critically ill patient with acute kidney injury. Subsequently, specific examples of technology developments for CRRT machines are discussed, including the user interface, pumps, pressure monitoring, safety features, and anticoagulation capabilities. © 2018 S. Karger AG, Basel.

  4. Towards a miniaturized brain-machine-spinal cord interface (BMSI) for restoration of function after spinal cord injury.

    Science.gov (United States)

    Shahdoost, Shahab; Frost, Shawn; Van Acker, Gustaf; DeJong, Stacey; Dunham, Caleb; Barbay, Scott; Nudo, Randolph; Mohseni, Pedram

    2014-01-01

    Nearly 6 million people in the United States are currently living with paralysis in which 23% of the cases are related to spinal cord injury (SCI). Miniaturized closed-loop neural interfaces have the potential for restoring function and mobility lost to debilitating neural injuries such as SCI by leveraging recent advancements in bioelectronics and a better understanding of the processes that underlie functional and anatomical reorganization in an injured nervous system. This paper describes our current progress towards developing a miniaturized brain-machine-spinal cord interface (BMSI) that is envisioned to convert in real time the neural command signals recorded from the brain to electrical stimuli delivered to the spinal cord below the injury level. Specifically, the paper reports on a corticospinal interface integrated circuit (IC) as a core building block for such a BMSI that is capable of low-noise recording of extracellular neural spikes from the cerebral cortex as well as muscle activation using intraspinal microstimulation (ISMS) in a rat with contusion injury to the thoracic spinal cord. The paper further presents results from a neurobiological study conducted in both normal and SCI rats to investigate the effect of various ISMS parameters on movement thresholds in the rat hindlimb. Coupled with proper signal-processing algorithms in the future for the transformation between the cortically recorded data and ISMS parameters, such a BMSI has the potential to facilitate functional recovery after an SCI by re-establishing corticospinal communication channels lost due to the injury.

  5. Control by personal computer and Interface 1

    International Nuclear Information System (INIS)

    Kim, Eung Mug; Park, Sun Ho

    1989-03-01

    This book consists of three chapters. The first chapter deals with basic knowledge of micro computer control which are computer system, micro computer system, control of the micro computer and control system for calculator. The second chapter describes Interface about basic knowledge such as 8255 parallel interface, 6821 parallel interface, parallel interface of personal computer, reading BCD code in parallel interface, IEEE-488 interface, RS-232C interface and transmit data in personal computer and a measuring instrument. The third chapter includes control experiment by micro computer, experiment by eight bit computer and control experiment by machine code and BASIC.

  6. Using Ontology to Drive an Adaptive Learning Interface

    Directory of Open Access Journals (Sweden)

    Andrew Crapo

    2004-10-01

    Full Text Available Intelligent, adaptive interfaces are a pre-requisite to elevating computer-based applications to the realm of collaborative decision support in complex, relatively open-ended domains such as logistics and planning. This is because the composition and effective presentation of even the most useful information must be tailored to constantly changing circumstances. Our objective is to not only achieve an adaptive human-machine interface, but to imbue the software with a significant portion of the responsibility for effectively controlling the adaptation, freeing the user from unnecessary distraction and making the human-machine relationship more collaborative in nature. The foundational concepts of interface adaptation are discussed and a specific logistics application is described as an example.

  7. Interface or Interlace?

    DEFF Research Database (Denmark)

    Hansen, Lone Koefoed; Wamberg, Jacob

    2005-01-01

    Departing from an analysis of the computer's indeterminate location between medium and machine, this paper problematises the idea of a clear-cut interface in complex computing, especially Augmented Reality. The idea and pratice of the interface is derived from the medium as a representational...... surface and thus demands the overview of an autonomous consciouness. Instead we introduce the term interlace, a mingling of representational and physical levels, thus describing the computer's ambiguous blending of imaginary and real. The proposition is demonstrated through analysis of different recent...

  8. Web-based Java application to advanced JT-60 Man-Machine Interfacing System for remote experiments

    International Nuclear Information System (INIS)

    Totsuka, Toshiyuki; Suzuki, Yoshio; Sakata, Shinya; Oshima, Takayuki; Iba, Katsuyuki

    2008-01-01

    Since remote participation in ITER experiments is planned, it is expected to demonstrate that the JT-60SA experiment is controlled from a Japanese remote experiment center located in Rokkasho-mura, Aomori-ken, Japan as a part of the ITER-BA project. Functions required for this experiment are monitoring of the discharge sequence status, handling of the discharge parameter, checking of experiment data, and monitoring of plant data, all of which are included in the existing JT-60 Man-Machine Interfacing System (MMIF). The MMIF is now only available to on-site users at the Naka site due to network safety. The motivation for remote MMIF is prompted by the issue of developing and achieving compatibility with network safety. The Java language has been chosen to implement this task. This paper deals with details of the JT-60 MMIF for the remote experiment that has evolved using the Java language

  9. A wireless brain-machine interface for real-time speech synthesis.

    Directory of Open Access Journals (Sweden)

    Frank H Guenther

    2009-12-01

    Full Text Available Brain-machine interfaces (BMIs involving electrodes implanted into the human cerebral cortex have recently been developed in an attempt to restore function to profoundly paralyzed individuals. Current BMIs for restoring communication can provide important capabilities via a typing process, but unfortunately they are only capable of slow communication rates. In the current study we use a novel approach to speech restoration in which we decode continuous auditory parameters for a real-time speech synthesizer from neuronal activity in motor cortex during attempted speech.Neural signals recorded by a Neurotrophic Electrode implanted in a speech-related region of the left precentral gyrus of a human volunteer suffering from locked-in syndrome, characterized by near-total paralysis with spared cognition, were transmitted wirelessly across the scalp and used to drive a speech synthesizer. A Kalman filter-based decoder translated the neural signals generated during attempted speech into continuous parameters for controlling a synthesizer that provided immediate (within 50 ms auditory feedback of the decoded sound. Accuracy of the volunteer's vowel productions with the synthesizer improved quickly with practice, with a 25% improvement in average hit rate (from 45% to 70% and 46% decrease in average endpoint error from the first to the last block of a three-vowel task.Our results support the feasibility of neural prostheses that may have the potential to provide near-conversational synthetic speech output for individuals with severely impaired speech motor control. They also provide an initial glimpse into the functional properties of neurons in speech motor cortical areas.

  10. Designing Closed-Loop Brain-Machine Interfaces Using Model Predictive Control

    Directory of Open Access Journals (Sweden)

    Gautam Kumar

    2016-06-01

    Full Text Available Brain-machine interfaces (BMIs are broadly defined as systems that establish direct communications between living brain tissue and external devices, such as artificial arms. By sensing and interpreting neuronal activities to actuate an external device, BMI-based neuroprostheses hold great promise in rehabilitating motor disabled subjects, such as amputees. In this paper, we develop a control-theoretic analysis of a BMI-based neuroprosthetic system for voluntary single joint reaching task in the absence of visual feedback. Using synthetic data obtained through the simulation of an experimentally validated psycho-physiological cortical circuit model, both the Wiener filter and the Kalman filter based linear decoders are developed. We analyze the performance of both decoders in the presence and in the absence of natural proprioceptive feedback information. By performing simulations, we show that the performance of both decoders degrades significantly in the absence of the natural proprioception. To recover the performance of these decoders, we propose two problems, namely tracking the desired position trajectory and tracking the firing rate trajectory of neurons which encode the proprioception, in the model predictive control framework to design optimal artificial sensory feedback. Our results indicate that while the position trajectory based design can only recover the position and velocity trajectories, the firing rate trajectory based design can recover the performance of the motor task along with the recovery of firing rates in other cortical regions. Finally, we extend our design by incorporating a network of spiking neurons and designing artificial sensory feedback in the form of a charged balanced biphasic stimulating current.

  11. Augmenting intracortical brain-machine interface with neurally driven error detectors

    Science.gov (United States)

    Even-Chen, Nir; Stavisky, Sergey D.; Kao, Jonathan C.; Ryu, Stephen I.; Shenoy, Krishna V.

    2017-12-01

    Objective. Making mistakes is inevitable, but identifying them allows us to correct or adapt our behavior to improve future performance. Current brain-machine interfaces (BMIs) make errors that need to be explicitly corrected by the user, thereby consuming time and thus hindering performance. We hypothesized that neural correlates of the user perceiving the mistake could be used by the BMI to automatically correct errors. However, it was unknown whether intracortical outcome error signals were present in the premotor and primary motor cortices, brain regions successfully used for intracortical BMIs. Approach. We report here for the first time a putative outcome error signal in spiking activity within these cortices when rhesus macaques performed an intracortical BMI computer cursor task. Main results. We decoded BMI trial outcomes shortly after and even before a trial ended with 96% and 84% accuracy, respectively. This led us to develop and implement in real-time a first-of-its-kind intracortical BMI error ‘detect-and-act’ system that attempts to automatically ‘undo’ or ‘prevent’ mistakes. The detect-and-act system works independently and in parallel to a kinematic BMI decoder. In a challenging task that resulted in substantial errors, this approach improved the performance of a BMI employing two variants of the ubiquitous Kalman velocity filter, including a state-of-the-art decoder (ReFIT-KF). Significance. Detecting errors in real-time from the same brain regions that are commonly used to control BMIs should improve the clinical viability of BMIs aimed at restoring motor function to people with paralysis.

  12. Practical speech user interface design

    CERN Document Server

    Lewis, James R

    2010-01-01

    Although speech is the most natural form of communication between humans, most people find using speech to communicate with machines anything but natural. Drawing from psychology, human-computer interaction, linguistics, and communication theory, Practical Speech User Interface Design provides a comprehensive yet concise survey of practical speech user interface (SUI) design. It offers practice-based and research-based guidance on how to design effective, efficient, and pleasant speech applications that people can really use. Focusing on the design of speech user interfaces for IVR application

  13. The portals 4.0.1 network programming interface.

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, Brian W.; Brightwell, Ronald Brian; Pedretti, Kevin; Wheeler, Kyle Bruce; Hemmert, Karl Scott; Riesen, Rolf E.; Underwood, Keith Douglas; Maccabe, Arthur Bernard; Hudson, Trammell B.

    2013-04-01

    This report presents a specification for the Portals 4.0 network programming interface. Portals 4.0 is intended to allow scalable, high-performance network communication between nodes of a parallel computing system. Portals 4.0 is well suited to massively parallel processing and embedded systems. Portals 4.0 represents an adaption of the data movement layer developed for massively parallel processing platforms, such as the 4500-node Intel TeraFLOPS machine. Sandias Cplant cluster project motivated the development of Version 3.0, which was later extended to Version 3.3 as part of the Cray Red Storm machine and XT line. Version 4.0 is targeted to the next generation of machines employing advanced network interface architectures that support enhanced offload capabilities. 3

  14. A four-dimensional virtual hand brain-machine interface using active dimension selection.

    Science.gov (United States)

    Rouse, Adam G

    2016-06-01

    Brain-machine interfaces (BMI) traditionally rely on a fixed, linear transformation from neural signals to an output state-space. In this study, the assumption that a BMI must control a fixed, orthogonal basis set was challenged and a novel active dimension selection (ADS) decoder was explored. ADS utilizes a two stage decoder by using neural signals to both (i) select an active dimension being controlled and (ii) control the velocity along the selected dimension. ADS decoding was tested in a monkey using 16 single units from premotor and primary motor cortex to successfully control a virtual hand avatar to move to eight different postures. Following training with the ADS decoder to control 2, 3, and then 4 dimensions, each emulating a grasp shape of the hand, performance reached 93% correct with a bit rate of 2.4 bits s(-1) for eight targets. Selection of eight targets using ADS control was more efficient, as measured by bit rate, than either full four-dimensional control or computer assisted one-dimensional control. ADS decoding allows a user to quickly and efficiently select different hand postures. This novel decoding scheme represents a potential method to reduce the complexity of high-dimension BMI control of the hand.

  15. Reliability assessment of the fueling machine of the CANDU reactor

    International Nuclear Information System (INIS)

    Al-Kusayer, T.A.

    1985-01-01

    Fueling of CANDU-reactors is carried out by two fueling machines, each serving one end of the reactor. The fueling machine becomes a part of the primary heat transport system during the refueling operations, and hence, some refueling machine malfunctions could result in a small scale-loss-of-coolant accident. Fueling machine failures and the failure sequences are discussed. The unavailability of the fueling machine is estimated by using fault tree analysis. The probability of mechanical failure of the fueling machine interface is estimated as 1.08 x 10 -5 . (orig.) [de

  16. Man-machine interface design of real-time hardware-in-loop simulation system for power regulation of nuclear heating reactor

    International Nuclear Information System (INIS)

    Ni Xiaoli; Huang Xiaojin; Dong Zhe

    2009-01-01

    It is necessary to set up real-time hardware-in-loop simulation system for power regulation of nuclear heating reactor (NHR) because it is used in the load following instance such as seawater desalination and energy source. As the experiment data are so large that it is hard to be real-time all in one computer and to save and show the data.With the distributed configuration, the system was set up having a legible and intuitionist man-machine interface, speeding the model calculation computer and meeting the requirements of power regulation of NHR. Screen clear and concise, easy command input and results output make the system easier to verify. (authors)

  17. Brain-Machine Interface control of a robot arm using actor-critic rainforcement learning.

    Science.gov (United States)

    Pohlmeyer, Eric A; Mahmoudi, Babak; Geng, Shijia; Prins, Noeline; Sanchez, Justin C

    2012-01-01

    Here we demonstrate how a marmoset monkey can use a reinforcement learning (RL) Brain-Machine Interface (BMI) to effectively control the movements of a robot arm for a reaching task. In this work, an actor-critic RL algorithm used neural ensemble activity in the monkey's motor cortext to control the robot movements during a two-target decision task. This novel approach to decoding offers unique advantages for BMI control applications. Compared to supervised learning decoding methods, the actor-critic RL algorithm does not require an explicit set of training data to create a static control model, but rather it incrementally adapts the model parameters according to its current performance, in this case requiring only a very basic feedback signal. We show how this algorithm achieved high performance when mapping the monkey's neural states (94%) to robot actions, and only needed to experience a few trials before obtaining accurate real-time control of the robot arm. Since RL methods responsively adapt and adjust their parameters, they can provide a method to create BMIs that are robust against perturbations caused by changes in either the neural input space or the output actions they generate under different task requirements or goals.

  18. A graphical user-interface control system at SRRC

    International Nuclear Information System (INIS)

    Chen, J.S.; Wang, C.J.; Chen, S.J.; Jan, G.J.

    1993-01-01

    A graphical user interface control system of 1.3 GeV synchrotron radiation light source was designed and implemented for the beam transport line (BTL) and storage ring (SR). A modern control technique has been used to implement and control the third generation synchrotron light source. Two level computer hardware configuration, that includes process and console computers as a top level and VME based intelligent local controller as a bottom level, was setup and tested. Both level computers are linked by high speed Ethernet data communication network. A database includes static and dynamic databases as well as access routines were developed. In order to commission and operate the machine friendly, the graphical man machine interface was designed and coded. The graphical user interface (GUI) software was installed on VAX workstations for the BTL and SR at the Synchrotron Radiation Research Center (SRRC). The over all performance has been evaluated at 10Hz update rate. The results showed that the graphical operator interface control system is versatile system and can be implemented into the control system of the accelerator. It will provide the tool to control and monitor the equipments of the radiation light source especially for machine commissioning and operation

  19. Multichannel noninvasive human-machine interface via stretchable µm thick sEMG patches for robot manipulation

    Science.gov (United States)

    Zhou, Ying; Wang, Youhua; Liu, Runfeng; Xiao, Lin; Zhang, Qin; Huang, YongAn

    2018-01-01

    Epidermal electronics (e-skin) emerging in recent years offer the opportunity to noninvasively and wearably extract biosignals from human bodies. The conventional processes of e-skin based on standard microelectronic fabrication processes and a variety of transfer printing methods, nevertheless, unquestionably constrains the size of the devices, posing a serious challenge to collecting signals via skin, the largest organ in the human body. Herein we propose a multichannel noninvasive human-machine interface (HMI) using stretchable surface electromyography (sEMG) patches to realize a robot hand mimicking human gestures. Time-efficient processes are first developed to manufacture µm thick large-scale stretchable devices. With micron thickness, the stretchable µm thick sEMG patches show excellent conformability with human skin and consequently comparable electrical performance with conventional gel electrodes. Combined with the large-scale size, the multichannel noninvasive HMI via stretchable µm thick sEMG patches successfully manipulates the robot hand with eight different gestures, whose precision is as high as conventional gel electrodes array.

  20. Man-machine interactions 3

    CERN Document Server

    Czachórski, Tadeusz; Kozielski, Stanisław

    2014-01-01

    Man-Machine Interaction is an interdisciplinary field of research that covers many aspects of science focused on a human and machine in conjunction.  Basic goal of the study is to improve and invent new ways of communication between users and computers, and many different subjects are involved to reach the long-term research objective of an intuitive, natural and multimodal way of interaction with machines.  The rapid evolution of the methods by which humans interact with computers is observed nowadays and new approaches allow using computing technologies to support people on the daily basis, making computers more usable and receptive to the user's needs.   This monograph is the third edition in the series and presents important ideas, current trends and innovations in  the man-machine interactions area.  The aim of this book is to introduce not only hardware and software interfacing concepts, but also to give insights into the related theoretical background. Reader is provided with a compilation of high...

  1. Brain machine interfaces combining microelectrode arrays with nanostructured optical biochemical sensors

    Science.gov (United States)

    Hajj-Hassan, Mohamad; Gonzalez, Timothy; Ghafer-Zadeh, Ebrahim; Chodavarapu, Vamsy; Musallam, Sam; Andrews, Mark

    2009-02-01

    Neural microelectrodes are an important component of neural prosthetic systems which assist paralyzed patients by allowing them to operate computers or robots using their neural activity. These microelectrodes are also used in clinical settings to localize the locus of seizure initiation in epilepsy or to stimulate sub-cortical structures in patients with Parkinson's disease. In neural prosthetic systems, implanted microelectrodes record the electrical potential generated by specific thoughts and relay the signals to algorithms trained to interpret these thoughts. In this paper, we describe novel elongated multi-site neural electrodes that can record electrical signals and specific neural biomarkers and that can reach depths greater than 8mm in the sulcus of non-human primates (monkeys). We hypothesize that additional signals recorded by the multimodal probes will increase the information yield when compared to standard probes that record just electropotentials. We describe integration of optical biochemical sensors with neural microelectrodes. The sensors are made using sol-gel derived xerogel thin films that encapsulate specific biomarker responsive luminophores in their nanostructured pores. The desired neural biomarkers are O2, pH, K+, and Na+ ions. As a prototype, we demonstrate direct-write patterning to create oxygen-responsive xerogel waveguide structures on the neural microelectrodes. The recording of neural biomarkers along with electrical activity could help the development of intelligent and more userfriendly neural prosthesis/brain machine interfaces as well as aid in providing answers to complex brain diseases and disorders.

  2. Man-machine communication in reactor control using AI methods

    International Nuclear Information System (INIS)

    Klebau, J.; Lindner, A.; Fiedler, U.

    1987-01-01

    In the last years the interest in process control has expecially focused on problems of man-machine communication. It depends on its great importance to process performance and user acceptance. Advanced computerized operator aids, e.g. in nuclear power plants, are as well as their man-machine interface. In the Central Institute for Nuclear Research in Rossendorf a computerized operator support system for nuclear power plants is designed, which is involved in a decentralized process automation system. A similar but simpler system, the Hierarchical Informational System (HIS) at the Rossendorf Research Reactor, works with a computer controlled man-machine interface, based on menu. In the special case of the disturbance analysis program SAAP-2, which is included in the HIS, the limits of menu techniques are obviously. Therefore it seems to be necessary and with extended hard- and software possible to realize an user controlled natural language interface using Artificial Intelligence (AI) methods. The draft of such a system is described. It should be able to learn during a teaching phase all phrases and their meanings. The system will work on the basis of a self-organizing, associative data structure. It is used to recognize a great amount of words which are used in language analysis. Error recognition and, if possible, correction is done by means of a distance function in the word set. Language analysis should be carried out with a simplified word class controlled functional analysis. With this interface it is supposed to get experience in intelligent man-machine communication to enhance operational safety in future. (author)

  3. Human-machine interface (HMI) report for 241-SY-101 data acquisition [and control] system (DACS) upgrade study

    Energy Technology Data Exchange (ETDEWEB)

    Truitt, R.W.

    1997-10-22

    This report provides an independent evaluation of information for a Windows based Human Machine Interface (HMI) to replace the existing DOS based Iconics HMI currently used in the Data Acquisition and Control System (DACS) used at Tank 241-SY-101. A fundamental reason for this evaluation is because of the difficulty of maintaining the system with obsolete, unsupported software. The DACS uses a software operator interface (Genesis for DOS HMI) that is no longer supported by its manufacturer, Iconics. In addition to its obsolescence, it is complex and difficult to train additional personnel on. The FY 1997 budget allocated $40K for phase 1 of a software/hardware upgrade that would have allowed the old DOS based system to be replaced by a current Windows based system. Unfortunately, budget constraints during FY 1997 has prompted deferral of the upgrade. The upgrade needs to be performed at the earliest possible time, before other failures render the system useless. Once completed, the upgrade could alleviate other concerns: spare pump software may be able to be incorporated into the same software as the existing pump, thereby eliminating the parallel path dilemma; and the newer, less complex software should expedite training of future personnel, and in the process, require that less technical time be required to maintain the system.

  4. A Perspective on Remote Handling Operations and Human Machine Interface for Remote Handling in Fusion

    International Nuclear Information System (INIS)

    Haist, B.; Hamilton, D.; Sanders, St.

    2006-01-01

    A large-scale fusion device presents many challenges to the remote handling operations team. This paper is based on unique operational experience at JET and gives a perspective on remote handling task development, logistics and resource management, as well as command, control and human-machine interface systems. Remote operations require an accurate perception of a dynamic environment, ideally providing the operators with the same unrestricted knowledge of the task scene as would be available if they were actually at the remote work location. Traditional camera based systems suffer from a limited number of viewpoints and also degrade quickly when exposed to high radiation. Virtual Reality and Augmented Reality software offer great assistance. The remote handling system required to maintain a tokamak requires a large number of different and complex pieces of equipment coordinating to perform a large array of tasks. The demands on the operator's skill in performing the tasks can escalate to a point where the efficiency and safety of operations are compromised. An operations guidance system designed to facilitate the planning, development, validation and execution of remote handling procedures is essential. Automatic planning of motion trajectories of remote handling equipment and the remote transfer of heavy loads will be routine and need to be reliable. This paper discusses the solutions developed at JET in these areas and also the trends in management and presentation of operational data as well as command, control and HMI technology development offering the potential to greatly assist remote handling in future fusion machines. (author)

  5. A fast intracortical brain-machine interface with patterned optogenetic feedback.

    Science.gov (United States)

    Abbasi, Aamir; Goueytes, Dorian; Shulz, Daniel E; Ego-Stengel, Valerie; Estebanez, Luc

    2018-04-04

    The development of brain-machine interfaces (BMIs) brings a new perspective to patients with a loss of autonomy. By combining online recordings of brain activity with a decoding algorithm, patients can learn to control a robotic arm in order to perform simple actions. However, in contrast to the vast amounts of somatosensory information channeled by limbs to the brain, current BMIs are devoid of touch and force sensors. Patients must therefore rely solely on vision and audition, which are maladapted to the control of a prosthesis. In contrast, in a healthy limb, somatosensory inputs alone can efficiently guide the handling of a fragile object, or ensure a smooth trajectory. We have developed a BMI in the mouse that includes a rich artificial somatosensory-like cortical feedback. Our setup includes online recordings of the activity of multiple neurons in the whisker primary motor cortex (vM1), and delivers feedback simultaneously via a low-latency, high-refresh rate and spatially structured photo-stimulation of the whisker primary somatosensory cortex (vS1), based on a mapping obtained by intrinsic imaging. We demonstrate the operation of the loop and show that mice can detect the neuronal spiking in vS1 triggered by the photo-stimulations. Finally, we show that the mice can learn a behavioral task relying only on the artificial inputs and outputs of the closed-loop BMI. This is the first motor BMI that includes a short-latency, intracortical, somatosensory-like feedback. It will be a useful platform to discover efficient cortical feedback schemes towards future human BMI applications. Creative Commons Attribution license.

  6. Smart Interfaces for Decisive Counterspace Operations

    National Research Council Canada - National Science Library

    Ianni, John

    2004-01-01

    .... Research in "smart" man-machine interfaces for counterspace operations has been performed at the Air Force Research Laboratory to improve the warfighter's ability to gain situational awareness during satellite attacks...

  7. Model-Agnostic Interpretability of Machine Learning

    OpenAIRE

    Ribeiro, Marco Tulio; Singh, Sameer; Guestrin, Carlos

    2016-01-01

    Understanding why machine learning models behave the way they do empowers both system designers and end-users in many ways: in model selection, feature engineering, in order to trust and act upon the predictions, and in more intuitive user interfaces. Thus, interpretability has become a vital concern in machine learning, and work in the area of interpretable models has found renewed interest. In some applications, such models are as accurate as non-interpretable ones, and thus are preferred f...

  8. Neuron-Type-Specific Utility in a Brain-Machine Interface: a Pilot Study.

    Science.gov (United States)

    Garcia-Garcia, Martha G; Bergquist, Austin J; Vargas-Perez, Hector; Nagai, Mary K; Zariffa, Jose; Marquez-Chin, Cesar; Popovic, Milos R

    2017-11-01

    Firing rates of single cortical neurons can be volitionally modulated through biofeedback (i.e. operant conditioning), and this information can be transformed to control external devices (i.e. brain-machine interfaces; BMIs). However, not all neurons respond to operant conditioning in BMI implementation. Establishing criteria that predict neuron utility will assist translation of BMI research to clinical applications. Single cortical neurons (n=7) were recorded extracellularly from primary motor cortex of a Long-Evans rat. Recordings were incorporated into a BMI involving up-regulation of firing rate to control the brightness of a light-emitting-diode and subsequent reward. Neurons were classified as 'fast-spiking', 'bursting' or 'regular-spiking' according to waveform-width and intrinsic firing patterns. Fast-spiking and bursting neurons were found to up-regulate firing rate by a factor of 2.43±1.16, demonstrating high utility, while regular-spiking neurons decreased firing rates on average by a factor of 0.73±0.23, demonstrating low utility. The ability to select neurons with high utility will be important to minimize training times and maximize information yield in future clinical BMI applications. The highly contrasting utility observed between fast-spiking and bursting neurons versus regular-spiking neurons allows for the hypothesis to be advanced that intrinsic electrophysiological properties may be useful criteria that predict neuron utility in BMI implementation.

  9. Human-Machine Communication

    International Nuclear Information System (INIS)

    Farbrot, J.E.; Nihlwing, Ch.; Svengren, H.

    2005-01-01

    New requirements for enhanced safety and design changes in process systems often leads to a step-wise installation of new information and control equipment in the control room of older nuclear power plants, where nowadays modern digital I and C solutions with screen-based human-machine interfaces (HMI) most often are introduced. Human factors (HF) expertise is then required to assist in specifying a unified, integrated HMI, where the entire integration of information is addressed to ensure an optimal and effective interplay between human (operators) and machine (process). Following a controlled design process is the best insurance for ending up with good solutions. This paper addresses the approach taken when introducing modern human-machine communication in the Oskarshamn 1 NPP, the results, and the lessons learned from this work with high operator involvement seen from an HF point of view. Examples of possibilities modern technology might offer for the operators are also addressed. (orig.)

  10. Optimal feedback control successfully explains changes in neural modulations during experiments with brain-machine interfaces

    Directory of Open Access Journals (Sweden)

    Miriam eZacksenhouse

    2015-05-01

    Full Text Available Recent experiments with brain-machine-interfaces (BMIs indicate that the extent of neural modulations increased abruptly upon starting to operate the interface, and especially after the monkey stopped moving its hand. In contrast, neural modulations that are correlated with the kinematics of the movement remained relatively unchanged. Here we demonstrate that similar changes are produced by simulated neurons that encode the relevant signals generated by an optimal feedback controller during simulated BMI experiments. The optimal feedback controller relies on state estimation that integrates both visual and proprioceptive feedback with prior estimations from an internal model. The processing required for optimal state estimation and control were conducted in the state-space, and neural recording was simulated by modeling two populations of neurons that encode either only the estimated state or also the control signal. Spike counts were generated as realizations of doubly stochastic Poisson processes with linear tuning curves. The model successfully reconstructs the main features of the kinematics and neural activity during regular reaching movements. Most importantly, the activity of the simulated neurons successfully reproduces the observed changes in neural modulations upon switching to brain control. Further theoretical analysis and simulations indicate that increasing the process noise during normal reaching movement results in similar changes in neural modulations. Thus we conclude that the observed changes in neural modulations during BMI experiments can be attributed to increasing process noise associated with the imperfect BMI filter, and, more directly, to the resulting increase in the variance of the encoded signals associated with state estimation and the required control signal.

  11. Optimal feedback control successfully explains changes in neural modulations during experiments with brain-machine interfaces.

    Science.gov (United States)

    Benyamini, Miri; Zacksenhouse, Miriam

    2015-01-01

    Recent experiments with brain-machine-interfaces (BMIs) indicate that the extent of neural modulations increased abruptly upon starting to operate the interface, and especially after the monkey stopped moving its hand. In contrast, neural modulations that are correlated with the kinematics of the movement remained relatively unchanged. Here we demonstrate that similar changes are produced by simulated neurons that encode the relevant signals generated by an optimal feedback controller during simulated BMI experiments. The optimal feedback controller relies on state estimation that integrates both visual and proprioceptive feedback with prior estimations from an internal model. The processing required for optimal state estimation and control were conducted in the state-space, and neural recording was simulated by modeling two populations of neurons that encode either only the estimated state or also the control signal. Spike counts were generated as realizations of doubly stochastic Poisson processes with linear tuning curves. The model successfully reconstructs the main features of the kinematics and neural activity during regular reaching movements. Most importantly, the activity of the simulated neurons successfully reproduces the observed changes in neural modulations upon switching to brain control. Further theoretical analysis and simulations indicate that increasing the process noise during normal reaching movement results in similar changes in neural modulations. Thus, we conclude that the observed changes in neural modulations during BMI experiments can be attributed to increasing process noise associated with the imperfect BMI filter, and, more directly, to the resulting increase in the variance of the encoded signals associated with state estimation and the required control signal.

  12. Formal Analysis and Design of Supervisor and User Interface Allowing for Non-Deterministic Choices Using Weak Bi-Simulation

    Directory of Open Access Journals (Sweden)

    Shazada Muhammad Umair Khan

    2018-01-01

    Full Text Available In human machine systems, a user display should contain sufficient information to encapsulate expressive and normative human operator behavior. Failure in such system that is commanded by supervisor can be difficult to anticipate because of unexpected interactions between the different users and machines. Currently, most interfaces have non-deterministic choices at state of machine. Inspired by the theories of single user of an interface established on discrete event system, we present a formal model of multiple users, multiple machines, a supervisor and a supervisor machine. The syntax and semantics of these models are based on the system specification using timed automata that adheres to desirable specification properties conducive to solving the non-deterministic choices for usability properties of the supervisor and user interface. Further, the succinct interface developed by applying the weak bi-simulation relation, where large classes of potentially equivalent states are refined into a smaller one, enables the supervisor and user to perform specified task correctly. Finally, the proposed approach is applied to a model of a manufacturing system with several users interacting with their machines, a supervisor with several users and a supervisor with a supervisor machine to illustrate the design procedure of human–machine systems. The formal specification is validated by z-eves toolset.

  13. Mold Heating and Cooling Pump Package Operator Interface Controls Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Josh A. Salmond

    2009-08-07

    The modernization of the Mold Heating and Cooling Pump Package Operator Interface (MHC PP OI) consisted of upgrading the antiquated single board computer with a proprietary operating system to off-the-shelf hardware and off-the-shelf software with customizable software options. The pump package is the machine interface between a central heating and cooling system that pumps heat transfer fluid through an injection or compression mold base on a local plastic molding machine. The operator interface provides the intelligent means of controlling this pumping process. Strict temperature control of a mold allows the production of high quality parts with tight tolerances and low residual stresses. The products fabricated are used on multiple programs.

  14. Macroscopic transport by synthetic molecular machines

    NARCIS (Netherlands)

    Berna, J; Leigh, DA; Lubomska, M; Mendoza, SM; Perez, EM; Rudolf, P; Teobaldi, G; Zerbetto, F

    Nature uses molecular motors and machines in virtually every significant biological process, but demonstrating that simpler artificial structures operating through the same gross mechanisms can be interfaced with - and perform physical tasks in - the macroscopic world represents a significant hurdle

  15. Brain-machine interfaces for controlling lower-limb powered robotic systems

    Science.gov (United States)

    He, Yongtian; Eguren, David; Azorín, José M.; Grossman, Robert G.; Phat Luu, Trieu; Contreras-Vidal, Jose L.

    2018-04-01

    Objective. Lower-limb, powered robotics systems such as exoskeletons and orthoses have emerged as novel robotic interventions to assist or rehabilitate people with walking disabilities. These devices are generally controlled by certain physical maneuvers, for example pressing buttons or shifting body weight. Although effective, these control schemes are not what humans naturally use. The usability and clinical relevance of these robotics systems could be further enhanced by brain-machine interfaces (BMIs). A number of preliminary studies have been published on this topic, but a systematic understanding of the experimental design, tasks, and performance of BMI-exoskeleton systems for restoration of gait is lacking. Approach. To address this gap, we applied standard systematic review methodology for a literature search in PubMed and EMBASE databases and identified 11 studies involving BMI-robotics systems. The devices, user population, input and output of the BMIs and robot systems respectively, neural features, decoders, denoising techniques, and system performance were reviewed and compared. Main results. Results showed BMIs classifying walk versus stand tasks are the most common. The results also indicate that electroencephalography (EEG) is the only recording method for humans. Performance was not clearly presented in most of the studies. Several challenges were summarized, including EEG denoising, safety, responsiveness and others. Significance. We conclude that lower-body powered exoskeletons with automated gait intention detection based on BMIs open new possibilities in the assistance and rehabilitation fields, although the current performance, clinical benefits and several key challenging issues indicate that additional research and development is required to deploy these systems in the clinic and at home. Moreover, rigorous EEG denoising techniques, suitable performance metrics, consistent trial reporting, and more clinical trials are needed to advance the

  16. TF.Learn: TensorFlow's High-level Module for Distributed Machine Learning

    OpenAIRE

    Tang, Yuan

    2016-01-01

    TF.Learn is a high-level Python module for distributed machine learning inside TensorFlow. It provides an easy-to-use Scikit-learn style interface to simplify the process of creating, configuring, training, evaluating, and experimenting a machine learning model. TF.Learn integrates a wide range of state-of-art machine learning algorithms built on top of TensorFlow's low level APIs for small to large-scale supervised and unsupervised problems. This module focuses on bringing machine learning t...

  17. FSW of Aluminum Tailor Welded Blanks across Machine Platforms

    Energy Technology Data Exchange (ETDEWEB)

    Hovanski, Yuri; Upadhyay, Piyush; Carlson, Blair; Szymanski, Robert; Luzanski, Tom; Marshall, Dustin

    2015-02-16

    Development and characterization of friction stir welded aluminum tailor welded blanks was successfully carried out on three separate machine platforms. Each was a commercially available, gantry style, multi-axis machine designed specifically for friction stir welding. Weld parameters were developed to support high volume production of dissimilar thickness aluminum tailor welded blanks at speeds of 3 m/min and greater. Parameters originally developed on an ultra-high stiffness servo driven machine where first transferred to a high stiffness servo-hydraulic friction stir welding machine, and subsequently transferred to a purpose built machine designed to accommodate thin sheet aluminum welding. The inherent beam stiffness, bearing compliance, and control system for each machine were distinctly unique, which posed specific challenges in transferring welding parameters across machine platforms. This work documents the challenges imposed by successfully transferring weld parameters from machine to machine, produced from different manufacturers and with unique control systems and interfaces.

  18. Applying machine learning to build a website interface adaptation system

    OpenAIRE

    MATESHUK EGOR; CHERNYSHEV ALEXANDER

    2015-01-01

    In this article we present the architecture and model of a website interface optimization system. We describe how we use clustering and genetic algorithms to automatically select a website interface with the highest conversion from website visitor to website user. In particular, we describe an algorithm for streamed clustering, which allows for real-time analysis of high traffic website users.

  19. Cultural differences in human-computer interaction towards culturally adaptive human-machine interaction

    CERN Document Server

    Heimgärtner, Rüdiger

    2012-01-01

    Es wird eine Methode zur Bestimmung von quantitativ klassifizierenden kulturellen Variablen der Mensch-Maschine-Interaktion (MMI) präsentiert und in einem Werkzeug für die interkulturelle Interaktionsanalyse umgesetzt. Rüdiger Heimgärtner zeigt, dass MMI anhand der kulturell geprägten Interaktionsmuster des Benutzers automatisch an dessen kulturellen Hintergrund angepasst werden kann. Empfehlungen für das Design interkultureller Benutzungsschnittstellen sowie für die Architekturbildung kulturell-adaptiver Systeme runden die Arbeit ab. Der Arbeitsbericht der Dissertation ist in elektronischer F

  20. An online brain-machine interface using decoding of movement direction from the human electrocorticogram

    Science.gov (United States)

    Milekovic, Tomislav; Fischer, Jörg; Pistohl, Tobias; Ruescher, Johanna; Schulze-Bonhage, Andreas; Aertsen, Ad; Rickert, Jörn; Ball, Tonio; Mehring, Carsten

    2012-08-01

    A brain-machine interface (BMI) can be used to control movements of an artificial effector, e.g. movements of an arm prosthesis, by motor cortical signals that control the equivalent movements of the corresponding body part, e.g. arm movements. This approach has been successfully applied in monkeys and humans by accurately extracting parameters of movements from the spiking activity of multiple single neurons. We show that the same approach can be realized using brain activity measured directly from the surface of the human cortex using electrocorticography (ECoG). Five subjects, implanted with ECoG implants for the purpose of epilepsy assessment, took part in our study. Subjects used directionally dependent ECoG signals, recorded during active movements of a single arm, to control a computer cursor in one out of two directions. Significant BMI control was achieved in four out of five subjects with correct directional decoding in 69%-86% of the trials (75% on average). Our results demonstrate the feasibility of an online BMI using decoding of movement direction from human ECoG signals. Thus, to achieve such BMIs, ECoG signals might be used in conjunction with or as an alternative to intracortical neural signals.

  1. Who Needs to Fit In? Who Gets to Stand Out? Communication Technologies Including Brain-Machine Interfaces Revealed from the Perspectives of Special Education School Teachers through an Ableism Lens

    Science.gov (United States)

    Diep, Lucy; Wolbring, Gregor

    2013-01-01

    Some new and envisioned technologies such as brain machine interfaces (BMI) that are being developed initially for people with disabilities, but whose use can also be expanded to the general public have the potential to change body ability expectations of disabled and non-disabled people beyond the species-typical. The ways in which this dynamic…

  2. A washable, stretchable, and self-powered human-machine interfacing Triboelectric nanogenerator for wireless communications and soft robotics pressure sensor arrays

    KAUST Repository

    Ahmed, Abdelsalam

    2017-01-20

    Flexible and stretchable human-machine Interfacing devices have attracted great attention due to the need for portable, ergonomic, and geometrically compatible devices in the new era of computer technology. Triboelectric nanogenerators (TENG) have shown promising potential for self-powered human–machine interacting devices. In this paper, a flexible, stretchable and self-powered keyboard is developed based on vertical contact-separation mode TENG. The keyboard is fabricated using urethane, silicone rubbers and Carbon Nanotubes (CNTs) electrodes. The structure shows a highly flexible, stretchable, and mechanically durable behavior, which can be conformal on different surfaces. The keyboard is capable of converting mechanical energy of finger tapping to electrical energy based on contact electrification, which can eliminate the need of external power source. The device can be utilized for wireless communication with computers owing to the self-powering mechanism. The keyboards also demonstrate consistent behavior in generating voltage signals regardless of touching objects’ materials and environmental effects like humidity. In addition, the proposed system can be used for keystroke dynamic-based authentication. Therefore, highly secured accessibility to the computers can be achieved owing to the keyboard’s high sensitivity and accurate selectivity of different users.

  3. A washable, stretchable, and self-powered human-machine interfacing Triboelectric nanogenerator for wireless communications and soft robotics pressure sensor arrays

    KAUST Repository

    Ahmed, Abdelsalam; Zhang, Steven L.; Hassan, Islam; Saadatnia, Zia; Zi, Yunlong; Zu, Jean; Wang, Zhong Lin

    2017-01-01

    Flexible and stretchable human-machine Interfacing devices have attracted great attention due to the need for portable, ergonomic, and geometrically compatible devices in the new era of computer technology. Triboelectric nanogenerators (TENG) have shown promising potential for self-powered human–machine interacting devices. In this paper, a flexible, stretchable and self-powered keyboard is developed based on vertical contact-separation mode TENG. The keyboard is fabricated using urethane, silicone rubbers and Carbon Nanotubes (CNTs) electrodes. The structure shows a highly flexible, stretchable, and mechanically durable behavior, which can be conformal on different surfaces. The keyboard is capable of converting mechanical energy of finger tapping to electrical energy based on contact electrification, which can eliminate the need of external power source. The device can be utilized for wireless communication with computers owing to the self-powering mechanism. The keyboards also demonstrate consistent behavior in generating voltage signals regardless of touching objects’ materials and environmental effects like humidity. In addition, the proposed system can be used for keystroke dynamic-based authentication. Therefore, highly secured accessibility to the computers can be achieved owing to the keyboard’s high sensitivity and accurate selectivity of different users.

  4. A Distributed Tactile Sensor for Intuitive Human-Robot Interfacing

    Directory of Open Access Journals (Sweden)

    Andrea Cirillo

    2017-01-01

    Full Text Available Safety of human-robot physical interaction is enabled not only by suitable robot control strategies but also by suitable sensing technologies. For example, if distributed tactile sensors were available on the robot, they could be used not only to detect unintentional collisions, but also as human-machine interface by enabling a new mode of social interaction with the machine. Starting from their previous works, the authors developed a conformable distributed tactile sensor that can be easily conformed to the different parts of the robot body. Its ability to estimate contact force components and to provide a tactile map with an accurate spatial resolution enables the robot to handle both unintentional collisions in safe human-robot collaboration tasks and intentional touches where the sensor is used as human-machine interface. In this paper, the authors present the characterization of the proposed tactile sensor and they show how it can be also exploited to recognize haptic tactile gestures, by tailoring recognition algorithms, well known in the image processing field, to the case of tactile images. In particular, a set of haptic gestures has been defined to test three recognition algorithms on a group of 20 users. The paper demonstrates how the same sensor originally designed to manage unintentional collisions can be successfully used also as human-machine interface.

  5. Biomimetic rehabilitation engineering: the importance of somatosensory feedback for brain-machine interfaces

    Science.gov (United States)

    Perruchoud, David; Pisotta, Iolanda; Carda, Stefano; Murray, Micah M.; Ionta, Silvio

    2016-08-01

    Objective. Brain-machine interfaces (BMIs) re-establish communication channels between the nervous system and an external device. The use of BMI technology has generated significant developments in rehabilitative medicine, promising new ways to restore lost sensory-motor functions. However and despite high-caliber basic research, only a few prototypes have successfully left the laboratory and are currently home-deployed. Approach. The failure of this laboratory-to-user transfer likely relates to the absence of BMI solutions for providing naturalistic feedback about the consequences of the BMI’s actions. To overcome this limitation, nowadays cutting-edge BMI advances are guided by the principle of biomimicry; i.e. the artificial reproduction of normal neural mechanisms. Main results. Here, we focus on the importance of somatosensory feedback in BMIs devoted to reproducing movements with the goal of serving as a reference framework for future research on innovative rehabilitation procedures. First, we address the correspondence between users’ needs and BMI solutions. Then, we describe the main features of invasive and non-invasive BMIs, including their degree of biomimicry and respective advantages and drawbacks. Furthermore, we explore the prevalent approaches for providing quasi-natural sensory feedback in BMI settings. Finally, we cover special situations that can promote biomimicry and we present the future directions in basic research and clinical applications. Significance. The continued incorporation of biomimetic features into the design of BMIs will surely serve to further ameliorate the realism of BMIs, as well as tremendously improve their actuation, acceptance, and use.

  6. Closed-Loop Hybrid Gaze Brain-Machine Interface Based Robotic Arm Control with Augmented Reality Feedback

    Directory of Open Access Journals (Sweden)

    Hong Zeng

    2017-10-01

    Full Text Available Brain-machine interface (BMI can be used to control the robotic arm to assist paralysis people for performing activities of daily living. However, it is still a complex task for the BMI users to control the process of objects grasping and lifting with the robotic arm. It is hard to achieve high efficiency and accuracy even after extensive trainings. One important reason is lacking of sufficient feedback information for the user to perform the closed-loop control. In this study, we proposed a method of augmented reality (AR guiding assistance to provide the enhanced visual feedback to the user for a closed-loop control with a hybrid Gaze-BMI, which combines the electroencephalography (EEG signals based BMI and the eye tracking for an intuitive and effective control of the robotic arm. Experiments for the objects manipulation tasks while avoiding the obstacle in the workspace are designed to evaluate the performance of our method for controlling the robotic arm. According to the experimental results obtained from eight subjects, the advantages of the proposed closed-loop system (with AR feedback over the open-loop system (with visual inspection only have been verified. The number of trigger commands used for controlling the robotic arm to grasp and lift the objects with AR feedback has reduced significantly and the height gaps of the gripper in the lifting process have decreased more than 50% compared to those trials with normal visual inspection only. The results reveal that the hybrid Gaze-BMI user can benefit from the information provided by the AR interface, improving the efficiency and reducing the cognitive load during the grasping and lifting processes.

  7. Closed-Loop Hybrid Gaze Brain-Machine Interface Based Robotic Arm Control with Augmented Reality Feedback

    Science.gov (United States)

    Zeng, Hong; Wang, Yanxin; Wu, Changcheng; Song, Aiguo; Liu, Jia; Ji, Peng; Xu, Baoguo; Zhu, Lifeng; Li, Huijun; Wen, Pengcheng

    2017-01-01

    Brain-machine interface (BMI) can be used to control the robotic arm to assist paralysis people for performing activities of daily living. However, it is still a complex task for the BMI users to control the process of objects grasping and lifting with the robotic arm. It is hard to achieve high efficiency and accuracy even after extensive trainings. One important reason is lacking of sufficient feedback information for the user to perform the closed-loop control. In this study, we proposed a method of augmented reality (AR) guiding assistance to provide the enhanced visual feedback to the user for a closed-loop control with a hybrid Gaze-BMI, which combines the electroencephalography (EEG) signals based BMI and the eye tracking for an intuitive and effective control of the robotic arm. Experiments for the objects manipulation tasks while avoiding the obstacle in the workspace are designed to evaluate the performance of our method for controlling the robotic arm. According to the experimental results obtained from eight subjects, the advantages of the proposed closed-loop system (with AR feedback) over the open-loop system (with visual inspection only) have been verified. The number of trigger commands used for controlling the robotic arm to grasp and lift the objects with AR feedback has reduced significantly and the height gaps of the gripper in the lifting process have decreased more than 50% compared to those trials with normal visual inspection only. The results reveal that the hybrid Gaze-BMI user can benefit from the information provided by the AR interface, improving the efficiency and reducing the cognitive load during the grasping and lifting processes. PMID:29163123

  8. Design of Control System for Kiwifruit Automatic Grading Machine

    Directory of Open Access Journals (Sweden)

    Xingjian Zuo

    2013-05-01

    Full Text Available The kiwifruit automatic grading machine is an important machine for postharvest processing of kiwifruit, and the control system ensures that the machine realizes intelligence. The control system for the kiwifruit automatic grading machine designed in this paper comprises a host computer and a slave microcontroller. The host computer provides a visual grading interface for the machine with a LabVIEW software, the slave microcontroller adopts an STC89C52 microcontroller as its core, and C language is used to write programs for controlling a position sensor module, push-pull type electromagnets, motor driving modules and a power supply for controlling the operation of the machine as well as the rise or descend of grading baffle plates. The ideal control effect is obtained through test, and the intelligent operation of the machine is realized.

  9. A basic experimental study on characteristics of on-line human information processing associated with man-machine interface

    International Nuclear Information System (INIS)

    Yoshikawa, Hidekazu; Shimoda, Hiroshi; Nagai, Yoshinori; Kojima, Shin-ichi.

    1990-01-01

    Regarding human factors research on man-machine interface, a basic psychological experiment was conducted to observe psycho-physiological characteristics of on-line human cognitive behavior when cognitive tasks on learning and pattern classification were given to subjects by personal computer using a simple state transition model. During the experiment, three different types of subjects' data were recorded: (i) eye movement data by eye mark recorder, (ii) physio-electric signals by polygraph and (iii) verbal reports. Those subjects' data were analyzed with respect to: (i) the related human cognitive characteristics concerning problem solving strategy, measures of problem difficulty and mental image effect, (ii) observed eye movement characteristics such as saccade, attention, pupil reaction and blinking, etc., and (iii) obtained characteristics of skin potential response and heart rate. It was found that the application of psycho-physiological measurement would serve to objective and detailed analysis of on-line cognitive process. (author)

  10. Interface Heuristics and Style Guide Design: An Air Battle Management Case Study

    National Research Council Canada - National Science Library

    Nelson, W. T; Bolia, Robert S

    2005-01-01

    This paper describes the development of a human-machine interface style guide designed to promote a common look and feel among operator interfaces employed by air battle managers in the United States...

  11. ClearTK 2.0: Design Patterns for Machine Learning in UIMA

    OpenAIRE

    Bethard, Steven; Ogren, Philip; Becker, Lee

    2014-01-01

    ClearTK adds machine learning functionality to the UIMA framework, providing wrappers to popular machine learning libraries, a rich feature extraction library that works across different classifiers, and utilities for applying and evaluating machine learning models. Since its inception in 2008, ClearTK has evolved in response to feedback from developers and the community. This evolution has followed a number of important design principles including: conceptually simple annotator interfaces, r...

  12. Diagnostic interface problems on TFTR

    International Nuclear Information System (INIS)

    Goldfarb, S.

    1977-01-01

    Diagnostic equipment on TFTR has functional interfaces with many machine systems. Salient requirements include plasma access, environmental resistance to thermal, magnetic and radiation effects, automated data acquisition and controls, remote handling and personnel safety. Problems imposed by these requirements and the solutions being considered are described

  13. Computation of the Distribution of the Fiber-Matrix Interface Cracks in the Edge Trimming of CFRP

    Science.gov (United States)

    Wang, Fu-ji; Zhang, Bo-yu; Ma, Jian-wei; Bi, Guang-jian; Hu, Hai-bo

    2018-04-01

    Edge trimming is commonly used to bring the CFRP components to right dimension and shape in aerospace industries. However, various forms of undesirable machining damage occur frequently which will significantly decrease the material performance of CFRP. The damage is difficult to predict and control due to the complicated changing laws, causing unsatisfactory machining quality of CFRP components. Since the most of damage has the same essence: the fiber-matrix interface cracks, this study aims to calculate the distribution of them in edge trimming of CFRP, thereby to obtain the effects of the machining parameters, which could be helpful to guide the optimal selection of the machining parameters in engineering. Through the orthogonal cutting experiments, the quantitative relation between the fiber-matrix interface crack depth and the fiber cutting angle, cutting depth as well as cutting speed is established. According to the analysis on material removal process on any location of the workpiece in edge trimming, the instantaneous cutting parameters are calculated, and the formation process of the fiber-matrix interface crack is revealed. Finally, the computational method for the fiber-matrix interface cracks in edge trimming of CFRP is proposed. Upon the computational results, it is found that the fiber orientations of CFRP workpieces is the most significant factor on the fiber-matrix interface cracks, which can not only change the depth of them from micrometers to millimeters, but control the distribution image of them. Other machining parameters, only influence the fiber-matrix interface cracks depth but have little effect on the distribution image.

  14. Comparison of Three English-to-Dutch Machine Translations of SNOMED CT Procedures

    NARCIS (Netherlands)

    Cornet, Ronald; Hill, Carly; de Keizer, Nicolette

    2017-01-01

    Dutch interface terminologies are needed to use SNOMED CT in the Netherlands. Machine translation may support in their creation. The aim of our study is to compare different machine translations of procedures in SNOMED CT. Procedures were translated using Google Translate, Matecat, and Thot. Google

  15. Improvements of MMI and operator support systems at the Leningrad NPP

    International Nuclear Information System (INIS)

    Rakitin, I.D.; Malkin, S.D.; Shalia, V.V.; Fedorov, E.M.; Koudiakov, M.M.; Stebenev, A.S.

    1998-01-01

    A practical need of MMI up-grade and inclusion of new Operator Support Systems is of utmost importance for the existing NPPs under the new safety related Russian and International demands, requirements and regulations. The given paper describes RandD work for RBMK-type reactors with using full scope simulator features. But its main results could be well implemented for other reactor types as well. Significant efforts to up-grade safety of RBMK and implement a set of additional Safety Support Systems are provided by the Russian Project Design Institutes and by the International Organizations and Communities. But these projects have been mostly developed without a proper verification and validation against the real plant operation modes and real Control Room circumstances, and with no justification of an operating crew demands and expectations. That unfavorable situation should be successfully changed by now with using the Training Support Center (TSC) created at the Leningrad NPP. It incorporates the full-scope and analytical simulators working in parallel with the prototypes of the expert and interactive systems to provide a new scope of RandD work. The development and adjustment of two state-of-the-art Operators' Support Systems with using the Simulators are described in the Paper. These systems have been developed by the joint RRC KI and LNPP team. (author)

  16. Interfacing and data acquisitioning of creep testing machines

    International Nuclear Information System (INIS)

    Rana, M.A.; Ahmad, Z.; Farooq, M.A.; Ali, L.; Mushtaq, N.

    1998-05-01

    Automation of DSM-6100-CREEP TESTING MACHINES is made by using an IBM PC/XT/AT compatibles along with DAS-16 High Speed Analog I/O board. Creep test parameters namely force, temperature and LVDTs (Linear Variable Differential Transducer) left and right are calibrated. Empirical formula for each parameter is developed to convert data, which is received in the form of counts, into engineering units. LVDT controller module is designed and fabricated to handle two LVDTs for data acquisition of a creep test required for it. (author)

  17. Optimal design method to minimize users' thinking mapping load in human-machine interactions.

    Science.gov (United States)

    Huang, Yanqun; Li, Xu; Zhang, Jie

    2015-01-01

    The discrepancy between human cognition and machine requirements/behaviors usually results in serious mental thinking mapping loads or even disasters in product operating. It is important to help people avoid human-machine interaction confusions and difficulties in today's mental work mastered society. Improving the usability of a product and minimizing user's thinking mapping and interpreting load in human-machine interactions. An optimal human-machine interface design method is introduced, which is based on the purpose of minimizing the mental load in thinking mapping process between users' intentions and affordance of product interface states. By analyzing the users' thinking mapping problem, an operating action model is constructed. According to human natural instincts and acquired knowledge, an expected ideal design with minimized thinking loads is uniquely determined at first. Then, creative alternatives, in terms of the way human obtains operational information, are provided as digital interface states datasets. In the last, using the cluster analysis method, an optimum solution is picked out from alternatives, by calculating the distances between two datasets. Considering multiple factors to minimize users' thinking mapping loads, a solution nearest to the ideal value is found in the human-car interaction design case. The clustering results show its effectiveness in finding an optimum solution to the mental load minimizing problems in human-machine interaction design.

  18. Application of EMD-Based SVD and SVM to Coal-Gangue Interface Detection

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2014-01-01

    Full Text Available Coal-gangue interface detection during top-coal caving mining is a challenging problem. This paper proposes a new vibration signal analysis approach to detecting the coal-gangue interface based on singular value decomposition (SVD techniques and support vector machines (SVMs. Due to the nonstationary characteristics in vibration signals of the tail boom support of the longwall mining machine in this complicated environment, the empirical mode decomposition (EMD is used to decompose the raw vibration signals into a number of intrinsic mode functions (IMFs by which the initial feature vector matrices can be formed automatically. By applying the SVD algorithm to the initial feature vector matrices, the singular values of matrices can be obtained and used as the input feature vectors of SVMs classifier. The analysis results of vibration signals from the tail boom support of a longwall mining machine show that the method based on EMD, SVD, and SVM is effective for coal-gangue interface detection even when the number of samples is small.

  19. Advanced man-machine interaction. Fundamentals and implementation

    Energy Technology Data Exchange (ETDEWEB)

    Kraiss, K.F. (ed.) [Aachen Technische Hochschule (Germany). Lehrstuhl fuer Technische Informatik und Computerwissenschaften

    2006-07-01

    Man-machine interaction is the gateway providing access to functions and services, which, due to the ever increasing complexity of smart systems, threatens to become a bottleneck. This book therefore introduces not only advanced interfacing concepts, but also gives insight into the related theoretical background.This refers mainly to the realization of video-based multimodal interaction via gesture, mimics, and speech, but also to interacting with virtual object in virtual environments, cooperating with local or remote robots, and user assistance. While most publications in the field of human factors engineering focus on interface design, this book puts special emphasis on implementation aspects. To this end it is accompanied by software development environments for image processing, classification, and virtual environment implementation. In addition a test data base is included for gestures, head pose, facial expressions, full-body person recognition, and people tracking. These data are used for the examples throughout the book, but are also meant to encourage the reader to start experimentation on his own. Thus the book may serve as a self-contained introduction both for researchers and developers of man-machine interfaces. It may also be used for graduate-level university courses. (orig.)

  20. Operant conditioning of a multiple degree-of-freedom brain-machine interface in a primate model of amputation.

    Science.gov (United States)

    Balasubramanian, Karthikeyan; Southerland, Joshua; Vaidya, Mukta; Qian, Kai; Eleryan, Ahmed; Fagg, Andrew H; Sluzky, Marc; Oweiss, Karim; Hatsopoulos, Nicholas

    2013-01-01

    Operant conditioning with biofeedback has been shown to be an effective method to modify neural activity to generate goal-directed actions in a brain-machine interface. It is particularly useful when neural activity cannot be mathematically mapped to motor actions of the actual body such as in the case of amputation. Here, we implement an operant conditioning approach with visual feedback in which an amputated monkey is trained to control a multiple degree-of-freedom robot to perform a reach-to-grasp behavior. A key innovation is that each controlled dimension represents a behaviorally relevant synergy among a set of joint degrees-of-freedom. We present a number of behavioral metrics by which to assess improvements in BMI control with exposure to the system. The use of non-human primates with chronic amputation is arguably the most clinically-relevant model of human amputation that could have direct implications for developing a neural prosthesis to treat humans with missing upper limbs.

  1. ERD-based online brain-machine interfaces (BMI) in the context of neurorehabilitation: optimizing BMI learning and performance.

    Science.gov (United States)

    Soekadar, Surjo R; Witkowski, Matthias; Mellinger, Jürgen; Ramos, Ander; Birbaumer, Niels; Cohen, Leonardo G

    2011-10-01

    Event-related desynchronization (ERD) of sensori-motor rhythms (SMR) can be used for online brain-machine interface (BMI) control, but yields challenges related to the stability of ERD and feedback strategy to optimize BMI learning.Here, we compared two approaches to this challenge in 20 right-handed healthy subjects (HS, five sessions each, S1-S5) and four stroke patients (SP, 15 sessions each, S1-S15). ERD was recorded from a 275-sensor MEG system. During daily training,motor imagery-induced ERD led to visual and proprioceptive feedback delivered through an orthotic device attached to the subjects' hand and fingers. Group A trained with a heterogeneous reference value (RV) for ERD detection with binary feedback and Group B with a homogenous RV and graded feedback (10 HS and 2 SP in each group). HS in Group B showed better BMI performance than Group A (p learning was significantly better (p learning relative to use of a heterogeneous RV and binary feedback.

  2. A Brain-Machine Interface Based on ERD/ERS for an Upper-Limb Exoskeleton Control.

    Science.gov (United States)

    Tang, Zhichuan; Sun, Shouqian; Zhang, Sanyuan; Chen, Yumiao; Li, Chao; Chen, Shi

    2016-12-02

    To recognize the user's motion intention, brain-machine interfaces (BMI) usually decode movements from cortical activity to control exoskeletons and neuroprostheses for daily activities. The aim of this paper is to investigate whether self-induced variations of the electroencephalogram (EEG) can be useful as control signals for an upper-limb exoskeleton developed by us. A BMI based on event-related desynchronization/synchronization (ERD/ERS) is proposed. In the decoder-training phase, we investigate the offline classification performance of left versus right hand and left hand versus both feet by using motor execution (ME) or motor imagery (MI). The results indicate that the accuracies of ME sessions are higher than those of MI sessions, and left hand versus both feet paradigm achieves a better classification performance, which would be used in the online-control phase. In the online-control phase, the trained decoder is tested in two scenarios (wearing or without wearing the exoskeleton). The MI and ME sessions wearing the exoskeleton achieve mean classification accuracy of 84.29% ± 2.11% and 87.37% ± 3.06%, respectively. The present study demonstrates that the proposed BMI is effective to control the upper-limb exoskeleton, and provides a practical method by non-invasive EEG signal associated with human natural behavior for clinical applications.

  3. Development of MMIS design technology for integral reactor

    International Nuclear Information System (INIS)

    Koo, In Soo; Park, H. Y.; Park, G. O.

    2002-03-01

    Man-Machine Interface Systems (MMIS) are composed of the control room related to plant operations and the Instrumentation and Control (I and C) including functions such as plant protections, plant controls and monitoring. The applications of the advanced concepts and the digital technologies are required to reduce events due to human fails clarified existing nuclear power plants, and enhance reliability and safety of the I and C equipment. The development of MMIS technologies and the establishment of the MMIS basic design package are required to enhance the completeness of the MMIS design. The purpose of the MMIS development is to provide the assurance of the conceptual design based on the architecture and the concepts of MMIS during the first development stage, to establish the design technology of MMIS and to provide the design process for the detailed design. The products of SMART MMIS development such as the system design requirements, the interface requirements and system descriptions will be used to the detail design of the SMART MMIS. Those area will be the implementation of the I and C systems such as information processing system, alarms and indications systems, protection systems, control systems and data communication networks, and the MMI facilities such as main control room, remote shutdown panel and emergency operation facilities. When the prototype testing of I and C systems and the mock-up experiment of MMI facilities are performed, the whole MMIS package will be installed in the nuclear power plants including SMART

  4. Command Line Interface to Tracy Library

    Energy Technology Data Exchange (ETDEWEB)

    Nash,B.

    2009-05-04

    We describe a set of tools that interface to the Tracy particle tracking library. The state of the machine including misalignments, multipole errors and corrector settings is captured in a 'flat' file, or 'machine' file. There are three types of tools designed around this flat file: (1) flat file creation tools. (2) flat file manipulation tools. (3) tracking tools. We describe the status of these tools, and give some examples of how they have been used in the design process for NSLS-II.

  5. Technology Roadmap Instrumentation, Control, and Human-Machine Interface to Support DOE Advanced Nuclear Energy Programs

    Energy Technology Data Exchange (ETDEWEB)

    Donald D Dudenhoeffer; Burce P Hallbert

    2007-03-01

    Instrumentation, Controls, and Human-Machine Interface (ICHMI) technologies are essential to ensuring delivery and effective operation of optimized advanced Generation IV (Gen IV) nuclear energy systems. In 1996, the Watts Bar I nuclear power plant in Tennessee was the last U.S. nuclear power plant to go on line. It was, in fact, built based on pre-1990 technology. Since this last U.S. nuclear power plant was designed, there have been major advances in the field of ICHMI systems. Computer technology employed in other industries has advanced dramatically, and computing systems are now replaced every few years as they become functionally obsolete. Functional obsolescence occurs when newer, more functional technology replaces or supersedes an existing technology, even though an existing technology may well be in working order.Although ICHMI architectures are comprised of much of the same technology, they have not been updated nearly as often in the nuclear power industry. For example, some newer Personal Digital Assistants (PDAs) or handheld computers may, in fact, have more functionality than the 1996 computer control system at the Watts Bar I plant. This illustrates the need to transition and upgrade current nuclear power plant ICHMI technologies.

  6. Neural control of finger movement via intracortical brain-machine interface

    Science.gov (United States)

    Irwin, Z. T.; Schroeder, K. E.; Vu, P. P.; Bullard, A. J.; Tat, D. M.; Nu, C. S.; Vaskov, A.; Nason, S. R.; Thompson, D. E.; Bentley, J. N.; Patil, P. G.; Chestek, C. A.

    2017-12-01

    Objective. Intracortical brain-machine interfaces (BMIs) are a promising source of prosthesis control signals for individuals with severe motor disabilities. Previous BMI studies have primarily focused on predicting and controlling whole-arm movements; precise control of hand kinematics, however, has not been fully demonstrated. Here, we investigate the continuous decoding of precise finger movements in rhesus macaques. Approach. In order to elicit precise and repeatable finger movements, we have developed a novel behavioral task paradigm which requires the subject to acquire virtual fingertip position targets. In the physical control condition, four rhesus macaques performed this task by moving all four fingers together in order to acquire a single target. This movement was equivalent to controlling the aperture of a power grasp. During this task performance, we recorded neural spikes from intracortical electrode arrays in primary motor cortex. Main results. Using a standard Kalman filter, we could reconstruct continuous finger movement offline with an average correlation of ρ  =  0.78 between actual and predicted position across four rhesus macaques. For two of the monkeys, this movement prediction was performed in real-time to enable direct brain control of the virtual hand. Compared to physical control, neural control performance was slightly degraded; however, the monkeys were still able to successfully perform the task with an average target acquisition rate of 83.1%. The monkeys’ ability to arbitrarily specify fingertip position was also quantified using an information throughput metric. During brain control task performance, the monkeys achieved an average 1.01 bits s-1 throughput, similar to that achieved in previous studies which decoded upper-arm movements to control computer cursors using a standard Kalman filter. Significance. This is, to our knowledge, the first demonstration of brain control of finger-level fine motor skills. We believe

  7. A Symbiotic Brain-Machine Interface through Value-Based Decision Making

    Science.gov (United States)

    Mahmoudi, Babak; Sanchez, Justin C.

    2011-01-01

    Background In the development of Brain Machine Interfaces (BMIs), there is a great need to enable users to interact with changing environments during the activities of daily life. It is expected that the number and scope of the learning tasks encountered during interaction with the environment as well as the pattern of brain activity will vary over time. These conditions, in addition to neural reorganization, pose a challenge to decoding neural commands for BMIs. We have developed a new BMI framework in which a computational agent symbiotically decoded users' intended actions by utilizing both motor commands and goal information directly from the brain through a continuous Perception-Action-Reward Cycle (PARC). Methodology The control architecture designed was based on Actor-Critic learning, which is a PARC-based reinforcement learning method. Our neurophysiology studies in rat models suggested that Nucleus Accumbens (NAcc) contained a rich representation of goal information in terms of predicting the probability of earning reward and it could be translated into an evaluative feedback for adaptation of the decoder with high precision. Simulated neural control experiments showed that the system was able to maintain high performance in decoding neural motor commands during novel tasks or in the presence of reorganization in the neural input. We then implanted a dual micro-wire array in the primary motor cortex (M1) and the NAcc of rat brain and implemented a full closed-loop system in which robot actions were decoded from the single unit activity in M1 based on an evaluative feedback that was estimated from NAcc. Conclusions Our results suggest that adapting the BMI decoder with an evaluative feedback that is directly extracted from the brain is a possible solution to the problem of operating BMIs in changing environments with dynamic neural signals. During closed-loop control, the agent was able to solve a reaching task by capturing the action and reward

  8. A symbiotic brain-machine interface through value-based decision making.

    Directory of Open Access Journals (Sweden)

    Babak Mahmoudi

    Full Text Available BACKGROUND: In the development of Brain Machine Interfaces (BMIs, there is a great need to enable users to interact with changing environments during the activities of daily life. It is expected that the number and scope of the learning tasks encountered during interaction with the environment as well as the pattern of brain activity will vary over time. These conditions, in addition to neural reorganization, pose a challenge to decoding neural commands for BMIs. We have developed a new BMI framework in which a computational agent symbiotically decoded users' intended actions by utilizing both motor commands and goal information directly from the brain through a continuous Perception-Action-Reward Cycle (PARC. METHODOLOGY: The control architecture designed was based on Actor-Critic learning, which is a PARC-based reinforcement learning method. Our neurophysiology studies in rat models suggested that Nucleus Accumbens (NAcc contained a rich representation of goal information in terms of predicting the probability of earning reward and it could be translated into an evaluative feedback for adaptation of the decoder with high precision. Simulated neural control experiments showed that the system was able to maintain high performance in decoding neural motor commands during novel tasks or in the presence of reorganization in the neural input. We then implanted a dual micro-wire array in the primary motor cortex (M1 and the NAcc of rat brain and implemented a full closed-loop system in which robot actions were decoded from the single unit activity in M1 based on an evaluative feedback that was estimated from NAcc. CONCLUSIONS: Our results suggest that adapting the BMI decoder with an evaluative feedback that is directly extracted from the brain is a possible solution to the problem of operating BMIs in changing environments with dynamic neural signals. During closed-loop control, the agent was able to solve a reaching task by capturing the action and

  9. Man-machine supervision

    International Nuclear Information System (INIS)

    Montmain, J.

    2005-01-01

    Today's complexity of systems where man is involved has led to the development of more and more sophisticated information processing systems where decision making has become more and more difficult. The operator task has moved from operation to supervision and the production tool has become indissociable from its numerical instrumentation and control system. The integration of more and more numerous and sophisticated control indicators in the control room does not necessary fulfill the expectations of the operation team. It is preferable to develop cooperative information systems which are real situation understanding aids. The stake is not the automation of operators' cognitive tasks but the supply of a reasoning help. One of the challenges of interactive information systems is the selection, organisation and dynamical display of information. The efficiency of the whole man-machine system depends on the communication interface efficiency. This article presents the principles and specificities of man-machine supervision systems: 1 - principle: operator's role in control room, operator and automation, monitoring and diagnosis, characteristics of useful models for supervision; 2 - qualitative reasoning: origin, trends, evolutions; 3 - causal reasoning: causality, causal graph representation, causal and diagnostic graph; 4 - multi-points of view reasoning: multi flow modeling method, Sagace method; 5 - approximate reasoning: the symbolic numerical interface, the multi-criteria decision; 6 - example of application: supervision in a spent-fuel reprocessing facility. (J.S.)

  10. A Prototyping Environment for Research on Human-Machine Interfaces in Process Control: Use of Microsoft WPF for Microworld and Distributed Control System Development

    Energy Technology Data Exchange (ETDEWEB)

    Roger Lew; Ronald L. Boring; Thomas A. Ulrich

    2014-08-01

    Operators of critical processes, such as nuclear power production, must contend with highly complex systems, procedures, and regulations. Developing human-machine interfaces (HMIs) that better support operators is a high priority for ensuring the safe and reliable operation of critical processes. Human factors engineering (HFE) provides a rich and mature set of tools for evaluating the performance of HMIs, but the set of tools for developing and designing HMIs is still in its infancy. Here we propose that Microsoft Windows Presentation Foundation (WPF) is well suited for many roles in the research and development of HMIs for process control.

  11. Preliminary Development of Real Time Usage-Phase Monitoring System for CNC Machine Tools with a Case Study on CNC Machine VMC 250

    Science.gov (United States)

    Budi Harja, Herman; Prakosa, Tri; Raharno, Sri; Yuwana Martawirya, Yatna; Nurhadi, Indra; Setyo Nogroho, Alamsyah

    2018-03-01

    The production characteristic of job-shop industry at which products have wide variety but small amounts causes every machine tool will be shared to conduct production process with dynamic load. Its dynamic condition operation directly affects machine tools component reliability. Hence, determination of maintenance schedule for every component should be calculated based on actual usage of machine tools component. This paper describes study on development of monitoring system to obtaining information about each CNC machine tool component usage in real time approached by component grouping based on its operation phase. A special device has been developed for monitoring machine tool component usage by utilizing usage phase activity data taken from certain electronics components within CNC machine. The components are adaptor, servo driver and spindle driver, as well as some additional components such as microcontroller and relays. The obtained data are utilized for detecting machine utilization phases such as power on state, machine ready state or spindle running state. Experimental result have shown that the developed CNC machine tool monitoring system is capable of obtaining phase information of machine tool usage as well as its duration and displays the information at the user interface application.

  12. Software architecture for time-constrained machine vision applications

    Science.gov (United States)

    Usamentiaga, Rubén; Molleda, Julio; García, Daniel F.; Bulnes, Francisco G.

    2013-01-01

    Real-time image and video processing applications require skilled architects, and recent trends in the hardware platform make the design and implementation of these applications increasingly complex. Many frameworks and libraries have been proposed or commercialized to simplify the design and tuning of real-time image processing applications. However, they tend to lack flexibility, because they are normally oriented toward particular types of applications, or they impose specific data processing models such as the pipeline. Other issues include large memory footprints, difficulty for reuse, and inefficient execution on multicore processors. We present a novel software architecture for time-constrained machine vision applications that addresses these issues. The architecture is divided into three layers. The platform abstraction layer provides a high-level application programming interface for the rest of the architecture. The messaging layer provides a message-passing interface based on a dynamic publish/subscribe pattern. A topic-based filtering in which messages are published to topics is used to route the messages from the publishers to the subscribers interested in a particular type of message. The application layer provides a repository for reusable application modules designed for machine vision applications. These modules, which include acquisition, visualization, communication, user interface, and data processing, take advantage of the power of well-known libraries such as OpenCV, Intel IPP, or CUDA. Finally, the proposed architecture is applied to a real machine vision application: a jam detector for steel pickling lines.

  13. Realization of an ultra-compact polarization beam splitter using asymmetric MMI based on silicon nitride / silicon-on-insulator platform.

    Science.gov (United States)

    Sun, Xiao; Aitchison, J Stewart; Mojahedi, Mo

    2017-04-03

    We have experimentally demonstrated a compact polarization beam splitter (PBS) based on the silicon nitride/silicon-on-insulator platform using the recently proposed augmented-low-index-guiding (ALIG) waveguide structure. The two orthogonal polarizations are split in an asymmetric multimode interference (MMI) section, which was 1.6 μm wide and 4.8 μm long. The device works well over the entire C-band wavelength range and has a measured low insertion loss of less than 1 dB. The polarization extinction ratio at the Bar Port is approximately 17 dB and at the Cross Port is approximately 25 dB. The design of the device is robust and has a good fabrication tolerance.

  14. Automation of a universal machine

    International Nuclear Information System (INIS)

    Rodriguez S, J.

    1997-01-01

    The development of the hardware and software of a control system for a servo-hydraulic machine is presented. The universal machine is an Instron, model 1331, used to make mechanical tests. The software includes the acquisition of data from the measurements, processing and graphic presentation of the results in the assay of the 'tension' type. The control is based on a PPI (Programmable Peripheral Interface) 8255, in which the different states of the machine are set. The control functions of the machine are: a) Start of an assay, b) Pause in the assay, c) End of the assay, d) Choice of the control mode of the machine, that they could be in load, stroke or strain modes. For the data acquisition, a commercial card, National Products, model DAS-16, plugged in a slot of a Pc was used. Three transducers provide the analog signals, a cell of load, a LVDT and a extensometer. All the data are digitalized and handled in order to get the results in the appropriate working units. A stress-strain graph is obtained in the screen of the Pc for a tension test for a specific material. The points of maximum stress, rupture stress and the yield stress of the material under test are shown. (Author)

  15. SwingStates: adding state machines to the swing toolkit

    OpenAIRE

    Appert , Caroline; Beaudouin-Lafon , Michel

    2006-01-01

    International audience; This article describes SwingStates, a library that adds state machines to the Java Swing user interface toolkit. Unlike traditional approaches, which use callbacks or listeners to define interaction, state machines provide a powerful control structure and localize all of the interaction code in one place. SwingStates takes advantage of Java's inner classes, providing programmers with a natural syntax and making it easier to follow and debug the resulting code. SwingSta...

  16. Augmented Reality Interfaces for Additive Manufacturing

    DEFF Research Database (Denmark)

    Eiríksson, Eyþór Rúnar; Pedersen, David Bue; Frisvad, Jeppe Revall

    2017-01-01

    This paper explores potential use cases for using augmented reality (AR) as a tool to operate industrial machines. As a baseline we use an additive manufacturing system, more commonly known as a 3D printer. We implement novel augmented interfaces and controls using readily available open source...

  17. A comparative analysis of three non-invasive Human-Machine Interfaces for the disabled

    Directory of Open Access Journals (Sweden)

    Vikram eRavindra

    2014-10-01

    Full Text Available In the framework of rehabilitation robotics, a major role is played by theHuman-Machine Interface (HMI used to gather the patient's intent from biologicalsignals, and convert them into control signals for the robotic artifact. Surprisingly,decades of research haven't yet declared what the optimal HMI is in this context;in particular, the traditional approach based upon surface electromyography (sEMGstill yields unreliable results due to the inherent variability of the signal. Toovercome this problem, the scientific community has recently been advocating thediscovery, analysis and usage of novel HMIs to supersede or augment sEMG; a comparativeanalysis of such HMIs is therefore a very desirable investigation.In this paper we compare three such HMIs employed in the detection of finger forces,namely sEMG, ultrasound imaging and pressure sensing. The comparison is performed alongfour main lines: the accuracy in the prediction, the stability over time, the wearabilityand the cost. A psychophysical experiment involving ten intact subjects engaged ina simple finger-flexion task was set up. Our results show that, at least in thisexperiment, pressure sensing and sEMG yield comparably good prediction accuraciesas opposed to ultrasound imaging; and that pressure sensing enjoys a much better stabilitythan sEMG.Given that pressure sensors are as wearable as sEMG electrodes but way cheaper, we claimthat this HMI could represent a valid alternative /augmentation to sEMG to control amulti-fingered hand prosthesis.

  18. "Involving interface": an extended mind theoretical approach to roboethics.

    Science.gov (United States)

    Anderson, Miranda; Ishiguro, Hiroshi; Fukushi, Tamami

    2010-11-01

    In 2008 the authors held "Involving Interface," a lively interdisciplinary event focusing on issues of biological, sociocultural, and technological interfacing (see Acknowledgments). Inspired by discussions at this event, in this article, we further discuss the value of input from neuroscience for developing robots and machine interfaces, and the value of philosophy, the humanities, and the arts for identifying persistent links between human interfacing and broader ethical concerns. The importance of ongoing interdisciplinary debate and public communication on scientific and technical advances is also highlighted. Throughout, the authors explore the implications of the extended mind hypothesis for notions of moral accountability and robotics.

  19. Transcription of lncRNA prt, clustered prt RNA sites for Mmi1 binding, and RNA polymerase II CTD phospho-sites govern the repression of pho1 gene expression under phosphate-replete conditions in fission yeast.

    Science.gov (United States)

    Chatterjee, Debashree; Sanchez, Ana M; Goldgur, Yehuda; Shuman, Stewart; Schwer, Beate

    2016-07-01

    Expression of fission yeast Pho1 acid phosphatase is repressed during growth in phosphate-rich medium. Repression is mediated by transcription of the prt locus upstream of pho1 to produce a long noncoding (lnc) prt RNA. Repression is also governed by RNA polymerase II CTD phosphorylation status, whereby inability to place a Ser7-PO4 mark (as in S7A) derepresses Pho1 expression, and inability to place a Thr4-PO4 mark (as in T4A) hyper-represses Pho1 in phosphate replete cells. Here we find that basal pho1 expression from the prt-pho1 locus is inversely correlated with the activity of the prt promoter, which resides in a 110-nucleotide DNA segment preceding the prt transcription start site. CTD mutations S7A and T4A had no effect on the activity of the prt promoter or the pho1 promoter, suggesting that S7A and T4A affect post-initiation events in prt lncRNA synthesis that make it less and more repressive of pho1, respectively. prt lncRNA contains clusters of DSR (determinant of selective removal) sequences recognized by the YTH-domain-containing protein Mmi1. Altering the nucleobase sequence of two DSR clusters in the prt lncRNA caused hyper-repression of pho1 in phosphate replete cells, concomitant with increased levels of the prt transcript. The isolated Mmi1 YTH domain binds to RNAs with single or tandem DSR elements, to the latter in a noncooperative fashion. We report the 1.75 Å crystal structure of the Mmi1 YTH domain and provide evidence that Mmi1 recognizes DSR RNA via a binding mode distinct from that of structurally homologous YTH proteins that recognize m(6)A-modified RNA. © 2016 Chatterjee et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  20. Simulation-based man-machine interface evaluation for plant maintenance facilities

    International Nuclear Information System (INIS)

    Nakagawa, Takashi; Kitamura, Masashi; Nakatani, Yoshio; Umeda, Yoshikazu

    1998-01-01

    Although a lot of human errors has occurred in the maintenance of power plants, systematic approaches to the reduction of human error are not sufficient compared with those applied to operations. The authors propose a new method of evaluating and analyzing human interface design from the viewpoint of human error reduction, and have implemented the method on the DIAS system. This system consists of maintenance personnel and equipment interface simulators, and it generates a dynamic interaction between humans and the working environment. The DIAS system can calculate the human error rate and their weighted calculations according to dangerousness, the influence on the equipment, and the influence on the plant of each task by THERP, and can carry out the dynamic analysis of the panel selection error index if there is similar equipment in the neighborhood, the working time, the distance of movement, and the distance of eye movement. The authors applied this system to evaluate the interface design of actual Transformer Protection Relay Panels and their layout in a room in a nuclear power plant. Our customer accepted our evaluation and proposals modifying the panel design. (author)

  1. A hybrid brain-machine interface based on EEG and EMG activity for the motor rehabilitation of stroke patients.

    Science.gov (United States)

    Sarasola-Sanz, Andrea; Irastorza-Landa, Nerea; Lopez-Larraz, Eduardo; Bibian, Carlos; Helmhold, Florian; Broetz, Doris; Birbaumer, Niels; Ramos-Murguialday, Ander

    2017-07-01

    Including supplementary information from the brain or other body parts in the control of brain-machine interfaces (BMIs) has been recently proposed and investigated. Such enriched interfaces are referred to as hybrid BMIs (hBMIs) and have been proven to be more robust and accurate than regular BMIs for assistive and rehabilitative applications. Electromyographic (EMG) activity is one of the most widely utilized biosignals in hBMIs, as it provides a quite direct measurement of the motion intention of the user. Whereas most of the existing non-invasive EEG-EMG-hBMIs have only been subjected to offline testings or are limited to one degree of freedom (DoF), we present an EEG-EMG-hBMI that allows the simultaneous control of 7-DoFs of the upper limb with a robotic exoskeleton. Moreover, it establishes a biologically-inspired hierarchical control flow, requiring the active participation of central and peripheral structures of the nervous system. Contingent visual and proprioceptive feedback about the user's EEG and EMG activity is provided in the form of velocity modulation during functional task training. We believe that training with this closed-loop system may facilitate functional neuroplastic processes and eventually elicit a joint brain and muscle motor rehabilitation. Its usability is validated during a real-time operation session in a healthy participant and a chronic stroke patient, showing encouraging results for its application to a clinical rehabilitation scenario.

  2. Brain machine interface and limb reanimation technologies: restoring function after spinal cord injury through development of a bypass system.

    Science.gov (United States)

    Lobel, Darlene A; Lee, Kendall H

    2014-05-01

    Functional restoration of limb movement after traumatic spinal cord injury (SCI) remains the ultimate goal in SCI treatment and directs the focus of current research strategies. To date, most investigations in the treatment of SCI focus on repairing the injury site. Although offering some promise, these efforts have met with significant roadblocks because treatment measures that are successful in animal trials do not yield similar results in human trials. In contrast to biologic therapies, there are now emerging neural interface technologies, such as brain machine interface (BMI) and limb reanimation through electrical stimulators, to create a bypass around the site of the SCI. The BMI systems analyze brain signals to allow control of devices that are used to assist SCI patients. Such devices may include a computer, robotic arm, or exoskeleton. Limb reanimation technologies, which include functional electrical stimulation, epidural stimulation, and intraspinal microstimulation systems, activate neuronal pathways below the level of the SCI. We present a concise review of recent advances in the BMI and limb reanimation technologies that provides the foundation for the development of a bypass system to improve functional outcome after traumatic SCI. We also discuss challenges to the practical implementation of such a bypass system in both these developing fields. Copyright © 2014 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  3. A Brain-Machine Interface Based on ERD/ERS for an Upper-Limb Exoskeleton Control

    Directory of Open Access Journals (Sweden)

    Zhichuan Tang

    2016-12-01

    Full Text Available To recognize the user’s motion intention, brain-machine interfaces (BMI usually decode movements from cortical activity to control exoskeletons and neuroprostheses for daily activities. The aim of this paper is to investigate whether self-induced variations of the electroencephalogram (EEG can be useful as control signals for an upper-limb exoskeleton developed by us. A BMI based on event-related desynchronization/synchronization (ERD/ERS is proposed. In the decoder-training phase, we investigate the offline classification performance of left versus right hand and left hand versus both feet by using motor execution (ME or motor imagery (MI. The results indicate that the accuracies of ME sessions are higher than those of MI sessions, and left hand versus both feet paradigm achieves a better classification performance, which would be used in the online-control phase. In the online-control phase, the trained decoder is tested in two scenarios (wearing or without wearing the exoskeleton. The MI and ME sessions wearing the exoskeleton achieve mean classification accuracy of 84.29% ± 2.11% and 87.37% ± 3.06%, respectively. The present study demonstrates that the proposed BMI is effective to control the upper-limb exoskeleton, and provides a practical method by non-invasive EEG signal associated with human natural behavior for clinical applications.

  4. A human-machine interface evaluation method: A difficulty evaluation method in information searching (DEMIS)

    International Nuclear Information System (INIS)

    Ha, Jun Su; Seong, Poong Hyun

    2009-01-01

    A human-machine interface (HMI) evaluation method, which is named 'difficulty evaluation method in information searching (DEMIS)', is proposed and demonstrated with an experimental study. The DEMIS is based on a human performance model and two measures of attentional-resource effectiveness in monitoring and detection tasks in nuclear power plants (NPPs). Operator competence and HMI design are modeled to be most significant factors to human performance. One of the two effectiveness measures is fixation-to-importance ratio (FIR) which represents attentional resource (eye fixations) spent on an information source compared to importance of the information source. The other measure is selective attention effectiveness (SAE) which incorporates FIRs for all information sources. The underlying principle of the measures is that the information source should be selectively attended to according to its informational importance. In this study, poor performance in information searching tasks is modeled to be coupled with difficulties caused by poor mental models of operators or/and poor HMI design. Human performance in information searching tasks is evaluated by analyzing the FIR and the SAE. Operator mental models are evaluated by a questionnaire-based method. Then difficulties caused by a poor HMI design are evaluated by a focused interview based on the FIR evaluation and then root causes leading to poor performance are identified in a systematic way.

  5. The Human Factors System of VGB. The body of measures implemented by the NPP operating companies for HF management and optimisation of the man-machine interface

    International Nuclear Information System (INIS)

    Eisgruber, H.; Janssen, G.

    1999-01-01

    One way of ensuring high human reliability is to systematically record, analyse and optimise the identified human factors influencing the safety of operation of NPPs. There are two kinds of human factors to be considered: Those identified and characterised in their actual influence on the man-machine system after an event has happened, and the potential human factors, as far as they are known. The purpose of the paper presented is to: - explain the man-machine interface on the basis of the descriptions delivered by work science, as well as with the information model (acquisition, processing and application of information); - explain their influence on the human performance; - identify the organisational units/competences of a nuclear power plant with respect to responsibility for dealing with those factors influencing human performance; - describe suitable joint action of the responsible organisational units; - present results of HF system reviews and modifications. (orig./CB) [de

  6. Towards a real-time interface between a biomimetic model of sensorimotor cortex and a robotic arm

    OpenAIRE

    Dura-Bernal, Salvador; Chadderdon, George L; Neymotin, Samuel A; Francis, Joseph T; Lytton, William W

    2014-01-01

    Brain-machine interfaces can greatly improve the performance of prosthetics. Utilizing biomimetic neuronal modeling in brain machine interfaces (BMI) offers the possibility of providing naturalistic motor-control algorithms for control of a robotic limb. This will allow finer control of a robot, while also giving us new tools to better understand the brain’s use of electrical signals. However, the biomimetic approach presents challenges in integrating technologies across multiple hardware and...

  7. Mobility Systems For Robotic Vehicles

    Science.gov (United States)

    Chun, Wendell

    1987-02-01

    The majority of existing robotic systems can be decomposed into five distinct subsystems: locomotion, control/man-machine interface (MMI), sensors, power source, and manipulator. When designing robotic vehicles, there are two main requirements: first, to design for the environment and second, for the task. The environment can be correlated with known missions. This can be seen by analyzing existing mobile robots. Ground mobile systems are generally wheeled, tracked, or legged. More recently, underwater vehicles have gained greater attention. For example, Jason Jr. made history by surveying the sunken luxury liner, the Titanic. The next big surge of robotic vehicles will be in space. This will evolve as a result of NASA's commitment to the Space Station. The foreseeable robots will interface with current systems as well as standalone, free-flying systems. A space robotic vehicle is similar to its underwater counterpart with very few differences. Their commonality includes missions and degrees-of-freedom. The issues of stability and communication are inherent in both systems and environment.

  8. Local-learning-based neuron selection for grasping gesture prediction in motor brain machine interfaces

    Science.gov (United States)

    Xu, Kai; Wang, Yiwen; Wang, Yueming; Wang, Fang; Hao, Yaoyao; Zhang, Shaomin; Zhang, Qiaosheng; Chen, Weidong; Zheng, Xiaoxiang

    2013-04-01

    Objective. The high-dimensional neural recordings bring computational challenges to movement decoding in motor brain machine interfaces (mBMI), especially for portable applications. However, not all recorded neural activities relate to the execution of a certain movement task. This paper proposes to use a local-learning-based method to perform neuron selection for the gesture prediction in a reaching and grasping task. Approach. Nonlinear neural activities are decomposed into a set of linear ones in a weighted feature space. A margin is defined to measure the distance between inter-class and intra-class neural patterns. The weights, reflecting the importance of neurons, are obtained by minimizing a margin-based exponential error function. To find the most dominant neurons in the task, 1-norm regularization is introduced to the objective function for sparse weights, where near-zero weights indicate irrelevant neurons. Main results. The signals of only 10 neurons out of 70 selected by the proposed method could achieve over 95% of the full recording's decoding accuracy of gesture predictions, no matter which different decoding methods are used (support vector machine and K-nearest neighbor). The temporal activities of the selected neurons show visually distinguishable patterns associated with various hand states. Compared with other algorithms, the proposed method can better eliminate the irrelevant neurons with near-zero weights and provides the important neuron subset with the best decoding performance in statistics. The weights of important neurons converge usually within 10-20 iterations. In addition, we study the temporal and spatial variation of neuron importance along a period of one and a half months in the same task. A high decoding performance can be maintained by updating the neuron subset. Significance. The proposed algorithm effectively ascertains the neuronal importance without assuming any coding model and provides a high performance with different

  9. The Neural-fuzzy Thermal Error Compensation Controller on CNC Machining Center

    Science.gov (United States)

    Tseng, Pai-Chung; Chen, Shen-Len

    The geometric errors and structural thermal deformation are factors that influence the machining accuracy of Computer Numerical Control (CNC) machining center. Therefore, researchers pay attention to thermal error compensation technologies on CNC machine tools. Some real-time error compensation techniques have been successfully demonstrated in both laboratories and industrial sites. The compensation results still need to be enhanced. In this research, the neural-fuzzy theory has been conducted to derive a thermal prediction model. An IC-type thermometer has been used to detect the heat sources temperature variation. The thermal drifts are online measured by a touch-triggered probe with a standard bar. A thermal prediction model is then derived by neural-fuzzy theory based on the temperature variation and the thermal drifts. A Graphic User Interface (GUI) system is also built to conduct the user friendly operation interface with Insprise C++ Builder. The experimental results show that the thermal prediction model developed by neural-fuzzy theory methodology can improve machining accuracy from 80µm to 3µm. Comparison with the multi-variable linear regression analysis the compensation accuracy is increased from ±10µm to ±3µm.

  10. Prototyping visual interface for maintenance and supply databases

    OpenAIRE

    Fore, Henry Ray

    1989-01-01

    Approved for public release; distribution is unlimited This research examined the feasibility of providing a visual interface to standard Army Management Information Systems at the unit level. The potential of improving the Human-Machine Interface of unit level maintenance and supply software, such as ULLS (Unit Level Logistics System), is very attractive. A prototype was implemented in GLAD (Graphics Language for Database). GLAD is a graphics object-oriented environment for databases t...

  11. Neural Control of a Tracking Task via Attention-Gated Reinforcement Learning for Brain-Machine Interfaces.

    Science.gov (United States)

    Wang, Yiwen; Wang, Fang; Xu, Kai; Zhang, Qiaosheng; Zhang, Shaomin; Zheng, Xiaoxiang

    2015-05-01

    Reinforcement learning (RL)-based brain machine interfaces (BMIs) enable the user to learn from the environment through interactions to complete the task without desired signals, which is promising for clinical applications. Previous studies exploited Q-learning techniques to discriminate neural states into simple directional actions providing the trial initial timing. However, the movements in BMI applications can be quite complicated, and the action timing explicitly shows the intention when to move. The rich actions and the corresponding neural states form a large state-action space, imposing generalization difficulty on Q-learning. In this paper, we propose to adopt attention-gated reinforcement learning (AGREL) as a new learning scheme for BMIs to adaptively decode high-dimensional neural activities into seven distinct movements (directional moves, holdings and resting) due to the efficient weight-updating. We apply AGREL on neural data recorded from M1 of a monkey to directly predict a seven-action set in a time sequence to reconstruct the trajectory of a center-out task. Compared to Q-learning techniques, AGREL could improve the target acquisition rate to 90.16% in average with faster convergence and more stability to follow neural activity over multiple days, indicating the potential to achieve better online decoding performance for more complicated BMI tasks.

  12. Development of new plant monitoring and control system with advanced man-machine interfaces NUCAMM-80

    International Nuclear Information System (INIS)

    Sato, Hideyuki; Joge, Toshio; Miyake, Masao; Kishi, Shoichi

    1981-01-01

    BWR type nuclear power stations are the typical plants adopting central monitoring system in view of the size of the scale of system and the prevention of radiation exposure. Central control boards became large as much informations and many operating tools are concentrated on them. Recently, the unit capacity has increased, and the safety has been strengthened, therefore more improvement of the man-machine interface is required concerning the monitoring of plant operation. Hitachi Ltd. developed the central monitoring and control system for nuclear power stations ''NUCAMM-80'', concentrating related fundamental techniques such as the collection of plant informations, the expansion of automatic operation, the ergonomic re-evaluation of the arrangement of panels and subsystems, and the effective use of functional hardwares such as controlling computers and cathode ray tubes, for the purposes of improving the reliability of plant operation and the rate of operation, the reduction of the burden of operators and drastic labor saving. The fundamental policy of the development, the construction of the system, panel layout and the collection of informations, the development of the system for plant automation, the development of plant diagnosis and prevention systems, computer system and the merits of this system are described. (Kako, I.)

  13. A study on the application of voice interaction in automotive human machine interface experience design

    Science.gov (United States)

    Huang, Zhaohui; Huang, Xiemin

    2018-04-01

    This paper, firstly, introduces the application trend of the integration of multi-channel interactions in automotive HMI ((Human Machine Interface) from complex information models faced by existing automotive HMI and describes various interaction modes. By comparing voice interaction and touch screen, gestures and other interaction modes, the potential and feasibility of voice interaction in automotive HMI experience design are concluded. Then, the related theories of voice interaction, identification technologies, human beings' cognitive models of voices and voice design methods are further explored. And the research priority of this paper is proposed, i.e. how to design voice interaction to create more humane task-oriented dialogue scenarios to enhance interactive experiences of automotive HMI. The specific scenarios in driving behaviors suitable for the use of voice interaction are studied and classified, and the usability principles and key elements for automotive HMI voice design are proposed according to the scenario features. Then, through the user participatory usability testing experiment, the dialogue processes of voice interaction in automotive HMI are defined. The logics and grammars in voice interaction are classified according to the experimental results, and the mental models in the interaction processes are analyzed. At last, the voice interaction design method to create the humane task-oriented dialogue scenarios in the driving environment is proposed.

  14. Stretchable human-machine interface based on skin-conformal sEMG electrodes with self-similar geometry

    Science.gov (United States)

    Dong, Wentao; Zhu, Chen; Hu, Wei; Xiao, Lin; Huang, Yong'an

    2018-01-01

    Current stretchable surface electrodes have attracted increasing attention owing to their potential applications in biological signal monitoring, wearable human-machine interfaces (HMIs) and the Internet of Things. The paper proposed a stretchable HMI based on a surface electromyography (sEMG) electrode with a self-similar serpentine configuration. The sEMG electrode was transfer-printed onto the skin surface conformally to monitor biological signals, followed by signal classification and controlling of a mobile robot. Such electrodes can bear rather large deformation (such as >30%) under an appropriate areal coverage. The sEMG electrodes have been used to record electrophysiological signals from different parts of the body with sharp curvature, such as the index finger, back of the neck and face, and they exhibit great potential for HMI in the fields of robotics and healthcare. The electrodes placed onto the two wrists would generate two different signals with the fist clenched and loosened. It is classified to four kinds of signals with a combination of the gestures from the two wrists, that is, four control modes. Experiments demonstrated that the electrodes were successfully used as an HMI to control the motion of a mobile robot remotely. Project supported by the National Natural Science Foundation of China (Nos. 51635007, 91323303).

  15. A brain-machine-muscle interface for restoring hindlimb locomotion after complete spinal transection in rats.

    Directory of Open Access Journals (Sweden)

    Monzurul Alam

    Full Text Available A brain-machine interface (BMI is a neuroprosthetic device that can restore motor function of individuals with paralysis. Although the feasibility of BMI control of upper-limb neuroprostheses has been demonstrated, a BMI for the restoration of lower-limb motor functions has not yet been developed. The objective of this study was to determine if gait-related information can be captured from neural activity recorded from the primary motor cortex of rats, and if this neural information can be used to stimulate paralysed hindlimb muscles after complete spinal cord transection. Neural activity was recorded from the hindlimb area of the primary motor cortex of six female Sprague Dawley rats during treadmill locomotion before and after mid-thoracic transection. Before spinal transection there was a strong association between neural activity and the step cycle. This association decreased after spinal transection. However, the locomotive state (standing vs. walking could still be successfully decoded from neural recordings made after spinal transection. A novel BMI device was developed that processed this neural information in real-time and used it to control electrical stimulation of paralysed hindlimb muscles. This system was able to elicit hindlimb muscle contractions that mimicked forelimb stepping. We propose this lower-limb BMI as a future neuroprosthesis for human paraplegics.

  16. Optimization of the man-machine interface for LMFBRs

    International Nuclear Information System (INIS)

    Seeman, S.E.; Colley, R.W.; Stratton, R.C.

    1982-01-01

    An effort is underway to optimize the roles of man and machine in control of Liquid Metal Fast Breeder Reactors. The work reported on here describes two systems that have been developed. The first of these, MIDAS, is a large data base system developed for use at FFTF as an aid to operators in determining how to proceed with maintenance and repairs to be carried out on plant components. This system is presently in use at FFTF. The second system, the Procedure Prompting System, is a system being developed to demonstrate a new methodology for automatically generating off-normal plant recovery instructions. The methodology for this system has been demonstrated on a model of a small subsystem of FFTF

  17. Technology Roadmap on Instrumentation, Control, and Human-Machine Interface to Support DOE Advanced Nuclear Energy Programs

    International Nuclear Information System (INIS)

    Donald D Dudenhoeffer; Burce P Hallbert

    2007-01-01

    Instrumentation, Controls, and Human-Machine Interface (ICHMI) technologies are essential to ensuring delivery and effective operation of optimized advanced Generation IV (Gen IV) nuclear energy systems. In 1996, the Watts Bar I nuclear power plant in Tennessee was the last U.S. nuclear power plant to go on line. It was, in fact, built based on pre-1990 technology. Since this last U.S. nuclear power plant was designed, there have been major advances in the field of ICHMI systems. Computer technology employed in other industries has advanced dramatically, and computing systems are now replaced every few years as they become functionally obsolete. Functional obsolescence occurs when newer, more functional technology replaces or supersedes an existing technology, even though an existing technology may well be in working order. Although ICHMI architectures are comprised of much of the same technology, they have not been updated nearly as often in the nuclear power industry. For example, some newer Personal Digital Assistants (PDAs) or handheld computers may, in fact, have more functionality than the 1996 computer control system at the Watts Bar I plant. This illustrates the need to transition and upgrade current nuclear power plant ICHMI technologies

  18. Haemodialysis at home: review of current dialysis machines.

    Science.gov (United States)

    Haroon, Sabrina; Davenport, Andrew

    2018-04-26

    Only a minority of patients with chronic kidney disease treated by hemodialysis are currently treated at home. Until relatively recently, the only type of hemodialysis machine available for these patients was a slightly smaller version of the standard machines used for in-center dialysis treatments. Areas covered: There are now an alternative generation of dialysis machines specifically designed for home hemodialysis. The home dialysis patient wants a smaller machine, which is intuitive to use, easy to trouble shoot, robust and reliable, quick to setup and put away, requiring minimal waste disposal. The machines designed for home dialysis have some similarities in terms of touch-screen patient interfaces, and using pre-prepared cartridges to speed up setting up the machine. On the other hand, they differ in terms of whether they use slower or standard dialysate flows, prepare batches of dialysis fluid, require separate water purification equipment, or whether this is integrated, or use pre-prepared sterile bags of dialysis fluid. Expert commentary: Dialysis machine complexity is one of the hurdles reducing the number of patients opting for home hemodialysis and the introduction of the newer generation of dialysis machines designed for ease of use will hopefully increase the number of patients opting for home hemodialysis.

  19. ClearTK 2.0: Design Patterns for Machine Learning in UIMA.

    Science.gov (United States)

    Bethard, Steven; Ogren, Philip; Becker, Lee

    2014-05-01

    ClearTK adds machine learning functionality to the UIMA framework, providing wrappers to popular machine learning libraries, a rich feature extraction library that works across different classifiers, and utilities for applying and evaluating machine learning models. Since its inception in 2008, ClearTK has evolved in response to feedback from developers and the community. This evolution has followed a number of important design principles including: conceptually simple annotator interfaces, readable pipeline descriptions, minimal collection readers, type system agnostic code, modules organized for ease of import, and assisting user comprehension of the complex UIMA framework.

  20. A method to evaluate the perceived ease of use of human-machine interface in agricultural tractors equipped with Continuously Variable Transmission (CVT)

    Energy Technology Data Exchange (ETDEWEB)

    Caffaro, F.; Bisaglia, C.; Cutini, M.; Cremasco, M.M.; Cavallo, E.

    2017-07-01

    At the end of the 20th century the adoption of the Continuously Variable Transmission (CVT) was one of the disruptive technological advances in agricultural tractors. Several changes in the Human Machine Interface (HMI) of the tractor cab have been introduced to accommodate this technology. HMIs are known to raise issues about their ease of use; however, this topic has been under-investigated in the agricultural sector. The present study introduces a method to investigate the perceived ease of use of the HMI of agricultural tractors equipped with technological innovations. The HMI required to manage a CVT tractor was evaluated by sixteen tractor drivers (8 novices and 8 experts). During the first contact with the machine and after having performed two targeted tasks with the tractor, participants filled in a questionnaire about the ease of use of the controls and of the touch-screen display, and evaluated the general perception of ease of use, safety, quality and solidity of the machine. The trial pointed out some significant differences between novices and experts, thus confirming the validity of the proposed method. In particular, novice users showed some difficulties when interacting for the first time with the HMI of the CVT tractor working station, whereas experts did not report similar difficulties. Thus, expertise seems to play a role in determining the quality of the interaction with the HMI. Training interventions should be designed to help novices in increasing their expertise effectively, avoiding effort and errors and improving user’s comfort and system performance.

  1. A method to evaluate the perceived ease of use of human-machine interface in agricultural tractors equipped with Continuously Variable Transmission (CVT

    Directory of Open Access Journals (Sweden)

    Federica Caffaro

    2018-02-01

    Full Text Available At the end of the 20th century the adoption of the Continuously Variable Transmission (CVT was one of the disruptive technological advances in agricultural tractors. Several changes in the Human Machine Interface (HMI of the tractor cab have been introduced to accommodate this technology. HMIs are known to raise issues about their ease of use; however, this topic has been under-investigated in the agricultural sector. The present study introduces a method to investigate the perceived ease of use of the HMI of agricultural tractors equipped with technological innovations. The HMI required to manage a CVT tractor was evaluated by sixteen tractor drivers (8 novices and 8 experts. During the first contact with the machine and after having performed two targeted tasks with the tractor, participants filled in a questionnaire about the ease of use of the controls and of the touch-screen display, and evaluated the general perception of ease of use, safety, quality and solidity of the machine. The trial pointed out some significant differences between novices and experts, thus confirming the validity of the proposed method. In particular, novice users showed some difficulties when interacting for the first time with the HMI of the CVT tractor working station, whereas experts did not report similar difficulties. Thus, expertise seems to play a role in determining the quality of the interaction with the HMI. Training interventions should be designed to help novices in increasing their expertise effectively, avoiding effort and errors and improving user’s comfort and system performance.

  2. A method to evaluate the perceived ease of use of human-machine interface in agricultural tractors equipped with Continuously Variable Transmission (CVT)

    International Nuclear Information System (INIS)

    Caffaro, F.; Bisaglia, C.; Cutini, M.; Cremasco, M.M.; Cavallo, E.

    2017-01-01

    At the end of the 20th century the adoption of the Continuously Variable Transmission (CVT) was one of the disruptive technological advances in agricultural tractors. Several changes in the Human Machine Interface (HMI) of the tractor cab have been introduced to accommodate this technology. HMIs are known to raise issues about their ease of use; however, this topic has been under-investigated in the agricultural sector. The present study introduces a method to investigate the perceived ease of use of the HMI of agricultural tractors equipped with technological innovations. The HMI required to manage a CVT tractor was evaluated by sixteen tractor drivers (8 novices and 8 experts). During the first contact with the machine and after having performed two targeted tasks with the tractor, participants filled in a questionnaire about the ease of use of the controls and of the touch-screen display, and evaluated the general perception of ease of use, safety, quality and solidity of the machine. The trial pointed out some significant differences between novices and experts, thus confirming the validity of the proposed method. In particular, novice users showed some difficulties when interacting for the first time with the HMI of the CVT tractor working station, whereas experts did not report similar difficulties. Thus, expertise seems to play a role in determining the quality of the interaction with the HMI. Training interventions should be designed to help novices in increasing their expertise effectively, avoiding effort and errors and improving user’s comfort and system performance.

  3. Some Human Factors Considerations for Designing Mixed Reality Interfaces

    National Research Council Canada - National Science Library

    Milgram, Paul

    2006-01-01

    ...), as well as the case of Augmented Virtuality (AV). In designing human-machine interfaces for mixed reality applications, a number of considerations are discussed which may potentially impact the effectiveness of the design...

  4. Future Smart Cooking Machine System Design

    Directory of Open Access Journals (Sweden)

    Dewi Agushinta R.

    2013-11-01

    Full Text Available There are many tools make human task get easier. Cooking has become a basic necessity for human beings, since food is one of basic human needs. Until now, the cooking equipment being used is still a hand tool. However everyone has slightly high activity. The presence of cooking tools that can do the cooking work by itself is now necessary. Future Smart Cooking Machine is an artificial intelligence machine that can do cooking work automatically. With this system design, the time is minimized and the ease of work is expected to be achieved. The development of this system is carried out with System Development Life Cycle (SDLC methods. Prototyping method used in this system is a throw-away prototyping approach. At the end of this research there will be produced a cooking machine system design including physical design engine and interface design.

  5. Smart machine protection system

    International Nuclear Information System (INIS)

    Clark, S.; Nelson, D.; Grillo, A.

    1992-01-01

    A Machine Protection System implemented on the SLC automatically controls the beam repetition rates in the accelerator so that radiation or temperature faults slow the repetition rate to bring the fault within tolerance without shutting down the machine. This process allows the accelerators to aid in the fault diagnostic process, and the protection system automatically restores the beams back to normal rates when the fault is diagnosed and corrected. The user interface includes facilities to monitor the performance of the system, and track rate limits, faults, and recoveries. There is an edit facility to define the devices to be included in the protection system, along with their set points, limits, and trip points. This set point and limit data is downloaded into the CAMAC modules, and the configuration data is complied into a logical decision tree for the 68030 processor. (author)

  6. Smart Machine Protection System

    International Nuclear Information System (INIS)

    Clark, S.; Nelson, D.; Grillo, A.; Spencer, N.; Hutchinson, D.; Olsen, J.; Millsom, D.; White, G.; Gromme, T.; Allison, S.; Underwood, K.; Zelazny, M.; Kang, H.

    1991-11-01

    A Machine Protection System implemented on the SLC automatically controls the beam repetition rates in the accelerator so that radiation or temperature faults slow the repetition rate to bring the fault within tolerance without shutting down the machine. This process allows the accelerator to aid in the fault diagnostic process, and the protection system automatically restores the beams back to normal rates when the fault is diagnosed and corrected. The user interface includes facilities to monitor the performance of the system, and track rate limits, faults, and recoveries. There is an edit facility to define the devices to be included in the protection system, along with their set points, limits, and trip points. This set point and limit data is downloaded into the CAMAC modules, and the configuration data is compiled into a logical decision tree for the 68030 processor. 3 figs

  7. Development of Baby-EBM Interface System

    International Nuclear Information System (INIS)

    Mukhlis Mokhtar; Abu Bakar Ghazali; Muhammad Zahidee Taat

    2010-01-01

    This paper explains the works being done to develop an interface system for Baby-Electron Beam Machine (EBM). The function of the system is for the safety, controlling and monitoring the Baby-EBM. The integration for the system is using data acquisition (DAQ) hardware and LabVIEW to develop the software. (author)

  8. Development of Baby-EBM Interface System

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtar, Mukhlis; Ghazali, Abu Bakar; Taat, Muhammad Zahidee [Accelerator Development Center, Malaysian Nuclear Agency, Bangi, Kajang, Selangor (Malaysia), Technical Support Div.

    2010-07-01

    This paper explains the works being done to develop an interface system for Baby-Electron Beam Machine (EBM). The function of the system is for the safety, controlling and monitoring the Baby-EBM. The integration for the system is using data acquisition (DAQ) hardware and LabVIEW to develop the software. (author)

  9. OpenML : An R package to connect to the machine learning platform OpenML

    NARCIS (Netherlands)

    Casalicchio, G.; Bossek, J.; Lang, M.; Kirchhoff, D.; Kerschke, P.; Hofner, B.; Seibold, H.; Vanschoren, J.; Bischl, B.

    2017-01-01

    OpenML is an online machine learning platform where researchers can easily share data, machine learning tasks and experiments as well as organize them online to work and collaborate more efficiently. In this paper, we present an R package to interface with the OpenML platform and illustrate its

  10. HMI-Design of System Solutions in Control Rooms. Description of a Working Process from a Human-Machine Perspective; MMI-design av systemloesningar i kontrollrum. Arbetsprocess foer utformning utifraan ett maenniska-maskinperspektiv

    Energy Technology Data Exchange (ETDEWEB)

    Bligaard, Lars-Ola; Andersson, Jonas; Thunberg, Anna; Osvalder, Anna-Lisa

    2008-01-15

    To stay competitive, the process industry of today faces increasing demands of continuous development for efficient use of both technical and human resources. An important step is to create new useful technical solutions, which also bring demands on functionality and usability. Functionality means that the new technology fulfils its purpose, while usability means that the human operator knows how to handle the new technology. If any of these two components are inferior, the potential of new technology will never be fully utilized. Today, a growing amount of advanced information technology is being used in supervisory control, at the same time as the process complexity is increasing. The technology has thereby become more difficult to understand, supervise and control, when processes, connections and logics are not visible in the same way as earlier. An increased level of automation together with reduced work force is also a contributing factor. Due to this, human-machine interaction (HMI) has become a more important aspect of quality in the development of new technology. From the operators' point of view, it is important that the development takes place with an increased transparency of the technical system, as well as reduction of the amount of information that has to be processed by the operator. To achieve a good human-machine interaction, it has to be considered during all phases in the development process of control room design. It is important that relevant hand-books and guidelines are used, but also a working process, which describes how the development work should be performed and the relationship between different parts in the process. The aim of this project was to present a general report in Swedish, which describes a working process for development of useful operator interfaces, work tasks, instructions, and working environments. The report is primarily aimed for the process industry, but can be useful in all other areas including interaction

  11. Machine learning for Big Data analytics in plants.

    Science.gov (United States)

    Ma, Chuang; Zhang, Hao Helen; Wang, Xiangfeng

    2014-12-01

    Rapid advances in high-throughput genomic technology have enabled biology to enter the era of 'Big Data' (large datasets). The plant science community not only needs to build its own Big-Data-compatible parallel computing and data management infrastructures, but also to seek novel analytical paradigms to extract information from the overwhelming amounts of data. Machine learning offers promising computational and analytical solutions for the integrative analysis of large, heterogeneous and unstructured datasets on the Big-Data scale, and is gradually gaining popularity in biology. This review introduces the basic concepts and procedures of machine-learning applications and envisages how machine learning could interface with Big Data technology to facilitate basic research and biotechnology in the plant sciences. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. A physical implementation of the Turing machine accessed through Web

    Directory of Open Access Journals (Sweden)

    Marijo Maracic

    2008-11-01

    Full Text Available A Turing machine has an important role in education in the field of computer science, as it is a milestone in courses related to automata theory, theory of computation and computer architecture. Its value is also recognized in the Computing Curricula proposed by the Association for Computing Machinery (ACM and IEEE Computer Society. In this paper we present a physical implementation of the Turing machine accessed through Web. To enable remote access to the Turing machine, an implementation of the client-server architecture is built. The web interface is described in detail and illustrations of remote programming, initialization and the computation of the Turing machine are given. Advantages of such approach and expected benefits obtained by using remotely accessible physical implementation of the Turing machine as an educational tool in the teaching process are discussed.

  13. Film riding seals for rotary machines

    Science.gov (United States)

    Bidkar, Rahul Anil; Sarawate, Neelesh Nandkumar; Wolfe, Christopher Edward; Ruggiero, Eric John; Raj Mohan, Vivek Raja

    2017-03-07

    A seal assembly for a rotary machine is provided. The seal assembly includes multiple sealing device segments disposed circumferentially intermediate to a stationary housing and a rotor. Each of the segments includes a shoe plate with a forward-shoe section and an aft-shoe section having one or more labyrinth teeth therebetween facing the rotor. The sealing device includes a stator interface element having a groove or slot for allowing disposal of a spline seal for preventing segment leakages. The sealing device segment also includes multiple bellow springs or flexures connected to the shoe plate and to the stator interface element. Further, the sealing device segments include a secondary seal integrated with the stator interface element at one end and positioned about the multiple bellow springs or flexures and the shoe plate at the other end.

  14. Stability Assessment of a System Comprising a Single Machine and Inverter with Scalable Ratings

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Brian B [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lin, Yashen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gevorgian, Vahan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Purba, Victor [University of Minnesota; Dhople, Sairaj [University of Minnesota

    2017-09-28

    From the inception of power systems, synchronous machines have acted as the foundation of large-scale electrical infrastructures and their physical properties have formed the cornerstone of system operations. However, power electronics interfaces are playing a growing role as they are the primary interface for several types of renewable energy sources and storage technologies. As the role of power electronics in systems continues to grow, it is crucial to investigate the properties of bulk power systems in low inertia settings. In this paper, we assess the properties of coupled machine-inverter systems by studying an elementary system comprised of a synchronous generator, three-phase inverter, and a load. Furthermore, the inverter model is formulated such that its power rating can be scaled continuously across power levels while preserving its closed-loop response. Accordingly, the properties of the machine-inverter system can be assessed for varying ratios of machine-to-inverter power ratings and, hence, differing levels of inertia. After linearizing the model and assessing its eigenvalues, we show that system stability is highly dependent on the interaction between the inverter current controller and machine exciter, thus uncovering a key concern with mixed machine-inverter systems and motivating the need for next-generation grid-stabilizing inverter controls.

  15. A strategy for man-machine system development in process industries

    International Nuclear Information System (INIS)

    Wirstad, J.

    1986-12-01

    A framework for Man-Machine System design in process industry projects is reported. It is based in the Guidelines for the Design of Man-Machine interfaces which have been generated in cooperation within the European Workshop for Industrial Computer Systems (EWICS). The application of EWICS Guidelines in industrial projects is demonstrated by six User Scenarios, which represent typical projects from different industries, e.g. electrical power generation and distribution, water control, pulp and paper production, oil and gas production. In all these projects Man-Machine System design has been conducted. It is recommended in the report that each Company develops its set of Man-Machine Systems Standard techniques/procedures. At present there are several techniques/procedures available which, for moderate costs, can be adapted to specific Company conditions. A menu of such Man-Machine System techniques/procedures is presented. Means of estimating the costs and benefits of Man-Machine System design are also described. (author)

  16. The technical supervision interface

    CERN Document Server

    Sollander, P

    1998-01-01

    The Technical Control Room (TCR) is currently using 30 different applications for the remote supervision of the technical infrastructure at CERN. These applications have all been developed with the CERN made Uniform Man Machine Interface (UMMI) tools built in 1990. However, the visualization technology has evolved phenomenally since 1990, the Technical Data Server (TDS) has radically changed our control system architecture, and the standardization and the maintenance of the UMMI applications have become important issues as their number increases. The Technical Supervision Interface is intended to replace the UMMI and solve the above problems. Using a standard WWW-browser for the display, it will be inherently multi-platform and hence available for control room operators, equipment specialists and on-call personnel.

  17. Application of a driving simulator to the development of in-vehicle human–machine-interfaces

    Directory of Open Access Journals (Sweden)

    David H. Weir

    2010-07-01

    Full Text Available The use of a driving simulator in the development of human–machine-interfaces (HMI such as a navigation, information or entertainment system is discussed. Such use addresses the need to study and evaluate the characteristics of a candidate HMI early in the R&D and design stage to ensure that it is likely to meet various objectives and requirements, and to revise the HMI as may be necessary. Those HMI requirements include such things as usability, driver comfort, and an acceptable level of attentional demand in dual task conditions (driving while using an HMI. Typically, such an HMI involves an information display to the driver, and a means for driver input to the HMI. Corresponding simulator requirements are discussed, along with typical simulator features and components. The latter include a cab, control feel systems, visual image generator, real time scenario control (task definitions, a motion system (if provided, and data acquisition. Both fixed and moving base systems are described, together with associated benefits and tradeoffs. Considerations in the design of the evaluation experiment are discussed, including definition of primary and secondary tasks, and number of driver subjects (experimental participants. Possible response and performance measures for the primary and secondary tasks are noted, together with subjective measures such as task difficulty and ease of using the HMI. The advantages of using a driving simulator to support R&D are summarized. Some typical and example simulator uses are noted.

  18. Design And Construction Of Controller System And Data Acquisition Of Creep Test Machine

    International Nuclear Information System (INIS)

    Farokhi; Arhatari, B.D.; DT. SonyTj.. Histori; Sudarno; Haryanto, Mudi; Triyadi, Ari

    2001-01-01

    Design and construction of creep test machine have been done to get a higher performance of controller system and data acquisition of that machine. The Design and construction were made by adding an automatic power control circuit, an interface and computer program on PC. The interface circuit is made in a form of a card which applicable on the compatible ISA-IBM PC. The computer program is written in turbo C++. With that modification, the test results show reduction in measurement error from 80μm to 90μm. The modification gives also benefit semi-automatic of the creep test machine. It means decreasing on the operator dependence. Another advantages are to make easier on the result data reading, to show the result data on the real time or on file, to make easier on appearing of a test result curve and on the result data analysis

  19. A novel computerized surgeon-machine interface for robot-assisted laser phonomicrosurgery.

    Science.gov (United States)

    Mattos, Leonardo S; Deshpande, Nikhil; Barresi, Giacinto; Guastini, Luca; Peretti, Giorgio

    2014-08-01

    To introduce a novel computerized surgical system for improved usability, intuitiveness, accuracy, and controllability in robot-assisted laser phonomicrosurgery. Pilot technology assessment. The novel system was developed involving a newly designed motorized laser micromanipulator, a touch-screen display, and a graphics stylus. The system allows the control of a CO2 laser through interaction between the stylus and the live video of the surgical area. This empowers the stylus with the ability to have actual effect on the surgical site. Surgical enhancements afforded by this system were established through a pilot technology assessment using randomized trials comparing its performance with a state-of-the-art laser microsurgery system. Resident surgeons and medical students were chosen as subjects in performing sets of trajectory-following exercises. Image processing-based techniques were used for an objective performance assessment. A System Usability Scale-based questionnaire was used for the qualitative assessment. The computerized interface demonstrated superiority in usability, accuracy, and controllability over the state-of-the-art system. Significant ease of use and learning experienced by the subjects were demonstrated by the usability score assigned to the two compared interfaces: computerized interface = 83.96% versus state-of-the-art = 68.02%. The objective analysis showed a significant enhancement in accuracy and controllability: computerized interface = 90.02% versus state-of-the-art = 75.59%. The novel system significantly enhances the accuracy, usability, and controllability in laser phonomicrosurgery. The design provides an opportunity to improve the ergonomics and safety of current surgical setups. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  20. Traceability of On-Machine Tool Measurement: A Review

    Science.gov (United States)

    Gomez-Acedo, Eneko; Kortaberria, Gorka; Olarra, Aitor

    2017-01-01

    Nowadays, errors during the manufacturing process of high value components are not acceptable in driving industries such as energy and transportation. Sectors such as aerospace, automotive, shipbuilding, nuclear power, large science facilities or wind power need complex and accurate components that demand close measurements and fast feedback into their manufacturing processes. New measuring technologies are already available in machine tools, including integrated touch probes and fast interface capabilities. They provide the possibility to measure the workpiece in-machine during or after its manufacture, maintaining the original setup of the workpiece and avoiding the manufacturing process from being interrupted to transport the workpiece to a measuring position. However, the traceability of the measurement process on a machine tool is not ensured yet and measurement data is still not fully reliable enough for process control or product validation. The scientific objective is to determine the uncertainty on a machine tool measurement and, therefore, convert it into a machine integrated traceable measuring process. For that purpose, an error budget should consider error sources such as the machine tools, components under measurement and the interactions between both of them. This paper reviews all those uncertainty sources, being mainly focused on those related to the machine tool, either on the process of geometric error assessment of the machine or on the technology employed to probe the measurand. PMID:28696358

  1. Traceability of On-Machine Tool Measurement: A Review.

    Science.gov (United States)

    Mutilba, Unai; Gomez-Acedo, Eneko; Kortaberria, Gorka; Olarra, Aitor; Yagüe-Fabra, Jose A

    2017-07-11

    Nowadays, errors during the manufacturing process of high value components are not acceptable in driving industries such as energy and transportation. Sectors such as aerospace, automotive, shipbuilding, nuclear power, large science facilities or wind power need complex and accurate components that demand close measurements and fast feedback into their manufacturing processes. New measuring technologies are already available in machine tools, including integrated touch probes and fast interface capabilities. They provide the possibility to measure the workpiece in-machine during or after its manufacture, maintaining the original setup of the workpiece and avoiding the manufacturing process from being interrupted to transport the workpiece to a measuring position. However, the traceability of the measurement process on a machine tool is not ensured yet and measurement data is still not fully reliable enough for process control or product validation. The scientific objective is to determine the uncertainty on a machine tool measurement and, therefore, convert it into a machine integrated traceable measuring process. For that purpose, an error budget should consider error sources such as the machine tools, components under measurement and the interactions between both of them. This paper reviews all those uncertainty sources, being mainly focused on those related to the machine tool, either on the process of geometric error assessment of the machine or on the technology employed to probe the measurand.

  2. Design and production of a novel sand materials strength testing machine for foundry applications

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Hansen, K. S.; Tiedje, Niels Skat

    2012-01-01

    testing machine was designed and built for both green sand and chemically-bonded sand materials. This machine measures and presents the loading response as a force-displacement profile from which the mechanical properties of the moulding materials can be deduced. The system was interfaced to a computer......In the foundry, existing strength testing machines are used to measure only the maximum fracture strength of mould and core materials. With traditionally used methods, the loading history to ascertain deformation of the material is not available. In this paper, a novel moulding material strength...... with a commercial PC based-control and data acquisition software. The testing conditions and operations are specified in the user interface and the data acquisition is made according to specifications. The force and displacements were calibrated to ensure consistency and reliability of the measurement data...

  3. NESSUS/NASTRAN Interface

    Science.gov (United States)

    Millwater, Harry; Riha, David

    1996-01-01

    The NESSUS and NASTRAN computer codes were successfully integrated. The enhanced NESSUS code will use NASTRAN for the structural Analysis and NESSUS for the probabilistic analysis. Any quantities in the NASTRAN bulk data input can be random variables. Any NASTRAN result that is written to the output2 file can be returned to NESSUS as the finite element result. The interfacing between NESSUS and NASTRAN is handled automatically by NESSUS. NESSUS and NASTRAN can be run on different machines using the remote host option.

  4. A study of speech interfaces for the vehicle environment.

    Science.gov (United States)

    2013-05-01

    Over the past few years, there has been a shift in automotive human machine interfaces from : visual-manual interactions (pushing buttons and rotating knobs) to speech interaction. In terms of : distraction, the industry views speech interaction as a...

  5. General man-machine interface used in accelerators controls

    International Nuclear Information System (INIS)

    Boutheon, M.; Di Maio, F.; Pace, A.

    1992-01-01

    A large community is now using Workstations as Accelerators Computer Controls Interface, through the concepts of windows - menus - synoptics - icons. Some standards were established for the CERN-PS control systems rejuvenation. The Booster-to-PS transfer and injection process is now entirely operated with these tools. This application constitutes a global environment providing the users with the controls, analysis, visualization of a part of an accelerator. Individual commands, measurements, and specialized programs including complex treatments are available in a homogeneous frame. Some months of experience in current operation have shown that this model can be extended to the whole project. (author)

  6. i-Car: An Intelligent and Interactive Interface for Driver Assistance ...

    African Journals Online (AJOL)

    i-Car: An Intelligent and Interactive Interface for Driver Assistance System. ... techniques with pattern recognition, feature extraction, machine learning, object recognition, ... The system uses eye closure based decision algorithm to detect driver ...

  7. Man-machine cooperation in remote handling for fusion plants

    International Nuclear Information System (INIS)

    Leinemann, K.

    1984-01-01

    Man-machine cooperation in remote handling for fusion plants comprises cooperation for design of equipment and planning of procedures using a CAD system, and cooperation during operation of the equipment with computer aided telemanipulation systems (CAT). This concept is presently being implemented for support of slave positioning, camera tracking, and camera alignment in the KfK manipulator test facility. The pilot implementation will be used to test various man-machine interface layouts, and to establish a set of basic buildings blocks for future implementations of advanced remote handling control systems. (author)

  8. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems

    OpenAIRE

    Abadi, Martín; Agarwal, Ashish; Barham, Paul; Brevdo, Eugene; Chen, Zhifeng; Citro, Craig; Corrado, Greg S.; Davis, Andy; Dean, Jeffrey; Devin, Matthieu; Ghemawat, Sanjay; Goodfellow, Ian; Harp, Andrew; Irving, Geoffrey; Isard, Michael

    2016-01-01

    TensorFlow is an interface for expressing machine learning algorithms, and an implementation for executing such algorithms. A computation expressed using TensorFlow can be executed with little or no change on a wide variety of heterogeneous systems, ranging from mobile devices such as phones and tablets up to large-scale distributed systems of hundreds of machines and thousands of computational devices such as GPU cards. The system is flexible and can be used to express a wide variety of algo...

  9. Development of an advanced human-machine interface for next generation nuclear power plants

    International Nuclear Information System (INIS)

    Chang, Soon Heung; Choi, Seong Soo; Park, Jin Kyun; Heo, Gyunyoung; Kim, Han Gon

    1999-01-01

    An advanced human-machine interface (HMI) has been developed to enhance the safety and availability of a nuclear power plant (NPP) by improving operational reliability. The key elements of the proposed HMI are the large display panels which present synopsis of plant status and the compact, computer-based work stations for monitoring, control and protection functions. The work station consists of four consoles such as a dynamic alarm console (DAC), a system information console (SIC), a computerized operating-procedure console (COC), and a safety system information console (SSIC). The DAC provides clean alarm pictures, in which information overlapping is excluded and alarm impacts are discriminated, for quick situation awareness. The SIC supports a normal operation by offering all necessary system information and control functions over non-safety systems. In addition, it is closely linked to the other consoles in order to automatically display related system information according to situations of the DAC and the COC. The COC aids operators with proper operating procedures during normal plant startup and shutdown or after a plant trip, and it also reduces their physical/mental burden through soft automation. The SSIC continuously displays safety system status and enables operators to control safety systems. The proposed HMI has been evaluated using the checklists that are extracted from various human factors guidelines. From the evaluation results, it can be concluded that the HMI is so designed as to address the human factors issues reasonably. After sufficient validation, the concept and the design features of the proposed HMI will be reflected in the design of the main control room of the Korean Next Generation Reactor (KNGR)

  10. WWER NPPs fuel handling machine control system

    International Nuclear Information System (INIS)

    Mini, G.; Rossi, G.; Barabino, M.; Casalini, M.

    2001-01-01

    In order to increase the safety level of the fuel handling machine on WWER NPPs, Ansaldo Nucleare was asked to design and supply a new Control System. Two FHM Control System units have been already supplied for Temelin NPP and others supplies are in process for the Atommash company, which has in charge the supply of FHMs for NPPs located in Russia, Ukraine and China. The Fuel Handling Machine (FHM) Control System is an integrated system capable of a complete management of nuclear fuel assemblies. The computer-based system takes into account all the operational safety interlocks so that it is able to avoid incorrect and dangerous manoeuvres in the case of operator error. Control system design criteria, hardware and software architecture, and quality assurance control, are in accordance with the most recent international requirements and standards, and in particular for electromagnetic disturbance immunity demands and seismic compatibility. The hardware architecture of the control system is based on ABB INFI 90 system. The microprocessor-based ABB INFI 90 system incorporates and improves upon many of the time proven control capabilities of Bailey Network 90, validated over 14,000 installations world-wide. The control system complies all the former designed sensors and devices of the machine and markedly the angular position measurement sensors named 'selsyn' of Russian design. Nevertheless it is fully compatible with all the most recent sensors and devices currently available on the market (for ex. Multiturn absolute encoders). All control logic components were developed using standard INFI 90 Engineering Work Station, interconnecting blocks extracted from an extensive SAMA library by using a graphical approach (CAD) and allowing an easier intelligibility, more flexibility and updated and coherent documentation. The data acquisition system and the Man Machine Interface are implemented by ABB in co-operation with Ansaldo. The flexible and powerful software structure

  11. VVER NPPs fuel handling machine control system

    International Nuclear Information System (INIS)

    Mini, G.; Rossi, G.; Barabino, M.; Casalini, M.

    2002-01-01

    In order to increase the safety level of the fuel handling machine on WWER NPPs, Ansaldo Nucleare was asked to design and supply a new Control System. Two Fuel Handling Machine (FHM) Control System units have been already supplied for Temelin NPP and others supply are in process for the Atommash company, which has in charge the supply of FHMs for NPPs located in Russia, Ukraine and China.The computer-based system takes into account all the operational safety interlocks so that it is able to avoid incorrect and dangerous manoeuvres in the case of operator error. Control system design criteria, hardware and software architecture, and quality assurance control, are in accordance with the most recent international requirements and standards, and in particular for electromagnetic disturbance immunity demands and seismic compatibility. The hardware architecture of the control system is based on ABB INFI 90 system. The microprocessor-based ABB INFI 90 system incorporates and improves upon many of the time proven control capabilities of Bailey Network 90, validated over 14,000 installations world-wide.The control system complies all the former designed sensors and devices of the machine and markedly the angular position measurement sensors named 'selsyn' of Russian design. Nevertheless it is fully compatible with all the most recent sensors and devices currently available on the market (for ex. Multiturn absolute encoders).All control logic were developed using standard INFI 90 Engineering Work Station, interconnecting blocks extracted from an extensive SAMA library by using a graphical approach (CAD) and allowing and easier intelligibility, more flexibility and updated and coherent documentation. The data acquisition system and the Man Machine Interface are implemented by ABB in co-operation with Ansaldo. The flexible and powerful software structure of 1090 Work-stations (APMS - Advanced Plant Monitoring System, or Tenore NT) has been successfully used to interface the

  12. Development of an X Window based operator's interface for a core monitoring system

    International Nuclear Information System (INIS)

    Vegh, J.; Huszar, J.; Laz, J.

    1992-09-01

    The components, functioning and programming concepts of the man-machine interface applied in an upgraded version of the core monitoring system and reactor information system VERONA for WWER-440 type nuclear power reactors, installed at the Paks Nuclear Power Plant, are described. The application of the X Window standard Graphical User Interface facilitated modular interface design and made program development easier and faster. (author) 3 refs.; 13 figs

  13. Integrated application of human factors to a power plant control room information system

    International Nuclear Information System (INIS)

    Fish, H.C. Jr.; Gutierrez, R.

    1988-01-01

    The human factors plan was developed as a methodology to apply human factors from the conceptual design of the EPIC system to the functional verification conducted at the plant. An integral part of the Human Factors Plan was the Functional Verification Plan. Developed in parallel, this second plan and its resultant programs verified functional appropriateness of the SPDS display, NSSS displays, EOP displays, man-machine interfaces (MMI), and workstation designs. The functional verification process was performed at the hardware/software developer's factory and at the JAFNPP, following installation of the EPIC system. Because the EPIC system replaces existing control room equipment, it is important that human factors be applied in a systematic manner consistent with other control room displays and controls. To ensure that this goal was met, a human factors plan was developed

  14. Modelling and Simulation of a Synchronous Machine with Power Electronic Systems

    DEFF Research Database (Denmark)

    Chen, Zhe; Blaabjerg, Frede

    2005-01-01

    is modelled in SIMULINK as well. The resulting model can more accurately represent non-idea situations such as non-symmetrical parameters of the electrical machines and unbalance conditions. The model may be used for both steady state and large-signal dynamic analysis. This is particularly useful......This paper reports the modeling and simulation of a synchronous machine with a power electronic interface in direct phase model. The implementation of a direct phase model of synchronous machines in MATLAB/SIMULINK is presented .The power electronic system associated with the synchronous machine...... in the systems where a detailed study is needed in order to assess the overall system stability. Simulation studies are performed under various operation conditions. It is shown that the developed model could be used for studies of various applications of synchronous machines such as in renewable and DG...

  15. A Critique on the Effectiveness of Current Human Reliability Analysis Approach for the Human-Machine Interface Design in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lee, Yong Hee

    2010-01-01

    Human Reliability Analysis (HRA) in cooperation of PSA has been conducted to evaluate the safety of a system and the validity of a system design. HRA has been believed to provide a quantitative value of human error potential and the safety level of a design alternative in Nuclear Power Plants (NPPs). However, it becomes doubtful that current HRA is worth to conduct to evaluate the human factors of NPP design, since there have been many critiques upon the virtue of HRA. Inevitably, the newer the technology becomes, the larger endeavors bound for the new facilitated methods. This paper describes the limitations and the obsolescence of the current HRA, especially for the design evaluation of Human-Machine Interface (HMI) utilizing the recent digital technologies. An alternative approach to the assessment of the human error potential of HMI design is proposed

  16. CHISSL: A Human-Machine Collaboration Space for Unsupervised Learning

    Energy Technology Data Exchange (ETDEWEB)

    Arendt, Dustin L.; Komurlu, Caner; Blaha, Leslie M.

    2017-07-14

    We developed CHISSL, a human-machine interface that utilizes supervised machine learning in an unsupervised context to help the user group unlabeled instances by her own mental model. The user primarily interacts via correction (moving a misplaced instance into its correct group) or confirmation (accepting that an instance is placed in its correct group). Concurrent with the user's interactions, CHISSL trains a classification model guided by the user's grouping of the data. It then predicts the group of unlabeled instances and arranges some of these alongside the instances manually organized by the user. We hypothesize that this mode of human and machine collaboration is more effective than Active Learning, wherein the machine decides for itself which instances should be labeled by the user. We found supporting evidence for this hypothesis in a pilot study where we applied CHISSL to organize a collection of handwritten digits.

  17. Machine learning for micro-tomography

    Science.gov (United States)

    Parkinson, Dilworth Y.; Pelt, Daniël. M.; Perciano, Talita; Ushizima, Daniela; Krishnan, Harinarayan; Barnard, Harold S.; MacDowell, Alastair A.; Sethian, James

    2017-09-01

    Machine learning has revolutionized a number of fields, but many micro-tomography users have never used it for their work. The micro-tomography beamline at the Advanced Light Source (ALS), in collaboration with the Center for Applied Mathematics for Energy Research Applications (CAMERA) at Lawrence Berkeley National Laboratory, has now deployed a series of tools to automate data processing for ALS users using machine learning. This includes new reconstruction algorithms, feature extraction tools, and image classification and recommen- dation systems for scientific image. Some of these tools are either in automated pipelines that operate on data as it is collected or as stand-alone software. Others are deployed on computing resources at Berkeley Lab-from workstations to supercomputers-and made accessible to users through either scripting or easy-to-use graphical interfaces. This paper presents a progress report on this work.

  18. SwingStates: Adding state machines to Java and the Swing toolkit

    OpenAIRE

    Appert , Caroline; Beaudouin-Lafon , Michel

    2008-01-01

    International audience; This article describes SwingStates, a Java toolkit designed to facilitate the development of graphical user interfaces and bring advanced interaction techniques to the Java platform. SwingStates is based on the use of finite-state machines specified directly in Java to describe the behavior of interactive systems. State machines can be used to redefine the behavior of existing Swing widgets or, in combination with a new canvas widget that features a rich graphical mode...

  19. Body-Machine Interface Enables People With Cervical Spinal Cord Injury to Control Devices With Available Body Movements: Proof of Concept.

    Science.gov (United States)

    Abdollahi, Farnaz; Farshchiansadegh, Ali; Pierella, Camilla; Seáñez-González, Ismael; Thorp, Elias; Lee, Mei-Hua; Ranganathan, Rajiv; Pedersen, Jessica; Chen, David; Roth, Elliot; Casadio, Maura; Mussa-Ivaldi, Ferdinando

    2017-05-01

    This study tested the use of a customized body-machine interface (BoMI) for enhancing functional capabilities in persons with cervical spinal cord injury (cSCI). The interface allows people with cSCI to operate external devices by reorganizing their residual movements. This was a proof-of-concept phase 0 interventional nonrandomized clinical trial. Eight cSCI participants wore a custom-made garment with motion sensors placed on the shoulders. Signals derived from the sensors controlled a computer cursor. A standard algorithm extracted the combinations of sensor signals that best captured each participant's capacity for controlling a computer cursor. Participants practiced with the BoMI for 24 sessions over 12 weeks performing 3 tasks: reaching, typing, and game playing. Learning and performance were evaluated by the evolution of movement time, errors, smoothness, and performance metrics specific to each task. Through practice, participants were able to reduce the movement time and the distance from the target at the 1-second mark in the reaching task. They also made straighter and smoother movements while reaching to different targets. All participants became faster in the typing task and more skilled in game playing, as the pong hit rate increased significantly with practice. The results provide proof-of-concept for the customized BoMI as a means for people with absent or severely impaired hand movements to control assistive devices that otherwise would be manually operated.

  20. The laser micro-machining system for diamond anvil cell experiments and general precision machining applications at the High Pressure Collaborative Access Team.

    Science.gov (United States)

    Hrubiak, Rostislav; Sinogeikin, Stanislav; Rod, Eric; Shen, Guoyin

    2015-07-01

    We have designed and constructed a new system for micro-machining parts and sample assemblies used for diamond anvil cells and general user operations at the High Pressure Collaborative Access Team, sector 16 of the Advanced Photon Source. The new micro-machining system uses a pulsed laser of 400 ps pulse duration, ablating various materials without thermal melting, thus leaving a clean edge. With optics designed for a tight focus, the system can machine holes any size larger than 3 μm in diameter. Unlike a standard electrical discharge machining drill, the new laser system allows micro-machining of non-conductive materials such as: amorphous boron and silicon carbide gaskets, diamond, oxides, and other materials including organic materials such as polyimide films (i.e., Kapton). An important feature of the new system is the use of gas-tight or gas-flow environmental chambers which allow the laser micro-machining to be done in a controlled (e.g., inert gas) atmosphere to prevent oxidation and other chemical reactions in air sensitive materials. The gas-tight workpiece enclosure is also useful for machining materials with known health risks (e.g., beryllium). Specialized control software with a graphical interface enables micro-machining of custom 2D and 3D shapes. The laser-machining system was designed in a Class 1 laser enclosure, i.e., it includes laser safety interlocks and computer controls and allows for routine operation. Though initially designed mainly for machining of the diamond anvil cell gaskets, the laser-machining system has since found many other micro-machining applications, several of which are presented here.

  1. The laser micro-machining system for diamond anvil cell experiments and general precision machining applications at the High Pressure Collaborative Access Team

    International Nuclear Information System (INIS)

    Hrubiak, Rostislav; Sinogeikin, Stanislav; Rod, Eric; Shen, Guoyin

    2015-01-01

    We have designed and constructed a new system for micro-machining parts and sample assemblies used for diamond anvil cells and general user operations at the High Pressure Collaborative Access Team, sector 16 of the Advanced Photon Source. The new micro-machining system uses a pulsed laser of 400 ps pulse duration, ablating various materials without thermal melting, thus leaving a clean edge. With optics designed for a tight focus, the system can machine holes any size larger than 3 μm in diameter. Unlike a standard electrical discharge machining drill, the new laser system allows micro-machining of non-conductive materials such as: amorphous boron and silicon carbide gaskets, diamond, oxides, and other materials including organic materials such as polyimide films (i.e., Kapton). An important feature of the new system is the use of gas-tight or gas-flow environmental chambers which allow the laser micro-machining to be done in a controlled (e.g., inert gas) atmosphere to prevent oxidation and other chemical reactions in air sensitive materials. The gas-tight workpiece enclosure is also useful for machining materials with known health risks (e.g., beryllium). Specialized control software with a graphical interface enables micro-machining of custom 2D and 3D shapes. The laser-machining system was designed in a Class 1 laser enclosure, i.e., it includes laser safety interlocks and computer controls and allows for routine operation. Though initially designed mainly for machining of the diamond anvil cell gaskets, the laser-machining system has since found many other micro-machining applications, several of which are presented here

  2. Configuration management plan for Machine Interface Test System (MITS)

    International Nuclear Information System (INIS)

    O'Neill, C.K.

    1980-01-01

    The discipline required by this plan will apply from the establishment of a configuration baseline until completion of the final test in the MITS. The plan applies to configured items of hardware and software as well as to the specifications and drawings for these items. The plan encompasses establishment of the facility baseline, interface definition, classes of change, change control, change paper, organizational responsibilities and relationships, test configuration (as opposed to facility), and configuration data retention

  3. Metallizing of machinable glass ceramic

    International Nuclear Information System (INIS)

    Seigal, P.K.

    1976-02-01

    A satisfactory technique has been developed for metallizing Corning (Code 9658) machinable glass ceramic for brazing. Analyses of several bonding materials suitable for metallizing were made using microprobe analysis, optical metallography, and tensile strength tests. The effect of different cleaning techniques on the microstructure and the effect of various firing temperatures on the bonding interface were also investigated. A nickel paste, used for thick-film application, has been applied to obtain braze joints with strength in excess of 2000 psi

  4. System and Software Design for the Man Machine Interface System for Shin-Hanul Nuclear Power Plant Units 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Woong Seock; Kim, Chang Ho; Lee, Yoon Hee; Sohn, Se Do; Baek, Seung Min [KEPCO E and C, Daejeon (Korea, Republic of)

    2015-10-15

    The design of the safety MMIS(Man Machine Interface System) system has been performed using POSAFE-Q Programmable Logic Controller (PLC). The design of the non-safety MMIS has been performed using OPERASYSTEM Distributed Control System (DCS). This paper describes the design experiences from the design work of the MMIS using these new platforms. The SHN 1 and 2 MMIS has been developed using POSAFE-Q platform for safety and OPERASYSTEM for non-safety system. Through the utilization of the standardized platform, the safety system was developed using the above hardware and software blocks resulting in efficient safety system development. An integrated CASE tool has been setup for reliable software development. The integrated development environment has been setup formally resulting in consistent work. Even we have setup integrated development environment, the independent verification and validation including testing environment needs to be setup for more advanced environment which will be used for future plant.

  5. The proposed human factors engineering program plan for man-machine interface system design of the next generation NPP in Korea

    International Nuclear Information System (INIS)

    Oh, I.S.; Lee, H.C.; Seo, S.M.; Cheon, S.W.; Park, K.O.; Lee, J.W.; Sim, B.S.

    1994-01-01

    Human factors application to nuclear power plant (NPP) design, especially, to man-machine interface system (MMIS) design becomes an important issue among the licensing requirements. Recently, the nuclear regulatory bodies require the evidence of systematic human factors application to the MMIS design. Human Factors Engineering Program Plan (HFEPP), as a basis and central one among the human factors application by the MMIS designers. This paper describes the framework of HFEPP for the MMIS design of next generation NPP (NG-NPP) in Korea. This framework provides an integral plan and some bases of the systematic application of human factors to the MMIS design, and consists of purpose and scope, codes and standards, human factors organization, human factors tasks, engineering control methodology, human factors documentations, and milestones. The proposed HFEPP is a top level document to define and describe human factors tasks, based on each step of MMIS design process, in view point of how, what, when and by whom to be performed. (author). 11 refs, 1 fig

  6. GridCom, Grid Commander: graphical interface for Grid jobs and data management

    International Nuclear Information System (INIS)

    Galaktionov, V.V.

    2011-01-01

    GridCom - the software package for maintenance of automation of access to means of distributed system Grid (jobs and data). The client part, executed in the form of Java-applets, realises the Web-interface access to Grid through standard browsers. The executive part Lexor (LCG Executor) is started by the user in UI (User Interface) machine providing performance of Grid operations

  7. Dynamic Parameter Identification of Tool-Spindle Interface Based on RCSA and Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Erhua Wang

    2013-01-01

    Full Text Available In order to ensure the stability of machining processes, the tool point frequency response functions (FRFs should be obtained initially. By the receptance coupling substructure analysis (RCSA, the tool point FRFs can be generated quickly for any combination of holder and tool without the need of repeated measurements. A major difficulty in the sub-structuring analysis is to determine the connection parameters at the tool-holder interface. This study proposed an identification method to recognize the connection parameters at the tool-holder interface by using RCSA and particle swarm optimization (PSO. In this paper, the XHK machining center is divided into two components, which are the tool and the spindle assembly firstly. After that, the end point FRFs of the tool are achieved by mode superposition method. The end receptances of the spindle assembly with complicated structure are obtained by impacting test method. Through translational and rotational springs and dampers, the tool point FRF of the machining center is obtained by coupling the two components. Finally, PSO is adopted to identify the connection parameters at the tool-holder interface by minimizing the difference between the predicted and the measured tool point FRFs. Comparison results between the predicted and measured tool point FRFs show a good agreement and demonstrate that the identification method is valid in the identification of connection parameters at the tool-holder interface.

  8. Visual momentum: an example of cognitive models applied to interface design

    International Nuclear Information System (INIS)

    Woods, D.D.

    1982-01-01

    The growth of computer applications has radically changed the nature of the man-machine interface. Through increased automation, the nature of the human's task has shifted from an emphasis on perceptual-motor skills to an emphasis on cognitive activities (e.g., problem solving and decision making). The result is a need to improve the cognitive coupling of person and machine. The goal of this paper is to describe how knowledge from cognitive psychology can be used to provide guidance to display system designers and to solve human performance problems in person-machine systems. The mechanism is to explore one example of a principle of man-machine interaction - visual momentum - that was developed on the basis of a general model of human front-end cognitive processing

  9. Changes in neuromuscular activity during motor training with a body-machine interface after spinal cord injury.

    Science.gov (United States)

    Pierella, C; De Luca, A; Tasso, E; Cervetto, F; Gamba, S; Losio, L; Quinland, E; Venegoni, A; Mandraccia, S; Muller, I; Massone, A; Mussa-Ivaldi, F A; Casadio, M

    2017-07-01

    Body machine interfaces (BMIs) are used by people with severe motor disabilities to control external devices, but they also offer the opportunity to focus on rehabilitative goals. In this study we introduced in a clinical setting a BMI that was integrated by the therapists in the rehabilitative treatments of 2 spinal cord injured (SCI) subjects for 5 weeks. The BMI mapped the user's residual upper body mobility onto the two coordinates of a cursor on a screen. By controlling the cursor, the user engaged in playing computer games. The BMI allowed the mapping between body and cursor spaces to be modified, gradually challenging the user to exercise more impaired movements. With this approach, we were able to change our subjects' behavior, who initially used almost exclusively their proximal upper body-shoulders and arms - for using the BMI. By the end of training, cursor control was shifted toward more distal body regions - forearms instead of upper arms - with an increase of mobility and strength of all the degrees of freedom involved in the control. The clinical tests and the electromyographic signals from the main muscles of the upper body confirmed the positive effect of the training. Encouraging the subjects to explore different and sometimes unusual movement combinations was beneficial for recovering distal arm functions and for increasing their overall mobility.

  10. Adaption of commercial off the shelf modules for reconfigurable machine tool design

    CSIR Research Space (South Africa)

    Mpofu, K

    2008-01-01

    Full Text Available . University of Ljubljana (Slovenia) Machine Design Approach. Butala and Sluga [4] view the architecture of the machine tool as a system structure which is reflected in its configuration and which impacts the systems performance. The interfaces... process movements. This approach was also implemented in a computer aided planning system, they clarify the need of having the features to be implemented embedded in the collective drives that constitute it. This resulted in an adaption...

  11. Leningrad NPP full scope and analytical simulators as tools for MMI improvement and operator support systems development and testing

    International Nuclear Information System (INIS)

    Rakitin, I.D.; Malkin, S.D.; Shalia, V.V.; Fedorov, E.M.; Lebedev, N.N.; Khoudiakov, M.M.

    1999-01-01

    Training Support Center (TSC) created at the Leningrad NPP (LNPP), Sosnovy Bor, Russia, incorporates full-scope and analytical simulators working in parallel with the prototypes of the expert and interactive systems to provide a new scope of R and D MMI improvement work as for the developer as well as for the user. Possibilities of development, adjusting and testing of any new or up-graded Operators' Support System before its installation at the reference unit's Control Room are described in the paper. These Simulators ensure the modeling of a wide range of accidents and transients and provide with special software and ETHERNET data process communications with the Operators' Support systems' prototypes. The development and adjustment of two state-of-the-art Operators' Support Systems of interest with using of Simulators are described in the paper as an example. These systems have been developed jointly by RRC KI and LNPP team. (author)

  12. Simulation for Remote Operation for REX10 Nuclear Reactor

    International Nuclear Information System (INIS)

    Lee, Sim Won; Kim, Dong Su; Na, Man Gyun; Lee, Yoon Joon; Lee, Yeon Gun; Park, Goon Cherl

    2010-01-01

    The newly designed REX10 (Regional Energy Reactor, 10MWth) is an environmentally-friendly and stable small nuclear reactor for a small-scale reactor based Multi-purpose regional energy system. The REX10 has been developed to maintain system safety in order to be placed in densely populated region, island, etc. In addition, it is significantly hard to recruit many operation and maintenance personnel for small power reactors differently from usual commercial reactors because of its remote location and of economic reasons. In order to overcome these constraints, to decrease the operation cost by reducing operation and maintenance personnel, and to increase plant reliability through autonomous plant control, it is needed to design the control system of the small power reactors and to establish its unmanned remote operation system. In this study, the REX10 reactor core thermal power controller is designed by using a REX10 code analyzer. The remote control facility through man-machine interface (MMI) design and interface between programming languages was established and it was used to verify remote operation of REX10

  13. A Human-machine-interface Integrating Low-cost Sensors with a Neuromuscular Electrical Stimulation System for Post-stroke Balance Rehabilitation.

    Science.gov (United States)

    Kumar, Deepesh; Das, Abhijit; Lahiri, Uttama; Dutta, Anirban

    2016-04-12

    A stroke is caused when an artery carrying blood from heart to an area in the brain bursts or a clot obstructs the blood flow to brain thereby preventing delivery of oxygen and nutrients. About half of the stroke survivors are left with some degree of disability. Innovative methodologies for restorative neurorehabilitation are urgently required to reduce long-term disability. The ability of the nervous system to reorganize its structure, function and connections as a response to intrinsic or extrinsic stimuli is called neuroplasticity. Neuroplasticity is involved in post-stroke functional disturbances, but also in rehabilitation. Beneficial neuroplastic changes may be facilitated with non-invasive electrotherapy, such as neuromuscular electrical stimulation (NMES) and sensory electrical stimulation (SES). NMES involves coordinated electrical stimulation of motor nerves and muscles to activate them with continuous short pulses of electrical current while SES involves stimulation of sensory nerves with electrical current resulting in sensations that vary from barely perceivable to highly unpleasant. Here, active cortical participation in rehabilitation procedures may be facilitated by driving the non-invasive electrotherapy with biosignals (electromyogram (EMG), electroencephalogram (EEG), electrooculogram (EOG)) that represent simultaneous active perception and volitional effort. To achieve this in a resource-poor setting, e.g., in low- and middle-income countries, we present a low-cost human-machine-interface (HMI) by leveraging recent advances in off-the-shelf video game sensor technology. In this paper, we discuss the open-source software interface that integrates low-cost off-the-shelf sensors for visual-auditory biofeedback with non-invasive electrotherapy to assist postural control during balance rehabilitation. We demonstrate the proof-of-concept on healthy volunteers.

  14. State of the art in nuclear telerobotics: focus on the man/machine connection

    Science.gov (United States)

    Greaves, Amna E.

    1995-12-01

    The interface between the human controller and remotely operated device is a crux of telerobotic investigation today. This human-to-machine connection is the means by which we communicate our commands to the device, as well as the medium for decision-critical feedback to the operator. The amount of information transferred through the user interface is growing. This can be seen as a direct result of our need to support added complexities, as well as a rapidly expanding domain of applications. A user interface, or UI, is therefore subject to increasing demands to present information in a meaningful manner to the user. Virtual reality, and multi degree-of-freedom input devices lend us the ability to augment the man/machine interface, and handle burgeoning amounts of data in a more intuitive and anthropomorphically correct manner. Along with the aid of 3-D input and output devices, there are several visual tools that can be employed as part of a graphical UI that enhance and accelerate our comprehension of the data being presented. Thus an advanced UI that features these improvements would reduce the amount of fatigue on the teleoperator, increase his level of safety, facilitate learning, augment his control, and potentially reduce task time. This paper investigates the cutting edge concepts and enhancements that lead to the next generation of telerobotic interface systems.

  15. Aspects of input processing in the numerical control of electron beam machines

    International Nuclear Information System (INIS)

    Chowdhury, A.K.

    1981-01-01

    A high-performance Numerical Control has been developed for an Electron Beam Machine. The system is structured into 3 hierarchial levels: Input Processing, Realtime Processing (such as Geometry Interpolation) and the Interfaces to the Electron Beam Machine. The author considers the Input Processing. In conventional Numerical Controls the Interfaces to the control is given by the control language as defined in DIN 66025. State of the art in NC-technology offers programming systems of differing competence covering the spectra between manual programming in the control language to highly sophisticated systems such as APT. This software interface has been used to define an Input Processor that in cooperation with the Hostcomputer meets the requirements of a sophisticated NC-system but at the same time provides a modest stand-alone system with all the basic functions such as interactive program-editing, program storage, program execution simultaneous with the development of another program, etc. Software aspects such as adapting DIN 66025 for Electron Beam Machining, organisation and modularisation of Input Processor Software has been considered and solutions have been proposed. Hardware aspects considered are interconnections of the Input Processor with the Host and the Realtime Processors. Because of economical and development-time considerations, available software and hardware has been liberally used and own development has been kept to a minimum. The proposed system is modular in software and hardware and therefore very flexible and open-ended to future expansion. (Auth.)

  16. Tool management in manufacturing systems equipped with CNC machines

    Directory of Open Access Journals (Sweden)

    Giovanni Tani

    1997-12-01

    Full Text Available This work has been carried out for the purpose of realizing an automated system for the integrated management of tools within a company. By integrating planning, inspection and tool-room functions, automated tool management can ensure optimum utilization of tools on the selected machines, guaranteeing their effective availability. The first stage of the work consisted of defining and developing a Tool Management System whose central nucleus is a unified Data Base for all of the tools, forming part of the company's Technological Files (files on machines, materials, equipment, methods, etc., interfaceable with all of the company departments that require information on tools. The system assigns code numbers to the individual components of the tools and file them on the basis of their morphological and functional characteristics. The system is also designed to effect assemblies of tools, from which are obtained the "Tool Cards" required for compiling working cycles (CAPP, for CAM programming and for the Tool-room where the tools are physically prepared. Methods for interfacing with suitable systems for the aforesaid functions have also been devised

  17. Human-machine interface aspects and use of computer-based operator support systems in control room upgrades and new control room designs for nuclear power plants

    International Nuclear Information System (INIS)

    Berg, O.

    1997-01-01

    At the Halden Project efforts are made to explore the possibilities through design, development and validation of Computer-based Operator Support Systems (COSSes) which can assist the operators in different operational situations, ranging from normal operation to disturbance and accident conditions. The programme comprises four main activities: 1) verification and validation of safety critical software systems; 2) man-machine interaction research emphasizing improvements in man-machine interfaces on the basis of human factors studies; 3) computerized operator support systems assisting the operator in fault detection/diagnosis and planning of control actions; and 4) control room development providing a basis for retrofitting of existing control rooms and for the design of advanced concepts. The paper presents the status of this development programme, including descriptions of specific operator support functions implemented in the simulator-based, experimental control room at Halden (HAMMLAB, HAlden Man-Machine LABoratory). These operator aids comprise advanced alarms systems, diagnostic support functions, electronic procedures, critical safety functions surveillance and accident management support systems. The different operator support systems development at the Halden Project are tested and evaluated in HAMMLAB with operators from the Halden Reactor, and occasionally from commercial NPPs, as test subjects. These evaluations provide data on the merits of different operator support systems in an advanced control room setting, as well as on how such systems should be integrated to enhance operator performance. The paper discusses these aspects and the role of computerized operator support systems in plant operation based on the experience from this work at the Halden Project. 15 refs, 5 figs

  18. Human-machine interface aspects and use of computer-based operator support systems in control room upgrades and new control room designs for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Berg, O [Institutt for Energiteknikk, OECD Halden Reactor Project (Netherlands)

    1997-07-01

    At the Halden Project efforts are made to explore the possibilities through design, development and validation of Computer-based Operator Support Systems (COSSes) which can assist the operators in different operational situations, ranging from normal operation to disturbance and accident conditions. The programme comprises four main activities: 1) verification and validation of safety critical software systems; 2) man-machine interaction research emphasizing improvements in man-machine interfaces on the basis of human factors studies; 3) computerized operator support systems assisting the operator in fault detection/diagnosis and planning of control actions; and 4) control room development providing a basis for retrofitting of existing control rooms and for the design of advanced concepts. The paper presents the status of this development programme, including descriptions of specific operator support functions implemented in the simulator-based, experimental control room at Halden (HAMMLAB, HAlden Man-Machine LABoratory). These operator aids comprise advanced alarms systems, diagnostic support functions, electronic procedures, critical safety functions surveillance and accident management support systems. The different operator support systems development at the Halden Project are tested and evaluated in HAMMLAB with operators from the Halden Reactor, and occasionally from commercial NPPs, as test subjects. These evaluations provide data on the merits of different operator support systems in an advanced control room setting, as well as on how such systems should be integrated to enhance operator performance. The paper discusses these aspects and the role of computerized operator support systems in plant operation based on the experience from this work at the Halden Project. 15 refs, 5 figs.

  19. Formal Modeling and Reconfiguration of User Interfaces for Reduction of Errors in Failure Handling of Complex Systems

    NARCIS (Netherlands)

    Weyers, Benjamin; Burkolter, Dina; Luther, Wolfram; Kluge, Annette

    2012-01-01

    Controlling and observing complex systems is central to the study of human-machine interaction. In our understanding, there is much to be gained from integrating formal modeling and analysis, including the reconfiguration of user interfaces, with the development of user interfaces with high

  20. Man-machine interaction in Canadian nuclear power plants

    International Nuclear Information System (INIS)

    Olmstead, R.A.

    1994-01-01

    The design of man-machine interaction in the CANDU plants has evolved considerably over several generations of plants, from the first Douglas Point plant through to the next generation of plants represented by new designs like CANDU 3. In the early plants, the control room configuration was based on designers' projections of control interface requirements. With succeeding generations of designs, there has been an evolution towards a more systematic consideration of human strengths and weaknesses, increasing attention to formal requirements definition, and incorporation of a larger base of operational experience. This paper describes the design of the man-machine interaction for third generation CANDU-3 control rooms for improved operator reliability and reduced costs. (author). 13 refs., 3 figs

  1. Timer-based data acquisitioning of creep testing machines

    International Nuclear Information System (INIS)

    Rana, M.A.; Farooq, M.A.; Ali, L.

    1998-01-01

    Duration of a creep test may be short or long term extending over several years. Continuous operation of a computer for automatic data acquisition of creep testing machines is useless. Timer based data acquisitioning of the machines already interface with IBM-Pc/AT and compatibles has been streamlined for economical use of the computer. A locally designed and fabricated timer has been introduced in the system in this regard to meet the requirements of the system. The timer switches on the computer according to pre scheduled interval of time of capture creep data in Real time. The periodically captured data is logged on the hard disk for analysis and report generation. (author)

  2. Interface requirements in nuclear medicine devices and systems

    International Nuclear Information System (INIS)

    Maguire, G.Q. Jr.; Brill, A.B.; Noz, M.E.

    1982-01-01

    Interface designs for three nuclear medicine imaging systems, and computer networking strategies proposed for medical imaging departments are presented. Configurations for two positron-emission-tomography devices (PET III and ECAT) and a general-purpose tomography instrument (the UNICON) are analyzed in terms of specific performance parameters. Interface designs for these machines are contrasted in terms of utilization of standard versus custom modules, cost, and ease of modification, upgrade, and support. The requirements of general purpose systems for medical image analysis, display, and archiving, are considered, and a realizable state-of-the-art system is specfied, including a suggested timetable

  3. An attempt to model the relationship between MMI attenuation and engineering ground-motion parameters using artificial neural networks and genetic algorithms

    Directory of Open Access Journals (Sweden)

    G-A. Tselentis

    2010-12-01

    Full Text Available Complex application domains involve difficult pattern classification problems. This paper introduces a model of MMI attenuation and its dependence on engineering ground motion parameters based on artificial neural networks (ANNs and genetic algorithms (GAs. The ultimate goal of this investigation is to evaluate the target-region applicability of ground-motion attenuation relations developed for a host region based on training an ANN using the seismic patterns of the host region. This ANN learning is based on supervised learning using existing data from past earthquakes. The combination of these two learning procedures (that is, GA and ANN allows us to introduce a new method for pattern recognition in the context of seismological applications. The performance of this new GA-ANN regression method has been evaluated using a Greek seismological database with satisfactory results.

  4. HUMAN MACHINE INTERFACE (HMI) EVALUATION OF ROOMS TA-50-1-60/60A AT THE RADIOACTIVE LIQUID WASTE TREATMENT FACILITY (RLWTF)

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, Walter E. [Los Alamos National Laboratory; Stender, Kerith K. [Los Alamos National Laboratory

    2012-08-29

    This effort addressed an evaluation of human machine interfaces (HMIs) in Room TA-50-1-60/60A of the Radioactive Liquid Waste Treatment Facility (RLWTF). The evaluation was performed in accordance with guidance outlined in DOE-STD-3009, DOE Standard Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses, 2006 [DOE 2006]. Specifically, Chapter 13 of DOE 2006 highlights the 10 CFR 830, Nuclear Safety Management, 2012, [CFR 2012] and DOE G 421.1-2 [DOE 2001a] requirements as they relate to the human factors process and, in this case, the safety of the RLWTF. The RLWTF is a Hazard Category 3 facility and, consequently, does not have safety-class (SSCs). However, safety-significant SSCs are identified. The transuranic (TRU) wastewater tanks and associated piping are the only safety-significant SSCs in Rooms TA-50-1-60/60A [LANL 2010]. Hence, the human factors evaluation described herein is only applicable to this particular assemblage of tanks and piping.

  5. Human-machine interfaces for teleoperators: an overview of research and development at the Oak Ridge National Laboratory. Consolidated Fuel Reprocessing Program

    International Nuclear Information System (INIS)

    Draper, J.V.; Feldman, M.J.

    1985-01-01

    This paper surveys the contributions of human factors to the mission of the Remote Control Engineering (RCE) task over the last six years. These contributions can be divided into two areas, research efforts and design efforts. Some of the topics covered in human factors research are manipulator comparisons, investigation of viewing system characteristics, research into the effects of force reflection, and studies of crew size and task allocation. In the area of component design the human factors group was primarily responsible for the conceptual design of the Advanced Integrated Maintenance System (AIMS) control room, including all operator work stations and overall control room architecture. The human factors group also contributed to the design of the AIMS master controller handle. Recent research at the RCE task has centered on comparison of manipulator systems. This research was planned and conducted by the human factors group and other ORNL personnel. The research is aimed at evaluating three important characteristics of manipulator systems: system dynamics, force feedback, and human-machine interface

  6. Advances in the development of a cognitive user interface

    Directory of Open Access Journals (Sweden)

    Jokisch Oliver

    2018-01-01

    Full Text Available In this contribution, we want to summarize recent development steps of the embedded cognitive user interface UCUI, which enables a user-adaptive scenario in human-machine or even human-robot interactions by considering sophisticated cognitive and semantic modelling. The interface prototype is developed by different German institutes and companies with their steering teams at Fraunhofer IKTS and Brandenburg University of Technology. The interface prototype is able to communicate with users via speech and gesture recognition, speech synthesis and a touch display. The device includes an autarkic semantic processing and beyond a cognitive behavior control, which supports an intuitive interaction to control different kinds of electronic devices, e. g. in a smart home environment or in interactive respectively collaborative robotics. Contrary to available speech assistance systems such as Amazon Echo or Google Home, the introduced cognitive user interface UCUI ensures the user privacy by processing all necessary information without any network access of the interface device.

  7. Enhanced operator interface for hand-held landmine detector

    Science.gov (United States)

    Herman, Herman; McMahill, Jeffrey D.; Kantor, George

    2001-10-01

    As landmines get harder to detect, the complexity of landmine detectors has also been increasing. To increase the probability of detection and decrease the false alarm rate of low metallic landmines, many detectors employ multiple sensing modalities, which include radar and metal detector. Unfortunately, the operator interface for these new detectors stays pretty much the same as for the older detectors. Although the amount of information that the new detectors acquire has increased significantly, the interface has been limited to a simple audio interface. We are currently developing a hybrid audiovisual interface for enhancing the overall performance of the detector. The hybrid audiovisual interface combines the simplicity of the audio output with the rich spatial content of the video display. It is designed to optimally present the output of the detector and also to give the proper feedback to the operator. Instead of presenting all the data to the operator simultaneously, the interface allows the operator to access the information as needed. This capability is critical to avoid information overload, which can significantly reduce the performance of the operator. The audio is used as the primary notification signal, while the video is used for further feedback, discrimination, localization and sensor fusion. The idea is to let the operator gets the feedback that he needs and enable him to look at the data in the most efficient way. We are also looking at a hybrid man-machine detection system which utilizes precise sweeping by the machine and powerful human cognitive ability. In such a hybrid system, the operator is free to concentrate on discriminant task, such as manually fusing the output of the different sensing modalities, instead of worrying about the proper sweep technique. In developing this concept, we have been using the virtual mien lane to validate some of these concepts. We obtained some very encouraging results form our preliminary test. It clearly

  8. Taking account of human factors for interface assessment and design in monitoring automated systems

    International Nuclear Information System (INIS)

    Musso, J.-F.; Sicard, Y.; Martin, M.

    1990-01-01

    Optimum balance between control means and the operator capacities is sought for to achieve computerization of Man-Machine interfaces. Observation of the diagnosis activity of populations of operators in situation on simulators enables design criteria to be defined which are well-suited to the characteristics of the tasks with which they are confronted. This observation provides an assessment of the interfaces from the standpoint of the graphic layer, of the Human behaviour induced by the Machine and of the nature of the interaction between these two systems. This requires an original approach dialectically involving cognitive psychology, dynamic management of the knowledge bases (artificial intelligence) in a critical industrial control and monitoring application. (author)

  9. SCADA for microtron and beam transport line radio therapy machine subsystem

    International Nuclear Information System (INIS)

    Deshpande, Praveen; Palod, Shradha; Bhujle, Ashok

    2003-01-01

    Centre for Advanced Technology is developing a Radio Therapy Machine (RTM) to be used for cancer treatment. The radiotherapy machine has a Microtron consisting of a RF system, main and auxiliary magnets. It has a Beam transport line (BTL) consisting of fourteen magnets. This paper describes a PC based supervisory control and data acquisition system (SCADA) developed for controlling mainly the power supplies for the above sub systems from a remote location. It offers a graphic user interface (GUI) at the control room PC for RTM operation in engineering mode

  10. Design and validation of a real-time spiking-neural-network decoder for brain-machine interfaces

    Science.gov (United States)

    Dethier, Julie; Nuyujukian, Paul; Ryu, Stephen I.; Shenoy, Krishna V.; Boahen, Kwabena

    2013-06-01

    Objective. Cortically-controlled motor prostheses aim to restore functions lost to neurological disease and injury. Several proof of concept demonstrations have shown encouraging results, but barriers to clinical translation still remain. In particular, intracortical prostheses must satisfy stringent power dissipation constraints so as not to damage cortex. Approach. One possible solution is to use ultra-low power neuromorphic chips to decode neural signals for these intracortical implants. The first step is to explore in simulation the feasibility of translating decoding algorithms for brain-machine interface (BMI) applications into spiking neural networks (SNNs). Main results. Here we demonstrate the validity of the approach by implementing an existing Kalman-filter-based decoder in a simulated SNN using the Neural Engineering Framework (NEF), a general method for mapping control algorithms onto SNNs. To measure this system’s robustness and generalization, we tested it online in closed-loop BMI experiments with two rhesus monkeys. Across both monkeys, a Kalman filter implemented using a 2000-neuron SNN has comparable performance to that of a Kalman filter implemented using standard floating point techniques. Significance. These results demonstrate the tractability of SNN implementations of statistical signal processing algorithms on different monkeys and for several tasks, suggesting that a SNN decoder, implemented on a neuromorphic chip, may be a feasible computational platform for low-power fully-implanted prostheses. The validation of this closed-loop decoder system and the demonstration of its robustness and generalization hold promise for SNN implementations on an ultra-low power neuromorphic chip using the NEF.

  11. Strength of interface in stainless clad steels

    International Nuclear Information System (INIS)

    Ohji, Kiyotsugu; Nakai, Yoshikazu; Hashimoto, Shinji

    1990-01-01

    Mechanical tests were conducted on four kinds of stainless clad steels to establish test methods for determining crack growth resistance of bimaterial interface. In tension tests, smooth specimens and shallow notched specimens were employed. In these tests, all of the smooth specimens were broken in carbon steel, not along the bimaterial interface. On the other hand, most of the shallow notched specimens were broken along the interface, when the notch root was located at the interface. Therefore, the shallow notched specimens were suitable for estimating the strength of the interface in tension tests. For fracture toughness tests, chevron notched specimens are recommended, since pre-fatigue cracks were susceptible to initiate and grow in carbon steel for conventional straight notched specimens. In fatigue crack growth tests, side-grooved and non-side-grooved specimens were employed. Although the side-grooves were machined so that the minimum cross-sectional plane of the specimens coincided with the plane of the bimaterial interface, cracks did not always propagate along the interface. Therefore, the side-grooves were judged not to be effective for cracks to propagate along the bimaterial interface. Both in fracture toughness tests and fatigue tests, the crack growth resistance along bimaterial interface was much lower than the resistance of matrix steels. In all of the mechanical tests conducted, the crack growth resistance along the interface was higher for the normalized material than that for the as-rolled material. The nickel foil inserted between carbon steel and stainless steel improved the growth resistance of interfacial cracks. (author)

  12. Media-Augmented Exercise Machines

    Science.gov (United States)

    Krueger, T.

    2002-01-01

    Cardio-vascular exercise has been used to mitigate the muscle and cardiac atrophy associated with adaptation to micro-gravity environments. Several hours per day may be required. In confined spaces and long duration missions this kind of exercise is inevitably repetitive and rapidly becomes uninteresting. At the same time, there are pressures to accomplish as much as possible given the cost- per-hour for humans occupying orbiting or interplanetary. Media augmentation provides a the means to overlap activities in time by supplementing the exercise with social, recreational, training or collaborative activities and thereby reducing time pressures. In addition, the machine functions as an interface to a wide range of digital environments allowing for spatial variety in an otherwise confined environment. We hypothesize that the adoption of media augmented exercise machines will have a positive effect on psycho-social well-being on long duration missions. By organizing and supplementing exercise machines, data acquisition hardware, computers and displays into an interacting system this proposal increases functionality with limited additional mass. This paper reviews preliminary work on a project to augment exercise equipment in a manner that addresses these issues and at the same time opens possibilities for additional benefits. A testbed augmented exercise machine uses a specialty built cycle trainer as both input to a virtual environment and as an output device from it using spatialized sound, and visual displays, vibration transducers and variable resistance. The resulting interactivity increases a sense of engagement in the exercise, provides a rich experience of the digital environments. Activities in the virtual environment and accompanying physiological and psychological indicators may be correlated to track and evaluate the health of the crew.

  13. Shear strength behavior of geotextile/geomembrane interfaces

    Directory of Open Access Journals (Sweden)

    Belén M. Bacas

    2015-12-01

    Full Text Available This paper aims to study the shear interaction mechanism of one of the critical geosynthetic interfaces, the geotextile/geomembrane, typically used for lined containment facilities such as landfills. A large direct shear machine is used to carry out 90 geosynthetic interface tests. The test results show a strain softening behavior with a very small dilatancy (<0.5 mm and nonlinear failure envelopes at a normal stress range of 25–450 kPa. The influences of the micro-level structure of these geosynthetics on the macro-level interface shear behavior are discussed in detail. This study has generated several practical recommendations to help professionals to choose what materials are more adequate. From the three geotextiles tested, the thermally bonded monofilament exhibits the best interface shear strength under high normal stress. For low normal stress, however, needle-punched monofilaments are recommended. For the regular textured geomembranes tested, the space between the asperities is an important factor. The closer these asperities are, the better the result achieves. For the irregular textured geomembranes tested, the nonwoven geotextiles made of monofilaments produce the largest interface shear strength.

  14. All your clouds are belong to us - Security analysis of cloud management interfaces

    DEFF Research Database (Denmark)

    Somorovsky, Juraj; Heiderich, Mario; Jensen, Meiko

    2011-01-01

    a complete power over the victim's account, with all the stored data included. In this paper, we provide a security analysis pertaining to the control interfaces of a large Public Cloud (Amazon) and a widely used Private Cloud software (Eucalyptus). Our research results are alarming: in regards to the Amazon......Cloud Computing resources are handled through control interfaces. It is through these interfaces that the new machine images can be added, existing ones can be modified, and instances can be started or ceased. Effectively, a successful attack on a Cloud control interface grants the attacker...... discoveries, we additionally describe the countermea-sures against these attacks, as well as introduce a novel "black box" analysis methodology for public Cloud interfaces....

  15. A Toolkit for Designing User Interfaces

    Science.gov (United States)

    1990-03-01

    as the NPS IB can provide prototyping capability. Interface generators are available commercially for nearly every computing machine on the market ...structure which holds attributes of the message buffer window is shown in Figure 4.2. The variables nlines and nchars hold the number of lines in the...window its appearance of scrolling 46 /* define a type and structure for the message buffer */ struct messbuf( long nlines ; /* number of lines in the

  16. Review of "Conceptual Structures: Information Processing in Mind and Machine."

    Science.gov (United States)

    Smoliar, Stephen W.

    This review of the book, "Conceptual Structures: Information Processing in Mind and Machine," by John F. Sowa, argues that anyone who plans to get involved with issues of knowledge representation should have at least a passing acquaintance with Sowa's conceptual graphs for a database interface. (Used to model the underlying semantics of…

  17. MT-ComparEval: Graphical evaluation interface for Machine Translation development

    Directory of Open Access Journals (Sweden)

    Klejch Ondřej

    2015-10-01

    Full Text Available The tool described in this article has been designed to help MT developers by implementing a web-based graphical user interface that allows to systematically compare and evaluate various MT engines/experiments using comparative analysis via automatic measures and statistics. The evaluation panel provides graphs, tests for statistical significance and n-gram statistics. We also present a demo server http://wmt.ufal.cz with WMT14 and WMT15 translations.

  18. Development of a wearable haptic game interface

    Directory of Open Access Journals (Sweden)

    J. Foottit

    2016-04-01

    Full Text Available This paper outlines the ongoing development of a wearable haptic game interface, in this case for controlling a flight simulator. The device differs from many traditional haptic feedback implementations in that it combines vibrotactile feedback with gesture based input, thus becoming a two-way conduit between the user and the virtual environment. The device is intended to challenge what is considered an “interface” and sets out to purposefully blur the boundary between man and machine. This allows for a more immersive experience, and a user evaluation shows that the intuitive interface allows the user to become the aircraft that is controlled by the movements of the user's hand.

  19. Delivering key signals to the machine: seeking the electric signal that muscles emanate

    International Nuclear Information System (INIS)

    Hashim, A Y Bani; Maslan, M N; Izamshah, R; Mohamad, I S

    2014-01-01

    Due to the limitation of electric power generation in the human body, present human-machine interfaces have not been successful because of the nature of standard electronics circuit designs, which do not consider the specifications of signals that resulted from the skin. In general, the outcomes and applications of human-machine interfaces are limited to custom-designed subsystems, such as neuroprosthesis. We seek to model the bio dynamical of sub skin into equivalent mathematical definitions, descriptions, and theorems. Within the human skin, there are networks of nerves that permit the skin to function as a multi dimension transducer. We investigate the nature of structural skin. Apart from multiple networks of nerves, there are other segments within the skin such as minute muscles. We identify the segments that are active when there is an electromyography activity. When the nervous system is firing signals, the muscle is being stimulated. We evaluate the phenomena of biodynamic of the muscles that is concerned with the electromyography activity of the nervous system. In effect, we design a relationship between the human somatosensory and synthetic systems sensory as the union of a complete set of the new domain of the functional system. This classifies electromyogram waveforms linked to intent thought of an operator. The system will become the basis for delivering key signals to machine such that the machine is under operator's intent, hence slavery

  20. Tracking Single Units in Chronic, Large Scale, Neural Recordings for Brain Machine Interface Applications

    Directory of Open Access Journals (Sweden)

    Ahmed eEleryan

    2014-07-01

    Full Text Available In the study of population coding in neurobiological systems, tracking unit identity may be critical to assess possible changes in the coding properties of neuronal constituents over prolonged periods of time. Ensuring unit stability is even more critical for reliable neural decoding of motor variables in intra-cortically controlled brain-machine interfaces (BMIs. Variability in intrinsic spike patterns, tuning characteristics, and single-unit identity over chronic use is a major challenge to maintaining this stability, requiring frequent daily calibration of neural decoders in BMI sessions by an experienced human operator. Here, we report on a unit-stability tracking algorithm that efficiently and autonomously identifies putative single-units that are stable across many sessions using a relatively short duration recording interval at the start of each session. The algorithm first builds a database of features extracted from units' average spike waveforms and firing patterns across many days of recording. It then uses these features to decide whether spike occurrences on the same channel on one day belong to the same unit recorded on another day or not. We assessed the overall performance of the algorithm for different choices of features and classifiers trained using human expert judgment, and quantified it as a function of accuracy and execution time. Overall, we found a trade-off between accuracy and execution time with increasing data volumes from chronically implanted rhesus macaques, with an average of 12 seconds processing time per channel at ~90% classification accuracy. Furthermore, 77% of the resulting putative single-units matched those tracked by human experts. These results demonstrate that over the span of a few months of recordings, automated unit tracking can be performed with high accuracy and used to streamline the calibration phase during BMI sessions.