WorldWideScience

Sample records for machine interface bmi

  1. Habit learning and brain-machine interfaces (BMI): a tribute to Valentino Braitenberg's "Vehicles".

    Science.gov (United States)

    Birbaumer, Niels; Hummel, Friedhelm C

    2014-10-01

    Brain-Machine Interfaces (BMI) allow manipulation of external devices and computers directly with brain activity without involvement of overt motor actions. The neurophysiological principles of such robotic brain devices and BMIs follow Hebbian learning rules as described and realized by Valentino Braitenberg in his book "Vehicles," in the concept of a "thought pump" residing in subcortical basal ganglia structures. We describe here the application of BMIs for brain communication in totally locked-in patients and argue that the thought pump may extinguish-at least partially-in those people because of extinction of instrumentally learned cognitive responses and brain responses. We show that Pavlovian semantic conditioning may allow brain communication even in the completely paralyzed who does not show response-effect contingencies. Principles of skill learning and habit acquisition as formulated by Braitenberg are the building blocks of BMIs and neuroprostheses.

  2. Enhancing brain-machine interface (BMI) control of a hand exoskeleton using electrooculography (EOG).

    Science.gov (United States)

    Witkowski, Matthias; Cortese, Mario; Cempini, Marco; Mellinger, Jürgen; Vitiello, Nicola; Soekadar, Surjo R

    2014-12-16

    Brain-machine interfaces (BMIs) allow direct translation of electric, magnetic or metabolic brain signals into control commands of external devices such as robots, prostheses or exoskeletons. However, non-stationarity of brain signals and susceptibility to biological or environmental artifacts impede reliable control and safety of BMIs, particularly in daily life environments. Here we introduce and tested a novel hybrid brain-neural computer interaction (BNCI) system fusing electroencephalography (EEG) and electrooculography (EOG) to enhance reliability and safety of continuous hand exoskeleton-driven grasping motions. 12 healthy volunteers (8 male, mean age 28.1 ± 3.63y) used EEG (condition #1) and hybrid EEG/EOG (condition #2) signals to control a hand exoskeleton. Motor imagery-related brain activity was translated into exoskeleton-driven hand closing motions. Unintended motions could be interrupted by eye movement-related EOG signals. In order to evaluate BNCI control and safety, participants were instructed to follow a visual cue indicating either to move or not to move the hand exoskeleton in a random order. Movements exceeding 25% of a full grasping motion when the device was not supposed to be moved were defined as safety violation. While participants reached comparable control under both conditions, safety was frequently violated under condition #1 (EEG), but not under condition #2 (EEG/EOG). EEG/EOG biosignal fusion can substantially enhance safety of assistive BNCI systems improving their applicability in daily life environments.

  3. Design and Optimization of an EEG-Based Brain Machine Interface (BMI) to an Upper-Limb Exoskeleton for Stroke Survivors.

    Science.gov (United States)

    Bhagat, Nikunj A; Venkatakrishnan, Anusha; Abibullaev, Berdakh; Artz, Edward J; Yozbatiran, Nuray; Blank, Amy A; French, James; Karmonik, Christof; Grossman, Robert G; O'Malley, Marcia K; Francisco, Gerard E; Contreras-Vidal, Jose L

    2016-01-01

    This study demonstrates the feasibility of detecting motor intent from brain activity of chronic stroke patients using an asynchronous electroencephalography (EEG)-based brain machine interface (BMI). Intent was inferred from movement related cortical potentials (MRCPs) measured over an optimized set of EEG electrodes. Successful intent detection triggered the motion of an upper-limb exoskeleton (MAHI Exo-II), to guide movement and to encourage active user participation by providing instantaneous sensory feedback. Several BMI design features were optimized to increase system performance in the presence of single-trial variability of MRCPs in the injured brain: (1) an adaptive time window was used for extracting features during BMI calibration; (2) training data from two consecutive days were pooled for BMI calibration to increase robustness to handle the day-to-day variations typical of EEG, and (3) BMI predictions were gated by residual electromyography (EMG) activity from the impaired arm, to reduce the number of false positives. This patient-specific BMI calibration approach can accommodate a broad spectrum of stroke patients with diverse motor capabilities. Following BMI optimization on day 3, testing of the closed-loop BMI-MAHI exoskeleton, on 4th and 5th days of the study, showed consistent BMI performance with overall mean true positive rate (TPR) = 62.7 ± 21.4% on day 4 and 67.1 ± 14.6% on day 5. The overall false positive rate (FPR) across subjects was 27.74 ± 37.46% on day 4 and 27.5 ± 35.64% on day 5; however for two subjects who had residual motor function and could benefit from the EMG-gated BMI, the mean FPR was quite low (designed and optimized to perform well across multiple days without system recalibration.

  4. Design and optimization of an EEG-based brain machine interface (BMI to an upper-limb exoskeleton for stroke survivors

    Directory of Open Access Journals (Sweden)

    Nikunj Arunkumar Bhagat

    2016-03-01

    Full Text Available This study demonstrates the feasibility of detecting motor intent from brain activity of chronic stroke patients using an asynchronous electroencephalography (EEG-based brain machine interface (BMI. Intent was inferred from movement related cortical potentials (MRCPs measured over an optimized set of EEG electrodes. Successful intent detection triggered the motion of an upper-limb exoskeleton (MAHI Exo-II, to guide movement and to encourage active user participation by providing instantaneous sensory feedback. Several BMI design features were optimized to increase system performance in the presence of single-trial variability of MRCPs in the injured brain: 1 an adaptive time window was used for extracting features during BMI calibration; 2 training data from two consecutive days were pooled for BMI calibration to increase robustness to handle the day-to-day variations typical of EEG, and 3 BMI predictions were gated by residual electromyography (EMG activity from the impaired arm, to reduce the number of false positives. This patient-specific BMI calibration approach can accommodate a broad spectrum of stroke patients with diverse motor capabilities. Following BMI optimization on day 3, testing of the closed-loop BMI-MAHI exoskeleton, on 4th and 5th days of the study, showed consistent BMI performance with overall mean true positive rate (TPR = 62.7 +/- 21.4 % on day 4 and 67.1 +/- 14.6 % on day 5. The overall false positive rate (FPR across subjects was 27.74 +/- 37.46 % on day 4 and 27.5 +/- 35.64 % on day 5; however for two subjects who had residual motor function and could benefit from the EMG-gated BMI, the mean FPR was quite low (< 10 %. On average, motor intent was detected -367 +/- 328 ms before movement onset during closed-loop operation. These findings provide evidence that closed-loop EEG-based BMI for stroke patients can be designed and optimized to perform well across multiple days without system recalibration.

  5. Residual Upper Arm Motor Function Primes Innervation of Paretic Forearm Muscles in Chronic Stroke after Brain-Machine Interface (BMI Training.

    Directory of Open Access Journals (Sweden)

    Marco Rocha Curado

    Full Text Available Abnormal upper arm-forearm muscle synergies after stroke are poorly understood. We investigated whether upper arm function primes paralyzed forearm muscles in chronic stroke patients after Brain-Machine Interface (BMI-based rehabilitation. Shaping upper arm-forearm muscle synergies may support individualized motor rehabilitation strategies.Thirty-two chronic stroke patients with no active finger extensions were randomly assigned to experimental or sham groups and underwent daily BMI training followed by physiotherapy during four weeks. BMI sessions included desynchronization of ipsilesional brain activity and a robotic orthosis to move the paretic limb (experimental group, n = 16. In the sham group (n = 16 orthosis movements were random. Motor function was evaluated with electromyography (EMG of forearm extensors, and upper arm and hand Fugl-Meyer assessment (FMA scores. Patients performed distinct upper arm (e.g., shoulder flexion and hand movements (finger extensions. Forearm EMG activity significantly higher during upper arm movements as compared to finger extensions was considered facilitation of forearm EMG activity. Intraclass correlation coefficient (ICC was used to test inter-session reliability of facilitation of forearm EMG activity.Facilitation of forearm EMG activity ICC ranges from 0.52 to 0.83, indicating fair to high reliability before intervention in both limbs. Facilitation of forearm muscles is higher in the paretic as compared to the healthy limb (p<0.001. Upper arm FMA scores predict facilitation of forearm muscles after intervention in both groups (significant correlations ranged from R = 0.752, p = 0.002 to R = 0.779, p = 0.001, but only in the experimental group upper arm FMA scores predict changes in facilitation of forearm muscles after intervention (R = 0.709, p = 0.002; R = 0.827, p<0.001.Residual upper arm motor function primes recruitment of paralyzed forearm muscles in chronic stroke patients and predicts changes in

  6. Brain Machine Interfaces for Robotic Control in Space Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR will study the application of a brain machine interface (BMI) to enable crew to remotely operate and monitor robots from inside a flight vehicle, habitat...

  7. Unsupervised adaptation of brain machine interface decoders

    Directory of Open Access Journals (Sweden)

    Tayfun eGürel

    2012-11-01

    Full Text Available The performance of neural decoders can degrade over time due to nonstationarities in the relationship between neuronal activity and behavior. In this case, brain-machine interfaces (BMI require adaptation of their decoders to maintain high performance across time. One way to achieve this is by use of periodical calibration phases, during which the BMI system (or an external human demonstrator instructs the user to perform certain movements or behaviors. This approach has two disadvantages: (i calibration phases interrupt the autonomous operation of the BMI and (ii between two calibration phases the BMI performance might not be stable but continuously decrease. A better alternative would be that the BMI decoder is able to continuously adapt in an unsupervised manner during autonomous BMI operation, i.e. without knowing the movement intentions of the user. In the present article, we present an efficient method for such unsupervised training of BMI systems for continuous movement control. The proposed method utilizes a cost function derived from neuronal recordings, which guides a learning algorithm to evaluate the decoding parameters. We verify the performance of our adaptive method by simulating a BMI user with an optimal feedback control model and its interaction with our adaptive BMI decoder. The simulation results show that the cost function and the algorithm yield fast and precise trajectories towards targets at random orientations on a 2-dimensional computer screen. For initially unknown and nonstationary tuning parameters, our unsupervised method is still able to generate precise trajectories and to keep its performance stable in the long term. The algorithm can optionally work also with neuronal error signals instead or in conjunction with the proposed unsupervised adaptation.

  8. What Turns Assistive into Restorative Brain-Machine Interfaces?

    Science.gov (United States)

    Gharabaghi, Alireza

    2016-01-01

    Brain-machine interfaces (BMI) may support motor impaired patients during activities of daily living by controlling external devices such as prostheses (assistive BMI). Moreover, BMIs are applied in conjunction with robotic orthoses for rehabilitation of lost motor function via neurofeedback training (restorative BMI). Using assistive BMI in a rehabilitation context does not automatically turn them into restorative devices. This perspective article suggests key features of restorative BMI and provides the supporting evidence: In summary, BMI may be referred to as restorative tools when demonstrating subsequently (i) operant learning and progressive evolution of specific brain states/dynamics, (ii) correlated modulations of functional networks related to the therapeutic goal, (iii) subsequent improvement in a specific task, and (iv) an explicit correlation between the modulated brain dynamics and the achieved behavioral gains. Such findings would provide the rationale for translating BMI-based interventions into clinical settings for reinforcement learning and motor rehabilitation following stroke. PMID:27790085

  9. What turns assistive into restorative brain-machine interfaces?

    Directory of Open Access Journals (Sweden)

    Alireza Gharabaghi

    2016-10-01

    Full Text Available Brain-machine interfaces (BMI may support motor impaired patients during activities of daily living by controlling external devices such as prostheses (assistive BMI. Moreover, BMIs are applied in conjunction with robotic orthoses for rehabilitation of lost motor function via neurofeedback training (restorative BMI. Using assistive BMI in a rehabilitation context does not automatically turn them into restorative devices. This perspective article suggests key features of restorative BMI and provides the supporting evidence:In summary, BMI may be referred to as restorative tools when demonstrating subsequently (i operant learning and progressive evolution of specific brain states/dynamics, (ii correlated modulations of functional networks related to the therapeutic goal, (iii subsequent improvement in a specific task, and (iv an explicit correlation between the modulated brain dynamics and the achieved behavioral gains. Such findings would provide the rationale for translating BMI-based interventions into clinical settings for reinforcement learning and motor rehabilitation following stroke.

  10. Gloved Human-Machine Interface

    Science.gov (United States)

    Adams, Richard (Inventor); Olowin, Aaron (Inventor); Hannaford, Blake (Inventor)

    2015-01-01

    Certain exemplary embodiments can provide a system, machine, device, manufacture, circuit, composition of matter, and/or user interface adapted for and/or resulting from, and/or a method and/or machine-readable medium comprising machine-implementable instructions for, activities that can comprise and/or relate to: tracking movement of a gloved hand of a human; interpreting a gloved finger movement of the human; and/or in response to interpreting the gloved finger movement, providing feedback to the human.

  11. MAN – MACHINE INTERFACE

    Directory of Open Access Journals (Sweden)

    S.Bhuvaneswari

    2012-02-01

    Full Text Available Agents trained by learning techniques provide a powerful approximation of state spaces in games that aretoo large for naive approaches. In the study Genetic Algorithms and Manual Interface was implementedand used to train agents for the board game LUDO. The state space of LUDO is generalized to a small setand encoded to suit the different techniques. The impact of variables and tactics applied in training aredetermined. Agents based on the techniques performed satisfactory against a baseline finite agent, and aGenetic Algorithm based agent performed satisfactory against competitors from the course. Better statespace representations will improve the success of learning based agents.

  12. Brain-machine interfaces for rehabilitation of poststroke hemiplegia.

    Science.gov (United States)

    Ushiba, J; Soekadar, S R

    2016-01-01

    Noninvasive brain-machine interfaces (BMIs) are typically associated with neuroprosthetic applications or communication aids developed to assist in daily life after loss of motor function, eg, in severe paralysis. However, BMI technology has recently been found to be a powerful tool to promote neural plasticity facilitating motor recovery after brain damage, eg, due to stroke or trauma. In such BMI paradigms, motor cortical output and input are simultaneously activated, for instance by translating motor cortical activity associated with the attempt to move the paralyzed fingers into actual exoskeleton-driven finger movements, resulting in contingent visual and somatosensory feedback. Here, we describe the rationale and basic principles underlying such BMI motor rehabilitation paradigms and review recent studies that provide new insights into BMI-related neural plasticity and reorganization. Current challenges in clinical implementation and the broader use of BMI technology in stroke neurorehabilitation are discussed. © 2016 Elsevier B.V. All rights reserved.

  13. Brain Machine Interface: Analysis of segmented EEG Signal Classification Using Short-Time PCA and Recurrent Neural Networks

    OpenAIRE

    C. R. Hema; Paulraj, M.P.; Nagarajan, R.; Sazali Yaacob; Abdul Hamid Adom

    2008-01-01

    Brain machine interface provides a communication channel between the human brain and an external device. Brain interfaces are studied to provide rehabilitation to patients with neurodegenerative diseases; such patients loose all communication pathways except for their sensory and cognitive functions. One of the possible rehabilitation methods for these patients is to provide a brain machine interface (BMI) for communication; the BMI uses the electrical activity of the brain detected by scalp ...

  14. Biosleeve Human-Machine Interface

    Science.gov (United States)

    Assad, Christopher (Inventor)

    2016-01-01

    Systems and methods for sensing human muscle action and gestures in order to control machines or robotic devices are disclosed. One exemplary system employs a tight fitting sleeve worn on a user arm and including a plurality of electromyography (EMG) sensors and at least one inertial measurement unit (IMU). Power, signal processing, and communications electronics may be built into the sleeve and control data may be transmitted wirelessly to the controlled machine or robotic device.

  15. Interface Metaphors for Interactive Machine Learning

    Energy Technology Data Exchange (ETDEWEB)

    Jasper, Robert J.; Blaha, Leslie M.

    2017-07-14

    To promote more interactive and dynamic machine learn- ing, we revisit the notion of user-interface metaphors. User-interface metaphors provide intuitive constructs for supporting user needs through interface design elements. A user-interface metaphor provides a visual or action pattern that leverages a user’s knowledge of another domain. Metaphors suggest both the visual representations that should be used in a display as well as the interactions that should be afforded to the user. We argue that user-interface metaphors can also offer a method of extracting interaction-based user feedback for use in machine learning. Metaphors offer indirect, context-based information that can be used in addition to explicit user inputs, such as user-provided labels. Implicit information from user interactions with metaphors can augment explicit user input for active learning paradigms. Or it might be leveraged in systems where explicit user inputs are more challenging to obtain. Each interaction with the metaphor provides an opportunity to gather data and learn. We argue this approach is especially important in streaming applications, where we desire machine learning systems that can adapt to dynamic, changing data.

  16. Parsing learning in networks using brain-machine interfaces.

    Science.gov (United States)

    Orsborn, Amy L; Pesaran, Bijan

    2017-08-24

    Brain-machine interfaces (BMIs) define new ways to interact with our environment and hold great promise for clinical therapies. Motor BMIs, for instance, re-route neural activity to control movements of a new effector and could restore movement to people with paralysis. Increasing experience shows that interfacing with the brain inevitably changes the brain. BMIs engage and depend on a wide array of innate learning mechanisms to produce meaningful behavior. BMIs precisely define the information streams into and out of the brain, but engage wide-spread learning. We take a network perspective and review existing observations of learning in motor BMIs to show that BMIs engage multiple learning mechanisms distributed across neural networks. Recent studies demonstrate the advantages of BMI for parsing this learning and its underlying neural mechanisms. BMIs therefore provide a powerful tool for studying the neural mechanisms of learning that highlights the critical role of learning in engineered neural therapies. Copyright © 2017. Published by Elsevier Ltd.

  17. Brain-Machine Interface in chronic stroke rehabilitation: A controlled study

    NARCIS (Netherlands)

    Ramos-Murguialday, A.; Brötz, D.; Rea, M.; Laër, L.; Yilmaz, O.; Brasil, F.L.; Liberati, G.; Curado, M.R.; Garcia Cossio, E.; Vyziotis, A.; Cho, W.; Agostini, M.; Soares, E.; Soekadar, S.; Caria, A.; Cohen, L.G.; Birbaumer, N.

    2013-01-01

    Objective Chronic stroke patients with severe hand weakness respond poorly to rehabilitation efforts. Here, we evaluated efficacy of daily brain-machine interface (BMI) training to increase the hypothesized beneficial effects of physiotherapy alone in patients with severe paresis in a double-blind s

  18. Brain-Machine Interface in chronic stroke rehabilitation: A controlled study

    NARCIS (Netherlands)

    Ramos-Murguialday, A.; Brötz, D.; Rea, M.; Laër, L.; Yilmaz, O.; Brasil, F.L.; Liberati, G.; Curado, M.R.; Garcia Cossio, E.; Vyziotis, A.; Cho, W.; Agostini, M.; Soares, E.; Soekadar, S.; Caria, A.; Cohen, L.G.; Birbaumer, N.

    2013-01-01

    Objective Chronic stroke patients with severe hand weakness respond poorly to rehabilitation efforts. Here, we evaluated efficacy of daily brain-machine interface (BMI) training to increase the hypothesized beneficial effects of physiotherapy alone in patients with severe paresis in a double-blind

  19. Prospect of Brain‑Machine Interface in Motor Disabilities: The Future ...

    African Journals Online (AJOL)

    Subsequently, it insights brain‑machine interface (BMI) as an alternative approach to ... Website: www.amhsr.org. DOI: 10.4103/2141-9248.133447. Review Article .... analyzed and interpreted by artificial neural network model, fed as input to a ...

  20. A Wireless 32-Channel Implantable Bidirectional Brain Machine Interface

    Directory of Open Access Journals (Sweden)

    Yi Su

    2016-09-01

    Full Text Available All neural information systems (NIS rely on sensing neural activity to supply commands and control signals for computers, machines and a variety of prosthetic devices. Invasive systems achieve a high signal-to-noise ratio (SNR by eliminating the volume conduction problems caused by tissue and bone. An implantable brain machine interface (BMI using intracortical electrodes provides excellent detection of a broad range of frequency oscillatory activities through the placement of a sensor in direct contact with cortex. This paper introduces a compact-sized implantable wireless 32-channel bidirectional brain machine interface (BBMI to be used with freely-moving primates. The system is designed to monitor brain sensorimotor rhythms and present current stimuli with a configurable duration, frequency and amplitude in real time to the brain based on the brain activity report. The battery is charged via a novel ultrasonic wireless power delivery module developed for efficient delivery of power into a deeply-implanted system. The system was successfully tested through bench tests and in vivo tests on a behaving primate to record the local field potential (LFP oscillation and stimulate the target area at the same time.

  1. A Wireless 32-Channel Implantable Bidirectional Brain Machine Interface.

    Science.gov (United States)

    Su, Yi; Routhu, Sudhamayee; Moon, Kee S; Lee, Sung Q; Youm, WooSub; Ozturk, Yusuf

    2016-01-01

    All neural information systems (NIS) rely on sensing neural activity to supply commands and control signals for computers, machines and a variety of prosthetic devices. Invasive systems achieve a high signal-to-noise ratio (SNR) by eliminating the volume conduction problems caused by tissue and bone. An implantable brain machine interface (BMI) using intracortical electrodes provides excellent detection of a broad range of frequency oscillatory activities through the placement of a sensor in direct contact with cortex. This paper introduces a compact-sized implantable wireless 32-channel bidirectional brain machine interface (BBMI) to be used with freely-moving primates. The system is designed to monitor brain sensorimotor rhythms and present current stimuli with a configurable duration, frequency and amplitude in real time to the brain based on the brain activity report. The battery is charged via a novel ultrasonic wireless power delivery module developed for efficient delivery of power into a deeply-implanted system. The system was successfully tested through bench tests and in vivo tests on a behaving primate to record the local field potential (LFP) oscillation and stimulate the target area at the same time.

  2. What limits the performance of current invasive Brain Machine Interfaces?

    Directory of Open Access Journals (Sweden)

    Gytis eBaranauskas

    2014-04-01

    Full Text Available The concept of a brain-machine interface (BMI or a computer-brain interface is simple: BMI creates a communication pathway for a direct control by brain of an external device. In reality BMIs are very complex devices and only recently the increase in computing power of microprocessors enabled a boom in BMI research that continues almost unabated to this date, the high point being the insertion of electrode arrays into the brains of 5 human patients in a clinical trial run by Cyberkinetics with few other clinical tests still in progress. Meanwhile several EEG-based BMI devices (non-invasive BMIs were launched commercially. Modern electronics and dry electrode technology made possible to drive the cost of some of these devices below few hundred dollars. However, the initial excitement of the direct control by brain waves of a computer or other equipment is dampened by large efforts required for learning, high error rates and slow response speed. All these problems are directly related to low information transfer rates typical for such EEG-based BMIs. In invasive BMIs employing multiple electrodes inserted into the brain one may expect much higher information transfer rates than in EEG-based BMIs because, in theory, each electrode provides an independent information channel. However, although invasive BMIs require more expensive equipment and have ethical problems related to the need to insert electrodes in the live brain, such financial and ethical costs are often not offset by a dramatic improvement in the information transfer rate. Thus the main topic of this review is why in invasive BMIs an apparently much larger information content obtained with multiple extracellular electrodes does not translate into much higher rates of information transfer? This paper explores possible answers to this question by concluding that more research on what movement parameters are encoded by neurons in motor cortex is needed before we can enjoy the next

  3. What limits the performance of current invasive brain machine interfaces?

    Science.gov (United States)

    Baranauskas, Gytis

    2014-01-01

    The concept of a brain-machine interface (BMI) or a computer-brain interface is simple: BMI creates a communication pathway for a direct control by brain of an external device. In reality BMIs are very complex devices and only recently the increase in computing power of microprocessors enabled a boom in BMI research that continues almost unabated to this date, the high point being the insertion of electrode arrays into the brains of 5 human patients in a clinical trial run by Cyberkinetics with few other clinical tests still in progress. Meanwhile several EEG-based BMI devices (non-invasive BMIs) were launched commercially. Modern electronics and dry electrode technology made possible to drive the cost of some of these devices below few hundred dollars. However, the initial excitement of the direct control by brain waves of a computer or other equipment is dampened by large efforts required for learning, high error rates and slow response speed. All these problems are directly related to low information transfer rates typical for such EEG-based BMIs. In invasive BMIs employing multiple electrodes inserted into the brain one may expect much higher information transfer rates than in EEG-based BMIs because, in theory, each electrode provides an independent information channel. However, although invasive BMIs require more expensive equipment and have ethical problems related to the need to insert electrodes in the live brain, such financial and ethical costs are often not offset by a dramatic improvement in the information transfer rate. Thus the main topic of this review is why in invasive BMIs an apparently much larger information content obtained with multiple extracellular electrodes does not translate into much higher rates of information transfer? This paper explores possible answers to this question by concluding that more research on what movement parameters are encoded by neurons in motor cortex is needed before we can enjoy the next generation BMIs.

  4. Man-machine interface for the MFTF

    Energy Technology Data Exchange (ETDEWEB)

    Speckert, G.C.

    1979-11-09

    In any complex system, the interesting problems occur at the interface of dissimilar subsystems. Control of the Mirror Fusion Test Facility (MFTF) begins with the US Congress, which controls the dollars, which control the people, who control the nine top-level minicomputers, which control the 65 microprocessors, which control the hardware that controls the physics experiment. There are many interesting boundaries across which control must pass, and the one that this paper addresses is the man-machine one. For the MFTF, the man-machine interface consists of a system of seven control consoles, each allowing one operator to communicate with one minicomputer. These consoles are arranged in a hierarchical manner, and both hardware and software were designed in a top-down fashion. This paper describes the requirements and the design of the console system as a whole, as well as the design and operation of the hardware and software of each console, and examines the possible form of a future man-machine interface.

  5. Developments in brain-machine interfaces from the perspective of robotics.

    Science.gov (United States)

    Kim, Hyun K; Park, Shinsuk; Srinivasan, Mandayam A

    2009-04-01

    Many patients suffer from the loss of motor skills, resulting from traumatic brain and spinal cord injuries, stroke, and many other disabling conditions. Thanks to technological advances in measuring and decoding the electrical activity of cortical neurons, brain-machine interfaces (BMI) have become a promising technology that can aid paralyzed individuals. In recent studies on BMI, robotic manipulators have demonstrated their potential as neuroprostheses. Restoring motor skills through robot manipulators controlled by brain signals may improve the quality of life of people with disability. This article reviews current robotic technologies that are relevant to BMI and suggests strategies that could improve the effectiveness of a brain-operated neuroprosthesis through robotics.

  6. Biomimetic Brain Machine Interfaces for the Control of Movement

    Science.gov (United States)

    Fagg, Andrew H.; Hatsopoulos, Nicholas G.; de Lafuente, Victor; Moxon, Karen A.; Nemati, Shamim; Rebesco, James M.; Romo, Ranulfo; Solla, Sara A.; Reimer, Jake; Tkach, Dennis; Pohlmeyer, Eric A.; Miller, Lee E.

    2008-01-01

    Quite recently, it has become possible to use signals recorded simultaneously from large numbers of cortical neurons for real-time control. Such brain machine interfaces (BMIs) have allowed animal subjects and human patients to control the position of a computer cursor or robotic limb under the guidance of visual feedback. Although impressive, such approaches essentially ignore the dynamics of the musculoskeletal system, and they lack potentially critical somatosensory feedback. In this mini-symposium, we will initiate a discussion of systems that more nearly mimic the control of natural limb movement. The work that we will describe is based on fundamental observations of sensorimotor physiology that have inspired novel BMI approaches. We will focus on what we consider to be three of the most important new directions for BMI development related to the control of movement. (1) We will present alternative methods for building decoders, including structured, nonlinear models, the explicit incorporation of limb state information, and novel approaches to the development of decoders for paralyzed subjects unable to generate an output signal. (2) We will describe the real-time prediction of dynamical signals, including joint torque, force, and EMG, and the real-time control of physical plants with dynamics like that of the real limb. (3) We will discuss critical factors that must be considered to incorporate somatosensory feedback to the BMI user, including its potential benefits, the differing representations of sensation and perception across cortical areas, and the changes in the cortical representation of tactile events after spinal injury. PMID:17978021

  7. Academic Training: The LHC machine /experiment interface

    CERN Multimedia

    Françoise Benz

    2005-01-01

    2004-2005 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 18, 19, 20, 21 & 22 April from 11.00 to 12.00 hrs - Main Auditorium, bldg. 500 The LHC machine /experiment interface S. TAPPROGGE, Univ. of Mainz, D, R. ASSMANN, CERN-AB E. TSESMELIS and D. MACINA, CERN-TS This series of lectures will cover some of the major issues at the boundary between the LHC machine and the experiments: 1) The physics motivation and expectations of the experiments regarding the machine operation. This will include an overview of the LHC physics programme (in pp and PbPb collisions), of the experimental signatures (from high pT objects to leading nucleons) and of the expected trigger rates as well as the data sets needed for specific measurements. Furthermore, issues related to various modes of operation of the machine (e.g. bunch spacings of 25 ns. vs. 75 ns.) and special requirements of the detectors for their commissioning will be described. 2) The LHC machine aspects: introduction of the main LHC parameters and discu...

  8. Academic Training: The LHC machine /experiment interface

    CERN Multimedia

    Françoise Benz

    2005-01-01

    2004-2005 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 18, 19, 20, 21 & 22 April from 11.00 to 12.00 hrs - Main Auditorium, bldg. 500 The LHC machine /experiment interface S. TAPPROGGE, Univ. of Mainz, D, R. ASSMANN, CERN-AB E. TSESMELIS and D. MACINA, CERN-TS This series of lectures will cover some of the major issues at the boundary between the LHC machine and the experiments: 1) The physics motivation and expectations of the experiments regarding the machine operation. This will include an overview of the LHC physics programme (in pp and PbPb collisions), of the experimental signatures (from high pT objects to leading nucleons) and of the expected trigger rates as well as the data sets needed for specific measurements. Furthermore, issues related to various modes of operation of the machine (e.g. bunch spacings of 25 ns. vs. 75 ns.) and special requirements of the detectors for their commissioning will be described. 2) The LHC machine aspects: introduction of the main LHC parameters and disc...

  9. A brain-machine interface instructed by direct intracortical microstimulation

    Directory of Open Access Journals (Sweden)

    Joseph E O'Doherty

    2009-09-01

    Full Text Available Brain-machine interfaces (BMIs establish direct communications between the brain and artificial actuators. As such, they hold considerable promise for restoring mobility and communication in patients suffering from severe body paralysis. To achieve this end, future BMIs must also provide a means for delivering sensory signals from the actuators back to the brain. Prosthetic sensation is needed so that neuroprostheses can be better perceived and controlled. Here we show that a direct intracortical input can be added to a BMI to instruct rhesus monkeys in choosing the direction of reaching movements generated by the BMI. Somatosensory instructions were provided to two monkeys operating the BMI using either: (a vibrotactile stimulation of the monkey’s hands or (b multi-channel intracortical microstimulation (ICMS delivered to the primary somatosensory cortex (S1 in one monkey and posterior parietal cortex (PP in the other. Stimulus delivery was contingent on the position of the computer cursor: the monkey placed it in the center of the screen to receive machine-brain recursive input. After two weeks of training, the same level of proficiency in utilizing somatosensory information was achieved with ICMS of S1 as with the stimulus delivered to the hand skin. ICMS of PP was not effective. These results indicate that direct, bi-directional communication between the brain and neuroprosthetic devices can be achieved through the combination of chronic multi-electrode recording and microstimulation of S1. We propose that in the future, bidirectional BMIs incorporating ICMS may become an effective paradigm for sensorizing neuroprosthetic devices.

  10. Modular particle filtering FPGA hardware architecture for brain machine interfaces.

    Science.gov (United States)

    Mountney, John; Obeid, Iyad; Silage, Dennis

    2011-01-01

    As the computational complexities of neural decoding algorithms for brain machine interfaces (BMI) increase, their implementation through sequential processors becomes prohibitive for real-time applications. This work presents the field programmable gate array (FPGA) as an alternative to sequential processors for BMIs. The reprogrammable hardware architecture of the FPGA provides a near optimal platform for performing parallel computations in real-time. The scalability and reconfigurability of the FPGA accommodates diverse sets of neural ensembles and a variety of decoding algorithms. Throughput is significantly increased by decomposing computations into independent parallel hardware modules on the FPGA. This increase in throughput is demonstrated through a parallel hardware implementation of the auxiliary particle filtering signal processing algorithm.

  11. Brain-machine interface: the challenge of neuroethics.

    Science.gov (United States)

    Demetriades, Andreas K; Demetriades, Christina K; Watts, Colin; Ashkan, Keyoumars

    2010-10-01

    The burning question surrounding the use of Brain-Machine Interface (BMI) devices is not merely whether they should be used, but how widely they should be used, especially in view of some ethical implications that arise concerning the social and legal aspects of human life. As technology advances, it can be exploited to affect the quality of life. Since the effects of BMIs can be both positive and negative, it is imperative to address the issue of the ethics surrounding them. This paper presents the ways in which BMIs can be used and focuses on the ethical concerns to which neuroscience is thus exposed. The argument put forward supports the use of BMIs solely for purposes of medical treatment, and invites the legal framing of this.

  12. Brain-machine interfaces for real-time speech synthesis.

    Science.gov (United States)

    Guenther, Frank H; Brumberg, Jonathan S

    2011-01-01

    This paper reports on studies involving brain-machine interfaces (BMIs) that provide near-instantaneous audio feedback from a speech synthesizer to the BMI user. In one study, neural signals recorded by an intracranial electrode implanted in a speech-related region of the left precentral gyrus of a human volunteer suffering from locked-in syndrome were transmitted wirelessly across the scalp and used to drive a formant synthesizer, allowing the user to produce vowels. In a second, pilot study, a neurologically normal user was able to drive the formant synthesizer with imagined movements detected using electroencephalography. Our results support the feasibility of neural prostheses that have the potential to provide near-conversational synthetic speech for individuals with severely impaired speech output.

  13. Improving brain-machine interface performance by decoding intended future movements

    Science.gov (United States)

    Willett, Francis R.; Suminski, Aaron J.; Fagg, Andrew H.; Hatsopoulos, Nicholas G.

    2013-04-01

    Objective. A brain-machine interface (BMI) records neural signals in real time from a subject's brain, interprets them as motor commands, and reroutes them to a device such as a robotic arm, so as to restore lost motor function. Our objective here is to improve BMI performance by minimizing the deleterious effects of delay in the BMI control loop. We mitigate the effects of delay by decoding the subject's intended movements a short time lead in the future. Approach. We use the decoded, intended future movements of the subject as the control signal that drives the movement of our BMI. This should allow the user's intended trajectory to be implemented more quickly by the BMI, reducing the amount of delay in the system. In our experiment, a monkey (Macaca mulatta) uses a future prediction BMI to control a simulated arm to hit targets on a screen. Main Results. Results from experiments with BMIs possessing different system delays (100, 200 and 300 ms) show that the monkey can make significantly straighter, faster and smoother movements when the decoder predicts the user's future intent. We also characterize how BMI performance changes as a function of delay, and explore offline how the accuracy of future prediction decoders varies at different time leads. Significance. This study is the first to characterize the effects of control delays in a BMI and to show that decoding the user's future intent can compensate for the negative effect of control delay on BMI performance.

  14. Quantifying the role of motor imagery in brain-machine interfaces

    Science.gov (United States)

    Marchesotti, Silvia; Bassolino, Michela; Serino, Andrea; Bleuler, Hannes; Blanke, Olaf

    2016-04-01

    Despite technical advances in brain machine interfaces (BMI), for as-yet unknown reasons the ability to control a BMI remains limited to a subset of users. We investigate whether individual differences in BMI control based on motor imagery (MI) are related to differences in MI ability. We assessed whether differences in kinesthetic and visual MI, in the behavioral accuracy of MI, and in electroencephalographic variables, were able to differentiate between high- versus low-aptitude BMI users. High-aptitude BMI users showed higher MI accuracy as captured by subjective and behavioral measurements, pointing to a prominent role of kinesthetic rather than visual imagery. Additionally, for the first time, we applied mental chronometry, a measure quantifying the degree to which imagined and executed movements share a similar temporal profile. We also identified enhanced lateralized μ-band oscillations over sensorimotor cortices during MI in high- versus low-aptitude BMI users. These findings reveal that subjective, behavioral, and EEG measurements of MI are intimately linked to BMI control. We propose that poor BMI control cannot be ascribed only to intrinsic limitations of EEG recordings and that specific questionnaires and mental chronometry can be used as predictors of BMI performance (without the need to record EEG activity).

  15. A chronic generalized bi-directional brain-machine interface

    Science.gov (United States)

    Rouse, A. G.; Stanslaski, S. R.; Cong, P.; Jensen, R. M.; Afshar, P.; Ullestad, D.; Gupta, R.; Molnar, G. F.; Moran, D. W.; Denison, T. J.

    2011-06-01

    A bi-directional neural interface (NI) system was designed and prototyped by incorporating a novel neural recording and processing subsystem into a commercial neural stimulator architecture. The NI system prototype leverages the system infrastructure from an existing neurostimulator to ensure reliable operation in a chronic implantation environment. In addition to providing predicate therapy capabilities, the device adds key elements to facilitate chronic research, such as four channels of electrocortigram/local field potential amplification and spectral analysis, a three-axis accelerometer, algorithm processing, event-based data logging, and wireless telemetry for data uploads and algorithm/configuration updates. The custom-integrated micropower sensor and interface circuits facilitate extended operation in a power-limited device. The prototype underwent significant verification testing to ensure reliability, and meets the requirements for a class CF instrument per IEC-60601 protocols. The ability of the device system to process and aid in classifying brain states was preclinically validated using an in vivo non-human primate model for brain control of a computer cursor (i.e. brain-machine interface or BMI). The primate BMI model was chosen for its ability to quantitatively measure signal decoding performance from brain activity that is similar in both amplitude and spectral content to other biomarkers used to detect disease states (e.g. Parkinson's disease). A key goal of this research prototype is to help broaden the clinical scope and acceptance of NI techniques, particularly real-time brain state detection. These techniques have the potential to be generalized beyond motor prosthesis, and are being explored for unmet needs in other neurological conditions such as movement disorders, stroke and epilepsy.

  16. An Ecological Man-Machine Interface for Temporal Visualization

    DEFF Research Database (Denmark)

    Jensen, Lars Peter; Koch, P.

    1993-01-01

    This paper concerns design of man-machine systems, especially the interface between man and machine (MMI). Three different models of human information processing are used to extract theoretical guidelines for designing MMI's to support human mental activity.....

  17. An Ecological Man-Machine Interface for Temporal Visualization

    DEFF Research Database (Denmark)

    Jensen, Lars Peter; Koch, P.

    1993-01-01

    This paper concerns design of man-machine systems, especially the interface between man and machine (MMI). Three different models of human information processing are used to extract theoretical guidelines for designing MMI's to support human mental activity........This paper concerns design of man-machine systems, especially the interface between man and machine (MMI). Three different models of human information processing are used to extract theoretical guidelines for designing MMI's to support human mental activity.....

  18. The LHC machine-experiment interface

    CERN Document Server

    CERN. Geneva; Tsesmelis, Emmanuel; Brüning, Oliver Sim

    2002-01-01

    This series of three lectures will provide an overview of issues arising at the interface between the LHC machine and the experiments, which are required for guiding the interaction between the collider and the experiments when operation of the LHC commences. A basic description of the LHC Collider and its operating parameters, such as its energy, currents, bunch structure and luminosity, as well as variations on these parameters, will be given. Furthermore, the optics foreseen for the experimental insertions, the sources and intensities of beam losses and the running-in scenarios for the various phases of operation will be discussed. A second module will cover the specific requirements and expectations of each experiment in terms of the layout of experimental areas, the matters related to radiation monitoring and shielding, the design of the beam pipe and the vacuum system, alignment issues and the measurement of the total cross-section and absolute luminosity by the experiments. Finally an analysis of infor...

  19. Human Machine Interface Programming and Testing

    Science.gov (United States)

    Foster, Thomas Garrison

    2013-01-01

    Human Machine Interface (HMI) Programming and Testing is about creating graphical displays to mimic mission critical ground control systems in order to provide NASA engineers with the ability to monitor the health management of these systems in real time. The Health Management System (HMS) is an online interactive human machine interface system that monitors all Kennedy Ground Control Subsystem (KGCS) hardware in the field. The Health Management System is essential to NASA engineers because it allows remote control and monitoring of the health management systems of all the Programmable Logic Controllers (PLC) and associated field devices. KGCS will have equipment installed at the launch pad, Vehicle Assembly Building, Mobile Launcher, as well as the Multi-Purpose Processing Facility. I am designing graphical displays to monitor and control new modules that will be integrated into the HMS. The design of the display screen will closely mimic the appearance and functionality of the actual modules. There are many different field devices used to monitor health management and each device has its own unique set of health management related data, therefore each display must also have its own unique way to display this data. Once the displays are created, the RSLogix5000 application is used to write software that maps all the required data read from the hardware to the graphical display. Once this data is mapped to its corresponding display item, the graphical display and hardware device will be connected through the same network in order to test all possible scenarios and types of data the graphical display was designed to receive. Test Procedures will be written to thoroughly test out the displays and ensure that they are working correctly before being deployed to the field. Additionally, the Kennedy Ground Controls Subsystem's user manual will be updated to explain to the NASA engineers how to use the new module displays.

  20. Machine Learning Interface for Medical Image Analysis.

    Science.gov (United States)

    Zhang, Yi C; Kagen, Alexander C

    2016-10-11

    TensorFlow is a second-generation open-source machine learning software library with a built-in framework for implementing neural networks in wide variety of perceptual tasks. Although TensorFlow usage is well established with computer vision datasets, the TensorFlow interface with DICOM formats for medical imaging remains to be established. Our goal is to extend the TensorFlow API to accept raw DICOM images as input; 1513 DaTscan DICOM images were obtained from the Parkinson's Progression Markers Initiative (PPMI) database. DICOM pixel intensities were extracted and shaped into tensors, or n-dimensional arrays, to populate the training, validation, and test input datasets for machine learning. A simple neural network was constructed in TensorFlow to classify images into normal or Parkinson's disease groups. Training was executed over 1000 iterations for each cross-validation set. The gradient descent optimization and Adagrad optimization algorithms were used to minimize cross-entropy between the predicted and ground-truth labels. Cross-validation was performed ten times to produce a mean accuracy of 0.938 ± 0.047 (95 % CI 0.908-0.967). The mean sensitivity was 0.974 ± 0.043 (95 % CI 0.947-1.00) and mean specificity was 0.822 ± 0.207 (95 % CI 0.694-0.950). We extended the TensorFlow API to enable DICOM compatibility in the context of DaTscan image analysis. We implemented a neural network classifier that produces diagnostic accuracies on par with excellent results from previous machine learning models. These results indicate the potential role of TensorFlow as a useful adjunct diagnostic tool in the clinical setting.

  1. Physiological properties of brain-machine interface input signals.

    Science.gov (United States)

    Slutzky, Marc W; Flint, Robert D

    2017-08-01

    Brain-machine interfaces (BMIs), also called brain-computer interfaces (BCIs), decode neural signals and use them to control some type of external device. Despite many experimental successes and terrific demonstrations in animals and humans, a high-performance, clinically viable device has not yet been developed for widespread usage. There are many factors that impact clinical viability and BMI performance. Arguably, the first of these is the selection of brain signals used to control BMIs. In this review, we summarize the physiological characteristics and performance-including movement-related information, longevity, and stability-of multiple types of input signals that have been used in invasive BMIs to date. These include intracortical spikes as well as field potentials obtained inside the cortex, at the surface of the cortex (electrocorticography), and at the surface of the dura mater (epidural signals). We also discuss the potential for future enhancements in input signal performance, both by improving hardware and by leveraging the knowledge of the physiological characteristics of these signals to improve decoding and stability. Copyright © 2017 the American Physiological Society.

  2. Wireless brain-machine interface using EEG and EOG: brain wave classification and robot control

    Science.gov (United States)

    Oh, Sechang; Kumar, Prashanth S.; Kwon, Hyeokjun; Varadan, Vijay K.

    2012-04-01

    A brain-machine interface (BMI) links a user's brain activity directly to an external device. It enables a person to control devices using only thought. Hence, it has gained significant interest in the design of assistive devices and systems for people with disabilities. In addition, BMI has also been proposed to replace humans with robots in the performance of dangerous tasks like explosives handling/diffusing, hazardous materials handling, fire fighting etc. There are mainly two types of BMI based on the measurement method of brain activity; invasive and non-invasive. Invasive BMI can provide pristine signals but it is expensive and surgery may lead to undesirable side effects. Recent advances in non-invasive BMI have opened the possibility of generating robust control signals from noisy brain activity signals like EEG and EOG. A practical implementation of a non-invasive BMI such as robot control requires: acquisition of brain signals with a robust wearable unit, noise filtering and signal processing, identification and extraction of relevant brain wave features and finally, an algorithm to determine control signals based on the wave features. In this work, we developed a wireless brain-machine interface with a small platform and established a BMI that can be used to control the movement of a robot by using the extracted features of the EEG and EOG signals. The system records and classifies EEG as alpha, beta, delta, and theta waves. The classified brain waves are then used to define the level of attention. The acceleration and deceleration or stopping of the robot is controlled based on the attention level of the wearer. In addition, the left and right movements of eye ball control the direction of the robot.

  3. Muon Collider Machine-Detector Interface

    Energy Technology Data Exchange (ETDEWEB)

    Mokhov, Nikolai V.; /Fermilab

    2011-08-01

    In order to realize the high physics potential of a Muon Collider (MC) a high luminosity of {mu}{sup +}{mu}{sup -}-collisions at the Interaction Point (IP) in the TeV range must be achieved ({approx}10{sup 34} cm{sup -2}s{sup -1}). To reach this goal, a number of demanding requirements on the collider optics and the IR hardware - arising from the short muon lifetime and from relatively large values of the transverse emittance and momentum spread in muon beams that can realistically be obtained with ionization cooling should be satisfied. These requirements are aggravated by limitations on the quadrupole gradients as well as by the necessity to protect superconducting magnets and collider detectors from muon decay products. The overall detector performance in this domain is strongly dependent on the background particle rates in various sub-detectors. The deleterious effects of the background and radiation environment produced by the beam in the ring are very important issues in the Interaction Region (IR), detector and Machine-Detector Interface (MDI) designs. This report is based on studies presented very recently.

  4. An implantable VLSI architecture for real time spike sorting in cortically controlled Brain Machine Interfaces.

    Science.gov (United States)

    Aghagolzadeh, Mehdi; Zhang, Fei; Oweiss, Karim

    2010-01-01

    Brain Machine Interface (BMI) systems demand real-time spike sorting to instantaneously decode the spike trains of simultaneously recorded cortical neurons. Real-time spike sorting, however, requires extensive computational power that is not feasible to implement in implantable BMI architectures, thereby requiring transmission of high-bandwidth raw neural data to an external computer. In this work, we describe a miniaturized, low power, programmable hardware module capable of performing this task within the resource constraints of an implantable chip. The module computes a sparse representation of the spike waveforms followed by "smart" thresholding. This cascade restricts the sparse representation to a subset of projections that preserve the discriminative features of neuron-specific spike waveforms. In addition, it further reduces telemetry bandwidth making it feasible to wirelessly transmit only the important biological information to the outside world, thereby improving the efficiency, practicality and viability of BMI systems in clinical applications.

  5. Common Spatio-Time-Frequency Patterns for Motor Imagery-Based Brain Machine Interfaces

    Directory of Open Access Journals (Sweden)

    Hiroshi Higashi

    2013-01-01

    Full Text Available For efficient decoding of brain activities in analyzing brain function with an application to brain machine interfacing (BMI, we address a problem of how to determine spatial weights (spatial patterns, bandpass filters (frequency patterns, and time windows (time patterns by utilizing electroencephalogram (EEG recordings. To find these parameters, we develop a data-driven criterion that is a natural extension of the so-called common spatial patterns (CSP that are known to be effective features in BMI. We show that the proposed criterion can be optimized by an alternating procedure to achieve fast convergence. Experiments demonstrate that the proposed method can effectively extract discriminative features for a motor imagery-based BMI.

  6. Applications of Brain–Machine Interface Systems in Stroke Recovery and Rehabilitation

    Science.gov (United States)

    Francisco, Gerard E.; Contreras-Vidal, Jose L.

    2014-01-01

    Stroke is a leading cause of disability, significantly impacting the quality of life (QOL) in survivors, and rehabilitation remains the mainstay of treatment in these patients. Recent engineering and technological advances such as brain-machine interfaces (BMI) and robotic rehabilitative devices are promising to enhance stroke neu-rorehabilitation, to accelerate functional recovery and improve QOL. This review discusses the recent applications of BMI and robotic-assisted rehabilitation in stroke patients. We present the framework for integrated BMI and robotic-assisted therapies, and discuss their potential therapeutic, assistive and diagnostic functions in stroke rehabilitation. Finally, we conclude with an outlook on the potential challenges and future directions of these neurotechnologies, and their impact on clinical rehabilitation. PMID:25110624

  7. A Human Machine Interface for EVA

    Science.gov (United States)

    Hartmann, L.

    EVA astronauts work in a challenging environment that includes high rate of muscle fatigue, haptic and proprioception impairment, lack of dexterity and interaction with robotic equipment. Currently they are heavily dependent on support from on-board crew and ground station staff for information and robotics operation. They are limited to the operation of simple controls on the suit exterior and external robot controls that are difficult to operate because of the heavy gloves that are part of the EVA suit. A wearable human machine interface (HMI) inside the suit provides a powerful alternative for robot teleoperation, procedure checklist access, generic equipment operation via virtual control panels and general information retrieval and presentation. The HMI proposed here includes speech input and output, a simple 6 degree of freedom (dof) pointing device and a heads up display (HUD). The essential characteristic of this interface is that it offers an alternative to the standard keyboard and mouse interface of a desktop computer. The astronaut's speech is used as input to command mode changes, execute arbitrary computer commands and generate text. The HMI can respond with speech also in order to confirm selections, provide status and feedback and present text output. A candidate 6 dof pointing device is Measurand's Shapetape, a flexible "tape" substrate to which is attached an optic fiber with embedded sensors. Measurement of the modulation of the light passing through the fiber can be used to compute the shape of the tape and, in particular, the position and orientation of the end of the Shapetape. It can be used to provide any kind of 3d geometric information including robot teleoperation control. The HUD can overlay graphical information onto the astronaut's visual field including robot joint torques, end effector configuration, procedure checklists and virtual control panels. With suitable tracking information about the position and orientation of the EVA suit

  8. BODY PRESSURE DISTRIBUTION OF AUTOMOBILE DRIVING HUMAN MACHINE CONTACT INTERFACE

    Institute of Scientific and Technical Information of China (English)

    CHEN Juan; HONG Jun; ZHANG E; LIANG Jian; LU Bingheng

    2007-01-01

    Aiming at the fatigue and comfort issues of human-machine contact Interface in automobile driving and based on physiological and anatomical principle, the physiological and biochemical process of muscles and nerves in the formation and development of fatigue is analyzed systematically. The fatigue-causing physiological characteristic Indexes are mapped to biomechanical Indexes like muscle stress-strain, the compression deformation of Wood vessels and nerves etc.from the perspective of formation mechanism. The geometrical model of skeleton and parenchyma is established by applying CT-scanned body data and MRI images. The general rule of comfort body pressure distribution is acquired through the analysis of anatomical structure of buttocks and femoral region. The comprehensive lest platform for sitting comfort of 3D adjustable contact Interface is constructed. The lest of body pressure distribution of human-machine contact interface and its comparison with subjective evaluation indicates that the biomechanical Indexes of automobile driving human-machine contact interface and body pressure distribution rule studied can effectively evaluate the fatigue and comfort issues of human-machine contact interface and provide theoretical basis for the optimal design of human-machine contact interface.

  9. TRANSLATOR OF FINITE STATE MACHINE MODEL PARAMETERS FROM MATLAB ENVIRONMENT INTO HUMAN-MACHINE INTERFACE APPLICATION

    OpenAIRE

    2012-01-01

    Technology and means for automatic translation of FSM model parameters from Matlab application to human-machine interface application is proposed. The example of technology application to the electric apparatus model is described.

  10. Craniux: A LabVIEW-Based Modular Software Framework for Brain-Machine Interface Research

    Directory of Open Access Journals (Sweden)

    Alan D. Degenhart

    2011-01-01

    Full Text Available This paper presents “Craniux,” an open-access, open-source software framework for brain-machine interface (BMI research. Developed in LabVIEW, a high-level graphical programming environment, Craniux offers both out-of-the-box functionality and a modular BMI software framework that is easily extendable. Specifically, it allows researchers to take advantage of multiple features inherent to the LabVIEW environment for on-the-fly data visualization, parallel processing, multithreading, and data saving. This paper introduces the basic features and system architecture of Craniux and describes the validation of the system under real-time BMI operation using simulated and real electrocorticographic (ECoG signals. Our results indicate that Craniux is able to operate consistently in real time, enabling a seamless work flow to achieve brain control of cursor movement. The Craniux software framework is made available to the scientific research community to provide a LabVIEW-based BMI software platform for future BMI research and development.

  11. A brain-machine-muscle interface for restoring hindlimb locomotion after complete spinal transection in rats.

    Directory of Open Access Journals (Sweden)

    Monzurul Alam

    Full Text Available A brain-machine interface (BMI is a neuroprosthetic device that can restore motor function of individuals with paralysis. Although the feasibility of BMI control of upper-limb neuroprostheses has been demonstrated, a BMI for the restoration of lower-limb motor functions has not yet been developed. The objective of this study was to determine if gait-related information can be captured from neural activity recorded from the primary motor cortex of rats, and if this neural information can be used to stimulate paralysed hindlimb muscles after complete spinal cord transection. Neural activity was recorded from the hindlimb area of the primary motor cortex of six female Sprague Dawley rats during treadmill locomotion before and after mid-thoracic transection. Before spinal transection there was a strong association between neural activity and the step cycle. This association decreased after spinal transection. However, the locomotive state (standing vs. walking could still be successfully decoded from neural recordings made after spinal transection. A novel BMI device was developed that processed this neural information in real-time and used it to control electrical stimulation of paralysed hindlimb muscles. This system was able to elicit hindlimb muscle contractions that mimicked forelimb stepping. We propose this lower-limb BMI as a future neuroprosthesis for human paraplegics.

  12. Craniux: a LabVIEW-based modular software framework for brain-machine interface research.

    Science.gov (United States)

    Degenhart, Alan D; Kelly, John W; Ashmore, Robin C; Collinger, Jennifer L; Tyler-Kabara, Elizabeth C; Weber, Douglas J; Wang, Wei

    2011-01-01

    This paper presents "Craniux," an open-access, open-source software framework for brain-machine interface (BMI) research. Developed in LabVIEW, a high-level graphical programming environment, Craniux offers both out-of-the-box functionality and a modular BMI software framework that is easily extendable. Specifically, it allows researchers to take advantage of multiple features inherent to the LabVIEW environment for on-the-fly data visualization, parallel processing, multithreading, and data saving. This paper introduces the basic features and system architecture of Craniux and describes the validation of the system under real-time BMI operation using simulated and real electrocorticographic (ECoG) signals. Our results indicate that Craniux is able to operate consistently in real time, enabling a seamless work flow to achieve brain control of cursor movement. The Craniux software framework is made available to the scientific research community to provide a LabVIEW-based BMI software platform for future BMI research and development.

  13. Future developments in brain-machine interface research

    Directory of Open Access Journals (Sweden)

    Mikhail A. Lebedev

    2011-01-01

    Full Text Available Neuroprosthetic devices based on brain-machine interface technology hold promise for the restoration of body mobility in patients suffering from devastating motor deficits caused by brain injury, neurologic diseases and limb loss. During the last decade, considerable progress has been achieved in this multidisciplinary research, mainly in the brain-machine interface that enacts upper-limb functionality. However, a considerable number of problems need to be resolved before fully functional limb neuroprostheses can be built. To move towards developing neuroprosthetic devices for humans, brain-machine interface research has to address a number of issues related to improving the quality of neuronal recordings, achieving stable, long-term performance, and extending the brain-machine interface approach to a broad range of motor and sensory functions. Here, we review the future steps that are part of the strategic plan of the Duke University Center for Neuroengineering, and its partners, the Brazilian National Institute of Brain-Machine Interfaces and the École Polytechnique Fédérale de Lausanne (EPFL Center for Neuroprosthetics, to bring this new technology to clinical fruition.

  14. Soft brain-machine interfaces for assistive robotics: A novel control approach.

    Science.gov (United States)

    Schiatti, Lucia; Tessadori, Jacopo; Barresi, Giacinto; Mattos, Leonardo S; Ajoudani, Arash

    2017-07-01

    Robotic systems offer the possibility of improving the life quality of people with severe motor disabilities, enhancing the individual's degree of independence and interaction with the external environment. In this direction, the operator's residual functions must be exploited for the control of the robot movements and the underlying dynamic interaction through intuitive and effective human-robot interfaces. Towards this end, this work aims at exploring the potential of a novel Soft Brain-Machine Interface (BMI), suitable for dynamic execution of remote manipulation tasks for a wide range of patients. The interface is composed of an eye-tracking system, for an intuitive and reliable control of a robotic arm system's trajectories, and a Brain-Computer Interface (BCI) unit, for the control of the robot Cartesian stiffness, which determines the interaction forces between the robot and environment. The latter control is achieved by estimating in real-time a unidimensional index from user's electroencephalographic (EEG) signals, which provides the probability of a neutral or active state. This estimated state is then translated into a stiffness value for the robotic arm, allowing a reliable modulation of the robot's impedance. A preliminary evaluation of this hybrid interface concept provided evidence on the effective execution of tasks with dynamic uncertainties, demonstrating the great potential of this control method in BMI applications for self-service and clinical care.

  15. Intention estimation in brain-machine interfaces

    Science.gov (United States)

    Fan, Joline M.; Nuyujukian, Paul; Kao, Jonathan C.; Chestek, Cynthia A.; Ryu, Stephen I.; Shenoy, Krishna V.

    2014-02-01

    Objective. The objective of this work was to quantitatively investigate the mechanisms underlying the performance gains of the recently reported ‘recalibrated feedback intention-trained Kalman Filter’ (ReFIT-KF). Approach. This was accomplished by designing variants of the ReFIT-KF algorithm and evaluating training and online data to understand the neural basis of this improvement. We focused on assessing the contribution of two training set innovations of the ReFIT-KF algorithm: intention estimation and the two-stage training paradigm. Main results. Within the two-stage training paradigm, we found that intention estimation independently increased target acquisition rates by 37% and 59%, respectively, across two monkeys implanted with multiunit intracortical arrays. Intention estimation improved performance by enhancing the tuning properties and the mutual information between the kinematic and neural training data. Furthermore, intention estimation led to fewer shifts in channel tuning between the training set and online control, suggesting that less adaptation was required during online control. Retraining the decoder with online BMI training data also reduced shifts in tuning, suggesting a benefit of training a decoder in the same behavioral context; however, retraining also led to slower online decode velocities. Finally, we demonstrated that one- and two-stage training paradigms performed comparably when intention estimation is applied. Significance. These findings highlight the utility of intention estimation in reducing the need for adaptive strategies and improving the online performance of BMIs, helping to guide future BMI design decisions.

  16. Towards intelligent environments: an augmented reality-brain-machine interface operated with a see-through head-mount display

    Directory of Open Access Journals (Sweden)

    Kouji eTakano

    2011-04-01

    Full Text Available The brain-machine interface (BMI or brain-computer interface (BCI is a new interface technology that uses neurophysiological signals from the brain to control external machines or computers. This technology is expected to support daily activities, especially for persons with disabilities. To expand the range of activities enabled by this type of interface, here, we added augmented reality (AR to a P300-based BMI. In this new system, we used a see-through head-mount display (HMD to create control panels with flicker visual stimuli to support the user in areas close to controllable devices. When the attached camera detects an AR marker, the position and orientation of the marker are calculated, and the control panel for the pre-assigned appliance is created by the AR system and superimposed on the HMD. The participants were required to control system-compatible devices, and they successfully operated them without significant training. Online performance with the HMD was not different from that using an LCD monitor. Posterior and lateral (right or left channel selections contributed to operation of the AR-BMI with both the HMD and LCD monitor. Our results indicate that AR-BMI systems operated with a see-through HMD may be useful in building advanced intelligent environments.

  17. The Properties of Intelligent Human-Machine Interface

    Directory of Open Access Journals (Sweden)

    Alexander Alfimtsev

    2012-04-01

    Full Text Available Intelligent human-machine interfaces based on multimodal interaction are developed separately in different application areas. No unified opinion exists about the issue of what properties should these interfaces have to provide an intuitive and natural interaction. Having carried out an analytical survey of the papers that deal with intelligent interfaces a set of properties are presented, which are necessary for intelligent interface between an information system and a human: absolute response, justification, training, personification, adaptiveness, collectivity, security, hidden persistence, portability, filtering.

  18. Brain-Machine Interfacing Control of Whole-Body Humanoid Motion

    Directory of Open Access Journals (Sweden)

    Karim eBouyarmane

    2014-08-01

    Full Text Available We propose to tackle in this paper the problem of controlling whole-body humanoid robot behavior through non-invasive brain-machine interfacing (BMI, motivated by the perspective of mapping human motor control strategies to human-like mechanical avatar. Our solution is based on the adequate reduction of the controllable dimensionality of a high-DOF humanoid motion in line with the state-of-the-art possibilities of non-invasive BMI technologies, leaving the complement subspace part of the motion to be planned and executed by an autonomous humanoid whole-body motion planning and control framework. The results are shown in full physics-based simulation of a 36-degree-of-freedom humanoid motion controlled by a user through EEG-extracted brain signals generated with motor imagery task.

  19. FPGA implementation of hardware processing modules as coprocessors in brain-machine interfaces.

    Science.gov (United States)

    Wang, Dong; Hao, Yaoyao; Zhu, Xiaoping; Zhao, Ting; Wang, Yiwen; Chen, Yaowu; Chen, Weidong; Zheng, Xiaoxiang

    2011-01-01

    Real-time computation, portability and flexibility are crucial for practical brain-machine interface (BMI) applications. In this work, we proposed Hardware Processing Modules (HPMs) as a method for accelerating BMI computation. Two HPMs have been developed. One is the field-programmable gate array (FPGA) implementation of spike sorting based on probabilistic neural network (PNN), and the other is the FPGA implementation of neural ensemble decoding based on Kalman filter (KF). These two modules were configured under the same framework and tested with real data from motor cortex recording in rats performing a lever-pressing task for water rewards. Due to the parallelism feature of FPGA, the computation time was reduced by several dozen times, while the results are almost the same as those from Matlab implementations. Such HPMs provide a high performance coprocessor for neural signal computation.

  20. Motor imaginary-based brain-machine interface design using programmable logic controllers for the disabled.

    Science.gov (United States)

    Jeyabalan, Vickneswaran; Samraj, Andrews; Loo, Chu Kiong

    2010-10-01

    Aiming at the implementation of brain-machine interfaces (BMI) for the aid of disabled people, this paper presents a system design for real-time communication between the BMI and programmable logic controllers (PLCs) to control an electrical actuator that could be used in devices to help the disabled. Motor imaginary signals extracted from the brain’s motor cortex using an electroencephalogram (EEG) were used as a control signal. The EEG signals were pre-processed by means of adaptive recursive band-pass filtrations (ARBF) and classified using simplified fuzzy adaptive resonance theory mapping (ARTMAP) in which the classified signals are then translated into control signals used for machine control via the PLC. A real-time test system was designed using MATLAB for signal processing, KEP-Ware V4 OLE for process control (OPC), a wireless local area network router, an Omron Sysmac CPM1 PLC and a 5 V/0.3A motor. This paper explains the signal processing techniques, the PLC's hardware configuration, OPC configuration and real-time data exchange between MATLAB and PLC using the MATLAB OPC toolbox. The test results indicate that the function of exchanging real-time data can be attained between the BMI and PLC through OPC server and proves that it is an effective and feasible method to be applied to devices such as wheelchairs or electronic equipment.

  1. Assessment of brain-machine interfaces from the perspective of people with paralysis

    Science.gov (United States)

    Blabe, Christine H.; Gilja, Vikash; Chestek, Cindy A.; Shenoy, Krishna V.; Anderson, Kim D.; Henderson, Jaimie M.

    2015-08-01

    Objective. One of the main goals of brain-machine interface (BMI) research is to restore function to people with paralysis. Currently, multiple BMI design features are being investigated, based on various input modalities (externally applied and surgically implantable sensors) and output modalities (e.g. control of computer systems, prosthetic arms, and functional electrical stimulation systems). While these technologies may eventually provide some level of benefit, they each carry associated burdens for end-users. We sought to assess the attitudes of people with paralysis toward using various technologies to achieve particular benefits, given the burdens currently associated with the use of each system. Approach. We designed and distributed a technology survey to determine the level of benefit necessary for people with tetraplegia due to spinal cord injury to consider using different technologies, given the burdens currently associated with them. The survey queried user preferences for 8 BMI technologies including electroencephalography, electrocorticography, and intracortical microelectrode arrays, as well as a commercially available eye tracking system for comparison. Participants used a 5-point scale to rate their likelihood to adopt these technologies for 13 potential control capabilities. Main Results. Survey respondents were most likely to adopt BMI technology to restore some of their natural upper extremity function, including restoration of hand grasp and/or some degree of natural arm movement. High speed typing and control of a fast robot arm were also of interest to this population. Surgically implanted wireless technologies were twice as ‘likely’ to be adopted as their wired equivalents. Significance. Assessing end-user preferences is an essential prerequisite to the design and implementation of any assistive technology. The results of this survey suggest that people with tetraplegia would adopt an unobtrusive, autonomous BMI system for both

  2. Cortical modulations increase in early sessions with brain-machine interface.

    Directory of Open Access Journals (Sweden)

    Miriam Zacksenhouse

    Full Text Available BACKGROUND: During planning and execution of reaching movements, the activity of cortical motor neurons is modulated by a diversity of motor, sensory, and cognitive signals. Brain-machine interfaces (BMIs extract part of these modulations to directly control artificial actuators. However, cortical modulations that emerge in the novel context of operating the BMI are poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: Here we analyzed the changes in neuronal modulations that occurred in different cortical motor areas as monkeys learned to use a BMI to control reaching movements. Using spike-train analysis methods we demonstrate that the modulations of the firing-rates of cortical neurons increased abruptly after the monkeys started operating the BMI. Regression analysis revealed that these enhanced modulations were not correlated with the kinematics of the movement. The initial enhancement in firing rate modulations declined gradually with subsequent training in parallel with the improvement in behavioral performance. CONCLUSIONS/SIGNIFICANCE: We conclude that the enhanced modulations are related to computational tasks that are significant especially in novel motor contexts. Although the function and neuronal mechanism of the enhanced cortical modulations are open for further inquiries, we discuss their potential role in processing execution errors and representing corrective or explorative activity. These representations are expected to contribute to the formation of internal models of the external actuator and their decoding may facilitate BMI improvement.

  3. A brain-machine interface enables bimanual arm movements in monkeys.

    Science.gov (United States)

    Ifft, Peter J; Shokur, Solaiman; Li, Zheng; Lebedev, Mikhail A; Nicolelis, Miguel A L

    2013-11-06

    Brain-machine interfaces (BMIs) are artificial systems that aim to restore sensation and movement to paralyzed patients. So far, BMIs have enabled only one arm to be moved at a time. Control of bimanual arm movements remains a major challenge. We have developed and tested a bimanual BMI that enables rhesus monkeys to control two avatar arms simultaneously. The bimanual BMI was based on the extracellular activity of 374 to 497 neurons recorded from several frontal and parietal cortical areas of both cerebral hemispheres. Cortical activity was transformed into movements of the two arms with a decoding algorithm called a fifth-order unscented Kalman filter (UKF). The UKF was trained either during a manual task performed with two joysticks or by having the monkeys passively observe the movements of avatar arms. Most cortical neurons changed their modulation patterns when both arms were engaged simultaneously. Representing the two arms jointly in a single UKF decoder resulted in improved decoding performance compared with using separate decoders for each arm. As the animals' performance in bimanual BMI control improved over time, we observed widespread plasticity in frontal and parietal cortical areas. Neuronal representation of the avatar and reach targets was enhanced with learning, whereas pairwise correlations between neurons initially increased and then decreased. These results suggest that cortical networks may assimilate the two avatar arms through BMI control. These findings should help in the design of more sophisticated BMIs capable of enabling bimanual motor control in human patients.

  4. Brain Machine Interface: Analysis of segmented EEG Signal Classification Using Short-Time PCA and Recurrent Neural Networks

    Directory of Open Access Journals (Sweden)

    C. R. Hema

    2008-01-01

    Full Text Available Brain machine interface provides a communication channel between the human brain and an external device. Brain interfaces are studied to provide rehabilitation to patients with neurodegenerative diseases; such patients loose all communication pathways except for their sensory and cognitive functions. One of the possible rehabilitation methods for these patients is to provide a brain machine interface (BMI for communication; the BMI uses the electrical activity of the brain detected by scalp EEG electrodes. Classification of EEG signals extracted during mental tasks is a technique for designing a BMI. In this paper a BMI design using five mental tasks from two subjects were studied, a combination of two tasks is studied per subject. An Elman recurrent neural network is proposed for classification of EEG signals. Two feature extraction algorithms using overlapped and non overlapped signal segments are analyzed. Principal component analysis is used for extracting features from the EEG signal segments. Classification performance of overlapping EEG signal segments is observed to be better in terms of average classification with a range of 78.5% to 100%, while the non overlapping EEG signal segments show better classification in terms of maximum classifications.

  5. MARTI: man-machine animation real-time interface

    Science.gov (United States)

    Jones, Christian M.; Dlay, Satnam S.

    1997-05-01

    The research introduces MARTI (man-machine animation real-time interface) for the realization of natural human-machine interfacing. The system uses simple vocal sound-tracks of human speakers to provide lip synchronization of computer graphical facial models. We present novel research in a number of engineering disciplines, which include speech recognition, facial modeling, and computer animation. This interdisciplinary research utilizes the latest, hybrid connectionist/hidden Markov model, speech recognition system to provide very accurate phone recognition and timing for speaker independent continuous speech, and expands on knowledge from the animation industry in the development of accurate facial models and automated animation. The research has many real-world applications which include the provision of a highly accurate and 'natural' man-machine interface to assist user interactions with computer systems and communication with one other using human idiosyncrasies; a complete special effects and animation toolbox providing automatic lip synchronization without the normal constraints of head-sets, joysticks, and skilled animators; compression of video data to well below standard telecommunication channel bandwidth for video communications and multi-media systems; assisting speech training and aids for the handicapped; and facilitating player interaction for 'video gaming' and 'virtual worlds.' MARTI has introduced a new level of realism to man-machine interfacing and special effect animation which has been previously unseen.

  6. Creating new functional circuits for action via brain-machine interfaces.

    Science.gov (United States)

    Orsborn, Amy L; Carmena, Jose M

    2013-11-05

    Brain-machine interfaces (BMIs) are an emerging technology with great promise for developing restorative therapies for those with disabilities. BMIs also create novel, well-defined functional circuits for action that are distinct from the natural sensorimotor apparatus. Closed-loop control of BMI systems can also actively engage learning and adaptation. These properties make BMIs uniquely suited to study learning of motor and non-physical, abstract skills. Recent work used motor BMIs to shed light on the neural representations of skill formation and motor adaptation. Emerging work in sensory BMIs, and other novel interface systems, also highlight the promise of using BMI systems to study fundamental questions in learning and sensorimotor control. This paper outlines the interpretation of BMIs as novel closed-loop systems and the benefits of these systems for studying learning. We review BMI learning studies, their relation to motor control, and propose future directions for this nascent field. Understanding learning in BMIs may both elucidate mechanisms of natural motor and abstract skill learning, and aid in developing the next generation of neuroprostheses.

  7. Brain-machine interfaces for motor control: a guide for neuroscience clinicians.

    Science.gov (United States)

    Martin, Allan; Sankar, Tejas; Lipsman, Nir; Lozano, Andres M

    2012-01-01

    With the growing interdependence between medicine and technology, the prospect of connecting machines to the human brain is rapidly being realized. The field of neuroprosthetics is transitioning from the proof of concept stage to the development of advanced clinical treatments. In one area of brain-machine interfaces (BMIs) related to the motor system, also termed 'motor neuroprosthetics', research successes with implanted microelectrodes in animals have demonstrated immense potential for restoring motor deficits. Early human trials have also begun, with some success but also highlighting several technical challenges. Here we review the concepts and anatomy underlying motor BMI designs, review their early use in clinical applications, and offer a framework to evaluate these technologies in order to predict their eventual clinical utility. Ultimately, we hope to help neuroscience clinicians understand and participate in this burgeoning field.

  8. Invasive brain-machine interfaces: a survey of paralyzed patients’ attitudes, knowledge and methods of information retrieval

    Science.gov (United States)

    Lahr, Jacob; Schwartz, Christina; Heimbach, Bernhard; Aertsen, Ad; Rickert, Jörn; Ball, Tonio

    2015-08-01

    Objective. Brain-machine interfaces (BMI) are an emerging therapeutic option that can allow paralyzed patients to gain control over assistive technology devices (ATDs). BMI approaches can be broadly classified into invasive (based on intracranially implanted electrodes) and noninvasive (based on skin electrodes or extracorporeal sensors). Invasive BMIs have a favorable signal-to-noise ratio, and thus allow for the extraction of more information than noninvasive BMIs, but they are also associated with the risks related to neurosurgical device implantation. Current noninvasive BMI approaches are typically concerned, among other issues, with long setup times and/or intensive training. Recent studies have investigated the attitudes of paralyzed patients eligible for BMIs, particularly patients affected by amyotrophic lateral sclerosis (ALS). These studies indicate that paralyzed patients are indeed interested in BMIs. Little is known, however, about the degree of knowledge among paralyzed patients concerning BMI approaches or about how patients retrieve information on ATDs. Furthermore, it is not yet clear if paralyzed patients would accept intracranial implantation of BMI electrodes with the premise of decoding improvements, and what the attitudes of a broader range of patients with diseases such as stroke or spinal cord injury are towards this new kind of treatment. Approach. Using a questionnaire, we surveyed 131 paralyzed patients for their opinions on invasive BMIs and their attitude toward invasive BMI treatment options. Main results. The majority of the patients knew about and had a positive attitude toward invasive BMI approaches. The group of ALS patients was especially open to the concept of BMIs. The acceptance of invasive BMI technology depended on the improvements expected from the technology. Furthermore, the survey revealed that for paralyzed patients, the Internet is an important source of information on ATDs. Significance. Websites tailored to

  9. The APS intranet as a man-machine interface.

    Energy Technology Data Exchange (ETDEWEB)

    Ciarlette, D.; Gerig, R.; McDowell, W.

    1997-12-02

    The Advanced Photon Source at Argonne National Laboratory has implemented a number of methods for people to interact with the accelerator systems. The accelerator operators use Sun workstations running MEDM and WCL to interface interactively with the accelerator, however, many people need to view information rather than interact with the machine. One of the most common interfaces for viewing information at the Advanced Photon Source is the World Wide Web. Information such as operations logbook entries, machine status updates, and displays of archived and current data are easily available to APS personnel. This interface between people and the accelerator has proven to be quite useful. Because the Intranet is operating-system independent and inherently unidirectional, ensuring the prevention of unauthorized or accidental control of the accelerators is straightforward.

  10. Neuro-robotics from brain machine interfaces to rehabilitation robotics

    CERN Document Server

    Artemiadis

    2014-01-01

    Neuro-robotics is one of the most multidisciplinary fields of the last decades, fusing information and knowledge from neuroscience, engineering and computer science. This book focuses on the results from the strategic alliance between Neuroscience and Robotics that help the scientific community to better understand the brain as well as design robotic devices and algorithms for interfacing humans and robots. The first part of the book introduces the idea of neuro-robotics, by presenting state-of-the-art bio-inspired devices. The second part of the book focuses on human-machine interfaces for pe

  11. Biomimetic rehabilitation engineering: the importance of somatosensory feedback for brain-machine interfaces

    Science.gov (United States)

    Perruchoud, David; Pisotta, Iolanda; Carda, Stefano; Murray, Micah M.; Ionta, Silvio

    2016-08-01

    Objective. Brain-machine interfaces (BMIs) re-establish communication channels between the nervous system and an external device. The use of BMI technology has generated significant developments in rehabilitative medicine, promising new ways to restore lost sensory-motor functions. However and despite high-caliber basic research, only a few prototypes have successfully left the laboratory and are currently home-deployed. Approach. The failure of this laboratory-to-user transfer likely relates to the absence of BMI solutions for providing naturalistic feedback about the consequences of the BMI’s actions. To overcome this limitation, nowadays cutting-edge BMI advances are guided by the principle of biomimicry; i.e. the artificial reproduction of normal neural mechanisms. Main results. Here, we focus on the importance of somatosensory feedback in BMIs devoted to reproducing movements with the goal of serving as a reference framework for future research on innovative rehabilitation procedures. First, we address the correspondence between users’ needs and BMI solutions. Then, we describe the main features of invasive and non-invasive BMIs, including their degree of biomimicry and respective advantages and drawbacks. Furthermore, we explore the prevalent approaches for providing quasi-natural sensory feedback in BMI settings. Finally, we cover special situations that can promote biomimicry and we present the future directions in basic research and clinical applications. Significance. The continued incorporation of biomimetic features into the design of BMIs will surely serve to further ameliorate the realism of BMIs, as well as tremendously improve their actuation, acceptance, and use.

  12. Using reinforcement learning to provide stable brain-machine interface control despite neural input reorganization.

    Directory of Open Access Journals (Sweden)

    Eric A Pohlmeyer

    Full Text Available Brain-machine interface (BMI systems give users direct neural control of robotic, communication, or functional electrical stimulation systems. As BMI systems begin transitioning from laboratory settings into activities of daily living, an important goal is to develop neural decoding algorithms that can be calibrated with a minimal burden on the user, provide stable control for long periods of time, and can be responsive to fluctuations in the decoder's neural input space (e.g. neurons appearing or being lost amongst electrode recordings. These are significant challenges for static neural decoding algorithms that assume stationary input/output relationships. Here we use an actor-critic reinforcement learning architecture to provide an adaptive BMI controller that can successfully adapt to dramatic neural reorganizations, can maintain its performance over long time periods, and which does not require the user to produce specific kinetic or kinematic activities to calibrate the BMI. Two marmoset monkeys used the Reinforcement Learning BMI (RLBMI to successfully control a robotic arm during a two-target reaching task. The RLBMI was initialized using random initial conditions, and it quickly learned to control the robot from brain states using only a binary evaluative feedback regarding whether previously chosen robot actions were good or bad. The RLBMI was able to maintain control over the system throughout sessions spanning multiple weeks. Furthermore, the RLBMI was able to quickly adapt and maintain control of the robot despite dramatic perturbations to the neural inputs, including a series of tests in which the neuron input space was deliberately halved or doubled.

  13. Man-Machine Interface Design for Modeling and Simulation Software

    Directory of Open Access Journals (Sweden)

    Arnstein J. Borstad

    1986-07-01

    Full Text Available Computer aided design (CAD systems, or more generally interactive software, are today being developed for various application areas like VLSI-design, mechanical structure design, avionics design, cartographic design, architectual design, office automation, publishing, etc. Such tools are becoming more and more important in order to be productive and to be able to design quality products. One important part of CAD-software development is the man-machine interface (MMI design.

  14. A four-dimensional virtual hand brain-machine interface using active dimension selection

    Science.gov (United States)

    Rouse, Adam G.

    2016-06-01

    Objective. Brain-machine interfaces (BMI) traditionally rely on a fixed, linear transformation from neural signals to an output state-space. In this study, the assumption that a BMI must control a fixed, orthogonal basis set was challenged and a novel active dimension selection (ADS) decoder was explored. Approach. ADS utilizes a two stage decoder by using neural signals to both (i) select an active dimension being controlled and (ii) control the velocity along the selected dimension. ADS decoding was tested in a monkey using 16 single units from premotor and primary motor cortex to successfully control a virtual hand avatar to move to eight different postures. Main results. Following training with the ADS decoder to control 2, 3, and then 4 dimensions, each emulating a grasp shape of the hand, performance reached 93% correct with a bit rate of 2.4 bits s-1 for eight targets. Selection of eight targets using ADS control was more efficient, as measured by bit rate, than either full four-dimensional control or computer assisted one-dimensional control. Significance. ADS decoding allows a user to quickly and efficiently select different hand postures. This novel decoding scheme represents a potential method to reduce the complexity of high-dimension BMI control of the hand.

  15. Control of a 2 DoF robot using a brain-machine interface.

    Science.gov (United States)

    Hortal, Enrique; Ubeda, Andrés; Iáñez, Eduardo; Azorín, José M

    2014-09-01

    In this paper, a non-invasive spontaneous Brain-Machine Interface (BMI) is used to control the movement of a planar robot. To that end, two mental tasks are used to manage the visual interface that controls the robot. The robot used is a PupArm, a force-controlled planar robot designed by the nBio research group at the Miguel Hernández University of Elche (Spain). Two control strategies are compared: hierarchical and directional control. The experimental test (performed by four users) consists of reaching four targets. The errors and time used during the performance of the tests are compared in both control strategies (hierarchical and directional control). The advantages and disadvantages of each method are shown after the analysis of the results. The hierarchical control allows an accurate approaching to the goals but it is slower than using the directional control which, on the contrary, is less precise. The results show both strategies are useful to control this planar robot. In the future, by adding an extra device like a gripper, this BMI could be used in assistive applications such as grasping daily objects in a realistic environment. In order to compare the behavior of the system taking into account the opinion of the users, a NASA Tasks Load Index (TLX) questionnaire is filled out after two sessions are completed. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Brain-machine interface via real-time fMRI: preliminary study on thought-controlled robotic arm.

    Science.gov (United States)

    Lee, Jong-Hwan; Ryu, Jeongwon; Jolesz, Ferenc A; Cho, Zang-Hee; Yoo, Seung-Schik

    2009-01-23

    Real-time functional MRI (rtfMRI) has been used as a basis for brain-computer interface (BCI) due to its ability to characterize region-specific brain activity in real-time. As an extension of BCI, we present an rtfMRI-based brain-machine interface (BMI) whereby 2-dimensional movement of a robotic arm was controlled by the regulation (and concurrent detection) of regional cortical activations in the primary motor areas. To do so, the subjects were engaged in the right- and/or left-hand motor imagery tasks. The blood oxygenation level dependent (BOLD) signal originating from the corresponding hand motor areas was then translated into horizontal or vertical robotic arm movement. The movement was broadcasted visually back to the subject as a feedback. We demonstrated that real-time control of the robotic arm only through the subjects' thought processes was possible using the rtfMRI-based BMI trials.

  17. Optimal feedback control successfully explains changes in neural modulations during experiments with brain-machine interfaces

    Directory of Open Access Journals (Sweden)

    Miriam eZacksenhouse

    2015-05-01

    Full Text Available Recent experiments with brain-machine-interfaces (BMIs indicate that the extent of neural modulations increased abruptly upon starting to operate the interface, and especially after the monkey stopped moving its hand. In contrast, neural modulations that are correlated with the kinematics of the movement remained relatively unchanged. Here we demonstrate that similar changes are produced by simulated neurons that encode the relevant signals generated by an optimal feedback controller during simulated BMI experiments. The optimal feedback controller relies on state estimation that integrates both visual and proprioceptive feedback with prior estimations from an internal model. The processing required for optimal state estimation and control were conducted in the state-space, and neural recording was simulated by modeling two populations of neurons that encode either only the estimated state or also the control signal. Spike counts were generated as realizations of doubly stochastic Poisson processes with linear tuning curves. The model successfully reconstructs the main features of the kinematics and neural activity during regular reaching movements. Most importantly, the activity of the simulated neurons successfully reproduces the observed changes in neural modulations upon switching to brain control. Further theoretical analysis and simulations indicate that increasing the process noise during normal reaching movement results in similar changes in neural modulations. Thus we conclude that the observed changes in neural modulations during BMI experiments can be attributed to increasing process noise associated with the imperfect BMI filter, and, more directly, to the resulting increase in the variance of the encoded signals associated with state estimation and the required control signal.

  18. Optimal feedback control successfully explains changes in neural modulations during experiments with brain-machine interfaces.

    Science.gov (United States)

    Benyamini, Miri; Zacksenhouse, Miriam

    2015-01-01

    Recent experiments with brain-machine-interfaces (BMIs) indicate that the extent of neural modulations increased abruptly upon starting to operate the interface, and especially after the monkey stopped moving its hand. In contrast, neural modulations that are correlated with the kinematics of the movement remained relatively unchanged. Here we demonstrate that similar changes are produced by simulated neurons that encode the relevant signals generated by an optimal feedback controller during simulated BMI experiments. The optimal feedback controller relies on state estimation that integrates both visual and proprioceptive feedback with prior estimations from an internal model. The processing required for optimal state estimation and control were conducted in the state-space, and neural recording was simulated by modeling two populations of neurons that encode either only the estimated state or also the control signal. Spike counts were generated as realizations of doubly stochastic Poisson processes with linear tuning curves. The model successfully reconstructs the main features of the kinematics and neural activity during regular reaching movements. Most importantly, the activity of the simulated neurons successfully reproduces the observed changes in neural modulations upon switching to brain control. Further theoretical analysis and simulations indicate that increasing the process noise during normal reaching movement results in similar changes in neural modulations. Thus, we conclude that the observed changes in neural modulations during BMI experiments can be attributed to increasing process noise associated with the imperfect BMI filter, and, more directly, to the resulting increase in the variance of the encoded signals associated with state estimation and the required control signal.

  19. A 128-Channel Extreme Learning Machine-Based Neural Decoder for Brain Machine Interfaces.

    Science.gov (United States)

    Chen, Yi; Yao, Enyi; Basu, Arindam

    2016-06-01

    Currently, state-of-the-art motor intention decoding algorithms in brain-machine interfaces are mostly implemented on a PC and consume significant amount of power. A machine learning coprocessor in 0.35- μm CMOS for the motor intention decoding in the brain-machine interfaces is presented in this paper. Using Extreme Learning Machine algorithm and low-power analog processing, it achieves an energy efficiency of 3.45 pJ/MAC at a classification rate of 50 Hz. The learning in second stage and corresponding digitally stored coefficients are used to increase robustness of the core analog processor. The chip is verified with neural data recorded in monkey finger movements experiment, achieving a decoding accuracy of 99.3% for movement type. The same coprocessor is also used to decode time of movement from asynchronous neural spikes. With time-delayed feature dimension enhancement, the classification accuracy can be increased by 5% with limited number of input channels. Further, a sparsity promoting training scheme enables reduction of number of programmable weights by ≈ 2X.

  20. Brain-machine interfaces for assistive smart homes: A feasibility study with wearable near-infrared spectroscopy.

    Science.gov (United States)

    Ogawa, Takeshi; Hirayama, Jun-Ichiro; Gupta, Pankaj; Moriya, Hiroki; Yamaguchi, Shumpei; Ishikawa, Akihiro; Inoue, Yoshihiro; Kawanabe, Motoaki; Ishii, Shin

    2015-08-01

    Smart houses for elderly or physically challenged people need a method to understand residents' intentions during their daily-living behaviors. To explore a new possibility, we here developed a novel brain-machine interface (BMI) system integrated with an experimental smart house, based on a prototype of a wearable near-infrared spectroscopy (NIRS) device, and verified the system in a specific task of controlling of the house's equipments with BMI. We recorded NIRS signals of three participants during typical daily-living actions (DLAs), and classified them by linear support vector machine. In our off-line analysis, four DLAs were classified at about 70% mean accuracy, significantly above the chance level of 25%, in every participant. In an online demonstration in the real smart house, one participant successfully controlled three target appliances by BMI at 81.3% accuracy. Thus we successfully demonstrated the feasibility of using NIRS-BMI in real smart houses, which will possibly enhance new assistive smart-home technologies.

  1. Task 8.6 -- Advanced man machine interface (MMI)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The Solar/DOE ATS engine program seeks to improve the utilization of turbomachinery resources through the development of an Advanced Man Machine Interface (MMI). The program goals include timely and succinct feedback to the operations personnel to enhance their decision making process. As part of the Solar ATS Phase 2 technology development program, enabling technologies, including graphics environments, communications technology, and operating systems were explored to determine their viability to support the overall MMI requirements. This report discusses the research and prototyping effort, as well as the conclusions reached.

  2. Human Reliability Analysis for Digital Human-Machine Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L. Boring

    2014-06-01

    This paper addresses the fact that existing human reliability analysis (HRA) methods do not provide guidance on digital human-machine interfaces (HMIs). Digital HMIs are becoming ubiquitous in nuclear power operations, whether through control room modernization or new-build control rooms. Legacy analog technologies like instrumentation and control (I&C) systems are costly to support, and vendors no longer develop or support analog technology, which is considered technologically obsolete. Yet, despite the inevitability of digital HMI, no current HRA method provides guidance on how to treat human reliability considerations for digital technologies.

  3. A brain-machine interface for control of medically-induced coma.

    Science.gov (United States)

    Shanechi, Maryam M; Chemali, Jessica J; Liberman, Max; Solt, Ken; Brown, Emery N

    2013-10-01

    Medically-induced coma is a drug-induced state of profound brain inactivation and unconsciousness used to treat refractory intracranial hypertension and to manage treatment-resistant epilepsy. The state of coma is achieved by continually monitoring the patient's brain activity with an electroencephalogram (EEG) and manually titrating the anesthetic infusion rate to maintain a specified level of burst suppression, an EEG marker of profound brain inactivation in which bursts of electrical activity alternate with periods of quiescence or suppression. The medical coma is often required for several days. A more rational approach would be to implement a brain-machine interface (BMI) that monitors the EEG and adjusts the anesthetic infusion rate in real time to maintain the specified target level of burst suppression. We used a stochastic control framework to develop a BMI to control medically-induced coma in a rodent model. The BMI controlled an EEG-guided closed-loop infusion of the anesthetic propofol to maintain precisely specified dynamic target levels of burst suppression. We used as the control signal the burst suppression probability (BSP), the brain's instantaneous probability of being in the suppressed state. We characterized the EEG response to propofol using a two-dimensional linear compartment model and estimated the model parameters specific to each animal prior to initiating control. We derived a recursive Bayesian binary filter algorithm to compute the BSP from the EEG and controllers using a linear-quadratic-regulator and a model-predictive control strategy. Both controllers used the estimated BSP as feedback. The BMI accurately controlled burst suppression in individual rodents across dynamic target trajectories, and enabled prompt transitions between target levels while avoiding both undershoot and overshoot. The median performance error for the BMI was 3.6%, the median bias was -1.4% and the overall posterior probability of reliable control was 1 (95

  4. Feedback for reinforcement learning based brain-machine interfaces using confidence metrics.

    Science.gov (United States)

    Prins, Noeline W; Sanchez, Justin C; Prasad, Abhishek

    2017-06-01

    For brain-machine interfaces (BMI) to be used in activities of daily living by paralyzed individuals, the BMI should be as autonomous as possible. One of the challenges is how the feedback is extracted and utilized in the BMI. Our long-term goal is to create autonomous BMIs that can utilize an evaluative feedback from the brain to update the decoding algorithm and use it intelligently in order to adapt the decoder. In this study, we show how to extract the necessary evaluative feedback from a biologically realistic (synthetic) source, use both the quantity and the quality of the feedback, and how that feedback information can be incorporated into a reinforcement learning (RL) controller architecture to maximize its performance. Motivated by the perception-action-reward cycle (PARC) in the brain which links reward for cognitive decision making and goal-directed behavior, we used a reward-based RL architecture named Actor-Critic RL as the model. Instead of using an error signal towards building an autonomous BMI, we envision to use a reward signal from the nucleus accumbens (NAcc) which plays a key role in the linking of reward to motor behaviors. To deal with the complexity and non-stationarity of biological reward signals, we used a confidence metric which was used to indicate the degree of feedback accuracy. This confidence was added to the Actor's weight update equation in the RL controller architecture. If the confidence was high (>0.2), the BMI decoder used this feedback to update its parameters. However, when the confidence was low, the BMI decoder ignored the feedback and did not update its parameters. The range between high confidence and low confidence was termed as the 'ambiguous' region. When the feedback was within this region, the BMI decoder updated its weight at a lower rate than when fully confident, which was decided by the confidence. We used two biologically realistic models to generate synthetic data for MI (Izhikevich model) and NAcc (Humphries

  5. Feedback for reinforcement learning based brain-machine interfaces using confidence metrics

    Science.gov (United States)

    Prins, Noeline W.; Sanchez, Justin C.; Prasad, Abhishek

    2017-06-01

    Objective. For brain-machine interfaces (BMI) to be used in activities of daily living by paralyzed individuals, the BMI should be as autonomous as possible. One of the challenges is how the feedback is extracted and utilized in the BMI. Our long-term goal is to create autonomous BMIs that can utilize an evaluative feedback from the brain to update the decoding algorithm and use it intelligently in order to adapt the decoder. In this study, we show how to extract the necessary evaluative feedback from a biologically realistic (synthetic) source, use both the quantity and the quality of the feedback, and how that feedback information can be incorporated into a reinforcement learning (RL) controller architecture to maximize its performance. Approach. Motivated by the perception-action-reward cycle (PARC) in the brain which links reward for cognitive decision making and goal-directed behavior, we used a reward-based RL architecture named Actor-Critic RL as the model. Instead of using an error signal towards building an autonomous BMI, we envision to use a reward signal from the nucleus accumbens (NAcc) which plays a key role in the linking of reward to motor behaviors. To deal with the complexity and non-stationarity of biological reward signals, we used a confidence metric which was used to indicate the degree of feedback accuracy. This confidence was added to the Actor’s weight update equation in the RL controller architecture. If the confidence was high (>0.2), the BMI decoder used this feedback to update its parameters. However, when the confidence was low, the BMI decoder ignored the feedback and did not update its parameters. The range between high confidence and low confidence was termed as the ‘ambiguous’ region. When the feedback was within this region, the BMI decoder updated its weight at a lower rate than when fully confident, which was decided by the confidence. We used two biologically realistic models to generate synthetic data for MI (Izhikevich

  6. Electromagnetic power absorption and temperature changes due to brain machine interface operation.

    Science.gov (United States)

    Ibrahim, Tamer S; Abraham, Doney; Rennaker, Robert L

    2007-05-01

    To fully understand neural function, chronic neural recordings must be made simultaneously from 10s or 100s of neurons. To accomplish this goal, several groups are developing brain machine interfaces. For these devices to be viable for chronic human use, it is likely that they will need to be operated and powered externally via a radiofrequency (RF) source. However, RF exposure can result in tissue heating and is regulated by the FDA/FCC. This paper provides an initial estimate of the amount of tissue heating and specific absorption rate (SAR) associated with the operation of a brain-machine interface (BMI). The operation of a brain machine interface was evaluated in an 18-tissue anatomically detailed human head mesh using simulations of electromagnetics and bio-heat phenomena. The simulations were conducted with a single chip, as well as with eight chips, placed on the surface of the human brain and each powered at four frequencies (13.6 MHz, 1.0 GHz, 2.4 GHz, and 5.8 GHz). The simulated chips consist of a wire antenna on a silicon chip covered by a Teflon dura patch. SAR values were calculated using the finite-difference time-domain method and used to predict peak temperature changes caused by electromagnetic absorption in the head using two-dimensional bio-heat equation. Results due to SAR alone show increased heating at higher frequencies, with a peak temperature change at 5.8 GHz of approximately 0.018 degrees C in the single-chip configuration and 0.06 degrees C in the eight-chip configuration with 10 mW of power absorption (in the human head) per chip. In addition, temperature elevations due to power dissipation in the chip(s) were studied. Results show that for the neural tissue, maximum temperature rises of 3.34 degrees C in the single-chip configuration and 7.72 degrees C in the eight-chip configuration were observed for 10 mW dissipation in each chip. Finally, the maximum power dissipation allowable in each chip before a 1.0 degrees C temperature

  7. Wireless Cortical Brain-Machine Interface for Whole-Body Navigation in Primates

    Science.gov (United States)

    Rajangam, Sankaranarayani; Tseng, Po-He; Yin, Allen; Lehew, Gary; Schwarz, David; Lebedev, Mikhail A.; Nicolelis, Miguel A. L.

    2016-03-01

    Several groups have developed brain-machine-interfaces (BMIs) that allow primates to use cortical activity to control artificial limbs. Yet, it remains unknown whether cortical ensembles could represent the kinematics of whole-body navigation and be used to operate a BMI that moves a wheelchair continuously in space. Here we show that rhesus monkeys can learn to navigate a robotic wheelchair, using their cortical activity as the main control signal. Two monkeys were chronically implanted with multichannel microelectrode arrays that allowed wireless recordings from ensembles of premotor and sensorimotor cortical neurons. Initially, while monkeys remained seated in the robotic wheelchair, passive navigation was employed to train a linear decoder to extract 2D wheelchair kinematics from cortical activity. Next, monkeys employed the wireless BMI to translate their cortical activity into the robotic wheelchair’s translational and rotational velocities. Over time, monkeys improved their ability to navigate the wheelchair toward the location of a grape reward. The navigation was enacted by populations of cortical neurons tuned to whole-body displacement. During practice with the apparatus, we also noticed the presence of a cortical representation of the distance to reward location. These results demonstrate that intracranial BMIs could restore whole-body mobility to severely paralyzed patients in the future.

  8. Likelihood Gradient Ascent (LGA): a closed-loop decoder adaptation algorithm for brain-machine interfaces.

    Science.gov (United States)

    Dangi, Siddharth; Gowda, Suraj; Carmena, Jose M

    2013-01-01

    Closed-loop decoder adaptation (CLDA) is an emerging paradigm for improving or maintaining the online performance of brain-machine interfaces (BMIs). Here, we present Likelihood Gradient Ascent (LGA), a novel CLDA algorithm for a Kalman filter (KF) decoder that uses stochastic, gradient-based corrections to update KF parameters during closed-loop BMI operation. LGA's gradient-based paradigm presents a variety of potential advantages over other "batch" CLDA methods, including the ability to update decoder parameters on any time-scale, even on every decoder iteration. Using a closed-loop BMI simulator, we compare the LGA algorithm to the Adaptive Kalman Filter (AKF), a partially gradient-based CLDA algorithm that has been previously tested in non-human primate experiments. In contrast to the AKF's separate mean-squared error objective functions, LGA's update rules are derived directly from a single log likelihood objective, making it one step towards a potentially optimal continuously adaptive CLDA algorithm for BMIs.

  9. Brain-machine interface facilitated neurorehabilitation via spinal stimulation after spinal cord injury: Recent progress and future perspectives.

    Science.gov (United States)

    Alam, Monzurul; Rodrigues, Willyam; Pham, Bau Ngoc; Thakor, Nitish V

    2016-09-01

    Restoration of motor function is one of the highest priorities in individuals afflicted with spinal cord injury (SCI). The application of brain-machine interfaces (BMIs) to neuroprostheses provides an innovative approach to treat patients with sensorimotor impairments. A BMI decodes motor intent from cortical signals to control external devices such as a computer cursor or a robotic arm. Recent BMI systems can now use these motor intent signals to directly activate paretic muscles or to modulate the spinal cord in a way that reengage dormant neuromuscular systems below the level of injury. In this perspective, we review the progress made in the development of brain-machine-spinal-cord interfaces (BMSCIs) and highlight their potential for neurorehabilitation after SCI. The advancement and application of these neuroprostheses goes beyond improved motor control. The use of BMSCI may combine repetitive physical training along with intent-driven neuromodulation to promote neurorehabilitation by facilitating activity-dependent plasticity. Strong evidence suggests that proper timing of volitional neuromodulation facilitates long-term potentiation in the neuronal circuits that can promote permanent functional recovery in SCI subjects. However, the effectiveness of these implantable neuroprostheses must take into account the fact that there will be continuous changes in the interface between the signals of intent and the actual trigger to initiate the motor action. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. On the design of robotic hands for brain-machine interface.

    Science.gov (United States)

    Matsuoka, Yoky; Afshar, Pedram; Oh, Michael

    2006-05-15

    Brain-machine interface (BMI) is the latest solution to a lack of control for paralyzed or prosthetic limbs. In this paper the authors focus on the design of anatomical robotic hands that use BMI as a critical intervention in restorative neurosurgery and they justify the requirement for lower-level neuromusculoskeletal details (relating to biomechanics, muscles, peripheral nerves, and some aspects of the spinal cord) in both mechanical and control systems. A person uses his or her hands for intimate contact and dexterous interactions with objects that require the user to control not only the finger endpoint locations but also the forces and the stiffness of the fingers. To recreate all of these human properties in a robotic hand, the most direct and perhaps the optimal approach is to duplicate the anatomical musculoskeletal structure. When a prosthetic hand is anatomically correct, the input to the device can come from the same neural signals that used to arrive at the muscles in the original hand. The more similar the mechanical structure of a prosthetic hand is to a human hand, the less learning time is required for the user to recreate dexterous behavior. In addition, removing some of the nonlinearity from the relationship between the cortical signals and the finger movements into the peripheral controls and hardware vastly simplifies the needed BMI algorithms. (Nonlinearity refers to a system of equations in which effects are not proportional to their causes. Such a system could be difficult or impossible to model.) Finally, if a prosthetic hand can be built so that it is anatomically correct, subcomponents could be integrated back into remaining portions of the user's hand at any transitional locations. In the near future, anatomically correct prosthetic hands could be used in restorative neurosurgery to satisfy the user's needs for both aesthetics and ease of control while also providing the highest possible degree of dexterity.

  11. Multi-modal human-machine interface of a telerobotic system for remote arc welding

    Institute of Scientific and Technical Information of China (English)

    Li Haichao; Gao Hongming; Wu Lin; Zhang Guangjun

    2008-01-01

    In telerobotic system for remote welding, human-machine interface is one of the most important factor for enhancing capability and efftciency. This paper presents an architecture design of human-machine interface for welding telerobotic system: welding multi-modal human-machine interface. The human-machine interface integrated several control modes, which are namely shared control, teleteaching, supervisory control and local autonomous control. Space mouse, panoramic vision camera and graphics simulation system are also integrated into the human-machine interface for welding teleoperation. Finally, weld seam tracing and welding experiments of U-shape seam are performed by these control modes respectively. The results show that the system has better performance of human-machine interaction and complexity environment welding.

  12. Development of an evaluation technique for human-machine interface

    Energy Technology Data Exchange (ETDEWEB)

    Min, Dae Hwan; Koo, Sang Hui; Ahn, Won Yeong; Ryu, Yeong Shin [Korea Univ., Seoul (Korea, Republic of)

    1997-07-15

    The purpose of this study is two-fold : firstly to establish an evaluation technique for HMI(Human Machine Interface) in NPPs(Nuclear Power Plants) and secondly to develop an architecture of a support system which can be used for the evaluation of HMI. In order to establish an evaluation technique, this study conducted literature review on basic theories of cognitive science studies and summarized the cognitive characteristics of humans. This study also surveyed evaluation techniques of HMI in general, and reviewed studies on the evaluation of HMI in NPPs. On the basis of this survey, the study established a procedure for the evaluation of HMI in NPPs in Korea and laid a foundation for empirical verification.

  13. Single-crystal cubic silicon carbide: an in vivo biocompatible semiconductor for brain machine interface devices.

    Science.gov (United States)

    Frewin, Christopher L; Locke, Christopher; Saddow, Stephen E; Weeber, Edwin J

    2011-01-01

    Single crystal silicon carbide (SiC) is a wide band-gap semiconductor which has shown both bio- and hemo-compatibility [1-5]. Although single crystalline SiC has appealing bio-sensing potential, the material has not been extensively characterized. Cubic silicon carbide (3C-SiC) has superior in vitro biocompatibility compared to its hexagonal counterparts [3, 5]. Brain machine interface (BMI) systems using implantable neuronal prosthetics offer the possibility of bi-directional signaling, which allow sensory feedback and closed loop control. Existing implantable neural interfaces have limited long-term reliability, and 3C-SiC may be a material that may improve that reliability. In the present study, we investigated in vivo 3C-SiC biocompatibility in the CNS of C56BL/6 mice. 3C-SiC was compared against the known immunoreactive response of silicon (Si) at 5, 10, and 35 days. The material was examined to detect CD45, a protein tyrosine phosphatase (PTP) expressed by activated microglia and macrophages. The 3C-SiC surface revealed limited immunoresponse and significantly reduced microglia compared to Si substrate.

  14. Molecular dynamics simulations of the aqueous interface with the [BMI][PF6] ionic liquid: Comparison of different solvent models.

    Science.gov (United States)

    Chevrot, G; Schurhammer, R; Wipff, G

    2006-09-28

    We report a Molecular Dynamics (MD) study of the interface between water and the hygroscopic room temperature Ionic Liquid "IL" [BMI][PF6] (1-butyl-3-methyl-imidazolium hexafluorophosphate), comparing the TIP3P, SPC/E and TIP5P models for water and two IL models where the ions are +/-1 or +/-0.9 charged. A recent MD study (A. Chaumont, R. Schurhammer and G. Wipff, J. Phys. Chem. B, 2005, 109, 18964) showed that using TIP3P water in conjunction with the IL(+/-1) model led to water-IL mixing without forming an interface, whereas a biphasic system could be obtained with the IL(+/-0.9) model. With the TIP5P and SPC/E models, the juxtaposed aqueous and IL phases are found to remain distinct for at least 20 ns. The resulting IL humidity, exaggerated with the IL(+/-1) model, is in better agreement with experiment using the IL(+/-0.9) model. We also report demixing simulations on the "randomly mixed" liquids, using the IL(+/-0.9) model for the ionic liquid. With the three tested water models, the phases separate very slowly ( approximately 20 ns or more) compared to "classical" chloroform-water mixtures (less than 1 ns), leading to biphasic systems similar to those obtained after equilibration of the juxtaposed liquids. The characteristics of the interface (size, polarity, ion orientation, electrostatic potential) are compared with the different models. Possible reasons why, among the three tested water models, the widely-used TIP3P model exaggerates the inter-solvent mixing, are analyzed. The difficulty in computationally and experimentally equilibrating water-IL mixtures is attributed to the slow dynamics and micro-heterogeneity of the IL and to the different states of water in the IL phase.

  15. Controlling a Rehabilitation Robot with Brain-Machine Interface: An approach based on Independent Component Analysis and Multiple Kernel Learning

    Directory of Open Access Journals (Sweden)

    Yi-Hung Liu

    2013-03-01

    Full Text Available Patients suffering from severe motor disabilities usually require assistance from other people when doing rehabilitation exercises, which causes the rehabilitation process to be time-consuming and inconvenient. Therefore, we propose an automatic feature extraction method for a brain-machine interface that allows patients to control a robot using their own brain waves. A brain–machine interface (BMI based on the P300 event-related potential (ERP, called Brain Controlled Rehabilitation System (BCRS, was developed to detect the intentions of patients. Using the BCRS, patients can communicate with the robot through their brain waves. However, deciding how to obtain an automatically extracted, useful EEG signal is a difficult and important problem for BMI research. In this paper, Independent Component Analysis – Multiple Kernel Learning (ICA-MKL is used to directly extract a useful signal and build the classification mode for BCRS. The results reveal that this method is useful for automatically extracting the P300 signal and the accuracy is better than MKL. In additional, the same method can be extended into any motor imaginary area and the accuracy of ICA-MKL for brain imaginary data is also good to removing eye-blink artifacts and the accuracy performance is also good.

  16. A real-time brain-machine interface combining motor target and trajectory intent using an optimal feedback control design.

    Science.gov (United States)

    Shanechi, Maryam M; Williams, Ziv M; Wornell, Gregory W; Hu, Rollin C; Powers, Marissa; Brown, Emery N

    2013-01-01

    Real-time brain-machine interfaces (BMI) have focused on either estimating the continuous movement trajectory or target intent. However, natural movement often incorporates both. Additionally, BMIs can be modeled as a feedback control system in which the subject modulates the neural activity to move the prosthetic device towards a desired target while receiving real-time sensory feedback of the state of the movement. We develop a novel real-time BMI using an optimal feedback control design that jointly estimates the movement target and trajectory of monkeys in two stages. First, the target is decoded from neural spiking activity before movement initiation. Second, the trajectory is decoded by combining the decoded target with the peri-movement spiking activity using an optimal feedback control design. This design exploits a recursive Bayesian decoder that uses an optimal feedback control model of the sensorimotor system to take into account the intended target location and the sensory feedback in its trajectory estimation from spiking activity. The real-time BMI processes the spiking activity directly using point process modeling. We implement the BMI in experiments consisting of an instructed-delay center-out task in which monkeys are presented with a target location on the screen during a delay period and then have to move a cursor to it without touching the incorrect targets. We show that the two-stage BMI performs more accurately than either stage alone. Correct target prediction can compensate for inaccurate trajectory estimation and vice versa. The optimal feedback control design also results in trajectories that are smoother and have lower estimation error. The two-stage decoder also performs better than linear regression approaches in offline cross-validation analyses. Our results demonstrate the advantage of a BMI design that jointly estimates the target and trajectory of movement and more closely mimics the sensorimotor control system.

  17. A real-time brain-machine interface combining motor target and trajectory intent using an optimal feedback control design.

    Directory of Open Access Journals (Sweden)

    Maryam M Shanechi

    Full Text Available Real-time brain-machine interfaces (BMI have focused on either estimating the continuous movement trajectory or target intent. However, natural movement often incorporates both. Additionally, BMIs can be modeled as a feedback control system in which the subject modulates the neural activity to move the prosthetic device towards a desired target while receiving real-time sensory feedback of the state of the movement. We develop a novel real-time BMI using an optimal feedback control design that jointly estimates the movement target and trajectory of monkeys in two stages. First, the target is decoded from neural spiking activity before movement initiation. Second, the trajectory is decoded by combining the decoded target with the peri-movement spiking activity using an optimal feedback control design. This design exploits a recursive Bayesian decoder that uses an optimal feedback control model of the sensorimotor system to take into account the intended target location and the sensory feedback in its trajectory estimation from spiking activity. The real-time BMI processes the spiking activity directly using point process modeling. We implement the BMI in experiments consisting of an instructed-delay center-out task in which monkeys are presented with a target location on the screen during a delay period and then have to move a cursor to it without touching the incorrect targets. We show that the two-stage BMI performs more accurately than either stage alone. Correct target prediction can compensate for inaccurate trajectory estimation and vice versa. The optimal feedback control design also results in trajectories that are smoother and have lower estimation error. The two-stage decoder also performs better than linear regression approaches in offline cross-validation analyses. Our results demonstrate the advantage of a BMI design that jointly estimates the target and trajectory of movement and more closely mimics the sensorimotor control system.

  18. Subject-specific modulation of local field potential spectral power during brain-machine interface control in primates

    Science.gov (United States)

    So, Kelvin; Dangi, Siddharth; Orsborn, Amy L.; Gastpar, Michael C.; Carmena, Jose M.

    2014-04-01

    Objective. Intracortical brain-machine interfaces (BMIs) have predominantly utilized spike activity as the control signal. However, an increasing number of studies have shown the utility of local field potentials (LFPs) for decoding motor related signals. Currently, it is unclear how well different LFP frequencies can serve as features for continuous, closed-loop BMI control. Approach. We demonstrate 2D continuous LFP-based BMI control using closed-loop decoder adaptation, which adapts decoder parameters to subject-specific LFP feature modulations during BMI control. We trained two macaque monkeys to control a 2D cursor in a center-out task by modulating LFP power in the 0-150 Hz range. Main results. While both monkeys attained control, they used different strategies involving different frequency bands. One monkey primarily utilized the low-frequency spectrum (0-80 Hz), which was highly correlated between channels, and obtained proficient performance even with a single channel. In contrast, the other monkey relied more on higher frequencies (80-150 Hz), which were less correlated between channels, and had greater difficulty with control as the number of channels decreased. We then restricted the monkeys to use only various sub-ranges (0-40, 40-80, and 80-150 Hz) of the 0-150 Hz band. Interestingly, although both monkeys performed better with some sub-ranges than others, they were able to achieve BMI control with all sub-ranges after decoder adaptation, demonstrating broad flexibility in the frequencies that could potentially be used for LFP-based BMI control. Significance. Overall, our results demonstrate proficient, continuous BMI control using LFPs and provide insight into the subject-specific spectral patterns of LFP activity modulated during control.

  19. Ultra-low-cost 3D gaze estimation: an intuitive high information throughput compliment to direct brain-machine interfaces.

    Science.gov (United States)

    Abbott, W W; Faisal, A A

    2012-08-01

    Eye movements are highly correlated with motor intentions and are often retained by patients with serious motor deficiencies. Despite this, eye tracking is not widely used as control interface for movement in impaired patients due to poor signal interpretation and lack of control flexibility. We propose that tracking the gaze position in 3D rather than 2D provides a considerably richer signal for human machine interfaces by allowing direct interaction with the environment rather than via computer displays. We demonstrate here that by using mass-produced video-game hardware, it is possible to produce an ultra-low-cost binocular eye-tracker with comparable performance to commercial systems, yet 800 times cheaper. Our head-mounted system has 30 USD material costs and operates at over 120 Hz sampling rate with a 0.5-1 degree of visual angle resolution. We perform 2D and 3D gaze estimation, controlling a real-time volumetric cursor essential for driving complex user interfaces. Our approach yields an information throughput of 43 bits s(-1), more than ten times that of invasive and semi-invasive brain-machine interfaces (BMIs) that are vastly more expensive. Unlike many BMIs our system yields effective real-time closed loop control of devices (10 ms latency), after just ten minutes of training, which we demonstrate through a novel BMI benchmark--the control of the video arcade game 'Pong'.

  20. Ultra-low-cost 3D gaze estimation: an intuitive high information throughput compliment to direct brain-machine interfaces

    Science.gov (United States)

    Abbott, W. W.; Faisal, A. A.

    2012-08-01

    Eye movements are highly correlated with motor intentions and are often retained by patients with serious motor deficiencies. Despite this, eye tracking is not widely used as control interface for movement in impaired patients due to poor signal interpretation and lack of control flexibility. We propose that tracking the gaze position in 3D rather than 2D provides a considerably richer signal for human machine interfaces by allowing direct interaction with the environment rather than via computer displays. We demonstrate here that by using mass-produced video-game hardware, it is possible to produce an ultra-low-cost binocular eye-tracker with comparable performance to commercial systems, yet 800 times cheaper. Our head-mounted system has 30 USD material costs and operates at over 120 Hz sampling rate with a 0.5-1 degree of visual angle resolution. We perform 2D and 3D gaze estimation, controlling a real-time volumetric cursor essential for driving complex user interfaces. Our approach yields an information throughput of 43 bits s-1, more than ten times that of invasive and semi-invasive brain-machine interfaces (BMIs) that are vastly more expensive. Unlike many BMIs our system yields effective real-time closed loop control of devices (10 ms latency), after just ten minutes of training, which we demonstrate through a novel BMI benchmark—the control of the video arcade game ‘Pong’.

  1. The [BMI][Tf2N] ionic liquid/water binary system: a molecular dynamics study of phase separation and of the liquid-liquid interface.

    Science.gov (United States)

    Sieffert, N; Wipff, G

    2006-07-01

    We report molecular dynamics (MD) simulations of the aqueous interface of the hydrophobic [BMI][Tf2N] ionic liquid (IL), composed of 1-butyl-3-methylimidazolium cations (BMI+) and bis(trifluoromethylsulfonyl)imide anions (Tf2N-). The questions of water/IL phase separation and properties of the neat interface are addressed, comparing different liquid models (TIP3P vs TIP5P water and +1.0/-1.0 vs +0.9/-0.9 charged IL ions), the Ewald vs the reaction field treatments of the long range electrostatics, and different starting conditions. With the different models, the "randomly" mixed liquids separate much more slowly (in 20 to 40 ns) than classical water-oil mixtures do (typically, in less than 1 ns), finally leading to distinct nanoscopic phases separated by an interface, as in simulations which started with a preformed interface, but the IL phase is more humid. The final state of water in the IL thus depends on the protocol and relates to IL heterogeneities and viscosity. Water mainly fluctuates in hydrophilic basins (rich in O(Tf2N) and aromatic CH(BMI) groups), separated by more hydrophobic domains (rich in CF3(Tf2N) and alkyl(BMI) groups), in the form of monomers and dimers in the weakly humid IL phase, and as higher aggregates when the IL phase is more humid. There is more water in the IL than IL in water, to different extents, depending on the model. The interface is sharper and narrower (approximately 10 A) than with the less hydrophobic [BMI][PF6] IL and is overall neutral, with isotropically oriented molecules, as in the bulk phases. The results allow us to better understand the analogies and differences of aqueous interfaces with hydrophobic (but hygroscopic) ILs, compared to classical organic liquids.

  2. A review and experimental study on application of classifiers and evolutionary algorithms in EEG based brain-machine interface systems.

    Science.gov (United States)

    Tahernezhad-Javazm, Farajollah; Azimirad, Vahid; Shoaran, Maryam

    2017-07-18

    Considering the importance and the near future development of noninvasive Brain-Machine Interface (BMI) systems, this paper presents a comprehensive theoretical-experimental survey on the classification and evolutionary methods for BMI-based systems in which EEG signals are used. The paper is divided into two main parts. In the first part a wide range of different types of the base and combinatorial classifiers including boosting and bagging classifiers and also evolutionary algorithms are reviewed and investigated. In the second part, these classifiers and evolutionary algorithms are assessed and compared based on two types of relatively widely used BMI systems, that is, Sensory Motor Rhythm-BMI (SMR-BMI) and Event Related Potentials-BMI (ERPs-BMI). Moreover, in the second part, some of the improved evolutionary algorithms as well as bi-objective algorithms are experimentally assessed and compared. In this study two databases are used, and cross-validation accuracy (CVA) and stability to data volume (SDV) are considered as the evaluation criteria for the classifiers. According to the experimental results on both databases, regarding the base classifiers, LDA (Linear Discriminant Analysis) and SVM (Support Vector Machines) with respect to CVA evaluation metric, and NB (Naive Bayes) with respect to SDV demonstrated the best performances. Among the combinatorial classifiers, four classifiers Bagg-DT (Bagging Decision Tree), LogitBoost, and GentleBoost with respect to CVA, and Bagging-LR (Bagging Logistic Regression) and AdaBoost (Adaptive Boosting) with respect to SDV had the best performances. Finally, regarding the evolutionary algorithms, single-objective IWO (Invasive Weed Optimization) and bi-objective NSIWO (Nondominated Sorting IWO) algorithms demonstrated the best performances. We present a general survey on the base and the combinatorial classification methods for EEG signals (sensory motor rhythm and event related potentials) as well as their optimization

  3. Brain-machine interfaces for space applications-research, technological development, and opportunities.

    Science.gov (United States)

    Summerer, Leopold; Izzo, Dario; Rossini, Luca

    2009-01-01

    Recent advances in brain research and brain-machine interfaces suggest these devices could play a central role in future generation computer interfaces. Successes in the use of brain machine interfaces for patients affected by motor paralysis, as well as first developments of games and gadgets based on this technology have matured the field and brought brain-machine interfaces to the brink of more general usability and eventually of opening new markets. In human space flight, astronauts are the most precious "payload" and astronaut time is extremely valuable. Astronauts operate under difficult and unusual conditions since the absence of gravity renders some of the very simple tasks tedious and cumbersome. Therefore, computer interfaces are generally designed for safety and functionality. All improvements and technical aids to enhance their functionality and efficiency, while not compromising safety or overall mass requirements, are therefore of great interest. Brain machine interfaces show some interesting properties in this respect. It is however not obvious that devices developed for functioning on-ground can be used as hands-free interfaces for astronauts. This chapter intends to highlight the research directions of brain machine interfaces with the perceived highest potential impact on future space applications, and to present an overview of the long-term plans with respect to human space flight. We conclude by suggesting research and development steps considered necessary to include brain-machine interface technology in future architectures for human space flight.

  4. Flexible dielectric elastomer actuators for wearable human-machine interfaces

    Science.gov (United States)

    Bolzmacher, Christian; Biggs, James; Srinivasan, Mandayam

    2006-03-01

    Wearable dielectric elastomer actuators have the potential to enable new technologies, such as tactile feedback gloves for virtual reality, and to improve existing devices, such as automatic blood pressure cuffs. They are potentially lighter, quieter, thinner, simpler, and cheaper than pneumatic and hydraulic systems now used to make compliant, actuated interfaces with the human body. Achieving good performance without using a rigid frame to prestrain the actuator is a fundamental challenge in using these actuators on body. To answer this challenge, a new type of fiber-prestrained composite actuator was developed. Equations that facilitate design of the actuator are presented, along with FE analysis, material tests, and experimental results from prototypes. Bending stiffness of the actuator material was found to be comparable to textiles used in clothing, confirming wearability. Two roll-to-roll machines are also presented that permit manufacture of this material in bulk as a modular, compact, prestressed composite that can be cut, stacked, and staggered, in order to build up actuators for a range of desired forces and displacements. The electromechanical properties of single- layered actuators manufactured by this method were measured (N=5). At non-damaging voltages, blocking force ranged from 3,7-5,0 gram per centimeter of actuator width, with linear strains of 20,0-30%. Driving the actuators to breakdown produced maximum force of 8,3-10 gram/cm, and actuation strain in excess 30%. Using this actuator, a prototype tactile display was constructed and demonstrated.

  5. Affective Man-Machine Interface: Unveiling Human Emotions through Biosignals

    Science.gov (United States)

    van den Broek, Egon L.; Lisý, Viliam; Janssen, Joris H.; Westerink, Joyce H. D. M.; Schut, Marleen H.; Tuinenbreijer, Kees

    As is known for centuries, humans exhibit an electrical profile. This profile is altered through various psychological and physiological proce-sses, which can be measured through biosignals; e.g., electromyography (EMG) and electrodermal activity (EDA). These biosignals can reveal our emotions and, as such, can serve as an advanced man-machine interface (MMI) for empathic consumer products. However, such a MMI requires the correct classification of biosignals to emotion classes. This chapter starts with an introduction on biosignals for emotion detection. Next, a state-of-the-art review is presented on automatic emotion classification. Moreover, guidelines are presented for affective MMI. Subsequently, a research is presented that explores the use of EDA and three facial EMG signals to determine neutral, positive, negative, and mixed emotions, using recordings of 21 people. A range of techniques is tested, which resulted in a generic framework for automated emotion classification with up to 61.31% correct classification of the four emotion classes, without the need of personal profiles. Among various other directives for future research, the results emphasize the need for parallel processing of multiple biosignals.

  6. Volitional enhancement of firing synchrony and oscillation by neuronal operant conditioning: interaction with neurorehabilitation and brain-machine interface

    Directory of Open Access Journals (Sweden)

    Yoshio eSakurai

    2014-02-01

    Full Text Available In this review, we focus on neuronal operant conditioning in which increments in neuronal activities are directly rewarded without behaviors. We discuss the potential of this approach to elucidate neuronal plasticity for enhancing specific brain functions and its interaction with the progress in neurorehabilitation and brain–machine interfaces. The key to-be-conditioned activities that this paper emphasizes are synchronous and oscillatory firings of multiple neurons that reflect activities of cell assemblies. First, we introduce certain well-known studies on neuronal operant conditioning in which conditioned enhancements of neuronal firing were reported in animals and humans. These studies demonstrated the feasibility of volitional control over neuronal activity. Second, we refer to the recent studies on operant conditioning of synchrony and oscillation of neuronal activities. In particular, we introduce a recent study showing volitional enhancement of oscillatory activity in monkey motor cortex and our study showing selective enhancement of firing synchrony of neighboring neurons in rat hippocampus. Third, we discuss the reasons for emphasizing firing synchrony and oscillation in neuronal operant conditioning, the main reason being that they reflect the activities of cell assemblies, which have been suggested to be basic neuronal codes representing information in the brain. Finally, we discuss the interaction of neuronal operant conditioning with neurorehabilitation and brain–machine interface (BMI. We argue that synchrony and oscillation of neuronal firing are the key activities required for developing both reliable neurorehabilitation and high-performance BMI. Further, we conclude that research of neuronal operant conditioning, neurorehabilitation, BMI, and system neuroscience will produce findings applicable to these interrelated fields, and neuronal synchrony and oscillation can be a common important bridge among all of them.

  7. Who Needs to Fit In? Who Gets to Stand Out? Communication Technologies Including Brain-Machine Interfaces Revealed from the Perspectives of Special Education School Teachers through an Ableism Lens

    Science.gov (United States)

    Diep, Lucy; Wolbring, Gregor

    2013-01-01

    Some new and envisioned technologies such as brain machine interfaces (BMI) that are being developed initially for people with disabilities, but whose use can also be expanded to the general public have the potential to change body ability expectations of disabled and non-disabled people beyond the species-typical. The ways in which this dynamic…

  8. Designing Closed-Loop Brain-Machine Interfaces Using Model Predictive Control

    Directory of Open Access Journals (Sweden)

    Gautam Kumar

    2016-06-01

    Full Text Available Brain-machine interfaces (BMIs are broadly defined as systems that establish direct communications between living brain tissue and external devices, such as artificial arms. By sensing and interpreting neuronal activities to actuate an external device, BMI-based neuroprostheses hold great promise in rehabilitating motor disabled subjects, such as amputees. In this paper, we develop a control-theoretic analysis of a BMI-based neuroprosthetic system for voluntary single joint reaching task in the absence of visual feedback. Using synthetic data obtained through the simulation of an experimentally validated psycho-physiological cortical circuit model, both the Wiener filter and the Kalman filter based linear decoders are developed. We analyze the performance of both decoders in the presence and in the absence of natural proprioceptive feedback information. By performing simulations, we show that the performance of both decoders degrades significantly in the absence of the natural proprioception. To recover the performance of these decoders, we propose two problems, namely tracking the desired position trajectory and tracking the firing rate trajectory of neurons which encode the proprioception, in the model predictive control framework to design optimal artificial sensory feedback. Our results indicate that while the position trajectory based design can only recover the position and velocity trajectories, the firing rate trajectory based design can recover the performance of the motor task along with the recovery of firing rates in other cortical regions. Finally, we extend our design by incorporating a network of spiking neurons and designing artificial sensory feedback in the form of a charged balanced biphasic stimulating current.

  9. Advancing brain-machine interfaces: moving beyond linear state space models.

    Science.gov (United States)

    Rouse, Adam G; Schieber, Marc H

    2015-01-01

    Advances in recent years have dramatically improved output control by Brain-Machine Interfaces (BMIs). Such devices nevertheless remain robotic and limited in their movements compared to normal human motor performance. Most current BMIs rely on transforming recorded neural activity to a linear state space composed of a set number of fixed degrees of freedom. Here we consider a variety of ways in which BMI design might be advanced further by applying non-linear dynamics observed in normal motor behavior. We consider (i) the dynamic range and precision of natural movements, (ii) differences between cortical activity and actual body movement, (iii) kinematic and muscular synergies, and (iv) the implications of large neuronal populations. We advance the hypothesis that a given population of recorded neurons may transmit more useful information than can be captured by a single, linear model across all movement phases and contexts. We argue that incorporating these various non-linear characteristics will be an important next step in advancing BMIs to more closely match natural motor performance.

  10. A Brain-Machine Interface Operating with a Real-Time Spiking Neural Network Control Algorithm.

    Science.gov (United States)

    Dethier, Julie; Nuyujukian, Paul; Eliasmith, Chris; Stewart, Terry; Elassaad, Shauki A; Shenoy, Krishna V; Boahen, Kwabena

    2011-01-01

    Motor prostheses aim to restore function to disabled patients. Despite compelling proof of concept systems, barriers to clinical translation remain. One challenge is to develop a low-power, fully-implantable system that dissipates only minimal power so as not to damage tissue. To this end, we implemented a Kalman-filter based decoder via a spiking neural network (SNN) and tested it in brain-machine interface (BMI) experiments with a rhesus monkey. The Kalman filter was trained to predict the arm's velocity and mapped on to the SNN using the Neural Engineering Framework (NEF). A 2,000-neuron embedded Matlab SNN implementation runs in real-time and its closed-loop performance is quite comparable to that of the standard Kalman filter. The success of this closed-loop decoder holds promise for hardware SNN implementations of statistical signal processing algorithms on neuromorphic chips, which may offer power savings necessary to overcome a major obstacle to the successful clinical translation of neural motor prostheses.

  11. A Brain-Machine Interface Based on ERD/ERS for an Upper-Limb Exoskeleton Control.

    Science.gov (United States)

    Tang, Zhichuan; Sun, Shouqian; Zhang, Sanyuan; Chen, Yumiao; Li, Chao; Chen, Shi

    2016-12-02

    To recognize the user's motion intention, brain-machine interfaces (BMI) usually decode movements from cortical activity to control exoskeletons and neuroprostheses for daily activities. The aim of this paper is to investigate whether self-induced variations of the electroencephalogram (EEG) can be useful as control signals for an upper-limb exoskeleton developed by us. A BMI based on event-related desynchronization/synchronization (ERD/ERS) is proposed. In the decoder-training phase, we investigate the offline classification performance of left versus right hand and left hand versus both feet by using motor execution (ME) or motor imagery (MI). The results indicate that the accuracies of ME sessions are higher than those of MI sessions, and left hand versus both feet paradigm achieves a better classification performance, which would be used in the online-control phase. In the online-control phase, the trained decoder is tested in two scenarios (wearing or without wearing the exoskeleton). The MI and ME sessions wearing the exoskeleton achieve mean classification accuracy of 84.29% ± 2.11% and 87.37% ± 3.06%, respectively. The present study demonstrates that the proposed BMI is effective to control the upper-limb exoskeleton, and provides a practical method by non-invasive EEG signal associated with human natural behavior for clinical applications.

  12. A glucose fuel cell for implantable brain-machine interfaces.

    Directory of Open Access Journals (Sweden)

    Benjamin I Rapoport

    Full Text Available We have developed an implantable fuel cell that generates power through glucose oxidation, producing 3.4 μW cm(-2 steady-state power and up to 180 μW cm(-2 peak power. The fuel cell is manufactured using a novel approach, employing semiconductor fabrication techniques, and is therefore well suited for manufacture together with integrated circuits on a single silicon wafer. Thus, it can help enable implantable microelectronic systems with long-lifetime power sources that harvest energy from their surrounds. The fuel reactions are mediated by robust, solid state catalysts. Glucose is oxidized at the nanostructured surface of an activated platinum anode. Oxygen is reduced to water at the surface of a self-assembled network of single-walled carbon nanotubes, embedded in a Nafion film that forms the cathode and is exposed to the biological environment. The catalytic electrodes are separated by a Nafion membrane. The availability of fuel cell reactants, oxygen and glucose, only as a mixture in the physiologic environment, has traditionally posed a design challenge: Net current production requires oxidation and reduction to occur separately and selectively at the anode and cathode, respectively, to prevent electrochemical short circuits. Our fuel cell is configured in a half-open geometry that shields the anode while exposing the cathode, resulting in an oxygen gradient that strongly favors oxygen reduction at the cathode. Glucose reaches the shielded anode by diffusing through the nanotube mesh, which does not catalyze glucose oxidation, and the Nafion layers, which are permeable to small neutral and cationic species. We demonstrate computationally that the natural recirculation of cerebrospinal fluid around the human brain theoretically permits glucose energy harvesting at a rate on the order of at least 1 mW with no adverse physiologic effects. Low-power brain-machine interfaces can thus potentially benefit from having their implanted units

  13. A novel bioelectronic nose based on brain-machine interface using implanted electrode recording in vivo in olfactory bulb.

    Science.gov (United States)

    Dong, Qi; Du, Liping; Zhuang, Liujing; Li, Rong; Liu, Qingjun; Wang, Ping

    2013-11-15

    The mammalian olfactory system has merits of higher sensitivity, selectivity and faster response than current electronic nose system based on chemical sensor array. It is advanced and feasible to detect and discriminate odors by mammalian olfactory system. The purpose of this study is to develop a novel bioelectronic nose based on the brain-machine interface (BMI) technology for odor detection by in vivo electrophysiological measurements of olfactory bulb. In this work, extracellular potentials of mitral/tufted (M/T) cells in olfactory bulb (OB) were recorded by implanted 16-channel microwire electrode arrays. The odor-evoked response signals were analyzed. We found that neural activities of different neurons showed visible different firing patterns both in temporal features and rate features when stimulated by different small molecular odorants. The detection low limit is below 1 ppm for some specific odors. Odors were classified by an algorithm based on population vector similarity and support vector machine (SVM). The results suggested that the novel bioelectonic nose was sensitive to odorant stimuli. The best classifying accuracy was up to 95%. With the development of the BMI and olfactory decoding methods, we believe that this system will represent emerging and promising platforms for wide applications in medical diagnosis and security fields.

  14. Minimizing data transfer with sustained performance in wireless brain-machine interfaces.

    Science.gov (United States)

    Thorbergsson, Palmi Thor; Garwicz, Martin; Schouenborg, Jens; Johansson, Anders J

    2012-06-01

    Brain-machine interfaces (BMIs) may be used to investigate neural mechanisms or to treat the symptoms of neurological disease and are hence powerful tools in research and clinical practice. Wireless BMIs add flexibility to both types of applications by reducing movement restrictions and risks associated with transcutaneous leads. However, since wireless implementations are typically limited in terms of transmission capacity and energy resources, the major challenge faced by their designers is to combine high performance with adaptations to limited resources. Here, we have identified three key steps in dealing with this challenge: (1) the purpose of the BMI should be clearly specified with regard to the type of information to be processed; (2) the amount of raw input data needed to fulfill the purpose should be determined, in order to avoid over- or under-dimensioning of the design; and (3) processing tasks should be allocated among the system parts such that all of them are utilized optimally with respect to computational power, wireless link capacity and raw input data requirements. We have focused on step (2) under the assumption that the purpose of the BMI (step 1) is to assess single- or multi-unit neuronal activity in the central nervous system with single-channel extracellular recordings. The reliability of this assessment depends on performance in detection and sorting of spikes. We have therefore performed absolute threshold spike detection and spike sorting with the principal component analysis and fuzzy c-means on a set of synthetic extracellular recordings, while varying the sampling rate and resolution, noise level and number of target units, and used the known ground truth to quantitatively estimate the performance. From the calculated performance curves, we have identified the sampling rate and resolution breakpoints, beyond which performance is not expected to increase by more than 1-5%. We have then estimated the performance of alternative

  15. Minimizing data transfer with sustained performance in wireless brain-machine interfaces

    Science.gov (United States)

    Thor Thorbergsson, Palmi; Garwicz, Martin; Schouenborg, Jens; Johansson, Anders J.

    2012-06-01

    Brain-machine interfaces (BMIs) may be used to investigate neural mechanisms or to treat the symptoms of neurological disease and are hence powerful tools in research and clinical practice. Wireless BMIs add flexibility to both types of applications by reducing movement restrictions and risks associated with transcutaneous leads. However, since wireless implementations are typically limited in terms of transmission capacity and energy resources, the major challenge faced by their designers is to combine high performance with adaptations to limited resources. Here, we have identified three key steps in dealing with this challenge: (1) the purpose of the BMI should be clearly specified with regard to the type of information to be processed; (2) the amount of raw input data needed to fulfill the purpose should be determined, in order to avoid over- or under-dimensioning of the design; and (3) processing tasks should be allocated among the system parts such that all of them are utilized optimally with respect to computational power, wireless link capacity and raw input data requirements. We have focused on step (2) under the assumption that the purpose of the BMI (step 1) is to assess single- or multi-unit neuronal activity in the central nervous system with single-channel extracellular recordings. The reliability of this assessment depends on performance in detection and sorting of spikes. We have therefore performed absolute threshold spike detection and spike sorting with the principal component analysis and fuzzy c-means on a set of synthetic extracellular recordings, while varying the sampling rate and resolution, noise level and number of target units, and used the known ground truth to quantitatively estimate the performance. From the calculated performance curves, we have identified the sampling rate and resolution breakpoints, beyond which performance is not expected to increase by more than 1-5%. We have then estimated the performance of alternative

  16. Analysis of neural activity in human motor cortex -- Towards brain machine interface system

    Science.gov (United States)

    Secundo, Lavi

    The discovery of directional tuned neurons in the primary motor cortex has advanced motor research in several domains. For instance, in the area of brain machine interface (BMI), researchers have exploited the robust characteristic of tuned motor neurons to allow monkeys to learn control of various machines. In the first chapter of this work we examine whether this phenomena can be observed using the less invasive method of recording electrocorticographic signals (ECoG) from the surface of a human's brain. Our findings reveal that individual ECoG channels contain complex movement information about the neuronal population. While some ECoG channels are tuned to hand movement direction (direction specific channels), others are associated to movement but do not contain information regarding movement direction (non-direction specific channels). More specifically, directionality can vary temporally and by frequency within one channel. In addition, a handful of channels contain no significant information regarding movement at all. These findings strongly suggest that directional and non-directional regions of cortex can be identified with ECoG and provide solutions to decoding movement at the signal resolution provided by ECoG. In the second chapter we examine the influence of movement context on movement reconstruction accuracy. We recorded neuronal signals recorded from electro-corticography (ECoG) during performance of cued- and self-initiated movements. ECoG signals were used to train a reconstruction algorithm to reconstruct continuous hand movement. We found that both cued- and self-initiated movements could be reconstructed with similar accuracy from the ECoG data. However, while an algorithm trained on the cued task could reconstruct performance on a subsequent cued trial, it failed to reconstruct self-initiated arm movement. The same task-specificity was observed when the algorithm was trained with self-initiated movement data and tested on the cued task. Thus

  17. A confidence metric for using neurobiological feedback in actor-critic reinforcement learning based brain-machine interfaces

    Directory of Open Access Journals (Sweden)

    Noeline Wilhelmina Prins

    2014-05-01

    Full Text Available Brain-Machine Interfaces (BMIs can be used to restore function in people living with paralysis. Current BMIs require extensive calibration that increase the set-up times and external inputs for decoder training that may be difficult to produce in paralyzed individuals. Both these factors have presented challenges in transitioning the technology from research environments to activities of daily living (ADL. For BMIs to be seamlessly used in ADL, these issues should be handled with minimal external input thus reducing the need for a technician/caregiver to calibrate the system. Reinforcement Learning (RL based BMIs are a good tool to be used when there is no external training signal and can provide an adaptive modality to train BMI decoders. However, RL based BMIs are sensitive to the feedback provided to adapt the BMI. In actor-critic BMIs, this feedback is provided by the critic and the overall system performance is limited by the critic accuracy. In this work, we developed an adaptive BMI that could handle inaccuracies in the critic feedback in an effort to produce more accurate RL based BMIs. We developed a confidence measure, which indicated how appropriate the feedback is for updating the decoding parameters of the actor. The results show that with the new update formulation, the critic accuracy is no longer a limiting factor for the overall performance. We tested and validated the system on three different data sets: synthetic data generated by an Izhikevich neural spiking model, synthetic data with a Gaussian noise distribution, and data collected from a non-human primate engaged in a reaching task. All results indicated that the system with the critic confidence built in always outperformed the system without the critic confidence. Results of this study suggest the potential application of the technique in developing an autonomous BMI that does not need an external signal for training or extensive calibration.

  18. Proceedings of the first workshop on Peripheral Machine Interfaces: Going beyond traditional surface electromyography

    Directory of Open Access Journals (Sweden)

    Claudio eCastellini

    2014-08-01

    Full Text Available One of the hottest topics in rehabilitation robotics is that of proper control of prosthetic devices. Despite decades of research, the state of the art is dramatically behind the expectations. To shed light on this issue, in June, 2013 the first international workshop on Present and future of non-invasive PNS-Machine Interfaces was convened, hosted by the International Conference on Rehabilitation Robotics. The keyword PNS-Machine Interface (PMI has been selected to denote human-machine interfaces targeted at the limb-deficient, mainly upper-limb amputees, dealing with signals gathered from the peripheral nervous system (PNS in a non-invasive way, that is, from the surface of the residuum. The workshop was intended to provide an overview of the state of the art and future perspectives of such interfaces; this paper represents is a collection of opinions expressed by each and every researcher/group involved in it.

  19. Attempt on construction of human friendly man-machine interface. Study and apply about human communication; Human friendly na man machine interface kochiku no kokoromi. Ningen no communication no kento to sono oyo

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuno, J. [Tokyo University of Agriculture, Tokyo (Japan); Kokubo, Y.; Matsumura, I.; Kobayashi, H. [Hosei University, Tokyo (Japan)

    1998-04-01

    This paper describes an attempt on a construction way of human friendly man-machine interface. At first, we do a simple experiment to find out the characteristic of human verbal communication. From the experimental results, we get some rules in case in human verbal communication. We construct the man-machine interface which is based on these rules. Through teaching process, we examine our verbal communication interface comparing with conventional interfaces. From this comparison, we recognize that the verbal communication interface is valid to construct the user-friendly man-machine interface. 12 refs., 9 figs., 2 tabs.

  20. Selective visual attention to drive cognitive brain machine interfaces: from concepts to neurofeedback and rehabilitation applications

    Directory of Open Access Journals (Sweden)

    Elaine eAstrand

    2014-08-01

    Full Text Available Brain Machine Interfaces (BMI using motor cortical activity to drive an external effector like a screen cursor or a robotic arm have seen enormous success and proven their great rehabilitation potential. An emerging parallel effort is now directed to BMIs controlled by endogenous cognitive activity, also called cognitive BMIs. While more challenging, this approach opens new dimensions to the rehabilitation of cognitive disorders. In the present work, we focus on BMIs driven by visuospatial attention signals and we provide a critical review of these studies in the light of the accumulated knowledge about the psychophysics, anatomy and neurophysiology of visual spatial attention. Importantly, we provide a unique comparative overview of the several studies, ranging from noninvasive to invasive human and non-human primates studies, that decode attention-related information from ongoing neuronal activity. We discuss these studies in the light of the challenges attention-driven cognitive BMIs have to face. In a second part of the review, we discuss past and current attention-based neurofeedback studies, describing both the covert effects of neurofeedback onto neuronal activity and its overt behavioral effects. Importantly, we compare neurofeedback studies based on the amplitude of cortical activity to studies based on the enhancement of cortical information content. Last, we discuss several lines of future research and applications for attention-driven cognitive BCIs, including the rehabilitation of cognitive deficits, restored communication in locked-in patients, and open-field applications for enhanced cognition in normal subjects. The core motivation of this work is the key idea that the improvement of current cognitive BMIs for therapeutic and open field applications needs to be grounded in a proper interdisciplinary understanding of the physiology of the cognitive function of interest, be it spatial attention, working memory or any other

  1. Development of an implantable wireless ECoG 128ch recording device for clinical brain machine interface.

    Science.gov (United States)

    Matsushita, Kojiro; Hirata, Masayuki; Suzuki, Takafumi; Ando, Hiroshi; Ota, Yuki; Sato, Fumihiro; Morris, Shyne; Yoshida, Takeshi; Matsuki, Hidetoshi; Yoshimine, Toshiki

    2013-01-01

    Brain Machine Interface (BMI) is a system that assumes user's intention by analyzing user's brain activities and control devices with the assumed intention. It is considered as one of prospective tools to enhance paralyzed patients' quality of life. In our group, we especially focus on ECoG (electro-corti-gram)-BMI, which requires surgery to place electrodes on the cortex. We try to implant all the devices within the patient's head and abdomen and to transmit the data and power wirelessly. Our device consists of 5 parts: (1) High-density multi-electrodes with a 3D shaped sheet fitting to the individual brain surface to effectively record the ECoG signals; (2) A small circuit board with two integrated circuit chips functioning 128 [ch] analogue amplifiers and A/D converters for ECoG signals; (3) A Wifi data communication & control circuit with the target PC; (4) A non-contact power supply transmitting electrical power minimum 400[mW] to the device 20[mm] away. We developed those devices, integrated them, and, investigated the performance.

  2. Brain-Machine Interface to Control a Prosthetic Arm with Monkey ECoGs during Periodic Movements

    Directory of Open Access Journals (Sweden)

    Soichiro eMorishita

    2014-12-01

    Full Text Available Brain Machine Interfaces (BMIs are promising technologies to rehabilitate the function of upper limbs in severely paralyzed patients. We succeeded in developing a BMI prosthetic arm for a monkey implanted with electrocorticogram (ECoG electrodes and trained in a reaching task. It had stability in preventing the misclassification of ECoG patterns. However, the latency was about 200 ms as a trade-off for the stability. To improve the response of this BMI prosthetic arm, the generation of a trigger event by decoding muscle activity was adopted. It was performed to predict integrated electromyograms (iEMGs from the ECoGs. Experiments were conducted to verify the availability of this method, and the results confirmed that the proposed method was superior to the conventional one. In addition, a performance test of the proposed method with actually achieved iEMGs instead of predicted iEMGs was performed, and we found that the motor intention is finely expressed through estimated muscle activity from brain activity rather than actual muscle activity.

  3. Intelligent Human Machine Interface Design for Advanced Product Life Cycle Management Systems

    CERN Document Server

    Ahmed, Zeeshan

    2010-01-01

    Designing and implementing an intelligent and user friendly human machine interface for any kind of software or hardware oriented application is always be a challenging task for the designers and developers because it is very difficult to understand the psychology of the user, nature of the work and best suit of the environment. This research paper is basically about to propose an intelligent, flexible and user friendly machine interface for Product Life Cycle Management products or PDM Systems since studies show that usability and human computer interaction issues are a major cause of acceptance problems introducing or using such systems. Going into details of the proposition, we present prototype implementations about theme based on design requirements, designed designs and technologies involved for the development of human machine interface.

  4. Interface man and machine: A contrasting team; Schnittstelle Mensch - Maschine: Ein gegensaetzliches Gespann

    Energy Technology Data Exchange (ETDEWEB)

    Angst, H.B.

    1995-07-01

    Man and machine could not be more different. Nevertheless they are inseparably connected at work and can only fulfil their tasks and functions as a team. The place where man and machine meet is called interface. `HAUS TECH` reports about this unalike team in great detail. (orig.) [Deutsch] Mensch und Maschine koennten nicht verschiedener sein. Und doch sind sie am Arbeitsplatz untrennbar miteinander verbunden und koennen die ihnen uebertragenen Aufgaben und Funktionen nur im Gespann ausueben. Die Stelle, an der sich Mensch und Technik begegnen, heisst Schnittstelle, in der Fachsprache `Interface`. HAUS TECH` befasst sich ausfuehrlich mit dem ungleichen Gespann. (orig.)

  5. Control of an Ambulatory Exoskeleton with a Brain–Machine Interface for Spinal Cord Injury Gait Rehabilitation

    Science.gov (United States)

    López-Larraz, Eduardo; Trincado-Alonso, Fernando; Rajasekaran, Vijaykumar; Pérez-Nombela, Soraya; del-Ama, Antonio J.; Aranda, Joan; Minguez, Javier; Gil-Agudo, Angel; Montesano, Luis

    2016-01-01

    The closed-loop control of rehabilitative technologies by neural commands has shown a great potential to improve motor recovery in patients suffering from paralysis. Brain–machine interfaces (BMI) can be used as a natural control method for such technologies. BMI provides a continuous association between the brain activity and peripheral stimulation, with the potential to induce plastic changes in the nervous system. Paraplegic patients, and especially the ones with incomplete injuries, constitute a potential target population to be rehabilitated with brain-controlled robotic systems, as they may improve their gait function after the reinforcement of their spared intact neural pathways. This paper proposes a closed-loop BMI system to control an ambulatory exoskeleton—without any weight or balance support—for gait rehabilitation of incomplete spinal cord injury (SCI) patients. The integrated system was validated with three healthy subjects, and its viability in a clinical scenario was tested with four SCI patients. Using a cue-guided paradigm, the electroencephalographic signals of the subjects were used to decode their gait intention and to trigger the movements of the exoskeleton. We designed a protocol with a special emphasis on safety, as patients with poor balance were required to stand and walk. We continuously monitored their fatigue and exertion level, and conducted usability and user-satisfaction tests after the experiments. The results show that, for the three healthy subjects, 84.44 ± 14.56% of the trials were correctly decoded. Three out of four patients performed at least one successful BMI session, with an average performance of 77.6 1 ± 14.72%. The shared control strategy implemented (i.e., the exoskeleton could only move during specific periods of time) was effective in preventing unexpected movements during periods in which patients were asked to relax. On average, 55.22 ± 16.69% and 40.45 ± 16.98% of the trials (for healthy subjects and

  6. Control of an Ambulatory Exoskeleton with a Brain-Machine Interface for Spinal Cord Injury Gait Rehabilitation.

    Science.gov (United States)

    López-Larraz, Eduardo; Trincado-Alonso, Fernando; Rajasekaran, Vijaykumar; Pérez-Nombela, Soraya; Del-Ama, Antonio J; Aranda, Joan; Minguez, Javier; Gil-Agudo, Angel; Montesano, Luis

    2016-01-01

    The closed-loop control of rehabilitative technologies by neural commands has shown a great potential to improve motor recovery in patients suffering from paralysis. Brain-machine interfaces (BMI) can be used as a natural control method for such technologies. BMI provides a continuous association between the brain activity and peripheral stimulation, with the potential to induce plastic changes in the nervous system. Paraplegic patients, and especially the ones with incomplete injuries, constitute a potential target population to be rehabilitated with brain-controlled robotic systems, as they may improve their gait function after the reinforcement of their spared intact neural pathways. This paper proposes a closed-loop BMI system to control an ambulatory exoskeleton-without any weight or balance support-for gait rehabilitation of incomplete spinal cord injury (SCI) patients. The integrated system was validated with three healthy subjects, and its viability in a clinical scenario was tested with four SCI patients. Using a cue-guided paradigm, the electroencephalographic signals of the subjects were used to decode their gait intention and to trigger the movements of the exoskeleton. We designed a protocol with a special emphasis on safety, as patients with poor balance were required to stand and walk. We continuously monitored their fatigue and exertion level, and conducted usability and user-satisfaction tests after the experiments. The results show that, for the three healthy subjects, 84.44 ± 14.56% of the trials were correctly decoded. Three out of four patients performed at least one successful BMI session, with an average performance of 77.6 1 ± 14.72%. The shared control strategy implemented (i.e., the exoskeleton could only move during specific periods of time) was effective in preventing unexpected movements during periods in which patients were asked to relax. On average, 55.22 ± 16.69% and 40.45 ± 16.98% of the trials (for healthy subjects and

  7. Hybrid EEG-EOG brain-computer interface system for practical machine control.

    Science.gov (United States)

    Punsawad, Yunyong; Wongsawat, Yodchanan; Parnichkun, Manukid

    2010-01-01

    Practical issues such as accuracy with various subjects, number of sensors, and time for training are important problems of existing brain-computer interface (BCI) systems. In this paper, we propose a hybrid framework for the BCI system that can make machine control more practical. The electrooculogram (EOG) is employed to control the machine in the left and right directions while the electroencephalogram (EEG) is employed to control the forword, no action, and complete stop motions of the machine. By using only 2-channel biosignals, the average classification accuracy of more than 95% can be achieved.

  8. Extraction of SSVEP signals of a capacitive EEG helmet for human machine interface.

    Science.gov (United States)

    Oehler, Martin; Neumann, Peter; Becker, Matthias; Curio, Gabriel; Schilling, Meinhard

    2008-01-01

    The use of capacitive electrodes for measuring EEG eliminates the preparation procedure known from classical noninvasive EEG measurements. The insulated interface to the brain signals in combination with steady-state visual evoked potentials (SSVEP) enables a zero prep human machine interface triggered by brain signals. This paper presents a 28-channel EEG helmet system based on our capacitive electrodes measuring and analyzing SSVEPs even through scalp hair. Correlation analysis is employed to extract the stimulation frequency of the EEG signal. The system is characterized corresponding to the available detection time with different subjects. As demonstration of the use of capacitive electrodes for SSVEP measurements, preliminary online Brain-Computer Interface (BCI) results of the system are presented. Detection times lie about a factor of 3 higher than in galvanic EEG SSVEP measurements, but are low enough to establish a proper communication channel for Human Machine Interface (HMI).

  9. Techniques and applications for binaural sound manipulation in human-machine interfaces

    Science.gov (United States)

    Begault, Durand R.; Wenzel, Elizabeth M.

    1992-01-01

    The implementation of binaural sound to speech and auditory sound cues (auditory icons) is addressed from both an applications and technical standpoint. Techniques overviewed include processing by means of filtering with head-related transfer functions. Application to advanced cockpit human interface systems is discussed, although the techniques are extendable to any human-machine interface. Research issues pertaining to three-dimensional sound displays under investigation at the Aerospace Human Factors Division at NASA Ames Research Center are described.

  10. Wireless communication links for brain-machine interface applications

    Science.gov (United States)

    Larson, L.

    2016-05-01

    Recent technological developments have given neuroscientists direct access to neural signals in real time, with the accompanying ability to decode the resulting information and control various prosthetic devices and gain insight into deeper aspects of cognition. These developments - along with deep brain stimulation for Parkinson's disease and the possible use of electro-stimulation for other maladies - leads to the conclusion that the widespread use electronic brain interface technology is a long term possibility. This talk will summarize the various technical challenges and approaches that have been developed to wirelessly communicate with the brain, including technology constraints, dc power limits, compression and data rate issues.

  11. Effects of human-machine interface design for intelligent speed adaptation on driving behavior and acceptance

    NARCIS (Netherlands)

    Rook, A.M.; Hogema, J.H.

    2005-01-01

    The effects of human-machine interface (HMI) design for intelligent speed adaptation (ISA) on driving behavior and acceptance were measured in a moving-base research driving simulator. Sixty-four experienced drivers participated in two simulator experiments (32 in each). During the simulated runs wi

  12. Materials and optimized designs for human-machine interfaces via epidermal electronics.

    Science.gov (United States)

    Jeong, Jae-Woong; Yeo, Woon-Hong; Akhtar, Aadeel; Norton, James J S; Kwack, Young-Jin; Li, Shuo; Jung, Sung-Young; Su, Yewang; Lee, Woosik; Xia, Jing; Cheng, Huanyu; Huang, Yonggang; Choi, Woon-Seop; Bretl, Timothy; Rogers, John A

    2013-12-17

    Thin, soft, and elastic electronics with physical properties well matched to the epidermis can be conformally and robustly integrated with the skin. Materials and optimized designs for such devices are presented for surface electromyography (sEMG). The findings enable sEMG from wide ranging areas of the body. The measurements have quality sufficient for advanced forms of human-machine interface.

  13. Energetic optimization of a piezo-based touch-operated button for man–machine interfaces

    NARCIS (Netherlands)

    Sun, Hao; Vries, de Theo J.A.; Vries, de Rene; Dalen, van Harry

    2012-01-01

    This paper discusses the optimization of a touch-operated button for man–machine interfaces based on piezoelectric energy harvesting techniques. In the mechanical button, a common piezoelectric diaphragm, is assembled to harvest the ambient energy from the source, i.e. the operator’s touch. Under to

  14. Energetic optimization of a piezo-based touch-operated button for man–machine interfaces

    NARCIS (Netherlands)

    de Vries, Theodorus J.A.; Sun, H.; de Vries, T.J.A.; de Vries, Rene; van Dalen, Harry

    2012-01-01

    This paper discusses the optimization of a touch-operated button for man–machine interfaces based on piezoelectric energy harvesting techniques. In the mechanical button, a common piezoelectric diaphragm, is assembled to harvest the ambient energy from the source, i.e. the operator’s touch. Under

  15. A Machine Learning Approach for Hot-Spot Detection at Protein-Protein Interfaces

    NARCIS (Netherlands)

    Melo, Rita; Fieldhouse, Robert; Melo, André; Correia, João D G; Cordeiro, Maria Natália D S; Gümüş, Zeynep H; Costa, Joaquim; Bonvin, Alexandre M J J|info:eu-repo/dai/nl/113691238; de Sousa Moreira, Irina|info:eu-repo/dai/nl/412025000

    2016-01-01

    Understanding protein-protein interactions is a key challenge in biochemistry. In this work, we describe a more accurate methodology to predict Hot-Spots (HS) in protein-protein interfaces from their native complex structure compared to previous published Machine Learning (ML) techniques. Our model

  16. Patient Machine Interface for the Control of Mechanical Ventilation Devices

    Directory of Open Access Journals (Sweden)

    Rolando Grave de Peralta

    2013-11-01

    Full Text Available The potential of Brain Computer Interfaces (BCIs to translate brain activity into commands to control external devices during mechanical ventilation (MV remains largely unexplored. This is surprising since the amount of patients that might benefit from such assistance is considerably larger than the number of patients requiring BCI for motor control. Given the transient nature of MV (i.e., used mainly over night or during acute clinical conditions, precluding the use of invasive methods, and inspired by current research on BCIs, we argue that scalp recorded EEG (electroencephalography signals can provide a non-invasive direct communication pathway between the brain and the ventilator. In this paper we propose a Patient Ventilator Interface (PVI to control a ventilator during variable conscious states (i.e., wake, sleep, etc.. After a brief introduction on the neural control of breathing and the clinical conditions requiring the use of MV we discuss the conventional techniques used during MV. The schema of the PVI is presented followed by a description of the neural signals that can be used for the on-line control. To illustrate the full approach, we present data from a healthy subject, where the inspiration and expiration periods during voluntary breathing were discriminated with a 92% accuracy (10-fold cross-validation from the scalp EEG data. The paper ends with a discussion on the advantages and obstacles that can be forecasted in this novel application of the concept of BCI.

  17. Quantitative evaluation of impedance perception characteristics of humans in the man-machine interface

    Energy Technology Data Exchange (ETDEWEB)

    Onish, Keiichi [Yamaha Motor Co., Shizuoka (Japan); Kim, Young Woo [Daegu Techno Park R and D Center, Seoul (Korea, Republic of); Obinata, Goro [Nagoya University, Nagoya (Japan); Hase, Kazunori [Tokyo Metropolitan University, Tokyo (Japan)

    2013-05-15

    We investigated impedance perception characteristics of humans in the man-machine interface. Sensibility or operational feel about physical properties of machine dynamics is obtained through perception process. We evaluated the impedance perception characteristics of humans who are operating a mechanical system, based on extended Scheffe's subjective evaluation method in full consideration of the influence of impedance level, impedance difference, experiment order, individual difference and so on. Constant method based quantitative evaluation was adopted to investigate the influence of motion frequency and change of the impedance on human impedance perception characteristics. Experimental results indicate that humans perceive impedance of mechanical systems based on comparison process of the dynamical characteristics of the systems. The proposed method can be applied to quantify the design requirement of man-machine interface. The effectiveness of the proposed method is verified through experimental results.

  18. Independent Mobility Achieved through a Wireless Brain-Machine Interface

    Science.gov (United States)

    Xu, Zhiming; Kyar, Toe K.; Ho, Duncun; Lim, Clement; Chan, Louiza; Chua, Yuanwei; Yao, Lei; Cheong, Jia Hao; Lee, Jung Hyup; Vishal, Kulkarni Vinayak; Guo, Yongxin; Chen, Zhi Ning; Lim, Lay K.; Li, Peng; Liu, Lei; Zou, Xiaodan; Ang, Kai K.; Gao, Yuan; Ng, Wai Hoe; Han, Boon Siew; Chng, Keefe; Guan, Cuntai; Je, Minkyu; Yen, Shih-Cheng

    2016-01-01

    Individuals with tetraplegia lack independent mobility, making them highly dependent on others to move from one place to another. Here, we describe how two macaques were able to use a wireless integrated system to control a robotic platform, over which they were sitting, to achieve independent mobility using the neuronal activity in their motor cortices. The activity of populations of single neurons was recorded using multiple electrode arrays implanted in the arm region of primary motor cortex, and decoded to achieve brain control of the platform. We found that free-running brain control of the platform (which was not equipped with any machine intelligence) was fast and accurate, resembling the performance achieved using joystick control. The decoding algorithms can be trained in the absence of joystick movements, as would be required for use by tetraplegic individuals, demonstrating that the non-human primate model is a good pre-clinical model for developing such a cortically-controlled movement prosthetic. Interestingly, we found that the response properties of some neurons differed greatly depending on the mode of control (joystick or brain control), suggesting different roles for these neurons in encoding movement intention and movement execution. These results demonstrate that independent mobility can be achieved without first training on prescribed motor movements, opening the door for the implementation of this technology in persons with tetraplegia. PMID:27802344

  19. Proceedings of the first workshop on Peripheral Machine Interfaces: going beyond traditional surface electromyography.

    Science.gov (United States)

    Castellini, Claudio; Artemiadis, Panagiotis; Wininger, Michael; Ajoudani, Arash; Alimusaj, Merkur; Bicchi, Antonio; Caputo, Barbara; Craelius, William; Dosen, Strahinja; Englehart, Kevin; Farina, Dario; Gijsberts, Arjan; Godfrey, Sasha B; Hargrove, Levi; Ison, Mark; Kuiken, Todd; Marković, Marko; Pilarski, Patrick M; Rupp, Rüdiger; Scheme, Erik

    2014-01-01

    One of the hottest topics in rehabilitation robotics is that of proper control of prosthetic devices. Despite decades of research, the state of the art is dramatically behind the expectations. To shed light on this issue, in June, 2013 the first international workshop on Present and future of non-invasive peripheral nervous system (PNS)-Machine Interfaces (MI; PMI) was convened, hosted by the International Conference on Rehabilitation Robotics. The keyword PMI has been selected to denote human-machine interfaces targeted at the limb-deficient, mainly upper-limb amputees, dealing with signals gathered from the PNS in a non-invasive way, that is, from the surface of the residuum. The workshop was intended to provide an overview of the state of the art and future perspectives of such interfaces; this paper represents is a collection of opinions expressed by each and every researcher/group involved in it.

  20. Proceedings of the first workshop on Peripheral Machine Interfaces: going beyond traditional surface electromyography

    Science.gov (United States)

    Castellini, Claudio; Artemiadis, Panagiotis; Wininger, Michael; Ajoudani, Arash; Alimusaj, Merkur; Bicchi, Antonio; Caputo, Barbara; Craelius, William; Dosen, Strahinja; Englehart, Kevin; Farina, Dario; Gijsberts, Arjan; Godfrey, Sasha B.; Hargrove, Levi; Ison, Mark; Kuiken, Todd; Marković, Marko; Pilarski, Patrick M.; Rupp, Rüdiger; Scheme, Erik

    2014-01-01

    One of the hottest topics in rehabilitation robotics is that of proper control of prosthetic devices. Despite decades of research, the state of the art is dramatically behind the expectations. To shed light on this issue, in June, 2013 the first international workshop on Present and future of non-invasive peripheral nervous system (PNS)–Machine Interfaces (MI; PMI) was convened, hosted by the International Conference on Rehabilitation Robotics. The keyword PMI has been selected to denote human–machine interfaces targeted at the limb-deficient, mainly upper-limb amputees, dealing with signals gathered from the PNS in a non-invasive way, that is, from the surface of the residuum. The workshop was intended to provide an overview of the state of the art and future perspectives of such interfaces; this paper represents is a collection of opinions expressed by each and every researcher/group involved in it. PMID:25177292

  1. Seating Considerations for Spaceflight: The Human to Machine Interface

    Science.gov (United States)

    Gohmert, D. M.

    2012-01-01

    Seating is one of the most critical components to be considered during design of a spacecraft. Since seats are the final interface between the occupant and the vehicle wherein all launch and landing operations are performed, significant effort must be spent to ensure proper integration of the human to the spacecraft. The importance of seating can be divided into two categories: seat layout and seat design. The layout of the seats drives the overall cabin configuration - from displays and controls, to windows, to stowage, to egress paths. Since the layout of the seats is such a critical design parameter within the crew compartment, it is one of the first design challenges that must be completed in the critical path of the spacecraft design. In consideration of seat layout in the vehicle, it is important for the designers to account for often intangible factors such as safety, operability, contingency performance, and crew rescue. Seat layout will lead to definition of the quantity, shape, and posture of the seats. The seats of the craft must restrain and protect the occupant in all seated phases of flight, while allowing for nominal mission performance. In design of a spacecraft seat, the general posture of the occupant and the landing loads to be encountered are the greatest drivers of overall design. Variances, such as upright versus recumbent postures will dictate fit of the seat to the occupant and drive the total envelope of the seat around the occupant. Seat design revolves around applying sound principles of seated occupant protection coupled with the unique environments driven by the seat layout, landing loads, and operational and emergency scenarios.

  2. Implementation of Human Machine Interface Control for Filling and Capping System

    OpenAIRE

    Su Yadanar; Theingi; Nu Nu Win

    2014-01-01

    This research is mainly aimed to perform the bottle filling and capping process simultaneously in the pharmaceutical factory by using the PC based human machine interface system. Filling and capping is carried out by the machine that packages the medical powder into the bottle and then filled bottle is capped. So, PC based HMI system is created for operator control on the work cell. By designing the programming of Visual Basic.Net and Mikro C, the monitoring and running conditions in the pac...

  3. Towards a naturalistic brain-machine interface: hybrid torque and position control allows generalization to novel dynamics.

    Directory of Open Access Journals (Sweden)

    Pratik Y Chhatbar

    Full Text Available Realization of reaching and grasping movements by a paralytic person or an amputee would greatly facilitate her/his activities of daily living. Towards this goal, control of a computer cursor or robotic arm using neural signals has been demonstrated in rodents, non-human primates and humans. This technology is commonly referred to as a Brain-Machine Interface (BMI and is achieved by predictions of kinematic parameters, e.g. position or velocity. However, execution of natural movements, such as swinging baseball bats of different weights at the same speed, requires advanced planning for necessary context-specific forces in addition to kinematic control. Here we show, for the first time, the control of a virtual arm with representative inertial parameters using real-time neural control of torques in non-human primates (M. radiata. We found that neural control of torques leads to ballistic, possibly more naturalistic movements than position control alone, and that adding the influence of position in a hybrid torque-position control changes the feedforward behavior of these BMI movements. In addition, this level of control was achievable utilizing the neural recordings from either contralateral or ipsilateral M1. We also observed changed behavior of hybrid torque-position control under novel external dynamic environments that was comparable to natural movements. Our results demonstrate that inclusion of torque control to drive a neuroprosthetic device gives the user a more direct handle on the movement execution, especially when dealing with novel or changing dynamic environments. We anticipate our results to be a starting point of more sophisticated algorithms for sensorimotor neuroprostheses, eliminating the need of fully automatic kinematic-to-dynamic transformations as currently used by traditional kinematic-based decoders. Thus, we propose that direct control of torques, or other force related variables, should allow for more natural

  4. Design of a Closed-Loop, Bidirectional Brain Machine Interface System With Energy Efficient Neural Feature Extraction and PID Control.

    Science.gov (United States)

    Liu, Xilin; Zhang, Milin; Richardson, Andrew G; Lucas, Timothy H; Van der Spiegel, Jan

    2016-12-16

    This paper presents a bidirectional brain machine interface (BMI) microsystem designed for closed-loop neuroscience research, especially experiments in freely behaving animals. The system-on-chip (SoC) consists of 16-channel neural recording front-ends, neural feature extraction units, 16-channel programmable neural stimulator back-ends, in-channel programmable closed-loop controllers, global analog-digital converters (ADC), and peripheral circuits. The proposed neural feature extraction units includes 1) an ultra low-power neural energy extraction unit enabling a 64-step natural logarithmic domain frequency tuning, and 2) a current-mode action potential (AP) detection unit with time-amplitude window discriminator. A programmable proportional-integral-derivative (PID) controller has been integrated in each channel enabling a various of closed-loop operations. The implemented ADCs include a 10-bit voltage-mode successive approximation register (SAR) ADC for the digitization of the neural feature outputs and/or local field potential (LFP) outputs, and an 8-bit current-mode SAR ADC for the digitization of the action potential outputs. The multi-mode stimulator can be programmed to perform monopolar or bipolar, symmetrical or asymmetrical charge balanced stimulation with a maximum current of 4 mA in an arbitrary channel configuration. The chip has been fabricated in 0.18 μ m CMOS technology, occupying a silicon area of 3.7 mm (2). The chip dissipates 56 μW/ch on average. General purpose low-power microcontroller with Bluetooth module are integrated in the system to provide wireless link and SoC configuration. Methods, circuit techniques and system topology proposed in this work can be used in a wide range of relevant neurophysiology research, especially closed-loop BMI experiments.

  5. Kinematic and neurophysiological consequences of an assisted-force-feedback brain-machine interface training: a case study

    Directory of Open Access Journals (Sweden)

    Stefano eSilvoni

    2013-11-01

    Full Text Available In a proof-of-principle prototypical demonstration we describe a new type of brain-machine interface (BMI paradigm for upper limb motor training. The proposed technique allows a fast contingent and proportionally modulated stimulation of afferent proprioceptive and motor output neural pathways using operant learning.Continuous and immediate assisted-feedback of force proportional to rolandic rhythm oscillations during actual movements was employed and illustrated with a single case experiment. One hemiplegic patient was trained for two weeks coupling somatosensory brain oscillations with force field control during a robot mediated centre-out motor task whose execution approaches movements of everyday life. The robot facilitated actual movements adding a modulated force directed to the target, thus providing a non-delayed proprioceptive feedback. Neuro-electric, kinematic and motor-behavioural measures were recorded in pre- and post-assessments without force assistance. Patient’s healthy arm was used as control since neither a placebo control was possible nor other control conditions. We observed a generalized and significant kinematic improvement in the affected arm and a spatial accuracy improvement in both arms, together with an increase and focalization of the somatosensory rhythm changes used to provide assisted-force-feedback. The interpretation of the neurophysiological and kinematic evidences reported here is strictly related to the repetition of the motor-task and the presence of the assisted-force-feedback. Results are described as systematic observations only, without firm conclusions about the effectiveness of the methodology. In this prototypical view, the design of appropriate control conditions is discussed. This study presents a novel operant-learning-based BMI-application for motor training coupling brain oscillations and force feedback during an actual movement.

  6. Design and validation of a real-time spiking-neural-network decoder for brain-machine interfaces

    Science.gov (United States)

    Dethier, Julie; Nuyujukian, Paul; Ryu, Stephen I.; Shenoy, Krishna V.; Boahen, Kwabena

    2013-06-01

    Objective. Cortically-controlled motor prostheses aim to restore functions lost to neurological disease and injury. Several proof of concept demonstrations have shown encouraging results, but barriers to clinical translation still remain. In particular, intracortical prostheses must satisfy stringent power dissipation constraints so as not to damage cortex. Approach. One possible solution is to use ultra-low power neuromorphic chips to decode neural signals for these intracortical implants. The first step is to explore in simulation the feasibility of translating decoding algorithms for brain-machine interface (BMI) applications into spiking neural networks (SNNs). Main results. Here we demonstrate the validity of the approach by implementing an existing Kalman-filter-based decoder in a simulated SNN using the Neural Engineering Framework (NEF), a general method for mapping control algorithms onto SNNs. To measure this system’s robustness and generalization, we tested it online in closed-loop BMI experiments with two rhesus monkeys. Across both monkeys, a Kalman filter implemented using a 2000-neuron SNN has comparable performance to that of a Kalman filter implemented using standard floating point techniques. Significance. These results demonstrate the tractability of SNN implementations of statistical signal processing algorithms on different monkeys and for several tasks, suggesting that a SNN decoder, implemented on a neuromorphic chip, may be a feasible computational platform for low-power fully-implanted prostheses. The validation of this closed-loop decoder system and the demonstration of its robustness and generalization hold promise for SNN implementations on an ultra-low power neuromorphic chip using the NEF.

  7. Some trends in man-machine interface design for industrial process plants

    DEFF Research Database (Denmark)

    Rasmussen, Jens

    1980-01-01

    The demands for an efficient and reliable man-machine inter-face in industrial process plant are increasing due to the steadily growing size and complexity of installations. At the same time, computerized technology offers the possibility of powerful and effective solutions to designers....... In the paper, problems related to interface design, operator training and human reliability are discussed in the light of this technological development, and an integrated approach to system design based on a consistent model or framework describing the man-machine interaction is advocated.The work presented...... is part of a Scandinavian research project sponsored by the Board of Nordic Ministers, for the study of control room design and human reliability in nuclear power plants....

  8. Implementation of Human Machine Interface Control for Filling and Capping System

    Directory of Open Access Journals (Sweden)

    Su Yadanar

    2014-12-01

    Full Text Available This research is mainly aimed to perform the bottle filling and capping process simultaneously in the pharmaceutical factory by using the PC based human machine interface system. Filling and capping is carried out by the machine that packages the medical powder into the bottle and then filled bottle is capped. So, PC based HMI system is created for operator control on the work cell. By designing the programming of Visual Basic.Net and Mikro C, the monitoring and running conditions in the packaging system are shown on the screen of the computer. The entire system is more flexible and time saving. In this project, a prototype is implemented by using the DC motors, sensing devices, limit switches, peripheral interface controller and serial port communication. This PC based HMI control system is very flexible, cost effective, space efficient and reduce complexity and is used to monitor the process.

  9. Operant conditioning of a multiple degree-of-freedom brain-machine interface in a primate model of amputation.

    Science.gov (United States)

    Balasubramanian, Karthikeyan; Southerland, Joshua; Vaidya, Mukta; Qian, Kai; Eleryan, Ahmed; Fagg, Andrew H; Sluzky, Marc; Oweiss, Karim; Hatsopoulos, Nicholas

    2013-01-01

    Operant conditioning with biofeedback has been shown to be an effective method to modify neural activity to generate goal-directed actions in a brain-machine interface. It is particularly useful when neural activity cannot be mathematically mapped to motor actions of the actual body such as in the case of amputation. Here, we implement an operant conditioning approach with visual feedback in which an amputated monkey is trained to control a multiple degree-of-freedom robot to perform a reach-to-grasp behavior. A key innovation is that each controlled dimension represents a behaviorally relevant synergy among a set of joint degrees-of-freedom. We present a number of behavioral metrics by which to assess improvements in BMI control with exposure to the system. The use of non-human primates with chronic amputation is arguably the most clinically-relevant model of human amputation that could have direct implications for developing a neural prosthesis to treat humans with missing upper limbs.

  10. A Tool for Assessing the Text Legibility of Digital Human Machine Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Roger Lew; Ronald L. Boring; Thomas A. Ulrich

    2015-08-01

    A tool intended to aid qualified professionals in the assessment of the legibility of text presented on a digital display is described. The assessment of legibility is primarily for the purposes of designing and analyzing human machine interfaces in accordance with NUREG-0700 and MIL-STD 1472G. The tool addresses shortcomings of existing guidelines by providing more accurate metrics of text legibility with greater sensitivity to design alternatives.

  11. EMG and EPP-integrated human-machine interface between the paralyzed and rehabilitation exoskeleton.

    Science.gov (United States)

    Yin, Yue H; Fan, Yuan J; Xu, Li D

    2012-07-01

    Although a lower extremity exoskeleton shows great prospect in the rehabilitation of the lower limb, it has not yet been widely applied to the clinical rehabilitation of the paralyzed. This is partly caused by insufficient information interactions between the paralyzed and existing exoskeleton that cannot meet the requirements of harmonious control. In this research, a bidirectional human-machine interface including a neurofuzzy controller and an extended physiological proprioception (EPP) feedback system is developed by imitating the biological closed-loop control system of human body. The neurofuzzy controller is built to decode human motion in advance by the fusion of the fuzzy electromyographic signals reflecting human motion intention and the precise proprioception providing joint angular feedback information. It transmits control information from human to exoskeleton, while the EPP feedback system based on haptic stimuli transmits motion information of the exoskeleton back to the human. Joint angle and torque information are transmitted in the form of air pressure to the human body. The real-time bidirectional human-machine interface can help a patient with lower limb paralysis to control the exoskeleton with his/her healthy side and simultaneously perceive motion on the paralyzed side by EPP. The interface rebuilds a closed-loop motion control system for paralyzed patients and realizes harmonious control of the human-machine system.

  12. Human facial neural activities and gesture recognition for machine-interfacing applications.

    Science.gov (United States)

    Hamedi, M; Salleh, Sh-Hussain; Tan, T S; Ismail, K; Ali, J; Dee-Uam, C; Pavaganun, C; Yupapin, P P

    2011-01-01

    The authors present a new method of recognizing different human facial gestures through their neural activities and muscle movements, which can be used in machine-interfacing applications. Human-machine interface (HMI) technology utilizes human neural activities as input controllers for the machine. Recently, much work has been done on the specific application of facial electromyography (EMG)-based HMI, which have used limited and fixed numbers of facial gestures. In this work, a multipurpose interface is suggested that can support 2-11 control commands that can be applied to various HMI systems. The significance of this work is finding the most accurate facial gestures for any application with a maximum of eleven control commands. Eleven facial gesture EMGs are recorded from ten volunteers. Detected EMGs are passed through a band-pass filter and root mean square features are extracted. Various combinations of gestures with a different number of gestures in each group are made from the existing facial gestures. Finally, all combinations are trained and classified by a Fuzzy c-means classifier. In conclusion, combinations with the highest recognition accuracy in each group are chosen. An average accuracy >90% of chosen combinations proved their ability to be used as command controllers.

  13. Body-Machine Interfaces after Spinal Cord Injury: Rehabilitation and Brain Plasticity

    Science.gov (United States)

    Seáñez-González, Ismael; Pierella, Camilla; Farshchiansadegh, Ali; Thorp, Elias B.; Wang, Xue; Parrish, Todd; Mussa-Ivaldi, Ferdinando A.

    2016-01-01

    The purpose of this study was to identify rehabilitative effects and changes in white matter microstructure in people with high-level spinal cord injury following bilateral upper-extremity motor skill training. Five subjects with high-level (C5–C6) spinal cord injury (SCI) performed five visuo-spatial motor training tasks over 12 sessions (2–3 sessions per week). Subjects controlled a two-dimensional cursor with bilateral simultaneous movements of the shoulders using a non-invasive inertial measurement unit-based body-machine interface. Subjects’ upper-body ability was evaluated before the start, in the middle and a day after the completion of training. MR imaging data were acquired before the start and within two days of the completion of training. Subjects learned to use upper-body movements that survived the injury to control the body-machine interface and improved their performance with practice. Motor training increased Manual Muscle Test scores and the isometric force of subjects’ shoulders and upper arms. Moreover, motor training increased fractional anisotropy (FA) values in the cingulum of the left hemisphere by 6.02% on average, indicating localized white matter microstructure changes induced by activity-dependent modulation of axon diameter, myelin thickness or axon number. This body-machine interface may serve as a platform to develop a new generation of assistive-rehabilitative devices that promote the use of, and that re-strengthen, the motor and sensory functions that survived the injury. PMID:27999362

  14. Human-Machine interface for off normal and emergency situations in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kee Choon [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-01-01

    Many nuclear power plants (NPPs) have reported that a high percentage of all major failures in the plants are caused by human errors. Therefore, there has been much focus on elimination of human errors, enhancement of human performance, and general improvement of human machine interface (HMI). Both the utility management and the regulators are demanding improvement in this area. The International Atomic Energy Agency (IAEA) Specialists' Meeting on 'Human-Machine Interface for Off Normal and Emergency Situations in Nuclear Power Plants' was co-organized by the Korea Atomic Energy Research Institute (KAERI) and the Korea Power Engineering Company, INC (KOPEC), and took place in Taejeon, Republic of Korea, 1999 October 26-28. Fifty eight participants, representing nine member countries reviewed recent developments and discussed directions for future efforts in the Human-Machine Interface for Off Normal and Emergency Situations in NPPs. Twenty papers were presented, covering a wide spectrum of technical and scientific subjects including recent experience and benefits from Operational Experience with HMI, Development of HMI System, Licensing Issues for HMI and Future Development and Trends. (Author)

  15. Human-machine interface for a VR-based medical imaging environment

    Science.gov (United States)

    Krapichler, Christian; Haubner, Michael; Loesch, Andreas; Lang, Manfred K.; Englmeier, Karl-Hans

    1997-05-01

    Modern 3D scanning techniques like magnetic resonance imaging (MRI) or computed tomography (CT) produce high- quality images of the human anatomy. Virtual environments open new ways to display and to analyze those tomograms. Compared with today's inspection of 2D image sequences, physicians are empowered to recognize spatial coherencies and examine pathological regions more facile, diagnosis and therapy planning can be accelerated. For that purpose a powerful human-machine interface is required, which offers a variety of tools and features to enable both exploration and manipulation of the 3D data. Man-machine communication has to be intuitive and efficacious to avoid long accustoming times and to enhance familiarity with and acceptance of the interface. Hence, interaction capabilities in virtual worlds should be comparable to those in the real work to allow utilization of our natural experiences. In this paper the integration of hand gestures and visual focus, two important aspects in modern human-computer interaction, into a medical imaging environment is shown. With the presented human- machine interface, including virtual reality displaying and interaction techniques, radiologists can be supported in their work. Further, virtual environments can even alleviate communication between specialists from different fields or in educational and training applications.

  16. Single-trial classification of NIRS signals during emotional induction tasks: towards a corporeal machine interface.

    Science.gov (United States)

    Tai, Kelly; Chau, Tom

    2009-11-09

    Corporeal machine interfaces (CMIs) are one of a few available options for restoring communication and environmental control to those with severe motor impairments. Cognitive processes detectable solely with functional imaging technologies such as near-infrared spectroscopy (NIRS) can potentially provide interfaces requiring less user training than conventional electroencephalography-based CMIs. We hypothesized that visually-cued emotional induction tasks can elicit forehead hemodynamic activity that can be harnessed for a CMI. Data were collected from ten able-bodied participants as they performed trials of positively and negatively-emotional induction tasks. A genetic algorithm was employed to select the optimal signal features, classifier, task valence (positive or negative emotional value of the stimulus), recording site, and signal analysis interval length for each participant. We compared the performance of Linear Discriminant Analysis and Support Vector Machine classifiers. The latency of the NIRS hemodynamic response was estimated as the time required for classification accuracy to stabilize. Baseline and activation sequences were classified offline with accuracies upwards of 75.0%. Feature selection identified common time-domain discriminatory features across participants. Classification performance varied with the length of the input signal, and optimal signal length was found to be feature-dependent. Statistically significant increases in classification accuracy from baseline rates were observed as early as 2.5 s from initial stimulus presentation. NIRS signals during affective states were shown to be distinguishable from baseline states with classification accuracies significantly above chance levels. Further research with NIRS for corporeal machine interfaces is warranted.

  17. A Machine Learning Approach for Hot-Spot Detection at Protein-Protein Interfaces

    Directory of Open Access Journals (Sweden)

    Rita Melo

    2016-07-01

    Full Text Available Understanding protein-protein interactions is a key challenge in biochemistry. In this work, we describe a more accurate methodology to predict Hot-Spots (HS in protein-protein interfaces from their native complex structure compared to previous published Machine Learning (ML techniques. Our model is trained on a large number of complexes and on a significantly larger number of different structural- and evolutionary sequence-based features. In particular, we added interface size, type of interaction between residues at the interface of the complex, number of different types of residues at the interface and the Position-Specific Scoring Matrix (PSSM, for a total of 79 features. We used twenty-seven algorithms from a simple linear-based function to support-vector machine models with different cost functions. The best model was achieved by the use of the conditional inference random forest (c-forest algorithm with a dataset pre-processed by the normalization of features and with up-sampling of the minor class. The method has an overall accuracy of 0.80, an F1-score of 0.73, a sensitivity of 0.76 and a specificity of 0.82 for the independent test set.

  18. A Machine Learning Approach for Hot-Spot Detection at Protein-Protein Interfaces

    Science.gov (United States)

    Melo, Rita; Fieldhouse, Robert; Melo, André; Correia, João D. G.; Cordeiro, Maria Natália D. S.; Gümüş, Zeynep H.; Costa, Joaquim; Bonvin, Alexandre M. J. J.; Moreira, Irina S.

    2016-01-01

    Understanding protein-protein interactions is a key challenge in biochemistry. In this work, we describe a more accurate methodology to predict Hot-Spots (HS) in protein-protein interfaces from their native complex structure compared to previous published Machine Learning (ML) techniques. Our model is trained on a large number of complexes and on a significantly larger number of different structural- and evolutionary sequence-based features. In particular, we added interface size, type of interaction between residues at the interface of the complex, number of different types of residues at the interface and the Position-Specific Scoring Matrix (PSSM), for a total of 79 features. We used twenty-seven algorithms from a simple linear-based function to support-vector machine models with different cost functions. The best model was achieved by the use of the conditional inference random forest (c-forest) algorithm with a dataset pre-processed by the normalization of features and with up-sampling of the minor class. The method has an overall accuracy of 0.80, an F1-score of 0.73, a sensitivity of 0.76 and a specificity of 0.82 for the independent test set. PMID:27472327

  19. Assisted navigation based on shared-control, using discrete and sparse human-machine interfaces.

    Science.gov (United States)

    Lopes, Ana C; Nunes, Urbano; Vaz, Luis; Vaz, Luís

    2010-01-01

    This paper presents a shared-control approach for Assistive Mobile Robots (AMR), which depends on the user's ability to navigate a semi-autonomous powered wheelchair, using a sparse and discrete human-machine interface (HMI). This system is primarily intended to help users with severe motor disabilities that prevent them to use standard human-machine interfaces. Scanning interfaces and Brain Computer Interfaces (BCI), characterized to provide a small set of commands issued sparsely, are possible HMIs. This shared-control approach is intended to be applied in an Assisted Navigation Training Framework (ANTF) that is used to train users' ability in steering a powered wheelchair in an appropriate manner, given the restrictions imposed by their limited motor capabilities. A shared-controller based on user characterization, is proposed. This controller is able to share the information provided by the local motion planning level with the commands issued sparsely by the user. Simulation results of the proposed shared-control method, are presented.

  20. A bidirectional brain-machine interface connecting alert rodents to a dynamical system.

    Science.gov (United States)

    Boi, Fabio; Semprini, Marianna; Mussa Ivaldi, Ferdinando A; Panzeri, Stefano; Vato, Alessandro

    2015-01-01

    We present a novel experimental framework that implements a bidirectional brain-machine interface inspired by the operation of the spinal cord in vertebrates that generates a control policy in the form of a force field. The proposed experimental set-up allows connecting the brain of freely moving rats to an external device. We tested this apparatus in a preliminary experiment with an alert rat that used the interface for acquiring a food reward. The goal of this approach to bidirectional interfaces is to explore the role of voluntary neural commands in controlling a dynamical system represented by a small cart moving on vertical plane and connected to a water/pellet dispenser.

  1. Human facial neural activities and gesture recognition for machine-interfacing applications

    Directory of Open Access Journals (Sweden)

    Hamedi M

    2011-12-01

    Full Text Available M Hamedi1, Sh-Hussain Salleh2, TS Tan2, K Ismail2, J Ali3, C Dee-Uam4, C Pavaganun4, PP Yupapin51Faculty of Biomedical and Health Science Engineering, Department of Biomedical Instrumentation and Signal Processing, University of Technology Malaysia, Skudai, 2Centre for Biomedical Engineering Transportation Research Alliance, 3Institute of Advanced Photonics Science, Nanotechnology Research Alliance, University of Technology Malaysia (UTM, Johor Bahru, Malaysia; 4College of Innovative Management, Valaya Alongkorn Rajabhat University, Pathum Thani, 5Nanoscale Science and Engineering Research Alliance (N'SERA, Advanced Research Center for Photonics, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, ThailandAbstract: The authors present a new method of recognizing different human facial gestures through their neural activities and muscle movements, which can be used in machine-interfacing applications. Human–machine interface (HMI technology utilizes human neural activities as input controllers for the machine. Recently, much work has been done on the specific application of facial electromyography (EMG-based HMI, which have used limited and fixed numbers of facial gestures. In this work, a multipurpose interface is suggested that can support 2–11 control commands that can be applied to various HMI systems. The significance of this work is finding the most accurate facial gestures for any application with a maximum of eleven control commands. Eleven facial gesture EMGs are recorded from ten volunteers. Detected EMGs are passed through a band-pass filter and root mean square features are extracted. Various combinations of gestures with a different number of gestures in each group are made from the existing facial gestures. Finally, all combinations are trained and classified by a Fuzzy c-means classifier. In conclusion, combinations with the highest recognition accuracy in each group are chosen. An average accuracy

  2. Combining a hybrid robotic system with a bain-machine interface for the rehabilitation of reaching movements: A case study with a stroke patient.

    Science.gov (United States)

    Resquin, F; Ibañez, J; Gonzalez-Vargas, J; Brunetti, F; Dimbwadyo, I; Alves, S; Carrasco, L; Torres, L; Pons, Jose Luis

    2016-08-01

    Reaching and grasping are two of the most affected functions after stroke. Hybrid rehabilitation systems combining Functional Electrical Stimulation with Robotic devices have been proposed in the literature to improve rehabilitation outcomes. In this work, we present the combined use of a hybrid robotic system with an EEG-based Brain-Machine Interface to detect the user's movement intentions to trigger the assistance. The platform has been tested in a single session with a stroke patient. The results show how the patient could successfully interact with the BMI and command the assistance of the hybrid system with low latencies. Also, the Feedback Error Learning controller implemented in this system could adjust the required FES intensity to perform the task.

  3. Integration of an intelligent systems behavior simulator and a scalable soldier-machine interface

    Science.gov (United States)

    Johnson, Tony; Manteuffel, Chris; Brewster, Benjamin; Tierney, Terry

    2007-04-01

    As the Army's Future Combat Systems (FCS) introduce emerging technologies and new force structures to the battlefield, soldiers will increasingly face new challenges in workload management. The next generation warfighter will be responsible for effectively managing robotic assets in addition to performing other missions. Studies of future battlefield operational scenarios involving the use of automation, including the specification of existing and proposed technologies, will provide significant insight into potential problem areas regarding soldier workload. The US Army Tank Automotive Research, Development, and Engineering Center (TARDEC) is currently executing an Army technology objective program to analyze and evaluate the effect of automated technologies and their associated control devices with respect to soldier workload. The Human-Robotic Interface (HRI) Intelligent Systems Behavior Simulator (ISBS) is a human performance measurement simulation system that allows modelers to develop constructive simulations of military scenarios with various deployments of interface technologies in order to evaluate operator effectiveness. One such interface is TARDEC's Scalable Soldier-Machine Interface (SMI). The scalable SMI provides a configurable machine interface application that is capable of adapting to several hardware platforms by recognizing the physical space limitations of the display device. This paper describes the integration of the ISBS and Scalable SMI applications, which will ultimately benefit both systems. The ISBS will be able to use the Scalable SMI to visualize the behaviors of virtual soldiers performing HRI tasks, such as route planning, and the scalable SMI will benefit from stimuli provided by the ISBS simulation environment. The paper describes the background of each system and details of the system integration approach.

  4. Evaluasi Human Machine Interface Menggunakan Kriteria Usability Pada Sistem E-learning Perguruan Tinggi

    Directory of Open Access Journals (Sweden)

    Akhmad Qashlim

    2016-01-01

    Full Text Available Integration HMI with usability in user interface design process is a standart of the success of a website. The design process is done through the approach to the end user to find a problem solution of human machine interface phenomena. It can also generate the maximum level of satisfaction and success of implementation of the website. The purpose of this research is to evaluate HMI using usabilitycriteria to know the application of HMI concept in e-learning and provide proposals for improvements to the HMI. Questionnaire Data were processed using a descriptive analysis and methods of CFA to know the variables that are weakest and which indicators have an important role in shaping the research variables. Evaluation results indicate the application concept of HMI in the e-learning had been done but not the maximum. Data analysis of the results obtained that the main problem lies in the accessibility criteria in the meantime indicator latent variables from forming error prevention, learnability, memorability, visibility and accessibility of influential factor loading values indicated significantly (unidimensionalitas in shaping the criteria of latent variables in first-order CFA. The end result of this research is the proposal of improvement as a HMI solution in the form of principles and technicsuser interface design. This solution is focused on the development of standards for the quality of the interface in e-learning systems and not on the digital learning content presented on the e-learning system. Keywords: Descriptive analisis; Human machine interface; Usability; Confirmatory factor analisys; Elearning

  5. PC-based Human Machine Interface Control for Packaging System in Pharmaceutical Factory

    Directory of Open Access Journals (Sweden)

    Zin Mar Tun

    2014-12-01

    Full Text Available Moving from trend to tradition, more and more manufacturers are adding human machine interface (HMI to their manufacturing process. A good HMI will increase the productivity of the operator and machine, increase uptime and assist in providing consistent product quality. In this system, HMI is developed to monitor the whole process and control the functions of process. The system is designed and constructed to control and monitor drug bottle packaging operation in the pharmaceutical factory. PC is interfaced with hardware module using serial interfacing circuit. The monitoring and running conditions are shown by motors and sensors on the screen of computer using a group of program as Visual Basic.Net and Mikro C. The robotic arm used as packager is constructed using aluminum and the gripper is made by plastic. The control circuit is consisted of PIC, DC motors, motor drivers, LDR and limit switches. It is also used own programs using VB.NET instead of off-the-shelf software. . The software is designed of the real time monitoring for packaging process and included signal sensing, supervisory control using PIC, data acquisition and visualization programs. This research is studied to develop automation manufacturing technology in Myanmar industries and implement the software package to control the operations.

  6. Mechanical tuning of molecular machines for nucleotide recognition at the air-water interface

    Directory of Open Access Journals (Sweden)

    Shinoda Satoshi

    2011-01-01

    Full Text Available Abstract Molecular machines embedded in a Langmuir monolayer at the air-water interface can be operated by application of lateral pressure. As part of the challenge associated with versatile sensing of biologically important substances, we here demonstrate discrimination of nucleotides by applying a cholesterol-armed-triazacyclononane host molecule. This molecular machine can discriminate ribonucleotides based on a twofold to tenfold difference in binding constants under optimized conditions including accompanying ions in the subphase and lateral surface pressures of its Langmuir monolayer. The concept of mechanical tuning of the host structure for optimization of molecular recognition should become a novel methodology in bio-related nanotechnology as an alternative to traditional strategies based on increasingly complex and inconvenient molecular design strategies.

  7. Single-trial classification of NIRS signals during emotional induction tasks: towards a corporeal machine interface

    Directory of Open Access Journals (Sweden)

    Tai Kelly

    2009-11-01

    Full Text Available Abstract Background Corporeal machine interfaces (CMIs are one of a few available options for restoring communication and environmental control to those with severe motor impairments. Cognitive processes detectable solely with functional imaging technologies such as near-infrared spectroscopy (NIRS can potentially provide interfaces requiring less user training than conventional electroencephalography-based CMIs. We hypothesized that visually-cued emotional induction tasks can elicit forehead hemodynamic activity that can be harnessed for a CMI. Methods Data were collected from ten able-bodied participants as they performed trials of positively and negatively-emotional induction tasks. A genetic algorithm was employed to select the optimal signal features, classifier, task valence (positive or negative emotional value of the stimulus, recording site, and signal analysis interval length for each participant. We compared the performance of Linear Discriminant Analysis and Support Vector Machine classifiers. The latency of the NIRS hemodynamic response was estimated as the time required for classification accuracy to stabilize. Results Baseline and activation sequences were classified offline with accuracies upwards of 75.0%. Feature selection identified common time-domain discriminatory features across participants. Classification performance varied with the length of the input signal, and optimal signal length was found to be feature-dependent. Statistically significant increases in classification accuracy from baseline rates were observed as early as 2.5 s from initial stimulus presentation. Conclusion NIRS signals during affective states were shown to be distinguishable from baseline states with classification accuracies significantly above chance levels. Further research with NIRS for corporeal machine interfaces is warranted.

  8. Eye-hand Hybrid Gesture Recognition System for Human Machine Interface

    Directory of Open Access Journals (Sweden)

    N. R. Raajan

    2013-04-01

    Full Text Available Gesture Recognition has become a way for computers to recognise and understand human body language. They bridge the gap between machines and human beings and make the primitive interfaces like keyboards and mice redundant. This paper suggests a hybrid gesture recognition system for computer interface and wireless robot control. The real-time eye-hand gesture recognition system can be used for computer drawing, navigating cursors and simulating mouse clicks, playing games, controlling a wireless robot with commands and more. The robot illustrated in this paper is controlled by RF module. Playing a PING-PONG game has also been demonstrated using the gestures. The Haar cascade classifiers and template matching are used to detect eye gestures and convex hull for finding the defects and counting the number of fingers in the given region.

  9. 3D FEA Computation of the CLIC Machine Detector Interface Magnets

    CERN Document Server

    Bartalesi, A

    2012-01-01

    A critical aspect of the Compact Linear Collider (CLIC) design is represented by the Accelerator/Experiment interface (called Machine Detector Interface or MDI). In the 3 TeV CLIC layout, the final focus QD0 quadrupole will be located inside the end-cap of the detector itself. This complex MDI scenario required to be simulated with a full 3D-FE analysis. This study was critical to check and control the magnetic cross-talk between the detector solenoid and the final focus magnet and therefore to optimize the design of an “antisolenoids” system needed to shield the QD0 and the e-/e+ beams from the detector magnetic field. In this paper the development and evolution of the computational FE model is presented together with the results obtained and their implication on the CLIC MDI design.

  10. Controlling a virtual forehand prosthesis using an adaptive and affective Human-Machine Interface.

    Science.gov (United States)

    Rezazadeh, I Mohammad; Firoozabadi, S M P; Golpayegani, S M R Hashemi; Hu, H

    2011-01-01

    This paper presents the design of an adaptable Human-Machine Interface (HMI) for controlling virtual forearm prosthesis. Direct physical performance measures (obtained score and completion time) for the requested tasks were calculated. Furthermore, bioelectric signals from the forehead were recorded using one pair of electrodes placed on the frontal region of the subject head to extract the mental (affective) measures while performing the tasks. By employing the proposed algorithm and above measures, the proposed HMI can adapt itself to the subject's mental states, thus improving the usability of the interface. The quantitative results from 15 subjects show that the proposed HMI achieved better physical performance measures in comparison to a conventional non-adaptive myoelectric controller (p < 0.001).

  11. Characterization of Artifacts produced by gel displacement on non-invasive Brain-Machine Interfaces during ambulation

    Directory of Open Access Journals (Sweden)

    Alvaro eCosta

    2016-02-01

    Full Text Available So far, Brain-Machine Interfaces (BMIs have been mainly used to study brain potentials during movement-free conditions. Recently, due to the emerging concern of improving rehabilitation therapies, these systems are also being used during gait experiments. Under this new condition, the evaluation of motion artifacts has become a critical point to assure the validity of the results obtained. Due to the high signal to noise ratio provided, the use of wet electrodes is a widely accepted technic to acquire electroencephalographic (EEG signals. To perform these recordings it is necessary to apply a conductive gel between the scalp and the electrodes. This work is focused on the study of gel displacements produced during ambulation and how they affect the amplitude of EEG signals. Data recorded during three ambulation conditions (gait training and one movement-free condition (BMI motor imagery task are compared to perform this study.Two phenomenons, manifested as unusual increases of the signals' amplitude, have been identified and characterized during this work. Results suggest that they are caused by abrupt changes on the conductivity between the electrode and the scalp due to gel displacement produced during ambulation and head movements. These artifacts significantly increase the Power Spectral Density (PSD of EEG recordings at all frequencies from 5 to 90 Hz, corresponding to the main bandwidth of electrocortical potentials. They should be taken into consideration before performing EEG recordings in order to asses the correct gel allocation and to avoid the use of electrodes on certain scalp areas depending on the experimental conditions.

  12. Ten-dimensional anthropomorphic arm control in a human brain-machine interface: difficulties, solutions, and limitations

    Science.gov (United States)

    Wodlinger, B.; Downey, J. E.; Tyler-Kabara, E. C.; Schwartz, A. B.; Boninger, M. L.; Collinger, J. L.

    2015-02-01

    Objective. In a previous study we demonstrated continuous translation, orientation and one-dimensional grasping control of a prosthetic limb (seven degrees of freedom) by a human subject with tetraplegia using a brain-machine interface (BMI). The current study, in the same subject, immediately followed the previous work and expanded the scope of the control signal by also extracting hand-shape commands from the two 96-channel intracortical electrode arrays implanted in the subject’s left motor cortex. Approach. Four new control signals, dictating prosthetic hand shape, replaced the one-dimensional grasping in the previous study, allowing the subject to control the prosthetic limb with ten degrees of freedom (three-dimensional (3D) translation, 3D orientation, four-dimensional hand shaping) simultaneously. Main results. Robust neural tuning to hand shaping was found, leading to ten-dimensional (10D) performance well above chance levels in all tests. Neural unit preferred directions were broadly distributed through the 10D space, with the majority of units significantly tuned to all ten dimensions, instead of being restricted to isolated domains (e.g. translation, orientation or hand shape). The addition of hand shaping emphasized object-interaction behavior. A fundamental component of BMIs is the calibration used to associate neural activity to intended movement. We found that the presence of an object during calibration enhanced successful shaping of the prosthetic hand as it closed around the object during grasping. Significance. Our results show that individual motor cortical neurons encode many parameters of movement, that object interaction is an important factor when extracting these signals, and that high-dimensional operation of prosthetic devices can be achieved with simple decoding algorithms. ClinicalTrials.gov Identifier: NCT01364480.

  13. Toward an autonomous brain machine interface: integrating sensorimotor reward modulation and reinforcement learning.

    Science.gov (United States)

    Marsh, Brandi T; Tarigoppula, Venkata S Aditya; Chen, Chen; Francis, Joseph T

    2015-05-13

    For decades, neurophysiologists have worked on elucidating the function of the cortical sensorimotor control system from the standpoint of kinematics or dynamics. Recently, computational neuroscientists have developed models that can emulate changes seen in the primary motor cortex during learning. However, these simulations rely on the existence of a reward-like signal in the primary sensorimotor cortex. Reward modulation of the primary sensorimotor cortex has yet to be characterized at the level of neural units. Here we demonstrate that single units/multiunits and local field potentials in the primary motor (M1) cortex of nonhuman primates (Macaca radiata) are modulated by reward expectation during reaching movements and that this modulation is present even while subjects passively view cursor motions that are predictive of either reward or nonreward. After establishing this reward modulation, we set out to determine whether we could correctly classify rewarding versus nonrewarding trials, on a moment-to-moment basis. This reward information could then be used in collaboration with reinforcement learning principles toward an autonomous brain-machine interface. The autonomous brain-machine interface would use M1 for both decoding movement intention and extraction of reward expectation information as evaluative feedback, which would then update the decoding algorithm as necessary. In the work presented here, we show that this, in theory, is possible.

  14. Operating Comfort Prediction Model of Human-Machine Interface Layout for Cabin Based on GEP.

    Science.gov (United States)

    Deng, Li; Wang, Guohua; Chen, Bo

    2015-01-01

    In view of the evaluation and decision-making problem of human-machine interface layout design for cabin, the operating comfort prediction model is proposed based on GEP (Gene Expression Programming), using operating comfort to evaluate layout scheme. Through joint angles to describe operating posture of upper limb, the joint angles are taken as independent variables to establish the comfort model of operating posture. Factor analysis is adopted to decrease the variable dimension; the model's input variables are reduced from 16 joint angles to 4 comfort impact factors, and the output variable is operating comfort score. The Chinese virtual human body model is built by CATIA software, which will be used to simulate and evaluate the operators' operating comfort. With 22 groups of evaluation data as training sample and validation sample, GEP algorithm is used to obtain the best fitting function between the joint angles and the operating comfort; then, operating comfort can be predicted quantitatively. The operating comfort prediction result of human-machine interface layout of driller control room shows that operating comfort prediction model based on GEP is fast and efficient, it has good prediction effect, and it can improve the design efficiency.

  15. Layout Design of Human-Machine Interaction Interface of Cabin Based on Cognitive Ergonomics and GA-ACA.

    Science.gov (United States)

    Deng, Li; Wang, Guohua; Yu, Suihuai

    2016-01-01

    In order to consider the psychological cognitive characteristics affecting operating comfort and realize the automatic layout design, cognitive ergonomics and GA-ACA (genetic algorithm and ant colony algorithm) were introduced into the layout design of human-machine interaction interface. First, from the perspective of cognitive psychology, according to the information processing process, the cognitive model of human-machine interaction interface was established. Then, the human cognitive characteristics were analyzed, and the layout principles of human-machine interaction interface were summarized as the constraints in layout design. Again, the expression form of fitness function, pheromone, and heuristic information for the layout optimization of cabin was studied. The layout design model of human-machine interaction interface was established based on GA-ACA. At last, a layout design system was developed based on this model. For validation, the human-machine interaction interface layout design of drilling rig control room was taken as an example, and the optimization result showed the feasibility and effectiveness of the proposed method.

  16. Layout Design of Human-Machine Interaction Interface of Cabin Based on Cognitive Ergonomics and GA-ACA

    Directory of Open Access Journals (Sweden)

    Li Deng

    2016-01-01

    Full Text Available In order to consider the psychological cognitive characteristics affecting operating comfort and realize the automatic layout design, cognitive ergonomics and GA-ACA (genetic algorithm and ant colony algorithm were introduced into the layout design of human-machine interaction interface. First, from the perspective of cognitive psychology, according to the information processing process, the cognitive model of human-machine interaction interface was established. Then, the human cognitive characteristics were analyzed, and the layout principles of human-machine interaction interface were summarized as the constraints in layout design. Again, the expression form of fitness function, pheromone, and heuristic information for the layout optimization of cabin was studied. The layout design model of human-machine interaction interface was established based on GA-ACA. At last, a layout design system was developed based on this model. For validation, the human-machine interaction interface layout design of drilling rig control room was taken as an example, and the optimization result showed the feasibility and effectiveness of the proposed method.

  17. Layout Design of Human-Machine Interaction Interface of Cabin Based on Cognitive Ergonomics and GA-ACA

    Science.gov (United States)

    Deng, Li; Wang, Guohua; Yu, Suihuai

    2016-01-01

    In order to consider the psychological cognitive characteristics affecting operating comfort and realize the automatic layout design, cognitive ergonomics and GA-ACA (genetic algorithm and ant colony algorithm) were introduced into the layout design of human-machine interaction interface. First, from the perspective of cognitive psychology, according to the information processing process, the cognitive model of human-machine interaction interface was established. Then, the human cognitive characteristics were analyzed, and the layout principles of human-machine interaction interface were summarized as the constraints in layout design. Again, the expression form of fitness function, pheromone, and heuristic information for the layout optimization of cabin was studied. The layout design model of human-machine interaction interface was established based on GA-ACA. At last, a layout design system was developed based on this model. For validation, the human-machine interaction interface layout design of drilling rig control room was taken as an example, and the optimization result showed the feasibility and effectiveness of the proposed method. PMID:26884745

  18. The PennBMBI: Design of a General Purpose Wireless Brain-Machine-Brain Interface System.

    Science.gov (United States)

    Liu, Xilin; Zhang, Milin; Subei, Basheer; Richardson, Andrew G; Lucas, Timothy H; Van der Spiegel, Jan

    2015-04-01

    In this paper, a general purpose wireless Brain-Machine-Brain Interface (BMBI) system is presented. The system integrates four battery-powered wireless devices for the implementation of a closed-loop sensorimotor neural interface, including a neural signal analyzer, a neural stimulator, a body-area sensor node and a graphic user interface implemented on the PC end. The neural signal analyzer features a four channel analog front-end with configurable bandpass filter, gain stage, digitization resolution, and sampling rate. The target frequency band is configurable from EEG to single unit activity. A noise floor of 4.69 μVrms is achieved over a bandwidth from 0.05 Hz to 6 kHz. Digital filtering, neural feature extraction, spike detection, sensing-stimulating modulation, and compressed sensing measurement are realized in a central processing unit integrated in the analyzer. A flash memory card is also integrated in the analyzer. A 2-channel neural stimulator with a compliance voltage up to ± 12 V is included. The stimulator is capable of delivering unipolar or bipolar, charge-balanced current pulses with programmable pulse shape, amplitude, width, pulse train frequency and latency. A multi-functional sensor node, including an accelerometer, a temperature sensor, a flexiforce sensor and a general sensor extension port has been designed. A computer interface is designed to monitor, control and configure all aforementioned devices via a wireless link, according to a custom designed communication protocol. Wireless closed-loop operation between the sensory devices, neural stimulator, and neural signal analyzer can be configured. The proposed system was designed to link two sites in the brain, bridging the brain and external hardware, as well as creating new sensory and motor pathways for clinical practice. Bench test and in vivo experiments are performed to verify the functions and performances of the system.

  19. A Cognitive Systems Engineering Approach to Developing Human Machine Interface Requirements for New Technologies

    Science.gov (United States)

    Fern, Lisa Carolynn

    This dissertation examines the challenges inherent in designing and regulating to support human-automation interaction for new technologies that will be deployed into complex systems. A key question for new technologies with increasingly capable automation, is how work will be accomplished by human and machine agents. This question has traditionally been framed as how functions should be allocated between humans and machines. Such framing misses the coordination and synchronization that is needed for the different human and machine roles in the system to accomplish their goals. Coordination and synchronization demands are driven by the underlying human-automation architecture of the new technology, which are typically not specified explicitly by designers. The human machine interface (HMI), which is intended to facilitate human-machine interaction and cooperation, typically is defined explicitly and therefore serves as a proxy for human-automation cooperation requirements with respect to technical standards for technologies. Unfortunately, mismatches between the HMI and the coordination and synchronization demands of the underlying human-automation architecture can lead to system breakdowns. A methodology is needed that both designers and regulators can utilize to evaluate the predicted performance of a new technology given potential human-automation architectures. Three experiments were conducted to inform the minimum HMI requirements for a detect and avoid (DAA) system for unmanned aircraft systems (UAS). The results of the experiments provided empirical input to specific minimum operational performance standards that UAS manufacturers will have to meet in order to operate UAS in the National Airspace System (NAS). These studies represent a success story for how to objectively and systematically evaluate prototype technologies as part of the process for developing regulatory requirements. They also provide an opportunity to reflect on the lessons learned in order

  20. Human-machine interface based on muscular and brain signals applied to a robotic wheelchair

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, A; Silva, R L; Celeste, W C; Filho, T F Bastos; Filho, M Sarcinelli [Electrical Engineering Department, Federal University of Espirito Santo (UFES), Av. Fernando Ferrari, 514, Vitoria, 29075-910 (Brazil)

    2007-11-15

    This paper presents a Human-Machine Interface (HMI) based on the signals generated by eye blinks or brain activity. The system structure and the signal acquisition and processing are shown. The signals used in this work are either the signal associated to the muscular movement corresponding to an eye blink or the brain signal corresponding to visual information processing. The variance is the feature extracted from such signals in order to detect the intention of the user. The classification is performed by a variance threshold which is experimentally determined for each user during the training stage. The command options, which are going to be sent to the commanded device, are presented to the user in the screen of a PDA (Personal Digital Assistant). In the experiments here reported, a robotic wheelchair is used as the device being commanded.

  1. Asset Analysis Method for the Cyber Security of Man Machine Interface System

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sung Kon; Kim, Hun Hee; Shin, Yeong Cheol [Korea Hydro and Nuclear Power, Daejeon (Korea, Republic of)

    2010-10-15

    As digital MMIS (Man Machine Interface System) is applied in Nuclear Power Plant (NPP), cyber security is becoming more and more important. Regulatory guide (KINS/GT-N27) requires that implementation plan for cyber security be prepared in NPP. Regulatory guide recommends the following 4 processes: 1) an asset analysis of MMIS, 2) a vulnerability analysis of MMIS, 3) establishment of countermeasures, and 4) establishment of operational guideline for cyber security. Conventional method for the asset analysis is mainly performed with a table form for each asset. Conventional method requires a lot of efforts due to the duplication of information. This paper presents an asset analysis method using object oriented approach for the NPP

  2. Advanced design technique of human-machine interfaces for PLC control of complex systems

    Directory of Open Access Journals (Sweden)

    Árpád-István Sütő

    2008-05-01

    Full Text Available Touchscreen operator panels proved to be a convenient succesor for clasical operator panels for implementing human-machine interfaces (HMIs in programmable logic controllers (PLC systems. The paper introduces a new technique for HMIs design in such systems, based on the idea of touchscreens replication. This redundancy allow actions which are not possible within the menus and sub-menus of a single touchscreen. Its strenght is revealed especially in complex systems, where operators can easily be overwhelmed by the huge amount of process information. The technique was applied on a mill tube rolling installation. The results also proved an increase of system security and zero downtime for HMI maintenance activities.

  3. Man-machine interface in a submarine command and weapon control system: features and design experience

    Directory of Open Access Journals (Sweden)

    Johan H. Aas

    1989-01-01

    Full Text Available Important man-machine interface (MMI issues concerning a submarine command and weapon control system (CWCS such as crew organization, automation level and decision support are discussed in this paper. Generic submarine CWCS functions and operating conditions are outlined. Detailed, dynamic and real-time prototypes were used to support the MMI design. The prototypes are described and experience with detailed prototyping is discussed. Some of the main interaction principles are summarized and a restricted example of the resulting design is given. Our design experience and current work have been used to outline future perspectives of MMI design in naval CWCSs. The need for both formal and experimental approaches is emphasized.

  4. Neural Operant Conditioning as a Core Mechanism of Brain-Machine Interface Control

    Directory of Open Access Journals (Sweden)

    Yoshio Sakurai

    2016-08-01

    Full Text Available The process of changing the neuronal activity of the brain to acquire rewards in a broad sense is essential for utilizing brain-machine interfaces (BMIs, which is essentially operant conditioning of neuronal activity. Currently, this is also known as neural biofeedback, and it is often referred to as neurofeedback when human brain activity is targeted. In this review, we first illustrate biofeedback and operant conditioning, which are methodological background elements in neural operant conditioning. Then, we introduce research models of neural operant conditioning in animal experiments and demonstrate that it is possible to change the firing frequency and synchronous firing of local neuronal populations in a short time period. We also debate the possibility of the application of neural operant conditioning and its contribution to BMIs.

  5. On Combining Language Models to Improve a Text-based Human-machine Interface

    Directory of Open Access Journals (Sweden)

    Daniel Cruz Cavalieri

    2015-12-01

    Full Text Available This paper concentrates on improving a text-based human-machine interface integrated into a robotic wheelchair. Since word prediction is one of the most common methods used in such systems, the goal of this work is to improve the results using this specific module. For this, an exponential interpolation language model (LM is considered. First, a model based on partial differential equations is proposed; with the appropriate initial conditions, we are able to design a interpolation language model that merges a word-based n-gram language model and a part-of-speech-based language model. Improvements in keystroke saving (KSS and perplexity (PP over the word-based ngram language model and two other traditional interpolation models are obtained, considering two different task domains and three different languages. The proposed interpolation model also provides additional improvements over the hit rate (HR parameter.

  6. Steering a Tractor by Means of an EMG-Based Human-Machine Interface

    Science.gov (United States)

    Gomez-Gil, Jaime; San-Jose-Gonzalez, Israel; Nicolas-Alonso, Luis Fernando; Alonso-Garcia, Sergio

    2011-01-01

    An electromiographic (EMG)-based human-machine interface (HMI) is a communication pathway between a human and a machine that operates by means of the acquisition and processing of EMG signals. This article explores the use of EMG-based HMIs in the steering of farm tractors. An EPOC, a low-cost human-computer interface (HCI) from the Emotiv Company, was employed. This device, by means of 14 saline sensors, measures and processes EMG and electroencephalographic (EEG) signals from the scalp of the driver. In our tests, the HMI took into account only the detection of four trained muscular events on the driver’s scalp: eyes looking to the right and jaw opened, eyes looking to the right and jaw closed, eyes looking to the left and jaw opened, and eyes looking to the left and jaw closed. The EMG-based HMI guidance was compared with manual guidance and with autonomous GPS guidance. A driver tested these three guidance systems along three different trajectories: a straight line, a step, and a circumference. The accuracy of the EMG-based HMI guidance was lower than the accuracy obtained by manual guidance, which was lower in turn than the accuracy obtained by the autonomous GPS guidance; the computed standard deviations of error to the desired trajectory in the straight line were 16 cm, 9 cm, and 4 cm, respectively. Since the standard deviation between the manual guidance and the EMG-based HMI guidance differed only 7 cm, and this difference is not relevant in agricultural steering, it can be concluded that it is possible to steer a tractor by an EMG-based HMI with almost the same accuracy as with manual steering. PMID:22164006

  7. New generation of human machine interfaces for controlling UAV through depth-based gesture recognition

    Science.gov (United States)

    Mantecón, Tomás.; del Blanco, Carlos Roberto; Jaureguizar, Fernando; García, Narciso

    2014-06-01

    New forms of natural interactions between human operators and UAVs (Unmanned Aerial Vehicle) are demanded by the military industry to achieve a better balance of the UAV control and the burden of the human operator. In this work, a human machine interface (HMI) based on a novel gesture recognition system using depth imagery is proposed for the control of UAVs. Hand gesture recognition based on depth imagery is a promising approach for HMIs because it is more intuitive, natural, and non-intrusive than other alternatives using complex controllers. The proposed system is based on a Support Vector Machine (SVM) classifier that uses spatio-temporal depth descriptors as input features. The designed descriptor is based on a variation of the Local Binary Pattern (LBP) technique to efficiently work with depth video sequences. Other major consideration is the especial hand sign language used for the UAV control. A tradeoff between the use of natural hand signs and the minimization of the inter-sign interference has been established. Promising results have been achieved in a depth based database of hand gestures especially developed for the validation of the proposed system.

  8. sw-SVM: sensor weighting support vector machines for EEG-based brain-computer interfaces.

    Science.gov (United States)

    Jrad, N; Congedo, M; Phlypo, R; Rousseau, S; Flamary, R; Yger, F; Rakotomamonjy, A

    2011-10-01

    In many machine learning applications, like brain-computer interfaces (BCI), high-dimensional sensor array data are available. Sensor measurements are often highly correlated and signal-to-noise ratio is not homogeneously spread across sensors. Thus, collected data are highly variable and discrimination tasks are challenging. In this work, we focus on sensor weighting as an efficient tool to improve the classification procedure. We present an approach integrating sensor weighting in the classification framework. Sensor weights are considered as hyper-parameters to be learned by a support vector machine (SVM). The resulting sensor weighting SVM (sw-SVM) is designed to satisfy a margin criterion, that is, the generalization error. Experimental studies on two data sets are presented, a P300 data set and an error-related potential (ErrP) data set. For the P300 data set (BCI competition III), for which a large number of trials is available, the sw-SVM proves to perform equivalently with respect to the ensemble SVM strategy that won the competition. For the ErrP data set, for which a small number of trials are available, the sw-SVM shows superior performances as compared to three state-of-the art approaches. Results suggest that the sw-SVM promises to be useful in event-related potentials classification, even with a small number of training trials.

  9. Dust Emission Induced By Friction Modifications At Tool Chip Interface In Dry Machining In MMCp

    Science.gov (United States)

    Kremer, Arnaud; El Mansori, Mohamed

    2011-01-01

    This paper investigates the relationship between dust emission and tribological conditions at the tool-chip interface when machining Metal Matrix composite reinforced with particles (MMCp) in dry mode. Machining generates aerosols that can easily be inhaled by workers. Aerosols may be composed of oil mist, tool material or alloying elements of workpiece material. Bar turning tests were conducted on a 2009 aluminum alloy reinforced with different level of Silicon Carbide particles (15, 25 and 35% of SiCp). Variety of PCD tools and nanostructured diamond coatings were used to analyze their performances on air pollution. A spectrometer was used to detect airborne aerosol particles in the size range between 0.3μm to 20 μm and to sort them in 15 size channels in real time. It was used to compare the effects of test parameters on dust emission. Observations of tool face and chip morphology reveal the importance of friction phenomena. It was demonstrated that level of friction modifies chip curvature and dust emission. The increase of level of reinforcement increase the chip segmentation and decrease the contact length and friction area. A "running in" phenomenon with important dust emission appeared with PCD tool due to the tool rake face flatness. In addition dust generation is more sensitive to edge integrity than power consumption.

  10. HTRDP evaluations on Chinese information processing and intelligent human-machine interface

    Institute of Scientific and Technical Information of China (English)

    LIU Qun; LIN Shouxun; QIAN Yueliang; WANG Xiangdong; LIU Hong; SUN Le; TANG Sheng; XIONG Deyi; HOU Hongxu; LV Yuanhua; LI Wenbo

    2007-01-01

    From 1991 to 2005,China's High Technology Research and Development Program (HTRDP)sponsored a series of technology evaluations on Chinese information processing and intelligent human-machine interface,which is called HTRDP evaluations,or "863" evaluations in brief.This paper introduces the HTRDP evaluations in detail.The general information of the HTRDP evaluation is presented first,including the history,the concerned technology categories,the organizer,the participants,and the procedure,etc.Then the evaluations on each technology are described in detail respectively,covering Chinese word segmentation,machine translation,acoustic speech recognition,text to speech,text summarization,text categorization,information retrieval,character recognition,and face detection and recognition.For the evaluations on each technology categories,the history,the evaluation tasks,the data,the evaluation method,etc.,are given.The last section concludes the paper and discusses possible future work.

  11. On the applicability of brain reading for predictive human-machine interfaces in robotics.

    Directory of Open Access Journals (Sweden)

    Elsa Andrea Kirchner

    Full Text Available The ability of today's robots to autonomously support humans in their daily activities is still limited. To improve this, predictive human-machine interfaces (HMIs can be applied to better support future interaction between human and machine. To infer upcoming context-based behavior relevant brain states of the human have to be detected. This is achieved by brain reading (BR, a passive approach for single trial EEG analysis that makes use of supervised machine learning (ML methods. In this work we propose that BR is able to detect concrete states of the interacting human. To support this, we show that BR detects patterns in the electroencephalogram (EEG that can be related to event-related activity in the EEG like the P300, which are indicators of concrete states or brain processes like target recognition processes. Further, we improve the robustness and applicability of BR in application-oriented scenarios by identifying and combining most relevant training data for single trial classification and by applying classifier transfer. We show that training and testing, i.e., application of the classifier, can be carried out on different classes, if the samples of both classes miss a relevant pattern. Classifier transfer is important for the usage of BR in application scenarios, where only small amounts of training examples are available. Finally, we demonstrate a dual BR application in an experimental setup that requires similar behavior as performed during the teleoperation of a robotic arm. Here, target recognition processes and movement preparation processes are detected simultaneously. In summary, our findings contribute to the development of robust and stable predictive HMIs that enable the simultaneous support of different interaction behaviors.

  12. Sensing pressure distribution on a lower-limb exoskeleton physical human-machine interface.

    Science.gov (United States)

    De Rossi, Stefano Marco Maria; Vitiello, Nicola; Lenzi, Tommaso; Ronsse, Renaud; Koopman, Bram; Persichetti, Alessandro; Vecchi, Fabrizio; Ijspeert, Auke Jan; van der Kooij, Herman; Carrozza, Maria Chiara

    2011-01-01

    A sensory apparatus to monitor pressure distribution on the physical human-robot interface of lower-limb exoskeletons is presented. We propose a distributed measure of the interaction pressure over the whole contact area between the user and the machine as an alternative measurement method of human-robot interaction. To obtain this measure, an array of newly-developed soft silicone pressure sensors is inserted between the limb and the mechanical interface that connects the robot to the user, in direct contact with the wearer's skin. Compared to state-of-the-art measures, the advantage of this approach is that it allows for a distributed measure of the interaction pressure, which could be useful for the assessment of safety and comfort of human-robot interaction. This paper presents the new sensor and its characterization, and the development of an interaction measurement apparatus, which is applied to a lower-limb rehabilitation robot. The system is calibrated, and an example its use during a prototypical gait training task is presented.

  13. Sensing Pressure Distribution on a Lower-Limb Exoskeleton Physical Human-Machine Interface

    Directory of Open Access Journals (Sweden)

    Maria Chiara Carrozza

    2010-12-01

    Full Text Available A sensory apparatus to monitor pressure distribution on the physical human-robot interface of lower-limb exoskeletons is presented. We propose a distributed measure of the interaction pressure over the whole contact area between the user and the machine as an alternative measurement method of human-robot interaction. To obtain this measure, an array of newly-developed soft silicone pressure sensors is inserted between the limb and the mechanical interface that connects the robot to the user, in direct contact with the wearer’s skin. Compared to state-of-the-art measures, the advantage of this approach is that it allows for a distributed measure of the interaction pressure, which could be useful for the assessment of safety and comfort of human-robot interaction. This paper presents the new sensor and its characterization, and the development of an interaction measurement apparatus, which is applied to a lower-limb rehabilitation robot. The system is calibrated, and an example its use during a prototypical gait training task is presented.

  14. Human-machine interfaces based on EMG and EEG applied to robotic systems

    Directory of Open Access Journals (Sweden)

    Sarcinelli-Filho Mario

    2008-03-01

    Full Text Available Abstract Background Two different Human-Machine Interfaces (HMIs were developed, both based on electro-biological signals. One is based on the EMG signal and the other is based on the EEG signal. Two major features of such interfaces are their relatively simple data acquisition and processing systems, which need just a few hardware and software resources, so that they are, computationally and financially speaking, low cost solutions. Both interfaces were applied to robotic systems, and their performances are analyzed here. The EMG-based HMI was tested in a mobile robot, while the EEG-based HMI was tested in a mobile robot and a robotic manipulator as well. Results Experiments using the EMG-based HMI were carried out by eight individuals, who were asked to accomplish ten eye blinks with each eye, in order to test the eye blink detection algorithm. An average rightness rate of about 95% reached by individuals with the ability to blink both eyes allowed to conclude that the system could be used to command devices. Experiments with EEG consisted of inviting 25 people (some of them had suffered cases of meningitis and epilepsy to test the system. All of them managed to deal with the HMI in only one training session. Most of them learnt how to use such HMI in less than 15 minutes. The minimum and maximum training times observed were 3 and 50 minutes, respectively. Conclusion Such works are the initial parts of a system to help people with neuromotor diseases, including those with severe dysfunctions. The next steps are to convert a commercial wheelchair in an autonomous mobile vehicle; to implement the HMI onboard the autonomous wheelchair thus obtained to assist people with motor diseases, and to explore the potentiality of EEG signals, making the EEG-based HMI more robust and faster, aiming at using it to help individuals with severe motor dysfunctions.

  15. A bidirectional brain-machine interface algorithm that approximates arbitrary force-fields.

    Directory of Open Access Journals (Sweden)

    Alessandro Vato

    Full Text Available We examine bidirectional brain-machine interfaces that control external devices in a closed loop by decoding motor cortical activity to command the device and by encoding the state of the device by delivering electrical stimuli to sensory areas. Although it is possible to design this artificial sensory-motor interaction while maintaining two independent channels of communication, here we propose a rule that closes the loop between flows of sensory and motor information in a way that approximates a desired dynamical policy expressed as a field of forces acting upon the controlled external device. We previously developed a first implementation of this approach based on linear decoding of neural activity recorded from the motor cortex into a set of forces (a force field applied to a point mass, and on encoding of position of the point mass into patterns of electrical stimuli delivered to somatosensory areas. However, this previous algorithm had the limitation that it only worked in situations when the position-to-force map to be implemented is invertible. Here we overcome this limitation by developing a new non-linear form of the bidirectional interface that can approximate a virtually unlimited family of continuous fields. The new algorithm bases both the encoding of position information and the decoding of motor cortical activity on an explicit map between spike trains and the state space of the device computed with Multi-Dimensional-Scaling. We present a detailed computational analysis of the performance of the interface and a validation of its robustness by using synthetic neural responses in a simulated sensory-motor loop.

  16. A Review of fMRI as a Tool for Enhancing Eeg-Based Brain-Machine Interfaces

    Directory of Open Access Journals (Sweden)

    Luis J. Barrios

    2012-01-01

    Full Text Available Human-robot interaction has been going stronger and stronger, up to find a notorious level on brain-machines interfaces. This assistive technology offers a great hope for patients suffering severe neuromuscular disorders. Starting from the current limitations hindering its extensive application outside the research laboratories, this paper reviews findings and prospects on functional magnetic resonance imaging showing how fMRI can help to overcome those limitations, while playing a key role on improving the development of brain-machine interfaces based on electroencephalography. The different types of derived benefits for this interfaces, as well as the different kinds of impact on their components, are presented under a field classification that reveals the distinctive roles that fMRI can play on the present context. The review concludes that fMRI provides complementary knowledge of immediate application, and that a greater profit could be obtained from the own EEG signal by integrating both neuroimaging modalities.

  17. Evaluation of Formal IDEs for Human-Machine Interface Design and Analysis: The Case of CIRCUS and PVSio-web

    Directory of Open Access Journals (Sweden)

    Camille Fayollas

    2017-01-01

    Full Text Available Critical human-machine interfaces are present in many systems including avionics systems and medical devices. Use error is a concern in these systems both in terms of hardware panels and input devices, and the software that drives the interfaces. Guaranteeing safe usability, in terms of buttons, knobs and displays is now a key element in the overall safety of the system. New integrated development environments (IDEs based on formal methods technologies have been developed by the research community to support the design and analysis of high-confidence human-machine interfaces. To date, little work has focused on the comparison of these particular types of formal IDEs. This paper compares and evaluates two state-of-the-art toolkits: CIRCUS, a model-based development and analysis tool based on Petri net extensions, and PVSio-web, a prototyping toolkit based on the PVS theorem proving system.

  18. An Improved Unscented Kalman Filter Based Decoder for Cortical Brain-Machine Interfaces

    Science.gov (United States)

    Li, Simin; Li, Jie; Li, Zheng

    2016-01-01

    Brain-machine interfaces (BMIs) seek to connect brains with machines or computers directly, for application in areas such as prosthesis control. For this application, the accuracy of the decoding of movement intentions is crucial. We aim to improve accuracy by designing a better encoding model of primary motor cortical activity during hand movements and combining this with decoder engineering refinements, resulting in a new unscented Kalman filter based decoder, UKF2, which improves upon our previous unscented Kalman filter decoder, UKF1. The new encoding model includes novel acceleration magnitude, position-velocity interaction, and target-cursor-distance features (the decoder does not require target position as input, it is decoded). We add a novel probabilistic velocity threshold to better determine the user's intent to move. We combine these improvements with several other refinements suggested by others in the field. Data from two Rhesus monkeys indicate that the UKF2 generates offline reconstructions of hand movements (mean CC 0.851) significantly more accurately than the UKF1 (0.833) and the popular position-velocity Kalman filter (0.812). The encoding model of the UKF2 could predict the instantaneous firing rate of neurons (mean CC 0.210), given kinematic variables and past spiking, better than the encoding models of these two decoders (UKF1: 0.138, p-v Kalman: 0.098). In closed-loop experiments where each monkey controlled a computer cursor with each decoder in turn, the UKF2 facilitated faster task completion (mean 1.56 s vs. 2.05 s) and higher Fitts's Law bit rate (mean 0.738 bit/s vs. 0.584 bit/s) than the UKF1. These results suggest that the modeling and decoder engineering refinements of the UKF2 improve decoding performance. We believe they can be used to enhance other decoders as well. PMID:28066170

  19. An Improved Unscented Kalman Filter Based Decoder for Cortical Brain-Machine Interfaces.

    Science.gov (United States)

    Li, Simin; Li, Jie; Li, Zheng

    2016-01-01

    Brain-machine interfaces (BMIs) seek to connect brains with machines or computers directly, for application in areas such as prosthesis control. For this application, the accuracy of the decoding of movement intentions is crucial. We aim to improve accuracy by designing a better encoding model of primary motor cortical activity during hand movements and combining this with decoder engineering refinements, resulting in a new unscented Kalman filter based decoder, UKF2, which improves upon our previous unscented Kalman filter decoder, UKF1. The new encoding model includes novel acceleration magnitude, position-velocity interaction, and target-cursor-distance features (the decoder does not require target position as input, it is decoded). We add a novel probabilistic velocity threshold to better determine the user's intent to move. We combine these improvements with several other refinements suggested by others in the field. Data from two Rhesus monkeys indicate that the UKF2 generates offline reconstructions of hand movements (mean CC 0.851) significantly more accurately than the UKF1 (0.833) and the popular position-velocity Kalman filter (0.812). The encoding model of the UKF2 could predict the instantaneous firing rate of neurons (mean CC 0.210), given kinematic variables and past spiking, better than the encoding models of these two decoders (UKF1: 0.138, p-v Kalman: 0.098). In closed-loop experiments where each monkey controlled a computer cursor with each decoder in turn, the UKF2 facilitated faster task completion (mean 1.56 s vs. 2.05 s) and higher Fitts's Law bit rate (mean 0.738 bit/s vs. 0.584 bit/s) than the UKF1. These results suggest that the modeling and decoder engineering refinements of the UKF2 improve decoding performance. We believe they can be used to enhance other decoders as well.

  20. An information theory based approach for quantitative evaluation of man-machine interface complexity

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hyun Gook

    1999-02-15

    In complex and high-risk work conditions, especially such as in nuclear power plants, human understanding of the plant is highly cognitive and thus largely dependent on the effectiveness of the man-machine interface system. In order to provide more effective and reliable operating conditions for future nuclear power plants, developing more credible and easy to use evaluation methods will afford great help in designing interface systems in a more efficient manner. In this study, in order to analyze the human-machine interactions, I propose the Human-processor Communication(HPC) model which is based on the information flow concept. It identifies the information flow around a human-processor. Information flow has two aspects: appearance and content. Based on the HPC model, I propose two kinds of measures for evaluating a user interface from the viewpoint of these two aspects of information flow. They measure the communicative complexity of each aspect. In this study, for the evaluation of the aspect of appearance, I propose three complexity measures: Operation Complexity, Transition Complexity, and Screen Complexity. Each one of these measures has its own physical meaning. Two experiments carried out in this work support the utility of these measures. The result of the quiz game experiment shows that as the complexity of task context increases, the usage of the interface system becomes more complex. The experimental results of the three example systems(digital view, LDP style view and hierarchy view) show the utility of the proposed complexity measures. In this study, for the evaluation of the aspect of content, I propose the degree of informational coincidence, R (K, P) as a measure for the usefulness of an alarm-processing system. It is designed to perform user-oriented evaluation based on the informational entropy concept. It will be especially useful inearly design phase because designers can estimate the usefulness of an alarm system by short calculations instead

  1. Instrumentation, Controls, and Human-Machine Interface Technology Development Roadmap in Support of Grid Appropriate Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David Eugene [ORNL; Upadhyaya, Belle R. [University of Tennessee, Knoxville (UTK); Kisner, Roger A [ORNL; O' Hara, John [Brookhaven National Laboratory (BNL); Quinn, Edward L. [Longenecker & Associates; Miller, Don W. [Ohio State University

    2009-01-01

    Grid Appropriate Reactors (GARs) are a component of the U.S. Department of Energy s (DOE s) Global Nuclear Energy Partnership (GNEP) program. GARs have smaller output power (<~600 MWe), than those intended for deployment on large, tightly coupled grids. This smaller size is important in avoiding grid destabilization, which can result from having a large fraction of a grid s electrical generation supplied by a single source. GARs are envisioned to be deployed worldwide often in locations without extensive nuclear power experience. DOE recently sponsored the creation of an Instrumentation, Controls, and Human-Machine Interface (ICHMI) technology development roadmap emphasizing the specific characteristics of GARs [1]. This roadmapping effort builds upon and focuses the recently developed, more general nuclear energy ICHMI technology development roadmap [2]. The combination of the smaller plant size, smaller grids, and deployment in locations without extensive prior nuclear power experience presents particular infrastructure, regulation, design, operational, and safeguards challenges for effective GAR deployment. ICHMI technologies are central to efficient GAR operation and as such are a dimension of each of these challenges. Further, while the particular ICHMI technologies to be developed would be useful at larger power plants, they are not high-priority development items at the larger plants. For example, grid transient resilience would be a useful feature for any reactor/grid combination and indeed would have limited some recent blackout events. However, most large reactors have limited passive cooling features. Large plants with active safety response features will likely preserve trip preferential grid transient response. This contrasts sharply with GARs featuring passive shutdown cooling, which can safely support grid stability during large grid transients. ICHMI technologies ranging from alternative control algorithms to simplified human-interface system

  2. Personalized keystroke dynamics for self-powered human--machine interfacing.

    Science.gov (United States)

    Chen, Jun; Zhu, Guang; Yang, Jin; Jing, Qingshen; Bai, Peng; Yang, Weiqing; Qi, Xuewei; Su, Yuanjie; Wang, Zhong Lin

    2015-01-27

    The computer keyboard is one of the most common, reliable, accessible, and effective tools used for human--machine interfacing and information exchange. Although keyboards have been used for hundreds of years for advancing human civilization, studying human behavior by keystroke dynamics using smart keyboards remains a great challenge. Here we report a self-powered, non-mechanical-punching keyboard enabled by contact electrification between human fingers and keys, which converts mechanical stimuli applied to the keyboard into local electronic signals without applying an external power. The intelligent keyboard (IKB) can not only sensitively trigger a wireless alarm system once gentle finger tapping occurs but also trace and record typed content by detecting both the dynamic time intervals between and during the inputting of letters and the force used for each typing action. Such features hold promise for its use as a smart security system that can realize detection, alert, recording, and identification. Moreover, the IKB is able to identify personal characteristics from different individuals, assisted by the behavioral biometric of keystroke dynamics. Furthermore, the IKB can effectively harness typing motions for electricity to charge commercial electronics at arbitrary typing speeds greater than 100 characters per min. Given the above features, the IKB can be potentially applied not only to self-powered electronics but also to artificial intelligence, cyber security, and computer or network access control.

  3. Enhanced Flexible Tubular Microelectrode with Conducting Polymer for Multi-Functional Implantable Tissue-Machine Interface

    Science.gov (United States)

    Tian, Hong-Chang; Liu, Jing-Quan; Kang, Xiao-Yang; Tang, Long-Jun; Wang, Ming-Hao; Ji, Bo-Wen; Yang, Bin; Wang, Xiao-Lin; Chen, Xiang; Yang, Chun-Sheng

    2016-05-01

    Implantable biomedical microdevices enable the restoration of body function and improvement of health condition. As the interface between artificial machines and natural tissue, various kinds of microelectrodes with high density and tiny size were developed to undertake precise and complex medical tasks through electrical stimulation and electrophysiological recording. However, if only the electrical interaction existed between electrodes and muscle or nerve tissue without nutrition factor delivery, it would eventually lead to a significant symptom of denervation-induced skeletal muscle atrophy. In this paper, we developed a novel flexible tubular microelectrode integrated with fluidic drug delivery channel for dynamic tissue implant. First, the whole microelectrode was made of biocompatible polymers, which could avoid the drawbacks of the stiff microelectrodes that are easy to be broken and damage tissue. Moreover, the microelectrode sites were circumferentially distributed on the surface of polymer microtube in three dimensions, which would be beneficial to the spatial selectivity. Finally, the in vivo results confirmed that our implantable tubular microelectrodes were suitable for dynamic electrophysiological recording and simultaneous fluidic drug delivery, and the electrode performance was further enhanced by the conducting polymer modification.

  4. Epidermal mechano-acoustic sensing electronics for cardiovascular diagnostics and human-machine interfaces

    Science.gov (United States)

    Liu, Yuhao; Norton, James J. S.; Qazi, Raza; Zou, Zhanan; Ammann, Kaitlyn R.; Liu, Hank; Yan, Lingqing; Tran, Phat L.; Jang, Kyung-In; Lee, Jung Woo; Zhang, Douglas; Kilian, Kristopher A.; Jung, Sung Hee; Bretl, Timothy; Xiao, Jianliang; Slepian, Marvin J.; Huang, Yonggang; Jeong, Jae-Woong; Rogers, John A.

    2016-01-01

    Physiological mechano-acoustic signals, often with frequencies and intensities that are beyond those associated with the audible range, provide information of great clinical utility. Stethoscopes and digital accelerometers in conventional packages can capture some relevant data, but neither is suitable for use in a continuous, wearable mode, and both have shortcomings associated with mechanical transduction of signals through the skin. We report a soft, conformal class of device configured specifically for mechano-acoustic recording from the skin, capable of being used on nearly any part of the body, in forms that maximize detectable signals and allow for multimodal operation, such as electrophysiological recording. Experimental and computational studies highlight the key roles of low effective modulus and low areal mass density for effective operation in this type of measurement mode on the skin. Demonstrations involving seismocardiography and heart murmur detection in a series of cardiac patients illustrate utility in advanced clinical diagnostics. Monitoring of pump thrombosis in ventricular assist devices provides an example in characterization of mechanical implants. Speech recognition and human-machine interfaces represent additional demonstrated applications. These and other possibilities suggest broad-ranging uses for soft, skin-integrated digital technologies that can capture human body acoustics. PMID:28138529

  5. Learning to control a brain-machine interface for reaching and grasping by primates.

    Directory of Open Access Journals (Sweden)

    Jose M Carmena

    2003-11-01

    Full Text Available Reaching and grasping in primates depend on the coordination of neural activity in large frontoparietal ensembles. Here we demonstrate that primates can learn to reach and grasp virtual objects by controlling a robot arm through a closed-loop brain-machine interface (BMIc that uses multiple mathematical models to extract several motor parameters (i.e., hand position, velocity, gripping force, and the EMGs of multiple arm muscles from the electrical activity of frontoparietal neuronal ensembles. As single neurons typically contribute to the encoding of several motor parameters, we observed that high BMIc accuracy required recording from large neuronal ensembles. Continuous BMIc operation by monkeys led to significant improvements in both model predictions and behavioral performance. Using visual feedback, monkeys succeeded in producing robot reach-and-grasp movements even when their arms did not move. Learning to operate the BMIc was paralleled by functional reorganization in multiple cortical areas, suggesting that the dynamic properties of the BMIc were incorporated into motor and sensory cortical representations.

  6. Training of a leaning agent for navigation--inspired by brain-machine interface.

    Science.gov (United States)

    Kitamura, Tadashi; Nishino, Daisuke

    2006-04-01

    The design clue for the remote control of a mobile robot is inspired by the Talwar's brain-machine interface technology for remotely training and controlling rats. Our biologically inspired autonomous robot control consciousness-based architecture (CBA) is used for the remote control of a robot as a substitute for a rat. CBA is a developmental hierarchy model of the relationship between consciousness and behavior, including a training algorithm. This training algorithm computes a shortcut path to a goal using a cognitive map created based on behavior obstructions during a single successful trial. However, failures in reaching the goal due to errors of the vision and dead reckoning sensors require human intervention to improve autonomous navigation. A human operator remotely intervenes in autonomous behaviors in two ways: low-level intervention in reflexive actions and high-level ones in the cognitive map. Experiments are conducted to test CBA functions for intervention with a joystick for a Khepera robot navigating from the center of a square obstacle with an open side toward a goal. Their statistical results show that both human interventions, especially high-level ones, are effective in drastically improving the success rate of autonomous detours.

  7. Human machine interface to manually drive rhombic like vehicles in remote handling operations

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Pedro; Vale, Alberto [Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Ventura, Rodrigo [Institute for Systems and Robotics, Instituto Superior Tecnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal)

    2015-07-01

    In the thermonuclear experimental reactor ITER, a vehicle named CTS is designed to transport a container with activated components inside the buildings. In nominal operations, the CTS is autonomously guided under supervision. However, in some unexpected situations, such as in rescue and recovery operations, the autonomous mode must be overridden and the CTS must be remotely guided by an operator. The CTS is a rhombic-like vehicle, with two drivable and steerable wheels along its longitudinal axis, providing omni-directional capabilities. The rhombic kinematics correspond to four control variables, which are difficult to manage in manual mode operation. This paper proposes a Human Machine Interface (HMI) to remotely guide the vehicle in manual mode. The proposed solution is implemented using a HMI with an encoder connected to a micro-controller and an analog 2-axis joystick. Experimental results were obtained comparing the proposed solution with other controller devices in different scenarios and using a software platform that simulates the kinematics and dynamics of the vehicle. (authors)

  8. A Fully Implantable, Programmable and Multimodal Neuroprocessor for Wireless, Cortically Controlled Brain-Machine Interface Applications.

    Science.gov (United States)

    Zhang, Fei; Aghagolzadeh, Mehdi; Oweiss, Karim

    2012-12-01

    Reliability, scalability and clinical viability are of utmost importance in the design of wireless Brain Machine Interface systems (BMIs). This paper reports on the design and implementation of a neuroprocessor for conditioning raw extracellular neural signals recorded through microelectrode arrays chronically implanted in the brain of awake behaving rats. The neuroprocessor design exploits a sparse representation of the neural signals to combat the limited wireless telemetry bandwidth. We demonstrate a multimodal processing capability (monitoring, compression, and spike sorting) inherent in the neuroprocessor to support a wide range of scenarios in real experimental conditions. A wireless transmission link with rate-dependent compression strategy is shown to preserve information fidelity in the neural data. At 32 channels, the neuroprocessor has been fully implemented on a 5mm×5mm nano-FPGA, and the prototyping resulted in 5.19 mW power consumption, bringing its performance within the power-size constraints for clinical use. The optimal design for compression and sorting performance was evaluated for multiple sampling frequencies, wavelet basis choice and power consumption.

  9. Integrated digital control and man-machine interface for complex remote handling systems

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, J.C.; Spille, R.F.; Zimmermann, S.D.

    1986-12-01

    The Advanced Integrated Maintenance System (AIMS) is part of a continuing effort within the Consolidated Fuel Reprocessing Program at Oak Ridge National Laboratory to develop and extend the capabilities of remote manipulation and maintenance technology. The AIMS is a totally integrated approach to remote handling in hazardous environments. State-of-the-art computer systems connected through a high-speed communication network provide a real-time distributed control system that supports the flexibility and expandability needed for large integrated maintenance applications. A Man-Machine Interface provides high-level human interaction through a powerful color graphics menu-controlled operator console. An auxiliary control system handles the real-time processing needs for a variety of support hardware. A pair of dedicated fiber-optic-linked master/slave computer system control the Advanced Servomanipulator master/slave arms using powerful distributed digital processing methods. The FORTH language was used as a real-time operating and development environment for the entire system, and all of these components are integrated into a control room concept that represents the latest advancements in the development of remote maintenance facilities for hazardous environments.

  10. Technology Roadmap Instrumentation, Control, and Human-Machine Interface to Support DOE Advanced Nuclear Energy Programs

    Energy Technology Data Exchange (ETDEWEB)

    Donald D Dudenhoeffer; Burce P Hallbert

    2007-03-01

    Instrumentation, Controls, and Human-Machine Interface (ICHMI) technologies are essential to ensuring delivery and effective operation of optimized advanced Generation IV (Gen IV) nuclear energy systems. In 1996, the Watts Bar I nuclear power plant in Tennessee was the last U.S. nuclear power plant to go on line. It was, in fact, built based on pre-1990 technology. Since this last U.S. nuclear power plant was designed, there have been major advances in the field of ICHMI systems. Computer technology employed in other industries has advanced dramatically, and computing systems are now replaced every few years as they become functionally obsolete. Functional obsolescence occurs when newer, more functional technology replaces or supersedes an existing technology, even though an existing technology may well be in working order.Although ICHMI architectures are comprised of much of the same technology, they have not been updated nearly as often in the nuclear power industry. For example, some newer Personal Digital Assistants (PDAs) or handheld computers may, in fact, have more functionality than the 1996 computer control system at the Watts Bar I plant. This illustrates the need to transition and upgrade current nuclear power plant ICHMI technologies.

  11. A Generalizable Brain-Computer Interface (BCI Using Machine Learning for Feature Discovery.

    Directory of Open Access Journals (Sweden)

    Ewan S Nurse

    Full Text Available This work describes a generalized method for classifying motor-related neural signals for a brain-computer interface (BCI, based on a stochastic machine learning method. The method differs from the various feature extraction and selection techniques employed in many other BCI systems. The classifier does not use extensive a-priori information, resulting in reduced reliance on highly specific domain knowledge. Instead of pre-defining features, the time-domain signal is input to a population of multi-layer perceptrons (MLPs in order to perform a stochastic search for the best structure. The results showed that the average performance of the new algorithm outperformed other published methods using the Berlin BCI IV (2008 competition dataset and was comparable to the best results in the Berlin BCI II (2002-3 competition dataset. The new method was also applied to electroencephalography (EEG data recorded from five subjects undertaking a hand squeeze task and demonstrated high levels of accuracy with a mean classification accuracy of 78.9% after five-fold cross-validation. Our new approach has been shown to give accurate results across different motor tasks and signal types as well as between subjects.

  12. Predictions of hot spot residues at protein-protein interfaces using support vector machines.

    Directory of Open Access Journals (Sweden)

    Stefano Lise

    Full Text Available Protein-protein interactions are critically dependent on just a few 'hot spot' residues at the interface. Hot spots make a dominant contribution to the free energy of binding and they can disrupt the interaction if mutated to alanine. Here, we present HSPred, a support vector machine(SVM-based method to predict hot spot residues, given the structure of a complex. HSPred represents an improvement over a previously described approach (Lise et al, BMC Bioinformatics 2009, 10:365. It achieves higher accuracy by treating separately predictions involving either an arginine or a glutamic acid residue. These are the amino acid types on which the original model did not perform well. We have therefore developed two additional SVM classifiers, specifically optimised for these cases. HSPred reaches an overall precision and recall respectively of 61% and 69%, which roughly corresponds to a 10% improvement. An implementation of the described method is available as a web server at http://bioinf.cs.ucl.ac.uk/hspred. It is free to non-commercial users.

  13. Categorical vowel perception enhances the effectiveness and generalization of auditory feedback in human-machine-interfaces.

    Directory of Open Access Journals (Sweden)

    Eric Larson

    Full Text Available Human-machine interface (HMI designs offer the possibility of improving quality of life for patient populations as well as augmenting normal user function. Despite pragmatic benefits, utilizing auditory feedback for HMI control remains underutilized, in part due to observed limitations in effectiveness. The goal of this study was to determine the extent to which categorical speech perception could be used to improve an auditory HMI. Using surface electromyography, 24 healthy speakers of American English participated in 4 sessions to learn to control an HMI using auditory feedback (provided via vowel synthesis. Participants trained on 3 targets in sessions 1-3 and were tested on 3 novel targets in session 4. An "established categories with text cues" group of eight participants were trained and tested on auditory targets corresponding to standard American English vowels using auditory and text target cues. An "established categories without text cues" group of eight participants were trained and tested on the same targets using only auditory cuing of target vowel identity. A "new categories" group of eight participants were trained and tested on targets that corresponded to vowel-like sounds not part of American English. Analyses of user performance revealed significant effects of session and group (established categories groups and the new categories group, and a trend for an interaction between session and group. Results suggest that auditory feedback can be effectively used for HMI operation when paired with established categorical (native vowel targets with an unambiguous cue.

  14. A comparative analysis of three non-invasive Human-Machine Interfaces for the disabled

    Directory of Open Access Journals (Sweden)

    Vikram eRavindra

    2014-10-01

    Full Text Available In the framework of rehabilitation robotics, a major role is played by theHuman-Machine Interface (HMI used to gather the patient's intent from biologicalsignals, and convert them into control signals for the robotic artifact. Surprisingly,decades of research haven't yet declared what the optimal HMI is in this context;in particular, the traditional approach based upon surface electromyography (sEMGstill yields unreliable results due to the inherent variability of the signal. Toovercome this problem, the scientific community has recently been advocating thediscovery, analysis and usage of novel HMIs to supersede or augment sEMG; a comparativeanalysis of such HMIs is therefore a very desirable investigation.In this paper we compare three such HMIs employed in the detection of finger forces,namely sEMG, ultrasound imaging and pressure sensing. The comparison is performed alongfour main lines: the accuracy in the prediction, the stability over time, the wearabilityand the cost. A psychophysical experiment involving ten intact subjects engaged ina simple finger-flexion task was set up. Our results show that, at least in thisexperiment, pressure sensing and sEMG yield comparably good prediction accuraciesas opposed to ultrasound imaging; and that pressure sensing enjoys a much better stabilitythan sEMG.Given that pressure sensors are as wearable as sEMG electrodes but way cheaper, we claimthat this HMI could represent a valid alternative /augmentation to sEMG to control amulti-fingered hand prosthesis.

  15. Maximum correntropy based attention-gated reinforcement learning designed for brain machine interface.

    Science.gov (United States)

    Li, Hongbao; Wang, Fang; Zhang, Qiaosheng; Zhang, Shaomin; Wang, Yiwen; Zheng, Xiaoxiang; Principe, Jose C; Hongbao Li; Fang Wang; Qiaosheng Zhang; Shaomin Zhang; Yiwen Wang; Xiaoxiang Zheng; Principe, Jose C; Wang, Yiwen; Principe, Jose C; Zheng, Xiaoxiang; Zhang, Qiaosheng; Zhang, Shaomin; Li, Hongbao; Wang, Fang

    2016-08-01

    Reinforcement learning is an effective algorithm for brain machine interfaces (BMIs) which interprets the mapping between neural activities with plasticity and the kinematics. Exploring large state-action space is difficulty when the complicated BMIs needs to assign credits over both time and space. For BMIs attention gated reinforcement learning (AGREL) has been developed to classify multi-actions for spatial credit assignment task with better efficiency. However, the outliers existing in the neural signals still make interpret the neural-action mapping difficult. We propose an enhanced AGREL algorithm using correntropy as a criterion, which is more insensitive to noise. Then the algorithm is tested on the neural data where the monkey is trained to do the obstacle avoidance task. The new method converges faster during the training period, and improves from 44.63% to 68.79% on average in success rate compared with the original AGREL. The result indicates that the combination of correntropy criterion and AGREL can reduce the effect of the outliers with better performance when interpreting the mapping between neural signal and kinematics.

  16. Brain machine interfaces combining microelectrode arrays with nanostructured optical biochemical sensors

    Science.gov (United States)

    Hajj-Hassan, Mohamad; Gonzalez, Timothy; Ghafer-Zadeh, Ebrahim; Chodavarapu, Vamsy; Musallam, Sam; Andrews, Mark

    2009-02-01

    Neural microelectrodes are an important component of neural prosthetic systems which assist paralyzed patients by allowing them to operate computers or robots using their neural activity. These microelectrodes are also used in clinical settings to localize the locus of seizure initiation in epilepsy or to stimulate sub-cortical structures in patients with Parkinson's disease. In neural prosthetic systems, implanted microelectrodes record the electrical potential generated by specific thoughts and relay the signals to algorithms trained to interpret these thoughts. In this paper, we describe novel elongated multi-site neural electrodes that can record electrical signals and specific neural biomarkers and that can reach depths greater than 8mm in the sulcus of non-human primates (monkeys). We hypothesize that additional signals recorded by the multimodal probes will increase the information yield when compared to standard probes that record just electropotentials. We describe integration of optical biochemical sensors with neural microelectrodes. The sensors are made using sol-gel derived xerogel thin films that encapsulate specific biomarker responsive luminophores in their nanostructured pores. The desired neural biomarkers are O2, pH, K+, and Na+ ions. As a prototype, we demonstrate direct-write patterning to create oxygen-responsive xerogel waveguide structures on the neural microelectrodes. The recording of neural biomarkers along with electrical activity could help the development of intelligent and more userfriendly neural prosthesis/brain machine interfaces as well as aid in providing answers to complex brain diseases and disorders.

  17. Binary Color Classification For Brain Computer Interface Using Neural Networks And Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Charmi Sunil Mehta

    2014-04-01

    Full Text Available As the power of modern computers grows alongside our understanding of the human brain, we move a step closer in transforming some pretty spectacular science fiction into reality. The advent of Brain Computer Interface (BCI is indeed leading us to a burgeoning era of complete automation empowering our interaction with computer not only with robustness but with also a gift of intelligence. For the fraction of our society suffering from severe motor disabilities BCI has offered a novel solution of overcoming the problems faced in communicating and environment control. Thus the purpose of our current research is to harness the brain‟s ability to generate Visually Evoked Potentials (VEPs by capturing the response of the brain to the transitions of color from grey to green and grey to red. Our prime focus is to explore EEG-based signal processing techniques in order to classify two colors; which can be further deployed in future by coupling the actuators so as to perform few basic tasks. The extracted EEG features are classified using Support Vector Machines (SVM and Artificial Neural Networks (ANN. We recorded 100% accuracy on testing the model after training and validation process. Moreover, we obtained 90% accuracy on re-testing the model with all samples acquired for the task using Quadratic SVM classifier.

  18. An analysis of EMG electrode configuration for targeted muscle reinnervation based neural machine interface.

    Science.gov (United States)

    Huang, He; Zhou, Ping; Li, Guanglin; Kuiken, Todd A

    2008-02-01

    Targeted muscle reinnervation (TMR) is a novel neural machine interface for improved myoelectric prosthesis control. Previous high-density (HD) surface electromyography (EMG) studies have indicated that tremendous neural control information can be extracted from the reinnervated muscles by EMG pattern recognition (PR). However, using a large number of EMG electrodes hinders clinical application of the TMR technique. This study investigated a reduced number of electrodes and the placement required to extract sufficient neural control information for accurate identification of user movement intents. An electrode selection algorithm was applied to the HD EMG recordings from each of four TMR amputee subjects. The results show that when using only 12 selected bipolar electrodes the average accuracy over subjects for classifying 16 movement intents was 93.0 (+/-3.3)%, just 1.2% lower than when using the entire HD electrode complement. The locations of selected electrodes were consistent with the anatomical reinnervation sites. Additionally, a practical protocol for clinical electrode placement was developed, which does not rely on complex HD EMG experiment and analysis while maintaining a classification accuracy of 88.7+/-4.5%. These outcomes provide important guidelines for practical electrode placement that can promote future clinical application of TMR and EMG PR in the control of multifunctional prostheses.

  19. A supplementary system for a brain-machine interface based on jaw artifacts for the bidimensional control of a robotic arm.

    Science.gov (United States)

    Costa, Álvaro; Hortal, Enrique; Iáñez, Eduardo; Azorín, José M

    2014-01-01

    Non-invasive Brain-Machine Interfaces (BMIs) are being used more and more these days to design systems focused on helping people with motor disabilities. Spontaneous BMIs translate user's brain signals into commands to control devices. On these systems, by and large, 2 different mental tasks can be detected with enough accuracy. However, a large training time is required and the system needs to be adjusted on each session. This paper presents a supplementary system that employs BMI sensors, allowing the use of 2 systems (the BMI system and the supplementary system) with the same data acquisition device. This supplementary system is designed to control a robotic arm in two dimensions using electromyographical (EMG) signals extracted from the electroencephalographical (EEG) recordings. These signals are voluntarily produced by users clenching their jaws. EEG signals (with EMG contributions) were registered and analyzed to obtain the electrodes and the range of frequencies which provide the best classification results for 5 different clenching tasks. A training stage, based on the 2-dimensional control of a cursor, was designed and used by the volunteers to get used to this control. Afterwards, the control was extrapolated to a robotic arm in a 2-dimensional workspace. Although the training performed by volunteers requires 70 minutes, the final results suggest that in a shorter period of time (45 min), users should be able to control the robotic arm in 2 dimensions with their jaws. The designed system is compared with a similar 2-dimensional system based on spontaneous BMIs, and our system shows faster and more accurate performance. This is due to the nature of the control signals. Brain potentials are much more difficult to control than the electromyographical signals produced by jaw clenches. Additionally, the presented system also shows an improvement in the results compared with an electrooculographic system in a similar environment.

  20. Combat Automation for Airborne Weapon Systems: Man/Machine Interface Trends and Technologies (L’Automatisation du Combat Aerien: Tendances et Technologies pour l’Interface Homme/Machine)

    Science.gov (United States)

    1993-04-01

    d’action alternatives. Un Systeme bien integre doit concilier dc multiples sources de donnees, potentiellement contradictoires, relatives aux situations...comments constitute my persona ! evaluations of and observations on the content of each presentation. In no sen»; at they intended to summarize the...Aircraft Combat. Evaluation Aid, Expert Sys- tem, Man Machine Interface. 24-2 1-INTRODUCTION Dans les missions atSriennes aussi bien reelles que

  1. A BMI-based occupational therapy assist suit: asynchronous control by SSVEP

    Directory of Open Access Journals (Sweden)

    Takeshi eSakurada

    2013-09-01

    Full Text Available A brain-machine interface (BMI is an interface technology that uses neurophysiological signals from the brain to control external machines. Recent invasive BMI technologies have succeeded in the asynchronous control of robot arms for a useful series of actions, such as reaching and grasping. In this study, we developed non-invasive BMI technologies aiming to make such useful movements using the subject's own hands by preparing a BMI-based occupational therapy assist suit (BOTAS. We prepared a pre-recorded series of useful actionsa grasping-a-ball movement and a carrying-the-ball movementand added asynchronous control using steady-state visual evoked potential (SSVEP signals. A SSVEP signal was used to trigger the grasping-a-ball movement and another SSVEP signal was used to trigger the carrying-the-ball movement. A support vector machine was used to classify EEG signals recorded from the visual cortex (Oz in real time. Untrained, able-bodied participants (n = 12 operated the system successfully. Classification accuracy and time required for SSVEP detection were approximately 88% and 3 s, respectively. We further recruited three patients with upper cervical spinal cord injuries; they also succeeded in operating the system without training. These data suggest that our BOTAS system is potentially useful in terms of rehabilitation of patients with upper limb disabilities.

  2. Brain-machine interface control of a manipulator using small-world neural network and shared control strategy.

    Science.gov (United States)

    Li, Ting; Hong, Jun; Zhang, Jinhua; Guo, Feng

    2014-03-15

    The improvement of the resolution of brain signal and the ability to control external device has been the most important goal in BMI research field. This paper describes a non-invasive brain-actuated manipulator experiment, which defined a paradigm for the motion control of a serial manipulator based on motor imagery and shared control. The techniques of component selection, spatial filtering and classification of motor imagery were involved. Small-world neural network (SWNN) was used to classify five brain states. To verify the effectiveness of the proposed classifier, we replace the SWNN classifier by a radial basis function (RBF) networks neural network, a standard multi-layered feed-forward backpropagation network (SMN) and a multi-SVM classifier, with the same features for the classification. The results also indicate that the proposed classifier achieves a 3.83% improvement over the best results of other classifiers. We proposed a shared control method consisting of two control patterns to expand the control of BMI from the software angle. The job of path building for reaching the 'end' point was designated as an assessment task. We recorded all paths contributed by subjects and picked up relevant parameters as evaluation coefficients. With the assistance of two control patterns and series of machine learning algorithms, the proposed BMI originally achieved the motion control of a manipulator in the whole workspace. According to experimental results, we confirmed the feasibility of the proposed BMI method for 3D motion control of a manipulator using EEG during motor imagery. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Demonstration of a semi-autonomous hybrid brain-machine interface using human intracranial EEG, eye tracking, and computer vision to control a robotic upper limb prosthetic.

    Science.gov (United States)

    McMullen, David P; Hotson, Guy; Katyal, Kapil D; Wester, Brock A; Fifer, Matthew S; McGee, Timothy G; Harris, Andrew; Johannes, Matthew S; Vogelstein, R Jacob; Ravitz, Alan D; Anderson, William S; Thakor, Nitish V; Crone, Nathan E

    2014-07-01

    To increase the ability of brain-machine interfaces (BMIs) to control advanced prostheses such as the modular prosthetic limb (MPL), we are developing a novel system: the Hybrid Augmented Reality Multimodal Operation Neural Integration Environment (HARMONIE). This system utilizes hybrid input, supervisory control, and intelligent robotics to allow users to identify an object (via eye tracking and computer vision) and initiate (via brain-control) a semi-autonomous reach-grasp-and-drop of the object by the MPL. Sequential iterations of HARMONIE were tested in two pilot subjects implanted with electrocorticographic (ECoG) and depth electrodes within motor areas. The subjects performed the complex task in 71.4% (20/28) and 67.7% (21/31) of trials after minimal training. Balanced accuracy for detecting movements was 91.1% and 92.9%, significantly greater than chance accuracies (p system improvements implemented for the second subject. Our hybrid-BMI design prevented all but one baseline false positive from initiating the system. The novel approach demonstrated in this proof-of-principle study, using hybrid input, supervisory control, and intelligent robotics, addresses limitations of current BMIs.

  4. Review of Brain-Machine Interfaces Used in Neural Prosthetics with New Perspective on Somatosensory Feedback through Method of Signal Breakdown.

    Science.gov (United States)

    Vidal, Gabriel W Vattendahl; Rynes, Mathew L; Kelliher, Zachary; Goodwin, Shikha Jain

    2016-01-01

    The brain-machine interface (BMI) used in neural prosthetics involves recording signals from neuron populations, decoding those signals using mathematical modeling algorithms, and translating the intended action into physical limb movement. Recently, somatosensory feedback has become the focus of many research groups given its ability in increased neural control by the patient and to provide a more natural sensation for the prosthetics. This process involves recording data from force sensitive locations on the prosthetics and encoding these signals to be sent to the brain in the form of electrical stimulation. Tactile sensation has been achieved through peripheral nerve stimulation and direct stimulation of the somatosensory cortex using intracortical microstimulation (ICMS). The initial focus of this paper is to review these principles and link them to modern day applications such as restoring limb use to those who lack such control. With regard to how far the research has come, a new perspective for the signal breakdown concludes the paper, offering ideas for more real somatosensory feedback using ICMS to stimulate particular sensations by differentiating touch sensors and filtering data based on unique frequencies.

  5. Implications of the Dependence of Neuronal Activity on Neural Network States for the Design of Brain-Machine Interfaces

    OpenAIRE

    Panzeri, Stefano; Safaai, Houman; De Feo, Vito; Vato, Alessandro

    2016-01-01

    Brain-machine interfaces (BMIs) can improve the quality of life of patients with sensory and motor disabilities by both decoding motor intentions expressed by neural activity, and by encoding artificially sensed information into patterns of neural activity elicited by causal interventions on the neural tissue. Yet, current BMIs can exchange relatively small amounts of information with the brain. This problem has proved difficult to overcome by simply increasing the number of recording or stim...

  6. Brain-machine interfaces in space: Using spontaneous rather than intentionally generated brain signals

    NARCIS (Netherlands)

    Coffey, E.B.J.; Brouwer, A.M.; Wilschut, E.S.; Erp, J.B.F. van

    2010-01-01

    De auteurs bespreken de beperkingen en mogelijkheden van gesuggereerde BMI toepassingen in een ruimtevaart en breken een lans voor BMIs die zijn gebaseerd op spontane in plaats van op doelbewuste hersensignalen

  7. Brain-machine interfaces in space: Using spontaneous rather than intentionally generated brain signals

    NARCIS (Netherlands)

    Coffey, E.B.J.; Brouwer, A.M.; Wilschut, E.S.; Erp, J.B.F. van

    2010-01-01

    De auteurs bespreken de beperkingen en mogelijkheden van gesuggereerde BMI toepassingen in een ruimtevaart en breken een lans voor BMIs die zijn gebaseerd op spontane in plaats van op doelbewuste hersensignalen

  8. A novel device for head gesture measurement system in combination with eye-controlled human machine interface

    Science.gov (United States)

    Lin, Chern-Sheng; Ho, Chien-Wa; Chang, Kai-Chieh; Hung, San-Shan; Shei, Hung-Jung; Yeh, Mau-Shiun

    2006-06-01

    This study describes the design and combination of an eye-controlled and a head-controlled human-machine interface system. This system is a highly effective human-machine interface, detecting head movement by changing positions and numbers of light sources on the head. When the users utilize the head-mounted display to browse a computer screen, the system will catch the images of the user's eyes with CCD cameras, which can also measure the angle and position of the light sources. In the eye-tracking system, the program in the computer will locate each center point of the pupils in the images, and record the information on moving traces and pupil diameters. In the head gesture measurement system, the user wears a double-source eyeglass frame, so the system catches images of the user's head by using a CCD camera in front of the user. The computer program will locate the center point of the head, transferring it to the screen coordinates, and then the user can control the cursor by head motions. We combine the eye-controlled and head-controlled human-machine interface system for the virtual reality applications.

  9. A study on advanced man-machine interface system for autonomous nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Matsuoka, Takeshi; Numano, Masayoshi; Someya, Minoru; Fukuto, Junji; Mitomo, Noboru; Miyazaki, Keiko; Sugasawa, Shinobu [Ship Research Inst., Mitaka, Tokyo (Japan)

    1997-01-01

    Research on Artificial Intelligence Systems for Nuclear Installations has been performed in cooperation with five research institutes (Ship Research Institute, Electrotechnical Laboratory, Japan Atomic Energy Research Institute, Power Reactor and Nuclear Fuel Development Corporation, The Institute of Physical and Chemical Research), from 1989 to 1994 as the Cross-over Research Group with the support of the Science and Technology Agency. Ship Research Institute has been carrying out the research on the Man-Machine Interface (MMI) system for autonomous nuclear power plants. This paper describes the concept of autonomous nuclear power plants, a plant simulator of an autonomous nuclear power plant, a contracted function model of a plant state, three-dimensional color graphic display of a plant state, and a function of automatic classification of plant states by the COBWEB method. A plant simulator has been developed by using the expert system G2 (Gensym Co.). The simulator generates plant process data at each component of a plant. This simulator models a pressurized water reactor and some examples of autonomous functions are incorporated. A contracted function model of a plant state has been produced at the main part of the MMI system based on plant process data from the simulator. The main purpose of the present study is to give the MMI system a function to identify the plant operational state, to update and revise the function model, and to expand a knowledge. A plant state is expressed in a three-dimensional graphic display which receives sensor values from the plant simulator and expresses the plant state in nearly real time speed. A research on the automatic classification of plant states has been also performed, which shows us the relations among different plant states. The study is being continued to the 2nd stage Cross-over Research from 1994, as the Study on Divers, Cooperative Intelligent System for Autonomous Plants. (J.P.N.)

  10. A wireless brain-machine interface for real-time speech synthesis.

    Directory of Open Access Journals (Sweden)

    Frank H Guenther

    Full Text Available BACKGROUND: Brain-machine interfaces (BMIs involving electrodes implanted into the human cerebral cortex have recently been developed in an attempt to restore function to profoundly paralyzed individuals. Current BMIs for restoring communication can provide important capabilities via a typing process, but unfortunately they are only capable of slow communication rates. In the current study we use a novel approach to speech restoration in which we decode continuous auditory parameters for a real-time speech synthesizer from neuronal activity in motor cortex during attempted speech. METHODOLOGY/PRINCIPAL FINDINGS: Neural signals recorded by a Neurotrophic Electrode implanted in a speech-related region of the left precentral gyrus of a human volunteer suffering from locked-in syndrome, characterized by near-total paralysis with spared cognition, were transmitted wirelessly across the scalp and used to drive a speech synthesizer. A Kalman filter-based decoder translated the neural signals generated during attempted speech into continuous parameters for controlling a synthesizer that provided immediate (within 50 ms auditory feedback of the decoded sound. Accuracy of the volunteer's vowel productions with the synthesizer improved quickly with practice, with a 25% improvement in average hit rate (from 45% to 70% and 46% decrease in average endpoint error from the first to the last block of a three-vowel task. CONCLUSIONS/SIGNIFICANCE: Our results support the feasibility of neural prostheses that may have the potential to provide near-conversational synthetic speech output for individuals with severely impaired speech motor control. They also provide an initial glimpse into the functional properties of neurons in speech motor cortical areas.

  11. Survey on Various Gesture Recognition Techniques for Interfacing Machines Based on Ambient Intelligence

    Directory of Open Access Journals (Sweden)

    Harshith.C

    2010-12-01

    Full Text Available Gesture recognition is mainly apprehensive on analyzing the functionality of human wits. The main goal of gesture recognition is to create a system which can recognize specific human gestures and use them to convey information or for device control. Hand gestures provide a separate complementary modality to speech for expressing ones ideas. Information associated with hand gestures in a conversation is degree, discourse structure, spatial and temporal structure. The approaches present can be mainly divided intoData-Glove Based and Vision Based approaches. An important face feature point is the nose tip. Since nose is the highest protruding point from the face. Besides that, it is not affected by facial expressions. Another important function of the nose is that it is able to indicate the head pose. Knowledge of the nose location will enable us to align an unknown 3D face with those in a face database. Eye detection is divided into eye position detection and eye contour detection. Existing works in eye detection can be classified into two major categories: traditional image-based passive approaches and the active IR based approaches. The former uses intensity and shape of eyes for detection and the latter works on the assumption that eyes have a reflection under near IR illumination and produce bright/dark pupileffect. The traditional methods can be broadly classified into three categories: template based methods, appearance based methods and feature based methods. The purpose of this paper is to compare various human Gesture recognition systems for interfacing machines directly to human wits without any corporeal media in an ambient environment.

  12. Toward FRP-Based Brain-Machine Interfaces-Single-Trial Classification of Fixation-Related Potentials.

    Directory of Open Access Journals (Sweden)

    Andrea Finke

    Full Text Available The co-registration of eye tracking and electroencephalography provides a holistic measure of ongoing cognitive processes. Recently, fixation-related potentials have been introduced to quantify the neural activity in such bi-modal recordings. Fixation-related potentials are time-locked to fixation onsets, just like event-related potentials are locked to stimulus onsets. Compared to existing electroencephalography-based brain-machine interfaces that depend on visual stimuli, fixation-related potentials have the advantages that they can be used in free, unconstrained viewing conditions and can also be classified on a single-trial level. Thus, fixation-related potentials have the potential to allow for conceptually different brain-machine interfaces that directly interpret cortical activity related to the visual processing of specific objects. However, existing research has investigated fixation-related potentials only with very restricted and highly unnatural stimuli in simple search tasks while participant's body movements were restricted. We present a study where we relieved many of these restrictions while retaining some control by using a gaze-contingent visual search task. In our study, participants had to find a target object out of 12 complex and everyday objects presented on a screen while the electrical activity of the brain and eye movements were recorded simultaneously. Our results show that our proposed method for the classification of fixation-related potentials can clearly discriminate between fixations on relevant, non-relevant and background areas. Furthermore, we show that our classification approach generalizes not only to different test sets from the same participant, but also across participants. These results promise to open novel avenues for exploiting fixation-related potentials in electroencephalography-based brain-machine interfaces and thus providing a novel means for intuitive human-machine interaction.

  13. Integrated Multi-Scale Data Analytics and Machine Learning for the Distribution Grid and Building-to-Grid Interface

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Emma M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hendrix, Val [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chertkov, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Deka, Deepjyoti [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-16

    This white paper introduces the application of advanced data analytics to the modernized grid. In particular, we consider the field of machine learning and where it is both useful, and not useful, for the particular field of the distribution grid and buildings interface. While analytics, in general, is a growing field of interest, and often seen as the golden goose in the burgeoning distribution grid industry, its application is often limited by communications infrastructure, or lack of a focused technical application. Overall, the linkage of analytics to purposeful application in the grid space has been limited. In this paper we consider the field of machine learning as a subset of analytical techniques, and discuss its ability and limitations to enable the future distribution grid and the building-to-grid interface. To that end, we also consider the potential for mixing distributed and centralized analytics and the pros and cons of these approaches. Machine learning is a subfield of computer science that studies and constructs algorithms that can learn from data and make predictions and improve forecasts. Incorporation of machine learning in grid monitoring and analysis tools may have the potential to solve data and operational challenges that result from increasing penetration of distributed and behind-the-meter energy resources. There is an exponentially expanding volume of measured data being generated on the distribution grid, which, with appropriate application of analytics, may be transformed into intelligible, actionable information that can be provided to the right actors – such as grid and building operators, at the appropriate time to enhance grid or building resilience, efficiency, and operations against various metrics or goals – such as total carbon reduction or other economic benefit to customers. While some basic analysis into these data streams can provide a wealth of information, computational and human boundaries on performing the analysis

  14. Human machine interface to manually drive rhombic like vehicles such as transport casks in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Pedro; Vale, Alberto [Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Ventura, Rodrigo [Institute for Systems and Robotics, Instituto Superior Tecnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal)

    2015-07-01

    The Cask and Plug Remote Handling System (CPRHS) and the respective Cask Transfer System (CTS) are designed to transport activated components between the reactor and the hot cell buildings of ITER during maintenance operations. In nominal operation, the CPRHS/CTS shall operate autonomously under human supervision. However, in some unexpected situations, the automatic mode must be overridden and the vehicle must be remotely guided by a human operator due to the harsh conditions of the environment. The CPRHS/CTS is a rhombic-like vehicle with two independent steerable and drivable wheels along its longitudinal axis, giving it omni-directional capabilities. During manual guidance, the human operator has to deal with four degrees of freedom, namely the orientations and speeds of two wheels. This work proposes a Human Machine Interface (HMI) to manage the degrees of freedom and to remotely guide the CPRHS/CTS in ITER taking the most advantages of rhombic like capabilities. Previous work was done to drive each wheel independently, i.e., control the orientation and speed of each wheel independently. The results have shown that the proposed solution is inefficient. The attention of the human operator becomes focused in a single wheel. In addition, the proposed solution cannot assure that the commands accomplish the physical constrains of the vehicle, resulting in slippage or even in clashes. This work proposes a solution that consists in the control of the vehicle looking at the position of its center of mass and its heading in the world frame. The solution is implemented using a rotational disk to control the vehicle heading and a common analogue joystick to control the vector speed of the center of the mass of the vehicle. The number of degrees of freedom reduces to three, i.e., two angles (vehicle heading and the orientation of the vector speed) and a scalar (the magnitude of the speed vector). This is possible using a kinematic model based on the vehicle Instantaneous

  15. A novel EOG/EEG hybrid human-machine interface adopting eye movements and ERPs: application to robot control.

    Science.gov (United States)

    Ma, Jiaxin; Zhang, Yu; Cichocki, Andrzej; Matsuno, Fumitoshi

    2015-03-01

    This study presents a novel human-machine interface (HMI) based on both electrooculography (EOG) and electroencephalography (EEG). This hybrid interface works in two modes: an EOG mode recognizes eye movements such as blinks, and an EEG mode detects event related potentials (ERPs) like P300. While both eye movements and ERPs have been separately used for implementing assistive interfaces, which help patients with motor disabilities in performing daily tasks, the proposed hybrid interface integrates them together. In this way, both the eye movements and ERPs complement each other. Therefore, it can provide a better efficiency and a wider scope of application. In this study, we design a threshold algorithm that can recognize four kinds of eye movements including blink, wink, gaze, and frown. In addition, an oddball paradigm with stimuli of inverted faces is used to evoke multiple ERP components including P300, N170, and VPP. To verify the effectiveness of the proposed system, two different online experiments are carried out. One is to control a multifunctional humanoid robot, and the other is to control four mobile robots. In both experiments, the subjects can complete tasks effectively by using the proposed interface, whereas the best completion time is relatively short and very close to the one operated by hand.

  16. Soft-rubber-packaged Pb(Zr,Ti)O3 MEMS touch sensors for human–machine interface applications

    Science.gov (United States)

    Takeshita, Toshihiro; Kobayashi, Takeshi; Takei, Ryohei; Itoh, Toshihiro; Takamatsu, Seiichi

    2017-04-01

    We proposed and developed soft-rubber-packaged Pb(Zr,Ti)O3 (PZT) microelectromechanical systems (MEMS) force sensors as human–machine interface sensors of human touch and input. To achieve small and highly sensitive sensors with low-power-consumption, a small PZT MEMS cantilever was used as the sensing element, and it was covered with soft rubber, poly(dimethylsiloxane) (PDMS), to prevent the cracking of the brittle PZT film when touching the sensor. The PDMS packaging does not affect the ferroelectric characteristics of the sensing PZT film, because the hysteresis and impedance changes of the PZT are less than 5%. The sensor dimensions are 5 × 5 × 1.1 mm3. The sensor generated charges without requiring voltage supply. The sensor generated an electric charge of 7.8 pC under an applied force of 1 N. The sensitivity was adjusted by changing the hardness of the soft rubber package: hard rubber provides high sensitivity, but the sensor is easily cracks. Hence, a sensor with a durometer hardness A of 35.6 was found to be optimal as a human–machine interface sensors of human touch of approximately 5–7 N because it has a linear sensitivity at force smaller than 5 N and the bending is small at forces larger than 5 N, which leads to a highly durable sensor. The sensor with a durometer hardness A of 35.6 did not break or crack until the applied force reached 40 N. By packaging brittle PZT MEMS cantilevers with soft rubber, small-force sensors can be constructed, leading to small, low-energy-consumption human–machine interface sensors.

  17. Human factors model concerning the man-machine interface of mining crewstations

    Science.gov (United States)

    Rider, James P.; Unger, Richard L.

    1989-01-01

    The U.S. Bureau of Mines is developing a computer model to analyze the human factors aspect of mining machine operator compartments. The model will be used as a research tool and as a design aid. It will have the capability to perform the following: simulated anthropometric or reach assessment, visibility analysis, illumination analysis, structural analysis of the protective canopy, operator fatigue analysis, and computation of an ingress-egress rating. The model will make extensive use of graphics to simplify data input and output. Two dimensional orthographic projections of the machine and its operator compartment are digitized and the data rebuilt into a three dimensional representation of the mining machine. Anthropometric data from either an individual or any size population may be used. The model is intended for use by equipment manufacturers and mining companies during initial design work on new machines. In addition to its use in machine design, the model should prove helpful as an accident investigation tool and for determining the effects of machine modifications made in the field on the critical areas of visibility and control reach ability.

  18. Function analysis of nuclear power plants for developing of man-machine interface system for Korean next generation reactor

    Energy Technology Data Exchange (ETDEWEB)

    Goo, In Soo; Kim, Jang Yyul; Kim, Jung Soo; Kim, Chang Hoi; Na, Nan Joo; Park, Keun Ok; Park, Won Man; Park, Jae Chang; Suh, Sang Moon; Oh, In Suk; Lee, Dong Young; Lee, Yong Hee; Cha, Kyung Ho; Chun, Se Woo; Hur, Sup [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Jung, Kyung Hoon [Korea Electric Power Co., Seoul (Korea, Republic of); Park, Yeon Sik; Lee, Bum Joo [Korea Power Engineering Company, Inc., Seoul (Korea, Republic of)

    1995-02-01

    In this study, we developed the methodology and implementation plant of function analysis and performed function analysis, which is one of the major activities for the development of Man-Machine Interface System of the KNGR. Identifying the functions of existing plants followed by structuring the functions, we established functions structured at the conceptual and middle levels. This structure was further checked if it would satisfy regulatory requirements and developed to include the aspects of plant performance and other plant features to emphasize its practicality for the application to the design. (Author) 13 refs., 8 figs., 4 tabs.

  19. 可重构机床新型接口设计∗%Interface Design of Reconfigurable Machine Tool

    Institute of Scientific and Technical Information of China (English)

    李一全; 姜倩; 许金凯; 梁冲

    2015-01-01

    Based on the concept, characteristics about micro reconfigurable manufacturing system, two kinds of new mechanical module interface was studied and designed;Two kinds of new module interfaces that re-spectively used in the machine tool was designed, in order to realize the function change about turning and milling; According to the stress distribution of the prototype in the actual processing. Done the statics and dynamics analysis for the two main structure of the machine tool with interfaces. After these work for mod-ule interface have laid a certain foundation for the application in reconfigurable micro-processing system.%该设计以可重构车铣微加工系统为背景,根据可重构车铣微加工系统的概念及特点,对机械模块接口进行了深入研究和创新设计;基于可重构车铣微加工机床的重构要求,设计出了两种分别应用于机床中主轴模块和工作台模块的新型接口,接口可以实现机床车铣功能快速互换;并根据实际加工中该机床的受力情况,分别对接口接入到机床主运动系统和工作台时,进行了静力学分析和动力学分析,对接口的性能进行了评价,为以后模块接口在可重构微加工系统中的应用提供了基础。

  20. [A new human machine interface in neurosurgery: The Leap Motion(®). Technical note regarding a new touchless interface].

    Science.gov (United States)

    Di Tommaso, L; Aubry, S; Godard, J; Katranji, H; Pauchot, J

    2016-06-01

    Currently, cross-sectional imaging viewing is used in routine practice whereas the surgical procedure requires physical contact with an interface (mouse or touch-sensitive screen). This type of contact results in a risk of lack of aseptic control and causes loss of time. The recent appearance of devices such as the Leap Motion(®) (Leap Motion society, San Francisco, USA) a sensor which enables to interact with the computer without any physical contact is of major interest in the field of surgery. However, its configuration and ergonomics produce key challenges in order to adapt to the practitioner's requirements, the imaging software as well as the surgical environment. This article aims to suggest an easy configuration of the Leap Motion(®) in neurosurgery on a PC for an optimized utilization with Carestream(®) Vue PACS v11.3.4 (Carestream Health, Inc., Rochester, USA) using a plug-in (to download at: https://drive.google.com/?usp=chrome_app#folders/0B_F4eBeBQc3ybElEeEhqME5DQkU) and a video tutorial (https://www.youtube.com/watch?v=yVPTgxg-SIk).

  1. Towards passive brain-computer interfaces: applying brain-computer interface technology to human-machine systems in general

    Science.gov (United States)

    Zander, Thorsten O.; Kothe, Christian

    2011-04-01

    Cognitive monitoring is an approach utilizing realtime brain signal decoding (RBSD) for gaining information on the ongoing cognitive user state. In recent decades this approach has brought valuable insight into the cognition of an interacting human. Automated RBSD can be used to set up a brain-computer interface (BCI) providing a novel input modality for technical systems solely based on brain activity. In BCIs the user usually sends voluntary and directed commands to control the connected computer system or to communicate through it. In this paper we propose an extension of this approach by fusing BCI technology with cognitive monitoring, providing valuable information about the users' intentions, situational interpretations and emotional states to the technical system. We call this approach passive BCI. In the following we give an overview of studies which utilize passive BCI, as well as other novel types of applications resulting from BCI technology. We especially focus on applications for healthy users, and the specific requirements and demands of this user group. Since the presented approach of combining cognitive monitoring with BCI technology is very similar to the concept of BCIs itself we propose a unifying categorization of BCI-based applications, including the novel approach of passive BCI.

  2. Ultrasonic image restoration based on support vector machine for surfacing interface testing

    Institute of Scientific and Technical Information of China (English)

    Gao Shuangsheng; Gang Tie; Chi Dazhao

    2007-01-01

    In order to restore the degraded ultrasonic C-scan image for testing surfacing interface, a method based on support vector regression (SVR) network is proposed. By using the image of a simulating defect, the network is trained and a mapping relationship between the degraded and restored image is founded. The degraded C-scan image of Cu-Steel surfacing interface is processed by the trained network and improved image is obtained. The result shows that the method can effectively suppress the noise and deblur the defect edge in the image, and provide technique support for quality and reliability evaluation of the surfacing weld.

  3. 'MDI Wind' machine diagnostic interface. The online condition monitoring system that's not just for wind turbines; Machine Diagnostic Interface 'MDI-Wind'. Online Condition Monitoring System nicht nur fuer Windenergieanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Eicke, Andreas [ThyssenKrupp System Engineering GmbH, Langenhagen (Germany). Messtechnik

    2012-07-01

    It is becoming increasingly important to be able to implement condition monitoring to protect high-grade investments such as wind turbines and other major industrial plant and installations. ThyssenKrupp System Engineering has developed a Machine Diagnostic Interface (MDI) for this purpose that is based on proven and reliable standard components in terms of the hardware used. As regards the software, the measuring and automation system used is based on mature technology, was developed in-house and has proved its worth over many years on testing and assembly lines in the automotive and supply industry. The basic concept of the Condition Monitoring System (CMS) and the essential technical elements of the MDI are introduced here. The development was funded by the German Federal Ministry of Economics and Technology (BMWi). (orig.)

  4. AFTER@LHC: a precision machine to study the interface between particle and nuclear physics

    Directory of Open Access Journals (Sweden)

    Lansberg J.P.

    2014-03-01

    Full Text Available We outline the opportunities to study with high precision the interface between nuclear and particle physics, which are offered by a next generation and multi-purpose fixed-target experiment exploiting the proton and ion LHC beams extracted by a bent crystal.

  5. AFTER@LHC: a precision machine to study the interface between particle and nuclear physics

    CERN Document Server

    Lansberg, J P; Brodsky, S J; Chambert, V; Didelez, J P; Genolini, B; Ferreiro, E G; Fleuret, F; Hadjidakis, C; Lorce, C; Rakotozafindrabe, A; Rosier, P; Schienbein, I; Scomparin, E; Uggerhoj, U I

    2014-01-01

    We outline the opportunities to study with high precision the interface between nuclear and particle physics, which are offered by a next generation and multi-purpose fixed-target experiment exploiting the proton and ion LHC beams extracted by a bent crystal.

  6. Prediction of hot spot residues at protein-protein interfaces by combining machine learning and energy-based methods

    Directory of Open Access Journals (Sweden)

    Pontil Massimiliano

    2009-10-01

    Full Text Available Abstract Background Alanine scanning mutagenesis is a powerful experimental methodology for investigating the structural and energetic characteristics of protein complexes. Individual amino-acids are systematically mutated to alanine and changes in free energy of binding (ΔΔG measured. Several experiments have shown that protein-protein interactions are critically dependent on just a few residues ("hot spots" at the interface. Hot spots make a dominant contribution to the free energy of binding and if mutated they can disrupt the interaction. As mutagenesis studies require significant experimental efforts, there is a need for accurate and reliable computational methods. Such methods would also add to our understanding of the determinants of affinity and specificity in protein-protein recognition. Results We present a novel computational strategy to identify hot spot residues, given the structure of a complex. We consider the basic energetic terms that contribute to hot spot interactions, i.e. van der Waals potentials, solvation energy, hydrogen bonds and Coulomb electrostatics. We treat them as input features and use machine learning algorithms such as Support Vector Machines and Gaussian Processes to optimally combine and integrate them, based on a set of training examples of alanine mutations. We show that our approach is effective in predicting hot spots and it compares favourably to other available methods. In particular we find the best performances using Transductive Support Vector Machines, a semi-supervised learning scheme. When hot spots are defined as those residues for which ΔΔG ≥ 2 kcal/mol, our method achieves a precision and a recall respectively of 56% and 65%. Conclusion We have developed an hybrid scheme in which energy terms are used as input features of machine learning models. This strategy combines the strengths of machine learning and energy-based methods. Although so far these two types of approaches have mainly been

  7. The Creative Design Research of Product Appearance Based on Human-machine Interaction and Interface

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Today's product creative design has rendered many fe atures and has brought a great change in our everyday life, there are many new c hallenges in its traditional theory and principle. According to the traditional design theory, the FBS design model pays more attention to the function and stru cture of the product. But this model still couldn't strengthen the relation bet ween product appearance design and human-machine design effectively. This paper adopt converse design thinking and presents an improve...

  8. About BMI for Adults

    Science.gov (United States)

    ... Nutrition Physical Activity Overweight & Obesity Healthy Weight Breastfeeding Micronutrient Malnutrition State and Local Programs About Adult BMI ... Nutrition Physical Activity Overweight & Obesity Healthy Weight Breastfeeding Micronutrient Malnutrition State and Local Programs Language: English Español ( ...

  9. Robust human machine interface based on head movements applied to assistive robotics.

    Science.gov (United States)

    Perez, Elisa; López, Natalia; Orosco, Eugenio; Soria, Carlos; Mut, Vicente; Freire-Bastos, Teodiano

    2013-01-01

    This paper presents an interface that uses two different sensing techniques and combines both results through a fusion process to obtain the minimum-variance estimator of the orientation of the user's head. Sensing techniques of the interface are based on an inertial sensor and artificial vision. The orientation of the user's head is used to steer the navigation of a robotic wheelchair. Also, a control algorithm for assistive technology system is presented. The system is evaluated by four individuals with severe motors disability and a quantitative index was developed, in order to objectively evaluate the performance. The results obtained are promising since most users could perform the proposed tasks with the robotic wheelchair.

  10. Robust Human Machine Interface Based on Head Movements Applied to Assistive Robotics

    Directory of Open Access Journals (Sweden)

    Elisa Perez

    2013-01-01

    Full Text Available This paper presents an interface that uses two different sensing techniques and combines both results through a fusion process to obtain the minimum-variance estimator of the orientation of the user’s head. Sensing techniques of the interface are based on an inertial sensor and artificial vision. The orientation of the user’s head is used to steer the navigation of a robotic wheelchair. Also, a control algorithm for assistive technology system is presented. The system is evaluated by four individuals with severe motors disability and a quantitative index was developed, in order to objectively evaluate the performance. The results obtained are promising since most users could perform the proposed tasks with the robotic wheelchair.

  11. Motor cortical prediction of EMG: evidence that a kinetic brain-machine interface may be robust across altered movement dynamics.

    Science.gov (United States)

    Cherian, A; Krucoff, M O; Miller, L E

    2011-08-01

    During typical movements, signals related to both the kinematics and kinetics of movement are mutually correlated, and each is correlated to some extent with the discharge of neurons in the primary motor cortex (M1). However, it is well known, if not always appreciated, that causality cannot be inferred from correlations. Although these mutual correlations persist, their nature changes with changing postural or dynamical conditions. Under changing conditions, only signals directly controlled by M1 can be expected to maintain a stable relationship with its discharge. If one were to rely on noncausal correlations for a brain-machine interface, its generalization across conditions would likely suffer. We examined this effect, using multielectrode recordings in M1 as input to linear decoders of both end point kinematics (position and velocity) and proximal limb myoelectric signals (EMG) during reaching. We tested these decoders across tasks that altered either the posture of the limb or the end point forces encountered during movement. Within any given task, the accuracy of the kinematic predictions tended to be somewhat better than the EMG predictions. However, when we used the decoders developed under one task condition to predict the signals recorded under different postural or dynamical conditions, only the EMG decoders consistently generalized well. Our results support the view that M1 discharge is more closely related to kinetic variables like EMG than it is to limb kinematics. These results suggest that brain-machine interface applications using M1 to control kinetic variables may prove to be more successful than the more standard kinematic approach.

  12. A Brain-Machine-Brain Interface for Rewiring of Cortical Circuitry after Traumatic Brain Injury

    Science.gov (United States)

    2015-11-01

    Sharma, D. B. McCreery, M. Han, and V. Pikov, “Bidirectional telemetry controller for neuroprosthetic devices,” IEEE Trans. Neural Syst. Rehabil. Eng...Circuits and Systems, 4(3), 149–161. 5. Sharma, V., McCreery, D. B., Han, M., & Pikov, V. (2010). Bidirectional telemetry controller for neuroprosthetic...Sheth, H., Felix, S., Delima, T., et al. (2012). Polymer neural interface with dual -sided electrodes for neural stimulation and recording. Conf. Proc

  13. Real-time 3D data acquisition for augmented-reality man and machine interfacing

    Science.gov (United States)

    Guan, Chun; Hassebrook, Laurence G.; Lau, Daniel L.

    2003-08-01

    Based on recent discoveries, we present a method to project a single structured pattern and then reconstruct the three-dimensional range from the distortions in the reflected and captured image. Traditional structured light methods require several different patterns to recover the depth, without ambiguity and albedo sensitivity, and are corrupted by object movement during the projection/capture process. Our method efficiently combines multiple patterns into a single composite pattern projection -- allowing for real-time implementations. Because structured light techniques require standard image capture and projection technology, unlike time of arrival techniques, they are relatively low cost. Attaining low cost 3D video acquisition would have a profound impact on most applications that are presently limited to 2D video imaging. Furthermore, it would enable many other applications. In particular, we are studying real time depth imagery for tracking hand motion and rotation as an interface to a virtual reality. Applications include remote controlled robotic interfacing in space, advanced cockpit controls and computer interfacing for the disabled.

  14. Human-machine interface (HMI) report for 241-SY-101 data acquisition [and control] system (DACS) upgrade study

    Energy Technology Data Exchange (ETDEWEB)

    Truitt, R.W.

    1997-10-22

    This report provides an independent evaluation of information for a Windows based Human Machine Interface (HMI) to replace the existing DOS based Iconics HMI currently used in the Data Acquisition and Control System (DACS) used at Tank 241-SY-101. A fundamental reason for this evaluation is because of the difficulty of maintaining the system with obsolete, unsupported software. The DACS uses a software operator interface (Genesis for DOS HMI) that is no longer supported by its manufacturer, Iconics. In addition to its obsolescence, it is complex and difficult to train additional personnel on. The FY 1997 budget allocated $40K for phase 1 of a software/hardware upgrade that would have allowed the old DOS based system to be replaced by a current Windows based system. Unfortunately, budget constraints during FY 1997 has prompted deferral of the upgrade. The upgrade needs to be performed at the earliest possible time, before other failures render the system useless. Once completed, the upgrade could alleviate other concerns: spare pump software may be able to be incorporated into the same software as the existing pump, thereby eliminating the parallel path dilemma; and the newer, less complex software should expedite training of future personnel, and in the process, require that less technical time be required to maintain the system.

  15. Research on Dynamic Modeling and Application of Kinetic Contact Interface in Machine Tool

    Directory of Open Access Journals (Sweden)

    Dan Xu

    2016-01-01

    Full Text Available A method is presented which is a kind of combining theoretic analysis and experiment to obtain the equivalent dynamic parameters of linear guideway through four steps in detail. From statics analysis, vibration model analysis, dynamic experiment, and parameter identification, the dynamic modeling of linear guideway is synthetically studied. Based on contact mechanics and elastic mechanics, the mathematic vibration model and the expressions of basic mode frequency are deduced. Then, equivalent stiffness and damping of guideway are obtained in virtue of single-freedom-degree mode fitting method. Moreover, the investigation above is applied in a certain gantry-type machining center; and through comparing with simulation model and experiment results, both availability and correctness are validated.

  16. Beam Collimation and Machine-Detector Interface at the International Linear Collider

    CERN Document Server

    Mokhov, Nikolai V; Kostin, Mikhail A

    2005-01-01

    Synchrotron radiation, spray from the dumps and extraction lines, beam-gas and beam halo interactions with collimators and other components in the ILC beam delivery system create fluxes of muons and other secondaries which can exceed the tolerable levels at a detector by a few orders of magnitude. It is shown that with a multi-stage collimation system, magnetized iron spoilers which fill the tunnel and a set of masks in the detector, one can hopefully meet the design goals. Results of modeling with the STRUCT and MARS15 codes of beam loss and energy deposition effects are presented in this paper. We concentrate on collimation system and mask design and optimization, short- and long-term survivability of the critical components (spoilers, absorbers, magnets, separators, dumps), dynamic heat loads and radiation levels in magnets and other components, machine-related backgrounds and damage in collider detectors, and environmental aspects (prompt dose, ground-water and air activation).

  17. Attachment theory and the interfaces between mother’s love, cinematics and ciber-machines

    Directory of Open Access Journals (Sweden)

    Claudia Alejandra Calquin Donoso

    2016-03-01

    Full Text Available This article analyzes the emergence of the theory of attachment and its relation to the biological transformations introduced by Second World War, along with the incorporation of cinematics in developmental psychology. I state that the work of John Bowlby puts forth a new discursive formation in which the relationship mother-creature is explained by a sophisticated empiric/theoretical device derived from a renewed biology, namely military cybernetics. In addition, I contend that this new biology sets up a certain spectacle, through which scientific truth was shown to the public through the cinema. Both the introduction of cyber-organisms as well as the cinema, allows me to analyze Bowlby’s theory, not only as constituting a significant transformation on the discursive construction of gender and the maternal body, but also pushing forward a process of “cyborgization” within the field of developmental psychology which gradually starts to blur the line between humans and machines.

  18. Using Sound to Reduce Visual Distraction from In-vehicle Human-Machine Interfaces.

    Science.gov (United States)

    Larsson, Pontus; Niemand, Mathias

    2015-01-01

    Driver distraction and inattention are the main causes of accidents. The fact that devices such as navigation displays and media players are part of the distraction problem has led to the formulation of guidelines advocating various means for minimizing the visual distraction from such interfaces. However, although design guidelines and recommendations are followed, certain interface interactions, such as menu browsing, still require off-road visual attention that increases crash risk. In this article, we investigate whether adding sound to an in-vehicle user interface can provide the support necessary to create a significant reduction in glances toward a visual display when browsing menus. Two sound concepts were developed and studied; spearcons (time-compressed speech sounds) and earcons (musical sounds). A simulator study was conducted in which 14 participants between the ages of 36 and 59 took part. Participants performed 6 different interface tasks while driving along a highway route. A 3 × 6 within-group factorial design was employed with sound (no sound /earcons/spearcons) and task (6 different task types) as factors. Eye glances and corresponding measures were recorded using a head-mounted eye tracker. Participants' self-assessed driving performance was also collected after each task with a 10-point scale ranging from 1 = very bad to 10 = very good. Separate analyses of variance (ANOVAs) were conducted for different eye glance measures and self-rated driving performance. It was found that the added spearcon sounds significantly reduced total glance time as well as number of glances while retaining task time as compared to the baseline (= no sound) condition (total glance time M = 4.15 for spearcons vs. M = 7.56 for baseline, p =.03). The earcon sounds did not result in such distraction-reducing effects. Furthermore, participants ratings of their driving performance were statistically significantly higher in the spearcon conditions compared to the baseline

  19. Adaptive myoelectric human-machine interface systems using online support vector machines%基于在线SVM的自适应sEMG人机交互系统

    Institute of Scientific and Technical Information of China (English)

    张毅; 许新丽; 罗元

    2013-01-01

    To improve the adaptive ability of the man-machine interface (HMD system, an adaptive surface electromyographic signal (sEMG) based HMI system was proposed by online support vector machine (SVM). Control data samples were updated and trained by incremental online learning algorithm in real-time operation. Meanwhile, the image information of eyes was employed as the feedback information of the system. Adaptive boosting (Adaboost) algorithm was adopted to recognize whether left or right eye was closing, and the recognition result was used to decide which sEMG signal was updated as training sample of SVM. The presented system can adjust itself in real time operation. Experiments results show that the visual information makes the system effectively avoid misclassification because single sEMG signal lack of credible information. Furthermore, sEMG HMI system keeps a stable performance in its long-term operation.%针对sEMG人机交互中系统自适应能力差的问题,提出一种基于在线SVM(支持向量机)的自适应人机交互系统.该系统采用一种新的自适应样本更新策略,即在实时操作中通过SVM的增量训练算法对咀嚼肌单击和双击产生的sEMG样本进行在线学习,引入左右眼的视觉信息作为系统的反馈,采用Adboost算法来识别闭左眼和闭右眼,闭眼状态作为在线样本更新的校正信息.整个人机交互系统构成一个闭环控制系统,通过不断调节模型参数使得人机交互系统伴随sEMG信号的变化做相应的调整.实验结果表明:视觉信息的加入有效地避免了使用单一肌电信号进行人机交互时由于肌电信号缺乏可信信息而引起的误识别等问题,该系统便于操作,长时间人机交互中具有较好的可靠性和鲁棒性,不易受到外界因素的影响.

  20. Interface

    DEFF Research Database (Denmark)

    Computerens interface eller grænseflade har spredt sig overalt. Mobiltelefoner, spilkonsoller, pc'er og storskærme indeholder computere – men computere indbygges også i tøj og andre hverdagslige genstande, så vi konstant har adgang til digitale data. Interface retter fokus mod, hvordan den digita...

  1. A low noise interface circuit design of micro-machined gyroscope

    Science.gov (United States)

    Fu, Qiang; Di, Xipeng; Yin, Liang; Liu, Xiaowei

    2017-07-01

    The analyses of MEMS gyroscope interface circuit on thermal noise, 1/f noise and phase noise are made in this paper. A closed-loop differential driving circuit and a low-noise differential detecting circuit based on the high frequency modulation are designed to limit the noise. The interface chip is implemented in a standard 0.5 μm CMOS process. The test results show that the resolution of sensitive capacity can reach to 6.47 × 10-20 F at the bandwidth of 60 Hz. The measuring range is ± 200°/s and the nonlinearity is 310 ppm. The output noise density is 5.8^\\circ/({{h}}\\cdot \\sqrt{{Hz}}). The angular random walk (allen-variance) is 0.092^\\circ/\\sqrt{{{h}}} and the bias instability is 2.63°/h. Project supported by the National Natural Science Foundation of China (No. 61204121), the National Hi-Tech Research and Development Program of China (No. 2013AA041107), and the Fundamental Research Funds for the Central Universities (No. HIT.NSRIF.2013040).

  2. An embedded man-machine interface design of full digital resistance welding machine%一种嵌入式全数字化电阻焊机人机界面的设计

    Institute of Scientific and Technical Information of China (English)

    张振法; 王剑; 吴玉香; 田联房

    2012-01-01

    The design of man -machine interface was an important part of the full -digital high -current intermediate -frequency inverter resistance welding machine. For the development needs of current domestic welding machine, a visualization graphical man-machine interaction interface system was designed based on WinCE embedded operating system in the paper. The MFC of EVC++4.0 and SQLite database was used to overall development design and unified management of the welding machine data in the interface system, and it also could communicate with the lower machine DSP via RS232 or network. Extensive testing showed that the interface system could achieve user rights management, multiple welding controller management, basic specifications and parameter settings, spot control and real-time monitoring sampling etc. Also, it could be easy to operate and had powerful function and strong real-time. A new method was provided for the man-machine interface design of welding machine with embedded WinCE system.%人机交互界面设计是全数字化大电流中频逆变电阻焊机研究的一个重要组成部分.针对当前国内电焊机的发展需求,设计了一款基于WinCE嵌入式操作系统的可视化图形人杌交互界面系统.该界面系统采用EVC++4.0中的MFC进行总体开发设计,利用数椐库SQLite对焊机数据进行统一管理,并能通过RS232或网络与下位机DSP进行通信.通过大量的测试表明,界面能很好地实现焊机用户权限管理、多焊机控制器管理、基本规范与参数设置、打点控制及实时监控采样等功能,操作方便、功能强大、实时性强.采用嵌入式WinCE系统,为电焊杌人机界面的设计提供了一种新方法.

  3. Performance Measurement for Brain-Computer or Brain-Machine Interfaces: A Tutorial

    Science.gov (United States)

    Thompson, David E.; Quitadamo, Lucia R.; Mainardi, Luca; Laghari, Khalil ur Rehman; Gao, Shangkai; Kindermans, Pieter-Jan; Simeral, John D.; Fazel-Rezai, Reza; Matteucci, Matteo; Falk, Tiago H.; Bianchi, Luigi; Chestek, Cynthia A.; Huggins, Jane E.

    2014-01-01

    Objective Brain-Computer Interfaces (BCIs) have the potential to be valuable clinical tools. However, the varied nature of BCIs, combined with the large number of laboratories participating in BCI research, makes uniform performance reporting difficult. To address this situation, we present a tutorial on performance measurement in BCI research. Approach A workshop on this topic was held at the 2013 International BCI Meeting at Asilomar Conference Center in Pacific Grove, California. This manuscript contains the consensus opinion of the workshop members, refined through discussion in the following months and the input of authors who were unable to attend the workshop. Main Results Checklists for methods reporting were developed for both discrete and continuous BCIs. Relevant metrics are reviewed for different types of BCI research, with notes on their application to encourage uniform application between laboratories. Significance Graduate students and other researchers new to BCI research may find this tutorial a helpful introduction to performance measurement in the field. PMID:24838070

  4. A strain-absorbing design for tissue-machine interfaces using a tunable adhesive gel

    Science.gov (United States)

    Lee, Sungwon; Inoue, Yusuke; Kim, Dongmin; Reuveny, Amir; Kuribara, Kazunori; Yokota, Tomoyuki; Reeder, Jonathan; Sekino, Masaki; Sekitani, Tsuyoshi; Abe, Yusuke; Someya, Takao

    2014-12-01

    To measure electrophysiological signals from the human body, it is essential to establish stable, gentle and nonallergic contacts between the targeted biological tissue and the electrical probes. However, it is difficult to form a stable interface between the two for long periods, especially when the surface of the biological tissue is wet and/or the tissue exhibits motion. Here we resolve this difficulty by designing and fabricating smart, stress-absorbing electronic devices that can adhere to wet and complex tissue surfaces and allow for reliable, long-term measurements of vital signals. We demonstrate a multielectrode array, which can be attached to the surface of a rat heart, resulting in good conformal contact for more than 3 h. Furthermore, we demonstrate arrays of highly sensitive, stretchable strain sensors using a similar design. Ultra-flexible electronics with enhanced adhesion to tissue could enable future applications in chronic in vivo monitoring of biological signals.

  5. 数控系统及其人机界面的新进展%New progress in numerical control system and human-machine interface

    Institute of Scientific and Technical Information of China (English)

    张曙

    2014-01-01

    数控系统是机床的大脑,人机界面是机床数控系统的重要组成部分,是人与机器交互的主要渠道,它对机床的智能化、易操作性和加工效率有很大的影响。因此,采用图形化的信息提示、图形化的软键和多点触控屏幕的人机界面已成为智能化数控系统重要特征。介绍了德马吉森精机公司的CELOS人机界面,杭州友佳精密机械有限公司的FETROL M1000数控系统的人机界面,日本马扎克第7代MAZATROL数控系统的功能和人机界面。%The numerical control system is the brain of a machine tool .The man-machine interface is an impor-tant part of the machine tool numerical control system , has a great influence to machine tool intelligent and oper-ability of machining efficiency .The application of the graphical information prompt , graphical and multi-touch screen for man-machine interface are important intelligent CNC system features .It introduces CELOS human -machine interface in FETROL M1000 system of DMG MORI Company in Hangzhou Youjia Precision Machinery limited company and seventh generation MAZATROL CNC System in Japanese MAZAK Co .

  6. Interface

    DEFF Research Database (Denmark)

    Computerens interface eller grænseflade har spredt sig overalt. Mobiltelefoner, spilkonsoller, pc'er og storskærme indeholder computere – men computere indbygges også i tøj og andre hverdagslige genstande, så vi konstant har adgang til digitale data. Interface retter fokus mod, hvordan den digitale...... kunst og kultur skabes, spredes og opleves igennem interfaces. Forfatterne undersøger og diskuterer interfacets æstetik, ideologi og kultur – og analyserer aktuel interfacekunst på tværs af musik, kunst, litteratur og film. Bogen belyser interfacets oprindelse i den kolde krigs laboratorier og dets...

  7. BMI and Lifetime Changes in BMI and Cancer Mortality Risk

    NARCIS (Netherlands)

    Taghizadeh, Niloofar; Boezen, H Marike; Schouten, Jan P; Schröder, Carolien P; de Vries, Elisabeth G. E.; Vonk, Judith M

    2015-01-01

    Body Mass Index (BMI) is known to be associated with cancer mortality, but little is known about the link between lifetime changes in BMI and cancer mortality in both males and females. We studied the association of BMI measurements (at baseline, highest and lowest BMI during the study-period) and

  8. A scalable soldier-machine interface for human-robotic interaction

    Science.gov (United States)

    Samples, Brian A.

    2007-04-01

    As part of the Crew-Automated and integration Testbed (CAT) Advanced Technology Objective (ATO), the US Army Tank-automotive and Armaments Research, Development, and Engineering Center (TARDEC) developed crew stations that provided soldiers the ability to control both manned and unmanned vehicles. The crew stations were designed to optimize soldier workload and provide the ability to conduct mission planning, route planning, reconnaissance, surveillance, and target acquisition (RSTA), and fire control capabilities. The crew station software is fully configurable, portable (between crew stations), and interoperable with one another. However, the software architecture was optimized for the specific computing platform utilized by each crew station and user interfaces were hard coded. Current CAT crew station capabilities are required to execute on other crew station configurations as well as handheld devices to meet the needs of expanded soldier roles, including dismounted infantry. TARDEC is currently exploring ways to develop a scalable software architecture that is able to adapt to the physical characteristics of differing computing platforms and devices. In addition, based upon a soldier's role, the software must be able to adapt and optimize the displays based upon individual soldier needs. And finally, the software must be capable of applying a unique style to the presentation of information to the soldier. Future programs require more robust software architectures that take these requirements into account. This paper will describe how scalable software architectures can be designed to address each of these unique requirements.

  9. Man-machine interface system for neuromuscular training and evaluation based on EMG and MMG signals.

    Science.gov (United States)

    de la Rosa, Ramon; Alonso, Alonso; Carrera, Albano; Durán, Ramon; Fernández, Patricia

    2010-01-01

    This paper presents the UVa-NTS (University of Valladolid Neuromuscular Training System), a multifunction and portable Neuromuscular Training System. The UVa-NTS is designed to analyze the voluntary control of severe neuromotor handicapped patients, their interactive response, and their adaptation to neuromuscular interface systems, such as neural prostheses or domotic applications. Thus, it is an excellent tool to evaluate the residual muscle capabilities in the handicapped. The UVa-NTS is composed of a custom signal conditioning front-end and a computer. The front-end electronics is described thoroughly as well as the overall features of the custom software implementation. The software system is composed of a set of graphical training tools and a processing core. The UVa-NTS works with two classes of neuromuscular signals: the classic myoelectric signals (MES) and, as a novelty, the myomechanic signals (MMS). In order to evaluate the performance of the processing core, a complete analysis has been done to classify its efficiency and to check that it fulfils with the real-time constraints. Tests were performed both with healthy and selected impaired subjects. The adaptation was achieved rapidly, applying a predefined protocol for the UVa-NTS set of training tools. Fine voluntary control was demonstrated to be reached with the myoelectric signals. And the UVa-NTS demonstrated to provide a satisfactory voluntary control when applying the myomechanic signals.

  10. Man-Machine Interface System for Neuromuscular Training and Evaluation Based on EMG and MMG Signals

    Directory of Open Access Journals (Sweden)

    Patricia Fernández

    2010-12-01

    Full Text Available This paper presents the UVa-NTS (University of Valladolid Neuromuscular Training System, a multifunction and portable Neuromuscular Training System. The UVa-NTS is designed to analyze the voluntary control of severe neuromotor handicapped patients, their interactive response, and their adaptation to neuromuscular interface systems, such as neural prostheses or domotic applications. Thus, it is an excellent tool to evaluate the residual muscle capabilities in the handicapped. The UVa-NTS is composed of a custom signal conditioning front-end and a computer. The front-end electronics is described thoroughly as well as the overall features of the custom software implementation. The software system is composed of a set of graphical training tools and a processing core. The UVa-NTS works with two classes of neuromuscular signals: the classic myoelectric signals (MES and, as a novelty, the myomechanic signals (MMS. In order to evaluate the performance of the processing core, a complete analysis has been done to classify its efficiency and to check that it fulfils with the real-time constraints. Tests were performed both with healthy and selected impaired subjects. The adaptation was achieved rapidly, applying a predefined protocol for the UVa-NTS set of training tools. Fine voluntary control was demonstrated to be reached with the myoelectric signals. And the UVa-NTS demonstrated to provide a satisfactory voluntary control when applying the myomechanic signals.

  11. A realistic implementation of ultrasound imaging as a human-machine interface for upper-limb amputees

    Directory of Open Access Journals (Sweden)

    David eSierra González

    2013-10-01

    Full Text Available In the past years, especially with the advent of multi-fingered hand prostheses, the rehabilitation robotics community has tried to improve the use of human-machine interfaces to reliably control mechanical artifacts with many degrees of freedom. Ideally, the control schema should be intuitive and reliable, and the calibration (training short and flexible.This work focuses on medical ultrasound imaging as such an interface. Medical ultrasound imaging is rich in information, fast, widespread, relatively cheap and provides high temporal/spatial resolution; moreover, it is harmless. We already showed that a linear relationship exists between ultrasound image features of the human forearm and the hand kinematic configuration; here we demonstrate that such a relationship also exists between similar features and fingertip forces. An experiment with 10 participants shows that a very fast data collection, namely of zero and maximum forces only and using no force sensors, suffices to train a system that predicts intermediate force values spanning a range of about 20N per finger with average errors in the range 10-15%.This training approach, in which the ground truth is limited to an 'on-off' visual stimulus, constitutes a realistic scenario and we claim that it could be equally used by intact subjects and amputees. The linearity of the relationship between images and forces is furthermore exploited to build an incremental learning system that works online and can be retrained on demand by the human subject. We expect this system to be able in principle to reconstruct an amputee's imaginary limb, and act as a sensible improvement of, e.g., mirror therapy, in the treatment of phantom-limb pain.

  12. On Usability of ECDIS Human-machine Interface%ECDIS 人机界面的可用性研究

    Institute of Scientific and Technical Information of China (English)

    王太航; 郑彭军

    2015-01-01

    运用基于任务的 KLM 模型,对 ECDIS 人机界面的2种常见设计方案(基于单文档和基于对话框)执行特定任务所需的操作用时进行了理论预测,然后通过实际测试检验理论预测结果的准确性,进而比较这2种设计方案执行相同特定任务的效率。%Usability is a key indicator to evaluate Human-machine interface (HMI). ECDIS is a typical HMI for e-Navigation. In order to improve the usability of ECDIS HMI, it is necessary to conduct usability test and evaluation. The paper uses the method called Keystroke-level model (KLM) to investigate the time spent on executing typical navigation operations using two common design schemes, which are based on single document and dialog box. In this report, the accuracy of the theoretical prediction is tested against the actual test results, and the efficiency of the two design schemes is compared. The results are expected to provide technical insights for the usability of ECDIS and design of HMI.

  13. A semi-supervised support vector machine approach for parameter setting in motor imagery-based brain computer interfaces

    Science.gov (United States)

    Long, Jinyi; Yu, Zhuliang

    2010-01-01

    Parameter setting plays an important role for improving the performance of a brain computer interface (BCI). Currently, parameters (e.g. channels and frequency band) are often manually selected. It is time-consuming and not easy to obtain an optimal combination of parameters for a BCI. In this paper, motor imagery-based BCIs are considered, in which channels and frequency band are key parameters. First, a semi-supervised support vector machine algorithm is proposed for automatically selecting a set of channels with given frequency band. Next, this algorithm is extended for joint channel-frequency selection. In this approach, both training data with labels and test data without labels are used for training a classifier. Hence it can be used in small training data case. Finally, our algorithms are applied to a BCI competition data set. Our data analysis results show that these algorithms are effective for selection of frequency band and channels when the training data set is small. PMID:21886673

  14. A Hardware-Efficient Scalable Spike Sorting Neural Signal Processor Module for Implantable High-Channel-Count Brain Machine Interfaces.

    Science.gov (United States)

    Yang, Yuning; Boling, Sam; Mason, Andrew J

    2017-08-01

    Next-generation brain machine interfaces demand a high-channel-count neural recording system to wirelessly monitor activities of thousands of neurons. A hardware efficient neural signal processor (NSP) is greatly desirable to ease the data bandwidth bottleneck for a fully implantable wireless neural recording system. This paper demonstrates a complete multichannel spike sorting NSP module that incorporates all of the necessary spike detector, feature extractor, and spike classifier blocks. To meet high-channel-count and implantability demands, each block was designed to be highly hardware efficient and scalable while sharing resources efficiently among multiple channels. To process multiple channels in parallel, scalability analysis was performed, and the utilization of each block was optimized according to its input data statistics and the power, area and/or speed of each block. Based on this analysis, a prototype 32-channel spike sorting NSP scalable module was designed and tested on an FPGA using synthesized datasets over a wide range of signal to noise ratios. The design was mapped to 130 nm CMOS to achieve 0.75 μW power and 0.023 mm(2) area consumptions per channel based on post synthesis simulation results, which permits scalability of digital processing to 690 channels on a 4×4 mm(2) electrode array.

  15. Human Factors Evaluation of Man-Machine Interface for Periodic Safety Review of Yonggwang Unit no. 1, 2

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Hee; Lee, Jung Woon; Park, Jae Chang (and others)

    2006-01-15

    This report describes the research results of human factors assessment on the MMI(Man Machine Interface) equipment as part of Periodic Safety Review(PSR) of Yonggwang Unit no. 1, 2. As MMI is a key factor among human factors to be reviewed in PSR, we reviewed the MMI components of nuclear power plants in aspect of human factors engineering. The availability, suitability, and effectiveness of the MMI devices were chosen to be reviewed. The MMI devices were investigated through the review of design documents related to the MMI, survey of control panels, evaluation of experts, and experimental assessment. Checklists were used to perform this assessment and record the review results. The items mentioned by the expert comments to review in detail in relation with task procedures were tested by experiments with operators' participation. For some questionable issues arisen during this MMI review, operator workload and possibility of errors in operator actions were analysed. The reviewed MMI devices contain MCR(Main Control Room), SPDS(Safety Parameter Display System), RSP(Remote Shutdown Panel), and the selected LCBs(Local Control Boards) importantly related to safety. As results of the assessments, any significant problem challenging the safety was not found on human factors in the MMI devices. However, several small items to be changed and improved in suitability of MMI devices were discovered. An action plan is recommended to accommodate the suggestions and review comments. It will enhance the plant safety on MMI area.

  16. Optimal space-time precoding of artificial sensory feedback through mutichannel microstimulation in bi-directional brain-machine interfaces

    Science.gov (United States)

    Daly, John; Liu, Jianbo; Aghagolzadeh, Mehdi; Oweiss, Karim

    2012-12-01

    Brain-machine interfaces (BMIs) aim to restore lost sensorimotor and cognitive function in subjects with severe neurological deficits. In particular, lost somatosensory function may be restored by artificially evoking patterns of neural activity through microstimulation to induce perception of tactile and proprioceptive feedback to the brain about the state of the limb. Despite an early proof of concept that subjects could learn to discriminate a limited vocabulary of intracortical microstimulation (ICMS) patterns that instruct the subject about the state of the limb, the dynamics of a moving limb are unlikely to be perceived by an arbitrarily-selected, discrete set of static microstimulation patterns, raising questions about the generalization and the scalability of this approach. In this work, we propose a microstimulation protocol intended to activate optimally the ascending somatosensory pathway. The optimization is achieved through a space-time precoder that maximizes the mutual information between the sensory feedback indicating the limb state and the cortical neural response evoked by thalamic microstimulation. Using a simplified multi-input multi-output model of the thalamocortical pathway, we show that this optimal precoder can deliver information more efficiently in the presence of noise compared to suboptimal precoders that do not account for the afferent pathway structure and/or cortical states. These results are expected to enhance the way microstimulation is used to induce somatosensory perception during sensorimotor control of artificial devices or paralyzed limbs.

  17. Driver-passenger collaboration as a basis for human-machine interface design for vehicle navigation systems.

    Science.gov (United States)

    Antrobus, Vicki; Burnett, Gary; Krehl, Claudia

    2017-03-01

    Human Factors concerns exist with vehicle navigation systems, particularly relating to the effects of current Human-Machine Interfaces (HMIs) on driver disengagement from the environment. A road study was conducted aiming to provide initial input for the development of intelligent HMIs for in-vehicle systems, using the traditional collaborative navigation relationship between the driver and passenger to inform future design. Sixteen drivers navigated a predefined route in the city of Coventry, UK with the assistance of an existing vehicle navigation system (SatNav), whereas a further 16 followed the navigational prompts of a passenger who had been trained along the same route. Results found that there were no significant differences in the number of navigational errors made on route for the two different methods. However, drivers utilising a collaborative navigation approach had significantly better landmark and route knowledge than their SatNav counterparts. Analysis of individual collaborative transcripts revealed the large individual differences in descriptor use by passengers and reference to environmental landmarks, illustrating the potential for the replacement of distance descriptors in vehicle navigation systems. Results are discussed in the context of future HMIs modelled on a collaborative navigation relationship. Practitioner Summary: Current navigation systems have been associated with driver environmental disengagement, this study uses an on-road approach to look at how the driver-passenger collaborative relationship and dialogue can inform future navigation HMI design. Drivers navigating with passenger assistance demonstrated enhanced landmark and route knowledge over drivers navigating with a SatNav.

  18. Implications of the Dependence of Neuronal Activity on Neural Network States for the Design of Brain-Machine Interfaces.

    Science.gov (United States)

    Panzeri, Stefano; Safaai, Houman; De Feo, Vito; Vato, Alessandro

    2016-01-01

    Brain-machine interfaces (BMIs) can improve the quality of life of patients with sensory and motor disabilities by both decoding motor intentions expressed by neural activity, and by encoding artificially sensed information into patterns of neural activity elicited by causal interventions on the neural tissue. Yet, current BMIs can exchange relatively small amounts of information with the brain. This problem has proved difficult to overcome by simply increasing the number of recording or stimulating electrodes, because trial-to-trial variability of neural activity partly arises from intrinsic factors (collectively known as the network state) that include ongoing spontaneous activity and neuromodulation, and so is shared among neurons. Here we review recent progress in characterizing the state dependence of neural responses, and in particular of how neural responses depend on endogenous slow fluctuations of network excitability. We then elaborate on how this knowledge may be used to increase the amount of information that BMIs exchange with brain. Knowledge of network state can be used to fine-tune the stimulation pattern that should reliably elicit a target neural response used to encode information in the brain, and to discount part of the trial-by-trial variability of neural responses, so that they can be decoded more accurately.

  19. Implications of the dependence of neuronal activity on neural network states for the design of brain-machine interfaces

    Directory of Open Access Journals (Sweden)

    Stefano ePanzeri

    2016-04-01

    Full Text Available Brain-machine interfaces (BMIs can improve the quality of life of patients with sensory and motor disabilities by both decoding motor intentions expressed by neural activity, and by encoding artificially sensed information into patterns of neural activity elicited by causal interventions on the neural tissue. Yet, current BMIs can exchange relatively small amounts of information with the brain. This problem has proved difficult to overcome by simply increasing the number of recording or stimulating electrodes, because trial-to-trial variability of neural activity partly arises from intrinsic factors (collectively known as the network state that include ongoing spontaneous activity and neuromodulation, and so is shared among neurons. Here we review recent progress in characterizing the state dependence of neural responses, and in particular of how neural responses depend on endogenous slow fluctuations of network excitability. We then elaborate on how this knowledge may be used to increase the amount of information that BMIs exchange with brains. Knowledge of network state can be used to fine-tune the stimulation pattern that should reliably elicit a target neural response used to encode information in the brain, and to discount part of the trial-by-trial variability of neural responses, so that they can be decoded more accurately.

  20. MoTiV. Subproject: Man-Machine-Interface (MMI). Final report; Mobilitaet und Transport im intermodalen Verkehr (MoTiV). Teilprojekt: Man-Machine-Interface (MMI) - Sicherheit im Strassenverkehr. Projektabschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Ruehl, H.W. [VDO Car Communication, Wetzlar (Germany)

    2000-09-01

    The program Motiv was initiated to solve or reduce the problems related to the continuously rising traffic density. The subproject Man-Machine-Interface (MMI) aimed at: - Common specification and collection of speech databases - development of robust methods to recognize speech in the automotive environment - adaptation of voice operated MMIs to the car environment - study of driver behaviour in traffic critical situations - study of driver acceptance and behaviour for new functions and services - development of objective methods to measure safety of use for automotive user interfaces - improvement of a method for objective visibility range estimation. Extensive studies were executed to validate distraction criteria for interaction with displays and control devices. Interaction concepts with improved traffic safety were designed and tested. New measuring technologies and tools were designed. In parallel, practical implementations of e.g. voice controlled MMIs were developed and tested in the field. The project met its goals. Two companies developed new automotive speech recognisers, two demonstrators for a voice controlled automotive MMI were developed. Five speech databases were collected and distributed within the consortium. For speech recognition API and estimation of visibility range, standards and standardisation proposals were achieved. Two tools with different scope to measure safety and ease of use for user interface designs were developed and iteratively improved. Studies on driver behaviour in critical situations will help to improve design guidelines for automotive user interfaces. (orig.) [German] Das MOTIV Programm wurde initiiert, um die Probleme, die das kontinuierlich ansteigende Verkehrsaufkommen auf Verkehrsfluss, Sicherheit und Umwelt hat, zu mindern oder zu loesen. Das vorliegende Teilprojekt Mensch-Maschine-Schnittstelle (MMI) hatte folgende Ziele: - Gemeinsame Spezifikation und Sammlung von Sprachdatenbasen - Entwicklung von robusten

  1. Data management and communication networks for man-machine interface system in Korea Advanced LIquid MEtal Reactor : Its functionality and design requirements

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Kyung Ho; Park, Gun Ok; Suh, Sang Moon; Kim, Jang Yeol; Kwon, Kee Choon [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    The DAta management and COmmunication NETworks(DACONET), which it is designed as a subsystem for Man-Machine Interface System of Korea Advanced LIquid MEtal Reactor (KALIMER MMIS) and advanced design concept is approached, is described. The DACONET has its roles of providing the real-time data transmission and communication paths between MMIS systems, providing the quality data for protection, monitoring and control of KALIMER and logging the static and dynamic behavioral data during KALIMER operation. The DACONET is characterized as the distributed real-time system architecture with high performance. Future direction, in which advanced technology is being continually applied to Man-Machine Interface System development of Nuclear Power Plants, will be considered for designing data management and communication networks of KALIMER MMIS. 9 refs., 1 fig. (Author)

  2. Design and implementation of human-machine dialogue interface circuit%人机对话接口电路设计与实现

    Institute of Scientific and Technical Information of China (English)

    徐伟业; 宋宇飞; 纪贤宝; 虞湘宾

    2009-01-01

    语音是人类交往的重要手段,当被应用在电子系统中关键的一点就是人机界面要良好.文中就语音或其他音频信号的人机交互设计了一种实用、良好的接口电路,该电路可以应用到不同的语音智能控制系统中.%Voice is a very important way in human-communication. Excellent human-machine interface becomes a key point in electronic system. A practical and good human-machine interface circuit is designed for voice or other audio signals in this paper. Besides, this circuit can be applied in different voice intelligent control system.

  3. Social Robots, Brain Machine Interfaces and Neuro/Cognitive Enhancers: Three Emerging Science and Technology Products through the Lens of Technology Acceptance Theories, Models and Frameworks

    Directory of Open Access Journals (Sweden)

    Gregor Wolbring

    2013-06-01

    Full Text Available Social robotics, brain machine interfaces and neuro and cognitive enhancement products are three emerging science and technology products with wide-reaching impact for disabled and non-disabled people. Acceptance of ideas and products depend on multiple parameters and many models have been developed to predict product acceptance. We investigated which frequently employed technology acceptance models (consumer theory, innovation diffusion model, theory of reasoned action, theory of planned behaviour, social cognitive theory, self-determination theory, technology of acceptance model, Unified Theory of Acceptance and Use of Technology UTAUT and UTAUT2 are employed in the social robotics, brain machine interfaces and neuro and cognitive enhancement product literature and which of the core measures used in the technology acceptance models are implicit or explicit engaged with in the literature.

  4. interfaces

    Directory of Open Access Journals (Sweden)

    Dipayan Sanyal

    2005-01-01

    macroscopic conservation equations with an order parameter which can account for the solid, liquid, and the mushy zones with the help of a phase function defined on the basis of the liquid fraction, the Gibbs relation, and the phase diagram with local approximations. Using the above formalism for alloy solidification, the width of the diffuse interface (mushy zone was computed rather accurately for iron-carbon and ammonium chloride-water binary alloys and validated against experimental data from literature.

  5. Social Robots, Brain Machine Interfaces and Neuro/Cognitive Enhancers: Three Emerging Science and Technology Products through the Lens of Technology Acceptance Theories, Models and Frameworks

    OpenAIRE

    Gregor Wolbring; Lucy Diep; Sophya Yumakulov; Natalie Ball; Dean Yergens

    2013-01-01

    Social robotics, brain machine interfaces and neuro and cognitive enhancement products are three emerging science and technology products with wide-reaching impact for disabled and non-disabled people. Acceptance of ideas and products depend on multiple parameters and many models have been developed to predict product acceptance. We investigated which frequently employed technology acceptance models (consumer theory, innovation diffusion model, theory of reasoned action, theory of planned beh...

  6. Alpha band functional connectivity correlates with the performance of brain-machine interfaces to decode real and imagined movements

    Directory of Open Access Journals (Sweden)

    Hisato eSugata

    2014-08-01

    Full Text Available Brain signals recorded from the primary motor cortex (M1 are known to serve a significant role in coding the information brain-machine interfaces (BMIs need to perform real and imagined movements, and also to form several functional networks with motor association areas. However, whether functional networks between M1 and other brain regions, such as these motor association areas, are related to performance of BMIs is unclear. To examine the relationship between functional connectivity and performance of BMIs, we analyzed the correlation coefficient between performance of neural decoding and functional connectivity over the whole brain using magnetoencephalography. Ten healthy participants were instructed to execute or imagine three simple right upper limb movements. To decode the movement type, we extracted 40 virtual channels in the left M1 via the beamforming approach, and used them as a decoding feature. In addition, seed-based functional connectivities of activities in the alpha band during real and imagined movements were calculated using imaginary coherence. Seed voxels were set as the same virtual channels in M1. After calculating the imaginary coherence in individuals, the correlation coefficient between decoding accuracy and strength of imaginary coherence was calculated over the whole brain. The significant correlations were distributed mainly to motor association areas for both real and imagined movements. These regions largely overlapped with brain regions that had significant connectivity to M1. Our results suggest that use of the strength of functional connectivity between M1 and motor association areas has the potential to improve the performance of BMIs to perform real and imagined movements.

  7. Message passing interface and multithreading hybrid for parallel molecular docking of large databases on petascale high performance computing machines.

    Science.gov (United States)

    Zhang, Xiaohua; Wong, Sergio E; Lightstone, Felice C

    2013-04-30

    A mixed parallel scheme that combines message passing interface (MPI) and multithreading was implemented in the AutoDock Vina molecular docking program. The resulting program, named VinaLC, was tested on the petascale high performance computing (HPC) machines at Lawrence Livermore National Laboratory. To exploit the typical cluster-type supercomputers, thousands of docking calculations were dispatched by the master process to run simultaneously on thousands of slave processes, where each docking calculation takes one slave process on one node, and within the node each docking calculation runs via multithreading on multiple CPU cores and shared memory. Input and output of the program and the data handling within the program were carefully designed to deal with large databases and ultimately achieve HPC on a large number of CPU cores. Parallel performance analysis of the VinaLC program shows that the code scales up to more than 15K CPUs with a very low overhead cost of 3.94%. One million flexible compound docking calculations took only 1.4 h to finish on about 15K CPUs. The docking accuracy of VinaLC has been validated against the DUD data set by the re-docking of X-ray ligands and an enrichment study, 64.4% of the top scoring poses have RMSD values under 2.0 Å. The program has been demonstrated to have good enrichment performance on 70% of the targets in the DUD data set. An analysis of the enrichment factors calculated at various percentages of the screening database indicates VinaLC has very good early recovery of actives.

  8. Toward best practice in Human Machine Interface design for older drivers: A review of current design guidelines.

    Science.gov (United States)

    Young, K L; Koppel, S; Charlton, J L

    2017-09-01

    Older adults are the fastest growing segment of the driving population. While there is a strong emphasis for older people to maintain their mobility, the safety of older drivers is a serious community concern. Frailty and declines in a range of age-related sensory, cognitive, and physical impairments can place older drivers at an increased risk of crash-related injuries and death. A number of studies have indicated that in-vehicle technologies such as Advanced Driver Assistance Systems (ADAS) and In-Vehicle Information Systems (IVIS) may provide assistance to older drivers. However, these technologies will only benefit older drivers if their design is congruent with the complex needs and diverse abilities of this driving cohort. The design of ADAS and IVIS is largely informed by automotive Human Machine Interface (HMI) guidelines. However, it is unclear to what extent the declining sensory, cognitive and physical capabilities of older drivers are addressed in the current guidelines. This paper provides a review of key current design guidelines for IVIS and ADAS with respect to the extent they address age-related changes in functional capacities. The review revealed that most of the HMI guidelines do not address design issues related to older driver impairments. In fact, in many guidelines driver age and sensory cognitive and physical impairments are not mentioned at all and where reference is made, it is typically very broad. Prescriptive advice on how to actually design a system so that it addresses the needs and limitations of older drivers is not provided. In order for older drivers to reap the full benefits that in-vehicle technology can afford, it is critical that further work establish how older driver limitations and capabilities can be supported by the system design process, including their inclusion into HMI design guidelines. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Coupling brain-machine interfaces with cortical stimulation for brain-state dependent stimulation: enhancing motor cortex excitability for neurorehabilitation

    Directory of Open Access Journals (Sweden)

    Alireza eGharabaghi

    2014-03-01

    Full Text Available Motor recovery after stroke is an unsolved challenge despite intensive rehabilitation training programs. Brain stimulation techniques have been explored in addition to traditional rehabilitation training to increase the excitability of the stimulated motor cortex. This modulation of cortical excitability augments the response to afferent input during motor exercises, thereby enhancing skilled motor learning by long-term potentiation-like plasticity. Recent approaches examined brain stimulation applied concurrently with voluntary movements to induce more specific use-dependent neural plasticity during motor training for neurorehabilitation. Unfortunately, such approaches are not applicable for the many severely affected stroke patients lacking residual hand function. These patients require novel activity-dependent stimulation paradigms based on intrinsic brain activity. Here, we report on such brain state-dependent stimulation (BSDS combined with haptic feedback provided by a robotic hand orthosis. Transcranial magnetic stimulation of the motor cortex and haptic feedback to the hand were controlled by sensorimotor desynchronization during motor-imagery and applied within a brain-machine interface environment in one healthy subject and one patient with severe hand paresis in the chronic phase after stroke. BSDS significantly increased the excitability of the stimulated motor cortex in both healthy and post-stroke conditions, an effect not observed in non-BSDS protocols. This feasibility study suggests that closing the loop between intrinsic brain state, cortical stimulation and haptic feedback provides a novel neurorehabilitation strategy for stroke patients lacking residual hand function, a proposal that warrants further investigation in a larger cohort of stroke patients.

  10. Human-Machine Interfaces

    Science.gov (United States)

    1993-07-31

    smaller than those found in other runs. In all bias results, there was an edge effect due to the experimental paradigm: since responses were limited to...aforementioned edge effect (subjects heard sources farther off-center than they were except for the leftmost and ri ’ihtmost positions). Results from Run 5a...results for Experiment F, shown in Fig. 14, show the expected pattern of results. While the edge effect for Experiment F reduces the size of the

  11. Base on KingView 6.53 for Automated Box Assemble Machine Human Machine Interface%基于KingVieW6.53的全自动药板装盒机人机界面设计

    Institute of Scientific and Technical Information of China (English)

    边娟鸽

    2011-01-01

    The dissertation introduces the human-machine interface of the Automated Box Assemble Machine. The interface is designed by using of KingView 6.53. The interface is very friendly and convenient to operate. Through it, signals are acquired and alarms are analyzed. Parameters are set. It can monitor parameters for dynamic management and print statements. It can realize the scene real-time monitoring and record data. It is flexible.%文章介绍了采用组态王KingView 6.53设计的药板装盒机人机界面.界面设计友好,便于操作,具有信号采集、预报警分析、参数设置等功能,能对各种监控参数进行动态管理和报表自动生成及打印,实现了现场数据实时监控与记录,而且运行灵活.

  12. 浅析人机交互界面“显性”版式设计%On the "Dominant" Format Design of Man-machine Interface

    Institute of Scientific and Technical Information of China (English)

    耿凌艳

    2011-01-01

    The man-machine interface is an emerging carrier of information communication,the media between virtual environment and people,and the point of penetration in which the clients sense and operate computer technology.The "dominant" format design of man-machine interface aims at making people grasp well the operation menu and mode between people and machine technology.Their models must strictly be followed so that the meaning can be understood,the process of interface can be clear and simple,the work process can be understandable,and anyone can make use of new-model interface,receive and convey information just depending on their existing common sense.%人机交互界面是新兴的信息传播的承载物,是虚拟环境与人之间的媒介,界面是用户感知、操作计算机技术的切入点。人机交互界面的"显性"版式设计的目的便是使得人们掌控这个处于人与机器技术之间精通机器运作菜单和模式的操作。必须严格按照它们的模式办事,说它们能听懂的话,才能使一切交互过程都变得简单明了,工作流程简单易懂,任何人都可以仅仅依靠已有的常识,有效率地使用新型界面,接收与传达信息。

  13. The Two-Brains Hypothesis: Towards a guide for brain-brain and brain-machine interfaces.

    Science.gov (United States)

    Goodman, G; Poznanski, R R; Cacha, L; Bercovich, D

    2015-09-01

    -brain, brain-computer and brain-robot engineering. As they grow even closer, these disciplines involve their own unique complexities, including direction by the laws of inductive physics. So the novel TBH hypothesis has wide fundamental implications, including those related to TMS. These require rethinking and renewed research engaging the fully complementary equivalence of mutual magnetic and electric field induction in the CNS and, within this context, a new mathematics of the brain to decipher higher cognitive operations not possible with current brain-brain and brain-machine interfaces. Bohr may now rest.

  14. Brain versus Machine Control.

    Directory of Open Access Journals (Sweden)

    Jose M Carmena

    2004-12-01

    Full Text Available Dr. Octopus, the villain of the movie "Spiderman 2", is a fusion of man and machine. Neuroscientist Jose Carmena examines the facts behind this fictional account of a brain- machine interface

  15. Comprehensive Evaluation of Aircraft Cockpit Human-machine Interface%飞机驾驶舱人机界面综合评估

    Institute of Scientific and Technical Information of China (English)

    徐海玉; 张安; 汤志荔; 陈斌

    2012-01-01

    为了解决飞机驾驶舱人机界面综合评估的问题,构建了一个综合评估模型.提出了一种基于改进层次分析法的评估方法.首先,通过指标建立流程构建了评估指标体系,然后通过加入专家自我评估表将不同专家的评估结果组合,最后通过某型飞机驾驶舱人机界面仿真平台进行评估验证.评估结果表明:该模型合理,评估方法简单有效,并且该方法适用于和飞机驾驶舱人机界面类似复杂系统的综合评估.%In order to solve comprehensive evaluation problem about aircraft cockpit human-machine interface, a comprehensive evaluation have been established and put forward an assessment methodology based on improved analytic hierarchy process (IAHP). At first, according to the flow diagram, an assessing index system was built up. Then, many different experts' assessment results were combined on the basis of expert self-assessment charts. At last, the methodology mentioned above was test on X aircraft cockpit man-machine interface simulation platform. The test result demonstrates that the model is reasonable and the methodology is effective, which is suitable for those complex systems assessment similar to aircraft cockpit man-machine interface.

  16. A Prototyping Environment for Research on Human-Machine Interfaces in Process Control: Use of Microsoft WPF for Microworld and Distributed Control System Development

    Energy Technology Data Exchange (ETDEWEB)

    Roger Lew; Ronald L. Boring; Thomas A. Ulrich

    2014-08-01

    Operators of critical processes, such as nuclear power production, must contend with highly complex systems, procedures, and regulations. Developing human-machine interfaces (HMIs) that better support operators is a high priority for ensuring the safe and reliable operation of critical processes. Human factors engineering (HFE) provides a rich and mature set of tools for evaluating the performance of HMIs, but the set of tools for developing and designing HMIs is still in its infancy. Here we propose that Microsoft Windows Presentation Foundation (WPF) is well suited for many roles in the research and development of HMIs for process control.

  17. The Control of Man-machine Interface System Input Module%人机界面系统输入模块的控制方法

    Institute of Scientific and Technical Information of China (English)

    冯文颖

    2012-01-01

    The article describes a resistive touch screen as system input of the touch man-machine interface system based on MCU P89C51, and introduces the structure, operation methods and interface circuit design of 8x15 determinant resistive touch screen. The control method is described in detail.%介绍了一种基于P89C51单片机的触摸式人机界面系统中作为系统输入的电阻触摸屏,介绍了8x15行列式电阻触摸屏的结构、工作方式及接口电路的设计,并详细介绍了控制方法。

  18. Human-Machine Interface for the Control of Multi-Function Systems Based on Electrocutaneous Menu: Application to Multi-Grasp Prosthetic Hands.

    Directory of Open Access Journals (Sweden)

    Jose Gonzalez-Vargas

    Full Text Available Modern assistive devices are very sophisticated systems with multiple degrees of freedom. However, an effective and user-friendly control of these systems is still an open problem since conventional human-machine interfaces (HMI cannot easily accommodate the system's complexity. In HMIs, the user is responsible for generating unique patterns of command signals directly triggering the device functions. This approach can be difficult to implement when there are many functions (necessitating many command patterns and/or the user has a considerable impairment (limited number of available signal sources. In this study, we propose a novel concept for a general-purpose HMI where the controller and the user communicate bidirectionally to select the desired function. The system first presents possible choices to the user via electro-tactile stimulation; the user then acknowledges the desired choice by generating a single command signal. Therefore, the proposed approach simplifies the user communication interface (one signal to generate, decoding (one signal to recognize, and allows selecting from a number of options. To demonstrate the new concept the method was used in one particular application, namely, to implement the control of all the relevant functions in a state of the art commercial prosthetic hand without using any myoelectric channels. We performed experiments in healthy subjects and with one amputee to test the feasibility of the novel approach. The results showed that the performance of the novel HMI concept was comparable or, for some outcome measures, better than the classic myoelectric interfaces. The presented approach has a general applicability and the obtained results point out that it could be used to operate various assistive systems (e.g., prosthesis vs. wheelchair, or it could be integrated into other control schemes (e.g., myoelectric control, brain-machine interfaces in order to improve the usability of existing low

  19. Human-Machine Interface for the Control of Multi-Function Systems Based on Electrocutaneous Menu: Application to Multi-Grasp Prosthetic Hands.

    Science.gov (United States)

    Gonzalez-Vargas, Jose; Dosen, Strahinja; Amsuess, Sebastian; Yu, Wenwei; Farina, Dario

    2015-01-01

    Modern assistive devices are very sophisticated systems with multiple degrees of freedom. However, an effective and user-friendly control of these systems is still an open problem since conventional human-machine interfaces (HMI) cannot easily accommodate the system's complexity. In HMIs, the user is responsible for generating unique patterns of command signals directly triggering the device functions. This approach can be difficult to implement when there are many functions (necessitating many command patterns) and/or the user has a considerable impairment (limited number of available signal sources). In this study, we propose a novel concept for a general-purpose HMI where the controller and the user communicate bidirectionally to select the desired function. The system first presents possible choices to the user via electro-tactile stimulation; the user then acknowledges the desired choice by generating a single command signal. Therefore, the proposed approach simplifies the user communication interface (one signal to generate), decoding (one signal to recognize), and allows selecting from a number of options. To demonstrate the new concept the method was used in one particular application, namely, to implement the control of all the relevant functions in a state of the art commercial prosthetic hand without using any myoelectric channels. We performed experiments in healthy subjects and with one amputee to test the feasibility of the novel approach. The results showed that the performance of the novel HMI concept was comparable or, for some outcome measures, better than the classic myoelectric interfaces. The presented approach has a general applicability and the obtained results point out that it could be used to operate various assistive systems (e.g., prosthesis vs. wheelchair), or it could be integrated into other control schemes (e.g., myoelectric control, brain-machine interfaces) in order to improve the usability of existing low-bandwidth HMIs.

  20. State-Dependent Decoding Algorithms Improve the Performance of a Bidirectional BMI in Anesthetized Rats.

    Science.gov (United States)

    De Feo, Vito; Boi, Fabio; Safaai, Houman; Onken, Arno; Panzeri, Stefano; Vato, Alessandro

    2017-01-01

    Brain-machine interfaces (BMIs) promise to improve the quality of life of patients suffering from sensory and motor disabilities by creating a direct communication channel between the brain and the external world. Yet, their performance is currently limited by the relatively small amount of information that can be decoded from neural activity recorded form the brain. We have recently proposed that such decoding performance may be improved when using state-dependent decoding algorithms that predict and discount the large component of the trial-to-trial variability of neural activity which is due to the dependence of neural responses on the network's current internal state. Here we tested this idea by using a bidirectional BMI to investigate the gain in performance arising from using a state-dependent decoding algorithm. This BMI, implemented in anesthetized rats, controlled the movement of a dynamical system using neural activity decoded from motor cortex and fed back to the brain the dynamical system's position by electrically microstimulating somatosensory cortex. We found that using state-dependent algorithms that tracked the dynamics of ongoing activity led to an increase in the amount of information extracted form neural activity by 22%, with a consequently increase in all of the indices measuring the BMI's performance in controlling the dynamical system. This suggests that state-dependent decoding algorithms may be used to enhance BMIs at moderate computational cost.

  1. Decoding of top-down cognitive processing for SSVEP-controlled BMI

    Science.gov (United States)

    Min, Byoung-Kyong; Dähne, Sven; Ahn, Min-Hee; Noh, Yung-Kyun; Müller, Klaus-Robert

    2016-11-01

    We present a fast and accurate non-invasive brain-machine interface (BMI) based on demodulating steady-state visual evoked potentials (SSVEPs) in electroencephalography (EEG). Our study reports an SSVEP-BMI that, for the first time, decodes primarily based on top-down and not bottom-up visual information processing. The experimental setup presents a grid-shaped flickering line array that the participants observe while intentionally attending to a subset of flickering lines representing the shape of a letter. While the flickering pixels stimulate the participant’s visual cortex uniformly with equal probability, the participant’s intention groups the strokes and thus perceives a ‘letter Gestalt’. We observed decoding accuracy of 35.81% (up to 65.83%) with a regularized linear discriminant analysis; on average 2.05-fold, and up to 3.77-fold greater than chance levels in multi-class classification. Compared to the EEG signals, an electrooculogram (EOG) did not significantly contribute to decoding accuracies. Further analysis reveals that the top-down SSVEP paradigm shows the most focalised activation pattern around occipital visual areas; Granger causality analysis consistently revealed prefrontal top-down control over early visual processing. Taken together, the present paradigm provides the first neurophysiological evidence for the top-down SSVEP BMI paradigm, which potentially enables multi-class intentional control of EEG-BMIs without using gaze-shifting.

  2. Design of Human-Machine Interface System of High Frequency Inverter Spot Welding%高频逆变点焊人机交互系统的设计

    Institute of Scientific and Technical Information of China (English)

    邱祁; 朱燕丛

    2013-01-01

    Aiming at high frequency inverter spot welding, a human-machine interface system, SCM ADuC812 as the main chip is designed to realize the setting, modification and storage for welding parameters. The panel is set based on the inverter spot welding current and welding technology. The each stage of current wave is controlled by LED and key easily. Then welding current is controlled by the setting. It proves that the human-machine interface system is stable, easy-input and strong anti-interference ability.%针对高频逆变点焊电源,设计了以单片机ADuC812为核心的人机交互系统.该系统能实现焊接工艺参数的设置、修改、保存.根据逆变点焊电流波形及焊接工艺设置了面板外观,能够非常明确简单地设置焊接电流各阶段波形,控制焊接输出.实用证明,该系统运行稳定可靠,输入方便,抗干扰能力强.

  3. The reported incidence of man-machine interface issues in Army aviators using the Aviator's Night Vision System (ANVIS) in a combat theatre

    Science.gov (United States)

    Hiatt, Keith L.; Rash, Clarence E.

    2011-06-01

    Background: Army Aviators rely on the ANVIS for night operations. Human factors literature notes that the ANVIS man-machine interface results in reports of visual and spinal complaints. This is the first study that has looked at these issues in the much harsher combat environment. Last year, the authors reported on the statistically significant (p89,000 flight hours of which >22,000 were with ANVIS) participated. Analysis demonstrated high complaints of almost all levels of back and neck pain. Additionally, the use of body armor and other Aviation Life Support Equipment (ALSE) caused significant ergonomic complaints when used with ANVIS. Conclusions: ANVIS use in a combat environment resulted in higher and different types of reports of spinal symptoms and other man-machine interface issues over what was previously reported. Data from this study may be more operationally relevant than that of the peacetime literature as it is derived from actual combat and not from training flights, and it may have important implications about making combat predictions based on performance in training scenarios. Notably, Aircrew remarked that they could not execute the mission without ANVIS and ALSE and accepted the degraded ergonomic environment.

  4. A hybrid brain interface for a humanoid robot assistant.

    Science.gov (United States)

    Finke, Andrea; Knoblauch, Andreas; Koesling, Hendrik; Ritter, Helge

    2011-01-01

    We present an advanced approach towards a semi-autonomous, robotic personal assistant for handicapped people. We developed a multi-functional hybrid brain-robot interface that provides a communication channel between humans and a state-of-the-art humanoid robot, Honda's Humanoid Research Robot. Using cortical signals, recorded, processed and translated by an EEG-based brain-machine interface (BMI), human-robot interaction functions independently of users' motor control deficits. By exploiting two distinct cortical activity patterns, P300 and event-related desynchronization (ERD), the interface provides different dimensions for robot control. An empirical study demonstrated the functionality of the BMI guided humanoid robot. All participants could successfully control the robot that accomplished a shopping task.

  5. Biomimetic Olfactory Sensing System Based on Brain-Machine Interface and Olfactory Decoding%基于脑-机接口和嗅觉解码的仿生气味识别系统

    Institute of Scientific and Technical Information of China (English)

    董琪; 秦臻; 胡靓; 庄柳静; 张斌; 王平

    2015-01-01

    Mammalian olfactory systems have merits of higher sensitivity, selectivity and faster response than current electronic nose systems based on chemical sensor array in odor recognition. The purpose of this study is to develop a biomimetic olfactory sensing system based on brain-machine interface technology for odor detection in vivo electrophysiological measurements of olfactory bulb. In this work, extracellular potentials of mitral/tufted cells in olfactory bulb were recorded by implanted 16-channel microwire electrode arrays. The odor-evoked response signals were analyzed. We found that neural activities of different neurons showed visible different firing patterns in both temporal features and rate features when stimulated by different small molecular odorants. Odors were classified by an algorithm based on population vector similarity and support vector machine. The results suggest that the novel bioelectonic nose is sensitive to odorant stimuli. With the development of BMI and olfactory decoding methods, we believe that this system will represent emerging and promising platforms for wide applications in medical diagnosis and security fields.%为了探讨利用生物嗅觉传感系统进行气味识别的可行性,提出了一种基于脑-机接口的仿生气味识别系统。该系统利用大鼠嗅觉感受细胞作为气味敏感传感单元,使用16通道植入式微丝电极记录和分析具有气味刺激特征的嗅球僧帽细胞电位响应信号。实验结果显示,该系统对气味具有高度敏感性,通过一定模式识别处理算法,不同的气味刺激具有较好的区分性,证明了该系统有望应用于气味的检测和识别。

  6. 基于干电极的头带式射频无线脑-机接口系统%A Dry electrode based headband radio frequency wireless brain-machine interface system

    Institute of Scientific and Technical Information of China (English)

    郭凯; 裴为华; 王宇; 许冰; 归强; 李晓倩; 杨宇; 刘剑; 陈弘达

    2012-01-01

    研发了一种采用干电极的脑-机接口系统,此系统克服了现有脑机接口用脑电信号采集及信号处理系统笨重而不便于携带的缺点.此系统采用半导体微加工工艺制作的“干”电极作为采集脑电信号的电极,佩戴方便且能长时间使用.整个便携式脑机接口系统在脑电信号采集、处理和传输三个方面都采用了利于便携的设计,信号处理采用专用的集成电路,信号的采集和处理端与信号接收端采用射频芯片收发数据.整个系统的重量只有39g.该脑-机接口系统以人体的专注程度作为控制外部设备的控制信号,经过训练的受试者可以通过脑电信号实现对机器的控制.%A new portable wireless brain-machine interface (BMI) system was designed and fabricated using the techin-que of dry electrode. The dry electrode was used in this system to record Electroencephalography (EEG) , and it was fabricated using the standard micromachining techniques so it is easy to wear. The system was composed of the three parts of signal recording, processing and transmission. Electroencephalography was recorded by the dry electrode , and was amplified, processed by using the application specific integrate circuit ( ASIC) , and the processed signal waw transmitted to the receiver by the wireless module. The EEG recording and processing module weighs 39g only. The system can be used to obtain the attention amplitude of the testees, and those trained testees could have the ability to control the machine through the EEG signal.

  7. BMI and lifetime changes in BMI and cancer mortality risk.

    Science.gov (United States)

    Taghizadeh, Niloofar; Boezen, H Marike; Schouten, Jan P; Schröder, Carolien P; Elisabeth de Vries, E G; Vonk, Judith M

    2015-01-01

    Body Mass Index (BMI) is known to be associated with cancer mortality, but little is known about the link between lifetime changes in BMI and cancer mortality in both males and females. We studied the association of BMI measurements (at baseline, highest and lowest BMI during the study-period) and lifetime changes in BMI (calculated over different time periods (i.e. short time period: annual change in BMI between successive surveys, long time period: annual change in BMI over the entire study period) with mortality from any cancer, and lung, colorectal, prostate and breast cancer in a large cohort study (n=8,645. Vlagtwedde-Vlaardingen, 1965-1990) with a follow-up on mortality status on December 31st 2008. We used multivariate Cox regression models with adjustments for age, smoking, sex, and place of residence. Being overweight at baseline was associated with a higher risk of prostate cancer mortality (hazard ratio (HR) =2.22; 95% CI 1.19-4.17). Obesity at baseline was associated with a higher risk of any cancer mortality [all subjects (1.23 (1.01-1.50)), and females (1.40 (1.07-1.84))]. Chronically obese females (females who were obese during the entire study-period) had a higher risk of mortality from any cancer (2.16 (1.47-3.18), lung (3.22 (1.06-9.76)), colorectal (4.32 (1.53-12.20)), and breast cancer (2.52 (1.15-5.54)). We found no significant association between long-term annual change in BMI and cancer mortality risk. Both short-term annual increase and decrease in BMI were associated with a lower mortality risk from any cancer [all subjects: (0.67 (0.47-0.94)) and (0.73 (0.55-0.97)), respectively]. In conclusion, a higher BMI is associated with a higher cancer mortality risk. This study is the first to show that short-term annual changes in BMI were associated with lower mortality from any type of cancer.

  8. BMI and lifetime changes in BMI and cancer mortality risk.

    Directory of Open Access Journals (Sweden)

    Niloofar Taghizadeh

    Full Text Available Body Mass Index (BMI is known to be associated with cancer mortality, but little is known about the link between lifetime changes in BMI and cancer mortality in both males and females. We studied the association of BMI measurements (at baseline, highest and lowest BMI during the study-period and lifetime changes in BMI (calculated over different time periods (i.e. short time period: annual change in BMI between successive surveys, long time period: annual change in BMI over the entire study period with mortality from any cancer, and lung, colorectal, prostate and breast cancer in a large cohort study (n=8,645. Vlagtwedde-Vlaardingen, 1965-1990 with a follow-up on mortality status on December 31st 2008. We used multivariate Cox regression models with adjustments for age, smoking, sex, and place of residence. Being overweight at baseline was associated with a higher risk of prostate cancer mortality (hazard ratio (HR =2.22; 95% CI 1.19-4.17. Obesity at baseline was associated with a higher risk of any cancer mortality [all subjects (1.23 (1.01-1.50, and females (1.40 (1.07-1.84]. Chronically obese females (females who were obese during the entire study-period had a higher risk of mortality from any cancer (2.16 (1.47-3.18, lung (3.22 (1.06-9.76, colorectal (4.32 (1.53-12.20, and breast cancer (2.52 (1.15-5.54. We found no significant association between long-term annual change in BMI and cancer mortality risk. Both short-term annual increase and decrease in BMI were associated with a lower mortality risk from any cancer [all subjects: (0.67 (0.47-0.94 and (0.73 (0.55-0.97, respectively]. In conclusion, a higher BMI is associated with a higher cancer mortality risk. This study is the first to show that short-term annual changes in BMI were associated with lower mortality from any type of cancer.

  9. [Training cortical signals by means of a BMI-EEG system, its evolution and intervention. A case report].

    Science.gov (United States)

    Monge-Pereira, E; Casatorres Perez-Higueras, I; Fernandez-Gonzalez, P; Ibanez-Pereda, J; Serrano, J I; Molina-Rueda, F

    2017-04-16

    Introduccion. En los ultimos años estan incorporandose nuevas tecnologias en el tratamiento fisioterapeutico de pacientes con ictus, como las interfaces cerebro-maquina –brain-machine interface (BMI)–, capaces de detectar la intencion de movimiento analizando las señales corticales por medio de diferentes tecnicas, como la electroencefalografia (EEG). Estas señales se traducen en comandos con el fin de realizar una funcion. Caso clinico. Varon de 40 años con ictus de dos meses de evolucion, en el cual se empleo un dispositivo BMI-EEG. La intencion de movimiento del sujeto se analizo calculando la desincronizacion relacionada con el evento. La funcion motora del miembro superior fue evaluada con la escala de Fugl-Meyer, y el nivel de satisfaccion del paciente, mediante el cuestionario QUEST 2.0. La intervencion se llevo a cabo sin dificultad siendo el fisioterapeuta la interfaz. Conclusiones. Los sistemas BMI-EEG detectan cambios corticales en un sujeto con ictus subagudo. Estos cambios son coherentes con los cambios observados en escalas clinicas.

  10. Structural health monitoring for bolt loosening via a non-invasive vibro-haptics human-machine cooperative interface

    Science.gov (United States)

    Pekedis, Mahmut; Mascerañas, David; Turan, Gursoy; Ercan, Emre; Farrar, Charles R.; Yildiz, Hasan

    2015-08-01

    For the last two decades, developments in damage detection algorithms have greatly increased the potential for autonomous decisions about structural health. However, we are still struggling to build autonomous tools that can match the ability of a human to detect and localize the quantity of damage in structures. Therefore, there is a growing interest in merging the computational and cognitive concepts to improve the solution of structural health monitoring (SHM). The main object of this research is to apply the human-machine cooperative approach on a tower structure to detect damage. The cooperation approach includes haptic tools to create an appropriate collaboration between SHM sensor networks, statistical compression techniques and humans. Damage simulation in the structure is conducted by releasing some of the bolt loads. Accelerometers are bonded to various locations of the tower members to acquire the dynamic response of the structure. The obtained accelerometer results are encoded in three different ways to represent them as a haptic stimulus for the human subjects. Then, the participants are subjected to each of these stimuli to detect the bolt loosened damage in the tower. Results obtained from the human-machine cooperation demonstrate that the human subjects were able to recognize the damage with an accuracy of 88 ± 20.21% and response time of 5.87 ± 2.33 s. As a result, it is concluded that the currently developed human-machine cooperation SHM may provide a useful framework to interact with abstract entities such as data from a sensor network.

  11. 基于SPI的金属探测器人机界面系统设计%Human-machine interface design of metal detector based on SPI

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    According to the problem of the Human-machine Interface design from metal detector, human ma-chine interface display system of metal detector has been designed in this paper, which uses SPI communica-tion protocol as the core. Point of this paper is the study of the communication protocol SPI between metal lo-cator DSP and MCU. Hardware circuit and software design of the human machine interface system has been studied. In the existence of mineral, the system circuit is verified. The experiment indicates that the MCU can accurately read data which is sent from DSP by SPI protocol, meanwhile turns the data into Chinese characters thus displays them on the LCD screen when the DSP is running in high speed;besides, it is also proved that the system can not only detect percent of metal in the mineral, the accurateness and the anti-interference perfor-mance is also high, the result reach the expected goals.%针对金属探测器人机界面问题,设计了以SPI(串行外围设备接口)协议为核心的金属探测器人机界面显示系统。重点研究了金属探测器DSP和单片机之间的通信协议SPI,详细介绍了金属探测器人机界面显示系统的硬件电路和软件设计。本文针对矿石存在与否两种情况对设计的系统进行了实验验证。实验结果表明,在DSP高速运行时,单片机通过SPI协议能够准确地读取DSP发送的数据,同时在很短时间内将数据转换为中文信息显示在金属探测器人机界面。本文设计的系统不仅能够检测矿石中存在的金属,还具有较高的检测精度和抗干扰性。

  12. System and Software Design for the Man Machine Interface System for Shin-Hanul Nuclear Power Plant Units 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Woong Seock; Kim, Chang Ho; Lee, Yoon Hee; Sohn, Se Do; Baek, Seung Min [KEPCO E and C, Daejeon (Korea, Republic of)

    2015-10-15

    The design of the safety MMIS(Man Machine Interface System) system has been performed using POSAFE-Q Programmable Logic Controller (PLC). The design of the non-safety MMIS has been performed using OPERASYSTEM Distributed Control System (DCS). This paper describes the design experiences from the design work of the MMIS using these new platforms. The SHN 1 and 2 MMIS has been developed using POSAFE-Q platform for safety and OPERASYSTEM for non-safety system. Through the utilization of the standardized platform, the safety system was developed using the above hardware and software blocks resulting in efficient safety system development. An integrated CASE tool has been setup for reliable software development. The integrated development environment has been setup formally resulting in consistent work. Even we have setup integrated development environment, the independent verification and validation including testing environment needs to be setup for more advanced environment which will be used for future plant.

  13. Design of the Man-machine Interface Used in Photovoltaic Grid-connected Inverter%光伏并网逆变器人机界面设计

    Institute of Scientific and Technical Information of China (English)

    余峰; 张志华; 张鹏; 梁星星

    2011-01-01

    Abstract: In this paper, the technology of the soft and the hardware used in photovoltaic grid-connected inverter is stated. The man-machine interface collects parameter of running state, and transfers data to upper computer monitor system. The designs of%本文阐述了用于光伏并网逆变器的人机界面的软硬件设计技术。该人机界面的主要功能是对系统的运行参数进行采集和监控,并向上位机上传数据。并详细介绍了液晶显示、触摸屏及通讯接口的设计。

  14. A washable, stretchable, and self-powered human-machine interfacing Triboelectric nanogenerator for wireless communications and soft robotics pressure sensor arrays

    KAUST Repository

    Ahmed, Abdelsalam

    2017-01-20

    Flexible and stretchable human-machine Interfacing devices have attracted great attention due to the need for portable, ergonomic, and geometrically compatible devices in the new era of computer technology. Triboelectric nanogenerators (TENG) have shown promising potential for self-powered human–machine interacting devices. In this paper, a flexible, stretchable and self-powered keyboard is developed based on vertical contact-separation mode TENG. The keyboard is fabricated using urethane, silicone rubbers and Carbon Nanotubes (CNTs) electrodes. The structure shows a highly flexible, stretchable, and mechanically durable behavior, which can be conformal on different surfaces. The keyboard is capable of converting mechanical energy of finger tapping to electrical energy based on contact electrification, which can eliminate the need of external power source. The device can be utilized for wireless communication with computers owing to the self-powering mechanism. The keyboards also demonstrate consistent behavior in generating voltage signals regardless of touching objects’ materials and environmental effects like humidity. In addition, the proposed system can be used for keystroke dynamic-based authentication. Therefore, highly secured accessibility to the computers can be achieved owing to the keyboard’s high sensitivity and accurate selectivity of different users.

  15. Effect of the crown design and interface lute parameters on the stress-state of a machined crown-tooth system: a finite element analysis.

    Science.gov (United States)

    Shahrbaf, Shirin; vanNoort, Richard; Mirzakouchaki, Behnam; Ghassemieh, Elaheh; Martin, Nicolas

    2013-08-01

    The effect of preparation design and the physical properties of the interface lute on the restored machined ceramic crown-tooth complex are poorly understood. The aim of this work was to determine, by means of three-dimensional finite element analysis (3D FEA) the effect of the tooth preparation design and the elastic modulus of the cement on the stress state of the cemented machined ceramic crown-tooth complex. The three-dimensional structure of human premolar teeth, restored with adhesively cemented machined ceramic crowns, was digitized with a micro-CT scanner. An accurate, high resolution, digital replica model of a restored tooth was created. Two preparation designs, with different occlusal morphologies, were modeled with cements of 3 different elastic moduli. Interactive medical image processing software (mimics and professional CAD modeling software) was used to create sophisticated digital models that included the supporting structures; periodontal ligament and alveolar bone. The generated models were imported into an FEA software program (hypermesh version 10.0, Altair Engineering Inc.) with all degrees of freedom constrained at the outer surface of the supporting cortical bone of the crown-tooth complex. Five different elastic moduli values were given to the adhesive cement interface 1.8GPa, 4GPa, 8GPa, 18.3GPa and 40GPa; the four lower values are representative of currently used cementing lutes and 40GPa is set as an extreme high value. The stress distribution under simulated applied loads was determined. The preparation design demonstrated an effect on the stress state of the restored tooth system. The cement elastic modulus affected the stress state in the cement and dentin structures but not in the crown, the pulp, the periodontal ligament or the cancellous and cortical bone. The results of this study suggest that both the choice of the preparation design and the cement elastic modulus can affect the stress state within the restored crown

  16. Summary of Human-Machine Interface Usability Testing and Evaluation Research%人机界面可用性测试与评估研究综述

    Institute of Scientific and Technical Information of China (English)

    王波; 盛金根; 李永建

    2012-01-01

    介绍并评述人机界面可用性的定义、可用性测试与评估的指标及方法。学术界对于可用性的内涵已基本达成共识,但大多针对不同界面选取不同的测试与评估指标及权重,测试与评估方法也大都停留于主观评价,还未能深入探讨用户与系统交互过程中的内在心理机制。%Introduces and appraises the definition of human-machine/computer interface usability, evaluation index and methods of usability. Academic field has reached an agreement on the connotation of usability, but the usability evaluation mostly choose different index and weight aimming at different interface, and the evaluation methods still stay at subjective evaluation, which hasn't go deep into the user's internal psychology mechanism when they interact with system.

  17. FwWebViewPlus: integration of web technologies into WinCC OA based Human-Machine Interfaces at CERN

    Science.gov (United States)

    Golonka, Piotr; Fabian, Wojciech; Gonzalez-Berges, Manuel; Jasiun, Piotr; Varela-Rodriguez, Fernando

    2014-06-01

    The rapid growth in popularity of web applications gives rise to a plethora of reusable graphical components, such as Google Chart Tools and JQuery Sparklines, implemented in JavaScript and run inside a web browser. In the paper we describe the tool that allows for seamless integration of web-based widgets into WinCC Open Architecture, the SCADA system used commonly at CERN to build complex Human-Machine Interfaces. Reuse of widely available widget libraries and pushing the development efforts to a higher abstraction layer based on a scripting language allow for significant reduction in maintenance of the code in multi-platform environments compared to those currently used in C++ visualization plugins. Adequately designed interfaces allow for rapid integration of new web widgets into WinCC OA. At the same time, the mechanisms familiar to HMI developers are preserved, making the use of new widgets "native". Perspectives for further integration between the realms of WinCC OA and Web development are also discussed.

  18. Body-Machine Interface Enables People With Cervical Spinal Cord Injury to Control Devices With Available Body Movements: Proof of Concept.

    Science.gov (United States)

    Abdollahi, Farnaz; Farshchiansadegh, Ali; Pierella, Camilla; Seáñez-González, Ismael; Thorp, Elias; Lee, Mei-Hua; Ranganathan, Rajiv; Pedersen, Jessica; Chen, David; Roth, Elliot; Casadio, Maura; Mussa-Ivaldi, Ferdinando

    2017-05-01

    This study tested the use of a customized body-machine interface (BoMI) for enhancing functional capabilities in persons with cervical spinal cord injury (cSCI). The interface allows people with cSCI to operate external devices by reorganizing their residual movements. This was a proof-of-concept phase 0 interventional nonrandomized clinical trial. Eight cSCI participants wore a custom-made garment with motion sensors placed on the shoulders. Signals derived from the sensors controlled a computer cursor. A standard algorithm extracted the combinations of sensor signals that best captured each participant's capacity for controlling a computer cursor. Participants practiced with the BoMI for 24 sessions over 12 weeks performing 3 tasks: reaching, typing, and game playing. Learning and performance were evaluated by the evolution of movement time, errors, smoothness, and performance metrics specific to each task. Through practice, participants were able to reduce the movement time and the distance from the target at the 1-second mark in the reaching task. They also made straighter and smoother movements while reaching to different targets. All participants became faster in the typing task and more skilled in game playing, as the pong hit rate increased significantly with practice. The results provide proof-of-concept for the customized BoMI as a means for people with absent or severely impaired hand movements to control assistive devices that otherwise would be manually operated.

  19. Research on Evaluation Method about Handing Performance of Man-machine Interface of Weapons%武器装备人机界面操控性评价方法研究

    Institute of Scientific and Technical Information of China (English)

    汪汇川; 解维河; 赵勇

    2013-01-01

    针对武器装备人机界面操控性难以有效评价的问题,提出人机界面操控易用性的评价指标,利用信息距离对易用性进行分析,并建立武器装备人机界面易用性的评估模型,并通过实例进行武器装备易用性评价分析,为武器装备人机界面操控性设计优化及检验标准的制定提供了指导.%For the problem about evaluation of man-machine interface's handing performance of weapons, the ease-to-use performance indicators is maked, the ease-to-use performance is analyzed by the distance of information-state transition, weapons'man-machine interface assessment model is established, the method is demonstrated by the practical example, to provide a reference for the optimization of handing performance of man-machine interface and the development of standards about the handing performance of man-machine interface of weapons.

  20. An assisted navigation training framework based on judgment theory using sparse and discrete human-machine interfaces.

    Science.gov (United States)

    Lopes, Ana C; Nunes, Urbano

    2009-01-01

    This paper aims to present a new framework to train people with severe motor disabilities steering an assisted mobile robot (AMR), such as a powered wheelchair. Users with high level of motor disabilities are not able to use standard HMIs, which provide a continuous command signal (e. g. standard joystick). For this reason HMIs providing a small set of simple commands, which are sparse and discrete in time must be used (e. g. scanning interface, or brain computer interface), making very difficult to steer the AMR. In this sense, the assisted navigation training framework (ANTF) is designed to train users driving the AMR, in indoor structured environments, using this type of HMIs. Additionally it provides user characterization on steering the robot, which will later be used to adapt the AMR navigation system to human competence steering the AMR. A rule-based lens (RBL) model is used to characterize users on driving the AMR. Individual judgment performance choosing the best manoeuvres is modeled using a genetic-based policy capturing (GBPC) technique characterized to infer non-compensatory judgment strategies from human decision data. Three user models, at three different learning stages, using the RBL paradigm, are presented.

  1. Controlling Assistive Machines in Paralysis Using Brain Waves and Other Biosignals

    Directory of Open Access Journals (Sweden)

    Paulo Rogério de Almeida Ribeiro

    2013-01-01

    Full Text Available The extent to which humans can interact with machines significantly enhanced through inclusion of speech, gestures, and eye movements. However, these communication channels depend on a functional motor system. As many people suffer from severe damage of the motor system resulting in paralysis and inability to communicate, the development of brain-machine interfaces (BMI that translate electric or metabolic brain activity into control signals of external devices promises to overcome this dependence. People with complete paralysis can learn to use their brain waves to control prosthetic devices or exoskeletons. However, information transfer rates of currently available noninvasive BMI systems are still very limited and do not allow versatile control and interaction with assistive machines. Thus, using brain waves in combination with other biosignals might significantly enhance the ability of people with a compromised motor system to interact with assistive machines. Here, we give an overview of the current state of assistive, noninvasive BMI research and propose to integrate brain waves and other biosignals for improved control and applicability of assistive machines in paralysis. Beside introducing an example of such a system, potential future developments are being discussed.

  2. The neuroergonomic evaluation of human machine interface design in air traffic control using behavioral and EGG/ERP measures.

    Science.gov (United States)

    Giraudet, L; Imbert, J-P; Bérenger, M; Tremblay, S; Causse, M

    2015-11-01

    The Air Traffic Control (ATC) environment is complex and safety-critical. Whilst exchanging information with pilots, controllers must also be alert to visual notifications displayed on the radar screen (e.g., warning which indicates a loss of minimum separation between aircraft). Under the assumption that attentional resources are shared between vision and hearing, the visual interface design may also impact the ability to process these auditory stimuli. Using a simulated ATC task, we compared the behavioral and neural responses to two different visual notification designs--the operational alarm that involves blinking colored "ALRT" displayed around the label of the notified plane ("Color-Blink"), and the more salient alarm involving the same blinking text plus four moving yellow chevrons ("Box-Animation"). Participants performed a concurrent auditory task with the requirement to react to rare pitch tones. P300 from the occurrence of the tones was taken as an indicator of remaining attentional resources. Participants who were presented with the more salient visual design showed better accuracy than the group with the suboptimal operational design. On a physiological level, auditory P300 amplitude in the former group was greater than that observed in the latter group. One potential explanation is that the enhanced visual design freed up attentional resources which, in turn, improved the cerebral processing of the auditory stimuli. These results suggest that P300 amplitude can be used as a valid estimation of the efficiency of interface designs, and of cognitive load more generally. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Combining BMI stimulation and mathematical modeling for acute stroke recovery and neural repair

    Directory of Open Access Journals (Sweden)

    Sara L Gonzalez Andino

    2011-07-01

    Full Text Available Rehabilitation is a neural plasticity-exploiting approach that forces undamaged neural circuits to undertake the functionality of other circuits damaged by stroke. It aims to partial restoration of the neural functions by circuit remodeling rather than by the regeneration of damaged circuits. The core hypothesis of the present paper is that - in stroke - Brain Machine Interfaces can be designed to target neural repair instead of rehabilitation. To support this hypothesis we first review existing evidence on the role of endogenous or externally applied electric fields on all processes involved in CNS repair. We then describe our own results to illustrate the neuroprotective and neuroregenerative effects of BMI- electrical stimulation on sensory deprivation-related degenerative processes of the CNS. Finally, we discuss three of the crucial issues involved in the design of neural repair-oriented BMIs: when to stimulate, where to stimulate and - the particularly important but unsolved issue of - how to stimulate. We argue that optimal parameters for the electrical stimulation can be determined from studying and modeling the dynamics of the electric fields that naturally emerge at the central and peripheral nervous system during spontaneous healing in both, experimental animals and human patients. We conclude that a closed-loop BMI that defines the optimal stimulation parameters from a priori developed experimental models of the dynamics of spontaneous repair and the on-line monitoring of neural activity might place BMIs as an alternative or complement to stem-cell transplantation or pharmacological approaches, intensively pursued nowadays.

  4. The association between BMI and mortality using offspring BMI as an indicator of own BMI: large intergenerational mortality study

    OpenAIRE

    Davey Smith, George; Sterne, Jonathan AC; Fraser, Abigail; Tynelius, Per; Lawlor, Debbie A; Rasmussen, Finn

    2009-01-01

    Objectives To obtain valid estimates of the association between body mass index (BMI) and mortality by using offspring BMI as an instrumental variable for own BMI. Design Cohort study based on record linkage, with 50 years of follow-up for mortality. Associations of offspring BMI with all cause and cause specific maternal and paternal mortality were estimated as hazard ratios per standard deviation of offspring BMI. Setting A large intergenerational prospective population based database cover...

  5. 一种新的人机界面—PUIs%A New Kind of Human-machine Interface-PUIs

    Institute of Scientific and Technical Information of China (English)

    江潋; 周曼丽

    2001-01-01

    长期以来,图形用户界面(GUIs)一直是人机交互(HCI)的主流平台.GUI风格的交互让用户使用计算机时更为方便,尤其对于办公自动化应用.然而,随着人们使用计算机方式的变化以及计算任务种类和数量的大量增加,GUIs已经很难实现满足用户需求所必需的所有交互形式.为了适应更多更广的情况,人们需要一种更自然、更直观、能自适应、更易为人们接受的界面形式.于是,感知用户界面(PUIs-Perceptual User Interfaces)成为人机界面中的新热点,其主要目的是使人机交互更像人与人之间的交互以及人与世界的交互.本文介绍了蓬勃发展的PUI领域,然后简要介绍了三个基于视觉技术的实际系统.

  6. A Human-machine-interface Integrating Low-cost Sensors with a Neuromuscular Electrical Stimulation System for Post-stroke Balance Rehabilitation.

    Science.gov (United States)

    Kumar, Deepesh; Das, Abhijit; Lahiri, Uttama; Dutta, Anirban

    2016-04-12

    A stroke is caused when an artery carrying blood from heart to an area in the brain bursts or a clot obstructs the blood flow to brain thereby preventing delivery of oxygen and nutrients. About half of the stroke survivors are left with some degree of disability. Innovative methodologies for restorative neurorehabilitation are urgently required to reduce long-term disability. The ability of the nervous system to reorganize its structure, function and connections as a response to intrinsic or extrinsic stimuli is called neuroplasticity. Neuroplasticity is involved in post-stroke functional disturbances, but also in rehabilitation. Beneficial neuroplastic changes may be facilitated with non-invasive electrotherapy, such as neuromuscular electrical stimulation (NMES) and sensory electrical stimulation (SES). NMES involves coordinated electrical stimulation of motor nerves and muscles to activate them with continuous short pulses of electrical current while SES involves stimulation of sensory nerves with electrical current resulting in sensations that vary from barely perceivable to highly unpleasant. Here, active cortical participation in rehabilitation procedures may be facilitated by driving the non-invasive electrotherapy with biosignals (electromyogram (EMG), electroencephalogram (EEG), electrooculogram (EOG)) that represent simultaneous active perception and volitional effort. To achieve this in a resource-poor setting, e.g., in low- and middle-income countries, we present a low-cost human-machine-interface (HMI) by leveraging recent advances in off-the-shelf video game sensor technology. In this paper, we discuss the open-source software interface that integrates low-cost off-the-shelf sensors for visual-auditory biofeedback with non-invasive electrotherapy to assist postural control during balance rehabilitation. We demonstrate the proof-of-concept on healthy volunteers.

  7. 核电厂数字化人-机界面特征对人因失误的影响研究%Effects of Digital Human-Machine Interface Characteristics on Human Error in Nuclear Power Plants

    Institute of Scientific and Technical Information of China (English)

    李鹏程; 张力; 戴立操; 黄卫刚

    2011-01-01

    In order to identify the effects of digital human-machine interface characteristics on human error in nuclear power plants, the new characteristics of digital human-machine interface are identified by comparing with the traditional analog control systems in the aspects of the information display, user interface interaction and management, control systems, alarm systems and procedures system, and the negative effects of digital human-machine interface characteristics on human error are identified by field research and interviewing with operators such as increased cognitive load and workload, mode confusion, loss of situation awareness. As to the adverse effects related above, the corresponding prevention and control measures of human errors are provided to support the prevention and minimization of human errors and the optimization of human - machine interface design.%以数字化主控室的现场调研和对操纵员的访谈内容为依据,分别从信息显示、用户界面交互与管理、控制系统、报警系统、规程系统等方面与传统的模拟控制系统进行了比较分析,识别数字化人-机界面新特征.结果显示,数字化人.机界面新特征对人因失误产生的不利影响主要表现为操纵员的认知负荷和操作负荷的增加,容易产生模式混淆、情境意识丧失等方面.针对上述不利的影响,提出了相应的人因失误预防对策,为人因失误的预防和人-机界面的优化设计提供决策支持.

  8. Study and Development of a Simulation System for Dynamic Evaluation on Man-machine Interface Design of Advanced Main Control Rooms of Nuclear Power Plants

    Institute of Scientific and Technical Information of China (English)

    YangXiaojing; ZhouZhiwei; ChenXiaoming; MaYuanle; LiFu; DongYujie; WuWei; OhiTadashi

    2005-01-01

    Since the man-machine interfaces (MMI) of a main control room provide the control platform of a nuclear power plant (NPP),the development of the design quality of MMIs plays a very important role in the operation of a NPP. With the development of digital technology, the development of the advanced main control rooms (AMCRs) has become an inexorable trend. Therefore, the positive and the negative effects of AMCRs on human factors engineering need to be evaluated. For this p~, a simulation system has been studied and developed to quantitatively evaluate a MMI design from the viewpoint of human factors. The simulation system takes advantage of computer simulation technology to simulate an operating process of an interaction between operators and a MMI design under an instruction of an operation procedure of the AMCR of a NPP. Meanwhile, the necessary data are recorded for evaluation. It integrates two editors and one simulator. In the paper, the simulation system is presented in detail. Furthermore, one sample is given to show the results of each of these three subsystems.

  9. The Muscle Sensor for on-site neuroscience lectures to pave the way for a better understanding of brain-machine-interface research.

    Science.gov (United States)

    Koizumi, Amane; Nagata, Osamu; Togawa, Morio; Sazi, Toshiyuki

    2014-01-01

    Neuroscience is an expanding field of science to investigate enigmas of brain and human body function. However, the majority of the public have never had the chance to learn the basics of neuroscience and new knowledge from advanced neuroscience research through hands-on experience. Here, we report that we produced the Muscle Sensor, a simplified electromyography, to promote educational understanding in neuroscience. The Muscle Sensor can detect myoelectric potentials which are filtered and processed as 3-V pulse signals to shine a light bulb and emit beep sounds. With this educational tool, we delivered "On-Site Neuroscience Lectures" in Japanese junior-high schools to facilitate hands-on experience of neuroscientific electrophysiology and to connect their text-book knowledge to advanced neuroscience researches. On-site neuroscience lectures with the Muscle Sensor pave the way for a better understanding of the basics of neuroscience and the latest topics such as how brain-machine-interface technology could help patients with disabilities such as spinal cord injuries.

  10. Numerical simulation of the interface molten metal air in the shot sleeve chambre and mold cavity of a die casting machine

    Science.gov (United States)

    Korti, Abdel Illah Nabil; Abboudi, Said

    2011-11-01

    The objective of this study relates to the numerical simulation of the free surface during the two-dimensional flow and solidification of aluminum in the horizontal cylinder and mold cavity of the high pressure die casting HPDC machine with cold chamber. The flow is governed by the Navier-Stokes equations (the mass and the momentum conservations) and solved in the two phase's liquid aluminum and air. The tracking of the free surface is ensured by the VOF method. The equivalent specific heat method is used to solve the phase change heat transfer problem in the solidification process. Considering the displacement of the plunger, the geometry of the problem is variable and the numerical resolution uses a dynamic grid. The study examines the influence of the plunger speed on the evolution of the interface aluminum liquid-air profile, the mass of air imprisoned and the stream function contours versus time. Filling of a mold is an essential part of HPDC process and affects significantly the heat transfer and solidification of the melt. For this reason, accurate prediction of the temperature field in the system can be achieved only by including simulation of filling in the analysis.

  11. C语言实现可视化人机界面的有效方法%Effective Methods of Realizing Visual Human-machine Interface with C Language

    Institute of Scientific and Technical Information of China (English)

    李刚刚

    2011-01-01

    As a primary structural programming language, C language has extensive applications. The aim of this paper is to solve how to achieve image output and animation through C language. The procedure of output image through setting the graphical mode of computer and installing independent graphical program is illustrated. The xor thinking and specific methods of carrying out easy animation with C language are proposed. The procedure and method of carrying out visual man-machine interface with C language are introduced with practical example.%C语言作为最主要的结构化程序设计语言,应用广泛,如何用C语言实现图像输出以及动画是要解决的问题.通过设置计算机的图形模式到建立独立的图形程序,说明C语言输出图像的过程;提出C语言实现简单动画的异或思路和具体方法.结合实例,给出了C语言实现可视化人机界面的过程和方法.

  12. HUMAN MACHINE INTERFACE (HMI) EVALUATION OF ROOMS TA-50-1-60/60A AT THE RADIOACTIVE LIQUID WASTE TREATMENT FACILITY (RLWTF)

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, Walter E. [Los Alamos National Laboratory; Stender, Kerith K. [Los Alamos National Laboratory

    2012-08-29

    This effort addressed an evaluation of human machine interfaces (HMIs) in Room TA-50-1-60/60A of the Radioactive Liquid Waste Treatment Facility (RLWTF). The evaluation was performed in accordance with guidance outlined in DOE-STD-3009, DOE Standard Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses, 2006 [DOE 2006]. Specifically, Chapter 13 of DOE 2006 highlights the 10 CFR 830, Nuclear Safety Management, 2012, [CFR 2012] and DOE G 421.1-2 [DOE 2001a] requirements as they relate to the human factors process and, in this case, the safety of the RLWTF. The RLWTF is a Hazard Category 3 facility and, consequently, does not have safety-class (SSCs). However, safety-significant SSCs are identified. The transuranic (TRU) wastewater tanks and associated piping are the only safety-significant SSCs in Rooms TA-50-1-60/60A [LANL 2010]. Hence, the human factors evaluation described herein is only applicable to this particular assemblage of tanks and piping.

  13. Improving the separability of motor imagery EEG signals using a cross correlation-based least square support vector machine for brain-computer interface.

    Science.gov (United States)

    Siuly, Siuly; Li, Yan

    2012-07-01

    Although brain-computer interface (BCI) techniques have been developing quickly in recent decades, there still exist a number of unsolved problems, such as improvement of motor imagery (MI) signal classification. In this paper, we propose a hybrid algorithm to improve the classification success rate of MI-based electroencephalogram (EEG) signals in BCIs. The proposed scheme develops a novel cross-correlation based feature extractor, which is aided with a least square support vector machine (LS-SVM) for two-class MI signals recognition. To verify the effectiveness of the proposed classifier, we replace the LS-SVM classifier by a logistic regression classifier and a kernel logistic regression classifier, separately, with the same features extracted from the cross-correlation technique for the classification. The proposed approach is tested on datasets, IVa and IVb of BCI Competition III. The performances of those methods are evaluated with classification accuracy through a 10-fold cross-validation procedure. We also assess the performance of the proposed method by comparing it with eight recently reported algorithms. Experimental results on the two datasets show that the proposed LS-SVM classifier provides an improvement compared to the logistic regression and kernel logistic regression classifiers. The results also indicate that the proposed approach outperforms the most recently reported eight methods and achieves a 7.40% improvement over the best results of the other eight studies.

  14. An Intelligent Man-Machine Interface-Multi-Robot Control Adapted for Task Engagement Based on Single-Trial Detectability of P300.

    Science.gov (United States)

    Kirchner, Elsa A; Kim, Su K; Tabie, Marc; Wöhrle, Hendrik; Maurus, Michael; Kirchner, Frank

    2016-01-01

    Advanced man-machine interfaces (MMIs) are being developed for teleoperating robots at remote and hardly accessible places. Such MMIs make use of a virtual environment and can therefore make the operator immerse him-/herself into the environment of the robot. In this paper, we present our developed MMI for multi-robot control. Our MMI can adapt to changes in task load and task engagement online. Applying our approach of embedded Brain Reading we improve user support and efficiency of interaction. The level of task engagement was inferred from the single-trial detectability of P300-related brain activity that was naturally evoked during interaction. With our approach no secondary task is needed to measure task load. It is based on research results on the single-stimulus paradigm, distribution of brain resources and its effect on the P300 event-related component. It further considers effects of the modulation caused by a delayed reaction time on the P300 component evoked by complex responses to task-relevant messages. We prove our concept using single-trial based machine learning analysis, analysis of averaged event-related potentials and behavioral analysis. As main results we show (1) a significant improvement of runtime needed to perform the interaction tasks compared to a setting in which all subjects could easily perform the tasks. We show that (2) the single-trial detectability of the event-related potential P300 can be used to measure the changes in task load and task engagement during complex interaction while also being sensitive to the level of experience of the operator and (3) can be used to adapt the MMI individually to the different needs of users without increasing total workload. Our online adaptation of the proposed MMI is based on a continuous supervision of the operator's cognitive resources by means of embedded Brain Reading. Operators with different qualifications or capabilities receive only as many tasks as they can perform to avoid mental

  15. Body Mass Index (BMI) Charts (For Parents)

    Science.gov (United States)

    ... on standard growth charts rather than using a universal normal range for BMI as is done with ... the same age. While BMI is an important indicator of healthy growth and development, if you think ...

  16. Brain-state classification and a dual-state decoder dramatically improve the control of cursor movement through a brain-machine interface

    Science.gov (United States)

    Sachs, Nicholas A.; Ruiz-Torres, Ricardo; Perreault, Eric J.; Miller, Lee E.

    2016-02-01

    Objective. It is quite remarkable that brain machine interfaces (BMIs) can be used to control complex movements with fewer than 100 neurons. Success may be due in part to the limited range of dynamical conditions under which most BMIs are tested. Achieving high-quality control that spans these conditions with a single linear mapping will be more challenging. Even for simple reaching movements, existing BMIs must reduce the stochastic noise of neurons by averaging the control signals over time, instead of over the many neurons that normally control movement. This forces a compromise between a decoder with dynamics allowing rapid movement and one that allows postures to be maintained with little jitter. Our current work presents a method for addressing this compromise, which may also generalize to more highly varied dynamical situations, including movements with more greatly varying speed. Approach. We have developed a system that uses two independent Wiener filters as individual components in a single decoder, one optimized for movement, and the other for postural control. We computed an LDA classifier using the same neural inputs. The decoder combined the outputs of the two filters in proportion to the likelihood assigned by the classifier to each state. Main results. We have performed online experiments with two monkeys using this neural-classifier, dual-state decoder, comparing it to a standard, single-state decoder as well as to a dual-state decoder that switched states automatically based on the cursor’s proximity to a target. The performance of both monkeys using the classifier decoder was markedly better than that of the single-state decoder and comparable to the proximity decoder. Significance. We have demonstrated a novel strategy for dealing with the need to make rapid movements while also maintaining precise cursor control when approaching and stabilizing within targets. Further gains can undoubtedly be realized by optimizing the performance of the

  17. Eye tracking evaluation of human-machine interface layout based on Vague set%基于Vague集的人机界面布局眼动追踪评价

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    为了实现准确客观的人机界面布局评价,提出了一种基于Vague集的人机界面布局眼动追踪评价方法.首先,以注视轨迹、注视点数量、注视时间和瞳孔直径四项参数构建了人机界面布局评价指标体系.然后,一方面将定性指标通过不确定语言评价形式转化为Vague数;另一方面基于优属度矩阵求出各布局方案的支持、反对、中立指标集,将定量指标表示为Vague数,共同构建了Vague集评价矩阵.最后,提出基于Vague数距离和优劣点法的评价方法,对人机界面布局方案进行了排序.以石油钻机司钻控制台人机界面布局方案评价为例,验证了该方法的实用性和有效性.%In order to realize accurate and obj ective evaluation of human-machine interface layout, an eye tracking evaluation method of human-machine interface layout based on Vague sets was proposed.First of all,four parameters including track,point of fixation,fixation time,and pupil diameter were taken to build the evaluation index system of human-machine interface layout. Then,on the one hand,the qualitative indexes were transformed into Vague values by uncertain linguistic evaluation form;on the other hand,based on the optimal matrix to obtain the support, oppose and neutral index sets of the layout schemes,the quantitative index would be expressed as Vague values,the Vague set evaluation matrix was built.Finally,the evaluation method based on the distance of Vague values and the optimal and inferior point method were put forward to sort the human-machine interface layout schemes.By taking the human-machine interface layout scheme evaluation of driller console on drilling rig as an example,the practicability and validity of the proposed method was verified.

  18. Man-machine Interface Design for Three Phase Secondary Rectifying Spot Welding Touch Screen%三相次级整流点焊触摸屏人机界面设计

    Institute of Scientific and Technical Information of China (English)

    胡德安; 周勇奇; 陈益平; 缪明学

    2012-01-01

    设计了一种三相次级整流点焊触摸屏人机交互界面,介绍了三相次级整流点焊控制系统结构、触摸屏系统软硬件设计.根据点焊的焊接工艺过程和三相次级整流点焊的特点,通过画图软件CORELDRAW制做了四个触摸屏人机界面,通过触摸屏界面制作软件、串口调试助理软件和程序控制,能方便的对参数进行设置和系统的实时监控.%A three phase secondary rectifying spot welding touch screen man-machine interface was designed, three phase secondary rectifying spot welding control system structure, software and hardware design of touch screen system were introduced. According to the spot welding process and phase secondary rectifying spot welding characteristics, by drawing software CORELDRAW producing four touch screen man-machine interface, by the touch screen interface and manufacturing software, serial debugging assistant software and program control, convenient parameter setting and system monitoring were realized.

  19. The Role of BMI1 in CRPC

    Science.gov (United States)

    2016-10-01

    proteasome inhibitor; NH4Cl and Chloroquine, lysosome inhibitors. MG132 blocked PTC-209 induced AR degradation. (E, F) BMI1 stable knockdown C4-2 and control...performed with indicated antibodies. Knockdown MDM2 blocked BMI1-loss induced AR decrease. 8 Figure 4. BMI1 is enriched to AR target upstream...stimulated genes KLK3 and TMPRSS2, and androgen-repressed genes MET and SI in BMI1- stable knockdown and control shRNA C4-2 cells. (C) Venn diagrams

  20. Design of Touch Screen Man-Machine Interface Test Bench for Vehicle Power Steering Pump%汽车动力转向油泵试验台触摸屏人-机界面设计

    Institute of Scientific and Technical Information of China (English)

    王玉琳; 王运; 刘光复

    2013-01-01

    传统的汽车动力转向油泵试验台采用键盘输入和LED显示实现人机交互,这种操作界面对人员的素质要求比较高,操作不直观也不方便,降低了产品的测试速率.触摸屏具有坚固耐用、反应速度快、节省空间、易于交流等诸多优点,使人与机交互更为直截了当.基于以上原因,采用MODBUS通信协议编写单片机通信程序,实现触摸屏和单片机的通信.根据试验大纲流程设计人-机界面的画面,该界面包含手动和自动两种方式,可以实现数据显示、参数设置、自动测试、报警提示等功能.使用结果表明,该人-机界面友好,测控精度高,操作简单方便,应用前景广阔.%Keyboard input and LED display are used in traditional vehicle power steering pump test bench to achieve man-machine interaction, in this interface, a high quality of personnel is required, and operation is neither visualized nor convenient, hence the rate of product testing is reduced. Touch screen has such advantages as a rugged-endurable in use, fast response, space-saving and easy to communicate, and many others, so the interaction between human and machine are made more straightforward. Based on above matters, by using MODBUS communication protocol to write single-chip communication program, the purpose of communication between the touch screen and single-chip was realized. According to the test outline process to design the man-machine interface screen, in the interface, the two modes; manual and automatic operation was contained, and data showing, parameter setting, automatic testing, alarm and other functions could be achieved. The usage results show that this man-machine interface possesses the attributes of friendliness, highly-precision in monitoring, convenient and simple in operation, therefore it has a broad application prospect.

  1. 巧用三菱MX Component工具进行三菱PLC-PC人机界面设计%How to ingeniously use the Mitsubishi MX Component tools to design the Mitsubishi PLC-PC man-machine interface

    Institute of Scientific and Technical Information of China (English)

    宋爱民; 刘春莲

    2012-01-01

    With no need to know the details of Mitsubishi PLC communication protocol, the text briefly introduces how to design man-machine interface conveniently by text and picture with the help of the Mitsubishi MX Component and Microsoft Visual Studio tool.%通过文字、图片,简述在不需要详细了解三菱PLC通信协议的情况下,借助三菱MX Component和微软Visual Studio工具,如何很方便地设计出人机界面.

  2. Interface Hombre-Máquina para la Estación Neumática PN-2800 de un Centro Integrado de Manufactura utilizando una Pantalla de Interface Man-Machine Interface for the Pneumatics PN-2800 station of an Integrated Center of Manufacture using a Panel View

    Directory of Open Access Journals (Sweden)

    Erika J Ramírez

    2012-01-01

    Full Text Available Se presenta una Interface Hombre-Máquina con el software Panel Builder 32, que interactúa con un una pantalla de interface (Panel View 1000, para realizar el control de la Estación de Neumática PN-2800, que es la abastecedora de materia prima en un Centro Integrado de Manufactura. Se realizó una programación visual y se analizaron las dimensiones de las barras cilíndricas, acrílicos y la abertura de las pinzas de los manipuladores, así como sus ángulos y espacios de trabajo para considerar nuevas materias primas. Para la configuración para la comunicación del protocolo Data Highway Plus y la compatibilidad con el protocolo Modbus Plus se utilizó un convertidor DL-3500. El trabajo presentado en este artículo muestra la integración de nuevos materiales para el proceso de maquilado y el manejo de diferentes protocolos que se encuentran en las diferentes industrias.A Man-Machine Interface with the software Panel Builder 32, that interacts with Panel View 1000, to perform the control of the Pneumatics Station PN-2800 is presented. This station provides raw material to an Integrated Manufacturing Center. Visual programming was used and the dimensions of the cylindrical bars, acrylic parts and the gap of the gripers of the manipulators, as well as their angles and spaces of work to consider new raw material. For the configuration of the communication protocol Dates Highway Plus and the compatibility with the protocol Modbus Plus a converter DL-3500 was used. The work presented in this article shows the integration of new materials for the process of maquilado and the handling of different protocols that are found in different industries.

  3. Data Communication Between PC and NC Punching Machine Based on RS232 Interface%基于RS232接口的PC与数控冲床的数据通讯

    Institute of Scientific and Technical Information of China (English)

    邱兆义; 秦自凯; 郭林松

    2012-01-01

    介绍了RS232接口的结构及传输原理,详述了基于RS232接口的通讯系统的软、硬件配置,并对软、硬件的通讯参数设置方法进行了阐述,利用WinPCIN通讯软件在Windows XP操作系统环境下实现了PC与数控冲床的数据通讯。%RS232 interface architecture and the principles of transmission are introduced.Software and hardware configuration of communication systems based on RS232 interface are described in detail.With the method of setting communication parameters for software and hardware,data communication using WinPCIN software between PC and NC punching machine is realized in the environments of Windows XP.

  4. When Machines Design Machines!

    DEFF Research Database (Denmark)

    2011-01-01

    Until recently we were the sole designers, alone in the driving seat making all the decisions. But, we have created a world of complexity way beyond human ability to understand, control, and govern. Machines now do more trades than humans on stock markets, they control our power, water, gas...... and food supplies, manage our elevators, microclimates, automobiles and transport systems, and manufacture almost everything. It should come as no surprise that machines are now designing machines. The chips that power our computers and mobile phones, the robots and commercial processing plants on which we...... depend, all are now largely designed by machines. So what of us - will be totally usurped, or are we looking at a new symbiosis with human and artificial intelligences combined to realise the best outcomes possible. In most respects we have no choice! Human abilities alone cannot solve any of the major...

  5. 直接脑控机器人接口技术%Direct Brain-controlled Robot Interface Technology

    Institute of Scientific and Technical Information of China (English)

    伏云发; 王越超; 李洪谊; 徐保磊; 李永程

    2012-01-01

    直接脑控机器人接口(Brain-controlled robot interface,BCRI)是一种新型的人-机器人接口技术,是脑-机器接口/脑-计算机接口 (Brain-machine interface,BMI/Brain-computer interface,BCI)在机器人控制领域的重要应用和研究方向.研究者相继在Nature、Science和其他重要国际期刊上报道了相关的实验研究和开发,目前已成为国际前沿研究热点.本文主要围绕BCRI中的控制策略、BMI/BCI模块与机器人多层控制模块的适应和融合、BCRI中的脑信号自适应分类算法以及人、BMI/BCI模块和机器人控制系统的三边自适应展开论述,分析了目前的研究情况、存在的局限和面临的若干重要问题,指出进一步的研究思路和方向.%Direct brain-controlled robot interface (BCRI) is a new type human-robot interface which is an important research and development direction for brain-machine interface (BMI) / brain-computer interface (BCI) in the robot control field. Many experimental researches and developments for BCRI were reported by Nature, Science and other important international journals and it has become an international frontier research hotspot. The paper mainly discussed the control strategies for BCRI, the adaptation and fusion between BMI/BCI module and robot multilayer control architecture module, the adaptive classification algorithms for brain signal used in BCRI and the trilateral adaptation among human, BMI/BCI module and robot control system. The current situation and limitation for BCRI and some important problems faced by BCRI were analyzed and the further research ideas and directions were also pointed out.

  6. BMI, a performance parameter for speed improvement.

    Directory of Open Access Journals (Sweden)

    Adrien Sedeaud

    Full Text Available The purpose of this study is to investigate the association between anthropometric characteristics and performance in all track and field running events and assess Body Mass Index (BMI as a relevant performance indicator. Data of mass, height, BMI and speed were collected for the top 100 international men athletes in track events from 100 m to marathon for the 1996-2011 seasons, and analyzed by decile of performance. Speed is significantly associated with mass (r = 0.71 and BMI (r = 0.71 in world-class runners and moderately with height (r = 0.39. Athletes, on average were continuously lighter and smaller with distance increments. In track and field, speed continuously increases with BMI. In each event, performances are organized through physique gradients. « Lighter and smaller is better » in endurance events but « heavier and taller is better » for sprints. When performance increases, BMI variability progressively tightens, but it is always centered around a distance-specific optimum. Running speed is organized through biometric gradients, which both drives and are driven by performance optimization. The highest performance level is associated with narrower biometric intervals. Through BMI indicators, diversity is possible for sprints whereas for long distance events, there is a more restrictive aspect in terms of physique. BMI is a relevant indicator, which allows for a clear differentiation of athletes' capacities between each discipline and level of performance in the fields of human possibilities.

  7. BMI, a performance parameter for speed improvement.

    Science.gov (United States)

    Sedeaud, Adrien; Marc, Andy; Marck, Adrien; Dor, Frédéric; Schipman, Julien; Dorsey, Maya; Haida, Amal; Berthelot, Geoffroy; Toussaint, Jean-François

    2014-01-01

    The purpose of this study is to investigate the association between anthropometric characteristics and performance in all track and field running events and assess Body Mass Index (BMI) as a relevant performance indicator. Data of mass, height, BMI and speed were collected for the top 100 international men athletes in track events from 100 m to marathon for the 1996-2011 seasons, and analyzed by decile of performance. Speed is significantly associated with mass (r = 0.71) and BMI (r = 0.71) in world-class runners and moderately with height (r = 0.39). Athletes, on average were continuously lighter and smaller with distance increments. In track and field, speed continuously increases with BMI. In each event, performances are organized through physique gradients. « Lighter and smaller is better » in endurance events but « heavier and taller is better » for sprints. When performance increases, BMI variability progressively tightens, but it is always centered around a distance-specific optimum. Running speed is organized through biometric gradients, which both drives and are driven by performance optimization. The highest performance level is associated with narrower biometric intervals. Through BMI indicators, diversity is possible for sprints whereas for long distance events, there is a more restrictive aspect in terms of physique. BMI is a relevant indicator, which allows for a clear differentiation of athletes' capacities between each discipline and level of performance in the fields of human possibilities.

  8. BMI in relation to sperm count

    DEFF Research Database (Denmark)

    Sermondade, N; Faure, C; Fezeu, L

    2013-01-01

    with meta-analysis. METHODS A systematic review of available literature (with no language restriction) was performed to investigate the impact of BMI on sperm count. Relevant studies published until June 2012 were identified from a Pubmed and EMBASE search. We also included unpublished data (n = 717 men...... concentration did not differ significantly across BMI categories. There was a J-shaped relationship between BMI categories and risk of oligozoospermia or azoospermia. Compared with men of normal weight, the odds ratio (95% confidence interval) for oligozoospermia or azoospermia was 1.15 (0...

  9. Neurodevelopmental problems and extremes in BMI

    Directory of Open Access Journals (Sweden)

    Nóra Kerekes

    2015-07-01

    Full Text Available Background. Over the last few decades, an increasing number of studies have suggested a connection between neurodevelopmental problems (NDPs and body mass index (BMI. Attention deficit/hyperactivity disorder (ADHD and autism spectrum disorders (ASD both seem to carry an increased risk for developing extreme BMI. However, the results are inconsistent, and there have been only a few studies of the general population of children.Aims. We had three aims with the present study: (1 to define the prevalence of extreme (low or high BMI in the group of children with ADHD and/or ASDs compared to the group of children without these NDPs; (2 to analyze whether extreme BMI is associated with the subdomains within the diagnostic categories of ADHD or ASD; and (3 to investigate the contribution of genetic and environmental factors to BMI in boys and girls at ages 9 and 12.Method. Parents of 9- or 12-year-old twins (n = 12,496 were interviewed using the Autism—Tics, ADHD and other Comorbidities (A-TAC inventory as part of the Child and Adolescent Twin Study in Sweden (CATSS. Univariate and multivariate generalized estimated equation models were used to analyze associations between extremes in BMI and NDPs.Results. ADHD screen-positive cases followed BMI distributions similar to those of children without ADHD or ASD. Significant association was found between ADHD and BMI only among 12-year-old girls, where the inattention subdomain of ADHD was significantly associated with the high extreme BMI. ASD scores were associated with both the low and the high extremes of BMI. Compared to children without ADHD or ASD, the prevalence of ASD screen-positive cases was three times greater in the high extreme BMI group and double as much in the low extreme BMI group. Stereotyped and repetitive behaviors were significantly associated with high extreme BMIs.Conclusion. Children with ASD, with or without coexisting ADHD, are more prone to have low or high extreme BMIs than

  10. Feasibility study for future implantable neural-silicon interface devices.

    Science.gov (United States)

    Al-Armaghany, Allann; Yu, Bo; Mak, Terrence; Tong, Kin-Fai; Sun, Yihe

    2011-01-01

    The emerging neural-silicon interface devices bridge nerve systems with artificial systems and play a key role in neuro-prostheses and neuro-rehabilitation applications. Integrating neural signal collection, processing and transmission on a single device will make clinical applications more practical and feasible. This paper focuses on the wireless antenna part and real-time neural signal analysis part of implantable brain-machine interface (BMI) devices. We propose to use millimeter-wave for wireless connections between different areas of a brain. Various antenna, including microstrip patch, monopole antenna and substrate integrated waveguide antenna are considered for the intra-cortical proximity communication. A Hebbian eigenfilter based method is proposed for multi-channel neuronal spike sorting. Folding and parallel design techniques are employed to explore various structures and make a trade-off between area and power consumption. Field programmable logic arrays (FPGAs) are used to evaluate various structures.

  11. Interface or Interlace?

    DEFF Research Database (Denmark)

    Hansen, Lone Koefoed; Wamberg, Jacob

    2005-01-01

    Departing from an analysis of the computer's indeterminate location between medium and machine, this paper problematises the idea of a clear-cut interface in complex computing, especially Augmented Reality. The idea and pratice of the interface is derived from the medium as a representational...

  12. Know Your Body Mass Index (BMI)

    Science.gov (United States)

    ... using three key measures: body mass index (BMI) waist circumference, and risk factors for diseases and conditions associated with obesity. Waist Circumference Determine your waist circumference by placing a measuring ...

  13. Bmi-1 absence causes premature brain degeneration.

    Directory of Open Access Journals (Sweden)

    Guangliang Cao

    Full Text Available Bmi-1, a polycomb transcriptional repressor, is implicated in cell cycle regulation and cell senescence. Its absence results in generalized astrogliosis and epilepsy during the postnatal development, but the underlying mechanisms are poorly understood. Here, we demonstrate the occurrence of oxidative stress in the brain of four-week-old Bmi-1 null mice. The mice showed various hallmarks of neurodegeneration including synaptic loss, axonal demyelination, reactive gliosis and brain mitochondrial damage. Moreover, astroglial glutamate transporters and glutamine synthetase decreased in the Bmi-1 null hippocampus, which might contribute to the sporadic epileptic-like seizures in these mice. These results indicate that Bmi-1 is required for maintaining endogenous antioxidant defenses in the brain, and its absence subsequently causes premature brain degeneration.

  14. The Java Legacy Interface

    DEFF Research Database (Denmark)

    Korsholm, Stephan

    2007-01-01

    The Java Legacy Interface is designed to use Java for encapsulating native legacy code on small embedded platforms. We discuss why existing technologies for encapsulating legacy code (JNI) is not sufficient for an important range of small embedded platforms, and we show how the Java Legacy...... Interface offers this previously missing functionality. We describe an implementation of the Java Legacy Interface for a particular virtual machine, and how we have used this virtual machine to integrate Java with an existing, commercial, soft real-time, C/C++ legacy platform....

  15. The Java Legacy Interface

    DEFF Research Database (Denmark)

    Korsholm, Stephan

    2007-01-01

    The Java Legacy Interface is designed to use Java for encapsulating native legacy code on small embedded platforms. We discuss why existing technologies for encapsulating legacy code (JNI) is not sufficient for an important range of small embedded platforms, and we show how the Java Legacy...... Interface offers this previously missing functionality. We describe an implementation of the Java Legacy Interface for a particular virtual machine, and how we have used this virtual machine to integrate Java with an existing, commercial, soft real-time, C/C++ legacy platform....

  16. 变频器中单片机人机交互系统的设计%Design of Single-chip Human-machine Interface in Converter

    Institute of Scientific and Technical Information of China (English)

    陈林; 侯志雄; 熊有伦

    2000-01-01

    介绍了一种采用80196设计的变频器人机交互系统,包括系统的硬件、软件设计和抗干扰设计。%A human-machine system of converter is described in this paper, and the hardware, software and anti-jamming design of this singlechip system are discussed.

  17. 人机交互界面中形状特征的视觉显著度计算%Visual Salience Calculation of Shape Feature for Human-Machine Interface

    Institute of Scientific and Technical Information of China (English)

    王宁; 余隋怀; 周宪; 肖琳臻

    2016-01-01

    形状特征是影响人机交互界面视觉工效的关键因素,为使人机交互界面能更好地适应用户的生理及心理特性、提升用户体验,需要建构一种人机交互界面中形状特征的视觉显著度计算模型。在分析形状特征对视觉显著度影响程度的基础上,针对人机交互界面中的典型形状,利用内接正方形将形状分割为多个部分,使用相关三角形对形状部分的视觉显著度进行计算,取其中最大值作为形状的视觉显著度,实现形状视觉显著度的量化分析与计算,并通过眼动追踪实验验证该方法的有效性。%Shape feature is an important element of visual ergonomics of human-machine interface. In order to improve the user experience and increase operation efficiency, a visual saliency calculation model for shape features of human-machine interface isproposed. The influence of shape features to visual saliency is analysed and several specific shapes are obtained which are used in huaman-machine interface frequently at first. The inscribed square is used to segment the shapes and some specific parts are got consequently. The triangle is related to the parts to calculate the parts’ visual saliency. The maximal value of parts’ visual saliency is taken as the visual saliency of the shape. An eye tracking experiment verifies the effectiveness of the proposed visual saliency calculation model.

  18. Web GIS Human-Machine Interactive Interface Design with VISI%融合VISI的Web GIS人机界面交互设计

    Institute of Scientific and Technical Information of China (English)

    熊岚; 胡洪良; 杜清运; 黄茂军; 王明军

    2008-01-01

    The fusion of VISI (visual identity system Internet), digital maps and Web GIS is presented. Web GIS interface inter- active design with VISI needs to consider more new factors. VISI can provide the design principle, elements and contents for the Web GIS. The design of the Wuhan Bus Search System is fulfilled to confirm the validity and practicability of the fusion.

  19. Man-Machine Interface in Tactical Aircraft Design and Combat Automation (Conference Proceedings Held in Stuttgart (Germany, F.R.) on 28 September-1 October 1987)

    Science.gov (United States)

    1988-07-01

    en place de toutes ces assistances entratne une refonte complte de Ia conduite de la machine dans le but (id6al) de r6aliser une cabine libre de...l’organisation de ma cabine: - Automatisation trds pouss~e do la gastion de l’avion at des systdris par des logiciels "experts" capables d’eft’actuar...concernent la sdcsrit6 de l’avion. Cest pourquei ha fisbilitd de ces logiciels doit atre compatible avec l’importance des tiches k qui lesr sont

  20. CONSTRUCTION OF MULTI-LEVEL SYMBOL SYSTEM IN THE WASHING MACHINE INTERFACE DESIGN EXPLORATION%多层次符号系统构建下的波轮衣机界面设计探究

    Institute of Scientific and Technical Information of China (English)

    胡熙; 张凌浩

    2015-01-01

    Design and development of enterprise Washing Machine interface is usual y multi-sectoral cooperation. The effectiveness of communication among the various departments affects the outcome of the successful design output. The article is based on the basic theory of Peirce symbol triangular relationship by Jacobsen structural tendencies inspired aesthetic and cultural semiotics. Combing different brands of Washing Machine products, the article takes interface design process as three stages --conceptual design, programming and features to build a multi-level system of symbols cognition. In order to control of the design process, the product innovation process need to find new opportunities.%企业中波轮洗衣机界面的设计开发通常是多部门进行合作的,设计过程中各部门间沟通的有效性是影响设计成果顺利输出的重要因素。文章基于皮尔士符号三角关系理论与雅各布森结构主义倾向的审美文化符号学启发,结合不同品牌的波轮洗衣机产品对比例证,将界面设计流程分为概念设计、程序设计、特征构建三个阶段进行符号系统认知。以此为设计流程的把控、产品创新过程中的机会点寻找新的思路。

  1. 现代产品中人机界面设计的研究——基于以人为本的视角%Human-machine Interface Design in Modern Products--Based on Human-oriented Perspective

    Institute of Scientific and Technical Information of China (English)

    杨献之

    2012-01-01

    The human-machine interface can be defined as interactive media used to communi- cate between the user and the computer. It is an overall design containing human-computer in- teraction, logic operation and beautiful interface of software. It is also a continuing process to design satisfactory visual effects for the user. It is a complex, multidiscipline-based project, contributing to the conversion between the internal form of information and the user's accept- able form. This paper explores the significance, process and optimization of human-machine in- terface design in modern products and summarizes its design method.%人机界面是用户使用者和计算机交流所需要的互动媒介,是对软件的人机交互、操作逻辑、界面美观的整体设计,是一个不断为用户设计满意视觉效果的过程。它有助于实现信息的内部形式与用户可接受形式之间的转换,是一个复杂的多学科相互交融参与的工程。从人机界面设计的意义、过程和优化等方面研究现代产品中的人机界面,并对现代人机界面设计方法进行了总结。

  2. 基于VxWorks的人机界面图形开发系统设计%Design of Human-Machine Interface Library Based on VxWorks

    Institute of Scientific and Technical Information of China (English)

    刘东涛; 肖峰

    2011-01-01

    针对当前嵌入式实时系统VxWorks图形界面开发支持较弱的缺点,结合海军多功能标准台项目,分析了VxWorks实时操作系统下国内外主流图形开发系统的设计原理,采用了基于控件技术的层次化设计和面向对象的设计方法,实现了一种在VxWorks实时操作系统下具有自主知识产权的人机界面图形开发系统JARI EGK.通过多个项目中的应用验证,JARI EGK在功能和性能方面能够满足基于VxWorks实时系统的窗口图形界面开发要求.%According to the disadvantages of graphics interface design under the real-time embedded operation systems VxWorks, and combining with the Multifunction Console projects, this paper analyzes the design principle of graphical user interface library at home and abroad, and adopts the architecture of hierarchical design and object-oriented programming. One kind of graphical user interface library(JARI_EGK) which possesses independent intellectual property rights is realized and used successfully. Through applied to many projects, JARI_EGK is proved to satisfy the requirement of developing graphical interfaces based on Vx Works real-time system.

  3. A hybrid BMI-based exoskeleton for paresis: EMG control for assisting arm movements

    Science.gov (United States)

    Kawase, Toshihiro; Sakurada, Takeshi; Koike, Yasuharu; Kansaku, Kenji

    2017-02-01

    Objective. Brain-machine interface (BMI) technologies have succeeded in controlling robotic exoskeletons, enabling some paralyzed people to control their own arms and hands. We have developed an exoskeleton asynchronously controlled by EEG signals. In this study, to enable real-time control of the exoskeleton for paresis, we developed a hybrid system with EEG and EMG signals, and the EMG signals were used to estimate its joint angles. Approach. Eleven able-bodied subjects and two patients with upper cervical spinal cord injuries (SCIs) performed hand and arm movements, and the angles of the metacarpophalangeal (MP) joint of the index finger, wrist, and elbow were estimated from EMG signals using a formula that we derived to calculate joint angles from EMG signals, based on a musculoskeletal model. The formula was exploited to control the elbow of the exoskeleton after automatic adjustments. Four able-bodied subjects and a patient with upper cervical SCI wore an exoskeleton controlled using EMG signals and were required to perform hand and arm movements to carry and release a ball. Main results. Estimated angles of the MP joints of index fingers, wrists, and elbows were correlated well with the measured angles in 11 able-bodied subjects (correlation coefficients were 0.81  ±  0.09, 0.85  ±  0.09, and 0.76  ±  0.13, respectively) and the patients (e.g. 0.91  ±  0.01 in the elbow of a patient). Four able-bodied subjects successfully positioned their arms to adequate angles by extending their elbows and a joint of the exoskeleton, with root-mean-square errors  <6°. An upper cervical SCI patient, empowered by the exoskeleton, successfully carried a ball to a goal in all 10 trials. Significance. A BMI-based exoskeleton for paralyzed arms and hands using real-time control was realized by designing a new method to estimate joint angles based on EMG signals, and these may be useful for practical rehabilitation and the support of

  4. Genetic Influences on Growth Traits of BMI

    DEFF Research Database (Denmark)

    Hjelmborg, Jacob V B; Fagnani, Corrado; Silventoinen, Karri

    2008-01-01

    Objective:To investigate the interplay between genetic factors influencing baseline level and changes in BMI in adulthood.Methods and Procedures:A longitudinal twin study of the cohort of Finnish twins (N = 10,556 twin individuals) aged 20-46 years at baseline was conducted and followed up 15 years....... Data on weight and height were obtained from mailed surveys in 1975, 1981, and 1990.Results:Latent growth models revealed a substantial genetic influence on BMI level at baseline in males and females (heritability (h(2)) 80% (95% confidence interval 0.79-0.80) for males and h(2) = 82% (0.81, 0.......84) for females) and a moderate-to-high influence on rate of change in BMI (h(2) = 58% (0.50, 0.69) for males and h(2) = 64% (0.58, 0.69) for females). Only very weak evidence for genetic pleiotropy was observed; the genetic correlation between baseline and rate of change in BMI was very modest (-0.070 (-0.13, -0...

  5. BMI in patients with obstructive sleep apnea

    Directory of Open Access Journals (Sweden)

    Dobrowolska-Zarzycka Magdalena

    2015-12-01

    Full Text Available Obstructive sleep apnea (OSA is a disease of multicasual etiology. The risk factors include obesity, among other issues. Hence, it is extremely important to determine the effect of body weight on the severity of OSA. The aim of the study was to evaluate the influence of the body weight expressed as body mass index (BMI, on the value of upper airways diameter and on the AHI (Apnea-Hypopnea Index value. The study was comprised of 41 patients diagnosed with OSA by way of polysomnography. Each patient was first examine via a lateral cephalometric image of the skull, which served to measure the upper and lower diameter of the upper airways. BMI was also calculated for each patient. Statistical analysis was carried out in accordance with Pearson’s correlation coefficient test. Our work demonstrated a negative correlation between BMI and the diameter of the upper airways, and a positive correlation between BMI and AHI value. We thus put forward that the increase in body weight in patients with OSA can contribute to the severity of the disease, regardless of the fact that it may not lead to a reduction of the lumen of the upper airways.

  6. Machine Translation

    Institute of Scientific and Technical Information of China (English)

    张严心

    2015-01-01

    As a kind of ancillary translation tool, Machine Translation has been paid increasing attention to and received different kinds of study by a great deal of researchers and scholars for a long time. To know the definition of Machine Translation and to analyse its benefits and problems are significant for translators in order to make good use of Machine Translation, and helpful to develop and consummate Machine Translation Systems in the future.

  7. Sustainable machining

    CERN Document Server

    2017-01-01

    This book provides an overview on current sustainable machining. Its chapters cover the concept in economic, social and environmental dimensions. It provides the reader with proper ways to handle several pollutants produced during the machining process. The book is useful on both undergraduate and postgraduate levels and it is of interest to all those working with manufacturing and machining technology.

  8. Changing BMI Categories and Healthcare Expenditures Among Elderly Medicare Beneficiaries

    OpenAIRE

    Wilkins, Tricia Lee; Rust, George S.; Sambamoorthi, Usha

    2011-01-01

    To examine the association between changes in BMI categories and health-care expenditures among elderly Medicare beneficiaries using longitudinal data of the Medicare Current Beneficiary Survey (MCBS) 2000–2005. Changes in BMI were (i) Stayed Normal: individuals with a normal BMI at baseline and follow-up; (ii) Stayed Overweight individuals with overweight BMI at baseline and follow-up; (iii) Stayed Obese individuals with obese BMI at baseline and follow-up; (iv) Normal-Overweight: individual...

  9. Sex-differences in heritability of BMI

    DEFF Research Database (Denmark)

    Schousboe, K; Willemsen, G; Kyvik, Kirsten Ohm

    2003-01-01

    pairs (including opposite sex pairs) aged 20-29 and 30-39 from eight different twin registries participating in the GenomEUtwin project. Quantitative genetic analyses were conducted and sex differences were explored. Variation in BMI was greater for women than for men, and in both sexes was primarily...... explained by additive genetic variance in all countries. Sex differences in the variance components were consistently significant. Results from analyses of opposite sex pairs also showed evidence of sex-specific genetic effects suggesting there may be some differences between men and women in the genetic...... factors that influence variation in BMI. These results encourage the continued search for genes of importance to the body composition and the development of obesity. Furthermore, they suggest that strategies to identify predisposing genes may benefit from taking into account potential sex specific effects....

  10. Food brand recognition and BMI in preschoolers.

    Science.gov (United States)

    Harrison, Kristen; Moorman, Jessica; Peralta, Mericarmen; Fayhee, Kally

    2017-07-01

    Children's food brand recognition predicts health-related outcomes such as preference for obesogenic foods and increased risk for overweight. However, it is uncertain to what degree food brand recognition acts as a proxy for other factors such as parental education and income, child vocabulary, child age, child race/ethnicity, parent healthy eating guidance, child commercial TV viewing, and child dietary intake, all of which may influence or be influenced by food brand recognition. U.S. preschoolers (N = 247, average age 56 months) were measured for BMI and completed the Peabody Picture Vocabulary Test plus recognition and recall measures for a selection of U.S. food brands. Parents completed measures of healthy eating guidance, child dietary intake, child commercial TV viewing, parent education, household income, parent BMI, and child age and race/ethnicity. Controlling these variables, child food brand recognition predicted higher child BMI percentile. Further, qualitative examination of children's incorrect answers to recall items demonstrated perceptual confusion between brand mascots and other fantasy characters to which children are exposed during the preschool years, extending theory on child consumer development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Quantative Evaluation of the Efficiency of Facial Bio-potential Signals Based on Forehead Three-Channel Electrode Placement For Facial Gesture Recognition Applicable in a Human-Machine Interface

    Directory of Open Access Journals (Sweden)

    Iman Mohammad Rezazadeh

    2010-06-01

    Full Text Available Introduction: Today, facial bio-potential signals are employed in many human-machine interface applications for enhancing and empowering the rehabilitation process. The main point to achieve that goal is to record appropriate bioelectric signals from the human face by placing and configuring electrodes over it in the right way. In this paper, heuristic geometrical position and configuration of the electrodes has been proposed for improving the quality of the acquired signals and consequently enhancing the performance of the facial gesture classifier. Materials and Methods: Investigation and evaluation of the electrodes' proper geometrical position and configuration can be performed using two methods: clinical and modeling. In the clinical method, the electrodes are placed in predefined positions and the elicited signals from them are then processed. The performance of the method is evaluated based on the results obtained. On the other hand, in the modeling approach, the quality of the recorded signals and their information content are evaluated only by modeling and simulation. In this paper, both methods have been utilized together. First, suitable electrode positions and configuration were proposed and evaluated by modeling and simulation. Then, the experiment was performed with a predefined protocol on 7 healthy subjects to validate the simulation results. Here, the recorded signals were passed through parallel butterworth filter banks to obtain facial EMG, EOG and EEG signals and the RMS features of each 256 msec time slot were extracted.  By using the power of Subtractive Fuzzy C-Mean (SFCM, 8 different facial gestures (including smiling, frowning, pulling up left and right lip corners, left/right/up and down movements of the eyes were discriminated. Results: According to the three-channel electrode configuration derived from modeling of the dipoles effects on the surface electrodes and by employing the SFCM classifier, an average 94

  12. 基于ARM和Linux的埋弧焊自动控制系统人机界面设计%Design of Man-machine Interface of SAW Control System Based on ARM and Linux

    Institute of Scientific and Technical Information of China (English)

    张文明; 鞠洪涛; 刘鸿钧

    2011-01-01

    The disadvantages of traditional SAW control system was analyzed. A new kind of man-machine interface for them was designed The control core of the system is S3C2440A, a kind of ARM 9 processor which is made by Samsung Electronics Co.Ltd, and a 640*480 TFT LCD was used. This design transplanted an embedded Linux on the basis of hardware, and how to develop a GUI (Graphical User Interface) with the help of Qt and its C++ class library was introduced. The operators can input the welding parameters, control and even monitor the welding process. This design can achieve the functions such as saving parameters, drawing parameters graphics, abnormalities alarm and outputting VGA signals.%分析了传统埋弧焊控制系统的弊端,并设计了一种新型的埋弧焊控制系统的人机界面.控制核心采用了三星公司的ARM9处理器S3C2440A,使用640*480的TFT液晶显示器.在硬件的基础上移植了嵌入式Linux操作系统,并详细介绍了使用Qt提供的C++类库设计图形用户界面的方法.操作人员可以通过菜单和对话框等形式对焊接过程进行参数输入、过程控制和监视.可以实现焊接参数的保存、监视、绘制参数变化图像、出差报警、VGA输出等功能.

  13. Brain-state dependent robotic reaching movement with a multi-joint arm exoskeleton: combining brain-machine interfacing and robotic rehabilitation

    Directory of Open Access Journals (Sweden)

    Daniel eBrauchle

    2015-10-01

    Full Text Available While robot-assisted arm and hand training after stroke allows for intensive task-oriented practice, it has provided only limited additional benefit over dose-matched physiotherapy up to now. These rehabilitation devices are possibly too supportive during the exercises. Neurophysiological signals might be one way of avoiding slacking and providing robotic support only when the brain is particularly responsive to peripheral input.We tested the feasibility of three-dimensional robotic assistance for reach-to-grasp movements with a multi-joint exoskeleton during motor imagery-related desynchronization of sensorimotor oscillations in the β-band only. We also registered task-related network changes of cortical functional connectivity by electroencephalography via the imaginary part of the coherence function.Healthy subjects and stroke survivors showed similar patterns – but different aptitudes – of controlling the robotic movement. All participants in this pilot study with nine healthy subjects and two stroke patients achieved their maximum performance during the early stages of the task. Robotic control was significantly higher and less variable when proprioceptive feedback was provided in addition to visual feedback, i.e. when the orthosis was actually attached to the subject’s arm during the task. A distributed cortical network of task-related coherent activity in the θ-band showed significant differences between healthy subjects and stroke patients as well as between early and late periods of the task.Brain-robot interfaces may successfully link three-dimensional robotic training to the participants’ efforts and allow for task-oriented practice of activities of daily living with a physiologically controlled multi-joint exoskeleton. Changes of cortical physiology during the task might also help to make subject-specific adjustments of task difficulty and guide adjunct interventions to facilitate motor learning for functional restoration.

  14. Brain state-dependent robotic reaching movement with a multi-joint arm exoskeleton: combining brain-machine interfacing and robotic rehabilitation.

    Science.gov (United States)

    Brauchle, Daniel; Vukelić, Mathias; Bauer, Robert; Gharabaghi, Alireza

    2015-01-01

    While robot-assisted arm and hand training after stroke allows for intensive task-oriented practice, it has provided only limited additional benefit over dose-matched physiotherapy up to now. These rehabilitation devices are possibly too supportive during the exercises. Neurophysiological signals might be one way of avoiding slacking and providing robotic support only when the brain is particularly responsive to peripheral input. We tested the feasibility of three-dimensional robotic assistance for reaching movements with a multi-joint exoskeleton during motor imagery (MI)-related desynchronization of sensorimotor oscillations in the β-band. We also registered task-related network changes of cortical functional connectivity by electroencephalography via the imaginary part of the coherence function. Healthy subjects and stroke survivors showed similar patterns-but different aptitudes-of controlling the robotic movement. All participants in this pilot study with nine healthy subjects and two stroke patients achieved their maximum performance during the early stages of the task. Robotic control was significantly higher and less variable when proprioceptive feedback was provided in addition to visual feedback, i.e., when the orthosis was actually attached to the subject's arm during the task. A distributed cortical network of task-related coherent activity in the θ-band showed significant differences between healthy subjects and stroke patients as well as between early and late periods of the task. Brain-robot interfaces (BRIs) may successfully link three-dimensional robotic training to the participants' efforts and allow for task-oriented practice of activities of daily living with a physiologically controlled multi-joint exoskeleton. Changes of cortical physiology during the task might also help to make subject-specific adjustments of task difficulty and guide adjunct interventions to facilitate motor learning for functional restoration, a proposal that warrants

  15. A Smart Modeling Framework for Integrating BMI-enabled Models as Web Services

    Science.gov (United States)

    Jiang, P.; Elag, M.; Kumar, P.; Peckham, S. D.; Liu, R.; Marini, L.; Hsu, L.

    2015-12-01

    Serviced-oriented computing provides an opportunity to couple web service models using semantic web technology. Through this approach, models that are exposed as web services can be conserved in their own local environment, thus making it easy for modelers to maintain and update the models. In integrated modeling, the serviced-oriented loose-coupling approach requires (1) a set of models as web services, (2) the model metadata describing the external features of a model (e.g., variable name, unit, computational grid, etc.) and (3) a model integration framework. We present the architecture of coupling web service models that are self-describing by utilizing a smart modeling framework. We expose models that are encapsulated with CSDMS (Community Surface Dynamics Modeling System) Basic Model Interfaces (BMI) as web services. The BMI-enabled models are self-describing by uncovering models' metadata through BMI functions. After a BMI-enabled model is serviced, a client can initialize, execute and retrieve the meta-information of the model by calling its BMI functions over the web. Furthermore, a revised version of EMELI (Peckham, 2015), an Experimental Modeling Environment for Linking and Interoperability, is chosen as the framework for coupling BMI-enabled web service models. EMELI allows users to combine a set of component models into a complex model by standardizing model interface using BMI as well as providing a set of utilities smoothing the integration process (e.g., temporal interpolation). We modify the original EMELI so that the revised modeling framework is able to initialize, execute and find the dependencies of the BMI-enabled web service models. By using the revised EMELI, an example will be presented on integrating a set of topoflow model components that are BMI-enabled and exposed as web services. Reference: Peckham, S.D. (2014) EMELI 1.0: An experimental smart modeling framework for automatic coupling of self-describing models, Proceedings of HIC 2014

  16. Simple machines

    CERN Document Server

    Graybill, George

    2007-01-01

    Just how simple are simple machines? With our ready-to-use resource, they are simple to teach and easy to learn! Chocked full of information and activities, we begin with a look at force, motion and work, and examples of simple machines in daily life are given. With this background, we move on to different kinds of simple machines including: Levers, Inclined Planes, Wedges, Screws, Pulleys, and Wheels and Axles. An exploration of some compound machines follows, such as the can opener. Our resource is a real time-saver as all the reading passages, student activities are provided. Presented in s

  17. Hypothesis to Explain the Size Effect Observed in APO-BMI Compression Tests

    Energy Technology Data Exchange (ETDEWEB)

    Schembri, Philip Edward [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Siranosian, Antranik Antonio [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kingston, Lance Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-01-07

    In 2013 compression tests were performed on cylindrical specimens of carbon-microballoon-APOBMI syntactic foam machined to different lengths (0.25, 0.5, and 2.8 inches1) (Kingston, 2013). In 2014 similar tests were performed on glass-microballoon-APO-BMI of different lengths (~0.15”, ~0.32”, and ~0.57”). In all these tests it was observed that, when strains were calculated from the platen displacement (corrected for machine compliance), the apparent Young’s modulus of the material decreased with specimen size, as shown in Table 1. The reason for this size effect was speculated to be a layer of damage on or near the top and bottom machined surfaces of the specimens (Kingston, Schembri, & Siranosian, 2014). This report examines that hypothesis in further detail.

  18. 人机显示界面中的文字和位置编码%Text and position coding of human-machine display interface

    Institute of Scientific and Technical Information of China (English)

    张磊; 庄达民

    2011-01-01

    In process of operating aircraft, pilots need to use large amounts of information. So reasonable coding of information can improve driving safety. According to research requirements, a task model was developed for the ergonomics experiment. After subjects complete the tasks, their correct rate and reaction time were measured. Combined the measured results with eye movement data, the impact of text and position coding on information identification was analyzed to provide a scientific basis for the ergonomics design of information interface. Experimental results show that subject's identification of the text information is affected by the position coding. And position coding relates to vision scope and attention allocation strategy. Identification efficiency of the center is better than the periphery, and the left position is better than the right position. Identification efficiency of Chinese information is better than English, the impact of mother tongue should be considered in the practical application.%飞行员在驾驶飞机的过程中需要用到大量的信息,对信息进行合理的编码可以提高驾驶安全性.根据研究的需要,开发一个用于工效实验的作业任务模型.通过测量被试完成作业任务的正确率和反应时间,结合眼动仪测得的眼动数据,分析文字和位置编码对信息辨识的影响,为显示界面适人性设计提供科学依据.实验结果表明:人对文字信息的辨识受到位置编码影响,位置编码方式与视野范围和注意力分配策略相关;中心位置的辨识效率优于边缘位置,左侧位置优于右侧位置;中文信息的辨识效果优于英文信息,实际应用时应考虑母语的影响.

  19. Relationship of Migraine and Body Mass Index (BMI)

    National Research Council Canada - National Science Library

    Mohammed Momenuzzaman Khan; Md Nazmul Huda; Manabendra Bhattacharjee; Md Jalal Uddin; Mustofa Kamal Uddin Khan

    2016-01-01

    ...: This study was performed to assess the relationship between BMI and migraine by finding out the relationship between migraine frequency and duration in different BMI groups, comparing the socio...

  20. Electric machine

    Science.gov (United States)

    El-Refaie, Ayman Mohamed Fawzi [Niskayuna, NY; Reddy, Patel Bhageerath [Madison, WI

    2012-07-17

    An interior permanent magnet electric machine is disclosed. The interior permanent magnet electric machine comprises a rotor comprising a plurality of radially placed magnets each having a proximal end and a distal end, wherein each magnet comprises a plurality of magnetic segments and at least one magnetic segment towards the distal end comprises a high resistivity magnetic material.

  1. Prospective associations between sedentary lifestyle and BMI in midlife

    DEFF Research Database (Denmark)

    Mortensen, Laust Hvas; Siegler, Ilene C; Barefoot, John C

    2006-01-01

    A strong positive cross-sectional relationship between BMI and a sedentary lifestyle has been consistently observed in numerous studies. However, it has been questioned whether high BMI is a determinant or a consequence of a sedentary lifestyle.......A strong positive cross-sectional relationship between BMI and a sedentary lifestyle has been consistently observed in numerous studies. However, it has been questioned whether high BMI is a determinant or a consequence of a sedentary lifestyle....

  2. Predictors of BMI Vary along the BMI Range of German Adults - Results of the German National Nutrition Survey II.

    Science.gov (United States)

    Moon, Kilson; Krems, Carolin; Heuer, Thorsten; Roth, Alexander; Hoffmann, Ingrid

    2017-01-01

    The objective of the study was to identify predictors of BMI in German adults by considering the BMI distribution and to determine whether the association between BMI and its predictors varies along the BMI distribution. The sample included 9,214 adults aged 18-80 years from the German National Nutrition Survey II (NVS II). Quantile regression analyses were conducted to examine the association between BMI and the following predictors: age, sports activities, socio-economic status (SES), healthy eating index-NVS II (HEI-NVS II), dietary knowledge, sleeping duration and energy intake as well as status of smoking, partner relationship and self-reported health. Age, SES, self-reported health status, sports activities and energy intake were the strongest predictors of BMI. The important outcome of this study is that the association between BMI and its predictors varies along the BMI distribution. Especially, energy intake, health status and SES were marginally associated with BMI in normal-weight subjects; this relationships became stronger in the range of overweight, and were strongest in the range of obesity. Predictors of BMI and the strength of these associations vary across the BMI distribution in German adults. Consequently, to identify predictors of BMI, the entire BMI distribution should be considered. © 2017 The Author(s) Published by S. Karger GmbH, Freiburg.

  3. Predictors of BMI Vary along the BMI Range of German Adults - Results of the German National Nutrition Survey II

    Directory of Open Access Journals (Sweden)

    Kilson Moon

    2017-02-01

    Full Text Available Objective: The objective of the study was to identify predictors of BMI in German adults by considering the BMI distribution and to determine whether the association between BMI and its predictors varies along the BMI distribution. Methods: The sample included 9,214 adults aged 18-80 years from the German National Nutrition Survey II (NVS II. Quantile regression analyses were conducted to examine the association between BMI and the following predictors: age, sports activities, socio-economic status (SES, healthy eating index-NVS II (HEI-NVS II, dietary knowledge, sleeping duration and energy intake as well as status of smoking, partner relationship and self-reported health. Results: Age, SES, self-reported health status, sports activities and energy intake were the strongest predictors of BMI. The important outcome of this study is that the association between BMI and its predictors varies along the BMI distribution. Especially, energy intake, health status and SES were marginally associated with BMI in normal-weight subjects; this relationships became stronger in the range of overweight, and were strongest in the range of obesity. Conclusions: Predictors of BMI and the strength of these associations vary across the BMI distribution in German adults. Consequently, to identify predictors of BMI, the entire BMI distribution should be considered.

  4. Macroscopic transport by synthetic molecular machines

    NARCIS (Netherlands)

    Berna, J; Leigh, DA; Lubomska, M; Mendoza, SM; Perez, EM; Rudolf, P; Teobaldi, G; Zerbetto, F

    2005-01-01

    Nature uses molecular motors and machines in virtually every significant biological process, but demonstrating that simpler artificial structures operating through the same gross mechanisms can be interfaced with - and perform physical tasks in - the macroscopic world represents a significant hurdle

  5. The Machine within the Machine

    CERN Multimedia

    Katarina Anthony

    2014-01-01

    Although Virtual Machines are widespread across CERN, you probably won't have heard of them unless you work for an experiment. Virtual machines - known as VMs - allow you to create a separate machine within your own, allowing you to run Linux on your Mac, or Windows on your Linux - whatever combination you need.   Using a CERN Virtual Machine, a Linux analysis software runs on a Macbook. When it comes to LHC data, one of the primary issues collaborations face is the diversity of computing environments among collaborators spread across the world. What if an institute cannot run the analysis software because they use different operating systems? "That's where the CernVM project comes in," says Gerardo Ganis, PH-SFT staff member and leader of the CernVM project. "We were able to respond to experimentalists' concerns by providing a virtual machine package that could be used to run experiment software. This way, no matter what hardware they have ...

  6. Eating behaviour patterns and BMI in Portuguese higher education students.

    Science.gov (United States)

    Poínhos, Rui; Oliveira, Bruno M P M; Correia, Flora

    2013-12-01

    Our aim was to determine prototypical patterns of eating behaviour among Portuguese higher education students, and to relate these patterns with BMI. Data from 280 higher education students (63.2% females) aged between 18 and 27 years were analysed. Several eating behaviour dimensions (emotional and external eating, flexible and rigid restraint, binge eating, and eating self-efficacy) were assessed, and eating styles were derived through cluster analysis. BMI for current, desired and maximum self-reported weights and the differences between desired and current BMI and between maximum and current BMI were calculated. Women scored higher in emotional eating and restraint, whereas men showed higher eating self-efficacy. Men had higher current, desired and maximum BMI. Cluster analysis showed three eating styles in both male and female subsamples: "Overeating", "High self-efficacy" and "High restraint". High self-efficacy women showed lower BMI values than the others, and restrictive women had higher lost BMI. High self-efficacy men showed lower desired BMI than overeaters, and lower maximum and lost BMI than highly restrictive ones. Restrictive women and men differ on important eating behaviour features, which may be the cause of differences in the associations with BMI. Eating self-efficacy seems to be a central variable influencing the relationships between other eating behaviour dimensions and BMI.

  7. Analysis list: BMI1 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available BMI1 Blood,Digestive tract,Neural,Prostate + hg19 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/BMI...1.1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/BMI1.5.tsv http://db...archive.biosciencedbc.jp/kyushu-u/hg19/target/BMI1.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/BMI...1.Blood.tsv,http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/BMI1.Diges...tive_tract.tsv,http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/BMI1.Neural.tsv,http://dbarchive.bioscie

  8. Machine Learning

    CERN Document Server

    CERN. Geneva

    2017-01-01

    Machine learning, which builds on ideas in computer science, statistics, and optimization, focuses on developing algorithms to identify patterns and regularities in data, and using these learned patterns to make predictions on new observations. Boosted by its industrial and commercial applications, the field of machine learning is quickly evolving and expanding. Recent advances have seen great success in the realms of computer vision, natural language processing, and broadly in data science. Many of these techniques have already been applied in particle physics, for instance for particle identification, detector monitoring, and the optimization of computer resources. Modern machine learning approaches, such as deep learning, are only just beginning to be applied to the analysis of High Energy Physics data to approach more and more complex problems. These classes will review the framework behind machine learning and discuss recent developments in the field.

  9. Examining the BMI-mortality relationship using fractional polynomials.

    Science.gov (United States)

    Wong, Edwin S; Wang, Bruce C M; Garrison, Louis P; Alfonso-Cristancho, Rafael; Flum, David R; Arterburn, David E; Sullivan, Sean D

    2011-12-28

    Many previous studies estimating the relationship between body mass index (BMI) and mortality impose assumptions regarding the functional form for BMI and result in conflicting findings. This study investigated a flexible data driven modelling approach to determine the nonlinear and asymmetric functional form for BMI used to examine the relationship between mortality and obesity. This approach was then compared against other commonly used regression models. This study used data from the National Health Interview Survey, between 1997 and 2000. Respondents were linked to the National Death Index with mortality follow-up through 2005. We estimated 5-year all-cause mortality for adults over age 18 using the logistic regression model adjusting for BMI, age and smoking status. All analyses were stratified by sex. The multivariable fractional polynomials (MFP) procedure was employed to determine the best fitting functional form for BMI and evaluated against the model that includes linear and quadratic terms for BMI and the model that groups BMI into standard weight status categories using a deviance difference test. Estimated BMI-mortality curves across models were then compared graphically. The best fitting adjustment model contained the powers -1 and -2 for BMI. The relationship between 5-year mortality and BMI when estimated using the MFP approach exhibited a J-shaped pattern for women and a U-shaped pattern for men. A deviance difference test showed a statistically significant improvement in model fit compared to other BMI functions. We found important differences between the MFP model and other commonly used models with regard to the shape and nadir of the BMI-mortality curve and mortality estimates. The MFP approach provides a robust alternative to categorization or conventional linear-quadratic models for BMI, which limit the number of curve shapes. The approach is potentially useful in estimating the relationship between the full spectrum of BMI values and other

  10. Design of man-machine interface for high power medium frequency inverting resistance welder%大功率中频逆变电阻焊机人机界面设计

    Institute of Scientific and Technical Information of China (English)

    万超; 王剑; 田联房

    2012-01-01

    针对基于ARM、DSP和CPLD相结合控制的大功率中频逆变电阻焊机,选择PIC24FJ128GA010单片机、键盘输入和液晶显示,采用上、下位机的方式,设计了数字化人机界面系统.该系统能实现焊接参数、规范的读取和设置,具有通信失败原因显示、故障复位、报警复位等功能,有三种用户类型可供选择,具有不同的操作权限,采用RS232方式与下位机通信.下位机反应时间的协调是影响系统稳定可靠操作的关键.实验证明,该系统运行稳定,操作灵活,界面友好,抗干扰能力强.%Aiming at high power medium frequency inverting resistance welder based on ARM,DSP and CPLD.a digital man-machine interface which is consisted of PIC24FJ128GA010, keyboard entry,LCD display and employs upper-lower computer mode is designed.This system realizes reading and setting for welding parameters and norms, displaying cause of communication failure, fault reset,alarm reset etc.There are three types of users which have different operation authority and it communicates with lower computer by RS232.The cooperation of reaction time of lower computer is the key to influence the stability and reliability of operation.lt proves reliable,flexible,friendly and compatible.

  11. 基于工效学的舰桥人机界面数字化评估系统%Man-machine interfaces digital assessment system for bridge based on ergonomics

    Institute of Scientific and Technical Information of China (English)

    余昆; 颜声远

    2011-01-01

    The digital human model of Chinese was developed,and the assessment indexes system was constructed based on hierarchy analysis method.The bottom assessment indexes were extracted from related ergonomic standards,and the indexes weights were determined.The quantizing methods of assessment indexes were studied,and a fuzzy theory based quantizing model was developed for qualitative indexes.The digital assessment system for bridge was developed by using UG/Open.The mentioned digital human model,assessment indexes system,quantizing model and standards were integrated into the assessment system.With employing the digital design function of Unigraphics NX,the assessment system can complete the man-machine interfaces assessment and improvement work just during the design phase.%开发用于人机界面评估的数字化中国人体模型,根据层次分析法原理构建舰桥人机界面评估指标体系;依据相关工效学设计准则,提取底层评估指标,并确定指标在评估体系中的权重值;研究定量和定性指标的量化方法,建立基于模糊理论的定性指标量化方法模型.采用UG/Open开发数字化的评估系统,集成人体模型、评估指标体系、指标量化方法及设计准则等.评估系统融合了Unigraphics NX数字化设计功能,实现了在设计阶段即完成舰桥人机界面的评估和改进工作.

  12. Modernization of the subsystem man-machine interface for operation of the combined cycle central of Gomez Palacio; Modernizacion del subsistema de interfaz hombre-maquina para operacion de la central de ciclo combinado de Gomez Palacio

    Energy Technology Data Exchange (ETDEWEB)

    Rivas S, Alfonso; Uribe B, Carlos E; Alvarez C, Victor [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2002-07-01

    In order to take care of the modernization of the Combined Cycle Central of Gomez Palacio (CCCGP) of the Comision Federal de Electricidad (CFE), the Instituto de Investigaciones Electricas (IIE), through the Management of Supervision of Processes (GSP) developed the subsystem of Interface Man-Machine (IMM), to replace the workstations that are deteriorated and obsolete by personal computers, maintaining the same functions of the IMM of the present system, including the management and processing functions that at the present time another system makes. Also, to replace the equipment of the concentrators of communications by a PC with greater capacity, than allows improving in general the flexibility and robustness of the system. Among the main functions integrated in the IMM subsystem there are: the communications master with the controllers (equipment SAC), redundancy of servers, database, historical registry storage, alarm management, tabulations, tendency graphs in real time and historical, process diagrams and Control Panels. [Spanish] Con el objeto de atender las necesidades de modernizacion de la Central de Ciclo Combinado Gomez Palacio (CCCGP) de la Comision Federal de Electricidad (CFE), el Instituto de Investigaciones Electricas (IIE), a traves de la Gerencia de Supervision de Procesos (GSP) desarrollo el subsistema de Interfaz Hmbre-Maquina (IHM), para reemplazar las estaciones de trabajo que se encuentran deterioradas y obsoletas por computadoras personales, manteniendo las mismas funciones de la IHM del sistema actual, incluyendo las funciones de administracion y procesamiento que en la actualidad realiza otro sistema. Asimismo, para reemplazar los equipos de los concentradores de comunicaciones por PC con mayor capacidad, que permitan mejorar la flexibilidad y robustez del sistema en general. Entre las principales funciones integradas en el subsistema de IHM se encuentran: el Maestro de comunicaciones con los controladores (equipo SAC), redundancia de

  13. Using BMI to Determine Cardiovascular Risk in Childhood: How Do the BMI Cutoffs Fare?

    Science.gov (United States)

    Skinner, Asheley Cockrell; Mayer, Michelle L.; Flower, Kori; Perrin, Eliana M.; Weinberger, Morris

    2010-01-01

    OBJECTIVE Although adverse health outcomes are increased among children with BMI above the 85th (overweight) and 95th (obese) percentiles, previous studies have not clearly defined the BMI percentile at which adverse health outcomes begin to increase. We examined whether the existing BMI percentile cutoffs are optimal for defining increased risk for dyslipidemia, dysglycemia, and hypertension. METHODS This was a cross-sectional analysis of the National Health and Nutrition Examination Survey from 2001 to 2006. Studied were 8216 children aged 6 to 17 years, representative of the US population. BMI was calculated by using measured height and weight and converted to percentiles for age in months and gender. Outcome measures (dyslipidemia, dysglycemia, and hypertension) were based on laboratory and physical examination results; these were analyzed as both continuous and categorical outcomes. RESULTS Significant increases for total cholesterol values and prevalence of abnormal cholesterol begin at the 80th percentile. Significant increases in glycohemoglobin values and prevalence of abnormal values begin at the 99th percentile. Consistent significant increases in the prevalence of high or borderline systolic blood pressure begin at the 90th percentile. CONCLUSIONS Intervening for overweight children and their health requires clinical interventions that target the right children. On the basis of our data, a judicious approach to screening could include consideration of lipid screening for children beginning at the 80th percentile but for dysglycemia at the 99th percentile. Current definitions of overweight and obese may be more useful for general recognition of potential health problems and discussions with parents and children about the need to address childhood obesity. WHAT'S KNOWN ON THIS SUBJECT: Previous research has shown that cardiovascular risk factors are related to the currently used definitions of obesity in children but has not specified the BMI percentiles

  14. Very forward calorimeters readout and machine interface

    Indian Academy of Sciences (India)

    Wojciech Wierba; on behalf of the FCAL Collaboration

    2007-12-01

    The paper describes the requirements for the readout electronics and DAQ for the instrumentation of the forward region of the future detector at the international linear collider. The preliminary design is discussed.

  15. Brain-machine interface circuits and systems

    CERN Document Server

    Zjajo, Amir

    2016-01-01

    This book provides a complete overview of significant design challenges in respect to circuit miniaturization and power reduction of the neural recording system, along with circuit topologies, architecture trends, and (post-silicon) circuit optimization algorithms. The introduced novel circuits for signal conditioning, quantization, and classification, as well as system configurations focus on optimized power-per-area performance, from the spatial resolution (i.e. number of channels), feasible wireless data bandwidth and information quality to the delivered power of implantable system.

  16. Infrared stereo camera for human machine interface

    Science.gov (United States)

    Edmondson, Richard; Vaden, Justin; Chenault, David

    2012-06-01

    Improved situational awareness results not only from improved performance of imaging hardware, but also when the operator and human factors are considered. Situational awareness for IR imaging systems frequently depends on the contrast available. A significant improvement in effective contrast for the operator can result when depth perception is added to the display of IR scenes. Depth perception through flat panel 3D displays are now possible due to the number of 3D displays entering the consumer market. Such displays require appropriate and human friendly stereo IR video input in order to be effective in the dynamic military environment. We report on a stereo IR camera that has been developed for integration on to an unmanned ground vehicle (UGV). The camera has auto-convergence capability that significantly reduces ill effects due to image doubling, minimizes focus-convergence mismatch, and eliminates the need for the operator to manually adjust camera properties. Discussion of the size, weight, and power requirements as well as integration onto the robot platform will be given along with description of the stand alone operation.

  17. Brain machine interfaces for serious gaming application

    NARCIS (Netherlands)

    Erp, J.B.F. van; Werkhoven, P.J.

    2007-01-01

    Serious games are intended to provide an engaging, self reinforcing context to motivate and educate the players. One of the challenges in serious gaming is to provide intuitive interaction techniques. Serious games are meant to facilitate creative and educational processes and so they should optimal

  18. Cortisol in human milk predicts child BMI.

    Science.gov (United States)

    Hahn-Holbrook, Jennifer; Le, Tran Bao; Chung, Anna; Davis, Elysia Poggi; Glynn, Laura M

    2016-12-01

    Breastfeeding has been linked to lower rates of childhood obesity. Human milk contains cortisol, known to regulate glucose storage and metabolism. The aim of this study was to to test the hypothesis that early exposure to cortisol in human breast milk helps to modulate infant body mass index (BMI) trajectories over the first 2 years of life. Growth curve modeling was used to examine whether infant exposure to cortisol in human milk at 3 months predicted changes in child body mass index percentile (BMIP) at 6, 12, and 24 months of age in 51 breastfeeding mother-child pairs. Infants exposed to higher milk cortisol levels at 3 months were less likely to exhibit BMIP gains over the first 2 years of life, compared with infants exposed to lower milk cortisol. By age 2, infants exposed to higher milk cortisol levels had lower BMIPs than infants exposed to lower milk cortisol. Milk cortisol was a stronger predictor of BMIP change in girls than boys. Cortisol exposure through human milk may help to program metabolic functioning and childhood obesity risk. Further, because infant formula contains only trace amounts of glucocorticoids, these findings suggest that cortisol in milk is a novel biological pathway through which breastfeeding may protect against later obesity. © 2016 The Obesity Society.

  19. Man-machine dialogue design and challenges

    CERN Document Server

    Landragin, Frederic

    2013-01-01

    This book summarizes the main problems posed by the design of a man-machine dialogue system and offers ideas on how to continue along the path towards efficient, realistic and fluid communication between humans and machines. A culmination of ten years of research, it is based on the author's development, investigation and experimentation covering a multitude of fields, including artificial intelligence, automated language processing, man-machine interfaces and notably multimodal or multimedia interfaces. Contents Part 1. Historical and Methodological Landmarks 1. An Assessment of the Evolution

  20. Diamond turning machine controller implementation

    Energy Technology Data Exchange (ETDEWEB)

    Garrard, K.P.; Taylor, L.W.; Knight, B.F.; Fornaro, R.J.

    1988-12-01

    The standard controller for a Pnuemo ASG 2500 Diamond Turning Machine, an Allen Bradley 8200, has been replaced with a custom high-performance design. This controller consists of four major components. Axis position feedback information is provided by a Zygo Axiom 2/20 laser interferometer with 0.1 micro-inch resolution. Hardware interface logic couples the computers digital and analog I/O channels to the diamond turning machine`s analog motor controllers, the laser interferometer, and other machine status and control information. It also provides front panel switches for operator override of the computer controller and implement the emergency stop sequence. The remaining two components, the control computer hardware and software, are discussed in detail below.

  1. Chip breaking system for automated machine tool

    Science.gov (United States)

    Arehart, Theodore A.; Carey, Donald O.

    1987-01-01

    The invention is a rotary selectively directional valve assembly for use in an automated turret lathe for directing a stream of high pressure liquid machining coolant to the interface of a machine tool and workpiece for breaking up ribbon-shaped chips during the formation thereof so as to inhibit scratching or other marring of the machined surfaces by these ribbon-shaped chips. The valve assembly is provided by a manifold arrangement having a plurality of circumferentially spaced apart ports each coupled to a machine tool. The manifold is rotatable with the turret when the turret is positioned for alignment of a machine tool in a machining relationship with the workpiece. The manifold is connected to a non-rotational header having a single passageway therethrough which conveys the high pressure coolant to only the port in the manifold which is in registry with the tool disposed in a working relationship with the workpiece. To position the machine tools the turret is rotated and one of the tools is placed in a material-removing relationship of the workpiece. The passageway in the header and one of the ports in the manifold arrangement are then automatically aligned to supply the machining coolant to the machine tool workpiece interface for breaking up of the chips as well as cooling the tool and workpiece during the machining operation.

  2. Effect of BMI on knee joint torques in ergometer rowing.

    Science.gov (United States)

    Roemer, Karen; Hortobagyi, Tibor; Richter, Chris; Munoz-Maldonado, Yolanda; Hamilton, Stephanie

    2013-12-01

    Although an authoritative panel recommended the use of ergometer rowing as a non-weight-bearing form of exercise for obese adults, the biomechanical characterization of ergometer rowing is strikingly absent. We examined the interaction between body mass index (BMI) relative to the lower extremity biomechanics during rowing in 10 normal weight (BMI 18-25), 10 overweight (BMI 25-30 kg·m⁻²), and 10 obese (BMI > 30 kg·m⁻²) participants. The results showed that BMI affects joint kinematics and primarily knee joint kinetics. The data revealed that high BMI leads to unfavorable knee joint torques, implying increased loads of the medial compartment in the knee joint that could be avoided by allowing more variable foot positioning on future designs of rowing ergometers.

  3. Comparison of dyslipidemia among the normal-BMI and high-BMI group of people of rural Tamil Nadu

    Directory of Open Access Journals (Sweden)

    Seetharaman Ranganathan

    2015-01-01

    Full Text Available Background: Overweight and obesity are considered major epidemic health problems in both developed and underdeveloped countries, as many studies showed a remarkable rise. One of the causes of dyslipidemia is obesity. Body mass index (BMI correlates reasonably well with laboratory-based measures of adiposity for population studies, and is extremely practical in most clinical settings. Aim: The aim of the study is to evaluate the lipid profile of patients with normal BMI and high BMI. Materials and Methods: A cross-sectional study of 400 subjects attended the medical outpatient department (OPD of a private medical college hospital at Salem from March 2010 to August 2011. The subjects were divided into two groups (200 in each group: (1 high BMI (BMI 25 and above and (2 normal BMI (BMI less than 25. The laboratory parameters; cholesterol (TC, low-density lipoprotein (LDL, high-density lipoprotein (HDL and triglyceride (TG were determined directly by using an automated chemistry analyzer. Statistical Analysis: The Student′s t-test was used for comparison between categorical variables, i.e. lipid profile, high-BMI and normal-BMI subjects at P ≤0.05. Results: The total cholesterol, LDL and very LDL cholesterol and the TGs are found to be relatively high among the subjects with high BMI when compared with normal BMI persons, and this difference was found to be statistically significant (P 0.05. Conclusion: By analyzing the results of the study conducted, it was concluded that there was an increased risk of dyslipidemia among the high-BMI group compared with the normal-BMI people. Hence, a community-based education in this regard is of utmost importance.

  4. Man-Man-Machine-Machine Etiquette: Towards an Environment to Investigate Behavioral Rules for Dynamic Man-Machine Teams

    Science.gov (United States)

    2010-10-01

    simulation (compound and environment) Sensor Simulation Agents (Guards, decision support, sensor support) Man-Machine Interface Ground Truth ( RPR ) G...10]). It is desired to make this interface based on existing standards. HLA is chosen for the M4E interface. The HLA RPR FOM is a data exchange...Definitions For M4E we have define the following additional classes to the RPR FOM: Table 1: Additional FOM classes. Object Classes Interaction Classes

  5. Machine Learning

    Energy Technology Data Exchange (ETDEWEB)

    Chikkagoudar, Satish; Chatterjee, Samrat; Thomas, Dennis G.; Carroll, Thomas E.; Muller, George

    2017-04-21

    The absence of a robust and unified theory of cyber dynamics presents challenges and opportunities for using machine learning based data-driven approaches to further the understanding of the behavior of such complex systems. Analysts can also use machine learning approaches to gain operational insights. In order to be operationally beneficial, cybersecurity machine learning based models need to have the ability to: (1) represent a real-world system, (2) infer system properties, and (3) learn and adapt based on expert knowledge and observations. Probabilistic models and Probabilistic graphical models provide these necessary properties and are further explored in this chapter. Bayesian Networks and Hidden Markov Models are introduced as an example of a widely used data driven classification/modeling strategy.

  6. PTEN inhibits BMI1 function independently of its phosphatase activity

    Directory of Open Access Journals (Sweden)

    Kapoor Anil

    2009-11-01

    Full Text Available Abstract Background PTEN is the second most mutated tumor suppressor gene other than p53. It suppresses tumorigenesis by dephosphorylating phosphatidylinositol (3,4,5-triphosphate (PIP3 to phosphatidylinositol (4,5-biphosphate (PIP2, thereby directly inhibiting phosphatidylinositol 3 kinase (PI3K-mediated tumorigenic activities. Consistent with this model of action, cytosolic PTEN is recruited to the plasma membrane to dephosphorylate PIP3. While nuclear PTEN has been shown to suppress tumorigenesis by governing genome integrity, additional mechanisms may also contribute to nuclear PTEN-mediated tumor suppression. The nuclear protein BMI1 promotes stem cell self-renewal and tumorigenesis and PTEN inhibits these events, suggesting that PTEN may suppress BMI1 function. Results We investigated whether PTEN inhibits BMI1 function during prostate tumorigenesis. PTEN binds to BMI1 exclusively in the nucleus. This interaction does not require PTEN's phosphatase activity, as phosphatase-deficient PTEN mutants, PTEN/C124S (CS, PTEN/G129E (GE, and a C-terminal PTEN fragment (C-PTEN excluding the catalytic domain, all associate with BMI1. Furthermore, the residues 186-286 of C-PTEN are sufficient for binding to BMI1. This interaction reduces BMI1's function. BMI1 enhances hTERT activity and reduces p16INK4A and p14ARF expression. These effects were attenuated by PTEN, PTEN(CS, PTEN(GE, and C-PTEN. Furthermore, knockdown of PTEN in DU145 cells increased hTERT promoter activity, which was reversed when BMI1 was concomitantly knocked-down, indicating that PTEN reduces hTERT promoter activity via inhibiting BMI1 function. Conversely, BMI1 reduces PTEN's ability to inhibit AKT activation, which can be attributed to its interaction with PTEN in the nucleus, making PTEN unavailable to dephosphorylate membrane-bound PIP3. Furthermore, BMI1 appears to co-localize with PTEN more frequently in clinical prostate tissue samples from patients diagnosed with PIN

  7. Social ideological influences on reported food consumption and BMI

    National Research Council Canada - National Science Library

    Wang, Wei C; Worsley, Anthony; Cunningham, Everarda G

    2008-01-01

    The purpose of this study was to investigate relationships between ideological beliefs, perceptions of the importance of health behaviours, health attitudes, food consumption, and Body Mass Index (BMI...

  8. Kinetic Interface

    DEFF Research Database (Denmark)

    2009-01-01

    A kinetic interface for orientation detection in a video training system is disclosed. The interface includes a balance platform instrumented with inertial motion sensors. The interface engages a participant's sense of balance in training exercises.......A kinetic interface for orientation detection in a video training system is disclosed. The interface includes a balance platform instrumented with inertial motion sensors. The interface engages a participant's sense of balance in training exercises....

  9. 基于Pubmed数据库文献挖掘的近5年脑机交互研究热点的聚类分析%Bibliometric and hotspot analysis of brain-machine interfaces based on pubmed database with literature mining in past five years

    Institute of Scientific and Technical Information of China (English)

    金磊; 胡柯嘉

    2015-01-01

    目的:调查有关脑机交互(brain-machine Interfaces,BCI)研究的医学文献,得出近期脑机交互研究热点。方法:应用美国国立医学图书馆开发的Pubmed数据库进行近5年有关脑机交互的文献检索,应用书目共现分析系统(bibliographic Item CO-Occurrence Matrix Builder,BICOMB)进行文献计量分析,SPSS 19.0软件进行聚类分析。结果:通过对脑机交互高频关键词聚类分析绘制树状图,总结得出了3大类研究热点:1)非侵入式的脑机交互信号获取和解码;2)侵入式获取信号的脑机交互研究;3)脑机交互在脑卒中康复中的研究。结论:脑机交互技术目前正在快速发展,但仍需更方便、有效、安全的信号提取及转化技术,以求积极应用于临床治疗。%Objective:To analyze the published articles of brain-machine interfaces and get the recent research hotspot. Methods:Searching brain-machine interfaces literatures through PubMed database of US Congress Library of Medicine in past ifve years, using BICOMB to bibliometric analysis and SPSS 19.0 to cluster analysis. Results:hTree research hotspots were concluded by analyzing the key words:1) non-invasive brain signal acquisition and decoding of brain-machine Interfaces;2) invasive brain signal acquisition of brain-machine Interfaces;3) brain-computer interaction research in stroke rehabilitation. Conclusion:Researches on BCI developed rapidly, but signal acquisition and decoding need more convenient, effective and safer in the future studies and useful clinical practice for BCI is the ifrst priority.

  10. Comparison of dyslipidemia among the normal-BMI and high-BMI group of people of rural Tamil Nadu

    OpenAIRE

    Seetharaman Ranganathan; Tuman US Krishnan; Shankar Radhakrishnan

    2015-01-01

    Background: Overweight and obesity are considered major epidemic health problems in both developed and underdeveloped countries, as many studies showed a remarkable rise. One of the causes of dyslipidemia is obesity. Body mass index (BMI) correlates reasonably well with laboratory-based measures of adiposity for population studies, and is extremely practical in most clinical settings. Aim: The aim of the study is to evaluate the lipid profile of patients with normal BMI and high BMI. Material...

  11. Display Technology Research of Gun Loading System in 3D and Real-time Man-machine Interface%火炮装填系统实时三维人机界面显示技术研究

    Institute of Scientific and Technical Information of China (English)

    张瑞霞; 魏宁波; 郑海鹏; 潘江峰

    2014-01-01

    A kind of man-machine interface that can display the gun loading system in 3D real-time was de-signed to form a mode of 3D model &data drive by use of combining the traditional virtual prototype tech-nology with bus communication technology.Field sensor data were collected by means of CAN bus,and data process was performed according to communication protocols.Corresponding variable quantity of the component model with processed data were decided and thus to display the real-time running state of the current component model,and the virtual prototype can realize the accuracy and consistent virtual scene a-greed with the actual loading system at the operation terminal.This method can obtain the real-time dis-play effect of visualization,enhance the reality sense of operation staff as well as the authenticity and in-teractivity of combat command personnel,and greatly improve the practicability of the command automa-tion system.%实现了一种火炮装填系统三维实时显示的人机界面,将传统虚拟现实与总线通信技术结合起来,形成一种三维模型+数据驱动的模式。通过CAN总线采集现场传感器数据并根据通信协议进行数据处理,再将运算后的数据赋予部件模型对应的变量,使界面显示出当前部件模型的实时运行状态,从而在操作终端实现与实际装填系统状态准确一致的虚拟视景。此方法达到了可视化的实时显示效果,增强了操作手的真实感,以及作战指挥人员的真实性和交互性,提高了指挥自动化系统的实用性。

  12. Study on HRA-based Method for Assessing Digital Man-machine Interface%一种基于 HRA 的数字化人-机界面评价方法研究

    Institute of Scientific and Technical Information of China (English)

    李鹏程; 戴立操; 张力; 赵明; 胡鸿

    2014-01-01

    为识别数字化人‐机界面中可能诱发人因失误或弱化操纵员绩效的设计缺陷,建立了一种基于HRA的人‐机界面评价方法:HCR+CREAM+ HEC。首先,采用 HCR方法从事件整体中识别出失误概率高的风险场景;然后,针对高风险场景采用CREAM 方法确定各种失误模式及其失误概率,并对失误概率进行排序;最后,依据数字化人‐机界面特征建立人因工程检查表,对失误概率高的人‐机界面进行审查,以识别人‐机界面设计中存在的缺陷,并提出改进建议。结果表明,该方法能快速有效地识别出数字化人‐机界面设计中存在的容易诱发人因失误的缺陷,通过设计优化提高核电站数字控制系统运行的安全性。%In order to identify the design flaws of digital man‐machine interface (MMI) that may trigger human errors or weaken the performance of operators ,a HRA‐based method (namely HCR+ CREAM + HEC) for assessing digital MMI was established . Firstly ,the HCR method was used to identify the risk scenarios of high human error probability from the overall event as a whole perspective .Then ,for the identified high‐risk scenarios ,the CREAM was adopted to determine the various error modes and its error probability ,and the failure probability was ranked .Finally ,the human factors engineering checklist of digital MMI was established according to the characteristics of digital MMI ,it was used to check the digital MMI with high error probability in order to identify the design flaws of digital MMI ,and the suggestions of optimization were provided . T he results show that the provided assessment method can quickly and efficiently identify the design flaw s of digital M M I w hich easily trigger human errors , and the safety of operation of the digital control system for nuclear power plants can be enhanced by optimization of design .

  13. Human-machine-interface for an advisory collision warning system based on visual signal%基于视觉信号提示的碰撞预警系统的人机交互界面

    Institute of Scientific and Technical Information of China (English)

    李霖; 朱西产; 孙东

    2015-01-01

    为了辅助驾驶员安全行驶,设计了一种基于视觉信号提示的碰撞预警系统的人机交互界面(HMI),向驾驶员提供车辆周围的危险方位和程度的信息。用STISIM软件,把视频采集到的实际交通场景,转化为虚拟场景,设计了一种固定式驾驶模拟器,在该模拟器的试验平台上,由25名驾驶员进行测试,用问卷统计判断主观感受,用STISIM软件测量碰撞次数、速度、纵向加速度、侧向位移、即碰时间(TTC)等数据,来评价该HMI的有效性和用户接受度。结果表明:参试者对该人机交互界面具有积极的主观感受,该系统工作时,驾驶员的驾驶操作更为平稳,碰撞次数有所减低。%A human-machine-interface (HMI) was designed for an advisory colision warning system based on visual signal to help drivers to drive safely by the information about the orientation and the level of danger around vehicle. A ifxed driving simulator was built. Real trafifc scenarios were colected by using video cameras and then transformed into virtual scenarios of the simulator by STISIM software. The HMI was tested and evaluated on a platform based on driving simulator by 25 drivers. During the tests, drivers’ subjective attitudes were colected by using questionnaires and objective measures including the colision number, the average speed, the longitudinal acceleration, the lateral displacement and the time-to-colision (TTC), etc. by using STISIM. The results show that this design of HMI can achieve positive driver acceptance and this advisory system can help drivers adopt safer driving behaviors and then reduce the number of colisions.

  14. Impact of BMI Variations on Survival in Elderly Hemodialysis Patients.

    Science.gov (United States)

    Villain, Cédric; Ecochard, René; Genet, Leslie; Jean, Guillaume; Kuentz, François; Lataillade, Dominique; Legrand, Eric; Moreau-Gaudry, Xavier; Fouque, Denis

    2015-11-01

    In elderly hemodialysis patients, protein-energy wasting is associated with poor outcome; however, the association between body mass index (BMI) changes over time, and survival has been seldom studied in this particularly frail population. This prospective study recruited 502 hemodialysis patients aged ≥75 years from the French cohort ARNOS and followed them from 2005 to 2009. BMI changes over time were modeled by individual linear regression models. Survival analyses used frailty Cox models. The population average age was 80.9 years. Forty-one percent of the patients died during follow-up. A 1 kg/m(2) lower baseline BMI was associated with a 4% increase in the risk of death over the study period (hazard ratio [HR] 1.04, 95% confidence interval [1.01-1.08], P = .02). A 5% BMI loss per year was associated with a 52% increase in the risk of death (HR 1.52, 95% confidence interval [1.32-1.75], P 5% BMI loss per year), the lower was the baseline BMI, the higher was the HR for death. There was a similar trend in the patients with stable weight (5% BMI loss-5% BMI gain per year). In patients who gained weight, the HR was unexpectedly higher than in those with stable weight. In elderly hemodialysis patients, the impact of the BMI percent change on survival was stronger than that of the baseline BMI. Patients with stable weight had longer survivals than patients who lost or gained weight. Thus, in this population, BMI changes should be regularly assessed. Further studies should assess the safety of weight gain strategies. Copyright © 2015 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  15. Machine testning

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo

    This document is used in connection with a laboratory exercise of 3 hours duration as a part of the course GEOMETRICAL METROLOGY AND MACHINE TESTING. The exercise includes a series of tests carried out by the student on a conventional and a numerically controled lathe, respectively. This document...

  16. Representational Machines

    DEFF Research Database (Denmark)

    Petersson, Dag; Dahlgren, Anna; Vestberg, Nina Lager

    to the enterprises of the medium. This is the subject of Representational Machines: How photography enlists the workings of institutional technologies in search of establishing new iconic and social spaces. Together, the contributions to this edited volume span historical epochs, social environments, technological...

  17. Education modifies genetic and environmental influences on BMI

    DEFF Research Database (Denmark)

    Johnson, Wendy; Kyvik, Kirsten Ohm; Skytthe, Axel

    2011-01-01

    , and education data. Body mass index (BMI = kg weight/ m height(2)) was used to measure degree of obesity. We used quantitative genetic modeling to examine how genetic and shared and nonshared environmental variance in BMI differed by level of education and to estimate how genetic and shared and nonshared...

  18. Predicting Body Fat Using Data on the BMI

    Science.gov (United States)

    Mills, Terence C.

    2005-01-01

    A data set contained in the "Journal of Statistical Education's" data archive provides a way of exploring regression analysis at a variety of teaching levels. An appropriate functional form for the relationship between percentage body fat and the BMI is shown to be the semi-logarithmic, with variation in the BMI accounting for a little over half…

  19. Microbiota conservation and BMI signatures in adult monozygotic twins.

    Science.gov (United States)

    Tims, Sebastian; Derom, Catherine; Jonkers, Daisy M; Vlietinck, Robert; Saris, Wim H; Kleerebezem, Michiel; de Vos, Willem M; Zoetendal, Erwin G

    2013-04-01

    The human gastrointestinal (GI) tract microbiota acts like a virtual organ and is suggested to be of great importance in human energy balance and weight control. This study included 40 monozygotic (MZ) twin pairs to investigate the influence of the human genotype on GI microbiota structure as well as microbial signatures for differences in body mass index (BMI). Phylogenetic microarraying based on 16S rRNA genes demonstrated that MZ twins have more similar microbiotas compared with unrelated subjects (Ptwins. Half of the twin pairs were selected on discordance in terms of BMI, which revealed an inverse correlation between Clostridium cluster IV diversity and BMI. Furthermore, relatives of Eubacterium ventriosum and Roseburia intestinalis were positively correlated to BMI differences, and relatives of Oscillospira guillermondii were negatively correlated to BMI differences. Lower BMI was associated with a more abundant network of primary fiber degraders, while a network of butyrate producers was more prominent in subjects with higher BMI. Combined with higher butyrate and valerate contents in the fecal matter of higher BMI subjects, the difference in microbial networks suggests a shift in fermentation patterns at the end of the colon, which could affect human energy homeostasis.

  20. A Natural Language Interface to Databases

    Science.gov (United States)

    Ford, D. R.

    1990-01-01

    The development of a Natural Language Interface (NLI) is presented which is semantic-based and uses Conceptual Dependency representation. The system was developed using Lisp and currently runs on a Symbolics Lisp machine.

  1. BMI AND LENGTH OF HOSPITAL STAY IN LAPAROSCOPIC CHOLECYTECTOMY

    Directory of Open Access Journals (Sweden)

    Vinod Kumar

    2015-12-01

    Full Text Available Gallbladder disease is one of the most common causes of hospital admission in middle-aged women in developed countries. Body Mass Index (BMI is a person's weight in kilograms divided by the square of height in meters. A high BMI can be an indicator of high body fatness. Postoperative length of stay (POLOS was defined as the time from operative end to discharge from the hospital. Although increased Body Mass Index (BMI is well recognized as a risk factor for gallstones and subsequent cholecystectomy, there is little information on what direct impact underweight, overweight and obesity have on the length of hospital stay for gallbladder disease. Aim of this study was to find out effect of BMI on length of hospital stay .This retrospective study of 55 patients was conducted over 3months in the department of general surgery, Father Muller Medical College Hospital (FMMCH Mangalore, India, and BMI appeared to contribute to a decreased POLOS.

  2. Adding machine and calculating machine

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In 1642 the French mathematician Blaise Pascal(1623-1662) invented a machine;.that could add and subtract. It had.wheels that each had: 1 to 10 marked off along its circumference. When the wheel at the right, representing units, made one complete circle, it engaged the wheel to its left, represents tens, and moved it forward one notch.

  3. Are BMI and Sedentariness Correlated? A Multilevel Study in Children

    Directory of Open Access Journals (Sweden)

    Thayse Natacha Gomes

    2015-07-01

    Full Text Available The purpose of this research was to investigate the relationship between body mass index (BMI and sedentariness (Sed in children and to examine the influence of child and school correlates on their variation. The sample comprises 580 children (337 girls, 9–11 years. Sedentariness was assessed with an accelerometer, and BMI was computed. Child- and school-level covariates were analyzed using multilevel models. No significant correlation between Sed and BMI was found. School context explains 5% and 1.5% of the total variance in Sed and BMI, respectively. At the child level, only moderate-to-vigorous physical activity was associated with both Sed (β = −0.02 ± 0.002 and BMI (β = −0.005 ± 0.002. Sleep time is related to Sed (β = −0.42 ± 0.04, while sex (β = 1.97 ± 0.13, biological maturity (β = 1.25 ± 0.07, media in the bedroom (β = 0.26 ± 0.08 and healthy (β = −0.09 ± 0.03 and unhealthy (β = −0.07 ± 0.04 diet scores were associated with BMI. None of the school-level covariates were related to BMI, but access to cafeteria (β = −0.97 ± 0.25, playground equipment (β = −0.67 ± 0.20 and restaurants (β = 0.16 ± 0.08 were related to Sed. In conclusion, Sed and BMI were not correlated. Further, they have different correlates, while children’s traits seem to play more relevant roles in their differences in Sed and BMI than the school milieu. This information should be taken into account when strategies to reduce Sed and BMI are implemented.

  4. Genesis machines

    CERN Document Server

    Amos, Martyn

    2014-01-01

    Silicon chips are out. Today's scientists are using real, wet, squishy, living biology to build the next generation of computers. Cells, gels and DNA strands are the 'wetware' of the twenty-first century. Much smaller and more intelligent, these organic computers open up revolutionary possibilities. Tracing the history of computing and revealing a brave new world to come, Genesis Machines describes how this new technology will change the way we think not just about computers - but about life itself.

  5. Accuracy of BMI correction using multiple reports in children.

    Science.gov (United States)

    Ghosh-Dastidar, Madhumita Bonnie; Haas, Ann C; Nicosia, Nancy; Datar, Ashlesha

    2016-01-01

    Errors in reported height and weight raise concerns about body mass index (BMI) and obesity estimates obtained from self or proxy reports. Researchers have corrected BMI using linear statistical models, primarily with adult samples. We compared the accuracy of BMI correction in children for models that included child or parent reports versus both reports, and models that separately predicted height and weight compared to a single model for BMI. Height and weight from child reports, parent reports, and objective measurements for 475 children participating in the Military Teenagers' Environment, Exercise and Nutrition Study were analyzed. Two approaches were evaluated: (1) separate linear correction models for height and weight versus (2) a single linear correction model for BMI. Each approach considered models for height, weight, or BMI with child reports, parent reports, or both reports, respectively, as predictors, stratified by gender. Prediction accuracy was computed using leave-one-out validation. Models were compared using root mean squared error for BMI, and sensitivity and specificity for overweight and obesity indicators. Models that included both reports provided the best fit relative to a model using either set of reports, with adjusted R(2) of height, weight, and BMI models ranging from 67.1 to 87.6 % in males, and 69.2 to 88.3 % in females. Estimates of BMI from separate models for height and weight had the least prediction error, relative to those derived from a single model for BMI or from uncorrected (child or parent) reports. Cross-validated Root Mean Squared Error (RMSEs) preferred a model that included only parent reports among males and females, compared to models with only child reports or both reports. When assessing sensitivity (true positive) for obesity and overweight/obesity, the results varied by gender and outcomes. Specificity (true negative) was similarly high for all models. Objective measurements are more accurate than self- or

  6. Enhancing chemotherapy response with Bmi-1 silencing in ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Enfeng Wang

    Full Text Available Undoubtedly ovarian cancer is a vexing, incurable disease for patients with recurrent cancer and therapeutic options are limited. Although the polycomb group gene, Bmi-1 that regulates the self-renewal of normal stem and progenitor cells has been implicated in the pathogenesis of many human malignancies, yet a role for Bmi-1 in influencing chemotherapy response has not been addressed before. Here we demonstrate that silencing Bmi-1 reduces intracellular GSH levels and thereby sensitizes chemoresistant ovarian cancer cells to chemotherapeutics such as cisplatin. By exacerbating ROS production in response to cisplatin, Bmi-1 silencing activates the DNA damage response pathway, caspases and cleaves PARP resulting in the induction apoptosis in ovarian cancer cells. In an in vivo orthotopic mouse model of chemoresistant ovarian cancer, knockdown of Bmi-1 by nanoliposomal delivery significantly inhibits tumor growth. While cisplatin monotherapy was inactive, combination of Bmi-1 silencing along with cisplatin almost completely abrogated ovarian tumor growth. Collectively these findings establish Bmi-1 as an important new target for therapy in chemoresistant ovarian cancer.

  7. Prospective associations between sedentary lifestyle and BMI in midlife.

    Science.gov (United States)

    Mortensen, Laust H; Siegler, Ilene C; Barefoot, John C; Grønbaek, Morten; Sørensen, Thorkild I A

    2006-08-01

    A strong positive cross-sectional relationship between BMI and a sedentary lifestyle has been consistently observed in numerous studies. However, it has been questioned whether high BMI is a determinant or a consequence of a sedentary lifestyle. Using data from four follow-ups of the University of North Carolina Alumni Heart Study, we examined the prospective associations between BMI and sedentary lifestyle in a cohort of 4595 middle-aged men and women who had responded to questionnaires at the ages of 41 (standard deviation 2.3), 44 (2.3), 46 (2.0), and 54 (2.0). BMI was consistently related to increased risk of becoming sedentary in both men and women. The odds ratios of becoming sedentary as predicted by BMI were 1.04 (95% confidence limits, 1.00, 1.07) per 1 kg/m(2) from ages 41 to 44, 1.10 (1.07, 1.14) from ages 44 to 46, and 1.12 (1.08, 1.17) from ages 46 to 54. Controlling for concurrent changes in BMI marginally attenuated the effects. Sedentary lifestyle did not predict changes in BMI, except when concurrent changes in physical activity were taken into account (p sedentary lifestyle but did not provide unambiguous evidence for an effect of sedentary lifestyle on weight gain.

  8. Education modifies genetic and environmental influences on BMI.

    Science.gov (United States)

    Johnson, Wendy; Kyvik, Kirsten Ohm; Skytthe, Axel; Deary, Ian J; Sørensen, Thorkild I A

    2011-01-19

    Obesity is more common among the less educated, suggesting education-related environmental triggers. Such triggers may act differently dependent on genetic and environmental predisposition to obesity. In a Danish Twin Registry survey, 21,522 twins of same-sex pairs provided zygosity, height, weight, and education data. Body mass index (BMI = kg weight/ m height(2)) was used to measure degree of obesity. We used quantitative genetic modeling to examine how genetic and shared and nonshared environmental variance in BMI differed by level of education and to estimate how genetic and shared and nonshared environmental correlations between education and BMI differed by level of education, analyzing women and men separately. Correlations between education and BMI were -.13 in women, -.15 in men. High BMI's were less frequent among well-educated participants, generating less variance. In women, this was due to restriction of all forms of variance, overall by a factor of about 2. In men, genetic variance did not vary with education, but results for shared and nonshared environmental variance were similar to those for women. The contributions of the shared environment to the correlations between education and BMI were substantial among the well-educated, suggesting importance of familial environmental influences common to high education and lower BMI. Family influence was particularly important in linking high education and lower levels of obesity.

  9. Satraplatin: BMS 182751, BMY 45594, JM 216.

    Science.gov (United States)

    2007-01-01

    Satraplatin [BMS 182751, BMY 45594, JM 216] belongs to a series of orally-active platinum compounds with anticancer activity. It was jointly originated by Bristol-Myers Squibb, Johnson Matthey and the Institute of Cancer Research in the UK; however, Johnson Matthey has since ceased involvement with drug development. Subsequently, the agent has been licensed to and is under development with GPC Biotech, Pharmion and Spectrum Pharmaceuticals. Clinical trials are underway to evaluate satraplatin among patients with different tumour types, including prostate, breast, cervical and lung cancers. The compound is under regulatory review with the US FDA for the treatment of hormone-refractory prostate cancer. NeoTherapeutics (now Spectrum Pharmaceuticals) granted GPC Biotech an exclusive worldwide licence to develop and market satraplatin in October 2002. Under the terms of the agreement, GPC Biotech is fully funding development costs and commercialisation requirements for the drug. The deal also involves GPC Biotech paying a signing fee, milestone and royalty payments. Spectrum is a member of a joint development committee headed by GPC Biotech to govern development of satraplatin. Previously in October 2001, NeoOncoRx (Spectrum Pharmaceuticals) gained the rights to develop and market the compound worldwide. In December 2005, GPC Biotech and Pharmion Corporation entered into a co-development and license agreement for satraplatin. Under the agreement terms, Pharmion has exclusive commercialisation rights for Europe, Turkey, the Middle East, Australia and New Zealand, while GPC Biotech retains rights to North America and all other territories. Pharmion made an upfront payment of $US37.1 million to GPC Biotech, which included reimbursement for past clinical development costs plus funding for ongoing and certain clinical development activities to be jointly conducted by the companies. In addition, both parties will pursue a joint development plan for satraplatin in a variety of

  10. The Terabyte Analysis Machine Project The Distance Machine:Performance Report

    Institute of Scientific and Technical Information of China (English)

    JamesAnnis; KoenHoltman; 等

    2001-01-01

    The Terabyte Analysis Machine Project is Developing hardware and software to analyze Terabyte scale datasets.The Distance Machine framework provides facilities to flexibly interface application specific indexing and partitioning algorthms to large scientific databases.

  11. Simulating Turing machines on Maurer machines

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2008-01-01

    In a previous paper, we used Maurer machines to model and analyse micro-architectures. In the current paper, we investigate the connections between Turing machines and Maurer machines with the purpose to gain an insight into computability issues relating to Maurer machines. We introduce ways to

  12. FSW of Aluminum Tailor Welded Blanks across Machine Platforms

    Energy Technology Data Exchange (ETDEWEB)

    Hovanski, Yuri; Upadhyay, Piyush; Carlson, Blair; Szymanski, Robert; Luzanski, Tom; Marshall, Dustin

    2015-02-16

    Development and characterization of friction stir welded aluminum tailor welded blanks was successfully carried out on three separate machine platforms. Each was a commercially available, gantry style, multi-axis machine designed specifically for friction stir welding. Weld parameters were developed to support high volume production of dissimilar thickness aluminum tailor welded blanks at speeds of 3 m/min and greater. Parameters originally developed on an ultra-high stiffness servo driven machine where first transferred to a high stiffness servo-hydraulic friction stir welding machine, and subsequently transferred to a purpose built machine designed to accommodate thin sheet aluminum welding. The inherent beam stiffness, bearing compliance, and control system for each machine were distinctly unique, which posed specific challenges in transferring welding parameters across machine platforms. This work documents the challenges imposed by successfully transferring weld parameters from machine to machine, produced from different manufacturers and with unique control systems and interfaces.

  13. Environmentally Friendly Machining

    CERN Document Server

    Dixit, U S; Davim, J Paulo

    2012-01-01

    Environment-Friendly Machining provides an in-depth overview of environmentally-friendly machining processes, covering numerous different types of machining in order to identify which practice is the most environmentally sustainable. The book discusses three systems at length: machining with minimal cutting fluid, air-cooled machining and dry machining. Also covered is a way to conserve energy during machining processes, along with useful data and detailed descriptions for developing and utilizing the most efficient modern machining tools. Researchers and engineers looking for sustainable machining solutions will find Environment-Friendly Machining to be a useful volume.

  14. BASIN: Beowulf Analysis Symbolic INterface

    Science.gov (United States)

    Vesperini, Enrico; Goldberg, David M.; McMillan, Stephen L. W.; Dura, James; Jones, Douglas

    2013-08-01

    BASIN (Beowulf Analysis Symbolic INterface) is a flexible, integrated suite of tools for multiuser parallel data analysis and visualization that allows researchers to harness the power of Beowulf PC clusters and multi-processor machines without necessarily being experts in parallel programming. It also includes general tools for data distribution and parallel operations on distributed data for developing libraries for specific tasks.

  15. Machine Transliteration

    CERN Document Server

    Knight, K; Knight, Kevin; Graehl, Jonathan

    1997-01-01

    It is challenging to translate names and technical terms across languages with different alphabets and sound inventories. These items are commonly transliterated, i.e., replaced with approximate phonetic equivalents. For example, "computer" in English comes out as "konpyuutaa" in Japanese. Translating such items from Japanese back to English is even more challenging, and of practical interest, as transliterated items make up the bulk of text phrases not found in bilingual dictionaries. We describe and evaluate a method for performing backwards transliterations by machine. This method uses a generative model, incorporating several distinct stages in the transliteration process.

  16. Practical speech user interface design

    CERN Document Server

    Lewis, James R

    2010-01-01

    Although speech is the most natural form of communication between humans, most people find using speech to communicate with machines anything but natural. Drawing from psychology, human-computer interaction, linguistics, and communication theory, Practical Speech User Interface Design provides a comprehensive yet concise survey of practical speech user interface (SUI) design. It offers practice-based and research-based guidance on how to design effective, efficient, and pleasant speech applications that people can really use. Focusing on the design of speech user interfaces for IVR application

  17. Low birth weight, adult BMI and inflammation in middle age

    DEFF Research Database (Denmark)

    Pedersen, Jolene Lee Masters; Rod, Naja Hulvej; Avlund, Kirsten

    2013-01-01

    associated with all measures of inflammation besides IL-10. Finally, participants in both the lowest tertile of birthweight and highest tertile of adult BMI had the highest levels of all inflammatory markers. Low birthweight and high adult BMI are risk factors for inflammation in middle age. While......This study examines the association between birthweight and adult BMI with inflammation in middle age measured by interleukin 6 (IL- 6), interleukin 10 (IL-10), interleukin 18 (IL-18), high sensitivity Creactive protein (hsCRP) and tumor necrosis factor alpha (tnf-α). The study is based...... on participants with continued participation in the Copenhagen Perinatal cohort and Copenhagen Aging and Midlife Biobank clinical examination (n=1,719). Birthweight was negatively associated with hsCRP and IL-18.No association was identified with tnf-α, IL-6 and IL-10. Adult BMI was positively and significantly...

  18. Marriage, BMI, and wages: a double selection approach.

    Science.gov (United States)

    Brown, Heather

    2011-01-01

    Obesity rates have been rising over the past decade. As more people become obese, the social stigma of obesity may be reduced. Marriage has typically been used as a positive signal to employers. If obese individuals possess other characteristics that are valued in the labour market they may no longer face a wage penalty for their physical appearance. This paper investigates the relationship between marital status, body mass index (BMI), and wages by estimating a double selection model that controls for selection into the labour and marriage markets using waves 14 and 16 (2004 and 2006) of the British Household Panel Survey. Results suggest that unobserved characteristics related to marriage and labour market participation are causing an upward bias on the BMI coefficients. The BMI coefficient is positive and significant for married men only in the double selection model. The findings provide evidence that unobserved characteristics related to success in the marriage and labour market may influence the relationship between BMI and wages.

  19. Childhood BMI growth trajectories and endometrial cancer risk

    DEFF Research Database (Denmark)

    Aarestrup, Julie; Gamborg, Michael; Tilling, Kate;

    2017-01-01

    cancer and its sub-types. A cohort of 155,505 girls from the Copenhagen School Health Records Register with measured weights and heights at the ages of 6 to 14 years and born 1930-89 formed the analytical population. BMI was transformed to age-specific z-scores. Using linear spline multilevel models......Previously, we found that excess weight already in childhood has positive associations with endometrial cancer, however, associations with changes in body mass index (BMI) during childhood are not well understood. Therefore, we examined whether growth in childhood BMI is associated with endometrial......, each girl's BMI growth trajectory was estimated as the deviance from the average trajectory for three different growth periods (6.25-7.99, 8.0-10.99, 11.0-14.0 years). Via a link to health registers, 1020 endometrial cancer cases were identified, and Cox regressions were performed. A greater gain...

  20. Food insecurity and increased BMI in young adult women

    National Research Council Canada - National Science Library

    Gooding, Holly C; Walls, Courtney E; Richmond, Tracy K

    2012-01-01

    .... We aimed to identify whether food insecurity was associated with BMI in young adults and whether this association differed by gender and was modified by food stamp use and the presence of children in the home...

  1. The Prevalence of Obesity as Indicated by BMI and Waist ...

    African Journals Online (AJOL)

    Background: The prevalence of overweight and obesity in most developed ... of obesity using BMI and waist circumference among Nigerian adults attending Family ... than among males (p < 0.01) and more among subjects older than 40 years.

  2. Orthorexia nervosa: Assessment and correlates with gender, BMI, and personality.

    Science.gov (United States)

    Oberle, Crystal D; Samaghabadi, Razieh O; Hughes, Elizabeth M

    2017-01-01

    This study investigated whether orthorexia nervosa (ON; characterized by an obsessive fixation on eating healthy) may be predicted from the demographics variables of gender and BMI, and from the personality variables of self-esteem, narcissism, and perfectionism. Participants were 459 college students, who completed several online questionnaires that assessed these variables. A principal components analysis confirmed that the Eating Habits Questionnaire (Gleaves, Graham, & Ambwani, 2013) assesses three internally-consistent ON components: healthy eating behaviors, problems resulting from those behaviors, and positive feelings associated with those behaviors. A MANOVA and its tests of between subjects effects then revealed significant interactions between gender and BMI, such that for men but not women, a higher BMI was associated with greater symptomatology for all ON components. Partial correlation analyses, after controlling for gender and BMI, revealed that both narcissism and perfectionism were positively correlated with all aspects of ON symptomatology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Interface Consistency

    DEFF Research Database (Denmark)

    Staunstrup, Jørgen

    1998-01-01

    This paper proposes that Interface Consistency is an important issue for the development of modular designs. Byproviding a precise specification of component interfaces it becomes possible to check that separately developedcomponents use a common interface in a coherent matter thus avoiding a very...... significant source of design errors. Awide range of interface specifications are possible, the simplest form is a syntactical check of parameter types.However, today it is possible to do more sophisticated forms involving semantic checks....

  4. [BMI of the children attending elementary schools in Tuzla Canton].

    Science.gov (United States)

    Jusupović, Fatima; Juricić, Mojca; Rudić, Aida; Hazihalilović, Jasminka; Kasumović, Merima; Kalesic, Mirela

    2005-01-01

    BMI is frequently used in different studies as indicator of nutritional status. When BMI exceeds the limit values then it represents the risk factor leading to different diseases; therefore it is important to calculate BMI for young persons. In cases when BMI differs from the recommended value it is necessary to apply different measures in order to prevent diseases. The aim of this paper was to assess the present status and on the basis of the result obtained to assess the need for eventual preventive activities leading to healthy life stytes. This study was performed on a sample of 1544 school boys and girls aged eight, ten and fourteen attending first, third and seventh class of elementary school. The study covered four municipalities of Tuzla Canton: Tuzla, Lukavac, Gradanica and Kladanj, and both urban and rural areas. We used the method of anthropometric measurement (IBP International Biological Program) of body mass and body height, followed by calculation of BMI and statistical evaluation. This study found that the average BMI of girls and boys is increasinglongitudinally with the age, with significant change between 10 years and 14 years, without significant gen der difference. Boys aged eight have BMI 15.76, len years 16.52 and are similar to the BMI of girls aged eight 15.44 and ten years 16.59. Fourteen-year-old girls have BMI which is 19.54, higher than the BMI of boys at the same age which is 18.75. Having in mind the range of BMI percentile values for normal nutritional status (from 5 to 85) the values for eight years old boys ranged from 14.1 to 19.4, for ten-year-old boys from 13.4 to 19.2, and for fourteen-year-old boys from 13.6 to 19.5. The values for girls showed the following results; for eight-year-old girls the value ranged from 13.9 to 20.6; for ten-year-old girls t'rom 13.5 to 20.5 and fourteen-year-old girls from 13.7 to 19.6. In the sample there was 6.6% underweight children, and 15.2% overweight children, but the portion of overweight

  5. The Ideal Voting Interface: Classifying Usability

    Directory of Open Access Journals (Sweden)

    Damien Mac Namara

    2014-12-01

    Full Text Available This work presents a feature-oriented taxonomy for commercial electronic voting machines, which focuses on usability aspects. Based on this analysis, we propose a ‘Just-Like-Paper’  (JLP classification method which identifies five broad categories of eVoting interface. We extend the classification to investigate its application as an indicator of voting efficiency and identify a universal ten-step process encompassing all possible voting steps spanning the twenty-six machines studied. Our analysis concludes that multi-functional and progressive interfaces are likely to be more efficient versus multi-modal voter-activated machines.

  6. Interface models

    DEFF Research Database (Denmark)

    Ravn, Anders P.; Staunstrup, Jørgen

    1994-01-01

    This paper proposes a model for specifying interfaces between concurrently executing modules of a computing system. The model does not prescribe a particular type of communication protocol and is aimed at describing interfaces between both software and hardware modules or a combination of the two....... The model describes both functional and timing properties of an interface...

  7. Development of Machine Learning Tools in ROOT

    Science.gov (United States)

    Gleyzer, S. V.; Moneta, L.; Zapata, Omar A.

    2016-10-01

    ROOT is a framework for large-scale data analysis that provides basic and advanced statistical methods used by the LHC experiments. These include machine learning algorithms from the ROOT-integrated Toolkit for Multivariate Analysis (TMVA). We present several recent developments in TMVA, including a new modular design, new algorithms for variable importance and cross-validation, interfaces to other machine-learning software packages and integration of TMVA with Jupyter, making it accessible with a browser.

  8. Machine Protection

    CERN Document Server

    Schmidt, R

    2014-01-01

    The protection of accelerator equipment is as old as accelerator technology and was for many years related to high-power equipment. Examples are the protection of powering equipment from overheating (magnets, power converters, high-current cables), of superconducting magnets from damage after a quench and of klystrons. The protection of equipment from beam accidents is more recent. It is related to the increasing beam power of high-power proton accelerators such as ISIS, SNS, ESS and the PSI cyclotron, to the emission of synchrotron light by electron–positron accelerators and FELs, and to the increase of energy stored in the beam (in particular for hadron colliders such as LHC). Designing a machine protection system requires an excellent understanding of accelerator physics and operation to anticipate possible failures that could lead to damage. Machine protection includes beam and equipment monitoring, a system to safely stop beam operation (e.g. dumping the beam or stopping the beam at low energy) and an ...

  9. Reduced cortical thickness associated with visceral fat and BMI

    Directory of Open Access Journals (Sweden)

    Ralf Veit

    2014-01-01

    Full Text Available Structural brain imaging studies have shown that obesity is associated with widespread reductions in gray matter (GM volume. Although the body mass index (BMI is an easily accessible anthropometric measure, substantial health problems are more related to specific body fat compartments, like visceral adipose tissue (VAT. We investigated cortical thickness measures in a group of 72 healthy subjects (BMI range 20–35 kg/m2, age range 19–50 years. Multiple regression analyses were performed using VAT and BMI as predictors and age, gender, total surface area and education as confounds. BMI and VAT were independently associated with reductions in cortical thickness in clusters comprising the left lateral occipital area, the left inferior temporal cortex, and the left precentral and inferior parietal area, while the right insula, the left fusiform gyrus and the right inferior temporal area showed a negative correlation with VAT only. In addition, we could show significant reductions in cortical thickness with increasing VAT adjusted for BMI in the left temporal cortex. We were able to detect widespread cortical thinning in a young to middle-aged population related to BMI and VAT; these findings show close resemblance to studies focusing on GM volume differences in diabetic patients. This may point to the influence of VAT related adverse effects, like low-grade inflammation, as a potentially harmful factor on brain integrity already in individuals at risk of developing diabetes, metabolic syndromes and arteriosclerosis.

  10. Modelling the relationship between body fat and the BMI.

    Science.gov (United States)

    Mills, T C; Gallagher, D; Wang, J; Heshka, S

    2007-01-01

    OBJECTIVE: Given the increasing concerns about the levels of obesity being reached throughout the world, this paper analyses the relationship between the most common index of obesity, the BMI, and levels of body fat. RESEARCH METHODS AND PROCEDURES: The statistical relationship, in terms of functional form, between body fat and BMI is analysed using a large data set which can be categorized by race, sex and age. RESULTS: Irrespective of race, body fat and BMI are linearly related for males, with age entering logarithmically and with a positive effect on body fat. Caucasian males have higher body fat irrespective of age, but African American males' body fat increases with age faster than that of Asians and Hispanics. Age is not a significant predictor of body fat for females, where the relationship between body fat and BMI is nonlinear except for Asians. Caucasian females have higher predicted body fat than other races, except at low BMIs, where Asian females are predicted to have the highest body fat. DISCUSSION: Using BMIs to make predictions about body fat should be done with caution, as such predictions will depend upon race, sex and age and can be relatively imprecise. The results are of practical importance for informing the current debate on whether standard BMI cut-off values for overweight and obesity should apply to all sex and racial groups given that these BMI values are shown to correspond to different levels of adiposity in different groups.

  11. Analysis of machining and machine tools

    CERN Document Server

    Liang, Steven Y

    2016-01-01

    This book delivers the fundamental science and mechanics of machining and machine tools by presenting systematic and quantitative knowledge in the form of process mechanics and physics. It gives readers a solid command of machining science and engineering, and familiarizes them with the geometry and functionality requirements of creating parts and components in today’s markets. The authors address traditional machining topics, such as: single and multiple point cutting processes grinding components accuracy and metrology shear stress in cutting cutting temperature and analysis chatter They also address non-traditional machining, such as: electrical discharge machining electrochemical machining laser and electron beam machining A chapter on biomedical machining is also included. This book is appropriate for advanced undergraduate and graduate mechani cal engineering students, manufacturing engineers, and researchers. Each chapter contains examples, exercises and their solutions, and homework problems that re...

  12. Reusable State Machine Code Generator

    Science.gov (United States)

    Hoffstadt, A. A.; Reyes, C.; Sommer, H.; Andolfato, L.

    2010-12-01

    The State Machine model is frequently used to represent the behaviour of a system, allowing one to express and execute this behaviour in a deterministic way. A graphical representation such as a UML State Chart diagram tames the complexity of the system, thus facilitating changes to the model and communication between developers and domain experts. We present a reusable state machine code generator, developed by the Universidad Técnica Federico Santa María and the European Southern Observatory. The generator itself is based on the open source project architecture, and uses UML State Chart models as input. This allows for a modular design and a clean separation between generator and generated code. The generated state machine code has well-defined interfaces that are independent of the implementation artefacts such as the middle-ware. This allows using the generator in the substantially different observatory software of the Atacama Large Millimeter Array and the ESO Very Large Telescope. A project-specific mapping layer for event and transition notification connects the state machine code to its environment, which can be the Common Software of these projects, or any other project. This approach even allows to automatically create tests for a generated state machine, using techniques from software testing, such as path-coverage.

  13. Control procedures and interface man-machine; Procedures de conduite et interface homme-machine

    Energy Technology Data Exchange (ETDEWEB)

    Appell, B.; Guesnier, G. [Electricite de France, 75 - Paris (France). Service Etudes et Projets Thermiques et Nucleaires; Chambon, Y. [Ecole Nationale Superieure d`Electrotechnique, d`Electronique, d`Informatique et d`Hydraulique (ENSEEIHT), 31 - Toulouse (France)]|[Electricite de France, 75 - Paris (France). Service Etudes et Projets Thermiques et Nucleaires

    1998-07-01

    The accident of Three Miles Island in United State in 1979 has shown the fundamental part of man in the driving of a nuclear facility. Since this date, numerous studies have been done to find the best organization relative to documents, teams and driving means. The approach consists in ensuring a defense by using the whole of means at disposal. A description of these means is given in details. (N.C.)

  14. Dynamic Analysis of Foundation Supporting Rotary Machine

    Directory of Open Access Journals (Sweden)

    Utkarsh S. Patel

    2015-08-01

    Full Text Available With the advancement of technology in the field of industry, high speed machinery has been developed. As the speed of machinery has increased, vibrations also increased. Machines transmit vibrations to the structure supporting them. Hence, it is important to design and develop such structure which sustains the vibrations of machinery. Hence, in this study it has been aimed to execute the study on foundations supporting rotary type of machine like blower. In this paper, the most important parameters like frequency and amplitude are considered while execution of analysis of machine foundation supporting blower type machine. This paper shows, better interface between foundation designer and machine manufacturer for better performance of machine. The design aids/approaches for foundation design is also described in this paper and an attempt has been made to study the dynamic behaviour of a foundation structure for blower type machine subjected to forces due to operation of blower machine. Two different types of foundations for Rotary type Machine that is Blower have been studied in this paper

  15. Eating tasty food to cope. Longitudinal association with BMI.

    Science.gov (United States)

    Boggiano, M M; Wenger, L E; Turan, B; Tatum, M M; Morgan, P R; Sylvester, M D

    2015-04-01

    The goals of this study were to determine if a change in certain motives to eat highly palatable food, as measured by the Palatable Eating Motives Scale (PEMS), could predict a change in body mass index (BMI) over time, to assess the temporal stability of these motive scores, and to test the reliability of previously reported associations between eating tasty foods to cope and BMI. BMI, demographics, and scores on the PEMS and the Binge Eating Scale were obtained from 192 college students. Test-retest analysis was performed on the PEMS motives in groups varying in three gap times between tests. Regression analyses determined what PEMS motives predicted a change in BMI over two years. The results replicated previous findings that eating palatable food for Coping motives (e.g., to forget about problems, reduce negative feelings) is associated with BMI. Test-retest correlations revealed that motive scores, while somewhat stable, can change over time. Importantly, among overweight participants, a change in Coping scores predicted a change in BMI over 2 years, such that a 1-point change in Coping predicted a 1.76 change in BMI (equivalent to a 10.5 lb. change in body weight) independent of age, sex, ethnicity, and initial binge-eating status (Cohen's f(2) effect size = 1.44). The large range in change of Coping scores suggests it is possible to decrease frequency of eating to cope by more than 1 scale point to achieve weight losses greater than 10 lbs. in young overweight adults, a group already at risk for rapid weight gain. Hence, treatments aimed specifically at reducing palatable food intake for coping reasons vs. for social, reward, or conformity reasons, should help achieve a healthier body weight and prevent obesity if this motive-type is identified prior to significant weight gain. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Change in BMI accurately predicted by social exposure to acquaintances.

    Directory of Open Access Journals (Sweden)

    Rahman O Oloritun

    Full Text Available Research has mostly focused on obesity and not on processes of BMI change more generally, although these may be key factors that lead to obesity. Studies have suggested that obesity is affected by social ties. However these studies used survey based data collection techniques that may be biased toward select only close friends and relatives. In this study, mobile phone sensing techniques were used to routinely capture social interaction data in an undergraduate dorm. By automating the capture of social interaction data, the limitations of self-reported social exposure data are avoided. This study attempts to understand and develop a model that best describes the change in BMI using social interaction data. We evaluated a cohort of 42 college students in a co-located university dorm, automatically captured via mobile phones and survey based health-related information. We determined the most predictive variables for change in BMI using the least absolute shrinkage and selection operator (LASSO method. The selected variables, with gender, healthy diet category, and ability to manage stress, were used to build multiple linear regression models that estimate the effect of exposure and individual factors on change in BMI. We identified the best model using Akaike Information Criterion (AIC and R(2. This study found a model that explains 68% (p<0.0001 of the variation in change in BMI. The model combined social interaction data, especially from acquaintances, and personal health-related information to explain change in BMI. This is the first study taking into account both interactions with different levels of social interaction and personal health-related information. Social interactions with acquaintances accounted for more than half the variation in change in BMI. This suggests the importance of not only individual health information but also the significance of social interactions with people we are exposed to, even people we may not consider as

  17. Change in BMI accurately predicted by social exposure to acquaintances.

    Science.gov (United States)

    Oloritun, Rahman O; Ouarda, Taha B M J; Moturu, Sai; Madan, Anmol; Pentland, Alex Sandy; Khayal, Inas

    2013-01-01

    Research has mostly focused on obesity and not on processes of BMI change more generally, although these may be key factors that lead to obesity. Studies have suggested that obesity is affected by social ties. However these studies used survey based data collection techniques that may be biased toward select only close friends and relatives. In this study, mobile phone sensing techniques were used to routinely capture social interaction data in an undergraduate dorm. By automating the capture of social interaction data, the limitations of self-reported social exposure data are avoided. This study attempts to understand and develop a model that best describes the change in BMI using social interaction data. We evaluated a cohort of 42 college students in a co-located university dorm, automatically captured via mobile phones and survey based health-related information. We determined the most predictive variables for change in BMI using the least absolute shrinkage and selection operator (LASSO) method. The selected variables, with gender, healthy diet category, and ability to manage stress, were used to build multiple linear regression models that estimate the effect of exposure and individual factors on change in BMI. We identified the best model using Akaike Information Criterion (AIC) and R(2). This study found a model that explains 68% (pBMI. The model combined social interaction data, especially from acquaintances, and personal health-related information to explain change in BMI. This is the first study taking into account both interactions with different levels of social interaction and personal health-related information. Social interactions with acquaintances accounted for more than half the variation in change in BMI. This suggests the importance of not only individual health information but also the significance of social interactions with people we are exposed to, even people we may not consider as close friends.

  18. BMI AS A MARKER OF SEVERITY IN PATIENTS WITH COPD

    Directory of Open Access Journals (Sweden)

    Mohammed Soheb Sadath Ansari

    2017-02-01

    Full Text Available BACKGROUND COPD has evolved overtime as a clinical syndrome rather than a disease that is limited to respiratory system and presently the systemic manifestations and comorbid illnesses are much better understood and known. Globally, as well as in India, the burden of COPD continues to increase and by 2030 it is expected to be the third leading cause of death. Although, the back bone of therapy is pharmacotherapy, the role of rehabilitation and management of systemic problems in COPD is increasing. One of the components of management of COPD other than the lungs include maintenance of nutrition and body weight of COPD patients as it has been shown in many studies that BMI tends to fall as the disease progresses and can be considered as a marker of severity. In this study, we have tried to study the nutritional state of COPD patients and correlate it with disease severity. In this study, the COPD patients were graded into three groups and percentage of patients with low normal and below normal BMI were studied in each group. MATERIALS AND METHODS A total of 108 COPD (chronic obstructive pulmonary disease patients diagnosed based on smoking history and spirometry with post bronchodilator FEV1/FVC <0.7 were taken into the study at Bhaskar Medical College between 2015 and 2016. The severity of COPD was graded based on FEV1 (forced expiratory volume in first second values recorded from spirometry after calibrating the spirometer daily with 3 litre syringe. The height and weight were recorded and BMI calculated by dividing weight in kilograms by height in metre square and then the BMI was graded as per WHO guidelines. RESULTS The BMI was low normal and below normal in 18.75% of patients with mild and moderate disease group (FEV1 50-80%. In patients with severe disease group (FEV1 30-50%, the BMI was low normal and below normal in 43.3% and in very severe disease group (FEV1 <30%, the BMI was low normal and below normal in 57.14%. The results has shown

  19. Social ideological influences on food consumption, physical activity and BMI.

    Science.gov (United States)

    Wang, W C; Worsley, A; Cunningham, E G

    2009-12-01

    We investigated relationships between ideological beliefs (i.e., diaphanous body image and environmental concerns), food attitudes, evening meal patterns, physical activity, and Body Mass Index (BMI). A behavioural model was hypothesized based on the Theory of Reasoned Action. A survey was conducted among shoppers aged 40-70 years at Eastland Shopping Centre, Melbourne, Australia. The hypothesized model was tested among female baby boomers (n=547) for younger (n=245) and older (n=302) age groups using structural equation modeling. Findings showed that diaphanous body image had a direct and positive influence on negative food attitudes, which is likely to lead to higher BMI for both age groups. Body image beliefs were positively related to physical activity only for women aged 56-70 years. In contrast, among women aged 40-55 years, strong pro-environmental concerns suggested less consumption of both healthy (e.g., fruit and vegetables) and unhealthy (e.g., sugar and fats) foods. Moreover, strong pro-animal concerns resulted in higher BMI for the younger women. As expected, increased physical activity negatively influenced BMI. Importantly, the associations between ideological beliefs, attitudes, evening meal patterns, and BMI differed between younger and older female baby boomers.

  20. Dinner rituals that correlate with child and adult BMI.

    Science.gov (United States)

    Wansink, Brian; van Kleef, Ellen

    2014-05-01

    What predicts whether a child will be at risk for obesity? Whereas past research has focused on foods, eating habits, feeding styles, and family meal patterns, this study departs from a food-centric approach to examine how various dinner rituals might influence the BMIs of children and adults. In this study of 190 parents (BMI = 29.1 ± 7.2) and 148 children (BMI = 20.3 ± 4.4), the relationship between their BMIs and everyday family dinner rituals was examined using both correlation and regression analysis (controlled for educational level of parents). Families who frequently ate dinner in the kitchen or dining room had significantly lower BMIs for both adults (r = -0.31) and children (r = -0.24) compared to families who ate elsewhere. Additionally, helping cook dinner was associated with higher BMI for girls (r = 0.26), and remaining at the table until everyone is finished with eating was associated with lower BMI for boys (r = -0.31). Dinner tables may be one place where social support and family involvement meet-both of which relate to the BMI of children as well as parents. Family meals and their rituals might be an underappreciated battleground to fight obesity. Copyright © 2013 The Obesity Society.

  1. Beyond BMI: Conceptual Issues Related to Overweight and Obese Patients

    Directory of Open Access Journals (Sweden)

    Manfred James Müller

    2016-06-01

    Full Text Available BMI is widely used as a measure of weight status and disease risks; it defines overweight and obesity based on statistical criteria. BMI is a score; neither is it biologically sound nor does it reflect a suitable phenotype worthwhile to study. Because of its limited value, BMI cannot provide profound insight into obesity biology and its co-morbidity. Alternative assessments of weight status include detailed phenotyping by body composition analysis (BCA. However, predicting disease risks, fat mass, and fat-free mass as assessed by validated techniques (i.e., densitometry, dual energy X ray absorptiometry, and bioelectrical impedance analysis does not exceed the value of BMI. Going beyond BMI and descriptive BCA, the concept of functional body composition (FBC integrates body components into regulatory systems. FBC refers to the masses of body components, organs, and tissues as well as to their inter-relationships within the context of endocrine, metabolic and immune functions. FBC can be used to define specific phenotypes of obesity, e.g. the sarcopenic-obese patient. Well-characterized obesity phenotypes are a precondition for targeted research (e.g., on the genomics of obesity and patient-centered care (e.g., adequate treatment of individual obese phenotypes such as the sarcopenic-obese patient. FBC contributes to a future definition of overweight and obesity based on physiological criteria rather than on body weight alone.

  2. Design of a wearable interface for lightweight robotic arm for people with mobility impairments.

    Science.gov (United States)

    Baldi, Tommaso Lisini; Spagnoletti, Giovanni; Dragusanu, Mihai; Prattichizzo, Domenico

    2017-07-01

    Many common activities of daily living like open a door or fill a glass of water, which most of us take for granted, could be an insuperable problem for people who have limited mobility or impairments. For years the unique alternative to overcame this limitation was asking for human help. Nowadays thanks to recent studies and technology developments, having an assistive devices to compensate the loss of mobility is becoming a real opportunity. Off-the-shelf assistive robotic manipulators have the capability to improve the life of people with motor impairments. Robotic lightweight arms represent one of the most spread solution, in particular some of them are designed specifically to be mounted on wheelchairs to assist users in performing manipulation tasks. On the other hand, usually their control interface relies on joystick and buttons, making the use very challenging for people affected by impaired motor abilities. In this paper, we present a novel wearable control interface for users with limb mobility impairments. We make use of muscles residual motion capabilities, captured through a Body-Machine Interface based on a combination of head tilt estimation and electromyography signals. The proposed BMI is completely wearable, wireless and does not require frequently long calibrations. Preliminary experiments showed the effectiveness of the proposed system for subjects with motor impairments, allowing them to easily control a robotic arm for activities of daily living.

  3. Automation of printing machine

    OpenAIRE

    Sušil, David

    2016-01-01

    Bachelor thesis is focused on the automation of the printing machine and comparing the two types of printing machines. The first chapter deals with the history of printing, typesettings, printing techniques and various kinds of bookbinding. The second chapter describes the difference between sheet-fed printing machines and offset printing machines, the difference between two representatives of rotary machines, technological process of the products on these machines, the description of the mac...

  4. BMI is not a good indicator for metabolic risk in adolescent girls

    Science.gov (United States)

    BMI (kg/m2) does not provide information about body fat percentile.Adolescents with BMI girls with low BMI can have high body fat percentile. We hypothesized that these girls are already insulin resi...

  5. Interface dermatitis

    Directory of Open Access Journals (Sweden)

    Rajiv Joshi

    2013-01-01

    Full Text Available Interface dermatitis includes diseases in which the primary pathology involves the dermo-epidermal junction. The salient histological findings include basal cell vacuolization, apoptotic keratinocytes (colloid or Civatte bodies, and obscuring of the dermo-epidermal junction by inflammatory cells. Secondary changes of the epidermis and papillary dermis along with type, distribution and density of inflammatory cells are used for the differential diagnoses of the various diseases that exhibit interface changes. Lupus erythematosus, dermatomyositis, lichen planus, graft versus host disease, erythema multiforme, fixed drug eruptions, lichen striatus, and pityriasis lichenoides are considered major interface diseases. Several other diseases (inflammatory, infective, and neoplastic may show interface changes.

  6. Machine musicianship

    Science.gov (United States)

    Rowe, Robert

    2002-05-01

    The training of musicians begins by teaching basic musical concepts, a collection of knowledge commonly known as musicianship. Computer programs designed to implement musical skills (e.g., to make sense of what they hear, perform music expressively, or compose convincing pieces) can similarly benefit from access to a fundamental level of musicianship. Recent research in music cognition, artificial intelligence, and music theory has produced a repertoire of techniques that can make the behavior of computer programs more musical. Many of these were presented in a recently published book/CD-ROM entitled Machine Musicianship. For use in interactive music systems, we are interested in those which are fast enough to run in real time and that need only make reference to the material as it appears in sequence. This talk will review several applications that are able to identify the tonal center of musical material during performance. Beyond this specific task, the design of real-time algorithmic listening through the concurrent operation of several connected analyzers is examined. The presentation includes discussion of a library of C++ objects that can be combined to perform interactive listening and a demonstration of their capability.

  7. Affective Brain-Computer Interfaces (aBCI 2011)

    NARCIS (Netherlands)

    Mühl, C.; Nijholt, Antinus; Allison, Brandan; Dunne, Stephen; Heylen, Dirk K.J.; D' Mello, Sidney; Graesser, Arthur; Schuller, Björn; Martin, Jean-Claude

    2011-01-01

    Recently, many groups (see Zander and Kothe. Towards passive brain–computer interfaces: applying brain–computer interface technology to human–machine systems in general. J. Neural Eng., 8, 2011) have worked toward expanding brain-computer interface (BCI) systems to include not only active control, b

  8. Acculturation and BMI among Chinese, Korean and Vietnamese adults.

    Science.gov (United States)

    Chen, Lu; Juon, Hee-Soon; Lee, Sunmin

    2012-06-01

    The objective of this study is to examine the association between acculturation and BMI among Asian Americans using multiple measures of acculturation. Data of 847 Chinese, Korean and Vietnamese recruited for a health education program in Maryland during 2009 to 2010 were used. Acculturation was measured by the short version of Suinn-Lew Asian Self-Identity Acculturation Scale (SL-ASIA) and its individual components. Height and weight were measured by trained staff. Multiple linear regressions were used to estimate the association between acculturation and BMI. After adjusting for age, gender, education, income, marital status, and ethnicity, SL-ASIA (β = 0.71, SE = 0.28), having education in the US (β = 0.56, SE = 0.28), younger age of arrival (0-5 years: β = 3.32, SE = 0.76, 6-10 years: β = 1.55, SE = 0.78), self identified as Americans (β = 1.51, SE = 0.77) and equal preference of Asian/American food in restaurants (β = 0.92, SE = 0.28) were significantly associated with increased BMI. The association between acculturation and BMI was stronger among men than women, strongest among Chinese and weakest among Vietnamese. Acculturation was moderately associated with increased BMI among Asian Americans and this association varied by measures of acculturation. The association of acculturation and BMI was moderated by sex and ethnicity groups.

  9. Alternative regression models to assess increase in childhood BMI

    Directory of Open Access Journals (Sweden)

    Mansmann Ulrich

    2008-09-01

    Full Text Available Abstract Background Body mass index (BMI data usually have skewed distributions, for which common statistical modeling approaches such as simple linear or logistic regression have limitations. Methods Different regression approaches to predict childhood BMI by goodness-of-fit measures and means of interpretation were compared including generalized linear models (GLMs, quantile regression and Generalized Additive Models for Location, Scale and Shape (GAMLSS. We analyzed data of 4967 children participating in the school entry health examination in Bavaria, Germany, from 2001 to 2002. TV watching, meal frequency, breastfeeding, smoking in pregnancy, maternal obesity, parental social class and weight gain in the first 2 years of life were considered as risk factors for obesity. Results GAMLSS showed a much better fit regarding the estimation of risk factors effects on transformed and untransformed BMI data than common GLMs with respect to the generalized Akaike information criterion. In comparison with GAMLSS, quantile regression allowed for additional interpretation of prespecified distribution quantiles, such as quantiles referring to overweight or obesity. The variables TV watching, maternal BMI and weight gain in the first 2 years were directly, and meal frequency was inversely significantly associated with body composition in any model type examined. In contrast, smoking in pregnancy was not directly, and breastfeeding and parental social class were not inversely significantly associated with body composition in GLM models, but in GAMLSS and partly in quantile regression models. Risk factor specific BMI percentile curves could be estimated from GAMLSS and quantile regression models. Conclusion GAMLSS and quantile regression seem to be more appropriate than common GLMs for risk factor modeling of BMI data.

  10. Maternal Prepregnancy BMI and Risk of Cerebral Palsy in Offspring

    DEFF Research Database (Denmark)

    Forthun, Ingeborg; Wilcox, Allen J.; Strandberg-Larsen, Katrine

    2016-01-01

    OBJECTIVES: To investigate the association between maternal pre-pregnancy BMI and risk of cerebral palsy (CP) in offspring. METHODS: The study population consisted of 188 788 children in the Mothers and Babies in Norway and Denmark CP study, using data from 2 population-based, prospective birth...... the national CP registries. Associations between maternal prepregnancy BMI and CP in offspring were investigated by using log-binomial regression models. RESULTS: The 2 cohorts had 390 eligible cases of CP (2.1 per 1000 live-born children). Compared with mothers in the lower normal weight group, mothers...

  11. Preparation of the Heat Resistant Adhesive of NBR Modified BMI

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A Kind of homogeneous resin, which can be used as thermal resistant adhesive and matrix for composite,was prepared by bis(4-maleimidophenyl)methane (BMI), 4,4'-diaminodiphenylmethane(DDM), aniline(An), phenol type epoxy resin (F-51) and nitrile -butadiene rubber (NBR) through solution copolymerization. The reaction from prepolymerization to curing of the resin system was studied. And the factors such as raw material ratio and curing temperature, which affect thermal resistance and adhesives of cured product,were also analyzed. SEM and IR spectra were utilized to discuss the mechanisms of toughness and reaction of modified BMI.

  12. Design and Modeling of High Performance Permanent Magnet Synchronous Machines

    NARCIS (Netherlands)

    Van der Geest, M.

    2015-01-01

    The electrification of transportation, and especially aerospace transportation, increases the demand for high performance electrical machines. Those machines often need to be fault-tolerant, cheap, highly efficient, light and small, and interface well with the inverter. In addition, the development

  13. Haptics-Augmented Simple-Machine Educational Tools.

    Science.gov (United States)

    Williams, Robert L., II; Chen, Meng-Yun; Seaton, Jeffrey M.

    2003-01-01

    Describes a unique project using commercial haptic interfaces to augment the teaching of simple machines in elementary school. Suggests that the use of haptics in virtual simple-machine simulations has the potential for deeper, more engaging learning. (Contains 13 references.) (Author/YDS)

  14. Interface Screenings

    DEFF Research Database (Denmark)

    Thomsen, Bodil Marie Stavning

    2015-01-01

    and memories. From a transvisual perspective, the question is whether or not these (by now realized) diagrammatic modes involving the body in ubiquitous global media can be analysed in terms of the affects and events created in concrete interfaces. The examples used are filmic as felt sensations...... of an interface are invisible and not easy to describe....

  15. Fluid Interfaces

    DEFF Research Database (Denmark)

    Hansen, Klaus Marius

    2001-01-01

    Fluid interaction, interaction by the user with the system that causes few breakdowns, is essential to many user interfaces. We present two concrete software systems that try to support fluid interaction for different work practices. Furthermore, we present specificity, generality, and minimality...... as design goals for fluid interfaces....

  16. Interface Realisms

    DEFF Research Database (Denmark)

    Pold, Søren

    2005-01-01

    This article argues for seeing the interface as an important representational and aesthetic form with implications for postmodern culture and digital aesthetics. The interface emphasizes realism due in part to the desire for transparency in Human-Computer Interaction (HCI) and partly to the devel...

  17. Testing Interfaces

    DEFF Research Database (Denmark)

    Holbøll, Joachim T.; Henriksen, Mogens; Nilson, Jesper K.;

    1999-01-01

    The wide use of solid insulating materials combinations in combinations has introduced problems in the interfaces between components. The most common insulating materials are cross-linked polyethylene (XLPE), silicone rubber (SIR) and ethylene-propylene rubbers (EPR). Assemblies of these materials...... have caused major failures. In the Netherlands, a major black out was caused by interface problems in 150kV cable terminations, causing a cascade of breakdowns. There is a need to investigate the reasons for this and other similar breakdowns.The major problem is expected to lie in the interface between...... two different materials. Environmental influence, surface treatment, defects in materials and interface, design, pressure and rubbing are believed to have an effect on interface degradation. These factors are believed to increase the possibility of partial discharges (PD). PD will, with time, destroy...

  18. Electrical machines mathematical fundamentals of machine topologies

    CERN Document Server

    Gerling, Dieter

    2015-01-01

    Electrical Machines and Drives play a powerful role in industry with an ever increasing importance. This fact requires the understanding of machine and drive principles by engineers of many different disciplines. Therefore, this book is intended to give a comprehensive deduction of these principles. Special attention is given to the precise mathematical derivation of the necessary formulae to calculate machines and drives and to the discussion of simplifications (if applied) with the associated limits. The book shows how the different machine topologies can be deduced from general fundamentals, and how they are linked together. This book addresses graduate students, researchers, and developers of Electrical Machines and Drives, who are interested in getting knowledge about the principles of machine and drive operation and in detecting the mathematical and engineering specialties of the different machine and drive topologies together with their mutual links. The detailed - but nevertheless compact - mat...

  19. Laser machining of advanced materials

    CERN Document Server

    Dahotre, Narendra B

    2011-01-01

    Advanced materialsIntroductionApplicationsStructural ceramicsBiomaterials CompositesIntermetallicsMachining of advanced materials IntroductionFabrication techniquesMechanical machiningChemical Machining (CM)Electrical machiningRadiation machining Hybrid machiningLaser machiningIntroductionAbsorption of laser energy and multiple reflectionsThermal effectsLaser machining of structural ceramicsIntrodu

  20. Man-machine interactions 3

    CERN Document Server

    Czachórski, Tadeusz; Kozielski, Stanisław

    2014-01-01

    Man-Machine Interaction is an interdisciplinary field of research that covers many aspects of science focused on a human and machine in conjunction.  Basic goal of the study is to improve and invent new ways of communication between users and computers, and many different subjects are involved to reach the long-term research objective of an intuitive, natural and multimodal way of interaction with machines.  The rapid evolution of the methods by which humans interact with computers is observed nowadays and new approaches allow using computing technologies to support people on the daily basis, making computers more usable and receptive to the user's needs.   This monograph is the third edition in the series and presents important ideas, current trends and innovations in  the man-machine interactions area.  The aim of this book is to introduce not only hardware and software interfacing concepts, but also to give insights into the related theoretical background. Reader is provided with a compilation of high...

  1. Trends in BMI of urban Australian adults, 1980-2000

    DEFF Research Database (Denmark)

    Walls, Helen L; Wolfe, Rory; Haby, Michelle M

    2010-01-01

    OBJECTIVE: To analyse changes in the distribution of BMI in Australia between 1980 and 2000. DESIGN: Data were from the 1980, 1983 and 1989 National Heart Foundation Risk Factor Prevalence Study, the 1995 National Nutrition Survey and the 1999/2000 Australian Diabetes, Obesity and Lifestyle Study...

  2. Community-Specific BMI Cutoff Points for South Indian Females

    Directory of Open Access Journals (Sweden)

    K. B. Kishore Mohan

    2011-01-01

    Full Text Available Objective. To analyze multiparameters related to total body composition, with specific emphasis on obesity in South Indian females, in order to derive community-specific BMI cutoff points. Patients and Methods. A total number of 87 females (of age 37.33±13.12 years from South Indian Chennai urban population participated in this clinical study. Body composition analysis and anthropometric measurements were acquired after conducting careful clinical examination. Results. BMI demonstrated high significance when normal group (21.02±1.47 kg/m2 was compared with obese group (29.31±3.95 kg/m2, <0.0001. BFM displayed high significance when normal group (14.92±4.28 kg was compared with obese group (29.94 ± 8.1 kg, <0.0001. Conclusion. Community-specific BMI cutoffs are necessary to assess obesity in different ethnic groups, and relying on WHO-based universal BMI cutoff points would be a wrong strategy.

  3. Social ideological influences on reported food consumption and BMI

    Directory of Open Access Journals (Sweden)

    Worsley Anthony

    2008-04-01

    Full Text Available Abstract Background The purpose of this study was to investigate relationships between ideological beliefs, perceptions of the importance of health behaviours, health attitudes, food consumption, and Body Mass Index (BMI. A behavioural model was hypothesized based on the Theory of Reasoned Action (Fishbein & Ajzen, 1975. Methods A survey was conducted among shoppers aged between 40 and 70 years at Eastland Shopping Centre, Melbourne, Australia. The hypothesized model was tested with this empirical data (n = 410 for younger (n = 151 and older (n = 259 age groups using structural equation modelling. Results The findings generally support the study hypotheses. For both groups, egalitarianism had a direct and positive influence on perceptions of the importance of health behaviours. Materialism and masculinity impacted negatively on health attitudes, which positively influenced importance of health behaviours. Perceptions of importance of health behaviours impacted positively on the consumption of healthy foods such as vegetables and fruits, but negatively on consumption of unhealthy foods including sweets and fats. However, BMI was significantly influenced by the consumption of unhealthy foods (e.g., sugar and fats only for the younger age group. Hence, the associations between beliefs, attitudes, consumption behaviours, and BMI outcomes differed between younger and older age populations. Conclusion Social ideological beliefs appear to influence health attitudes and thereafter, the consumption of healthy and unhealthy foods and BMI via different pathways.

  4. Longitudinal association between marital disruption and child BMI and obesity.

    Science.gov (United States)

    Arkes, Jeremy

    2012-08-01

    This research examines whether family disruptions (i.e., divorces and separation) contribute to children's weight problems. The sample consists of 7,299 observations for 2,333 children, aged 5-14, over the 1986-2006 period, from a US representative sample from the Child and Young Adult Survey accompanying the National Longitudinal Survey of Youth (NLSY). The study uses individual-fixed-effects models in a longitudinal framework to compare children's BMI and weight problems before and after a disruption. Furthermore, besides doing a before-after comparison for children, the study also estimates the effects at various periods relative to the disruption in order to examine whether children are affected before the disruption and whether any effects change as time passes from the disruption, as some effects may be temporary or slow to develop. Despite having a larger sample than the previous studies, the results provide no evidence that, on average, children's BMI and BMI percentile scores (measured with continuous outcomes) are affected before the disruption, after the disruption, and as time passes from the disruption, relative to a baseline period a few years before the disruption. However, children experiencing a family disruption do have an increased risk of obesity (having a BMI percentile score of 95 or higher) in the two years leading up to the disruption as well as after the disruption, and as time passes from the disruption.

  5. BMI and depressive symptoms: the role of media pressures.

    Science.gov (United States)

    Jeffers, Amy J; Cotter, Elizabeth W; Snipes, Daniel J; Benotsch, Eric G

    2013-12-01

    Obese and overweight individuals experience higher risk for depression and emotional distress. One factor that may contribute to depression in obese or overweight individuals is exposure to unrealistic images in the media. Indeed, overall media consumption is associated with body image dissatisfaction in adolescents and young adults. Despite these compelling links, prior work has not examined the mediating effect of media pressures on the link between BMI and depression. In the present study, young adults (N = 743) completed an online survey assessing demographic information, perceived pressure from the media to conform to a certain body standard, and symptoms of depression. Structural equation modeling analyses indicated a direct effect of BMI on media pressure, a direct effect of media pressure on depressive symptoms, and an indirect effect of BMI on depressive symptoms mediated by media pressures. Findings indicate that higher BMI levels are associated with greater depressive symptoms when there is greater perceived media pressure on body image. Results suggest the need for clinicians to assess media consumption and perceived pressure to conform to physical appearance standards in individuals who are obese or overweight as well as individuals at risk for eating disorders.

  6. Effect of BMI on Knee Joint Torques in Ergometer Rowing

    NARCIS (Netherlands)

    Roemer, Karen; Hortobagyi, Tibor; Richter, Chris; Munoz-Maldonado, Yolanda; Hamilton, Stephanie

    2013-01-01

    Although an authoritative panel recommended the use of ergometer rowing as a non-weight-bearing form of exercise for obese adults, the biomechanical characterization of ergometer rowing is strikingly absent. We examined the interaction between body mass index (BMI) relative to the lower extremity bi

  7. Bmi-1 Regulates Extensive Erythroid Self-Renewal

    Directory of Open Access Journals (Sweden)

    Ah Ram Kim

    2015-06-01

    Full Text Available Red blood cells (RBCs, responsible for oxygen delivery and carbon dioxide exchange, are essential for our well-being. Alternative RBC sources are needed to meet the increased demand for RBC transfusions projected to occur as our population ages. We previously have discovered that erythroblasts derived from the early mouse embryo can self-renew extensively ex vivo for many months. To better understand the mechanisms regulating extensive erythroid self-renewal, global gene expression data sets from self-renewing and differentiating erythroblasts were analyzed and revealed the differential expression of Bmi-1. Bmi-1 overexpression conferred extensive self-renewal capacity upon adult bone-marrow-derived self-renewing erythroblasts, which normally have limited proliferative potential. Importantly, Bmi-1 transduction did not interfere with the ability of extensively self-renewing erythroblasts (ESREs to terminally mature either in vitro or in vivo. Bmi-1-induced ESREs can serve to generate in vitro models of erythroid-intrinsic disorders and ultimately may serve as a source of cultured RBCs for transfusion therapy.

  8. Effect of BMI on Knee Joint Torques in Ergometer Rowing

    NARCIS (Netherlands)

    Roemer, Karen; Hortobagyi, Tibor; Richter, Chris; Munoz-Maldonado, Yolanda; Hamilton, Stephanie

    2013-01-01

    Although an authoritative panel recommended the use of ergometer rowing as a non-weight-bearing form of exercise for obese adults, the biomechanical characterization of ergometer rowing is strikingly absent. We examined the interaction between body mass index (BMI) relative to the lower extremity bi

  9. The deleuzian abstract machines

    DEFF Research Database (Denmark)

    Werner Petersen, Erik

    2005-01-01

    production. In Kafka: Toward a Minor Literature, Deleuze and Guatari gave the most comprehensive explanation to the abstract machine in the work of art. Like the war-machines of Virilio, the Kafka-machine operates in three gears or speeds. Furthermore, the machine is connected to spatial diagrams...

  10. Quercetin attenuates doxorubicin cardiotoxicity by modulating Bmi-1 expression.

    Science.gov (United States)

    Dong, Qinghua; Chen, Long; Lu, Qunwei; Sharma, Sherven; Li, Lei; Morimoto, Sachio; Wang, Guanyu

    2014-10-01

    Doxorubicin-based chemotherapy induces cardiotoxicity, which limits its clinical application. We previously reported the protective effects of quercetin against doxorubicin-induced hepatotoxicity. In this study, we tested the effects of quercetin on the expression of Bmi-1, a protein regulating mitochondrial function and ROS generation, as a mechanism underlying quercetin-mediated protection against doxorubicin-induced cardiotoxicity. Effects of quercetin on doxorubicin-induced cardiotoxicity was evaluated using H9c2 cardiomyocytes and C57BL/6 mice. Changes in apoptosis, mitochondrial function, oxidative stress and related signalling were evaluated in H9c2 cells. Cardiac function, serum enzyme activity and reactive oxygen species (ROS) generation were measured in mice after a single injection of doxorubicin with or without quercetin pre-treatment. In H9c2 cells, quercetin reduced doxorubicin-induced apoptosis, mitochondrial dysfunction, ROS generation and DNA double-strand breaks. The quercetin-mediated protection against doxorubicin toxicity was characterized by decreased expression of Bid, p53 and oxidase (p47 and Nox1) and by increased expression of Bcl-2 and Bmi-1. Bmi-1 siRNA abolished the protective effect of quercetin against doxorubicin-induced toxicity in H9c2 cells. Furthermore, quercetin protected mice from doxorubicin-induced cardiac dysfunction that was accompanied by reduced ROS levels and lipid peroxidation, but enhanced the expression of Bmi-1 and anti-oxidative superoxide dismutase. Our results demonstrate that quercetin decreased doxorubicin-induced cardiotoxicity in vitro and in vivo by reducing oxidative stress by up-regulation of Bmi-1 expression. The findings presented in this study have potential applications in preventing doxorubicin-induced cardiomyopathy. © 2014 The British Pharmacological Society.

  11. Effects of social mobility from childhood to adolescence on BMI.

    Science.gov (United States)

    Muraro, Ana Paula; Gonçalves-Silva, Regina Maria Veras; Ferreira, Márcia Gonçalves; Sichieri, Rosely

    2016-04-01

    Little is known about the contribution of childhood socio-economic position (SEP) and social mobility to weight change. The present study evaluated the effect of family SEP during the pre-school years and social mobility on BMI between birth and adolescence. Longitudinal. The SEP of each child's family was classified according to an asset-based wealth index as low, medium or high. Four different categories of childhood-adolescence SEP groups were created in order to examine social mobility: low-medium/high, medium-medium, medium-high and high-high/medium. For each of these categories, BMI was tracked from birth to adolescence. Linear mixed-effects models were used to analyse the data. Cuiabá-MT, Brazil. A population-based cohort of children born between 1994 and 1999 was assessed between 1999 and 2000, and again between 2009 and 2011. A total of 1716 adolescents were followed from childhood to adolescence (71·4 % of baseline). The prevalence of overweight/obesity was 20·4 % in childhood and 27·7 % in adolescence. A higher SEP in childhood was associated with a greater prevalence of overweight in adolescence. Expressive upward social mobility occurred, mainly in the lowest SEP group. There was a greater rate of change in BMI between birth and adolescence among children with a higher SEP in childhood and children who remained in the higher SEP from childhood to adolescence. Individuals from a higher SEP in childhood and those who remained in the higher social classes showed greater rate of change in BMI. Thus, initial SEP was the major determinant of changes in BMI.

  12. Quercetin attenuates doxorubicin cardiotoxicity by modulating Bmi-1 expression

    Science.gov (United States)

    Dong, Qinghua; Chen, Long; Lu, Qunwei; Sharma, Sherven; Li, Lei; Morimoto, Sachio; Wang, Guanyu

    2014-01-01

    Background and Purpose Doxorubicin-based chemotherapy induces cardiotoxicity, which limits its clinical application. We previously reported the protective effects of quercetin against doxorubicin-induced hepatotoxicity. In this study, we tested the effects of quercetin on the expression of Bmi-1, a protein regulating mitochondrial function and ROS generation, as a mechanism underlying quercetin-mediated protection against doxorubicin-induced cardiotoxicity. Experimental Approach Effects of quercetin on doxorubicin-induced cardiotoxicity was evaluated using H9c2 cardiomyocytes and C57BL/6 mice. Changes in apoptosis, mitochondrial function, oxidative stress and related signalling were evaluated in H9c2 cells. Cardiac function, serum enzyme activity and reactive oxygen species (ROS) generation were measured in mice after a single injection of doxorubicin with or without quercetin pre-treatment. Key Results In H9c2 cells, quercetin reduced doxorubicin-induced apoptosis, mitochondrial dysfunction, ROS generation and DNA double-strand breaks. The quercetin-mediated protection against doxorubicin toxicity was characterized by decreased expression of Bid, p53 and oxidase (p47 and Nox1) and by increased expression of Bcl-2 and Bmi-1. Bmi-1 siRNA abolished the protective effect of quercetin against doxorubicin-induced toxicity in H9c2 cells. Furthermore, quercetin protected mice from doxorubicin-induced cardiac dysfunction that was accompanied by reduced ROS levels and lipid peroxidation, but enhanced the expression of Bmi-1 and anti-oxidative superoxide dismutase. Conclusions and Implications Our results demonstrate that quercetin decreased doxorubicin-induced cardiotoxicity in vitro and in vivo by reducing oxidative stress by up-regulation of Bmi-1 expression. The findings presented in this study have potential applications in preventing doxorubicin-induced cardiomyopathy. PMID:24902966

  13. Process Optimization of Bismaleimide (BMI) Resin Infused Carbon Fiber Composite

    Science.gov (United States)

    Ehrlich, Joshua W.; Tate, LaNetra C.; Cox, Sarah B.; Taylor, Brian J.; Wright, M. Clara; Caraccio, Anne J.; Sampson, Jeffery W.

    2013-01-01

    Bismaleimide (BMI) resins are an attractive new addition to world-wide composite applications. This type of thermosetting polyimide provides several unique characteristics such as excellent physical property retention at elevated temperatures and in wet environments, constant electrical properties over a vast array of temperature settings, and nonflammability properties as well. This makes BMI a popular choice in advance composites and electronics applications [I]. Bismaleimide-2 (BMI-2) resin was used to infuse intermediate modulus 7 (IM7) based carbon fiber. Two panel configurations consisting of 4 plies with [+45deg, 90deg]2 and [0deg]4 orientations were fabricated. For tensile testing, a [90deg]4 configuration was tested by rotating the [0deg]4 configirration to lie orthogonal with the load direction of the test fixture. Curing of the BMI-2/IM7 system utilized an optimal infusion process which focused on the integration of the manufacturer-recommended ramp rates,. hold times, and cure temperatures. Completion of the cure cycle for the BMI-2/IM7 composite yielded a product with multiple surface voids determined through visual and metallographic observation. Although the curing cycle was the same for the three panellayups, the surface voids that remained within the material post-cure were different in abundance, shape, and size. For tensile testing, the [0deg]4 layup had a 19.9% and 21.7% greater average tensile strain performance compared to the [90deg]4 and [+45deg, 90deg, 90deg,-45degg] layups, respectively, at failure. For tensile stress performance, the [0deg]4 layup had a 5.8% and 34.0% greater average performance% than the [90deg]4 and [+45deg, 90deg, 90deg,-45deg] layups.

  14. Microprocessor interfacing

    CERN Document Server

    Vears, R E

    2014-01-01

    Microprocessor Interfacing provides the coverage of the Business and Technician Education Council level NIII unit in Microprocessor Interfacing (syllabus U86/335). Composed of seven chapters, the book explains the foundation in microprocessor interfacing techniques in hardware and software that can be used for problem identification and solving. The book focuses on the 6502, Z80, and 6800/02 microprocessor families. The technique starts with signal conditioning, filtering, and cleaning before the signal can be processed. The signal conversion, from analog to digital or vice versa, is expl

  15. SOFTWARE TOOLS; program development interface. [Base version (This version is not tailored to any one machine but serves as a portable base for the user who can add ''primitives'' or modify the base source to tailor SOFTWARE TOOLS to the local computing environment. ); FORTRAN IV and RATFOR

    Energy Technology Data Exchange (ETDEWEB)

    Scherrer, D.K.

    One of the problems encountered by computer users is the lack of common utility routines for different computer systems. The software which was initially presented in Kernighan and Plauger's SOFTWARE TOOLS represented a first step toward a solution to this problem. A common editor, text formatter, sort, and other program development tools were presented through two mechanisms: (a) all source was written in RATFOR, a FORTRAN preprocessor language directly translatable into FORTRAN, and (b) system-dependent routines were pushed down either into macro replacements or primitive function calls, to be implemented by the individual charged with bringing up the utilities in the local computing environment. These mechanisms, together with adoption of certain conventions pertaining to data types, permit many sites running different operating systems to implement these tools. If the shell, or command line interpreter, is implemented, this software can essentially define a portable ''virtual operating system'' providing inter-system uniformity at the three levels of user interface--virtual machine (the primitives), utilities, and command language. The SOFTWARE TOOLS package consists of a set of program development utilities and a program library modelled after the Bell Laboratories' proprietary UNIX operating system.Base version (This version is not tailored to any one machine but serves as a portable base for the user who can add ''primitives'' or modify the base source to tailor SOFTWARE TOOLS to the local computing environment.); FORTRAN IV and RATFOR.

  16. Can self-reported BMI be used as a valid measure among novice runners

    DEFF Research Database (Denmark)

    Juul, Martin Serup; Nielsen, R.O.; Rasmussen, Sten

    SC-330) while their height was measured with a tape measure. Based on these data BMI were calculated based on the equation: BMI = mass (kg) / (height (m))2. Paired t-test was used to compare mean difference between self-reported BMI and measured BMI. Bland Altman limits of agreement were used...

  17. Aerodynamic seals for rotary machine

    Energy Technology Data Exchange (ETDEWEB)

    Bidkar, Rahul Anil; Cirri, Massimiliano; Thatte, Azam Mihir; Williams, John Robert

    2016-02-09

    An aerodynamic seal assembly for a rotary machine includes multiple sealing device segments disposed circumferentially intermediate to a stationary housing and a rotor. Each of the segments includes a shoe plate with a forward-shoe section and an aft-shoe section having multiple labyrinth teeth therebetween facing the rotor. The sealing device segment also includes multiple flexures connected to the shoe plate and to a top interface element, wherein the multiple flexures are configured to allow the high pressure fluid to occupy a forward cavity and the low pressure fluid to occupy an aft cavity. Further, the sealing device segments include a secondary seal attached to the top interface element at one first end and positioned about the flexures and the shoe plate at one second end.

  18. BMI-associated alleles do not constitute risk alleles for polycystic ovary syndrome independently of BMI: A case-control study

    NARCIS (Netherlands)

    Y.V. Louwers (Yvonne); N.W. Rayner (Nigel William); B.M. Herrera (Blanca); L. Stolk (Lisette); C.J. Groves (Christopher); T.M. Barber (Thomas); A.G. Uitterlinden (André); S. Franks (Stephen); J.S.E. Laven (Joop); M.I. McCarthy (Mark)

    2014-01-01

    textabstractIntroduction: Polycystic Ovary Syndrome (PCOS) has a strong genetic background and the majority of patients with PCOS have elevated BMI levels. The aim of this study was to determine to which extent BMI-increasing alleles contribute to risk of PCOS when contemporaneous BMI is taken into

  19. To Assess the Effect of Maternal BMI on Obstetrical Outcome

    Science.gov (United States)

    Lakhanpal, Shuchi; Aggarwal, Asha; Kaur, Gurcharan

    2012-06-01

    AIMS: To assess the effect of maternal BMI on complications in pregnancy, mode of delivery, complications of labour and delivery.METHODS:A crossectional study was carried out in the Obst and Gynae department, Kasturba Hospital, Delhi. The study enrolled 100 pregnant women. They were divided into 2 groups based on their BMI, more than or equal to 30.0 kg/m2 were categorized as obese and less than 30 kg/m2 as non obese respectively. Maternal complications in both types of patients were studied.RESULTS:CONCLUSION: As the obstetrical outcome is significantly altered due to obesity, we can improve maternal outcome by overcoming obesity. As obesity is a modifiable risk factor, preconception counseling creating awareness regarding health risk associated with obesity should be encouraged and obstetrical complications reduced.

  20. Sketch-based Interfaces and Modeling

    CERN Document Server

    Jorge, Joaquim

    2011-01-01

    The field of sketch-based interfaces and modeling (SBIM) is concerned with developing methods and techniques to enable users to interact with a computer through sketching - a simple, yet highly expressive medium. SBIM blends concepts from computer graphics, human-computer interaction, artificial intelligence, and machine learning. Recent improvements in hardware, coupled with new machine learning techniques for more accurate recognition, and more robust depth inferencing techniques for sketch-based modeling, have resulted in an explosion of both sketch-based interfaces and pen-based computing