WorldWideScience

Sample records for machine controller implementation

  1. Diamond turning machine controller implementation

    Energy Technology Data Exchange (ETDEWEB)

    Garrard, K.P.; Taylor, L.W.; Knight, B.F.; Fornaro, R.J.

    1988-12-01

    The standard controller for a Pnuemo ASG 2500 Diamond Turning Machine, an Allen Bradley 8200, has been replaced with a custom high-performance design. This controller consists of four major components. Axis position feedback information is provided by a Zygo Axiom 2/20 laser interferometer with 0.1 micro-inch resolution. Hardware interface logic couples the computers digital and analog I/O channels to the diamond turning machine`s analog motor controllers, the laser interferometer, and other machine status and control information. It also provides front panel switches for operator override of the computer controller and implement the emergency stop sequence. The remaining two components, the control computer hardware and software, are discussed in detail below.

  2. Construction machine control guidance implementation strategy.

    Science.gov (United States)

    2010-07-01

    Machine Controlled Guidance (MCG) technology may be used in roadway and bridge construction to improve construction efficiencies, potentially resulting in reduced project costs and accelerated schedules. The technology utilizes a Global Positioning S...

  3. Implementation of a Microcode-controlled State Machine and Simulator in AVR Microcontrollers (MICoSS

    Directory of Open Access Journals (Sweden)

    S. Korbel

    2005-01-01

    Full Text Available This paper describes the design of a microcode-controlled state machine and its software implementation in Atmel AVR microcontrollers. In particular, ATmega103 and ATmega128 microcontrollers are used. This design is closely related to the software implementation of a simulator in AVR microcontrollers. This simulator communicates with the designed state machine and presents a complete design environment for microcode development and debugging. These two devices can be interconnected by a flat cable and linked to a computer through a serial or USB interface.Both devices share the control software that allows us to create and edit microprograms and to control the whole state machine. It is possible to start, cancel or step through the execution of the microprograms. The operator can also observe the current state of the state machine. The second part of the control software enables the operator to create and compile simulating programs. The control software communicates with both devices using commands. All the results of this communication are well arranged in dialog boxes and windows. 

  4. Implementation of Real-Time Machining Process Control Based on Fuzzy Logic in a New STEP-NC Compatible System

    Directory of Open Access Journals (Sweden)

    Po Hu

    2016-01-01

    Full Text Available Implementing real-time machining process control at shop floor has great significance on raising the efficiency and quality of product manufacturing. A framework and implementation methods of real-time machining process control based on STEP-NC are presented in this paper. Data model compatible with ISO 14649 standard is built to transfer high-level real-time machining process control information between CAPP systems and CNC systems, in which EXPRESS language is used to define new STEP-NC entities. Methods for implementing real-time machining process control at shop floor are studied and realized on an open STEP-NC controller, which is developed using object-oriented, multithread, and shared memory technologies conjunctively. Cutting force at specific direction of machining feature in side mill is chosen to be controlled object, and a fuzzy control algorithm with self-adjusting factor is designed and embedded in the software CNC kernel of STEP-NC controller. Experiments are carried out to verify the proposed framework, STEP-NC data model, and implementation methods for real-time machining process control. The results of experiments prove that real-time machining process control tasks can be interpreted and executed correctly by the STEP-NC controller at shop floor, in which actual cutting force is kept around ideal value, whether axial cutting depth changes suddenly or continuously.

  5. Implementation of Human-Machine Synchronization Control for Active Rehabilitation Using an Inertia Sensor

    Directory of Open Access Journals (Sweden)

    Zhibin Song

    2012-11-01

    Full Text Available According to neuro-rehabilitation practice, active training is effective for mild stroke patients, which means these patients are able to recovery effective when they perform the training to overcome certain resistance by themselves. Therefore, for rehabilitation devices without backdrivability, implementation of human-machine synchronization is important and a precondition to perform active training. In this paper, a method to implement this precondition is proposed and applied in a user’s performance of elbow flexions and extensions when he wore an upper limb exoskeleton rehabilitation device (ULERD, which is portable, wearable and non-backdrivable. In this method, an inertia sensor is adapted to detect the motion of the user’s forearm. In order to get a smooth value of the velocity of the user’s forearm, an adaptive weighted average filtering is applied. On the other hand, to obtain accurate tracking performance, a double close-loop control is proposed to realize real-time and stable tracking. Experiments have been conducted to prove that these methods are effective and feasible for active rehabilitation.

  6. Design of an ultraprecision computerized numerical control chemical mechanical polishing machine and its implementation

    Science.gov (United States)

    Zhang, Chupeng; Zhao, Huiying; Zhu, Xueliang; Zhao, Shijie; Jiang, Chunye

    2018-01-01

    The chemical mechanical polishing (CMP) is a key process during the machining route of plane optics. To improve the polishing efficiency and accuracy, a CMP model and machine tool were developed. Based on the Preston equation and the axial run-out error measurement results of the m circles on the tin plate, a CMP model that could simulate the material removal at any point on the workpiece was presented. An analysis of the model indicated that lower axial run-out error led to lower material removal but better polishing efficiency and accuracy. Based on this conclusion, the CMP machine was designed, and the ultraprecision gas hydrostatic guideway and rotary table as well as the Siemens 840Dsl numerical control system were incorporated in the CMP machine. To verify the design principles of machine, a series of detection and machining experiments were conducted. The LK-G5000 laser sensor was employed for detecting the straightness error of the gas hydrostatic guideway and the axial run-out error of the gas hydrostatic rotary table. A 300-mm-diameter optic was chosen for the surface profile machining experiments performed to determine the CMP efficiency and accuracy.

  7. Controlling of agricultural machine and implements; Monitoramento do trabalho de maquinas agricolas

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, G.M.; Peche Filho, A.; Yanai, K.; Storino, M.; Bernardi, J.A. [Instituto Agronomico de Campinas (CEA/IAC), Jundiai, SP (Brazil). Centro de Engenharia e Automacao], E-mail: silveira@iac.sp.gov.br

    2008-07-01

    A profitable farm or agriculture crop depends on the correct management of the several jobs developed there. For that, in those mechanized, monitoring of the work done by the agricultural machines and implements always deserved a great attention. In this work, the utilization of an automatic data acquisition system, designed for field information's survey, is showed. The obtained data are related with time and motion, work capacity and operational efficiency, fuel consumption in corn planting. The system was conceived to determining the position of the tractor in the field by mean of the global positioning system (GPS), the fuel consumption, the engine angular velocity (r.p.m.) and forward tractor velocity. This set of data allows the statistical control of the operational parameters generating reports containing the most important management indicators, in other words, operational yield and the work conditions. Experiments were carried out in corn fields of the Automation and Agricultural Engineering Center of IAC/SAA. Seeding operations were monitored, aiming for the performance characterization of the machinery used. (author)

  8. CONTROL SYSTEM EVALUATION AND IMPLEMENTATION FOR THE ABRASIVE MACHINING PROCESS ON WOOD

    OpenAIRE

    Stephen Jackson; Richard Lemaster; Daniel E. Saloni

    2011-01-01

    Continuous process improvement and automation have proven to be powerful tools for the wood processing industries in order to obtain better final product quality and thus increase profits. Abrasive machining represents an important and relevant process in the manufacturing and processing of wood products, which also implies high cost of materials and labor; therefore, special attention to this process is necessary. The objective of this work was to evaluate and demonstrate a process control s...

  9. CONTROL SYSTEM EVALUATION AND IMPLEMENTATION FOR THE ABRASIVE MACHINING PROCESS ON WOOD

    Directory of Open Access Journals (Sweden)

    Stephen Jackson

    2011-06-01

    Full Text Available Continuous process improvement and automation have proven to be powerful tools for the wood processing industries in order to obtain better final product quality and thus increase profits. Abrasive machining represents an important and relevant process in the manufacturing and processing of wood products, which also implies high cost of materials and labor; therefore, special attention to this process is necessary. The objective of this work was to evaluate and demonstrate a process control system for use in the abrasive machining of wood and wood-based products. A control system was created on LabView® to integrate the monitoring process and the actions required, depending on the abrasive machining process conditions. The system acquires information from the optical sensor to detect loading and activate the cleaning system. The system continuously monitors the condition of the abrasive belt (tool wear by using an acoustic emission sensor and alerts the operator of the status of the belt (green, yellow, and red lights indicating satisfactory, medium, and poor belt condition. The system also incorporates an additional safety device, which helps prevent permanent damage to the belt, equipment, or workpiece by alerting the operator when an excessive temperature has been reached. The process control system proved that automation permits enhancement in the consistency of the belt cleaning technique by the elimination of the human errors. Furthermore, this improvement also affects the cost by extending the life of the belt, which reduces setup time, belt cost, operation cost, as well as others.

  10. EPICS IOC module development and implementation for the ISTTOK machine subsystem operation and control

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Paulo, E-mail: pricardofc@ipfn.ist.utl.pt [Associacao EURATOM/IST, Instituto de Plasmas e Fusao Nuclear-Laboratorio Associado, Instituto Superior Tecnico, P-1049-001 Lisboa (Portugal); Duarte, Andre; Pereira, Tiago; Carvalho, Bernardo; Sousa, Jorge; Fernandes, Horacio [Associacao EURATOM/IST, Instituto de Plasmas e Fusao Nuclear-Laboratorio Associado, Instituto Superior Tecnico, P-1049-001 Lisboa (Portugal); Correia, Carlos [Grupo de Electronica e Instrumentacao-Centro de Instrumentacao, Departamento de Fisica, Universidade de Coimbra, P-3004-516 Coimbra (Portugal); Goncalves, Bruno; Varandas, Carlos [Associacao EURATOM/IST, Instituto de Plasmas e Fusao Nuclear-Laboratorio Associado, Instituto Superior Tecnico, P-1049-001 Lisboa (Portugal)

    2011-10-15

    This paper presents a developed, tested and integrated EPICS IOC (I/O controller) module solution for the ISTTOK tokamak machine operation and control for the vacuum and gas injection systems. The work is organized in two software layers which communicate through a serial RS-232 communication protocol. The first software layer is an EPICS IOC module running as a computer server application capable of receiving requests from remote or local clients providing driver interface to the system by forwarding requested commands and receiving system and control operation status. The second software layer is the firmware running in Microchip dsPIC microcontroller modules which performs the interface from RS-232 optical fiber serial protocol to EPICS IOC module. The dsPIC module communicates to the ISTTOK tokamak sensors and actuators via RS-485 and is programmed with a new protocol developed for this purpose that allows EPICS IOC module command sending/receiving, machine operation control and monitoring and system status information. Communication between EPICS IOC module and clients is achieved via a TCP/IP and UDP protocol referred as Channel Access. In addition, the EPICS IOC module provides user client applications access allowing operators to perform remote or local monitoring, operation and control.

  11. Implementation of GPS Machine Controlled Grading - Phase III (2008) and Technical Training

    Science.gov (United States)

    2009-02-01

    Beginning in 2006, WisDOT and the Construction Material and Support Center (CMSC) at UW-Madison worked together to develop the specifications and the QA/QC procedures for GPS machine guidance on highway grading projects. These specifications and proc...

  12. Man machine interface and its implementation

    International Nuclear Information System (INIS)

    Hills, B.G.; Boettcher, D.B.; Reed, R.

    1992-01-01

    Sizewell B is the latest nuclear power station to be constructed in the United Kingdom: its Man-Machine Interfaces are therefore, by definition, the state-of-the-art. This paper discusses the principal Man-Machine Interfaces used in the operation of the station, and the systems that implement them. The Man-Machine Interface facilities discussed are: in the Main Control Room, which is used for normal operation and shutdown of the plant: in the Auxiliary Shutdown Room, which allows shutdown of the reactor if evacuation of the main Control Room is necessary: and in the Technical Support Centre, which is used for remote monitoring of the plant. The Man-Machine Interfaces that are described are parts of a station-wide group of interlinked computer systems called the Data Processing and Control System. This system collects data from the plant and displays it to the operators via discrete devices and on graphical computer displays. It also acquires control inputs from the operators via switches, which are then used to provide remote manual control, modulating control and sequence control. The computer system that handles the plant process data and alarm information displays uses a windowing interface with keyboard and trackerball navigation to allow easy retrieval and viewing of information. It is this system that is the main topic of this paper. (author)

  13. Controls and Machine Protection Systems

    CERN Document Server

    Carrone, E.

    2016-01-01

    Machine protection, as part of accelerator control systems, can be managed with a 'functional safety' approach, which takes into account product life cycle, processes, quality, industrial standards and cybersafety. This paper will discuss strategies to manage such complexity and the related risks, with particular attention to fail-safe design and safety integrity levels, software and hardware standards, testing, and verification philosophy. It will also discuss an implementation of a machine protection system at the SLAC National Accelerator Laboratory's Linac Coherent Light Source (LCLS).

  14. Brain versus Machine Control.

    Directory of Open Access Journals (Sweden)

    Jose M Carmena

    2004-12-01

    Full Text Available Dr. Octopus, the villain of the movie "Spiderman 2", is a fusion of man and machine. Neuroscientist Jose Carmena examines the facts behind this fictional account of a brain- machine interface

  15. Implementing Machine Learning in the PCWG Tool

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, Andrew; Ding, Yu; Stuart, Peter

    2016-12-13

    The Power Curve Working Group (www.pcwg.org) is an ad-hoc industry-led group to investigate the performance of wind turbines in real-world conditions. As part of ongoing experience-sharing exercises, machine learning has been proposed as a possible way to predict turbine performance. This presentation provides some background information about machine learning and how it might be implemented in the PCWG exercises.

  16. Vector control of induction machines

    CERN Document Server

    Robyns, Benoit

    2012-01-01

    After a brief introduction to the main law of physics and fundamental concepts inherent in electromechanical conversion, ""Vector Control of Induction Machines"" introduces the standard mathematical models for induction machines - whichever rotor technology is used - as well as several squirrel-cage induction machine vector-control strategies. The use of causal ordering graphs allows systematization of the design stage, as well as standardization of the structure of control devices. ""Vector Control of Induction Machines"" suggests a unique approach aimed at reducing parameter sensitivity for

  17. Superconducting Coil Winding Machine Control System

    Energy Technology Data Exchange (ETDEWEB)

    Nogiec, J. M. [Fermilab; Kotelnikov, S. [Fermilab; Makulski, A. [Fermilab; Walbridge, D. [Fermilab; Trombly-Freytag, K. [Fermilab

    2016-10-05

    The Spirex coil winding machine is used at Fermilab to build coils for superconducting magnets. Recently this ma-chine was equipped with a new control system, which al-lows operation from both a computer and a portable remote control unit. This control system is distributed between three layers, implemented on a PC, real-time target, and FPGA, providing respectively HMI, operational logic and direct controls. The system controls motion of all mechan-ical components and regulates the cable tension. Safety is ensured by a failsafe, redundant system.

  18. Vibration control, machine diagnostics

    International Nuclear Information System (INIS)

    1990-01-01

    Changing vibrations announce damage in the form of wear or cracks on components of, e.g., engine rotors, pumps, power plant turbo sets, rounding-up tools, or marine diesel engines. Therefore, machine diagnostics use frequency analyses, system tests, trend analyses as well as expert systems to localize or estimate the causes of these damages and malfunctions. Data acquisistion, including not only sensors, but also reliable and redundant data processing systems and analyzing systems, play an important role. The lectures pertaining to the data base are covered in detail. (DG) [de

  19. VVER NPPs fuel handling machine control system

    International Nuclear Information System (INIS)

    Mini, G.; Rossi, G.; Barabino, M.; Casalini, M.

    2002-01-01

    In order to increase the safety level of the fuel handling machine on WWER NPPs, Ansaldo Nucleare was asked to design and supply a new Control System. Two Fuel Handling Machine (FHM) Control System units have been already supplied for Temelin NPP and others supply are in process for the Atommash company, which has in charge the supply of FHMs for NPPs located in Russia, Ukraine and China.The computer-based system takes into account all the operational safety interlocks so that it is able to avoid incorrect and dangerous manoeuvres in the case of operator error. Control system design criteria, hardware and software architecture, and quality assurance control, are in accordance with the most recent international requirements and standards, and in particular for electromagnetic disturbance immunity demands and seismic compatibility. The hardware architecture of the control system is based on ABB INFI 90 system. The microprocessor-based ABB INFI 90 system incorporates and improves upon many of the time proven control capabilities of Bailey Network 90, validated over 14,000 installations world-wide.The control system complies all the former designed sensors and devices of the machine and markedly the angular position measurement sensors named 'selsyn' of Russian design. Nevertheless it is fully compatible with all the most recent sensors and devices currently available on the market (for ex. Multiturn absolute encoders).All control logic were developed using standard INFI 90 Engineering Work Station, interconnecting blocks extracted from an extensive SAMA library by using a graphical approach (CAD) and allowing and easier intelligibility, more flexibility and updated and coherent documentation. The data acquisition system and the Man Machine Interface are implemented by ABB in co-operation with Ansaldo. The flexible and powerful software structure of 1090 Work-stations (APMS - Advanced Plant Monitoring System, or Tenore NT) has been successfully used to interface the

  20. Implementation of a classifier didactical machine for learning mechatronic processes

    Directory of Open Access Journals (Sweden)

    Alex De La Cruz

    2017-06-01

    Full Text Available The present article shows the design and construction of a classifier didactical machine through artificial vision. The implementation of the machine is to be used as a learning module of mechatronic processes. In the project, it is described the theoretical aspects that relate concepts of mechanical design, electronic design and software management which constitute popular field in science and technology, which is mechatronics. The design of the machine was developed based on the requirements of the user, through the concurrent design methodology to define and materialize the appropriate hardware and software solutions. LabVIEW 2015 was implemented for high-speed image acquisition and analysis, as well as for the establishment of data communication with a programmable logic controller (PLC via Ethernet and an open communications platform known as Open Platform Communications - OPC. In addition, the Arduino MEGA 2560 platform was used to control the movement of the step motor and the servo motors of the module. Also, is used the Arduino MEGA 2560 to control the movement of the stepper motor and servo motors in the module. Finally, we assessed whether the equipment meets the technical specifications raised by running specific test protocols.

  1. Quantum cloning machines and their implementation in physical systems

    International Nuclear Information System (INIS)

    Wu Tao; Ye Liu; Fang Bao-Long

    2013-01-01

    We review the basic theory of approximate quantum cloning for discrete variables and some schemes for implementing quantum cloning machines. Several types of approximate quantum clones and their expansive quantum clones are introduced. As for the implementation of quantum cloning machines, we review some design methods and recent experimental results. (topical review - quantum information)

  2. Abstract Machines for Programming Language Implementation

    NARCIS (Netherlands)

    Diehl, Stephan; Hartel, Pieter H.; Sestoft, Peter

    We present an extensive, annotated bibliography of the abstract machines designed for each of the main programming paradigms (imperative, object oriented, functional, logic and concurrent). We conclude that whilst a large number of efficient abstract machines have been designed for particular

  3. WWER NPPs fuel handling machine control system

    International Nuclear Information System (INIS)

    Mini, G.; Rossi, G.; Barabino, M.; Casalini, M.

    2001-01-01

    In order to increase the safety level of the fuel handling machine on WWER NPPs, Ansaldo Nucleare was asked to design and supply a new Control System. Two FHM Control System units have been already supplied for Temelin NPP and others supplies are in process for the Atommash company, which has in charge the supply of FHMs for NPPs located in Russia, Ukraine and China. The Fuel Handling Machine (FHM) Control System is an integrated system capable of a complete management of nuclear fuel assemblies. The computer-based system takes into account all the operational safety interlocks so that it is able to avoid incorrect and dangerous manoeuvres in the case of operator error. Control system design criteria, hardware and software architecture, and quality assurance control, are in accordance with the most recent international requirements and standards, and in particular for electromagnetic disturbance immunity demands and seismic compatibility. The hardware architecture of the control system is based on ABB INFI 90 system. The microprocessor-based ABB INFI 90 system incorporates and improves upon many of the time proven control capabilities of Bailey Network 90, validated over 14,000 installations world-wide. The control system complies all the former designed sensors and devices of the machine and markedly the angular position measurement sensors named 'selsyn' of Russian design. Nevertheless it is fully compatible with all the most recent sensors and devices currently available on the market (for ex. Multiturn absolute encoders). All control logic components were developed using standard INFI 90 Engineering Work Station, interconnecting blocks extracted from an extensive SAMA library by using a graphical approach (CAD) and allowing an easier intelligibility, more flexibility and updated and coherent documentation. The data acquisition system and the Man Machine Interface are implemented by ABB in co-operation with Ansaldo. The flexible and powerful software structure

  4. A physical implementation of the Turing machine accessed through Web

    Directory of Open Access Journals (Sweden)

    Marijo Maracic

    2008-11-01

    Full Text Available A Turing machine has an important role in education in the field of computer science, as it is a milestone in courses related to automata theory, theory of computation and computer architecture. Its value is also recognized in the Computing Curricula proposed by the Association for Computing Machinery (ACM and IEEE Computer Society. In this paper we present a physical implementation of the Turing machine accessed through Web. To enable remote access to the Turing machine, an implementation of the client-server architecture is built. The web interface is described in detail and illustrations of remote programming, initialization and the computation of the Turing machine are given. Advantages of such approach and expected benefits obtained by using remotely accessible physical implementation of the Turing machine as an educational tool in the teaching process are discussed.

  5. 49 CFR 236.771 - Machine, control.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Machine, control. 236.771 Section 236.771..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.771 Machine, control. An assemblage of manually operated devices for controlling the functions of a traffic...

  6. Implementation of the geometrical problem in CNC metal cutting machine

    Directory of Open Access Journals (Sweden)

    Erokhin V.V.

    2017-06-01

    Full Text Available The article deals with the tasks of managing the production process (technological process and technological equip-ment, the most detailed analysis of the implementation of the geometric problem in CNC machines. The influence of the solution of the geometric CNC problem on the accuracy of workpiece machining is analyzed by implementing a certain interpolation algorithm and the values of the discreteness of the movements of the working bodies of the CNC machine. The technique of forming a given trajectory of motion of the machine's executive organ is given, by means of which it is required to ensure the coordinated movement of the shaping coordinates according to a certain law, depend-ing on the specified trajectory of the cutting edge of the tool. The advantages and disadvantages of the implementation of interpolation in CNC systems by various methods are considered, and particular attention is paid to combined meth-ods of realizing interpolation.

  7. Machine Vision Implementation in Rapid PCB Prototyping

    Directory of Open Access Journals (Sweden)

    Yosafat Surya Murijanto

    2012-03-01

    Full Text Available Image processing, the heart of machine vision, has proven itself to be an essential part of the industries today. Its application has opened new doorways, making more concepts in manufacturing processes viable. This paper presents an application of machine vision in designing a module with the ability to extract drills and route coordinates from an un-mounted or mounted printed circuit board (PCB. The algorithm comprises pre-capturing processes, image segmentation and filtering, edge and contour detection, coordinate extraction, and G-code creation. OpenCV libraries and Qt IDE are the main tools used. Throughout some testing and experiments, it is concluded that the algorithm is able to deliver acceptable results. The drilling and routing coordinate extraction algorithm can extract in average 90% and 82% of the whole drills and routes available on the scanned PCB in a total processing time of less than 3 seconds. This is achievable through proper lighting condition, good PCB surface condition and good webcam quality. 

  8. Revision of Import and Export Requirements for Controlled Substances, Listed Chemicals, and Tableting and Encapsulating Machines, Including Changes To Implement the International Trade Data System (ITDS); Revision of Reporting Requirements for Domestic Transactions in Listed Chemicals and Tableting and Encapsulating Machines; and Technical Amendments. Final rule.

    Science.gov (United States)

    2016-12-30

    The Drug Enforcement Administration is updating its regulations for the import and export of tableting and encapsulating machines, controlled substances, and listed chemicals, and its regulations relating to reports required for domestic transactions in listed chemicals, gamma-hydroxybutyric acid, and tableting and encapsulating machines. In accordance with Executive Order 13563, the Drug Enforcement Administration has reviewed its import and export regulations and reporting requirements for domestic transactions in listed chemicals (and gamma-hydroxybutyric acid) and tableting and encapsulating machines, and evaluated them for clarity, consistency, continued accuracy, and effectiveness. The amendments clarify certain policies and reflect current procedures and technological advancements. The amendments also allow for the implementation, as applicable to tableting and encapsulating machines, controlled substances, and listed chemicals, of the President's Executive Order 13659 on streamlining the export/import process and requiring the government-wide utilization of the International Trade Data System (ITDS). This rule additionally contains amendments that implement recent changes to the Controlled Substances Import and Export Act (CSIEA) for reexportation of controlled substances among members of the European Economic Area made by the Improving Regulatory Transparency for New Medical Therapies Act. The rule also includes additional substantive and technical and stylistic amendments.

  9. AC machine control : robust and sensorless control by parameter independency

    Energy Technology Data Exchange (ETDEWEB)

    Samuelsen, Dag Andreas Hals

    2009-06-15

    speed regions of the machine. The information was then combined to increase the dynamic performance of the sensor less operation of induction machines using the DTC algorithm, even under temperature variations. The scope of this thesis is to develop and test strategies for improving the performance of motor drive systems, when subjected to parameter variations in the machine. First, this is performed by modifying the controller towards a more robust controller, while later a special sampler is developed, in order to estimate machine parameters on-line. This development is shown in the following papers: In the first paper, a complete motor drive system is built, and an Hinfinity current controller is implemented, instead of a previously designed PI controller with decoupling. The results show that this controller is able to perform similar to a classical PI-controller, even when subjected to parameter variations, at the cost of increased computational demands. The second paper presents a form of robust decoupling for a PI-controller as an alternative to the higher-order Hinfinity controller from the first paper. Although there is no speed input to the decoupling network, rotor position feedback from a resolver is still needed for the FOC to work correctly. The special sampler is introduced in the third paper. Here the sampler is used to estimate the rotor flux angle, based on measurements of the derivative of the machine currents in specific parts of the PWM-period. The estimator shows good performance. The estimation principle is based on measurements during the zero-period of the inverter, though. This gives poor performance in the upper speed region, when the zero-period () of the inverter is small or non-existent. In the fourth paper, the zero-state as well as the two active states of the inverter are used to estimate the rotor speed in a machine. This gives the opportunity of estimating machine parameters in the whole speed region, except around standstill, and the

  10. Practical implementation of machine tool metrology and maintenance management systems

    International Nuclear Information System (INIS)

    Perkins, C; Longstaff, A P; Fletcher, S; Willoughby, P

    2012-01-01

    Maximising asset utilisation and minimising downtime and waste are becoming increasingly important to all manufacturing facilities as competition increases and profits decrease. The tools to assist with monitoring these machining processes are becoming more and more in demand. A system designed to fulfil the needs of machine tool operators and supervisors has been developed and its impact on the precision manufacturing industry is being considered. The benefits of implementing this system, compared to traditional methods, will be discussed here.

  11. Learning Machines Implemented on Non-Deterministic Hardware

    OpenAIRE

    Gupta, Suyog; Sindhwani, Vikas; Gopalakrishnan, Kailash

    2014-01-01

    This paper highlights new opportunities for designing large-scale machine learning systems as a consequence of blurring traditional boundaries that have allowed algorithm designers and application-level practitioners to stay -- for the most part -- oblivious to the details of the underlying hardware-level implementations. The hardware/software co-design methodology advocated here hinges on the deployment of compute-intensive machine learning kernels onto compute platforms that trade-off deter...

  12. Tool set for distributed real-time machine control

    Science.gov (United States)

    Carrott, Andrew J.; Wright, Christopher D.; West, Andrew A.; Harrison, Robert; Weston, Richard H.

    1997-01-01

    Demands for increased control capabilities require next generation manufacturing machines to comprise intelligent building elements, physically located at the point where the control functionality is required. Networks of modular intelligent controllers are increasingly designed into manufacturing machines and usable standards are slowly emerging. To implement a control system using off-the-shelf intelligent devices from multi-vendor sources requires a number of well defined activities, including (a) the specification and selection of interoperable control system components, (b) device independent application programming and (c) device configuration, management, monitoring and control. This paper briefly discusses the support for the above machine lifecycle activities through the development of an integrated computing environment populated with an extendable software toolset. The toolset supports machine builder activities such as initial control logic specification, logic analysis, machine modeling, mechanical verification, application programming, automatic code generation, simulation/test, version control, distributed run-time support and documentation. The environment itself consists of system management tools and a distributed object-oriented database which provides storage for the outputs from machine lifecycle activities and specific target control solutions.

  13. An Approach for Implementing State Machines with Online Testability

    Directory of Open Access Journals (Sweden)

    P. K. Lala

    2010-01-01

    Full Text Available During the last two decades, significant amount of research has been performed to simplify the detection of transient or soft errors in VLSI-based digital systems. This paper proposes an approach for implementing state machines that uses 2-hot code for state encoding. State machines designed using this approach allow online detection of soft errors in registers and output logic. The 2-hot code considerably reduces the number of required flip-flops and leads to relatively straightforward implementation of next state and output logic. A new way of designing output logic for online fault detection has also been presented.

  14. Migration of supervisory machine control architectures

    NARCIS (Netherlands)

    Graaf, B.; Weber, S.; Deursen, van A.; Nord, R.; Medvidovic, N.; Krikhaar, R.; Stafford, J.; Bosch, J.

    2005-01-01

    In this position paper, we discuss a first step towards an approach for the migration of supervisory machine control (SMC) architectures. This approach is based on the identification of SMC concerns and the definition of corresponding transformation rules.

  15. Operating System For Numerically Controlled Milling Machine

    Science.gov (United States)

    Ray, R. B.

    1992-01-01

    OPMILL program is operating system for Kearney and Trecker milling machine providing fast easy way to program manufacture of machine parts with IBM-compatible personal computer. Gives machinist "equation plotter" feature, which plots equations that define movements and converts equations to milling-machine-controlling program moving cutter along defined path. System includes tool-manager software handling up to 25 tools and automatically adjusts to account for each tool. Developed on IBM PS/2 computer running DOS 3.3 with 1 MB of random-access memory.

  16. Grammatical Metaphor, Controlled Languageand Machine Translation

    DEFF Research Database (Denmark)

    Møller, Margrethe

    2003-01-01

    It is a general assumption that 1) the readability and clarity of LSP texts written in a controlled language are better than uncontrolled texts and 2) that controlled languages produce better results with machine translation than uncontrolled languages. Controlled languages impose lexical...

  17. Smart Cutting Tools and Smart Machining: Development Approaches, and Their Implementation and Application Perspectives

    Science.gov (United States)

    Cheng, Kai; Niu, Zhi-Chao; Wang, Robin C.; Rakowski, Richard; Bateman, Richard

    2017-09-01

    Smart machining has tremendous potential and is becoming one of new generation high value precision manufacturing technologies in line with the advance of Industry 4.0 concepts. This paper presents some innovative design concepts and, in particular, the development of four types of smart cutting tools, including a force-based smart cutting tool, a temperature-based internally-cooled cutting tool, a fast tool servo (FTS) and smart collets for ultraprecision and micro manufacturing purposes. Implementation and application perspectives of these smart cutting tools are explored and discussed particularly for smart machining against a number of industrial application requirements. They are contamination-free machining, machining of tool-wear-prone Si-based infra-red devices and medical applications, high speed micro milling and micro drilling, etc. Furthermore, implementation techniques are presented focusing on: (a) plug-and-produce design principle and the associated smart control algorithms, (b) piezoelectric film and surface acoustic wave transducers to measure cutting forces in process, (c) critical cutting temperature control in real-time machining, (d) in-process calibration through machining trials, (e) FE-based design and analysis of smart cutting tools, and (f) application exemplars on adaptive smart machining.

  18. Radiological control implementation guide

    International Nuclear Information System (INIS)

    Hamley, S.A.

    1993-01-01

    A manual is being developed to explain to line managers how radiological controls are designed and implemented. The manual also fills a gap in the Health Physics literature between textbooks and on-the-floor procedures. It may be helpful to new Health Physicists with little practical experience and to those wishing to improve self-assessment, audit, and appraisal processes. Many audits, appraisals, and evaluations have indicated a need for cultural change, increased vigor and example, and more effective oversight by line management. Inadequate work controls are a frequent and recurring problem identified in occurrence reports and accident investigations. Closer study frequently indicates that many line managers are willing to change and want to achieve excellence, but no effective guidance exists that will enable them to understand and implement a modern radiological control program

  19. Constant Cutting Force Control for CNC Machining Using Dynamic Characteristic-Based Fuzzy Controller

    Directory of Open Access Journals (Sweden)

    Hengli Liu

    2015-01-01

    Full Text Available This paper presents a dynamic characteristic-based fuzzy adaptive control algorithm (DCbFACA to avoid the influence of cutting force changing rapidly on the machining stability and precision. The cutting force is indirectly obtained in real time by monitoring and extraction of the motorized spindle current, the feed speed is fuzzy adjusted online, and the current was used as a feedback to control cutting force and maintain the machining process stable. Different from the traditional fuzzy control methods using the experience-based control rules, and according to the complex nonlinear characteristics of CNC machining, the power bond graph method is implemented to describe the dynamic characteristics of process, and then the appropriate variation relations are achieved between current and feed speed, and the control rules are optimized and established based on it. The numerical results indicated that DCbFACA can make the CNC machining process more stable and improve the machining precision.

  20. Methods and apparatus for controlling rotary machines

    Science.gov (United States)

    Bagepalli, Bharat Sampathkumaran [Niskayuna, NY; Jansen, Patrick Lee [Scotia, NY; Barnes, Gary R [Delanson, NY; Fric, Thomas Frank [Greer, SC; Lyons, James Patrick Francis [Niskayuna, NY; Pierce, Kirk Gee [Simpsonville, SC; Holley, William Edwin [Greer, SC; Barbu, Corneliu [Guilderland, NY

    2009-09-01

    A control system for a rotary machine is provided. The rotary machine has at least one rotating member and at least one substantially stationary member positioned such that a clearance gap is defined between a portion of the rotating member and a portion of the substantially stationary member. The control system includes at least one clearance gap dimension measurement apparatus and at least one clearance gap adjustment assembly. The adjustment assembly is coupled in electronic data communication with the measurement apparatus. The control system is configured to process a clearance gap dimension signal and modulate the clearance gap dimension.

  1. Sensorless Control of Permanent Magnet Synchronous Machines

    DEFF Research Database (Denmark)

    Matzen, Torben N.

    Permanent magnet machines, with either surface mounted or embedded magnets on the rotor, are becoming more common due to the key advantages of higher energy conversion efficiency and higher torque density compared to the classical induction machine. Besides energy efficiency the permanent magnet...... the synchronous machine requires knowledge of the rotor shaft position due to the synchronous and undamped nature of the machine. The rotor position may be measured using a mechanical sensor, but the sensor reduces reliability and adds cost to the system and for this reason sensorless control methods started...... are dependent on the phase currents and rotor position. Based on the flux linkages the differential inductances are determined and used to establish the inductance saliency in terms of ratio and orientation. The orientation and its dependence on the current and rotor position are used to analyse the behaviour...

  2. Complete permutation Gray code implemented by finite state machine

    Directory of Open Access Journals (Sweden)

    Li Peng

    2014-09-01

    Full Text Available An enumerating method of complete permutation array is proposed. The list of n! permutations based on Gray code defined over finite symbol set Z(n = {1, 2, …, n} is implemented by finite state machine, named as n-RPGCF. An RPGCF can be used to search permutation code and provide improved lower bounds on the maximum cardinality of a permutation code in some cases.

  3. Sensorless control of induction machine

    OpenAIRE

    Kılıç, Bahadır; Kilic, Bahadir

    2004-01-01

    AC drives based on fully digital control have reached the status of a maturing technology in a broad range of applications ranging from the low cost to high performance systems. Continuing research has concentrated on the removal of the sensors measuring the mechanical coordinates (e.g. tachogenerators, encoders) while maintaining the cost and performance of the control system. Speed estimation is an issue of particular interest with induction motor electrical drives as the rotor speed is gen...

  4. A control approach for plasma density in tokamak machines

    Energy Technology Data Exchange (ETDEWEB)

    Boncagni, Luca, E-mail: luca.boncagni@enea.it [EURATOM – ENEA Fusion Association, Frascati Research Center, Division of Fusion Physics, Rome, Frascati (Italy); Pucci, Daniele; Piesco, F.; Zarfati, Emanuele [Dipartimento di Ingegneria Informatica, Automatica e Gestionale ' ' Antonio Ruberti' ' , Sapienza Università di Roma (Italy); Mazzitelli, G. [EURATOM – ENEA Fusion Association, Frascati Research Center, Division of Fusion Physics, Rome, Frascati (Italy); Monaco, S. [Dipartimento di Ingegneria Informatica, Automatica e Gestionale ' ' Antonio Ruberti' ' , Sapienza Università di Roma (Italy)

    2013-10-15

    Highlights: •We show a control approach for line plasma density in tokamak. •We show a control approach for pressure in a tokamak chamber. •We show experimental results using one valve. -- Abstract: In tokamak machines, chamber pre-fill is crucial to attain plasma breakdown, while plasma density control is instrumental for several tasks such as machine protection and achievement of desired plasma performances. This paper sets the principles of a new control strategy for attaining both chamber pre-fill and plasma density regulation. Assuming that the actuation mean is a piezoelectric valve driven by a varying voltage, the proposed control laws ensure convergence to reference values of chamber pressure during pre-fill, and of plasma density during plasma discharge. Experimental results at FTU are presented to discuss weaknesses and strengths of the proposed control strategy. The whole system has been implemented by using the MARTe framework [1].

  5. Machine Learning for Flapping Wing Flight Control

    NARCIS (Netherlands)

    Goedhart, Menno; van Kampen, E.; Armanini, S.F.; de Visser, C.C.; Chu, Q.

    2018-01-01

    Flight control of Flapping Wing Micro Air Vehicles is challenging, because of their complex dynamics and variability due to manufacturing inconsistencies. Machine Learning algorithms can be used to tackle these challenges. A Policy Gradient algorithm is used to tune the gains of a

  6. LARA. Localization of an automatized refueling machine by acoustical sounding in breeder reactors - implementation of artificial intelligence techniques

    International Nuclear Information System (INIS)

    Lhuillier, C.; Malvache, P.

    1987-01-01

    The automatic control of the machine which handles the nuclear subassemblies in fast neutron reactors requires autonomous perception and decision tools. An acoustical device allows the machine to position in the work area. Artificial intelligence techniques are implemented to interpret the data: pattern recognition, scene analysis. The localization process is managed by an expert system. 6 refs.; 8 figs

  7. Methods of control the machining process

    Directory of Open Access Journals (Sweden)

    Yu.V. Petrakov

    2017-12-01

    Full Text Available Presents control methods, differentiated by the time of receipt of information used: a priori, a posteriori and current. When used a priori information to determine the mode of cutting is carried out by simulation the process of cutting allowance, where the shape of the workpiece and the details are presented in the form of wireframes. The office for current information provides for a system of adaptive control and modernization of CNC machine, where in the input of the unit shall be computed by using established optimization software. For the control by a posteriori information of the proposed method of correction of shape-generating trajectory in the second pass measurement surface of the workpiece formed by the first pass. Developed programs that automatically design the adjusted file for machining.

  8. Virtual Machine Language Controls Remote Devices

    Science.gov (United States)

    2014-01-01

    Kennedy Space Center worked with Blue Sun Enterprises, based in Boulder, Colorado, to enhance the company's virtual machine language (VML) to control the instruments on the Regolith and Environment Science and Oxygen and Lunar Volatiles Extraction mission. Now the NASA-improved VML is available for crewed and uncrewed spacecraft, and has potential applications on remote systems such as weather balloons, unmanned aerial vehicles, and submarines.

  9. Advanced man-machine interaction. Fundamentals and implementation

    Energy Technology Data Exchange (ETDEWEB)

    Kraiss, K.F. (ed.) [Aachen Technische Hochschule (Germany). Lehrstuhl fuer Technische Informatik und Computerwissenschaften

    2006-07-01

    Man-machine interaction is the gateway providing access to functions and services, which, due to the ever increasing complexity of smart systems, threatens to become a bottleneck. This book therefore introduces not only advanced interfacing concepts, but also gives insight into the related theoretical background.This refers mainly to the realization of video-based multimodal interaction via gesture, mimics, and speech, but also to interacting with virtual object in virtual environments, cooperating with local or remote robots, and user assistance. While most publications in the field of human factors engineering focus on interface design, this book puts special emphasis on implementation aspects. To this end it is accompanied by software development environments for image processing, classification, and virtual environment implementation. In addition a test data base is included for gestures, head pose, facial expressions, full-body person recognition, and people tracking. These data are used for the examples throughout the book, but are also meant to encourage the reader to start experimentation on his own. Thus the book may serve as a self-contained introduction both for researchers and developers of man-machine interfaces. It may also be used for graduate-level university courses. (orig.)

  10. Passivity-Based Control of Electric Machines

    Energy Technology Data Exchange (ETDEWEB)

    Nicklasson, P.J.

    1996-12-31

    This doctoral thesis presents new results on the design and analysis of controllers for a class of electric machines. Nonlinear controllers are derived from a Lagrangian model representation using passivity techniques, and previous results on induction motors are improved and extended to Blondel-Park transformable machines. The relation to conventional techniques is discussed, and it is shown that the formalism introduced in this work facilitates analysis of conventional methods, so that open questions concerning these methods may be resolved. In addition, the thesis contains the following improvements of previously published results on the control of induction motors: (1) Improvement of a passivity-based speed/position controller, (2) Extension of passivity-based (observer-less and observer-based) controllers from regulation to tracking of rotor flux norm, (3) An extension of the classical indirect FOC (Field-Oriented Control) scheme to also include global rotor flux norm tracking, instead of only torque tracking and rotor flux norm regulation. The design is illustrated experimentally by applying the proposed control schemes to a squirrel-cage induction motor. The results show that the proposed methods have advantages over previous designs with respect to controller tuning, performance and robustness. 145 refs., 21 figs.

  11. Automated reasoning in man-machine control systems

    International Nuclear Information System (INIS)

    Stratton, R.C.; Lusk, E.L.

    1983-01-01

    This paper describes a project being undertaken at Argonne National Laboratory to demonstrate the usefulness of automated reasoning techniques in the implementation of a man-machine control system being designed at the EBR-II nuclear power plant. It is shown how automated reasoning influences the choice of optimal roles for both man and machine in the system control process, both for normal and off-normal operation. In addition, the requirements imposed by such a system for a rigorously formal specification of operating states, subsystem states, and transition procedures have a useful impact on the analysis phase. The definitions and rules are discussed for a prototype system which is physically simple yet illustrates some of the complexities inherent in real systems

  12. A Connection Machine implementation of tracer particle flow visulization

    International Nuclear Information System (INIS)

    Salem, J.B.; Sethian, J.A.

    1989-01-01

    In this paper, the authors describe the implementation of an interactive visualization environment for computational fluid mechanics. The environment simulates the advection of tracer particles in a precomputed, time- varying flow velocity field. The environment mimics the physical laboratory by allowing near real-time interactive animation of the simulation. The environment provides a valuable set of tools for probing the underlying physics of a computational model and for comparing results with physical experiment. The paper presents the algorithms and discusses their realization on the Connection Machine CM-2 data parallel computer. Storage issues and the user interface are discussed. The authors demonstrate the environment using two dimensional simulated flow within a closed cavity. In a typical simulation, a sustained animation rate of 9 frames per second is achieved on a 8,192 processor CM-2

  13. VIRTUAL MODELING OF A NUMERICAL CONTROL MACHINE TOOL USED FOR COMPLEX MACHINING OPERATIONS

    Directory of Open Access Journals (Sweden)

    POPESCU Adrian

    2015-11-01

    Full Text Available This paper presents the 3D virtual model of the numerical control machine Modustar 100, in terms of machine elements. This is a CNC machine of modular construction, all components allowing the assembly in various configurations. The paper focused on the design of the subassemblies specific to the axes numerically controlled by means of CATIA v5, which contained different drive kinematic chains of different translation modules that ensures translation on X, Y and Z axis. Machine tool development for high speed and highly precise cutting demands employment of advanced simulation techniques witch it reflect on cost of total development of the machine.

  14. A method of numerically controlled machine part programming

    Science.gov (United States)

    1970-01-01

    Computer program is designed for automatically programmed tools. Preprocessor computes desired tool path and postprocessor computes actual commands causing machine tool to follow specific path. It is used on a Cincinnati ATC-430 numerically controlled machine tool.

  15. Control processes and machine protection on ASDEX Upgrade

    International Nuclear Information System (INIS)

    Raupp, G.; Treutterer, W.; Mertens, V.; Neu, G.; Sips, A.; Zasche, D.; Zehetbauer, Th.

    2007-01-01

    Safe operation of ASDEX Upgrade is guaranteed by a conventional hierarchy of simple and robust hard-wired systems for personnel and machine protection featuring standardized switch-off procedures. Machine protection and handling of off-normal events is further enhanced and peak and lifetime stress minimized through the plasma control system. Based on a real-time process model supporting safety critical applications with data quality tagging, process self-monitoring, watchdog monitoring and alarm propagation, processes detect complex and critical failures and reliably perform case-sensitive counter measures. Intelligent real-time failure handling is done with hardware or software redundancy and performance degradation, or modification of reference values to continue or terminate discharges with reduced machine stress. Examples implemented so far on ASDEX Upgrade are given, such as recovery from measurement failures, switch-over of redundant actuators, handling of actuator limitations, detection of plasma instabilities, plasma state dependent soft landing, or handling of failed switch-off procedures through breakers disconnecting the machine from grid

  16. Design of Control System for Kiwifruit Automatic Grading Machine

    Directory of Open Access Journals (Sweden)

    Xingjian Zuo

    2013-05-01

    Full Text Available The kiwifruit automatic grading machine is an important machine for postharvest processing of kiwifruit, and the control system ensures that the machine realizes intelligence. The control system for the kiwifruit automatic grading machine designed in this paper comprises a host computer and a slave microcontroller. The host computer provides a visual grading interface for the machine with a LabVIEW software, the slave microcontroller adopts an STC89C52 microcontroller as its core, and C language is used to write programs for controlling a position sensor module, push-pull type electromagnets, motor driving modules and a power supply for controlling the operation of the machine as well as the rise or descend of grading baffle plates. The ideal control effect is obtained through test, and the intelligent operation of the machine is realized.

  17. Asynchronous machines. Direct torque control; Machines asynchrones. Commande par controle direct de couple

    Energy Technology Data Exchange (ETDEWEB)

    Fornel, B. de [Institut National Polytechnique, 31 - Toulouse (France)

    2006-05-15

    The asynchronous machine, with its low cost and robustness, is today the most widely used motor to make speed variators. However, its main drawback is that the same current generates both the magnetic flux and the torque, and thus any torque variation creates a flux variation. Such a coupling gives to the asynchronous machine a nonlinear behaviour which makes its control much more complex. The direct self control (DSC) method has been developed to improve the low efficiency of the scalar control method and for the specific railway drive application. The direct torque control (DTC) method is derived from the DSC method but corresponds to other type of applications. The DSC and DTC algorithms for asynchronous motors are presented in this article: 1 - direct control of the stator flux (DSC): principle, flux control, torque control, switching frequency of the inverter, speed estimation; 2 - direct torque control (DTC): principle, electromagnetic torque derivative, signals shape and switching frequency, some results, DTC speed variator without speed sensor, DTC application to multi-machine multi-converter systems; 3 - conclusion. (J.S.)

  18. Machine Control System of Steady State Superconducting Tokamak-1

    Energy Technology Data Exchange (ETDEWEB)

    Masand, Harish, E-mail: harish@ipr.res.in; Kumar, Aveg; Bhandarkar, M.; Mahajan, K.; Gulati, H.; Dhongde, J.; Patel, K.; Chudasma, H.; Pradhan, S.

    2016-11-15

    Highlights: • Central Control System. • SST-1. • Machine Control System. - Abstract: Central Control System (CCS) of the Steady State Superconducting Tokamak-1 (SST-1) controls and monitors around 25 plant and experiment subsystems of SST-1 located remotely from the Central-Control room. Machine Control System (MCS) is a supervisory system that sits on the top of the CCS hierarchy and implements the CCS state diagram. MCS ensures the software interlock between the SST-1 subsystems with the CCS, any subsystem communication failure or its local error does not prohibit the execution of the MCS and in-turn the CCS operation. MCS also periodically monitors the subsystem’s status and their vital process parameters throughout the campaign. It also provides the platform for the Central Control operator to visualize and exchange remotely the operational and experimental configuration parameters with the sub-systems. MCS remains operational 24 × 7 from the commencement to the termination of the SST-1 campaign. The developed MCS has performed robustly and flawlessly during all the last campaigns of SST-1 carried out so far. This paper will describe various aspects of the development of MCS.

  19. Machine function based control code algebras

    NARCIS (Netherlands)

    Bergstra, J.A.

    Machine functions have been introduced by Earley and Sturgis in [6] in order to provide a mathematical foundation of the use of the T-diagrams proposed by Bratman in [5]. Machine functions describe the operation of a machine at a very abstract level. A theory of hardware and software based on

  20. VIRTUAL MACHINES IN EDUCATION – CNC MILLING MACHINE WITH SINUMERIK 840D CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    Ireneusz Zagórski

    2014-11-01

    Full Text Available Machining process nowadays could not be conducted without its inseparable element: cutting edge and frequently numerically controlled milling machines. Milling and lathe machining centres comprise standard equipment in many companies of the machinery industry, e.g. automotive or aircraft. It is for that reason that tertiary education should account for this rising demand. This entails the introduction into the curricula the forms which enable visualisation of machining, milling process and virtual production as well as virtual machining centres simulation. Siemens Virtual Machine (Virtual Workshop sets an example of such software, whose high functionality offers a range of learning experience, such as: learning the design of machine tools, their configuration, basic operation functions as well as basics of CNC.

  1. Control System Design for Automatic Cavity Tuning Machines

    Energy Technology Data Exchange (ETDEWEB)

    Carcagno, R.; Khabiboulline, T.; Kotelnikov, S.; Makulski, A.; Nehring, R.; Nogiec, J.; Ross, M.; Schappert, W.; /Fermilab; Goessel, A.; Iversen, J.; Klinke, D.; /DESY

    2009-05-01

    A series of four automatic tuning machines for 9-cell TESLA-type cavities are being developed and fabricated in a collaborative effort among DESY, FNAL, and KEK. These machines are intended to support high-throughput cavity fabrication for construction of large SRF-based accelerator projects. Two of these machines will be delivered to cavity vendors for the tuning of XFEL cavities. The control system for these machines must support a high level of automation adequate for industrial use by non-experts operators. This paper describes the control system hardware and software design for these machines.

  2. Control System Design for Automatic Cavity Tuning Machines

    International Nuclear Information System (INIS)

    Carcagno, R.; Khabiboulline, T.; Kotelnikov, S.; Makulski, A.; Nehring, R.; Nogiec, J.; Ross, M.; Schappert, W.; Goessel, A.; Iversen, J.; Klinke, D.

    2009-01-01

    A series of four automatic tuning machines for 9-cell TESLA-type cavities are being developed and fabricated in a collaborative effort among DESY, FNAL, and KEK. These machines are intended to support high-throughput cavity fabrication for construction of large SRF-based accelerator projects. Two of these machines will be delivered to cavity vendors for the tuning of XFEL cavities. The control system for these machines must support a high level of automation adequate for industrial use by non-experts operators. This paper describes the control system hardware and software design for these machines.

  3. Machine Shop. Module 8: CNC (Computerized Numerical Control). Instructor's Guide.

    Science.gov (United States)

    Crosswhite, Dwight

    This document consists of materials for a five-unit course on the following topics: (1) safety guidelines; (2) coordinates and dimensions; (3) numerical control math; (4) programming for numerical control machines; and (5) setting and operating the numerical control machine. The instructor's guide begins with a list of competencies covered in the…

  4. Design for the human-machine interface of a digitalized reactor control-room

    International Nuclear Information System (INIS)

    Qu Ronghong; Zhang Liangju; Li Duo; Yu Hui

    2005-01-01

    Digitalized technology is implemented in the instrumentation and control system of an in-construction research reactor, which advances information display in both contents and styles in a nuclear reactor control-room, and greatly improves human-machine interface. In the design for a digitalized nuclear reactor control-room there are a series of new problems and technologies should be considered seriously. This paper mainly introduces the design for the digitalized control-room of the research nuclear reactor and covered topics include design principle of human-machine interface, organization and classification of interface graphics, technologies and principles based on human factors engineering and implemented in the graphics design. (authors)

  5. Implementing finite state machines in a computer-based teaching system

    Science.gov (United States)

    Hacker, Charles H.; Sitte, Renate

    1999-09-01

    Finite State Machines (FSM) are models for functions commonly implemented in digital circuits such as timers, remote controls, and vending machines. Teaching FSM is core in the curriculum of many university digital electronic or discrete mathematics subjects. Students often have difficulties grasping the theoretical concepts in the design and analysis of FSM. This has prompted the author to develop an MS-WindowsTM compatible software, WinState, that provides a tutorial style teaching aid for understanding the mechanisms of FSM. The animated computer screen is ideal for visually conveying the required design and analysis procedures. WinState complements other software for combinatorial logic previously developed by the author, and enhances the existing teaching package by adding sequential logic circuits. WinState enables the construction of a students own FSM, which can be simulated, to test the design for functionality and possible errors.

  6. Land Use Control Implementation Plan

    Science.gov (United States)

    Starr, Andrew Scott

    2015-01-01

    This Land Use Control Implementation Plan (LUCIP) has been prepared to inform current and potential future users of Building M7-505 of institutional controls that have been implemented at the site. Although there are no current unacceptable risks to human health or the environment associated with Building M7-505, institutional land use controls (LUCs) are necessary to prohibit the use of groundwater from the site. LUCs are also necessary to prevent access to soil under electrical equipment in the northwest portion of the site. Controls necessary to prevent human exposure will include periodic inspection, condition certification, and agency notification.

  7. Implementing Machine Learning in Radiology Practice and Research.

    Science.gov (United States)

    Kohli, Marc; Prevedello, Luciano M; Filice, Ross W; Geis, J Raymond

    2017-04-01

    The purposes of this article are to describe concepts that radiologists should understand to evaluate machine learning projects, including common algorithms, supervised as opposed to unsupervised techniques, statistical pitfalls, and data considerations for training and evaluation, and to briefly describe ethical dilemmas and legal risk. Machine learning includes a broad class of computer programs that improve with experience. The complexity of creating, training, and monitoring machine learning indicates that the success of the algorithms will require radiologist involvement for years to come, leading to engagement rather than replacement.

  8. Machine throughput improvement achieved using innovative control technique

    International Nuclear Information System (INIS)

    Sharma, V.; Acharya, S.; Mittal, K.C.

    2012-01-01

    In any type of fully or semi automatic machine the control systems plays an important role. The control system on the one hand has to consider the human psychology, intelligence requirement for an operator, and attention needed from him. On the other hand the complexity of the control has also to be understood well before designing a control system that can be handled comfortably and safely by the operator. As far as the user experience/comfort is concerned the design of control system GUI is vital. Considering these two aspects related to the user of the machine it is evident that the control system design is very important because it is has to accommodate the human behaviour and skill sets required/available as well as the capability of the machine under the control of the control system. An intelligently designed control system can enhance the productivity of the machine. (author)

  9. Discrete Model Reference Adaptive Control System for Automatic Profiling Machine

    Directory of Open Access Journals (Sweden)

    Peng Song

    2012-01-01

    Full Text Available Automatic profiling machine is a movement system that has a high degree of parameter variation and high frequency of transient process, and it requires an accurate control in time. In this paper, the discrete model reference adaptive control system of automatic profiling machine is discussed. Firstly, the model of automatic profiling machine is presented according to the parameters of DC motor. Then the design of the discrete model reference adaptive control is proposed, and the control rules are proven. The results of simulation show that adaptive control system has favorable dynamic performances.

  10. Comparing and Optimising Parallel Haskell Implementations for Multicore Machines

    DEFF Research Database (Denmark)

    Berthold, Jost; Marlow, Simon; Hammond, Kevin

    2009-01-01

    In this paper, we investigate the differences and tradeoffs imposed by two parallel Haskell dialects running on multicore machines. GpH and Eden are both constructed using the highly-optimising sequential GHC compiler, and share thread scheduling, and other elements, from a common code base. The ...

  11. An industrial sewing machine variable speed controller

    Science.gov (United States)

    Estes, Christa; Spiggle, Charles; Swift, Shannon; Vangeffen, Stephen; Youngner, Frank

    The apparel industry is attempting to move in a new direction in the coming decade. Since the invention of an electrically powered sewing machine, the operator has been seated. Today, companies are switching from a sit down operation to a stand up operation involving modular stations. The old treadle worked well with the sitting operator, but problems have been found when trying to use the same treadle with a standing operator. This report details a new design for a treadle to operate an industrial sewing machine that has a standing operator. Emphasis is placed on the ease of use by the operator, as well as the ergonomics involved. Procedures for testing the design are included along with possible uses for the treadle in other applications besides an industrial sewing machine.

  12. Design and Construction of Wireless Control System for Drilling Machine

    Directory of Open Access Journals (Sweden)

    Nang Su Moan Hsam

    2015-06-01

    Full Text Available Abstract Drilling machine is used for boring holes in various materials and used in woodworking metalworking construction and do-it-yourself projects. When the machine operate for a long time the temperature increases and so we need to control the temperature of the machine and some lubrication system need to apply to reduce the temperature. Due to the improvement of technology the system can be controlled with wireless network. This control system use Window Communication Foundation WCF which is the latest service oriented technology to control all drilling machines in industries simultaneously. All drilling machines are start working when they received command from server. After the machine is running for a long time the temperature is gradually increased. This system used LM35 temperature sensor to measure the temperature. When the temperature is over the safely level that is programmed in host server the controller at the server will command to control the speed of motor and applying some lubrication system at the tip and edges of drill. The command from the server is received by the client and sends to PIC. In this control system PIC microcontroller is used as an interface between the client computer and the machine. The speed of motor is controlled with PWM and water pump system is used for lubrication. This control system is designed and simulated with 12V DC motor LM35 sensor LCD displayand relay which is to open the water container to spray water between drill and work piece. The host server choosing to control the drilling machine that are overheat by selecting the clients IP address that is connected with that machine.

  13. Bio-Inspired Interaction Control of Robotic Machines for Motor Therapy

    OpenAIRE

    Zollo, Loredana; Formica, Domenico; Guglielmelli, Eugenio

    2007-01-01

    In this chapter basic criteria for the design and implementation of interaction control of robotic machines for motor therapy have been briefly introduced and two bio-inspired compliance control laws developed by the authors to address requirements coming from this specific application field have been presented. The two control laws are named the coactivation-based compliance control in the joint space and the torque-dependent compliance control in the joint space, respectively. They try to o...

  14. Possibilities for Automatic Control of Hydro-Mechanical Transmission and Birotating Electric Machine

    Directory of Open Access Journals (Sweden)

    V. V. Mikhailov

    2014-01-01

    Full Text Available The paper presents mathematical models and results of virtual investigations pertaining to the selected motion parameters of a mobile machine equipped with hydro mechanical and modernized transmissions. The machine has been tested in similar technological cycles and it has been equipped with a universal automatic control system. Changes in structure and type of power transmission have been obtained with the help of a control algorithm including an extra reversible electric machine which is switched in at some operational modes.Implementation of the proposed  concept makes it possible to obtain and check the improved C-code of the control system and enhance operational parameters of the transmission and machine efficiency, reduce slippage and tire wear while using braking energy for its later beneficial use which is usually considered as a consumable element.

  15. A radiological control implementation guide

    International Nuclear Information System (INIS)

    Hamley, S.A.

    1993-01-01

    A manual is being developed to explain to line managers how radiological controls are designed and implemented. The manual also fills a gap in the Health Physics literature between textbooks and on-the-floor procedures. It may be helpful to new Health Physicists with little practical experience and to those wishing to improve self-assessment, audit, and appraisal processes. Many audits, appraisals, and evaluations have indicated a need for cultural change, increased vigor and example, and more effective oversight by line management. Inadequate work controls are a frequent and recurring problem identified in occurrence reports and accident investigations. Closer study frequently indicates that many line managers are willing to change and want to achieve excellence, but no effective guidance exists that will enable them to understand and implement a modern radiological control program. The manual is now in draft form and includes information that will be of use to line managers dealing with improving radiological performance and the practical aspects of radiological controls implementation. The manual is expected to be completed by the fall of 1993 and to be used in conjunction with a performance-based self-assessment training program at the Oak Ridge National Laboratory

  16. Virtual C Machine and Integrated Development Environment for ATMS Controllers.

    Science.gov (United States)

    2000-04-01

    The overall objective of this project is to develop a prototype virtual machine that fits on current Advanced Traffic Management Systems (ATMS) controllers and provides functionality for complex traffic operations.;Prepared in cooperation with Utah S...

  17. Design of electric control system for automatic vegetable bundling machine

    Science.gov (United States)

    Bao, Yan

    2017-06-01

    A design can meet the requirements of automatic bale food structure and has the advantages of simple circuit, and the volume is easy to enhance the electric control system of machine carrying bunch of dishes and low cost. The bundle of vegetable machine should meet the sensor to detect and control, in order to meet the control requirements; binding force can be adjusted by the button to achieve; strapping speed also can be adjusted, by the keys to set; sensors and mechanical line connection, convenient operation; can be directly connected with the plug, the 220V power supply can be connected to a power source; if, can work, by the transmission signal sensor, MCU to control the motor, drive and control procedures for small motor. The working principle of LED control circuit and temperature control circuit is described. The design of electric control system of automatic dish machine.

  18. FRICTION - WELDING MACHINE AUTOMATIC CONTROL CIRCUIT DESIGN AND APPLICATION

    OpenAIRE

    Hakan ATEŞ; Ramazan BAYINDIR

    2003-01-01

    In this work, automatic controllability of a laboratory-sized friction-welding machine has been investigated. The laboratory-sized friction-welding machine was composed of motor, brake, rotary and constant samples late pliers, and hydraulic unit. In automatic method, welding parameters such as friction time, friction pressure, forge time and forge pressure can be applied sensitively using time relays and contactors. At the end of the experimental study it's observed that automatic control sys...

  19. Energy saving work of frequency controlled induction cage machine

    Energy Technology Data Exchange (ETDEWEB)

    Gnacinski, P. [Gdynia Maritime University, Department of Ship Electrical Power Engineering, Morska Str. 8, 81-225 Gdynia (Poland)]. E-mail: piotrg@am.gdynia.pl

    2007-03-15

    Energy saving work, understood as lowering the supply voltage when load torque is much less than rated, is one way of reducing power losses in an induction cage machine working with a variable load. Reduction in power losses also affects the thermal properties of an induction machine because the energy saving work allows the temperature rise of the windings to decrease. Thanks to a lower temperature of the windings, the same load torque can be carried by a machine of less rated power. The ability of energy saving work to reduce the temperature of windings depends on the thermal properties of an induction machine, which are different in the case of a machine with foreign ventilation and its own ventilation. This paper deals with the thermal effect of energy saving work on a frequency controlled induction cage machine. A comparison of the properties of a machine with its own and outside ventilation is presented. The results of the investigations are shown for a 3 kW induction cage machine with the two previously mentioned ways of ventilation: one provided with a fan placed on a shaft and the other provided with a fan driven by an auxiliary motor.

  20. Energy saving work of frequency controlled induction cage machine

    International Nuclear Information System (INIS)

    Gnacinski, P.

    2007-01-01

    Energy saving work, understood as lowering the supply voltage when load torque is much less than rated, is one way of reducing power losses in an induction cage machine working with a variable load. Reduction in power losses also affects the thermal properties of an induction machine because the energy saving work allows the temperature rise of the windings to decrease. Thanks to a lower temperature of the windings, the same load torque can be carried by a machine of less rated power. The ability of energy saving work to reduce the temperature of windings depends on the thermal properties of an induction machine, which are different in the case of a machine with foreign ventilation and its own ventilation. This paper deals with the thermal effect of energy saving work on a frequency controlled induction cage machine. A comparison of the properties of a machine with its own and outside ventilation is presented. The results of the investigations are shown for a 3 kW induction cage machine with the two previously mentioned ways of ventilation: one provided with a fan placed on a shaft and the other provided with a fan driven by an auxiliary motor

  1. Implementation of the Lanczos algorithm for the Hubbard model on the Connection Machine system

    International Nuclear Information System (INIS)

    Leung, P.W.; Oppenheimer, P.E.

    1992-01-01

    An implementation of the Lanczos algorithm for the exact diagonalization of the two dimensional Hubbard model on a 4x4 square lattice on the Connection Machine CM-2 system is described. The CM-2 is a massively parallel machine with distributed memory. The program is written in C/PARIS. This implementation minimizes memory usage by generating the matrix elements as needed instead of storing them. The Lanczos vectors are stored across the local memory of the processors. Using translational symmetry only, the dimension of the Hilbert space at half filling is more than 10 million. A speed of about 2.4 min per iteration is achieved on a 64K CM-2. This implementation is scalable. Running it on a bigger machine with more processors speeds up the process. The performance analysis of this implementation is shown and discuss its advantages and disadvantages are discussed

  2. Learning Computer Programming: Implementing a Fractal in a Turing Machine

    Science.gov (United States)

    Pereira, Hernane B. de B.; Zebende, Gilney F.; Moret, Marcelo A.

    2010-01-01

    It is common to start a course on computer programming logic by teaching the algorithm concept from the point of view of natural languages, but in a schematic way. In this sense we note that the students have difficulties in understanding and implementation of the problems proposed by the teacher. The main idea of this paper is to show that the…

  3. A Study of Synchronous Machine Model Implementations in Matlab/Simulink Simulations for New and Renewable Energy Systems

    DEFF Research Database (Denmark)

    Chen, Zhe; Blaabjerg, Frede; Iov, Florin

    2005-01-01

    A direct phase model of synchronous machines implemented in MA TLAB/SIMULINK is presented. The effects of the machine saturation have been included. Simulation studies are performed under various conditions. It has been demonstrated that the MATLAB/SIMULINK is an effective tool to study the compl...... synchronous machine and the implemented model could be used for studies of various applications of synchronous machines including in renewable and DG generation systems....

  4. Considerations for implementing machine vision for detecting watercore in apples

    Science.gov (United States)

    Upchurch, Bruce L.; Throop, James A.

    1993-05-01

    Watercore in apples is a physiological disorder that affects the internal quality of the fruit. Growers can experience serious economic losses due to internal breakdown of the apple if watercored apples are placed unknowingly into long term storage. Economic losses can also occur if watercore is detected and the entire `lot' is downgraded; however, a gain can be obtained if watercored fruit is segregated and marketed as a premium apple soon after harvest. Watercore is characterized by the accumulation of fluid around the vascular bundles replacing air spaces between cells. This fluid reduces the light scattering properties of the apple. Using machine vision to measure the amount of light transmitted through the apple, watercored apples were segregated according to the severity of damage. However, the success of the method was dependent upon two factors. First, the sensitivity of the camera dictated the classes of watercore that could be detected. A highly sensitive camera could separate the less severe classes at the expense of not distinguishing between the more severe classes. A second factor which is common to most quality attributes in perishable commodities is the elapsed time after harvest at which the measurement was made. At the end of the study, light transmission levels decreased to undetectable levels with the initial camera settings for all watercore classes.

  5. Implementation and Analysis for APR1400 Soft Control System

    International Nuclear Information System (INIS)

    2015-01-01

    Due to the rapid advancement of digital technology, the definite technical advantages of digital control system compared to analog control system are accelerating the implementation of advanced distributed digital control system in the nuclear power plant. One of the major advantages of digital control system is the capability of Soft Control System. The design of Soft Control System for Advanced Power Reactor 1400 (APR1400) plant of Man-Machine Interface System (MMIS) is based on full digital technologies to enhance reliability, operability and maintainability. Computer-based compact workstation has been adopted in the APR1400 Main Control Room (MCR) to provide convenient working environment. This paper introduces the approaches and methodologies of Soft Control System for the Advanced Control Room (ACR). This paper also explains major design features for operation and display of the Soft Control System and its implementation to cope with regulatory requirements. (authors)

  6. Failure analysis for ultrasound machines in a radiology department after implementation of predictive maintenance method

    Directory of Open Access Journals (Sweden)

    Greg Chu

    2018-01-01

    Full Text Available Objective: The objective of the study was to perform quantitative failure and fault analysis to the diagnostic ultrasound (US scanners in a radiology department after the implementation of the predictive maintenance (PdM method; to study the reduction trend of machine failure; to understand machine operating parameters affecting the failure; to further optimize the method to maximize the machine clinically service time. Materials and Methods: The PdM method has been implemented to the 5 US machines since 2013. Log books were used to record machine failures and their root causes together with the time spent on repair, all of which were retrieved, categorized, and analyzed for the period between 2013 and 2016. Results: There were a total of 108 cases of failure occurred in these 5 US machines during the 4-year study period. The average number of failure per month for all these machines was 2.4. Failure analysis showed that there were 33 cases (30.5% due to software, 44 cases (40.7% due to hardware, and 31 cases (28.7% due to US probe. There was a statistically significant negative correlation between the time spent on regular quality assurance (QA by hospital physicists with the time spent on faulty parts replacement over the study period (P = 0.007. However, there was no statistically significant correlation between regular QA time and total yearly breakdown case (P = 0.12, although there has been a decreasing trend observed in the yearly total breakdown. Conclusion: There has been a significant improvement on the machine failure of US machines attributed to the concerted effort of sonographers and physicists in our department to practice the PdM method, in that system component repair time has been reduced, and a decreasing trend in the number of system breakdown has been observed.

  7. Nonlinear chaos control in a permanent magnet reluctance machine

    International Nuclear Information System (INIS)

    Harb, Ahmad M.

    2004-01-01

    The dynamics of a permanent magnet synchronous machine (PMSM) is analyzed. The study shows that under certain conditions the PMSM is experiencing chaotic behavior. To control these unwanted chaotic oscillations, a nonlinear controller based on the backstepping nonlinear control theory is designed. The objective of the designed control is to stabilize the output chaotic trajectory by forcing it to the nearest constant solution in the basin of attraction. The result is compared with a nonlinear sliding mode controller. The designed controller that based on backstepping nonlinear control was able to eliminate the chaotic oscillations. Also the study shows that the designed controller is mush better than the sliding mode control

  8. Distributed Control System Design for Portable PC Based CNC Machine

    Directory of Open Access Journals (Sweden)

    Roni Permana Saputra

    2014-07-01

    Full Text Available The demand on automated machining has been increased and emerges improvement research to achieve many goals such as portability, low cost manufacturability, interoperability, and simplicity in machine usage. These improvements are conducted without ignoring the performance analysis and usability evaluation. This research has designed a distributed control system in purpose to control a portable CNC machine. The design consists of main processing unit, secondary processing unit, motor control, and motor driver. A preliminary simulation has been conducted for performance analysis including linear accuracy and circular accuracy. The results achieved in the simulation provide linear accuracy up to 2 μm with total cost for the whole processing unit is up to 5 million IDR.

  9. Kaizen planning, implementing and controlling

    CERN Document Server

    García-Alcaraz, Jorge Luis; Maldonado-Macías, Aidé Aracely

    2017-01-01

    This book reports a literature review on kaizen, its industrial applications, critical success factors, benefits gained, journals that publish about it, main authors (research groups) and universities. Kaizen is treated in this book in three stages: planning, implementation and control. The authors provide a questionnaire designed with activities in every stage, highlighting the benefits gained in each stage. The study has been applied to more than 400 managers and leaders in continuous improvement in Mexican maquiladoras. A univariate analysis is provided to the activities in every stage. Moreover, structural equation models associating those activities with the benefits gained are presented for a statistical validation. Such a relationship between activities and benefits helps managers to identify the most important factor affecting their benefits and financial income.

  10. FINAL IMPLEMENTATION AND PERFORMANCE OF THE LHC COLLIMATOR CONTROL SYSTEM

    CERN Document Server

    Redaelli, S; Masi, A; Losito, R

    2009-01-01

    The 2008 collimation system of the CERN Large Hadron Collider (LHC) included 80 movable collimators for a total of 316 degrees of freedom. Before beam operation, the final controls implementation was deployed and commissioned. The control system enabled remote control and appropriate diagnostics of the relevant parameters. The collimator motion is driven with time-functions, synchronized with other accelerator systems, which allows controlling the collimator jaw positions with a micrometer accuracy during all machine phases. The machine protection functionality of the system, which also relies on function-based tolerance windows, was also fully validated. The collimator control challenges are reviewed and the final system architecture is presented. The results of the remote system commissioning and the overall performance are discussed.

  11. Flocking small smart machines: An experiment in cooperative, multi-machine control

    International Nuclear Information System (INIS)

    Klarer, P.R.

    1998-03-01

    The intent and purpose of this work was to investigate and demonstrate cooperative behavior among a group of mobile robot machines. The specific goal of this work was to build a small swarm of identical machines and control them in such a way as to show a coordinated movement of the group in a flocking manner, similar to that observed in nature. Control of the swarm's individual members and its overall configuration is available to the human user via a graphic man-machine interface running on a base station control computer. Any robot may be designated as the nominal leader through the interface tool, which then may be commanded to proceed to a particular geographic destination. The remainder of the flock follows the leader by maintaining their relative positions in formation, as specified by the human controller through the interface. The formation's configuration can be altered manually through an interactive graphic-based tool. An alternative mode of control allows for teleoperation of one robot, with the flock following along as described above

  12. Control of discrete event systems modeled as hierarchical state machines

    Science.gov (United States)

    Brave, Y.; Heymann, M.

    1991-01-01

    The authors examine a class of discrete event systems (DESs) modeled as asynchronous hierarchical state machines (AHSMs). For this class of DESs, they provide an efficient method for testing reachability, which is an essential step in many control synthesis procedures. This method utilizes the asynchronous nature and hierarchical structure of AHSMs, thereby illustrating the advantage of the AHSM representation as compared with its equivalent (flat) state machine representation. An application of the method is presented where an online minimally restrictive solution is proposed for the problem of maintaining a controlled AHSM within prescribed legal bounds.

  13. FRICTION - WELDING MACHINE AUTOMATIC CONTROL CIRCUIT DESIGN AND APPLICATION

    Directory of Open Access Journals (Sweden)

    Hakan ATEŞ

    2003-02-01

    Full Text Available In this work, automatic controllability of a laboratory-sized friction-welding machine has been investigated. The laboratory-sized friction-welding machine was composed of motor, brake, rotary and constant samples late pliers, and hydraulic unit. In automatic method, welding parameters such as friction time, friction pressure, forge time and forge pressure can be applied sensitively using time relays and contactors. At the end of the experimental study it's observed that automatic control system has been worked successfully.

  14. Development of an FPGA-Based Motion Control IC for Caving Machine

    Directory of Open Access Journals (Sweden)

    Chiu-Keng Lai

    2014-03-01

    Full Text Available Since the Field Programmable Gate Arrays (FPGAs with high density are available nowadays, systems with complex functions can thus be realized by FPGA in a single chip while they are traditionally implemented by several individual chips. In this research, the control of stepping motor drives as well as motion controller is integrated and implemented on Altera Cyclone III FPGA; the resulting system is evaluated by applying it to a 3-axis caving machine which is driven by stepping motors. Finally, the experimental results of current regulation and motion control integrated in FPGA IC are shown to prove the validness.

  15. Control system of power supply for resistance welding machine

    Directory of Open Access Journals (Sweden)

    Світлана Костянтинівна Поднебенна

    2017-06-01

    Full Text Available This article describes the existing methods of heat energy stabilizing, which are realized in thyristor power supplies for resistance welding machines. The advantages and features of thyristor power supplies have been described. A control system of power supply for resistance welding machine with stabilization of heat energy in a welding spot has been developed. Measurements are performed in primary winding of a welding transformer. Weld spot heating energy is calculated as the difference between the energy, consumed from the mains, and the energy losses in the primary and secondary circuits of the welding transformer as well as the energy losses in the transformer core. Algorithms of digital signal processing of the developed control system are described in the article. All measurements and calculations are preformed automatically in real-time. Input signals to the control system are: transformer primary voltage and current, temperature of the welding circuit. The designed control system ensures control of the welding heat energy and is not influenced by the supply voltage and impedance changes caused by insertion of the ferromagnetic mass in the welding circuit, the temperature change during the welding process. The developed control system for resistance welding machine makes it possible to improve the quality of welded joints, increase the efficiency of the resistance welding machine

  16. Model Predictive Engine Air-Ratio Control Using Online Sequential Relevance Vector Machine

    Directory of Open Access Journals (Sweden)

    Hang-cheong Wong

    2012-01-01

    Full Text Available Engine power, brake-specific fuel consumption, and emissions relate closely to air ratio (i.e., lambda among all the engine variables. An accurate and adaptive model for lambda prediction is essential to effective lambda control for long term. This paper utilizes an emerging technique, relevance vector machine (RVM, to build a reliable time-dependent lambda model which can be continually updated whenever a sample is added to, or removed from, the estimated lambda model. The paper also presents a new model predictive control (MPC algorithm for air-ratio regulation based on RVM. This study shows that the accuracy, training, and updating time of the RVM model are superior to the latest modelling methods, such as diagonal recurrent neural network (DRNN and decremental least-squares support vector machine (DLSSVM. Moreover, the control algorithm has been implemented on a real car to test. Experimental results reveal that the control performance of the proposed relevance vector machine model predictive controller (RVMMPC is also superior to DRNNMPC, support vector machine-based MPC, and conventional proportional-integral (PI controller in production cars. Therefore, the proposed RVMMPC is a promising scheme to replace conventional PI controller for engine air-ratio control.

  17. Controlling Motion at the Nanoscale: Rise of the Molecular Machines.

    Science.gov (United States)

    Abendroth, John M; Bushuyev, Oleksandr S; Weiss, Paul S; Barrett, Christopher J

    2015-08-25

    As our understanding and control of intra- and intermolecular interactions evolve, ever more complex molecular systems are synthesized and assembled that are capable of performing work or completing sophisticated tasks at the molecular scale. Commonly referred to as molecular machines, these dynamic systems comprise an astonishingly diverse class of motifs and are designed to respond to a plethora of actuation stimuli. In this Review, we outline the conditions that distinguish simple switches and rotors from machines and draw from a variety of fields to highlight some of the most exciting recent examples of opportunities for driven molecular mechanics. Emphasis is placed on the need for controllable and hierarchical assembly of these molecular components to display measurable effects at the micro-, meso-, and macroscales. As in Nature, this strategy will lead to dramatic amplification of the work performed via the collective action of many machines organized in linear chains, on functionalized surfaces, or in three-dimensional assemblies.

  18. High Accuracy Nonlinear Control and Estimation for Machine Tool Systems

    DEFF Research Database (Denmark)

    Papageorgiou, Dimitrios

    Component mass production has been the backbone of industry since the second industrial revolution, and machine tools are producing parts of widely varying size and design complexity. The ever-increasing level of automation in modern manufacturing processes necessitates the use of more...... sophisticated machine tool systems that are adaptable to different workspace conditions, while at the same time being able to maintain very narrow workpiece tolerances. The main topic of this thesis is to suggest control methods that can maintain required manufacturing tolerances, despite moderate wear and tear....... The purpose is to ensure that full accuracy is maintained between service intervals and to advice when overhaul is needed. The thesis argues that quality of manufactured components is directly related to the positioning accuracy of the machine tool axes, and it shows which low level control architectures...

  19. Controls in future earth moving machines

    NARCIS (Netherlands)

    Neve, M. de; Vink, P.; Kanis, H.; Krause, F.

    2005-01-01

    This seventh chapter of the book 'Advanced cabin design : how to improve comfort and performance by progressive cabin design' explores whether a new way of steering has positive effects. Also controlling the speed of a movement versus the position of a movement is compared. The last 25 years the

  20. Group program procedure for machining seal rings of steam turbines on digital computer controlled machines

    International Nuclear Information System (INIS)

    Glukhikh, V.K.; Skvortsov, S.B.; Sidorov, V.A.

    1982-01-01

    Developed is a group program procedure for turning machining of seal rings, including the use of new progressive high-accuracy equipment, universal device for securing of all nomenclature of treated seal rings, necessary cutting tools and program control of the process of treatment. Introduction of a new technological process permitted to improve the quality of treated seal rings; to reduce the labour consumption in 30...40% [ru

  1. Induction machine Direct Torque Control system based on fuzzy adaptive control

    Science.gov (United States)

    Li, Shi-ping; Yu, Yan; Jiao, Zhen-gang; Gu, Shu-sheng

    2009-07-01

    Direct Torque Control technology is a high-performance communication control method, it uses the space voltage vector method, and then to the inverter switch state control, to obtain high torque dynamic performance. But none of the switching states is able to generate the exact voltage vector to produce the desired changes in torque and flux in most of the switching instances. This causes a high ripple in torque. To solve this problem, a fuzzy implementation of Direct Torque Control of Induction machine is presented here. Error of stator flux, error of motor electromagnetic torque and position of angle of flux are taken as fuzzy variables. In order to further solve nonlinear problem of variation parameters in direct torque control system, the paper proposes a fuzzy parameter PID adaptive control method which is suitable for the direct torque control of an asynchronous motor. The generation of its fuzzy control is obtained by analyzing and optimizing PID control step response and combining expert's experience. For this reason, it carries out fuzzy work to PID regulator of motor speed to achieve to regulate PID parameters. Therefore the control system gets swifter response velocity, stronger robustness and higher precision of velocity control. The computer simulated results verify the validity of this novel method.

  2. Current control by a homopolar machine with moving brushes

    International Nuclear Information System (INIS)

    Vogel, H.

    1978-01-01

    The equation for TNS Doublet's E-coil circuit with moving brush homopolar machine is integrated in the flux of the homopolar for a monotonically increasing current function extending beyond the current reversal into the burn period. The results show that the moving brush feature is not useful for controlling the burn

  3. Simulation of the Dynamic Behavior of an Asynchronous Machine Using Direct Self-Control

    Directory of Open Access Journals (Sweden)

    Cristian Paul Chioncel

    2007-01-01

    Full Text Available The paper presents the major steps that have to be gone for the implementation of the mathematical model of the asynchronous machine in SciLab / Scicos. This implemented ASM model, will be used to check the dynamic behavior of the system, the current diagrams as well as the behavior motor speed and the torque, if the input signal has a pulsation form. This implementation’s are made in Scilab / Scicos environment, a clone of the MATLAB, which provides number-crunching power similar to MATLAB, at a much better cost/performance ratio. The implemented model offers the possibility to analyze the behaviors of the asynchronous machine in different dynamic situations: speed, torques, current in motor or generator regime and to study its behavior in different possible control schemes.

  4. Flexible software architecture for user-interface and machine control in laboratory automation.

    Science.gov (United States)

    Arutunian, E B; Meldrum, D R; Friedman, N A; Moody, S E

    1998-10-01

    We describe a modular, layered software architecture for automated laboratory instruments. The design consists of a sophisticated user interface, a machine controller and multiple individual hardware subsystems, each interacting through a client-server architecture built entirely on top of open Internet standards. In our implementation, the user-interface components are built as Java applets that are downloaded from a server integrated into the machine controller. The user-interface client can thereby provide laboratory personnel with a familiar environment for experiment design through a standard World Wide Web browser. Data management and security are seamlessly integrated at the machine-controller layer using QNX, a real-time operating system. This layer also controls hardware subsystems through a second client-server interface. This architecture has proven flexible and relatively easy to implement and allows users to operate laboratory automation instruments remotely through an Internet connection. The software architecture was implemented and demonstrated on the Acapella, an automated fluid-sample-processing system that is under development at the University of Washington.

  5. Human machine interface for research reactor instrumentation and control system

    International Nuclear Information System (INIS)

    Mohd Sabri Minhat; Mohd Idris Taib; Izhar Abu Hussin; Zareen Khan Abdul Jalil Khan; Nurfarhana Ayuni Joha

    2010-01-01

    Most present design of Human Machine Interface for Research Reactor Instrumentation and Control System is modular-based, comprise of several cabinets such as Reactor Protection System, Control Console, Information Console as well as Communication Console. The safety, engineering and human factor will be concerned for the design. Redundancy and separation of signal and power supply are the main factor for safety consideration. The design of Operator Interface absolutely takes consideration of human and environmental factors. Physical parameters, experiences, trainability and long-established habit patterns are very important for user interface, instead of the Aesthetic and Operator-Interface Geometry. Physical design for New Instrumentation and Control System of RTP are proposed base on the state-of- the-art Human Machine Interface design. (author)

  6. The application of state machine based on labview for solid target transfer control system at BATAN’s cyclotron

    International Nuclear Information System (INIS)

    Heranudin; Rajiman; Parwanto; Edy Slamet R

    2015-01-01

    Software programming for the new solid target transfer control system referred to the working principle of the whole each sub system. System modeling with state machine diagram was chosen because this simplified a complex design of the control system. State machine implementation of this system was performed by creating basic state drawn from the working system of each sub system. All states with their described inputs, outputs and algorithms were compiled in the sequential state machine diagram. In order to ease the operation, three modes namely automatic, major states and micro states were created. Testing of the system has been conducted and as a result, the system worked properly. The implementation of State machine based on LabView has several advantages such as faster, easier programming and the capability for further developments. (author)

  7. Implementation of Total Productive Maintenance (TPM to Improve Sheeter Machine Performance

    Directory of Open Access Journals (Sweden)

    Candra Nofri Eka

    2017-01-01

    Full Text Available This paper purpose is an evaluation of TPM implementation, as a case study at sheeter machine cut size line 5 finishing department, PT RAPP, Indonesia. Research methodology collected the Overall Equipment Effectiveness (OEE data of sheeter machine and computed its scores. Then, OEE analysis big losses, statistical analysis using SPSS 20 and focused maintenance evaluation of TPM were performed. The data collected to machine sheeter’s production for 10 months (January-October 2016. The data analyses was resulted the OEE average score of 82.75%. This score was still below the world class OEE (85% and the company target (90%. Based the big losses of OEE analysis was obtained the reduce speed losses, which most significant losses of OEE scores. The reduce speed losses value was 44.79% of total losses during the research period. The high score of these losses due to decreasing of machine production speed by operators, which intended to improve the quality of resulting products. The OEE scores statistical analysis was found breakdown losses and reduces speed losses, which significantly affected to OEE scores. Implementations of focused maintenance of TPM in the case study may need to improve because there were still occurred un-expecting losses during the research period.

  8. Splendidly blended: a machine learning set up for CDU control

    Science.gov (United States)

    Utzny, Clemens

    2017-06-01

    As the concepts of machine learning and artificial intelligence continue to grow in importance in the context of internet related applications it is still in its infancy when it comes to process control within the semiconductor industry. Especially the branch of mask manufacturing presents a challenge to the concepts of machine learning since the business process intrinsically induces pronounced product variability on the background of small plate numbers. In this paper we present the architectural set up of a machine learning algorithm which successfully deals with the demands and pitfalls of mask manufacturing. A detailed motivation of this basic set up followed by an analysis of its statistical properties is given. The machine learning set up for mask manufacturing involves two learning steps: an initial step which identifies and classifies the basic global CD patterns of a process. These results form the basis for the extraction of an optimized training set via balanced sampling. A second learning step uses this training set to obtain the local as well as global CD relationships induced by the manufacturing process. Using two production motivated examples we show how this approach is flexible and powerful enough to deal with the exacting demands of mask manufacturing. In one example we show how dedicated covariates can be used in conjunction with increased spatial resolution of the CD map model in order to deal with pathological CD effects at the mask boundary. The other example shows how the model set up enables strategies for dealing tool specific CD signature differences. In this case the balanced sampling enables a process control scheme which allows usage of the full tool park within the specified tight tolerance budget. Overall, this paper shows that the current rapid developments off the machine learning algorithms can be successfully used within the context of semiconductor manufacturing.

  9. THE EFFECT OF IMPLEMENTATION MAINTENANCE CARDS IN PERFORMANCE OF MACHINES IN SELECTED PRODUCTION COMPANY

    Directory of Open Access Journals (Sweden)

    Michał ZASADZIEŃ

    2015-10-01

    Full Text Available Intelligent development should become an inherent part of the policy of each enterprise which wants to develop and maintain its position on the competitive market. The article presents investigations related to the implementation of one of Total Productive Maintenance system elements. Reasons for introducing a new procedure for circulating information about machine inspections and overhauls planned, the major element of which are work sheets for key machines taking part in the production process, have been presented. The effectiveness of the new procedure was subjected to analysis by comparing particular machines’ work times and downtimes before and after the implementation of new procedures. The conducted research revealed an increased effectiveness of machines’ work, which resulted from shortened down-times, especially the duration of a failure.

  10. Phase Modulation Method for Control Systems of Rotary Machine Parameters

    Directory of Open Access Journals (Sweden)

    V. V. Sychev

    2014-01-01

    Full Text Available Traditionally, vibration-based diagnostics takes the main place in a large complex of technical control means of rotary machine operation. It allows us to control the onset of extreme limit states of operating construction and its elements. However, vibration-based diagnostics is incapable to provide differentiated information about the condition of particular units, type of fault and point of its occurrence.From the practical experience of optoelectronic sensors development, methods of phase coding information about the behavior of the investigated object are known. They allow us to overcome the abovementioned disadvantage of vibration-based diagnostics through the modulation of the reflected radiation from the object. This phase modulation is performed with the image analyzers, in which the modulating raster (alternating transparent and nontransparent sectors is designed so, that the carrier frequency of oscillations is absent (suppressed in frequency spectrum, and all useful information can be found in the side frequencies.Carrier frequency suppression appears for two complete turns of the modulating raster. Each time during this process oscillations have a 180° phase shift (hop relatively to the initial oscillation on the boundary of each turn. It leads to a substantial increase in signal/noise ratio and possibility to conduct high-accuracy diagnostics.The principle of the pseudo inversion is used for measurements to suppress an adverse effect of various factors in dynamic control system. For this principle the leaving and returned beams practically go on the same way with small spatial shift. This shift occurs then the leaving beam reflects from a basic surface and the reflected – from the measured surface of the object. Therefore the measurements become insensitive to any other errors of system, except relative position of system «model-object».The main advantages of such measurements are the following:- system steadiness to error

  11. A tape-controlled remote automatic diameter measurement machine

    International Nuclear Information System (INIS)

    Jennison, W.; Salmon, A.M.

    1978-01-01

    The machine is designed for the automatic measurement of fuel pins after irradiation in the fast reactors and is a modified version of a machine which has been in use for several years. These modifications consist of mechanical improvements and solid state control circuitry but the design criteria are unchanged. Irradiated fuel pins with diameters up to 0.875 in. are measured at fixed axial positions and angular intervals. Axial stepping of either 1 cm or 1 in. with a standard deviation of 5 x 10 -4 in. and angular rotation by multiples of 18 0 with a non-cumulative error of 1 0 can be selected. Data on axial position to 0.1 in. or 0.1 cm and fuel element diameter to 5 x 10 -5 in. are both punched and printed out for computer evaluation. The standard deviation of a single measurement on cylindrical specimens with an eccentricity of up to at least 0.1 in. should be no worse than 1 x 10 -4 in. No operator attention is required after the pin is positioned in the machine and 40 sets of 10 diameter readings at 36 0 intervals can be performed in an hour. Switches can be set between 1 and 99 to terminate an examination when power is switched off with the machine in its rest position. (author)

  12. Customer requirement modeling and mapping of numerical control machine

    Directory of Open Access Journals (Sweden)

    Zhongqi Sheng

    2015-10-01

    Full Text Available In order to better obtain information about customer requirement and develop products meeting customer requirement, it is necessary to systematically analyze and handle the customer requirement. This article uses the product service system of numerical control machine as research objective and studies the customer requirement modeling and mapping oriented toward configuration design. It introduces the conception of requirement unit, expounds the customer requirement decomposition rules, and establishes customer requirement model; it builds the house of quality using quality function deployment and confirms the weight of technical feature of product and service; it explores the relevance rules between data using rough set theory, establishes rule database, and solves the target value of technical feature of product. Using economical turning center series numerical control machine as an example, it verifies the rationality of proposed customer requirement model.

  13. Fast implementation of the 1\\rightarrow3 orbital state quantum cloning machine

    Science.gov (United States)

    Lin, Jin-Zhong

    2018-05-01

    We present a scheme to implement a 1→3 orbital state quantum cloning machine assisted by quantum Zeno dynamics. By constructing shortcuts to adiabatic passage with transitionless quantum driving, we can complete this scheme effectively and quickly in one step. The effects of decoherence, including spontaneous emission and the decay of the cavity, are also discussed. The numerical simulation results show that high fidelity can be obtained and the feasibility analysis indicates that this can also be realized in experiments.

  14. Stator for a rotating electrical machine having multiple control windings

    Science.gov (United States)

    Shah, Manoj R.; Lewandowski, Chad R.

    2001-07-17

    A rotating electric machine is provided which includes multiple independent control windings for compensating for rotor imbalances and for levitating/centering the rotor. The multiple independent control windings are placed at different axial locations along the rotor to oppose forces created by imbalances at different axial locations along the rotor. The multiple control windings can also be used to levitate/center the rotor with a relatively small magnetic field per unit area since the rotor and/or the main power winding provides the bias field.

  15. Human-Machine Systems concepts applied to Control Engineering Education

    OpenAIRE

    Marangé , Pascale; Gellot , François; Riera , Bernard

    2008-01-01

    International audience; In this paper, we interest us to Human-Machine Systems (HMS) concepts applied to Education. It is shown how the HMS framework enables to propose original solution in matter of education in the field of control engineering. We focus on practical courses on control of manufacturing systems. The proposed solution is based on an original use of real and large-scale systems instead of simulation. The main idea is to enable the student, whatever his/her level to control the ...

  16. Man-machine communication in reactor control using AI methods

    International Nuclear Information System (INIS)

    Klebau, J.; Lindner, A.; Fiedler, U.

    1987-01-01

    In the last years the interest in process control has expecially focused on problems of man-machine communication. It depends on its great importance to process performance and user acceptance. Advanced computerized operator aids, e.g. in nuclear power plants, are as well as their man-machine interface. In the Central Institute for Nuclear Research in Rossendorf a computerized operator support system for nuclear power plants is designed, which is involved in a decentralized process automation system. A similar but simpler system, the Hierarchical Informational System (HIS) at the Rossendorf Research Reactor, works with a computer controlled man-machine interface, based on menu. In the special case of the disturbance analysis program SAAP-2, which is included in the HIS, the limits of menu techniques are obviously. Therefore it seems to be necessary and with extended hard- and software possible to realize an user controlled natural language interface using Artificial Intelligence (AI) methods. The draft of such a system is described. It should be able to learn during a teaching phase all phrases and their meanings. The system will work on the basis of a self-organizing, associative data structure. It is used to recognize a great amount of words which are used in language analysis. Error recognition and, if possible, correction is done by means of a distance function in the word set. Language analysis should be carried out with a simplified word class controlled functional analysis. With this interface it is supposed to get experience in intelligent man-machine communication to enhance operational safety in future. (author)

  17. Machine Learning Control For Highly Reconfigurable High-Order Systems

    Science.gov (United States)

    2015-01-02

    calibration and applications,” Mechatronics and Embedded Systems and Applications (MESA), 2010 IEEE/ASME International Conference on, IEEE, 2010, pp. 38–43...AFRL-OSR-VA-TR-2015-0012 MACHINE LEARNING CONTROL FOR HIGHLY RECONFIGURABLE HIGH-ORDER SYSTEMS John Valasek TEXAS ENGINEERING EXPERIMENT STATION...DIMENSIONAL RECONFIGURABLE SYSTEMS FA9550-11-1-0302 Period of Performance 1 July 2011 – 29 September 2014 John Valasek Aerospace Engineering

  18. The Abstract Machine Model for Transaction-based System Control

    Energy Technology Data Exchange (ETDEWEB)

    Chassin, David P.

    2003-01-31

    Recent work applying statistical mechanics to economic modeling has demonstrated the effectiveness of using thermodynamic theory to address the complexities of large scale economic systems. Transaction-based control systems depend on the conjecture that when control of thermodynamic systems is based on price-mediated strategies (e.g., auctions, markets), the optimal allocation of resources in a market-based control system results in an emergent optimal control of the thermodynamic system. This paper proposes an abstract machine model as the necessary precursor for demonstrating this conjecture and establishes the dynamic laws as the basis for a special theory of emergence applied to the global behavior and control of complex adaptive systems. The abstract machine in a large system amounts to the analog of a particle in thermodynamic theory. The permit the establishment of a theory dynamic control of complex system behavior based on statistical mechanics. Thus we may be better able to engineer a few simple control laws for a very small number of devices types, which when deployed in very large numbers and operated as a system of many interacting markets yields the stable and optimal control of the thermodynamic system.

  19. Machine learning control taming nonlinear dynamics and turbulence

    CERN Document Server

    Duriez, Thomas; Noack, Bernd R

    2017-01-01

    This is the first book on a generally applicable control strategy for turbulence and other complex nonlinear systems. The approach of the book employs powerful methods of machine learning for optimal nonlinear control laws. This machine learning control (MLC) is motivated and detailed in Chapters 1 and 2. In Chapter 3, methods of linear control theory are reviewed. In Chapter 4, MLC is shown to reproduce known optimal control laws for linear dynamics (LQR, LQG). In Chapter 5, MLC detects and exploits a strongly nonlinear actuation mechanism of a low-dimensional dynamical system when linear control methods are shown to fail. Experimental control demonstrations from a laminar shear-layer to turbulent boundary-layers are reviewed in Chapter 6, followed by general good practices for experiments in Chapter 7. The book concludes with an outlook on the vast future applications of MLC in Chapter 8. Matlab codes are provided for easy reproducibility of the presented results. The book includes interviews with leading r...

  20. Autotuning of PID controller by means of human machine interface device

    Directory of Open Access Journals (Sweden)

    Michał Awtoniuk

    2017-06-01

    Full Text Available More and more control systems are based on industry microprocessors like PLC controllers (Programmable Logic Controller. The most commonly used control algorithm is PID (Proportional-Integral-Derivative algorithm. Autotuning procedure is not available in every PLC. These controllers are typically used in cooperation with HMI (Human Machine Interface devices. In the study two procedures of autotuning of the PID controller were implemented in the HMI device: step method and relay method. Six tuning rules for step methods and one for relay method were chosen. The autotuning procedures on simulated controlled object and PLC controller without build-in autotuning were tested. The object of control was first order system plus time delay.

  1. Intelligent controller of a flexible hybrid robot machine for ITER assembly and maintenance

    International Nuclear Information System (INIS)

    Al-saedi, Mazin I.; Wu, Huapeng; Handroos, Heikki

    2014-01-01

    Highlights: • Studying flexible multibody dynamic of hybrid parallel robot. • Investigating fuzzy-PD controller to control a hybrid flexible hydraulically driven robot. • Investigating ANFIS-PD controller to control a hybrid flexible robot. Compare to traditional PID this method gives better performance. • Using the equilibrium of reaction forces between the parallel and serial parts of hybrid robot to control the serial part hydraulically driven. - Abstract: The assembly and maintenance of International Thermonuclear Experimental Reactor (ITER) vacuum vessel (VV) is highly challenging since the tasks performed by the robot involve welding, material handling, and machine cutting from inside the VV. To fulfill the tasks in ITER application, this paper presents a hybrid redundant manipulator with four DOFs provided by serial kinematic axes and six DOFs by parallel mechanism. Thus, in machining, to achieve greater end-effector trajectory tracking accuracy for surface quality, a robust control of the actuators for the flexible link has to be deduced. In this paper, the intelligent control of a hydraulically driven parallel robot part based on the dynamic model and two control schemes have been investigated: (1) fuzzy-PID self tuning controller composed of the conventional PID control and with fuzzy logic; (2) adaptive neuro-fuzzy inference system-PID (ANFIS-PID) self tuning of the gains of the PID controller, which are implemented independently to control each hydraulic cylinder of the parallel robot based on rod position predictions. The obtained results of the fuzzy-PID and ANFIS-PID self tuning controller can reduce more tracking errors than the conventional PID controller. Subsequently, the serial component of the hybrid robot can be analyzed using the equilibrium of reaction forces at the universal joint connections of the hexa-element. To achieve precise positional control of the end effector for maximum precision machining, the hydraulic cylinder should

  2. Intelligent controller of a flexible hybrid robot machine for ITER assembly and maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Al-saedi, Mazin I., E-mail: mazin.al-saedi@lut.fi; Wu, Huapeng; Handroos, Heikki

    2014-10-15

    Highlights: • Studying flexible multibody dynamic of hybrid parallel robot. • Investigating fuzzy-PD controller to control a hybrid flexible hydraulically driven robot. • Investigating ANFIS-PD controller to control a hybrid flexible robot. Compare to traditional PID this method gives better performance. • Using the equilibrium of reaction forces between the parallel and serial parts of hybrid robot to control the serial part hydraulically driven. - Abstract: The assembly and maintenance of International Thermonuclear Experimental Reactor (ITER) vacuum vessel (VV) is highly challenging since the tasks performed by the robot involve welding, material handling, and machine cutting from inside the VV. To fulfill the tasks in ITER application, this paper presents a hybrid redundant manipulator with four DOFs provided by serial kinematic axes and six DOFs by parallel mechanism. Thus, in machining, to achieve greater end-effector trajectory tracking accuracy for surface quality, a robust control of the actuators for the flexible link has to be deduced. In this paper, the intelligent control of a hydraulically driven parallel robot part based on the dynamic model and two control schemes have been investigated: (1) fuzzy-PID self tuning controller composed of the conventional PID control and with fuzzy logic; (2) adaptive neuro-fuzzy inference system-PID (ANFIS-PID) self tuning of the gains of the PID controller, which are implemented independently to control each hydraulic cylinder of the parallel robot based on rod position predictions. The obtained results of the fuzzy-PID and ANFIS-PID self tuning controller can reduce more tracking errors than the conventional PID controller. Subsequently, the serial component of the hybrid robot can be analyzed using the equilibrium of reaction forces at the universal joint connections of the hexa-element. To achieve precise positional control of the end effector for maximum precision machining, the hydraulic cylinder should

  3. Dimensional control and check of field machining parts for reactor internals installation

    International Nuclear Information System (INIS)

    Zhang Caifang

    2010-01-01

    Some key issues of dimensional control for reactor internals installation are analyzed, and important technical requirements of crucial quality control elements on the measurement, machining, and checking of reactor internals filed machining parts are discussed. Moreover, provisions on quality control and risk prevention of reactor internals filed machining parts are presented in this paper. (author)

  4. Principles of control automation of soil compacting machine operating mechanism

    Science.gov (United States)

    Anatoly Fedorovich, Tikhonov; Drozdov, Anatoly

    2018-03-01

    The relevance of the qualitative compaction of soil bases in the erection of embankment and foundations in building and structure construction is given.The quality of the compactible gravel and sandy soils provides the bearing capability and, accordingly, the strength and durability of constructed buildings.It has been established that the compaction quality depends on many external actions, such as surface roughness and soil moisture; granulometry, chemical composition and degree of elasticity of originalfilled soil for compaction.The analysis of technological processes of soil bases compaction of foreign and domestic information sources showed that the solution of such important problem as a continuous monitoring of soil compaction actual degree in the process of machine operation carry out only with the use of modern means of automation. An effective vibrodynamic method of gravel and sand material sealing for the building structure foundations for various applications was justified and suggested.The method of continuous monitoring the soil compaction by measurement of the amplitudes and frequencies of harmonic oscillations on the compactible surface was determined, which allowed to determine the basic elements of facilities of soil compacting machine monitoring system of operating, etc. mechanisms: an accelerometer, a bandpass filter, a vibro-harmonics, an on-board microcontroller. Adjustable parameters have been established to improve the soil compaction degree and the soil compacting machine performance, and the adjustable parameter dependences on the overall indexhave been experimentally determined, which is the soil compaction degree.A structural scheme of automatic control of the soil compacting machine control mechanism and theoperation algorithm has been developed.

  5. Event-driven control of a speed varying digital displacement machine

    DEFF Research Database (Denmark)

    Pedersen, Niels Henrik; Johansen, Per; Andersen, Torben O.

    2017-01-01

    . The controller synthesis is carried out as a discrete optimal deterministic problem with full state feedback. Based on a linear analysis of the feedback control system, stability is proven in a pre-specified operation region. Simulation of a non-linear evaluation model with the controller implemented shows great...... be treated as a Discrete Linear Time Invariant control problem with synchronous sampling rate. To make synchronous linear control theory applicable for a variable speed digital displacement machine, a method based on event-driven control is presented. Using this method, the time domain differential equations...... are converted into the spatial (position) domain to obtain a constant sampling rate and thus allowing for use of classical control theory. The method is applied to a down scaled digital fluid power motor, where the motor speed is controlled at varying references under varying pressure and load torque conditions...

  6. Implementation of neural networks on 'Connection Machine'

    International Nuclear Information System (INIS)

    Belmonte, Ghislain

    1990-12-01

    This report is a first approach to the notion of neural networks and their possible applications within the framework of artificial intelligence activities of the Department of Applied Mathematics of the Limeil-Valenton Research Center. The first part is an introduction to the field of neural networks; the main neural network models are described in this section. The applications of neural networks in the field of classification have mainly been studied because they could more particularly help to solve some of the decision support problems dealt with by the C.E.A. As the neural networks perform a large number of parallel operations, it was therefore logical to use a parallel architecture computer: the Connection Machine (which uses 16384 processors and is located at E.T.C.A. Arcueil). The second part presents some generalities on the parallelism and the Connection Machine, and two implementations of neural networks on Connection Machine. The first of these implementations concerns one of the most used algorithms to realize the learning of neural networks: the Gradient Retro-propagation algorithm. The second one, less common, concerns a network of neurons destined mainly to the recognition of forms: the Fukushima Neocognitron. The latter is studied by the C.E.A. of Bruyeres-le-Chatel in order to realize an embedded system (including hardened circuits) for the fast recognition of forms [fr

  7. New proposal on the development of machine protection functions for ITER diagnostics control

    International Nuclear Information System (INIS)

    Yamamoto, Tsuyoshi; Yatsuka, Eiichi; Hatae, Takaki; Takeuchi, Masaki; Kitazawa, Sin-iti; Ogawa, Hiroaki; Kawano, Yasunori; Itami, Kiyoshi; Ota, Kazuya; Hashimoto, Yasunori; Nakamura, Kitaru; Sugie, Tatsuo

    2016-01-01

    There is a need to develop ITER instrumentation and control (I and C) systems with high reliabilities. Interlock systems that activate machine protection functions are implemented on robust wired-logic systems such as programmable logic controllers (PLCs). We herein propose a software tool that generates program code templates for the control systems using PLC logic. This tool decreases careless mistakes by developers and increases reliability of the program codes. A large-scale engineering database has been implemented in the ITER project. To derive useful information from this database, we propose adding semantic data to it using the Resource Description Framework format. In our novel proposal for the ITER diagnostic control system, a guide words generator that analyzes the engineering data by inference is applied to the hazard and operability study. We validated the methods proposed in this paper by applying them to the preliminary design for the I and C system of the ITER edge Thomson scattering system. (author)

  8. A modern automatic Carriage-Trolley Position Control System for Dhruva fuelling machine

    International Nuclear Information System (INIS)

    Agrawal, Ankit; Hari Balakrishna; Narvekar, J.P.; Sanadhya, Vivek

    2014-01-01

    A fully automatic absolute encoder based position control system has been designed developed implemented and commissioned for the Dhruva Fuelling Machine A (FM/A). This supports both the coarse and fine positioning modes. Provision for fully manual positioning as a standby system has been retained. This system replaces the ageing peg counting based incremental positioner used briefly during the early period after the Dhruva FM/A was commissioned. The older system suffered from peg detection skipping problems; hence it was not being used. Only full manual positioning was being carried out. This paper describes the automatic Carriage Trolley Position Control System (CTPCS). (author)

  9. COSY Control Status. First results with rapid prototyped man-machine interface for accelerator control

    Energy Technology Data Exchange (ETDEWEB)

    Hacker, U [Forschungszentrum Juelich, Postfach 1913, 52425 Juelich (Germany); Haberbosch, C [Forschungszentrum Juelich, Postfach 1913, 52425 Juelich (Germany); Henn, K [Forschungszentrum Juelich, Postfach 1913, 52425 Juelich (Germany); Weinert, A [Forschungszentrum Juelich, Postfach 1913, 52425 Juelich (Germany)

    1994-12-15

    The experience gained with the COSY Control System after a six month commissioning period followed by a six month production period will be presented. The COSY Control System runs approximately 300 VME and VXI target systems using a total of about 1000 CPUs, the systems are driven by the diskless operating environment RT/OS, hosted by eight workcells. Application software is implemented using Object-Orientated programming paradigms. All accelerator components become interface functions as instances of an abstract device model class. Methods defined here present an abstract picture of the accelerator giving immediate access to device states and parameters. Operator interaction is defined by building views and controllers for the model. Higher level functions, such as defining an acceleration cycle, are easily developed and modified with the accelerator connected on-line to the model. In the first year of COSY operation the object based approach for a control system, together with a rapid prototyped man-machine interface has brought to light the potential of new functions such as on-line, real time programming on a running system yielding high programming performance. The advantages of this approach have not been, until now, fully appreciated. ((orig.))

  10. A microcomputer network for the control of digitising machines

    International Nuclear Information System (INIS)

    Seller, P.

    1981-01-01

    A distributed microcomputing network operates in the Bubble Chamber Research Group Scanning Laboratory at the Rutherford and Appleton Laboratories. A microcomputer at each digitising table buffers information, controls the functioning of the table and enhances the machine/operator interface. The system consists of fourteen microcomputers together with a VAX 11/780 computer used for data analysis. These are inter-connected via a packet switched network. This paper will describe the features of the combined system, including the distributed computing architecture and the packet switched method of communication. This paper will also describe in detail a high speed packet switching controller used as a central node of the network. This controller is a multiprocessor microcomputer system with eighteen central processor units, thirty-four direct memory access channels and thirty-four prioritorised and vectored interrupt channels. This microcomputer is of general interest as a communications controller due to its totally programmable nature. (orig.)

  11. Balancing the roles of humans and machines in power plant control

    International Nuclear Information System (INIS)

    Lipsett, J.J.

    1989-05-01

    A number of factors are leading to a re-examination of the balance between the roles of the operators and the machine in controlling nuclear power plants. Some of these factors are: the advent of new and advanced computer technologies; increased plant complexity, placing heavy workloads and stress on the control room operator; and increasing concerns about the role of human reliability in industrial mishaps. In light of the changing control aspects, we examine the meaning of automation, we discuss a proposed model of the control process, the concept of control within a few defined reactor states, a decision-making sequence; and we identify some possible problem areas in implementing new control technologies. Significant benefits should come from the new control methods and these opportunities should be exploited as soon as prudence allows, taking great care that the safety of the plants is improved

  12. Micro controller application as x-ray machine's high voltage controller

    International Nuclear Information System (INIS)

    Wiranto Budi Santoso; Beny Syawaludin

    2010-01-01

    The micro controller application as x-ray machine's high voltage controller has been carried out. The purpose of this micro controller application is to give an accurate high voltage supply to the x-ray tube so that the x ray machine could produce the result as expected. The micro controller based X-ray machine's high voltage controller receives an input voltage from the keypad. This input value is displayed in the LCD (Liquid Crystal Display) screen. Then micro controller uses this input data to drive the stepper motor. The stepper motor adjusts the high voltage auto transformer's output according to the input value. The micro controller is programmed using BASCOM-B051 compiler. The test results show that the stepper motor could rotate according to an input value. (author)

  13. Implementation of hierarchical control in DC microgrids

    DEFF Research Database (Denmark)

    Jin, Chi; Wang, Peng; Xiao, Jianfang

    2014-01-01

    of Technology, Singapore. The coordination control among multiple dc sources and energy storages is implemented using a novel hierarchical control technique. The bus voltage essentially acts as an indicator of supply-demand balance. A wireless control is implemented for the reliable operation of the grid....... A reasonable compromise between the maximum power harvest and effective battery management is further enhanced using the coordination control based on a central energy management system. The feasibility and effectiveness of the proposed control strategies have been tested by a dc microgrid in WERL....

  14. A Design to Digitalize Hydraulic Cylinder Control of a Machine Tool ...

    African Journals Online (AJOL)

    Conventionally hydraulic piston - cylinder servos are actuated using analogue controls for machine tool axis drives. In this paper a design of the axis control system of an NC milling machine which employs a small stepping motor to digitally actuated hydraulic piston - cylinder servo drives existing on the machines Y-axis is ...

  15. Molecular active plasmonics: controlling plasmon resonances with molecular machines

    KAUST Repository

    Zheng, Yue Bing; Yang, Ying-Wei; Jensen, Lasse; Fang, Lei; Juluri, Bala Krishna; Flood, Amar H.; Weiss, Paul S.; Stoddart, J. Fraser; Huang, Tony Jun

    2009-01-01

    The paper studies the molecular-level active control of localized surface plasmon resonances (LSPRs) of Au nanodisk arrays with molecular machines. Two types of molecular machines - azobenzene and rotaxane - have been demonstrated to enable the reversible tuning of the LSPRs via the controlled mechanical movements. Azobenzene molecules have the property of trans-cis photoisomerization and enable the photo-induced nematic (N)-isotropic (I) phase transition of the liquid crystals (LCs) that contain the molecules as dopant. The phase transition of the azobenzene-doped LCs causes the refractive-index difference of the LCs, resulting in the reversible peak shift of the LSPRs of the embedded Au nanodisks due to the sensitivity of the LSPRs to the disks' surroundings' refractive index. Au nanodisk array, coated with rotaxanes, switches its LSPRs reversibly when it is exposed to chemical oxidants and reductants alternatively. The correlation between the peak shift of the LSPRs and the chemically driven mechanical movement of rotaxanes is supported by control experiments and a time-dependent density functional theory (TDDFT)-based, microscopic model.

  16. Molecular active plasmonics: controlling plasmon resonances with molecular machines

    KAUST Repository

    Zheng, Yue Bing

    2009-08-26

    The paper studies the molecular-level active control of localized surface plasmon resonances (LSPRs) of Au nanodisk arrays with molecular machines. Two types of molecular machines - azobenzene and rotaxane - have been demonstrated to enable the reversible tuning of the LSPRs via the controlled mechanical movements. Azobenzene molecules have the property of trans-cis photoisomerization and enable the photo-induced nematic (N)-isotropic (I) phase transition of the liquid crystals (LCs) that contain the molecules as dopant. The phase transition of the azobenzene-doped LCs causes the refractive-index difference of the LCs, resulting in the reversible peak shift of the LSPRs of the embedded Au nanodisks due to the sensitivity of the LSPRs to the disks\\' surroundings\\' refractive index. Au nanodisk array, coated with rotaxanes, switches its LSPRs reversibly when it is exposed to chemical oxidants and reductants alternatively. The correlation between the peak shift of the LSPRs and the chemically driven mechanical movement of rotaxanes is supported by control experiments and a time-dependent density functional theory (TDDFT)-based, microscopic model.

  17. rFerns: An Implementation of the Random Ferns Method for General-Purpose Machine Learning

    Directory of Open Access Journals (Sweden)

    Miron B. Kursa

    2014-11-01

    Full Text Available Random ferns is a very simple yet powerful classification method originally introduced for specific computer vision tasks. In this paper, I show that this algorithm may be considered as a constrained decision tree ensemble and use this interpretation to introduce a series of modifications which enable the use of random ferns in general machine learning problems. Moreover, I extend the method with an internal error approximation and an attribute importance measure based on corresponding features of the random forest algorithm. I also present the R package rFerns containing an efficient implementation of this modified version of random ferns.

  18. Smart material screening machines using smart materials and controls

    Science.gov (United States)

    Allaei, Daryoush; Corradi, Gary; Waigand, Al

    2002-07-01

    The objective of this product is to address the specific need for improvements in the efficiency and effectiveness in physical separation technologies in the screening areas. Currently, the mining industry uses approximately 33 billion kW-hr per year, costing 1.65 billion dollars at 0.05 cents per kW-hr, of electrical energy for physical separations. Even though screening and size separations are not the single most energy intensive process in the mining industry, they are often the major bottleneck in the whole process. Improvements to this area offer tremendous potential in both energy savings and production improvements. Additionally, the vibrating screens used in the mining processing plants are the most costly areas from maintenance and worker health and safety point of views. The goal of this product is to reduce energy use in the screening and total processing areas. This goal is accomplished by developing an innovative screening machine based on smart materials and smart actuators, namely smart screen that uses advanced sensory system to continuously monitor the screening process and make appropriate adjustments to improve production. The theory behind the development of Smart Screen technology is based on two key technologies, namely smart actuators and smart Energy Flow ControlT (EFCT) strategies, developed initially for military applications. Smart Screen technology controls the flow of vibration energy and confines it to the screen rather than shaking much of the mass that makes up the conventional vibratory screening machine. Consequently, Smart Screens eliminates and downsizes many of the structural components associated with conventional vibratory screening machines. As a result, the surface area of the screen increases for a given envelope. This increase in usable screening surface area extends the life of the screens, reduces required maintenance by reducing the frequency of screen change-outs and improves throughput or productivity.

  19. Methodology for testing a system for remote monitoring and control on auxiliary machines in electric vehicles

    Directory of Open Access Journals (Sweden)

    Dimitrov Vasil

    2017-01-01

    Full Text Available A laboratory system for remote monitoring and control of an asynchronous motor controlled by a soft starter and contemporary measuring and control devices has been developed and built. This laboratory system is used for research and in teaching. A study of the principles of operation, setting up and examination of intelligent energy meters, soft starters and PLC has been made as knowledge of the relevant software products is necessary. This is of great importance because systems for remote monitoring and control of energy consumption, efficiency and proper operation of the controlled objects are very often used in different spheres of industry, in building automation, transport, electricity distribution network, etc. Their implementation in electric vehicles for remote monitoring and control on auxiliary machines is also possible and very useful. In this paper, a methodology of tests is developed and some experiments are presented. Thus, an experimental verification of the developed methodology is made.

  20. An architecture for implementation of multivariable controllers

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, Jakob

    1999-01-01

    Browse > Conferences> American Control Conference, Prev | Back to Results | Next » An architecture for implementation of multivariable controllers 786292 searchabstract Niemann, H. ; Stoustrup, J. ; Dept. of Autom., Tech. Univ., Lyngby This paper appears in: American Control Conference, 1999....... Proceedings of the 1999 Issue Date : 1999 Volume : 6 On page(s): 4029 - 4033 vol.6 Location: San Diego, CA Meeting Date : 02 Jun 1999-04 Jun 1999 Print ISBN: 0-7803-4990-3 References Cited: 7 INSPEC Accession Number: 6403075 Digital Object Identifier : 10.1109/ACC.1999.786292 Date of Current Version : 06...... august 2002 Abstract An architecture for implementation of multivariable controllers is presented in this paper. The architecture is based on the Youla-Jabr-Bongiorno-Kucera parameterization of all stabilizing controllers. By using this architecture for implementation of multivariable controllers...

  1. Control system of mutually coupled switched reluctance motor drive of mining machines in generator mode

    Science.gov (United States)

    Ivanov, A. S.; Kalanchin, I. Yu; Pugacheva, E. E.

    2017-09-01

    One of the first electric motors, based on the use of electromagnets, was a reluctance motor in the XIX century. Due to the complexities in the implementation of control system the development of switched reluctance electric machines was repeatedly initiated only in 1960 thanks to the development of computers and power electronic devices. The main feature of these machines is the capacity to work both in engine mode and in generator mode. Thanks to a simple and reliable design in which there is no winding of the rotor, commutator, permanent magnets, a reactive gate-inductor electric drive operating in the engine mode is actively being introduced into various areas such as car industry, production of household appliances, wind power engineering, as well as responsible production processes in the oil and mining industries. However, the existing shortcomings of switched reluctance electric machines, such as nonlinear pulsations of electromagnetic moment, the presence of three or four phase supply system and sensor of rotor position prevent wide distribution of this kind of electric machines.

  2. Which Management Control System principles and aspects are relevant when deploying a learning machine?

    OpenAIRE

    Martin, Johansson; Mikael, Göthager

    2017-01-01

    How shall a business adapt its management control systems when learning machines enter the arena? Will the control system continue to focus on humans aspects and continue to consider a learning machine to be an automation tool as any other historically programmed computer? Learning machines introduces productivity capabilities that achieve very high levels of efficiency and quality. A learning machine can sort through large amounts of data and make conclusions difficult by a human mind. Howev...

  3. Prototyping of concurrent control systems implemented in FPGA devices

    CERN Document Server

    Wiśniewski, Remigiusz

    2017-01-01

    This book focuses on prototyping aspects of concurrent control systems and their further implementation and partial reconfiguration in programmable devices. Further, it lays out a full prototyping flow for concurrent control systems. Based on a given primary specification, a system is described with an interpreted Petri net, which naturally reflects the concurrent and sequential relationships of the design. The book shows that, apart from the traditional option of static configuration of the entire system, the latest programmable devices (especially FPGAs) offer far more sophistication. Partial reconfiguration allows selected parts of the system to be replaced without having to reprogram the entire structure of the device. Approaches to dynamic and static partial reconfiguration of concurrent control systems are presented and described in detail.< The theoretical work is illustrated by examples drawn from various applications, with a milling machine and a traffic-light controller highlighted as representat...

  4. A generic finite state machine framework for the ACNET control system

    International Nuclear Information System (INIS)

    Carmichael, L.; Warner, A.

    2009-01-01

    A significant level of automation and flexibility has been added to the ACNET control system through the development of a Java-based Finite State Machine (FSM) infrastructure. These FSMs are integrated into ACNET and allow users to easily build, test and execute scripts that have full access to ACNET's functionality. In this paper, a description will be given of the FSM design and its ties to the Java-based Data Acquisition Engine (DAE) framework. Each FSM is part of a client-server model with FSM display clients using Remote Method Invocation (RMI) to communicate with DAE servers heavily coupled to ACNET. A web-based monitoring system that allows users to utilize browsers to observe persistent FSMs will also be discussed. Finally, some key implementations such as the crash recovery FSM developed for the Electron Cooling machine protection system will be presented.

  5. Implementation of a communication and control network for the instruments of a nuclear analytical laboratory

    International Nuclear Information System (INIS)

    Cunya, Eduardo; Baltuano, Oscar; Bedregal, Patricia

    2013-01-01

    This paper describes the implementation of a communication network and control for a conventional laboratory instruments and nuclear analytical processes based on CAN open field bus to control devices and machines. Hardware components and software developed as well as installation and configuration tools for incorporating new instruments to the network re presented. (authors).

  6. Control volume based modelling of compressible flow in reciprocating machines

    DEFF Research Database (Denmark)

    Andersen, Stig Kildegård; Thomsen, Per Grove; Carlsen, Henrik

    2004-01-01

    , and multidimensional effects must be calculated using empirical correlations; correlations for steady state flow can be used as an approximation. A transformation that assumes ideal gas is presented for transforming equations for masses and energies in control volumes into the corresponding pressures and temperatures......An approach to modelling unsteady compressible flow that is primarily one dimensional is presented. The approach was developed for creating distributed models of machines with reciprocating pistons but it is not limited to this application. The approach is based on the integral form of the unsteady...... conservation laws for mass, energy, and momentum applied to a staggered mesh consisting of two overlapping strings of control volumes. Loss mechanisms can be included directly in the governing equations of models by including them as terms in the conservation laws. Heat transfer, flow friction...

  7. Application of a 16-bit microprocessor to the digital control of machine tools

    International Nuclear Information System (INIS)

    Issaly, Alain

    1979-01-01

    After an overview of machine tools (various types, definition standardization, associated technologies for motors and position sensors), this research thesis describes the principles of computer-based digital control: classification of machine tool command systems, machining programming, programming languages, dialog function, interpolation function, servo-control function, tool compensation function. The author reports the application of a 16-bit microprocessor to the computer-based digital control of a machine tool: feasibility, selection of microprocessor, hardware presentation, software development and description, machining mode, translation-loading mode

  8. Stability Enhancement of Multi machine AC Systems by Synchronverter HVDC control

    Directory of Open Access Journals (Sweden)

    Raouia Aouini

    2016-06-01

    Full Text Available This paper investigates the impact of the Synchronverter based HVDC control on power system stability. The study considers multi machine power systems, with realistic parameters. A specific tuning method of the parameters of the regulators is used. The proposed control scheme is based on the sensitivity of the poles of the HVDC neighbor zone to the control parameters, and next, on their placement using residues. The transient stability of the HVDC neighbor zone is a priori taken into account at the design stage. The new tuning method is evaluated in comparison with the standard vector control via simulation tests. Extensive tests are performed using Matlab/Simulink implementation of the IEEE 9 bus/3 machines test system. The results prove the superiority of the proposed control to the classic vector control. The synchronverter control allows to improve not only the local performances of the HVDC link, but also the overall transient stability of the AC zone in which the HVDC is inserted. (where

  9. Sales of healthy snacks and beverages following the implementation of healthy vending standards in City of Philadelphia vending machines.

    Science.gov (United States)

    Pharis, Meagan L; Colby, Lisa; Wagner, Amanda; Mallya, Giridhar

    2018-02-01

    We examined outcomes following the implementation of employer-wide vending standards, designed to increase healthy snack and beverage options, on the proportion of healthy v. less healthy sales, sales volume and revenue for snack and beverage vending machines. A single-arm evaluation of a policy utilizing monthly sales volume and revenue data provided by the contracted vendor during baseline, machine conversion and post-conversion time periods. Study time periods are full calendar years unless otherwise noted. Property owned or leased by the City of Philadelphia, USA. Approximately 250 vending machines over a 4-year period (2010-2013). At post-conversion, the proportion of sales attributable to healthy items was 40 % for snacks and 46 % for beverages. Healthy snack sales were 323 % higher (38·4 to 162·5 items sold per machine per month) and total snack sales were 17 % lower (486·8 to 402·1 items sold per machine per month). Healthy beverage sales were 33 % higher (68·2 to 90·6 items sold per machine per month) and there was no significant change in total beverage sales (213·2 to 209·6 items sold per machine per month). Revenue was 11 % lower for snacks ($US 468·30 to $US 415·70 per machine per month) and 21 % lower for beverages ($US 344·00 to $US 270·70 per machine per month). Sales of healthy vending items were significantly higher following the implementation of employer-wide vending standards for snack and beverage vending machines. Entities receiving revenue-based commission payments from vending machines should employ strategies to minimize potential revenue losses.

  10. Collaborative human-machine analysis using a controlled natural language

    Science.gov (United States)

    Mott, David H.; Shemanski, Donald R.; Giammanco, Cheryl; Braines, Dave

    2015-05-01

    A key aspect of an analyst's task in providing relevant information from data is the reasoning about the implications of that data, in order to build a picture of the real world situation. This requires human cognition, based upon domain knowledge about individuals, events and environmental conditions. For a computer system to collaborate with an analyst, it must be capable of following a similar reasoning process to that of the analyst. We describe ITA Controlled English (CE), a subset of English to represent analyst's domain knowledge and reasoning, in a form that it is understandable by both analyst and machine. CE can be used to express domain rules, background data, assumptions and inferred conclusions, thus supporting human-machine interaction. A CE reasoning and modeling system can perform inferences from the data and provide the user with conclusions together with their rationale. We present a logical problem called the "Analysis Game", used for training analysts, which presents "analytic pitfalls" inherent in many problems. We explore an iterative approach to its representation in CE, where a person can develop an understanding of the problem solution by incremental construction of relevant concepts and rules. We discuss how such interactions might occur, and propose that such techniques could lead to better collaborative tools to assist the analyst and avoid the "pitfalls".

  11. Measurements and controls implementation for the WEST project

    International Nuclear Information System (INIS)

    Daniel, Raju; Bhandarkar, Manisha; Moreau, P.

    2015-01-01

    This paper provides an overview of the diagnostics implemented on WEST and gives more details on the infra-red system which is one of the main systems used to analyze the heat loads and ensure the machine protection. The modification of the CODAC and communications networks is also discussed. The new functionalities and architecture of the WEST PCS are detailed; especially it ensures the orchestration of many subsystems such as diagnostics, actuators and allows handling asynchronous off-normal events during the plasma discharge. In correlation the plasma discharge is now seen as a set of elementary pieces (called segments) joints together. Development of new plasma controllers will be addressed. An overview of the first wall monitoring activity and development is provided. Finally preparing the plasma restart requires control oriented modelling and simulations devoted to the control of the plasma shape will be presented

  12. Implementation of machine learning for high-volume manufacturing metrology challenges (Conference Presentation)

    Science.gov (United States)

    Timoney, Padraig; Kagalwala, Taher; Reis, Edward; Lazkani, Houssam; Hurley, Jonathan; Liu, Haibo; Kang, Charles; Isbester, Paul; Yellai, Naren; Shifrin, Michael; Etzioni, Yoav

    2018-03-01

    across 3 products. In the case of product C, it is found that the predicted Rs correlation to the e-test value is significantly improved utilizing spectra acquired at the e-test structure. This paper will explore the considerations required to enable use of machine learning derived metrology output to enable improved process monitoring and control. Further results from the FEOL and BEOL sectors will be presented, together with further discussion on future proliferation of machine learning based metrology solutions in high volume manufacturing.

  13. Data-driven machine control : a feasibility study on YieldStar

    NARCIS (Netherlands)

    Mehrafrouz, M.

    2014-01-01

    Traditionally machine control software focusses on the control flow; this is also the situation within ASML and YieldStar. With the increased complexity of the machine control software more and more data is needed to accurately control a tool like YieldStar. In other software application areas, like

  14. Precision Force Control for an Electro-Hydraulic Press Machine

    Directory of Open Access Journals (Sweden)

    Hong-Ming Chen

    2014-08-01

    Full Text Available This thesis is primarily intended to design a PC-based control system to control the force of an electro-hydraulic servo press system for implementing precision force control. The main feature is to develop a composite control by using the relief valve and the flow servo valve. Using feedback from a force sensor, a fuzzy controller was designed with LabVIEW software as the system control core for achieving a precision force control for the hydraulic cylinder on its travel and output. The weakness of hydraulic systems is that hydraulic oil is compressible and prone to leaking, and its characteristics can vary with oil temperature, thus making it difficult for a general linear controller to achieve accurate control. Therefore, a fuzzy controller was designed with LabVIEW along with a NI-PCI_6221 interface card and a load cell to control the servo valve flow and the relief valve to control the pressure source. The testing results indicate that accurate force control output of an electro-hydraulic servo press system can be obtained.

  15. A Tailored Ontology Supporting Sensor Implementation for the Maintenance of Industrial Machines.

    Science.gov (United States)

    Maleki, Elaheh; Belkadi, Farouk; Ritou, Mathieu; Bernard, Alain

    2017-09-08

    The longtime productivity of an industrial machine is improved by condition-based maintenance strategies. To do this, the integration of sensors and other cyber-physical devices is necessary in order to capture and analyze a machine's condition through its lifespan. Thus, choosing the best sensor is a critical step to ensure the efficiency of the maintenance process. Indeed, considering the variety of sensors, and their features and performance, a formal classification of a sensor's domain knowledge is crucial. This classification facilitates the search for and reuse of solutions during the design of a new maintenance service. Following a Knowledge Management methodology, the paper proposes and develops a new sensor ontology that structures the domain knowledge, covering both theoretical and experimental sensor attributes. An industrial case study is conducted to validate the proposed ontology and to demonstrate its utility as a guideline to ease the search of suitable sensors. Based on the ontology, the final solution will be implemented in a shared repository connected to legacy CAD (computer-aided design) systems. The selection of the best sensor is, firstly, obtained by the matching of application requirements and sensor specifications (that are proposed by this sensor repository). Then, it is refined from the experimentation results. The achieved solution is recorded in the sensor repository for future reuse. As a result, the time and cost of the design process of new condition-based maintenance services is reduced.

  16. Bearingless AC Homopolar Machine Design and Control for Distributed Flywheel Energy Storage

    Science.gov (United States)

    Severson, Eric Loren

    magnetic modeling, winding design, control, and power-electronic drive implementation. While these contributions are oriented towards facilitating more optimal flywheel designs, they will also be useful in applying the bearingless ac homopolar machine in other applications. Example designs are considered through finite element analysis and experimental validation is provided from a proof-of-concept prototype that has been designed and constructed as a part of this dissertation.

  17. Implementation of the DIAC control system

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Dae-Sik; Jang, Doh-Yun; Jin, Jeong-Tae; Oh, Byung-Hoon [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    DIAC (Daejeon Ion Accelerator Complex) system was developed, and operated at JAEA of Japan by KEK team with a name of TRIAC (Tokai Radioactive Ion Accelerator Complex) during 2004 to 2010. The TRIAC control system was based on LabView and had two independent control units for ion source and accelerator. To be an efficient system, it is necessary to have an integrated control capability. And the control software, which had implemented by using LabView at TRIAC, will be changed with EPICS in order to give an effective beam service to the users. In this presentation, the old TRIAC control system is described, and a new control system for DIAC is discussed. The control system of DIAC is based on TRIAC. But it is gradually improved performance using EPICS toolkits and changing some digital interface hardware of it. Details of the control system will be demonstrated during the conference.

  18. An Adaptive Method For Texture Characterization In Medical Images Implemented on a Parallel Virtual Machine

    Directory of Open Access Journals (Sweden)

    Socrates A. Mylonas

    2003-06-01

    Full Text Available This paper describes the application of a new texture characterization algorithm for the segmentation of medical ultrasound images. The morphology of these images poses significant problems for the application of traditional image processing techniques and their analysis has been the subject of research for several years. The basis of the algorithm is an optimum signal modelling algorithm (Least Mean Squares-based, which estimates a set of parameters from small image regions. The algorithm has been converted to a structure suitable for implementation on a Parallel Virtual Machine (PVM consisting of a Network of Workstations (NoW, to improve processing speed. Tests were initially carried out on standard textured images. This paper describes preliminary results of the application of the algorithm in texture discrimination and segmentation of medical ultrasound images. The images examined are primarily used in the diagnosis of carotid plaques, which are linked to the risk of stroke.

  19. Roadmap for Research, Development, and Demonstration of Instrumentation, Controls, and Human-Machine Interface Technologies

    International Nuclear Information System (INIS)

    Miller, Don W.; Arndt, Steven A.; Bond, Leonard J.; Dudenhoeffer, Donald D.; Hallbert, Bruce P.; Holcomb, David E.; Wood, Richard T.; Naser, Joseph A.; O'Hara, John M.; Quinn, Edward L.

    2008-01-01

    Instrumentation, controls, and human-machine interfaces are essential enabling technologies that strongly influence nuclear power plant performance and operational costs. The nuclear power industry is currently engaged in a transition from traditional analog-based instrumentation, controls, and human-machine interface (ICHMI) systems to implementations employing digital technologies. This transition has primarily occurred in an ad hoc fashion through individual system upgrades at existing plants and has been constrained by a number of concerns. Although international implementation of evolutionary nuclear power plants and the progression toward new plants in the United States have spurred design of more fully digital plant-wide ICHMI systems, the experience base in the nuclear power application domain is limited. Additionally, design and development programs by the U.S. Department of Energy (DOE) for advanced reactor concepts, such as the Generation IV Program and Next Generation Nuclear Plant (NGNP), introduce different plant conditions and unique plant configurations that increase the need for enhanced ICHMI capabilities to fully achieve programmatic goals related to economic competitiveness, safety and reliability, sustainability, and proliferation resistance and physical protection. As a result, there are challenges that need to be addressed to enable the nuclear power industry to effectively and efficiently complete the transition to safe and comprehensive use of digital technology

  20. Internal quality control: planning and implementation strategies.

    Science.gov (United States)

    Westgard, James O

    2003-11-01

    The first essential in setting up internal quality control (IQC) of a test procedure in the clinical laboratory is to select the proper IQC procedure to implement, i.e. choosing the statistical criteria or control rules, and the number of control measurements, according to the quality required for the test and the observed performance of the method. Then the right IQC procedure must be properly implemented. This review focuses on strategies for planning and implementing IQC procedures in order to improve the quality of the IQC. A quantitative planning process is described that can be implemented with graphical tools such as power function or critical-error graphs and charts of operating specifications. Finally, a total QC strategy is formulated to minimize cost and maximize quality. A general strategy for IQC implementation is recommended that employs a three-stage design in which the first stage provides high error detection, the second stage low false rejection and the third stage prescribes the length of the analytical run, making use of an algorithm involving the average of normal patients' data.

  1. Fault Tolerance Automotive Air-Ratio Control Using Extreme Learning Machine Model Predictive Controller

    OpenAIRE

    Pak Kin Wong; Hang Cheong Wong; Chi Man Vong; Tong Meng Iong; Ka In Wong; Xianghui Gao

    2015-01-01

    Effective air-ratio control is desirable to maintain the best engine performance. However, traditional air-ratio control assumes the lambda sensor located at the tail pipe works properly and relies strongly on the air-ratio feedback signal measured by the lambda sensor. When the sensor is warming up during cold start or under failure, the traditional air-ratio control no longer works. To address this issue, this paper utilizes an advanced modelling technique, kernel extreme learning machine (...

  2. Design and implementation of a new fuzzy PID controller for networked control systems.

    Science.gov (United States)

    Fadaei, A; Salahshoor, K

    2008-10-01

    This paper presents a practical network platform to design and implement a networked-based cascade control system linking a Smar Foundation Fieldbus (FF) controller (DFI-302) and a Siemens programmable logic controller (PLC-S7-315-2DP) through Industrial Ethernet to a laboratory pilot plant. In the presented network configuration, the Smar OPC tag browser and Siemens WinCC OPC Channel provide the communicating interface between the two controllers. The paper investigates the performance of a PID controller implemented in two different possible configurations of FF function block (FB) and networked control system (NCS) via a remote Siemens PLC. In the FB control system implementation, the desired set-point is provided by the Siemens Human-Machine Interface (HMI) software (i.e, WinCC) via an Ethernet Modbus link. While, in the NCS implementation, the cascade loop is realized in remote Siemens PLC station and the final element set-point is sent to the Smar FF station via Ethernet bus. A new fuzzy PID control strategy is then proposed to improve the control performances of the networked-based control systems due to an induced transmission delay degradation effect. The proposed strategy utilizes an innovative idea based on sectionalizing the error signal of the step response into three different functional zones. The supporting philosophy behind these three functional zones is to decompose the desired control objectives in terms of rising time, settling time and steady-state error measures maintained by an appropriate PID-type controller in each zone. Then, fuzzy membership factors are defined to configure the control signal on the basis of the fuzzy weighted PID outputs of all three zones. The obtained results illustrate the effectiveness of the proposed fuzzy PID control scheme in improving the performances of the implemented NCS for different transportation delays.

  3. Significant improvements of electrical discharge machining performance by step-by-step updated adaptive control laws

    Science.gov (United States)

    Zhou, Ming; Wu, Jianyang; Xu, Xiaoyi; Mu, Xin; Dou, Yunping

    2018-02-01

    In order to obtain improved electrical discharge machining (EDM) performance, we have dedicated more than a decade to correcting one essential EDM defect, the weak stability of the machining, by developing adaptive control systems. The instabilities of machining are mainly caused by complicated disturbances in discharging. To counteract the effects from the disturbances on machining, we theoretically developed three control laws from minimum variance (MV) control law to minimum variance and pole placements coupled (MVPPC) control law and then to a two-step-ahead prediction (TP) control law. Based on real-time estimation of EDM process model parameters and measured ratio of arcing pulses which is also called gap state, electrode discharging cycle was directly and adaptively tuned so that a stable machining could be achieved. To this end, we not only theoretically provide three proved control laws for a developed EDM adaptive control system, but also practically proved the TP control law to be the best in dealing with machining instability and machining efficiency though the MVPPC control law provided much better EDM performance than the MV control law. It was also shown that the TP control law also provided a burn free machining.

  4. Structural Elements Regulating AAA+ Protein Quality Control Machines.

    Science.gov (United States)

    Chang, Chiung-Wen; Lee, Sukyeong; Tsai, Francis T F

    2017-01-01

    Members of the ATPases Associated with various cellular Activities (AAA+) superfamily participate in essential and diverse cellular pathways in all kingdoms of life by harnessing the energy of ATP binding and hydrolysis to drive their biological functions. Although most AAA+ proteins share a ring-shaped architecture, AAA+ proteins have evolved distinct structural elements that are fine-tuned to their specific functions. A central question in the field is how ATP binding and hydrolysis are coupled to substrate translocation through the central channel of ring-forming AAA+ proteins. In this mini-review, we will discuss structural elements present in AAA+ proteins involved in protein quality control, drawing similarities to their known role in substrate interaction by AAA+ proteins involved in DNA translocation. Elements to be discussed include the pore loop-1, the Inter-Subunit Signaling (ISS) motif, and the Pre-Sensor I insert (PS-I) motif. Lastly, we will summarize our current understanding on the inter-relationship of those structural elements and propose a model how ATP binding and hydrolysis might be coupled to polypeptide translocation in protein quality control machines.

  5. Visual Servoing Tracking Control of a Ball and Plate System: Design, Implementation and Experimental Validation

    Directory of Open Access Journals (Sweden)

    Ming-Tzu Ho

    2013-07-01

    Full Text Available This paper presents the design, implementation and validation of real-time visual servoing tracking control for a ball and plate system. The position of the ball is measured with a machine vision system. The image processing algorithms of the machine vision system are pipelined and implemented on a field programmable gate array (FPGA device to meet real-time constraints. A detailed dynamic model of the system is derived for the simulation study. By neglecting the high-order coupling terms, the ball and plate system model is simplified into two decoupled ball and beam systems, and an approximate input-output feedback linearization approach is then used to design the controller for trajectory tracking. The designed control law is implemented on a digital signal processor (DSP. The validity of the performance of the developed control system is investigated through simulation and experimental studies. Experimental results show that the designed system functions well with reasonable agreement with simulations.

  6. Virtual Planning, Control, and Machining for a Modular-Based Automated Factory Operation in an Augmented Reality Environment

    Science.gov (United States)

    Pai, Yun Suen; Yap, Hwa Jen; Md Dawal, Siti Zawiah; Ramesh, S.; Phoon, Sin Ye

    2016-06-01

    This study presents a modular-based implementation of augmented reality to provide an immersive experience in learning or teaching the planning phase, control system, and machining parameters of a fully automated work cell. The architecture of the system consists of three code modules that can operate independently or combined to create a complete system that is able to guide engineers from the layout planning phase to the prototyping of the final product. The layout planning module determines the best possible arrangement in a layout for the placement of various machines, in this case a conveyor belt for transportation, a robot arm for pick-and-place operations, and a computer numerical control milling machine to generate the final prototype. The robotic arm module simulates the pick-and-place operation offline from the conveyor belt to a computer numerical control (CNC) machine utilising collision detection and inverse kinematics. Finally, the CNC module performs virtual machining based on the Uniform Space Decomposition method and axis aligned bounding box collision detection. The conducted case study revealed that given the situation, a semi-circle shaped arrangement is desirable, whereas the pick-and-place system and the final generated G-code produced the highest deviation of 3.83 mm and 5.8 mm respectively.

  7. Virtual Planning, Control, and Machining for a Modular-Based Automated Factory Operation in an Augmented Reality Environment

    Science.gov (United States)

    Pai, Yun Suen; Yap, Hwa Jen; Md Dawal, Siti Zawiah; Ramesh, S.; Phoon, Sin Ye

    2016-01-01

    This study presents a modular-based implementation of augmented reality to provide an immersive experience in learning or teaching the planning phase, control system, and machining parameters of a fully automated work cell. The architecture of the system consists of three code modules that can operate independently or combined to create a complete system that is able to guide engineers from the layout planning phase to the prototyping of the final product. The layout planning module determines the best possible arrangement in a layout for the placement of various machines, in this case a conveyor belt for transportation, a robot arm for pick-and-place operations, and a computer numerical control milling machine to generate the final prototype. The robotic arm module simulates the pick-and-place operation offline from the conveyor belt to a computer numerical control (CNC) machine utilising collision detection and inverse kinematics. Finally, the CNC module performs virtual machining based on the Uniform Space Decomposition method and axis aligned bounding box collision detection. The conducted case study revealed that given the situation, a semi-circle shaped arrangement is desirable, whereas the pick-and-place system and the final generated G-code produced the highest deviation of 3.83 mm and 5.8 mm respectively. PMID:27271840

  8. Virtual Planning, Control, and Machining for a Modular-Based Automated Factory Operation in an Augmented Reality Environment.

    Science.gov (United States)

    Pai, Yun Suen; Yap, Hwa Jen; Md Dawal, Siti Zawiah; Ramesh, S; Phoon, Sin Ye

    2016-06-07

    This study presents a modular-based implementation of augmented reality to provide an immersive experience in learning or teaching the planning phase, control system, and machining parameters of a fully automated work cell. The architecture of the system consists of three code modules that can operate independently or combined to create a complete system that is able to guide engineers from the layout planning phase to the prototyping of the final product. The layout planning module determines the best possible arrangement in a layout for the placement of various machines, in this case a conveyor belt for transportation, a robot arm for pick-and-place operations, and a computer numerical control milling machine to generate the final prototype. The robotic arm module simulates the pick-and-place operation offline from the conveyor belt to a computer numerical control (CNC) machine utilising collision detection and inverse kinematics. Finally, the CNC module performs virtual machining based on the Uniform Space Decomposition method and axis aligned bounding box collision detection. The conducted case study revealed that given the situation, a semi-circle shaped arrangement is desirable, whereas the pick-and-place system and the final generated G-code produced the highest deviation of 3.83 mm and 5.8 mm respectively.

  9. Sensorless Speed/Torque Control of DC Machine Using Artificial Neural Network Technique

    Directory of Open Access Journals (Sweden)

    Rakan Kh. Antar

    2017-12-01

    Full Text Available In this paper, Artificial Neural Network (ANN technique is implemented to improve speed and torque control of a separately excited DC machine drive. The speed and torque sensorless scheme based on ANN is estimated adaptively. The proposed controller is designed to estimate rotor speed and mechanical load torque as a Model Reference Adaptive System (MRAS method for DC machine. The DC drive system consists of four quadrant DC/DC chopper with MOSFET transistors, ANN, logic gates and routing circuits. The DC drive circuit is designed, evaluated and modeled by Matlab/Simulink in the forward and reverse operation modes as a motor and generator, respectively. The DC drive system is simulated at different speed values (±1200 rpm and mechanical torque (±7 N.m in steady state and dynamic conditions. The simulation results illustratethe effectiveness of the proposed controller without speed or torque sensors.

  10. Digital signal processing control of induction machine`s torque and stator flux utilizing the direct stator flux field orientation method

    Energy Technology Data Exchange (ETDEWEB)

    Seiz, Julie Burger [Union College, Schenectady, NY (United States)

    1997-04-01

    This paper presents a review of the Direct Stator Flux Field Orientation control method. This method can be used to control an induction motor`s torque and flux directly and is the application of interest for this thesis. This control method is implemented without the traditional feedback loops and associated hardware. Predictions are made, by mathematical calculations, of the stator voltage vector. The voltage vector is determined twice a switching period. The switching period is fixed throughout the analysis. The three phase inverter duty cycle necessary to control the torque and flux of the induction machine is determined by the voltage space vector Pulse Width Modulation (PWM) technique. Transient performance of either the flux or torque requires an alternate modulation scheme which is also addressed in this thesis. A block diagram of this closed loop system is provided. 22 figs., 7 tabs.

  11. International Workshop on Advanced Dynamics and Model Based Control of Structures and Machines

    CERN Document Server

    Belyaev, Alexander; Krommer, Michael

    2017-01-01

    The papers in this volume present and discuss the frontiers in the mechanics of controlled machines and structures. They are based on papers presented at the International Workshop on Advanced Dynamics and Model Based Control of Structures and Machines held in Vienna in September 2015. The workshop continues a series of international workshops held in Linz (2008) and St. Petersburg (2010).

  12. Implementation of four layer automatic elevator controller

    Science.gov (United States)

    Prasad, B. K. V.; Kumar, P. Satish; Charles, B. S.; Srilakshmi, G.

    2017-07-01

    In this modern era, elevators have become an integral part of any commercial or public complex. It facilitates the faster movement of people and luggage between floors. The lift control system is one among the keenest aspects in electronics controlling module that are used in auto motive filed. Usually elevators are designed for a specific building taking into account the main factors like the measure of the building, the count of persons travelling to each floor and the expected periods of large usage. The lift system was designed with different control strategies. This implementation is based on FPGA, which could be used for any building with any number of floors, with the necessary inputs and outputs. This controller can be implemented based on the required number of floors by merely changing a control variable from the HDL code. This approach is based on an algorithm which reduces the number of computation necessary, on concentrating only on the relevant principles that improves the score and ability of the club of elevator structure. The elevator controller is developed using Verilog HDL and is perfectly executed on a Xilinx ISE 12.4 and Spartan -3E FPGA.

  13. A transformational product to improve self-control strength: The Chocolate Machine

    OpenAIRE

    Kehr, Flavius; Hassenzahl, Marc; Laschke, Matthias; Diefenbach, Sarah

    2012-01-01

    Lack of self-control is at the heart of many undesirable behaviors, such as overeating, overspending, and evenoverworking. While the field of persuasive technologies explicitly searches for ways to change attitudes and behaviors, it more or less neglects the science of self-control. We present the Chocolate Machine, an interactive device to train self-control strength based upon Ego Depletion theory. A longitudinal, control-group, field study showed the machine to increase self-control str...

  14. IAEA safeguards instrumentation: Development, implementation and control

    International Nuclear Information System (INIS)

    Rundquist, D.E.

    1983-01-01

    Extensive development efforts over the last 5 years have produced a number of new instruments to help the IAEA meet its safeguards obligations. Implementation of these new instruments is proceeding at a necessarily slower pace. To optimize the performance and reliability of the instrumentation systems when used in safeguards applications, increasing attention is needed to be spent on performance monitoring and control of the instruments. (author)

  15. Integrated circuit implementation of fuzzy controllers

    OpenAIRE

    Huertas Díaz, José Luis; Sánchez Solano, Santiago; Baturone Castillo, María Iluminada; Barriga Barros, Ángel

    1996-01-01

    This paper presents mixed-signal current-mode CMOS circuits to implement programmable fuzzy controllers that perform the singleton or zero-order Sugeno’s method. Design equations to characterize these circuits are provided to explain the precision and speed that they offer. This analysis is illustrated with the experimental results of prototypes integrated in standard CMOS technologies. These tests show that an equivalent precision of 6 bits is achieved. The connection of these...

  16. Adaptive control of mechatronic machine-tool equipment

    Directory of Open Access Journals (Sweden)

    R.G. Kudoyarov

    2015-09-01

    Full Text Available In this paper the method for designing a functional structure of mechatronic modules based on the developed classification of functional subsystems and the proposed turning machine modular structure is presented.

  17. Software protocol design: Communication and control in a multi-task robot machine for ITER vacuum vessel assembly and maintenance

    International Nuclear Information System (INIS)

    Li, Ming; Wu, Huapeng; Handroos, Heikki; Yang, Guangyou; Wang, Yongbo

    2015-01-01

    Highlights: • A high-level protocol is proposed for the data inter-transmission. • The protocol design is task-oriented for the robot control in the software system. • The protocol functions as a role of middleware in the software. • The protocol running stand-alone as an independent process in the software provides greater security. • Providing a reference design protocol for the multi-task robot machine in the industry. - Abstract: A specific communication and control protocol for software design of a multi-task robot machine is proposed. In order to fulfill the requirements on the complicated multi machining functions and the high performance motion control, the software design of robot is divided into two main parts accordingly, which consists of the user-oriented HMI part and robot control-oriented real-time control system. The two parts of software are deployed in the different hardware for the consideration of run-time performance, which forms a client–server-control architecture. Therefore a high-level task-oriented protocol is designed for the data inter-communication between the HMI part and the control system part, in which all the transmitting data related to a machining task is divided into three categories: trajectory-oriented data, task control-oriented data and status monitoring-oriented data. The protocol consists of three sub-protocols accordingly – a trajectory protocol, task control protocol and status protocol – which are deployed over the Ethernet and run as independent processes in both the client and server computers. The protocols are able to manage the vast amounts of data streaming due to the multi machining functions in a more efficient way. Since the protocol is functioning in the software as a role of middleware, and providing the data interface standards for the developing groups of two parts of software, it also permits greater focus of both software parts developers on their own requirements-oriented design. By

  18. Software protocol design: Communication and control in a multi-task robot machine for ITER vacuum vessel assembly and maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ming, E-mail: ming.li@lut.fi [Laboratory of Intelligent Machines, Lappeenranta University of Technology (Finland); Wu, Huapeng; Handroos, Heikki [Laboratory of Intelligent Machines, Lappeenranta University of Technology (Finland); Yang, Guangyou [School of Mechanical Engineering, Hubei University of Technology, Wuhan (China); Wang, Yongbo [Laboratory of Intelligent Machines, Lappeenranta University of Technology (Finland)

    2015-10-15

    Highlights: • A high-level protocol is proposed for the data inter-transmission. • The protocol design is task-oriented for the robot control in the software system. • The protocol functions as a role of middleware in the software. • The protocol running stand-alone as an independent process in the software provides greater security. • Providing a reference design protocol for the multi-task robot machine in the industry. - Abstract: A specific communication and control protocol for software design of a multi-task robot machine is proposed. In order to fulfill the requirements on the complicated multi machining functions and the high performance motion control, the software design of robot is divided into two main parts accordingly, which consists of the user-oriented HMI part and robot control-oriented real-time control system. The two parts of software are deployed in the different hardware for the consideration of run-time performance, which forms a client–server-control architecture. Therefore a high-level task-oriented protocol is designed for the data inter-communication between the HMI part and the control system part, in which all the transmitting data related to a machining task is divided into three categories: trajectory-oriented data, task control-oriented data and status monitoring-oriented data. The protocol consists of three sub-protocols accordingly – a trajectory protocol, task control protocol and status protocol – which are deployed over the Ethernet and run as independent processes in both the client and server computers. The protocols are able to manage the vast amounts of data streaming due to the multi machining functions in a more efficient way. Since the protocol is functioning in the software as a role of middleware, and providing the data interface standards for the developing groups of two parts of software, it also permits greater focus of both software parts developers on their own requirements-oriented design. By

  19. Direct torque control design and experimental evaluation for the brushless doubly fed machine

    International Nuclear Information System (INIS)

    Sarasola, Izaskun; Poza, Javier; Rodriguez, Miguel A.; Abad, Gonzalo

    2011-01-01

    In this paper, a direct torque control (DTC) strategy for the brushless doubly fed machine (BDFM) is presented. After analyzing the mathematical model of this machine, the voltage vectors look-up table of classical DTC techniques is derived. Then, the behavior of the machine is studied when it is controlled by the developed DTC technique, concluding that under some specific operation conditions, a BDFM could present a time interval where the torque and the flux can not be controlled simultaneously. In these cases, two different control solutions have been defined: 'flux priority' and 'torque priority'. Finally, simulation and experimental results validate the effectiveness of the proposed control algorithms.

  20. Wireless brain-machine interface using EEG and EOG: brain wave classification and robot control

    Science.gov (United States)

    Oh, Sechang; Kumar, Prashanth S.; Kwon, Hyeokjun; Varadan, Vijay K.

    2012-04-01

    A brain-machine interface (BMI) links a user's brain activity directly to an external device. It enables a person to control devices using only thought. Hence, it has gained significant interest in the design of assistive devices and systems for people with disabilities. In addition, BMI has also been proposed to replace humans with robots in the performance of dangerous tasks like explosives handling/diffusing, hazardous materials handling, fire fighting etc. There are mainly two types of BMI based on the measurement method of brain activity; invasive and non-invasive. Invasive BMI can provide pristine signals but it is expensive and surgery may lead to undesirable side effects. Recent advances in non-invasive BMI have opened the possibility of generating robust control signals from noisy brain activity signals like EEG and EOG. A practical implementation of a non-invasive BMI such as robot control requires: acquisition of brain signals with a robust wearable unit, noise filtering and signal processing, identification and extraction of relevant brain wave features and finally, an algorithm to determine control signals based on the wave features. In this work, we developed a wireless brain-machine interface with a small platform and established a BMI that can be used to control the movement of a robot by using the extracted features of the EEG and EOG signals. The system records and classifies EEG as alpha, beta, delta, and theta waves. The classified brain waves are then used to define the level of attention. The acceleration and deceleration or stopping of the robot is controlled based on the attention level of the wearer. In addition, the left and right movements of eye ball control the direction of the robot.

  1. Numerical simulation of the manual operation of the charging/discharging machine (MID) control desk

    International Nuclear Information System (INIS)

    Doca, C; Dobre, A

    2004-01-01

    Since the year 2000 at 7th Division TAR of Institute for Nuclear Research - Pitesti continuous efforts were made to implement a software product package devoted to numerical simulation of operations at the test bench of charging/discharging machine (MID). Till now there were specified, designed, worked out and implemented on a computer the PUPITRU code, the present version fulfilling the following requirements: - graphical output specific for the computer/human operator interface: - design at a 1 : 4 scale for each of the 25 drawers of the control desk; - graphical and functional simulation of all the physical objects mounted in these drawers, namely: 12 measuring analog instruments with linear and non-linear dials (ampermeters), 21 measuring digital instruments (voltmeters), 24 two up/down settings switches, 13 switches with three up/down settings, 23 switches with two left/right hand settings, one switch with three left/right hand settings, one switch with four left/right hand settings, 2 switches with five left/right hand settings, 68, 16, 23, 53, 81 signaling lamps of white, yellow, orange, red and green light, respectively; implementation in the frame of PUPITRU code of the main notations used in the automation schemes in the execution design of the control desk, in view of a quick identification of the physical objects: switches, lamps, instruments, etc. ; - implementation in the frame of PUPITRU code of the full database (mnemonics and numerical values) used in the frame of MID tests; - implementation of over 1000 equations of numerical simulation appropriate to the situations characteristic for test bench and MID operation. At the moment, the final functional simulation for all the control desk components is finalized. In this paper a description and a demonstration run of the PUPITRU code is presented. (authors)

  2. Time-domain prefilter design for enhanced tracking and vibration suppression in machine motion control

    Science.gov (United States)

    Cole, Matthew O. T.; Shinonawanik, Praween; Wongratanaphisan, Theeraphong

    2018-05-01

    Structural flexibility can impact negatively on machine motion control systems by causing unmeasured positioning errors and vibration at locations where accurate motion is important for task execution. To compensate for these effects, command signal prefiltering may be applied. In this paper, a new FIR prefilter design method is described that combines finite-time vibration cancellation with dynamic compensation properties. The time-domain formulation exploits the relation between tracking error and the moment values of the prefilter impulse response function. Optimal design solutions for filters having minimum H2 norm are derived and evaluated. The control approach does not require additional actuation or sensing and can be effective even without complete and accurate models of the machine dynamics. Results from implementation and testing on an experimental high-speed manipulator having a Delta robot architecture with directionally compliant end-effector are presented. The results show the importance of prefilter moment values for tracking performance and confirm that the proposed method can achieve significant reductions in both peak and RMS tracking error, as well as settling time, for complex motion patterns.

  3. Design of salient pole PM synchronous machines for a vehicle traction application. Analysis and implementation

    Energy Technology Data Exchange (ETDEWEB)

    Rilla, M.

    2012-07-01

    This doctoral thesis presents a study on the development of a liquid-cooled frame salient pole permanent-magnet-exited traction machine for a four-wheel-driven electric car. The emphasis of the thesis is put on a radial flux machine design in order to achieve a light-weight machine structure for traction applications. The design features combine electromagnetic and thermal design methods, because traction machine operation does not have a strict operating point. Arbitrary load cycles and the flexible supply require special attention in the design process. It is shown that accurate modelling of the machine magnetic state is essential for high-performance operation. The saturation effect related to the cross-saturation has to be taken carefully into account in order to achieve the desired operation. Two prototype machines have been designed and built for testing: one totally enclosed machine with a special magnet module pole arrangement and another through-ventilated machine with a more traditional embedded magnet structure. Both structures are built with magnetically salient structures in order to increase the torque production capability with the reluctance torque component. Both machine structures show potential for traction usage. However, the traditional embedded magnet design turns out to be mechanically the more secure one of these two machine options. (orig.)

  4. Design Methodology of a Brushless IPM Machine for a Zero Speed Injection Based Sensorless Control

    OpenAIRE

    Godbehere, Jonathan; Wrobel, Rafal; Drury, David; Mellor, Phil

    2015-01-01

    In this paper a design approach for a sensorless controlled, brushless, interior permanent magnet machine is attained. An initial study based on established electrical machine formulas provides the machine’s basic geometrical sizing. The next design stage combines a particle swarm optimisation (PSO) search routine with a magneto-static finite element (FE) solver to provide a more in depth optimisation. The optimisation system has been formulated to derive alternative machine design variants, ...

  5. COMPARISON OF STATISTICALLY CONTROLLED MACHINING SOLUTIONS OF TITANIUM ALLOYS USING USM

    Directory of Open Access Journals (Sweden)

    R. Singh

    2010-06-01

    Full Text Available The purpose of the present investigation is to compare the statistically controlled machining solution of titanium alloys using ultrasonic machining (USM. In this study, the previously developed Taguchi model for USM of titanium and its alloys has been investigated and compared. Relationships between the material removal rate, tool wear rate, surface roughness and other controllable machining parameters (power rating, tool type, slurry concentration, slurry type, slurry temperature and slurry size have been deduced. The results of this study suggest that at the best settings of controllable machining parameters for titanium alloys (based upon the Taguchi design, the machining solution with USM is statistically controlled, which is not observed for other settings of input parameters on USM.

  6. Bioinformatics algorithm based on a parallel implementation of a machine learning approach using transducers

    International Nuclear Information System (INIS)

    Roche-Lima, Abiel; Thulasiram, Ruppa K

    2012-01-01

    Finite automata, in which each transition is augmented with an output label in addition to the familiar input label, are considered finite-state transducers. Transducers have been used to analyze some fundamental issues in bioinformatics. Weighted finite-state transducers have been proposed to pairwise alignments of DNA and protein sequences; as well as to develop kernels for computational biology. Machine learning algorithms for conditional transducers have been implemented and used for DNA sequence analysis. Transducer learning algorithms are based on conditional probability computation. It is calculated by using techniques, such as pair-database creation, normalization (with Maximum-Likelihood normalization) and parameters optimization (with Expectation-Maximization - EM). These techniques are intrinsically costly for computation, even worse when are applied to bioinformatics, because the databases sizes are large. In this work, we describe a parallel implementation of an algorithm to learn conditional transducers using these techniques. The algorithm is oriented to bioinformatics applications, such as alignments, phylogenetic trees, and other genome evolution studies. Indeed, several experiences were developed using the parallel and sequential algorithm on Westgrid (specifically, on the Breeze cluster). As results, we obtain that our parallel algorithm is scalable, because execution times are reduced considerably when the data size parameter is increased. Another experience is developed by changing precision parameter. In this case, we obtain smaller execution times using the parallel algorithm. Finally, number of threads used to execute the parallel algorithm on the Breezy cluster is changed. In this last experience, we obtain as result that speedup is considerably increased when more threads are used; however there is a convergence for number of threads equal to or greater than 16.

  7. AES Cardless Automatic Teller Machine (ATM) Biometric Security System Design Using FPGA Implementation

    Science.gov (United States)

    Ahmad, Nabihah; Rifen, A. Aminurdin M.; Helmy Abd Wahab, Mohd

    2016-11-01

    Automated Teller Machine (ATM) is an electronic banking outlet that allows bank customers to complete a banking transactions without the aid of any bank official or teller. Several problems are associated with the use of ATM card such card cloning, card damaging, card expiring, cast skimming, cost of issuance and maintenance and accessing customer account by third parties. The aim of this project is to give a freedom to the user by changing the card to biometric security system to access the bank account using Advanced Encryption Standard (AES) algorithm. The project is implemented using Field Programmable Gate Array (FPGA) DE2-115 board with Cyclone IV device, fingerprint scanner, and Multi-Touch Liquid Crystal Display (LCD) Second Edition (MTL2) using Very High Speed Integrated Circuit Hardware (VHSIC) Description Language (VHDL). This project used 128-bits AES for recommend the device with the throughput around 19.016Gbps and utilized around 520 slices. This design offers a secure banking transaction with a low rea and high performance and very suited for restricted space environments for small amounts of RAM or ROM where either encryption or decryption is performed.

  8. Design and implementation of an x-ray strain measurement capability using a rotating anode machine

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, J.A.; Rangaswamy, P.; Lujan, M. Jr.; Bourke, M.A.M.

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Residual stresses close to the surface can improve the reliability and lifetime of parts for technological applications. X-ray diffraction plays a significant role in gaining an exact knowledge of the stresses at the surface and their depth distribution. An x-ray capability at Los Alamos is key to developing and maintaining industrial collaborations in strain effects. To achieve this goal, the authors implemented a residual strain measuring station on the rotating anode x-ray instrument at the Lujan Center. This capability has been used to investigate residual strains in heat treated automotive components, machining effects on titanium alloys, resistance welded steel joints, titanium matrix fiber reinforced composites, ceramic matrix composites, thin films, and ceramic coatings. The overall objective is to combine both x-ray and neutron diffraction measurements with numerical models (e.g., finite element calculations).

  9. A Tailored Ontology Supporting Sensor Implementation for the Maintenance of Industrial Machines

    Directory of Open Access Journals (Sweden)

    Elaheh Maleki

    2017-09-01

    Full Text Available The longtime productivity of an industrial machine is improved by condition-based maintenance strategies. To do this, the integration of sensors and other cyber-physical devices is necessary in order to capture and analyze a machine’s condition through its lifespan. Thus, choosing the best sensor is a critical step to ensure the efficiency of the maintenance process. Indeed, considering the variety of sensors, and their features and performance, a formal classification of a sensor’s domain knowledge is crucial. This classification facilitates the search for and reuse of solutions during the design of a new maintenance service. Following a Knowledge Management methodology, the paper proposes and develops a new sensor ontology that structures the domain knowledge, covering both theoretical and experimental sensor attributes. An industrial case study is conducted to validate the proposed ontology and to demonstrate its utility as a guideline to ease the search of suitable sensors. Based on the ontology, the final solution will be implemented in a shared repository connected to legacy CAD (computer-aided design systems. The selection of the best sensor is, firstly, obtained by the matching of application requirements and sensor specifications (that are proposed by this sensor repository. Then, it is refined from the experimentation results. The achieved solution is recorded in the sensor repository for future reuse. As a result, the time and cost of the design process of new condition-based maintenance services is reduced.

  10. Consensus Control Design for 360 MN Extrusion Machine Producing Process

    Directory of Open Access Journals (Sweden)

    Chao Wang

    2014-01-01

    Full Text Available This paper mainly addresses the issue of 360 MN extrusion machine and focuses on the stabilization control of main table attitude. We will first introduce the problem and then model the extrusion machine. As the machine is a multi-input multioutput (MIMO and strong coupling system, it is challenging to apply existing control theory to design a controller to stabilize the main table attitude. Motivated by recent research in the field of multiagent systems, we design a consensus control protocol for our system and derive our convergence conditions based directly on Routh stability criterion. The advantages of the design are also demonstrated by numerical simulation.

  11. Design and implementation of an industrial vector-controlled ...

    Indian Academy of Sciences (India)

    Jose Titus

    1 Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai ... Vector-controlled induction motor drives are quite popular in the industry in applications that ... monitored machine parameters and fault information.

  12. The heater system monitoring and control of the fuelling machines test rig fluid

    International Nuclear Information System (INIS)

    Iorga, C.; Iorga, H.

    2016-01-01

    The thermo-mechanical hot loop (HL) of the testing rig for the fuelling machines (F/Ms) represents a set of facilities and equipment that perform the pressure, temperature and flow thermo-hydraulic parameters similar to those from the fuel channel for CANDU 600 reactor types. The 2.1 MW electric heater (EH), part of the HL, working under the conditions of a pressure vessel (110 bars) and provides an average temperature of 300°C of the working agent. The monitoring equipment implemented aims to simultaneously control the temperature for each of the 12 modules that compose the EH, without influencing the work logic of the display/recording and protecting existing equipment. This paper presents the structure of the monitoring equipment and its performance obtained after performing the functional tests. (authors)

  13. Express quality control of chicken eggs by machine vision

    Science.gov (United States)

    Gorbunova, Elena V.; Chertov, Aleksandr N.; Peretyagin, Vladimir S.; Korotaev, Valery V.; Arbuzova, Evgeniia A.

    2017-06-01

    The urgency of the task of analyzing the foodstuffs quality is determined by the strategy for the formation of a healthy lifestyle and the rational nutrition of the world population. This applies to products, such as chicken eggs. In particular, it is necessary to control the chicken eggs quality at the farm production prior to incubation in order to eliminate the possible hereditary diseases, as well as high embryonic mortality and a sharp decrease in the quality of the bred young. Up to this day, in the market there are no objective instruments of contactless express quality control as analytical equipment that allow the high-precision quality examination of the chicken eggs, which is determined by the color parameters of the eggshell (color uniformity) and yolk of eggs, and by the presence in the eggshell of various defects (cracks, growths, wrinkles, dirty). All mentioned features are usually evaluated only visually (subjectively) with the help of normalized color standards and ovoscopes. Therefore, this work is devoted to the investigation of the application opportunities of contactless express control method with the help of technical vision to implement the chicken eggs' quality analysis. As a result of the studies, a prototype with the appropriate software was proposed. Experimental studies of this equipment on a representative sample of eggs from chickens of different breeds have been carried out (the total number of analyzed samples exceeds 300 pieces). The correctness of the color analysis was verified by spectrophotometric studies of the surface of the eggshell.

  14. Hydraulically actuated hexapod robots design, implementation and control

    CERN Document Server

    Nonami, Kenzo; Irawan, Addie; Daud, Mohd Razali

    2014-01-01

    Legged robots are a promising locomotion system, capable of performing tasks that conventional vehicles cannot. Even more exciting is the fact that this is a rapidly developing field of study for researchers from a variety of disciplines. However, only a few books have been published on the subject of multi-legged robots. The main objective of this book is to describe some of the major control issues concerning walking robots that the authors have faced over the past 10 years. A second objective is to focus especially on very large hydraulically driven hexapod robot locomotion weighing more than 2,000 kg, making this the first specialized book on this topic. The 10 chapters of the book touch on diverse relevant topics such as design aspects, implementation issues, modeling for control, navigation and control, force and impedance control-based walking, fully autonomous walking, walking and working tasks of hexapod robots, and the future of walking robots. The construction machines of the future will very likel...

  15. Quality control and performance evaluation of microselectron HDR machine over 30 months

    International Nuclear Information System (INIS)

    Balasubramanian, N.; Annex, E.H.; Sunderam, N.; Patel, N.P.; Kaushal, V.

    2008-01-01

    To assess the performance evaluation of Microselectron HDR machine the standard quality control and quality assurance checks were carried out after each loading of new 192 Ir brachytherapy source In the machine. Total 9 loadings were done over a period of 30 months

  16. Feed forward control: An implementation at CIRFEL

    International Nuclear Information System (INIS)

    Krishnaswamy, J.; Lehrman, I.S.; Hartley, R.

    1995-01-01

    An integral part of the Compact InfraRed Free Electron LASER (CIRFEL) is control of the phase and amplitude stability in the RF power system. We have implemented such a Feed Forward system using the LabView software package, by National Instruments. We will discuss implementation and performance data of the Feed Forward control of the RF power system at CIRFEL. We will also briefly discuss some conditions under which the problem is ill-conditioned, and what idealizations can be made to remedy these ill-conditioned systems. Using an arbitrary function generator, we generate a driving signal for a voltage-controlled attenuator at the input side of the RF system, and we monitor the RF voltage in cell I of the photocathode gun using a digital storage oscilliscope in averaging mode. The system is stable enough to use data from one shot to modify the inputs for future shots. After downloading the averaged data to a personal computer via a GPIB (IEEE 488) bus, we use a simple linear transformation on the difference waveform between the current shot and the target to produce a correction signal. This signal is added to the driving signal in the arbitrary function generator, and the process is repeated until we get the flatness we need in the output signals from cell 1. The system for phase control is similar, with a voltage-controlled phase shifter replacing the attenuator, and monitoring of the RF phase in cell I replacing the monitoring of RF voltage. By repeatedly alternating between correcting the RF voltage (equivalent to correcting the RF power) and RF phase in cell 1, we are able to achieve simultaneous phase variations of <±1 degrees and amplitude variations of <±0.1% over a 3μsec pulse

  17. New sensorless, efficient optimized and stabilized v/f control for pmsm machines

    Science.gov (United States)

    Jafari, Seyed Hesam

    With the rapid advances in power electronics and motor drive technologies in recent decades, permanent magnet synchronous machines (PMSM) have found extensive applications in a variety of industrial systems due to its many desirable features such as high power density, high efficiency, and high torque to current ratio, low noise, and robustness. In low dynamic applications like pumps, fans and compressors where the motor speed is nearly constant, usage of a simple control algorithm that can be implemented with least number of the costly external hardware can be highly desirable for industry. In recent published works, for low power PMSMs, a new sensorless volts-per-hertz (V/f) controlling method has been proposed which can be used for PMSM drive applications where the motor speed is constant. Moreover, to minimize the cost of motor implementation, the expensive rotor damper winding was eliminated. By removing the damper winding, however, instability problems normally occur inside of the motor which in some cases can be harmful for a PMSM drive. As a result, to address the instability issue, a stabilizing loop was developed and added to the conventional V/f. By further studying the proposed sensorless stabilized V/f, and calculating power loss, it became known that overall motor efficiency still is needed to be improved and optimized. This thesis suggests a new V/f control method for PMSMs, where both efficiency and stability problems are addressed. Also, although in nearly all recent related research, methods have been applied to low power PMSM, for the first time, in this thesis, the suggested method is implemented for a medium power 15 kW PMSM. A C2000 F2833x Digital Signal Processor (DSP) is used as controller part for the student custom built PMSM drive, but instead of programming the DSP in Assembly or C, the main control algorithm was developed in a rapid prototype software environment which here Matlab Simulink embedded code library is used.

  18. Modeling and control of PEMFC based on least squares support vector machines

    International Nuclear Information System (INIS)

    Li Xi; Cao Guangyi; Zhu Xinjian

    2006-01-01

    The proton exchange membrane fuel cell (PEMFC) is one of the most important power supplies. The operating temperature of the stack is an important controlled variable, which impacts the performance of the PEMFC. In order to improve the generating performance of the PEMFC, prolong its life and guarantee safety, credibility and low cost of the PEMFC system, it must be controlled efficiently. A nonlinear predictive control algorithm based on a least squares support vector machine (LS-SVM) model is presented for a family of complex systems with severe nonlinearity, such as the PEMFC, in this paper. The nonlinear off line model of the PEMFC is built by a LS-SVM model with radial basis function (RBF) kernel so as to implement nonlinear predictive control of the plant. During PEMFC operation, the off line model is linearized at each sampling instant, and the generalized predictive control (GPC) algorithm is applied to the predictive control of the plant. Experimental results demonstrate the effectiveness and advantages of this approach

  19. Direct numerical control of machine tools in a nuclear research center by the CAMAC system

    International Nuclear Information System (INIS)

    Zwoll, K.; Mueller, K.D.; Becks, B.; Erven, W.; Sauer, M.

    1977-01-01

    The production of mechanical parts in research centers can be improved by connecting several numerically controlled machine tools to a central process computer via a data link. The CAMAC Serial Highway with its expandable structure yields an economic and flexible system for this purpose. The CAMAC System also facilitates the development of modular components controlling the machine tools itself. A CAMAC installation controlling three different machine tools connected to a central computer (PDP11) via the CAMAC Serial Highway is described. Besides this application, part of the CAMAC hardware and software can also be used for a great variety of scientific experiments

  20. Commercial FPGA based multipurpose controller: implementation perspective

    International Nuclear Information System (INIS)

    Arredondo, I.; Campo, M. del; Echevarria, P.; Belver, D.; Muguira, L.; Garmendia, N.; Hassanzadegan, H.; Eguiraun, M.; Jugo, J.; Etxebarria, V.

    2012-01-01

    This work presents a fast acquisition multipurpose controller, focussing on its EPICS integration and on its XML based configuration. This controller is based on a Lyrtech VHS-ADC board which encloses an FPGA, connected to a Host PC. This Host acts as local controller and implements an IOC integrating the device in an EPICS network. These tasks have been performed using Java as the main tool to program the PC to make the device fit the desired application. All the process includes the use of different technologies: JNA to handle C functions i.e. FPGA API, JavaIOC to integrate EPICS and XML w3c DOM classes to easily configure the particular application. In order to manage the functions, Java specific tools have been developed: Methods to manage the FPGA (read/write registers, acquire data,...), methods to create and use the EPICS server (put, get, monitor,...), mathematical methods to process the data (numeric format conversions,...) and methods to create/ initialize the application structure by means of an XML file (parse elements, build the DOM and the specific application structure). This XML file has some common nodes and tags for all the applications: FPGA registers specifications definition and EPICS variables. This means that the user only has to include a node for the specific application and use the mentioned tools. A main class is in charge of managing the FPGA and EPICS server according to this XML file. This multipurpose controller has been successfully used to implement a BPM and an LLRF application for the ESS-Bilbao (European Spallation Source) facility. (authors)

  1. Modeling and simulation of control system for electron beam machine (EBM) using programmable automation controller (PAC)

    International Nuclear Information System (INIS)

    Leo Kwee Wah; Lojius Lombigit; Abu Bakar Mhd Ghazali; Muhamad Zahidee Taat; Ayub Mohamed; Chong Foh Yoong

    2006-01-01

    An EBM electronic model is designed to simulate the control system of the Nissin EBM, which is located at Block 43, MINT complex of Jalan Dengkil with maximum output of 3 MeV, 30 mA using a Programmable Automation Controllers (PAC). This model operates likes a real EBM system where all the start-up, interlocking and stopping procedures are fully followed. It also involves formulating the mathematical models to relate certain output with the input parameters using data from actual operation on EB machine. The simulation involves a set of PAC system consisting of the digital and analogue input/output modules. The program code is written using Labview software (real-time version) on a PC and then downloaded into the PAC stand-alone memory. All the 23 interlocking signals required by the EB machine are manually controlled by mechanical switches and represented by LEDs. The EB parameters are manually controlled by potentiometers and displayed on analogue and digital meters. All these signals are then interfaced to the PC via a wifi wireless communication built-in at the PAC controller. The program is developed in accordance to the specifications and requirement of the original real EB system and displays them on the panel of the model and also on the PC monitor. All possible chances from human errors, hardware and software malfunctions, including the worst-case conditions will be tested, evaluated and modified. We hope that the performance of our model complies the requirements of operating the EB machine. It also hopes that this electronic model can replace the original PC interfacing being utilized in the Nissin EBM in the near future. The system can also be used to study the fault tolerance analysis and automatic re-configuration for advanced control of the EB system. (Author)

  2. Non-linear hybrid control oriented modelling of a digital displacement machine

    DEFF Research Database (Denmark)

    Pedersen, Niels Henrik; Johansen, Per; Andersen, Torben O.

    2017-01-01

    Proper feedback control of digital fluid power machines (Pressure, flow, torque or speed control) requires a control oriented model, from where the system dynamics can be analyzed, stability can be proven and design criteria can be specified. The development of control oriented models for hydraulic...... Digital Displacement Machines (DDM) is complicated due to non-smooth machine behavior, where the dynamics comprises both analog, digital and non-linear elements. For a full stroke operated DDM the power throughput is altered in discrete levels based on the ratio of activated pressure chambers....... In this paper, a control oriented hybrid model is established, which combines the continuous non-linear pressure chamber dynamics and the discrete shaft position dependent activation of the pressure chambers. The hybrid machine model is further extended to describe the dynamics of a Digital Fluid Power...

  3. Planning, Implementation and Optimization of Future space Missions using an Immersive Visualization Environement (IVE) Machine

    Science.gov (United States)

    Harris, E.

    Planning, Implementation and Optimization of Future Space Missions using an Immersive Visualization Environment (IVE) Machine E. N. Harris, Lockheed Martin Space Systems, Denver, CO and George.W. Morgenthaler, U. of Colorado at Boulder History: A team of 3-D engineering visualization experts at the Lockheed Martin Space Systems Company have developed innovative virtual prototyping simulation solutions for ground processing and real-time visualization of design and planning of aerospace missions over the past 6 years. At the University of Colorado, a team of 3-D visualization experts are developing the science of 3-D visualization and immersive visualization at the newly founded BP Center for Visualization, which began operations in October, 2001. (See IAF/IAA-01-13.2.09, "The Use of 3-D Immersive Visualization Environments (IVEs) to Plan Space Missions," G. A. Dorn and G. W. Morgenthaler.) Progressing from Today's 3-D Engineering Simulations to Tomorrow's 3-D IVE Mission Planning, Simulation and Optimization Techniques: 3-D (IVEs) and visualization simulation tools can be combined for efficient planning and design engineering of future aerospace exploration and commercial missions. This technology is currently being developed and will be demonstrated by Lockheed Martin in the (IVE) at the BP Center using virtual simulation for clearance checks, collision detection, ergonomics and reach-ability analyses to develop fabrication and processing flows for spacecraft and launch vehicle ground support operations and to optimize mission architecture and vehicle design subject to realistic constraints. Demonstrations: Immediate aerospace applications to be demonstrated include developing streamlined processing flows for Reusable Space Transportation Systems and Atlas Launch Vehicle operations and Mars Polar Lander visual work instructions. Long-range goals include future international human and robotic space exploration missions such as the development of a Mars

  4. A public school district's vending machine policy and changes over a 4-year period: implementation of a national wellness policy.

    Science.gov (United States)

    Han-Markey, T L; Wang, L; Schlotterbeck, S; Jackson, E A; Gurm, R; Leidal, A; Eagle, K

    2012-04-01

    The school environment has been the focus of many health initiatives over the years as a means to address the childhood obesity crisis. The availability of low-nutrient, high-calorie foods and beverages to students via vending machines further exacerbates the issue of childhood obesity. However, a healthy overhaul of vending machines may also affect revenue on which schools have come to depend. This article describes the experience of one school district in changing the school environment, and the resulting impact on food and beverage vending machines. Observational study in Ann Arbor public schools. The contents and locations of vending machines were identified in 2003 and surveyed repeatedly in 2007. Overall revenues were also documented during this time period. Changes were observed in the contents of both food and beverage vending machines. Revenue in the form of commissions to the contracted companies and the school district decreased. Local and national wellness policy changes may have financial ramifications for school districts. In order to facilitate and sustain school environment change, all stakeholders, including teachers, administrators, students and healthcare providers, should collaborate and communicate on policy implementation, recognizing that change can have negative financial consequences as well as positive, healthier outcomes. Copyright © 2012 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  5. A control system for and a method of controlling a superconductive rotating electrical machine

    DEFF Research Database (Denmark)

    2014-01-01

    This invention relates to a method of controlling and a control system (100) for a superconductive rotating electric machine (200) comprising at least one superconductive winding (102; 103), where the control system (100) is adapted to control a power unit (101) supplying during use the at least...... or more actual values (110, 111)of one or more parameters for a given superconductive winding (102; 103), each parameter representing a physical condition of the given superconductive winding (102; 103), and to dynamically derive one or more electrical current values to be maintained in the given...... superconductive winding (102; 103) by the power unit (101) where the one or more electrical current values is/are derived taking into account the received one or more actual values (110, 111). In this way,greater flexibility and more precise control of the performance of the superconducting rotating electrical...

  6. Implementation of a Monte Carlo algorithm for neutron transport on a massively parallel SIMD machine

    International Nuclear Information System (INIS)

    Baker, R.S.

    1992-01-01

    We present some results from the recent adaptation of a vectorized Monte Carlo algorithm to a massively parallel architecture. The performance of the algorithm on a single processor Cray Y-MP and a Thinking Machine Corporations CM-2 and CM-200 is compared for several test problems. The results show that significant speedups are obtainable for vectorized Monte Carlo algorithms on massively parallel machines, even when the algorithms are applied to realistic problems which require extensive variance reduction. However, the architecture of the Connection Machine does place some limitations on the regime in which the Monte Carlo algorithm may be expected to perform well

  7. Implementation of a Monte Carlo algorithm for neutron transport on a massively parallel SIMD machine

    International Nuclear Information System (INIS)

    Baker, R.S.

    1993-01-01

    We present some results from the recent adaptation of a vectorized Monte Carlo algorithm to a massively parallel architecture. The performance of the algorithm on a single processor Cray Y-MP and a Thinking Machine Corporations CM-2 and CM-200 is compared for several test problems. The results show that significant speedups are obtainable for vectorized Monte Carlo algorithms on massively parallel machines, even when the algorithms are applied to realistic problems which require extensive variance reduction. However, the architecture of the Connection Machine does place some limitations on the regime in which the Monte Carlo algorithm may be expected to perform well. (orig.)

  8. Intellectual Control System of Processing on CNC Machines

    OpenAIRE

    Nekrasov, R. Y.; Lasukov, Aleksandr Aleksandrovich; Starikov, A. I.; Soloviev, I. V.; Bekareva, O. V.

    2016-01-01

    Scientific and technical progress makes great demands for quality of engineering production. The priority is to ensure metalworking equipment with required dimensional accuracy during the entire period of operation at minimum manufacturing costs. In article considered the problem of increasing of accuracy of processing products on CNC. The authors offers a solution to the problem by providing compensating adjustment in the trajectory of the cutting tool and machining mode. The necessity of cr...

  9. Bangbang controller design and implementation for EAST vertical instability control

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuehang, E-mail: wagn8901@mail.ustc.edu.cn [University of Science and Technology of China, Hefei (China); Xiao, Bingjia, E-mail: bjxiao@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); University of Science and Technology of China, Hefei (China); Liu, Lei, E-mail: liulei@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Yuan, Qiping, E-mail: qpyuan@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China)

    2016-11-15

    Highlights: • The linearized plasma vertical response model is designed and analysed. • The Bangbang controller for EAST vertical displacement is designed. • The Bangbang controller is optimized for time delay of control system. • We investigate efficacy of Bangbang controller with simulations. • Performance of the controller is roughly given by experiments. - Abstract: In the EAST 2014 campaign, a new internal coil (IC) power supply was used in order to enhance the control over the plasma’s vertical instabilities. The IC power supply now allows for current and voltage working modes with much higher peak voltages and currents and faster response time. In comparison the previous power supply only allowed for the current mode. A Bangbang and PID composite controller has been designed for the voltage mode based on optimal control theory and the RZIP rigid plasma response model. This paper will demonstrate that faster and enhanced controllability are realized with the combination of Bangbang and PID controller. For the large z position drift, the Bangbang controller will export the maximum voltage to achieve much faster power supply response and slow the vertical displacement events (VDEs). The PID controller is used for the small z drifts which will finally stabilize the VDEs with minimum z position oscillation. Furthermore, to evaluate the time latency of this control system and power supply, the stability and performance of the closed loop were simulated and analysed. This controller was finally implementation and test on EAST using the Quasi-snowflake shape which achieved growth rates of 500 s{sup −1}. This paper shows that the new power supply using the bangbang + PID controller can significantly enhance the control over vertical instabilities.

  10. Application of Artificial Intelligence Techniques for the Control of the Asynchronous Machine

    Directory of Open Access Journals (Sweden)

    F. Khammar

    2016-01-01

    Full Text Available The induction machine is experiencing a growing success for two decades by gradually replacing the DC machines and synchronous in many industrial applications. This paper is devoted to the study of advanced methods applied to the command of the asynchronous machine in order to obtain a system of control of high performance. While the criteria for response time, overtaking, and static error can be assured by the techniques of conventional control, the criterion of robustness remains a challenge for researchers. This criterion can be satisfied only by applying advanced techniques of command. After mathematical modeling of the asynchronous machine, it defines the control strategies based on the orientation of the rotor flux. The results of the different simulation tests highlight the properties of robustness of algorithms proposed and suggested to compare the different control strategies.

  11. Scheme for the implementation of a universal quantum cloning machine via cavity-assisted atomic collisions in cavity QED

    International Nuclear Information System (INIS)

    Zou Xubo; Pahlke, K.; Mathis, W.

    2003-01-01

    We propose a scheme to implement the 1→2 universal quantum cloning machine of Buzek and Hillery [Phys. Rev. A 54, 1844 (1996)] in the context of cavity QED. The scheme requires cavity-assisted collision processes between atoms, which cross through nonresonant cavity fields in the vacuum states. The cavity fields are only virtually excited to face the decoherence problem. That's why the requirements on the cavity quality factor can be loosened

  12. Implementation of Ramp Control in RHIC

    International Nuclear Information System (INIS)

    Kewisch, J.

    1999-01-01

    After the injection of beam into RHIC the beam energy is ramped from 10.8 GeV/u to 108 GeV/u and the beta function of the interaction points is reduced from 10 meters to 1 meter. The set points for magnet power supplies and RF cavities is changed during such ramps in concert. A system of Wave Form Generators (WFGs), interconnected by a Real Time Data Link (RTDL) and Event Link is used to control these devices. RHIC ramps use a two level system of WFGs: one transmits the beam energy and a ''pseudo time'' variable as functions of time via RTDL; the other calculates the device set points as functions of these RTDL variables. Energy scaling, saturation correction and the wiring of interaction region quadruples is performed on the second level. This report describes the configuration and implementation of the software, firmware and hardware of the RHIC ramp system

  13. A microcontroller application as X-ray machine's high voltage controller

    International Nuclear Information System (INIS)

    Wiranto Budi Santoso; Beny Syawaludin

    2010-01-01

    A micro controller application as x-ray machine's high voltage controller has been carried out. The purpose of this micro controller application is to give an accurate high voltage supply to the x-ray tube so that the x-ray machine could produce the result as expected. The micro controller based X-ray machine's high voltage controller receives an input voltage from the keypad. This input value is displayed in the LCD (Liquid Crystal Display) screen. Then micro controller uses this input data to drive a stepper motor. The stepper motor adjusts the high voltage auto transformer's output according to the input value. The micro controller is programmed using BASCOM-8051 compiler. The test results show that the stepper motor could rotate according to an input value (author)

  14. Intellectual Control System of Processing on CNC Machines

    Science.gov (United States)

    Nekrasov, R. Y.; Lasukov, A. A.; Starikov, A. I.; Soloviev, I. V.; Bekareva, O. V.

    2016-04-01

    Scientific and technical progress makes great demands for quality of engineering production. The priority is to ensure metalworking equipment with required dimensional accuracy during the entire period of operation at minimum manufacturing costs. In article considered the problem of increasing of accuracy of processing products on CNC. The authors offers a solution to the problem by providing compensating adjustment in the trajectory of the cutting tool and machining mode. The necessity of creation of mathematical models of processes behavior in an automated technological system operations (OATS). Based on the research, authors have proposed a generalized diagram of diagnosis and input operative correction and approximate mathematical models of individual processes of diagnosis.

  15. The distribution of controlled drugs on banknotes via counting machines.

    Science.gov (United States)

    Carter, James F; Sleeman, Richard; Parry, Joanna

    2003-03-27

    Bundles of paper, similar to sterling banknotes, were counted in banks in England and Wales. Subsequent analysis showed that the counting process, both by machine and by hand, transferred nanogram amounts of cocaine to the paper. Crystalline material, similar to cocaine hydrochloride, could be observed on the surface of the paper following counting. The geographical distribution of contamination broadly followed Government statistics for cocaine usage within the UK. Diacetylmorphine, Delta(9)-tetrahydrocannabinol (THC) and 3,4-methylenedioxymethylamphetamine (MDMA) were not detected during this study.

  16. Evolution of cell cycle control: same molecular machines, different regulation

    DEFF Research Database (Denmark)

    de Lichtenberg, Ulrik; Jensen, Thomas Skøt; Brunak, Søren

    2007-01-01

    Decades of research has together with the availability of whole genomes made it clear that many of the core components involved in the cell cycle are conserved across eukaryotes, both functionally and structurally. These proteins are organized in complexes and modules that are activated or deacti......Decades of research has together with the availability of whole genomes made it clear that many of the core components involved in the cell cycle are conserved across eukaryotes, both functionally and structurally. These proteins are organized in complexes and modules that are activated...... for assembling the same molecular machines just in time for action....

  17. MACHINE LEARNING IMPLEMENTATION FOR THE CLASSIFICATION OF ATTACKS ON WEB SYSTEMS. PART 2

    Directory of Open Access Journals (Sweden)

    K. Smirnova

    2017-11-01

    Full Text Available The possibility of applying machine learning for the classification of malicious requests to aWeb application is considered. This approach excludes the use of deterministic analysis systems (for example, expert systems,and is based on the application of a cascade of neural networks or perceptrons on an approximate model to the real humanbrain. The main idea of the work is to enable to describe complex attack vectors consisting of feature sets, abstract terms forcompiling a training sample, controlling the quality of recognition and classifying each of the layers (networks participatingin the work, with the ability to adjust not the entire network, but only a small part of it, in the training of which a mistake orinaccuracy crept in. The design of the developed network can be described as a cascaded, scalable neural network.When using neural networks to detect attacks on web systems, the issue of vectorization and normalization of features isacute. The most commonly used methods for solving these problems are not designed for the case of deliberate distortion ofthe signs of an attack.The proposed approach makes it possible to obtain a neural network that has been studied in more detail by small features,and also to eliminate the normalization issues in order to avoid deliberately bypassing the intrusion detection system. Byisolating one more group of neurons in the network and teaching it to samples containing various variants of circumvention ofthe attack classification, the developed intrusion detection system remains able to classify any types of attacks as well as theiraggregates, putting forward more stringent measures to counteract attacks. This allows you to follow the life cycle of theattack in more detail: from the starting trial attack to deliberate sophisticated attempts to bypass the system and introducemore decisive measures to actively counteract the attack, eliminating the chances of a false alarm system.

  18. MACHINE LEARNING IMPLEMENTATION FOR THE CLASSIFICATION OF ATTACKS ON WEB SYSTEMS. PART 1

    Directory of Open Access Journals (Sweden)

    K. Smirnova

    2017-08-01

    Full Text Available The possibility of applying machine learning is considered for the classification of malicious requests to a Web application. This approach excludes the use of deterministic analysis systems (for example, expert systems, and based on the application of a cascade of neural networks or perceptrons on an approximate model to the real human brain. The main idea of the work is to enable to describe complex attack vectors consisting of feature sets, abstract terms for compiling a training sample, controlling the quality of recognition and classifying each of the layers (networks participating in the work, with the ability to adjust not the entire network, But only a small part of it, in the training of which a mistake or inaccuracy crept in.  The design of the developed network can be described as a cascaded, scalable neural network.  The developed system of intrusion detection uses a three-layer neural network. Layers can be built independently of each other by cascades. In the first layer, for each class of attack recognition, there is a corresponding network and correctness is checked on this network. To learn this layer, we have chosen classes of things that can be classified uniquely as yes or no, that is, they are linearly separable. Thus, a layer is obtained not just of neurons, but of their microsets, which can best determine whether is there some data class in the query or not. The following layers are not trained to recognize the attacks themselves, they are trained that a set of attacks creates certain threats. This allows you to more accurately recognize the attacker's attempts to bypass the defense system, as well as classify the target of the attack, and not just its fact. Simple layering allows you to minimize the percentage of false positives.

  19. Equivalent model of a dually-fed machine for electric drive control systems

    Science.gov (United States)

    Ostrovlyanchik, I. Yu; Popolzin, I. Yu

    2018-05-01

    The article shows that the mathematical model of a dually-fed machine is complicated because of the presence of a controlled voltage source in the rotor circuit. As a method of obtaining a mathematical model, the method of a generalized two-phase electric machine is applied and a rotating orthogonal coordinate system is chosen that is associated with the representing vector of a stator current. In the chosen coordinate system in the operator form the differential equations of electric equilibrium for the windings of the generalized machine (the Kirchhoff equation) are written together with the expression for the moment, which determines the electromechanical energy transformation in the machine. Equations are transformed so that they connect the currents of the windings, that determine the moment of the machine, and the voltages on these windings. The structural diagram of the machine is assigned to the written equations. Based on the written equations and accepted assumptions, expressions were obtained for the balancing the EMF of windings, and on the basis of these expressions an equivalent mathematical model of a dually-fed machine is proposed, convenient for use in electric drive control systems.

  20. An implementation of support vector machine on sentiment classification of movie reviews

    Science.gov (United States)

    Yulietha, I. M.; Faraby, S. A.; Adiwijaya; Widyaningtyas, W. C.

    2018-03-01

    With technological advances, all information about movie is available on the internet. If the information is processed properly, it will get the quality of the information. This research proposes to the classify sentiments on movie review documents. This research uses Support Vector Machine (SVM) method because it can classify high dimensional data in accordance with the data used in this research in the form of text. Support Vector Machine is a popular machine learning technique for text classification because it can classify by learning from a collection of documents that have been classified previously and can provide good result. Based on number of datasets, the 90-10 composition has the best result that is 85.6%. Based on SVM kernel, kernel linear with constant 1 has the best result that is 84.9%

  1. Numerical controlled diamond fly cutting machine for grazing incidence X-ray reflection mirrors

    International Nuclear Information System (INIS)

    Uchida, Fumihiko; Moriyama, Shigeo; Seya, Eiiti

    1992-01-01

    Synchrotron radiation has reached the stage of practical use, and the application to the wide fields that support future advanced technologies such as spectroscopy, the structural analysis of matters, semiconductor lithography and medical light source is expected. For the optical system of the equipment utilizing synchrotron radiation, the total reflection mirrors of oblique incidence are used for collimating and collecting X-ray. In order to restrain their optical aberration, nonspherical shape is required, and as the manufacturing method with high precision for nonspherical mirrors, a numerically controlled diamond cutting machine was developed. As for the cutting of soft metals with diamond tools, the high precision machining of any form can be done by numerical control, the machining time can be reduced as compared with grinding, and the cooling effect is large in metals. The construction of the cutting machine, the principle of machining, the control system, the method of calculating numerical control data, the investigation of machinable forms and the result of evaluation are reported. (K.I.)

  2. New drive and control concept of the paper-board machine at the board factory "Umka"

    Directory of Open Access Journals (Sweden)

    Jeftenić Borislav

    2004-01-01

    Full Text Available This paper describes the reconstruction of the drives of a paper machine for the press and drying part of the machine during June, 2001, as well as the expansion of the paper machine with a "third coating" during July, 2002 at the board factory "Umka". The existing old drive of the press and the drying groups was realized as a 76 meter long line shaft drive. The coating section of the machine was realized with sectional drives with DC motors fed from thyristor converters. The concept of the new drive is based on standard squirrel cage induction motors, fed from frequency converters. The system is controlled by a programmable logic controller. The communication between the controller, frequency converters and control panels is realized with a profibus protocol. The Laboratory for Electric Drives, of the Faculty of Electrical Engineering, Belgrade, was contracted for the drive part of the reconstruction of the paper-board machine. The complete project, supervision of the work of the investor's own technical services and final commissioning of the drives were organized in such a way that the drives were changed during the planned periods for the repair of the machine.

  3. Computerised weld strength testing machine for PHWR fuel elements with a versatile control system

    International Nuclear Information System (INIS)

    Gupta, U.C.; Sastry, V.S.; Rasheed, Jawad; Bibawe, S.R.

    1994-01-01

    Spacer pads and bearing pads are resistance spot welded on PHWR fuel elements to ensure inter-element gap for coolant flow. These welds are subjected to destructive tests as per SQC specifications while qualifying a machine and during production. The testing machine used earlier over the years was tedious involving manual operations of clamping, tool actuation, increasing and decreasing the pressure, referring to charts and statistical calculations. To carry out the destructive testing of the welds conveniently and reliably, an automatic machine is developed in-house in which are incorporated a quartz force transducer and a computerized data-acquisition and processing system together with a very versatile electronic control system based on a single-chip microcomputer. This paper describes the salient features of the machine and the control system. (author). 4 figs

  4. Exploring machine-learning-based control plane intrusion detection techniques in software defined optical networks

    Science.gov (United States)

    Zhang, Huibin; Wang, Yuqiao; Chen, Haoran; Zhao, Yongli; Zhang, Jie

    2017-12-01

    In software defined optical networks (SDON), the centralized control plane may encounter numerous intrusion threatens which compromise the security level of provisioned services. In this paper, the issue of control plane security is studied and two machine-learning-based control plane intrusion detection techniques are proposed for SDON with properly selected features such as bandwidth, route length, etc. We validate the feasibility and efficiency of the proposed techniques by simulations. Results show an accuracy of 83% for intrusion detection can be achieved with the proposed machine-learning-based control plane intrusion detection techniques.

  5. Design and setting up of a system for remote monitoring and control on auxiliary machines in electric vehicles

    Directory of Open Access Journals (Sweden)

    Dimitrov Vasil

    2017-01-01

    Full Text Available Systems for remote monitoring and control of the proper operation, energy consumption, and efficiency of the controlled objects are very often used in different spheres of industry, in the electricity distribution network, etc. Various types of intelligent energy meters, PLCs and other control devices are involved in such systems. Proper operation of the auxiliary machines in electric vehicles is of great importance and implementation of a system for their remote monitoring and control is useful and ensures reliability and increased efficiency. A system has been designed and built using contemporary devices. An asynchronous motor is controlled by a soft starter and opportunities for remote monitoring (by an intelligent energy meter and control (by a PLC and Touch panel have been provided. Soft starters are widely used in industry for control on asynchronous drives when speed regulation is not a mandatory requirement. They are cheaper than inverters and frequency converters and allow for temporal reduction of the torque and current surge during start-up, as well as smooth deceleration. Therefore they can also be used in electric vehicles to control auxiliary machines (pumps, fans, air coolers, compressors, etc.. The present paper presents a methodology for their design and setting up.

  6. Design Control Systems of Human Machine Interface in the NTVS-2894 Seat Grinder Machine to Increase the Productivity

    Science.gov (United States)

    Ardi, S.; Ardyansyah, D.

    2018-02-01

    In the Manufacturing of automotive spare parts, increased sales of vehicles is resulted in increased demand for production of engine valve of the customer. To meet customer demand, we carry out improvement and overhaul of the NTVS-2894 seat grinder machine on a machining line. NTVS-2894 seat grinder machine has been decreased machine productivity, the amount of trouble, and the amount of downtime. To overcome these problems on overhaul the NTVS-2984 seat grinder machine include mechanical and programs, is to do the design and manufacture of HMI (Human Machine Interface) GP-4501T program. Because of the time prior to the overhaul, NTVS-2894 seat grinder machine does not have a backup HMI (Human Machine Interface) program. The goal of the design and manufacture in this program is to improve the achievement of production, and allows an operator to operate beside it easier to troubleshoot the NTVS-2894 seat grinder machine thereby reducing downtime on the NTVS-2894 seat grinder machine. The results after the design are HMI program successfully made it back, machine productivity increased by 34.8%, the amount of trouble, and downtime decreased 40% decrease from 3,160 minutes to 1,700 minutes. The implication of our design, it could facilitate the operator in operating machine and the technician easer to maintain and do the troubleshooting the machine problems.

  7. Simulation Research on Adaptive Control of a Six-degree-of-freedom Material-testing Machine

    Directory of Open Access Journals (Sweden)

    Dan Wang

    2014-02-01

    Full Text Available This paper presents an adaptive controller equipped with a stiffness estimation method for a novel material-testing machine, in order to alleviate the performance depression caused by the stiffness variance of the tested specimen. The dynamic model of the proposed machine is built using the Kane method, and kinematic model is established with a closed-form solution. The stiffness estimation method is developed based on the recursive least-squares method and the proposed stiffness equivalent matrix. Control performances of the adaptive controller are simulated in detail. The simulation results illustrate that the proposed controller can greatly improve the control performance of the target material-testing machine by online stiffness estimation and adaptive parameter tuning, especially in low-cycle fatigue (LCF and high-cycle fatigue (HCF tests.

  8. A Novel Vaping Machine Dedicated to Fully Controlling the Generation of E-Cigarette Emissions

    OpenAIRE

    Soulet, Sébastien; Pairaud, Charly; Lalo, Hélène

    2017-01-01

    The accurate study of aerosol composition and nicotine release by electronic cigarettes is a major issue. In order to fully and correctly characterize aerosol, emission generation has to be completely mastered. This study describes an original vaping machine named Universal System for Analysis of Vaping (U-SAV), dedicated to vaping product study, enabling the control and real-time monitoring of applied flow rate and power. Repeatability and stability of the machine are demonstrated on flow ra...

  9. Development of a speech-based dialogue system for report dictation and machine control in the endoscopic laboratory.

    Science.gov (United States)

    Molnar, B; Gergely, J; Toth, G; Pronai, L; Zagoni, T; Papik, K; Tulassay, Z

    2000-01-01

    Reporting and machine control based on speech technology can enhance work efficiency in the gastrointestinal endoscopy laboratory. The status and activation of endoscopy laboratory equipment were described as a multivariate parameter and function system. Speech recognition, text evaluation and action definition engines were installed. Special programs were developed for the grammatical analysis of command sentences, and a rule-based expert system for the definition of machine answers. A speech backup engine provides feedback to the user. Techniques were applied based on the "Hidden Markov" model of discrete word, user-independent speech recognition and on phoneme-based speech synthesis. Speech samples were collected from three male low-tone investigators. The dictation module and machine control modules were incorporated in a personal computer (PC) simulation program. Altogether 100 unidentified patient records were analyzed. The sentences were grouped according to keywords, which indicate the main topics of a gastrointestinal endoscopy report. They were: "endoscope", "esophagus", "cardia", "fundus", "corpus", "antrum", "pylorus", "bulbus", and "postbulbar section", in addition to the major pathological findings: "erosion", "ulceration", and "malignancy". "Biopsy" and "diagnosis" were also included. We implemented wireless speech communication control commands for equipment including an endoscopy unit, video, monitor, printer, and PC. The recognition rate was 95%. Speech technology may soon become an integrated part of our daily routine in the endoscopy laboratory. A central speech and laboratory computer could be the most efficient alternative to having separate speech recognition units in all items of equipment.

  10. Documenting control system functionality for digital control implementations

    International Nuclear Information System (INIS)

    Harber, J.; Borairi, M.; Tikku, S.; Josefowicz, A.

    2006-01-01

    In past CANDU designs, plant control was accomplished by a combination of digital control computers, analogue controllers, and hardwired relay logic. Functionality for these various control systems, each using different hardware, was documented in varied formats such as text based program specifications, relay logic diagrams, and other various specification documents. The choice of formats was influenced by the hardware used and often required different specialized skills for different applications. The programmable electronic systems in new CANDU designs are realized in a manner consistent with latest international standards (e.g., the IEC 61513 standard). New CANDU designs make extensive use of modern digital control technology, with the benefit that functionality can be implemented on a limited number of control platforms, reducing development and maintenance cost. This approach can take advantage of tools that allow the plant control system functional and performance requirements to be documented using graphical representations. Modern graphical methods supplemented by information databases can be used to provide a clear and comprehensive set of requirements for software and system development. Overview diagrams of system functionality provide a common understanding of the system boundaries and interfaces. Important requirements are readily traced through the development process. This improved reviewability helps to ensure consistency with the safety and and production design requirements of the system. Encapsulation of commonly used functions into custom-defined function blocks, such as typical motor control centre interfaces, process interlocks, median selects etc, eases the burden on designers to understand and analyze the detailed functionality of each instance of use of this logic. A library of encapsulated functions will be established for complex functions that are reused in the control logic development. By encapsulation and standardisation of such

  11. Predictive torque and flux control of an induction machine drive ...

    Indian Academy of Sciences (India)

    Finite-state model predictive control; fuzzy decision making; multi-objective optimization; predictive torque control. Abstract. Among the numerous direct torque control techniques, the finite-state predictive torque control (FS-PTC) has emerged as a powerful alternative as it offers the fast dynamic response and the flexibility to ...

  12. Multiple Property Cross Direction Control of Paper Machines

    Directory of Open Access Journals (Sweden)

    Markku Ohenoja

    2011-07-01

    Full Text Available Cross direction (CD control in sheet-forming process forms a challenging problem with high dimensions. Accounting the interactions between different properties and actuators, the dimensionality increases further and also computational issues arise. We present a multiple property controller feasible to be used especially with imaging measurements that provide high sampling frequency and therefore enable short control interval. The simulation results state the benefits of multiple property CD control over single property control and single property control using full feedforward compensation. The controller presented may also be tuned in automated manner and the results demonstrate the effect of tuning on input saturation.

  13. Bacterial foraging-optimized PID control of a two-wheeled machine with a two-directional handling mechanism.

    Science.gov (United States)

    Goher, K M; Fadlallah, S O

    2017-01-01

    This paper presents the performance of utilizing a bacterial foraging optimization algorithm on a PID control scheme for controlling a five DOF two-wheeled robotic machine with two-directional handling mechanism. The system under investigation provides solutions for industrial robotic applications that require a limited-space working environment. The system nonlinear mathematical model, derived using Lagrangian modeling approach, is simulated in MATLAB/Simulink ® environment. Bacterial foraging-optimized PID control with decoupled nature is designed and implemented. Various working scenarios with multiple initial conditions are used to test the robustness and the system performance. Simulation results revealed the effectiveness of the bacterial foraging-optimized PID control method in improving the system performance compared to the PID control scheme.

  14. Design and Implementation of Temperature Controller for a Vacuum Distiller

    OpenAIRE

    Muslim, M. Aziz; N., Goegoes Dwi; F., Ahmad Salmi; R., Akhbar Prachaessardhi

    2014-01-01

    This paper proposed design and implementation of temperature controller for a vacuum distiller. The distiller is aimed to provide distillation process of bioethanol in nearly vacuum condition. Due to varying vacuum pressure, temperature have to be controlled by manipulating AC voltage to heating elements. Two arduino based control strategies have been implemented, PID control and Fuzzy Logic control. Control command from the controller was translated to AC drive using TRIAC based dimmer circu...

  15. Evolution of computer-based surveillance, control and man-machine communication systems in nuclear power stations

    International Nuclear Information System (INIS)

    Wilkinson, H.M.

    1980-01-01

    Reactor surveillance systems, man-machine communication, control methods and system relibility have steadily improved with successive designs. These improvements have been dramatic. Operational results from nine power-reactor units and preliminary results from 12 more units in various phases of implementation are now becoming available. The scope of the improvements ranges from the first design which used only lantern type displays to the latest which uses 18 colour cathode ray tubes (CRT). The operator can bnow scan a parallel presentation of annunciator messages, bar charts and graphical presentations. (orig./HP)

  16. Some problems of control of dynamical conditions of technological vibrating machines

    Science.gov (United States)

    Kuznetsov, N. K.; Lapshin, V. L.; Eliseev, A. V.

    2017-10-01

    The possibility of control of dynamical condition of the shakers that are designed for vibration treatment of parts interacting with granular media is discussed. The aim of this article is to develop the methodological basis of technology of creation of mathematical models of shake tables and the development of principles of formation of vibrational fields, estimation of their parameters and control of the structure vibration fields. Approaches to build mathematical models that take into account unilateral constraints, the relationships between elements, with the vibrating surface are developed. Methods intended to construct mathematical model of linear mechanical oscillation systems are used. Small oscillations about the position of static equilibrium are performed. The original method of correction of vibration fields by introduction of the oscillating system additional ties to the structure are proposed. Additional ties are implemented in the form of a mass-inertial device for changing the inertial parameters of the working body of the vibration table by moving the mass-inertial elements. The concept of monitoring the dynamic state of the vibration table based on the original measuring devices is proposed. Estimation for possible changes in dynamic properties is produced. The article is of interest for specialists in the field of creation of vibration technology machines and equipment.

  17. A Field Programmable Gate Array-Based Reconfigurable Smart-Sensor Network for Wireless Monitoring of New Generation Computer Numerically Controlled Machines

    Directory of Open Access Journals (Sweden)

    Ion Stiharu

    2010-08-01

    Full Text Available Computer numerically controlled (CNC machines have evolved to adapt to increasing technological and industrial requirements. To cover these needs, new generation machines have to perform monitoring strategies by incorporating multiple sensors. Since in most of applications the online Processing of the variables is essential, the use of smart sensors is necessary. The contribution of this work is the development of a wireless network platform of reconfigurable smart sensors for CNC machine applications complying with the measurement requirements of new generation CNC machines. Four different smart sensors are put under test in the network and their corresponding signal processing techniques are implemented in a Field Programmable Gate Array (FPGA-based sensor node.

  18. A Field Programmable Gate Array-Based Reconfigurable Smart-Sensor Network for Wireless Monitoring of New Generation Computer Numerically Controlled Machines

    Science.gov (United States)

    Moreno-Tapia, Sandra Veronica; Vera-Salas, Luis Alberto; Osornio-Rios, Roque Alfredo; Dominguez-Gonzalez, Aurelio; Stiharu, Ion; de Jesus Romero-Troncoso, Rene

    2010-01-01

    Computer numerically controlled (CNC) machines have evolved to adapt to increasing technological and industrial requirements. To cover these needs, new generation machines have to perform monitoring strategies by incorporating multiple sensors. Since in most of applications the online Processing of the variables is essential, the use of smart sensors is necessary. The contribution of this work is the development of a wireless network platform of reconfigurable smart sensors for CNC machine applications complying with the measurement requirements of new generation CNC machines. Four different smart sensors are put under test in the network and their corresponding signal processing techniques are implemented in a Field Programmable Gate Array (FPGA)-based sensor node. PMID:22163602

  19. Practical Implementations of Advanced Process Control for Linear Systems

    DEFF Research Database (Denmark)

    Knudsen, Jørgen K . H.; Huusom, Jakob Kjøbsted; Jørgensen, John Bagterp

    2013-01-01

    This paper describes some practical problems encountered, when implementing Advanced Process Control, APC, schemes on linear processes. The implemented APC controllers discussed will be LQR, Riccati MPC and Condensed MPC controllers illustrated by simulation of the Four Tank Process and a lineari......This paper describes some practical problems encountered, when implementing Advanced Process Control, APC, schemes on linear processes. The implemented APC controllers discussed will be LQR, Riccati MPC and Condensed MPC controllers illustrated by simulation of the Four Tank Process...... on pilot plant equipment on the department of Chemical Engineering DTU Lyngby....

  20. Vector control of three-phase AC machines system development in the practice

    CERN Document Server

    Quang, Nguyen Phung; Dittrich, J

    2015-01-01

    This book addresses the vector control of three-phase AC machines, in particular induction motors with squirrel-cage rotors (IM), permanent magnet synchronous motors (PMSM) and doubly-fed induction machines (DFIM), from a practical design and development perspective. The main focus is on the application of IM and PMSM in electrical drive systems, where field-orientated control has been successfully established in practice. It also discusses the use of grid-voltage oriented control of DFIMs in wind power plants. This second, enlarged edition includes new insights into flatness-based  nonlinear

  1. Pointright: a system to redirect mouse and keyboard control among multiple machines

    Science.gov (United States)

    Johanson, Bradley E [Palo Alto, CA; Winograd, Terry A [Stanford, CA; Hutchins, Gregory M [Mountain View, CA

    2008-09-30

    The present invention provides a software system, PointRight, that allows for smooth and effortless control of pointing and input devices among multiple displays. With PointRight, a single free-floating mouse and keyboard can be used to control multiple screens. When the cursor reaches the edge of a screen it seamlessly moves to the adjacent screen and keyboard control is simultaneously redirected to the appropriate machine. Laptops may also redirect their keyboard and pointing device, and multiple pointers are supported simultaneously. The system automatically reconfigures itself as displays go on, go off, or change the machine they display.

  2. Man-machine enhancements to existing FFTF control panels

    International Nuclear Information System (INIS)

    Miller, E.M.

    1984-01-01

    FFTF Project enhanced existing control panels with tape and labels to mitigate operator problems and to incorporate the guidance of NUREG-0700. The enhancements grouped displays and controls into meaningful units and labelled controls and displays to facilitate their identification and efficient use. The enhancements were inexpensive and well received by the facility's operations staff

  3. Using the modern CNC controllers capabilities for estimating the machining forces during the milling process

    Directory of Open Access Journals (Sweden)

    Breaz Radu-Eugen

    2017-01-01

    Full Text Available Machining forces can nowadays be measured by using 3D dynamometers, which are usually very expensive devices and hardly available for most of the CNC machine-tools users. On the other hand, modern CNC controllers have nowadays the ability to display and save many outputs within the machining process, such as the currents or even the torques at the shaft's level for the feed motors on each axis. These outputs can be used for estimating the machining forces, but it is to be noticed that the above-mentioned currents and torques are proportional with the overall resistant forces, which includes not only technological forces, but also friction, inertial and pre-tensioning forces. This paper presents an approach for estimating the machining forces during a milling process, by using the outputs stored in the CNC controller and separating the effects of technological forces from the other forces involved in the process. The separation was made by running two sets of experiments, one set for dry-run regime and the other one for machining regime.

  4. Friction-resilient position control for machine tools—Adaptive and sliding-mode methods compared

    DEFF Research Database (Denmark)

    Papageorgiou, Dimitrios; Blanke, Mogens; Niemann, Hans Henrik

    2018-01-01

    Robust trajectory tracking and increasing demand for high-accuracy tool positioning have motivated research in advanced control design for machine tools. State-of-the-art industry solutions employ cascades of Proportional (P) and Proportional-Integral (PI) controllers for closed-loop servo contro...

  5. Model of large scale man-machine systems with an application to vessel traffic control

    NARCIS (Netherlands)

    Wewerinke, P.H.; van der Ent, W.I.; ten Hove, D.

    1989-01-01

    Mathematical models are discussed to deal with complex large-scale man-machine systems such as vessel (air, road) traffic and process control systems. Only interrelationships between subsystems are assumed. Each subsystem is controlled by a corresponding human operator (HO). Because of the

  6. Design of conveyor type machine with numerical control for manufacturing of extrusion thermoplastic thread

    Science.gov (United States)

    Gorbunova, T. N.; Koltunov, I. I.; Tumanova, M. B.

    2018-05-01

    The article is devoted to the development of a model and control program for a 3D printer working based on extrusion technology. The article contains descriptions of all components of the machine and blocks of the interface of the control program.

  7. Possibilities and expectations for improved man-machine interface in power system control

    Energy Technology Data Exchange (ETDEWEB)

    Asal, H; Burrow, R K; Lindstrom, K; Mocenigo, M; Schellstede, G; Schaffer, G; Serrani, A

    1992-05-01

    The paper describes the hardware, equipment and functions provided to operators for supervising and controlling HVAC power systems. It analyzes the main elements of the man-machine interface (MMI) with particular attention to the recent possibilities afforded by computer technology and full graphic screens. Alarm management and remote control operation are briefly described.

  8. Man/machine interface for a nuclear cask remote handling control station: system design requirements

    International Nuclear Information System (INIS)

    Clarke, M.M.; Kreifeldt, J.G.; Draper, J.V.

    1984-01-01

    Design requirements are presented for a control station of a proposed semi-automated facility for remote handling of nuclear waste casks. Functional and operational man/machine interface: controls, displays, software format, station architecture, and work environment. In addition, some input is given to the design of remote sensing systems in the cask handling areas. 18 references, 9 figures, 12 tables

  9. Constrained state-feedback control of an externally excited synchronous machine

    NARCIS (Netherlands)

    Carpiuc, S.C.; Lazar, M.

    2013-01-01

    State-feedback control of externally excited synchronous machines employed in applications such as hybrid electric vehicles and full electric vehicles is a challenging problem. Indeed, these applications are characterized by fast dynamics that are subject to hard physical and control constraints.

  10. a design to digitalize hydraulic cylinder control of a machine tool

    African Journals Online (AJOL)

    Dr Obe

    1995-09-01

    Sep 1, 1995 ... Department of Mechanical Engineering. FEDERAL UNIVERSITY OF TECHNOLOGY, OWERRI,. P.M.B. 1526, OWERRI. ABSTRACT. Conventionally hydraulic piston - cylinder servos are actuated using analogue controls for machine tool axis drives. In this paper a design of the axis control system of an NC ...

  11. Formal modeling of virtual machines

    Science.gov (United States)

    Cremers, A. B.; Hibbard, T. N.

    1978-01-01

    Systematic software design can be based on the development of a 'hierarchy of virtual machines', each representing a 'level of abstraction' of the design process. The reported investigation presents the concept of 'data space' as a formal model for virtual machines. The presented model of a data space combines the notions of data type and mathematical machine to express the close interaction between data and control structures which takes place in a virtual machine. One of the main objectives of the investigation is to show that control-independent data type implementation is only of limited usefulness as an isolated tool of program development, and that the representation of data is generally dictated by the control context of a virtual machine. As a second objective, a better understanding is to be developed of virtual machine state structures than was heretofore provided by the view of the state space as a Cartesian product.

  12. Control of multi-machine using adaptive fuzzy

    Directory of Open Access Journals (Sweden)

    Bouchiba Bousmaha

    2011-01-01

    Full Text Available An indirect Adaptive fuzzy excitation control (IAFLC of power systems based on multi-input-multi-output linearization technique is developed in this paper. The power system considered in this paper consists of two generators and infinite bus connected through a network of transformers and transmission lines. The fuzzy controller is constructed from fuzzy feedback linearization controller whose parameters are adjusted indirectly from the estimates of plant parameters. The adaptation law adjusts the controller parameters on-line so that the plant output tracks the reference model output. Simulation results shown that the proposed controller IAFLC, compared with a controller based on tradition linearization technique can enhance the transient stability of the power system.

  13. Feedback optimal control of dynamic stochastic two-machine flowshop with a finite buffer

    Directory of Open Access Journals (Sweden)

    Thang Diep

    2010-06-01

    Full Text Available This paper examines the optimization of production involving a tandem two-machine system producing a single part type, with each machine being subject to random breakdowns and repairs. An analytical model is formulated with a view to solving an optimal stochastic production problem of the system with machines having up-downtime non-exponential distributions. The model developed is obtained by using a dynamic programming approach and a semi-Markov process. The control problem aims to find the production rates needed by the machines to meet the demand rate, through a minimization of the inventory/shortage cost. Using the Bellman principle, the optimality conditions obtained satisfy the Hamilton-Jacobi-Bellman equation, which depends on time and system states, and ultimately, leads to a feedback control. Consequently, the new model enables us to improve the coefficient of variation (CVup/down to be less than one while it is equal to one in Markov model. Heuristics methods are used to involve the problem because of the difficulty of the analytical model using several states, and to show what control law should be used in each system state (i.e., including Kanban, feedback and CONWIP control. Numerical methods are used to solve the optimality conditions and to show how a machine should produce.

  14. Methods, systems and apparatus for controlling operation of two alternating current (AC) machines

    Science.gov (United States)

    Gallegos-Lopez, Gabriel [Torrance, CA; Nagashima, James M [Cerritos, CA; Perisic, Milun [Torrance, CA; Hiti, Silva [Redondo Beach, CA

    2012-02-14

    A system is provided for controlling two AC machines. The system comprises a DC input voltage source that provides a DC input voltage, a voltage boost command control module (VBCCM), a five-phase PWM inverter module coupled to the two AC machines, and a boost converter coupled to the inverter module and the DC input voltage source. The boost converter is designed to supply a new DC input voltage to the inverter module having a value that is greater than or equal to a value of the DC input voltage. The VBCCM generates a boost command signal (BCS) based on modulation indexes from the two AC machines. The BCS controls the boost converter such that the boost converter generates the new DC input voltage in response to the BCS. When the two AC machines require additional voltage that exceeds the DC input voltage required to meet a combined target mechanical power required by the two AC machines, the BCS controls the boost converter to drive the new DC input voltage generated by the boost converter to a value greater than the DC input voltage.

  15. Nonlinear decentralized robust governor control for hydroturbine-generator sets in multi-machine power systems

    Energy Technology Data Exchange (ETDEWEB)

    Qiang Lu; Yusong Sun; Yuanzhang Sun [Tsinghua University, Beijing (China). Dept. of Electrical Engineering; Felix F Wu; Yixin Ni [University of Hong Kong (China). Dept. of Electrical and Electronic Engineering; Yokoyama, Akihiko [University of Tokyo (Japan). Dept. of Electrical Engineering; Goto, Masuo; Konishi, Hiroo [Hitachi Ltd., Tokyo (Japan). Power System Div.

    2004-06-01

    A novel nonlinear decentralized robust governor control for hydroturbine-generator sets in multi-machine power systems is suggested in this paper. The nonelastic water hammer effect and disturbances are considered in the modeling. The advanced differential geometry theory, nonlinear robust control theory and the dynamic feedback method are combined to solve the problem. The nonlinear decentralized robust control law for the speed governor of hydroturbine-generators has been derived. The input signals to the proposed controller are all local measurements and independent to the system parameters. The derived control law guarantees the integrated system stability with disturbance attenuation, which is significant to the real power system application. Computer tests on an 8-machine, 36-bus power system show clearly the effectiveness of the new control strategy in transient stability enhancement and disturbance attenuation. The computer test results based on the suggested controller are compared favorably with those based on the conventional linear governor control. (author)

  16. Control rooms and man-machine interface in nuclear power plants

    International Nuclear Information System (INIS)

    1990-08-01

    The importance of man-machine interface for ensuring safe and reliable operation of nuclear power plants has always been recognized. Since the early 1970's, the concepts of operator support and human factors have been increasingly used to better define the role of control rooms. In the late 1970's, the lessons learned from experience considerably accelerated the development of recommendations and regulatory requirements governing the resources and data available to operators in nuclear power plant control rooms, and specified the expertise required to assist them in case of need. This document summarizes the steps which have been taken and are being planned around the world to improve the man-machine interface for safe and economic power generation. It intends to present to the reader useful examples on some selected control room design and man-machine interface practices for operation and surveillance of nuclear power plants. 53 refs, 94 figs, 27 tabs

  17. Design and Implementation of Control and Monitoring Systems Based on HMI-PLC for Potable Water Well

    Directory of Open Access Journals (Sweden)

    Quezada-Quezada José Carlos

    2014-01-01

    Full Text Available This project reports on the design and implementation in a workbench of a control and monitoring system of the discharge of water of a well. Graphic User's Interfaces (GUI are designed for interaction with the operator. The Human Machine Interface (HMI was implement in proprietor software and it contemplates the rules for control and monitoring of the conditions of the system for the operator, the HMI is also interconnected a Programmable Logic Controller (PLC where the rules of protection of the process are implemented in Ladder Diagram (LD.

  18. Closed-Loop Tension Control System for Injection Moulding Machine

    African Journals Online (AJOL)

    When the mould unit is full, this drive keeps transporting filament materials without proper control. This project developed a closed loop feedback tension control system and it is to replace servo motor drive system for the transportation of filament and it demonstrated a new technological advancement and the theory of ...

  19. Simulation of Digital Control Computer of Nuclear Power Plant Based on Virtual Machine Technology

    International Nuclear Information System (INIS)

    Hou, Xue Yan; Li, Shu; Li, Qing

    2011-01-01

    Based on analyzing DCC (Digital Control Computer) instruction sets, memory map, display controllers and I/O system, virtual machine of DCC (abbr. VM DCC) has been developed. The executive and control programs, same as running on NPP (Nuclear Power Plant) unit's DCC, can run on the VM DCC smoothly and get same control results. Dual VM DCC system has been successfully applied in NPP FSS(Full Scope Simulator) training. It not only improves FSS's fidelity but also makes maintaining easier

  20. Power inverter implementing phase skipping control

    Science.gov (United States)

    Somani, Utsav; Amirahmadi, Ahmadreza; Jourdan, Charles; Batarseh, Issa

    2016-10-18

    A power inverter includes a DC/AC inverter having first, second and third phase circuitry coupled to receive power from a power source. A controller is coupled to a driver for each of the first, second and third phase circuitry (control input drivers). The controller includes an associated memory storing a phase skipping control algorithm, wherein the controller is coupled to receive updating information including a power level generated by the power source. The drivers are coupled to control inputs of the first, second and third phase circuitry, where the drivers are configured for receiving phase skipping control signals from the controller and outputting mode selection signals configured to dynamically select an operating mode for the DC/AC inverter from a Normal Control operation and a Phase Skipping Control operation which have different power injection patterns through the first, second and third phase circuitry depending upon the power level.

  1. General man-machine interface used in accelerators controls

    International Nuclear Information System (INIS)

    Boutheon, M.; Di Maio, F.; Pace, A.

    1992-01-01

    A large community is now using Workstations as Accelerators Computer Controls Interface, through the concepts of windows - menus - synoptics - icons. Some standards were established for the CERN-PS control systems rejuvenation. The Booster-to-PS transfer and injection process is now entirely operated with these tools. This application constitutes a global environment providing the users with the controls, analysis, visualization of a part of an accelerator. Individual commands, measurements, and specialized programs including complex treatments are available in a homogeneous frame. Some months of experience in current operation have shown that this model can be extended to the whole project. (author)

  2. Neural processing of auditory signals and modular neural control for sound tropism of walking machines

    DEFF Research Database (Denmark)

    Manoonpong, Poramate; Pasemann, Frank; Fischer, Joern

    2005-01-01

    and a neural preprocessing system together with a modular neural controller are used to generate a sound tropism of a four-legged walking machine. The neural preprocessing network is acting as a low-pass filter and it is followed by a network which discerns between signals coming from the left or the right....... The parameters of these networks are optimized by an evolutionary algorithm. In addition, a simple modular neural controller then generates the desired different walking patterns such that the machine walks straight, then turns towards a switched-on sound source, and then stops near to it....

  3. Passivity-Based Control of a Class of Blondel-Park Transformable Electric Machines

    Directory of Open Access Journals (Sweden)

    Per J. Nicklasson

    1997-10-01

    Full Text Available In this paper we study the viability of extending, to the general rotating electric machine's model, the passivity-based controller method that we have developed for induction motors. In this approach the passivity (energy dissipation properties of the motor are taken advantage of at two different levels. First, we prove that the motor model can be decomposed as the feedback interconnection of two passive subsystems, which can essentially be identified with the electrical and mechanical dynamics. Then, we design a torque tracking controller that preserves passivity for the electrical subsystem, and leave the mechanical part as a "passive disturbance". In position or speed control applications this procedure naturally leads to the well known cascaded controller structure which is typically analyzed invoking time-scale separation assumptions. A key feature of the new cascaded control paradigm is that the latter arguments are obviated in the stability analysis. Our objective in this paper is to characterize a class of machines for which such a passivity-based controller solves the output feedback torque tracking problem. Roughly speaking, the class consists of machines whose nonactuated dynamics are well damped and whose electrical and mechanical dynamics can be suitably decoupled via a coordinate transformation. The first condition translates into the requirement of approximate knowledge of the rotor resistances to avoid the need of injecting high gain into the loop. The latter condition is known in the electric machines literature as Blondel-Park transformability, and in practical terms it requires that the air-gap magnetomotive force must be suitably approximated by the first harmonic in its Fourier expansion. These conditions, stemming from the construction of the machine, have a clear physical interpretation in terms of the couplings between its electrical, magnetic and mechanical dynamics, and are satisfied by a large number of practical

  4. Modular reconfigurable machines incorporating modular open architecture control

    CSIR Research Space (South Africa)

    Padayachee, J

    2008-01-01

    Full Text Available degrees of freedom on a single platform. A corresponding modular Open Architecture Control (OAC) system is presented. OAC overcomes the inflexibility of fixed proprietary automation, ensuring that MRMs provide the reconfigurability and extensibility...

  5. Machine performance assessment and enhancement for a hexapod machine

    Energy Technology Data Exchange (ETDEWEB)

    Mou, J.I. [Arizona State Univ., Tempe, AZ (United States); King, C. [Sandia National Labs., Livermore, CA (United States). Integrated Manufacturing Systems Center

    1998-03-19

    The focus of this study is to develop a sensor fused process modeling and control methodology to model, assess, and then enhance the performance of a hexapod machine for precision product realization. Deterministic modeling technique was used to derive models for machine performance assessment and enhancement. Sensor fusion methodology was adopted to identify the parameters of the derived models. Empirical models and computational algorithms were also derived and implemented to model, assess, and then enhance the machine performance. The developed sensor fusion algorithms can be implemented on a PC-based open architecture controller to receive information from various sensors, assess the status of the process, determine the proper action, and deliver the command to actuators for task execution. This will enhance a hexapod machine`s capability to produce workpieces within the imposed dimensional tolerances.

  6. The Needs of Virtual Machines Implementation in Private Cloud Computing Environment

    Directory of Open Access Journals (Sweden)

    Edy Kristianto

    2015-12-01

    Full Text Available The Internet of Things (IOT becomes the purpose of the development of information and communication technology. Cloud computing has a very important role in supporting the IOT, because cloud computing allows to provide services in the form of infrastructure (IaaS, platform (PaaS, and Software (SaaS for its users. One of the fundamental services is infrastructure as a service (IaaS. This study analyzed the requirement that there must be based on a framework of NIST to realize infrastructure as a service in the form of a virtual machine to be built in a cloud computing environment.

  7. Electric Machine with Boosted Inductance to Stabilize Current Control

    Science.gov (United States)

    Abel, Steve

    2013-01-01

    High-powered motors typically have very low resistance and inductance (R and L) in their windings. This makes the pulse-width modulated (PWM) control of the current very difficult, especially when the bus voltage (V) is high. These R and L values are dictated by the motor size, torque (Kt), and back-emf (Kb) constants. These constants are in turn set by the voltage and the actuation torque-speed requirements. This problem is often addressed by placing inductive chokes within the controller. This approach is undesirable in that space is taken and heat is added to the controller. By keeping the same motor frame, reducing the wire size, and placing a correspondingly larger number of turns in each slot, the resistance, inductance, torque constant, and back-emf constant are all increased. The increased inductance aids the current control but ruins the Kt and Kb selections. If, however, a fraction of the turns is moved from their "correct slot" to an "incorrect slot," the increased R and L values are retained, but the Kt and Kb values are restored to the desired values. This approach assumes that increased resistance is acceptable to a degree. In effect, the heat allocated to the added inductance has been moved from the controller to the motor body, which in some cases is preferred.

  8. Design And Construction Of Controller System And Data Acquisition Of Creep Test Machine

    International Nuclear Information System (INIS)

    Farokhi; Arhatari, B.D.; DT. SonyTj.. Histori; Sudarno; Haryanto, Mudi; Triyadi, Ari

    2001-01-01

    Design and construction of creep test machine have been done to get a higher performance of controller system and data acquisition of that machine. The Design and construction were made by adding an automatic power control circuit, an interface and computer program on PC. The interface circuit is made in a form of a card which applicable on the compatible ISA-IBM PC. The computer program is written in turbo C++. With that modification, the test results show reduction in measurement error from 80μm to 90μm. The modification gives also benefit semi-automatic of the creep test machine. It means decreasing on the operator dependence. Another advantages are to make easier on the result data reading, to show the result data on the real time or on file, to make easier on appearing of a test result curve and on the result data analysis

  9. Design of Parameter Independent, High Performance Sensorless Controllers for Permanent Magnet Synchronous Machines

    DEFF Research Database (Denmark)

    Xie, Ge

    . The transient fluctuation of the estimated rotor position error is around 20 degrees with a step load torque change from 0% to 100% of the rated torque. The position error in steady state is within ±2 electrical degrees for the best case. The proposed method may also be used for e.g. online machine parameter......The Permanent Magnet Synchronous Machine (PMSM) has become an attractive candidate for various industrial applications due to its high efficiency and torque density. In the PMSM drive system, simple and robust control methods play an important role in achieving satisfactory drive performances....... For reducing the cost and increasing the reliability of the drive system, eliminating the mechanical sensor brings a lot advantages to the PMSM drive system. Therefore, sensorless control was developed and has been increasingly used in different PMSM drive systems in the last 20 years. However, machine...

  10. Implementation of MRAC controller of a DFIG based variable speed grid connected wind turbine

    International Nuclear Information System (INIS)

    Abdeddaim, Sabrina; Betka, Achour; Drid, Said; Becherif, Mohamed

    2014-01-01

    Highlights: • Set-up of an experimental test emulating a wind turbine, driving a grid-connected conventional DFIG. • An optimal operation below rated speed is achieved by means of an appropriate maximum power-point tracking algorithm. • Design and implementation of an adaptive model reference controller (MRAC) of the active and reactive power regulation. - Abstract: This paper presents the design and the implementation of a model reference adaptive control of the active and reactive power regulation of a grid connected wind turbine based on a doubly fed induction generator. This regulation is achieved below the synchronous speed, by means of a maximum power-point tracking algorithm. The experiment was conducted on a 1 kW didactic wound rotor induction machine in association with a wind turbine emulator. This implementation is realized using a dSPACE 1104 single-board control and acquisition interface. The obtained results show a permanent track of the available maximum wind power, under a chosen wind speed profile. Furthermore the proposed controller exhibits a smooth regulation of the stator active and reactive power amounts exchanged between the machine and the grid

  11. Practical iterative learning control with frequency domain design and sampled data implementation

    CERN Document Server

    Wang, Danwei; Zhang, Bin

    2014-01-01

    This book is on the iterative learning control (ILC) with focus on the design and implementation. We approach the ILC design based on the frequency domain analysis and address the ILC implementation based on the sampled data methods. This is the first book of ILC from frequency domain and sampled data methodologies. The frequency domain design methods offer ILC users insights to the convergence performance which is of practical benefits. This book presents a comprehensive framework with various methodologies to ensure the learnable bandwidth in the ILC system to be set with a balance between learning performance and learning stability. The sampled data implementation ensures effective execution of ILC in practical dynamic systems. The presented sampled data ILC methods also ensure the balance of performance and stability of learning process. Furthermore, the presented theories and methodologies are tested with an ILC controlled robotic system. The experimental results show that the machines can work in much h...

  12. Practical design control implementation for medical devices

    CERN Document Server

    Justiniano, Jose

    2003-01-01

    Bringing together the concepts of design control and reliability engineering, this book is a must for medical device manufacturers. It helps them meet the challenge of designing and developing products that meet or exceed customer expectations and also meet regulatory requirements. Part One covers motivation for design control and validation, design control requirements, process validation and design transfer, quality system for design control, and measuring design control program effectiveness. Part Two discusses risk analysis and FMEA, designing-in reliability, reliability and design verific

  13. Structural Control Systems Implemented in Civil Engineering

    Directory of Open Access Journals (Sweden)

    Cristian Pastia

    2005-01-01

    Full Text Available Over the past three decades, a great interest has been generated by the use of protection systems to mitigate the effects of dynamic environmental hazards on civil engineering structures, such as earthquakes and strong wind. These control systems develop controllable forces to add or dissipate energy in a structure, or both, due to specific devices integrated with sensors, controllers and real – time process to operate. The paper includes the advantages of these technologies consisting of the following sections: 1 represents an introduction, 2 deals with passive control system, 3 regards some control techniques, 4 concerns hybrid control techniques, 5 contains semi – active control techniques, and 6 is dedicated to general conclusions.

  14. Bridge between control science and technology. Volume 5 Manufacturing man-machine systems, computers, components, traffic control, space applications

    Energy Technology Data Exchange (ETDEWEB)

    Rembold, U; Kempf, K G; Towill, D R; Johannsen, G; Paul, M

    1985-01-01

    Among the topics discussed are: robotics; CAD/CAM applications; and man-machine systems. Consideration is also given to: tools and software for system design and integration; communication systems for real-time computer control; fail-safe design of real-time computer systems; and microcomputer-based control systems. Additional topics discussed include: programmable and intelligent components and instruments in automatic control; transportation systems; and space applications of automatic control systems.

  15. Method of control of machining accuracy of low-rigidity elastic-deformable shafts

    Directory of Open Access Journals (Sweden)

    Antoni Świć

    Full Text Available The paper presents an analysis of the possibility of increasing the accuracy and stability of machining of low-rigidity shafts while ensuring high efficiency and economy of their machining. An effective way of improving the accuracy of machining of shafts is increasing their rigidity as a result of oriented change of the elastic-deformable state through the application of a tensile force which, combined with the machining force, forms longitudinal-lateral strains. The paper also presents mathematical models describing the changes of the elastic-deformable state resulting from the application of the tensile force. It presents the results of experimental studies on the deformation of elastic low-rigidity shafts, performed on a special test stand developed on the basis of a lathe. An estimation was made of the effectiveness of the method of control of the elastic-deformable state with the use, as the regulating effects, the tensile force and eccentricity. It was demonstrated that controlling the two parameters: tensile force and eccentricity, one can improve the accuracy of machining, and thus achieve a theoretically assumed level of accuracy.

  16. Allocation of functions to man and machine in the automated control room

    International Nuclear Information System (INIS)

    Pulliam, R.; Price, H.E.

    1983-01-01

    A practical framework and set of methodologic tools are discussed which could be used by a design team in allocating nuclear power plant control functions to either man or machine control. It is concluded that allocations of functions must eventually become a formal step in control system design, i.e., it will become increasingly necessary to invest in human factors analysis as an integral part of the design process

  17. A Controller Design with ANFIS Architecture Attendant Learning Ability for SSSC-Based Damping Controller Applied in Single Machine Infinite Bus System

    Directory of Open Access Journals (Sweden)

    A. Khoshsaadat

    2014-09-01

    Full Text Available Static Synchronous Series Compensator (SSSC is a series compensating Flexible AC Transmission System (FACTS controller for maintaining to the power flow control on a transmission line by injecting a voltage in quadrature with the line current and in series mode with the line. In this work, an Adaptive Network-based Fuzzy Inference System controller (ANFISC has been proposed for controlling of the SSSC-based damping system and applied to a Single Machine Infinite Bus (SMIB power system. For implementation of the learning process in this controller, we use of the one approach of the learning ability that named as Forward Signal and Backward Error Back-Propagation (FSBEBP method for improving of the system efficiency. This artificial intelligence-based control model leads to a controller with adaptive structure, improved correctness, high damping ability and dynamic performance. System implementation is easy and it requires 49 fuzzy rules for inference engine of the system. As compared with the other complex neuro-fuzzy systems, this controller has medium number of the fuzzy rules and low number of layers, but it has high accuracy. In order to demonstrate of the proposed controller ability, it is simulated and its output compared with that of classic Lead-Lag-based Controller (LLC and PI controller.

  18. Implementation of Adaptive Digital Controllers on Programmable Logic Devices

    Science.gov (United States)

    Gwaltney, David A.; King, Kenneth D.; Smith, Keary J.; Monenegro, Justino (Technical Monitor)

    2002-01-01

    Much has been made of the capabilities of FPGA's (Field Programmable Gate Arrays) in the hardware implementation of fast digital signal processing. Such capability also makes an FPGA a suitable platform for the digital implementation of closed loop controllers. Other researchers have implemented a variety of closed-loop digital controllers on FPGA's. Some of these controllers include the widely used proportional-integral-derivative (PID) controller, state space controllers, neural network and fuzzy logic based controllers. There are myriad advantages to utilizing an FPGA for discrete-time control functions which include the capability for reconfiguration when SRAM-based FPGA's are employed, fast parallel implementation of multiple control loops and implementations that can meet space level radiation tolerance requirements in a compact form-factor. Generally, a software implementation on a DSP (Digital Signal Processor) or microcontroller is used to implement digital controllers. At Marshall Space Flight Center, the Control Electronics Group has been studying adaptive discrete-time control of motor driven actuator systems using digital signal processor (DSP) devices. While small form factor, commercial DSP devices are now available with event capture, data conversion, pulse width modulated (PWM) outputs and communication peripherals, these devices are not currently available in designs and packages which meet space level radiation requirements. In general, very few DSP devices are produced that are designed to meet any level of radiation tolerance or hardness. The goal of this effort is to create a fully digital, flight ready controller design that utilizes an FPGA for implementation of signal conditioning for control feedback signals, generation of commands to the controlled system, and hardware insertion of adaptive control algorithm approaches. An alternative is required for compact implementation of such functionality to withstand the harsh environment

  19. HETDEX tracker control system design and implementation

    Science.gov (United States)

    Beno, Joseph H.; Hayes, Richard; Leck, Ron; Penney, Charles; Soukup, Ian

    2012-09-01

    To enable the Hobby-Eberly Telescope Dark Energy Experiment, The University of Texas at Austin Center for Electromechanics and McDonald Observatory developed a precision tracker and control system - an 18,000 kg robot to position a 3,100 kg payload within 10 microns of a desired dynamic track. Performance requirements to meet science needs and safety requirements that emerged from detailed Failure Modes and Effects Analysis resulted in a system of 13 precision controlled actuators and 100 additional analog and digital devices (primarily sensors and safety limit switches). Due to this complexity, demanding accuracy requirements, and stringent safety requirements, two independent control systems were developed. First, a versatile and easily configurable centralized control system that links with modeling and simulation tools during the hardware and software design process was deemed essential for normal operation including motion control. A second, parallel, control system, the Hardware Fault Controller (HFC) provides independent monitoring and fault control through a dedicated microcontroller to force a safe, controlled shutdown of the entire system in the event a fault is detected. Motion controls were developed in a Matlab-Simulink simulation environment, and coupled with dSPACE controller hardware. The dSPACE real-time operating system collects sensor information; motor commands are transmitted over a PROFIBUS network to servo amplifiers and drive motor status is received over the same network. To interface the dSPACE controller directly to absolute Heidenhain sensors with EnDat 2.2 protocol, a custom communication board was developed. This paper covers details of operational control software, the HFC, algorithms, tuning, debugging, testing, and lessons learned.

  20. Active Perturbation Rejection in Motion Control of Milling Machine Tools

    Directory of Open Access Journals (Sweden)

    Francisco Beltrán Carbajal

    2013-01-01

    Full Text Available En este artículo se aborda el problema de control robusto de los ejes de movimiento de máquinas- herramienta fresadoras sujetos a fuerzas de perturbación que se inducen durante el proceso de maquinado del metal. Se propone un esquema de control por retroalimentación de la salida de posición para el rechazo robusto de fuerzas de perturbación de fricción y de corte desconocidas, y para tareas de seguimiento robusto de trayectorias de movimiento planificadas para una máquina-herramienta fresadora de tres ejes. Se considera la fricción de Coulomb, el amortiguamiento viscoso y las fuerzas de corte como términos de una señal de entrada de perturbación variable en el tiempo desconocida, la cual afecta la dinámica de los ejes de movimiento de la máquina fresadora. En el diseño del control de movimiento, se modela la señal de perturbación mediante una familia de polinomios en el tiempo de Taylor de cuarto grado. Entonces, se diseña un observador de estado para estimar las señales de velocidad y perturbación que se requieren para la implementación del controlador de movimiento propuesto. Se incluye resultados en simulación para mostrar el desempeño robusto del esquema de control de movimiento propuesto y la estimación efectiva y rápida de las señales de perturbación y velocidad.

  1. Design requirements for SRB production control system. Volume 4: Implementation

    Science.gov (United States)

    1981-01-01

    The implementation plan which is presented was developed to provide the means for the successful implementation of the automated production control system. There are three factors which the implementation plan encompasses: detailed planning; phased implementation; and user involvement. The plan is detailed to the task level in terms of necessary activities as the system is developed, refined, installed, and tested. These tasks are scheduled, on a preliminary basis, over a two-and-one-half-year time frame.

  2. Robust iterative learning contouring controller with disturbance observer for machine tool feed drives.

    Science.gov (United States)

    Simba, Kenneth Renny; Bui, Ba Dinh; Msukwa, Mathew Renny; Uchiyama, Naoki

    2018-04-01

    In feed drive systems, particularly machine tools, a contour error is more significant than the individual axial tracking errors from the view point of enhancing precision in manufacturing and production systems. The contour error must be within the permissible tolerance of given products. In machining complex or sharp-corner products, large contour errors occur mainly owing to discontinuous trajectories and the existence of nonlinear uncertainties. Therefore, it is indispensable to design robust controllers that can enhance the tracking ability of feed drive systems. In this study, an iterative learning contouring controller consisting of a classical Proportional-Derivative (PD) controller and disturbance observer is proposed. The proposed controller was evaluated experimentally by using a typical sharp-corner trajectory, and its performance was compared with that of conventional controllers. The results revealed that the maximum contour error can be reduced by about 37% on average. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Machine vision algorithms applied to dynamic traffic light control

    Directory of Open Access Journals (Sweden)

    Fabio Andrés Espinosa Valcárcel

    2013-01-01

    número de autos presentes en imágenes capturadas por un conjunto de cámaras estratégicamente ubicadas en cada intersección. Usando esta información, el sistema selecciona la secuencia de acciones que optimicen el flujo vehicular dentro de la zona de control, en un escenario simulado. Los resultados obtenidos muestran que el sistema disminuye en un 20% los tiempos de retraso para cada vehículo y que además es capaz de adaptarse rápida y eficientemente a los cambios de flujo.

  4. myChEMBL: a virtual machine implementation of open data and cheminformatics tools.

    Science.gov (United States)

    Ochoa, Rodrigo; Davies, Mark; Papadatos, George; Atkinson, Francis; Overington, John P

    2014-01-15

    myChEMBL is a completely open platform, which combines public domain bioactivity data with open source database and cheminformatics technologies. myChEMBL consists of a Linux (Ubuntu) Virtual Machine featuring a PostgreSQL schema with the latest version of the ChEMBL database, as well as the latest RDKit cheminformatics libraries. In addition, a self-contained web interface is available, which can be modified and improved according to user specifications. The VM is available at: ftp://ftp.ebi.ac.uk/pub/databases/chembl/VM/myChEMBL/current. The web interface and web services code is available at: https://github.com/rochoa85/myChEMBL.

  5. Analysis of alternative actions for import substitution policy implementation in machine engineering complex

    Directory of Open Access Journals (Sweden)

    Chevychelov Sergey

    2017-01-01

    Full Text Available This paper discusses the considerations for production modernization, replacement of imported spare parts manufactured in-house and redistribution of items manufactured spare parts between managed societies, with a goal to improve the quality and reliability of products, to reduce its cost, and work. Noted that the process of acquiring new foreign equipment and modern materials are complicated. There are examples of restrictive measures of the sanctions impact on industrial products and the dynamics of dependency on imports of industrial products. We used analytic and statistical research methods. Authors conducted a comparative analysis of the engineering assets of «Metalloinvest» holding that showed that all businesses have an impressive fleet of metal-working equipment on all groups of machines on the basis of an analysis of the needs for them to transport spare parts.

  6. Implementation of an Euler/Navier-Stokes finite element algorithm on the Connection Machine

    International Nuclear Information System (INIS)

    Shapiro, R.A.

    1991-01-01

    Massively parallel computers such as the Connection Machine (CM-2) have the potential to reduce significantly the computational cost for large problems of interest to the aerospace community. This paper examines the applicability of the CM-2 to an explicit, time-marching finite element solution method for the Euler and Navier-Stokes equations. The CM-2 architecture and the CM FORTRAN language are introduced. The paper points out some of the pitfalls involved in putting this code on the CM-2, with emphasis on interprocessor communications issues. The use of the FastGraph communication compiler and grid renumbering to reduce communication costs is discussed. Performance comparisons which indicate the approximate equivalence of a uniprocessor Cray and 1/8 of a CM-2 (8192 processors) for some typical problems are presented. 8 refs

  7. Efficient implementations of block sparse matrix operations on shared memory vector machines

    International Nuclear Information System (INIS)

    Washio, T.; Maruyama, K.; Osoda, T.; Doi, S.; Shimizu, F.

    2000-01-01

    In this paper, we propose vectorization and shared memory-parallelization techniques for block-type random sparse matrix operations in finite element (FEM) applications. Here, a block corresponds to unknowns on one node in the FEM mesh and we assume that the block size is constant over the mesh. First, we discuss some basic vectorization ideas (the jagged diagonal (JAD) format and the segmented scan algorithm) for the sparse matrix-vector product. Then, we extend these ideas to the shared memory parallelization. After that, we show that the techniques can be applied not only to the sparse matrix-vector product but also to the sparse matrix-matrix product, the incomplete or complete sparse LU factorization and preconditioning. Finally, we report the performance evaluation results obtained on an NEC SX-4 shared memory vector machine for linear systems in some FEM applications. (author)

  8. Comparative implementation of Handwritten and Machine written Gurmukhi text utilizing appropriate parameters

    Science.gov (United States)

    Kaur, Jaswinder; Jagdev, Gagandeep, Dr.

    2018-01-01

    Optical character recognition is concerned with the recognition of optically processed characters. The recognition is done offline after the writing or printing has been completed, unlike online recognition where the computer has to recognize the characters instantly as they are drawn. The performance of character recognition depends upon the quality of scanned documents. The preprocessing steps are used for removing low-frequency background noise and normalizing the intensity of individual scanned documents. Several filters are used for reducing certain image details and enabling an easier or faster evaluation. The primary aim of the research work is to recognize handwritten and machine written characters and differentiate them. The language opted for the research work is Punjabi Gurmukhi and tool utilized is Matlab.

  9. Reactive Neural Control for Phototaxis and Obstacle Avoidance Behavior of Walking Machines

    DEFF Research Database (Denmark)

    Manoonpong, Poramate; Pasemann, Frank; Wörgötter, Florentin

    2007-01-01

    as a sensory fusion unit. It filters sensory noise and shapes sensory data to drive the corresponding reactive behavior. On the other hand, modular neural control based on a central pattern generator is applied for locomotion of walking machines. It coordinates leg movements and can generate omnidirectional...

  10. Measuring and Modelling Delays in Robot Manipulators for Temporally Precise Control using Machine Learning

    DEFF Research Database (Denmark)

    Andersen, Thomas Timm; Amor, Heni Ben; Andersen, Nils Axel

    2015-01-01

    and separate. In this paper, we present a data-driven methodology for separating and modelling inherent delays during robot control. We show how both actuation and response delays can be modelled using modern machine learning methods. The resulting models can be used to predict the delays as well...

  11. Ultraprecise parabolic interpolator for numerically controlled machine tools. [Digital differential analyzer circuit

    Energy Technology Data Exchange (ETDEWEB)

    Davenport, C. M.

    1977-02-01

    The mathematical basis for an ultraprecise digital differential analyzer circuit for use as a parabolic interpolator on numerically controlled machines has been established, and scaling and other error-reduction techniques have been developed. An exact computer model is included, along with typical results showing tracking to within an accuracy of one part per million.

  12. Learning Control: Sense-Making, CNC Machines, and Changes in Vocational Training for Industrial Work

    Science.gov (United States)

    Berner, Boel

    2009-01-01

    The paper explores how novices in school-based vocational training make sense of computerized numerical control (CNC) machines. Based on two ethnographic studies in Swedish schools, one from the early 1980s and one from 2006, it analyses change and continuity in the cognitive, social, and emotional processes of learning how to become a machine…

  13. Technology and Jobs: Computer-Aided Design. Numerical-Control Machine-Tool Operators. Office Automation.

    Science.gov (United States)

    Stanton, Michael; And Others

    1985-01-01

    Three reports on the effects of high technology on the nature of work include (1) Stanton on applications and implications of computer-aided design for engineers, drafters, and architects; (2) Nardone on the outlook and training of numerical-control machine tool operators; and (3) Austin and Drake on the future of clerical occupations in automated…

  14. Control of a high-speed switched reluctance machine using only the DC-link measurements

    NARCIS (Netherlands)

    Marinkov, Sava; De Jager, Bram

    2015-01-01

    In this paper we present a novel speed control strategy for a high-speed Switched Reluctance Machine that uses only the DC-link voltage and current measurements. This eliminates a number of hardware components such as position, speed, phase current and phase voltage sensors. It further lowers the

  15. The implementation of intelligent home controller

    Science.gov (United States)

    Li, Biqing; Li, Zhao

    2018-04-01

    This paper mainly talks about the working way of smart home terminal controller and the design of hardware and software. Controlling the lights and by simulating the lamp and the test of the curtain, destroy the light of lamp ON-OFF and the curtain's UP-DOWN by simulating the lamp and the test of the cuetain. Through the sensor collects the ambient information and sends to the network, such as light, temperature and humidity. Besides, it can realise the control of intelligent home control by PCS. Terminal controller of intelligent home which is based on ZiBee technology has into the intelligent home system, it provides people with convenient, safe and intelligent household experience.

  16. Design and adjustment on test bed of replacing subassembly machine control system for China experimental fast reactor

    International Nuclear Information System (INIS)

    Dong Shengguo; Ma Hongsheng; Zhao Lixia

    2008-01-01

    The present research concerns in the design and adjustment of replacing sub- assembly machine control system of China Experimental Fast Reactor. The design of replacing subassembly machine control system adopts some electric equipments, such as programmable controllers, digital DC drivers. The designed control system was adjusted on the test bed. The results indicate that the operation of the control system is steady and reliable, and designed control system can meet the needs of the design specification. (authors)

  17. FUZZY LOGIC CONTROLLER IMPLEMENTATION FOR PHOTOVOLTAIC STATION

    Directory of Open Access Journals (Sweden)

    Imad Zein

    2014-01-01

    Full Text Available Solar panels have a nonlinear voltage-current characteristic, with a distinct maximum power point (MPP, which depends on the environmental factors, such as temperature and irradiation. In order to continuously harvest maximum power from the solar panels, they have to operate at their MPP despite the inevitable changes in the environment. This is why the controllers of all solar power electronic converters employ some method for maximum power point tracking (MPPT . Over the past years many MPPT techniques have been published and based on that the main paper’s objective is to analyze one of the most promising MPPT control algorithms: fuzzy logic controller

  18. Analysis of man-machine interaction for control and display system in main control room of light water reactor

    International Nuclear Information System (INIS)

    Santosa, Kussigit; Supriatna, Piping; Karlina, Itjeu; Widagdo, Suharyo; Darlis; Sudiono, Bambang

    1998-01-01

    One of potential hazard in Nuclear Power Plant is the failure of its operation. The accident or operation failure in the reactor must be concerned event its probability is low. The important thing should be concerned is 'Analysis of Man-Machine Interaction (MMI) for Control and Display System in Main Control Room (MCR) of Nuclear Power Reactor', especially LWR type. Control and Display System in MCR of Reactor is the main part of MMI link process in Reactor MCR work system. Signal from display system showed performance process in reactor, while this signal will be received by operator. This signal will be described through central nerve for making decision what kind must be done. Then the operator manage the next process of reactor operation through control system. So by knowing Analysis of Man-Machine Interaction for Control and Display System in Main Control Room of Power Reactor, we can understand human error probability of the operator in reactor operation

  19. Implementation Guide for Approaching Ship Floor Control

    National Research Council Canada - National Science Library

    Folz, Darrold; Diedrick, Karen

    1992-01-01

    .... Since the shipbuilding job shop environment revolves around the assembly of a single product, it is difficult to bring in "off the shelf" production control software which will speak to shipbuilding's unique needs...

  20. Development of Fractal Pattern Making Application using L-System for Enhanced Machine Controller

    Directory of Open Access Journals (Sweden)

    Gunawan Alexander A S

    2014-03-01

    Full Text Available One big issue facing the industry today is an automated machine lack of flexibility for customization because it is designed by the manufacturers based on certain standards. In this research, it is developed customized application software for CNC (Computer Numerically Controlled machines using open source platform. The application is enable us to create designs by means of fractal patterns using L-System, developed by turtle geometry interpretation and Python programming languages. The result of the application is the G-Code of fractal pattern formed by the method of L-System. In the experiment on the CNC machine, the G-Code of fractal pattern which involving the branching structure has been able to run well.

  1. Influence of export control policy on the competitiveness of machine tool producing organizations

    Science.gov (United States)

    Ahrstrom, Jeffrey D.

    The possible influence of export control policies on producers of export controlled machine tools is examined in this quantitative study. International market competitiveness theories hold that market controlling policies such as export control regulations may influence an organization's ability to compete (Burris, 2010). Differences in domestic application of export control policy on machine tool exports may impose throttling effects on the competitiveness of participating firms (Freedenberg, 2010). Commodity shipments from Japan, Germany, and the United States to the Russian market will be examined using descriptive statistics; gravity modeling of these specific markets provides a foundation for comparison to actual shipment data; and industry participant responses to a user developed survey will provide additional data for analysis using a Kruskal-Wallis one-way analysis of variance. There is scarce academic research data on the topic of export control effects within the machine tool industry. Research results may be of interest to industry leadership in market participation decisions, advocacy arguments, and strategic planning. Industry advocates and export policy decision makers could find data of interest in supporting positions for or against modifications of export control policies.

  2. Online learning control using adaptive critic designs with sparse kernel machines.

    Science.gov (United States)

    Xu, Xin; Hou, Zhongsheng; Lian, Chuanqiang; He, Haibo

    2013-05-01

    In the past decade, adaptive critic designs (ACDs), including heuristic dynamic programming (HDP), dual heuristic programming (DHP), and their action-dependent ones, have been widely studied to realize online learning control of dynamical systems. However, because neural networks with manually designed features are commonly used to deal with continuous state and action spaces, the generalization capability and learning efficiency of previous ACDs still need to be improved. In this paper, a novel framework of ACDs with sparse kernel machines is presented by integrating kernel methods into the critic of ACDs. To improve the generalization capability as well as the computational efficiency of kernel machines, a sparsification method based on the approximately linear dependence analysis is used. Using the sparse kernel machines, two kernel-based ACD algorithms, that is, kernel HDP (KHDP) and kernel DHP (KDHP), are proposed and their performance is analyzed both theoretically and empirically. Because of the representation learning and generalization capability of sparse kernel machines, KHDP and KDHP can obtain much better performance than previous HDP and DHP with manually designed neural networks. Simulation and experimental results of two nonlinear control problems, that is, a continuous-action inverted pendulum problem and a ball and plate control problem, demonstrate the effectiveness of the proposed kernel ACD methods.

  3. Development of a wearable measurement and control unit for personal customizing machine-supported exercise.

    Science.gov (United States)

    Wang, Zhihui; Tamura, Naoki; Kiryu, Tohru

    2005-01-01

    Wearable technology has been used in various health-related fields to develop advanced monitoring solutions. However, the monitoring function alone cannot meet all the requirements of personal customizing machine-supported exercise that have biosignal-based controls. In this paper, we propose a new wearable unit design equipped with measurement and control functions to support the personal customization process. The wearable unit can measure the heart rate and electromyogram signals during exercise and output workload control commands to the exercise machines. We then applied a prototype of the wearable unit to an Internet-based cycle ergometer system. The wearable unit was examined using twelve young people to check its feasibility. The results verified that the unit could successfully adapt to the control of the workload and was effective for continuously supporting gradual changes in physical activities.

  4. Very-low-speed variable-structure control of sensorless induction machine drives without signal injection

    DEFF Research Database (Denmark)

    Lascu, Christian; Boldea, Ion; Blaabjerg, Frede

    2005-01-01

    A sensorless induction machine drive is presented, in which the principles of variable-structure control and direct torque control (DTC) are combined to ensure high-performance operation in the steady state and under transient conditions. The drive employs a new torque and flux controller......, the "linear and variable-structure control", which realizes accurate and robust control in a wide speed range. Conventional DTC transient merits are preserved, while the steady-state behavior is significantly improved. The full-order state observer is a sliding-mode one, which does not require the rotor speed...

  5. Application of machine learning and expert systems to Statistical Process Control (SPC) chart interpretation

    Science.gov (United States)

    Shewhart, Mark

    1991-01-01

    Statistical Process Control (SPC) charts are one of several tools used in quality control. Other tools include flow charts, histograms, cause and effect diagrams, check sheets, Pareto diagrams, graphs, and scatter diagrams. A control chart is simply a graph which indicates process variation over time. The purpose of drawing a control chart is to detect any changes in the process signalled by abnormal points or patterns on the graph. The Artificial Intelligence Support Center (AISC) of the Acquisition Logistics Division has developed a hybrid machine learning expert system prototype which automates the process of constructing and interpreting control charts.

  6. Implementation guide of internal contamination control

    International Nuclear Information System (INIS)

    Balter, Henia; Savio, Eduardo; Souto, Beatriz

    1994-01-01

    A review of current methods of contamination control for radioisotopes 131I, 125I and 99mTc, periodic control of personnel exposed to radiation.Maximum permissible body burden (Mpbb) for each radionuclide,radiotoxicity as danger of internal contamination directly related with Let, type of radiation,Ali values for various radionuclides and external irradiation as an opposed factor.Effective half life,examples, 99mTc in urine,iodine in thyroid caption, 99m Tc absorption by skin and mouth. Procedure of control and calculation by measurement of urine samples in a gamma spectrometer. Iodine thyroid caption by monitoring of thyroid with a solid NaI(TI)scintillator taking as background radiation the activity of upper leg muscle. Standard solutions are prepared to fill a thyroid phantoms.Results must not be higher than Mpbb of corresponding radionuclide.Bibliography

  7. Implementation of fuzzy logic control algorithm in embedded ...

    African Journals Online (AJOL)

    Fuzzy logic control algorithm solves problems that are difficult to address with traditional control techniques. This paper describes an implementation of fuzzy logic control algorithm using inexpensive hardware as well as how to use fuzzy logic to tackle a specific control problem without any special software tools. As a case ...

  8. Investigation on multi-variable decoupled temperature control system for enamelling machine with heated air circulation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yang; Qin, Le; Zou, Shipeng; Long, Shijun [School of Information Engineering, Guangdong University of Technology, Guangzhou, 510006 (China)

    2014-04-11

    A lots of problems may occur frequently when controlling the temperature of the enamelling machine oven in the real industrial process, such as multi-variable coupled problem. an experimental rig with triple inputs and triple outputs was devised and a simulation modeling was established accordingly in this study,. the temperature control system based on the feedforward compensation algorithm was proposed. Experimental results have shown that the system is of high efficiency, good stability and promising application.

  9. Automated Biometric Voice-Based Access Control in Automatic Teller Machine (ATM)

    OpenAIRE

    Yekini N.A.; Itegboje A.O.; Oyeyinka I.K.; Akinwole A.K.

    2012-01-01

    An automatic teller machine requires a user to pass an identity test before any transaction can be granted. The current method available for access control in ATM is based on smartcard. Efforts were made to conduct an interview with structured questions among the ATM users and the result proofed that a lot of problems was associated with ATM smartcard for access control. Among the problems are; it is very difficult to prevent another person from attaining and using a legitimate persons card, ...

  10. Promoting the Purchase of Low-Calorie Foods from School Vending Machines: A Cluster-Randomized Controlled Study

    Science.gov (United States)

    Kocken, Paul L.; Eeuwijk, Jennifer; van Kesteren, Nicole M.C.; Dusseldorp, Elise; Buijs, Goof; Bassa-Dafesh, Zeina; Snel, Jeltje

    2012-01-01

    Background: Vending machines account for food sales and revenue in schools. We examined 3 strategies for promoting the sale of lower-calorie food products from vending machines in high schools in the Netherlands. Methods: A school-based randomized controlled trial was conducted in 13 experimental schools and 15 control schools. Three strategies…

  11. Abstract: Implementing Infection Control Measures in Neonatology ...

    African Journals Online (AJOL)

    Abstract. Background Neonatal infection is a primary cause of morbidity and mortality globally. Objective The project's objective is to facilitate quality improvement by reduction of hospital-acquired infection (HAI) in hospitalized neonates. Methods Current infection control practices were surveyed and three main areas were ...

  12. Advancing Control for Shield Tunneling Machine by Backstepping Design with LuGre Friction Model

    Directory of Open Access Journals (Sweden)

    Haibo Xie

    2014-01-01

    Full Text Available Shield tunneling machine is widely applied for underground tunnel construction. The shield machine is a complex machine with large momentum and ultralow advancing speed. The working condition underground is rather complicated and unpredictable, and brings big trouble in controlling the advancing speed. This paper focused on the advancing motion control on desired tunnel axis. A three-state dynamic model was established with considering unknown front face earth pressure force and unknown friction force. LuGre friction model was introduced to describe the friction force. Backstepping design was then proposed to make tracking error converge to zero. To have a comparison study, controller without LuGre model was designed. Tracking simulations of speed regulations and simulations when front face earth pressure changed were carried out to show the transient performances of the proposed controller. The results indicated that the controller had good tracking performance even under changing geological conditions. Experiments of speed regulations were carried out to have validations of the controllers.

  13. Implementation of Cyber-Physical Production Systems for Quality Prediction and Operation Control in Metal Casting

    Directory of Open Access Journals (Sweden)

    JuneHyuck Lee

    2018-05-01

    Full Text Available The prediction of internal defects of metal casting immediately after the casting process saves unnecessary time and money by reducing the amount of inputs into the next stage, such as the machining process, and enables flexible scheduling. Cyber-physical production systems (CPPS perfectly fulfill the aforementioned requirements. This study deals with the implementation of CPPS in a real factory to predict the quality of metal casting and operation control. First, a CPPS architecture framework for quality prediction and operation control in metal-casting production was designed. The framework describes collaboration among internet of things (IoT, artificial intelligence, simulations, manufacturing execution systems, and advanced planning and scheduling systems. Subsequently, the implementation of the CPPS in actual plants is described. Temperature is a major factor that affects casting quality, and thus, temperature sensors and IoT communication devices were attached to casting machines. The well-known NoSQL database, HBase and the high-speed processing/analysis tool, Spark, are used for IoT repository and data pre-processing, respectively. Many machine learning algorithms such as decision tree, random forest, artificial neural network, and support vector machine were used for quality prediction and compared with R software. Finally, the operation of the entire system is demonstrated through a CPPS dashboard. In an era in which most CPPS-related studies are conducted on high-level abstract models, this study describes more specific architectural frameworks, use cases, usable software, and analytical methodologies. In addition, this study verifies the usefulness of CPPS by estimating quantitative effects. This is expected to contribute to the proliferation of CPPS in the industry.

  14. Implementation of Cyber-Physical Production Systems for Quality Prediction and Operation Control in Metal Casting

    Science.gov (United States)

    Lee, JuneHyuck; Noh, Sang Do; Kim, Hyun-Jung; Kang, Yong-Shin

    2018-01-01

    The prediction of internal defects of metal casting immediately after the casting process saves unnecessary time and money by reducing the amount of inputs into the next stage, such as the machining process, and enables flexible scheduling. Cyber-physical production systems (CPPS) perfectly fulfill the aforementioned requirements. This study deals with the implementation of CPPS in a real factory to predict the quality of metal casting and operation control. First, a CPPS architecture framework for quality prediction and operation control in metal-casting production was designed. The framework describes collaboration among internet of things (IoT), artificial intelligence, simulations, manufacturing execution systems, and advanced planning and scheduling systems. Subsequently, the implementation of the CPPS in actual plants is described. Temperature is a major factor that affects casting quality, and thus, temperature sensors and IoT communication devices were attached to casting machines. The well-known NoSQL database, HBase and the high-speed processing/analysis tool, Spark, are used for IoT repository and data pre-processing, respectively. Many machine learning algorithms such as decision tree, random forest, artificial neural network, and support vector machine were used for quality prediction and compared with R software. Finally, the operation of the entire system is demonstrated through a CPPS dashboard. In an era in which most CPPS-related studies are conducted on high-level abstract models, this study describes more specific architectural frameworks, use cases, usable software, and analytical methodologies. In addition, this study verifies the usefulness of CPPS by estimating quantitative effects. This is expected to contribute to the proliferation of CPPS in the industry. PMID:29734699

  15. Implementation of Cyber-Physical Production Systems for Quality Prediction and Operation Control in Metal Casting.

    Science.gov (United States)

    Lee, JuneHyuck; Noh, Sang Do; Kim, Hyun-Jung; Kang, Yong-Shin

    2018-05-04

    The prediction of internal defects of metal casting immediately after the casting process saves unnecessary time and money by reducing the amount of inputs into the next stage, such as the machining process, and enables flexible scheduling. Cyber-physical production systems (CPPS) perfectly fulfill the aforementioned requirements. This study deals with the implementation of CPPS in a real factory to predict the quality of metal casting and operation control. First, a CPPS architecture framework for quality prediction and operation control in metal-casting production was designed. The framework describes collaboration among internet of things (IoT), artificial intelligence, simulations, manufacturing execution systems, and advanced planning and scheduling systems. Subsequently, the implementation of the CPPS in actual plants is described. Temperature is a major factor that affects casting quality, and thus, temperature sensors and IoT communication devices were attached to casting machines. The well-known NoSQL database, HBase and the high-speed processing/analysis tool, Spark, are used for IoT repository and data pre-processing, respectively. Many machine learning algorithms such as decision tree, random forest, artificial neural network, and support vector machine were used for quality prediction and compared with R software. Finally, the operation of the entire system is demonstrated through a CPPS dashboard. In an era in which most CPPS-related studies are conducted on high-level abstract models, this study describes more specific architectural frameworks, use cases, usable software, and analytical methodologies. In addition, this study verifies the usefulness of CPPS by estimating quantitative effects. This is expected to contribute to the proliferation of CPPS in the industry.

  16. Discovering Pediatric Asthma Phenotypes on the Basis of Response to Controller Medication Using Machine Learning.

    Science.gov (United States)

    Ross, Mindy K; Yoon, Jinsung; van der Schaar, Auke; van der Schaar, Mihaela

    2018-01-01

    Pediatric asthma has variable underlying inflammation and symptom control. Approaches to addressing this heterogeneity, such as clustering methods to find phenotypes and predict outcomes, have been investigated. However, clustering based on the relationship between treatment and clinical outcome has not been performed, and machine learning approaches for long-term outcome prediction in pediatric asthma have not been studied in depth. Our objectives were to use our novel machine learning algorithm, predictor pursuit (PP), to discover pediatric asthma phenotypes on the basis of asthma control in response to controller medications, to predict longitudinal asthma control among children with asthma, and to identify features associated with asthma control within each discovered pediatric phenotype. We applied PP to the Childhood Asthma Management Program study data (n = 1,019) to discover phenotypes on the basis of asthma control between assigned controller therapy groups (budesonide vs. nedocromil). We confirmed PP's ability to discover phenotypes using the Asthma Clinical Research Network/Childhood Asthma Research and Education network data. We next predicted children's asthma control over time and compared PP's performance with that of traditional prediction methods. Last, we identified clinical features most correlated with asthma control in the discovered phenotypes. Four phenotypes were discovered in both datasets: allergic not obese (A + /O - ), obese not allergic (A - /O + ), allergic and obese (A + /O + ), and not allergic not obese (A - /O - ). Of the children with well-controlled asthma in the Childhood Asthma Management Program dataset, we found more nonobese children treated with budesonide than with nedocromil (P = 0.015) and more obese children treated with nedocromil than with budesonide (P = 0.008). Within the obese group, more A + /O + children's asthma was well controlled with nedocromil than with budesonide (P = 0.022) or with placebo

  17. Machine learning and predictive data analytics enabling metrology and process control in IC fabrication

    Science.gov (United States)

    Rana, Narender; Zhang, Yunlin; Wall, Donald; Dirahoui, Bachir; Bailey, Todd C.

    2015-03-01

    Integrate circuit (IC) technology is going through multiple changes in terms of patterning techniques (multiple patterning, EUV and DSA), device architectures (FinFET, nanowire, graphene) and patterning scale (few nanometers). These changes require tight controls on processes and measurements to achieve the required device performance, and challenge the metrology and process control in terms of capability and quality. Multivariate data with complex nonlinear trends and correlations generally cannot be described well by mathematical or parametric models but can be relatively easily learned by computing machines and used to predict or extrapolate. This paper introduces the predictive metrology approach which has been applied to three different applications. Machine learning and predictive analytics have been leveraged to accurately predict dimensions of EUV resist patterns down to 18 nm half pitch leveraging resist shrinkage patterns. These patterns could not be directly and accurately measured due to metrology tool limitations. Machine learning has also been applied to predict the electrical performance early in the process pipeline for deep trench capacitance and metal line resistance. As the wafer goes through various processes its associated cost multiplies. It may take days to weeks to get the electrical performance readout. Predicting the electrical performance early on can be very valuable in enabling timely actionable decision such as rework, scrap, feedforward, feedback predicted information or information derived from prediction to improve or monitor processes. This paper provides a general overview of machine learning and advanced analytics application in the advanced semiconductor development and manufacturing.

  18. A Novel Vaping Machine Dedicated to Fully Controlling the Generation of E-Cigarette Emissions

    Directory of Open Access Journals (Sweden)

    Sébastien Soulet

    2017-10-01

    Full Text Available The accurate study of aerosol composition and nicotine release by electronic cigarettes is a major issue. In order to fully and correctly characterize aerosol, emission generation has to be completely mastered. This study describes an original vaping machine named Universal System for Analysis of Vaping (U-SAV, dedicated to vaping product study, enabling the control and real-time monitoring of applied flow rate and power. Repeatability and stability of the machine are demonstrated on flow rate, power regulation and e-liquid consumption. The emission protocol used to characterize the vaping machine is based on the AFNOR-XP-D90-300-3 standard (15 W power, 1 Ω atomizer resistance, 100 puffs collected per session, 1.1 L/min airflow rate. Each of the parameters has been verified with two standardized liquids by studying mass variations, power regulation and flow rate stability. U-SAV presents the required and necessary stability for the full control of emission generation. The U-SAV is recognised by the French association for standardization (AFNOR, European Committee for Standardization (CEN and International Standards Organisation (ISO as a vaping machine. It can be used to highlight the influence of the e-liquid composition, user behaviour and nature of the device, on the e-liquid consumption and aerosol composition.

  19. A Novel Vaping Machine Dedicated to Fully Controlling the Generation of E-Cigarette Emissions.

    Science.gov (United States)

    Soulet, Sébastien; Pairaud, Charly; Lalo, Hélène

    2017-10-14

    The accurate study of aerosol composition and nicotine release by electronic cigarettes is a major issue. In order to fully and correctly characterize aerosol, emission generation has to be completely mastered. This study describes an original vaping machine named Universal System for Analysis of Vaping (U-SAV), dedicated to vaping product study, enabling the control and real-time monitoring of applied flow rate and power. Repeatability and stability of the machine are demonstrated on flow rate, power regulation and e-liquid consumption. The emission protocol used to characterize the vaping machine is based on the AFNOR-XP-D90-300-3 standard (15 W power, 1 Ω atomizer resistance, 100 puffs collected per session, 1.1 L/min airflow rate). Each of the parameters has been verified with two standardized liquids by studying mass variations, power regulation and flow rate stability. U-SAV presents the required and necessary stability for the full control of emission generation. The U-SAV is recognised by the French association for standardization (AFNOR), European Committee for Standardization (CEN) and International Standards Organisation (ISO) as a vaping machine. It can be used to highlight the influence of the e-liquid composition, user behaviour and nature of the device, on the e-liquid consumption and aerosol composition.

  20. Advanced stability control of multi-machine power system by vips apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, A [Tokyo Univ., Tokyo (Japan). Dept. of Electrical Engineering; Sekine, Y [Science Univ. of Tokyo, Tokyo (Japan). Dept. of Electrical Engineering

    1994-12-31

    New technology such as synchronized switching and power electronics will make it possible to change the configuration of transmission network, the impedances of transmission lines and the phase angles of voltage in the future power systems. This paper presents a comprehensive power system damping control by power electronics based variable impedance apparatus such as variable series capacitor and high speed phase shifter and also shows a novel switching-over control of transmission lines by synchronized switching for the first awing stability and damping enhancement. The control scheme discussed in this paper is based on an energy function of multi-machine power system and its time derivative. Its effectiveness is demonstrated by digital simulations and eigenvalue analysis in multi-machine test systems. It is demonstrated that multiple switching of transmission lines improves damping in the post-fault conditions. (author) 13 refs., 24 figs., 5 tabs.

  1. Control of Surge in Centrifugal Compressors by Active Magnetic Bearings Theory and Implementation

    CERN Document Server

    Yoon, Se Young; Allaire, Paul E

    2013-01-01

    Control of Surge in Centrifugal Compressors by Active Magnetic Bearings sets out the fundamentals of integrating the active magnetic bearing (AMB) rotor suspension technology in compressor systems, and describes how this relatively new bearing technology can be employed in the active control of compressor surge. The authors provide a self-contained and comprehensive review of rotordynamics and the fundamentals of the AMB technology. The active stabilization of compressor surge employing AMBs in a machine is fully explored, from the modeling of the instability and the design of feedback controllers, to the implementation and experimental testing of the control algorithms in a specially-constructed, industrial-size centrifugal compression system. The results of these tests demonstrate the great potential of the new surge control method developed in this text. This book will be useful for engineers in industries that involve turbocompressors and magnetic bearings, as well as for researchers and graduate students...

  2. Controlling corrosion rate of Magnesium alloy using powder mixed electrical discharge machining

    Science.gov (United States)

    Razak, M. A.; Rani, A. M. A.; Saad, N. M.; Littlefair, G.; Aliyu, A. A.

    2018-04-01

    Biomedical implant can be divided into permanent and temporary employment. The duration of a temporary implant applied to children and adult is different due to different bone healing rate among the children and adult. Magnesium and its alloys are compatible for the biodegradable implanting application. Nevertheless, it is difficult to control the degradation rate of magnesium alloy to suit the application on both the children and adult. Powder mixed electrical discharge machining (PM-EDM) method, a modified EDM process, has high capability to improve the EDM process efficiency and machined surface quality. The objective of this paper is to establish a formula to control the degradation rate of magnesium alloy using the PM-EDM method. The different corrosion rate of machined surface is hypothesized to be obtained by having different combinations of PM-EDM operation inputs. PM-EDM experiments are conducted using an opened-loop PM-EDM system and the in-vitro corrosion tests are carried out on the machined surface of each specimen. There are four operation inputs investigated in this study which are zinc powder concentration, peak current, pulse on-time and pulse off-time. The results indicate that zinc powder concentration is significantly affecting the response with 2 g/l of zinc powder concentration obtaining the lowest corrosion rate. The high localized temperature at the cutting zone in spark erosion process causes some of the zinc particles get deposited on the machined surface, hence improving the surface characteristics. The suspended zinc particles in the dielectric fluid have also improve the sparking efficiency and the uniformity of sparks distribution. From the statistical analysis, a formula was developed to control the corrosion rate of magnesium alloy within the range from 0.000183 mm/year to 0.001528 mm/year.

  3. 76 FR 60376 - Revisions to the California State Implementation Plan, Santa Barbara Air Pollution Control...

    Science.gov (United States)

    2011-09-29

    ...EPA is taking direct final action to approve revisions to the Santa Barbara Air Pollution Control District (SBAPCD), Sacramento Municipal Air Quality Management District (SMAQMD) and South Coast Air Quality Management District (SCAQMD) portions of the California State Implementation Plan (SIP). These revisions concern volatile organic compound (VOC) emissions from solvent cleaning machines and solvent cleaning operations and oil and gas production wells. We are approving local rules that regulate these emission sources under the Clean Air Act as amended in 1990 (CAA or the Act).

  4. 76 FR 60405 - Revisions to the California State Implementation Plan, Santa Barbara Air Pollution Control...

    Science.gov (United States)

    2011-09-29

    ...EPA is proposing to approve revisions to the Santa Barbara Air Pollution Control District (SBAPCD), Sacramento Municipal Air Quality Management District (SMAQMD) and South Coast Air Quality Management District (SCAQMD) portions of the California State Implementation Plan (SIP). These revisions concern volatile organic compound (VOC) emissions from solvent cleaning machines and solvent cleaning operations and oil and gas production wells. We are proposing to approve local rules to regulate these emission sources under the Clean Air Act as amended in 1990 (CAA or the Act).

  5. A foundation for allocating control functions to humans and machines in future CANDU nuclear power plants

    International Nuclear Information System (INIS)

    Lupton, L.R.; Lipsett, J.J.; Davey, E.C.; Olmstead, R.A.

    1990-06-01

    Since the control room for the Atomic Energy of Canada Limited CANDU 6 plant was designed in the 1970s, requirements for control rooms have changed dramatically as a result of new licensing requirements, evolution of major new standards for control centre design and technological advances. The role of the human operator has become prominent in the design and operation of industrial and, in particular, nuclear plants. Major industrial accidents in the last decade have highlighted the need for paying significantly more attention to the requirements of the human as an integral part of the plant control system. A Functional Design Methodology has been defined that addresses the issues related to maximizing the strengths of the human and the machine in the next generation of CANDU plants. This method is based, in part, on the recently issued international standard IEC 964. The application of this method will lead to the definition of the requirements for detailed design of the control room, including man-machine interfaces, preliminary operating procedures, staffing and training. Further, it provides a basis for the verification and validation of the allocation of functions to the operator and the machine

  6. Aspects of input processing in the numerical control of electron beam machines

    International Nuclear Information System (INIS)

    Chowdhury, A.K.

    1981-01-01

    A high-performance Numerical Control has been developed for an Electron Beam Machine. The system is structured into 3 hierarchial levels: Input Processing, Realtime Processing (such as Geometry Interpolation) and the Interfaces to the Electron Beam Machine. The author considers the Input Processing. In conventional Numerical Controls the Interfaces to the control is given by the control language as defined in DIN 66025. State of the art in NC-technology offers programming systems of differing competence covering the spectra between manual programming in the control language to highly sophisticated systems such as APT. This software interface has been used to define an Input Processor that in cooperation with the Hostcomputer meets the requirements of a sophisticated NC-system but at the same time provides a modest stand-alone system with all the basic functions such as interactive program-editing, program storage, program execution simultaneous with the development of another program, etc. Software aspects such as adapting DIN 66025 for Electron Beam Machining, organisation and modularisation of Input Processor Software has been considered and solutions have been proposed. Hardware aspects considered are interconnections of the Input Processor with the Host and the Realtime Processors. Because of economical and development-time considerations, available software and hardware has been liberally used and own development has been kept to a minimum. The proposed system is modular in software and hardware and therefore very flexible and open-ended to future expansion. (Auth.)

  7. Simulation of Digital Control Computer of Nuclear Power Plant Based on Virtual Machine Technology

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Xue Yan; Li, Shu; Li, Qing [China Nuclear Power Operation Technology Co., Wuhan (China)

    2011-08-15

    Based on analyzing DCC (Digital Control Computer) instruction sets, memory map, display controllers and I/O system, virtual machine of DCC (abbr. VM DCC) has been developed. The executive and control programs, same as running on NPP (Nuclear Power Plant) unit's DCC, can run on the VM DCC smoothly and get same control results. Dual VM DCC system has been successfully applied in NPP FSS(Full Scope Simulator) training. It not only improves FSS's fidelity but also makes maintaining easier.

  8. Human-machine interface aspects and use of computer-based operator support systems in control room upgrades and new control room designs for nuclear power plants

    International Nuclear Information System (INIS)

    Berg, O.

    1997-01-01

    At the Halden Project efforts are made to explore the possibilities through design, development and validation of Computer-based Operator Support Systems (COSSes) which can assist the operators in different operational situations, ranging from normal operation to disturbance and accident conditions. The programme comprises four main activities: 1) verification and validation of safety critical software systems; 2) man-machine interaction research emphasizing improvements in man-machine interfaces on the basis of human factors studies; 3) computerized operator support systems assisting the operator in fault detection/diagnosis and planning of control actions; and 4) control room development providing a basis for retrofitting of existing control rooms and for the design of advanced concepts. The paper presents the status of this development programme, including descriptions of specific operator support functions implemented in the simulator-based, experimental control room at Halden (HAMMLAB, HAlden Man-Machine LABoratory). These operator aids comprise advanced alarms systems, diagnostic support functions, electronic procedures, critical safety functions surveillance and accident management support systems. The different operator support systems development at the Halden Project are tested and evaluated in HAMMLAB with operators from the Halden Reactor, and occasionally from commercial NPPs, as test subjects. These evaluations provide data on the merits of different operator support systems in an advanced control room setting, as well as on how such systems should be integrated to enhance operator performance. The paper discusses these aspects and the role of computerized operator support systems in plant operation based on the experience from this work at the Halden Project. 15 refs, 5 figs

  9. Human-machine interface aspects and use of computer-based operator support systems in control room upgrades and new control room designs for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Berg, O [Institutt for Energiteknikk, OECD Halden Reactor Project (Netherlands)

    1997-07-01

    At the Halden Project efforts are made to explore the possibilities through design, development and validation of Computer-based Operator Support Systems (COSSes) which can assist the operators in different operational situations, ranging from normal operation to disturbance and accident conditions. The programme comprises four main activities: 1) verification and validation of safety critical software systems; 2) man-machine interaction research emphasizing improvements in man-machine interfaces on the basis of human factors studies; 3) computerized operator support systems assisting the operator in fault detection/diagnosis and planning of control actions; and 4) control room development providing a basis for retrofitting of existing control rooms and for the design of advanced concepts. The paper presents the status of this development programme, including descriptions of specific operator support functions implemented in the simulator-based, experimental control room at Halden (HAMMLAB, HAlden Man-Machine LABoratory). These operator aids comprise advanced alarms systems, diagnostic support functions, electronic procedures, critical safety functions surveillance and accident management support systems. The different operator support systems development at the Halden Project are tested and evaluated in HAMMLAB with operators from the Halden Reactor, and occasionally from commercial NPPs, as test subjects. These evaluations provide data on the merits of different operator support systems in an advanced control room setting, as well as on how such systems should be integrated to enhance operator performance. The paper discusses these aspects and the role of computerized operator support systems in plant operation based on the experience from this work at the Halden Project. 15 refs, 5 figs.

  10. Client Server design and implementation issues in the Accelerator Control System environment

    International Nuclear Information System (INIS)

    Sathe, S.; Hoff, L.; Clifford, T.

    1995-01-01

    In distributed system communication software design, the Client Server model has been widely used. This paper addresses the design and implementation issues of such a model, particularly when used in Accelerator Control Systems. in designing the Client Server model one needs to decide how the services will be defined for a server, what types of messages the server will respond to, which data formats will be used for the network transactions and how the server will be located by the client. Special consideration needs to be given to error handling both on the server and client side. Since the server usually is located on a machine other than the client, easy and informative server diagnostic capability is required. The higher level abstraction provided by the Client Server model simplifies the application writing, however fine control over network parameters is essential to improve the performance. Above mentioned design issues and implementation trade-offs are discussed in this paper

  11. Multi–GPU Implementation of Machine Learning Algorithm using CUDA and OpenCL

    Directory of Open Access Journals (Sweden)

    Jan Masek

    2016-06-01

    Full Text Available Using modern Graphic Processing Units (GPUs becomes very useful for computing complex and time consuming processes. GPUs provide high–performance computation capabilities with a good price. This paper deals with a multi–GPU OpenCL and CUDA implementations of k–Nearest Neighbor (k–NN algorithm. This work compares performances of OpenCLand CUDA implementations where each of them is suitable for different number of used attributes. The proposed CUDA algorithm achieves acceleration up to 880x in comparison witha single thread CPU version. The common k-NN was modified to be faster when the lower number of k neighbors is set. The performance of algorithm was verified with two GPUs dual-core NVIDIA GeForce GTX 690 and CPU Intel Core i7 3770 with 4.1 GHz frequency. The results of speed up were measured for one GPU, two GPUs, three and four GPUs. We performed several tests with data sets containing up to 4 million elements with various number of attributes.

  12. 5-axes modular CNC machining center

    Directory of Open Access Journals (Sweden)

    Breaz Radu-Eugen

    2017-01-01

    Full Text Available The paper presents the development of a 5-axes CNC machining center. The main goal of the machine was to provide the students a practical layout for training in advanced CAM techniques. The mechanical structure of the machine was built in a modular way by a specialized company, which also implemented the CNC controller. The authors of this paper developed the geometric and kinematic model of the CNC machining center and the post-processor, in order to use the machine in a CAM environment.

  13. Design of a new adaptive fuzzy controller and its implementation for the damping force control of a magnetorheological damper

    International Nuclear Information System (INIS)

    Phu, Do Xuan; Shah, Kruti; Choi, Seung-Bok

    2014-01-01

    This paper presents a new adaptive fuzzy controller and its implementation for the damping force control of a magnetorheological (MR) fluid damper in order to validate the effectiveness of the control performance. An interval type 2 fuzzy model is built, and then combined with modified adaptive control to achieve the desired damping force. In the formulation of the new adaptive controller, an enhanced iterative algorithm is integrated with the fuzzy model to decrease the time of calculation (D Wu 2013 IEEE Trans. Fuzzy Syst. 21 80–99) and the control algorithm is synthesized based on the H ∞ tracking technique. In addition, for the verification of good control performance of the proposed controller, a cylindrical MR damper which can be applied to the vibration control of a washing machine is designed and manufactured. For the operating fluid, a recently developed plate-like particle-based MR fluid is used instead of a conventional MR fluid featuring spherical particles. To highlight the control performance of the proposed controller, two existing adaptive fuzzy control algorithms proposed by other researchers are adopted and altered for a comparative study. It is demonstrated from both simulation and experiment that the proposed new adaptive controller shows better performance of damping force control in terms of response time and tracking accuracy than the existing approaches. (papers)

  14. Design and implementation of the wireless high voltage control system

    International Nuclear Information System (INIS)

    Srivastava, Saurabh; Misra, A.; Pandey, H.K.; Thakur, S.K.; Pandit, V.S.

    2011-01-01

    In this paper we will describe the implementation of the wireless link for controlling and monitoring the serial data between control PC and the interface card (general DAQ card), by replacing existing RS232 based remote control system for controlling and monitoring High Voltage Power Supply (120kV/50mA). The enhancement in the reliability is achieved by replacing old RS232 based control system with wireless system by isolating ground loop. (author)

  15. Implementation of EPICS based Control System for Radioisotope Beam line

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Ha; Ahn, Tae-Sung; Song, Young-Gi; Kwon, Hyeok-Jung; Cho, Yong-Sub [Korea Atomic Energy Research Institute, Gyeongju (Korea, Republic of)

    2015-10-15

    Korea Mult-purpose Accelerator Complex (KOMAC) has been operating 100 MeV proton linear accelerator . For operating 100 MeV linac, various control system has been implemented such as vacuum, power supply, RCCS and etc. KOMAC is operating two beam lines so that clients can use 100 MeV proton beam for their experiment. KOMAC sends beam to beam line and target room using two dipole magnets and several quadrupole magnets. As demand for experiments and Radius Isotope using beam is increased, another beam line is under construction and RI beam line control system is need. To synchronize with KOMAC control system, RI beam line control system is based on Experimental Physics and Industrial control System (EPICS) software. The beam is transported to RI beam line to control magnet power supply and vacuum. Implementation of RI beam line control system is presented and some preliminary results are reported. The base RI beam line control system is implemented. It can control beam direction and vacuum. Comparing archived data and current data, RI beam line and control system will be improved. In the future, scroll pump and gate control system will be implemented using programmable logic controller PLC. RI beam interlock sequence will be added to KOMAC interlock system to protect linac.

  16. Implementation of quality control systematics for personnel monitoring services

    International Nuclear Information System (INIS)

    Franco, J.O.A.

    1984-01-01

    The implementation of statistical quality control techniques used in industrial practise is proposed to dosimetric services. 'Control charts' and 'sampling inspection' are adapted respectively for control of measuring process and of dose results produced in routine. A chapter on Radiation Protection and Personnel Monitoring was included. (M.A.C.) [pt

  17. Implementation of a Fuzzy Logic Speed Controller for a Permanent ...

    African Journals Online (AJOL)

    In this paper DC motor control models were mathematically extracted and implemented using fuzzy logic speed controller. All control systems suffer from problems related to undesirable overshoot, longer settling times and vibrations while going from one state to another. To overcome the maximum overshoot, fuzzy logic ...

  18. Base for a remote quality control system for magnetic resonance images machines

    International Nuclear Information System (INIS)

    Gonzalez Dalmau, Evelio R; Cabal Mirabal, Carlos; Noda Guerra, Manuel

    2014-01-01

    The medical images systems convert characteristic of the tissues in gray levels or color, using a physical method and a specific mathematical transformation. In Magnetic Resonance Images (MRI) these levels have a multi-parametric dependence, this a reason of their strong presence in the daily clinical practice. This technological complexity, the high costs and the importance that have these study for the patient's life, confer to the Quality Control (QC) human, technological, economic and juridical implications. Several international groups dedicated to the QC in MRI and diversity of approaches to carry out the tests of acceptance and periodic control of the quality exist. The characterization is habitually carried out, with global methods that don't allow a detailed quantitative parametric study. A novel system of quantitative control was developed based on quantitative describers by slices and temporal. This system is formed for: 1) standard methodology of acquisition of the experimental data, 2) subsystem of functions and programs developed in MatLab, 3) subsystem of graphics and reports, and 4) the expert. It is used successfully in the characterization and the periodic control of MRI machines of several magnetic fields in Cuba and in Venezuela. They were defined and established quantitative descriptors for MRI machines. The software flexibility allows carry out the QC to any machine facilitating the standardization and its use in multi-center studies. The retrospective and predictive value of the system was demonstrated. They feel the bases for the remote realization of the test

  19. Supervisory control system implemented in programmable logical controller web server

    OpenAIRE

    Milavec, Simon

    2012-01-01

    In this thesis, we study the feasibility of supervisory control and data acquisition (SCADA) system realisation in a web server of a programmable logic controller. With the introduction of Ethernet protocol to the area of process control, the more powerful programmable logic controllers obtained integrated web servers. The web server of a programmable logic controller, produced by Siemens, will also be described in this thesis. Firstly, the software and the hardware equipment used for real...

  20. Strategy to Ensure Institutional Control Implementation at Superfund Sites

    Science.gov (United States)

    This document sets forth EPA’s strategy (Strategy) for ensuring that institutional controls (ICs) are successfully implemented at Superfund sites, with an emphasis on evaluating ICs at sites where all construction of all remedies is complete (construction complete sites).

  1. Machine Vision-Based Measurement Systems for Fruit and Vegetable Quality Control in Postharvest.

    Science.gov (United States)

    Blasco, José; Munera, Sandra; Aleixos, Nuria; Cubero, Sergio; Molto, Enrique

    Individual items of any agricultural commodity are different from each other in terms of colour, shape or size. Furthermore, as they are living thing, they change their quality attributes over time, thereby making the development of accurate automatic inspection machines a challenging task. Machine vision-based systems and new optical technologies make it feasible to create non-destructive control and monitoring tools for quality assessment to ensure adequate accomplishment of food standards. Such systems are much faster than any manual non-destructive examination of fruit and vegetable quality, thus allowing the whole production to be inspected with objective and repeatable criteria. Moreover, current technology makes it possible to inspect the fruit in spectral ranges beyond the sensibility of the human eye, for instance in the ultraviolet and near-infrared regions. Machine vision-based applications require the use of multiple technologies and knowledge, ranging from those related to image acquisition (illumination, cameras, etc.) to the development of algorithms for spectral image analysis. Machine vision-based systems for inspecting fruit and vegetables are targeted towards different purposes, from in-line sorting into commercial categories to the detection of contaminants or the distribution of specific chemical compounds on the product's surface. This chapter summarises the current state of the art in these techniques, starting with systems based on colour images for the inspection of conventional colour, shape or external defects and then goes on to consider recent developments in spectral image analysis for internal quality assessment or contaminant detection.

  2. The Neural-fuzzy Thermal Error Compensation Controller on CNC Machining Center

    Science.gov (United States)

    Tseng, Pai-Chung; Chen, Shen-Len

    The geometric errors and structural thermal deformation are factors that influence the machining accuracy of Computer Numerical Control (CNC) machining center. Therefore, researchers pay attention to thermal error compensation technologies on CNC machine tools. Some real-time error compensation techniques have been successfully demonstrated in both laboratories and industrial sites. The compensation results still need to be enhanced. In this research, the neural-fuzzy theory has been conducted to derive a thermal prediction model. An IC-type thermometer has been used to detect the heat sources temperature variation. The thermal drifts are online measured by a touch-triggered probe with a standard bar. A thermal prediction model is then derived by neural-fuzzy theory based on the temperature variation and the thermal drifts. A Graphic User Interface (GUI) system is also built to conduct the user friendly operation interface with Insprise C++ Builder. The experimental results show that the thermal prediction model developed by neural-fuzzy theory methodology can improve machining accuracy from 80µm to 3µm. Comparison with the multi-variable linear regression analysis the compensation accuracy is increased from ±10µm to ±3µm.

  3. Quasilinear Extreme Learning Machine Model Based Internal Model Control for Nonlinear Process

    Directory of Open Access Journals (Sweden)

    Dazi Li

    2015-01-01

    Full Text Available A new strategy for internal model control (IMC is proposed using a regression algorithm of quasilinear model with extreme learning machine (QL-ELM. Aimed at the chemical process with nonlinearity, the learning process of the internal model and inverse model is derived. The proposed QL-ELM is constructed as a linear ARX model with a complicated nonlinear coefficient. It shows some good approximation ability and fast convergence. The complicated coefficients are separated into two parts. The linear part is determined by recursive least square (RLS, while the nonlinear part is identified through extreme learning machine. The parameters of linear part and the output weights of ELM are estimated iteratively. The proposed internal model control is applied to CSTR process. The effectiveness and accuracy of the proposed method are extensively verified through numerical results.

  4. Connection of control circuits of machine for automatic measurement of radioactive samples

    International Nuclear Information System (INIS)

    Vorlicek, J.

    1984-01-01

    A windowless through-flow gas detector is used for measurement. The automatic machine is controlled by four flip-flops defining the following states: the dish replacement in the measuring space, washing, measurement, measured value print-out, and resetting. The first and second outputs of the first, second and third flip-flops are connected to six inputs of a block whose four outputs provide counter reset and stop-watch reset, washing, measurement, and print-out. Such machine control eliminates measurement errors by disabling sample measurement until air is removed from the measurement space, introduced on an unwashed dish or on several dishes passed under the detector. The elimination of this error is also guaranteed in manual operation. (M.D.)

  5. Closed-Loop Optimal Control Implementations for Space Applications

    Science.gov (United States)

    2016-12-01

    with standard linear algebra techniques if is converted to a diagonal square matrix by multiplying by the identity matrix, I , as was done in (1.134...OPTIMAL CONTROL IMPLEMENTATIONS FOR SPACE APPLICATIONS by Colin S. Monk December 2016 Thesis Advisor: Mark Karpenko Second Reader: I. M...COVERED Master’s thesis, Jan-Dec 2016 4. TITLE AND SUBTITLE CLOSED-LOOP OPTIMAL CONTROL IMPLEMENTATIONS FOR SPACE APPLICATIONS 5. FUNDING NUMBERS

  6. Pengendalian Kualitas Kertas Dengan Menggunakan Statistical Process Control di Paper Machine 3

    Directory of Open Access Journals (Sweden)

    Vera Devani

    2017-01-01

    Full Text Available Purpose of this research is to determine types and causes of defects commonly found in Paper Machine 3 by using statistical process control (SPC method.  Statistical process control (SPC is a technique for solving problems and is used to monitor, control, analyze, manage and improve products and processes using statistical methods.  Based on Pareto Diagrams, wavy defect is found as the most frequent defect, which is 81.7%.  Human factor, meanwhile, is found as the main cause of defect, primarily due to lack of understanding on machinery and lack of training both leading to errors in data input.

  7. Research on Modeling and Control of Regenerative Braking for Brushless DC Machines Driven Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jian-ping Wen

    2015-01-01

    Full Text Available In order to improve energy utilization rate of battery-powered electric vehicle (EV using brushless DC machine (BLDCM, the model of braking current generated by regenerative braking and control method are discussed. On the basis of the equivalent circuit of BLDCM during the generative braking period, the mathematic model of braking current is established. By using an extended state observer (ESO to observe actual braking current and the unknown disturbances of regenerative braking system, the autodisturbances rejection controller (ADRC for controlling the braking current is developed. Experimental results show that the proposed method gives better recovery efficiency and is robust to disturbances.

  8. Research on Modeling and Control of Regenerative Braking for Brushless DC Machines Driven Electric Vehicles

    OpenAIRE

    Jian-ping Wen; Chuan-wei Zhang

    2015-01-01

    In order to improve energy utilization rate of battery-powered electric vehicle (EV) using brushless DC machine (BLDCM), the model of braking current generated by regenerative braking and control method are discussed. On the basis of the equivalent circuit of BLDCM during the generative braking period, the mathematic model of braking current is established. By using an extended state observer (ESO) to observe actual braking current and the unknown disturbances of regenerative braking system, ...

  9. Study and implementation high speed operating of induced magnetization machines; Etude et mise en oeuvre de machines a aimantation induite fonctionnant a haute vitesse

    Energy Technology Data Exchange (ETDEWEB)

    Alhassoun, Y.

    2005-05-15

    Actually, electromechanical machines are characterized by their low cost and reduced maintenance. Therefore, new types of magnetic materials such as soft magnetic composites (SMC), have to be considered not only for multiple applications (small motors for automotive) for cost reduction, but also when considering other special requirements such as high speed drive (aircraft and space applications). Our report of thesis is articulated around four chapters: The first chapter show the various types of magnetic interactions used in the electromagnetic actuators. The second chapter is devoted to the modelling of the induced magnetic machines by analytical resolution of equations of the field in two dimensions. The third chapter presents the four configurations prototypes of switched reluctance machine which mix the exploitation of laminated materials and the soft magnetic powders. The fourth chapter discusses the critical conditions of this machines operating at high speed. We conclude, insisting on the efforts carried out in term of analytical modelling of the induced magnetization machines for their dimensions and exploited in this same structure, the soft magnetic composite materials. The results show the potential of soft magnetic powders when considering in particular the high frequency losses and their ability to favour the heat dissipation in this structure. (author)

  10. The CANopen Controller IP Core: Implementation, Synthesis and Test Results

    Science.gov (United States)

    Caramia, Maurizio; Bolognino, Luca; Montagna, Mario; Tosi, Pietro; Errico, Walter; Bigongiari, Franco; Furano, Gianluca

    2011-08-01

    This paper will describe the implementation and test results of the CANopen Controller IP Core (CCIPC) implemented by Thales Alenia Space and SITAEL Aerospace with the support of ESA in the frame of the EXOMARS Project. The CCIPC is a configurable VHDL implementation of the CANOPEN protocol [1]; it is foreseen to be used as CAN bus slave controller within the EXOMARS Entry Descending and Landing Demonstrato Module (EDM) and Rover Module. The CCIPC features, configuration capability, synthesis and test results will be described and the evidence of the state of maturity of this innovative IP core will be demonstrated.

  11. Real-time depth monitoring and control of laser machining through scanning beam delivery system

    International Nuclear Information System (INIS)

    Ji, Yang; Grindal, Alexander W; Fraser, James M; Webster, Paul J L

    2015-01-01

    Scanning optics enable many laser applications in manufacturing because their low inertia allows rapid movement of the process beam across the sample. We describe our method of inline coherent imaging for real-time (up to 230 kHz) micron-scale (7–8 µm axial resolution) tracking and control of laser machining depth through a scanning galvo-telecentric beam delivery system. For 1 cm trench etching in stainless steel, we collect high speed intrapulse and interpulse morphology which is useful for further understanding underlying mechanisms or comparison with numerical models. We also collect overall sweep-to-sweep depth penetration which can be used for feedback depth control. For trench etching in silicon, we show the relationship of etch rate with average power and scan speed by computer processing of depth information without destructive sample post-processing. We also achieve three-dimensional infrared continuous wave (modulated) laser machining of a 3.96 × 3.96 × 0.5 mm 3 (length × width × maximum depth) pattern on steel with depth feedback. To the best of our knowledge, this is the first successful demonstration of direct real-time depth monitoring and control of laser machining with scanning optics. (paper)

  12. Application of Machine Learning in Postural Control Kinematics for the Diagnosis of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Luís Costa

    2016-01-01

    Full Text Available The use of wearable devices to study gait and postural control is a growing field on neurodegenerative disorders such as Alzheimer’s disease (AD. In this paper, we investigate if machine-learning classifiers offer the discriminative power for the diagnosis of AD based on postural control kinematics. We compared Support Vector Machines (SVMs, Multiple Layer Perceptrons (MLPs, Radial Basis Function Neural Networks (RBNs, and Deep Belief Networks (DBNs on 72 participants (36 AD patients and 36 healthy subjects exposed to seven increasingly difficult postural tasks. The decisional space was composed of 18 kinematic variables (adjusted for age, education, height, and weight, with or without neuropsychological evaluation (Montreal cognitive assessment (MoCA score, top ranked in an error incremental analysis. Classification results were based on threefold cross validation of 50 independent and randomized runs sets: training (50%, test (40%, and validation (10%. Having a decisional space relying solely on postural kinematics, accuracy of AD diagnosis ranged from 71.7 to 86.1%. Adding the MoCA variable, the accuracy ranged between 91 and 96.6%. MLP classifier achieved top performance in both decisional spaces. Having comprehended the interdynamic interaction between postural stability and cognitive performance, our results endorse machine-learning models as a useful tool for computer-aided diagnosis of AD based on postural control kinematics.

  13. Improvement of the thickness distribution of a quartz crystal wafer by numerically controlled plasma chemical vaporization machining

    International Nuclear Information System (INIS)

    Shibahara, Masafumi; Yamamura, Kazuya; Sano, Yasuhisa; Sugiyama, Tsuyoshi; Endo, Katsuyoshi; Mori, Yuzo

    2005-01-01

    To improve the thickness uniformity of thin quartz crystal wafer, a new machining process that utilizes an atmospheric pressure plasma was developed. In an atmospheric pressure plasma process, since the kinetic energy of ions that impinge to the wafer surface is small and the density of the reactive species is large, high-efficiency machining without damage is realized, and the thickness distribution is corrected by numerically controlled scanning of the quartz wafer to the localized high-density plasma. By using our developed machining process, the thickness distribution of an AT cut wafer was improved from 174 nm [peak to valley (p-v)] to 67 nm (p-v) within 94 s. Since there are no unwanted spurious modes in the machined quartz wafer, it was proved that the developed machining method has a high machining efficiency without any damage

  14. Promoting the purchase of low-calorie foods from school vending machines: A cluster-randomized controlled study

    NARCIS (Netherlands)

    Kocken, P.L.; Eeuwijk, J.; Kesten, N.M.C. van; Dusseldorp, E.; Buijs, G.; Bassa-Dafesh, Z.; Snel, J.

    2012-01-01

    BACKGROUND: Vending machines account for food sales and revenue in schools. We examined 3 strategies for promoting the sale of lower-calorie food products from vending machines in high schools in the Netherlands. METHODS: A school-based randomized controlled trial was conducted in 13 experimental

  15. Methods, systems and apparatus for controlling third harmonic voltage when operating a multi-space machine in an overmodulation region

    Science.gov (United States)

    Perisic, Milun; Kinoshita, Michael H; Ranson, Ray M; Gallegos-Lopez, Gabriel

    2014-06-03

    Methods, system and apparatus are provided for controlling third harmonic voltages when operating a multi-phase machine in an overmodulation region. The multi-phase machine can be, for example, a five-phase machine in a vector controlled motor drive system that includes a five-phase PWM controlled inverter module that drives the five-phase machine. Techniques for overmodulating a reference voltage vector are provided. For example, when the reference voltage vector is determined to be within the overmodulation region, an angle of the reference voltage vector can be modified to generate a reference voltage overmodulation control angle, and a magnitude of the reference voltage vector can be modified, based on the reference voltage overmodulation control angle, to generate a modified magnitude of the reference voltage vector. By modifying the reference voltage vector, voltage command signals that control a five-phase inverter module can be optimized to increase output voltages generated by the five-phase inverter module.

  16. The Control of the Implementation and Management of European Funds

    Directory of Open Access Journals (Sweden)

    Vasile Burja

    2018-03-01

    Full Text Available Effective implementation and management of European funds is of major importance for the new members of the European Union. Controlling these funds aims to increase the performance of their use. European regulations require Member States to take appropriate measures to properly maintain and operate their management and control systems so that they can offer the necessary assurances regarding the correct use of the allocated funds. This article highlights the importance of control exercised within institutions that implement and manage European funds. There have been many irregularities in the implementation of projects funded by European funds. In order to determine the most frequent types of irregularities, a questionnaire was applied to the experts responsible for controlling European funds in intermediary bodies. In this article we will present the results obtained after the centralization of expert responses and the importance of control in the prevention of irregularities and fraud.

  17. Analog implementation of an integral resonant control scheme

    International Nuclear Information System (INIS)

    Pereira, E; Moheimani, S O R; Aphale, S S

    2008-01-01

    Integral resonant control (IRC) has been introduced as a high performance controller design methodology for flexible structures with collocated actuator–sensor pairs. IRC has a simple structure and is capable of achieving significant damping, over several modes, while guaranteeing closed-loop stability of the system in the presence of unmodeled out-of-bandwidth dynamics. IRC can be an ideal controller for various industrial damping applications, if packaged in a simple easy-to-implement electronic module. This work proposes an analog implementation of the IRC scheme using a single Op-Amp circuit. The objective is to show that with simple analog realization of the modified IRC scheme, it is possible to damp a large number of vibration modes. A brief discussion about the modeling, circuit considerations, implementation and experimental results is presented in order to validate the usefulness and practicality of the proposed analog IRC implementation. (technical note)

  18. Tracking control of a leg rehabilitation machine driven by pneumatic artificial muscles using composite fuzzy theory.

    Science.gov (United States)

    Chang, Ming-Kun

    2014-01-01

    It is difficult to achieve excellent tracking performance for a two-joint leg rehabilitation machine driven by pneumatic artificial muscles (PAMs) because the system has a coupling effect, highly nonlinear and time-varying behavior associated with gas compression, and the nonlinear elasticity of bladder containers. This paper therefore proposes a T-S fuzzy theory with supervisory control in order to overcome the above problems. The T-S fuzzy theory decomposes the model of a nonlinear system into a set of linear subsystems. In this manner, the controller in the T-S fuzzy model is able to use simple linear control techniques to provide a systematic framework for the design of a state feedback controller. Then the LMI Toolbox of MATLAB can be employed to solve linear matrix inequalities (LMIs) in order to determine controller gains based on the Lyapunov direct method. Moreover, the supervisory control can overcome the coupling effect for a leg rehabilitation machine. Experimental results show that the proposed controller can achieve excellent tracking performance, and guarantee robustness to system parameter uncertainties.

  19. PSS and TCSC damping controller coordinated design using PSO in multi-machine power system

    Energy Technology Data Exchange (ETDEWEB)

    Shayeghi, H., E-mail: hshayeghi@gmail.co [Technical Engineering Department, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of); Safari, A.; Shayanfar, H.A. [Center of Excellence for Power System Automation and Operation, Electrical Engineering Department, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)

    2010-12-15

    The paper develops a new design procedure for simultaneous coordinated designing of the thyristor controlled series capacitor (TCSC) damping controller and power system stabilizer (PSS) in multi-machine power system. The coordinated design problem of PSS and TCSC damping controllers over a wide range of loading conditions is converted to an optimization problem with the time domain-based objective function that is solved by a particle swarm optimization (PSO) technique which has a strong ability to find the most optimistic results. By minimizing the proposed fitness function in which oscillatory characteristics between areas are included and thus the interactions among the TCSC controller and PSS under transient conditions in the multi-machine power system are improved. To ensure the robustness of the proposed stabilizers, the design process takes a wide range of operating conditions into account. The effectiveness of the proposed controller is demonstrated through the nonlinear time-domain simulation and some performance indices studies. The results of these studies show that the proposed coordinated controllers have an excellent capability in damping power system inter-area oscillations and enhance greatly the dynamic stability of the power system. Moreover, it is superior to both the uncoordinated designed stabilizers of the PSS and the TCSC damping controller.

  20. Sensorless Suitability Analysis of Hybrid PM Machines for Electric Vehicles

    DEFF Research Database (Denmark)

    Matzen, Torben Nørregaard; Rasmussen, Peter Omand

    2009-01-01

    Electrical machines for traction in electric vehicles are an essential component which attract attention with respect to machine design and control as a part of the emerging renewable industry. For the hybrid electric machine to replace the familiar behaviour of the combustion engine torque......, control seems necessary to implement. For hybrid permanent magnet (PM) machines torque control in an indirect fashion using dq-current control is frequently done. This approach requires knowledge about the machine shaft position which may be obtained sensorless. In this article a method based on accurate...

  1. Implementation of EPICS based vacuum control system for variable energy cyclotron centre, Kolkata

    Science.gov (United States)

    Roy, Anindya; Bhole, R. B.; Nandy, Partha P.; Yadav, R. C.; Pal, Sarbajit; Roy, Amitava

    2015-03-01

    The vacuum system of the Room Temperature (K = 130) Cyclotron of Variable Energy Cyclotron Centre is comprised of vacuum systems of main machine and Beam Transport System. The vacuum control system is upgraded to a PLC based Automated system from the initial relay based Manual system. The supervisory control of the vacuum system is implemented in Experimental Physics and Industrial Control System (EPICS). An EPICS embedded ARM based vacuum gauge controller is developed to mitigate the requirement of vendor specific gauge controller for gauges and also for seamless integration of the gauge controllers with the control system. A set of MS-Windows ActiveX components with embedded EPICS Channel Access interface are developed to build operator interfaces with less complex programming and to incorporate typical Windows feature, e.g., user authentication, file handling, better fonts, colors, mouse actions etc. into the operator interfaces. The control parameters, monitoring parameters, and system interlocks of the system are archived in MySQL based EPICS MySQL Archiver developed indigenously. In this paper, we describe the architecture, the implementation details, and the performance of the system.

  2. Implementation of EPICS based vacuum control system for variable energy cyclotron centre, Kolkata

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Anindya, E-mail: r-ani@vecc.gov.in; Bhole, R. B.; Nandy, Partha P.; Yadav, R. C.; Pal, Sarbajit; Roy, Amitava [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064 (India)

    2015-03-15

    The vacuum system of the Room Temperature (K = 130) Cyclotron of Variable Energy Cyclotron Centre is comprised of vacuum systems of main machine and Beam Transport System. The vacuum control system is upgraded to a PLC based Automated system from the initial relay based Manual system. The supervisory control of the vacuum system is implemented in Experimental Physics and Industrial Control System (EPICS). An EPICS embedded ARM based vacuum gauge controller is developed to mitigate the requirement of vendor specific gauge controller for gauges and also for seamless integration of the gauge controllers with the control system. A set of MS-Windows ActiveX components with embedded EPICS Channel Access interface are developed to build operator interfaces with less complex programming and to incorporate typical Windows feature, e.g., user authentication, file handling, better fonts, colors, mouse actions etc. into the operator interfaces. The control parameters, monitoring parameters, and system interlocks of the system are archived in MySQL based EPICS MySQL Archiver developed indigenously. In this paper, we describe the architecture, the implementation details, and the performance of the system.

  3. Implementation and comparative study of control strategies for an isolated DFIG based WECS

    Science.gov (United States)

    Bouchiba, Nouha; Barkia, Asma; Sallem, Souhir; Chrifi-Alaoui, Larbi; Drid, Saïd; Kammoun, M. B. A.

    2017-10-01

    Nowadays, a global interest for renewable energy sources has been growing intensely. In particular, a wind energy has become the most popular. In case of autonomous systems, wind energy conversion system (WECS) based on a double fed induction generator (DFIG) is widely used. In this paper, in order to control the stand-alone system outputs under wind speed and load variations, three kinds of nonlinear control strategies have been proposed, applied and compared, such as: Classical PI controller, Back-Stepping and Sliding Mode controllers. A series of experiments have been conducted to evaluate and to compare the developed controllers' dynamic performances under load demand and speed variations. The design and the implementation of different control strategies to a 1.5kW doubly fed induction machine is carried out using a dSpace DS1104 card based on MATLAB/Simulink environment. Experimental results are presented to show the validity of the implemented controllers and demonstrate the effectiveness of each controller compared with others.

  4. Implementation of EPICS based vacuum control system for variable energy cyclotron centre, Kolkata

    International Nuclear Information System (INIS)

    Roy, Anindya; Bhole, R. B.; Nandy, Partha P.; Yadav, R. C.; Pal, Sarbajit; Roy, Amitava

    2015-01-01

    The vacuum system of the Room Temperature (K = 130) Cyclotron of Variable Energy Cyclotron Centre is comprised of vacuum systems of main machine and Beam Transport System. The vacuum control system is upgraded to a PLC based Automated system from the initial relay based Manual system. The supervisory control of the vacuum system is implemented in Experimental Physics and Industrial Control System (EPICS). An EPICS embedded ARM based vacuum gauge controller is developed to mitigate the requirement of vendor specific gauge controller for gauges and also for seamless integration of the gauge controllers with the control system. A set of MS-Windows ActiveX components with embedded EPICS Channel Access interface are developed to build operator interfaces with less complex programming and to incorporate typical Windows feature, e.g., user authentication, file handling, better fonts, colors, mouse actions etc. into the operator interfaces. The control parameters, monitoring parameters, and system interlocks of the system are archived in MySQL based EPICS MySQL Archiver developed indigenously. In this paper, we describe the architecture, the implementation details, and the performance of the system

  5. Intelligent control with implementation on the wind energy conversion system

    International Nuclear Information System (INIS)

    Basma, Mohamad Khalil

    1997-05-01

    In this thesis our main job is to compare intelligent control and conventional control algorithms, by applying each scheme to the same control problem. Based on simulation, we analyze and compare the results of applying fuzzy logic and neural networks controllers on a popular control problem: variable speed wind energy conversion system. The reason behind our choice is the challenging nature of the problem where the plant should be controlled to maximize the power generated, while respecting its hardware constraints under varying operating conditions and disturbances. We have shown the effectiveness of fuzzy logic exciter controller for the adopted wind energy generator when compared to a conventional PI exciter. It showed better performance in the whole operating range. However, in the high wind speeds region, both controllers were unable to deliver the rpm requirements. We proposed the use of neural network intelligent techniques to supply us the optimal pitch. Our aim was to develop a simple and reliable controller that can deliver this optimal output, while remaining adaptive to system uncertainties and disturbances. The proposed fuzzy controller with a neural pitch controller showed best dynamic and robust performance as compared to the adaptive pitch controller together with the PI exciter. This study has shown that artificial neural networks and fuzzy logic control algorithms can be implemented for real time control implementations. the neuro-fuzzy control approach is robust and its performance is superior to that of traditional control methods. (author)

  6. Machine terms dictionary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1979-04-15

    This book gives descriptions of machine terms which includes machine design, drawing, the method of machine, machine tools, machine materials, automobile, measuring and controlling, electricity, basic of electron, information technology, quality assurance, Auto CAD and FA terms and important formula of mechanical engineering.

  7. Implementation contexts of a Tuberculosis Control Program in Brazilian prisons

    Directory of Open Access Journals (Sweden)

    Luisa Gonçalves Dutra de Oliveira

    2015-01-01

    Full Text Available OBJECTIVE To analyze the influence from context characteristics in the control of tuberculosis in prisons, and the influence from the program implementation degrees in observed effects.METHODS A multiple case study, with a qualitative approach, conducted in the prison systems of two Brazilian states in 2011 and 2012. Two prisons were analyzed in each state, and a prison hospital was analyzed in one of them. The data were submitted to a content analysis, which was based on external, political-organizational, implementation, and effect dimensions. Contextual factors and the ones in the program organization were correlated. The independent variable was the program implementation degree and the dependent one, the effects from the Tuberculosis Control Program in prisons.RESULTS The context with the highest sociodemographic vulnerability, the highest incidence rate of tuberculosis, and the smallest amount of available resources were associated with the low implementation degree of the program. The results from tuberculosis treatment in the prison system were better where the program had already been partially implemented than in the case with low implementation degree in both cases.CONCLUSIONS The implementation degree and its contexts – external and political-organizational dimensions – simultaneously contribute to the effects that are observed in the control of tuberculosis in analyzed prisons.

  8. Gesture-controlled interfaces for self-service machines and other applications

    Science.gov (United States)

    Cohen, Charles J. (Inventor); Beach, Glenn (Inventor); Cavell, Brook (Inventor); Foulk, Gene (Inventor); Jacobus, Charles J. (Inventor); Obermark, Jay (Inventor); Paul, George (Inventor)

    2004-01-01

    A gesture recognition interface for use in controlling self-service machines and other devices is disclosed. A gesture is defined as motions and kinematic poses generated by humans, animals, or machines. Specific body features are tracked, and static and motion gestures are interpreted. Motion gestures are defined as a family of parametrically delimited oscillatory motions, modeled as a linear-in-parameters dynamic system with added geometric constraints to allow for real-time recognition using a small amount of memory and processing time. A linear least squares method is preferably used to determine the parameters which represent each gesture. Feature position measure is used in conjunction with a bank of predictor bins seeded with the gesture parameters, and the system determines which bin best fits the observed motion. Recognizing static pose gestures is preferably performed by localizing the body/object from the rest of the image, describing that object, and identifying that description. The disclosure details methods for gesture recognition, as well as the overall architecture for using gesture recognition to control of devices, including self-service machines.

  9. Inspecting a research reactor's control rod surface for pitting using a machine vision

    International Nuclear Information System (INIS)

    Tokuhiro, Akira T.; Vadakattu, Shreekanth

    2005-01-01

    Inspection for pits on the control rod is performed to study the degradation of the control rod material which helps estimating the service life of the control rod at UMR nuclear reactor (UMRR). This inspection task is visually inspected and recorded subjectively. The conventional visual inspection to identify pits on the control rod surface can be automated using machine vision technique. Since the in-service control rods were not available to capture images and measure number of pits and size of the pits, the applicability of machine vision method was applied on SAE 1018 steel coupons immersed in oxygen saturated de-ionized water at 30deg, 50deg and 70deg. Images were captured after each test cycle at different light intensity to reveal surface topography of the coupon surface and analyzed for number of pits and pit size using EPIX XCAP-Std software. The captured and analyzed images provided quantitative results for the steel coupons and demonstrated that the method can be applied for identifying pits on control rod surface in place of conventional visual inspection. (author)

  10. Design, implementation, and experimental validation of optimal power split control for hybrid electric trucks

    NARCIS (Netherlands)

    Keulen, T. van; Mullem, D. van; Jager, B. van; Kessels, J.T.B.A.; Steinbuch, M.

    2012-01-01

    Hybrid electric vehicles require an algorithm that controls the power split between the internal combustion engine and electric machine(s), and the opening and closing of the clutch. Optimal control theory is applied to derive a methodology for a real-time optimal-control-based power split

  11. Implementing Controlled Composition to Improve Vocabulary Mastery of EFL Students

    Science.gov (United States)

    Juriah

    2015-01-01

    The purposes of this study was to know how (1) Controlled composition teaching techniques implemented by the English teacher at SDN 027 Samarinda to improve vocabulary mastery, and (2) Controlled composition teaching techniques improves vocabulary mastery of the sixth grade students of SDN 027 Samarinda. This research used a Classroom Action…

  12. Promoting Implementation of Tobacco Control Laws and Policies in ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The looming tobacco epidemic and its potential for thwarting development has prompted most governments in sub-Saharan Africa to ratify the World Health Organization's Framework Convention on Tobacco Control (WHO-FCTC). Ratifying countries must design and implement a national tobacco control action plan and ...

  13. Design and Implementation of Frequency-responsive Thermostat Control

    DEFF Research Database (Denmark)

    Nyeng, Preben; Østergaard, Jacob; Togeby, Mikael

    2010-01-01

    properties and needs of each application, and on the other hand the requirements of the system operator. The control algorithms are implemented on a microcontroller unit that is interfaced with existing thermostats for each application. To validate the control algorithms and overall system design, a series...

  14. Study on electromagnetism force of CARR control rod drive mechanism experimental machine

    International Nuclear Information System (INIS)

    Zhu Xuewei; Zhen Jianxiao; Wang Yulin; Jia Yueguang; Yang Kun; Yin Haozhe

    2015-01-01

    With the aim of acquiring electromagnetic force and electromagnetic field distributions of control rod drive mechanism (CRDM) in China Advanced Research Reactor (CARR), the force analysis on the CRDM was taken. Manufacturing the experimental machine, the electromagnetic force experiment was taken on it. The electromagnetic field and electromagnetic force simulation analyses of experimental machine were taken, working out distribution data of electromagnetic force and magnetic induction intensity distribution curve, and the effects of permanent magnetic field on electromagnetic field and structure parameters on electromagnetic force. The simulation value is accord with experiment value, the research results provide a reference to electromagnetic force study on CRDM in CARR, and also provide a reference to design of the same type CRDM. (authors)

  15. Method for providing slip energy control in permanent magnet electrical machines

    Science.gov (United States)

    Hsu, John S.

    2006-11-14

    An electric machine (40) has a stator (43), a permanent magnet rotor (38) with permanent magnets (39) and a magnetic coupling uncluttered rotor (46) for inducing a slip energy current in secondary coils (47). A dc flux can be produced in the uncluttered rotor when the secondary coils are fed with dc currents. The magnetic coupling uncluttered rotor (46) has magnetic brushes (A, B, C, D) which couple flux in through the rotor (46) to the secondary coils (47c, 47d) without inducing a current in the rotor (46) and without coupling a stator rotational energy component to the secondary coils (47c, 47d). The machine can be operated as a motor or a generator in multi-phase or single-phase embodiments and is applicable to the hybrid electric vehicle. A method of providing a slip energy controller is also disclosed.

  16. An Artificial Neural Network Modeling for Force Control System of a Robotic Pruning Machine

    Directory of Open Access Journals (Sweden)

    Ali Hashemi

    2014-06-01

    Full Text Available Nowadays, there has been an increasing application of pruning robots for planted forests due to the growing concern on the efficiency and safety issues. Power consumption and working time of agricultural machines have become important issues due to the high value of energy in modern world. In this study, different multi-layer back-propagation networks were utilized for mapping the complex and highly interactive of pruning process parameters and to predict power consumption and cutting time of a force control equipped robotic pruning machine by knowing input parameters such as: rotation speed, stalk diameter, and sensitivity coefficient. Results showed significant effects of all input parameters on output parameters except rotational speed on cutting time. Therefore, for reducing the wear of cutting system, a less rotational speed in every sensitivity coefficient should be selected.

  17. Implementation of Software Tools for Hybrid Control Rooms in the Human Systems Simulation Laboratory

    International Nuclear Information System (INIS)

    Jokstad, Håkon; Berntsson, Olof; McDonald, Robert; Boring, Ronald; Hallbert, Bruce; Fitzgerald, Kirk

    2014-01-01

    The Institute for Energy Technology (IFE) and Idaho National Laboratory have designed, implemented, tested and installed a functioning prototype of a set of large screen overview and procedure support displays for the Generic Pressurized Water Reactor (GPWR) simulator in the U.S. Department of Energy's Human Systems Simulation Laboratory. The overview display is based on IFE's extensive experiences with large screen overview displays in the Halden Man-Machine Laboratory (HAMMLAB), and presents the main control room indicators on a combined three-screen display. The procedure support displays are designed and implemented to provide a compact but still comprehensive overview of the relevant process measurements and indicators to support operators' good situational awareness during the performance of various types of procedures and plant conditions.

  18. Implementation of Software Tools for Hybrid Control Rooms in the Human Systems Simulation Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Jokstad, Håkon [Halden Reactor Project, Halden (Norway); Berntsson, Olof [Halden Reactor Project, Halden (Norway); McDonald, Robert [Halden Reactor Project, Halden (Norway); Boring, Ronald [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hallbert, Bruce [Idaho National Lab. (INL), Idaho Falls, ID (United States); Fitzgerald, Kirk [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-11-01

    The Institute for Energy Technology (IFE) and Idaho National Laboratory have designed, implemented, tested and installed a functioning prototype of a set of large screen overview and procedure support displays for the Generic Pressurized Water Reactor (GPWR) simulator in the U.S. Department of Energy’s Human Systems Simulation Laboratory. The overview display is based on IFE’s extensive experiences with large screen overview displays in the Halden Man-Machine Laboratory (HAMMLAB), and presents the main control room indicators on a combined three-screen display. The procedure support displays are designed and implemented to provide a compact but still comprehensive overview of the relevant process measurements and indicators to support operators' good situational awareness during the performance of various types of procedures and plant conditions.

  19. Implementation strategy for the ITER plasma control system

    International Nuclear Information System (INIS)

    Winter, A.; Ambrosino, G.; Bauvir, B.; De Tommasi, G.; Humphreys, D.A.; Mattei, M.; Neto, A.; Raupp, G.; Snipes, J.A.; Stephen, A.V.; Treutterer, W.; Walker, M.L.; Zabeo, L.

    2015-01-01

    This paper gives an overview of the scope and context of the CODAC high-level real-time applications (Supervision and Plasma Control) and presents the strategy and current state of design of the tools to support the implementation. A real-time framework, which is currently under development with strong support of the worldwide fusion community will not only support the implementation of plasma control strategies with the extensive exception handling and forecasting functionality foreseen for ITER, but also integrated commissioning, orchestration and supervision as well as the real-time needs of ITER plant system developers. A second cornerstone in the implementation strategy is the development of a powerful simulation environment (Plasma Control System Simulation Platform – PCSSP) to design and verify control strategies, event handling and orchestration and automation. The development of PCSSP is currently under contract and this paper will also give an overview of its current state of development.

  20. FPGA Implementation of Real-Time Ethernet for Motion Control

    Directory of Open Access Journals (Sweden)

    Chen Youdong

    2013-01-01

    Full Text Available This paper provides an applicable implementation of real-time Ethernet named CASNET, which modifies the Ethernet medium access control (MAC to achieve the real-time requirement for motion control. CASNET is the communication protocol used for motion control system. Verilog hardware description language (VHDL has been used in the MAC logic design. The designed MAC serves as one of the intellectual properties (IPs and is applicable to various industrial controllers. The interface of the physical layer is RJ45. The other layers have been implemented by using C programs. The real-time Ethernet has been implemented by using field programmable gate array (FPGA technology and the proposed solution has been tested through the cycle time, synchronization accuracy, and Wireshark testing.

  1. Implementation strategy for the ITER plasma control system

    Energy Technology Data Exchange (ETDEWEB)

    Winter, A., E-mail: axel.winter@iter.org [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Ambrosino, G. [CREATE/Università di Napoli Federico II, Dip. Ingegneria Elettrica e delle Tecnologie dell’Informazione (Italy); Bauvir, B. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); De Tommasi, G. [CREATE/Università di Napoli Federico II, Dip. Ingegneria Elettrica e delle Tecnologie dell’Informazione (Italy); Humphreys, D.A. [General Atomics, San Diego, CA (United States); Mattei, M. [CREATE/Seconda Università di Napoli, Dip. Ingegneria Industriale e dell’Informazione (Italy); Neto, A. [Fusion for Energy, Barcelona (Spain); Raupp, G. [Max Planck Institute for Plasma Physics, EURATOM Association, Garching (Germany); Snipes, J.A. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Stephen, A.V. [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon (United Kingdom); Treutterer, W. [Max Planck Institute for Plasma Physics, EURATOM Association, Garching (Germany); Walker, M.L. [General Atomics, San Diego, CA (United States); Zabeo, L. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France)

    2015-10-15

    This paper gives an overview of the scope and context of the CODAC high-level real-time applications (Supervision and Plasma Control) and presents the strategy and current state of design of the tools to support the implementation. A real-time framework, which is currently under development with strong support of the worldwide fusion community will not only support the implementation of plasma control strategies with the extensive exception handling and forecasting functionality foreseen for ITER, but also integrated commissioning, orchestration and supervision as well as the real-time needs of ITER plant system developers. A second cornerstone in the implementation strategy is the development of a powerful simulation environment (Plasma Control System Simulation Platform – PCSSP) to design and verify control strategies, event handling and orchestration and automation. The development of PCSSP is currently under contract and this paper will also give an overview of its current state of development.

  2. Direct Torque Control System for Permanent Magnet Synchronous Machine with Fuzzy Speed Pi Regulator

    Science.gov (United States)

    Nabti, K.; Abed, K.; Benalla, H.

    2008-06-01

    The Permanent Magnet Synchronous Machine (PMSM) speed regulation with a conventional PI regulator reduces the speed control precision, increase the torque fluctuation, and consequentially low performances of the whole system. With utilisation of fuzzy logic method, this paper presents the self adaptation of conventional PI regulator parameters Kp and Ki (proportional and integral coefficients respectively), using to regulate the speed in Direct Torque Control strategy (DTC). The ripples of both torque and flux are reduced remarkable, small overshooting and good dynamic of the speed and torque. Simulation results verify the proposed method validity.

  3. FPGA implementation of bit controller in double-tick architecture

    Science.gov (United States)

    Kobylecki, Michał; Kania, Dariusz

    2017-11-01

    This paper presents a comparison of the two original architectures of programmable bit controllers built on FPGAs. Programmable Logic Controllers (which include, among other things programmable bit controllers) built on FPGAs provide a efficient alternative to the controllers based on microprocessors which are expensive and often too slow. The presented and compared methods allow for the efficient implementation of any bit control algorithm written in Ladder Diagram language into the programmable logic system in accordance with IEC61131-3. In both cases, we have compared the effect of the applied architecture on the performance of executing the same bit control program in relation to its own size.

  4. Development and validation of a general-purpose ASIC chip for the control of switched reluctance machines

    International Nuclear Information System (INIS)

    Chen Haijin; Lu Shengli; Shi Longxing

    2009-01-01

    A general-purpose application specific integrated circuit (ASIC) chip for the control of switched reluctance machines (SRMs) was designed and validated to fill the gap between the microcontroller capability and the controller requirements of high performance switched reluctance drive (SRD) systems. It can be used for the control of SRM running either in low speed or in high-speed, i.e., either in chopped current control (CCC) mode or in angular position control (APC) mode. Main functions of the chip include filtering and cycle calculation of rotor angular position signals, commutation logic according to rotor cycle and turn-on/turn-off angles (θ on /θ off ), controllable pulse width modulation (PWM) waveforms generation, chopping control with adjustable delay time, and commutation control with adjustable delay time. All the control parameters of the chip are set online by the microcontroller through a serial peripheral interface (SPI). The chip has been designed with the standard cell based design methodology, and implemented in the central semiconductor manufacturing corporation (CSMC) 0.5 μm complementary metal-oxide-semiconductor (CMOS) process technology. After a successful automatic test equipment (ATE) test using the Nextest's Maverick test system, the chip was further validated through an experimental three-phase 6/2-pole SRD system. Both the ATE test and experimental validation results show that the chip can meet the control requirements of high performance SRD systems, and simplify the controller construction. For a resolution of 0.36 deg. (electrical degree), the chip's maximum processable frequency of the rotor angular position signals is 10 kHz, which is 300,000 rev/min when a three-phase 6/2-pole SRM is concerned

  5. Implementation of a fuzzy logic/neural network multivariable controller

    International Nuclear Information System (INIS)

    Cordes, G.A.; Clark, D.E.; Johnson, J.A.; Smartt, H.B.; Wickham, K.L.; Larson, T.K.

    1992-01-01

    This paper describes a multivariable controller developed at the Idaho National Engineering Laboratory (INEL) that incorporates both fuzzy logic rules and a neural network. The controller was implemented in a laboratory demonstration and was robust, producing smooth temperature and water level response curves with short time constants. In the future, intelligent control systems will be a necessity for optimal operation of autonomous reactor systems located on earth or in space. Even today, there is a need for control systems that adapt to the changing environment and process. Hybrid intelligent control systems promise to provide this adaptive capability. Fuzzy logic implements our imprecise, qualitative human reasoning. The values of system variables (controller inputs) and control variables (controller outputs) are described in linguistic terms and subdivided into fully overlapping value ranges. The fuzzy rule base describes how combinations of input parameter ranges determine the output control values. Neural networks implement our human learning. In this controller, neural networks were embedded in the software to explore their potential for adding adaptability

  6. The status and latest issues on KAERI export control implementation

    International Nuclear Information System (INIS)

    Kim, Hyun Sook; Park, Ho Jun; Kim, Hyun Jo; Ko, Han Suk; Lee, Byung Doo

    2010-01-01

    There are four informal non-proliferation arrangements which seek to control the proliferation of weapons of mass destruction and their missile delivery systems and the transfer of conventional weapons and dual-use technologies. The four arrangements are Wassenaar Arrangement (WA) on export controls for conventional arms and dual use goods and technologies, Nuclear Supplies Group(NSG), Missile Technology Control Regime(MTCR) and Australia Group(AG) on chemical and biological weapons materials. ROK participates in four arrangements to seek to encourage responsible practice in the trade of strategic goods and technologies. It is achieved through the implementation of export control list. MKE Notification (Ministry of Knowledge Economy Notification No. 2009-250) specifies those items and technologies subject to control. In this paper, the status and latest issues on KAERI export control implementation are described

  7. Man-machine considerations in nuclear power plant control room design

    International Nuclear Information System (INIS)

    Tennant, D.V.

    1987-01-01

    Although human factors is a subject that has been around for a number of years, this area of design has only recently become known to the power industry. As power plants have grown in size and complexity, the instrumentation required to control and monitor plant processes has increased tremendously. This has been especially true in nuclear power facilities. Although operators are better trained and qualified, very little consideration has been devoted to man-machine interface and the limitations of human operators. This paper explores the historic aspects and design philosophy associated with nuclear plant control rooms. Current problems and solutions are explored along with the components of a control room review. Finally, a survey of future advances in control room design are offered. This paper is concerned with instrumentation, controls, and displays

  8. Design of control system for optical fiber drawing machine driven by double motor

    Science.gov (United States)

    Yu, Yue Chen; Bo, Yu Ming; Wang, Jun

    2018-01-01

    Micro channel Plate (MCP) is a kind of large-area array electron multiplier with high two-dimensional spatial resolution, used as high-performance night vision intensifier. The high precision control of the fiber is the key technology of the micro channel plate manufacturing process, and it was achieved by the control of optical fiber drawing machine driven by dual-motor in this paper. First of all, utilizing STM32 chip, the servo motor drive and control circuit was designed to realize the dual motor synchronization. Secondly, neural network PID control algorithm was designed for controlling the fiber diameter fabricated in high precision; Finally, the hexagonal fiber was manufactured by this system and it shows that multifilament diameter accuracy of the fiber is +/- 1.5μm.

  9. Machine for controlling band-type 'essuimatic' hand towels (1962); Machine a controler les essuie-mains en bande du type essuimatic (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Cottignies, S; Ortiz, J [Commissariat a l' Energie Atomique, Centre de Production de Plutonium, Marcoule (France). Centre d' Etudes Nucleaires

    1962-07-01

    This machine is designed to control the band-towels in the form of 40 meters bands equipping the 'Essuimatic' distributors. It controls automatically the {alpha} and {beta}-{gamma} activity. The towel is driven by motors and passes under Geiger-Muller counters and then between zinc sulphide scintillators in conjunction with photomultipliers. Two distinct counting systems measure the total activity deposited on the cloth and, in order to give an idea of the distribution of this activity, count also the number of marks, that is, the number of times that the counting rate of the probes is above a certain value. After the passage of the cloth it is thus possible to know whether the count corresponding to the whole band is greater than that due to just the counter movement, and also whether this counting rate has not occasionally been greater than the average rate; it is thus possible to detect weak local contamination which could have been missed in an overall measurement of the cloth. (authors) [French] Cette machine est destinee a controler les linges essuie-mains sous forme de bande de 40 metres de longueur equipant les distributeurs 'ESSUIMATIC'. Elle effectue automatiquement un controle en {alpha} et en {beta}-{gamma}. Le linge entraine par un moteur passe. sous des compteurs Geiger-Muller, puis entre des scintillateurs au sulfure de zinc associes a des photomultiplicateurs. Deux chaines de comptage distinctes comptent l'activite totale deposee sur le linge et, en outre, pour donner une idee de la repartition de cette activite, elles comptent le nombre de taches, c'est-a-dire le nombre de fois que le taux de comptage des sondes est superieur a une certaine valeur. A la fin du passage du linge, il est donc possible de connaitre si le comptage correspondant a toute la bande est superieur a celui du au mouvement propre seul des compteurs et egalement de savoir si parfois ce taux de comptage n'a pas ete superieur au taux de comptage moyen, ce qui permet de detecter de

  10. Modeling and Designing of A Nonlineartemperature-Humidity Controller Using Inmushroom-Drying Machine

    Science.gov (United States)

    Wu, Xiuhua; Luo, Haiyan; Shi, Minhui

    Drying-process of many kinds of farm produce in a close room, such as mushroom-drying machine, is generally a complicated nonlinear and timedelay cause, in which the temperature and the humidity are the main controlled elements. The accurate controlling of the temperature and humidity is always an interesting problem. It's difficult and very important to make a more accurate mathematical model about the varying of the two. A math model was put forward after considering many aspects and analyzing the actual working circumstance in this paper. Form the model it can be seen that the changes of temperature and humidity in drying machine are not simple linear but an affine nonlinear process. Controlling the process exactly is the key that influences the quality of the dried mushroom. In this paper, the differential geometry theories and methods are used to analyze and solve the model of these smallenvironment elements. And at last a kind of nonlinear controller which satisfied the optimal quadratic performance index is designed. It can be proved more feasible and practical than the conventional controlling.

  11. Neuron network application for speed control and fault detection of asynchronous machine

    Directory of Open Access Journals (Sweden)

    Kheira MENDAZ

    2017-12-01

    Full Text Available The induction machine will play a role very important in the industry, but the existence of a certain defect returns their use limited as the defects rotor (broken bar. This article presents a study of Controller neuronal with the existence of a rotor defect on the one hand and another hand of a defect of switch of the five levels inverter to see the influence of these two defects on the physical parameters of the machine. The application of neural control with the existence of a broken bar in the motor allows us to see the effect of this fault on the motor parameters (speed, electromagnetic torque and current, to control itself is also used in existence of five-level inverter fault (delay of blocking the switch to give the results shown the swelling of this fault on the engine. With this controller, each fault influenced the parameters of Engine and can notice it from the simulation results. The results, simulations are done using Matlab/Simulink. Simulation results show clearly and robustness of neural controller.

  12. Torque-Controlled Adaptive Speed Control on a CNC Marble Saw Machine

    Directory of Open Access Journals (Sweden)

    Ugur Simsir

    2015-02-01

    Full Text Available Although CNC marble saw machines can automatically cut marble slabs to desired dimensions, saw speed and feed rate are selected by operator according to stone parameters, features of the saw, and its immersion depth. If the feed rate is selected lower than the optimal value, there will be time-loss and capacity deficiencies or if it is selected faster, cutting quality will decrease, spindle motor will draw more current, and saw blade will corrode faster. While cutting especially thick materials, saw may be stacked in the stone, cutting quality may be impaired, saw blade may be abraded earlier, precision quality may go down because of increase in measurement errors, and machine may be damaged with the increase in vibrations when improper feed rates are selected. Because of nonhomogeneity of the slabs and deterioration of the saw blade, operator cannot determine a persistent feed rate. This study is targeted to find saw speeds according to saw diameter and optimum feed rate by means of limiting vibrations and current drawn from saw motor and torque accordingly in order to increase working performance of CNC marble saw machines. Thanks to adaptive adjustment of feed rate, one can save on material as well as time, labour, and cost by making use of optimum energy.

  13. Control of deviations and prediction of surface roughness from micro machining of THz waveguides using acoustic emission signals

    Science.gov (United States)

    Griffin, James M.; Diaz, Fernanda; Geerling, Edgar; Clasing, Matias; Ponce, Vicente; Taylor, Chris; Turner, Sam; Michael, Ernest A.; Patricio Mena, F.; Bronfman, Leonardo

    2017-02-01

    By using acoustic emission (AE) it is possible to control deviations and surface quality during micro milling operations. The method of micro milling is used to manufacture a submillimetre waveguide where micro machining is employed to achieve the required superior finish and geometrical tolerances. Submillimetre waveguide technology is used in deep space signal retrieval where highest detection efficiencies are needed and therefore every possible signal loss in the receiver has to be avoided and stringent tolerances achieved. With a sub-standard surface finish the signals travelling along the waveguides dissipate away faster than with perfect surfaces where the residual roughness becomes comparable with the electromagnetic skin depth. Therefore, the higher the radio frequency the more critical this becomes. The method of time-frequency analysis (STFT) is used to transfer raw AE into more meaningful salient signal features (SF). This information was then correlated against the measured geometrical deviations and, the onset of catastrophic tool wear. Such deviations can be offset from different AE signals (different deviations from subsequent tests) and feedback for a final spring cut ensuring the geometrical accuracies are met. Geometrical differences can impact on the required transfer of AE signals (change in cut off frequencies and diminished SNR at the interface) and therefore errors have to be minimised to within 1 μm. Rules based on both Classification and Regression Trees (CART) and Neural Networks (NN) were used to implement a simulation displaying how such a control regime could be used as a real time controller, be it corrective measures (via spring cuts) over several initial machining passes or, with a micron cut introducing a level plain measure for allowing setup corrective measures (similar to a spirit level).

  14. Implementation of the Nuclear Export Control at KAERI

    International Nuclear Information System (INIS)

    Kim, Hyun-Jo; Lee, Byung-Doo; Lee, Sung-Ho

    2006-01-01

    Korea has joined multilateral export control regimes which include Wassenaar Arrangement(WA), Nuclear Suppliers Group(NSG), Missile Technology Control Regime(MTCR) and Australian Group(AG), and their guideline and control lists are reflected in domestic legislation. Also, Catch-all control entered into force on 1 January 2003 in Korea. The frequency of the exports of product as a result of R and D and cooperation with other countries has been increased at Korea Atomic Energy Research Institute (KAERI). Therefore, this report describes the implementation status of a nuclear export control at KAERI and points out the practical issues

  15. ANN-PSO Integrated Optimization Methodology for Intelligent Control of MMC Machining

    Science.gov (United States)

    Chandrasekaran, Muthumari; Tamang, Santosh

    2017-08-01

    Metal Matrix Composites (MMC) show improved properties in comparison with non-reinforced alloys and have found increased application in automotive and aerospace industries. The selection of optimum machining parameters to produce components of desired surface roughness is of great concern considering the quality and economy of manufacturing process. In this study, a surface roughness prediction model for turning Al-SiCp MMC is developed using Artificial Neural Network (ANN). Three turning parameters viz., spindle speed ( N), feed rate ( f) and depth of cut ( d) were considered as input neurons and surface roughness was an output neuron. ANN architecture having 3 -5 -1 is found to be optimum and the model predicts with an average percentage error of 7.72 %. Particle Swarm Optimization (PSO) technique is used for optimizing parameters to minimize machining time. The innovative aspect of this work is the development of an integrated ANN-PSO optimization method for intelligent control of MMC machining process applicable to manufacturing industries. The robustness of the method shows its superiority for obtaining optimum cutting parameters satisfying desired surface roughness. The method has better convergent capability with minimum number of iterations.

  16. New generation of human machine interfaces for controlling UAV through depth-based gesture recognition

    Science.gov (United States)

    Mantecón, Tomás.; del Blanco, Carlos Roberto; Jaureguizar, Fernando; García, Narciso

    2014-06-01

    New forms of natural interactions between human operators and UAVs (Unmanned Aerial Vehicle) are demanded by the military industry to achieve a better balance of the UAV control and the burden of the human operator. In this work, a human machine interface (HMI) based on a novel gesture recognition system using depth imagery is proposed for the control of UAVs. Hand gesture recognition based on depth imagery is a promising approach for HMIs because it is more intuitive, natural, and non-intrusive than other alternatives using complex controllers. The proposed system is based on a Support Vector Machine (SVM) classifier that uses spatio-temporal depth descriptors as input features. The designed descriptor is based on a variation of the Local Binary Pattern (LBP) technique to efficiently work with depth video sequences. Other major consideration is the especial hand sign language used for the UAV control. A tradeoff between the use of natural hand signs and the minimization of the inter-sign interference has been established. Promising results have been achieved in a depth based database of hand gestures especially developed for the validation of the proposed system.

  17. A Virtual Inertia Control Strategy for DC Microgrids Analogized with Virtual Synchronous Machines

    DEFF Research Database (Denmark)

    Wu, Wenhua; Chen, Yandong; Luo, An

    2017-01-01

    In a DC microgrid (DC-MG), the dc bus voltage is vulnerable to power fluctuation derived from the intermittent distributed energy or local loads variation. In this paper, a virtual inertia control strategy for DC-MG through bidirectional grid-connected converters (BGCs) analogized with virtual...... synchronous machine (VSM) is proposed to enhance the inertia of the DC-MG, and to restrain the dc bus voltage fluctuation. The small-signal model of the BGC system is established, and the small-signal transfer function between the dc bus voltage and the dc output current of the BGC is deduced. The dynamic...... for the BGC is introduced to smooth the dynamic response of the dc bus voltage. By analyzing the control system stability, the appropriate virtual inertia control parameters are selected. Finally, simulations and experiments verified the validity of the proposed control strategy....

  18. Process automation using combinations of process and machine control technologies with application to a continuous dissolver

    International Nuclear Information System (INIS)

    Spencer, B.B.; Yarbro, O.O.

    1991-01-01

    Operation of a continuous rotary dissolver, designed to leach uranium-plutonium fuel from chopped sections of reactor fuel cladding using nitric acid, has been automated. The dissolver is a partly continuous, partly batch process that interfaces at both ends with batchwise processes, thereby requiring synchronization of certain operations. Liquid acid is fed and flows through the dissolver continuously, whereas chopped fuel elements are fed to the dissolver in small batches and move through the compartments of the dissolver stagewise. Sequential logic (or machine control) techniques are used to control discrete activities such as the sequencing of isolation valves. Feedback control is used to control acid flowrates and temperatures. Expert systems technology is used for on-line material balances and diagnostics of process operation. 1 ref., 3 figs

  19. Implementation of Energy Code Controls Requirements in New Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hatten, Mike [Solarc Energy Group, LLC, Seattle, WA (United States); Jones, Dennis [Group 14 Engineering, Inc., Denver, CO (United States); Cooper, Matthew [Group 14 Engineering, Inc., Denver, CO (United States)

    2017-03-24

    Most state energy codes in the United States are based on one of two national model codes; ANSI/ASHRAE/IES 90.1 (Standard 90.1) or the International Code Council (ICC) International Energy Conservation Code (IECC). Since 2004, covering the last four cycles of Standard 90.1 updates, about 30% of all new requirements have been related to building controls. These requirements can be difficult to implement and verification is beyond the expertise of most building code officials, yet the assumption in studies that measure the savings from energy codes is that they are implemented and working correctly. The objective of the current research is to evaluate the degree to which high impact controls requirements included in commercial energy codes are properly designed, commissioned and implemented in new buildings. This study also evaluates the degree to which these control requirements are realizing their savings potential. This was done using a three-step process. The first step involved interviewing commissioning agents to get a better understanding of their activities as they relate to energy code required controls measures. The second involved field audits of a sample of commercial buildings to determine whether the code required control measures are being designed, commissioned and correctly implemented and functioning in new buildings. The third step includes compilation and analysis of the information gather during the first two steps. Information gathered during these activities could be valuable to code developers, energy planners, designers, building owners, and building officials.

  20. Implementing Indigenous community control in health care: lessons from Canada.

    Science.gov (United States)

    Lavoie, Josée G; Dwyer, Judith

    2016-09-01

    Objective Over past decades, Australian and Canadian Indigenous primary healthcare policies have focused on supporting community controlled Indigenous health organisations. After more than 20 years of sustained effort, over 89% of eligible communities in Canada are currently engaged in the planning, management and provision of community controlled health services. In Australia, policy commitment to community control has also been in place for more than 25 years, but implementation has been complicated by unrealistic timelines, underdeveloped change management processes, inflexible funding agreements and distrust. This paper discusses the lessons from the Canadian experience to inform the continuing efforts to achieve the implementation of community control in Australia. Methods We reviewed Canadian policy and evaluation grey literature documents, and assessed lessons and recommendations for relevance to the Australian context. Results Our analysis yielded three broad lessons. First, implementing community control takes time. It took Canada 20 years to achieve 89% implementation. To succeed, Australia will need to make a firm long term commitment to this objective. Second, implementing community control is complex. Communities require adequate resources to support change management. And third, accountability frameworks must be tailored to the Indigenous primary health care context to be meaningful. Conclusions We conclude that although the Canadian experience is based on a different context, the processes and tools created to implement community control in Canada can help inform the Australian context. What is known about the topic? Although Australia has promoted Indigenous control over primary healthcare (PHC) services, implementation remains incomplete. Enduring barriers to the transfer of PHC services to community control have not been addressed in the largely sporadic attention to this challenge to date, despite significant recent efforts in some jurisdictions

  1. Machine & electrical double control air dryer for vehicle air braking system

    Science.gov (United States)

    Zhang, Xuan; Yang, Liu; Wang, Xian Yan; Tan, Xiao Yan; Wang, Wei

    2017-09-01

    As is known to all, a vehicle air brake system, in which usually contains moisture. To solve the problem, it is common to use air dryer to dry compressed air effectively and completely remove the moisture and oil of braking system. However, the existing air dryer is not suitable for all commercial vehicles. According to the operational status of the new energy vehicles in the initial operating period, the structure design principle of the machine & electric control air dryer is expounded from the aspects of the structure and operating principle, research & development process.

  2. Machine takeover the growing threat to human freedom in a computer-controlled society

    CERN Document Server

    George, Frank Honywill

    1977-01-01

    Machine Takeover: The Growing Threat to Human Freedom in a Computer-Controlled Society discusses the implications of technological advancement. The title identifies the changes in society that no one is aware of, along with what this changes entails. The text first covers the information science, particularly the aspect of an automated system for information processing. Next, the selection deals with social implications of information science, such as information pollution. The text also tackles the concerns in the utilization of technology in order to manipulate the lives of people without th

  3. Sensorless Control of Permanent Magnet Machine for NASA Flywheel Technology Development

    Science.gov (United States)

    Kenny, Barbara H.; Kascak, Peter E.

    2002-01-01

    This paper describes the position sensorless algorithms presently used in the motor control for the NASA "in-house" development work of the flywheel energy storage system. At zero and low speeds a signal injection technique, the self-sensing method, is used to determine rotor position. At higher speeds, an open loop estimate of the back EMF of the machine is made to determine the rotor position. At start up, the rotor is set to a known position by commanding dc into one of the phase windings. Experimental results up to 52,000 rpm are presented.

  4. Integrated Design and Implementation of Embedded Control Systems with Scilab.

    Science.gov (United States)

    Ma, Longhua; Xia, Feng; Peng, Zhe

    2008-09-05

    Embedded systems are playing an increasingly important role in control engineering. Despite their popularity, embedded systems are generally subject to resource constraints and it is therefore difficult to build complex control systems on embedded platforms. Traditionally, the design and implementation of control systems are often separated, which causes the development of embedded control systems to be highly timeconsuming and costly. To address these problems, this paper presents a low-cost, reusable, reconfigurable platform that enables integrated design and implementation of embedded control systems. To minimize the cost, free and open source software packages such as Linux and Scilab are used. Scilab is ported to the embedded ARM-Linux system. The drivers for interfacing Scilab with several communication protocols including serial, Ethernet, and Modbus are developed. Experiments are conducted to test the developed embedded platform. The use of Scilab enables implementation of complex control algorithms on embedded platforms. With the developed platform, it is possible to perform all phases of the development cycle of embedded control systems in a unified environment, thus facilitating the reduction of development time and cost.

  5. Integrated Design and Implementation of Embedded Control Systems with Scilab

    Directory of Open Access Journals (Sweden)

    Zhe Peng

    2008-09-01

    Full Text Available Embedded systems are playing an increasingly important role in control engineering. Despite their popularity, embedded systems are generally subject to resource constraints and it is therefore difficult to build complex control systems on embedded platforms. Traditionally, the design and implementation of control systems are often separated, which causes the development of embedded control systems to be highly timeconsuming and costly. To address these problems, this paper presents a low-cost, reusable, reconfigurable platform that enables integrated design and implementation of embedded control systems. To minimize the cost, free and open source software packages such as Linux and Scilab are used. Scilab is ported to the embedded ARM-Linux system. The drivers for interfacing Scilab with several communication protocols including serial, Ethernet, and Modbus are developed. Experiments are conducted to test the developed embedded platform. The use of Scilab enables implementation of complex control algorithms on embedded platforms. With the developed platform, it is possible to perform all phases of the development cycle of embedded control systems in a unified environment, thus facilitating the reduction of development time and cost.

  6. Control of soft machines using actuators operated by a Braille display.

    Science.gov (United States)

    Mosadegh, Bobak; Mazzeo, Aaron D; Shepherd, Robert F; Morin, Stephen A; Gupta, Unmukt; Sani, Idin Zhalehdoust; Lai, David; Takayama, Shuichi; Whitesides, George M

    2014-01-07

    One strategy for actuating soft machines (e.g., tentacles, grippers, and simple walkers) uses pneumatic inflation of networks of small channels in an elastomeric material. Although the management of a few pneumatic inputs and valves to control pressurized gas is straightforward, the fabrication and operation of manifolds containing many (>50) independent valves is an unsolved problem. Complex pneumatic manifolds-often built for a single purpose-are not easily reconfigured to accommodate the specific inputs (i.e., multiplexing of many fluids, ranges of pressures, and changes in flow rates) required by pneumatic systems. This paper describes a pneumatic manifold comprising a computer-controlled Braille display and a micropneumatic device. The Braille display provides a compact array of 64 piezoelectric actuators that actively close and open elastomeric valves of a micropneumatic device to route pressurized gas within the manifold. The positioning and geometries of the valves and channels in the micropneumatic device dictate the functionality of the pneumatic manifold, and the use of multi-layer soft lithography permits the fabrication of networks in a wide range of configurations with many possible functions. Simply exchanging micropneumatic devices of different designs enables rapid reconfiguration of the pneumatic manifold. As a proof of principle, a pneumatic manifold controlled a soft machine containing 32 independent actuators to move a ball above a flat surface.

  7. Enhanced Quality Control in Pharmaceutical Applications by Combining Raman Spectroscopy and Machine Learning Techniques

    Science.gov (United States)

    Martinez, J. C.; Guzmán-Sepúlveda, J. R.; Bolañoz Evia, G. R.; Córdova, T.; Guzmán-Cabrera, R.

    2018-06-01

    In this work, we applied machine learning techniques to Raman spectra for the characterization and classification of manufactured pharmaceutical products. Our measurements were taken with commercial equipment, for accurate assessment of variations with respect to one calibrated control sample. Unlike the typical use of Raman spectroscopy in pharmaceutical applications, in our approach the principal components of the Raman spectrum are used concurrently as attributes in machine learning algorithms. This permits an efficient comparison and classification of the spectra measured from the samples under study. This also allows for accurate quality control as all relevant spectral components are considered simultaneously. We demonstrate our approach with respect to the specific case of acetaminophen, which is one of the most widely used analgesics in the market. In the experiments, commercial samples from thirteen different laboratories were analyzed and compared against a control sample. The raw data were analyzed based on an arithmetic difference between the nominal active substance and the measured values in each commercial sample. The principal component analysis was applied to the data for quantitative verification (i.e., without considering the actual concentration of the active substance) of the difference in the calibrated sample. Our results show that by following this approach adulterations in pharmaceutical compositions can be clearly identified and accurately quantified.

  8. Design and Implementation of the ATLAS Detector Control System

    CERN Document Server

    Boterenbrood, H; Cook, J; Filimonov, V; Hallgren, B I; Heubers, W P J; Khomoutnikov, V; Ryabov, Yu; Varela, F

    2004-01-01

    The overall dimensions of the ATLAS experiment and its harsh environment, due to radiation and magnetic field, represent new challenges for the implementation of the Detector Control System. It supervises all hardware of the ATLAS detector, monitors the infrastructure of the experiment, and provides information exchange with the LHC accelerator. The system must allow for the operation of the different ATLAS sub-detectors in stand-alone mode, as required for calibration and debugging, as well as the coherent and integrated operation of all sub-detectors for physics data taking. For this reason, the Detector Control System is logically arranged to map the hierarchical organization of the ATLAS detector. Special requirements are placed onto the ATLAS Detector Control System because of the large number of distributed I/O channels and of the inaccessibility of the equipment during operation. Standardization is a crucial issue for the design and implementation of the control system because of the large variety of e...

  9. Analysis and design of machine learning techniques evolutionary solutions for regression, prediction, and control problems

    CERN Document Server

    Stalph, Patrick

    2014-01-01

    Manipulating or grasping objects seems like a trivial task for humans, as these are motor skills of everyday life. Nevertheless, motor skills are not easy to learn for humans and this is also an active research topic in robotics. However, most solutions are optimized for industrial applications and, thus, few are plausible explanations for human learning. The fundamental challenge, that motivates Patrick Stalph, originates from the cognitive science: How do humans learn their motor skills? The author makes a connection between robotics and cognitive sciences by analyzing motor skill learning using implementations that could be found in the human brain – at least to some extent. Therefore three suitable machine learning algorithms are selected – algorithms that are plausible from a cognitive viewpoint and feasible for the roboticist. The power and scalability of those algorithms is evaluated in theoretical simulations and more realistic scenarios with the iCub humanoid robot. Convincing results confirm the...

  10. Self-powered remotely controlled machines and tools for safety improvement in mining

    Energy Technology Data Exchange (ETDEWEB)

    Mirzaeva, G. [University of Newcastle, Callaghan, NSW (Australia)

    2005-07-01

    This paper addresses the problem of meeting the safety requirements of mining industry for implementation of control and monitoring equipment without external wiring. Local power generation and accumulation combined with remote control and wireless data transmission are suggested as an appropriate way to make the implementation of such device safe and convenient, which in its turn would facilitate their wider application for automation and safety improvement. A rope shovel dipper trip system is discussed in detail as an example of a self-powered remotely-controlled system. Other possible applications of the concept are also identified, such as Armoured Face Conveyor (AFC) and water jet drilling operation monitoring. 5 refs., 6 figs.

  11. Improved Fuzzy Logic based DTC of Induction machine for wide range of speed control using AI based controllers

    Directory of Open Access Journals (Sweden)

    H. Sudheer

    2016-06-01

    Full Text Available This paper presents improvements in Direct Torque control of induction motor using Fuzzy logic switching controller (FDTC. The conventional DTC (CDTC and FDTC drive performance is compared using Conventional PI, Fuzzy controller and Neural Network controllers. The major disadvantages of CDTC are high torque and flux ripples in steady state operation of the drive, inferior performance at low speed operation and variable switching frequency. The presence of hysteresis bands is the major reason for high torque and flux ripples in CDTC. In FDTC the hysteresis band and switching table are replaced by Fuzzy logic switching controller. Using fuzzy logic torque, stator flux space are divided into smaller subsections which results in precise and optimal selection of switching state to meet load torque. In high performance drives accurate tuning of PI speed controller is required. The conventional PI controller cannot adapt to the variation in model parameters. Artificial intelligence based fuzzy controller and neural network controller are compared with PI controller for both CDTC and FDTC of Induction machine. The proposed schemes are developed in Matlab/Simulink environment. Simulation results shows reduction in torque and flux ripples in FDTC and dynamic performance of the drive at low speeds and sudden change in load torque can be improved using Fuzzy logic controller compared to PI and neural network controller.

  12. Intelligent Control of UPFC for Enhancing Transient Stability on Multi-Machine Power Systems

    Directory of Open Access Journals (Sweden)

    Hassan Barati

    2010-01-01

    Full Text Available One of the benefit of FACTS devices is increase of stability in power systems with control active and reactive power at during the fault in power system. Although, the power system stabilizers (PSSs have been one of the most common controls used to damp out oscillations, this device may not produce enough damping especially to inter-area mode and therefore, there is an increasing interest in using FACTS devices to aid in damping of these oscillations. In This paper, UPFC is used for damping oscillations and to enhance the transient stability performance of power systems. The controller parameters are designed using an efficient version of the Takagi-Sugeno fuzzy control scheme. The function based Takagi-Sugeno-Kang (TSK fuzzy controller uses. For optimization parameters of fuzzy PI controller, the GA, PSO and HGAPSO algorithms are used. The computer simulation results, the effect of UPFC with conventional PI controller, fuzzy PI controller and intelligent controllers (GA, PSO and HGAPSO for damping the local-mode and inter-area mode of under large and small disturbances in the four-machine two-area power system evaluated and compared.

  13. ON THE APPLICATION OF PARTIAL BARRIERS FOR SPINNING MACHINE NOISE CONTROL: A THEORETICAL AND EXPERIMENTAL APPROACH

    Directory of Open Access Journals (Sweden)

    M. R. Monazzam, A. Nezafat

    2007-04-01

    Full Text Available Noise is one of the most serious challenges in modern community. In some specific industries, according to the nature of process, this challenge is more threatening. This paper describes a means of noise control for spinning machine based on experimental measurements. Also advantages and disadvantages of the control procedure are added. Different factors which may affect the performance of the barrier in this situation are also mentioned. To provide a good estimation of the control measure, a theoretical formula is also described and it is compared with the field data. Good agreement between the results of filed measurements and theoretical presented model was achieved. No obvious noise reduction was seen by partial indoor barriers in low absorbent enclosed spaces, since the reflection from multiple hard surfaces is the main dominated factor in the tested environment. At the end, the situation of the environment and standards, which are necessary in attaining the ideal results, are explained.

  14. A discussion on practicable scheme for machine control system of HL-2A tokamak

    International Nuclear Information System (INIS)

    Li Qiang; Song Xianming; Jiang Chao

    2001-01-01

    This is the modified version of The Preliminary Design on the Hardware and Nets of HL-2A Tokamak. In this version, centralized control as well as the field bus communication on HL-2A Tokamak is used. The hardware components and the operational theory are introduced. The questions of practice program, extensibility, centralized control, cooperation with other subsystems and the continuous adaptation of present device are all discussed. The budget of the system is detailed. To keep the step with the overall engineering constructions of HL-2A, suggestions of the time program are presented for the system design, instrument purchases, installation, construction, user program development and the final operation processes for the machine control system of HL-2A Tokamak

  15. 40 CFR 93.120 - Consequences of control strategy implementation plan failures.

    Science.gov (United States)

    2010-07-01

    ... Consequences of control strategy implementation plan failures. (a) Disapprovals. (1) If EPA disapproves any submitted control strategy implementation plan revision (with or without a protective finding), the... is determined. (2) If EPA disapproves a submitted control strategy implementation plan revision...

  16. Implementation of neural network based non-linear predictive control

    DEFF Research Database (Denmark)

    Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole

    1999-01-01

    This paper describes a control method for non-linear systems based on generalized predictive control. Generalized predictive control (GPC) was developed to control linear systems, including open-loop unstable and non-minimum phase systems, but has also been proposed to be extended for the control...... of non-linear systems. GPC is model based and in this paper we propose the use of a neural network for the modeling of the system. Based on the neural network model, a controller with extended control horizon is developed and the implementation issues are discussed, with particular emphasis...... on an efficient quasi-Newton algorithm. The performance is demonstrated on a pneumatic servo system....

  17. Quality Control System using Simple Implementation of Seven Tools for Batik Textile Manufacturing

    Science.gov (United States)

    Ragil Suryoputro, Muhammad; Sugarindra, Muchamad; Erfaisalsyah, Hendy

    2017-06-01

    In order to produce better products and mitigate defect in products, every company must implement a quality control system. Company will find means to implement a quality control system that is capable and reliable. One of the methods is using the simple implementation of the seven tools in quality control defects. The case studied in this research was the level of disability xyz grey fabric on a shuttle loom 2 on the Batik manufacturing company. The seven tools that include: flowchart, check sheet, histogram, scatter diagram combined with control charts, Pareto diagrams and fishbone diagrams (causal diagram). Check sheet results obtained types of defects in the grey fabric was woven xyz is warp, double warp, the warp break, double warp, empty warp, warp tenuous, ugly edges, thick warp, and rust. Based on the analysis of control chart indicates that the process is out of control. This can be seen in the graph control where there is still a lot of outlier data. Based on a scatter diagram shows a positive correlation between the percentage of disability and the number of production. Based on Pareto diagram, repair needs priority is for the dominant type of defect is warp (44%) and based on double warp value histogram is also the highest with a value of 23635.11 m. In addition, based on the analysis of the factors causing defect by fishbone diagram double warp or other types of defects originating from the materials, methods, machines, measurements, man and environment. Thus the company can take to minimize the prevention and repair of defects and improve product quality.

  18. Open modular architecture controls at GM Powertrain: technology and implementation

    Science.gov (United States)

    Bailo, Clark P.; Yen, C. J.

    1997-01-01

    General Motors Powertrain Group (GMPTG) has been the leader in implementing open, modular architecture controller (OMAC) technologies in its manufacturing applications since 1986. The interest in OMAC has been greatly expanded for the past two years because of the advancement of personal computer technologies and the publishing of the OMAC whitepaper by the US automotive companies stating the requirements of OMAC technologies in automotive applications. The purpose of this paper is to describe the current OMAC projects and the future direction of implementation at GMPTG. An overview of the OMAC project and the definition of the OMAC concept are described first. The rationale of pursuing open technologies is explained from the perspective of GMPTG in lieu of its agile manufacturing strategy. Examples of existing PC-based control applications are listed to demonstrate the extensive commitment to PC-based technologies that has already been put in place. A migration plan form PC-based to OMAC-based systems with the thorough approach of validation are presented next to convey the direction that GMPTG is taking in implementing OMAC technologies. Leveraged technology development projects are described to illustrate the philosophy and approaches toward the development of OMAC technologies at GMPTG. Finally, certain implementation issues are discussed to emphasize efforts that are still required to have successful implementations of OMAC systems.

  19. Methods and means for improving the man-machine systems for NPP control

    International Nuclear Information System (INIS)

    Konstantinov, L.V.; Rakitin, I.D.

    1984-01-01

    Consideration is being given to the role of ''human factors'' and the ways of improving the man-machine interaction in NPP control and safety systems (CSS). Simulators and tAaining equipment on the basis of dynamic power unit models used for training and improving skill of NPP operatoAs, as well as for mastering collective actions of personnel under accidental conditions are considered in detail. The most perfect program complexes for fast NPP diagnostics and theiA pealization in the Federal Republic of Germany, Japan, Canada, the USA and other countries are described. A special attention is paid to the means and methods of videoterminal dialogue operator interaction with an object both in normal and extreme situations. It is noted that the problems of the man-machine interaction have become the subject of study only in the end of 70s after analyzing the causes of the Three-Mile-Island accident (USA). Publications dealing with the development of perspective control rooms for NPP were analyzed. It was concluded that radical changes both in equipment and principles of organizing the personnel activity will take place in the nearest future. They will be based on the progress in creating dialogue means and computers of the fourth and fifth generations as well as on engineering and psychological and technical aspects of designing

  20. On the use of peripheral autonomic signals for binary control of body–machine interfaces

    International Nuclear Information System (INIS)

    Falk, Tiago H; Guirgis, Mirna; Power, Sarah; Blain, Stefanie; Chau, Tom

    2010-01-01

    In this work, the potential of using peripheral autonomic (PA) responses as control signals for body–machine interfaces that require no physical movement was investigated. Electrodermal activity, skin temperature, heart rate and respiration rate were collected from six participants and hidden Markov models (HMMs) were used to automatically detect when a subject was performing music imagery as opposed to being at rest. Experiments were performed under controlled silent conditions as well as in the presence of continuous and startle (e.g. door slamming) ambient noise. By developing subject-specific HMMs, music imagery was detected under silent conditions with the average sensitivity and specificity of 94.2% and 93.3%, respectively. In the presence of startle noise stimuli, the system sensitivity and specificity levels of 78.8% and 80.2% were attained, respectively. In environments corrupted by continuous ambient and startle noise, the system specificity further decreased to 75.9%. To improve the system robustness against environmental noise, a startle noise detection and compensation strategy were proposed. Once in place, performance levels were shown to be comparable to those observed in silence. The obtained results suggest that PA signals, combined with HMMs, can be useful tools for the development of body–machine interfaces that allow individuals with severe motor impairments to communicate and/or to interact with their environment

  1. Joint Machine Learning and Game Theory for Rate Control in High Efficiency Video Coding.

    Science.gov (United States)

    Gao, Wei; Kwong, Sam; Jia, Yuheng

    2017-08-25

    In this paper, a joint machine learning and game theory modeling (MLGT) framework is proposed for inter frame coding tree unit (CTU) level bit allocation and rate control (RC) optimization in High Efficiency Video Coding (HEVC). First, a support vector machine (SVM) based multi-classification scheme is proposed to improve the prediction accuracy of CTU-level Rate-Distortion (R-D) model. The legacy "chicken-and-egg" dilemma in video coding is proposed to be overcome by the learning-based R-D model. Second, a mixed R-D model based cooperative bargaining game theory is proposed for bit allocation optimization, where the convexity of the mixed R-D model based utility function is proved, and Nash bargaining solution (NBS) is achieved by the proposed iterative solution search method. The minimum utility is adjusted by the reference coding distortion and frame-level Quantization parameter (QP) change. Lastly, intra frame QP and inter frame adaptive bit ratios are adjusted to make inter frames have more bit resources to maintain smooth quality and bit consumption in the bargaining game optimization. Experimental results demonstrate that the proposed MLGT based RC method can achieve much better R-D performances, quality smoothness, bit rate accuracy, buffer control results and subjective visual quality than the other state-of-the-art one-pass RC methods, and the achieved R-D performances are very close to the performance limits from the FixedQP method.

  2. Controlling the Adhesion of Superhydrophobic Surfaces Using Electrolyte Jet Machining Techniques

    Science.gov (United States)

    Yang, Xiaolong; Liu, Xin; Lu, Yao; Zhou, Shining; Gao, Mingqian; Song, Jinlong; Xu, Wenji

    2016-01-01

    Patterns with controllable adhesion on superhydrophobic areas have various biomedical and chemical applications. Electrolyte jet machining technique (EJM), an electrochemical machining method, was firstly exploited in constructing dimples with various profiles on the superhydrophobic Al alloy surface using different processing parameters. Sliding angles of water droplets on those dimples firstly increased and then stabilized at a certain value with the increase of the processing time or the applied voltages of the EJM, indicating that surfaces with different adhesion force could be obtained by regulating the processing parameters. The contact angle hysteresis and the adhesion force that restricts the droplet from sliding off were investigated through experiments. The results show that the adhesion force could be well described using the classical Furmidge equation. On account of this controllable adhesion force, water droplets could either be firmly pinned to the surface, forming various patterns or slide off at designed tilting angles at specified positions on a superhydrophobic surface. Such dimples on superhydrophopbic surfaces can be applied in water harvesting, biochemical analysis and lab-on-chip devices. PMID:27046771

  3. Developing and implementing institutional controls for ground water remediation

    International Nuclear Information System (INIS)

    Ulland, L.M.; Cooper, M.G.

    1995-01-01

    The US DOE has initiated its Ground Water Project as the second phase of the Uranium Mill Tailings Remedial Action (UMTRA) Project authorized under the Uranium Mill Tailings Radiation Control Act (UMTRCA). In the Ground Water Project, the DOE must reduce risk from ground water contaminated by uranium mill processing activities at 24 inactive processing sites by meeting the US EPA standards. The UMTRCA also requires consistency with federal statutes such as the Resource Conservation and Recovery Act (RCRA). The use of institutional controls to reduce risk from contaminated ground water is one element of compliance with standards and the protection of public health and the environment. Institutional controls are active or passive measures that reduce exposure to risks by preventing intrusion or restricting direct access to an area, or restricting access to the contamination through secondary means. Because of inconsistent regulations and multi-party authorities for ground water management, the key to selecting and implementing effective institutional controls lies with developing a consensus between the parties responsible for ground water remediation; those with authority to implement, monitor, and maintain institutional controls; and those facing the risks from contaminated ground water. These parties must develop a consensus for an institutional control program that meets minimum regulatory requirements and protects public health and the environment. Developing consensus and implementing a successful institutional controls program was achieved by the DOE during the cleanup of uranium mill tailings. An effective institutional controls program can also be developed to protect against risks from contaminated ground water. Consensus building and information transmission are the critical elements of an institutional control program that protects human health and the environment from risks associated with ground water contamination

  4. Design and Implementation of a Management Control System

    Directory of Open Access Journals (Sweden)

    Anca Antoaneta VĂRZARU

    2015-09-01

    Full Text Available This paper tries to implement a management control system to raise the performance of a company with the objective to define and align to the entire organization toward a common strategy and sustainable for all. Information was collected from the major critical issues in order to detect the key sectors of the company where a change is needed. It was established the strategy to be followed and defined management indicators that allowed monitor and validate the implementation of the strategy through the Control Panel and strategic initiatives. Four initiatives were developed to understand the effect that has the control system in the management of the company generating positive results observed in the analysis of results. In order to maintain the strategy was necessary to develop audit reports to permanently check the system status.

  5. Interactive Control System, Intended Strategy, Implemented Strategy dan Emergent Strategy

    Directory of Open Access Journals (Sweden)

    Tubagus Ismail

    2012-09-01

    Full Text Available The purpose of this study was to examine the relationship between management control system (MCS and strategy formation processes, namely: intended strategy, emergent strategy and impelemented strategy. The focus of MCS in this study was interactive control system. The study was based on Structural Equation Modeling (SEM as its multivariate analyses instrument. The samples were upper middle managers of manufacturing company in Banten Province, DKI Jakarta Province and West Java Province. AMOS Software 16 program is used as an additional instrument to resolve the problem in SEM modeling. The study found that interactive control system brought a positive and significant influence on Intended strategy; interactive control system brought a positive and significant influence on implemented strategy; interactive control system brought a positive and significant influence on emergent strategy. The limitation of this study is that our empirical model only used one way relationship between the process of strategy formation and interactive control system.

  6. Electro-mechanical energy conversion system having a permanent magnet machine with stator, resonant transfer link and energy converter controls

    Science.gov (United States)

    Skeist, S. Merrill; Baker, Richard H.

    2006-01-10

    An electro-mechanical energy conversion system coupled between an energy source and an energy load comprising an energy converter device including a permanent magnet induction machine coupled between the energy source and the energy load to convert the energy from the energy source and to transfer the converted energy to the energy load and an energy transfer multiplexer to control the flow of power or energy through the permanent magnetic induction machine.

  7. Design and implementation of the control system for neutron reflectometer

    International Nuclear Information System (INIS)

    Wu Xuehui; Fu Yongli; Zhou Aiyu; Zhu Kejun; Yuan Guangcui

    2011-01-01

    The neutron reflectometry is an important technique that has widespread applications as a powerful analytical tool to analyze the surface and interfacial structure and composition of many materials. An efficient and accurate instrument control system is a key component of the system, with software based on LabVIEW and hardware based on PCI-1240 motor control card, TRUMP-PCI-2K multichannel buffer card and 974 counter/timer. It gives an overview of the design and implementation of this control system. The results prove that this system fulfills the needs well with high stability and operability. (authors)

  8. Implementation of optimal trajectory control of series resonant converter

    Science.gov (United States)

    Oruganti, Ramesh; Yang, James J.; Lee, Fred C.

    1987-01-01

    Due to the presence of a high-frequency LC tank circuit, the dynamics of a resonant converter are unpredictable. There is often a large surge of tank energy during transients. Using state-plane analysis technique, an optimal trajectory control utilizing the desired solution trajectory as the control law was previously proposed for the series resonant converters. The method predicts the fastest response possible with minimum energy surge in the resonant tank. The principle of the control and its experimental implementation are described here. The dynamics of the converter are shown to be close to time-optimal.

  9. Implementing Controlled Composition to Improve Vocabulary Mastery of EFL Students

    Directory of Open Access Journals (Sweden)

    Juriah Juriah

    2015-06-01

    Full Text Available The purposes of this study was to know how (1 Controlled composition teaching techniques implemented by the English teacher at SDN 027 Samarinda to improve vocabulary mastery, and (2 Controlled composition teaching techniques improves vocabulary mastery of the sixth grade students of SDN 027 Samarinda. This research used a Classroom Action Research (CAR as the research design. The subject of the research is the sixth grade students in the 2013/2014 academic year that consists of 43 students. The instruments employed in this study were observation checklist, field note, and vocabulary test. The result of the research showed that in cycle 1 the students’ achievement did not fulfill the minimal criteria of success. However the result of the cycle 1 was better than the preliminary study. The criteria of success did not fulfill in cycle one, some enhancement of the implementation of Controlled Composition were made in cycle two in the form of: Instruct the students bring dictionary, give more examples English sentences, guide the students find the mining of words in the dictionary and write a paragraph, more motivate the students and preparing a media/ picture .Meanwhile the students ’achievement in cycle two showed that fulfilled the criteria of success. Based on the findings and discussion, the conclusions : Firstly, Controlled composition was implemented well by the teacher of SDN 027 Samarinda. Controlled composition was implemented and gave impacts in: (a increasing the students’ vocabulary mastery significantly, (b making the students able to spell the vocabularies, (c making the students understand the meaning English words, and (d making the students able to pronounce English words quite good. Secondly, Controlled composition improved the students’ vocabulary mastery; it was only 20.9% of the students who achieved the English passing grade in the preliminary study, but then 81.39% of the students achieved the English passing grade in

  10. The implementation of common object request broker architecture (CORBA) for controlling robot arm via web

    International Nuclear Information System (INIS)

    Syed Mahamad Zuhdi Amin; Mohd Yazid Idris; Wan Mohd Nasir Wan Kadir

    2001-01-01

    This paper presents the employment of the Common Object Request Broker Architecture (CORBA) technology in the implementation of our distributed Arm Robot Controller (ARC). CORBA is an industrial standard architecture based on distributed abstract object model, which is developed by Object Management Group (OMG). The architecture consists of five components i.e. Object Request Broker (ORB), Interface Definition Language (IDL), Dynamic Invocation Interface (DII), Interface Repositories (IR) and Object adapter (OA). CORBA objects are different from typical programming objects in three ways i.e. they can be executed on any platform, located anywhere on the network and written in any language that supports IDL mapping. In the implementation of the system, 5 degree of freedom (DOF) arm robot RCS 6.0 and Java as a programming mapping to the CORBA IDL. By implementing this architecture, the objects in the server machine can be distributed over the network in order to run the controller. the ultimate goal for our ARC system is to demonstrate concurrent execution of multiple arm robots through multiple instantiations of distributed object components. (Author)

  11. A real-time brain-machine interface combining motor target and trajectory intent using an optimal feedback control design.

    Directory of Open Access Journals (Sweden)

    Maryam M Shanechi

    Full Text Available Real-time brain-machine interfaces (BMI have focused on either estimating the continuous movement trajectory or target intent. However, natural movement often incorporates both. Additionally, BMIs can be modeled as a feedback control system in which the subject modulates the neural activity to move the prosthetic device towards a desired target while receiving real-time sensory feedback of the state of the movement. We develop a novel real-time BMI using an optimal feedback control design that jointly estimates the movement target and trajectory of monkeys in two stages. First, the target is decoded from neural spiking activity before movement initiation. Second, the trajectory is decoded by combining the decoded target with the peri-movement spiking activity using an optimal feedback control design. This design exploits a recursive Bayesian decoder that uses an optimal feedback control model of the sensorimotor system to take into account the intended target location and the sensory feedback in its trajectory estimation from spiking activity. The real-time BMI processes the spiking activity directly using point process modeling. We implement the BMI in experiments consisting of an instructed-delay center-out task in which monkeys are presented with a target location on the screen during a delay period and then have to move a cursor to it without touching the incorrect targets. We show that the two-stage BMI performs more accurately than either stage alone. Correct target prediction can compensate for inaccurate trajectory estimation and vice versa. The optimal feedback control design also results in trajectories that are smoother and have lower estimation error. The two-stage decoder also performs better than linear regression approaches in offline cross-validation analyses. Our results demonstrate the advantage of a BMI design that jointly estimates the target and trajectory of movement and more closely mimics the sensorimotor control system.

  12. Neural control of finger movement via intracortical brain-machine interface

    Science.gov (United States)

    Irwin, Z. T.; Schroeder, K. E.; Vu, P. P.; Bullard, A. J.; Tat, D. M.; Nu, C. S.; Vaskov, A.; Nason, S. R.; Thompson, D. E.; Bentley, J. N.; Patil, P. G.; Chestek, C. A.

    2017-12-01

    Objective. Intracortical brain-machine interfaces (BMIs) are a promising source of prosthesis control signals for individuals with severe motor disabilities. Previous BMI studies have primarily focused on predicting and controlling whole-arm movements; precise control of hand kinematics, however, has not been fully demonstrated. Here, we investigate the continuous decoding of precise finger movements in rhesus macaques. Approach. In order to elicit precise and repeatable finger movements, we have developed a novel behavioral task paradigm which requires the subject to acquire virtual fingertip position targets. In the physical control condition, four rhesus macaques performed this task by moving all four fingers together in order to acquire a single target. This movement was equivalent to controlling the aperture of a power grasp. During this task performance, we recorded neural spikes from intracortical electrode arrays in primary motor cortex. Main results. Using a standard Kalman filter, we could reconstruct continuous finger movement offline with an average correlation of ρ  =  0.78 between actual and predicted position across four rhesus macaques. For two of the monkeys, this movement prediction was performed in real-time to enable direct brain control of the virtual hand. Compared to physical control, neural control performance was slightly degraded; however, the monkeys were still able to successfully perform the task with an average target acquisition rate of 83.1%. The monkeys’ ability to arbitrarily specify fingertip position was also quantified using an information throughput metric. During brain control task performance, the monkeys achieved an average 1.01 bits s-1 throughput, similar to that achieved in previous studies which decoded upper-arm movements to control computer cursors using a standard Kalman filter. Significance. This is, to our knowledge, the first demonstration of brain control of finger-level fine motor skills. We believe

  13. Controlling a virtual forehand prosthesis using an adaptive and affective Human-Machine Interface.

    Science.gov (United States)

    Rezazadeh, I Mohammad; Firoozabadi, S M P; Golpayegani, S M R Hashemi; Hu, H

    2011-01-01

    This paper presents the design of an adaptable Human-Machine Interface (HMI) for controlling virtual forearm prosthesis. Direct physical performance measures (obtained score and completion time) for the requested tasks were calculated. Furthermore, bioelectric signals from the forehead were recorded using one pair of electrodes placed on the frontal region of the subject head to extract the mental (affective) measures while performing the tasks. By employing the proposed algorithm and above measures, the proposed HMI can adapt itself to the subject's mental states, thus improving the usability of the interface. The quantitative results from 15 subjects show that the proposed HMI achieved better physical performance measures in comparison to a conventional non-adaptive myoelectric controller (p < 0.001).

  14. Implementation of electronic locking devices for adolescents at German tobacco vending machines: intended and unintended changes of supply and demand.

    Science.gov (United States)

    Schneider, S; Meyer, C; Yamamoto, S; Solle, D

    2009-08-01

    Starting from 1 January 2007, electronic locking devices based on proof-of-age (via electronic cash cards or a European driving licence) were installed in approximately 500,000 vending machines across Germany to restrict the purchase of cigarettes to those over the age of 16. To examine changes in the number of tobacco vending machines before and after the introduction of these new measures. The total number of commercial tobacco sources in 2 selected districts (70,000 inhabitants) in Cologne were recorded and mapped. This major German city was the ideal setting for this study as investigators were able to use existing sociogeographical data from the area. A complete inventory was compiled in autumn 2005 and 2007. A total of 780 students aged 12 to 15 were also interviewed in the study areas. The main outcome measures were quantities and locations of commercial tobacco sources. Between 2005 and 2007 the total number of tobacco sources decreased from 315 to 277 within the study area. Although the most obvious reduction was detected in the number of outdoor vending machines (-48%), the number of indoor vending machines also decreased by 8%. Adolescents changed from vending machines to other sources for cigarettes, particularly kiosks or friends (+31% points usage rate, pvending machines decreased, this has not had a significant impact on cigarette acquisition by underage smokers as they were able to circumvent this new security measure in several different ways.

  15. Protein-polymer nano-machines. Towards synthetic control of biological processes

    Directory of Open Access Journals (Sweden)

    Alexander Cameron

    2004-09-01

    Full Text Available Abstract The exploitation of nature's machinery at length scales below the dimensions of a cell is an exciting challenge for biologists, chemists and physicists, while advances in our understanding of these biological motifs are now providing an opportunity to develop real single molecule devices for technological applications. Single molecule studies are already well advanced and biological molecular motors are being used to guide the design of nano-scale machines. However, controlling the specific functions of these devices in biological systems under changing conditions is difficult. In this review we describe the principles underlying the development of a molecular motor with numerous potential applications in nanotechnology and the use of specific synthetic polymers as prototypic molecular switches for control of the motor function. The molecular motor is a derivative of a TypeI Restriction-Modification (R-M enzyme and the synthetic polymer is drawn from the class of materials that exhibit a temperature-dependent phase transition. The potential exploitation of single molecules as functional devices has been heralded as the dawn of new era in biotechnology and medicine. It is not surprising, therefore, that the efforts of numerous multidisciplinary teams 12. have been focused in attempts to develop these systems. as machines capable of functioning at the low sub-micron and nanometre length-scales 3. However, one of the obstacles for the practical application of single molecule devices is the lack of functional control methods in biological media, under changing conditions. In this review we describe the conceptual basis for a molecular motor (a derivative of a TypeI Restriction-Modification enzyme with numerous potential applications in nanotechnology and the use of specific synthetic polymers as prototypic molecular switches for controlling the motor function 4.

  16. Using multivariate machine learning methods and structural MRI to classify childhood onset schizophrenia and healthy controls

    Directory of Open Access Journals (Sweden)

    Deanna eGreenstein

    2012-06-01

    Full Text Available Introduction: Multivariate machine learning methods can be used to classify groups of schizophrenia patients and controls using structural magnetic resonance imaging (MRI. However, machine learning methods to date have not been extended beyond classification and contemporaneously applied in a meaningful way to clinical measures. We hypothesized that brain measures would classify groups, and that increased likelihood of being classified as a patient using regional brain measures would be positively related to illness severity, developmental delays and genetic risk. Methods: Using 74 anatomic brain MRI sub regions and Random Forest, we classified 98 COS patients and 99 age, sex, and ethnicity-matched healthy controls. We also used Random Forest to determine the likelihood of being classified as a schizophrenia patient based on MRI measures. We then explored relationships between brain-based probability of illness and symptoms, premorbid development, and presence of copy number variation associated with schizophrenia. Results: Brain regions jointly classified COS and control groups with 73.7% accuracy. Greater brain-based probability of illness was associated with worse functioning (p= 0.0004 and fewer developmental delays (p=0.02. Presence of copy number variation (CNV was associated with lower probability of being classified as schizophrenia (p=0.001. The regions that were most important in classifying groups included left temporal lobes, bilateral dorsolateral prefrontal regions, and left medial parietal lobes. Conclusions: Schizophrenia and control groups can be well classified using Random Forest and anatomic brain measures, and brain-based probability of illness has a positive relationship with illness severity and a negative relationship with developmental delays/problems and CNV-based risk.

  17. Development of flank wear model of cutting tool by using adaptive feedback linear control system on machining AISI D2 steel and AISI 4340 steel

    Science.gov (United States)

    Orra, Kashfull; Choudhury, Sounak K.

    2016-12-01

    The purpose of this paper is to build an adaptive feedback linear control system to check the variation of cutting force signal to improve the tool life. The paper discusses the use of transfer function approach in improving the mathematical modelling and adaptively controlling the process dynamics of the turning operation. The experimental results shows to be in agreement with the simulation model and error obtained is less than 3%. The state space approach model used in this paper successfully check the adequacy of the control system through controllability and observability test matrix and can be transferred from one state to another by appropriate input control in a finite time. The proposed system can be implemented to other machining process under varying range of cutting conditions to improve the efficiency and observability of the system.

  18. Sensor guided control and navigation with intelligent machines. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Bijoy K.

    2001-03-26

    This item constitutes the final report on ''Visionics: An integrated approach to analysis and design of intelligent machines.'' The report discusses dynamical systems approach to problems in robust control of possibly time-varying linear systems, problems in vision and visually guided control, and, finally, applications of these control techniques to intelligent navigation with a mobile platform. Robust design of a controller for a time-varying system essentially deals with the problem of synthesizing a controller that can adapt to sudden changes in the parameters of the plant and can maintain stability. The approach presented is to design a compensator that simultaneously stabilizes each and every possible mode of the plant as the parameters undergo sudden and unexpected changes. Such changes can in fact be detected by a visual sensor and, hence, visually guided control problems are studied as a natural consequence. The problem here is to detect parameters of the plant and maintain st ability in the closed loop using a ccd camera as a sensor. The main result discussed in the report is the role of perspective systems theory that was developed in order to analyze such a detection and control problem. The robust control algorithms and the visually guided control algorithms are applied in the context of a PUMA 560 robot arm control where the goal is to visually locate a moving part on a mobile turntable. Such problems are of paramount importance in manufacturing with a certain lack of structure. Sensor guided control problems are extended to problems in robot navigation using a NOMADIC mobile platform with a ccd and a laser range finder as sensors. The localization and map building problems are studied with the objective of navigation in an unstructured terrain.

  19. Fractional-Order Control of a Nonlinear Time-Delay System: Case Study in Oxygen Regulation in the Heart-Lung Machine

    Directory of Open Access Journals (Sweden)

    S. J. Sadati

    2012-01-01

    Full Text Available A fractional-order controller will be proposed to regulate the inlet oxygen into the heart-lung machine. An analytical approach will be explained to satisfy some requirements together with practical implementation of some restrictions for the first time. Primarily a nonlinear single-input single-output (SISO time-delay model which was obtained previously in the literature is introduced for the oxygen generation process in the heart-lung machine system and we will complete it by adding some new states to control it. Thereafter, the system is linearized using the state feedback linearization approach to find a third-order time-delay dynamics. Consequently classical PID and fractional order controllers are gained to assess the quality of the proposed technique. A set of optimal parameters of those controllers are achieved through the genetic algorithm optimization procedure through minimizing a cost function. Our design method focuses on minimizing some famous performance criterions such as IAE, ISE, and ITSE. In the genetic algorithm, the controller parameters are chosen as a random population. The best relevant values are achieved by reducing the cost function. A time-domain simulation signifies the performance of controller with respect to a traditional optimized PID controller.

  20. Design and implementation of robust controllers for a gait trainer.

    Science.gov (United States)

    Wang, F C; Yu, C H; Chou, T Y

    2009-08-01

    This paper applies robust algorithms to control an active gait trainer for children with walking disabilities. Compared with traditional rehabilitation procedures, in which two or three trainers are required to assist the patient, a motor-driven mechanism was constructed to improve the efficiency of the procedures. First, a six-bar mechanism was designed and constructed to mimic the trajectory of children's ankles in walking. Second, system identification techniques were applied to obtain system transfer functions at different operating points by experiments. Third, robust control algorithms were used to design Hinfinity robust controllers for the system. Finally, the designed controllers were implemented to verify experimentally the system performance. From the results, the proposed robust control strategies are shown to be effective.

  1. Software and Human-Machine Interface Development for Environmental Controls Subsystem Support

    Science.gov (United States)

    Dobson, Matthew

    2018-01-01

    The Space Launch System (SLS) is the next premier launch vehicle for NASA. It is the next stage of manned space exploration from American soil, and will be the platform in which we push further beyond Earth orbit. In preparation of the SLS maiden voyage on Exploration Mission 1 (EM-1), the existing ground support architecture at Kennedy Space Center required significant overhaul and updating. A comprehensive upgrade of controls systems was necessary, including programmable logic controller software, as well as Launch Control Center (LCC) firing room and local launch pad displays for technician use. Environmental control acts as an integral component in these systems, being the foremost system for conditioning the pad and extremely sensitive launch vehicle until T-0. The Environmental Controls Subsystem (ECS) required testing and modification to meet the requirements of the designed system, as well as the human factors requirements of NASA software for Validation and Verification (V&V). This term saw significant strides in the progress and functionality of the human-machine interfaces used at the launch pad, and improved integration with the controller code.

  2. Conventional control and fuzzy control of a dc-dc converter for machine drive

    Energy Technology Data Exchange (ETDEWEB)

    Radoi, C.; Florescu, A. [Department of Power Electronics `Politecnica` University Bucharest (Romania)

    1997-12-31

    Fuzzy logic or fuzzy set theory is recently getting increasing emphasis in process control applications. The paper describes an application of fuzzy logic in speed control system that uses a dc-dc converter. The fuzzy control is used to linearize the family of external characteristics of the converter in discontinuous-conduction mode occurring at light load and/or high speed. In order to compare the conventional control with the fuzzy logic control, algorithms have been developed in detail and verified by Microsoft Excel simulation. The simulation study indicates that fuzzy control is a good alternative for conventional control methods, being used particularly in non-linear complex systems ill defined or totally unknown. Where the mathematical model exists, it is useful. The applications of fuzzy set theory in power electronics are almost entirely new; fuzzy logic seems to have a lot of premises in the large industrial control field. (orig.) 2 refs.

  3. WIDE-AREA BASED ON COORDINATED TUNING OF FUZZY PSS AND FACTS CONTROLLER IN MULTI-MACHINE ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Homayoun Ebrahimian

    2016-03-01

    Full Text Available In this paper coordination of fuzzy power system stabilizer (FPSS and flexible ac transmission systems (FACTS have been considered in a multi-machine power system. The proposed model, has been applied for a wide-area power system. The proposed FPSS presented with local, nonlinear feedbacks, and the corresponding control synthesis conditions are given in terms of solutions to a set of linear matrix inequalities (LMIs. For this model, in fuzzy control synthesis, the new proposed control design method is based on fewer fuzzy rules and less computational burden. Also, the parameters of FACTS controller have been evaluated by improved honey bee mating optimization (IHBMO. The effectiveness of the proposed method has been applied over two case studies of single-machine infinite-bus (SMIB and two areas four machine (TAFM Kundur’s power system. The obtained results demonstrate the superiority of proposed strategy.

  4. Machine-Specific Magnetic Resonance Imaging Quality Control Procedures for Stereotactic Radiosurgery Treatment Planning.

    Science.gov (United States)

    Fatemi, Ali; Taghizadeh, Somayeh; Yang, Claus Chunli; R Kanakamedala, Madhava; Morris, Bart; Vijayakumar, Srinivasan

    2017-12-18

    Purpose Magnetic resonance (MR) images are necessary for accurate contouring of intracranial targets, determination of gross target volume and evaluation of organs at risk during stereotactic radiosurgery (SRS) treatment planning procedures. Many centers use magnetic resonance imaging (MRI) simulators or regular diagnostic MRI machines for SRS treatment planning; while both types of machine require two stages of quality control (QC), both machine- and patient-specific, before use for SRS, no accepted guidelines for such QC currently exist. This article describes appropriate machine-specific QC procedures for SRS applications. Methods and materials We describe the adaptation of American College of Radiology (ACR)-recommended QC tests using an ACR MRI phantom for SRS treatment planning. In addition, commercial Quasar MRID 3D and Quasar GRID 3D phantoms were used to evaluate the effects of static magnetic field (B 0 ) inhomogeneity, gradient nonlinearity, and a Leksell G frame (SRS frame) and its accessories on geometrical distortion in MR images. Results QC procedures found in-plane distortions (Maximum = 3.5 mm, Mean = 0.91 mm, Standard deviation = 0.67 mm, >2.5 mm (%) = 2) in X-direction (Maximum = 2.51 mm, Mean = 0.52 mm, Standard deviation = 0.39 mm, > 2.5 mm (%) = 0) and in Y-direction (Maximum = 13. 1 mm , Mean = 2.38 mm, Standard deviation = 2.45 mm, > 2.5 mm (%) = 34) in Z-direction and < 1 mm distortion at a head-sized region of interest. MR images acquired using a Leksell G frame and localization devices showed a mean absolute deviation of 2.3 mm from isocenter. The results of modified ACR tests were all within recommended limits, and baseline measurements have been defined for regular weekly QC tests. Conclusions With appropriate QC procedures in place, it is possible to routinely obtain clinically useful MR images suitable for SRS treatment planning purposes. MRI examination for SRS planning can benefit from the improved localization and planning

  5. Topical issues of transparency in implementing public control in municipalentities

    Directory of Open Access Journals (Sweden)

    Denis Stepanovich Mikheyev

    2015-06-01

    Full Text Available Objective to investigate the mechanisms of citizens and public institutions participation in public control in the municipalities. According to the author the monitoring process should involve the greatest possible range of subjects and the controlling measures are to be taken in a transparent and open manner. Therefore forms of citizen participation in public control should be investigated from the standpoint of the principle of openness of local government. Methods the universal dialectic method which was applied to the analysis of norms of the Federal law quotOn fundamentals of public control in the Russian Federationquot which is the legal base for the implementation of the institution of public control. When studying the problem of adequate legal regulation of the control institution the formal legal method was also used. Other methods were used for evaluation of the acquired knowledge in particular comparative legal and systemicstructural methods. Results on the basis of legal norms analysis based on the legal nature of the local government institution as the level of public authorities which is closest to the citizens the conclusion was made about the lack of legal regulation relating to the public control subjects in municipalities. The numerous public organizations operating in local communities were not fixed by legislative norms as subjects of public control. Scientific novelty the author has grounded the proposals for amending the abovementioned Federal law the legislation of Federation subjects and the municipal regulations by adding a number of new subjects of public control inherent to the municipal level. Practical value the conclusions and suggestions formulated in the study will contribute to the active implementation of public control in the municipalities will enhance the ability of citizens and civil society institutions to monitor the authorities and will have a positive impact on transparency of local selfgovernment. The

  6. Design And Implementation Of Radio Resources Controller Of WCDMA

    International Nuclear Information System (INIS)

    Hafez, A.M.A.

    2012-01-01

    Recently, wireless communications and especially the mobile networks are employed in nuclear applications including, but not limited to, Nuclear Material Integrity [1], Radiation Monitoring Networks [2, 3] and Nuclear Power Plants [4]. The thesis introduces an overview about one of the third generation (3G) mobile networks, known as Universal Mobile Telecommunications System (UMTS) networks, which consists of Universal Terrestrial Radio Access Network (UTRAN) and the Core Network (CN). The UTRAN has many interfaces, but the thesis focuses on the Uu interface which is between the User Equipment (UE) and the UTRAN. That interface is based on Wideband Code Division Multiple Accessing (WCDMA) system. The protocol architecture of UMTS is composed of two planes; the control plane and the user plane. Again, the thesis is concerned on the control plane which has the Radio Resources Control (RRC) protocol to manage the control signal at the Uu interface between the UE and the Radio Network Controller. The main goal of the thesis is to design, implement and test the building blocks of Radio Resources Controller of the WCDMA system. Also, the thesis presents one of nuclear applications that is based on WCDMA. This application includes design, implementation and simulation of Radiation Monitoring network as a pilot prototype model.

  7. Single-Electrical-Port Control of Cascaded Doubly-Fed Induction Machine for EV/HEV Applications

    DEFF Research Database (Denmark)

    Han, Peng; Cheng, Ming; Chen, Zhe

    2017-01-01

    A single-electrical-port control scheme, for four-quadrant operation of cascaded doubly-fed induction machine (CDFIM), which has long been conceived as a motor or generator only suitable for limited two-quadrant operation, is proposed and theoretically demonstrated. The drive system is configured...... as slave inverter. With this configuration, the control emphasis is placed on the slave inverter, yielding reduced control complexity and cost, and the inaccuracy of flux estimation in conventional FOC for singly-fed induction machines is avoided at very low or even zero speed. It is found that the doubly...

  8. Implementation of quality control program in radiodiagnostic services

    International Nuclear Information System (INIS)

    Herrera S, A.; Roas Z, N.

    1995-01-01

    This monograph is the first version of the implementation of the quality control programme in radiology diagnostic services. Here all information related to diagnostic quality to better radiation protection to patients and personnel was collected. The programme was implemented on the X-ray equipment at three hospitals (named hospital A, hospital B and hospital C) and included the evaluation of technical parameters such as kilovolts, exposition time, filtration, fields. In addition, dark room, chassis and image intensifiers were also evaluated. The procedures to carry out the quality control and the manner in which the observations, conclusions and recommendations should be formulated are based on documents issued by the International Commission on Radiological Protection (I.C.R.P.), International Atomic Energy Agency (I.A.E.A.) and World Health Organization (W.H.O.)

  9. Design and implementation of FPGA-based LQ control of active magnetic bearings

    Energy Technology Data Exchange (ETDEWEB)

    Jastrzebski, R.

    2007-07-01

    The need for high performance, high precision, and energy saving in rotating machinery demands an alternative solution to traditional bearings. Because of the contactless operation principle, the rotating machines employing active magnetic bearings (AMBs) provide many advantages over the traditional ones. The advantages such as contamination-free operation, low maintenance costs, high rotational speeds, low parasitic losses, programmable stiffness and damping, and vibration insulation come at expense of high cost, and complex technical solution. All these properties make the use of AMBs appropriate primarily for specific and highly demanding applications. High performance and high precision control requires model-based control methods and accurate models of the flexible rotor. In turn, complex models lead to high-order controllers and feature considerable computational burden. Fortunately, in the last few years the advancements in signal processing devices provide new perspective on the real-time control of AMBs. The design and the real-time digital implementation of the high-order LQ controllers, which focus on fast execution times, are the subjects of this work. In particular, the control design and implementation in the field programmable gate array (FPGA) circuits are investigated. The optimal design is guided by the physical constraints of the system for selecting the optimal weighting matrices. The plant model is complemented by augmenting appropriate disturbance models. The compensation of the force-field nonlinearities is proposed for decreasing the uncertainty of the actuator. A disturbance-observer-based unbalance compensation for canceling the magnetic force vibrations or vibrations in the measured positions is presented. The theoretical studies are verified by the practical experiments utilizing a custom-built laboratory test rig. The test rig uses a prototyping control platform developed in the scope of this work. To sum up, the work makes a step in

  10. Neuromechanism study of insect-machine interface: flight control by neural electrical stimulation.

    Directory of Open Access Journals (Sweden)

    Huixia Zhao

    Full Text Available The insect-machine interface (IMI is a novel approach developed for man-made air vehicles, which directly controls insect flight by either neuromuscular or neural stimulation. In our previous study of IMI, we induced flight initiation and cessation reproducibly in restrained honeybees (Apis mellifera L. via electrical stimulation of the bilateral optic lobes. To explore the neuromechanism underlying IMI, we applied electrical stimulation to seven subregions of the honeybee brain with the aid of a new method for localizing brain regions. Results showed that the success rate for initiating honeybee flight decreased in the order: α-lobe (or β-lobe, ellipsoid body, lobula, medulla and antennal lobe. Based on a comparison with other neurobiological studies in honeybees, we propose that there is a cluster of descending neurons in the honeybee brain that transmits neural excitation from stimulated brain areas to the thoracic ganglia, leading to flight behavior. This neural circuit may involve the higher-order integration center, the primary visual processing center and the suboesophageal ganglion, which is also associated with a possible learning and memory pathway. By pharmacologically manipulating the electrically stimulated honeybee brain, we have shown that octopamine, rather than dopamine, serotonin and acetylcholine, plays a part in the circuit underlying electrically elicited honeybee flight. Our study presents a new brain stimulation protocol for the honeybee-machine interface and has solved one of the questions with regard to understanding which functional divisions of the insect brain participate in flight control. It will support further studies to uncover the involved neurons inside specific brain areas and to test the hypothesized involvement of a visual learning and memory pathway in IMI flight control.

  11. Neuromechanism study of insect-machine interface: flight control by neural electrical stimulation.

    Science.gov (United States)

    Zhao, Huixia; Zheng, Nenggan; Ribi, Willi A; Zheng, Huoqing; Xue, Lei; Gong, Fan; Zheng, Xiaoxiang; Hu, Fuliang

    2014-01-01

    The insect-machine interface (IMI) is a novel approach developed for man-made air vehicles, which directly controls insect flight by either neuromuscular or neural stimulation. In our previous study of IMI, we induced flight initiation and cessation reproducibly in restrained honeybees (Apis mellifera L.) via electrical stimulation of the bilateral optic lobes. To explore the neuromechanism underlying IMI, we applied electrical stimulation to seven subregions of the honeybee brain with the aid of a new method for localizing brain regions. Results showed that the success rate for initiating honeybee flight decreased in the order: α-lobe (or β-lobe), ellipsoid body, lobula, medulla and antennal lobe. Based on a comparison with other neurobiological studies in honeybees, we propose that there is a cluster of descending neurons in the honeybee brain that transmits neural excitation from stimulated brain areas to the thoracic ganglia, leading to flight behavior. This neural circuit may involve the higher-order integration center, the primary visual processing center and the suboesophageal ganglion, which is also associated with a possible learning and memory pathway. By pharmacologically manipulating the electrically stimulated honeybee brain, we have shown that octopamine, rather than dopamine, serotonin and acetylcholine, plays a part in the circuit underlying electrically elicited honeybee flight. Our study presents a new brain stimulation protocol for the honeybee-machine interface and has solved one of the questions with regard to understanding which functional divisions of the insect brain participate in flight control. It will support further studies to uncover the involved neurons inside specific brain areas and to test the hypothesized involvement of a visual learning and memory pathway in IMI flight control.

  12. Neuromechanism Study of Insect–Machine Interface: Flight Control by Neural Electrical Stimulation

    Science.gov (United States)

    Zhao, Huixia; Zheng, Nenggan; Ribi, Willi A.; Zheng, Huoqing; Xue, Lei; Gong, Fan; Zheng, Xiaoxiang; Hu, Fuliang

    2014-01-01

    The insect–machine interface (IMI) is a novel approach developed for man-made air vehicles, which directly controls insect flight by either neuromuscular or neural stimulation. In our previous study of IMI, we induced flight initiation and cessation reproducibly in restrained honeybees (Apis mellifera L.) via electrical stimulation of the bilateral optic lobes. To explore the neuromechanism underlying IMI, we applied electrical stimulation to seven subregions of the honeybee brain with the aid of a new method for localizing brain regions. Results showed that the success rate for initiating honeybee flight decreased in the order: α-lobe (or β-lobe), ellipsoid body, lobula, medulla and antennal lobe. Based on a comparison with other neurobiological studies in honeybees, we propose that there is a cluster of descending neurons in the honeybee brain that transmits neural excitation from stimulated brain areas to the thoracic ganglia, leading to flight behavior. This neural circuit may involve the higher-order integration center, the primary visual processing center and the suboesophageal ganglion, which is also associated with a possible learning and memory pathway. By pharmacologically manipulating the electrically stimulated honeybee brain, we have shown that octopamine, rather than dopamine, serotonin and acetylcholine, plays a part in the circuit underlying electrically elicited honeybee flight. Our study presents a new brain stimulation protocol for the honeybee–machine interface and has solved one of the questions with regard to understanding which functional divisions of the insect brain participate in flight control. It will support further studies to uncover the involved neurons inside specific brain areas and to test the hypothesized involvement of a visual learning and memory pathway in IMI flight control. PMID:25409523

  13. Soft brain-machine interfaces for assistive robotics: A novel control approach.

    Science.gov (United States)

    Schiatti, Lucia; Tessadori, Jacopo; Barresi, Giacinto; Mattos, Leonardo S; Ajoudani, Arash

    2017-07-01

    Robotic systems offer the possibility of improving the life quality of people with severe motor disabilities, enhancing the individual's degree of independence and interaction with the external environment. In this direction, the operator's residual functions must be exploited for the control of the robot movements and the underlying dynamic interaction through intuitive and effective human-robot interfaces. Towards this end, this work aims at exploring the potential of a novel Soft Brain-Machine Interface (BMI), suitable for dynamic execution of remote manipulation tasks for a wide range of patients. The interface is composed of an eye-tracking system, for an intuitive and reliable control of a robotic arm system's trajectories, and a Brain-Computer Interface (BCI) unit, for the control of the robot Cartesian stiffness, which determines the interaction forces between the robot and environment. The latter control is achieved by estimating in real-time a unidimensional index from user's electroencephalographic (EEG) signals, which provides the probability of a neutral or active state. This estimated state is then translated into a stiffness value for the robotic arm, allowing a reliable modulation of the robot's impedance. A preliminary evaluation of this hybrid interface concept provided evidence on the effective execution of tasks with dynamic uncertainties, demonstrating the great potential of this control method in BMI applications for self-service and clinical care.

  14. Study on on-Line Measurement and Controlling System of the Foundation Trench-Leveling Machine

    International Nuclear Information System (INIS)

    Yi, J G; Jiang, H Y; Xing, Y Z; Chen, J; Liu, J T

    2006-01-01

    Research the system software and hardware composing, the control mode, the online measurement and control principle based on the laser receiver and the inclination sensor as the signal source. After the laser receiver accepts the laser signal, the laser signal is carried through the light filter treatment so as to reduce the sunlight interference, and then amplified and modulated, last transmitted to the control unit. The inclination sensor adapts XWQJ02-01S, measure the slope angle the x and y verticality direction. The error adjusting range is ±0.05 0 . The separate time treatment avoids simultaneously adjusting the laser and inclination signal to each other interfere. The on-line measurement and control system realizes the parts to work on the plane that parallels with the datum plane of the laser beam scan. The trench-leveling machine must retain ±0.05 0 with the datum plane. Adapting the least square method to fit the linear curve, the movement trend of the work parts on the work plane is judged through the slope number. The test result shows that thought the combination measurement and control of the laser and slope angle the leveling precision are ±5mm/100. Its can satisfy with the construction criterion request

  15. Semiconductor-machine system for controlling excitation of synchronous medium power generators

    Energy Technology Data Exchange (ETDEWEB)

    Vrtikapa, G

    1982-01-01

    A system for controlling excitation (ARP-29/1) is described which was developed at the ''Nikola Tesla'' institute (Czechoslavakia) for rebuilding the Zvornik hydroelectric plant with 30 MV X A units. The system corresponds to the modern level of automation and considers positive characteristics of existing equipment, it is easily included in a technological process, has small dimensions and is easily installed during overhaul of a electric generating plant, and it allows one to obtain good economic results. Two years of use have confirmed the high reliability and quality of the excitation. The excitation control system consists of synchronous motor, excitation system, automatic control of voltage, manual control of excitation unit, unit for automatic following and switching, relay automatic device with protection and warning. The excitation system of the generator has: thyristor rectifier, thyristor converter, a bridge with thyristor control unit, machine excitation generator, switch for demagnetization. The excitation system is supplied from an electric power network or from a three phase generator with permanent magnets.

  16. Integrated digital control and man-machine interface for complex remote handing systems

    International Nuclear Information System (INIS)

    Rowe, J.C.; Spille, R.F.; Zimmermann, S.D.

    1987-01-01

    The Advanced Integrated Maintenance System (AIMS) is part of a continuing effort within the Consolidated Fuel Reprocessing Program at Oak Ridge National Laboratory to develop and extend the capabilities of remote manipulation and maintenance technology. The AIMS is a totally integrated approach to remote handling in hazardous environments. State-of-the-art computer systems connected through a high-speed distributed control system that supports the flexibility and expandability needed for large integrated maintenance applications. A man-Machine Interface provides high-level human interaction through a powerful color graphics menu-controlled operator console. An auxiliary control system handles the real-time processing needs for a variety of support hardware. A pair of dedicated fiber-optic-linked master/slave computer systems control the Advanced Servomanipulator master/slave arms using powerful distributed digital processing methods. The FORTH language was used as a real-time operating and development environment for the entire system, and all of these components are integrated into a control room concept that represents the latest advancements in the development of remote maintenance facilities for hazardous environments

  17. Integrated digital control and man-machine interface for complex remote handling systems

    International Nuclear Information System (INIS)

    Rowe, J.C.; Spille, R.F.; Zimmermann, S.D.

    1986-12-01

    The Advanced Integrated Maintenance System (AIMS) is part of a continuing effort within the Consolidated Fuel Reprocessing Program at Oak Ridge National Laboratory to develop and extend the capabilities of remote manipulation and maintenance technology. The AIMS is a totally integrated approach to remote handling in hazardous environments. State-of-the-art computer systems connected through a high-speed communication network provide a real-time distributed control system that supports the flexibility and expandability needed for large integrated maintenance applications. A Man-Machine Interface provides high-level human interaction through a powerful color graphics menu-controlled operator console. An auxiliary control system handles the real-time processing needs for a variety of support hardware. A pair of dedicated fiber-optic-linked master/slave computer system control the Advanced Servomanipulator master/slave arms using powerful distributed digital processing methods. The FORTH language was used as a real-time operating and development environment for the entire system, and all of these components are integrated into a control room concept that represents the latest advancements in the development of remote maintenance facilities for hazardous environments

  18. Brain-Machine Interface control of a robot arm using actor-critic rainforcement learning.

    Science.gov (United States)

    Pohlmeyer, Eric A; Mahmoudi, Babak; Geng, Shijia; Prins, Noeline; Sanchez, Justin C

    2012-01-01

    Here we demonstrate how a marmoset monkey can use a reinforcement learning (RL) Brain-Machine Interface (BMI) to effectively control the movements of a robot arm for a reaching task. In this work, an actor-critic RL algorithm used neural ensemble activity in the monkey's motor cortext to control the robot movements during a two-target decision task. This novel approach to decoding offers unique advantages for BMI control applications. Compared to supervised learning decoding methods, the actor-critic RL algorithm does not require an explicit set of training data to create a static control model, but rather it incrementally adapts the model parameters according to its current performance, in this case requiring only a very basic feedback signal. We show how this algorithm achieved high performance when mapping the monkey's neural states (94%) to robot actions, and only needed to experience a few trials before obtaining accurate real-time control of the robot arm. Since RL methods responsively adapt and adjust their parameters, they can provide a method to create BMIs that are robust against perturbations caused by changes in either the neural input space or the output actions they generate under different task requirements or goals.

  19. Driving and control strategies in alternative current machines of permanent magnet with non-sinusoidal flux; Estrategias de acionamento e controle em maquinas CA de ima permanente com fluxo nao senoidal

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, Jose Roberto Boffino de Almeida

    1997-07-01

    The aim of this work is to study and analyze the torque performance of brush less machines with non-sinusoidal distributed magnetic fluxes. The machine type considered is a surface mount permanent magnet brush less machine. Three mathematical models for the machine are considered: the per stator phase, the vectorial and the linear second order speed-voltage models. Machines with different stator windings are compared including the permanent magnet synchronous machines with sinusoidal distributed stator windings. The torque outputs of these machines are obtained considering two kinds of open loop driving systems: one with a six-pulse waveform and other with a sinusoidal waveform. Finally, a vectorial control is proposed for the non-sinusoidal machines. The torque ripple as well the overall performance of non-sinusoidal machines with vectorial control is compared to that of sinusoidal machines. (author)

  20. Implementation method of multi-terminal DC control system

    Science.gov (United States)

    Yi, Liu; Hao-Ran, Huang; Jun-Wen, Zhou; Hong-Guang, Guo; Yu-Yong, Zhou

    2018-04-01

    Currently the multi-terminal DC system (MTDC) has more stations. Each station needs operators to monitor and control the device. It needs much more operation and maintenance, low efficiency and small reliability; for the most important reason, multi-terminal DC system has complex control mode. If one of the stations has some problem, the control of the whole system should have problems. According to research of the characteristics of multi-terminal DC (VSC-MTDC) systems, this paper presents a strong implementation of the multi-terminal DC Supervisory Control and Data Acquisition (SCADA) system. This system is intelligent, can be networking, integration and intelligent. A master control system is added in each station to communication with the other stations to send current and DC voltage value to pole control system for each station. Based on the practical application and information feedback in the China South Power Grid research center VSC-MTDC project, this system is higher efficiency and save the cost on the maintenance of convertor station to improve the intelligent level and comprehensive effect. And because of the master control system, a multi-terminal system hierarchy coordination control strategy is formed, this make the control and protection system more efficiency and reliability.

  1. Implementing the theories: A fully integrated project control system that's implemented and works

    International Nuclear Information System (INIS)

    Harris, R.E.

    1994-01-01

    Using the theories presented in DOE Orders 4700.1, 1332.1A, and Notice 4700.5 as the basis for system design, the Fernald Environmental Restoration Management Corporation (FERMCO) has developed and implemented a Project Control System (PCS) that complies with requirements and provides DOE and FERMCO management with timely performance measurement information. To this extent, the FERMCO PCS probably is similar to the systems of the majority of the contractors in the DOE complex. In fact. this facet of the FERMCO PCS generally mirrors those used on projects around the world by FERMCO's parent company, Fluor Daniel. Starting with this open-quotes platformclose quotes, the vision and challenge of creating a fully integrated system commenced. An open-architecture systems approach is the factor that most greatly influenced and enabled the successful development and implementation of the Project Control System for the Fernald Environmental Management Project. All aspects of a fully integrated system were considered during the design phase. The architecture of the FERMCO system enables seamless, near real-time, transfer of data both from and to the Project Control System with all other related systems. The primary systems that provide and share data with the Project Control System include those used by the Payroll, Accounting, Procurement, and Human Resources organizations. To enable data linking with these organizations, the resource codes were designed to map many-to-one from their detailed codes to the summarized codes used in the PCS

  2. A thermal manikin with human thermoregulatory control: implementation and validation.

    Science.gov (United States)

    Foda, Ehab; Sirén, Kai

    2012-09-01

    Tens of different sorts of thermal manikins are employed worldwide, mainly in the evaluation of clothing thermal insulation and thermal environments. They are regulated thermally using simplified control modes. This paper reports on the implementation and validation of a new thermoregulatory control mode for thermal manikins. The new control mode is based on a multi-segmental Pierce (MSP) model. In this study, the MSP control mode was implemented, using the LabVIEW platform, onto the control system of the thermal manikin 'Therminator'. The MSP mode was then used to estimate the segmental equivalent temperature (t(eq)) along with constant surface temperature (CST) mode under two asymmetric thermal conditions. Furthermore, subjective tests under the same two conditions were carried out using 17 human subjects. The estimated segmental t(eq) from the experiments with the two modes and from the subjective assessment were compared in order to validate the use of the MSP mode for the estimation of t(eq). The results showed that the t(eq) values estimated by the MSP mode were closer to the subjective mean votes under the two test conditions for most body segments and compared favourably with values estimated by the CST mode.

  3. API manager implementation and its use for Indus accelerator control

    International Nuclear Information System (INIS)

    Merh, B.N.; Agrawal, R.K.; Barpande, K.; Fatnani, P.; Navathe, C.P.

    2012-01-01

    The control system software needed for operation of Indus accelerators is coupled to the underlying firmware and hardware of the control system by the Application Programming Interface (API) manager. In the three layered architecture of Indus control system, PVSS-II SCADA is being used at the layer-1(L1) for control and monitoring of various sub-systems. The layer-2(L2) consists of VME bus based system. The API manager plays a crucial role in interfacing the L1 and L2 of the control system. It has to interact with both the PVSS database and the L2. In order to access the PVSS database it uses the PVSS API, a C++ class library, whereas in order to access the L2 custom functions have been built. Several other custom functionalities have also been implemented. The paper presents the important aspects of the API manager like its implementation, its interface mechanism to the lower layer and features like configurability, reusable classes, multithreading capability etc. (author)

  4. Neural Control and Adaptive Neural Forward Models for Insect-like, Energy-Efficient, and Adaptable Locomotion of Walking Machines

    DEFF Research Database (Denmark)

    Manoonpong, Poramate; Parlitz, Ulrich; Wörgötter, Florentin

    2013-01-01

    such natural properties with artificial legged locomotion systems by using different approaches including machine learning algorithms, classical engineering control techniques, and biologically-inspired control mechanisms. However, their levels of performance are still far from the natural ones. By contrast...... on sensory feedback and adaptive neural forward models with efference copies. This neural closed-loop controller enables a walking machine to perform a multitude of different walking patterns including insect-like leg movements and gaits as well as energy-efficient locomotion. In addition, the forward models...... allow the machine to autonomously adapt its locomotion to deal with a change of terrain, losing of ground contact during stance phase, stepping on or hitting an obstacle during swing phase, leg damage, and even to promote cockroach-like climbing behavior. Thus, the results presented here show...

  5. Man-machine interface in a submarine command and weapon control system: features and design experience

    Directory of Open Access Journals (Sweden)

    Johan H. Aas

    1989-01-01

    Full Text Available Important man-machine interface (MMI issues concerning a submarine command and weapon control system (CWCS such as crew organization, automation level and decision support are discussed in this paper. Generic submarine CWCS functions and operating conditions are outlined. Detailed, dynamic and real-time prototypes were used to support the MMI design. The prototypes are described and experience with detailed prototyping is discussed. Some of the main interaction principles are summarized and a restricted example of the resulting design is given. Our design experience and current work have been used to outline future perspectives of MMI design in naval CWCSs. The need for both formal and experimental approaches is emphasized.

  6. Using fuzzy models in machining control system and assessment of sustainability

    Science.gov (United States)

    Grinek, A. V.; Boychuk, I. P.; Dantsevich, I. M.

    2018-03-01

    Description of the complex relationship of the optimum velocity with the temperature-strength state in the cutting zone for machining a fuzzy model is proposed. The fuzzy-logical conclusion allows determining the processing speed, which ensures effective, from the point of view of ensuring the quality of the surface layer, the temperature in the cutting zone and the maximum allowable cutting force. A scheme for stabilizing the temperature-strength state in the cutting zone using a nonlinear fuzzy PD–controller is proposed. The stability of the nonlinear system is estimated with the help of grapho–analytical realization of the method of harmonic balance and by modeling in MatLab.

  7. Identifying reports of randomized controlled trials (RCTs) via a hybrid machine learning and crowdsourcing approach.

    Science.gov (United States)

    Wallace, Byron C; Noel-Storr, Anna; Marshall, Iain J; Cohen, Aaron M; Smalheiser, Neil R; Thomas, James

    2017-11-01

    Identifying all published reports of randomized controlled trials (RCTs) is an important aim, but it requires extensive manual effort to separate RCTs from non-RCTs, even using current machine learning (ML) approaches. We aimed to make this process more efficient via a hybrid approach using both crowdsourcing and ML. We trained a classifier to discriminate between citations that describe RCTs and those that do not. We then adopted a simple strategy of automatically excluding citations deemed very unlikely to be RCTs by the classifier and deferring to crowdworkers otherwise. Combining ML and crowdsourcing provides a highly sensitive RCT identification strategy (our estimates suggest 95%-99% recall) with substantially less effort (we observed a reduction of around 60%-80%) than relying on manual screening alone. Hybrid crowd-ML strategies warrant further exploration for biomedical curation/annotation tasks. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association.

  8. Study on Production Management in Programming of Computer Numerical Control Machines

    Directory of Open Access Journals (Sweden)

    Gheorghe Popovici

    2014-12-01

    Full Text Available The paper presents the results of a study regarding the need for technology in programming for machinetools with computer-aided command. Engineering is the science of making skilled things. That is why, in the "factory of the future", programming engineering will have to realise the part processing on MU-CNCs (Computer Numerical Control Machines in the optimum economic variant. There is no "recipe" when it comes to technologies. In order to select the correct variant from among several technical variants, 10 technological requirements are forwarded for the engineer to take into account in MU-CNC programming. It is the first argued synthesis of the need for technological knowledge in MU-CNC programming.

  9. Modeling, Control and Analyze of Multi-Machine Drive Systems using Bond Graph Technique

    Directory of Open Access Journals (Sweden)

    J. Belhadj

    2006-03-01

    Full Text Available In this paper, a system viewpoint method has been investigated to study and analyze complex systems using Bond Graph technique. These systems are multimachine multi-inverter based on Induction Machine (IM, well used in industries like rolling mills, textile, and railway traction. These systems are multi-domains, multi-scales time and present very strong internal and external couplings, with non-linearity characterized by a high model order. The classical study with analytic model is difficult to manipulate and it is limited to some performances. In this study, a “systemic approach” is presented to design these kinds of systems, using an energetic representation based on Bond Graph formalism. Three types of multimachine are studied with their control strategies. The modeling is carried out by Bond Graph and results are discussed to show the performances of this methodology

  10. An EOG-Based Human-Machine Interface for Wheelchair Control.

    Science.gov (United States)

    Huang, Qiyun; He, Shenghong; Wang, Qihong; Gu, Zhenghui; Peng, Nengneng; Li, Kai; Zhang, Yuandong; Shao, Ming; Li, Yuanqing

    2017-07-27

    Non-manual human-machine interfaces (HMIs) have been studied for wheelchair control with the aim of helping severely paralyzed individuals regain some mobility. The challenge is to rapidly, accurately and sufficiently produce control commands, such as left and right turns, forward and backward motions, acceleration, deceleration, and stopping. In this paper, a novel electrooculogram (EOG)-based HMI is proposed for wheelchair control. Thirteen flashing buttons are presented in the graphical user interface (GUI), and each of the buttons corresponds to a command. These buttons flash on a one-by-one manner in a pre-defined sequence. The user can select a button by blinking in sync with its flashes. The algorithm detects the eye blinks from a channel of vertical EOG data and determines the user's target button based on the synchronization between the detected blinks and the button's flashes. For healthy subjects/patients with spinal cord injuries (SCIs), the proposed HMI achieved an average accuracy of 96.7%/91.7% and a response time of 3.53 s/3.67 s with 0 false positive rates (FPRs). Using only one channel of vertical EOG signals associated with eye blinks, the proposed HMI can accurately provide sufficient commands with a satisfactory response time. The proposed HMI provides a novel non-manual approach for severely paralyzed individuals to control a wheelchair. Compared with a newly established EOG-based HMI, the proposed HMI can generate more commands with higher accuracy, lower FPR and fewer electrodes.

  11. Securing a control system: experiences from ISO 27001 implementation

    International Nuclear Information System (INIS)

    Vuppala, V.; Vincent, J.; Kusler, J.; Davidson, K.

    2012-01-01

    Recent incidents of breaches, in control systems in specific and information systems in general, have emphasized the importance of security and operational continuity in achieving the quality objectives of an organization, and the safety of its personnel and infrastructure. However, security and disaster recovery are either completely ignored or given a low priority during the design and development of an accelerator control system, the underlying technologies, and the overlaid applications. This leads to an operational facility that is easy to breach, and difficult to recover. Retrofitting security into a control system becomes much more difficult during operations. In this paper we describe our experiences with implementing ISO/IEC 27001 Standard for information security at the Electronics Department of the National Superconducting Cyclotron Laboratory (NSCL) located on the campus of Michigan State University. We describe our risk assessment methodology, the identified risks, the selected controls, their implementation, and our documentation structure. We also report the current status of the project. We conclude with the challenges faced and the lessons learnt. (authors)

  12. Universal machine ''Shtrek'' and the tractor-lifter with pneumatic-equipment control. [Auxiliary multipurpose materials handling equipment

    Energy Technology Data Exchange (ETDEWEB)

    Bal' bert, B M; Borumenskiy, V A; Lishenko, A P; Mitchenko, G A

    1982-01-01

    The machine ''Shtrek'' is described. It makes it possible to mechanize over 20 auxiliary operations: loading-unloading operations: extraction of old and deformed timbering; dissmantling of obstructions; erection of different types of timbering; making and restoring of drainage channels; laying and straightening of a drift and its leveling; assembly and disassembly of pipelines and mine equipment, etc. Depending on the type of operation, the machine has the corresponding suspended equipment. The elementary variant has a limited area of application at mines of the central region of the Dunbass. Currently a pneumatic variant of the machine ''Shtrek'' has been developed. The electric motor and the starter of the pumping equipment of the machine have been replaced by a pneumatic motor and pneumatically controlled valve KTM-50. In this case there was significant reduction in the weight of the pumping equipment and in its overall dimensions; the electric drive of the hydraulic distributors for controlling the mechanisms were replaced by simpler pneumatic ones; the logical circuit of the control system was constructed on the USEPPA elements. A specialized tractor-lifter designed for moving suspended loads is described for auxiliary operations in the near-face zone of the preparatory drifts. The machine also lifts and lowers the boom, rotates the boom by 270/sup 0/ and additionally lifts and lowers the weight-lifting hook.

  13. Community Outreach to African-Americans: Implementations for Controlling Hypertension.

    Science.gov (United States)

    Nasser, Samar A; Ferdinand, Keith C

    2018-04-10

    The purpose of this review is to examine the impact and effectiveness of community interventions for controlling hypertension in African-Americans. The questions addressed are as follows: Which salient prior and current community efforts focus on African-Americans and are most effective in controlling hypertension and patient-related outcomes? How are these efforts implemented and possibly sustained? The integration of out-of-office blood pressure measurements, novel hypertension control centers (i.e., barbershops), and community health workers improve hypertension control and may reduce the excess hypertension-related complications in African-Americans. Several community-based interventions may assist effectiveness of clinical care teams, decrease care barriers, and improve adherence. A multifaceted, tailored, multidisciplinary community-based approach may effectively reduce barriers to blood pressure control among African-Americans. Future research should evaluate the long-term benefits of community health workers, barbershops as control centers, and out-of-office blood pressure monitoring upon control and eventually on morbidity and mortality.

  14. IMPLEMENTATION OF CONTROL CARDS AND SUPPORTING METHOD IN PRODUCTION ENGINEERING

    Directory of Open Access Journals (Sweden)

    Anna WOLNOWSKA

    2012-10-01

    Full Text Available In the article there were presented chosen method associated with statistical control of production processes. Mainly focused on control cards and Pareto‐Lorenz analysis. Showed method were implemented to analysis production process stability of hearing aids in X company (the brand name don’t give because date of production is secret. Researches were made few months after new assembly lines starts‐up. Main aim of researches was defects types identification occurred in production process and determine the scale of effect. Finally received results were satisfactory, i.e. despite of occurred errors, control cards analysis showed that production process of BTE‐type (Behind‐The‐Ear hearing aids was stable.

  15. Implementation of a control system test environment in UNIX

    International Nuclear Information System (INIS)

    Brittain, C.R.; Otaduy, P.J.; Rovere, L.A.

    1990-01-01

    This paper discusses how UNIX features such as shared memory, remote procedure calls, and signalling have been used to implement a distributed computational environment ideal for the development and testing of digital control systems. The resulting environment -based on features commonly available in commercial workstations- is flexible, allows process simulation and controller development to proceed in parallel, and provides for testing and validation in a realistic environment. In addition, the use of shared memory to exchange data allows other tasks such as user interfaces and recorders to be added without affecting the process simulation or controllers. A library of functions is presented which provides a simple interface to using the features described. These functions can be used in either C or FORTRAN programs and have been tested on a network of Sun workstations and an ENCORE parallel computer. 6 refs., 2 figs

  16. Promoting the purchase of low-calorie foods from school vending machines: a cluster-randomized controlled study.

    Science.gov (United States)

    Kocken, Paul L; Eeuwijk, Jennifer; Van Kesteren, Nicole M C; Dusseldorp, Elise; Buijs, Goof; Bassa-Dafesh, Zeina; Snel, Jeltje

    2012-03-01

    Vending machines account for food sales and revenue in schools. We examined 3 strategies for promoting the sale of lower-calorie food products from vending machines in high schools in the Netherlands. A school-based randomized controlled trial was conducted in 13 experimental schools and 15 control schools. Three strategies were tested within each experimental school: increasing the availability of lower-calorie products in vending machines, labeling products, and reducing the price of lower-calorie products. The experimental schools introduced the strategies in 3 consecutive phases, with phase 3 incorporating all 3 strategies. The control schools remained the same. The sales volumes from the vending machines were registered. Products were grouped into (1) extra foods containing empty calories, for example, candies and potato chips, (2) nutrient-rich basic foods, and (3) beverages. They were also divided into favorable, moderately unfavorable, and unfavorable products. Total sales volumes for experimental and control schools did not differ significantly for the extra and beverage products. Proportionally, the higher availability of lower-calorie extra products in the experimental schools led to higher sales of moderately unfavorable extra products than in the control schools, and to higher sales of favorable extra products in experimental schools where students have to stay during breaks. Together, availability, labeling, and price reduction raised the proportional sales of favorable beverages. Results indicate that when the availability of lower-calorie foods is increased and is also combined with labeling and reduced prices, students make healthier choices without buying more or fewer products from school vending machines. Changes to school vending machines help to create a healthy school environment. © 2012, American School Health Association.

  17. Implementation of a smartphone wireless accelerometer platform for establishing deep brain stimulation treatment efficacy of essential tremor with machine learning.

    Science.gov (United States)

    LeMoyne, Robert; Tomycz, Nestor; Mastroianni, Timothy; McCandless, Cyrus; Cozza, Michael; Peduto, David

    2015-01-01

    Essential tremor (ET) is a highly prevalent movement disorder. Patients with ET exhibit a complex progressive and disabling tremor, and medical management often fails. Deep brain stimulation (DBS) has been successfully applied to this disorder, however there has been no quantifiable way to measure tremor severity or treatment efficacy in this patient population. The quantified amelioration of kinetic tremor via DBS is herein demonstrated through the application of a smartphone (iPhone) as a wireless accelerometer platform. The recorded acceleration signal can be obtained at a setting of the subject's convenience and conveyed by wireless transmission through the Internet for post-processing anywhere in the world. Further post-processing of the acceleration signal can be classified through a machine learning application, such as the support vector machine. Preliminary application of deep brain stimulation with a smartphone for acquisition of a feature set and machine learning for classification has been successfully applied. The support vector machine achieved 100% classification between deep brain stimulation in `on' and `off' mode based on the recording of an accelerometer signal through a smartphone as a wireless accelerometer platform.

  18. Development of new plant monitoring and control system with advanced man-machine interfaces NUCAMM-80

    International Nuclear Information System (INIS)

    Sato, Hideyuki; Joge, Toshio; Miyake, Masao; Kishi, Shoichi

    1981-01-01

    BWR type nuclear power stations are the typical plants adopting central monitoring system in view of the size of the scale of system and the prevention of radiation exposure. Central control boards became large as much informations and many operating tools are concentrated on them. Recently, the unit capacity has increased, and the safety has been strengthened, therefore more improvement of the man-machine interface is required concerning the monitoring of plant operation. Hitachi Ltd. developed the central monitoring and control system for nuclear power stations ''NUCAMM-80'', concentrating related fundamental techniques such as the collection of plant informations, the expansion of automatic operation, the ergonomic re-evaluation of the arrangement of panels and subsystems, and the effective use of functional hardwares such as controlling computers and cathode ray tubes, for the purposes of improving the reliability of plant operation and the rate of operation, the reduction of the burden of operators and drastic labor saving. The fundamental policy of the development, the construction of the system, panel layout and the collection of informations, the development of the system for plant automation, the development of plant diagnosis and prevention systems, computer system and the merits of this system are described. (Kako, I.)

  19. Integrating Statistical Machine Learning in a Semantic Sensor Web for Proactive Monitoring and Control.

    Science.gov (United States)

    Adeleke, Jude Adekunle; Moodley, Deshendran; Rens, Gavin; Adewumi, Aderemi Oluyinka

    2017-04-09

    Proactive monitoring and control of our natural and built environments is important in various application scenarios. Semantic Sensor Web technologies have been well researched and used for environmental monitoring applications to expose sensor data for analysis in order to provide responsive actions in situations of interest. While these applications provide quick response to situations, to minimize their unwanted effects, research efforts are still necessary to provide techniques that can anticipate the future to support proactive control, such that unwanted situations can be averted altogether. This study integrates a statistical machine learning based predictive model in a Semantic Sensor Web using stream reasoning. The approach is evaluated in an indoor air quality monitoring case study. A sliding window approach that employs the Multilayer Perceptron model to predict short term PM 2 . 5 pollution situations is integrated into the proactive monitoring and control framework. Results show that the proposed approach can effectively predict short term PM 2 . 5 pollution situations: precision of up to 0.86 and sensitivity of up to 0.85 is achieved over half hour prediction horizons, making it possible for the system to warn occupants or even to autonomously avert the predicted pollution situations within the context of Semantic Sensor Web.

  20. Complimentary Force Allocation Control for a Dual-Mover Linear Switched Reluctance Machine

    Directory of Open Access Journals (Sweden)

    J. F. Pan

    2017-12-01

    Full Text Available This paper inspects the complementary force allocation control schemes for an integrated, dual-mover linear switched reluctance machine (LSRM. The performance of the total force is realized by the coordination of the two movers. First, the structure and characteristics of the LSRM are investigated. Then, a complimentary force allocation control scheme for the two movers is proposed. Next, three force allocation methods—constant proportion, constant proportion with a saturation interval and error compensation, and the variable proportion allocation strategies—are proposed and analyzed, respectively. Experimental results demonstrate that the complimentary force interaction between the two movers can effectively reduce the total amount of force ripples from each method. The results under the variable proportion method also show that dynamic error values falling into 0.044 mm and −0.04 mm under the unit ramp force reference can be achieved. With the sinusoidal force reference with an amplitude of 60 N and a frequency of 0.5 Hz, a dynamic force control precision of 0.062 N and 0.091 N can also be obtained.

  1. Enhancing Three-dimensional Movement Control System for Assemblies of Machine-Building Facilities

    Science.gov (United States)

    Kuzyakov, O. N.; Andreeva, M. A.

    2018-01-01

    Aspects of enhancing three-dimensional movement control system are given in the paper. Such system is to be used while controlling assemblies of machine-building facilities, which is a relevant issue. The base of the system known is three-dimensional movement control device with optical principle of action. The device consists of multi point light emitter and light receiver matrix. The processing of signals is enhanced to increase accuracy of measurements by switching from discrete to analog signals. Light receiver matrix is divided into four areas, and the output value of each light emitter in each matrix area is proportional to its luminance level. Thus, determing output electric signal value of each light emitter in corresponding area leads to determing position of multipoint light emitter and position of object tracked. This is done by using Case-based reasoning method, the precedent in which is described as integral signal value of each matrix area, coordinates of light receivers, which luminance level is high, and decision to be made in this situation.

  2. Integrating Statistical Machine Learning in a Semantic Sensor Web for Proactive Monitoring and Control

    Directory of Open Access Journals (Sweden)

    Jude Adekunle Adeleke

    2017-04-01

    Full Text Available Proactive monitoring and control of our natural and built environments is important in various application scenarios. Semantic Sensor Web technologies have been well researched and used for environmental monitoring applications to expose sensor data for analysis in order to provide responsive actions in situations of interest. While these applications provide quick response to situations, to minimize their unwanted effects, research efforts are still necessary to provide techniques that can anticipate the future to support proactive control, such that unwanted situations can be averted altogether. This study integrates a statistical machine learning based predictive model in a Semantic Sensor Web using stream reasoning. The approach is evaluated in an indoor air quality monitoring case study. A sliding window approach that employs the Multilayer Perceptron model to predict short term PM 2 . 5 pollution situations is integrated into the proactive monitoring and control framework. Results show that the proposed approach can effectively predict short term PM 2 . 5 pollution situations: precision of up to 0.86 and sensitivity of up to 0.85 is achieved over half hour prediction horizons, making it possible for the system to warn occupants or even to autonomously avert the predicted pollution situations within the context of Semantic Sensor Web.

  3. Optimal feedback control successfully explains changes in neural modulations during experiments with brain-machine interfaces

    Directory of Open Access Journals (Sweden)

    Miriam eZacksenhouse

    2015-05-01

    Full Text Available Recent experiments with brain-machine-interfaces (BMIs indicate that the extent of neural modulations increased abruptly upon starting to operate the interface, and especially after the monkey stopped moving its hand. In contrast, neural modulations that are correlated with the kinematics of the movement remained relatively unchanged. Here we demonstrate that similar changes are produced by simulated neurons that encode the relevant signals generated by an optimal feedback controller during simulated BMI experiments. The optimal feedback controller relies on state estimation that integrates both visual and proprioceptive feedback with prior estimations from an internal model. The processing required for optimal state estimation and control were conducted in the state-space, and neural recording was simulated by modeling two populations of neurons that encode either only the estimated state or also the control signal. Spike counts were generated as realizations of doubly stochastic Poisson processes with linear tuning curves. The model successfully reconstructs the main features of the kinematics and neural activity during regular reaching movements. Most importantly, the activity of the simulated neurons successfully reproduces the observed changes in neural modulations upon switching to brain control. Further theoretical analysis and simulations indicate that increasing the process noise during normal reaching movement results in similar changes in neural modulations. Thus we conclude that the observed changes in neural modulations during BMI experiments can be attributed to increasing process noise associated with the imperfect BMI filter, and, more directly, to the resulting increase in the variance of the encoded signals associated with state estimation and the required control signal.

  4. Optimal feedback control successfully explains changes in neural modulations during experiments with brain-machine interfaces.

    Science.gov (United States)

    Benyamini, Miri; Zacksenhouse, Miriam

    2015-01-01

    Recent experiments with brain-machine-interfaces (BMIs) indicate that the extent of neural modulations increased abruptly upon starting to operate the interface, and especially after the monkey stopped moving its hand. In contrast, neural modulations that are correlated with the kinematics of the movement remained relatively unchanged. Here we demonstrate that similar changes are produced by simulated neurons that encode the relevant signals generated by an optimal feedback controller during simulated BMI experiments. The optimal feedback controller relies on state estimation that integrates both visual and proprioceptive feedback with prior estimations from an internal model. The processing required for optimal state estimation and control were conducted in the state-space, and neural recording was simulated by modeling two populations of neurons that encode either only the estimated state or also the control signal. Spike counts were generated as realizations of doubly stochastic Poisson processes with linear tuning curves. The model successfully reconstructs the main features of the kinematics and neural activity during regular reaching movements. Most importantly, the activity of the simulated neurons successfully reproduces the observed changes in neural modulations upon switching to brain control. Further theoretical analysis and simulations indicate that increasing the process noise during normal reaching movement results in similar changes in neural modulations. Thus, we conclude that the observed changes in neural modulations during BMI experiments can be attributed to increasing process noise associated with the imperfect BMI filter, and, more directly, to the resulting increase in the variance of the encoded signals associated with state estimation and the required control signal.

  5. [Investigation on satisfaction of replacement of bovine with machine for schistosomiasis control of residents in Jiangling County, Hubei Province].

    Science.gov (United States)

    Shang, De-Gao; Wang, Qiang; Zhang, Ming-Hua; Li, Shi-Zhu

    2012-12-01

    To understand the satisfaction and the awareness rate of the replacement of bovine with machine for schistosomiasis control among residents in Jiangling County, Hubei Province. Three villages, Yugu, Jinqi and Huazhang, were chosen randomly to be investigated, each family filled a questionnaire, and 363 questionnaires were obtained at the end of the survey. The data were analyzed with SPSS 11.5. Among 363 households, 210 (68.0%) households raised bovine during the last 3 years. There were no significant differences in the awareness rates of the replacement of bovine with machine and the knowledge of schistosomiasis control between the bovine-raising families and non-raising families (P > 0.05), while the satisfaction rates between the bovine-raising families and non-raising showed a statistically significant difference (P replacement of bovine with machine of residents in schistosomiasis endemic areas are relatively perfect.

  6. Experience of Implementing Moisture Sorption Control in Historical Archives

    Directory of Open Access Journals (Sweden)

    P. Zítek

    2006-01-01

    Full Text Available This paper deals with a novel approach to inhibiting the harmful impact of moisture sorption in old art works and historical exhibits preserved in remote historic buildings that are in use as depositories or exhibition rooms for cultural heritage collections. It is a sequel to the previous work presented in [2], where the principle of moisture sorption stabilization was explained. Sorption isotherm investigations and EMC control implementation in historical buildings not provided with heating are the main concern in this paper. The proposed microclimate adjustment consists in leaving the interior temperature to run almost its spontaneous yearly cycle, while the air humidity is maintained in a specific relationship to the current interior temperature. The interior air humidity is modestly adjusted to protect historical exhibits and art works from harmful variations in the content of absorbed moisture, which would otherwise arise owing to the interior temperature drifts. Since direct measurements of moisture content are not feasible, the air humidity is controlled via a model-based principle. Two long-term implementations of the proposed microclimate control have already proved that it can permanently maintain a constant moisture content in the preserved exhibits. 

  7. Heat-machine control by quantum-state preparation: from quantum engines to refrigerators.

    Science.gov (United States)

    Gelbwaser-Klimovsky, D; Kurizki, G

    2014-08-01

    We explore the dependence of the performance bounds of heat engines and refrigerators on the initial quantum state and the subsequent evolution of their piston, modeled by a quantized harmonic oscillator. Our goal is to provide a fully quantized treatment of self-contained (autonomous) heat machines, as opposed to their prevailing semiclassical description that consists of a quantum system alternately coupled to a hot or a cold heat bath and parametrically driven by a classical time-dependent piston or field. Here, by contrast, there is no external time-dependent driving. Instead, the evolution is caused by the stationary simultaneous interaction of two heat baths (having distinct spectra and temperatures) with a single two-level system that is in turn coupled to the quantum piston. The fully quantized treatment we put forward allows us to investigate work extraction and refrigeration by the tools of quantum-optical amplifier and dissipation theory, particularly, by the analysis of amplified or dissipated phase-plane quasiprobability distributions. Our main insight is that quantum states may be thermodynamic resources and can provide a powerful handle, or control, on the efficiency of the heat machine. In particular, a piston initialized in a coherent state can cause the engine to produce work at an efficiency above the Carnot bound in the linear amplification regime. In the refrigeration regime, the coefficient of performance can transgress the Carnot bound if the piston is initialized in a Fock state. The piston may be realized by a vibrational mode, as in nanomechanical setups, or an electromagnetic field mode, as in cavity-based scenarios.

  8. Design and Implementation of Linux Access Control Model

    Institute of Scientific and Technical Information of China (English)

    Wei Xiaomeng; Wu Yongbin; Zhuo Jingchuan; Wang Jianyun; Haliqian Mayibula

    2017-01-01

    In this paper,the design and implementation of an access control model for Linux system are discussed in detail. The design is based on the RBAC model and combines with the inherent characteristics of the Linux system,and the support for the process and role transition is added.The core idea of the model is that the file is divided into different categories,and access authority of every category is distributed to several roles.Then,roles are assigned to users of the system,and the role of the user can be transited from one to another by running the executable file.

  9. Non-linear control of a doubly fed induction machine; Commande non-lineaire d'une machine asynchrone a double alimentation

    Energy Technology Data Exchange (ETDEWEB)

    Vidal, P.E.

    2004-12-15

    This study deals with linear and non-linear control strategies applied to the rotation speed feedback of a doubly fed induction machine (DFIM), whose stator and rotor windings are connected to two Pulse Width Modulation voltage source inverters. We choose to distribute the active powers between the stator and the rotor following a certain proportionality ratio. This leads to guarantee, in steady state operation, a stator and rotor angular frequencies sharing. This distribution is initially assured by two shared angular frequencies controllers, and in a second time by the means of the Park transformation angles directly. Two models are established: the first express the currents, and the second is linked with the fluxes. The simulations results of the linear control (field oriented control), and non-linear control (sliding mode control), show a good independence between the main flux and the torque. An experimental validation is also presented. The results presented show the satisfactory DFIM flux control. Special attention is paid to the active power dispatching. (author)

  10. Development of a finite state machine for the automates operation of the LLRF control at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, A.

    2007-07-15

    The entry of digital signal processors in modern control systems not only allows for extended diagnostics compared to analog systems but also for sophisticated and tricky extensions of the control algorithms. With modern DSP- and FPGA-technology, the processing speed of digital systems is no longer inferior to analog systems in many applications. A higher degree of digitalization leads to an increased complexity of the systems and hence to higher requirements on their operators. The focus of research and development in the field of high frequency control has changed in the last few years and moved towards the direction of software development and complexity management. In the presented thesis, a frame for an automation concept of modern high frequency control systems is developed. The developed automation is based on the concept of finite state machines (FSM), which is established in industry for years. A flexible framework was developed, in which procedures communicate using standardized interfaces and can be exchanged easily. With that, the developer of high frequency control components as well as the operator on shift shall be empowered to improve and adapt the automation to changed conditions without special programming skills required. Along the automation concept a number of algorithms addressing various problems were developed which satisfy the needs of modern high frequency control systems. Among the developed and successfully tested algorithms are the calibration of incident and reflected wave of resonators without antennas, the fast adaptive compensation of repetitive errors, the robust estimation of the phase advance in the control loop and the latency adjustment for the rejection of instabilities caused by passband modes. During the development of the resonator theory, high value was set on the usability of the equation in algorithms for high frequency control. The usage of the common nomenclature of control theory emphasizes the underlying mathematical

  11. Development of a finite state machine for the automated operation of the LLRF control at FLASH

    International Nuclear Information System (INIS)

    Brandt, A.

    2007-07-01

    The entry of digital signal processors in modern control systems not only allows for extended diagnostics compared to analog systems but also for sophisticated and tricky extensions of the control algorithms. With modern DSP- and FPGA-technology, the processing speed of digital systems is no longer inferior to analog systems in many applications. A higher degree of digitalization leads to an increased complexity of the systems and hence to higher requirements on their operators. The focus of research and development in the field of high frequency control has changed in the last few years and moved towards the direction of software development and complexity management. In the presented thesis, a frame for an automation concept of modern high frequency control systems is developed. The developed automation is based on the concept of finite state machines (FSM), which is established in industry for years. A flexible framework was developed, in which procedures communicate using standardized interfaces and can be exchanged easily. With that, the developer of high frequency control components as well as the operator on shift shall be empowered to improve and adapt the automation to changed conditions without special programming skills required. Along the automation concept a number of algorithms addressing various problems were developed which satisfy the needs of modern high frequency control systems. Among the developed and successfully tested algorithms are the calibration of incident and reflected wave of resonators without antennas, the fast adaptive compensation of repetitive errors, the robust estimation of the phase advance in the control loop and the latency adjustment for the rejection of instabilities caused by passband modes. During the development of the resonator theory, high value was set on the usability of the equation in algorithms for high frequency control. The usage of the common nomenclature of control theory emphasizes the underlying mathematical

  12. Inferior olive mirrors joint dynamics to implement an inverse controller.

    Science.gov (United States)

    Alvarez-Icaza, Rodrigo; Boahen, Kwabena

    2012-10-01

    To produce smooth and coordinated motion, our nervous systems need to generate precisely timed muscle activation patterns that, due to axonal conduction delay, must be generated in a predictive and feedforward manner. Kawato proposed that the cerebellum accomplishes this by acting as an inverse controller that modulates descending motor commands to predictively drive the spinal cord such that the musculoskeletal dynamics are canceled out. This and other cerebellar theories do not, however, account for the rich biophysical properties expressed by the olivocerebellar complex's various cell types, making these theories difficult to verify experimentally. Here we propose that a multizonal microcomplex's (MZMC) inferior olivary neurons use their subthreshold oscillations to mirror a musculoskeletal joint's underdamped dynamics, thereby achieving inverse control. We used control theory to map a joint's inverse model onto an MZMC's biophysics, and we used biophysical modeling to confirm that inferior olivary neurons can express the dynamics required to mirror biomechanical joints. We then combined both techniques to predict how experimentally injecting current into the inferior olive would affect overall motor output performance. We found that this experimental manipulation unmasked a joint's natural dynamics, as observed by motor output ringing at the joint's natural frequency, with amplitude proportional to the amount of current. These results support the proposal that the cerebellum-in particular an MZMC-is an inverse controller; the results also provide a biophysical implementation for this controller and allow one to make an experimentally testable prediction.

  13. Control of an Ambulatory Exoskeleton with a Brain–Machine Interface for Spinal Cord Injury Gait Rehabilitation

    Science.gov (United States)

    López-Larraz, Eduardo; Trincado-Alonso, Fernando; Rajasekaran, Vijaykumar; Pérez-Nombela, Soraya; del-Ama, Antonio J.; Aranda, Joan; Minguez, Javier; Gil-Agudo, Angel; Montesano, Luis

    2016-01-01

    The closed-loop control of rehabilitative technologies by neural commands has shown a great potential to improve motor recovery in patients suffering from paralysis. Brain–machine interfaces (BMI) can be used as a natural control method for such technologies. BMI provides a continuous association between the brain activity and peripheral stimulation, with the potential to induce plastic changes in the nervous system. Paraplegic patients, and especially the ones with incomplete injuries, constitute a potential target population to be rehabilitated with brain-controlled robotic systems, as they may improve their gait function after the reinforcement of their spared intact neural pathways. This paper proposes a closed-loop BMI system to control an ambulatory exoskeleton—without any weight or balance support—for gait rehabilitation of incomplete spinal cord injury (SCI) patients. The integrated system was validated with three healthy subjects, and its viability in a clinical scenario was tested with four SCI patients. Using a cue-guided paradigm, the electroencephalographic signals of the subjects were used to decode their gait intention and to trigger the movements of the exoskeleton. We designed a protocol with a special emphasis on safety, as patients with poor balance were required to stand and walk. We continuously monitored their fatigue and exertion level, and conducted usability and user-satisfaction tests after the experiments. The results show that, for the three healthy subjects, 84.44 ± 14.56% of the trials were correctly decoded. Three out of four patients performed at least one successful BMI session, with an average performance of 77.6 1 ± 14.72%. The shared control strategy implemented (i.e., the exoskeleton could only move during specific periods of time) was effective in preventing unexpected movements during periods in which patients were asked to relax. On average, 55.22 ± 16.69% and 40.45 ± 16.98% of the trials (for healthy subjects and

  14. Control of an Ambulatory Exoskeleton with a Brain-Machine Interface for Spinal Cord Injury Gait Rehabilitation.

    Science.gov (United States)

    López-Larraz, Eduardo; Trincado-Alonso, Fernando; Rajasekaran, Vijaykumar; Pérez-Nombela, Soraya; Del-Ama, Antonio J; Aranda, Joan; Minguez, Javier; Gil-Agudo, Angel; Montesano, Luis

    2016-01-01

    The closed-loop control of rehabilitative technologies by neural commands has shown a great potential to improve motor recovery in patients suffering from paralysis. Brain-machine interfaces (BMI) can be used as a natural control method for such technologies. BMI provides a continuous association between the brain activity and peripheral stimulation, with the potential to induce plastic changes in the nervous system. Paraplegic patients, and especially the ones with incomplete injuries, constitute a potential target population to be rehabilitated with brain-controlled robotic systems, as they may improve their gait function after the reinforcement of their spared intact neural pathways. This paper proposes a closed-loop BMI system to control an ambulatory exoskeleton-without any weight or balance support-for gait rehabilitation of incomplete spinal cord injury (SCI) patients. The integrated system was validated with three healthy subjects, and its viability in a clinical scenario was tested with four SCI patients. Using a cue-guided paradigm, the electroencephalographic signals of the subjects were used to decode their gait intention and to trigger the movements of the exoskeleton. We designed a protocol with a special emphasis on safety, as patients with poor balance were required to stand and walk. We continuously monitored their fatigue and exertion level, and conducted usability and user-satisfaction tests after the experiments. The results show that, for the three healthy subjects, 84.44 ± 14.56% of the trials were correctly decoded. Three out of four patients performed at least one successful BMI session, with an average performance of 77.6 1 ± 14.72%. The shared control strategy implemented (i.e., the exoskeleton could only move during specific periods of time) was effective in preventing unexpected movements during periods in which patients were asked to relax. On average, 55.22 ± 16.69% and 40.45 ± 16.98% of the trials (for healthy subjects and

  15. Smart — STATCOM control strategy implementation in wind power plants

    DEFF Research Database (Denmark)

    Sintamarean, Nicolae Christian; Cantarellas, Antoni Mir; Miranda, H.

    2012-01-01

    High penetration of wind energy into the grid may introduce stability and power quality problems due to the fluctuating nature of the wind and the increasing complexity of the power system. By implementing advanced functionalities in power converters, it is possible to improve the performance...... of the wind farm and also to provide grid support, as it is required by the grid codes. One of the main compliance difficulties that can be found in such power plants are related to reactive power compensation and to keep the harmonics content between the allowed limits, even if the power of the WPP...... converters is increasing. This paper deals with an advanced control strategy design of a three-level converter performing STATCOM and Active Filter functionalities. The proposed system is called Smart-STATCOM since it has the capability of self-controlling reactive power and harmonic voltages at the same...

  16. Technology Roadmap Instrumentation, Control, and Human-Machine Interface to Support DOE Advanced Nuclear Energy Programs

    Energy Technology Data Exchange (ETDEWEB)

    Donald D Dudenhoeffer; Burce P Hallbert

    2007-03-01

    Instrumentation, Controls, and Human-Machine Interface (ICHMI) technologies are essential to ensuring delivery and effective operation of optimized advanced Generation IV (Gen IV) nuclear energy systems. In 1996, the Watts Bar I nuclear power plant in Tennessee was the last U.S. nuclear power plant to go on line. It was, in fact, built based on pre-1990 technology. Since this last U.S. nuclear power plant was designed, there have been major advances in the field of ICHMI systems. Computer technology employed in other industries has advanced dramatically, and computing systems are now replaced every few years as they become functionally obsolete. Functional obsolescence occurs when newer, more functional technology replaces or supersedes an existing technology, even though an existing technology may well be in working order.Although ICHMI architectures are comprised of much of the same technology, they have not been updated nearly as often in the nuclear power industry. For example, some newer Personal Digital Assistants (PDAs) or handheld computers may, in fact, have more functionality than the 1996 computer control system at the Watts Bar I plant. This illustrates the need to transition and upgrade current nuclear power plant ICHMI technologies.

  17. Damping Improvement of Multiple Damping Controllers by Using Optimal Coordinated Design Based on PSS and FACTS-POD in a Multi-Machine Power System

    Directory of Open Access Journals (Sweden)

    Ali Nasser Hussain

    2016-09-01

    Full Text Available The aim of this study is to present a comprehensive comparison and assessment of the damping function improvement of power system oscillation for the multiple damping controllers using the simultaneously coordinated design based on Power System Stabilizer (PSS and Flexible AC Transmission System (FACTS devices. FACTS devices can help in the enhancing the stability of the power system by adding supplementary damping controller to the control channel of the FACTS input to implement the task of Power Oscillation Damping (FACT POD controller. Simultaneous coordination can be performed in different ways. First, the dual coordinated designs between PSS and FACTS POD controller or between different FACTS POD controllers are arranged in a multiple FACTS devices without PSS. Second, the simultaneous coordination has been extended to triple coordinated design among PSS and different FACTS POD controllers. The parameters of the damping controllers have been tuned in the individual controllers and coordinated designs by using a Chaotic Particle Swarm Optimization (CPSO algorithm that optimized the given eigenvalue-based objective function. The simulation results for a multi-machine power system show that the dual coordinated design provide satisfactory damping performance over the individual control responses. Furthermore, the triple coordinated design has been shown to be more effective in damping oscillations than the dual damping controllers.

  18. Implementation of PID autotuning procedure in PLC controller

    Directory of Open Access Journals (Sweden)

    Daniun Marcin

    2017-01-01

    Full Text Available In this paper, we present the automatic PID tuning procedure based on the Method of Moments and AMIGO tuning rules. The advantage of the Method of Moments is that the time constant and transport delay are estimated at the areas rather than on the individual points. This results in high resistance to the measurement noises. The sensitivity to measurement noises is a serious problem in other autotuning methods. The second advantage of this method is that it approximates plant during identification process to first order model with time delay. We combined the Method of Moments with the AMIGO tuning rules and implemented this combination as a stand-alone autotuning procedure in Siemens S7-1200 PLC controller. Next, we compared this method with two built-in PID autotuning procedures which were available in Siemens S7-1200 PLC controller. The procedure was tested for three types of plant models: with lag-dominated, balanced, and delay-dominated dynamics. We simulated the plants on a PC in Matlab R2013a. The connection between the PC and PLC was maintained through a National Instruments data acquisition board, NI PCI-6229. We conducted tests for step change in the set point, trajectory tracking, and load disturbances. To assess control quality, we used IAE index. We limited our research to PI algorithm. The results prove that proposed method was better than two built-in tuning methods provided by Siemens, oscillating between a few and even a dozen percent in most cases. The proposed method is universal and can be implemented in any PLC controller.

  19. Electronic mode of control to obtain increased torque and improved power factor from an asynchronous machine

    NARCIS (Netherlands)

    Wyk, van J.D.

    1970-01-01

    It is indicated that, by changing the electronic switching mode of the rotor current of an induction machine, it is possible to operate the machine at improved (capacitive) power factors and increased torque, or conversely at lower effective current and capacitive power factors at rated torque.

  20. Quality control procedure for a general diagnostic x-ray machine

    International Nuclear Information System (INIS)

    Md Saion Salikin; Mazlyfarina Mohamad

    2001-01-01

    Performance tests of a particular medical diagnostic x-ray machine have to be carried out regularly in order to ensure that the machine always complies with the required standard. A performance report which is prepared based on the performance tests on the x-ray machine is used as one of the requirement by the authority for issuance and renewal licence to operate and use of the x-ray machine in a clinic or hospital. The Ministry of Health will only issue a licence to the clinic or hospital to use and operate x-ray machines, if the machines have complied with the standards. The clinic or hospital may get the service to carry out performance tests on a diagnostic x-ray machine from any licence H holder, issued by the authority under Atomic Energy Licensing Act 1984. A comparative study between the standard procedure and other procedures on performance test of a general diagnostic x-ray machine is carried out and presented in brief in this paper. The criteria for compliance or otherwise as required by the Ministry of Health Malaysia is discussed and explained in brief. (Author)