Plasma flow at a high Mach-number
Energy Technology Data Exchange (ETDEWEB)
Yu, Bing; Hameiri, Eliezer [Courant Institute of Mathematical Sciences, New York University New York, New York 10012 (United States)
2013-09-15
Unlike the case of static magnetohydrodynamic (MHD) equilibria, where an expansion in large aspect ratio of toroidal devices is common, cases of MHD equilibria with flow are rarely treated this way, and when this is done the expansion tends to be only partial. The main reason for the difference seems to be the difficulty of expanding the larger system of equilibrium equations with flow. Here, we use a recent expansion technique which employs a variational principle to simplify the process [E. Hameiri, Phys. Plasmas 20, 024504 (2013)]. We treat four cases of MHD equilibria with flow, developing their asymptotic expansions in full, and for an application consider the effect of the flow on the Shafranov shift.
The Dynamics of Very High Alfvén Mach Number Shocks in Space Plasmas
Sundberg, Torbjörn; Burgess, David; Scholer, Manfred; Masters, Adam; Sulaiman, Ali H.
2017-02-01
Astrophysical shocks, such as planetary bow shocks or supernova remnant shocks, are often in the high or very-high Mach number regime, and the structure of such shocks is crucial for understanding particle acceleration and plasma heating, as well inherently interesting. Recent magnetic field observations at Saturn’s bow shock, for Alfvén Mach numbers greater than about 25, have provided evidence for periodic non-stationarity, although the details of the ion- and electron-scale processes remain unclear due to limited plasma data. High-resolution, multi-spacecraft data are available for the terrestrial bow shock, but here the very high Mach number regime is only attained on extremely rare occasions. Here we present magnetic field and particle data from three such quasi-perpendicular shock crossings observed by the four-spacecraft Cluster mission. Although both ion reflection and the shock profile are modulated at the upstream ion gyroperiod timescale, the dominant wave growth in the foot takes place at sub-proton length scales and is consistent with being driven by the ion Weibel instability. The observed large-scale behavior depends strongly on cross-scale coupling between ion and electron processes, with ion reflection never fully suppressed, and this suggests a model of the shock dynamics that is in conflict with previous models of non-stationarity. Thus, the observations offer insight into the conditions prevalent in many inaccessible astrophysical environments, and provide important constraints for acceleration processes at such shocks.
Quasiperpendicular high Mach number Shocks
Sulaiman, A H; Dougherty, M K; Burgess, D; Fujimoto, M; Hospodarsky, G B
2015-01-01
Shock waves exist throughout the universe and are fundamental to understanding the nature of collisionless plasmas. Reformation is a process, driven by microphysics, which typically occurs at high Mach number supercritical shocks. While ongoing studies have investigated this process extensively both theoretically and via simulations, their observations remain few and far between. In this letter we present a study of very high Mach number shocks in a parameter space that has been poorly explored and we identify reformation using in situ magnetic field observations from the Cassini spacecraft at 10 AU. This has given us an insight into quasi-perpendicular shocks across two orders of magnitude in Alfven Mach number (MA) which could potentially bridge the gap between modest terrestrial shocks and more exotic astrophysical shocks. For the first time, we show evidence for cyclic reformation controlled by specular ion reflection occurring at the predicted timescale of ~0.3 {\\tau}c, where {\\tau}c is the ion gyroperio...
Sundkvist, David; Krasnoselskikh, V; Bale, S D; Schwartz, S J; Soucek, J; Mozer, F
2012-01-13
Whistler wave trains are observed in the foot region of high Mach number quasiperpendicular shocks. The waves are oblique with respect to the ambient magnetic field as well as the shock normal. The Poynting flux of the waves is directed upstream in the shock normal frame starting from the ramp of the shock. This suggests that the waves are an integral part of the shock structure with the dispersive shock as the source of the waves. These observations lead to the conclusion that the shock ramp structure of supercritical high Mach number shocks is formed as a balance of dispersion and nonlinearity.
Quasiperpendicular High Mach Number Shocks
Sulaiman, A. H.; Masters, A.; Dougherty, M. K.; Burgess, D.; Fujimoto, M.; Hospodarsky, G. B.
2015-09-01
Shock waves exist throughout the Universe and are fundamental to understanding the nature of collisionless plasmas. Reformation is a process, driven by microphysics, which typically occurs at high Mach number supercritical shocks. While ongoing studies have investigated this process extensively both theoretically and via simulations, their observations remain few and far between. In this Letter we present a study of very high Mach number shocks in a parameter space that has been poorly explored and we identify reformation using in situ magnetic field observations from the Cassini spacecraft at 10 AU. This has given us an insight into quasiperpendicular shocks across 2 orders of magnitude in Alfvén Mach number (MA ) which could potentially bridge the gap between modest terrestrial shocks and more exotic astrophysical shocks. For the first time, we show evidence for cyclic reformation controlled by specular ion reflection occurring at the predicted time scale of ˜0.3 τc , where τc is the ion gyroperiod. In addition, we experimentally reveal the relationship between reformation and MA and focus on the magnetic structure of such shocks to further show that for the same MA , a reforming shock exhibits stronger magnetic field amplification than a shock that is not reforming.
Chaotic behaviour of high Mach number flows
Varvoglis, H.; Ghosh, S.
1985-01-01
The stability of the super-Alfvenic flow of a two-fluid plasma model with respect to the Mach number and the angle between the flow direction and the magnetic field is investigated. It is found that, in general, a large scale chaotic region develops around the initial equilibrium of the laminar flow when the Mach number exceeds a certain threshold value. After reaching a maximum the size of this region begins shrinking and goes to zero as the Mach number tends to infinity. As a result high Mach number flows in time independent astrophysical plasmas may lead to the formation of 'quasi-shocks' in the presence of little or no dissipation.
Coumar, Sandra; Lago, Viviana
2017-06-01
This paper presents an experimental investigation, carried out at the Icare Laboratory by the FAST team, focusing on plasma flow control in supersonic and rarefied regime. The study analyzes how the Mach number as well as the ambient pressure modify the repercussions of the plasma actuator on the shock wave. It follows previous experiments performed in the MARHy (ex-SR3) wind tunnel with a Mach 2 flow interacting with a sharp flat plate, where modifications induced by a plasma actuator were observed. The flat plate was equipped with a plasma actuator composed of two aluminum electrodes. The upstream one was biased with a negative DC potential and thus, created a glow discharge type plasma. Experimental measurements showed that the boundary layer thickness and the shock wave angle increased when the discharge was ignited. The current work was performed with two nozzles generating Mach 4 flows but at two different static pressures: 8 and 71 Pa. These nozzles were chosen to study independently the impact of the Mach number and the impact of the pressure on the flow behavior. In the range of the discharge current considered in this experimental work, it was observed that the shock wave angle increased with the discharge current of +15% for the Mach 2 flow but the increase rate doubled to +28% for the Mach 4 flow at the same static pressure, showing that the discharge effect is even more significant when boosting the flow speed. When studying the effect of the discharge on the Mach 4 flow at higher static pressure, it was observed that the topology of the plasma changed drastically and the increase in the shock wave angle with the discharge current of +21 %.
National transonic facility Mach number system
Kern, F. A.; Knight, C. W.; Zasimowich, R. F.
1985-01-01
The Mach number system for the Langley Research Center's National Transonic Facility was designed to measure pressures to determine Mach number to within + or - 0.002. Nine calibration laboratory type fused quartz gages, four different range gages for the total pressure measurement, and five different range gages for the static pressure measurement were used to satisfy the accuracy requirement over the 103,000-890,000 Pa total pressure range of the tunnel. The system which has been in operation for over 1 year is controlled by a programmable data process controller to select, through the operation of solenoid valves, the proper range fused quartz gage to maximize the measurement accuracy. The pressure gage's analog outputs are digitized by the process controller and transmitted to the main computer for Mach number computation. An automatic two-point on-line calibration of the nine quartz gages is provided using a high accuracy mercury manometer.
Low Mach Number Fluctuating Hydrodynamics for Electrolytes
Péraud, Jean-Philippe; Chaudhri, Anuj; Bell, John B; Donev, Aleksandar; Garcia, Alejandro L
2016-01-01
We formulate and study computationally the low Mach number fluctuating hydrodynamic equations for electrolyte solutions. We are interested in studying transport in mixtures of charged species at the mesoscale, down to scales below the Debye length, where thermal fluctuations have a significant impact on the dynamics. Continuing our previous work on fluctuating hydrodynamics of multicomponent mixtures of incompressible isothermal miscible liquids (A. Donev, et al., Physics of Fluids, 27, 3, 2015), we now include the effect of charged species using a quasielectrostatic approximation. Localized charges create an electric field, which in turn provides additional forcing in the mass and momentum equations. Our low Mach number formulation eliminates sound waves from the fully compressible formulation and leads to a more computationally efficient quasi-incompressible formulation. We demonstrate our ability to model saltwater (NaCl) solutions in both equilibrium and nonequilibrium settings. We show that our algorithm...
Plasma Sensor for High Bandwidth Mass-Flow Measurements at High Mach Numbers with RF Link Project
National Aeronautics and Space Administration — The proposal is aimed at the development of a miniature high bandwidth (1 MHz class) plasma sensor for flow measurements at high enthalpies. This device uses a...
Low Mach number fluctuating hydrodynamics for electrolytes
Péraud, Jean-Philippe; Nonaka, Andy; Chaudhri, Anuj; Bell, John B.; Donev, Aleksandar; Garcia, Alejandro L.
2016-11-01
We formulate and study computationally the low Mach number fluctuating hydrodynamic equations for electrolyte solutions. We are interested in studying transport in mixtures of charged species at the mesoscale, down to scales below the Debye length, where thermal fluctuations have a significant impact on the dynamics. Continuing our previous work on fluctuating hydrodynamics of multicomponent mixtures of incompressible isothermal miscible liquids [A. Donev et al., Phys. Fluids 27, 037103 (2015), 10.1063/1.4913571], we now include the effect of charged species using a quasielectrostatic approximation. Localized charges create an electric field, which in turn provides additional forcing in the mass and momentum equations. Our low Mach number formulation eliminates sound waves from the fully compressible formulation and leads to a more computationally efficient quasi-incompressible formulation. We demonstrate our ability to model saltwater (NaCl) solutions in both equilibrium and nonequilibrium settings. We show that our algorithm is second order in the deterministic setting and for length scales much greater than the Debye length gives results consistent with an electroneutral approximation. In the stochastic setting, our model captures the predicted dynamics of equilibrium and nonequilibrium fluctuations. We also identify and model an instability that appears when diffusive mixing occurs in the presence of an applied electric field.
Note: A high Mach number arc-driven shock tube for turbulence studies.
Titus, J B; Alexander, A B; Johnson, J A
2013-04-01
A high Mach arc-driven shock tube has been built at the Center for Plasma Science and Technology of Florida A&M University to study shock waves. A larger apparatus with higher voltage was built to study more stable shock waves and subsequent plasmas. Initial measurements of the apparatus conclude that the desired Mach numbers can be reached using only two-thirds the maximum possible energy that the circuit can provide.
Design of a continuously variable Mach-number nozzle
Institute of Scientific and Technical Information of China (English)
郭善广; 王振国; 赵玉新
2015-01-01
A design method was developed to specify the profile of the continuously variable Mach-number nozzle for the supersonic wind tunnel. The controllable contour design technique was applied to obtaining the original nozzle profile, while other Mach- numbers were derived from the transformation of the original profile. A design scheme, covering a Mach-number range of 3.0
A new numerical solver for flows at various Mach numbers
Miczek, F; Edelmann, P V F
2014-01-01
Many problems in stellar astrophysics feature low Mach number flows. However, conventional compressible hydrodynamics schemes frequently used in the field have been developed for the transonic regime and exhibit excessive numerical dissipation for these flows. While schemes were proposed that solve hydrodynamics strictly in the low Mach regime and thus restrict their applicability, we aim at developing a scheme that correctly operates in a wide range of Mach numbers. Based on an analysis of the asymptotic behavior of the Euler equations in the low Mach limit we propose a novel scheme that is able to maintain a low Mach number flow setup while retaining all effects of compressibility. This is achieved by a suitable modification of the well-known Roe solver. Numerical tests demonstrate the capability of this new scheme to reproduce slow flow structures even in moderate numerical resolution. Our scheme provides a promising approach to a consistent multidimensional hydrodynamical treatment of astrophysical low Ma...
Le, G.; Russell, C. T.; Gosling, J. T.
1994-12-01
We use International Sun-Earth Explorer (ISEE) magnetic field and plasma data to examine dayside magnetopause crossing under conditions of low Mach number and strongly northward interplanetary magnetic field (IMF). When the solar wind Mach number is low, the IMF stregth and magnetoseath field stregth are large, and we expect the effects of magnetic reconection to be the strongest. When the IMF is strongly northward, we find that the location of the magnetopause boundary layer is very stationary in the space, and we observe many features that are common for both typical and low Mach numbers. However, under low Mach number conditions, we have observed some features that would be expected for cusp reconnection. The boundary layer near the subsolar region contains heated magnetosheath plasma with little hot magnetospheric component that has clearly entered the magnetosphere elsewhere. At least some of the structures present in the boundary layer are impulsive. Inside the boundary layer there is also clear evidence of acceleratedflow from the cusp region for strongly northward IMF at low Mach number. Reconnection beyond the cusp can explain the observed field, plasma, and flow signatures. Therefore at low Mach number, reconection is important in the formation of the boundary layer for northward IMF.
Low Mach Number Fluctuating Hydrodynamics of Diffusively Mixing Fluids
Donev, A; Sun, Y; Fai, T; Garcia, A L; Bell, J B
2012-01-01
We formulate low Mach number fluctuating hydrodynamic equations appropriate for modeling diffusive mixing in isothermal mixtures of fluids with different density and transport coefficients. These equations eliminate the fast isentropic fluctuations in pressure associated with the propagation of sound waves by replacing the equation of state with a local thermodynamic constraint. We demonstrate that the low Mach number model preserves the spatio-temporal spectrum of the slower diffusive fluctuations. We develop a strictly conservative finite-volume spatial discretization of the low Mach number fluctuating equations in both two and three dimensions. We construct several explicit Runge-Kutta temporal integrators that strictly maintain the equation of state constraint. The resulting spatio-temporal discretization is second-order accurate deterministically and maintains fluctuation-dissipation balance in the linearized stochastic equations. We apply our algorithms to model the development of giant concentration fl...
Mathematical and numerical aspects of low mach number flows
Energy Technology Data Exchange (ETDEWEB)
Schochet, St.; Bresch, D.; Grenier, E.; Alazard, T.; Gordner, A.; Sankaran, V.; Massot, M.; Sery, R.; Pebay, P.; Lunch, O.; Mazhorova, O.; Turkel, O.E.; Faille, I.; Danchin, R.; Allain, O.; Birken, P.; Lafitte, O.; Kloczko, T.; Frick, W.; Bui, T.; Dellacherie, S.; Klein, R.; Roe, Ph.; Accary, G.; Braack, M.; Picano, F.; Cadiou, A.; Dinescu, C.; Lesage, A.C.; Wesseling, P.; Heuveline, V.; Jobelin, M.; Weisman, C.; Merkle, C.
2004-07-01
Low Mach number flows represent a significant part of the various flows encountered in geophysics, industry or every day life. Paradoxically, the mathematical analysis of the equations governing these flows is difficult and on the practical side, the research of numerical algorithms valid for all flow speeds is continuing to be a challenge. However, in the last decade, both from the theoretical and the numerical sides, significant progresses were made in the understanding and analysis of the equations governing these flows. This conference intends to provide an up-to-date inventory of recent mathematical and numerical results in the analysis of these flows by bringing together both mathematicians and numericists active in this area. In the framework of the conference, a numerical workshop is organized which proposes to compute several challenging low Mach number flows: liquid flow around non-cavitating and cavitating NACA0015 hydrofoil, natural convection with large temperature differences, free convection, free surface flow, vessel pressurization. This document brings together the descriptions of the test cases of the numerical workshop and the abstracts of the conference papers: A 3D high order finite volume method for the prediction of near-critical fluid flows (G. ACCARY, I. RASPO, P. BONTOUX, B. ZAPPOLI); low Mach number limit of the non-isentropic Navier-Stokes equations (T. ALAZARD); simulation of cavitation rolls past a forward step with a bubble model (O. ALLAIN, N. BLASKA, C. LECA); flux preconditioning methods and fire events (P. BIRKEN, A. MEISTER); an adaptive finite element solver for compressible flows: application to heat-driven cavity benchmarks in 2D and 3D (M. BRAACK); comparison of various implicit, explicit, centered and upwind schemes for the simulation of compressed flows on moving mesh (A. CADIOU, M. BUFFAT, L. Le PENVEN, C. Le RIBAULT); low Mach number limit for viscous compressible flows (R. DANCHIN); some Properties of the low Mach number
Mathematical and numerical aspects of low mach number flows
Energy Technology Data Exchange (ETDEWEB)
Schochet, St.; Bresch, D.; Grenier, E.; Alazard, T.; Gordner, A.; Sankaran, V.; Massot, M.; Sery, R.; Pebay, P.; Lunch, O.; Mazhorova, O.; Turkel, O.E.; Faille, I.; Danchin, R.; Allain, O.; Birken, P.; Lafitte, O.; Kloczko, T.; Frick, W.; Bui, T.; Dellacherie, S.; Klein, R.; Roe, Ph.; Accary, G.; Braack, M.; Picano, F.; Cadiou, A.; Dinescu, C.; Lesage, A.C.; Wesseling, P.; Heuveline, V.; Jobelin, M.; Weisman, C.; Merkle, C.
2004-07-01
Low Mach number flows represent a significant part of the various flows encountered in geophysics, industry or every day life. Paradoxically, the mathematical analysis of the equations governing these flows is difficult and on the practical side, the research of numerical algorithms valid for all flow speeds is continuing to be a challenge. However, in the last decade, both from the theoretical and the numerical sides, significant progresses were made in the understanding and analysis of the equations governing these flows. This conference intends to provide an up-to-date inventory of recent mathematical and numerical results in the analysis of these flows by bringing together both mathematicians and numericists active in this area. In the framework of the conference, a numerical workshop is organized which proposes to compute several challenging low Mach number flows: liquid flow around non-cavitating and cavitating NACA0015 hydrofoil, natural convection with large temperature differences, free convection, free surface flow, vessel pressurization. This document brings together the descriptions of the test cases of the numerical workshop and the abstracts of the conference papers: A 3D high order finite volume method for the prediction of near-critical fluid flows (G. ACCARY, I. RASPO, P. BONTOUX, B. ZAPPOLI); low Mach number limit of the non-isentropic Navier-Stokes equations (T. ALAZARD); simulation of cavitation rolls past a forward step with a bubble model (O. ALLAIN, N. BLASKA, C. LECA); flux preconditioning methods and fire events (P. BIRKEN, A. MEISTER); an adaptive finite element solver for compressible flows: application to heat-driven cavity benchmarks in 2D and 3D (M. BRAACK); comparison of various implicit, explicit, centered and upwind schemes for the simulation of compressed flows on moving mesh (A. CADIOU, M. BUFFAT, L. Le PENVEN, C. Le RIBAULT); low Mach number limit for viscous compressible flows (R. DANCHIN); some Properties of the low Mach number
Edge and divertor plasma measurements with ion sensitive and Mach probes in LHD
Energy Technology Data Exchange (ETDEWEB)
Hayashi, Y., E-mail: shihaya_uki884@yahoo.co.jp [Nagano National College of Technology, 716 Tokuma, Nagano 381-8550 (Japan); Ezumi, N. [Nagano National College of Technology, 716 Tokuma, Nagano 381-8550 (Japan); Masuzaki, S.; Tanaka, H.; Kobayashi, M. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Sawada, K. [Shinshu University, Wakasato, Nagano 380-8553 (Japan); Ohno, N. [Nagoya University, Furo-cho Chikusa-ku, Nagoya 464-8603 (Japan)
2013-07-15
Spatial profiles of plasma flow and Mach number in the stochastic magnetic boundary layer as well as ion temperature (T{sub i}) and electron temperature (T{sub e}) in the divertor region in Large Helical Device (LHD) have been studied by a movable multiple functions probe, which consists of Mach probes and an ion sensitive probe. The results of ion saturation current measurements indicated plasma flow direction is alternated in the stochastic magnetic boundary. Mach number profiles for different plasma densities have been evaluated experimentally which compared with 3-D transport code. T{sub i} and T{sub e} in the divertor region measured by the ion sensitive probe decreased with increasing line-averaged density. Although T{sub i} was higher than T{sub e} in the low density plasma, both temperatures became almost the same at higher density.
Low Mach Number Fluctuating Hydrodynamics of Multispecies Liquid Mixtures
Donev, A; Bhattacharjee, A K; Garcia, A L; Bell, J B
2014-01-01
We develop a low Mach number formulation of the hydrodynamic equations describing transport of mass and momentum in a multispecies mixture of incompressible miscible liquids at specified temperature and pressure that generalizes our prior work on ideal mixtures of ideal gases and binary liquid mixtures. In this formulation we combine and extend a number of existing descriptions of multispecies transport available in the literature. The formulation applies to non-ideal mixtures of arbitrary number of species, without the need to single out a 'solvent' species, and includes contributions to the diffusive mass flux due to gradients of composition, temperature and pressure. Momentum transport and advective mass transport are handled using a low Mach number approach that eliminates fast sound waves (pressure fluctuations) from the full compressible system of equations and leads to a quasi-incompressible formulation. Thermal fluctuations are included in our fluctuating hydrodynamics description following the princi...
Statistical error in particle simulations of low mach number flows
Energy Technology Data Exchange (ETDEWEB)
Hadjiconstantinou, N G; Garcia, A L
2000-11-13
We present predictions for the statistical error due to finite sampling in the presence of thermal fluctuations in molecular simulation algorithms. The expressions are derived using equilibrium statistical mechanics. The results show that the number of samples needed to adequately resolve the flowfield scales as the inverse square of the Mach number. Agreement of the theory with direct Monte Carlo simulations shows that the use of equilibrium theory is justified.
Low Mach Number Fluctuating Hydrodynamics of Binary Liquid Mixtures
Nonaka, A J; Bell, J B; Donev, A
2014-01-01
Continuing on our previous work [ArXiv:1212.2644], we develop semi-implicit numerical methods for solving low Mach number fluctuating hydrodynamic equations appropriate for modeling diffusive mixing in isothermal mixtures of fluids with different densities and transport coefficients. We treat viscous dissipation implicitly using a recently-developed variable-coefficient Stokes solver [ArXiv:1308.4605]. This allows us to increase the time step size significantly compared to the earlier explicit temporal integrator. For viscous-dominated flows, such as flows at small scales, we develop a scheme for integrating the overdamped limit of the low Mach equations, in which inertia vanishes and the fluid motion can be described by a steady Stokes equation. We also describe how to incorporate advanced higher-order Godunov advection schemes in the numerical method, allowing for the treatment of fluids with high Schmidt number including the vanishing mass diffusion coefficient limit. We incorporate thermal fluctuations in...
Courant Number and Mach Number Insensitive CE/SE Euler Solvers
Chang, Sin-Chung
2005-01-01
It has been known that the space-time CE/SE method can be used to obtain ID, 2D, and 3D steady and unsteady flow solutions with Mach numbers ranging from 0.0028 to 10. However, it is also known that a CE/SE solution may become overly dissipative when the Mach number is very small. As an initial attempt to remedy this weakness, new 1D Courant number and Mach number insensitive CE/SE Euler solvers are developed using several key concepts underlying the recent successful development of Courant number insensitive CE/SE schemes. Numerical results indicate that the new solvers are capable of resolving crisply a contact discontinuity embedded in a flow with the maximum Mach number = 0.01.
Hysteresis phenomenon of hypersonic inlet at high Mach number
Jiao, Xiaoliang; Chang, Juntao; Wang, Zhongqi; Yu, Daren
2016-11-01
When the hypersonic inlet works at a Mach number higher than the design value, the hypersonic inlet is started with a regular reflection of the external compression shock at the cowl, whereas a Mach reflection will result in the shock propagating forwards to cause a shock detachment at the cowl lip, which is called "local unstart of inlet". As there are two operation modes of hypersonic inlet at high Mach number, the mode transition may occur with the operation condition of hypersonic inlet changing. A cowl-angle-variation-induced hysteresis and a downstream-pressure-variation-induced hysteresis in the hypersonic inlet start↔local unstart transition are obtained by viscous numerical simulations in this paper. The interaction of the external compression shock and boundary layer on the cowl plays a key role in the hysteresis phenomenon. Affected by the transition of external compression shock reflection at the cowl and the transition between separated and attached flow on the cowl, a hysteresis exists in the hypersonic inlet start↔local unstart transition. The hysteresis makes the operation of a hypersonic inlet very difficult to control. In order to avoid hysteresis phenomenon and keep the hypersonic inlet operating in a started mode, the control route should never pass through the local unstarted boundary.
Schaeffer, D. B.; Fox, W.; Haberberger, D.; Fiksel, G.; Bhattacharjee, A.; Barnak, D. H.; Hu, S. X.; Germaschewski, K.
2017-07-01
We present the first laboratory generation of high-Mach-number magnetized collisionless shocks created through the interaction of an expanding laser-driven plasma with a magnetized ambient plasma. Time-resolved, two-dimensional imaging of plasma density and magnetic fields shows the formation and evolution of a supercritical shock propagating at magnetosonic Mach number Mms≈12 . Particle-in-cell simulations constrained by experimental data further detail the shock formation and separate dynamics of the multi-ion-species ambient plasma. The results show that the shocks form on time scales as fast as one gyroperiod, aided by the efficient coupling of energy, and the generation of a magnetic barrier between the piston and ambient ions. The development of this experimental platform complements present remote sensing and spacecraft observations, and opens the way for controlled laboratory investigations of high-Mach number collisionless shocks, including the mechanisms and efficiency of particle acceleration.
Low Mach number fluctuating hydrodynamics of multispecies liquid mixtures
Energy Technology Data Exchange (ETDEWEB)
Donev, Aleksandar, E-mail: donev@courant.nyu.edu; Bhattacharjee, Amit Kumar [Courant Institute of Mathematical Sciences, New York University, New York, New York 10012 (United States); Nonaka, Andy; Bell, John B. [Center for Computational Science and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Garcia, Alejandro L. [Department of Physics and Astronomy, San Jose State University, San Jose, California 95192 (United States)
2015-03-15
We develop a low Mach number formulation of the hydrodynamic equations describing transport of mass and momentum in a multispecies mixture of incompressible miscible liquids at specified temperature and pressure, which generalizes our prior work on ideal mixtures of ideal gases [Balakrishnan et al., “Fluctuating hydrodynamics of multispecies nonreactive mixtures,” Phys. Rev. E 89 013017 (2014)] and binary liquid mixtures [Donev et al., “Low mach number fluctuating hydrodynamics of diffusively mixing fluids,” Commun. Appl. Math. Comput. Sci. 9(1), 47-105 (2014)]. In this formulation, we combine and extend a number of existing descriptions of multispecies transport available in the literature. The formulation applies to non-ideal mixtures of arbitrary number of species, without the need to single out a “solvent” species, and includes contributions to the diffusive mass flux due to gradients of composition, temperature, and pressure. Momentum transport and advective mass transport are handled using a low Mach number approach that eliminates fast sound waves (pressure fluctuations) from the full compressible system of equations and leads to a quasi-incompressible formulation. Thermal fluctuations are included in our fluctuating hydrodynamics description following the principles of nonequilibrium thermodynamics. We extend the semi-implicit staggered-grid finite-volume numerical method developed in our prior work on binary liquid mixtures [Nonaka et al., “Low mach number fluctuating hydrodynamics of binary liquid mixtures,” http://arxiv.org/abs/1410.2300 (2015)] and use it to study the development of giant nonequilibrium concentration fluctuations in a ternary mixture subjected to a steady concentration gradient. We also numerically study the development of diffusion-driven gravitational instabilities in a ternary mixture and compare our numerical results to recent experimental measurements [Carballido-Landeira et al., “Mixed-mode instability of a
DSMC Simulation of High Mach Number Taylor-Couette Flow
Pradhan, Sahadev, , Dr.
2017-01-01
The main focus of this work is to characterise the Taylor-Couette flow of an ideal gas between two coaxial cylinders at Mach number Ma = (U_w /√{ kbT_w / m }) in the range 0.01 Boltzmann constant. The cylindrical surfaces are specified as being diffusely reflecting with the thermal accommodation coefficient equal to one. In the present analysis of high Mach number compressible Taylor-Couette flow using DSMC method, wall slip in the temperature and the velocities are found to be significant. Slip occurs because the temperature/velocity of the molecules incident on the wall could be very different from that of the wall, even though the temperature/velocity of the reflected molecules is equal to that of the wall. Due to the high surface speed of the inner cylinder, significant heating of the gas is taking place. The gas temperature increases until the heat transfer to the surface equals the work done in moving the surface. The highest temperature is obtained near the moving surface of the inner cylinder at a radius of about (1.26 r_1).
The Variation of Slat Noise with Mach and Reynolds Numbers
Lockhard, David P.; Choudhari, Meelan M.
2011-01-01
The slat noise from the 30P30N high-lift system has been computed using a computational fluid dynamics code in conjunction with a Ffowcs Williams-Hawkings solver. By varying the Mach number from 0.13 to 0.25, the noise was found to vary roughly with the 5th power of the speed. Slight changes in the behavior with directivity angle could easily account for the different speed dependencies reported in the literature. Varying the Reynolds number from 1.4 to 2.4 million resulted in almost no differences, and primarily served to demonstrate the repeatability of the results. However, changing the underlying hybrid Reynolds-averaged-Navier-Stokes/Large-Eddy-Simulation turbulence model significantly altered the mean flow because of changes in the flap separation. However, the general trends observed in both the acoustics and near-field fluctuations were similar for both models.
Low Mach number theory of freely cooling granular gases
Meerson, Baruch; Vilenkin, Arkady
2007-01-01
We use hydrodynamic equations to investigate the dynamics of a freely cooling dilute granular gas with nearly elastic particle collisions. We assume a narrow channel geometry and focus on the regime where the sound travel time through the system is much shorter than the typical cooling time of the gas. As a result, the pressure rapidly becomes almost homogeneous, while the Mach number is small. Eliminating the sound waves and employing Lagrangian coordinates, we reduce the full hydrodynamics to a single nonlinear/nonlocal equation of a reaction-diffusion type. This equation describes a broad class of flows and, in particular, can follow the development of strongly nonlinear states during clustering instability. Without heat diffusion, the reduced equation is exactly soluble and develops a finite-time density blowup with the same local features as those exhibited by the recently found family of exact solutions of the full set of ideal hydrodynamic equations (Fouxon et al. 2007). The heat diffusion, however, ar...
Turbomachinery for Low-to-High Mach Number Flight
Tan, Choon S.; Shah, Parthiv N.
2004-01-01
The thrust capability of turbojet cycles is reduced at high flight Mach number (3+) by the increase in inlet stagnation temperature. The 'hot section' temperature limit imposed by materials technology sets the maximum heat addition and, hence, sets the maximum flight Mach number of the operating envelope. Compressor pre-cooling, either via a heat exchanger or mass-injection, has been suggested as a means to reduce compressor inlet temperature and increase mass flow capability, thereby increasing thrust. To date, however, no research has looked at compressor cooling (i.e., using a compressor both to perform work on the gas path air and extract heat from it simultaneously). We wish to assess the feasibility of this novel concept for use in low-to-high Mach number flight. The results to-date show that an axial compressor with cooling: (1) relieves choking in rear stages (hence opening up operability), (2) yields higher-pressure ratio and (3) yields higher efficiency for a given corrected speed and mass flow. The performance benefit is driven: (i) at the blade passage level, by a decrease in the total pressure reduction coefficient and an increase in the flow turning; and (ii) by the reduction in temperature that results in less work required for a given pressure ratio. The latter is a thermodynamic effect. As an example, calculations were performed for an eight-stage compressor with an adiabatic design pressure ratio of 5. By defining non-dimensional cooling as the percentage of compressor inlet stagnation enthalpy removed by a heat sink, the model shows that a non-dimensional cooling of percent in each blade row of the first two stages can increase the compressor pressure ratio by as much as 10-20 percent. Maximum corrected mass flow at a given corrected speed may increase by as much as 5 percent. In addition, efficiency may increase by as much as 5 points. A framework for characterizing and generating the performance map for a cooled compressor has been developed
Dynamics of compressional Mach cones in a strongly coupled complex plasma
Bandyopadhyay, P; Kadyan, Sangeeta; Sen, Abhijit
2016-01-01
Using a Generalised-Hydrodynamic (GH) fluid model we study the influence of strong coupling induced modification of the fluid compressibility on the dynamics of compressional Mach cones in a dusty plasma medium. A significant structural change of lateral wakes for a given Mach number and Epstein drag force is found in the strongly coupled regime. With the increase of fluid compressibility, the peak amplitude of the normalised perturbed dust density first increases and then decreases monotonically after reaching its maximum value. It is also noticed that the opening angle of the cone structure decreases with the increase of the compressibility of the medium and the arm of the Mach cone breaks up into small structures in the velocity vector profile when the coupling between the dust particles increases.
Edge, cavity and aperture tones at very low Mach numbers
Howe, M. S.
1997-01-01
This paper discusses self-sustaining oscillations of high-Reynolds-number shear layers and jets incident on edges and corners at infinitesimal Mach number. These oscillations are frequently sources of narrow-band sound, and are usually attributed to the formation of discrete vortices whose interactions with the edge or corner produce impulsive pressures that lead to the formation of new vorticity and complete a feedback cycle of operation. Linearized analyses of these interactions are presented in which free shear layers are modelled by vortex sheets. Detailed results are given for shear flows over rectangular wall apertures and shallow cavities, and for the classical jet edge interaction. The operating stages of self-sustained oscillations are identified with poles in the upper half of the complex frequency plane of a certain impulse response function. It is argued that the real parts of these poles determine the Strouhal numbers of the operating stages observed experimentally for the real, nonlinear system. The response function coincides with the Rayleigh conductivity of the ‘window’ spanned by the shear flow for wall apertures and jet edge interactions, and to a frequency dependent drag coefficient for shallow wall cavities. When the interaction occurs in the neighbourhood of an acoustic resonator, exemplified by the flue organ pipe, the poles are augmented by a sequence of poles whose real parts are close to the resonance frequencies of the resonator, and the resonator can ‘speak’ at one of these frequencies (by extracting energy from the mean flow) provided the corresponding pole has positive imaginary part.
A fast spatial scanning combination emissive and mach probe for edge plasma diagnosis
Energy Technology Data Exchange (ETDEWEB)
Lehmer, R.D.; LaBombard, B.; Conn, R.W.
1989-04-01
A fast spatially scanning emissive and mach probe has been developed for the measurement of plasma profiles in the PISCES facility at UCLA. A pneumatic cylinder is used to drive a multiple tip probe along a 15cm stroke in less than 400msec, giving single shot profiles while limiting power deposition to the probe. A differentially pumped sliding O-ring seal allows the probe to be moved between shots to infer two and three dimensional profiles. The probe system has been used to investigate the plasma potential, density, and parallel mach number profiles of the presheath induced by a wall surface and scrape-off-layer profile modifications in biased limiter simulation experiments. Details of the hardware, data acquisition electronics, and tests of probe reliability are discussed. 30 refs., 24 figs.
Schaeffer, Derek; Haberberger, Dan; Fiksel, Gennady; Bhattacharjee, Amitava; Barnak, Daniel; Hu, Suxing; Germaschewski, Kai
2016-01-01
Shocks act to convert incoming supersonic flows to heat, and in collisionless plasmas the shock layer forms on kinetic plasma scales through collective electromagnetic effects. These collisionless shocks have been observed in many space and astrophysical systems [Smith 1975, Smith 1980, Burlaga 2008, Sulaiman 2015], and are believed to accelerate particles, including cosmic rays, to extremely high energies [Kazanas 1986, Loeb 2000, Bamba 2003, Masters 2013, Ackermann 2013]. Of particular importance are the class of high-Mach number, supercritical shocks [Balogh 2013] ($M_A\\gtrsim4$), which must reflect significant numbers of particles back into the upstream to accommodate entropy production, and in doing so seed proposed particle acceleration mechanisms [Blandford 1978, McClements 2001, Caprioli 2014, Matsumoto 2015]. Here we present the first laboratory generation of high-Mach number magnetized collisionless shocks created through the interaction of an expanding laser-driven plasma with a magnetized ambient ...
DSMC simulations of leading edge flat-plate boundary layer flows at high Mach number
Pradhan, Sahadev, , Dr.
2017-01-01
The flow over a 2D leading-edge flat plate is studied at Mach number Ma = (Uinf /√{kBTinf / m }) in the range Boltzmann constant. The variation of streamwise velocity, temperature, number-density, and mean free path along the wall normal direction away from the plate surface is studied. The qualitative nature of the streamwise velocity at high Mach number is similar to those in the incompressible limit (parabolic profile). However, there are important differences. The amplitudes of the streamwise velocity increase as the Mach number increases and turned into a more flatter profile near the wall. There is significant velocity and temperature slip at the surface of the plate, and the slip increases as the Mach number is increased. It is interesting to note that for the highest Mach numbers considered here, the streamwise velocity at the wall exceeds the sound speed, and the flow is supersonic throughout the flow domain.
Variation with Mach Number of Static and Total Pressures Through Various Screens
Adler, Alfred A
1946-01-01
Tests were conducted in the Langley 24-inch highspeed tunnel to ascertain the static-pressure and total-pressure losses through screens ranging in mesh from 3 to 12 wires per inch and in wire diameter from 0.023 to 0.041 inch. Data were obtained from a Mach number of approximately 0.20 up to the maximum (choking) Mach number obtainable for each screen. The results of this investigation indicate that the pressure losses increase with increasing Mach number until the choking Mach number, which can be computed, is reached. Since choking imposes a restriction on the mass rate of flow and maximum losses are incurred at this condition, great care must be taken in selecting the screen mesh and wire dimmeter for an installation so that the choking Mach number is
A Device for Measuring Sonic Velocity and Compressor Mach Number
1948-07-01
resonator (the only 4 NACA TN No. 1664 accurate measurement required) is measured, as shomn in figure 1, by means of a mercury manometer . The compressor Mach...tube vs not connected to the ccmpressor inlet until after calibration. The pressure in the device was measured by means of the mercury manometer . Fram
Numerical Simulation of Low Mach Number Fluid - Phenomena.
Reitsma, Scott H.
A method for the numerical simulation of low Mach number (M) fluid-acoustic phenomena is developed. This computational fluid-acoustic (CFA) methodology is based upon a set of conservation equations, termed finite-compressible, derived from the unsteady Navier-Stokes equations. The finite-compressible and more familiar pseudo-compressible equations are compared. The impact of derivation assumptions are examined theoretically and through numerical experimentation. The error associated with these simplifications is shown to be of O(M) and proportional to the amplitude of unsteady phenomena. A computer code for the solution of the finite -compressible equations is developed from an existing pseudo -compressible code. Spatial and temporal discretization issues relevant in the context of near field fluid-acoustic simulations are discussed. The finite volume code employs a MUSCL based third order upwind biased flux difference splitting algorithm for the convective terms. An explicit, three stage, second order Runge-Kutta temporal integration is employed for time accurate simulations while an implicit, approximately factored time quadrature is available for steady state convergence acceleration. The CFA methodology is tested in a series of problems which examine the appropriateness of the governing equations, the exacerbation of spatial truncation errors and the degree of temporal accuracy. Characteristic based boundary conditions employing a spatial formulation are developed. An original non-reflective boundary condition based upon the generalization and extension of existing methods is derived and tested in a series of multi-dimensional problems including those involving viscous shear flows and propagating waves. The final numerical experiment is the simulation of boundary layer receptivity to acoustic disturbances. This represents the first simulation of receptivity at a surface inhomogeneity in which the acoustic phenomena is modeled using physically appropriate
Specularly reflected He sup 2+ at high Mach number quasi-parallel shocks
Energy Technology Data Exchange (ETDEWEB)
Fuselier, S.A.; Lennartsson, O.W. (Lockheed Palo Alto Research Lab., CA (United States)); Thomsen, M.F. (Los Alamos National Lab., NM (United States)); Russell, C.T. (Univ. of California, Los Angeles (United States))
1990-04-01
Upstream from the Earth's quasi-parallel bow shock, the Lockheed Plasma Composition Experiment on ISEE 1 often observes two types of suprathermal He{sup 2+} distributions. Always present to some degree is an energetic (several keV/eto 17.4 keV/e, the maximum energy of the detector) diffuse He{sup 2+} distribution. Sometimes, apparently when the Alfven Mach number, M{sub A}, is high enough and the spacecraft is near the shock (within a few minutes of a crossing), a second type of suprathermal He{sup 2+} distribution is also observed. This nongyrotropic, gyrating He{sup 2+} distribution has velocity components parallel and perpendicular to the magnetic field that are consistent with near-specular reflection of a portion of the incident solar wind He{sup 2+} distribution off the shock. Specularly reflected and diffuse proton distributions are associated with these gyrating He{sup 2+} distributions. The presence of these gyrating He{sup 2+} distributions suggests that specular reflection is controlled primarily by magnetic forces in high Mach number quasi-parallel shocks and that these distributions may be a seed population for more energetic diffuse He{sup 2+} distributions.
Multiobjective Design Optimization of Supersonic Jet Engine in Different Cruise Mach Numbers
Ogawa, Masamichi; Sato, Tetsuya; Kobayashi, Hiroaki; Taguchi, Hideyuki
The aim of this paper is to apply a multi-objective optimization generic algorithm (MOGA) to the conceptual design of the hypersonic/supersonic vehicles with different cruise Mach number. The pre-cooled turbojet engine is employed as a propulsion system and some engine parameters such as the precooler size, compressor size, compression ratio and fuel type are varied in the analysis. The result shows that the optimum cruise Mach number is about 4 if hydrogen fuel is used. Methane fuel instead of hydrogen reduces the vehicle gross weight by 33% in case of the Mach 2 vehicle.
Turbulent mixing of a slightly supercritical Van der Waals fluid at Low-Mach number
Battista, Francesco; Casciola, Carlo Massimo
2014-01-01
Supercritical fluids near the critical point are characterized by liquid-like densities and gas-like transport properties. These features are purposely exploited in different contexts ranging from natural products extraction/fractionation to aerospace propulsion. Large part of studies concerns this last context, focusing on the dynamics of supercritical fluids at high Mach number where compressibility and thermodynamics strictly interact. Despite the widespread use also at low Mach number, the turbulent mixing properties of slightly supercritical fluids have still not investigated in detail in this regime. This topic is addressed here by dealing with Direct Numerical Simulations (DNS) of a coaxial jet of a slightly supercritical Van der Waals fluid. Since acoustic effects are irrelevant in the Low Mach number conditions found in many industrial applications, the numerical model is based on a suitable low-Mach number expansion of the governing equation. According to experimental observations, the weakly superc...
Relativistic Electron Shock Drift Acceleration in Low Mach Number Galaxy Cluster Shocks
Matsukiyo, Shuichi; Yamazaki, Ryo; Umeda, Takayuki
2011-01-01
An extreme case of electron shock drift acceleration in low Mach number collisionless shocks is investigated as a plausible mechanism of initial acceleration of relativistic electrons in large-scale shocks in galaxy clusters where upstream plasma temperature is of the order of 10 keV and a degree of magnetization is not too small. One-dimensional electromagnetic full particle simulations reveal that, even though a shock is rather moderate, a part of thermal incoming electrons are accelerated and reflected through relativistic shock drift acceleration and form a local nonthermal population just upstream of the shock. The accelerated electrons can self-generate local coherent waves and further be back-scattered toward the shock by those waves. This may be a scenario for the first stage of the electron shock acceleration occurring at the large-scale shocks in galaxy clusters such as CIZA J2242.8+5301 which has well defined radio relics.
Electron acceleration in a nonrelativistic shock with very high Alfv\\'en Mach number
Matsumoto, Y; Hoshino, M
2013-01-01
Electron acceleration associated with various plasma kinetic instabilities in a nonrelativistic, very-high-Alfv\\'en Mach-number ($M_A \\sim 45$) shock is revealed by means of a two-dimensional fully kinetic PIC simulation. Electromagnetic (ion Weibel) and electrostatic (ion-acoustic and Buneman) instabilities are strongly activated at the same time in different regions of the two-dimensional shock structure. Relativistic electrons are quickly produced predominantly by the shock surfing mechanism with the Buneman instability at the leading edge of the foot. The energy spectrum has a high-energy tail exceeding the upstream ion kinetic energy accompanying the main thermal population. This gives a favorable condition for the ion acoustic instability at the shock front, which in turn results in additional energization. The large-amplitude ion Weibel instability generates current sheets in the foot, implying another dissipation mechanism via magnetic reconnection in a three-dimensional shock structure in the very-hi...
The small-scale dynamo: Breaking universality at high Mach numbers
Schleicher, Dominik R G; Federrath, Christoph; Bovino, Stefano; Schmidt, Wolfram
2013-01-01
(Abridged) The small-scale dynamo may play a substantial role in magnetizing the Universe under a large range of conditions, including subsonic turbulence at low Mach numbers, highly supersonic turbulence at high Mach numbers and a large range of magnetic Prandtl numbers Pm, i.e. the ratio of kinetic viscosity to magnetic resistivity. Low Mach numbers may in particular lead to the well-known, incompressible Kolmogorov turbulence, while for high Mach numbers, we are in the highly compressible regime, thus close to Burgers turbulence. In this study, we explore whether in this large range of conditions, a universal behavior can be expected. Our starting point are previous investigations in the kinematic regime. Here, analytic studies based on the Kazantsev model have shown that the behavior of the dynamo depends significantly on Pm and the type of turbulence, and numerical simulations indicate a strong dependence of the growth rate on the Mach number of the flow. Once the magnetic field saturates on the current ...
Effect of Mach number on the efficiency of microwave energy deposition in supersonic flow
Lashkov, V. A.; Karpenko, A. G.; Khoronzhuk, R. S.; Mashek, I. Ch.
2016-05-01
The article is devoted to experimental and numerical studies of the efficiency of microwave energy deposition into a supersonic flow around the blunt cylinder at different Mach numbers. Identical conditions for energy deposition have been kept in the experiments, thus allowing to evaluate the pure effect of varying Mach number on the pressure drop. Euler equations are solved numerically to model the corresponding unsteady flow compressed gas. The results of numerical simulations are compared to the data obtained from the physical experiments. It is shown that the momentum, which the body receives during interaction of the gas domain modified by microwave discharge with a shock layer before the body, increases almost linearly with rising of Mach number and the efficiency of energy deposition also rises.
Energy Technology Data Exchange (ETDEWEB)
Dellacherie, St
2004-07-01
This work deals with the derivation of a diphasic low Mach number model obtained through a Mach number asymptotic expansion applied to the compressible diphasic Navier Stokes system, expansion which filters out the acoustic waves. This approach is inspired from the work of Andrew Majda giving the equations of low Mach number combustion for thin flame and for perfect gases. When the equations of state verify some thermodynamic hypothesis, we show that the low Mach number diphasic system predicts in a good way the dilatation or the compression of a bubble and has equilibrium convergence properties. Then, we propose an entropic and convergent Lagrangian scheme in mono-dimensional geometry when the fluids are perfect gases and we propose a first approach in Eulerian variables where the interface between the two fluids is captured with a level set technique. (author)
Guo, Xinyi; Sironi, Lorenzo; Narayan, Ramesh
2014-10-01
Electron acceleration to non-thermal energies in low Mach number (Ms Diffusive shock acceleration, also known as first-order Fermi acceleration, cannot be directly invoked to explain the acceleration of electrons. Rather, an additional mechanism is required to pre-accelerate the electrons from thermal to supra-thermal energies, so they can then participate in the Fermi process. In this work, we use two- and three-dimensional particle-in-cell plasma simulations to study electron acceleration in low Mach number shocks. We focus on the particle energy spectra and the acceleration mechanism in a reference run with Ms = 3 and a quasi-perpendicular pre-shock magnetic field. We find that about 15% of the electrons can be efficiently accelerated, forming a non-thermal power-law tail in the energy spectrum with a slope of p ~= 2.4. Initially, thermal electrons are energized at the shock front via shock drift acceleration (SDA). The accelerated electrons are then reflected back upstream where their interaction with the incoming flow generates magnetic waves. In turn, the waves scatter the electrons propagating upstream back toward the shock for further energization via SDA. In summary, the self-generated waves allow for repeated cycles of SDA, similarly to a sustained Fermi-like process. This mechanism offers a natural solution to the conflict between the bright radio synchrotron emission observed from the outskirts of galaxy clusters and the low electron acceleration efficiency usually expected in low Mach number shocks.
Increased Mach Number Capability for the NASA Glenn 10x10 Supersonic Wind Tunnel
Slater, J. W.; Saunders, J. D.
2015-01-01
Computational simulations and wind tunnel testing were conducted to explore the operation of the Abe Silverstein Supersonic Wind Tunnel at the NASA Glenn Research Center at test section Mach numbers above the current limit of Mach 3.5. An increased Mach number would enhance the capability for testing of supersonic and hypersonic propulsion systems. The focus of the explorations was on understanding the flow within the second throat of the tunnel, which is downstream of the test section and is where the supersonic flow decelerates to subsonic flow. Methods of computational fluid dynamics (CFD) were applied to provide details of the shock boundary layer structure and to estimate losses in total pressure. The CFD simulations indicated that the tunnel could be operated up to Mach 4.0 if the minimum width of the second throat was made smaller than that used for previous operation of the tunnel. Wind tunnel testing was able to confirm such operation of the tunnel at Mach 3.6 and 3.7 before a hydraulic failure caused a stop to the testing. CFD simulations performed after the wind tunnel testing showed good agreement with test data consisting of static pressures along the ceiling of the second throat. The CFD analyses showed increased shockwave boundary layer interactions, which was also observed as increased unsteadiness of dynamic pressures collected in the wind tunnel testing.
Mach number study of supersonic turbulence: The properties of the density field
Konstandin, Lukas; Girichidis, Philipp; Peters, Thomas; Shetty, Rahul; Klessen, Ralf S
2015-01-01
We model driven, compressible, isothermal, turbulence with Mach numbers ranging from the subsonic ($\\mathcal{M} \\approx 0.65$) to the highly supersonic regime ($\\mathcal{M}\\approx 16 $). The forcing scheme consists both solenoidal (transverse) and compressive (longitudinal) modes in equal parts. We find a relation $\\sigma_{s}^2 = \\mathrm{b}\\log{(1+\\mathrm{b}^2\\mathcal{M}^2)}$ between the Mach number and the standard deviation of the logarithmic density with $\\mathrm{b} = 0.457 \\pm 0.007$. The density spectra follow $\\mathcal{D}(k,\\,\\mathcal{M}) \\propto k^{\\zeta(\\mathcal{M})}$ with scaling exponents depending on the Mach number. We find $\\zeta(\\mathcal{M}) = \\alpha \\mathcal{M}^{\\beta}$ with a coefficient $\\alpha$ that varies slightly with resolution, whereas $\\beta$ changes systematically. We extrapolate to the limit of infinite resolution and find $\\alpha = -1.91 \\pm 0.01,\\, \\beta =-0.30\\pm 0.03$. The dependence of the scaling exponent on the Mach number implies a fractal dimension $D=2+0.96 \\mathcal{M}^{-0.3...
Tanaka, Kento; Watanabe, Tomoaki; Nagata, Koji; Sasoh, Akihiro; Sakai, Yasuhiko; Hayase, Toshiyuki; Nagoya Univ Collaboration
2016-11-01
The interaction between homogeneous isotropic turbulence and normal shock wave is investigated by direct numerical simulations (DNSs). In the DNSs, a normal shock wave with a shock Mach number 1.1 passes through homogeneous isotropic turbulence with a low turbulent Mach number and a moderate turbulent Reynolds number. The statistics are calculated conditioned on the distance from the shock wave. The results showed that the shock wave makes length scales related to turbulence small. This effect is significant for the Taylor microscale defined with the velocity derivative orthogonal to the shock wave. The decrease in the Kolmogorov scale is also found. Statistics of velocity derivative are found to be changed by the shock wave propagation. The shock wave causes enstrophy amplification due to the dilatation/vorticity interaction. By this interaction, the vorticity components parallel to the shock wave is more amplified than the normal component. The strain rate is also amplified by the shock wave.
Mach number scaling of helicopter rotor blade/vortex interaction noise
Leighton, Kenneth P.; Harris, Wesley L.
1985-01-01
A parametric study of model helicopter rotor blade slap due to blade vortex interaction (BVI) was conducted in a 5 by 7.5-foot anechoic wind tunnel using model helicopter rotors with two, three, and four blades. The results were compared with a previously developed Mach number scaling theory. Three- and four-bladed rotor configurations were found to show very good agreement with the Mach number to the sixth power law for all conditions tested. A reduction of conditions for which BVI blade slap is detected was observed for three-bladed rotors when compared to the two-bladed baseline. The advance ratio boundaries of the four-bladed rotor exhibited an angular dependence not present for the two-bladed configuration. The upper limits for the advance ratio boundaries of the four-bladed rotors increased with increasing rotational speed.
Two-dimensional lattice Boltzmann model for compressible flows with high Mach number
Gan, Yanbiao; Xu, Aiguo; Zhang, Guangcai; Yu, Xijun; Li, Yingjun
2008-03-01
In this paper we present an improved lattice Boltzmann model for compressible Navier-Stokes system with high Mach number. The model is composed of three components: (i) the discrete-velocity-model by M. Watari and M. Tsutahara [Phys. Rev. E 67 (2003) 036306], (ii) a modified Lax-Wendroff finite difference scheme where reasonable dissipation and dispersion are naturally included, (iii) artificial viscosity. The improved model is convenient to compromise the high accuracy and stability. The included dispersion term can effectively reduce the numerical oscillation at discontinuity. The added artificial viscosity helps the scheme to satisfy the von Neumann stability condition. Shock tubes and shock reflections are used to validate the new scheme. In our numerical tests the Mach numbers are successfully increased up to 20 or higher. The flexibility of the new model makes it suitable for tracking shock waves with high accuracy and for investigating nonlinear nonequilibrium complex systems.
Flow-induced cylinder noise formulated as a diffraction problem for low Mach numbers
Gloerfelt, X.; Pérot, F.; Bailly, C.; Juvé, D.
2005-10-01
The role of surfaces in the mechanism of sound generation by low Mach number flows interacting with solid nonvibrating surfaces is well established by the classical aeroacoustic papers by Powell, Doak, Ffowcs Williams, Crighton, or Howe. It can be formulated as a problem of diffraction of the flow sources by the rigid body. The present study illustrates this statement in the case of flow-induced cylinder noise. Curle's formulation is analytically and numerically compared to a formulation based on an exact Green's function tailored to a cylindrical geometry. The surface integral of Curle's formulation represents exactly the diffraction effects by the rigid body. The direct and scattered parts of the sound field are studied. In this low Mach number configuration, the cylinder is compact, and the scattered (dipole) field dominates the direct (quadrupole) field. The classical properties of the scattering by a cylinder are retrieved by considering a point quadripole source near the cylinder surface.
Extension of the pressure correction method to zero-Mach number compressible flows
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
In the present paper,the classical pressure correction method was extended into low Mach number compressible flow regime by integrating equation of state into SIMPLE algorithm.The self-developed code based on this algorithm was applied to predicting the lid-driven cavity flow and shock tube prob-lems,and the results showed good agreement with benchmark solutions and the Mach number can reach the magnitude of as low as 10-5.The attenuation of sound waves in viscous medium was then simulated.The results agree well with the analytical solutions given by theoretical acoustics.This demonstrated that the present method could also be implemented in acoustics field simulation,which is crucial for thermoacoustic simulation.
The Density Variance--Mach Number Relation in Supersonic Turbulence: I. Isothermal, magnetised gas
Molina, F Z; Federrath, C; Klessen, R S
2012-01-01
It is widely accepted that supersonic, magnetised turbulence plays a fundamental role for star formation in molecular clouds. It produces the initial dense gas seeds out of which new stars can form. However, the exact relation between gas compression, turbulent Mach number, and magnetic field strength is still poorly understood. Here, we introduce and test an analytical prediction for the relation between the density variance and the root-mean-square Mach number in supersonic, isothermal, magnetised turbulent flows. We approximate the density and velocity structure of the interstellar medium as a superposition of shock waves. We obtain the density contrast considering the momentum continuity equation for a single magnetised shock and extrapolate this result to the entire cloud. Depending on the field geometry, we then make three different assumptions based on observational and theoretical constraints: B independent of density, B proportional to the root square of the density and B proportional to the density....
Extension of the pressure correction method to zero-Mach number compressible flows
Institute of Scientific and Technical Information of China (English)
HE YaLing; HUANG Jing; TAO YuBing; TAO WenQuan
2009-01-01
In the present paper, the classical pressure correction method was extended into low Mach number compressible flow regime by integrating equation of state into SIMPLE algorithm. The self-developed code based on this algorithm was applied to predicting the lid-driven cavity flow and shock tube prob-lems, and the results showed good agreement with benchmark solutions and the Mach number can reach the magnitude of as low as 10-5. The attenuation of sound waves in viscous medium was then simulated. The results agree well with the analytical solutions given by theoretical acoustics. This demonstrated that the present method could also be implemented in acoustics field simulation, which is crucial for thermoacoustic simulation.
Axisymmetric vortex method for low-Mach number, diffusion-controlled combustion
Lakkis, I
2003-01-01
A grid-free, Lagrangian method for the accurate simulation of low-Mach number, variable-density, diffusion-controlled reacting flow is presented. A fast-chemistry model in which the conversion rate of reactants to products is limited by the local mixing rate is assumed in order to reduce the combustion problem to the solution of a convection-diffusion-generation equation with volumetric expansion and vorticity generation at the reaction fronts. The solutions of the continuity and vorticity equations, and the equations governing the transport of species and energy, are obtained using a formulation in which particles transport conserved quantities by convection and diffusion. The dynamic impact of exothermic combustion is captured through accurate integration of source terms in the vorticity transport equations at the location of the particles, and the extra velocity field associated with volumetric expansion at low Mach number computed to enforced mass conservation. The formulation is obtained for an axisymmet...
Low Mach and Peclet number limit for a model of stellar tachocline and upper radiative zones
Directory of Open Access Journals (Sweden)
Donatella Donatelli
2016-09-01
Full Text Available We study a hydrodynamical model describing the motion of internal stellar layers based on compressible Navier-Stokes-Fourier-Poisson system. We suppose that the medium is electrically charged, we include energy exchanges through radiative transfer and we assume that the system is rotating. We analyze the singular limit of this system when the Mach number, the Alfven number, the Peclet number and the Froude number approache zero in a certain way and prove convergence to a 3D incompressible MHD system with a stationary linear transport equation for transport of radiation intensity. Finally, we show that the energy equation reduces to a steady equation for the temperature corrector.
Nearfield Unsteady Pressures at Cruise Mach Numbers for a Model Scale Counter-Rotation Open Rotor
Stephens, David B.
2012-01-01
An open rotor experiment was conducted at cruise Mach numbers and the unsteady pressure in the nearfield was measured. The system included extensive performance measurements, which can help provide insight into the noise generating mechanisms in the absence of flow measurements. A set of data acquired at a constant blade pitch angle but various rotor speeds was examined. The tone levels generated by the front and rear rotor were found to be nearly equal when the thrust was evenly balanced between rotors.
Bispen, Georgij; Lukáčová-Medvid'ová, Mária; Yelash, Leonid
2017-04-01
In this paper we will present and analyze a new class of the IMEX finite volume schemes for the Euler equations with a gravity source term. We will in particular concentrate on a singular limit of weakly compressible flows when the Mach number M ≪ 1. In order to efficiently resolve slow dynamics we split the whole nonlinear system in a stiff linear part governing the acoustic and gravity waves and a non-stiff nonlinear part that models nonlinear advection effects. For time discretization we use a special class of the so-called globally stiffly accurate IMEX schemes and approximate the stiff linear operator implicitly and the non-stiff nonlinear operator explicitly. For spatial discretization the finite volume approximation is used with the central and Rusanov/Lax-Friedrichs numerical fluxes for the linear and nonlinear subsystem, respectively. In the case of a constant background potential temperature we prove theoretically that the method is asymptotically consistent and asymptotically stable uniformly with respect to small Mach number. We also analyze experimentally convergence rates in the singular limit when the Mach number tends to zero.
Particle-in-cell simulations of particle energization from low Mach number fast mode shocks
Park, Jaehong; Blackman, Eric G; Ren, Chuang; Siller, Robert
2012-01-01
Astrophysical shocks are often studied in the high Mach number limit but weakly compressive fast shocks can occur in magnetic reconnection outflows and are considered to be a site of particle energization in solar flares. Here we study the microphysics of such perpendicular, low Mach number collisionless shocks using two-dimensional particle-in-cell (PIC) simulations with a reduced ion/electron mass ratio and employ a moving wall boundary method for initial generation of the shock. This moving wall method allows for more control of the shock speed, smaller simulation box sizes, and longer simulation times than the commonly used fixed wall, reflection method of shock formation. Our results, which are independent of the shock formation method, reveal the prevalence shock drift acceleration (SDA) of both electron and ions in a purely perpendicular shock with Alfv\\'en Mach number $M_A=6.8$ and ratio of thermal to magnetic pressure $\\beta=8$. We determine the respective minimum energies required for electrons and ...
A half-explicit, non-split projection method for low Mach number flows.
Energy Technology Data Exchange (ETDEWEB)
Pousin, Jerome G. (National Institute for Applied Sciences, France); Najm, Habib N.; Pebay, Philippe Pierre
2004-02-01
In the context of the direct numerical simulation of low MACH number reacting flows, the aim of this article is to propose a new approach based on the integration of the original differential algebraic (DAE) system of governing equations, without further differentiation. In order to do so, while preserving a possibility of easy parallelization, it is proposed to use a one-step index 2 DAE time-integrator, the Half Explicit Method (HEM). In this context, we recall why the low MACH number approximation belongs to the class of index 2 DAEs and discuss why the pressure can be associated with the constraint. We then focus on a fourth-order HEM scheme, and provide a formulation that makes its implementation more convenient. Practical details about the consistency of initial conditions are discussed, prior to focusing on the implicit solve involved in the method. The method is then evaluated using the Modified KAPS Problem, since it has some of the features of the low MACH number approximation. Numerical results are presented, confirming the above expectations. A brief summary of ongoing efforts is finally provided.
Prandtl number of toroidal plasmas
Energy Technology Data Exchange (ETDEWEB)
Itoh, Kimitaka (National Inst. for Fusion Science, Nagoya (Japan)); Itoh, Sanae; Fukuyama, Atsushi; Yagi, Masatoshi; Azumi, Masafumi
1993-12-01
Theory of the L-mode confinement in toroidal plasmas is developed. The Prandtl number, the ratio between the ion viscosity and the thermal conductivity is obtained for the anomalous transport process which is caused by the self-sustained turbulence in the toroidal plasma. It is found that the Prandtl number is of order unity both for the ballooning mode turbulence in tokamaks and for the interchange mode turbulence in helical system. The influence on the anomalous transport and fluctuation level is evaluated. Hartmann number and magnetic Prandtl number are also discussed. (author).
Agarwal, Shankar
2013-01-01
We calculate the cosmic Mach number M - the ratio of the bulk flow of the velocity field on scale R to the velocity dispersion within regions of scale R. M is effectively a measure of the ratio of large-scale to small-scale power and can be a useful tool to constrain the cosmological parameter space. Using a compilation of existing peculiar velocity surveys, we calculate M and compare it to that estimated from mock catalogues extracted from the LasDamas (a LCDM cosmology) numerical simulations. We find agreement with expectations for the LasDamas cosmology at ~ 1.5 sigma CL. We also show that our Mach estimates for the mocks are not biased by selection function effects. To achieve this, we extract dense and nearly-isotropic distributions using Gaussian selection functions with the same width as the characteristic depth of the real surveys, and show that the Mach numbers estimated from the mocks are very similar to the values based on Gaussian profiles of the corresponding widths. We discuss the importance of ...
Guo, Xinyi; Narayan, Ramesh
2014-01-01
Electron acceleration to non-thermal energies in low Mach number (M<5) shocks is revealed by radio and X-ray observations of galaxy clusters and solar flares, but the electron acceleration mechanism remains poorly understood. Diffusive shock acceleration, also known as first-order Fermi acceleration, cannot be directly invoked to explain the acceleration of electrons. Rather, an additional mechanism is required to pre-accelerate the electrons from thermal to supra-thermal energies, so they can then participate in the Fermi process. In this work, we use two- and three-dimensional particle-in-cell plasma simulations to study electron acceleration in low Mach number shocks. We focus on the particle energy spectra and the acceleration mechanism in a reference run with M=3. We find that about 15 percent of the electrons can be efficiently accelerated, forming a non-thermal power-law tail in the energy spectrum with a slope of p~2.4. Initially, thermal electrons are energized at the shock front via shock drift a...
Dixon, G. V.; Barringer, S. R.; Gray, C. E.; Leatherman, A. D.
1975-01-01
Computer programs and resulting tabulations are presented of pipeline length-to-diameter ratios as a function of Mach number and pressure ratios for compressible flow. The tabulations are applicable to air, nitrogen, oxygen, and hydrogen for compressible isothermal flow with friction and compressible adiabatic flow with friction. Also included are equations for the determination of weight flow. The tabulations presented cover a wider range of Mach numbers for choked, adiabatic flow than available from commonly used engineering literature. Additional information presented, but which is not available from this literature, is unchoked, adiabatic flow over a wide range of Mach numbers, and choked and unchoked, isothermal flow for a wide range of Mach numbers.
Federrath, Christoph; Schober, Jennifer; Banerjee, Robi; Klessen, Ralf S; Schleicher, Dominik R G; 10.1103/PhysRevLett.107.114504
2011-01-01
We study the growth rate and saturation level of the turbulent dynamo in magnetohydrodynamical simulations of turbulence, driven with solenoidal (divergence-free) or compressive (curl-free) forcing. For models with Mach numbers ranging from 0.02 to 20, we find significantly different magnetic field geometries, amplification rates, and saturation levels, decreasing strongly at the transition from subsonic to supersonic flows, due to the development of shocks. Both extreme types of turbulent forcing drive the dynamo, but solenoidal forcing is more efficient, because it produces more vorticity.
The Experimental Measurement of Aerodynamic Heating About Complex Shapes at Supersonic Mach Numbers
Neumann, Richard D.; Freeman, Delma C.
2011-01-01
In 2008 a wind tunnel test program was implemented to update the experimental data available for predicting protuberance heating at supersonic Mach numbers. For this test the Langley Unitary Wind Tunnel was also used. The significant differences for this current test were the advances in the state-of-the-art in model design, fabrication techniques, instrumentation and data acquisition capabilities. This current paper provides a focused discussion of the results of an in depth analysis of unique measurements of recovery temperature obtained during the test.
Convective heat transport in stratified atmospheres at low and high Mach number
Anders, Evan H
2016-01-01
Convection in astrophysical systems is stratified and often occurs at high Rayleigh number (Ra) and low Mach number (Ma). Here we study stratified convection in the context of plane-parallel, polytropically stratified atmospheres. We hold the density stratification ($n_{\\rho}$) and Prandtl number (Pr) constant while varying Ma and Ra to determine the behavior of the Nusselt number (Nu), which quantifies the efficiency of convective heat transport. As Ra increases and $\\text{Ma} \\rightarrow 1$, a scaling of Nu $\\propto$ Ra$^{0.45}$ is observed. As Ra increases to a regime where Ma $\\geq 1$, this scaling gives way to a weaker Nu $\\propto$ Ra$^{0.19}$. In the regime of Ma $\\ll 1$, a consistent Nu $\\propto$ Ra$^{0.31}$ is retrieved, reminiscent of the Nu $\\propto$ Ra$^{2/7}$ seen in Rayleigh-B\\'{e}nard convection.
Effects of nonuniform Mach-number entrance on scramjet nozzle flowfield and performance
Zhang, Pu; Xu, Jinglei; Quan, Zhibin; Mo, Jianwei
2016-12-01
Considering the non-uniformities of nozzle entrance influenced by the upstream, the effects of nonuniform Mach-number coupled with shock and expansion-wave on the flowfield and performances of single expansion ramp nozzle (SERN) are numerically studied using Reynolds-Averaged Navier-Stokes equations. The adopted Reynolds-averaged Navier-Stokes methodology is validated by comparing the numerical results with the cold experimental data, and the average method used in this paper is discussed. Uniform and nonuniform facility nozzles are designed to generate different Mach-number profile for the inlet of SERN, which is direct-connected with different facility nozzle, and the whole flowfield is simulated. Because of the coupling of shock and expansion-wave, flow direction of nonuniform SERN entrance is distorted. Compared with Mach contour of uniform case, the line is more curved for coupling shock-wave entrance (SWE) case, and flatter for the coupling expansion-wave entrance (EWE) case. Wall pressure distribution of SWE case appears rising region, whereas decreases like stairs of EWE case. The numerical results reveal that the coupled shock and expansion-wave play significant roles on nozzle performances. Compared with the SERN performances of uniform entrance case at the same work conditions, the thrust of nonuniform entrance cases reduces by 3-6%, pitch moment decreases by 2.5-7%. The negative lift presents an incremental trend with EWE while the situation is the opposite with SWE. These results confirm that considering the entrance flow parameter nonuniformities of a scramjet nozzle coupled with shock or expansion-wave from the upstream is necessary.
The influence of incident shock Mach number on radial incident shock wave focusing
Directory of Open Access Journals (Sweden)
Xin Chen
2016-04-01
Full Text Available Experiments and numerical simulations were carried out to investigate radial incident shock focusing on a test section where the planar incident shock wave was divided into two identical ones. A conventional shock tube was used to generate the planar shock. Incident shock Mach number of 1.51, 1.84 and 2.18 were tested. CCD camera was used to obtain the schlieren photos of the flow field. Third-order, three step strong-stability-preserving (SSP Runge-Kutta method, third-order weighed essential non-oscillation (WENO scheme and adaptive mesh refinement (AMR algorithm were adopted to simulate the complicated flow fields characterized by shock wave interaction. Good agreement between experimental and numerical results was observed. Complex shock wave configurations and interactions (such as shock reflection, shock-vortex interaction and shock focusing were observed in both the experiments and numerical results. Some new features were observed and discussed. The differences of structure of flow field and the variation trends of pressure were compared and analyzed under the condition of different Mach numbers while shock wave focusing.
The density variance - Mach number relation in isothermal and non-isothermal adiabatic turbulence
Nolan, Chris A; Sutherland, Ralph S
2015-01-01
The density variance - Mach number relation of the turbulent interstellar medium is relevant for theoretical models of the star formation rate, efficiency, and the initial mass function of stars. Here we use high-resolution hydrodynamical simulations with grid resolutions of up to 1024^3 cells to model compressible turbulence in a regime similar to the observed interstellar medium. We use Fyris Alpha, a shock-capturing code employing a high-order Godunov scheme to track large density variations induced by shocks. We investigate the robustness of the standard relation between the logarithmic density variance (sigma_s^2) and the sonic Mach number (M) of isothermal interstellar turbulence, in the non-isothermal regime. Specifically, we test ideal gases with diatomic molecular (gamma = 7/5) and monatomic (gamma = 5/3) adiabatic indices. A periodic cube of gas is stirred with purely solenoidal forcing at low wavenumbers, leading to a fully-developed turbulent medium. We find that as the gas heats in adiabatic comp...
A NOVEL SLIGHTLY COMPRESSIBLE MODEL FOR LOW MACH NUMBER PERFECT GAS FLOW CALCULATION
Institute of Scientific and Technical Information of China (English)
邓小刚; 庄逢甘
2002-01-01
By analyzing the characteristics of low Mach number perfect gas flows, a novel Slightly Compressible Model (SCM) for low Mach number perfect gas flows is derived. In view of numerical calculations, this model is proved very efficient,for it is kept within the p-v frame but does not have to satisfy the time consuming divergence-free condition in order to get the incompressible Navier-Stokes equation solutions. Writing the equations in the form of conservation laws, we have derived the characteristic systems which are necessary for numerical calculations. A cellcentered finite-volume method with flux difference upwind-biased schemes is used for the equation solutions and a new Exact Newton Relaxation (ENR) implicit method is developed. Various computed results are presented to validate the present model.Laminar flow solutions over a circular cylinder with wake developing and vortex shedding are presented. Results for inviscid flow over a sphere are compared in excellent agreement with the exact analytic incompressible solution. Three-dimensional viscous flow solutions over sphere and prolate spheroid are also calculated and compared well with experiments and other incompressible solutions. Finally, good convergent performaces are shown for sphere viscous flows.
Airfoil Aeroelastic Flutter Analysis Based on Modified Leishman-Beddoes Model at Low Mach Number
Institute of Scientific and Technical Information of China (English)
SHAO Song; ZHU Qinghua; ZHANG Chenglin; NI Xianping
2011-01-01
Based on modified Leishman-Beddoes(L-B)state space model at low Mach number(lower than 0.3),the airfoil aeroelastic system is presented in this paper.The main modifications for L-B model include a new dynamic stall criterion and revisions of normal force and pitching moment coefficient.The bifurcation diagrams,the limit cycle oscillation (LCO)phase plane plots and the time domain response figures are applied to investigating the stall flutter bifurcation behavior of airfoil aeroelastic systems with symmetry or asymmetry.It is shown that the symmetric periodical oscillation happens after subcritical bifurcation caused by dynamic stall,and the asymmetric periodical oscillation,which is caused by the interaction of dynamic stall and static divergence,only happens in the airfoil aeroelastic system with asymmetry.Validations of the modified L-B model and the airfoil aeroelastic system are presented with the experimental airload data of NACA0012 and OA207 and experimental stall flutter data of NACA0012 respectively.Results demonstrate that the airfoil aeroelastic system presented in this paper is effective and accurate,which can be applied to the investigation of airfoil stall flutter at low Mach number.
Energy Technology Data Exchange (ETDEWEB)
Li, Pak Shing; Klein, Richard I. [Astronomy Department, University of California, Berkeley, CA 94720 (United States); Martin, Daniel F. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); McKee, Christopher F., E-mail: psli@astron.berkeley.edu, E-mail: klein@astron.berkeley.edu, E-mail: DFMartin@lbl.gov, E-mail: cmckee@astro.berkeley.edu [Physics Department and Astronomy Department, University of California, Berkeley, CA 94720 (United States)
2012-02-01
Performing a stable, long-duration simulation of driven MHD turbulence with a high thermal Mach number and a strong initial magnetic field is a challenge to high-order Godunov ideal MHD schemes because of the difficulty in guaranteeing positivity of the density and pressure. We have implemented a robust combination of reconstruction schemes, Riemann solvers, limiters, and constrained transport electromotive force averaging schemes that can meet this challenge, and using this strategy, we have developed a new adaptive mesh refinement (AMR) MHD module of the ORION2 code. We investigate the effects of AMR on several statistical properties of a turbulent ideal MHD system with a thermal Mach number of 10 and a plasma {beta}{sub 0} of 0.1 as initial conditions; our code is shown to be stable for simulations with higher Mach numbers (M{sub rms}= 17.3) and smaller plasma beta ({beta}{sub 0} = 0.0067) as well. Our results show that the quality of the turbulence simulation is generally related to the volume-averaged refinement. Our AMR simulations show that the turbulent dissipation coefficient for supersonic MHD turbulence is about 0.5, in agreement with unigrid simulations.
Li, Pak Shing; Klein, Richard I; McKee, Christopher F
2011-01-01
Performing a stable, long duration simulation of driven MHD turbulence with a high thermal Mach number and a strong initial magnetic field is a challenge to high-order Godunov ideal MHD schemes because of the difficulty in guaranteeing positivity of the density and pressure. We have implemented a robust combination of reconstruction schemes, Riemann solvers, limiters, and Constrained Transport EMF averaging schemes that can meet this challenge, and using this strategy, we have developed a new Adaptive Mesh Refinement (AMR) MHD module of the ORION2 code. We investigate the effects of AMR on several statistical properties of a turbulent ideal MHD system with a thermal Mach number of 10 and a plasma $\\beta_0$ of 0.1 as initial conditions; our code is shown to be stable for simulations with higher Mach numbers ($M_rms = 17.3$) and smaller plasma beta ($\\beta_0 = 0.0067$) as well. Our results show that the quality of the turbulence simulation is generally related to the volume-averaged refinement. Our AMR simulati...
Park, Jaehong; Workman, Jared C; Blackman, Eric G
2012-01-01
Low Mach number, high beta fast mode shocks can occur in the magnetic reconnection outflows of solar flares. These shocks, which occur above flare loop tops, may provide the electron energization responsible for some of the observed hard X-rays and contemporaneous radio emission. Here we present new 2D particle-in-cell simulations of low Mach number/high beta quasi-perpendicular shocks. The simulations show that electrons above a certain energy threshold experience shock-drift-acceleration. The transition energy between the thermal and non-thermal spectrum and the spectral index from the simulations are consistent with some of the X-ray spectra from RHESSI in the energy regime, $E\\lesssim 40\\sim 100$ keV. Plasma instabilities associated with the shock structure such as the modified-two-stream and the electron whistler/mirror instabilities are examined and compared with the numerical solutions of the kinetic dispersion relations.
Opacity Broadening of $^{13}$CO Linewidths and its Effect on the Variance-Sonic Mach Number Relation
Correia, Caio; Lazarian, Alex; Ossenkopf, Volker; Stutzki, Jürgen; Kainulainen, Jouni; Kowal, Grzegorz; de Medeiros, José Renan
2014-01-01
We study how the estimation of the sonic Mach number ($M_s$) from $^{13}$CO linewidths relates to the actual 3D sonic Mach number. For this purpose we analyze MHD simulations which include post-processing to take radiative transfer effects into account. As expected, we find very good agreement between the linewidth estimated sonic Mach number and the actual sonic Mach number of the simulations for optically thin tracers. However, we find that opacity broadening causes $M_s$ to be overestimated by a factor of ~ 1.16 - 1.3 when calculated from optically thick $^{13}$CO lines. We also find that there is a dependency on the magnetic field: super-Alfv\\'enic turbulence shows increased line broadening as compared with sub-Alfv\\'enic turbulence for all values of optical depth for supersonic turbulence. Our results have implications for the observationally derived sonic Mach number--density standard deviation ($\\sigma_{\\rho/}$) relationship, $\\sigma^2_{\\rho/}=b^2M_s^2$, and the related column density standard deviatio...
Parametric investigation of single-expansion-ramp nozzles at Mach numbers from 0.60 to 1.20
Capone, Francis J.; Re, Richard J.; Bare, E. Ann
1992-01-01
An investigation was conducted in the Langley 16-Foot Transonic Tunnel to determine the effects of varying six nozzle geometric parameters on the internal and aeropropulsive performance characteristics of single-expansion-ramp nozzles. This investigation was conducted at Mach numbers from 0.60 to 1.20, nozzle pressure ratios from 1.5 to 12, and angles of attack of 0 deg +/- 6 deg. Maximum aeropropulsive performance at a particular Mach number was highly dependent on the operating nozzle pressure ratio. For example, as the nozzle upper ramp length or angle increased, some nozzles had higher performance at a Mach number of 0.90 because of the nozzle design pressure was the same as the operating pressure ratio. Thus, selection of the various nozzle geometric parameters should be based on the mission requirements of the aircraft. A combination of large upper ramp and large lower flap boattail angles produced greater nozzle drag coefficients at Mach number greater than 0.80, primarily from shock-induced separation on the lower flap of the nozzle. A static conditions, the convergent nozzle had high and nearly constant values of resultant thrust ratio over the entire range of nozzle pressure ratios tested. However, these nozzles had much lower aeropropulsive performance than the convergent-divergent nozzle at Mach number greater than 0.60.
Tests of Full-Scale Helicopter Rotors at High Advancing Tip Mach Numbers and Advance Ratios
Biggers, James C.; McCloud, John L., III; Stroub, Robert H.
2015-01-01
As a continuation of the studies of reference 1, three full-scale helicopter rotors have been tested in the Ames Research Center 40- by SO-foot wind tunnel. All three of them were two-bladed, teetering rotors. One of the rotors incorporated the NACA 0012 airfoil section over the entire length of the blade. This rotor was tested at advance ratios up to 1.05. Both of the other rotors were tapered in thickness and incorporated leading-edge camber over the outer 20 percent of the blade radius. The larger of these rotors was tested at advancing tip Mach numbers up to 1.02. Data were obtained for a wide range of lift and propulsive force, and are presented without discussion.
On the proper Mach number and ratio of specific heats for modeling the Venus bow shock
Tatrallyay, M.; Russell, C. T.; Luhmann, J. G.; Barnes, A.; Mihalov, J. D.
1984-01-01
Observational data from the Pioneer Venus Orbiter are used to investigate the physical characteristics of the Venus bow shock, and to explore some general issues in the numerical simulation of collisionless shocks. It is found that since equations from gas-dynamic (GD) models of the Venus shock cannot in general replace MHD equations, it is not immediately obvious what the optimum way is to describe the desired MHD situation with a GD code. Test case analysis shows that for quasi-perpendicular shocks it is safest to use the magnetospheric Mach number as an input to the GD code. It is also shown that when comparing GD predicted temperatures with MHD predicted temperatures total energy should be compared since the magnetic energy density provides a significant fraction of the internal energy of the MHD fluid for typical solar wind parameters. Some conclusions are also offered on the properties of the terrestrial shock.
Low-Mach-number turbulence in interstellar gas revealed by radio polarization gradients
Gaensler, Bryan M; Burkhart, Blakesley; Newton-McGee, Katherine J; Ekers, Ronald D; Lazarian, Alex; McClure-Griffiths, Naomi M; Robishaw, Timothy; Dickey, John M; Green, Anne J; 10.1038/nature10446
2011-01-01
The interstellar medium of the Milky Way is multi-phase, magnetized and turbulent. Turbulence in the interstellar medium produces a global cascade of random gas motions, spanning scales ranging from 100 parsecs to 1000 kilometres. Fundamental parameters of interstellar turbulence such as the sonic Mach number (the speed of sound) have been difficult to determine because observations have lacked the sensitivity and resolution to directly image the small-scale structure associated with turbulent motion. Observations of linear polarization and Faraday rotation in radio emission from the Milky Way have identified unusual polarized structures that often have no counterparts in the total radiation intensity or at other wavelengths, and whose physical significance has been unclear. Here we report that the gradient of the Stokes vector (Q,U), where Q and U are parameters describing the polarization state of radiation, provides an image of magnetized turbulence in diffuse ionized gas, manifested as a complex filamenta...
Varsakelis, Christos; Papalexandris, Miltiadis V.
2017-01-01
A conundrum in non-equilibrium thermodynamics of heterogeneous mixtures with microstructure concerns the selection of thermodynamic currents and forces in the entropy production rate from the multitude of available options. The objective of this article is to demonstrate that the low-Mach-number approximation can narrow down this ambiguity. More specifically, by postulating that the post-constitutive equations are well behaved with respect to this perturbation analysis we assert that thermal non-equilibrium should be chosen as an independent force even if this requires the explicit manipulation of the entropy inequality. According to our analysis, alternative choices result in post-constitutive equations; the incompressible limit of which gives rise to questionable predictions.
Peng, Naifu; Yang, Yue
2016-11-01
We investigate the evolution of vortex-surface fields (VSFs) in viscous compressible Taylor-Green flows. The VSF is applied to the direct numerical simulation of the Taylor-Green flows at a range of Mach numbers from Ma = 0 . 6 to Ma = 2 . 2 for characterizing the Mach-number effects on evolving vortical structures. We find that the dilatation and baroclinic force strongly influence the geometry of vortex surfaces and the energy dissipation rate in the transitional stage. The vortex tubes in compressible flows are less curved than those in incompressible flows, and the maximum dissipation rate occurs earlier in high-Mach-number flows perhaps owing to the conversion of kinetic energy into heat. Moreover, the relations between the evolutionary geometry of vortical structures and flow statistics are discussed. This work has been supported in part by the National Natural Science Foundation of China (Grant Nos. 11522215 and 11521091), and the Thousand Young Talents Program of China.
Henneberry, Hugh M.; Snyder, Christopher A.
1993-01-01
An analysis of gas turbine engines using water and oxygen injection to enhance performance by increasing Mach number capability and by increasing thrust is described. The liquids are injected, either separately or together, into the subsonic diffuser ahead of the engine compressor. A turbojet engine and a mixed-flow turbofan engine (MFTF) are examined, and in pursuit of maximum thrust, both engines are fitted with afterburners. The results indicate that water injection alone can extend the performance envelope of both engine types by one and one-half Mach numbers at which point water-air ratios reach 17 or 18 percent and liquid specific impulse is reduced to some 390 to 470 seconds, a level about equal to the impulse of a high energy rocket engine. The envelope can be further extended, but only with increasing sacrifices in liquid specific impulse. Oxygen-airflow ratios as high as 15 percent were investigated for increasing thrust. Using 15 percent oxygen in combination with water injection at high supersonic Mach numbers resulted in thrust augmentation as high as 76 percent without any significant decrease in liquid specific impulse. The stoichiometric afterburner exit temperature increased with increasing oxygen flow, reaching 4822 deg R in the turbojet engine at a Mach number of 3.5. At the transonic Mach number of 0.95 where no water injection is needed, an oxygen-air ratio of 15 percent increased thrust by some 55 percent in both engines, along with a decrease in liquid specific impulse of 62 percent. Afterburner temperature was approximately 4700 deg R at this high thrust condition. Water and/or oxygen injection are simple and straightforward strategies to improve engine performance and they will add little to engine weight. However, if large Mach number and thrust increases are required, liquid flows become significant, so that operation at these conditions will necessarily be of short duration.
Background-oriented schlieren imaging of flow around a circular cylinder at low Mach numbers
Stadler, Hannes; Bauknecht, André; Siegrist, Silvan; Flesch, Robert; Wolf, C. Christian; van Hinsberg, Nils; Jacobs, Markus
2017-09-01
The background-oriented schlieren (BOS) imaging method has, for the first time, been applied in the investigation of the flow around a circular cylinder at low Mach numbers (Mnumbers of 0.1× 10^6 ≤ Re ≤ 6.0× 10^6. Even at ambient pressure and the lowest Reynolds number investigated, density gradients associated with the flow around the cylinder were recorded. The signal-to-noise ratio of the evaluated gradient field improved with increasing stagnation pressure. The separation point could easily be identified with this non-intrusive measurement technique and corresponds well to simultaneous surface pressure measurements. The resulting displacement field is in principle of qualitative nature as the observation angle was parallel to the cylinder axis only in a single point of the recorded images. However, it has been possible to integrate the density field along the surface of the cylinder by successive imaging at incremental angular positions around the cylinder. This density distribution has been found to agree well with the pressure measurements and with potential theory where appropriate.
Aerodynamic Characteristics of a Revised Target Drone Vehicle at Mach Numbers from 1.60 to 2.86
Blair, A. B., Jr.; Babb, C. Donald
1968-01-01
An investigation has been conducted in the Langley Unitary Plan wind tunnel to determine the aerodynamic characteristics of a revised target drone vehicle through a Mach number range from 1.60 to 2.86. The vehicle had canard surfaces and a swept clipped-delta wing with twin tip-mounted vertical tails.
Slot, H.J.; Moore, P.; Delfos, R.; Boersma, B.J.
2009-01-01
In this paper we present the experimental results of a detailed investigation of the flow and acoustic properties of a turbulent jet with Mach number 0·75 and Reynolds number 3·5 103. We describe the methods and experimental procedures followed during the measurements, and subsequently present the f
Rescaling of the Roe scheme in low Mach-number flow regions
Boniface, Jean-Christophe
2017-01-01
A rescaled matrix-valued dissipation is reformulated for the Roe scheme in low Mach-number flow regions from a well known family of local low-speed preconditioners popularized by Turkel. The rescaling is obtained explicitly by suppressing the pre-multiplication of the preconditioner with the time derivative and by deriving the full set of eigenspaces of the Roe-Turkel matrix dissipation. This formulation preserves the time consistency and does not require to reformulate the boundary conditions based on the characteristic theory. The dissipation matrix achieves by construction the proper scaling in low-speed flow regions and returns the original Roe scheme at the sonic line. We find that all eigenvalues are nonnegative in the subsonic regime. However, it becomes necessary to formulate a stringent stability condition to the explicit scheme in the low-speed flow regions based on the spectral radius of the rescaled matrix dissipation. With the large disparity of the eigenvalues in the dissipation matrix, this formulation raises a two-timescale problem for the acoustic waves, which is circumvented for a steady-state iterative procedure by the development of a robust implicit characteristic matrix time-stepping scheme. The behaviour of the modified eigenvalues in the incompressible limit and at the sonic line also suggests applying the entropy correction carefully, especially for complex non-linear flows.
Anomalous flow deflection at planetary bow shocks in the low Alfven Mach number regime
Nishino, Masaki N.; Fujimoto, Masaki; Tai, Phan-Duc; Mukai, Toshifumi; Saito, Yoshifumi; Kuznetsova, Masha M.; Rastaetter, Lutz
A planetary magnetosphere is an obstacle to the super-sonic solar wind and the bow shock is formed in the front-side of it. In ordinary hydro-dynamics, the flow decelerated at the shock is diverted around the obstacle symmetrically about the planet-Sun line, which is indeed observed in the magnetosheath most of the time. Here we show a case under a very low density solar wind in which duskward flow was observed in the dawnside magnetosheath of the Earth's magnetosphere. A Rankine-Hugoniot test across the bow shock shows that the magnetic effect is crucial for this "wrong flow" to appear. A full three-dimensional Magneto- Hydro-Dynamics (MHD) simulation of the situation in this previously unexplored parameter regime is also performed. It is illustrated that in addition to the "wrong flow" feature, various peculiar characteristics appear in the global picture of the MHD flow interaction with the obstacle. The magnetic effect at the bow shock should become more conspicuously around the Mercury's magnetosphere, because stronger interplanetary magnetic field and slower solar wind around the Mercury let the Alfven Mach number low. Resultant strong deformation of the magnetosphere induced by the "wrong flow" will cause more complex interaction between the solar wind and the Mercury.
Modeling plasma glow discharges in Air near a Mach 3 bow shock with KRONOS
Rassou, Sebastien; Labaune, Julien; Packan, Denis; Elias, Paul-Quentin
2016-09-01
In this work, plasma glow discharge in Air is modeled near a Mach 3 bow shock. Numerical simulations are performed using the coupling KRONOS which have been developed at ONERA. The flow field is modeled using the code CFD: CEDRE from ONERA and the electrical and plasma part by the EDF open-source code CODE_SATURNE. The plasma kinetic modeling consists on a two-term Boltzmann equation solver and a chemical reaction solver depending of the electric field. The coupling KRONOS is fully parallelized and run on ONERA supercomputers. The shock wave is formed by the propagation of a supersonic flow (M = 3) through a truncated conical model mounted with a central spike. Depending on the spike's voltage value, corona, glow or arc regime could be obtained in a steady flow. The parameters for the supersonic flow and the spike configurations are chosen to be in glow discharge regime and to reproduce the experimental setup. In our simulations, 12 species and 80 reactions (ionization, electronic or vibrational excitation, attachment etc ...) are considered to properly model the glow discharge and the afterglow. In a stationary flow, glow discharge is observed only at the upstream of the shock wave near the high voltage spike. Behind the bow shock, in the afterglow, negative ions are provided by electrons attachment with O2. The negative ions flow convection ensures the electrical conduction and the establishment of the glow discharge.
Pedrosa, A. C. F.; Nagamatsu, H. T.; Hinckel, J. A.
1984-01-01
Heat transfer measurements were determined for a flat plate with and without pressure gradient for various free stream temperatures, wall temperature ratios, and Reynolds numbers for an inlet flow Mach number of 0.45, which is a representative inlet Mach number for gas turbine rotor blades. A shock tube generated the high temperature and pressure air flow, and a variable geometry test section was used to produce inlet flow Mach number of 0.45 and accelerate the flow over the plate to sonic velocity. Thin-film platinum heat gages recorded the local heat flux for laminar, transition, and turbulent boundary layers. The free stream temperatures varied from 611 R (339 K) to 3840 R (2133 K) for a T(w)/T(r,g) temperature ratio of 0.87 to 0.14. The Reynolds number over the heat gages varied from 3000 to 690,000. The experimental heat transfer data were correlated with laminar and turbulent boundary layer theories for the range of temperatures and Reynolds numbers and the transition phenomenon was examined.
Seiff, Alvin; Wilkins, Max E.
1961-01-01
The aerodynamic characteristics of a hypersonic glider configuration, consisting of a slender ogive cylinder with three highly swept wings, spaced 120 apart, with the wing chord equal to the body length, were investigated experimentally at a Mach number of 6 and at Reynolds numbers from 6 to 16 million. The objectives were to evaluate the theoretical procedures which had been used to estimate the performance of the glider, and also to evaluate the characteristics of the glider itself. A principal question concerned the viscous drag at full-scale Reynolds number, there being a large difference between the total drags for laminar and turbulent boundary layers. It was found that the procedures which had been applied for estimating minimum drag, drag due to lift, lift curve slope, and center of pressure were generally accurate within 10 percent. An important exception was the non-linear contribution to the lift coefficient which had been represented by a Newtonian term. Experimentally, the lift curve was nearly linear within the angle-of-attack range up to 10 deg. This error affected the estimated lift-drag ratio. The minimum drag measurements indicated that substantial amounts of turbulent boundary layer were present on all models tested, over a range of surface roughness from 5 microinches maximum to 200 microinches maximum. In fact, the minimum drag coefficients were nearly independent of the surface smoothness and fell between the estimated values for turbulent and laminar boundary layers, but closer to the turbulent value. At the highest test Reynolds numbers and at large angles of attack, there was some indication that the skin friction of the rough models was being increased by the surface roughness. At full-scale Reynolds number, the maximum lift-drag ratio with a leading edge of practical diameter (from the standpoint of leading-edge heating) was 4.0. The configuration was statically and dynamically stable in pitch and yaw, and the center of pressure was less
A comparative study of scramjet injection strategies for high Mach numbers flows
Riggins, D. W.; Mcclinton, C. R.; Rogers, R. C.; Bittner, R. D.
1992-01-01
A simple method for predicting the axial distribution of supersonic combustor thrust potential is described. A complementary technique for illustrating the spatial evolution and distribution of thrust potential and loss mechanisms in reacting flows is developed. Wall jet cases and swept ramp injector cases for Mach 17 and Mach 13.5 flight enthalpy inflow conditions are numerically modeled and analyzed using these techniques. The visualization of thrust potential in the combustor for the various cases examined provides a unique tool for increasing understanding of supersonic combustor performance potential.
Energy Technology Data Exchange (ETDEWEB)
Zhukhovitskii, D. I., E-mail: dmr@ihed.ras.ru; Fortov, V. E.; Molotkov, V. I.; Lipaev, A. M.; Naumkin, V. N. [Joint Institute of High Temperatures, Russian Academy of Sciences, Izhorskaya 13, Bd. 2, 125412 Moscow (Russian Federation); Thomas, H. M. [Research Group Complex Plasma, DLR, Oberpfaffenhofen, 82234 Wessling (Germany); Ivlev, A. V.; Morfill, G. E. [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse, 85748 Garching (Germany); Schwabe, M. [Department of Chemical and Biomolecular Engineering, Graves Lab, D75 Tan Hall, University of California, Berkeley, CA 94720 (United States)
2015-02-15
We report the first observation of the Mach cones excited by a larger microparticle (projectile) moving through a cloud of smaller microparticles (dust) in a complex plasma with neon as a buffer gas under microgravity conditions. A collective motion of the dust particles occurs as propagation of the contact discontinuity. The corresponding speed of sound was measured by a special method of the Mach cone visualization. The measurement results are incompatible with the theory of ion acoustic waves. The estimate for the pressure in a strongly coupled Coulomb system and a scaling law for the complex plasma make it possible to derive an evaluation for the speed of sound, which is in a reasonable agreement with the experiments in complex plasmas.
Zhukhovitskii, D I; Molotkov, V I; Lipaev, A M; Naumkin, V N; Thomas, H M; Ivlev, A V; Schwabe, M; Morfill, G E
2014-01-01
We report the first observation of the Mach cones excited by a larger microparticle (projectile) moving through a cloud of smaller microparticles (dust) in a complex plasma with neon as a buffer gas under microgravity conditions. A collective motion of the dust particles occurs as propagation of the contact discontinuity. The corresponding speed of sound was measured by a special method of the Mach cone visualization. The measurement results are fully incompatible with the theory of ion acoustic waves. We explore the analogy between a strongly coupled Coulomb system and a solid. A scaling law for the complex plasma makes it possible to derive a theoretical estimate for the speed of sound, which is in a reasonable agreement with the experiments in strongly coupled complex plasmas.
Meerson, Baruch; Fouxon, Itzhak; Vilenkin, Arkady
2008-02-01
We employ hydrodynamic equations to investigate nonstationary channel flows of freely cooling dilute gases of hard and smooth spheres with nearly elastic particle collisions. This work focuses on the regime where the sound travel time through the channel is much shorter than the characteristic cooling time of the gas. As a result, the gas pressure rapidly becomes almost homogeneous, while the typical Mach number of the flow drops well below unity. Eliminating the acoustic modes and employing Lagrangian coordinates, we reduce the hydrodynamic equations to a single nonlinear and nonlocal equation of a reaction-diffusion type. This equation describes a broad class of channel flows and, in particular, can follow the development of the clustering instability from a weakly perturbed homogeneous cooling state to strongly nonlinear states. If the heat diffusion is neglected, the reduced equation becomes exactly soluble, and the solution develops a finite-time density blowup. The blowup has the same local features at singularity as those exhibited by the recently found family of exact solutions of the full set of ideal hydrodynamic equations [I. Fouxon, Phys. Rev. E 75, 050301(R) (2007); I. Fouxon,Phys. Fluids 19, 093303 (2007)]. The heat diffusion, however, always becomes important near the attempted singularity. It arrests the density blowup and brings about previously unknown inhomogeneous cooling states (ICSs) of the gas, where the pressure continues to decay with time, while the density profile becomes time-independent. The ICSs represent exact solutions of the full set of granular hydrodynamic equations. Both the density profile of an ICS and the characteristic relaxation time toward it are determined by a single dimensionless parameter L that describes the relative role of the inelastic energy loss and heat diffusion. At L>1 the intermediate cooling dynamics proceeds as a competition between "holes": low-density regions of the gas. This competition resembles Ostwald
Measurement and Analysis of the Noise Radiated by Low Mach Number Centrifugal Blowers.
Yeager, David Marvin
An investigation was performed of the broad band, aerodynamically generated noise in low tip-speed Mach number, centrifugal air moving devices. An interdisciplinary experimental approach was taken which involved investigation of the aerodynamic and acoustic fields, and their mutual relationship. The noise generation process was studied using two experimental vehicles: (1) a scale model of a homologous family of centrifugal blowers typical of those used to cool computer and business equipment, and (2) a single blade from a centrifugal blower impeller placed in a known, controllable flow field. The radiation characteristics of the model blower were investigated by measuring the acoustic intensity distribution near the blower inlet and comparing it with the intensity near the inlet to an axial flow fan. Results showed that the centrifugal blower is a distributed, random noise source, unlike an axial fan which exhibited the effects of a coherent, interacting source distribution. Aerodynamic studies of the flow field in the inlet and at the discharge to the rotating impeller were used to assess the mean flow distribution through the impeller blade channels and to identify regions of excessive turbulence near the rotating blade row. Both circumferential and spanwise mean flow nonuniformities were identified along with a region of increased turbulence just downstream of the scroll cutoff. The fluid incidence angle, normally taken as an indicator of blower performance, was estimated from mean flow data as deviating considerably from an ideal impeller design. An investigation of the noise radiated from the single, isolated airfoil was performed using modern correlation and spectral analysis techniques. Radiation from the single blade in flow was characterized using newly developed expressions for the correlation area and the dipole source strength per unit area, and from the relationship between the blade surface pressure and the incident turbulent flow field. Results
Drake, Hubert M; Mclaughlin, Milton D; Goodman, Harold R
1948-01-01
Results are presented of tests up to a Mach number of 0.92 at altitudes around 30,000 feet. The data obtained show that the airplane can be flown to this Mach number above 30,000 feet. Longitudinal trim changes have been experienced but the forces involved have been small. The elevator effectiveness decreased about one-half with increase of Mach number from 0.70 to 0.87. Buffeting has been experienced in level flight but it has been mild and the associated tail loads have been small. No aileron buzz or other flutter phenomena have been noted.
Powers, Sheryll Goecke; Huffman, Jarrett K.; Fox, Charles H., Jr.
1986-01-01
The effectiveness of a trailing disk, or trapped vortex concept, in reducing the base drag of a large body of revolution was studied from measurements made both in flight and in a wind tunnel. Pressure data obtained for the flight experiment, and both pressure and force balance data were obtained for the wind tunnel experiment. The flight test also included data obtained from a hemispherical base. The experiment demonstrated the significant base drag reduction capability of the trailing disk to Mach 0.93 and to Reynolds numbers up to 80 times greater than for earlier studies. For the trailing disk data from the flight experiment, the maximum decrease in base drag ranged form 0.08 to 0.07 as Mach number increased from 0.70 to 0.93. Aircraft angles of attack ranged from 3.9 to 6.6 deg for the flight data. For the trailing disk data from the wind tunnel experiment, the maximum decrease in base and total drag ranged from 0.08 to 0.05 for the approximately 0 deg angle of attack data as Mach number increased from 0.30 to 0.82.
Spreading of Exhaust Jet from 16 Inch Ream Jet at Mach Number 2.0 / Fred Wilcox, Donald Pennington
Wilcox, Fred; Pennington, Donald
1952-01-01
An investigation of the jet-spreading characteristics of a 16 inch ram-jet engine was conducted in the 8 by 6 foot supersonic tunnel at a Mach number of 2.0; both a converging nozzle having a contraction ratio of 0.71 and a cylindrical extension to the combustion chamber were used. The jet boundaries determined by means of pitot pressure surveys were compared with boundaries calculated from one-dimensional continuity and momentum relations. For the cylindrical nozzle, the jet reaches its maximum diameter, 4 percent greater than calculated, about 0.6 nozzle-exit diameter downstream of the nozzle exit. The maximum diameter for the converging nozzle was 7 percent greater than calculated from one dimensional relations and occurred from 1 to 1.5 nozzle-exit diameters downstream of the exit. Non dimensional maximum jet diameters agreed closely with results of an investigation by Rousso and Baughman; these data were obtained with low-temperature jets exhausting into a stream at a Mach number of 1.91 from nozzles having exit diameters of 0.75 inch.
Performance characteristics of two multiaxis thrust-vectoring nozzles at Mach numbers up to 1.28
Wing, David J.; Capone, Francis J.
1993-01-01
The thrust-vectoring axisymmetric (VA) nozzle and a spherical convergent flap (SCF) thrust-vectoring nozzle were tested along with a baseline nonvectoring axisymmetric (NVA) nozzle in the Langley 16-Foot Transonic Tunnel at Mach numbers from 0 to 1.28 and nozzle pressure ratios from 1 to 8. Test parameters included geometric yaw vector angle and unvectored divergent flap length. No pitch vectoring was studied. Nozzle drag, thrust minus drag, yaw thrust vector angle, discharge coefficient, and static thrust performance were measured and analyzed, as well as external static pressure distributions. The NVA nozzle and the VA nozzle displayed higher static thrust performance than the SCF nozzle throughout the nozzle pressure ratio (NPR) range tested. The NVA nozzle had higher overall thrust minus drag than the other nozzles throughout the NPR and Mach number ranges tested. The SCF nozzle had the lowest jet-on nozzle drag of the three nozzles throughout the test conditions. The SCF nozzle provided yaw thrust angles that were equal to the geometric angle and constant with NPR. The VA nozzle achieved yaw thrust vector angles that were significantly higher than the geometric angle but not constant with NPR. Nozzle drag generally increased with increases in thrust vectoring for all the nozzles tested.
Syvertson, Clarence A; Gloria, Hermilo R; Sarabia, Michael F
1958-01-01
A study is made of aerodynamic performance and static stability and control at hypersonic speeds. In a first part of the study, the effect of interference lift is investigated by tests of asymmetric models having conical fuselages and arrow plan-form wings. The fuselage of the asymmetric model is located entirely beneath the wing and has a semicircular cross section. The fuselage of the symmetric model was centrally located and has a circular cross section. Results are obtained for Mach numbers from 3 to 12 in part by application of the hypersonic similarity rule. These results show a maximum effect of interference on lift-drag ratio occurring at Mach number of 5, the Mach number at which the asymmetric model was designed to exploit favorable lift interference. At this Mach number, the asymmetric model is indicated to have a lift-drag ratio 11 percent higher than the symmetric model and 15 percent higher than the asymmetric model when inverted. These differences decrease to a few percent at a Mach number of 12. In the course of this part of the study, the accuracy to the hypersonic similarity rule applied to wing-body combinations is demonstrated with experimental results. These results indicate that the rule may prove useful for determining the aerodynamic characteristics of slender configurations at Mach numbers higher than those for which test equipment is really available. In a second part of the study, the aerodynamic performance and static stability and control characteristics of a hypersonic glider are investigated in somewhat greater detail. Results for Mach numbers from 3 to 18 for performance and 0.6 to 12 for stability and control are obtained by standard text techniques, by application of the hypersonic stability rule, and/or by use of helium as a test medium. Lift-drag ratios of about 5 for Mach numbers up to 18 are shown to be obtainable. The glider studied is shown to have acceptable longitudinal and directional stability characteristics through the
High Mach-number collisionless shock driven by a laser with an external magnetic field
Directory of Open Access Journals (Sweden)
Morita T.
2013-11-01
Full Text Available Collisionless shocks are produced in counter-streaming plasmas with an external magnetic field. The shocks are generated due to an electrostatic field generated in counter-streaming laser-irradiated plasmas, as reported previously in a series of experiments without an external magnetic field [T. Morita et al., Phys. Plasmas, 17, 122702 (2010, Kuramitsu et al., Phys. Rev. Lett., 106, 175002 (2011] via laser-irradiation of a double-CH-foil target. A magnetic field is applied to the region between two foils by putting an electro-magnet (∼10 T perpendicular to the direction of plasma expansion. The generated shocks show different characteristics later in time (t > 20ns.
Rikanati, A; Oron, D; Sadot, O; Shvarts, D
2003-02-01
Effects of high-Mach numbers and high initial amplitudes on the evolution of the single-mode Richtmyer-Meshkov shock-wave induced hydrodynamic instability are studied using theoretical models, experiments, and numerical simulations. Two regimes in which there is a significant deviation from the linear dependence of the initial velocity on the initial perturbation amplitude are defined and characterized. In one, the observed reduction of the initial velocity is primarily due to large initial amplitudes. This effect is accurately modeled by a vorticity deposition model, quantifying both the effect of the initial perturbation amplitude and the exact shape of the interface. In the other, the reduction is dominated by the proximity of the shock wave to the interface. This effect is modeled by a modified incompressible model where the shock wave is mimicked by a moving bounding wall. These results are supplemented with high initial amplitude Mach 1.2 shock-tube experiments, enabling separation of the two effects. It is shown that in most of the previous experiments, the observed reduction is predominantly due to the effect of high initial amplitudes.
A Reynolds Number Study of Wing Leading-Edge Effects on a Supersonic Transport Model at Mach 0.3
Williams, M. Susan; Owens, Lewis R., Jr.; Chu, Julio
1999-01-01
A representative supersonic transport design was tested in the National Transonic Facility (NTF) in its original configuration with small-radius leading-edge flaps and also with modified large-radius inboard leading-edge flaps. Aerodynamic data were obtained over a range of Reynolds numbers at a Mach number of 0.3 and angles of attack up to 16 deg. Increasing the radius of the inboard leading-edge flap delayed nose-up pitching moment to a higher lift coefficient. Deflecting the large-radius leading-edge flap produced an overall decrease in lift coefficient and delayed nose-up pitching moment to even higher angles of attack as compared with the undeflected large- radius leading-edge flap. At angles of attack corresponding to the maximum untrimmed lift-to-drag ratio, lift and drag coefficients decreased while lift-to-drag ratio increased with increasing Reynolds number. At an angle of attack of 13.5 deg., the pitching-moment coefficient was nearly constant with increasing Reynolds number for both the small-radius leading-edge flap and the deflected large-radius leading-edge flap. However, the pitching moment coefficient increased with increasing Reynolds number for the undeflected large-radius leading-edge flap above a chord Reynolds number of about 35 x 10 (exp 6).
Winters, Andrew R.; Derigs, Dominik; Gassner, Gregor J.; Walch, Stefanie
2017-03-01
We describe a unique averaging procedure to design an entropy stable dissipation operator for the ideal magnetohydrodynamic (MHD) and compressible Euler equations. Often in the derivation of an entropy conservative numerical flux function much care is taken in the design and averaging of the entropy conservative numerical flux. We demonstrate in this work that if the discrete dissipation operator is not carefully chosen as well it can have deleterious effects on the numerical approximation. This is particularly true for very strong shocks or high Mach number flows present, for example, in astrophysical simulations. We present the underlying technique of how to construct a unique averaging technique for the discrete dissipation operator. We also demonstrate numerically the increased robustness of the approximation.
Directory of Open Access Journals (Sweden)
Krishna Pandey
2016-01-01
Full Text Available A numerical analysis of the inlet-combustor interaction and flow structure through a scramjet engine at a flight Mach number M = 6 with parallel injection (Strut with circular inlet is presented in the present research article. Three different angles of attack (α=-4°, α=0°, α=4° have been studied for parallel injection. The scramjet configuration used here is a modified version of DLR scramjet model. Fuel is injected at supersonic speed (M=2 through a parallel strut injector. For parallel injection, the shape of the strut is chosen in a way to produce strong stream wise vorticity and thus to enhance the hydrogen/air mixing inside the combustor. These numerical simulations are aimed to study the flow structure, supersonic mixing, and combustion phenomena for the three different types of geometries along with circular shaped strut configuration.
The influence of the Mach number of shock waves on turbulent mixing growth at an interface of gases
Nevmerzhitsky, N. V.; Sotskov, E. A.; Sen'kovsky, E. D.; Razin, A. N.; Ustinenko, V. A.; Krivonos, O. L.; Tochilina, L. V.
2010-12-01
The results of our experimental investigation of the turbulent mixing occurring at a Richtmayer-Meshkov instability driven by a shock wave (SW) in gases at different Mach numbers (M) ranging from ≈1.4 to ≈9 are presented in this paper. The experiments were performed by using an air shock tube with a channel section of 40×40 mm2. The SW passed from 'light' to 'heavy' gases. Air (helium) was used as a 'light' gas and Xe, CO2 and Ar were used as 'heavy' gases. The gases were initially separated by a thin (≈1 μm) polymer film, which was failed after the passing of the SW. A film of the flow was made using a high-speed camera by the Schlieren method.
Wolf, Stephen W. D.; Laub, James A.; King, Lyndell S.; Reda, Daniel C.
1992-01-01
A unique, low-disturbance supersonic wind tunnel is being developed at NASA-Ames to support supersonic laminar flow control research at cruise Mach numbers of the High Speed Civil Transport (HSCT). The distinctive design features of this new quiet tunnel are a low-disturbance settling chamber, laminar boundary layers along the nozzle/test section walls, and steady supersonic diffuser flow. This paper discusses these important aspects of our quiet tunnel design and the studies necessary to support this design. Experimental results from an 1/8th-scale pilot supersonic wind tunnel are presented and discussed in association with theoretical predictions. Natural laminar flow on the test section walls is demonstrated and both settling chamber and supersonic diffuser performance is examined. The full-scale wind tunnel should be commissioned by the end of 1993.
Rao, Pooja; She, Dan; Lim, Hyunkyung; Glimm, James
2015-11-01
The qualitative and quantitative effect of initial conditions (linear and non-linear) and high Mach number (1.3 and 1.45) is studied on the turbulent mixing induced by the Richtmyer-Meshkov instability in idealized ICF conditions. The Richtmyer-Meshkov instability seeds Rayleigh-taylor instabilities in ICF experiments and is one of the factors that contributes to reduced performance of ICF experiments. Its also found in collapsing cores of stars and supersonic combustion. We use the Stony Brook University code, FronTier, which is verified via a code comparison study against the AMR multiphysics code FLASH, and validated against vertical shock tube experiments done by the LANL Extreme Fluids Team. These simulations are designed as a step towards simulating more realistic ICF conditions and quantifying the detrimental effects of mixing on the yield.
Schneider, T.; Botta, N.; Geratz, K. J.; Klein, R.
1999-11-01
When attempting to compute unsteady, variable density flows at very small or zero Mach number using a standard finite volume compressible flow solver one faces at least the following difficulties: (i) Spatial pressure variations vanish as the Mach number M→0, but they do affect the velocity field at leading order; (ii) the resulting spatial homogeneity of the leading order pressure implies an elliptic divergence constraint for the energy flux; (iii) violations of this constraint crucially affect the transport of mass, preventing a code to properly advect even a constant density distribution. We overcome these difficulties through a new algorithm for constructing numerical fluxes in the context of multi-dimensional finite volume methods in conservation form. The construction of numerical fluxes involves: (1) An explicit upwind step yielding predictions for the nonlinear convective flux components. (2) A first correction step that introduces pressure gradients which guarantee compliance of the convective fluxes with a divergence constraint. This step requires the solution of a first Poisson-type equation. (3) A second projection step which provides the yet unknown (non-convective) pressure contribution to the total flux of momentum. This second projection requires the solution of another Poisson-type equation and yields the cell centered velocity field at the new time. This velocity field exactly satisfies a divergence constraint consistent with the asymptotic limit. Step (1) can be done by any standard finite volume compressible flow solver. The input to steps (2) and (3) involves solely the fluxes from step (1) and is independent of how these were obtained. Thus, our approach allows any such solver to be extended to compute variable density incompressible flows.
Marchionna, N. R.; Diehl, L. A.; Trout, A. M.
1973-01-01
Tests were conducted to determine the effect of inlet air humidity on the formation of oxides of nitrogen (NOx) from a gas turbine combustor. Combustor inlet air temperature ranged from 506 K (450 F) to 838 K (1050 F). The tests were primarily run at a constant pressure of 6 atmospheres and reference Mach number of 0.065. The NOx emission index was found to decrease with increasing inlet air humidity at a constant exponential rate: NOx = NOx0e-19H (where H is the humidity and the subscript 0 denotes the value at zero humidity). the emission index increased exponentially with increasing normalized inlet air temperature to the 1.14 power. Additional tests made to determine the effect of pressure and reference Mach number on NOx showed that the NOx emission index varies directly with pressure to the 0.5 power and inversely with reference Mach number.
Driving large magnetic Reynolds number flow in highly ionized, unmagnetized plasmas
Weisberg, D. B.; Peterson, E.; Milhone, J.; Endrizzi, D.; Cooper, C.; Désangles, V.; Khalzov, I.; Siller, R.; Forest, C. B.
2017-05-01
Electrically driven, unmagnetized plasma flows have been generated in the Madison plasma dynamo experiment with magnetic Reynolds numbers exceeding the predicted Rmcrit = 200 threshold for flow-driven MHD instability excitation. The plasma flow is driven using ten thermally emissive lanthanum hexaboride cathodes which generate a J ×B torque in helium and argon plasmas. Detailed Mach probe measurements of plasma velocity for two flow topologies are presented: edge-localized drive using the multi-cusp boundary field and volumetric drive using an axial Helmholtz field. Radial velocity profiles show that the edge-driven flow is established via ion viscosity but is limited by a volumetric neutral drag force, and measurements of velocity shear compare favorably to the Braginskii transport theory. Volumetric flow drive is shown to produce larger velocity shear and has the correct flow profile for studying the magnetorotational instability.
Energy Technology Data Exchange (ETDEWEB)
Ezumi, N., E-mail: ezumi@ec.nagano-nct.ac.jp [Nagano National College of Technology, 716 Tokuma, Nagano 381-8550 (Japan); Todoroki, K. [Nagano National College of Technology, 716 Tokuma, Nagano 381-8550 (Japan); Kobayashi, T. [Nagoya University, Nagoya 464-8603 (Japan); Sawada, K. [Shinshu University, Nagano 380-8553 (Japan); Ohno, N. [Nagoya University, Nagoya 464-8603 (Japan); Kobayashi, M.; Masuzaki, S. [National Institute for Fusion Science, Toki 509-5292 (Japan); Feng, Y. [Max-Planck-Institut fuer Plasmaphysik, D-17491 Greifswald (Germany)
2011-08-01
Spatial profiles of the plasma flow, electron temperature (T{sub e}) and ion temperature (T{sub i}) in the stochastic magnetic boundary layer of Large Helical Device (LHD) has been studied by simultaneous measurements using a movable multiple functions probe, which consists of Mach probes and an ion sensitive probe. The tendency of the measured spatial profiles of T{sub e} and T{sub i} is similar to the three-dimensional simulation. The results of ion saturation current (I{sub sat}) measurement of the upstream and downstream probes indicate that the plasma flow direction is reversed in the stochastic magnetic boundary layer. I{sub sat} observations obtained deep inside of the boundary layer contradict the simulation result, even though the existence of flow reversal in the LHD stochastic magnetic boundary layer was qualitatively confirmed.
Pendergraft, Odis C., Jr.; Burley, James R., II; Bare, E. Ann
1986-01-01
An investigation has been conducted in the Langley 16-Foot Transonic Tunnel to determine the effects of upper and lower external nozzle flap geometry on the external afterbody/nozzle drag of nonaxisymmetric two-dimensional convergent-divergent exhaust nozzles having parallel external sidewalls installed on a generic twin-engine, fighter-aircraft model. Tests were conducted over a Mach number range from 0.60 to 1.20 and over an angle-of-attack range from -5 to 9 deg. Nozzle pressure ratio was varied from jet off (1.0) to approximately 10.0, depending on Mach number.
Practical computational aeroacoustics for compact surfaces in low mach number flows
DEFF Research Database (Denmark)
Pradera-Mallabiabarrena, Ainara; Keith, Graeme; Jacobsen, Finn
2011-01-01
compared to the wavelength of interest. This makes it possible to focus on the surface source term of the Ffowcs Williams-Hawkings equation. In this paper, in order to illustrate the basic method for storing and utilizing data from the CFD analysis, the flow past a circular cylinder at a Reynolds number...
Mack, R. J.
1974-01-01
Wing models were tested in the high-speed section of the Langley Unitary Plan wind tunnel to study the effects of the leading-edge sweep angle and the design lift coefficient on aerodynamic performance and efficiency. The models had leading-edge sweep angles of 69.44 deg, 72.65 deg, and 75.96 deg which correspond to values of the design Mach-number-sweep-angle parameter (beta cotangent A) sub DES of 0.6, 0.75, and 0.9, respectively. For each sweep angle, camber surfaces having design lift coefficients of 0,0.08, and 0.12 at a design Mach number of 2.6 were generated. The wind-tunnel tests were conducted at Mach numbers of 2.3, 2.6, and 2.96 with a stagnation temperature of 338.7 K (150 F) and a Reynolds number per meter of 9.843 times 10 to the 6th power. The results of the tests showed that only a moderate sweeping of the wing leading edge aft of the Mach line along with a small-to-moderate amount of camber and twist was needed to significantly improve the zero-lift (flat camber surface) wing performance and efficiency.
Mahto, Navin Kumar; Choubey, Gautam; Suneetha, Lakka; Pandey, K. M.
2016-11-01
The two equation standard k-ɛ turbulence model and the two-dimensional compressible Reynolds-Averaged Navier-Stokes (RANS) equations have been used to computationally simulate the double cavity scramjet combustor. Here all the simulations are performed by using ANSYS 14-FLUENT code. At the same time, the validation of the present numerical simulation for double cavity has been performed by comparing its result with the available experimental data which is in accordance with the literature. The results are in good agreement with the schlieren image and the pressure distribution curve obtained experimentally. However, the pressure distribution curve obtained numerically is under-predicted in 5 locations by numerical calculation. Further, investigations on the variations of the effects of the length-to-depth ratio of cavity and Mach number on the combustion characteristics has been carried out. The present results show that there is an optimal length-to-depth ratio for the cavity for which the performance of combustor significantly improves and also efficient combustion takes place within the combustor region. Also, the shifting of the location of incident oblique shock took place in the downstream of the H2 inlet when the Mach number value increases. But after achieving a critical Mach number range of 2-2.5, the further increase in Mach number results in lower combustion efficiency which may deteriorate the performance of combustor.
MacArt, Jonathan F.; Mueller, Michael E.
2016-12-01
Two formally second-order accurate, semi-implicit, iterative methods for the solution of scalar transport-reaction equations are developed for Direct Numerical Simulation (DNS) of low Mach number turbulent reacting flows. The first is a monolithic scheme based on a linearly implicit midpoint method utilizing an approximately factorized exact Jacobian of the transport and reaction operators. The second is an operator splitting scheme based on the Strang splitting approach. The accuracy properties of these schemes, as well as their stability, cost, and the effect of chemical mechanism size on relative performance, are assessed in two one-dimensional test configurations comprising an unsteady premixed flame and an unsteady nonpremixed ignition, which have substantially different Damköhler numbers and relative stiffness of transport to chemistry. All schemes demonstrate their formal order of accuracy in the fully-coupled convergence tests. Compared to a (non-)factorized scheme with a diagonal approximation to the chemical Jacobian, the monolithic, factorized scheme using the exact chemical Jacobian is shown to be both more stable and more economical. This is due to an improved convergence rate of the iterative procedure, and the difference between the two schemes in convergence rate grows as the time step increases. The stability properties of the Strang splitting scheme are demonstrated to outpace those of Lie splitting and monolithic schemes in simulations at high Damköhler number; however, in this regime, the monolithic scheme using the approximately factorized exact Jacobian is found to be the most economical at practical CFL numbers. The performance of the schemes is further evaluated in a simulation of a three-dimensional, spatially evolving, turbulent nonpremixed planar jet flame.
Kubiak, M A; Bzowski, M; Sokol, J M; Fuselier, S A; Galli, A; Heirtzler, D; Kucharek, H; Leonard, T W; Moebius, D J McComas E; Park, J; Schwadron, N A; Wurz, P
2016-01-01
With the velocity vector and temperature of the pristine interstellar neutral (ISN) He recently obtained with high precision from a coordinated analysis summarized by McComas et al.2015b, we analyzed the IBEX observations of neutral He left out from this analysis. These observations were collected during the ISN observation seasons 2010---2014 and cover the region in the Earth's orbit where the Warm Breeze persists. We used the same simulation model and a very similar parameter fitting method to that used for the analysis of ISN He. We approximated the parent population of the Warm Breeze in front of the heliosphere with a homogeneous Maxwell-Boltzmann distribution function and found a temperature of $\\sim 9\\,500$ K, an inflow speed of 11.3 km s$^{-1}$, and an inflow longitude and latitude in the J2000 ecliptic coordinates $251.6^\\circ$, $12.0^\\circ$. The abundance of the Warm Breeze relative to the interstellar neutral He is 5.7\\% and the Mach number is 1.97. The newly found inflow direction of the Warm Bree...
Myllys, M. E.; Kilpua, E.; Lavraud, B.
2015-12-01
We have investigated the effect of key solar wind driving parameters on the solar wind-magnetosphere coupling efficiency and saturation of the cross polar cap potential (CPCP) during sheath and magnetic cloud driven storms. The particular focus of the study was on the coupling efficiency dependence with Alfven Mach number (MA).Since we are studying the instantaneous coupling efficiency instead of the average efficiency over the whole solar wind structure, we needed to take into account the communication time between the solar wind and the magnetosphere. We present the results of the time delay analysis between geomagnetic indices (PCN, AE and SYM-H) and the interplanetary electric field y-component (EY, GSM coordinate system) and Newell and Borovsky functions. The study shows that the MA has a clear effect to the saturation of the PCN index, which can be used as a proxy of the polar cap potential. The higher the MA the higher the limit EY value after which the saturation starts to occur. Thus, the coupling efficiency increases as a function of MA. Also, the AE index saturates during high solar wind driving but the saturation is not MA depended. However, the results also suggest that the MA it is not the primary cause for the PCN saturation.
Sovardi, Carlo; Jaensch, Stefan; Polifke, Wolfgang
2016-09-01
A numerical method to concurrently characterize both aeroacoustic scattering and noise sources at a duct singularity is presented. This approach combines Large Eddy Simulation (LES) with techniques of System Identification (SI): In a first step, a highly resolved LES with external broadband acoustic excitation is carried out. Subsequently, time series data extracted from the LES are post-processed by means of SI to model both acoustic propagation and noise generation. The present work studies the aero-acoustic characteristics of an orifice placed in a duct at low flow Mach numbers with the "LES-SI" method. Parametric SI based on the Box-Jenkins mathematical structure is employed, with a prediction error approach that utilizes correlation analysis of the output residuals to avoid overfitting. Uncertainties of model parameters due to the finite length of times series are quantified in terms of confidence intervals. Numerical results for acoustic scattering matrices and power spectral densities of broad-band noise are validated against experimental measurements over a wide range of frequencies below the cut-off frequency of the duct.
Eaves, R. H.; Buchanan, T. D.; Warmbrod, J. D.; Johnson, C. B.
1972-01-01
Heat transfer tests for two delta wing configurations were conducted in the hypervelocity wind tunnel. The 24-inch long models were tested at a Mach number of approximately 10.5 and at angles of attack of 20, 40, and 60 degrees over a length Reynolds number range from 5 million to 23 million on 4 May to 4 June 1971. Heat transfer results were obtained from model surface heat gage measurements and thermographic phosphor paint.
Contribution from the Earth's Bow Shock to Region 1 Current under Low Alfvén Mach Numbers
Institute of Scientific and Technical Information of China (English)
PENG Zhong; HU You-Qiu
2009-01-01
@@ Using global MHD simulations of the solar wind-magnetosphere--ionosphere system, we investigate the depen-dence of the contribution from the Earth's bow shock (I1bs) to ionospheric region I field aligned current (FAC) (I1). It is found that I1bs increases with increasing southward interplanetary magnetic field (IMF) strength Bs, if the Alfven Mach number MA of the solar wind exceeds 2, a similar result as obtained by previous authors. However, if MA becomes close to or falls below 2, I1bs will decrease with B8 in both magnitude and percentage (i.e., I1bs/I1) because of the resultant reduction of the bow shock strength. Both the surface current density Jbs at the nose of the bow shock and the total bow shock current lb, share nearly the same relationship with MA, and vary non-monotonically with MA or Bs. The maximum point is found to be located at MA = 2.7. Three conclusions are then made as follows: (1) The surface current density at the nose, which is much easier to be evaluated, may be used to largely describe the behaviour of the bow shock instead of the total bow shock current. (2) The peak of the total bow shock current is reached at about MA = 2.7 when only Bs is adjusted. (3) The non-monotonic variation of the bow shock current with MA causes a similar variation of its contribution to region 1 FAC. The turning point for such contribution is found to be nearly MA= 2. The implication of these conclusions to the saturation of the ionospheric transpolar potential is briefly discussed.
Yu, Rixin; Yu, Jiangfei; Bai, Xue-Song
2012-06-01
We present an improved numerical scheme for numerical simulations of low Mach number turbulent reacting flows with detailed chemistry and transport. The method is based on a semi-implicit operator-splitting scheme with a stiff solver for integration of the chemical kinetic rates, developed by Knio et al. [O.M. Knio, H.N. Najm, P.S. Wyckoff, A semi-implicit numerical scheme for reacting flow II. Stiff, operator-split formulation, Journal of Computational Physics 154 (2) (1999) 428-467]. Using the material derivative form of continuity equation, we enhance the scheme to allow for large density ratio in the flow field. The scheme is developed for direct numerical simulation of turbulent reacting flow by employing high-order discretization for the spatial terms. The accuracy of the scheme in space and time is verified by examining the grid/time-step dependency on one-dimensional benchmark cases: a freely propagating premixed flame in an open environment and in an enclosure related to spark-ignition engines. The scheme is then examined in simulations of a two-dimensional laminar flame/vortex-pair interaction. Furthermore, we apply the scheme to direct numerical simulation of a homogeneous charge compression ignition (HCCI) process in an enclosure studied previously in the literature. Satisfactory agreement is found in terms of the overall ignition behavior, local reaction zone structures and statistical quantities. Finally, the scheme is used to study the development of intrinsic flame instabilities in a lean H2/air premixed flame, where it is shown that the spatial and temporary accuracies of numerical schemes can have great impact on the prediction of the sensitive nonlinear evolution process of flame instability.
Allan Brian G.; Owens, Lewis, R.
2006-01-01
This paper will investigate the validation of a NASA developed, Reynolds-averaged Navier-Stokes (RANS) flow solver, OVERFLOW, for a boundary-layer-ingesting (BLI) offset (S-shaped) inlet in transonic flow with passive and active flow control devices as well as the baseline case. Numerical simulations are compared to wind tunnel results of a BLI inlet conducted at the NASA Langley 0.3-Meter Transonic Cryogenic Tunnel. Comparisons of inlet flow distortion, pressure recovery, and inlet wall pressures are performed. The numerical simulations are compared to the BLI inlet data at a freestream Mach number of 0.85 and a Reynolds number of approximately 2 million based on the length of the fan-face diameter. The numerical simulations with and without wind tunnel walls are performed, quantifying effects of the tunnel walls on the BLI inlet flow measurements. The wind tunnel test evaluated several different combinations of jet locations and mass flow rates as well as a vortex generator (VG) vane case. The numerical simulations will be performed on a single jet configuration for varying actuator mass flow rates at a fix inlet mass flow condition. Validation of the numerical simulations for the VG vane case will also be performed for varying inlet mass flow rates. Overall, the numerical simulations were able to predict the baseline circumferential flow distortion, DPCPavg, very well for comparisons made within the designed operating range of the BLI inlet. However the CFD simulations did predict a total pressure recovery that was 0.01 lower than the experiment. Numerical simulations of the baseline inlet flow also showed good agreement with the experimental inlet centerline surface pressures. The vane case showed that the CFD predicted the correct trends in the circumferential distortion for varying inlet mass flow but had a distortion level that was nearly twice as large as the experiment. Comparison to circumferential distortion measurements for a 15 deg clocked 40 probe
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
On super-sonic or trans-sonic planar cascade wind tunnel of free jet intermittent type, wind blowing experiments were performed on the typical sections of stator and rotor blades in the last stage of ultra-ultra-critical steam turbine with extra-long blade of 1200mm. The influences of attack angle and Mach number on the aerodynamic performances of these sections of the blade profiles were verified, and their operating ranges were also specified.
Keenan, James A.; Kuhlman, John M.
1991-01-01
A computational study was conducted on two wings, of aspect ratios 1.244 and 1.865, each having 65 degree leading edge sweep angles, to determine the effects of nonplanar winglets at supersonic Mach numbers. A Mach number of 1.62 was selected as the design value. The winglets studied were parametrically varied in alignment, length, sweep, camber, thickness, and dihedral angle to determine which geometry had the best predicted performance. For the computational analysis, an available Euler marching technique was used. The results indicated that the possibility existed for wing-winglet geometries to equal the performance of wing-alone bodies in supersonic flows with both bodies having the same semispan. The first wing with winglet used NACA 1402 airfoils for the base wing and was shown to have lift-to-pressure drag ratios within 0.136 percent to 0.360 percent of the NACA 1402 wing-alone. The other base wing was a natural flow wing which was previously designed specifically for a Mach number of 1.62. The results obtained showed that the natural wing-alone had a slightly higher lift-to-pressure drag than the natural wing with winglets.
Energy Technology Data Exchange (ETDEWEB)
Kubiak, Marzena A.; Swaczyna, P.; Bzowski, M.; Sokół, J. M. [Space Research Centre of the Polish Academy of Sciences (CBK PAN), 00-716 Warsaw (Poland); Fuselier, S. A.; McComas, D. J. [Southwest Research Institute, San Antonio, TX (United States); Galli, A.; Wurz, P. [Physikalisches Institut, Universität Bern, Bern (Switzerland); Heirtzler, D.; Kucharek, H.; Leonard, T. W.; Möbius, E.; Park, J.; Schwadron, N. A., E-mail: mkubiak@cbk.waw.pl [Space Science Center and Department of Physics, University of New Hampshire, Durham, NH (United States)
2016-04-15
Following the high-precision determination of the velocity vector and temperature of the pristine interstellar neutral (ISN) He via a coordinated analysis summarized by McComas et al., we analyzed the Interstellar Boundary Explorer (IBEX) observations of neutral He left out from this analysis. These observations were collected during the ISN observation seasons 2010–2014 and cover the region in the Earth's orbit where the Warm Breeze (WB) persists. We used the same simulation model and a parameter fitting method very similar to that used for the analysis of ISN He. We approximated the parent population of the WB in front of the heliosphere with a homogeneous Maxwell–Boltzmann distribution function and found a temperature of ∼9500 K, an inflow speed of 11.3 km s{sup −1}, and an inflow longitude and latitude in the J2000 ecliptic coordinates 251.°6, 12.°0. The abundance of the WB relative to ISN He is 5.7% and the Mach number is 1.97. The newly determined inflow direction of the WB, the inflow directions of ISN H and ISN He, and the direction to the center of the IBEX Ribbon are almost perfectly co-planar, and this plane coincides within relatively narrow statistical uncertainties with the plane fitted only to the inflow directions of ISN He, ISN H, and the WB. This co-planarity lends support to the hypothesis that the WB is the secondary population of ISN He and that the center of the Ribbon coincides with the direction of the local interstellar magnetic field (ISMF). The common plane for the direction of the inflow of ISN gas, ISN H, the WB, and the local ISMF is given by the normal direction: ecliptic longitude 349.°7 ± 0.°6 and latitude 35.°7 ± 0.6 in the J2000 coordinates, with a correlation coefficient of 0.85.
Shrout, B. L.; Corlett, W. A.; Collins, I. K.
1979-01-01
The tabulated results of surface pressure tests conducted on the wing and fuselage of an airplane model in the Langley Unitary Plan wind tunnel are presented without analysis. The model tested was that of a supersonic-cruise airplane with a highly swept arrow-wing planform, two engine nacelles mounted beneath the wing, and outboard vertical tails. Data were obtained at Mach numbers of 2.30, 2.96, and 3.30 for angles of attack from -4 deg to 12 deg. The Reynolds number for these tests was 6,560,000 per meter.
Holland, Scott D.; Murphy, Kelly J.
1993-01-01
Since mission profiles for airbreathing hypersonic vehicles such as the National Aero-Space Plane include single-stage-to-orbit requirements, real gas effects may become important with respect to engine performance. The effects of the decrease in the ratio of specific heats have been investigated in generic three-dimensional sidewall compression scramjet inlets with leading-edge sweep angles of 30 and 70 degrees. The effects of a decrease in ratio of specific heats were seen by comparing data from two facilities in two test gases: in the Langley Mach 6 CF4 Tunnel in tetrafluoromethane (where gamma=1.22) and in the Langley 15-Inch Mach 6 Air Tunnel in perfect gas air (where gamma=1.4). In addition to the simulated real gas effects, the parametric effects of cowl position, contraction ratio, leading-edge sweep, and Reynolds number were investigated in the 15-Inch Mach 6 Air Tunnel. The models were instrumented with a total of 45 static pressure orifices distributed on the sidewalls and baseplate. Surface streamline patterns were examined via oil flow, and schlieren videos were made of the external flow field. The results of these tests have significant implications to ground based testing of inlets in facilities which do not operate at flight enthalpies.
Capone, F. J.
1982-01-01
An investigation to determine the aeropropulsive characteristics of nonaxisymmetric nozzles on an F-18 jet effects model was conducted in the Langley 16-foot transonic tunnel and the AEDC 16-foot supersonic wind tunnel. The performance of a two dimensional convergent-divergent nozzle, a single expansion ramp nozzle, and a wedge nozzle was compared with that of the baseline axisymmetric nozzle. Test data were obtained at static conditions and at Mach numbers from 0.60 to 2.20 at an angle of attack of 0 deg. Nozzle pressure ratio was varied from jet-off to about 20.
Calleja, John; Tamagno, Jose
1993-01-01
A series of air calibration tests were performed in GASL's HYPULSE facility in order to more accurately determine test section flow conditions for flows simulating total enthalpies in the Mach 13 to 17 range. Present calibration data supplements previous data and includes direct measurement of test section pitot and static pressure, acceleration tube wall pressure and heat transfer, and primary and secondary incident shock velocities. Useful test core diameters along with the corresponding free-stream conditions and usable testing times were determined. For the M13.5 condition, in-stream static pressure surveys showed the temporal and spacial uniformity of this quantity across the useful test core. In addition, finite fringe interferograms taken of the free-stream flow at the test section did not indicate the presence of any 'strong' wave system for any of the conditions investigated.
de Gasperin, F; van Weeren, R J; Dawson, W A; Golovich, N; Wittman, D; Bonafede, A; Bruggen, M
2015-01-01
Diffuse radio emission in the form of radio halos and relics has been found in a number of merging galaxy clusters. These structures indicate that shock and turbulence associated with the merger accelerate electrons to relativistic energies. We report the discovery of a radio relic + radio halo system in PSZ1 G108.18-11.53 (z=0.335). This cluster hosts the second most powerful double radio relic system ever discovered. We observed PSZ1 G108.18-11.53 with the Giant Meterwave Radio Telescope (GMRT) and the Westerbork Synthesis Radio Telescope (WSRT). We obtained radio maps at 147, 323, 607 and 1380 MHz. We also observed the cluster with the Keck telescope, obtaining the spectroscopic redshift for 42 cluster members. From the injection index we obtained the Mach number of the shocks generating the two radio relics. For the southern shock we found M = 2.33^{+0.19}_{-0.26}, while the northern shock Mach number goes from M = 2.20^{+0.07}_{-0.14} in the north part down to M = 2.00^{+0.03}_{-0.08} in the southern reg...
Directory of Open Access Journals (Sweden)
Moritz Schulze
2016-10-01
Full Text Available The interaction of a plane acoustic wave and a sheared flow is numerically investigated for simple orifice and perforated plate configurations in an isolated, non-resonant environment for Mach numbers up to choked conditions in the holes. Analytical derivations found in the literature are not valid in this regime due to restrictions to low Mach numbers and incompressible conditions. To allow for a systematic and detailed parameter study, a low-cost hybrid Computational Fluid Dynamic/Computational Aeroacoustic (CFD/CAA methodology is used. For the CFD simulations, a standard k–ϵ Reynolds-Averaged Navier–Stokes (RANS model is employed, while the CAA simulations are based on frequency space transformed linearized Euler equations (LEE, which are discretized in a stabilized Finite Element method. Simulation times in the order of seconds per frequency allow for a detailed parameter study. From the application of the Multi Microphone Method together with the two-source location procedure, acoustic scattering matrices are calculated and compared to experimental findings showing very good agreement. The scattering properties are presented in the form of scattering matrices for a frequency range of 500–1500 Hz.
Kainulainen, Jouni
2012-01-01
Measuring the mass distribution of infrared dark clouds (IRDCs) over the wide dynamic range of their column densities is a fundamental obstacle in determining the initial conditions of high-mass star formation and star cluster formation. We present a new technique to derive high-dynamic-range, arcsecond-scale resolution column density data for IRDCs and demonstrate the potential of such data in measuring the density variance - sonic Mach number relation in molecular clouds. We combine near-infrared data from the UKIDSS/Galactic Plane Survey with mid-infrared data from the Spitzer/GLIMPSE survey to derive dust extinction maps for a sample of ten IRDCs. We then examine the linewidths of the IRDCs using 13CO line emission data from the FCRAO/Galactic Ring Survey and derive a column density - sonic Mach number relation for them. For comparison, we also examine the relation in a sample of nearby molecular clouds. The presented column density mapping technique provides a very capable, temperature independent tool f...
Energy Technology Data Exchange (ETDEWEB)
Luan, Shen [Iowa State Univ., Ames, IA (United States)
1995-10-06
This dissertation is focused on three problem areas in the performance of inductively coupled plasma (ICP) source. The noise characteristics of aerosols produced by ICP nebulizers are investigated. A laser beam is scattered by aerosol and detected by a photomultiplier tube and the noise amplitude spectrum of the scattered radiation is measured by a spectrum analyzer. Discrete frequency noise in the aerosol generated by a Meinhard nebulizer or a direct injection nebulizer is primarily caused by pulsation in the liquid flow from the pump. A Scott-type spray chamber suppresses white noise, while a conical, straight-pass spray chamber enhances white noise, relative to the noise seen from the primary aerosol. Simultaneous correction for both spectral interferences and matrix effects in ICP atomic emission spectrometry (AES) can be accomplished by using the generalized standard additions method (GSAM). Results obtained with the application of the GSAM to the Perkin-Elmer Optima 3000 ICP atomic emission spectrometer are presented. The echelle-based polychromator with segmented-array charge-coupled device detectors enables the direct, visual examination of the overlapping lines Cd (1) 228.802 nm and As (1) 228.812 nm. The slit translation capability allows a large number of data points to be sampled, therefore, the advantage of noise averaging is gained. An ICP is extracted into a small quartz vacuum chamber through a sampling orifice in a water-cooled copper plate. Optical emission from the Mach disk region is measured with a new type of echelle spectrometer equipped with two segmented-array charge-coupled-device detectors, with an effort to improve the detection limits for simultaneous multielement analysis by ICP-AES.
Energy Technology Data Exchange (ETDEWEB)
Core, X.
2002-02-01
The isobar approximation for the system of the balance equations of mass, momentum, energy and chemical species is a suitable approximation to represent low Mach number reactive flows. In this approximation, which neglects acoustics phenomena, the mixture is hydrodynamically incompressible and the thermodynamic effects lead to an uniform compression of the system. We present a novel numerical scheme for this approximation. An incremental projection method, which uses the original form of mass balance equation, discretizes in time the Navier-Stokes equations. Spatial discretization is achieved through a finite volume approach on MAC-type staggered mesh. A higher order de-centered scheme is used to compute the convective fluxes. We associate to this discretization a local mesh refinement method, based on Flux Interface Correction technique. A first application concerns a forced flow with variable density which mimics a combustion problem. The second application is natural convection with first small temperature variations and then beyond the limit of validity of the Boussinesq approximation. Finally, we treat a third application which is a laminar diffusion flame. For each of these test problems, we demonstrate the robustness of the proposed numerical scheme, notably for the density spatial variations. We analyze the gain in accuracy obtained with the local mesh refinement method. (author)
Mizukaki, Toshiharu; Borg, Stephen E.; Danehy, Paul M.; Murman, Scott M.
2014-01-01
This paper presents the results of visualization of separated flow around a generic entry capsule that resembles the Apollo Command Module (CM) and the Orion Multi-Purpose Crew Vehicle (MPCV). The model was tested at flow speeds up to Mach 0.4 at a single angle of attack of 28 degrees. For manned spacecraft using capsule-shaped vehicles, certain flight operations such as emergency abort maneuvers soon after launch and flight just prior to parachute deployment during the final stages of entry, the command module may fly at low Mach number. Under these flow conditions, the separated flow generated from the heat-shield surface on both windward and leeward sides of the capsule dominates the wake flow downstream of the capsule. In this paper, flow visualization of the separated flow was conducted using the background-oriented schlieren (BOS) method, which has the capability of visualizing significantly separated wake flows without the particle seeding required by other techniques. Experimental results herein show that BOS has detection capability of density changes on the order of 10(sup-5).
Devade, Kiran D.; Pise, Ashok T.
2017-01-01
Ranque Hilsch vortex tube is a device that can produce cold and hot air streams simultaneously from pressurized air. Performance of vortex tube is influenced by a number of geometrical and operational parameters. In this study parametric analysis of vortex tube is carried out. Air is used as the working fluid and geometrical parameters like length to diameter ratio (15, 16, 17, 18), exit valve angles (30°-90°), orifice diameters (5, 6 and 7 mm), 2 entry nozzles and tube divergence angle 4° is used for experimentation. Operational parameters like pressure (200-600 kPa), cold mass fraction (0-1) is varied and effect of Mach number at the inlet of the tube is investigated. The vortex tube is tested at sub sonic (0 tube is observed for CMF up to 0.5. Experimental correlations are proposed for optimum COP. Parametric correlation is developed for geometrical and operational parameters.
Lanfranco, M. J.; Sparks, V. W.; Kavanaugh, A. T.
1973-01-01
An experimental investigation was conducted in a 9- by 7-foot supersonic wind tunnel to determine the effect of plume-induced flow separation and aspiration effects due to operation of both the orbiter and the solid rocket motors on a 0.019-scale model of the launch configuration of the space shuttle vehicle. Longitudinal and lateral-directional stability data were obtained at Mach numbers of 1.6, 2.0, and 2.2 with and without the engines operating. The plumes exiting from the engines were simulated by a cold gas jet supplied by an auxiliary 200 atmosphere air supply system, and by solid body plume simulators. Comparisons of the aerodynamic effects produced by these two simulation procedures are presented. The data indicate that the parameters most significantly affected by the jet plumes are the pitching moment, the elevon control effectiveness, the axial force, and the orbiter wing loads.
Miser, James W; Stewart, Warner L
1957-01-01
A blade design study is presented for a two-stage air-cooled turbine suitable for flight at a Mach number of 2.5 for which velocity diagrams have been previously obtained. The detailed procedure used in the design of the blades is given. In addition, the design blade shapes, surface velocity distributions, inner and outer wall contours, and other design data are presented. Of all the blade rows, the first-stage rotor has the highest solidity, with a value of 2.289 at the mean section. The second-stage stator also had a high mean-section solidity of 1.927, mainly because of its high inlet whirl. The second-stage rotor has the highest value of the suction-surface diffusion parameter, with a value of 0.151. All other blade rows have values for this parameter under 0.100.
Voit, Charles H; Guentert, Donald C; Dugan, James F
1950-01-01
A complete stage of an axial-flow compressor was designed and built to investigate the possibility of obtaining a high pressure ratio with an acceptable efficiency through the use of the optimum combination of high blade loading and high relative inlet Mach number. Over-all stage performance was investigated over a range of flows at equivalent tip speeds of 418 to 836 feet per second. At design speed (836 ft/sec), a peak total-pressure ration of 1.445 was obtained with an adiabatic efficiency of 0.89. For design angle of attack at the mean radius, a total-pressure ratio of 1.392 was obtained.
基于预处理HLLEW格式的全速域数值算法%Preconditioning HLLEW Scheme for Flows at All Mach Numbers
Institute of Scientific and Technical Information of China (English)
刘中玉; 张明锋; 郑冠男; 杨国伟
2016-01-01
Based on HLLEW ( Harten⁃Lax⁃Van Leer⁃Einfeldt⁃Wada) scheme, low speed preconditioning technology is introduced to develop a three⁃dimensional Navier⁃Stokes solver for flows at all Mach numbers. Low speed preconditioning techniques is introduced to reconstruct dissipative term in HLLEW scheme and preconditioning HLLEW scheme is proposed. Implicit time⁃marching method is constructed based on preconditioning Jacobian Matrix. Results of NACA 4412 incompressible flow and RAE 2822 transonic flow with preconditioning HLLEW scheme are compared with results by original method and experimental data. It shows that preconditioning HLLEW method improves accuracy and convergence rate for low speed flow. It can be applied for flows at all Mach numbers.%基于HLLEW（ Harten⁃Lax⁃Van Leer⁃Einfeldt⁃Wada）格式引入预处理技术发展适合求解全速域流场的三维Navier⁃Stokes求解器。引入低速预处理技术，重新构造HLLEW格式的耗散项，给出预处理后的HLLEW格式，并根据预处理后的雅克比矩阵构造相应的隐式时间推进方程。利用预处理方法求解 NACA 4412低速不可压流动与RAE 2822跨声速可压缩流动，并与实验结果及原有方法的计算结果对比。结果表明：预处理HLLEW格式不仅提高低速不可压缩流动的计算效率和精度，也保持了对可压缩流动的处理能力，是一种适用于全速域流场数值模拟的有效方法。
Roth, J. R.
1976-01-01
Parametric variation of independent variables which may affect the characteristics of bumpy torus plasma have identified those which have a significant effect on the plasma current, ion kinetic temperature, and plasma number density, and those which do not. Empirical power law correlations of the plasma current, and the ion kinetic temperature and number density were obtained as functions of potential applied to the midplane electrode rings, the background neutral gas pressure, and the magnetic field strength. Additional parameters studied included the type of gas, the polarity of the midplane electrode rings, the mode of plasma operation, and the method of measuring the plasma number density. No significant departures from the scaling laws appear to occur at the highest ion kinetic temperatures or number densities obtained to date.
Jackson, Charles M., Jr.; Harris, Roy V., Jr.
1960-01-01
An investigation has been made in the Langley 4- by 4-foot supersonic pressure tunnel at a Mach number of 1.99 to determine the longitudinal stability and control characteristics of a reentry model consisting of a lenticular-shaped body with two fin configurations (horizontal fins with end plates). Effects of deflecting the larger size fins as pitch-control surfaces were also investigated. The results indicate that the body alone was unstable from an angle of attack of 0 deg to about 55 deg where it became stable and remained so to 90 deg. The addition of fins provided positive longitudinal stability throughout the angle-of-attack range and increased the lift-drag ratio of the configuration. Reducing the horizontal-fin area at the inboard trailing edge of the fin had only a small effect on the aerodynamic characteristics of the vehicle for the condition of no fin deflection. Deflecting the fins, appeared to be an effective means of pitch control and had only a small effect on lift-drag ratio.
Sayadi, Taraneh; Hamman, Curtis; Moin, Parviz
2011-11-01
Transition to turbulence via spatially evolving secondary instabilities in compressible, zero-pressure-gradient flat plate boundary layers is numerically simulated for both the Klebanoff K-type and Herbert H-type disturbances. The objective of this work is to evaluate the universality of the breakdown process between different routes through transition in wall-bounded shear flows. Each localized linear disturbance is amplified through weak non-linear instability that grows into lambda-vortices and then hairpin-shaped eddies with harmonic wavelength, which become less organized in the late-transitional regime once a fully populated spanwise turbulent energy spectrum is established. For the H-type transition, the computational domain extends from Rex =105 , where laminar blowing and suction excites the most unstable fundamental and a pair of oblique waves, to fully turbulent stage at Rex = 10 . 6 ×105 . The computational domain for the K-type transition extends to Rex = 9 . 6 ×105 . The computational algorithm employs fourth-order central differences with non-reflective numerical sponges along the external boundaries. For each case, the Mach number is 0.2. Supported by the PSAAP program of DoE, ANL and LLNL.
Directory of Open Access Journals (Sweden)
Matthias Bauer
2016-10-01
Full Text Available This paper discusses wind tunnel test results aimed at advancing active flow control technology to increase the aerodynamic efficiency of an aircraft during take-off. A model of the outer section of a representative civil airliner wing was equipped with two-stage fluidic actuators between the slat edge and wing tip, where mechanical high-lift devices fail to integrate. The experiments were conducted at a nominal take-off Mach number of M = 0.2. At this incidence velocity, separation on the wing section, accompanied by increased drag, is triggered by the strong slat edge vortex at high angles of attack. On the basis of global force measurements and local static pressure data, the effect of pulsed blowing on the complex flow is evaluated, considering various momentum coefficients and spanwise distributions of the actuation effort. It is shown that through local intensification of forcing, a momentum coefficient of less than c μ = 0.6 % suffices to offset the stall by 2.4°, increase the maximum lift by more than 10% and reduce the drag by 37% compared to the uncontrolled flow.
Seo, Jung Hee; Mittal, Rajat
2011-02-20
A new sharp-interface immersed boundary method based approach for the computation of low-Mach number flow-induced sound around complex geometries is described. The underlying approach is based on a hydrodynamic/acoustic splitting technique where the incompressible flow is first computed using a second-order accurate immersed boundary solver. This is followed by the computation of sound using the linearized perturbed compressible equations (LPCE). The primary contribution of the current work is the development of a versatile, high-order accurate immersed boundary method for solving the LPCE in complex domains. This new method applies the boundary condition on the immersed boundary to a high-order by combining the ghost-cell approach with a weighted least-squares error method based on a high-order approximating polynomial. The method is validated for canonical acoustic wave scattering and flow-induced noise problems. Applications of this technique to relatively complex cases of practical interest are also presented.
Bzowski, M; Kubiak, M A; Sokol, J M; Fuselier, S A; Galli, A; Heirtzler, D; Kucharek, H; Leonard, T W; McComas, D J; Moebius, E; Schwadron, N A; Wurz, P
2015-01-01
We analyzed observations of interstellar neutral helium (ISN~He) obtained from the Interstellar Boundary Explorer (IBEX) satellite during its first six years of operation. We used a refined version of the ISN~He simulation model, presented in the companion paper by Sokol_et al. 2015, and a sophisticated data correlation and uncertainty system and parameter fitting method, described in the companion paper by Swaczyna et al 2015. We analyzed the entire data set together and the yearly subsets, and found the temperature and velocity vector of ISN~He in front of the heliosphere. As seen in the previous studies, the allowable parameters are highly correlated and form a four-dimensional tube in the parameter space. The inflow longitudes obtained from the yearly data subsets show a spread of ~6 degree, with the other parameters varying accordingly along the parameter tube, and the minimum chi-square value is larger than expected. We found, however, that the Mach number of the ISN~He flow shows very little scatter an...
Lewis, B. W.
1961-01-01
A limited investigation of the deterioration characteristics of 22 refractory materials was conducted by exposing them to a stagnation temperature of 3,800 F in a Mach number 2 ceramic-heated jet at the Langley Research Center. The materials tested were six materials whose major constituent was silicon carbide, five cermets whose major constituent was titanium carbide, six materials whose major constituents were metal borides, four cermets containing alumina, and one silicon nitride model. Tests consisted of obtaining weight change and appearance changes for 1/2-inch-diameter hemispherical-nose cylindrical models exposed to the air jet for 30 seconds at a time for a total of four runs or 2 minutes exposure. Curves of weight changes plotted against the number of 30-second tests in the jet were obtained. Estimates of average surface temperature near the stagnation point of the model were obtained by use of a special temperature-measuring camera. The models were examined before and after the completion of the tests for possible changes in microstructure; no significant changes were found. The data obtained were analyzed with the view that the oxidation characteristics of the materials were the main factor in deterioration of the materials under the conditions of the tests. It was concluded that only those materials which changed in weight the least could be recommended for further extensive application-oriented evaluations. The following materials fell in this category: silicon carbide - silicon, chromium - 28-percent alumina cermet, titanium boride - 5-percent boron carbide. The remainder of the materials tested had oxidation characteristics which appeared to be too severely limiting of their general applications to flight vehicles.
Helicon waves in uniform plasmas. II. High m numbers
Energy Technology Data Exchange (ETDEWEB)
Stenzel, R. L.; Urrutia, J. M. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547 (United States)
2015-09-15
Helicons are whistler modes with azimuthal wave numbers. They have been studied in solids and plasmas where boundaries play a role. The present work shows that very similar modes exist in unbounded gaseous plasmas. Instead of boundaries, the antenna properties determine the topology of the wave packets. The simplest antenna is a magnetic loop which excites m = 0 or m = 1 helicons depending on whether the dipole moment is aligned parallel or perpendicular to the ambient background magnetic field B{sub 0}. While these low order helicons have been described by J. M. Urrutia and R. L. Stenzel [“Helicon modes in uniform plasmas. I. Low m modes,” Phys. Plasmas 22, 092111 (2015)], the present work focuses on high order modes up to m = 8. These are excited by antenna arrays forming magnetic multipoles. Their wave magnetic field has been measured in space and time in a large and uniform laboratory plasma free of boundary effects. The observed wave topology exhibits m pairs of unique field line spirals which may have inspired the name “helicon” to this mode. All field lines converge into these nested spirals which propagate like corkscrews along B{sub 0}. The field lines near the axis of helicons are perpendicular to B{sub 0} and circularly polarized as in parallel whistlers. Helical antennas couple to these transverse fields but not to the spiral fields of helicons. Using a circular antenna array of phased m = 0 loops, right or left rotating or non-rotating multipole antenna fields are generated. They excite m < 0 and m > 0 modes, showing that the plasma supports both modes equally well. The poor excitation of m < 0 modes is a characteristic of loops with dipole moment across B{sub 0}. The radiation efficiency of multipole antennas has been found to decrease with m.
Gapcynski, John P; Carlson, Harry W
1955-01-01
The changes in the aerodynamic characteristics of a body of revolution with a fineness ratio of 8 have been determined at Mach numbers of 1.41 and 2.01, a Reynolds number, based on body length, of 4.54 x 10 to the 6th power, and angles of incidence of 0 degrees and plus or minus 3 degrees as the position of the body is varied with respect to a reflection plane. The data are compared with theoretical results.
Wallskog, Harvey A.
1954-01-01
A 1/5-scale, rocket-propelled model of the Convair F-102 configuration was tested in free flight to determine zero-lift drag at Mach numbers up to 1.34 and at Reynolds numbers comparable to those of the full-scale airplane. This large-scale model corresponded to the prototype airplane and had air flow through the duct. Additional zero-lift drag tests involved a series of small equivalent bodies of revolution which were launched by means of a helium gun. The several small-scale models tested corresponded to: the basic configuration, the 1/5-scale rocket-propelled model configuration, a 2-foot (full-scale) fuselage-extension configuration, and a 7-foot (full-scale) fuselage-extension configuration. Models designed to correspond to the area distribution at a Mach number of 1.0 were flown for each of these 'shapes and, in addition, models designed to correspond to the area distribution at a Mach number of 1.2 were flown for the 1/5-scale rocket-propelled model and the 7-foot-fuselage-extension configuration. The value of external pressure drag coefficient (including base drag) obtained from the large-scale rocket model was 0.0190 at a Mach number of 1..05 and the corresponding values from the equivalent-body tests varied from 0.0183 for the rocket-propelled model shape to 0.0137 for the 7-foot-fuselage-extension configuration. From the results of tests of equivalent bodies designed to correspond to the area distribution at a Mach number of 1.0, it is evident that the small changes in shape incorporated in the basic and 2-foot-fuselage-extension configurations from that of the rocket-propelled model configuration will provide no significant change in pressure drag. On the other hand, the data from the 7-foot-fuselage-extension model indicate a substantial reduction in pressure drag at transonic speeds.
Mitchell, Glenn A; Campbell, Robert C
1957-01-01
Provided sufficient throat bleed was employed, maximum pressure recoveries of 0.87 to 0.88 at Mach number 2.0 were obtained for a fuselage-mounted 14 degrees ramp inlet regardless of the amount of fuselage boundary layer ingested. The addition of inlet side fairings yielded further increases in pressure recovery to 0.90 to 0.91, decreased critical drag coefficients, and increased critical mass-flow ratios. With throat bleed, peak pressure recoveries and calculated thrust-minus-drag values were comparable at two axial positions of the scoop and were highest with the greatest amount of fuselage boundary layer ingested.
Ernst Mach a deeper look : documents and new perspectives
1992-01-01
Ernst Mach -- A Deeper Look has been written to reveal to English-speaking readers the recent revival of interest in Ernst Mach in Europe and Japan. The book is a storehouse of new information on Mach as a philosopher, historian, scientist and person, containing a number of biographical and philosophical manuscripts publihsed for the first time, along with correspondence and other matters published for the first time in English. The book also provides English translations of Mach's controversies with leading physicists and psychologists, such as Max Planck and Carl Stumpf, and offers basic evidence for resolving Mach's position on atomism and Einstein's theory of relativity. Mach's scientific, philosophical and personal influence in a number of countries -- Austria, Germany, Bohemia and Yugoslavia among them -- has been carefully explored and many aspects detailed for the first time. All of the articles are eminently readable, especially those written by Mach's sister. They are deeply researched, new interpre...
Institute of Scientific and Technical Information of China (English)
翟永玺; 张堃元; 王磊; 李永洲; 张林
2014-01-01
A parametric research on the curved compression surface with controllable Mach number distri-bution was commenced to find the effect regularity of design parameters on the performance parameters of curved compression surface. On this basis,a polynomial response surface proxy model was built to make a multi-objec-tive optimization,and a hypersonic curved shock two-dimensional inlet was designed based on the optimization result, the performance was compared with the three-ramp compression inlet which was designed under the same constraints. Results indicate among the design parameters, the initial compress angle θ and the factor C and factor md1 affect most. The flow coefficient of the innovative inlet is up to 0.769 at Mach 4,when Mach num-ber ranges from 4 to 7,the two inlets have equally the same mass capture ratio,while the innovative inlet has high total pressure recovery of throat and outlet section. Compared with the relative three-ramp inlet , the total pressure recovery of throat section of the innovative inlet increased by 6.5%at Mach 4, 8.4%at Mach 6, and 10.7%at Mach 7.%针对一种马赫数分布可控的二元高超弯曲压缩面进行参数化研究，获得其设计参数对压缩面性能的影响规律，在此基础上建立多项式响应面代理模型并进行多目标优化，基于优化结果设计了二元弯曲激波进气道，并与同等约束条件下的三楔进气道进行比较。结果表明：压缩面初始压缩角θ与马赫数梯度函数中的设计参数md1，C对压缩面性能影响最为显著；Ma∞=4.0时弯曲激波进气道流量系数达0.769，与三楔进气道相比，在Ma∞=4～7工作范围内的流量捕获能力相当，但其喉道、出口截面的总压恢复系数均高于三楔进气道，在Ma∞=4，6，7工况下，喉道截面总压恢复分别有6.5%，8.4%和10.7%的提高。
Continuous supersonic plasma wind tunnel
DEFF Research Database (Denmark)
Andersen, S.A.; Jensen, Vagn Orla; Nielsen, P.
1969-01-01
The normal magnetic field configuration of a Q device has been modified to obtain a 'magnetic Laval nozzle'. Continuous supersonic plasma 'winds' are obtained with Mach numbers ~3. The magnetic nozzle appears well suited for the study of the interaction of supersonic plasma 'winds' with either...
Moes, Timothy R.; Whitmore, Stephen A.; Jordan, Frank L., Jr.
1993-01-01
A nonintrusive airdata-sensing system was calibrated in flight and wind-tunnel experiments to an angle of attack of 70 deg and to angles of sideslip of +/- 15 deg. Flight-calibration data have also been obtained to Mach 1.2. The sensor, known as the flush airdata sensor, was installed on the nosecap of an F-18 aircraft for flight tests and on a full-scale F-18 forebody for wind-tunnel tests. Flight tests occurred at the NASA Dryden Flight Research Facility, Edwards, California, using the F-18 High Alpha Research Vehicle. Wind-tunnel tests were conducted in the 30- by 60-ft wind tunnel at the NASA LaRC, Hampton, Virginia. The sensor consisted of 23 flush-mounted pressure ports arranged in concentric circles and located within 1.75 in. of the tip of the nosecap. An overdetermined mathematical model was used to relate the pressure measurements to the local airdata quantities. The mathematical model was based on potential flow over a sphere and was empirically adjusted based on flight and wind-tunnel data. For quasi-steady maneuvering, the mathematical model worked well throughout the subsonic, transonic, and low supersonic flight regimes. The model also worked well throughout the angles-of-attack and -sideslip regions studied.
Hunt, L. Roane; Notestine, Kristopher K.
1990-06-01
Surface and gap pressures and heating-rate distributions were obtained for simulated Thermal Protection System (TPS) tile arrays on the curved surface test apparatus of the Langley 8-Foot High Temperature Tunnel at Mach 6.6. The results indicated that the chine gap pressures varied inversely with gap width because larger gap widths allowed greater venting from the gap to the lower model side pressures. Lower gap pressures caused greater flow ingress from the surface and increased gap heating. Generally, gap heating was greater in the longitudinal gaps than in the circumferential gaps. Gap heating decreased with increasing gap depth. Circumferential gap heating at the mid-depth was generally less than about 10 percent of the external surface value. Gap heating was most severe at local T-gap junctions and tile-to-tile forward-facing steps that caused the greatest heating from flow impingement. The use of flow stoppers at discrete locations reduced heating from flow impingement. The use of flow stoppers at discrete locations reduced heating in most gaps but increased heating in others. Limited use of flow stoppers or gap filler in longitudinal gaps could reduce gap heating in open circumferential gaps in regions of high surface pressure gradients.
Energy Technology Data Exchange (ETDEWEB)
Ansanay-Alex, G.
2009-06-17
The development of simulation codes aimed at a precise simulation of fires requires a precise approach of flame front phenomena by using very fine grids. The need to take different spatial scale into consideration leads to a local grid refinement and to a discretization with homogeneous grid for computing time and memory purposes. The author reports the approximation of the non-linear convection term, the scalar advection-diffusion in finite volumes, numerical simulations of a flow in a bent tube, of a three-dimensional laminar flame and of a low Mach number an-isotherm flow. Non conformal finite elements are also presented (Rannacher-Turek and Crouzeix-Raviart elements)
Capone, F. J.
1972-01-01
An exploratory investigation was conducted in the Langley 16-foot transonic tunnel at Mach numbers from 0.20 to 1.30 to determine the induced lift characteristics of a body and swept-wing configuration having a partial-span two-dimensional propulsive nozzle with exhaust exit in the notch of the swept-wing trailing edge. The Reynolds number per meter varied from 4,900,000 to 14,030,000. The effects on wing-body characteristics of deflecting the propulsive jet in the flap mode at nominal exhaust-nozzle deflection angles of 0 deg and 30 deg were studied for two nozzle designs with different geometry and wing spans.
Tavelli, Maurizio; Dumbser, Michael
2017-07-01
We propose a new arbitrary high order accurate semi-implicit space-time discontinuous Galerkin (DG) method for the solution of the two and three dimensional compressible Euler and Navier-Stokes equations on staggered unstructured curved meshes. The method is pressure-based and semi-implicit and is able to deal with all Mach number flows. The new DG scheme extends the seminal ideas outlined in [1], where a second order semi-implicit finite volume method for the solution of the compressible Navier-Stokes equations with a general equation of state was introduced on staggered Cartesian grids. Regarding the high order extension we follow [2], where a staggered space-time DG scheme for the incompressible Navier-Stokes equations was presented. In our scheme, the discrete pressure is defined on the primal grid, while the discrete velocity field and the density are defined on a face-based staggered dual grid. Then, the mass conservation equation, as well as the nonlinear convective terms in the momentum equation and the transport of kinetic energy in the energy equation are discretized explicitly, while the pressure terms appearing in the momentum and energy equation are discretized implicitly. Formal substitution of the discrete momentum equation into the total energy conservation equation yields a linear system for only one unknown, namely the scalar pressure. Here the equation of state is assumed linear with respect to the pressure. The enthalpy and the kinetic energy are taken explicitly and are then updated using a simple Picard procedure. Thanks to the use of a staggered grid, the final pressure system is a very sparse block five-point system for three dimensional problems and it is a block four-point system in the two dimensional case. Furthermore, for high order in space and piecewise constant polynomials in time, the system is observed to be symmetric and positive definite. This allows to use fast linear solvers such as the conjugate gradient (CG) method. In
Phillips, W. P.
1984-01-01
Aerodynamic characteristics at M=5.97 for the 140 A/B Space Shuttle Orbiter configuration and for the configuration modified by geometric changes in the wing planform fillet region and the fuselage forebody are presented. The modifications, designed to extend the orbiter's longitudinal trim capability to more forward center of gravity locations, include reshaping the baseline wing fillet, changing the fuselage forebody camber, and adding canards. The Langley 20 inch Mach 6 Tunnel at a Reynolds number of approximately 6 million based on fuselage reference length was used. The angle of attack range of the investigation varied from about 15 deg to 35 deg at 0 deg and -5 deg sideslip angles. Data are obtained with the elevators and body flap deflected at appropriate negative and positive conditions to assess the trim limits.
Study on Mach stems induced by interaction of planar shock waves on two intersecting wedges
Institute of Scientific and Technical Information of China (English)
Gaoxiang Xiang; Chun Wang; Honghui Teng; Yang Yang; Zonglin Jiang
2016-01-01
The properties of Mach stems in hypersonic corner flow induced by Mach interaction over 3D inter-secting wedges were studied theoretically and numerically. A new method called “spatial dimension reduction” was used to analyze theoretically the location and Mach num-ber behind Mach stems. By using this approach, the problem of 3D steady shock/shock interaction over 3D intersecting wedges was transformed into a 2D moving one on cross sec-tions, which can be solved by shock-polar theory and shock dynamics theory. The properties of Mach interaction over 3D intersecting wedges can be analyzed with the new method, including pressure, temperature, density in the vicinity of triple points, location, and Mach number behind Mach stems. Theoretical results were compared with numerical results, and good agreement was obtained. Also, the influence of Mach number and wedge angle on the properties of a 3D Mach stem was studied.
Pfyl, Frank A.; Presley, Leroy L.
1961-01-01
The local recovery factor was determined experimentally along the surface of a thin-walled 20 deg included angle cone for Mach numbers near 6.0 at stagnation temperatures between 1200 deg R and 2600 deg R. In addition, a similar cone configuration was tested at Mach numbers near 4.5 at stagnation temperatures of approximately 612 deg R. The local Reynolds number based on flow properties at the edge of the boundary layer ranged between 0.1 x 10(exp 4) and 3.5 x 10(exp 4) for tests at temperatures above 1200 deg R and between 6 x 10(exp 4) and 25 x 10(exp 4) for tests at temperatures near 612 deg R. The results indicated, generally, that the recovery factor can be predicted satisfactorily using the square root of the Prandtl number. No conclusion could be made as to the necessity of evaluating the Prandtl number at a reference temperature given by an empirical equation, as opposed to evaluating the Prandtl number at the wall temperature or static temperature of the gas at the cone surface. For the tests at temperatures above 1200 deg R (indicated herein as the tests conducted in the slip-flow region), two definite trends in the recovery data were observed - one of increasing recovery factor with decreasing stagnation pressure, which was associated with slip-flow effects and one of decreasing recovery factor with increasing temperature. The true cause of the latter trend could not be ascertained, but it was shown that this trend was not appreciably altered by the sources of error of the magnitude considered herein. The real-gas equations of state were used to determine accurately the local stream properties at the outer edge of the boundary layer of the cone. Included in the report, therefore, is a general solution for the conical flow of a real gas using the Beattie-Bridgeman equation of state. The largest effect of temperature was seen to be in the terms which were dependent upon the internal energy of the gas. The pressure and hence the pressure drag terms were
McMIllin, S. Naomi; Byrd, James E.; Parmar, Devendra S.; Bezos-O'Connor, Gaudy M.; Forrest, Dana K.; Bowen, Susan
1996-01-01
An experimental investigation of the effect of leading-edge radius, camber, Reynolds number, and boundary-layer state on the incipient separation of a delta wing at supersonic speeds was conducted at the Langley Unitary Plan Wind Tunnel at Mach number of 1.60 over a free-stream Reynolds number range of 1 x 106 to 5 x 106 ft-1. The three delta wing models examined had a 65 deg swept leading edge and varied in cross-sectional shape: a sharp wedge, a 20:1 ellipse, and a 20:1 ellipse with a -9.750 circular camber imposed across the span. The wings were tested with and without transition grit applied. Surface-pressure coefficient data and flow-visualization data are electronically stored on the CD-ROM. The data indicated that by rounding the wing leading edge or cambering the wing in the spanwise direction, the onset of leading-edge separation on a delta wing can be raised to a higher angle of attack than that observed on a sharp-edged delta wing. The data also showed that the onset of leading-edge separation can be raised to a higher angle of attack by forcing boundary-layer transition to occur closer to the wing leading edge by the application of grit or the increase in free-stream Reynolds number.
Brown, C. A., Jr.; Campbell, J. F.; Tudor, D. H.
1971-01-01
An investigation was conducted to obtain flow properties in the wake of the Viking '75 entry vehicle at Mach numbers from 1.60 to 3.95 and at angles of attack of 0 deg and 5 deg. The wake flow properties were calculated from total and static pressures measured with a pressure rake at longitudinal stations varying from 1.0 to 8.39 body diameters and lateral stations varying from -0.42 to 3.0 body diameters. These measurements showed a a consistent trend throughout the range of Mach numbers and longitudinal distances and an increase in dynamic pressure with increasing downstream position.
Turbulent boundary layer separation control using plasma actuator at Reynolds number 2000000
Institute of Scientific and Technical Information of China (English)
Zhang Xin; Huang Yong; Wang Xunnian; Wang Wanbo; Tang Kun; Li Huaxing
2016-01-01
An experimental investigation was conducted to evaluate the effect of symmetrical plasma actuators on turbulent boundary layer separation control at high Reynolds number. Com-pared with the traditional control method of plasma actuator, the whole test model was made of aluminum and acted as a covered electrode of the symmetrical plasma actuator. The experimental study of plasma actuators’ effect on surrounding air, a canonical zero-pressure gradient turbulent boundary, was carried out using particle image velocimetry (PIV) and laser Doppler velocimetry (LDV) in the 0.75 m ? 0.75 m low speed wind tunnel to reveal the symmetrical plasma actuator characterization in an external flow. A half model of wing-body configuration was experimentally investigated in the £ 3.2 m low speed wind tunnel with a six-component strain gauge balance and PIV. The results show that the turbulent boundary layer separation of wing can be obviously sup-pressed and the maximum lift coefficient is improved at high Reynolds number with the symmetri-cal plasma actuator. It turns out that the maximum lift coefficient increased by approximately 8.98% and the stall angle of attack was delayed by approximately 2? at Reynolds number 2 ? 106. The effective mechanism for the turbulent separation control by the symmetrical plasma actuators is to induce the vortex near the wing surface which could create the relatively large-scale disturbance and promote momentum mixing between low speed flow and main flow regions.
Reynolds, Robert M; Samonds, Robert I; Walker, John H
1957-01-01
An investigation has been made to determine the aerodynamic characteristics of the NACA 4-(5)(05)-041 four-blade, single-relation propeller and the NACA 4-(5)(05)-037 six- and eight-blade, dual-rotation propellers in combination with various spinners and NACA d-type spinner-cowling combinations at Mach numbers up to 0.84. Propeller force characteristics, local velocity distributions in the propeller planes, inlet pressure recoveries, and static-pressure distributions on the cowling surfaces were measured for a wide range of blade angles, advance ratios, and inlet-velocity ratios. Included are data showing: (a) the effect of extended cylindrical spinners on the characteristics of the single-rotation propeller, (b) the effect of variation of the difference in blade angle setting between the front and rear components of the dual-rotation propellers, (c) the negative- and static-thrust characteristics of the propellers with 1 series spinners, and (d) the effects of ideal- and platform-type propeller-spinner junctures on the pressure-recovery characteristics of the single-rotation propeller-spinner-cowling combination.
Pendergraft, O. C., Jr.; Schmeer, J. W.
1972-01-01
Twin-jet afterbody models were investigated by using two balances to measure the thrust-minus-total drag and the afterbody drag, separately, at static conditions and at Mach numbers up to 2.2 for an angle of attack of 0 deg. Hinged-flap convergent-divergent nozzles were tested at subsonic-cruise- and maximum-afterburning-power settings with a high-pressure air system used to provide jet-total-pressure ratios up to 20. Two nozzle lateral spacings were studied, using afterbodies with similar interfairing shapes but with different longitudinal cross-sectional area distributions. Alternate, blunter, interfairings with different shapes for the two spacings, which produced afterbodies having identical cross-sectional area progressions corresponding to an axisymmetric minimum wave-drag configuration, were also tested. The results indicate that the wide-spaced configurations improved the flow field around the nozzles, thereby reducing drag on the cruise nozzles; however, the increased surface and projected cross-sectional areas caused an increase in afterbody drag. Except for a slight advantage with cruise nozzles at subsonic speeds, the wide-spaced configurations had the higher total drag at all other test conditions.
Weisberg, David
2016-10-01
Differentially rotating plasma flow has been measured in the Madison Plasma Dynamo Experiment (MPDX). Spherical cusp-confined plasmas have been stirred both from the plasma boundary using electrostatic stirring in the magnetized edge and in the plasma core using weak global fields and cross-field currents to impose a body-force torque. Laminar velocity profiles conducive to shear-driven MHD instabilities like the dynamo and the MRI are now being generated and controlled with magnetic Reynolds numbers of Rm method for plasma heating, but limits on input heating power have been observed (believed to be caused by the formation of double-layers at anodes). These confinement studies have culminated in large (R = 1.4 m), warm (Te 1), steady-state plasmas. Results of the ambipolar transport model are good fits to measurements of pressure gradients and fluid drifts in the cusp, and offer a predictive tool for future cusp-confined devices. Hydrodynamic modeling is shown to be a good description for measured plasma flows, where ion viscosity proves to be an efficient mechanism for transporting momentum from the magnetized edge into the unmagnetized core. In addition, the body-force stirring technique produces velocity profiles conducive to MRI experiments where dΩ / dr research of flow-driven astrophysical MHD instabilities.
Aeroacoustic computation of low mach number flow
Energy Technology Data Exchange (ETDEWEB)
Skriver Dahl, K. [Risoe National Laboratory, Roskilde (Denmark)
1997-12-31
The possibilities of applying a recently developed numerical technique to predict aerodynamically generated sound from wind turbines is explored. The technique is a perturbation technique that has the advantage that the underlying flow field and the sound field are computed separately. Solution of the incompressible, time dependent flow field yields a hydrodynamic density correction to the incompressible constant density. The sound field is calculated from a set of equations governing the inviscid perturbations about the corrected flow field. Here, the emphasis is placed on the computation of the sound field. The nonlinear partial differential equations governing the sound fields are solved numerically using an explicit MacCormack scheme. Two types of non-reflecting boundary conditions are applied; one based on the asymptotic solution of the governing equations and the other based on a characteristic analysis of the governing equations. The former condition is easy to use and it performs slightly better than the charcteristic based condition. The technique is applied to the problems of the sound generation of a co-rotating vortex pair, which is a quadrupole, and the viscous flow over a circular cylinder, which is a dipole. Numerical results agree very well with the analytical solution for the problem of the co-rotating vortex pair. Numerical results for the viscous flow over a cylinder are presented and evaluated qualitatively. (au)
The 3D MHD code GOEMHD3 for large-Reynolds-number astrophysical plasmas
Skála, J; Büchner, J; Rampp, M
2014-01-01
The numerical simulation of turbulence and flows in almost ideal, large-Reynolds-number astrophysical plasmas motivates the implementation of almost conservative MHD computer codes. They should efficiently calculate, use highly parallelized schemes scaling well with large numbers of CPU cores, allows to obtain a high grid resolution over large simulation domains and which can easily be adapted to new computer architectures as well as to new initial and boundary conditions, allow modular extensions. The new massively parallel simulation code GOEMHD3 enables efficient and fast simulations of almost ideal, large-Reynolds-number astrophysical plasma flows, well resolved and on huge grids covering large domains. Its abilities are validated by major tests of ideal and weakly dissipative plasma phenomena. The high resolution ($2048^3$ grid points) simulation of a large part of the solar corona above an observed active region proved the excellent parallel scalability of the code using more than 30.000 processor cores...
Turbulent boundary layer separation control using plasma actuator at Reynolds number 2000000
Directory of Open Access Journals (Sweden)
Zhang Xin
2016-10-01
Full Text Available An experimental investigation was conducted to evaluate the effect of symmetrical plasma actuators on turbulent boundary layer separation control at high Reynolds number. Compared with the traditional control method of plasma actuator, the whole test model was made of aluminum and acted as a covered electrode of the symmetrical plasma actuator. The experimental study of plasma actuators’ effect on surrounding air, a canonical zero-pressure gradient turbulent boundary, was carried out using particle image velocimetry (PIV and laser Doppler velocimetry (LDV in the 0.75 m × 0.75 m low speed wind tunnel to reveal the symmetrical plasma actuator characterization in an external flow. A half model of wing-body configuration was experimentally investigated in the ∅ 3.2 m low speed wind tunnel with a six-component strain gauge balance and PIV. The results show that the turbulent boundary layer separation of wing can be obviously suppressed and the maximum lift coefficient is improved at high Reynolds number with the symmetrical plasma actuator. It turns out that the maximum lift coefficient increased by approximately 8.98% and the stall angle of attack was delayed by approximately 2° at Reynolds number 2 × 106. The effective mechanism for the turbulent separation control by the symmetrical plasma actuators is to induce the vortex near the wing surface which could create the relatively large-scale disturbance and promote momentum mixing between low speed flow and main flow regions.
Institute of Scientific and Technical Information of China (English)
金志伟; 杨兴锐; 苏北辰
2016-01-01
It is hard to use precise mechanism to describe system dynamic feature of 2.4 m transonic wind tunnel. Put forwards wind tunnel Mach number predictive control strategy based on neural network. Combine the advanteges of model predictive control and nueral network modeling, it is good at processing control parameter unkown, unlinear system and time varing system. Use dynamic response of nueral network based on radial basis function and nonlinear neural network to capture system dynamic feature, apply nerual nwork model in MPC structure. The simulation results show that the control strtegy has a good control effect and trace performance.%针对2.4 m跨声速风洞很难用精确的机理模型表示系统的动态特性的问题,提出了基于神经网络模型的风洞马赫数预测控制策略.综合了模型预测控制和神经网络建模的优点,对于控制参数未知、非线性和时变系统具有很好的处理效果.利用基于径向基函数的神经网络模型预测系统的动态响应、非线性神经网络模型可以在训练过程中捕获系统的动态特性等措施,实现了将神经网络模型应用到MPC结构中.仿真结果表明,该控制策略具有很好的跟踪性能和控制效果.
Electron number density and temperature measurements in laser produced brass plasma
Shaltout, A. A.; Mostafa, N. Y.; Abdel-Aal, M. S.; Shaban, H. A.
2010-04-01
Laser-induced breakdown spectroscopy (LIBS) has been used for brass plasma diagnostic using a Nd:YAG laser at 1064 nm. Optimal experimental conditions were evaluated, including repetition rate, number of laser shots on sample, and laser energy. The plasma temperatures and the electron number densities were determined from the emission spectra of LIBS. Cu and Zn spectral lines were used for excitation temperature calculation using Saha-Boltzmann distribution as well as line pair ratio. It was found that, the excitation temperature calculated by using Saha-Boltzmann distribution and line pair ratio methods are not the same. The electron number density has been evaluated from the Stark broadening of Hα transition at 656.27 nm and the calculated electron number density is agreement with literature.
Wire number doubling in plasma-shell regime increases z-accelerator x-ray power
Energy Technology Data Exchange (ETDEWEB)
Sanford, T.W.L.; Spielman, R.B.; Chandler, G.A. [and others
1997-11-01
Doubling the number of tungsten wires from 120 to 240, keeping the mass fixed, increased the radiated x-ray power relative to the electrical power at the insulator stack of the z accelerator by (40{+-}20)% for 8.75- and 20-mm-radii z-pinch wire arrays. Radiation-magneto-hydrodynamic calculations suggest that the arrays were operating in the {open_quotes}plasma shell{close_quotes} regime, where the plasmas generated by the individual wires merge prior to the inward implosion of the entire array.
Phillips, W. P.; Fournier, R. H.
1985-01-01
Wind-tunnel tests were conducted at Mach 1.5 to 2.5 to determine the effect of modifications designed to extend the forward center-of-gravity trim capability on the static longitudal and lateral directional characteristics of a Space shuttle 140 A/B orbiter model (0.01 scale). The modifications consisted of a forward-extended wing fillet, a flat plate canard, and a blended canard. The investigation was conducted in the low Mach number test section of the Langley unitary plan wind tunnel at a Reynolds number of approximately 2.15 million based on the fuselage reference length. The test angle of attack range was -1 deg to 32 deg and the sideslip angles were 0 deg and 5 deg.
Directory of Open Access Journals (Sweden)
Jaw-Shiun Tsai
Full Text Available OBJECTIVE: Frailty is an important geriatric syndrome. Adiponectin is an important adipokine that regulates energy homeostasis. The aim of this study is to investigate the relationship between plasma adiponectin levels and frailty in elders. METHODS: The demographic data, body weight, metabolic and inflammatory parameters, including plasma glucose, total cholesterol, triglyceride, tumor necrosis factor alpha (TNF-α, c-reactive protein (CRP and adiponectin levels, were assessed. The frailty score was assessed using the Fried Frailty Index (FFI. RESULTS: The mean (SD age of the 168 participants [83 (49.4% men and 85 (50.6% women] was 76.86 (6.10 years. Judged by the FFI score, 42 (25% elders were robust, 92 (54.7% were pre-frail, and 34 (20.3% were frail. The mean body mass index was 25.19 (3.42 kg/m(2. The log-transformed mean (SD plasma adiponectin (µg/mL level was 1.00 (0.26. The log-transformed mean plasma adiponectin (µg/mL levels were 0.93 (0.23 in the robust elders, 1.00 (0.27 in the pre-frail elders, and 1.10 (0.22 in the frail elders, and the differences between these values were statistically significant (p = 0.012. Further analysis showed that plasma adiponectin levels rose progressively with an increasing number of components of frailty in all participants as a whole (p for trend = 0.024 and males (p for trend = 0.037, but not in females (p for trend = 0.223. CONCLUSION: Plasma adiponectin levels correlate positively with an increasing number of components of frailty in male elders. The difference between the sexes suggests that certain sex-specific mechanisms may exist to affect the association between adiponectin levels and frailty.
Miller, Rolf W.; Argrow, Brian M.; Center, Kenneth B.; Brauckmann, Gregory J.; Rhode, Matthew N.
1998-01-01
The NASA Langley Research Center Unitary Plan Wind Tunnel and the 20-Inch Mach 6 Tunnel were used to test two osculating cones waverider models. The Mach-4 and Mach-6 shapes were generated using the interactive design tool WIPAR. WIPAR performance predictions are compared to the experimental results. Vapor screen results for the Mach-4 model at the on- design Mach number provide visual verification that the shock is attached along the entire leading edge, within the limits of observation. WIPAR predictions of pressure distributions and aerodynamic coefficients show general agreement with the corresponding experimental values.
Brown, C. A., Jr.; Campbell, J. F.
1973-01-01
An investigation was conducted to obtain flow properties in the wake of a preliminary configuration of the Viking '75 Entry Vehicle at Mach numbers from 0.20 to 1.20 and at angles of attack of 0 deg, 5 deg, and 10 deg. The wake flow properties were calculated from total and static pressures measured with a pressure rake at longitudinal stations varying from 1.50 to 11.00 body diameters, and are presented in tabulated and plotted form. The wake properties were essentially symmetrical about the X-axis at alpha = 0 deg and the profiles were shifted away from the X-axis at angles of attack. An unexpected reduction in wake property ratios occurred as the Mach number increased from 0.60 to 1.00; these ratios then increased as the Mach number increased to 1.20. The reduction was present for all the longitudinal stations of the tests and decreased with increased longitudinal distance.
Cell-free DNA copy number variations in plasma from colorectal cancer patients.
Li, Jian; Dittmar, Rachel L; Xia, Shu; Zhang, Huijuan; Du, Meijun; Huang, Chiang-Ching; Druliner, Brooke R; Boardman, Lisa; Wang, Liang
2017-08-01
To evaluate the clinical utility of cell-free DNA (cfDNA), we performed whole-genome sequencing to systematically examine plasma cfDNA copy number variations (CNVs) in a cohort of patients with colorectal cancer (CRC, n = 80), polyps (n = 20), and healthy controls (n = 35). We initially compared cfDNA yield in 20 paired serum-plasma samples and observed significantly higher cfDNA concentration in serum (median = 81.20 ng, range 7.18-500 ng·mL(-1) ) than in plasma (median = 5.09 ng, range 3.76-62.8 ng·mL(-1) ) (P copy number analysis showed common CNVs in multiple chromosomal regions, including amplifications on 1q, 8q, and 5q and deletions on 1p, 4q, 8p, 17p, 18q, and 22q. Copy number changes were also evident in genes critical to the cell cycle, DNA repair, and WNT signaling pathways. To evaluate whether cumulative copy number changes were associated with tumor stages, we calculated plasma genomic abnormality in colon cancer (PGA-C) score by summing the most significant CNVs. The PGA-C score showed predictive performance with an area under the curve from 0.54 to 0.84 for CRC stages I-IV. Locus-specific copy number analysis identified nine genomic regions where CNVs were significantly associated with survival in stage III-IV CRC patients. A multivariate model using six of nine genomic regions demonstrated a significant association of high-risk score with shorter survival (HR = 5.33, 95% CI = 6.76-94.44, P < 0.0001). Our study demonstrates the importance of using plasma (rather than serum) to test tumor-related genomic variations. Plasma cfDNA-based tests can capture tumor-specific genetic changes and may provide a measurable classifier for assessing clinical outcomes in advanced CRC patients. © 2017 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.
Schrenk, Markus
2011-01-01
In his Contributions to the Analysis of the Sensations (Mach 1885) the phenomenalist philosopher Ernst Mach confronts us with a difficulty: “If we regard the Ego as a real unity, we become involved in the following dilemma: either we must set over against the Ego a world of unknowable entities […] or we must regard the whole world, the Egos of other people included, as comprised in our own Ego.” (Mach 1885: 21) In other words, if we start from a phenomenalist viewpoint, i.e., if we believ...
Directory of Open Access Journals (Sweden)
Minashin P.V.
2015-01-01
Full Text Available A method of spectroscopic diagnostics of the average perpendicular-to-magnetic-field momentum of the superthermal component of the electron velocity distribution (EVD, based on the high-number-harmonic electron cyclotron (EC radiation, is suggested for nuclear fusion-reactor plasmas under condition of a strong auxiliary heating (e.g. in tokamak DEMO, a next step after tokamak ITER. The method is based on solving an inverse problem for reconstruction of the EVD in parallel and perpendicular-to-magnetic-field components of electron momentum at high and moderate energies responsible for the emission of the high-number-harmonic EC radiation.
Energy Technology Data Exchange (ETDEWEB)
Fortin, T
2006-05-15
This work deals with the discretization of Navier-Stokes equations using different finite element methods adapted to the problem of two-phase flows. These methods must be of high order to limit the presence of spurious flows (which contradict the establishment of a physical equilibrium) and to verify energy conservation properties. Several solutions are proposed which seem to fulfill these expectations. A reformulation of the six-equation system adapted to low Mach two-phase flows has been also proposed. These methods have been implemented into the Trio-U code of CEA Grenoble, but have been tested only on simple 'academic' configurations. (J.S.)
Exploration of plasma-based control for low-Reynolds number airfoil/gust interaction
Rizzetta, Donald P.; Visbal, Miguel R.
2011-12-01
Large-eddy simulation (LES) is employed to investigate the use of plasma-based actuation for the control of a vortical gust interacting with a wing section at a low Reynolds number. Flow about the SD7003 airfoil section at 4° angle of attack and a chord-based Reynolds number of 60,000 is considered in the simulation, which typifies micro air vehicle (MAV) applications. Solutions are obtained to the Navier-Stokes equations that were augmented by source terms used to represent body forces imparted by the plasma actuator on the fluid. A simple phenomenological model provided these body forces resulting from the electric field generated by the plasma. The numerical method is based upon a high-fidelity time-implicit scheme and an implicit LES approach which are used to obtain solutions on a locally refined overset mesh system. A Taylor-like vortex model is employed to represent a gust impinging upon the wing surface, which causes a substantial disruption to the undisturbed flow. It is shown that the fundamental impact of the gust on unsteady aerodynamic forces is due to an inviscid process, corresponding to variation in the effective angle of attack, which is not easily overcome. Plasma control is utilised to mitigate adverse effects of the interaction and improve aerodynamic performance. Physical characteristics of the interaction are described, and several aspects of the control strategy are explored. Among these are uniform and non-uniform spanwise variations of the control configuration, co-flow and counter-flow orientations of the directed force, pulsed and continuous operations of the actuator and strength of the plasma field. Results of the control situations are compared with regard to their effect upon aerodynamic forces. It was found that disturbances to the moment coefficient produced by the gust can be greatly reduced, which may be significant for stability and handling of MAV operations.
Nonthermal Lorentzian wake-field effects on collision processes in complex dusty plasmas
Energy Technology Data Exchange (ETDEWEB)
Hong, Woo-Pyo [Department of Electronics Engineering, Catholic University of Daegu, Hayang 712-702 (Korea, Republic of); Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr [Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590 (United States); Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 426-791 (Korea, Republic of)
2014-10-15
The influence of nonthermal Lorentzian wake-field on the electron-dust grain collision is investigated in complex dusty plasmas. The Eikonal method and the effective interaction potential are applied to obtain the Eikonal scattering phase shift, the differential Eikonal collision cross section, and the total Eikonal collision cross section as functions of the collision energy, the impact parameter, the Mach number, and the spectral index of Lorentzian plasma. It is found that the nonthermal effect enhances the Eikonal scattering phase shift and, however, suppresses the Eikonal collision cross section for the electron-dust grain in Lorentzian complex dusty plasmas. It is also found that the Eikonal scattering phase shift decreases with increasing Mach number and spectral index. In addition, the Eikonal collision cross section increases with an increase of the spectral index and Mach number in Lorentzian complex dusty plasmas.
2015-01-02
operate with pulsed NS, PS or combined voltage up to 200 kV (Figure 3). Figure 4. 3D positioning system and Kollmorgen DDR servomotor below the test...section. DDR motor is connected to the model through the 6-component ATI-IA transducer. Pitching mechanism A new pitching mechanism consists of a...to right: UPS power supply; 24-V power supply; NI cRIO 9068 real-time control module; Kollmorgen DDR servomotor interface; main control computer
Plasma production by helicon waves with single mode number in low magnetic fields
Sato, G; Hatakeyama, R; Sato, Genta; Oohara, Wataru; Hatakeyama, Rikizo
2004-01-01
Radio-frequency discharges are performed in low magnetic fields (0-10 mT) using three types of helicon-wave exciting antennas with the azimuthal mode number of $|m|$ = 1. The most pronounced peak of plasma density is generated in the case of phased helical antenna at only a few mT, where the helicon wave with $|m| = 1$ is purely excited and propagates. An analysis based on the dispersion relation well explains the density-peak phenomenon in terms of the correspondence between the antenna one-wavelength and the helicon wavelength. The $m=+1$ helicon wave propagates even in high magnetic fields where the density peaks are not observed, but the $m=-1$ helicon wave disappers. It is expected theoretically that the $m=-1$ helicon wave shows cutoff behavior in a low density region, [M. Kramer, Phys. Plasmas 6, 1052 (1999)], and the cutoff of $m=-1$ helicon wave experimentally observed coincides with the calculated one.
Jernell, Lloyd S.
1961-01-01
An investigation w a s made i n the Langley Unitary Plan wind tunnel o determine the effects of fin area and the effects of antennas and w iring tunnels on the static longitudinal and lateral stability of a 0 .10- scale model of a three- stage configuration of the Scout vehicle. The tests were performed at Mach numbers of 2.29, 2.96, 3.96, and 4. 65 6 and at Reynolds numbers of about 3.5 X 10 per foot.
Slow light Mach-Zehnder fiber interferometer
Institute of Scientific and Technical Information of China (English)
Yundong Zhang; Jinfang Wang; Xuenan Zhang; Hao Wu; Yuanxue Cai; Jing Zhang; Ping Yuan
2012-01-01
A slow light structure Mach-Zehnder fiber interferometer is theoretically demonstrated.The sensitivity of the interferometer is significantly enhanced by the dispersion of the slow light structure.The numerical results show that the sensitivity enhancement factor varies with the coupling coefficient and reaches its maximum under critical coupling conditions.Interferometers have been investigated in relation to their applications in fields such as metrology[1],optical sensing[2],optical communication[3,4],quantum information processing[5],and biomedical engineering[6].A number of schemes have been proposed to improve the performance of interferometers[7],such as using photonic crystal structures to minimize the size of on-chip devices[8],utilizing the dispersive property of semiconductor to enhance the spectral sensitivity of interferometers[9,10],utilizing slow light medium to enhance the resolution of Fourier transform interferometer[11],exploiting fast light medium or slow light structure to increase the rotation sensitivity of a Sagnac interferometer[12,13],enhancing the transmittance of the Mach-Zehnder interferometer (MZI) in the slow light region by gratings[14],and using liquid crystal light valve to derive high sensitivity interferometers[15].%A slow light structure Mach-Zehnder fiber interferometer is theoretically demonstrated. The sensitivity of the interferometer is significantly enhanced by the dispersion of the slow light structure. The numerical results show that the sensitivity enhancement factor varies with the coupling coefficient and reaches its maximum under critical coupling conditions.
Energy Technology Data Exchange (ETDEWEB)
Kegalj, Martin
2013-11-01
In axial turbines tip leakage forms a large portion of the overall losses. Applying a shroud is very aerodynamically useful, but the higher mechanical loads of the revolving rotor blading exposed to a high thermal load and the higher costs suggest a shroudless configuration is better. The main parameter in the tip leakage loss is the tip gap height, which cannot be reduced arbitrarily as a running gap is necessary due to thermal expansion and vibration of the jet engine. The pressure ratio between pressure and suction of the rotor blade forces the fluid over the blade tip and leads to the formation of the tip leakage vortex. Reduced turning and losses caused by vortices and subsequent mixing are responsible for the reduced efficiency. Using a squealer cavity on the flat blade tip is a feasible way to reduce the aerodynamic losses. A portion of the kinetic energy of the tip leakage flow is dissipated while entering the cavity; the flow exiting the cavity enters the passage with reduced momentum and reduced tip gap mass flow. A 1(1)/(2) stage low mach number turbine was used to investigate the influence of tip geometry. Aerodynamic measurements, performed with five-hole probes, two-component hot-wire anemometer, unsteady wall pressure sensors, stereo and borescopic particle-image-velocimetry setups and oil and dye flow visualization, found small differences in the flow velocities and angles between the flat and squealer tip configuration in the measurement planes downstream of the rotor. The measurement uncertainty proves the difficulty of determining the influence of the squealer cavity on the blade row outflow with global measurement data. To gather information on the flow close to the casing inside the rotor passage is only possible with non-intrusive laser measurement techniques. Comparison of the different tip geometries is still difficult due to the small differences in the absolute flow data. The use of the {lambda}{sub 2} vortex criterion enables an objective
Increasing the Number of Women and Underrepresented Minorities in the Plasma Science-A Case Study
Lucas, Pamela R.; Post-Zwicker, Andrew
2000-10-01
The number of women and underrepresented minorities in plasma science is woefully small.The Princeton Plasma Physics Laboratory (PPPL), for example, consists of 2% women and underrepresented minorities. The historical reasons for this specific case as well as the overall circumstances involving pipeline inclusion are beyond the scope of this paper. The answer, however, is clearly NOT a lack of qualified women and minorities as evidenced by the numbers in other SEM disciplines such as computer science where women earn 27% of the doctoral degrees, African Americans 10% and Hispanics 5%. Over the past five years the number of underrepresented minorities earning degrees in physics and engineering has risen. Since 1995, in an effort to reach this population, PPPL has actively recruited women and underrepresented minority students to its various undergraduate research programs, in particular the National Undergraduate Fellowship Program (NUF) and the Energy Research Undergraduate Laboratory Fellowship (ERULF). The results are encouraging. The details of our efforts, our future plans, and ways of introducing our methods to other laboratories will be discussed.
Arnab, Sarkar; Manjeet, Singh
2017-02-01
We report spectroscopic studies on plasma electron number density of laser-induced plasma produced by ns-Nd:YAG laser light pulses on an aluminum sample in air at atmospheric pressure. The effect of different laser energy and the effect of different laser wavelengths were compared. The experimentally observed line profiles of neutral aluminum have been used to extract the excitation temperature using the Boltzmann plot method, whereas the electron number density has been determined from the Stark broadened as well as using the Saha-Boltzmann equation (SBE). Each approach was also carried out by using the Al emission line and Mg emission lines. It was observed that the SBE method generated a little higher electron number density value than the Stark broadening method, but within the experimental uncertainty range. Comparisons of N e determined by the two methods show the presence of a linear relation which is independent of laser energy or laser wavelength. These results show the applicability of the SBE method for N e determination, especially when the system does not have any pure emission lines whose electron impact factor is known. Also use of Mg lines gives superior results than Al lines.
Pregnancy stage and number of fetuses may influence maternal plasma leptin in ewes.
Kulcsár, Margit; Dankó, Gabriella; Magdy, H G I; Reiczigel, J; Forgach, T; Proháczik, Angella; Delavaud, Carole; Magyar, K; Chilliard, Y; Solti, L; Huszenicza, Gy
2006-06-01
Maternal plasma leptin is elevated in ewes during pregnancy. The authors studied whether there was any relation between maternal plasma leptin and insulin concentrations, the number of fetuses and the circulating and faecal levels of gestagens. At the end of the breeding season in January the ovarian activity of Prolific Merino ewes was induced/synchronised with gestagen + eCG treatment. Ewes were inseminated artificially (AI) by laparoscopy. Blood and faecal samples were collected before AI (day 0) and again 41, 81 and 101 days later. The plasma levels of leptin (pL), insulin and progesterone (pP4), and the faecal P4 metabolite (P4-met) content were determined. The day 0 level of pL was significantly higher in pregnant (n = 24) than in non-pregnant ewes (n = 32). By day 41 the pL of pregnant animals had doubled, it showed a further moderate increase on day 81, and decreased slightly thereafter. During pregnancy pP4 and faecal P4-met rose continuously and were positively correlated at all stages. The mean levels of pL and pP4 and the faecal content of P4-met were lower in ewes bearing single (n = 12) than in those with 2 (n = 6) or 3-5 fetuses (n = 6). Analysis of variance demonstrated significant differences according to the number of fetuses in the pL and pP4, but not in P4-met (p = 0.042, 0.044, and 0.051, respectively). Leptin showed positive correlation with insulin before the AI but not during pregnancy. On days 41 and 81 pL showed a slight positive correlation with P4 and P4-met, which decreased slightly by day 101. This study shows that although leptinaemia is affected by the number of fetuses and the level of P4, pregnancy stage is a more important regulator than these additional factors.
Energy Technology Data Exchange (ETDEWEB)
Boffard, John B., E-mail: jboffard@wisc.edu; Lin, Chun C. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Culver, Cody [Materials Science Program, University of Wisconsin, Madison, WI 53706 (United States); Wang, Shicong; Wendt, Amy E. [Department of Electrical and Computer Engineering, University of Wisconsin, Madison, WI 53706 (United States); Radovanov, Svetlana; Persing, Harold [Varian Semiconductor Equipment, Applied Materials Inc., Gloucester, MA 01939 (United States)
2014-03-15
Vacuum ultraviolet (VUV) photons emitted from excited atomic states are ubiquitous in material processing plasmas. The highly energetic photons can induce surface damage by driving surface reactions, disordering surface regions, and affecting bonds in the bulk material. In argon plasmas, the VUV emissions are due to the decay of the 1s{sub 4} and 1s{sub 2} principal resonance levels with emission wavelengths of 104.8 and 106.7 nm, respectively. The authors have measured the number densities of atoms in the two resonance levels using both white light optical absorption spectroscopy and radiation-trapping induced changes in the 3p{sup 5}4p→3p{sup 5}4s branching fractions measured via visible/near-infrared optical emission spectroscopy in an argon inductively coupled plasma as a function of both pressure and power. An emission model that takes into account radiation trapping was used to calculate the VUV emission rate. The model results were compared to experimental measurements made with a National Institute of Standards and Technology-calibrated VUV photodiode. The photodiode and model results are in generally good accord and reveal a strong dependence on the neutral gas temperature.
Ball, J. W.; Lindahl, R. H.
1976-01-01
The purpose of the test was to investigate the nature of the Orbiter boundary layer characteristics at angles of attack from -4 to 32 degrees at a Mach number of 4.6. The effect of large grit, employed as transition strips, on both the nature of the boundary layer and the force and moment characteristics were investigated along with the effects of large negative elevon deflection on lee side separation. In addition, laminar and turbulent boundary layer separation phenomena which could cause asymmetric flow separation were investigated.
Institute of Scientific and Technical Information of China (English)
Yuan Zhongcai; Shi Jiaming; Xu Bo
2005-01-01
The plasma diagnostic method using the transmission attenuation of microwaves at double frequencies (PDMUTAMDF) indicates that the frequency and the electron-neutral collision frequency of the plasma can be deduced by utilizing the transmission attenuation of microwaves at two neighboring frequencies in a non-magnetized plasma. Then the electron density can be obtained from the plasma frequency. The PDMUTAMDF is a simple method to diagnose the plasma indirectly. In this paper, the interaction of electromagnetic waves and the plasma is analyzed. Then, based on the attenuation and the phase shift of a microwave in the plasma, the principle of the PDMUTAMDF is presented. With the diagnostic method, the spatially mean electron density and electron collision frequency of the plasma can be obtained. This method is suitable for the elementary diagnosis of the atmospheric-pressure plasma.
Loading Detection and Number Estimation of an Electron Plasma in a Penning Trap
Institute of Scientific and Technical Information of China (English)
K.T.SATYAJIT; Anita GUPTA; Gopal JOSHI; Shyam MOHAN; Pushpa RAO; Sharath ANANTHAMURTHY
2009-01-01
A quadrupole Penning trap for spectroscopy and investigations of non-neutral plasmas was designed and built.In this work we provide details of the trap design and a discussion of a simple design and procedure for convenient electron loading from an aligned filament.Electrons from thermionic emission which form a low-energy diffuse beam are trapped in weak magnetic fields.They are detected through a non-destructive electronic detection scheme,the details of which are discussed.The detection signal is diminished when the electron beam energy is increased while the electron flux is kept constant.This is explained by considering the energy shift in the distribution function of electrons emitted from the filament and entering the trap.We present a calculation of the number of trapped electrons from the shape of the detection signal.This calculation,based on a model of a driven damped harmonic oscillator to describe the axial motion of the electrons,compares favourably with the numbers obtained by measurements of the space charge induced shift in the trap potential.
Fundamental and analytical studies of optical emission from the Mach disk extracted from an ICP
Energy Technology Data Exchange (ETDEWEB)
Luan, S.; Pang, H.; Houk, R.S. [Iowa State Univ., Ames, IA (United States)
1994-12-31
An inductively coupled plasma is extracted into a small quartz vacuum chamber (approximately 1 torr) through a sampling orifice in a copper disk. Optical emission from the Mach disk region is measured with a new type of echelle spectrometer with two segmented-array charge-coupled device detectors (SCD), the Optima 3000 from Perkin-Elmer. This detector provides excellent quantum efficiency throughout the UV-visible region, as well as low dark current and readout noises. The spectral background emitted by the Mach disk is very low. If analyte line intensities from the Mach disk can be enhanced, the combined ICP-Mach disk-Optima instrument should provide excellent detection limits for simultaneous multielement analysis. Axial profiles of the optical emission of various atom and ion lines are measured. Intensities of various lines are maximized at the Mach disk location. The relationship between the location of the Mach disk and the vacuum operating pressure is studied, using a cathetometer to measure small changes in the location of the Mach disk. The effects of aerosol gas flow rate on the intensities of various lines are also investigated. Finally, several schemes for boosting the intensity from the Mach disk will be presented.
Roth, J. R.
1977-01-01
The degree of toroidal symmetry of the plasma, the number of midplane electrode rings, the configuration of electrode rings, and the location of the diagnostic instruments with respect to the electrode rings used to generate the plasma are discussed. Impurities were deliberately introduced into the plasma, and the effects of the impurity fraction on ion kinetic temperature and electron number density were observed. It is concluded that, if necessary precautions are taken, the plasma communicates extremely well along the magnetic field lines and displays a high degree of symmetry from sector to sector for a wide range of electrode ring configurations and operating conditions. Finally, some characteristic data taken under nonoptimized conditions are presented, which include the highest electron number density and the longest particle containment time (1.9 msec) observed. Also, evidence from a paired comparison test is presented which shows that the electric field acting along the minor radius of the toroidal plasma improves the plasma density and the calculated containment time more than an order of magnitude if the electric field points inward, relative to the values observed when it points (and pushes ions) radially outward.
Chan, K. C. Allen; Jiang, Peiyong; Chan, Carol W. M.; Sun, Kun; Wong, John; Hui, Edwin P.; Chan, Stephen L.; Chan, Wing Cheong; Hui, David S. C.; Ng, Simon S. M.; Chan, Henry L. Y.; Wong, Cesar S. C.; Ma, Brigette B. Y.; Chan, Anthony T. C.; Lai, Paul B. S.; Sun, Hao; Chiu, Rossa W. K.; Lo, Y. M. Dennis
2013-01-01
We explored the detection of genome-wide hypomethylation in plasma using shotgun massively parallel bisulfite sequencing as a marker for cancer. Tumor-associated copy number aberrations (CNAs) could also be observed from the bisulfite DNA sequencing data. Hypomethylation and CNAs were detected in the plasma DNA of patients with hepatocellular carcinoma, breast cancer, lung cancer, nasopharyngeal cancer, smooth muscle sarcoma, and neuroendocrine tumor. For the detection of nonmetastatic cancer cases, plasma hypomethylation gave a sensitivity and specificity of 74% and 94%, respectively, when a mean of 93 million reads per case were obtained. Reducing the sequencing depth to 10 million reads per case was found to have no adverse effect on the sensitivity and specificity for cancer detection, giving respective figures of 68% and 94%. This characteristic thus indicates that analysis of plasma hypomethylation by this sequencing-based method may be a relatively cost-effective approach for cancer detection. We also demonstrated that plasma hypomethylation had utility for monitoring hepatocellular carcinoma patients following tumor resection and for detecting residual disease. Plasma hypomethylation can be combined with plasma CNA analysis for further enhancement of the detection sensitivity or specificity using different diagnostic algorithms. Using the detection of at least one type of aberration to define an abnormality, a sensitivity of 87% could be achieved with a specificity of 88%. These developments have thus expanded the applications of plasma DNA analysis for cancer detection and monitoring. PMID:24191000
Phillips, W. P.; Fournier, R. H.
1979-01-01
Supersonic aerodynamic characteristics are presented for the 140A/B space shuttle orbiter configuration (0.010 scale) and for the configuration modified to incorporate geometry changes in the wing planform fillet region. The modifications designed to extend the orbiter's longitudinal trim capability to more forward center-of-gravity locations, included reshaping of the baseline wing planform fillet and adding canards. The investigation was made in the high Mach number test section of the Langley Unitary Plan Wind Tunnel at a Reynolds number of approximately 2.2 million based on fuselage reference length. The angle-of-attack range for the investigation extended from -1 deg to 31 deg. Data were obtained with the elevators and body flap deflected at appropriate negative and positive conditions to assess the trim limits.
Measurement of Ar resonance and metastable level number densities in argon containing plasmas
Fiebrandt, Marcel; Hillebrand, Bastian; Spiekermeier, Stefan; Bibinov, Nikita; Böke, Marc; Awakowicz, Peter
2017-09-01
The resonance 1s_4~({\\hspace{0pt}}^3P_1), ~1s_2~({\\hspace{0pt}}^1P_1) and metastable 1s_5~({\\hspace{0pt}}^3P_2), ~1s_3~({\\hspace{0pt}}^3P_0) level number densities of argon are determined by means of the branching fraction method in an inductively coupled plasma at 5 Pa and 10 Pa in argon with admixture of hydrogen, nitrogen and oxygen. The 1s_5~({\\hspace{0pt}}^3P_2) densities are compared to laser absorption spectroscopy measurements to evaluate the reliability of the branching fraction method and its limitations. The results are in good agreement and the use of a compact, low cost, low resolution spectrometer (Δλ = 1.3 nm) is sufficient to reliably determine the first four excited states of argon in argon-hydrogen and argon-oxygen mixtures. The addition of nitrogen results in unreliable densities, as the observed argon lines overlap with emission of the N_2(B^3\\Pi_g-A^3Σ_u^+) transition.
Fluid-plasma interaction in compressible unstable flows
Massa, Luca
2014-11-01
The receptivity of the boundary layer discrete modes to dielectric barrier discharge (DBD) actuation is studied to improve the understanding of the interaction between non-equilibrium plasma and fluid in convectively amplified vortical layers. The momentum transfer induced by a DBD patch at various Reynolds numbers is evaluated using an adaptive mesh refinement computational solver in the Mach number regime 0.8-2.0. The energy of the induced modal perturbation is determined by weighting such a source term with the corresponding adjoint eigenfunctions. Conditions of maximum overlapping between the adjoint and the source term define the regimes of maximum receptivity and the locations of optimal placement of the DBD patch at different Mach and Reynolds numbers. The interaction between non-equilibrium plasma and the jet in cross flow is also being studied to determine the ability of DBD patches to influence mixing in the compressible regime, thus improving flame-holding in plasma assisted ignition and combustion.
Double layers and double wells in arbitrary degenerate plasmas
Akbari-Moghanjoughi, M.
2016-06-01
Using the generalized hydrodynamic model, the possibility of variety of large amplitude nonlinear excitations is examined in electron-ion plasma with arbitrary electron degeneracy considering also the ion temperature effect. A new energy-density relation is proposed for plasmas with arbitrary electron degeneracy which reduces to the classical Boltzmann and quantum Thomas-Fermi counterparts in the extreme limits. The pseudopotential method is employed to find the criteria for existence of nonlinear structures such as solitons, periodic nonlinear structures, and double-layers for different cases of adiabatic and isothermal ion fluids for a whole range of normalized electron chemical potential, η0, ranging from dilute classical to completely degenerate electron fluids. It is observed that there is a Mach-speed gap in which no large amplitude localized or periodic nonlinear excitations can propagate in the plasma under consideration. It is further revealed that the plasma under investigation supports propagation of double-wells and double-layers the chemical potential and Mach number ranges of which are studied in terms of other plasma parameters. The Mach number criteria for nonlinear waves are shown to significantly differ for cases of classical with η0 0 regimes. It is also shown that the localized structure propagation criteria possess significant dissimilarities for plasmas with adiabatic and isothermal ions. Current research may be generalized to study the nonlinear structures in plasma containing positrons, multiple ions with different charge states, and charged dust grains.
Mach-like capillary-gravity wakes.
Moisy, Frédéric; Rabaud, Marc
2014-08-01
We determine experimentally the angle α of maximum wave amplitude in the far-field wake behind a vertical surface-piercing cylinder translated at constant velocity U for Bond numbers Bo(D)=D/λ(c) ranging between 0.1 and 4.2, where D is the cylinder diameter and λ(c) the capillary length. In all cases the wake angle is found to follow a Mach-like law at large velocity, α∼U(-1), but with different prefactors depending on the value of Bo(D). For small Bo(D) (large capillary effects), the wake angle approximately follows the law α≃c(g,min)/U, where c(g,min) is the minimum group velocity of capillary-gravity waves. For larger Bo(D) (weak capillary effects), we recover a law α∼√[gD]/U similar to that found for ship wakes at large velocity [Rabaud and Moisy, Phys. Rev. Lett. 110, 214503 (2013)]. Using the general property of dispersive waves that the characteristic wavelength of the wave packet emitted by a disturbance is of order of the disturbance size, we propose a simple model that describes the transition between these two Mach-like regimes as the Bond number is varied. We show that the new capillary law α≃c(g,min)/U originates from the presence of a capillary cusp angle (distinct from the usual gravity cusp angle), along which the energy radiated by the disturbance accumulates for Bond numbers of order of unity. This model, complemented by numerical simulations of the surface elevation induced by a moving Gaussian pressure disturbance, is in qualitative agreement with experimental measurements.
MACH: Fast Randomized Tensor Decompositions
Tsourakakis, Charalampos E
2009-01-01
Tensors naturally model many real world processes which generate multi-aspect data. Such processes appear in many different research disciplines, e.g, chemometrics, computer vision, psychometrics and neuroimaging analysis. Tensor decompositions such as the Tucker decomposition are used to analyze multi-aspect data and extract latent factors, which capture the multilinear data structure. Such decompositions are powerful mining tools, for extracting patterns from large data volumes. However, most frequently used algorithms for such decompositions involve the computationally expensive Singular Value Decomposition. In this paper we propose MACH, a new sampling algorithm to compute such decompositions. Our method is of significant practical value for tensor streams, such as environmental monitoring systems, IP traffic matrices over time, where large amounts of data are accumulated and the analysis is computationally intensive but also in "post-mortem" data analysis cases where the tensor does not fit in the availa...
Landrum, E. J.; Babb, C. D.
1979-01-01
Flow visualization and force data for a series of six bodies of revolution are presented without analysis. The data were obtained in the Langley Unitary Plan wind tunnel for angles of attack from -4 deg to 60 deg. The Reynolds number used for these tests was 6,600,000 per meter.
Directory of Open Access Journals (Sweden)
Nersisyan Hrachya B.
2013-11-01
Full Text Available The low-velocity stopping power of ions in a magnetized collisional plasma is studied through the linear response theory. The collisions are taken into account through a number-conserving relaxation time approximation. One of the major objectives of this study is to compare and contrast our theoretical results with those obtained through a diffusion coefficient formulation based on Dufty-Berkovsky relation.
Mach stem formation in reflection and focusing of weak shock acoustic pulses.
Karzova, Maria M; Khokhlova, Vera A; Salze, Edouard; Ollivier, Sébastien; Blanc-Benon, Philippe
2015-06-01
The aim of this study is to show the evidence of Mach stem formation for very weak shock waves with acoustic Mach numbers on the order of 10(-3) to 10(-2). Two representative cases are considered: reflection of shock pulses from a rigid surface and focusing of nonlinear acoustic beams. Reflection experiments are performed in air using spark-generated shock pulses. Shock fronts are visualized using a schlieren system. Both regular and irregular types of reflection are observed. Numerical simulations are performed to demonstrate the Mach stem formation in the focal region of periodic and pulsed nonlinear beams in water.
Density Measurement of Compact Toroid with Mach-Zehnder Interferometer
Laufman-Wollitzer, Lauren; Endrizzi, Doug; Brookhart, Matt; Flanagan, Ken; Forest, Cary
2016-10-01
Utilizing a magnetized coaxial plasma gun (MCPG) built by Tri Alpha Energy, a dense compact toroid (CT) is created and injected at high speed into the Wisconsin Plasma Astrophysics Laboratory (WiPAL) vessel. A modified Mach-Zehnder interferometer from the Line-Tied Reconnection Experiment (LTRX) provides an absolute measurement of electron density. The interferometer is located such that the beam intersects the plasma across the diameter of the MCPG drift region before the CT enters the vessel. This placement ensures that the measurement is taken before the CT expand. Results presented will be used to further analyze characteristics of the CT. Funding provided by DoE, NSF, and WISE Summer Research.
A contoured gap coaxial plasma gun with injected plasma armature
Witherspoon, F. Douglas; Case, Andrew; Messer, Sarah J.; Bomgardner, Richard; Phillips, Michael W.; Brockington, Samuel; Elton, Raymond
2009-08-01
A new coaxial plasma gun is described. The long term objective is to accelerate 100-200 μg of plasma with density above 1017 cm-3 to greater than 200 km/s with a Mach number above 10. Such high velocity dense plasma jets have a number of potential fusion applications, including plasma refueling, magnetized target fusion, injection of angular momentum into centrifugally confined mirrors, high energy density plasmas, and others. The approach uses symmetric injection of high density plasma into a coaxial electromagnetic accelerator having an annular gap geometry tailored to prevent formation of the blow-by instability. The injected plasma is generated by numerous (currently 32) radially oriented capillary discharges arranged uniformly around the circumference of the angled annular injection region of the accelerator. Magnetohydrodynamic modeling identified electrode profiles that can achieve the desired plasma jet parameters. The experimental hardware is described along with initial experimental results in which approximately 200 μg has been accelerated to 100 km/s in a half-scale prototype gun. Initial observations of 64 merging injector jets in a planar cylindrical testing array are presented. Density and velocity are presently limited by available peak current and injection sources. Steps to increase both the drive current and the injected plasma mass are described for next generation experiments.
A contoured gap coaxial plasma gun with injected plasma armature.
Witherspoon, F Douglas; Case, Andrew; Messer, Sarah J; Bomgardner, Richard; Phillips, Michael W; Brockington, Samuel; Elton, Raymond
2009-08-01
A new coaxial plasma gun is described. The long term objective is to accelerate 100-200 microg of plasma with density above 10(17) cm(-3) to greater than 200 km/s with a Mach number above 10. Such high velocity dense plasma jets have a number of potential fusion applications, including plasma refueling, magnetized target fusion, injection of angular momentum into centrifugally confined mirrors, high energy density plasmas, and others. The approach uses symmetric injection of high density plasma into a coaxial electromagnetic accelerator having an annular gap geometry tailored to prevent formation of the blow-by instability. The injected plasma is generated by numerous (currently 32) radially oriented capillary discharges arranged uniformly around the circumference of the angled annular injection region of the accelerator. Magnetohydrodynamic modeling identified electrode profiles that can achieve the desired plasma jet parameters. The experimental hardware is described along with initial experimental results in which approximately 200 microg has been accelerated to 100 km/s in a half-scale prototype gun. Initial observations of 64 merging injector jets in a planar cylindrical testing array are presented. Density and velocity are presently limited by available peak current and injection sources. Steps to increase both the drive current and the injected plasma mass are described for next generation experiments.
Peterson, Victor L.; Menees, Gene P.
1961-01-01
Tabulated results of a wind-tunnel investigation of the aerodynamic loads on a canard airplane model with twin vertical tails are presented for Mach numbers from 0.70 to 2.22. The Reynolds number for the measurements was 2.9 x 10(exp 6) based on the wing mean aerodynamic chord. The results include local static-pressure coefficients measured on the wing, body, and one of the vertical tails for angles of attack from -4 degrees to 16 degree angles of sideslip of 0 degrees and 5.3 degrees, and nominal canard deflections of O degrees and 10 degrees. Also included are section force and moment coefficients obtained from integrations of the local pressures and model-component force and moment coefficients obtained from integrations of the section coefficients. Geometric details of the model are shown and the locations of the pressure orifices are shown. An index to the data contained herein is presented and definitions of nomenclature are given. Detailed descriptions of the model and experiments and a brief discussion of some of the results are given. Tabulated results of measurements of the aerodynamic loads on the same canard model but having a single vertical tail instead of twin vertical tails are presented.
Peterson, Victor L.; Menees, Gene P.
1961-01-01
Tabulated results of a wind-tunnel investigation of the aerodynamic loads on a canard airplane model with a single vertical tail are presented for Mach numbers from 0.70 to 2.22. The Reynolds number for the measurements was 2.9 x 10(exp 6) based on the wing mean aerodynamic chord. The results include local static pressure coefficients measured on the wing, body, and vertical tail for angles of attack from -4 deg to + 16 deg, angles of sideslip of 0 deg and 5.3 deg, vertical-tail settings of 0 deg and 5 deg, and nominal canard deflections of 0 deg and 10 deg. Also included are section force and moment coefficients obtained from integrations of the local pressures and model-component force and moment coefficients obtained from integrations of the section coefficients. Geometric details of the model and the locations of the pressure orifices are shown. An index to the data contained herein is presented and definitions of nomenclature are given.
Nonlinear waves in electron–positron–ion plasmas including charge separation
Indian Academy of Sciences (India)
A MUGEMANA; S MOOLLA; I J LAZARUS
2017-02-01
Nonlinear low-frequency electrostatic waves in a magnetized, three-component plasma consisting of hot electrons, hot positrons and warm ions have been investigated. The electrons and positrons are assumed to have Boltzmann density distributions while the motion of the ions are governed by fluid equations. The system is closed with the Poisson equation. This set of equations is numerically solved for the electric field. The effects of the driving electric field, ion temperature, positron density, ion drift, Mach number and propagation angle are investigated. It is shown that depending on the driving electric field, ion temperature, positron density, ion drift, Mach number and propagation angle, the numerical solutions exhibit waveforms that are sinusoidal, sawtooth andspiky. The introduction of the Poisson equation increased the Mach number required to generate the waveforms but the driving electric field E0 was reduced. The results are compared with satellite observations.
Fragmentation of electric currents in the solar corona by plasma flows
Nickeler, Dieter H; Wiegelmann, Thomas; Kraus, Michaela
2013-01-01
We consider a magnetic configuration consisting of an arcade structure and a detached plasmoid, resulting from a magnetic reconnection process, as is typically found in connection with solar flares. We study spontaneous current fragmentation caused by shear and vortex plasma flows. An exact analytical transformation method was applied to calculate self-consistent solutions of the nonlinear stationary MHD equations. The assumption of incompressible field-aligned flows implies that both the Alfven Mach number and the mass density are constant on field lines. We first calculated nonlinear MHS equilibria with the help of the Liouville method, emulating the scenario of a solar eruptive flare configuration with plasmoids and flare arcade. Then a Mach number profile was constructed that describes the upflow along the open magnetic field lines and implements a vortex flow inside the plasmoid. This Mach number profile was used to map the MHS equilibrium to the stationary one. We find that current fragmentation takes p...
Mass number identification by Alfvén wave diagnostics in hydrogen and helium plasmas in TCABR
Energy Technology Data Exchange (ETDEWEB)
Puglia, P.G.P.; Elfimov, A.G., E-mail: elfimov@if.usp.br; Andriati, A.V.; Galvão, R.M.O.; Guimarães-Filho, Z.O.; Ronchi, G.; Ruchko, L.F.
2016-03-11
The mass number is obtained through the identification of the Global Alfvén (GA) wave resonances in ohmic plasma discharges in the TCABR tokamak. By comparing hydrogen and helium discharges, the composition of carbon, oxygen, and iron impurities is determined. The non-perturbative Alfvén diagnostic is used that is based on the excitation of GA waves by an external antenna fed by a low power generator, in the frequency band swept just below the minimum of the Alfvén wave continuum. Odd or even toroidal modes are excited by selecting the current phase in the two antenna modules separated by 180 degrees in the toroidal direction. The density profile, determined from cross analysis of reflectometer and interferometer data, shows impurity accumulation in the plasma core. - Highlights: • A non-perturbative Alfvén diagnostic is used to find the mass number in ohmic discharges in TCABR tokamak. • Global Alfvén waves are excited by an external antenna fed by a low power generator at the minimum of the Alfvén continuum. • Comparing hydrogen and helium discharges, the composition of carbon, oxygen and iron impurities is determined. • The density profile defined reflectometer and interferometer data shows impurity accumulation in the plasma core.
Turbulence modelling of thermal plasma flows
Shigeta, Masaya
2016-12-01
This article presents a discussion of the ideas for modelling turbulent thermal plasma flows, reviewing the challenges, efforts, and state-of-the-art simulations. Demonstrative simulations are also performed to present the importance of numerical methods as well as physical models to express turbulent features. A large eddy simulation has been applied to turbulent thermal plasma flows to treat time-dependent and 3D motions of multi-scale eddies. Sub-grid scale models to be used should be able to express not only turbulent but also laminar states because both states co-exist in and around thermal plasmas which have large variations of density as well as transport properties under low Mach-number conditions. Suitable solution algorithms and differencing schemes must be chosen and combined appropriately to capture multi-scale eddies and steep gradients of temperature and chemical species, which are turbulent features of thermal plasma flows with locally variable Reynolds and Mach numbers. Several simulations using different methods under different conditions show commonly that high-temperature plasma regions exhibit less turbulent structures, with only large eddies, whereas low-temperature regions tend to be more turbulent, with numerous small eddies. These numerical results agree with both theoretical insight and photographs that show the characteristics of eddies. Results also show that a turbulence transition of a thermal plasma jet through a generation-breakup process of eddies in a torch is dominated by fluid dynamic instability after ejection rather than non-uniform or unsteady phenomena.
Interplay between Mach cone and radial expansion in jet events
Tachibana, Y.; Hirano, T.
2016-12-01
We study the hydrodynamic response to jet propagation in the expanding QGP and investigate how the particle spectra after the hydrodynamic evolution of the QGP reflect it. We perform simulations of the space-time evolution of the QGP in gamma-jet events by solving (3+1)-dimensional ideal hydrodynamic equations with source terms. Mach cone is induced by the jet energy deposition and pushes back the radial flow of the expanding background. Especially in the case when the jet passage is off-central one, the number of particles emitted in the direction of the push back decreases. This is the signal including the information about the formation of the Mach cone and the jet passage in the QGP fluid.
Plasma ion stratification by weak planar shocks
Simakov, Andrei N.; Keenan, Brett D.; Taitano, William T.; Chacón, Luis
2017-09-01
We derive fluid equations for describing steady-state planar shocks of a moderate strength ( 0 shock Mach number) propagating through an unmagnetized quasineutral collisional plasma comprising two separate ion species. In addition to the standard fluid shock quantities, such as the total mass density, mass-flow velocity, and electron and average ion temperatures, the equations describe shock stratification in terms of variations in the relative concentrations and temperatures of the two ion species along the shock propagation direction. We have solved these equations analytically for weak shocks ( 0 shocks, and they have been used to verify kinetic simulations of shocks in multi-ion plasmas.
Mach, the Universe, and Foundations of Mechanics
Mashhoon, B
2011-01-01
Barbour's response to our recent paper on "Mach's principle and higher-dimensional dynamics" describes an approach to Mach's principle in which the universe as a whole is involved in the definition of inertial frames of reference. Moreover, Barbour's theoretical procedure is in agreement with general relativity for a finite universe that is spatially closed. However, we prefer an operational approach that relies ultimately on observational data.
Energy Technology Data Exchange (ETDEWEB)
Kalnicky, D.J.
1977-02-01
Spatially resolved, radial excitation temperatures and radial electron number density distributions experienced by analyte species in the observation zone of 15 to 25 mm above the load coil of a toroidally shaped, inductively coupled argon plasma (ICP) are presented and related to the analytical performance of these plasmas. A comparison of radial temperatures measured with support gas (Ar I) lines and with a typical analyte thermometric species (Fe I) at 15 mm above the load coil is given. Radial (Fe I) excitation temperatures obtained at three observation heights (15, 20, and 25 mm) are compared for aerosol carrier gas flows of 1.0 l/min and 1.3 l/min. The addition of a large amount of an easily ionized element (6900 ..mu..g Na/ml) did not significantly change Fe I excitation temperature distributions at the respective aerosol carrier gas flows and observation heights. A comparison of radial electron number density distributions measured by the Saha-Eggert ionization and Stark broadening methods is given for an observation height of 15 mm above the load coil. The differences between the electron number density values obtained by these methods is discussed. The effect of addition of 6900 ..mu..g Na/ml on Saha-Eggert electron density distributions at these observation heights is also discussed. The computer programs employed in this investigation and discussions of the computational procedures incorporated in these programs are given.
Emergent gravity of fractons: Mach's principle revisited
Pretko, Michael
2017-07-01
Recent work has established the existence of stable quantum phases of matter described by symmetric tensor gauge fields, which naturally couple to particles of restricted mobility, such as fractons. We focus on a minimal toy model of a rank 2 tensor gauge field, consisting of fractons coupled to an emergent graviton (massless spin-2 excitation). We show how to reconcile the immobility of fractons with the expected gravitational behavior of the model. First, we reformulate the fracton phenomenon in terms of an emergent center of mass quantum number, and we show how an effective attraction arises from the principles of locality and conservation of center of mass. This interaction between fractons is always attractive and can be recast in geometric language, with a geodesiclike formulation, thereby satisfying the expected properties of a gravitational force. This force will generically be short-ranged, but we discuss how the power-law behavior of Newtonian gravity can arise under certain conditions. We then show that, while an isolated fracton is immobile, fractons are endowed with finite inertia by the presence of a large-scale distribution of other fractons, in a concrete manifestation of Mach's principle. Our formalism provides suggestive hints that matter plays a fundamental role, not only in perturbing, but in creating the background space in which it propagates.
Feng, Q S; Wang, Q; Zheng, C Y; Liu, Z J; Cao, L H; He, X T
2016-01-01
The properties of the nonlinear frequency shift (NFS) especially the fluid NFS from the harmonic generation of the ion-acoustic wave (IAW) in multi-ion species plasmas have been researched by Vlasov simulation. The pictures of the nonlinear frequency shift from harmonic generation and particles trapping are shown to explain the mechanism of NFS qualitatively. The theoretical model of the fluid NFS from harmonic generation in multi-ion species plasmas is given and the results of Vlasov simulation are consistent to the theoretical result of multi-ion species plasmas. When the wave number $k\\lambda_{De}$ is small, such as $k\\lambda_{De}=0.1$, the fluid NFS dominates in the total NFS and will reach as large as nearly $15\\%$ when the wave amplitude $|e\\phi/T_e|\\sim0.1$, which indicates that in the condition of small $k\\lambda_{De}$, the fluid NFS dominates in the saturation of stimulated Brillouin scattering especially when the nonlinear IAW amplitude is large.
Energy Technology Data Exchange (ETDEWEB)
Shinohara, S., E-mail: sshinoha@cc.tuat.ac.jp [Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan); Tanikawa, T. [Research Institute of Science and Technology, Tokai University, 4-1-1, Kita-kaname, Hiratsuka, Kanagawa 259-1292 (Japan); Motomura, T. [National Institute of Advanced Industrial Science and Technology (AIST), 807-1, Shuku-machi, Tosu, Saga 841-0052 Japan (Japan)
2014-09-15
A flat type, segmented multi-loop antenna was developed in the Tokai Helicon Device, built for producing high-density helicon plasma, with a diameter of 20 cm and an axial length of 100 cm. This antenna, composed of azimuthally splitting segments located on four different radial positions, i.e., r = 2.8, 4.8, 6.8, and 8.8 cm, can excite the azimuthal mode number m of 0, ±1, and ±2 by a proper choice of antenna feeder parts just on the rear side of the antenna. Power dependencies of the electron density n{sub e} were investigated with a radio frequency (rf) power less than 3 kW (excitation frequency ranged from 8 to 20 MHz) by the use of various types of antenna segments, and n{sub e} up to ∼5 × 10{sup 12} cm{sup −3} was obtained after the density jump from inductively coupled plasma to helicon discharges. Radial density profiles of m = 0 and ±1 modes with low and high rf powers were measured. For the cases of these modes after the density jump, the excited mode structures derived from the magnetic probe measurements were consistent with those expected from theory on helicon waves excited in the plasma.
Fenomenologia e fenomenismo em Husserl e Mach
Directory of Open Access Journals (Sweden)
Denis Fisette
2009-12-01
Full Text Available Como conciliar as repetidas críticas ao fenomenismo de Mach, um pouco por toda a obra de Husserl, com o papel proeminente que Husserl parece nele reconhecer em seus últimos trabalhos, quanto à gênese de sua própria fenomenologia? Para responder a essa questão, examinaremos, primeiramente, a relação estreita que Husserl estabelece entre o método fenomenológico e o descritivismo de Mach à luz do debate que opõe nativismo e empirismo sobre a origem da percepção do espaço. Em seguida, examinaremos dois aspectos da crítica que Husserl faz ao positivismo de Mach: o primeiro se refere ao fenomenismo e sua doutrina dos elementos, enquanto o segundo, ao princípio de economia de pensamento, que Husserl associa a uma forma de psicologismo em Prolegômenos. A hipótese que nos guiará nesse estudo é que as opiniões aparentemente contraditórias de Husserl sobre o positivismo de Mach se explicam em parte pelo estatuto duplo que a fenomenologia recebe em seus últimos trabalhos: enquanto programa filosófico, ela se opõe explicitamente ao positivismo; enquanto método, ela se aparenta ao descritivismo de Mach. Concluiremos com a ideia de que esses dois filósofos de origem checa perseguiam o objetivo comum de apreender o sentido originário de positividade.How to conciliate the recurrent criticisms to Mach's phenomenism, a bit in all Husserl's work, with the outstanding role Husserl seems to recognise in phenomenism in his last works, as to the genesis of his own phenomenology? In order to answer this question, we examine, first, the close relationship stablished by Husserl between the phenomenological method and Mach's descriptivism in light of the debate that opposes nativism and empiricism regarding the origin of the perception of space. Next, we examine two features of Husserl's criticism to Mach's positivism: the first refers to phenomenism ans its doctrine of elements, and the second, to the principle of economy of thought, which
Salt stress reduces kernel number of corn by inhibiting plasma membrane H(+)-ATPase activity.
Jung, Stephan; Hütsch, Birgit W; Schubert, Sven
2017-04-01
Salt stress affects yield formation of corn (Zea mays L.) at various physiological levels resulting in an overall grain yield decrease. In this study we investigated how salt stress affects kernel development of two corn cultivars (cvs. Pioneer 3906 and Fabregas) at and shortly after pollination. In an earlier study, we found an accumulation of hexoses in the kernel tissue. Therefore, it was hypothesized that hexose uptake into developing endosperm and embryo might be inhibited. Hexoses are transported into the developing endosperm by carriers localized in the plasma membrane (PM). The transport is driven by the pH gradient which is built up by the PM H(+)-ATPase. It was investigated whether the PM H(+)-ATPase activity in developing corn kernels was inhibited by salt stress, which would cause a lower pH gradient resulting in impaired hexose import and finally in kernel abortion. Corn grown under control and salt stress conditions was harvested 0 and 2 days after pollination (DAP). Under salt stress sucrose and hexose concentrations in kernel tissue were higher 0 and 2 DAP. Kernel PM H(+)-ATPase activity was not affected at 0 DAP, but it was reduced at 2 DAP. This is in agreement with the finding, that kernel growth and thus kernel setting was not affected in the salt stress treatment at pollination, but it was reduced 2 days later. It is concluded that inhibition of PM H(+)-ATPase under salt stress impaired the energization of hexose transporters into the cells, resulting in lower kernel growth and finally in kernel abortion.
Numerical Simulation of Shock Bubble Interaction with Different Mach Numbers
Yang, Jie; Wan, Zhen-Hua; Wang, Bo-Fu; Sun, De-Jun
2015-03-01
Not Available Supported by the National Natural Science Foundation of China under Grant Nos 11232011 and 11402262, the 111 Project under Grant No B07033, and the China Postdoctoral Science Foundation Funded Project under Grant No 2014M561833.
Experimental Studies of Very-High Mach Number Hydrodynamics
1994-02-14
intensity of the from Rotman (1991. symbol R) shock amplification of the density fluctuations as a parameter, together with a turbulent kinetic energy...overlapsubgrid scale model while predicting an increase in the model where an algebraic identity provides a procedure for overall grid spectral energy... Rotman , and W. P. improvement in the dissipative near-wal region. Dannevik during the course of this work. Figure 8. indicates that for even steeper
Hydrocarbon-Fueled Scramjet Research at Hypersonic Mach Numbers
2005-03-31
hypersonic flow. Laser-induced fluorescence has the threefold advantages for combustion studies of being non- intrusive , species-specific and highly sensitive...Propulsion Conference and Exhibit, Seattle, WA. Griffiths, A. (2004), Development and Demonstration of a Diode Laser Based Temperature and Water Vapour
Hydrodynamic Flow and Jet Induced Mach Shocks at RHIC and LHC
Stöcker, H; Rau, P; Betz, Barbara; Rau, Philip; St\\"ocker, Horst
2007-01-01
We discuss the present collective flow signals for the phase transition to quark-gluon plasma (QGP) and the collective flow as a barometer for the equation of state (EoS). A study of Mach shocks induced by fast partonic jets propagating through the QGP is given. We predict a significant deformation of Mach shocks in central Au+Au collisions at RHIC and LHC energies as compared to the case of jet propagation in a static medium. Results of a hydrodynamical study of jet energy loss are presented.
Low frequency solitons and double layers in a magnetized plasma with two temperature electrons
Energy Technology Data Exchange (ETDEWEB)
Rufai, O. R. [Department of Physics, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); Bharuthram, R. [Office of the Deputy Vice Chancellor (Academic), University of the Western Cape, Bellville (South Africa); Singh, S. V. [Indian Institute of Geomagnetism, New Panvel (W), Navi Mumbai-410218 (India); School of Chemistry and Physics, University of Kwa-Zulu Natal, Durban (South Africa); Lakhina, G. S. [Indian Institute of Geomagnetism, New Panvel (W), Navi Mumbai-410218 (India)
2012-12-15
Finite amplitude non-linear ion-acoustic solitary waves and double layers are studied in a magnetized plasma with cold ions fluid and two distinct groups of Boltzmann electrons, using the Sagdeev pseudo-potential technique. The conditions under which the solitary waves and double layers can exist are found both analytically and numerically. We have shown the existence of negative potential solitary waves and double layers for subsonic Mach numbers, whereas in the unmagnetized plasma they can only in the supersonic Mach number regime. For the plasma parameters in the auroral region, the electric field amplitude of the solitary structures comes out to be 49 mV/m which is in agreement of the Viking observations in this region.
Magnetic reconnection and stochastic plasmoid chains in high-Lundquist-number plasmas
Loureiro, N. F.
2012-04-13
A numerical study of magnetic reconnection in the large-Lundquist-number (S), plasmoid-dominated regime is carried out for S up to 10 7. The theoretical model of Uzdensky [Phys. Rev. Lett. 105, 235002 (2010)] is confirmed and partially amended. The normalized reconnection rate is Ẽ eff ∼ 0.02 independently of S for S ≫ 10 4. The plasmoid flux (ψ) and half-width (w x) distribution functions scale as f (ψ) ∼ - ψ -2 and f (w x) ∼ w x -2. The joint distribution of ψ and w x shows that plasmoids populate a triangular region w x ≲ψ/B 0, where B 0 is the reconnecting field. It is argued that this feature is due to plasmoid coalescence. Macroscopic "monster" plasmoids with w x ∼ 10 % of the system size are shown to emerge in just a few Alfvén times, independently of S, suggesting that large disruptive events are an inevitable feature of large-S reconnection. © 2012 American Institute of Physics.
The role of carrier number on the procoagulant activity of tissue factor in blood and plasma
Tormoen, G. W.; Rugonyi, S.; Gruber, A.; McCarty, O. J. T.
2011-12-01
Tissue factor (TF) is a transmembrane glycoprotein cofactor of activated blood coagulation factor VII (FVIIa) that is required for hemostatic thrombin generation at sites of blood vessel injury. Membrane-associated TF detected in circulating blood of healthy subjects, referred to as intravascular or circulating TF has been shown to contribute to experimental thrombus propagation at sites of localized vessel injury. Certain disease states, such as metastatic cancer, are associated with increased levels of intravascular TF and an elevated risk of venous thromboembolism. However, the physiological relevance of circulating TF to hemostasis or thrombosis, as well as cancer metastasis, is ill-defined. This study was designed to assess whether the spatial separation of intravascular TF carriers in blood, demonstrated with TF-inducible human monocytic cell line U937 or TF-coated polymer microspheres, affected procoagulant activity and hence thrombogenic potential. Experiments were performed to characterize the effects of TF-carrier number on the kinetics of clot formation in both open and closed systems. The procoagulant activity of TF carriers was found to correlate with spatial separation in both closed, well-mixed systems and open, flowing systems. TF carriers enhanced the amidolytic activity of FVIIa toward the chromogenic substrate, S-2366, as a function of carrier count. These results suggest that TF-initiated coagulation by circulating TF is kinetically limited by mass transport of TF-dependent coagulation factors to the TF-bearing surface, a constraint that may be unique to circulating TF. Spatial separation of circulating TF carriers is therefore a critical determinant of the procoagulant activity of circulating TF.
Skála, J.; Baruffa, F.; Büchner, J.; Rampp, M.
2015-08-01
Context. The numerical simulation of turbulence and flows in almost ideal astrophysical plasmas with large Reynolds numbers motivates the implementation of magnetohydrodynamical (MHD) computer codes with low resistivity. They need to be computationally efficient and scale well with large numbers of CPU cores, allow obtaining a high grid resolution over large simulation domains, and be easily and modularly extensible, for instance, to new initial and boundary conditions. Aims: Our aims are the implementation, optimization, and verification of a computationally efficient, highly scalable, and easily extensible low-dissipative MHD simulation code for the numerical investigation of the dynamics of astrophysical plasmas with large Reynolds numbers in three dimensions (3D). Methods: The new GOEMHD3 code discretizes the ideal part of the MHD equations using a fast and efficient leap-frog scheme that is second-order accurate in space and time and whose initial and boundary conditions can easily be modified. For the investigation of diffusive and dissipative processes the corresponding terms are discretized by a DuFort-Frankel scheme. To always fulfill the Courant-Friedrichs-Lewy stability criterion, the time step of the code is adapted dynamically. Numerically induced local oscillations are suppressed by explicit, externally controlled diffusion terms. Non-equidistant grids are implemented, which enhance the spatial resolution, where needed. GOEMHD3 is parallelized based on the hybrid MPI-OpenMP programing paradigm, adopting a standard two-dimensional domain-decomposition approach. Results: The ideal part of the equation solver is verified by performing numerical tests of the evolution of the well-understood Kelvin-Helmholtz instability and of Orszag-Tang vortices. The accuracy of solving the (resistive) induction equation is tested by simulating the decay of a cylindrical current column. Furthermore, we show that the computational performance of the code scales very
Abad-Álvaro, Isabel; Peña-Vázquez, Elena; Bolea, Eduardo; Bermejo-Barrera, Pilar; Castillo, Juan R; Laborda, Francisco
2016-07-01
The quality of the quantitative information in single-particle inductively coupled plasma mass spectrometry (SP-ICP-MS) depends directly on the number concentration of the nanoparticles in the sample analyzed, which is proportional to the flux of nanoparticles through the plasma. Particle number concentrations must be selected in accordance with the data acquisition frequency, to control the precision from counting statistics and the bias, which is produced by the occurrence of multiple-particle events recorded as single-particle events. With quadrupole mass spectrometers, the frequency of data acquisition is directly controlled by the dwell time. The effect of dwell times from milli- to microseconds (10 ms, 5 ms, 100 μs, and 50 μs) on the quality of the quantitative data has been studied. Working with dwell times in the millisecond range, precision figures about 5 % were achieved, whereas using microsecond dwell times, the suitable fluxes of nanoparticles are higher and precision was reduced down to 1 %; this was independent of the dwell time selected. Moreover, due to the lower occurrence of multiple-nanoparticle events, linear ranges are wider when dwell times equal to or shorter than 100 μs are used. A calculation tool is provided to determine the optimal concentration for any instrument or experimental conditions selected. On the other hand, the use of dwell times in the microsecond range reduces significantly the contribution of the background and/or the presence of dissolved species, in comparison with the use of millisecond dwell times. Although the use of dwell times equal to or shorter than 100 μs offers improved performance working in single-particle mode, the use of conventional dwell times (3-10 ms) should not be discarded, once their limitations are known.
Mach bands change asymmetrically during solar eclipses.
Ross, John; Diamond, Mark R; Badcock, David R
2003-01-01
Observations made during two partial eclipses of the Sun show that the Mach bands on shadows cast by the Sun disappear and reappear asymmetrically as an eclipse progresses. These changes can be explained as due to changes in the shape of the penumbras of shadows as the visible portion of the Sun forms crescents of different orientation.
X-ray emission from a high-atomic-number z-pinch plasma created from compact wire arrays
Energy Technology Data Exchange (ETDEWEB)
Sanford, T.W.L.; Nash, T.J.; Marder, B.M. [and others
1996-03-01
Thermal and nonthermal x-ray emission from the implosion of compact tungsten wire arrays, driven by 5 MA from the Saturn accelerator, are measured and compared with LLNL Radiation-Hydro-Code (RHC) and SNL Hydro-Code (HC) numerical models. Multiple implosions, due to sequential compressions and expansions of the plasma, are inferred from the measured multiple x-radiation bursts. Timing of the multiple implosions and the thermal x-ray spectra measured between 1 and 10 keV are consistent with the RHC simulations. The magnitude of the nonthermal x-ray emission measured from 10 to 100 keV ranges from 0.02 to 0.08% of the total energy radiated and is correlated with bright-spot emission along the z-axis, as observed in earlier Gamble-11 single exploding-wire experiments. The similarities of the measured nonthermal spectrum and bright-spot emission with those measured at 0.8 MA on Gamble-II suggest a common production mechanism for this process. A model of electron acceleration across magnetic fields in highly-collisional, high-atomic-number plasmas is developed, which shows the existence of a critical electric field, E{sub c}, below which strong nonthermal electron creation (and the associated nonthermal x rays) do not occur. HC simulations show that significant nonthermal electrons are not expected in this experiment (as observed) because the calculated electric fields are at least one to two orders-of-magnitude below E{sub c}. These negative nonthermal results are confirmed by RHC simulations using a nonthermal model based on a Fokker-Plank analysis. Lastly, the lower production efficiency and the larger, more irregular pinch spots formed in this experiment relative to those measured on Gamble II suggest that implosion geometries are not as efficient as single exploding-wire geometries for warm x-ray production.
Directory of Open Access Journals (Sweden)
Takayuki Matsunuma
2012-01-01
Full Text Available Active flow control using dielectric barrier discharge (DBD plasma actuators was investigated to reattach the simulated boundary layer separation on the suction surface of a turbine blade at low Reynolds number, Re = 1.7 × 104. The flow separation is induced on a curved plate installed in the test section of a low-speed wind tunnel. Particle image velocimetry (PIV was used to obtain instantaneous and time-averaged two-dimensional velocity measurements. The amplitude of input voltage for the plasma actuator was varied from ±2.0 kV to ±2.8 kV. The separated flow reattached on the curved wall when the input voltage was ±2.4 kV and above. The displacement thickness of the boundary layer near the trailing edge decreased by 20% at ±2.0 kV. The displacement thickness was suddenly reduced as much as 56% at ±2.2 kV, and it was reduced gradually from ±2.4 kV to ±2.8 kV (77% reduction. The total pressure loss coefficient, estimated from the boundary layer displacement thickness and momentum thickness, was 0.172 at the baseline (actuator off condition. The total pressure loss was reduced to 0.107 (38% reduction at ±2.2 kV and 0.078 (55% reduction at ±2.8 kV.
Hung, Yichen; Winters, Caroline; Jans, Elijah R.; Frederickson, Kraig; Adamovich, Igor V.
2017-06-01
This work presents time-resolved measurements of nitrogen vibrational temperature, translational-rotational temperature, and absolute OH number density in lean hydrogen-air mixtures excited in a diffuse filament nanosecond pulse discharge, at a pressure of 100 Torr and high specific energy loading. The main objective of these measurements is to study a possible effect of nitrogen vibrational excitation on low-temperature kinetics of HO2 and OH radicals. N2 vibrational temperature and gas temperature in the discharge and the afterglow are measured by ns broadband Coherent Anti-Stokes Scattering (CARS). Hydroxyl radical number density is measured by Laser Induced Fluorescence (LIF) calibrated by Rayleigh scattering. The results show that the discharge generates strong vibrational nonequilibrium in air and H2-air mixtures for delay times after the discharge pulse of up to 1 ms, with peak vibrational temperature of Tv ≈ 2000 K at T ≈ 500 K. Nitrogen vibrational temperature peaks ≈ 200 μs after the discharge pulse, before decreasing due to vibrational-translational relaxation by O atoms (on the time scale of a few hundred μs) and diffusion (on ms time scale). OH number density increases gradually after the discharge pulse, peaking at t 100-300 μs and decaying on a longer time scale, until t 1 ms. Both OH rise time and decay time decrease as H2 fraction in the mixture is increased from 1% to 5%. OH number density in a 1% H2-air mixture peaks at approximately the same time as vibrational temperature in air, suggesting that OH kinetics may be affected by N2 vibrational excitation. However, preliminary kinetic modeling calculations demonstrate that OH number density overshoot is controlled by known reactions of H and O radicals generated in the plasma, rather than by dissociation by HO2 radical in collisions with vibrationally excited N2 molecules, as has been suggested earlier. Additional measurements at higher specific energy loadings and kinetic modeling
Mach-Zehnder interferometer for movement monitoring
Vasinek, Vladimir; Cubik, Jakub; Kepak, Stanislav; Doricak, Jan; Latal, Jan; Koudelka, Petr
2012-06-01
Fiber optical interferometers belong to highly sensitive equipments that are able to measure slight changes like distortion of shape, temperature and electric field variation and etc. Their great advantage is that they are insensitive on ageing component, from which they are composed of. It is in virtue of herewith, that there are evaluated no changes in optical signal intensity but number interference fringes. To monitor the movement of persons, eventually to analyze the changes in state of motion we developed method based on analysis the dynamic changes in interferometric pattern. We have used Mach- Zehnder interferometer with conventional SM fibers excited with the DFB laser at wavelength of 1550 nm. It was terminated with optical receiver containing InGaAs PIN photodiode. Its output was brought into measuring card module that performs on FFT of the received interferometer signal. The signal rises with the composition of two waves passing through single interferometer arm. The optical fiber SMF 28e in one arm is referential; the second one is positioned on measuring slab at dimensions of 1x2m. A movement of persons around the slab was monitored, signal processed with FFT and frequency spectra were evaluated. They rose owing to dynamic changes of interferometric pattern. The results reflect that the individual subjects passing through slab embody characteristic frequency spectra, which are individual for particular persons. The scope of measuring frequencies proceeded from zero to 10 kHz. It was also displayed in experiments that the experimental subjects, who walked around the slab and at the same time they have had changed their state of motion (knee joint fixation), embodied characteristic changes in their frequency spectra. At experiments the stability of interferometric patterns was evaluated as from time aspects, so from the view of repeated identical experiments. Two kinds of balls (tennis and ping-pong) were used to plot the repeatability measurements and
1973-01-01
Three aspects of barium ion cloud dynamics are discussed. First, the effect of the ratio of ion cloud conductivity to background ionospheric conductivity on the motion of barium ion clouds is investigated and compared with observations of barium ion clouds. This study led to the suggestion that the conjugate ionosphere participates in the dynamics of barium ion clouds. Second, analytic work on the deformation of ion clouds is presented. Third, a linearized stability theory was extended to include the effect of the finite extent of an ion cloud, as well as the effect of the ratio of ion cloud to ionospheric conductivities. The stability properties of a plasma with contra-streaming ion beams parallel to a magnetic field are investigated. The results are interpreted in terms of parameters appropriate for collisionless shock waves. It is found that this particular instability can be operative only if the up-stream Alfven Mach number exceeds 5.5.
On Mach's critique of Newton and Copernicus
Hartman, H I; Hartman, Herbert I.; Nissim-Sabat, Charles
2003-01-01
Maintaining the relativity of all motion, especially rotational motion, Mach denied the existence of absolute motion and absolute space. He maintained the equivalence of the Ptolemaic and the Copernican systems and the equivalence of a fixed bucket in a rotating universe with the converse. An analysis of the Foucault pendulum shows that there cannot be a fixed bucket in a rotating universe. Also, Mach's views violate the physics he espoused: non-inertial experiments, e.g. stellar aberration and electromagnetic effects, distinguish between a rotating bucket in a fixed universe and the converse, between the Copernican and the Ptolemaic systems, and establish that one cannot ascribe all observations solely to relative motion between a system and the universe.
Takamoto, Makoto
2016-01-01
In this Letter, we report compressible mode effects on relativistic magnetohydrodynamic (RMHD) turbulence in Poynting-dominated plasmas using 3-dimensional numerical simulations. We decomposed fluctuations in the turbulence into 3 MHD modes (fast, slow, and Alfv\\'en) following the procedure mode decomposition in (Cho & Lazarian 2002), and analyzed their energy spectra and structure functions separately. We also analyzed the ratio of compressible mode to Alfv\\'en mode energy with respect to its Mach number. We found the ratio of compressible mode increases not only with the Alfv\\'en Mach number but with the background magnetization, which indicates a strong coupling between the fast and Alfv\\'en modes and appearance of a new regime of RMHD turbulence in Poynting-dominated plasmas where the fast and Alfv\\'en modes strongly couples and cannot be distinguished, different from the non-relativistic MHD case. This finding will affect particle acceleration efficiency obtained by assuming Alfv\\'enic critical balan...
Institute of Scientific and Technical Information of China (English)
履之
1994-01-01
Most engines compress air, add fuel and burn it, and then allow theheated gas to expand, creating power or thrust. A radical aircraft enginedevised by ONERA, France’s equivalent of NASA, does the opposite.The Priam inverse-cycle" engine is designed for hypersonic speedsabove Mach 4 (2, 650 mph). Conventional jets do not work at suchspeeds, because the air becomes so hot when it is rammed into the
2-D Magnetohydrodynamic Modeling of A Pulsed Plasma Thruster
Thio, Y. C. Francis; Cassibry, J. T.; Wu, S. T.; Rodgers, Stephen L. (Technical Monitor)
2002-01-01
Experiments are being performed on the NASA Marshall Space Flight Center (MSFC) MK-1 pulsed plasma thruster. Data produced from the experiments provide an opportunity to further understand the plasma dynamics in these thrusters via detailed computational modeling. The detailed and accurate understanding of the plasma dynamics in these devices holds the key towards extending their capabilities in a number of applications, including their applications as high power (greater than 1 MW) thrusters, and their use for producing high-velocity, uniform plasma jets for experimental purposes. For this study, the 2-D MHD modeling code, MACH2, is used to provide detailed interpretation of the experimental data. At the same time, a 0-D physics model of the plasma initial phase is developed to guide our 2-D modeling studies.
Dynamic transition from Mach to regular reflection of shock waves in a steady flow
CSIR Research Space (South Africa)
Naidoo, K
2014-07-01
Full Text Available decreased with increased rotation speed. The sensitivity of the transition angle to changing the rotation point from the trailing edge to the experimental model pivot point was investigated briefly at a free-stream Mach number of M=2.98 with M(subE)=-0...
Characteristics of plasma properties in an ablative pulsed plasma thruster
Energy Technology Data Exchange (ETDEWEB)
Schoenherr, Tony; Nees, Frank; Arakawa, Yoshihiro [Department of Aeronautics and Astronautics, University of Tokyo, Bunkyo, Tokyo 113-8656 (Japan); Komurasaki, Kimiya [Department of Advanced Energy, University of Tokyo, Kashiwa, Chiba 277-8561 (Japan); Herdrich, Georg [Institute of Space Systems (IRS), University of Stuttgart, 70569 Stuttgart, Baden-Wuerttemberg (Germany)
2013-03-15
Pulsed plasma thrusters are electric space propulsion devices which create a highly transient plasma bulk in a short-time arc discharge that is expelled to create thrust. The transitional character and the dependency on the discharge properties are yet to be elucidated. In this study, optical emission spectroscopy and Mach-Zehnder interferometry are applied to investigate the plasma properties in variation of time, space, and discharge energy. Electron temperature, electron density, and Knudsen numbers are derived for the plasma bulk and discussed. Temperatures were found to be in the order of 1.7 to 3.1 eV, whereas electron densities showed maximum values of more than 10{sup 17} cm{sup -3}. Both values showed strong dependency on the discharge voltage and were typically higher closer to the electrodes. Capacitance and time showed less influence. Knudsen numbers were derived to be in the order of 10{sup -3}-10{sup -2}, thus, indicating a continuum flow behavior in the main plasma bulk.
Simulations of Plasma-Liner Formation and Implosion for the PLX- α Project
Samulyak, Roman; Cassibry, Jason; Schillo, Kevin; Shih, Wen; Yates, Kevin; Hsu, Scott; PLX-Alpha Collaboration
2016-10-01
Detailed numerical studies of the propagation and merger of high-Mach-number plasma jets and the formation and implosion of plasma liners have been performed using the FronTier and SPH codes enhanced with radiation, physical diffusion, and plasma-EOS models. These simulations support the Plasma Liner Experiment-ALPHA (PLX- α) project (see S. Hsu's talk in this session). Simulations predict properties of plasma liners, in particular 4 π-averaged liner density, ram pressure, and Mach number, the degree of non-uniformity, strength of primary and secondary shock waves, and scalings with the number of plasma jets, initial jet parameters, and other input data. In addition to direct analysis of liner states, simulations also provide synthetic data for direct comparison to experimental data from a multi-chord interferometer and survey and high-resolution spectrometers. Code verification and comparisons as well as predictions for the first series of PLX- α experiments with 6 and 7 jets will be presented. Verified against experimental data, both codes will be used for predictive simulations of plasma liners for PLX- α experiments and potential scaled-up future experiments. Supported by the ARPA-E ALPHA program.
Mach's Principle and Higher-Dimensional Dynamics
Mashhoon, B
2011-01-01
We briefly discuss the current status of Mach's principle in general relativity and point out that its last vestige, namely, the gravitomagnetic field associated with rotation, has recently been measured for the earth in the GP-B experiment. Furthermore, in his analysis of the foundations of Newtonian mechanics, Mach provided an operational definition for inertial mass and pointed out that time and space are conceptually distinct from their operational definitions by means of masses. Mach recognized that this circumstance is due to the lack of any a priori connection between the inertial mass of a body and its Newtonian state in space and time. One possible way to improve upon this situation in classical physics is to associate mass with an extra dimension. Indeed, Einstein's theory of gravitation can be locally embedded in a Ricci-flat 5D manifold such that the 4D energy-momentum tensor appears to originate from the existence of the extra dimension. An outline of such a 5D Machian extension of Einstein's gen...
DEFF Research Database (Denmark)
Liu, Hongtai; Gao, Ya; Hu, Zhiyang
2016-01-01
through Maternal Plasma Sequencing (FCAPS) to compare to the karyotyping/microarray results. Sensitivity, specificity and were evaluated. Results 33 samples with deletions/duplications ranging from 1 to 129 Mb were detected with the consistent CNV size and location to karyotyping/microarray results......Objectives The aim of this study was to assess the performance of noninvasively prenatal testing (NIPT) for fetal copy number variants (CNVs) in clinical samples, using a whole-genome sequencing method. Method A total of 919 archived maternal plasma samples with karyotyping/microarray results......, including 33 CNVs samples and 886 normal samples from September 1, 2011 to May 31, 2013, were enrolled in this study. The samples were randomly rearranged and blindly sequenced by low-coverage (about 7M reads) whole-genome sequencing of plasma DNA. Fetal CNVs were detected by Fetal Copy-number Analysis...
Institute of Scientific and Technical Information of China (English)
T. Irie; T. Yasunobu; H. Kashimura; T. Setoguchi
2003-01-01
When the high-pressure gas is exhausted to the vacuum chamber from the nozzle, the underexpanded supersonic jet contained with the Mach disk is generally formed. The eventual purpose of this study is to clarify the unsteady phenomenon of the underexpanded free jet when the back pressure continuously changes with time. The characteristic of the Mach disk has been clarified in consideration of the diameter and position of it by the numerical analysis in this paper. The sonic jet of the exit Mach number Me=1 is assumed and the axisymmetric conservational equation is solved by the TVD method in the numerical calculation.The diameter and position of the Mach disk differs with the results of a steady jet and the influence on the continuously changing of the back pressure is evidenced from the comparison with the case of steady supersonic jet.
Schuele, Chan Yong
2011-01-01
Spanwise-periodic roughness designed to excite selected wavelengths of stationary cross- ow modes was investigated in a 3-D boundary layer at Mach 3.5. The test model was a sharp-tipped 14deg right-circular cone. The model and integrated sensor traversing system were placed in the Mach 3.5 Supersonic Low Disturbance Tunnel (SLDT) equipped with a "quiet design" nozzle at the NASA Langley Research Center. The model was oriented at a 4:2deg angle of attack to produce a mean cross-fl ow velocity component in the boundary layer over the cone. Five removable cone tips have been investigated. One has a smooth surface that is used to document the baseline ("natural") conditions. Two had minute (20 - 40 micron) "dimples" that are equally spaced around the circumference, at a streamwise location that is just upstream of the linear stability neutral growth branch for cross- ow modes. The azimuthal mode numbers of the dimpled tips were selected to either enhance the most amplified wave numbers, or to suppress the growth of the most amplified wave numbers. Two of the cone tips had an array of plasma streamwise vortex generators that were designed to simulate the disturbances produced by the passive patterned roughness. The results indicate that the stationary cross-fl ow modes were highly receptive to the patterned roughness of both passive and active types. The patterned passive roughness that was designed to suppress the growth of the most amplified modes had an azimuthal wavelength that was 66% smaller that that of the most amplified stationary cross- ow mode. This had the effect to increase the transition Reynolds number from 25% to 50% depending on the measurement technique. The application of the research is on turbulent transition control on swept wings of supersonic aircraft. The plasma-based roughness has the advantage over the passive roughness of being able to be adaptable to different conditions that would occur during a flight mission.
Schuele, Chan Yong
Spanwise-periodic roughness designed to excite selected wavelengths of stationary cross-flow modes was investigated in a 3-D boundary layer at Mach 3.5. The test model was a sharp-tipped 14° right-circular cone. The model and integrated sensor traversing system were placed in the Mach 3.5 Supersonic Low Disturbance Tunnel (SLDT) equipped with a "quiet design" nozzle at the NASA Langley Research Center. The model was oriented at a 4.2 angle of attack to produce a mean cross-flow velocity component in the boundary layer over the cone. Five removable cone tips have been investigated. One has a smooth surface that is used to document the baseline ("natural") conditions. Two had minute (20 - 40 mum) "dimples" that are equally spaced around the circumference, at a streamwise location that is just upstream of the linear stability neutral growth branch for cross-flow modes. The azimuthal mode numbers of the dimpled tips were selected to either enhance the most amplified wave numbers, or to suppress the growth of the most amplified wave numbers. Two of the cone tips had an array of plasma streamwise vortex generators that were designed to simulate the disturbances produced by the passive patterned roughness. The results indicate that the stationary cross-flow modes were highly receptive to the patterned roughness of both passive and active types. The patterned passive roughness that was designed to suppress the growth of the most amplified modes had an azimuthal wavelength that was 66% smaller that that of the most amplified stationary cross-flow mode. This had the effect to increase the transition Reynolds number from 25% to 50% depending on the measurement technique. The application of the research is on turbulent transition control on swept wings of supersonic aircraft. The plasma-based roughness has the advantage over the passive roughness of being able to be adaptable to different conditions that would occur during a flight mission.
Combustion-Powered Actuation for Dynamic Stall Suppression - Simulations and Low-Mach Experiments
Matalanis, Claude G.; Min, Byung-Young; Bowles, Patrick O.; Jee, Solkeun; Wake, Brian E.; Crittenden, Tom; Woo, George; Glezer, Ari
2014-01-01
An investigation on dynamic-stall suppression capabilities of combustion-powered actuation (COMPACT) applied to a tabbed VR-12 airfoil is presented. In the first section, results from computational fluid dynamics (CFD) simulations carried out at Mach numbers from 0.3 to 0.5 are presented. Several geometric parameters are varied including the slot chordwise location and angle. Actuation pulse amplitude, frequency, and timing are also varied. The simulations suggest that cycle-averaged lift increases of approximately 4% and 8% with respect to the baseline airfoil are possible at Mach numbers of 0.4 and 0.3 for deep and near-deep dynamic-stall conditions. In the second section, static-stall results from low-speed wind-tunnel experiments are presented. Low-speed experiments and high-speed CFD suggest that slots oriented tangential to the airfoil surface produce stronger benefits than slots oriented normal to the chordline. Low-speed experiments confirm that chordwise slot locations suitable for Mach 0.3-0.4 stall suppression (based on CFD) will also be effective at lower Mach numbers.
Corssmit, E. P. M.; de Jong, W. H. A.; Brookman, D.; Kema, I. P.; Romijn, J. A.; van Duinen, N.
2013-01-01
Context: A substantial number of patients with head and neck paragangliomas (HNPGLs) have biochemically active tumors, evidenced by increased urinary excretion of catecholamines and metabolites, including 3-methoxytyramine (3MT). It is unclear whether plasma levels of these parameters are more sensi
Numerical simulation of Mach reflection of cellular detonations
Li, J.; Lee, J. H. S.
2016-09-01
The Mach reflection of cellular detonation waves on a wedge is investigated numerically in an attempt to elucidate the effect of cellular instabilities on Mach reflection, the dependence of self-similarity on the thickness of a detonation wave, and the initial development of the Mach stem near the wedge apex. A two-step chain-branching reaction model is used to give a thermally neutral induction zone followed by a chemical reaction zone for the detonation wave. A sufficiently large distance of travel of the Mach stem is computed to observe the asymptotic behavior in the far field. Depending on the scale at which the Mach reflection process occurs, it is found that the Mach reflection of a cellular detonation behaves essentially in the same way as a planar ZND detonation wave. The cellular instabilities, however, cause the triple-point trajectory to fluctuate. The fluctuations are due to interactions of the triple point of the Mach stem with the transverse waves of cellular instabilities. In the vicinity of the wedge apex, the Mach reflection is found to be self-similar and corresponds to that of a shock wave of the same strength, since the Mach stem is highly overdriven initially. In the far field, the triple-point trajectory approaches a straight line, indicating that the Mach reflection becomes self-similar asymptotically. The distance of the approach to self-similarity is found to decrease rapidly with decreasing thickness of the detonation front.
Energy Technology Data Exchange (ETDEWEB)
Reininger, Charlotte; Woodfield, Kellie [Brigham Young University, Department of Chemistry and Biochemistry, Provo, UT 84602 (United States); Keelor, Joel D.; Kaylor, Adam; Fernández, Facundo M. [Georgia Institute of Technology, School of Chemistry and Biochemistry, Atlanta, GA 30332 (United States); Farnsworth, Paul B., E-mail: paul_farnsworth@byu.edu [Brigham Young University, Department of Chemistry and Biochemistry, Provo, UT 84602 (United States)
2014-10-01
The absolute number densities of helium atoms in the 2s {sup 3}S{sub 1} metastable state were determined in four plasma-based ambient desorption/ionization sources by atomic absorption spectroscopy. The plasmas included a high-frequency dielectric barrier discharge (HF-DBD), a low temperature plasma (LTP), and two atmospheric-pressure glow discharges, one with AC excitation and the other with DC excitation. Peak densities in the luminous plumes downstream from the discharge capillaries of the HF-DBD and the LTP were 1.39 × 10{sup 12} cm{sup −3} and 0.011 × 10{sup 12} cm{sup −3}, respectively. Neither glow discharge produced a visible afterglow, and no metastable atoms were detected downstream from the capillary exits. However, densities of 0.58 × 10{sup 12} cm{sup −3} and 0.97 × 10{sup 12} cm{sup −3} were measured in the interelectrode regions of the AC and DC glow discharges, respectively. Time-resolved measurements of metastable atom densities revealed significant random variations in the timing of pulsed absorption signals with respect to the voltage waveforms applied to the discharges. - Highlights: • We determine He metastable number densities for four plasma types • The highest number densities were observed in a dielectric barrier discharge • No helium metastable atoms were observed downstream from the exits of glow discharges.
Plasma Guns for the Plasma Liner Experiment (PLX)
Witherspoon, F. D.; Bomgardner, R.; Case, A.; Messer, S. J.; Brockington, S.; Wu, L.; Elton, R.; Hsu, S. C.; Cassibry, J. T.; Gilmore, M. A.
2009-11-01
A spherical array of minirailgun plasma accelerators is planned for the Plasma Liner Experiment (PLX) to be located at LANL. The plasma liner would be formed via merging of 30 dense, high Mach number plasma jets (n˜10^16-17 cm-3, M˜10--35, v˜50--70 km/s, rjet˜5 cm) in a spherically convergent geometry. Small parallel-plate railguns are being developed for this purpose due to their reduced system complexity and cost, with each gun planned to operate at ˜300 kA peak current, and launching up to ˜8000 μg of high-Z plasma using a ˜50 kJ pfn. We describe experimental development of the minirailguns and their current and projected performance. Fast operating repetitive gas valves have recently been added to allow injection of high density gases including helium, argon, and (eventually) xenon. We will present the latest test results with the high-Z gases, and discuss future plans for augmenting the rails, optimizing the nozzle configuration, preionizing the injected gas, and configuring the pulse forming networks with the capacitors available to the program.
Energy Technology Data Exchange (ETDEWEB)
Rufai, O. R., E-mail: rrufai@csir.co.za [Council for Scientific and Industrial Research, Pretoria (South Africa); Bharuthram, R., E-mail: rbharuthram@uwc.ac.za [University of the Western Cape, Bellville (South Africa); Singh, S. V., E-mail: satyavir@iigs.iigm.res.in; Lakhina, G. S., E-mail: lakhina@iigs.iigm.res.in [Indian Institute of Geomagnetism, New Panvel (W), Navi, Mumbai-410218 (India)
2015-10-15
The effect of excess superthermal electrons is investigated on finite amplitude nonlinear ion-acoustic waves in a magnetized auroral plasma. The plasma model consists of a cold ion fluid, Boltzmann distribution of cool electrons, and kappa distributed hot electron species. The model predicts the evolution of negative potential solitons and supersolitons at subsonic Mach numbers region, whereas, in the case of Cairn's nonthermal distribution model for the hot electron species studied earlier, they can exist both in the subsonic and supersonic Mach number regimes. For the dayside auroral parameters, the model generates the super-acoustic electric field amplitude, speed, width, and pulse duration of about 18 mV/m, 25.4 km/s, 663 m, and 26 ms, respectively, which is in the range of the Viking spacecraft measurements.
On Mach's principle: Inertia as gravitation
Martín, J; Tiemblo, A; Ranada, Antonio F.
2007-01-01
In order to test the validity of Mach's principle, we calculate the action of the entire universe on a test mass in its rest frame, which is an acceleration ${\\bf g}^*$. We show the dependence of the inertia principle on the lapse and the shift. Using the formalism of linearized gravitation, we obtain the non-relativistic limit of ${\\bf g}^*$ in terms of two integrals. We follow then two approaches. In the first one, these integrals are calculated in the actual time section $t=t_0$ up to the distance $R_U=ct_0$. In the more exact and satisfactory second approach, they are calculated over the past light cone using the formalism of the retarded potentials. The aim is to find whether the acceleration $\\dot{\\bf v}$ in the LHS of Newton's second law can be interpreted as a reactive acceleration, in other words, as minus the acceleration of gravity ${\\bf g}^*$ in the rest frame of the accelerated particle ({\\it i. e.} to know whether or not ${\\bf g}^*=-\\dot{\\bf v}$). The results strongly support Mach's idea since t...
Jain, S. L.; Tiwari, R. S.; Mishra, M. K.
2015-05-01
Large amplitude ion-acoustic solitons and double layers are studied using Sagdeev's pseudo potential technique in a collisionless unmagnetized plasma consisting of hot and cold Maxwellian electrons, warm adiabatic ions, and heavily charged massive dust grains. It is found that for the selected set of plasma parameters, the system can support both solitons and double layers in the presence of negative as well as positive dust in the plasma. Further we have also investigated the ranges of parameters for simultaneous existence of both rarefactive and compressive supersonic solitons. The effects of dust concentration and ion temperature on the amplitude and Mach number of the double layer have also been studied. Our findings may be helpful in understanding the formation of non-linear structures, specially the solitons and double layers in space plasma, such as: in interstellar clouds, circumstellar clouds, planetary rings, comets, cometary tails, asteroid zones, auroral plasma, magnetospheric plasma, pulsars, and other astronomical environments and laboratory plasmas.
Rack, M; Liang, Y; Jaegers, H; Assmann, J; Satheeswaran, G; Xu, Y; Pearson, J; Yang, Y; Denner, P; Zeng, L
2013-08-01
This work discusses a new directional probe designed for measurements of fast ion losses and the plasma rotation with a high angular resolution in magnetically confined plasmas. Directional and especially Mach probes are commonly used diagnostics for plasma flow measurements, and their applicability for the fast ion losses detection has been demonstrated. A limitation of static Mach probes is their low angular resolution. At the Tokamak Experiment for Technology Oriented Research, the angular resolution is strongly restricted by the finite number of available measurement channels. In a dynamic plasma, where instabilities can lead to local changes of the field line pitch-angle, plasma flow, or fast ion losses, a low angular resolution makes a precise data analysis difficult and reduces the quality of the measured data. The new probe design, the rotating directional probe, combines the features of early directional probes and Mach probes. It consists of two radially aligned arrays of nine Langmuir probe pins with each array facing opposite directions. During the measurement the probe head rotates along its axis to measure the ion saturation current from all directions. As a result, the rotating directional probe simultaneously provides an angular dependent plasma flow and fast ion losses measurement at different radial positions. Based on the angular dependent data, a precise determination of the current density is made. In addition, the simultaneous measurement of the ion saturation current at different radial positions allows for resolving radially varying field line pitch-angles and identifying the radial dynamic of processes like fast ion losses.
An Investigation of Transonic Resonance in a Mach 2.2 Round Convergent-Divergent Nozzle
Dippold, Vance F., III; Zaman, Khairul B. M. Q.
2015-01-01
Hot-wire and acoustic measurements were taken for a round convergent nozzle and a round convergent-divergent (C-D) nozzle at a jet Mach number of 0.61. The C-D nozzle had a design Mach number of 2.2. Compared to the convergent nozzle jet flow, the Mach 2.2 nozzle jet flow produced excess broadband noise (EBBN). It also produced a transonic resonance tone at 1200 Herz. Computational simulations were performed for both nozzle flows. A steady Reynolds-Averaged Navier-Stokes simulation was performed for the convergent nozzle jet flow. For the Mach 2.2 nozzle flow, a steady RANS simulation, an unsteady RANS (URANS) simulation, and an unsteady Detached Eddy Simulation (DES) were performed. The RANS simulation of the convergent nozzle showed good agreement with the hot-wire velocity and turbulence measurements, though the decay of the potential core was over-predicted. The RANS simulation of the Mach 2.2 nozzle showed poor agreement with the experimental data, and more closely resembled an ideally-expanded jet. The URANS simulation also showed qualitative agreement with the hot-wire data, but predicted a transonic resonance at 1145 Herz. The DES showed good agreement with the hot-wire velocity and turbulence data. The DES also produced a transonic tone at 1135 Herz. The DES solution showed that the destabilization of the shock-induced separation region inside the nozzle produced increased levels of turbulence intensity. This is likely the source of the EBBN.
Comparison of Staged Z-pinch Experiments at the NTF Zebra Facility with Mach2 simulations
Ruskov, E.; Wessel, F. J.; Rahman, H. U.; Ney, P.; Darling, T. W.; Johnson, Z.; McGee, E.; Covington, A.; Dutra, E.; Valenzuela, J. C.; Conti, F.; Narkis, J.; Beg, F.
2016-10-01
Staged Z-pinch experiments at the University of Nevada, Reno, 1MA Z-pinch Zebra facility were conducted. A hollow shell of argon gas liner is injected between 1 cm anode-cathode gap through a supersonic nozzle of 2.0 cm diameter with a throat gap of 240 microns. A deuterium plasma fill is injected inside the argon gas shell through a plasma gun as a fusible target plasma. An axial magnetic field is also applied throughout the pinch region. Experimental measurements such as pinch current, X-ray signal, neutron yield, and streak images are compared with MACH2 radiation hydrodynamic code simulations. The argon liner density profiles, obtained from the CFD (FLUENT), are used as an input to MACH2. The comparison suggests a fairly close agreement between the experimental measurements and the simulation results. This study not only helps to benchmark the code but also suggests the importance of the Z-pinch implosion time, optimizing both liner and target plasma density to obtain the maximum energy coupling between the circuit and the load. Advanced Research Projects Agency - Energy, DE-AR0000569.
Mach 5 to 7 RBCC Propulsion System Testing at NASA-LeRC HTF
Perkins, H. Douglas; Thomas, Scott R.; Pack, William D.
1996-01-01
A series of Mach 5 to 7 freejet tests of a Rocket Based Combined Cycle (RBCC) engine were cnducted at the NASA Lewis Research Center (LERC) Hypersonic Tunnel Facility (HTF). This paper describes the configuration and operation of the HTF and the RBCC engine during these tests. A number of facility support systems are described which were added or modified to enhance the HTF test capability for conducting this experiment. The unfueled aerodynamic perfor- mance of the RBCC engine flowpath is also presented and compared to sub-scale test results previously obtained in the NASA LERC I x I Supersonic Wind Tunnel (SWT) and to Computational Fluid Dynamic (CFD) analysis results. This test program demonstrated a successful configuration of the HTF for facility starting and operation with a generic RBCC type engine and an increased range of facility operating conditions. The ability of sub-scale testing and CFD analysis to predict flowpath performance was also shown. The HTF is a freejet, blowdown propulsion test facility that can simulate up to Mach 7 flight conditions with true air composition. Mach 5, 6, and 7 facility nozzles are available, each with an exit diameter of 42 in. This combination of clean air, large scale, and Mach 7 capabilities is unique to the HTF. This RBCC engine study is the first engine test program conducted at the HTF since 1974.
Arbitrary amplitude kinetic Alfven solitary waves in two temperature electron superthermal plasma
Singh, Manpreet; Singh Saini, Nareshpal; Ghai, Yashika
2016-07-01
Through various satellite missions it is observed that superthermal velocity distribution for particles is more appropriate for describing space and astrophysical plasmas. So it is appropriate to use superthermal distribution, which in the limiting case when spectral index κ is very large ( i.e. κ→∞), shifts to Maxwellian distribution. Two temperature electron plasmas have been observed in auroral regions by FAST satellite mission, and also by GEOTAIL and POLAR satellite in the magnetosphere. Kinetic Alfven waves arise when finite Larmor radius effect modifies the dispersion relation or characteristic perpendicular wavelength is comparable to electron inertial length. We have studied the kinetic Alfven waves (KAWs) in a plasma comprising of positively charged ions, superthermal hot electrons and Maxwellian distributed cold electrons. Sagdeev pseudo-potential has been employed to derive an energy balance equation. The critical Mach number has been determined from the expression of Sagdeev pseudo-potential to see the existence of solitary structures. It is observed that sub-Alfvenic compressive solitons and super-Alfvenic rarefactive solitons exist in this plasma model. It is also observed that various parameters such as superthermality of hot electrons, relative concentration of cold and hot electron species, Mach number, plasma beta, ion to cold electron temperature ratio and ion to hot electron temperature ratio have significant effect on the amplitude and width of the KAWs. Findings of this investigation may be useful to understand the dynamics of coherent non-linear structures (i.e. KAWs) in space and astrophysical plasmas.
Thin current sheets caused by plasma flow gradients in space and astrophysical plasma
Directory of Open Access Journals (Sweden)
D. H. Nickeler
2010-08-01
Full Text Available Strong gradients in plasma flows play a major role in space and astrophysical plasmas. A typical situation is that a static plasma equilibrium is surrounded by a plasma flow, which can lead to strong plasma flow gradients at the separatrices between field lines with different magnetic topologies, e.g., planetary magnetospheres, helmet streamers in the solar corona, or at the boundary between the heliosphere and interstellar medium. Within this work we make a first step to understand the influence of these flows towards the occurrence of current sheets in a stationary state situation. We concentrate here on incompressible plasma flows and 2-D equilibria, which allow us to find analytic solutions of the stationary magnetohydrodynamics equations (SMHD. First we solve the magnetohydrostatic (MHS equations with the help of a Grad-Shafranov equation and then we transform these static equilibria into a stationary state with plasma flow. We are in particular interested to study SMHD-equilibria with strong plasma flow gradients perpendicular to separatrices. We find that induced thin current sheets occur naturally in such situations. The strength of the induced currents depend on the Alfvén Mach number and its gradient, and on the magnetic field.
Diagnostics for the plasma liner experiment.
Lynn, A G; Merritt, E; Gilmore, M; Hsu, S C; Witherspoon, F D; Cassibry, J T
2010-10-01
The goal of the Plasma Liner Experiment (PLX) is to explore and demonstrate the feasibility of forming imploding spherical "plasma liners" via merging high Mach number plasma jets to reach peak liner pressures of ∼0.1 Mbar using ∼1.5 MJ of initial stored energy. Such a system would provide HED plasmas for a variety of fundamental HEDLP, laboratory astrophysics, and materials science studies, as well as a platform for experimental validation of rad-hydro and rad-MHD simulations. It could also prove attractive as a potential standoff driver for magnetoinertial fusion. Predicted parameters from jet formation to liner stagnation cover a large range of plasma density and temperature, varying from n(i)∼10(16) cm(-3), T(e)≈T(i)∼1 eV at the plasma gun mouth to n(i)>10(19) cm(-3), T(e)≈T(i)∼0.5 keV at stagnation. This presents a challenging problem for the plasma diagnostics suite which will be discussed.
Ernst Mach and the episode of the monocular depth sensations.
Banks, E C
2001-01-01
Although Ernst Mach is widely recognized in psychology for his discovery of the effects of lateral inhibition in the retina ("Mach Bands"), his contributions to the theory of depth perception are not as well known. Mach proposed that steady luminance gradients triggered sensations of depth. He also expanded on Ewald Hering's hypothesis of "monocular depth sensations," arguing that they were subject to the same principle of lateral inhibition as light sensations were. Even after Hermann von Helmholtz's attack on Hering in 1866, Mach continued to develop theories involving the monocular depth sensations, proposing an explanation of perspective drawings in which the mutually inhibiting depth sensations scaled to a mean depth. Mach also contemplated a theory of stereopsis in which monocular depth perception played the primary role. Copyright 2001 John Wiley & Sons, Inc.
Nonlinear low-frequency electrostatic wave dynamics in a two-dimensional quantum plasma
Energy Technology Data Exchange (ETDEWEB)
Ghosh, Samiran, E-mail: sran_g@yahoo.com [Department of Applied Mathematics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata-700 009 (India); Chakrabarti, Nikhil, E-mail: nikhil.chakrabarti@saha.ac.in [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064 (India)
2016-08-15
The problem of two-dimensional arbitrary amplitude low-frequency electrostatic oscillation in a quasi-neutral quantum plasma is solved exactly by elementary means. In such quantum plasmas we have treated electrons quantum mechanically and ions classically. The exact analytical solution of the nonlinear system exhibits the formation of dark and black solitons. Numerical simulation also predicts the possible periodic solution of the nonlinear system. Nonlinear analysis reveals that the system does have a bifurcation at a critical Mach number that depends on the angle of propagation of the wave. The small-amplitude limit leads to the formation of weakly nonlinear Kadomstev–Petviashvili solitons.
Jump Conditions of a Non-Neutral Plasma Shock with Current and Potential Difference
Institute of Scientific and Technical Information of China (English)
胡希伟
2002-01-01
Jump conditions about the total momentum flux and energy flux in a non-neutral plasma shock with electric current and field are given, which are derived from the double fluid equations and the Poisson equation for electron and ion fluids. Furthermore, we derive the relations between the upstream and downstream velocities and temperatures, and the minimum upstream Mach number for the plasma shock existence M1min, which depend on the current through the shock front J0, the electric potential difference between the upstream and downstream of shock △φ, and the ion charge Z.
Effects of laser polarization on electrostatic shock ion acceleration in near-critical plasmas
Kim, Young-Kuk; Kang, Teyoun; Hur, Min Sup
2016-10-01
Collisionless electrostatic shock ion acceleration has become a major regime of laser-driven ion acceleration owing to generation of quasi-monoenergetic ion beams from moderate parametric conditions of lasers and plasmas in comparison with target-normal-sheath-acceleration or radiation pressure acceleration. In order to construct the shock, plasma heating is an essential condition for satisfying Mach number condition 1.5 Weibel instability. This work was supported by the Basic Science Research Program (NRF- 2013R1A1A2006353) and the Creative Allied Project (CAP-15-06-ETRI).
Distributed optical fiber perturbation sensing system based on Mach-Zehnder interferometer
Institute of Scientific and Technical Information of China (English)
Wengang WANG; Deming LIU; Hairong LIU; Qizhen SUN; Zhifeng SUN; Xu ZHANG; Ziheng XU
2009-01-01
A novel distributed optical fiber vibration-sensing system based on Mach-Zehnder interferometer has been designed and experimentally demonstrated. Firstly, the principle of Mach-Zehnder optical path interferometer technique is clarified. The output of the Mach-Zehnder interferometer is proportional to the phase shift induced by the perturbation. Secondly, the system consists of the laser diode (LD) as the light source, fiber, Mach-Zehnder optical interferometers as the sensing units, a 1×N star fiber-optic coupler, an N×1 fiber-optic coupler, a photodiode (PD) detector, and a computer used in signal processing. The entire monitoring region of this system is divided into several small zones, and each small monitoring zone is independent from each other. All of the small monitoring zones have their own sensing unit, which is defined by Mach-Zehnder optical interferometer. A series of sensing units are connected by the star fiber-optic couplers to form a whole sensing net. Thirdly, signal-processing techniques are subsequently used to calculate the phase shift to estimate whether intruders appear. The sensing system is able to locate the vibration signal simultaneously, includ-ing multiple vibrations at different positions, by employing the time-division multiplexed (TDM) technique. Finally, the operation performance of the proposed system is tested in the experiment lab with the conditions as follows: the number of the sensing units is 3, the length of the sensing fiber is 50 m, and the wavelength of the light diode is 1550nm. Based on these investigations, the fiber surrounding alert system is achieved. We have experimen-tally demonstrated that the sensing system can measure both the frequency and position of the vibration in real time, with a spatial positional resolution better than 50 m in an area of 1 km2.
Progress in the development of a Mach 5 quiet tunnel
Beckwith, I. E.; Andere, J. B.; Stainback, P. C.; Harvey, W. D.; Srokowski, A. J.
1977-01-01
Various techniques to control and reduce radiated noise and the application of these techniques to a 1/2-water Mach 5 quiet tunnel are reviewed. Measurements in a small scale nozzle have shown that the upstream part of the supersonic wall boundary layer could be maintained laminar up to Reynolds numbers of nearly 4 x 1 million based on the test region length upstream of the nozzle exit. Turbulent noise levels in this test region were then reduced by an order of magnitude. To maintain low noise levels at higher Reynolds numbers, laminar flow noise shields are required. Data are presented for shields that consist of small diameter rods alined nearly parallel to the entrance flow with small gaps between the rods for boundary layer suction. Analysis and data presented on the noise shielding and reflection characteristics of flat plates and a rod-wall test panel indicate that freestream turbulent noise can be reduced by 70 to 90 deg at high Reynolds numbers. Performance estimates for the 1/2-meter tunnel are based on these results.
Surface Potential of Dust Grains at the Sheath Edge of Electronegative Dusty Plasmas
Institute of Scientific and Technical Information of China (English)
段萍; 王正汹; 王文春; 刘金远; 刘悦; 王晓钢
2004-01-01
In this paper we investigate the dust surface potential at the sheath edge of electronegative dusty plasmas theoretically, using the standard fluid model for the sheath and treating electrons and negative ions as Boltzmann particles but positive ions and dust grains as cold fluids.The dust charging model is self-consistently coupled with the sheath formation criterion by the dust surface potential and the ion Mach number, moreover the dust density variation is taken into account. The numerical results reveal that the dust number density and negative ion number density as well as its temperature can significantly affect the dust surface potential at the sheath edge.
Directory of Open Access Journals (Sweden)
Hongtai Liu
Full Text Available The aim of this study was to assess the performance of noninvasively prenatal testing (NIPT for fetal copy number variants (CNVs in clinical samples, using a whole-genome sequencing method.A total of 919 archived maternal plasma samples with karyotyping/microarray results, including 33 CNVs samples and 886 normal samples from September 1, 2011 to May 31, 2013, were enrolled in this study. The samples were randomly rearranged and blindly sequenced by low-coverage (about 7M reads whole-genome sequencing of plasma DNA. Fetal CNVs were detected by Fetal Copy-number Analysis through Maternal Plasma Sequencing (FCAPS to compare to the karyotyping/microarray results. Sensitivity, specificity and were evaluated.33 samples with deletions/duplications ranging from 1 to 129 Mb were detected with the consistent CNV size and location to karyotyping/microarray results in the study. Ten false positive results and two false negative results were obtained. The sensitivity and specificity of detection deletions/duplications were 84.21% and 98.42%, respectively.Whole-genome sequencing-based NIPT has high performance in detecting genome-wide CNVs, in particular >10Mb CNVs using the current FCAPS algorithm. It is possible to implement the current method in NIPT to prenatally screening for fetal CNVs.
Dust-acoustic solitons in quantum plasma with kappa-distributed ions
Indian Academy of Sciences (India)
Mehran Shahmansouri
2013-02-01
Arbitrary amplitude dust-acoustic (DA) solitary waves in an unmagnetized and collisionless quantum dusty plasma comprising cold dust particles, kappa ()-distributed ions and degenerate electrons are investigated. The influence of suprathermality and quantum effects on the linear dispersion relation of DA waves is investigated. Then, the effect of -distributed ions and degenerate electrons on the existence domain of solitons is discussed in the space of (, ). The comparison of the existence domain for higher and lower values of shows that suprathermality results in propagation of solitons with lower values of Mach number, and the quantum effects, lead to a higher values of Mach number. The existence domain of solitons for nondegenerate -distributed electrons is considered for comparison with effect of degenerate electrons. Also, we found that the Sagdeev potential well becomes deeper and wider as $_{F-i}$ decreases, as for lower values, the influence of quantum effects on the Sagdeev pseudopotential profile is smaller.
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
A study of Mach shocks generated by fast partonic jets propagating through the quark-gluon plasma (QGP) is reviewed briefly. We predict a significant deformation of Mach shocks in central Au+Au collisions at RHIC and LHC energies compared to those created by a jet propagation through a static medium.Moreover, a new hydrodynamical study of jet energy loss is presented.
Mach band type lateral inhibition in different sense organs.
von Békésy, G
1967-01-01
Experiments were done on the skin with shearing forces, vibrations, and heat stimuli and on the tongue with taste stimuli to show that the well known Mach bands are not exclusively a visual phenomenon. On the contrary, it is not difficult to produce areas of a decreased sensation magnitude corresponding to the dark Mach bands in vision. It is shown on a geometrical model of nervous interaction that the appearance of Mach bands for certain patterns of stimulus distribution is correlated with nervous inhibition surrounding the area of sensation. This corroborates the earlier finding that surrounding every area transmitting sensation there is an area simultaneously transmitting inhibition.
The Influence of Ernst Mach in the Teaching of Mechanics
Assis, Andre K. T.; Zylbersztajn, Arden
We present Newton's main ideas for the formulation of classical mechanics as given in the Principia. Then we discuss Ernst Mach's criticisms of Newtonian mechanics as contained in his book The Science of Mechanics. We analyze the influence of Mach's ideas in the teaching of classical mechanics considering five representative textbooks: those of Kittel, Knight and Ruderman; Marion and Thornton; Symon; Feynman, Leighton and Sands; and Goldstein. We conclude that the influence of Mach's ideas has been very great, being incorporated in the textbooks, although not always with the deserved acknowledgment.
Supersonic Plasma Flow Control Experiments
2005-12-01
to liquid metals , for example, the conductivities of typical plasma and electrolyte flows are relatively low. Ref. 14 cites the conductivity of...heating is the dominant effect. 15. SUBJECT TERMS Supersonic, plasma , MHD , boundary-layer 16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE...horns in operation on Mach 5 wind tunnel with a plasma discharge. 31 Figure 17 Front view of a 100 mA DC discharge generated with upstream pointing
Mach-Zehnder Phasing Sensor for Elts
Dohlen, Kjetil; Montoya-Martinez, Luzma
Segmented mirror technology has been successfully applied to 10m class telescopes (Keck HET GTC) and its application to future extremely large telescopes (20m NG-CFHT 30m CELT 50m EURO50 100m OWL) is required. Extensive use of adaptive optics in these telescopes puts stringent specifications on wavefront error allowing typically of the order of lambda/20 to segmentation errors. Several phasing metrology schemes adaptable to these giant telescopes are under development. We investigate a novel technique based on the Mach-Zehnder interferometer with a spatial filter in one arm. Atmospheric turbulence is tolerated in this setup if the spatial filter has the size similar to that of the seeing disk. The resulting interference pattern only contains the high-frequency spatial information including information about the piston step height. We describe the theoretical analysis of this system and show simulated and experimatal results. Different error sources are analyzed in order to provide a preliminary idea of the merits of this technique compared with other phasing techniques.
TURBULENT RECONNECTION IN RELATIVISTIC PLASMAS AND EFFECTS OF COMPRESSIBILITY
Energy Technology Data Exchange (ETDEWEB)
Takamoto, Makoto [Max-Planck-Institut für Kernphysik, Heidelberg (Germany); Inoue, Tsuyoshi [Division of Theoretical Astronomy, National Astronomical Observatory of Japan (Japan); Lazarian, Alexandre, E-mail: mtakamoto@eps.s.u-tokyo.ac.jp, E-mail: tsuyoshi.inoue@nao.ac.jp, E-mail: alazarian@facstaff.wisc.edu [Department of Astronomy, University of Wisconsin, 475 North Charter Street, Madison, WI 53706 (United States)
2015-12-10
We report on the turbulence effects on magnetic reconnection in relativistic plasmas using three-dimensional relativistic resistive magnetohydrodynamics simulations. We found that the reconnection rate became independent of the plasma resistivity due to turbulence effects similarly to non-relativistic cases. We also found that compressible turbulence effects modified the turbulent reconnection rate predicted in non-relativistic incompressible plasmas; the reconnection rate saturates, and even decays, as the injected velocity approaches to the Alfvén velocity. Our results indicate that compressibility cannot be neglected when a compressible component becomes about half of the incompressible mode, occurring when the Alfvén Mach number reaches about 0.3. The obtained maximum reconnection rate is around 0.05–0.1, which will be able to reach around 0.1–0.2 if injection scales are comparable to the sheet length.
Screened Coulomb potential in a flowing magnetized plasma
Joost, Jan-Philip; Kählert, Hanno; Arran, Christopher; Bonitz, Michael
2014-01-01
The electrostatic potential of a moving dust grain in a complex plasma with magnetized ions is computed using linear response theory, thereby extending our previous work for unmagnetized plasmas [P. Ludwig et al., New J. Phys. 14, 053016 (2012)]. In addition to the magnetic field, our approach accounts for a finite ion temperature as well as ion-neutral collisions. Our recently introduced code \\texttt{Kielstream} is used for an efficient calculation of the dust potential. Increasing the magnetization of the ions, we find that the shape of the potential crucially depends on the Mach number $M$. In the regime of subsonic ion flow ($M1$ the magnetic field effectively suppresses the plasma wakefield.
Kirk, A; Harrison, J; Liu, Yueqiang; Nardon, E; Saarelma, S; Scannell, R; Thornton, A J
2013-01-01
The application of resonant magnetic perturbations (RMPs) with a toroidal mode number of n=4 or n=6 to lower single null plasmas in the MAST tokamak produces up to a factor of 5 increase in Edge Localized Mode (ELM) frequency and reduction in plasma energy loss associated with type-I ELMs. A threshold current for ELM mitigation is observed above which the ELM frequency increases approximately linearly with current in the coils. Despite a large scan of parameters, complete ELM suppression has not been achieved. The results have been compared to modelling performed using either the vacuum approximation or including the plasma response. During the ELM mitigated stage clear lobe structures are observed in visible-light imaging of the X-point region. The size of these lobes is correlated with the increase in ELM frequency observed. The characteristics of the mitigated ELMs are similar to those of the natural ELMs suggesting that they are type I ELMs which are triggered at a lower pressure gradient. The application...
Kirk, A.; Chapman, I. T.; Harrison, J.; Liu, Yueqiang; Nardon, E.; Saarelma, S.; Scannell, R.; Thornton, A. J.; the MAST Team
2013-01-01
The application of resonant magnetic perturbations (RMPs) with a toroidal mode number of n = 4 or n = 6 to lower single null plasmas in the MAST tokamak produces up to a factor of 5 increase in edge-localized mode (ELM) frequency and reduction in plasma energy loss associated with type-I ELMs. A threshold current for ELM mitigation is observed above which the ELM frequency increases approximately linearly with current in the coils. Despite a large scan of parameters, complete ELM suppression has not been achieved. The results have been compared with modelling performed using either the vacuum approximation or including the plasma response. During the ELM mitigated stage clear lobe structures are observed in visible-light imaging of the X-point region. The size of these lobes is correlated with the increase in ELM frequency observed. The characteristics of the mitigated ELMs are similar to those of the natural ELMs suggesting that they are type-I ELMs which are triggered at a lower pressure gradient. The application of the RMPs in the n = 4 and n = 6 configurations before the L-H transition has little effect on the power required to achieve H-mode while still allowing the first ELM to be mitigated.
Reininger, Charlotte; Woodfield, Kellie; Keelor, Joel D.; Kaylor, Adam; Fernández, Facundo M.; Farnsworth, Paul B.
2014-10-01
The absolute number densities of helium atoms in the 2s 3S1 metastable state were determined in four plasma-based ambient desorption/ionization sources by atomic absorption spectroscopy. The plasmas included a high-frequency dielectric barrier discharge (HF-DBD), a low temperature plasma (LTP), and two atmospheric-pressure glow discharges, one with AC excitation and the other with DC excitation. Peak densities in the luminous plumes downstream from the discharge capillaries of the HF-DBD and the LTP were 1.39 × 1012 cm- 3 and 0.011 × 1012 cm- 3, respectively. Neither glow discharge produced a visible afterglow, and no metastable atoms were detected downstream from the capillary exits. However, densities of 0.58 × 1012 cm- 3 and 0.97 × 1012 cm- 3 were measured in the interelectrode regions of the AC and DC glow discharges, respectively. Time-resolved measurements of metastable atom densities revealed significant random variations in the timing of pulsed absorption signals with respect to the voltage waveforms applied to the discharges.
Pilistine, S J; Munro, H N
1984-03-01
Rats were fed either a 20% lactalbumin (control) or a 5% lactalbumin (low protein) diet for the last 2 weeks of pregnancy. At day 20 of gestation, rat serum placental lactogen levels, measured by radioreceptor assay, were significantly decreased by the low protein diet, thus confirming our earlier findings. The number of microsomal membrane lactogenic receptors, measured on the maternal livers at the end of pregnancy, was severely reduced in the livers of the low protein group, whereas protein deficiency did not affect binding affinity. Serum concentrations of somatomedin, measured by a competitive binding assay after acid treatment of the serum to remove endogenous carrier protein, were extensively reduced in the low protein group. The amounts of the somatomedin carrier proteins in the serum were assayed by separation on Sephacryl-S300 columns into higher- and lower-molecular-weight fractions peak 2 and peak 3, respectively. For the low protein diet group, both fractions showed a reduction in binding capacity, more marked in the case of peak 2. Since placental lactogen is known to influence output of somatomedin by the liver, we hypothesize that protein deficiency during pregnancy causes a fall in serum somatomedin level by reducing secretion of placental lactogen, which regulates its production by the liver.
Mach 6 flowfield survey at the engine inlet of a research airplane
Johnson, C. B.; Lawing, P. L.
1977-01-01
A flowfield survey was conducted to better define the nature of vehicle forebody flowfield at the inlet location of an airframe-integrated scramjet engine mounted on the lower surface of a high-speed research airplane to be air launched from a B-52 and rocket boosted to Mach 6. The tests were conducted on a 1/30-scale brass model in a Mach-6 20-in. wind tunnel at Reynolds number of 11,200,000 based on distance to engine inlet. Boundary layer profiles at five spanwise locations indicate that the boundary layer in the area of the forebody centerline is more than twice as thick as the boundary layer at three outboard stations. It is shown that the cold streak found in heating contours on the centerline of the forebody is caused by a thickening of the boundary layer on the centerline, and that this thickening decreases with angle of attack.
Krypton tagging velocimetry in a turbulent Mach 2.7 boundary layer
Zahradka, D.; Parziale, N. J.; Smith, M. S.; Marineau, E. C.
2016-05-01
The krypton tagging velocimetry (KTV) technique is applied to the turbulent boundary layer on the wall of the "Mach 3 Calibration Tunnel" at Arnold Engineering Development Complex (AEDC) White Oak. Profiles of velocity were measured with KTV and Pitot-pressure probes in the Mach 2.7 turbulent boundary layer comprised of 99 % {N}2/1 % Kr at momentum-thickness Reynolds numbers of {Re}_{\\varTheta }= 800, 1400, and 2400. Agreement between the KTV- and Pitot-derived velocity profiles is excellent. The KTV and Pitot velocity data follow the law of the wall in the logarithmic region with application of the Van Driest I transformation. The velocity data are analyzed in the outer region of the boundary layer with the law of the wake and a velocity-defect law. KTV-derived streamwise velocity fluctuation measurements are reported and are consistent with data from the literature. To enable near-wall measurement with KTV (y/δ ≈ 0.1-0.2), an 800-nm longpass filter was used to block the 760.2-nm read-laser pulse. With the longpass filter, the 819.0-nm emission from the re-excited Kr can be imaged to track the displacement of the metastable tracer without imaging the reflection and scatter from the read-laser off of solid surfaces. To operate the Mach 3 AEDC Calibration Tunnel at several discrete unit Reynolds numbers, a modification was required and is described herein.
Improvement of Flow Quality in NAL Chofu Mach 10 Nozzle
Lacey, John; Inoue, Yasutoshi; Higashida, Akio; Inoue, Manabu; Ishizaka, Kouichi; Korte, John J.
2002-01-01
As a result of CFD analysis and remachining of the nozzle, the flow quality of the Mach 10 Hypersonic Wind Tunnel at NAL Chofu, Japan was improved. The subsequent test results validated the CFD analytical predictions by NASA and MHL.
Mach's Principle selects 4 space-time dimensions
Altshuler, Boris L
2012-01-01
Bi-tensor kernel in integral form of Einstein equations realizing Mach's idea of non-existence of empty space-times is taken as an inverse of differential operator ("Mach operator") defined conventionally as a second variation of Einstein's gravity Action over contravariant components of metric tensor. The choice of transverse gauge condition used in this definition does not influence results of the paper since only transverse and traceless tensor modes written on different background space-times are studied. Presence of ghosts among modes of Mach operator invalidates the integral formulation of Einstein equations. And the demand of absence of these ghosts proves to be a selection rule for dimensionality of the background space-time. In particular Mach operator written on De Sitter background or on the background of so called "Einstein Universe" does not possess tensor ghosts only in 4-dimensions. The similar demand gives non-trivial formula for dimensionalities of subspaces of the Freund-Rubin background.
Mach-Zehnder Fiber-Optic Links for ICF Diagnostics
Energy Technology Data Exchange (ETDEWEB)
Miller, E. K., Hermann, H. W.
2012-11-01
This article describes the operation and evolution of Mach-Zehnder links for single-point detectors in inertial confinement fusion experimental facilities, based on the Gamma Reaction History (GRH) diagnostic at the National Ignition Facility.
Improvement of Flow Quality in NAL Chofu Mach 10 Nozzle
Lacey, John; Inoue, Yasutoshi; Higashida, Akio; Inoue, Manabu; Ishizaka, Kouichi; Korte, John J.
2002-01-01
As a result of CFD analysis and remachining of the nozzle, the flow quality of the Mach 10 Hypersonic Wind Tunnel at NAL Chofu, Japan was improved. The subsequent test results validated the CFD analytical predictions by NASA and MHL.
Numerical Simulation of Stall Flow Control Using a DBD Plasma Actuator in Pulse Mode
Khoshkhoo, R.; Jahangirian, A.
2016-09-01
A numerical simulation method is employed to investigate the effects of the unsteady plasma body force over the stalled NACA 0015 airfoil at low Reynolds number flow conditions. The plasma body force created by a dielectric barrier discharge actuator is modeled with a phenomenological method for plasma simulation coupled with the compressible Navier-Stokes equations. The governing equations are solved using an efficient implicit finitevolume method. The responses of the separated flow field to the effects of an unsteady body force in various inter-pulses and duty cycles as well as different locations and magnitudes are studied. It is shown that the duty cycle and inter-pulse are key parameters for flow separation control. Additionally, it is concluded that the body force is able to attach the flow and can affect boundary layer grow that Mach number 0.1 and Reynolds number of 45000.
Hryniewicki, M. K.; Gottlieb, J. J.; Groth, C. P. T.
2017-07-01
The transition boundary separating the region of regular reflection from the regions of single-, transitional-, and double-Mach reflections for a planar shock wave moving in air and interacting with an inclined wedge in a shock tube is studied by both analytical methods and computational-fluid-dynamic simulations. The analytical solution for regular reflection and the corresponding solutions from the extreme-angle (detachment), sonic, and mechanical-equilibrium transition criteria by von Neumann (Oblique reflection of shocks, Explosive Research Report No. 12, Navy Department, Bureau of Ordnance, U.S. Dept. Comm. Tech. Serv. No. PB37079 (1943). Also, John von Neumann, Collected Works, Pergamon Press 6, 238-299, 1963) are first revisited and revised. The boundary between regular and Mach reflection is then determined numerically using an advanced computational-fluid-dynamics algorithm to solve Euler's inviscid equations for unsteady motion in two spatial dimensions. This numerical transition boundary is determined by post-processing many closely stationed flow-field simulations, to determine the transition point when the Mach stem of the Mach-reflection pattern just disappears and this pattern then transcends into that of regular reflection. The new numerical transition boundary is shown to agree well with von Neumann's closely spaced sonic and extreme-angle boundaries for weak incident shock Mach numbers from 1.0 to 1.6, but this new boundary trends upward and above von Neumann's sonic and extreme-angle boundaries by a couple of degrees at larger shock Mach numbers from 1.6 to 4.0. Furthermore, the new numerically determined transition boundary is shown to agree well with very few available experimental data obtained from previous experiments designed to reflect two symmetrical moving oblique shock waves along a plane without a shear or boundary layer.
Hryniewicki, M. K.; Gottlieb, J. J.; Groth, C. P. T.
2016-12-01
The transition boundary separating the region of regular reflection from the regions of single-, transitional-, and double-Mach reflections for a planar shock wave moving in air and interacting with an inclined wedge in a shock tube is studied by both analytical methods and computational-fluid-dynamic simulations. The analytical solution for regular reflection and the corresponding solutions from the extreme-angle (detachment), sonic, and mechanical-equilibrium transition criteria by von Neumann (Oblique reflection of shocks, Explosive Research Report No. 12, Navy Department, Bureau of Ordnance, U.S. Dept. Comm. Tech. Serv. No. PB37079 (1943). Also, John von Neumann, Collected Works, Pergamon Press 6, 238-299, 1963) are first revisited and revised. The boundary between regular and Mach reflection is then determined numerically using an advanced computational-fluid-dynamics algorithm to solve Euler's inviscid equations for unsteady motion in two spatial dimensions. This numerical transition boundary is determined by post-processing many closely stationed flow-field simulations, to determine the transition point when the Mach stem of the Mach-reflection pattern just disappears and this pattern then transcends into that of regular reflection. The new numerical transition boundary is shown to agree well with von Neumann's closely spaced sonic and extreme-angle boundaries for weak incident shock Mach numbers from 1.0 to 1.6, but this new boundary trends upward and above von Neumann's sonic and extreme-angle boundaries by a couple of degrees at larger shock Mach numbers from 1.6 to 4.0. Furthermore, the new numerically determined transition boundary is shown to agree well with very few available experimental data obtained from previous experiments designed to reflect two symmetrical moving oblique shock waves along a plane without a shear or boundary layer.
Esfandyari-Kalejahi, Abdolrasoul; Saberian, Ehsan; 10.1585/pfr.5.045
2011-01-01
Arbitrary amplitude ion-acoustic solitary waves (IASWs) are studied using Sagdeev-Potential approach in electron-positron-ion plasma with ultra-relativistic or non-relativistic degenerate electrons and positrons and the matching criteria of existence of such solitary waves are numerically investigated. It has been shown that the relativistic degeneracy of electrons and positrons has significant effects on the amplitude and the Mach-number range of IASWs. Also it is remarked that only compressive IASWs can propagate in both non-relativistic and ultra-relativistic degenerate plasmas.
Numerical simulations of Mach stem formation via intersecting bow shocks
Hansen, E. C.; Frank, A.; Hartigan, P.; Yirak, K.
2015-12-01
Hubble Space Telescope observations show bright knots of Hα emission within outflowing young stellar jets. Velocity variations in the flow create secondary bow shocks that may intersect and lead to enhanced emission. When the bow shocks intersect at or above a certain critical angle, a planar shock called a Mach stem is formed. These shocks could produce brighter Hα emission since the incoming flow to the Mach stem is parallel to the shock normal. In this paper we report first results of a study using 2-D numerical simulations designed to explore Mach stem formation at the intersection of bow shocks formed by hypersonic "bullets" or "clumps". Our 2-D simulations show how the bow shock shapes and intersection angles change as the adiabatic index γ changes. We show that the formation or lack of a Mach stem in our simulations is consistent with the steady-state Mach stem formation theory. Our ultimate goal, which is part of an ongoing research effort, is to characterize the physical and observational consequences of bow shock intersections including the formation of Mach stems.
Numerical modeling of deflagration mode in coaxial plasma guns
Sitaraman, Hariswaran; Raja, Laxminarayan
2012-10-01
Pulsed coaxial plasma guns have been used in several applications in the field of space propulsion, nuclear fusion and materials processing. These devices operate in two modes based on the delay between gas injection and breakdown initiation. Larger delay led to the plasma detonation mode where a compression wave in the form of a luminous front propagates from the breech to the muzzle. Shorter delay led to the more efficient deflagration mode characterized by a relatively diffuse plasma with higher resistivity. The overall physics of the discharge in the two modes of operation and in particular the latter remain relatively unexplored. Here we perform a computational modeling study by solving the non-ideal Magneto-hydrodynamics equations for the quasi-neutral plasma in the coaxial plasma gun. A finite volume formulation on an unstructured mesh framework with an implicit scheme is used to do stable computations. The final work will present details of important species in the plasma, particle energies and Mach number at the muzzle. A comparison of the plasma parameters will be made with the experiments reported in ref. [1]. [4pt] [1] F. R. Poehlmann et al., Phys. Plasmas 17, 123508 (2010)
3D shock-bubble interactions at Mach 3
Hejazialhosseini, Babak; Koumoutsakos, Petros
2012-01-01
We present a simulation for the interactions of shockwaves with light spherical density inhomogeneities. Euler equations for two-phase compressible flows are solved in a 3D uniform resolution finite volume based solver using 5th order WENO reconstructions of the primitive quantities, HLL-type numerical fluxes and 3rd order TVD time stepping scheme. In this study, a normal Mach 3 shockwave in air is directed at a helium bubble with an interface Atwood number of -0.76. We employ 4 billion cells on a supercomputing cluster and demonstrate the development of this flow until relatively late times. Shock passage compresses the bubble and deposits baroclinic vorticity on the interface. Initial distribution of the vorticity and compressions lead to the formation of an air jet, interface roll-ups and the formation of a long lasting vortical core, the white core. Compressed upstream of the bubble turns into a mixing zone and as the vortex ring distances from this mixing zone, a plume-shaped region is formed and sustain...
Integrated Mach-Zehnder interferometer for Bose-Einstein condensates.
Berrada, T; van Frank, S; Bücker, R; Schumm, T; Schaff, J-F; Schmiedmayer, J
2013-01-01
Particle-wave duality enables the construction of interferometers for matter waves, which complement optical interferometers in precision measurement devices. This requires the development of atom-optics analogues to beam splitters, phase shifters and recombiners. Integrating these elements into a single device has been a long-standing goal. Here we demonstrate a full Mach-Zehnder sequence with trapped Bose-Einstein condensates confined on an atom chip. Particle interactions in our Bose-Einstein condensate matter waves lead to a nonlinearity, absent in photon optics. We exploit it to generate a non-classical state having reduced number fluctuations inside the interferometer. Making use of spatially separated wave packets, a controlled phase shift is applied and read out by a non-adiabatic matter-wave recombiner. We demonstrate coherence times a factor of three beyond what is expected for coherent states, highlighting the potential of entanglement as a resource for metrology. Our results pave the way for integrated quantum-enhanced matter-wave sensors.
Overview of Plasma Guns for PLX
Witherspoon, F. Douglas; Bomgardner, Richard; Case, Andrew; Messer, Sarah; Brockington, Samuel; Wu, Linchun; Elton, Raymond; Hsu, Scott; Cassibry, Jason; Gilmore, Mark
2010-11-01
Plasma guns are being developed for use on the Plasma Liner Experiment (PLX) located at LANL. The collapsing plasma liner will be formed via merging of 30-60 dense, high Mach number plasma jets (n˜10^16-17 cm-3, M˜10--35, v˜50--70 km/s, rjet˜5 cm) in a spherically convergent geometry. Small parallel-plate railguns are being developed for this purpose. Each gun will operate at ˜300-600 kA peak current, and launch up to ˜8000 μg of high-Z plasma (Ar, Xe) using a ˜50 kJ pfn. We are now successfully operating with very fast gas valve injection of Ar, and have already achieved good performance of 1200 μg at 42 km/s, and 4000 μg at 20-25 km/s at low current. Work is underway to increase both the mass and velocity using higher current. We describe experimental development of the minirailguns and their present and projected performance. We also discuss options for modest size coaxial guns that might achieve the same performance and provide additional control of the plasmoid structure.
Sheath Criterion for a Collisional Electronegative Plasma Sheath in an Applied Magnetic Field
Institute of Scientific and Technical Information of China (English)
邹秀; 刘惠平; 邱明辉; 孙骁航
2011-01-01
The sheath criterion for a collisional electronegative plasma sheath in an applied magnetic field is investigated.It is assumed that the system consists of hot electrons,hot negative ions and cold positive ions.The effect of an applied magnetic field on the sheath criterion is discussed.The results reveal that the magnetic field has effects on both the upper and lower limits,which cause the range of the ion Mach number to increase.In addition,the numerical calculations of the electronegative plasma sheath are carried out to demonstrate the effects of sheath criterion on the characteristics of the sheath.%The sheath criterion for a collisioned electronegative plasma sheath in an applied magnetic Geld is investigated. It is assumed that the system consists of hot electrons, hot negative ions and cold positive ions. The effect of an applied magnetic Reid on the sheath criterion is discussed. The results reveal that the magnetic field has effects on both the upper and lower limits, which cause the range of the ion Mach number to increase. In addition, the numerical calculations of the electronegative plasma sheath are carried out to demonstrate the effects of sheath criterion on the characteristics of the sheath.
Energy Technology Data Exchange (ETDEWEB)
Rufai, O. R., E-mail: rajirufai@gmail.com; Bharuthram, R., E-mail: rbharuthram@uwc.ac.za [University of the Western Cape, Belville (South Africa); Singh, S. V., E-mail: satyavir@iigs.iigm.res.in; Lakhina, G. S., E-mail: lakhina@iigs.iigm.res.in [Indian Institute of Geomagnetism, New Panvel (W), Navi Mumbai (India)
2014-08-15
Arbitrary amplitude, ion acoustic solitons, and supersolitons are studied in a magnetized plasma with two distinct groups of electrons at different temperatures. The plasma consists of a cold ion fluid, cool Boltzmann electrons, and nonthermal energetic hot electrons. Using the Sagdeev pseudo-potential technique, the effect of nonthermal hot electrons on soliton structures with other plasma parameters is studied. Our numerical computation shows that negative potential ion-acoustic solitons and double layers can exist both in the subsonic and supersonic Mach number regimes, unlike the case of an unmagnetized plasma where they can only exist in the supersonic Mach number regime. For the first time, it is reported here that in addition to solitions and double layers, the ion-acoustic supersoliton solutions are also obtained for certain range of parameters in a magnetized three-component plasma model. The results show good agreement with Viking satellite observations of the solitary structures with density depletions in the auroral region of the Earth's magnetosphere.
Two-fluid electromagnetic simulations of plasma-jet acceleration with detailed equation-of-state
Energy Technology Data Exchange (ETDEWEB)
Thoma, C.; Welch, D. R.; Clark, R. E.; Bruner, N. [Voss Scientific, LLC, Albuquerque, New Mexico 87108 (United States); MacFarlane, J. J.; Golovkin, I. E. [Prism Computational Sciences, Inc., Madison, Wisconsin 53711 (United States)
2011-10-15
We describe a new particle-based two-fluid fully electromagnetic algorithm suitable for modeling high density (n{sub i} {approx} 10{sup 17} cm{sup -3}) and high Mach number laboratory plasma jets. In this parameter regime, traditional particle-in-cell (PIC) techniques are challenging due to electron timescale and lengthscale constraints. In this new approach, an implicit field solve allows the use of large timesteps while an Eulerian particle remap procedure allows simulations to be run with very few particles per cell. Hall physics and charge separation effects are included self-consistently. A detailed equation of state (EOS) model is used to evolve the ion charge state and introduce non-ideal gas behavior. Electron cooling due to radiation emission is included in the model as well. We demonstrate the use of these new algorithms in 1D and 2D Cartesian simulations of railgun (parallel plate) jet accelerators using He and Ar gases. The inclusion of EOS and radiation physics reduces the electron temperature, resulting in higher calculated jet Mach numbers in the simulations. We also introduce a surface physics model for jet accelerators in which a frictional drag along the walls leads to axial spreading of the emerging jet. The simulations demonstrate that high Mach number jets can be produced by railgun accelerators for a variety of applications, including high energy density physics experiments.
Dynamic stall control by plasma actuators with combined energy/momentum action
Starikovskiy, Andrey; Miles, Richard; PU Team
2016-09-01
Increased interest in plasma assisted flow control is reflected by a dramatic increase in publication rate over the past decade, including numerous demonstrations of plasma-assisted flow control. Many of these have been summarized in several topical reviews published recently. As an alternative to AC voltage inputs, nanosecond pulse driven plasma actuators in which voltage is applied in pulses at a specific frequency and with a specific on-time have been proposed for separated flow control. Nanosecond pulsed periodic dielectric barrier devices have been experimentally demonstrated to affect separated flows over a range of Mach numbers (0 . 03 >= M >= 0 . 85) and Reynolds numbers (10-4 >= Re >= 2 ×10-6) that are consistent with retreating blade flows. Furthermore, the nanosecond pulsed actuators tested to date have required less than 10 Watt per cm. of wing span, and therefore are energy efficient.
Numerical Simulations of Mach Stem Formation via Intersecting Bow Shocks
Hansen, Edward C; Hartigan, Patrick
2014-01-01
Hubble Space Telescope observations show bright knots of H$\\alpha$ emission within outflowing young stellar jets. Velocity variations in the flow create secondary bow shocks that may intersect and lead to enhanced emission. When the bow shocks intersect at or above a certain critical angle, a planar shock called a Mach stem is formed. These shocks could produce brighter H$\\alpha$ emission since the incoming flow to the Mach stem is parallel to the shock normal. In this paper we report first results of a study using 2-D numerical simulations designed to explore Mach stem formation at the intersection of bow shocks formed by hypersonic "bullets" or "clumps". Our 2-D simulations show how the bow shock shapes and intersection angles change as the adiabatic index $\\gamma$ changes. We show that the formation or lack of a Mach stem in our simulations is consistent with the steady-state Mach stem formation theory. Our ultimate goal, which is part of an ongoing research effort, is to characterize the physical and obse...
Mach-Zehnder recording systems for pulsed power diagnostics
Energy Technology Data Exchange (ETDEWEB)
Miller, E. K.; Abbott, R. Q.; McKenna, I.; Macrum, G.; Baker, D.; Tran, V.; Rodriguez, E.; Kaufman, M. I.; Tibbits, A.; Silbernagel, C. T.; Waltman, T. B. [National Security Technologies, LLC, Santa Barbara and Livermore, California 93111 (United States); National Security Technologies, LLC, Los Alamos, New Mexico 87544 (United States); and National Security Technologies, LLC, North Las Vegas, Nevada 89193 (United States); Herrmann, H. W.; Kim, Y. H.; Mack, J. M.; Young, C. S.; Caldwell, S. E.; Evans, S. C.; Sedillo, T. J. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Stoeffl, W.; Grafil, E. [Lawrence Livermore National Laboratory, Livermore, California (United States); and others
2012-10-15
Fiber-optic transmission and recording systems, based on Mach-Zehnder modulators, have been developed and installed at the National Ignition Facility (NIF), and are being developed for other pulsed-power facilities such as the Z accelerator at Sandia, with different requirements. We present the design and performance characteristics for the mature analog links, based on the system developed for the Gamma Reaction History diagnostic at the OMEGA laser and at NIF. For a single detector channel, two Mach-Zehnders are used to provide high dynamic range at the full recording bandwidth with no gaps in the coverage. We present laboratory and shot data to estimate upper limits on the radiation effects as they impact recorded data quality. Finally, we will assess the technology readiness level for mature and developing implementations of Mach-Zehnder links for these environments.
Mach-Zehnder recording systems for pulsed power diagnostics.
Miller, E K; Abbott, R Q; McKenna, I; Macrum, G; Baker, D; Tran, V; Rodriguez, E; Kaufman, M I; Tibbits, A; Silbernagel, C T; Waltman, T B; Herrmann, H W; Kim, Y H; Mack, J M; Young, C S; Caldwell, S E; Evans, S C; Sedillo, T J; Stoeffl, W; Grafil, E; Liebman, J; Beeman, B; Watts, P; Carpenter, A; Horsfied, C J; Rubery, M S; Chandler, G A; Torres, J A; Smelser, R M
2012-10-01
Fiber-optic transmission and recording systems, based on Mach-Zehnder modulators, have been developed and installed at the National Ignition Facility (NIF), and are being developed for other pulsed-power facilities such as the Z accelerator at Sandia, with different requirements. We present the design and performance characteristics for the mature analog links, based on the system developed for the Gamma Reaction History diagnostic at the OMEGA laser and at NIF. For a single detector channel, two Mach-Zehnders are used to provide high dynamic range at the full recording bandwidth with no gaps in the coverage. We present laboratory and shot data to estimate upper limits on the radiation effects as they impact recorded data quality. Finally, we will assess the technology readiness level for mature and developing implementations of Mach-Zehnder links for these environments.
Mach-Zehnder Recording Systems for Pulsed Power Diagnostics
Energy Technology Data Exchange (ETDEWEB)
Miller, E K; McKenna, I; Macrum, G; Baker, D; Tran, V; Rodriguez, E; Kaufman, M I; Tibbits, A; Silbernagel, C T; Waltman, T B; Herrmann, H W; Kim, Y H; Mack, J M; Young, C S; Caldwell, S E; Evans, S C; Sedillo, T J; Stoeffl, W; Grafil, E; Liebman, J; Beeman, B; Watts, P; Carpenter, A; Horsfied, C J; Rubery, M S; Chandler, G A; Torres, J A
2012-10-01
Fiber-optic transmission and recording systems, based on Mach-Zehnder modulators, have been developed and installed at the National Ignition Facility (NIF), and are being developed for other pulsed-power facilities such as Z-R at Sandia, with different requirements. We present the design and performance characteristics for the mature analog links, based on the system developed for the Gamma Reaction History (GRH) diagnostic at OMEGA and NIF. For a single detector channel, two Mach-Zehnders are used to provide high dynamic range at the full recording bandwidth with no gaps in the coverage. We present laboratory and shot data to estimate upper limits on the radiation effects as they impact recorded data quality. Finally, we will assess the technology readiness level for mature and developing implementations of Mach-Zehnder links for these environments.
Chao, J. K.; Wiskerchen, M. J.
1974-01-01
The empirical relationship between the standoff distance of a detached bow shock (generated by the flow of a supersonic gas past an impenetrable obstacle), the size of the obstacle, the Mach number of the gas, and the ratio of specific heats has been generalized to include the magnetic field. The value of the ratio of specific heats (gamma-prime) in the postshock plasma has been calculated in terms of the preshock Alfvenic and sonic Mach numbers and orientation of the magnetic field. The empirical relationship is further generalized by taking into consideration the normal momentum and energy flux due to waves and/or turbulence and/or heat flow in association with high Mach number shocks. The computed value of gamma prime is substantially modified in comparison with that given by the MHD or the gas dynamic model. For this generalized model the computed gamma prime can be considered to be a more precise thermodynamic quantity, since the macroscopic parameters of the plasma have been separated out. Application of this empirical relationship to the earth's bow shock has been given.
Plasma flow in peripheral region of detached plasma in linear plasma device
Energy Technology Data Exchange (ETDEWEB)
Hayashi, Y., E-mail: hayashi-yuki13@ees.nagoya-u.ac.jp; Ohno, N. [Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8603 (Japan); Kajita, S. [EcoTopia Science Institute, Nagoya University, Nagoya, Aichi 464-8603 (Japan); Tanaka, H. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan)
2016-01-15
A plasma flow structure is investigated using a Mach probe under detached plasma condition in a linear plasma device NAGDIS-II. A reverse flow along the magnetic field is observed in a steady-state at far-peripheral region of the plasma column in the upstream side from the recombination front. These experimental results indicate that plasma near the recombination front should strongly diffuse across the magnetic field, and it should be transported along the magnetic field in the reverse flow direction. Furthermore, bursty plasma density fluctuations associated with intermittent convective plasma transport are observed in the far-peripheral region of the plasma column in both upstream and downstream sides from the recombination front. Such a nondiffusive transport can contribute to the intermittent reverse plasma flow, and the experimental results indicate that intermittent transports are frequently produced near the recombination front.
Quantum heat engines based on electronic Mach-Zehnder interferometers
Hofer, Patrick P.; Sothmann, Björn
2015-05-01
We theoretically investigate the thermoelectric properties of heat engines based on Mach-Zehnder interferometers. The energy dependence of the transmission amplitudes in such setups arises from a difference in the interferometer arm lengths. Any thermoelectric response is thus of purely quantum-mechanical origin. In addition to an experimentally established three-terminal setup, we also consider a two-terminal geometry as well as a four-terminal setup consisting of two interferometers. We find that Mach-Zehnder interferometers can be used as powerful and efficient heat engines which perform well under realistic conditions.
Transition to Double Mach Stem for Nuclear Explosion at 104 ft Height of Burst.
1981-11-17
intersecting the ground. The initialization provides a strong shock with Mach number MI = 12. This speed and the need for restart capability led to the choice...a HOB of 104 ft (31.7m). A strong spherical shock is created in the surrounding air, and’ reflects from the grcund. 9 The outward-traveling airbiast...AIR FCIPCF SYST T’M CCvfvtANC NORTON" A!7, CA 9?40Pg (MIIJ’r’-MAN) QICY ATTN "INNYH "D IALAN5S<Y 0O1C Y ATTNJ MMN)) eHM kF-LVECCHir OICY ATTN fuNN w
Study of Rayleigh scattering for visualization of helium-air mixing at Mach 6
Shirinzadeh, B.; Balla, R. J.; Hillard, M. E.; Anders, J. B.; Exton, R. J.; Waitz, I. A.
1991-01-01
Using an ArF excimer laser, planar Rayleigh scattering measurements were performed to investigate helium mixing into air at supersonic speeds. These experiments were conducted in the Mach 6, high-Reynolds-number facility at NASA Langley Research Center. The capability of the Rayleigh scattering technique for flow visualization of a turbulent environment was demonstrated. The qualitative agreement between the averaged Rayleigh results and the reduced mean-mass-densities obtained from probe measurements substantiate that careful application of the technique, even in the presence of clusters, can give very useful results. It was also demonstrated that planar, quantitative measurements can be made in the absence of clusters.
Mach Cones and Hydrodynamic Flow:. Probing Big Bang Matter in the Laboratory
Betz, Barbara; Rau, Philip; Stöcker, Horst
A critical discussion of the present signals for the phase transition to quark-gluon plasma (QGP) is given. Since hadronic rescattering models predict much larger flow than observed from 1 to 50 A GeV laboratory bombarding energies, this observation is interpreted as potential evidence for a first-order phase transition at high baryon density. A detailed discussion of the collective flow as a barometer for the equation of state (EoS) of hot dense matter at RHIC follows. Here, hadronic rescattering models can explain 2 GeV/c. This is interpreted as an evidence for the production of superdense matter at RHIC. The connection of v2 to jet suppression is examined. A study of Mach shocks generated by fast partonic jets propagating through the QGP is given. The main goal is to take into account different types of collective motion during the formation and evolution of this matter. A significant deformation of Mach shocks in central Au+Au collisions at RHIC and LHC energies as compared to the case of jet propagation in a static medium is predicted. A new hydrodynamical study of jet energy loss is presented.
Mach Cones and Hydrodynamic Flow Probing Big Bang Matter in the Laboratory
Betz, Barbara; Stöcker, Horst
2007-01-01
A critical discussion of the present signals for the phase transition to quark-gluon plasma (QGP) is given. Since hadronic rescattering models predict much larger flow than observed from 1 to 50 A GeV laboratory bombarding energies, this observation is interpreted as potential evidence for a first-order phase transition at high baryon density. A detailed discussion of the collective flow as a barometer for the equation of state (EoS) of hot dense matter at RHIC follows. Here, hadronic rescattering models can explain $ 2$ GeV/c. This is interpreted as an evidence for the production of superdense matter at RHIC. The connection of $v_2$ to jet suppression is examined. A study of Mach shocks generated by fast partonic jets propagating through the QGP is given. The main goal is to take into account different types of collective motion during the formation and evolution of this matter. A significant deformation of Mach shocks in central Au+Au collisions at RHIC and LHC energies as compared to the case of jet propag...
Magnetic field advection in two interpenetrating plasma streams
Energy Technology Data Exchange (ETDEWEB)
Ryutov, D. D.; Kugland, N. L.; Levy, M. C.; Plechaty, C.; Ross, J. S.; Park, H. S. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)
2013-03-15
Laser-generated colliding plasma streams can serve as a test-bed for the study of various astrophysical phenomena and the general physics of self-organization. For streams of a sufficiently high kinetic energy, collisions between the ions of one stream with the ions of the other stream are negligible, and the streams can penetrate through each other. On the other hand, the intra-stream collisions for high-Mach-number flows can still be very frequent, so that each stream can be described hydrodynamically. This paper presents an analytical study of the effects that these interpenetrating streams have on large-scale magnetic fields either introduced by external coils or generated in the plasma near the laser targets. Specifically, a problem of the frozen-in constraint is assessed and paradoxical features of the field advection in this system are revealed. A possibility of using this system for studies of magnetic reconnection is mentioned.
Jump Conditions of a Shock with Current in Cylindrical Non-Neutral Plasma
Institute of Scientific and Technical Information of China (English)
HE Yong; HU Xi-Wei; HU Ye-Min
2006-01-01
Jump conditions of the parameters (mass flow, momentum flow and energy Bow) of a shock with current (thereby, electric and magnetic field) in cylindrical non-neutral plasma are presented and derived from Maxwell's equations and two fluid equations for electron and ion fluid. The critical Mach number for the shock existence is calculated, which depends on the shock carried current, the ion charge, and the composition of the magnetic and thermal pressure. The numerical results show that both the strength and profiles of the downstream shock parameters will be affected obviously by the shock carried current, electric and magnetic field in the two-dimensional shock.
Finite-orbit-width effects on the geodesic acoustic mode in the toroidally rotating tokamak plasma
Ren, Haijun
2016-01-01
The Landau damping of geodesic acoustic mode (GAM) in a torodial rotating tokamak plasma is analytically investigated by taking into account the finite-orbit-width (FOW) resonance effect to the 3rd order. The analytical result is shown to agree well with the numerical solution. The dependence of the damping rate on the toroidal Mach number $M$ relies on $k_r \\rho_i$. For sufficiently small $k_r \\rho_i$, the damping rate monotonically decreases with $M$. For relatively large $k_r \\rho_i$, the damping rate increases with $M$ until approaching the maximum and then decreases with $M$.
Energy Technology Data Exchange (ETDEWEB)
Adams, Colin Stuart [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Univ. of New Mexico, Albuquerque, NM (United States)
2015-01-15
The Rayleigh-Taylor instability causes mixing in plasmas throughout the universe, from micron-scale plasmas in inertial confinement fusion implosions to parsec-scale supernova remnants. The evolution of this interchange instability in a plasma is influenced by the presence of viscosity and magnetic fields, both of which have the potential to stabilize short-wavelength modes. Very few experimental observations of Rayleigh-Taylor growth in plasmas with stabilizing mechanisms are reported in the literature, and those that are reported are in sub-millimeter scale plasmas that are difficult to diagnose. Experimental observations in well-characterized plasmas are important for validation of computational models used to make design predictions for inertial confinement fusion efforts. This dissertation presents observations of instability growth during the interaction between a high Mach-number, initially un-magnetized plasma jet and a stagnated, magnetized plasma. A multi-frame fast camera captures Rayleigh-Taylor-instability growth while interferometry, spectroscopy, photodiode, and magnetic probe diagnostics are employed to estimate plasma parameters in the vicinity of the collision. As the instability grows, an evolution to longer mode wavelength is observed. Comparisons of experimental data with idealized magnetohydrodynamic simulations including a physical viscosity model suggest that the observed instability evolution is consistent with both magnetic and viscous stabilization. These data provide the opportunity to benchmark computational models used in astrophysics and fusion research.
Energy Technology Data Exchange (ETDEWEB)
Adams, Colin Stuart [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Univ. of New Mexico, Albuquerque, NM (United States); Univ. of Washington, Seattle, WA (United States)
2015-01-15
The Rayleigh-Taylor instability causes mixing in plasmas throughout the universe, from micron-scale plasmas in inertial confinement fusion implosions to parsec-scale supernova remnants. The evolution of this interchange instability in a plasma is influenced by the presence of viscosity and magnetic fields, both of which have the potential to stabilize short-wavelength modes. Very few experimental observations of Rayleigh-Taylor growth in plasmas with stabilizing mechanisms are reported in the literature, and those that are reported are in sub-millimeter scale plasmas that are difficult to diagnose. Experimental observations in well-characterized plasmas are important for validation of computational models used to make design predictions for inertial confinement fusion efforts. This dissertation presents observations of instability growth during the interaction between a high Mach-number, initially un-magnetized plasma jet and a stagnated, magnetized plasma. A multi-frame fast camera captures Rayleigh-Taylor-instability growth while interferometry, spectroscopy, photodiode, and magnetic probe diagnostics are employed to estimate plasma parameters in the vicinity of the collision. As the instability grows, an evolution to longer mode wavelength is observed. Comparisons of experimental data with idealized magnetohydrodynamic simulations including a physical viscosity model suggest that the observed instability evolution is consistent with both magnetic and viscous stabilization. These data provide the opportunity to benchmark computational models used in astrophysics and fusion research.
Concept Development of a Mach 1.6 High-Speed Civil Transport
Shields, Elwood W.; Fenbert, James W.; Ozoroski, Lori P.; Geiselhart, Karl A.
1999-01-01
A high-speed civil transport configuration with a Mach number of 1.6 was developed as part of the NASA High-Speed Research Program to serve as a baseline for assessing advanced technologies required for an aircraft with a service entry date of 2005. This configuration offered more favorable solutions to environmental concerns than configurations with higher Mach numbers. The Mach 1.6 configuration was designed for a 6500 n.mi. mission with a 250-passenger payload. The baseline configuration has a wing area of 8732 square feet a takeoff gross weight of 591570 lb, and four 41000-lb advanced turbine bypass engines defined by NASA. These engines have axisymmetric mixer-ejector nozzles that are assumed to yield 20 dB of noise suppression during takeoff, which is assumed to satisfy, the FAR Stage III noise requirements. Any substantial reduction in this assumed level of suppression would require oversizing the engines to meet community noise regulations and would severly impact the gross weight of the aircraft at takeoff. These engines yield a ratio of takeoff thrust to weight of 0.277 and a takeoff wing loading of 67.8 lb/square feet that results in a rotation speed of 169 knots. The approach velocity of the sized configuration at the end of the mission is 131 knots. The baseline configuration was resized with an engine having a projected life of 9000 hr for hot rotating parts and 18000 hr for the rest of the engine, as required for commercial use on an aircraft with a service entry date of 2005. Results show an increase in vehicle takeoff gross weight of approximately 58700 lb. This report presents the details of the configuration development, mass properties, aerodynamic design, propulsion system and integration, mission performance, and sizing.
Tunable multiwavelength erbium-doped fiber laser based on an in-line Mach Zehnder interferometer
Energy Technology Data Exchange (ETDEWEB)
Han, Young-Geun [Hanyang University, Seoul (Korea, Republic of)
2010-12-15
A tunable multiwavelength erbium-doped fiber laser based on an in-line Mach Zehnder interferometer is proposed and experimentally demonstrated. The in-line Mach Zehnder interferometer is realized by using cascaded long-period fiber gratings. The long-period fiber gratings can couple the guided core mode to several cladding modes. If two identical long-period fiber gratings are concatenated, an interference pattern can be generated, which results from an interaction of the core and the cladding modes in the second long-period fiber grating. Therefore, a simple multichannel filter based on an in-line Mach Zehnder interferometer can be realized. The wavelength spacing of the proposed multichannel filter is controlled by the number of long-period fiber gratings. We apply the proposed multichannel fiber to the generation of a multiwavelength erbium-doped fiber laser with a tunability on the order of the wavelength spacing. An erbium-doped fiber amplifier is implemented as a gain medium. The gain competition of erbium ions is suppressed by soaking the erbium-doped fiber in liquid nitrogen. The power fluctuation of the proposed multiwavelength fiber laser is measured to be less than 0.5 dB. A high-quality multiwavelength output with a high extinction ratio of more than 40 dB is achieved. The wavelength spacing of the proposed multiwavelength fiber laser is controlled by increasing the number of long-period fiber gratings. The wavelength spacing is changed from 0.8 nm to 1.6 nm discretely.
Modelling of a water plasma flow: I. Basic results
Energy Technology Data Exchange (ETDEWEB)
KotalIk, Pavel [INP Greifswald, Friedrich-Ludwig-Jahn-Strasse 19, 17489 Greifswald (Germany)
2006-06-21
One-fluid MHD equations are numerically solved for an axisymmetric flow of thermal water plasma inside and outside a discharge chamber of a plasma torch with water vortex stabilization of electric arc. Comparisons with experimental data and previous calculations are given. For arc currents of 300-600 A, the respective temperatures and velocities in the range 16 700-26 400 K and 2300-6900 m s{sup -1} are obtained at the centre of the nozzle exit. The flow velocity on axis increases by 1-2 km s{sup -1} in the 5 mm long nozzle. Ohmic heating and radiative losses are two competitive processes influencing most the plasma temperature and velocity. The radiative losses represent 39% to 46% of the torch power of 69-174 kW when optical thickness of 3 mm is assumed for the plasma column. In front of the cathode, inside the discharge chamber, a recirculation zone is predicted and discussed. Effects of the temperature dependence of the plasma viscosity and sound velocity and of the optical thickness are examined. It is shown that the results such as waviness of the Mach number isolines are direct consequences of these dependences. Different lengths of 55 and 60 mm of the water vortex stabilized part of the electric arc do not substantially influence the plasma temperature and velocity at the nozzle exit.
Kujawski, Joseph T.; Gliese, Ulrik B.; Cao, N. T.; Zeuch, M. A.; White, D.; Chornay, D. J; Lobell, J. V.; Avanov, L. A.; Barrie, A. C.; Mariano, A. J.;
2015-01-01
Each half of the Dual Electron Spectrometer (DES) of the Fast Plasma Investigation (FPI) on NASA's Magnetospheric MultiScale (MMS) mission utilizes a microchannel plate Chevron stack feeding 16 separate detection channels each with a dedicated anode and amplifier/discriminator chip. The desire to detect events on a single channel with a temporal spacing of 100 ns and a fixed dead-time drove our decision to use an amplifier/discriminator with a very fast (GHz class) front end. Since the inherent frequency response of each pulse in the output of the DES microchannel plate system also has frequency components above a GHz, this produced a number of design constraints not normally expected in electronic systems operating at peak speeds of 10 MHz. Additional constraints are imposed by the geometry of the instrument requiring all 16 channels along with each anode and amplifier/discriminator to be packaged in a relatively small space. We developed an electrical model for board level interactions between the detector channels to allow us to design a board topology which gave us the best detection sensitivity and lowest channel to channel crosstalk. The amplifier/discriminator output was designed to prevent the outputs from one channel from producing triggers on the inputs of other channels. A number of Radio Frequency design techniques were then applied to prevent signals from other subsystems (e.g. the high voltage power supply, command and data handling board, and Ultraviolet stimulation for the MCP) from generating false events. These techniques enabled us to operate the board at its highest sensitivity when operated in isolation and at very high sensitivity when placed into the overall system.
Heat transfer and pressure distributions on hemisphere-cylinders in methane-air combustion products at Mach 7
Weinstein, I.
1973-01-01
Heat-transfer and pressure distributions were measured over the surfaces of three hemisphere-cylinder models tested at a nominal Mach number of 7 in the Langley 8-foot high-temperature structures tunnel which uses methane-air products of combustion as a test medium. The results showed that the heat-transfer and pressure distributions over the surface of the models were in good agreement with experimental data obtained in air and also with theoretical predictions.
Effects of wind-tunnel noise on swept-cylinder transition at Mach 3.5
Creel, T. R., Jr.; Beckwith, I. E.; Chen, F.-J.
1986-01-01
Transition data are reported for circular cylinders at swept angles of 45 and 60 degrees in the Mach 3.5 pilot-low-disturbance tunnel where free-stream noise levels are varied from approximately .05-0.5 percent in terms of the rms fluctuating pressure normalized by the mean static pressure. Results indicate that end plate or boundary layer trip disturbances at the upstream end of the cylinders cause turbulent flow along the entire test Reynolds number range of 10-170 thousand per inch. With all end plate and trip disturbances removed, transition at the attachment lines occurred at free-stream Reynolds numbers based on diameters of about 70-80 thousand, independent of stream noise levels. The installation of small trips on the attachement lines caused transition at lower Reynolds numbers, depending on both the roughness height and the wind tunnel noise level.
Prokopov, P. A.; Zakharov, Yu P.; Tishchenko, V. N.; Shaikhislamov, I. F.; Boyarintsev, E. L.; Melekhov, A. V.; Ponomarenko, A. G.; Posukh, V. G.; Terekhin, V. A.
2016-11-01
Generation of Alfven waves propagating along external magnetic field B0 and Collisionless Shock Waves propagating across B0 are studied in experiments with laser- produced plasma and magnetized background plasma. The collisionless interaction of interpenetrating plasma flows takes place through a so-called Magnetic Laminar Mechanism (MLM) or Larmor Coupling. At the edge of diamagnetic cavity LP-ions produce induction electric field Eφ which accelerates BP-ions while LP-ions rotate in opposite direction. The ions movement generates sheared azimuthal magnetic field Bφ which could launches torsional Alfven wave. In previous experiments at KI-1 large scale facility a generation of strong perturbations propagating across B0 with magnetosonic speed has been studied at a moderate value of interaction parameter δ∼0.3. In the present work we report on experiments at conditions of 5∼R2 and large Alfven-Mach number MA∼10 in which strong transverse perturbations traveling at a scale of ∼1 m in background plasma at a density of ∼3*1013 cm-3 is observed. At the same conditions but smaller MA ∼ 2 a generation, the structure and dynamic of Alfven wave with wavelength ∼0.5 m propagating along fields B0∼100÷500 G for a distance of ∼2.5 m is studied.
3 TUNNELS IN THE ENGINE RESEARCH BUILDING ERB - IN CELL CE-26 VARIABLE REYNOLDS NUMBER SUPERSONIC NO
1956-01-01
3 TUNNELS IN THE ENGINE RESEARCH BUILDING ERB - IN CELL CE-26 VARIABLE REYNOLDS NUMBER SUPERSONIC NOZZLE - CELL CE-4 6X6 INCH MACH NUMBER 2.96 SUPERSONIC AIRPLANE - CELL 1-NW 1X1 FOOT MACH 3.12 SUPERSONIC TUNNEL
Energy Technology Data Exchange (ETDEWEB)
Tognoni, E. [Istituto per i Processi Chimico-Fisici, Area della Ricerca del Consiglio Nazionale delle Ricerche Via Moruzzi 1, 56124 Pisa (Italy)], E-mail: tognoni@ipcf.cnr.it; Hidalgo, M.; Canals, A. [Departamento de Quimica Analitica, Nutricion y Bromatologia. Universidad de Alicante. Apdo. 99, 03080, Alicante (Spain); Cristoforetti, G.; Legnaioli, S.; Salvetti, A.; Palleschi, V. [Istituto per i Processi Chimico-Fisici, Area della Ricerca del Consiglio Nazionale delle Ricerche Via Moruzzi 1, 56124 Pisa (Italy)
2007-05-15
In Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) spectrochemical analysis, the MgII(280.270 nm)/MgI(285.213 nm) ionic to atomic line intensity ratio is commonly used as a monitor of the robustness of operating conditions. This approach is based on the univocal relationship existing between intensity ratio and plasma temperature, for a pure argon atmospheric ICP in thermodynamic equilibrium. In a multi-elemental plasma in the lower temperature range, the measurement of the intensity ratio may not be sufficient to characterize temperature and electron density. In such a range, the correct relationship between intensity ratio and plasma temperature can be calculated only when the complete plasma composition is known. We propose the combination of the line intensity ratios of two test elements (double ratio) as an effective diagnostic tool for a multi-elemental low temperature LTE plasma of unknown composition. In particular, the variation of the double ratio allows us discriminating changes in the plasma temperature from changes in the electron density. Thus, the effects on plasma excitation and ionization possibly caused by introduction of different samples and matrices in non-robust conditions can be more accurately interpreted. The method is illustrated by the measurement of plasma temperature and electron density in a specific analytic case.
Mach-Zehnder fiber interferometer for people monitoring
Vasinek, Vladimir; Latal, Jan; Koudelka, Petr; Siska, Petr; Vitasek, Jan; Skapa, Jan
2010-10-01
Fiber optical interferometers belong to highly sensitive equipments that are able to measure slight changes like distortion of shape, temperature and electric field variation and etc. Their great advantage is that they are insensitive on ageing component, from which they are composed of. It is in virtue of herewith, that there are evaluated no changes in optical signal intensity but number interference fringes. To monitor the movement of persons, eventually to analyze the changes in state of motion we developed method based on analysis the dynamic changes in interferometric pattern. We have used Mach- Zehnder interferometer with conventional SM fibers excited with the DFB laser at wavelength of 1550 nm. It was terminated with optical receiver containing InGaAs PIN photodiode. Its output was brought into measuring card module that performs on FFT of the received interferometer signal. The signal rises with the composition of two waves passing through single interferometer arm. The optical fiber SMF 28e in one arm is referential; the second one is positioned on measuring slab at dimensions of 1x2m. A movement of persons over the slab was monitored, signal processed with FFT and frequency spectra were evaluated. They rose owing to dynamic changes of interferometric pattern. The results reflect that the individual subjects passing through slab embody characteristic frequency spectra, which are individual for particular persons. The scope of measuring frequencies proceeded from zero to 10 KHz. It was also displayed in experiments that the experimental subjects, who walked around the slab and at the same time they have had changed their state of motion (knee joint fixation), embodied characteristic changes in their frequency spectra. At experiments the stability of interferometric patterns was evaluated as from time aspects, so from the view of repeated identical experiments. Two kinds of balls (tennis and ping-pong) were used to plot the repeatability measurements and
Energy Technology Data Exchange (ETDEWEB)
Maharaj, S. K. [South African National Space Agency (SANSA) Space Science, P.O. Box 32, Hermanus 7200 (South Africa); Bharuthram, R. [University of the Western Cape, Modderdam Road, Bellville 7530 (South Africa); Singh, S. V. [Indian Institute of Geomagnetism, New Panvel (West), Navi Mumbai 410218 (India); School of Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000 (South Africa); Lakhina, G. S. [Indian Institute of Geomagnetism, New Panvel (West), Navi Mumbai 410218 (India)
2012-07-15
Using the Sagdeev pseudopotential technique, the existence of large amplitude ion-acoustic solitons is investigated for a plasma composed of ions, and hot and cool electrons. Not only are all species treated as adiabatic fluids but the model for which inertial effects of the hot electrons is neglected whilst retaining inertia and pressure for the ions and cool electrons has also been considered. The focus of this investigation has been on identifying the admissible Mach number ranges for large amplitude nonlinear ion-acoustic soliton structures. The lower Mach number limit yields a minimum velocity for the existence of ion-acoustic solitons. The upper Mach number limit for positive potential solitons is found to coincide with the limiting value of the potential (positive) beyond which the ion number density ceases to be real valued, and ion-acoustic solitons can no longer exist. Small amplitude solitons having negative potentials are found to be supported when the temperature of the cool electrons is negligible.
Magnetic reconnection rate in space plasmas: a fractal approach.
Materassi, Massimo; Consolini, Giuseppe
2007-10-26
Magnetic reconnection is generally discussed via a fluid description. Here, we evaluate the reconnection rate assuming a fractal topology of the reconnection region. The central idea is that the fluid hypothesis may be violated at the scales where reconnection takes place. The reconnection rate, expressed as the Alfvén Mach number of the plasma moving toward the diffusion region, is shown to depend on the fractal dimension and on the sizes of the reconnection or diffusion region. This mechanism is more efficient than prediction of the Sweet-Parker model and even Petschek's model for finite magnetic Reynolds number. A good agreement also with rates given by Hall MHD models is found. A discussion of the fractal assumption on the diffusion region in terms of current microstructures is proposed. The comparison with in-situ satellite observations suggests the reconnection region to be a filamentary domain.
Quantitative Global Heat Transfer in a Mach-6 Quiet Tunnel
Sullivan, John P.; Schneider, Steven P.; Liu, Tianshu; Rubal, Justin; Ward, Chris; Dussling, Joseph; Rice, Cody; Foley, Ryan; Cai, Zeimin; Wang, Bo; Woodiga, Sudesh
2012-01-01
This project developed quantitative methods for obtaining heat transfer from temperature sensitive paint (TSP) measurements in the Mach-6 quiet tunnel at Purdue, which is a Ludwieg tube with a downstream valve, moderately-short flow duration and low levels of heat transfer. Previous difficulties with inferring heat transfer from TSP in the Mach-6 quiet tunnel were traced to (1) the large transient heat transfer that occurs during the unusually long tunnel startup and shutdown, (2) the non-uniform thickness of the insulating coating, (3) inconsistencies and imperfections in the painting process and (4) the low levels of heat transfer observed on slender models at typical stagnation temperatures near 430K. Repeated measurements were conducted on 7 degree-half-angle sharp circular cones at zero angle of attack in order to evaluate the techniques, isolate the problems and identify solutions. An attempt at developing a two-color TSP method is also summarized.
Global versus Local -- Mach's Principle versus the Equivalence Principle
Singleton, Douglas
2016-01-01
The equivalence principle is the conceptual basis for general relativity. In contrast Mach's principle, although said to have been influential on Einstein in his formulation of general relativity, has not been shown to be central to the structure of general relativity. In this essay we suggest that the quantum effects of Hawking and Unruh radiation are a manifestation of a {\\it thermal} Mach's principle, where the local thermodynamic properties of the system are determined by the non-local structure of the quantum fields which determine the vacuum of a given spacetime. By comparing Hawking and Unruh temperatures for the same local acceleration we find a violation of the Einstein elevator version of the equivalence principle, which vanishes in the limit that the horizon is approached.
A Solar System Test of Mach's Principle with Gravimetric Data
Unzicker, A; Fabian, Karl; Unzicker, Alexander
2006-01-01
We present a new test for a possible Mach-Sciama dependence of the Gravitational constant G. According to Ernst Mach (1838-1916), the gravitational interaction depends on the distribution of masses in the universe. A corresponding hypothesis of Sciama (1953) on the gravitational constant, $c^2/G = \\sum m_i/r_i$, can be tested since the elliptic earth orbit should then cause minute annual variations in G. The test is performed by analyzing the gravity signals of a network of superconducting gravimeters (SG) which reach a precision of $10^{-10} m/s^2$. After reducing the signal by modelling tidal, meteorologic and geophysical effects, no significant evidence for the above dependence is found.
Quantum interference in an asymmetric Mach-Zehnder interferometer
Trenti, A.; Borghi, M.; Mancinelli, M.; Price, H. M.; Fontana, G.; Pavesi, L.
2016-08-01
A re-visitation of the well known free space Mach-Zehnder interferometer is reported here. The coexistence between one-photon and two-photons interference from collinear color entangled photon pairs is investigated. Thisarises from an arbitrarily small unbalance in the arm transmittance. The tuning of such asymmetry is reflected in dramatic changes in the coincidence detection, revealing beatings between one particle and two particle interference patterns. In particular, the role of the losses and of the intrinsic phase imperfectness of the lossy beamsplitter are explored in a single-port excited Mach-Zehnder interferometer. This configuration is especially useful for quantum optics on a chip, where the guiding geometry forces photons to travel in the same spatial mode.
Spatial heterodyne spectrometer based on the Mach-Zehnder interferometer
Cai, Qisheng; Xiangli, Bin; Du, Shusong
2015-11-01
Spatial heterodyne spectroscopy (SHS) is a new kind of Fourier-transform spectroscopic technique capable of very high spectral resolution. In this paper, a spatial heterodyne spectrometer based on the Mach-Zehnder interferometer (MZ-SHS) is proposed. It is modified by replacing one mirror in the Mach-Zehnder interferometer with a diffraction grating. This technique retains many of the advantages of traditional SHS. Moreover, the spatial frequency of the interferogram is strictly linear with wavenumber. We describe the concept of the new MZ-SHS and elaborate the exact expression of the interferogram. Also, a design example and two kinds of imitated interferograms are presented in this paper. One is simulated in MATLAB and the other is generated in ZEMAX using ray tracing method. The retrieved spectra from these two interferograms show a good agreement with the theoretical results.
Meyer, R. R., Jr.
1978-01-01
The static longitudinal and lateral directional characteristics of a 0.035 scale model of a first generation jet transport were obtained with and without upper winglets. The data were obtained for take off and landing configurations at a free stream Mach number of 0.30. The results generally indicated that upper winglets had favorable effects on the stability characteristics of the aircraft.
Emergent physics on Mach's principle and the rotating vacuum
Jannes, G
2015-01-01
Mach's principle applied to rotation can be correct if one takes into account the rotation of the quantum vacuum together with the Universe. Whether one can detect the rotation of the vacuum or not depends on its properties. If the vacuum is fully relativistic at all scales, Mach's principle should work and one cannot distinguish the rotation: in the rotating Universe+vacuum, the co-rotating bucket will have a flat surface (not concave). However, if there are "quantum gravity" effects which violate Lorentz invariance at high energy, then the rotation will become observable. This is demonstrated by analogy in condensed-matter systems, which consist of two subsystems: superfluid background (analog of vacuum) and "relativistic" excitations (analog of matter). For the low-energy (long-wavelength) observer the rotation of the vacuum is not observable. In the rotating frame, the "relativistic" quasiparticles feel the background as a Minkowski vacuum, i.e. they do not feel the rotation. Mach's idea of the relativity...
Energy Technology Data Exchange (ETDEWEB)
Pardini, L., E-mail: loren.pard@gmail.com [Istituto di Chimica dei Composti Organometallici del CNR, Area della Ricerca del CNR di Pisa, Via G. Moruzzi 1, 56124 Pisa (Italy); Legnaioli, S.; Lorenzetti, G.; Palleschi, V. [Istituto di Chimica dei Composti Organometallici del CNR, Area della Ricerca del CNR di Pisa, Via G. Moruzzi 1, 56124 Pisa (Italy); Gaudiuso, R.; De Giacomo, A. [Dipartimento di Chimica, Università di Bari, Via Orabona 4, 70126 Bari (Italy); Diaz Pace, D.M. [Instituto de Física ‘Arroyo Seco’, Facultad de Ciencias Exactas, Paraje Arroyo Seco, B7000GHG Tandil (Argentina); Anabitarte Garcia, F. [Photonic Engineering Group, Universidad de Cantabria, Edificio I+D+iTelecomunicación, Dpto. TEISA, 39005 Santander (Spain); Holanda Cavalcanti, G. de [Institute of Physics, Universidade Federal Fluminense, UFF, Campus da Praia Vermelha, Av. Gal Milton Tavares de Souza, Gragoatá, 24310 240 Niterói, RJ (Brazil); Parigger, C. [University of Tennessee Space Institute, 411 B. H. Goethert Parkway, Tullahoma, TN 37388-9700 (United States)
2013-10-01
In this work, different theories for the determination of the electron density in Laser-Induced Breakdown Spectroscopy (LIBS) utilizing the emission lines belonging to the hydrogen Balmer series have been investigated. The plasmas were generated by a Nd:Yag laser (1064 nm) pulsed irradiation of pure hydrogen gas at a pressure of 2 · 10{sup 4} Pa. H{sub α}, Η{sub β}, Η{sub γ}, Η{sub δ}, and H{sub ε} Balmer lines were recorded at different delay times after the laser pulse. The plasma electron density was evaluated through the measurement of the Stark broadenings and the experimental results were compared with the predictions of three theories (the Standard Theory as developed by Kepple and Griem, the Advanced Generalized Theory by Oks et al., and the method discussed by Gigosos et al.) that are commonly employed for plasma diagnostics and that describe LIBS plasmas at different levels of approximations. A simple formula for pure hydrogen plasma in thermal equilibrium was also proposed to infer plasma electron density using the H{sub α} line. The results obtained showed that at high hydrogen concentration, the H{sub α} line is affected by considerable self-absorption. In this case, it is preferable to use the H{sub β} line for a reliable calculation of the electron density. - Highlights: • We evaluated the electron density in LIPs utilizing the hydrogen Balmer series. • Plasmas were generated by a Nd:Yag laser (1064 nm) on pure hydrogen gas. • We show that at high hydrogen concentration, H{sub b}eta line is preferable than H{sub a}lpha. • We propose a formula to derive the plasma electron density using the H{sub a}lpha line.
A Detailed Investigation of Staged Normal Injection into a Mach 2 Flow
Eklund, Dean R.; Northam, G. Burton; Hartfield, Roy J., Jr.
1990-01-01
A study of the staged injection of two jets of air behind a rearward facing step into a Mach 2 flow was performed using the SPARK 3-D Navier-Stokes code. Calculated mole fraction distributions were compared with an extensive set of planar mole fraction measurements made with a laser induced iodine fluorescence technique. A statistical measure, the standard deviation, was used to help assess agreement between calculation and experiment. Overall, good agreement was found between calculated and measured values. Generally, agreement was better in the far field of the injectors. The effect of grid resolution was investigated by calculating solutions on grids of 60,000, 200,000, and 450,000 points. Differences in the solutions on the two finer grids were small. However, the mole fraction distributions were distinguishable. The effect of turbulence modeling was investigated by employing three different algebraic models for the jet turbulence: the Baldwin-Lomax model, the Prandtl mixing length model, and the Eggers mixing length model. Overall, the Eggers mixing length model was found to be superior for this case. Finally, the effect of the jet exit conditions was examined. A recently proposed Mach number distribution at the jet exit was found to slightly improve agreement between measurement and calculation.
Hypersonic characteristics of an advanced aerospace plane at Mach 20.3
Mccandless, R. S.
1985-01-01
Wind-tunnel studies have been performed in the Langley Hypersonic Helium Tunnel Facility to obtain static longitudinal and lateral-directional aerodynamic characteristics of an advanced aerospace plane concept. The nominal test conditions are a Mach number of 20.3 and a Reynolds number of 6.8 x 10 to the 6th power per foot at angles of attack from 0 to 25 deg and angles of sideslip of -3 and 0 deg. Stability and control characteristics are obtained for several deflections of the elevators, elevons, and rudder. In addition, a modified canopy is examined. The results indicate that this vehicle is longitudinally stable at angles of attack near the maximum lift-drag ratio. Also, the vehicle is shown to be directionally unstable with positive dihedral effect.
Jeništa, J.; Takana, H.; Nishiyama, H.; Bartlová, M.; Aubrecht, V.; Křenek, P.; Hrabovský, M.; Kavka, T.; Sember, V.; Mašláni, A.
2011-11-01
This paper presents a numerical investigation of characteristics and processes in the worldwide unique type of thermal plasma generator with combined stabilization of arc by argon flow and water vortex, the so-called hybrid-stabilized arc. The arc has been used for spraying of ceramic or metallic particles and for pyrolysis of biomass. The net emission coefficients as well as the partial characteristics methods for radiation losses from the argon-water arc are employed. Calculations for 300-600 A with 22.5-40 standard litres per minute (slm) of argon reveal transition from a transonic plasma flow for 400 A to a supersonic one for 600 A with a maximum Mach number of 1.6 near the exit nozzle of the plasma torch. A comparison with available experimental data near the exit nozzle shows very good agreement for the radial temperature profiles. Radial velocity profiles calculated 2 mm downstream of the nozzle exit show good agreement with the profiles determined from the combination of calculation and experiment (the so-called integrated approach). A recent evaluation of the Mach number from the experimental data for 500 and 600 A confirmed the existence of the supersonic flow regime.
Development and Benchmarking of a Hybrid PIC Code For Dense Plasmas and Fast Ignition
Energy Technology Data Exchange (ETDEWEB)
Witherspoon, F. Douglas [HyperV Technologies Corp.; Welch, Dale R. [Voss Scientific, LLC; Thompson, John R. [FAR-TECH, Inc.; MacFarlane, Joeseph J. [Prism Computational Sciences Inc.; Phillips, Michael W. [Advanced Energy Systems, Inc.; Bruner, Nicki [Voss Scientific, LLC; Mostrom, Chris [Voss Scientific, LLC; Thoma, Carsten [Voss Scientific, LLC; Clark, R. E. [Voss Scientific, LLC; Bogatu, Nick [FAR-TECH, Inc.; Kim, Jin-Soo [FAR-TECH, Inc.; Galkin, Sergei [FAR-TECH, Inc.; Golovkin, Igor E. [Prism Computational Sciences, Inc.; Woodruff, P. R. [Prism Computational Sciences, Inc.; Wu, Linchun [HyperV Technologies Corp.; Messer, Sarah J. [HyperV Technologies Corp.
2014-05-20
Radiation processes play an important role in the study of both fast ignition and other inertial confinement schemes, such as plasma jet driven magneto-inertial fusion, both in their effect on energy balance, and in generating diagnostic signals. In the latter case, warm and hot dense matter may be produced by the convergence of a plasma shell formed by the merging of an assembly of high Mach number plasma jets. This innovative approach has the potential advantage of creating matter of high energy densities in voluminous amount compared with high power lasers or particle beams. An important application of this technology is as a plasma liner for the flux compression of magnetized plasma to create ultra-high magnetic fields and burning plasmas. HyperV Technologies Corp. has been developing plasma jet accelerator technology in both coaxial and linear railgun geometries to produce plasma jets of sufficient mass, density, and velocity to create such imploding plasma liners. An enabling tool for the development of this technology is the ability to model the plasma dynamics, not only in the accelerators themselves, but also in the resulting magnetized target plasma and within the merging/interacting plasma jets during transport to the target. Welch pioneered numerical modeling of such plasmas (including for fast ignition) using the LSP simulation code. Lsp is an electromagnetic, parallelized, plasma simulation code under development since 1995. It has a number of innovative features making it uniquely suitable for modeling high energy density plasmas including a hybrid fluid model for electrons that allows electrons in dense plasmas to be modeled with a kinetic or fluid treatment as appropriate. In addition to in-house use at Voss Scientific, several groups carrying out research in Fast Ignition (LLNL, SNL, UCSD, AWE (UK), and Imperial College (UK)) also use LSP. A collaborative team consisting of HyperV Technologies Corp., Voss Scientific LLC, FAR-TECH, Inc., Prism
Energy Technology Data Exchange (ETDEWEB)
Boffard, John B., E-mail: jboffard@wisc.edu; Lin, Chun C. [Department of Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States); Wang, Shicong; Wendt, Amy E. [Department of Electrical and Computer Engineering, University of Wisconsin, Madison, Wisconsin 53706 (United States); Culver, Cody [Materials Science Program, University of Wisconsin, Madison, Wisconsin 53706 (United States); Radovanov, Svetlana; Persing, Harold [Applied Materials Inc., Gloucester, Massachusetts 01939 (United States)
2015-03-15
Vacuum ultraviolet (VUV) emissions from excited plasma species can play a variety of roles in processing plasmas, including damaging the surface properties of materials used in semiconductor processing. Depending on their wavelength, VUV photons can easily transmit thin upper dielectric layers and affect the electrical characteristics of the devices. Despite their importance, measuring VUV fluxes is complicated by the fact that few materials transmit at VUV wavelengths, and both detectors and windows are easily damaged by plasma exposure. The authors have previously reported on measuring VUV fluxes in pure argon plasmas by monitoring the concentrations of Ar(3p{sup 5}4s) resonance atoms that produce the VUV emissions using noninvasive optical emission spectroscopy in the visible/near-infrared wavelength range [Boffard et al., J. Vac. Sci. Technol., A 32, 021304 (2014)]. Here, the authors extend this technique to other rare-gases (Ne, Kr, and Xe) and argon-molecular gas plasmas (Ar/H{sub 2}, Ar/O{sub 2}, and Ar/N{sub 2}). Results of a model for VUV emissions that couples radiation trapping and the measured rare-gas resonance level densities are compared to measurements made with both a calibrated VUV photodiode and a sodium salicylate fluorescence detection scheme. In these more complicated gas mixtures, VUV emissions from a variety of sources beyond the principal resonance levels of the rare gases are found to contribute to the total VUV flux.
Large amplitude ion-acoustic double layers in warm dusty plasma
Jain, S. L.; Tiwari, R. S.; Mishra, M. K.
2015-01-01
Large amplitude ion-acoustic double layer (IADL) is studied using Sagdeev's pseudo-potential technique in collisionless unmagnetized plasma comprising hot and cold Maxwellian population of electrons, warm adiabatic ions, and dust grains. Variation of both Mach number (M) and amplitude |φ m | of large amplitude IADL with charge, concentration, and mass of heavily charged massive dust grains is investigated for both positive and negative dust in plasma. Our numerical analysis shows that system supports only rarefactive large amplitude IADL for the selected set of plasma parameters. Our investigations for both negative and positive dust grains reveal that ion temperature increases the mobility of ions, resulting in increase in the Mach number of IADL. The larger mobility of ions causes leakage of ions from localized region, resulting into decrease in the amplitude of IADL. Other parameters, e.g. temperature ratio of hot to cold electrons, charge, concentration, mass of heavily charged massive dust grains also play significant role in the properties and existence of double layers. Since it is well established that both positive and negative dust are found in space as well as laboratory plasma, and double layers have a tremendous role to play in astrophysics, we have included both positive and negative dust in our numerical analysis for the study of large amplitude IADL. Further data used for negative dust are close to experimentally observed data. Hence, it is anticipated that our parametric studies for heavily charged (both positive and negative) dust may be useful in understanding laboratory plasma experiments, identifying nonlinear structures in upper part of ionosphere and lower part of magnetosphere structures, and in theoretical research for the study of properties of nonlinear structures.
Propagation of ion-acoustic waves in a dusty plasma with non-isothermal electrons
Indian Academy of Sciences (India)
K K Mondal
2007-08-01
For an unmagnetised collisionless plasma consisting of warm ions, non-isothermal electrons and cold, massive and charged dust grains, the Sagdeev potential equation, considering both ion dynamics and dust dynamics has been derived. It has been observed that the Sagdeev potential () exists only for > 0 up to an upper limit ( ≃ 1.2). This implies the possibility of existence of compressive solitary wave in the plasma. Exhaustive numerics done for both the large-amplitude and small-amplitude ion-acoustic waves have revealed that various parameters, namely, ion temperature, non-isothermality of electrons, Mach numbers etc. have considerable impact on the amplitude as well as the width of the solitary waves. Dependence of soliton profiles on the ion temperature and the Mach number has also been graphically displayed. Moreover, incorporating dust-charge fluctuation and non-isothermality of electrons, a non-linear equation relating the grain surface potential to the electrostatic potential has been derived. It has been solved numerically and interdependence of the two potentials for various ion temperatures and orders of non-isothermality has been shown graphically.
Mahmood, S.; Sadiq, Safeer; Haque, Q.; Ali, Munazza Z.
2016-06-01
The obliquely propagating arbitrary amplitude electrostatic wave is studied in a dense magnetized plasma having singly and doubly charged helium ions with nonrelativistic and ultrarelativistic degenerate electrons pressures. The Fermi temperature for ultrarelativistic degenerate electrons described by N. M. Vernet [(Cambridge University Press, Cambridge, 2007), p. 57] is used to define ion acoustic speed in ultra-dense plasmas. The pseudo-potential approach is used to solve the fully nonlinear set of dynamic equations for obliquely propagating electrostatic waves in a dense magnetized plasma containing helium ions. The upper and lower Mach number ranges for the existence of electrostatic solitons are found which depends on the obliqueness of the wave propagation with respect to applied magnetic field and charge number of the helium ions. It is found that only compressive (hump) soliton structures are formed in all the cases and only subsonic solitons are formed for a singly charged helium ions plasma case with nonrelativistic degenerate electrons. Both subsonic and supersonic soliton hump structures are formed for doubly charged helium ions with nonrelativistic degenerate electrons and ultrarelativistic degenerate electrons plasma case containing singly as well as doubly charged helium ions. The effect of propagation direction on the soliton amplitude and width of the electrostatic waves is also presented. The numerical plots are also shown for illustration using dense plasma parameters of a compact star (white dwarf) from literature.
Formation of Imploding Plasma Liners for HEDP and MIF Applications - Diagnostics
Energy Technology Data Exchange (ETDEWEB)
Gilmore, Mark [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Electrical and Computer Engineering. Dept. of Physics and Astronomy; Hsu, Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Witherspoon, F. Douglas [HyperV Technologies Corp., Chantilly, VA (United States); Cassibry, Jason [Univ. of Alabama, Huntsville, AL (United States); Bauer, Bruno S. [Univ. of Nevada, Reno, NV (United States)
2015-04-27
The goal of the plasma liner experiment (PLX) was to explore and demonstrate the feasibility of forming imploding spherical plasma liners that can reach High Energy Density (HED)-relevant (~ 0.1 Mbar) pressures upon stagnation. The plasma liners were to be formed by a spherical array of 30 – 36 railgun-driven hypervelocity plasma jets (Mach 10 – 50). Due to funding and project scope reductions in year two of the project, this initial goal was revised to focus on studies of individual jet propagation, and on two jet merging physics. PLX was a collaboration between a number of partners including Los Alamos National Laboratory, HyperV Technologies, University of New Mexico (UNM), University of Alabama, Huntsville, and University of Nevada, Reno. UNM’s part in the collaboration was primary responsibility for plasma diagnostics. Though full plasma liner experiments could not be performed, the results of single and two jet experiments nevertheless laid important groundwork for future plasma liner investigations. Though challenges were encountered, the results obtained with one and two jets were overwhelmingly positive from a liner formation point of view, and were largely in agreement with predictions of hydrodynamic models.
CONDUCTION IN LOW MACH NUMBER FLOWS. I. LINEAR AND WEAKLY NONLINEAR REGIMES
Energy Technology Data Exchange (ETDEWEB)
Lecoanet, Daniel [Department of Astronomy and Theoretical Astrophysics Center, University of California, Berkeley, CA 94720 (United States); Brown, Benjamin P.; Zweibel, Ellen G.; Burns, Keaton J.; Oishi, Jeffrey S. [Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106 (United States); Vasil, Geoffrey M., E-mail: dlecoanet@berkeley.edu [School of Mathematics and Statistics, University of Sydney, NSW 2006 (Australia)
2014-12-20
Thermal conduction is an important energy transfer and damping mechanism in astrophysical flows. Fourier's law, in which the heat flux is proportional to the negative temperature gradient, leading to temperature diffusion, is a well-known empirical model of thermal conduction. However, entropy diffusion has emerged as an alternative thermal conduction model, despite not ensuring the monotonicity of entropy. This paper investigates the differences between temperature and entropy diffusion for both linear internal gravity waves and weakly nonlinear convection. In addition to simulating the two thermal conduction models with the fully compressible Navier-Stokes equations, we also study their effects in the reduced ''soundproof'' anelastic and pseudoincompressible (PI) equations. We find that in the linear and weakly nonlinear regime, temperature and entropy diffusion give quantitatively similar results, although there are some larger errors in the PI equations with temperature diffusion due to inaccuracies in the equation of state. Extrapolating our weakly nonlinear results, we speculate that differences between temperature and entropy diffusion might become more important for strongly turbulent convection.
Calibration and Performance of the AEDC/VKF Tunnel C, Mach Number 4, Aerothermal Wind Tunnel
1982-06-01
Beattie - Bridgeman equation of state for air is shown in the figures included in this appendix. Real-Gas Enthalpy General Forms The following... Beattie - Bridgeman equation of state for air. 106 AEDC-TR-82-6 P(Rea1 Gas) R(P/PT)(P/PT)Idea1 8 PT1. 02 Sym 0 Computed Real-Gas Values Curve Fit TT, oR ~600...chamber properties; then the results were adjusted to include the real-gas effects. The real-gas properties are based on the Beattie - Bridgeman equation
Performance Limiting Flow Processes in High-State Loading High-Mach Number Compressors
2008-03-13
stage matching, and thus the performance of such machines. As such, the understanding, empiricism , and guidelines which apply well to machines of lower...discrete vortex with opposite circulation to the previous one is shed. A vortex street which is " locked " to the rotor passing is thus formed downstream of...255-6802 x231 (email: [)ouglas.Rabc,(wpatb.af.rnil) Dr. John Adamczyk, retired scientist from NASA GRC, has also contributed much to the research 18. 0
Numerical prediction of flow induced noise in free jets of high Mach numbers
Schönrock, Olaf
2009-01-01
A direct aeroacoustic simulation methodology is developed on the basis of the numerical schemes implemented in the commercial tool ANSYS CFX. The focus lies upon the efficient and direct numerical prediction of the flow-induced noise generated by natural gas and pneumatic applications. The respective compressed gas related components are characterized by tiny supersonic gas jets, strong noise emissions, poor accessibility by measurement techniques and excessive simulation costs in particular...
Numerical Simulations of Flow in a 3-D Supersonic Intake at High Mach Numbers
Directory of Open Access Journals (Sweden)
R. Sivakumar
2006-10-01
Full Text Available Numerical simulations of the compressible, 3-D non reacting flow in the engine inlet sectionof a concept hypersonic air-breathing vehicle are presented. These simulations have been carriedout using FLUENT. For all the results reported, the mesh has been refined to achieve areaaveragedwall y+ about 105. Mass flow rate through the intake and stagnation pressure recoveryare used to compare the performance at various angles of attack. The calculations are able topredict the mode of air-intake operation (critical and subcritical for different angles of attack.Flow distortion at the intake for various angles of attack is also calculated and discussed. Thenumerical results are validated by simulating the flow through a 2-D mixed compression hypersonicintake model and comparing with the experimental data.
Boundary Layer Trip Performance Test on a 7-deg Cone Model at Mach Number 8
1983-10-01
b r a t i o n Re ldenha in Rotary Encoder ROD700 Resolut lo=:O, O000 des Dvora l l Accuracy: 0-001 des P a n a x e t r i c a MG-IOI Mois...LAYER STABILITY TEST PUN NUHuER 1028 PAGE 1 / - % DATE COMPUTED I1-0Cm~83 DATE R~CORDEO 2-~1 TI~E RECORDED 71~56~0 TIHK COMPUTED 09130 PROJECT... kiln NJOm;~Vle Jo~k LRETA 1.053E*03 1.821E+O$ 2.192E*03 2.553E*03 3.104E+03 4.54bE+03 6 .352E*03 80101E*03 10068E*04 1.250E*04 1.52~Et04
DEFF Research Database (Denmark)
Pradera-Mallabiabarrena, Ainara; Jacobsen, Finn; Svendsen, Christian
2013-01-01
-compact surfaces are involved. Here the generation of noise is dominated by the interaction of the flow with a surface whose maximum dimension is shorter than the wavelength of interest. The analysis is based on the surface-source term of the Ffowcs Williams-Hawkings equation. The acoustic source data of the flow...
Comparison of Experiment and Analysis for a High Primary Mach Number Ejector
1977-05-01
ure the secondary total pressure, also recorded on the HP plotter. A 30" (76.2cm) mercury manometer was used to measure directly the secondary total...supply pressure were readjusted to give the required total secondary pressure reading on the mercury manometer . Heat was added to keep the air streams at
Influence of Mach Number and Dynamic Pressure on Cavity Tones and Freedrop Trajectories
2014-03-27
1 0 ) ; 157 A. p12= p o l y f i t ( x ’ ,A. fcon , 1 2 ) ; 158 A. p14= p o l y f i t ( x ’ ,A. fcon , 1 4 ) ; 159 A. p16 = p o l y f i t ( x ’ ,A...x ) ; 164 A. f i t 1 2 = p o l y v a l (A. p12 , x ) ; 165 A. f i t 1 4 = p o l y v a l (A. p14 , x ) ; 166 A. f i t 1 6 = p o l y v a l (A. p16
Asymptotic Steady State Solution to a Bow Shock with an Infinite Mach Number
Yalinewich, Almog
2015-01-01
The problem of a cold gas flowing past a stationary object is considered. It is shown that at large distances from the obstacle the shock front forms a parabolic solid of revolution. The interior of the shock front is obtained by solution of the hydrodynamic equations in parabolic coordinates. The results are verified with a hydrodynamic simulation. The drag force and expected spectra are calculated for such shock, both in case of an optically thin and thick media. Finally, relations to astrophysical bow shocks and other analytic works on oblique shocks are discussed.
High-Speed Noninvasive Multi-Parameter Laser Diagnostics for High-Mach-Number Flows Project
National Aeronautics and Space Administration — Numerous ground test and wind tunnel facilities are used extensively to generate forces and moments as well as surface measurements of test articles required to...
Growth of a gas bubble in a supersaturated and slightly compressible liquid at low Mach number
Mohammadein, S. A.; Mohamed, K. G.
2011-12-01
In this paper, the growth of a gas bubble in a supersaturated and slightly compressible liquid is discussed. The mathematical model is solved analytically by using the modified Plesset and Zwick method. The growth process is affected by: sonic speed in the liquid, polytropic exponent, diffusion coefficient, initial concentration difference, surface tension, viscosity, adjustment factor and void fraction. The famous formula of Plesset and Zwick is produced as a special case of the result at some values of the adjustment factor. Moreover, the resultant formula is implemented to the case of the growth of underwater gas bubble.
Guilloud, G.; Schram, C.; Golliard, J.
2009-01-01
Despite the aeroacoustic expertise reached nowadays in air and ground transportation, energy sector or domestic appliances, reaching a decibel accuracy of an acoustic prediction for industrial cases is still challenging. Strong investments are made nowadays by oil and gas companies to determine and
Studies of HED Plasmas with Self-Generated Magnetic Field
Energy Technology Data Exchange (ETDEWEB)
Medvedev, Mikhail [Univ. of Kansas, Lawrence, KS (United States)
2016-02-08
High-amplitude sub-Larmor-scale electromagnetic turbulence is ubiquitous in high-energy density environments, such as laboratory plasmas produced by high-intensity lasers, e.g., NIF, Omega-EP, Trident, and others, and in astrophysical and space plasmas, e.g., at high-Mach-number collisionless shocks in weakly magnetized plasmas upstream regions of quasi-parallel shocks, sites of magnetic reconnection and others. Studies of plasmas and turbulence in these environments are important for fusion energy sciences and the inertial confinement concept, in particular, as well as to numerous astrophysical systems such as gamma-ray bursts, supernovae blast waves, jets of quasars and active galactic nuclei, shocks in the interplanetary medium, solar flares and many more. Such turbulence can be of various origin and thus have rather different properties, from being purely magnetic (Weibel) turbulence to various types of electromagnetic turbulence (for example, whistler wave turbulence or turbulence produced by filamentation or Weibel-type streaming instability), to purely electrostatic Langmuir turbulence. In this project we use analytical and numerical tools to study the transport, radiative, and magneto-optical properties of plasmas with sub-Larmor-scale turbulence. We discovered the connection of transport/diffusion properties to certain spectral benchmark features of (jitter) radiation produced by the plasma and radiation propagation through it. All regimes, from the relativistic to non-relativistic, were thoroughly investigated and predictions were made for laboratory plasmas and astrophysical plasmas. Thus, all the tasks outlined in the proposal were fully and successfully accomplished.
Impinging Jet Resonant Modes at Mach 1.5
Davis, Timothy
2013-01-01
High speed impinging jets have been the focus of several studies owing to their practical application and resonance dominated flow-field. The current study focuses on the identification and visualization of the resonant modes at certain critical impingement heights for a Mach 1.5 normally impinging jet. These modes are associated with high amplitude, discrete peaks in the power spectra and can be identified as having either axisymmetric or azimuthal modes. Their visualization is accomplished through phase-locked Schlieren imaging and fast-response pressure sensitive paint (PC-PSP) applied to the ground plane.
Temperature sensitivity of waveguide Mach-Zehnder interferometer
Sokolov, Viktor
2013-01-01
This thesis is part of a project that aims to develop a sensor for the detection of methane in the air and in water based on a waveguide Mach-Zehnder interferometer. The main application of this sensor is monitoring the environment and the ability to detect a leakage of methane. The development of a sensor includes analysis of operational conditions. In this project one of the greatest concerns is temperature. The temperature difference can reach several tens of degrees in the air, and severa...
Quantum logic processor: Implementation with electronic Mach-Zehnder interferometer
Sarkar, Angik; Bhattacharyya, T. K.; Patwardhan, Ajay
2006-05-01
An approach for implementation of quantum logic in electronic Mach-Zehnder interferometer (MZI) has been described in this letter. All single qubit gates can be achieved by electron spin manipulation using Rashba spin-orbit coupling. Double qubit gates can also be implemented using the orbital degree of freedom of the electron. The MZI can be realized with intertwined ballistic nanowires. Spin injection and detection in the system can be done by a mesoscopic Stern-Gerlach apparatus. The system can be coupled in an array to form the quantum logic processor.
On Mach's Principle and the "Special" Theory of Relativity
Ashura, Uzumaki
2016-01-01
First, we present a history of the school of thought that the Cosmic Microwave Background Radiation acts as an ether in language familiar to high school students in English-speaking countries. Then we illustrate the properties of this ether and of a hypothetical "test mass" using a brand new thought experiment. Finally, we recount some post-Einstein efforts at a mathematical formulation of Mach's principle and raise some questions about what implications it has for the locality of rotation and for quantum gravity. This paper does not prove Einstein wrong.
Numerical Modeling of Plasma-Liner Formation and Implosion for the PLX- α Project
Cassibry, Jason; Samulyak, Roman; Schillo, Kevin; Shih, Wen; Hsu, Scott
2016-10-01
Numerical simulations of the propagation, merging, and implosion of supersonic plasma jets have been performed using the FronTier and smooth particle hydrodynamics (SPH) codes in support of the PLX- α project. The physics includes radiation, heat conduction using Braginskii thermal conductivities, ion viscosity, and tabular equations of state using LTE and non-LTE models. A parametric analysis provides scaling of peak ram pressure and Mach number vs. number of jets, initial density, initial jet velocity, and species including nitrogen, neon, argon, krypton, and xenon. Conical simulations of 6 and 7 jets support near-term experiments, which facilitate diagnostic access for assessing the quality of the liner during merge. Solid angle averaged and standard deviation of ram pressure and Mach number reveal the variation in these properties during formation and implosion. Spherical harmonic mode-number analysis of spherical slices of ram pressure at various radii and times provide a quantitative means to assess the evolution of liner non-uniformity. Supported by the ARPA-E ALPHA program.
Calibration of the 7—Equation Transition Model for High Reynolds Flows at Low Mach
Colonia, S.; Leble, V.; Steijl, R.; Barakos, G.
2016-09-01
The numerical simulation of flows over large-scale wind turbine blades without considering the transition from laminar to fully turbulent flow may result in incorrect estimates of the blade loads and performance. Thanks to its relative simplicity and promising results, the Local-Correlation based Transition Modelling concept represents a valid way to include transitional effects into practical CFD simulations. However, the model involves coefficients that need tuning. In this paper, the γ—equation transition model is assessed and calibrated, for a wide range of Reynolds numbers at low Mach, as needed for wind turbine applications. An aerofoil is used to evaluate the original model and calibrate it; while a large scale wind turbine blade is employed to show that the calibrated model can lead to reliable solutions for complex three-dimensional flows. The calibrated model shows promising results for both two-dimensional and three-dimensional flows, even if cross-flow instabilities are neglected.
Indian Academy of Sciences (India)
Tarsem Singh Gill; Harvinder Kaur
2000-11-01
The effects of nonthermal ion distribution and ﬁnite dust temperature are incorporated in the investigation of nonlinear dust acoustic waves in an unmagnetized dusty plasma. Sagdeev pseudopotential method which takes into account the full nonlinearity of plasma equations, is used here to study solitary wave solutions. Possibility of co-existence of refractive and compressive solitons as a function of Mach number, dust temperature and concentration of nonthermal ions, is considered. For the ﬁxed value of nonthermal ions, it is found that the effect of increase in dust temperature is to reduce the range of co-existence of compressive and refractive solitons. Particular concentration of nonthermal ions results in disappearance of refractive solitons while the decrease in dust temperature, at this concentration restores the lost refractive solitons.
Interaction of ion-acoustic solitons with electron beam in warm plasmas with superthermal electrons
Esfandyari-Kalejahi, A R
2012-01-01
Propagation of ion-acoustic solitary waves (IASWs) is studied using the hydrodynamic equations coupled with the Poisson equation in a warm plasma consisting of adiabatic ions and superthermal (Kappa distributed) electrons in presence of an electron-beam component. In the linear limit, the dispersion relation for ion-acoustic (IA) waves is obtained by linearizing of basic equations. On the other hand, in the nonlinear analysis, an energy-balance like equation involving Sagdeev's pseudo-potential is derived in order to investigate arbitrary amplitude IA solitons. The Mach number range is determined in which, propagation and characteristics of IA solitons are analyzed both parametrically and numerically. The variation of amplitude and width of electrostatic (ES) excitations as a result of superthermality (via) and also the physical parameters (ion temperature, soliton speed, electron-beam density and electron-beam velocity) are examined. A typical interaction between IASWs and the electron-beam in plasma is conf...
Cosmological constant implementing Mach principle in general relativity
Namavarian, Nadereh; Farhoudi, Mehrdad
2016-10-01
We consider the fact that noticing on the operational meaning of the physical concepts played an impetus role in the appearance of general relativity (GR). Thus, we have paid more attention to the operational definition of the gravitational coupling constant in this theory as a dimensional constant which is gained through an experiment. However, as all available experiments just provide the value of this constant locally, this coupling constant can operationally be meaningful only in a local area. Regarding this point, to obtain an extension of GR for the large scale, we replace it by a conformal invariant model and then, reduce this model to a theory for the cosmological scale via breaking down the conformal symmetry through singling out a specific conformal frame which is characterized by the large scale characteristics of the universe. Finally, we come to the same field equations that historically were proposed by Einstein for the cosmological scale (GR plus the cosmological constant) as the result of his endeavor for making GR consistent with the Mach principle. However, we declare that the obtained field equations in this alternative approach do not carry the problem of the field equations proposed by Einstein for being consistent with Mach's principle (i.e., the existence of de Sitter solution), and can also be considered compatible with this principle in the Sciama view.
Existence domains of slow and fast ion-acoustic solitons in two-ion space plasmas
Energy Technology Data Exchange (ETDEWEB)
Maharaj, S. K., E-mail: smaharaj@sansa.org.za [South African National Space Agency (SANSA) Space Science, P.O. Box 32, Hermanus 7200 (South Africa); Bharuthram, R., E-mail: rbharuthram@uwc.ac.za [University of the Western Cape, Robert Sobukwe Road, Bellville, 7535 (South Africa); Singh, S. V., E-mail: satyavir@iigs.iigm.res.in; Lakhina, G. S., E-mail: lakhina@iigs.iigm.res.in [Indian Institute of Geomagnetism, New Panvel (West), Navi Mumbai 410218 (India)
2015-03-15
A study of large amplitude ion-acoustic solitons is conducted for a model composed of cool and hot ions and cool and hot electrons. Using the Sagdeev pseudo-potential formalism, the scope of earlier studies is extended to consider why upper Mach number limitations arise for slow and fast ion-acoustic solitons. Treating all plasma constituents as adiabatic fluids, slow ion-acoustic solitons are limited in the order of increasing cool ion concentrations by the number densities of the cool, and then the hot ions becoming complex valued, followed by positive and then negative potential double layer regions. Only positive potentials are found for fast ion-acoustic solitons which are limited only by the hot ion number density having to remain real valued. The effect of neglecting as opposed to including inertial effects of the hot electrons is found to induce only minor quantitative changes in the existence regions of slow and fast ion-acoustic solitons.
Plasma-assisted ignition and deflagration-to-detonation transition.
Starikovskiy, Andrey; Aleksandrov, Nickolay; Rakitin, Aleksandr
2012-02-13
Non-equilibrium plasma demonstrates great potential to control ultra-lean, ultra-fast, low-temperature flames and to become an extremely promising technology for a wide range of applications, including aviation gas turbine engines, piston engines, RAMjets, SCRAMjets and detonation initiation for pulsed detonation engines. The analysis of discharge processes shows that the discharge energy can be deposited into the desired internal degrees of freedom of molecules when varying the reduced electric field, E/n, at which the discharge is maintained. The amount of deposited energy is controlled by other discharge and gas parameters, including electric pulse duration, discharge current, gas number density, gas temperature, etc. As a rule, the dominant mechanism of the effect of non-equilibrium plasma on ignition and combustion is associated with the generation of active particles in the discharge plasma. For plasma-assisted ignition and combustion in mixtures containing air, the most promising active species are O atoms and, to a smaller extent, some other neutral atoms and radicals. These active particles are efficiently produced in high-voltage, nanosecond, pulse discharges owing to electron-impact dissociation of molecules and electron-impact excitation of N(2) electronic states, followed by collisional quenching of these states to dissociate the molecules. Mechanisms of deflagration-to-detonation transition (DDT) initiation by non-equilibrium plasma were analysed. For longitudinal discharges with a high power density in a plasma channel, two fast DDT mechanisms have been observed. When initiated by a spark or a transient discharge, the mixture ignited simultaneously over the volume of the discharge channel, producing a shock wave with a Mach number greater than 2 and a flame. A gradient mechanism of DDT similar to that proposed by Zeldovich has been observed experimentally under streamer initiation.
Generation of sub-Poissonian photon number distribution
DEFF Research Database (Denmark)
Grønbech-Jensen, N.; Ramanujam, P. S.
1990-01-01
An optimization of a nonlinear Mach-Zehnder interferometer to produce sub-Poissonian photon number distribution is proposed. We treat the system quantum mechanically and estimate the mirror parameters, the nonlinearity of the medium in the interferometer, and the input power to obtain minimal...... output uncertainty in the photon number. The power efficiency of the system is shown to be high....
Cassibry, Jason; Hsu, Scott; Schillo, Kevin; Samulyak, Roman; Stoltz, Peter; Beckwith, Kris
2015-11-01
A suite of numerical tools will support the conical and 4 π plasma-liner-formation experiments for the PLX- α project. A new Lagrangian particles (LP) method will provide detailed studies of the merging of plasma jets and plasma-liner formation/convergence. A 3d smooth particle hydrodynamic (SPH) code will simulate conical (up to 9 jets) and 4 π spherical (up to 60 jets) liner formation and implosion. Both LP and SPH will use the same tabular EOS generated by Propaceos, thermal conductivity, optically thin radiation and physical viscosity models. With LP and SPH,the major objectives are to study Mach-number degradation during jet merging, provide RMS amplitude and wave number of the liner nonuniformity at the leading edge, and develop scaling laws for ram pressure and liner uniformity as a function of jet parameters. USIM, a 3D multi-fluid plasma code, will be used to perform 1D and 2D simulations of plasma-jet-driven magneto-inertial fusion (PJMIF) to identify initial conditions in which the ``liner gain'' exceeds unity. A brief overview of the modeling program will be provided. Results from SPH modeling to support the PLX- α experimental design will also be presented, including preliminary ram-pressure scaling and non-uniformity characterization.
Energy Technology Data Exchange (ETDEWEB)
Maharaj, S. K. [South African National Space Agency (SANSA) Space Science, P.O. Box 32, Hermanus 7200 (South Africa); Bharuthram, R. [University of the Western Cape, Modderdam Road, Bellville 7530 (South Africa); Singh, S. V. [Indian Institute of Geomagnetism, New Panvel (West), Navi Mumbai 410218 (India); School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000 (South Africa); Lakhina, G. S. [Indian Institute of Geomagnetism, New Panvel (West), Navi Mumbai 410218 (India)
2012-12-15
A three-component plasma model composed of ions, cool electrons, and hot electrons is adopted to investigate the existence of large amplitude electron-acoustic solitons not only for the model for which inertia and pressure are retained for all plasma species which are assumed to be adiabatic but also neglecting inertial effects of the hot electrons. Using the Sagdeev potential formalism, the Mach number ranges supporting the existence of large amplitude electron-acoustic solitons are presented. The limitations on the attainable amplitudes of electron-acoustic solitons having negative potentials are attributed to a number of different physical reasons, such as the number density of either the cool electrons or hot electrons ceases to be real valued beyond the upper Mach number limit, or, alternatively, a negative potential double layer occurs. Electron-acoustic solitons having positive potentials are found to be supported only if inertial effects of the hot electrons are retained and these are found to be limited only by positive potential double layers.
AC plasma anemometer—characteristics and design
Marshall, Curtis; Matlis, Eric; Corke, Thomas; Gogineni, Sivaram
2015-08-01
The characteristics and design of a high-bandwidth flow sensor that uses an AC glow discharge (plasma) as the sensing element is presented. The plasma forms in the air gap between two protruding low profile electrodes attached to a probe body. The output from the anemometer is an amplitude modulated version of the AC voltage input that contains information about the mean and fluctuating velocity components. The anemometer circuitry includes resistance and capacitance elements that simulate a dielectric-barrier to maintain a diffuse plasma, and a constant-current feedback control that maintains operation within the desired glow discharge regime over an extended range of air velocities. Mean velocity calibrations are demonstrated over a range from 0 to 140 m s-1. Over this velocity range, the mean output voltage varied linearly with air velocity, providing a constant static sensitivity. The effect of the electrode gap and input AC carrier frequency on the anemometer static sensitivity and dynamic response are investigated. Experiments are performed to compare measurements obtained with a plasma sensor operating at two AC carrier frequencies against that of a constant-temperature hot-wire. All three sensors were calibrated against the same known velocity reference. An uncertainty based on the standard deviation of the velocity calibration fit was applied to the mean and fluctuating velocity measurements of the three sensors. The motivation is not to replace hot-wires as a general measurement tool, but rather as an alternative to hot-wires in harsh environments or at high Mach numbers where they either have difficulty in surviving or lack the necessary frequency response.
3-D Wizardry: Design in Papier-Mache, Plaster, and Foam.
Wolfe, George
Papier-mache, plaster, and foam are inexpensive and versatile media for 3-dimensional classroom and studio art experiences. They can be used equally well by elementary, high school, or college students. Each medium has its own characteristic. Papier-mache is pliable but dries into a hard, firm surface that can be waterproofed. Plaster can be…
3-D Wizardry: Design in Papier-Mache, Plaster, and Foam.
Wolfe, George
Papier-mache, plaster, and foam are inexpensive and versatile media for 3-dimensional classroom and studio art experiences. They can be used equally well by elementary, high school, or college students. Each medium has its own characteristic. Papier-mache is pliable but dries into a hard, firm surface that can be waterproofed. Plaster can be…
Structure optimization of polymeric Mach-Zehnder rib waveguide
Institute of Scientific and Technical Information of China (English)
LU Rong-guo; LiU Yong-zhi; LIAO Jin-kun; LIAO Yi-tao; HAN Wen-jie
2007-01-01
A systematic analysis of the polymeric Mach-Zehnder rib waveguide is presented based on the calculation and optimization. The simulation is carried out with the Effective Index Method (EIM) and two-dimensional (2-D)Finite Difference Beam Propagation Method (FD-BPM). The large refractive index step between the consecutive polymer layers is reduced by using EIM and thus the precision of the calculation is ensured. The important parameters of the waveguide such as Y-junction angle and the separation gap are discussed and their relationships with the optical power propagation and the loss characteristics are investigated in this paper. The total loss of the optimized structure is 0.258 dB.
Vibration induced phase noise in Mach-Zehnder atom interferometers
Miffre, A; Büchner, M; Trénec, G; Vigué, J; Miffre, Alain; Jacquey, Marion; B\\"{u}chner, Matthias; Vigu\\'{e}, Jacques
2006-01-01
The high inertial sensitivity of atom interferometers has been used to build accelerometers and gyrometers but this sensitivity makes these interferometers very sensitive to the laboratory seismic noise. This seismic noise induces a phase noise which is large enough to reduce the fringe visibility in many cases. We develop here a model calculation of this phase noise in the case of Mach-Zehnder atom interferometers and we apply this model to our thermal lithium interferometer. We are thus able to explain the observed dependence of the fringe visibility with the diffraction order. The dynamical model developed in the present paper should be very useful to further reduce this phase noise in atom interferometers and this reduction should open the way to improved interferometers.
Unification of Gravity and Electromagnetism I: Mach's Principle and Cosmology
Ghose, Partha
2014-01-01
The phenomenological consequences of unification of Einstein gravity and electromagnetism in an early phase of a Machian universe with a very small and uniform electrical charge density $\\rho_q$ are explored. A form of the Strong Equivalence Principle for unified electrogravity is first formulated, and it immediately leads to (i) the empirical Schuster-Blackett law relating the magnetic moments and angular momenta of neutral astronomical bodies, (ii) an analogous relation between the linear acceleration of neutral massive bodies and associated electric fields, (iii) gravitational lensing in excess of Einstein gravity, and, with the additional assumption of scaling, to (iv) the Wesson relation between the angular momentum and the square of the mass of astronomical bodies. Incorporation of Sciama's version of Mach's principle leads to a new post-Newtonian dynamics (in the weak field limit of gravity alone without electromagnetism) that predicts flat rotation curves of galaxies without the need of dark matter ha...
Mach-Zehnder Interferometer Based on Coupled Dielectric Pillars
Institute of Scientific and Technical Information of China (English)
GAO Ding-Shan; HAO Ran; ZHOU Zhi-Ping
2007-01-01
We propose a Mach-Zehnder interferometer (MZI) based on coupled dielectric pillars. It is composed of single-row pillar coupled waveguide modulating arms and three-row pillar waveguide 3 dB couplers. The slow light property and transmission loss of the single-row pillar modulating arm are optimized by the plane wave expansion method. A short 3dB coupler is designed based on the modes transformation in three-row pillar waveguide. Finite difference time domain simulations prove the validity of this MZI and show that it has low insertion loss of＜1.1 dB and high extinction ratio of＞12 dB.
A new magnetic sensor with Mach-Zehnder/Sagnac optical fiber interferometer
Institute of Scientific and Technical Information of China (English)
Shuguang LI; Xinwan LI; Xin WANG; Jianping CHEN
2009-01-01
This paper presents a new structure for magnetic sensor with Mach-Zehnder/Sagnac optical fiber interferometer. The magnetostrictive optical fiber sensor is placed in one of the two arms of the Mach-Zehnder interferometer, which can detect the optic phase shift by testing the length difference of the arm caused by environmental magnetic field. Because of forward and backward transmission in the arms, the Mach-Zehnder/ Sagnac optical fiber interferometer can deduce twice exactly of the phase shift proportional to the length difference as Mach-Zehnder interferometer. Theoretically, description of the Mach-Zehnder/Sagnac interferometer is given, and some main issues in the magnetic field sensor with optical fiber interferometer are demonstrated with experiments. The magnetic sensors are implemented using the proposed methods.
[Thought Experiments of Economic Surplus: Science and Economy in Ernst Mach's Epistemology].
Wulz, Monika
2015-03-01
Thought Experiments of Economic Surplus: Science and Economy in Ernst Mach's Epistemology. Thought experiments are an important element in Ernst Mach's epistemology: They facilitate amplifying our knowledge by experimenting with thoughts; they thus exceed the empirical experience and suspend the quest for immediate utility. In an economical perspective, Mach suggested that thought experiments depended on the production of an economic surplus based on the division of labor relieving the struggle for survival of the individual. Thus, as frequently emphasized, in Mach's epistemology, not only the 'economy of thought' is an important feature; instead, also the socioeconomic conditions of science play a decisive role. The paper discusses the mental and social economic aspects of experimental thinking in Mach's epistemology and examines those within the contemporary evolutionary, physiological, and economic contexts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Indian Academy of Sciences (India)
Balla Venukumar; K P J Reddy
2007-02-01
Substantial aerodynamic drag, while ﬂying at hypersonic Mach number, due to the presence of strong standing shock wave ahead of a large-angle bluntcone conﬁguration, is a matter of great design concern. Preliminary experimental results for the drag reduction by a forward-facing supersonic air jet for a 60° apex-angle blunt cone at a ﬂow Mach number of 8 are presented in this paper. The measurements are carried out using an accelerometer-based balance system in the hypersonic shock tunnel HST2 of the Indian Institute of Science, Bangalore. About 29% reduction in the drag coefﬁcient has been observed with the injection of a supersonic gas jet.
Boundary-layer transition on blunt slender cones at Mach 10
Bell, R. L.
1984-08-01
Investigations of the effects of nose blunting on the location of boundary-layer transition on slender cones at supersonic or hypersonic speeds so back 25 years. For some time it was thought that the movement of the transition point was simply due to the reduction in local Reynolds number associated with the loss in total pressure through the bow shock. More recently, it has been shown that variations in the local transition Reynolds number also occur on a blunt cone and that both these effects must be taken into account in explaining the observed movement in transition along the cone frustum. The present investigation was carried out as a demonstration test for the development of a new capability in Hypervelocity Tunnel 9 at the Naval Surface Weapon Center. The objective of this development effort was to raise the Reynolds number at mach 10 from about 5 x 1000000 per foot to 20 x 1000000 per foot. This was done so that naturally turbulent boundary layers (i.e., without tripping) could be obtained on R/V models. Thus an investigation of boundary layer transition was an appropriate choice for the demonstration test.
Onchi, Takumi; Zushi, Hideki; Mishra, Kishore; Hanada, Kazuaki; Idei, Hiroshi; Nakamura, Kazuo; Fujisawa, Akihide; Nagashima, Yoshihiko; Hasegawa, Makoto; Kuzmin, Arseny; Nagaoka, Kenichi; QUEST Team
2014-10-01
Heat flux and plasma flow in the scrape off layer (SOL) are examined in the inboard poloidal null (IPN) configuration on the spherical tokamak (ST) QUEST. In the ST, trapped energetic electrons on the low field side are widely excursed from the last closed flux surface to SOL so that significant heat loss occurs. Interestingly, plasma flows in the core and the SOL are also observed in IPN though no inductive force like ohmic heating is applied. High heat flux (>1 MW/m2) and sonic flow (M > 1) in far-SOL arise in current ramp-up phase. In quasi-steady state, sawtooth-like oscillation of plasma current with 20 Hz has been observed. Heat flux and subsonic plasma flow in far-SOL are well correlated to plasma current oscillation. The toroidal Mach number largely increases from Mφ ~ 0.1 to ~ 0.5 and drops although the amplitude of plasma current is about 10% of that. Note that such flow modification occurs before plasma current crash, there may be some possibility that phenomena in the SOL or the edge trigger reactions in the core plasma. This work is supported by Grants-in-aid for Scientific Research (S24226020), NIFS Collaboration Research Program (NIFS12KUTR081), and the Collaborative Research Program of Research Institute for Applied Mechanics, Kyushu University.
Mateer, G. G.
1972-01-01
Tests were conducted on 5 deg and 15 deg half-angle sharp cones at wall-to-total-temperature ratios of 0.08 to 0.4, and angles of attack from 0 deg to 20 deg. The results indicate that (1) transition Reynolds numbers decrease with decreasing temperature ratio, (2) local transition Reynolds numbers decrease from the windward to the leeward side of the model, and (3) transition data on the windward ray of cones can be correlated in terms of the crossflow velocity gradient, momentum thickness Reynolds number, local Mach number, and cone half-angle.
Ion-viscosity effects on plasma-liner formation and implosion via merging supersonic plasma jets
Schillo, Kevin; Cassibry, Jason; Samulyak, Roman; Shih, Wen; Hsu, Scott; PLX-Alpha Team
2016-10-01
The PLX- α project endeavors to study plasma-liner formation and implosion by merging a spherical array of plasma jets as a candidate standoff driver for MIF. Smoothed particle hydrodynamics is used to model the liner formation and implosion processes. SPH is a meshless Lagrangian method to simulate fluid flows by dividing a fluid into a set of particles and using a summation interpolant function to calculate the properties and gradients for each of these particles. Ion viscosity is anticipated to be an important mechanism for momentum transport during liner formation, implosion, and stagnation. To study this, ion viscosity was incorporated into the code. To provide confidence in the numerical output and to help identify the difference between numerical and physical diffusion, a series of test cases were performed, consisting of Couette flow, Gresho vortex, and a Taylor-Green vortex. An L2-norm analysis was performed to measure the error and convergence. Simulations of conical (6 jets) and 4 π (60 jets) liners with and without ion viscosity reveal potential effects of viscosity on ram pressure, Mach-number degradation, and evolution of liner perturbations during jet merging and liner implosion.
Diagnostic for the plasma liner experiment
Energy Technology Data Exchange (ETDEWEB)
Gilmore, M.; Merritt, E.; Lynn, A.G. [University of New Mexico, Albuquerque NM (United States); Bauer, B.S.; Fuelling, S.; Siemen, R.E. [University of Nevada, Reno NV (United States); Hsu, S.C. [Los Alamos National Laboratory, Los Alamos NM (United States); Witherspoon, F.D.; Brockington, S.; Case, A.; Messer, S.J. [HyperV Tecnologies Corp, Chantilly VA (United States); Cassibry, J.T. [University of Alabama, Huntsville AL (United States)
2011-07-01
Magneto-Inertial Fusion (MIF) includes a class of fusion energy concepts that seek to relax the required implosion times of inertial fusion to microseconds rather than nanoseconds by utilizing magnetized targets. The Plasma Liner Experiment (PLX) at Los Alamos National Laboratory will explore and demonstrate the feasibility of forming imploding spherical 'plasma liners' that can reach peak pressures {approx} 0.1 Mbar upon stagnation. The liners will be formed via merging of 30 - 60 dense, high Mach number plasma jets (M {approx} 10-35, v {approx} 50-70 km/s, jet radius {approx} 5 cm) in spherically convergent geometry. This is a staged, exploratory project where scientific issues will be studied first at modest stored energies ({approx} 300 kJ) before attempting to reach MIF-relevant pressures (requiring {approx} 1.5 MJ). Key physics issues include peak parameters (n, T, radius) at stagnation, dynamics of the merging jet liner formation (e.g. lateral shocks, instabilities), and spherical symmetry of the liner. Plasmas will be high-Z species (e.g. Ar, Xe), unmagnetized, and are expected to have densities {approx} 10{sup 22} m{sup -3} and low temperature, Te {approx} Ti {approx} a few eV, when initially exiting the plasma guns where the jets are formed. Density and temperature will first decrease slightly, then increase to n {approx} 10{sup 25} - 10{sup 26} m{sup -3} and Te {approx} Ti {approx} 100 eV as stagnation is approached over a 1 meter radial distance. The large range of densities (4-5 orders of magnitude), initially cold plasma, and short optical depth as the jets merge make diagnosing the plasma a particularly challenging problem. Initial diagnostics will include multi-chord visible interferometry and polarimetry, Schlieren imaging, visible and V-UV spectroscopy, fast 1-dimensional imaging diode arrays, fast visible cameras, bolometry, magnetic and electrostatic probes, and pressure sensitive 'witness plates' to measure pressure and jet
Directory of Open Access Journals (Sweden)
Ronaldo José Farias Corrêa do Amaral
2016-01-01
Full Text Available There are promising results in the use of platelet-rich plasma (PRP for musculoskeletal tissue repair. However, the variability in the methodology for its obtaining may cause different and opposing findings in the literature. Particularly, the choice of the anticoagulant is the first definition to be made. In this work, blood was collected with sodium citrate (SC, ethylenediaminetetraacetic acid (EDTA, or anticoagulant citrate dextrose (ACD solution A, as anticoagulants, prior to PRP obtaining. Hematological analysis and growth factors release quantification were performed, and the effects on mesenchymal stromal cell (MSC culture, such as cytotoxicity and cell proliferation (evaluated by MTT method and gene expression, were evaluated. The use of EDTA resulted in higher platelet yield in whole blood; however, it induced an increase in the mean platelet volume (MPV following the blood centrifugation steps for PRP obtaining. The use of SC and ACD resulted in higher induction of MSC proliferation. On the other hand, PRP obtained in SC presented the higher platelet recovery after the blood first centrifugation step and a minimal change in MSC gene expression. Therefore, we suggest the use of SC as the anticoagulant for PRP obtaining.
do Amaral, Ronaldo José Farias Corrêa; da Silva, Nemias Pereira; Haddad, Natália Ferreira; Lopes, Luana Siqueira; Cappelletti, Paola Alejandra; de Mello, Wallace; Balduino, Alex
2016-01-01
There are promising results in the use of platelet-rich plasma (PRP) for musculoskeletal tissue repair. However, the variability in the methodology for its obtaining may cause different and opposing findings in the literature. Particularly, the choice of the anticoagulant is the first definition to be made. In this work, blood was collected with sodium citrate (SC), ethylenediaminetetraacetic acid (EDTA), or anticoagulant citrate dextrose (ACD) solution A, as anticoagulants, prior to PRP obtaining. Hematological analysis and growth factors release quantification were performed, and the effects on mesenchymal stromal cell (MSC) culture, such as cytotoxicity and cell proliferation (evaluated by MTT method) and gene expression, were evaluated. The use of EDTA resulted in higher platelet yield in whole blood; however, it induced an increase in the mean platelet volume (MPV) following the blood centrifugation steps for PRP obtaining. The use of SC and ACD resulted in higher induction of MSC proliferation. On the other hand, PRP obtained in SC presented the higher platelet recovery after the blood first centrifugation step and a minimal change in MSC gene expression. Therefore, we suggest the use of SC as the anticoagulant for PRP obtaining. PMID:27340410
Some improvements in the theory of plasma relaxation
Energy Technology Data Exchange (ETDEWEB)
Hameiri, Eliezer, E-mail: hameiri@cims.nyu.edu [Courant Institute of Mathematical Sciences, New York University, New York, New York 10012 (United States)
2014-04-15
Taylor's relaxation theory is extended to plasmas with mass flow by using the cross helicity as a conserved quantity, similar to the magnetic helicity. Indeed, it is shown that the conservation of the cross helicity in magnetohydrodynamics is the result of the conservation of two magnetic-like helicities in two-fluid plasmas. In addition, the usually ignored toroidal flux is also held to be conserved. We also view plasma relaxation as attaining a maximum entropy state rather than Taylor's minimum energy state, but prove that maximizing the entropy subject to a given amount of energy is equivalent to minimizing the energy subject to a given amount of entropy. The resulting relaxed state is similar to the one discussed by Finn and Antonsen [Phys. Fluids 26, 3540 (1983)], and involves flow parallel to the magnetic field and constant temperature, but non-constant pressure. We show how to construct an asymptotic solution to the relaxed state based on the smallness of the Alfven Mach number of the flow.
Energetic particle driven geodesic acoustic mode in a toroidally rotating tokamak plasma
Ren, Haijun
2017-01-01
Energetic particle (EP) driven geodesic acoustic modes (EGAMs) in toroidally rotating tokamak plasmas are analytically investigated using the hybrid kinetic-fluid model and gyrokinetic equations. By ignoring high-order terms and ion Landau damping, the kinetic dispersion relation is reduced to the hybrid one in the large safety factor limit. There is one high-frequency branch with a frequency larger than {ωt0} , the transit frequency of EPs with initial energy, which is always stable. Two low-frequency solutions with a frequency smaller than {ωt0} are complex conjugates in the hybrid limit. In the presence of ion Landau damping, the growth rate of the unstable branch is decreased and the damping rate of the damped branch is increased. The toroidal Mach number is shown to increase {{ Ω }\\text{r}} , the normalized real frequency of both branches. Although not affecting the instability critical condition, the Mach number decreases the growth rate when {{ Ω }\\text{r}} is larger than a critical value Ω \\text{r}\\text{cri} and enlarges the growth rate when {{ Ω }\\text{r}}Landau damping effect is negligible for large M. But the discrepancy between the kinetic dispersion relation and the hybrid one becomes ignorable only for q≳ 7 .
Capone, Francis J.; Bare, E. Ann
1987-01-01
The aeropropulsive characteristics of an advanced twin-engine fighter aircraft designed for supersonic cruise have been studied in the Langley 16-Foot Tansonic Tunnel and the Lewis 10- by 10-Foot Supersonic Tunnel. The objective was to determine multiaxis control-power characteristics from thrust vectoring. A two-dimensional convergent-divergent nozzle was designed to provide yaw vector angles of 0, -10, and -20 deg combined with geometric pitch vector angles of 0 and 15 deg. Yaw thrust vectoring was provided by yaw flaps located in the nozzle sidewalls. Roll control was obtained from differential pitch vectoring. This investigation was conducted at Mach numbers from 0.20 to 2.47. Angle of attack was varied from 0 to about 19 deg, and nozzle pressure ratio was varied from about 1 (jet off) to 28, depending on Mach number. Increments in force or moment coefficient that result from pitch or yaw thrust vectoring remain essentially constant over the entire angle-of-attack range of all Mach numbers tested. There was no effect of pitch vectoring on the lateral aerodynamic forces and moments and only very small effects of yaw vectoring on the longitudinal aerodynamic forces and moments. This result indicates little cross-coupling of control forces and moments for combined pitch-yaw vectoring.
Hsu, S. C.; Witherspoon, F. D.; Cassibry, J. T.; Gilmore, M.; Samulyak, R.; Stoltz, P.; the PLX-α Team
2015-11-01
Under ARPA-E's ALPHA program, the Plasma Liner Experiment-ALPHA (PLX- α) project aims to demonstrate the viability and scalability of spherically imploding plasma liners as a standoff, high-implosion-velocity magneto-inertial-fusion (MIF) driver that is potentially compatible with both low- and high- β targets. The project has three major objectives: (a) advancing existing contoured-gap coaxial-gun technology to achieve higher operational reliability/precision and better control/reproducibility of plasma-jet properties and profiles; (2) conducting ~ π / 2 -solid-angle plasma-liner experiments with 9 guns to demonstrate (along with extrapolations from modeling) that the jet-merging process leads to Mach-number degradation and liner uniformity that are acceptable for MIF; and (3) conducting 4 π experiments with up to 60 guns to demonstrate the formation of an imploding spherical plasma liner for the first time, and to provide empirical ram-pressure and uniformity scaling data for benchmarking our codes and informing us whether the scalings justify further development beyond ALPHA. This talk will provide an overview of the PLX- α project as well as key research results to date. Supported by ARPA-E's ALPHA program; original PLX construction supported by DOE Fusion Energy Sciences.
Ion acoustic solitons/double layers in two-ion plasma revisited
Energy Technology Data Exchange (ETDEWEB)
Lakhina, G. S., E-mail: gslakhina@gmail.com; Singh, S. V., E-mail: satyavir@iigs.iigm.res.in; Kakad, A. P., E-mail: amar@iigs.iigm.res.in [Indian Institute of Geomagnetism, New Panvel (W), Navi Mumbai 410218 (India)
2014-06-15
Ion acoustic solitons and double layers are studied in a collisionless plasma consisting of cold heavier ion species, a warm lighter ion species, and hot electrons having Boltzmann distributions by Sagdeev pseudo-potential technique. In contrast to the previous results, no double layers and super-solitons are found when both the heavy and lighter ion species are treated as cold. Only the positive potential solitons are found in this case. When the thermal effects of the lighter ion species are included, in addition to the usual ion-acoustic solitons occurring at M > 1 (where the Mach number, M, is defined as the ratio of the speed of the solitary wave and the ion-acoustic speed considering temperature of hot electrons and mass of the heavier ion species), slow ion-acoustic solitons/double layers are found to occur at low Mach number (M < 1). The slow ion-acoustic mode is actually a new ion-ion hybrid acoustic mode which disappears when the normalized number density of lighter ion species tends to 1 (i.e., no heavier species). An interesting property of the new slow ion-acoustic mode is that at low number density of the lighter ion species, only negative potential solitons/double layers are found whereas for increasing densities there is a transition first to positive solitons/double layers, and then only positive solitons. The model can be easily applicable to the dusty plasmas having positively charged dust grains by replacing the heavier ion species by the dust mass and doing a simple normalization to take account of the dust charge.
Cristofolini, Andrea; Neretti, Gabriele; Borghi, Carlo A.
2012-08-01
This work proposes an experimental analysis on the magneto hydro dynamic (MHD) interaction induced by a magnetic test body immersed into a hypersonic argon flow. The characteristic plasma parameters are measured. They are related to the voltages arising in the Hall direction and to the variation of the fluid dynamic properties induced by the interaction. The tests have been performed in a hypersonic wind tunnel at Mach 6 and Mach 15. The plasma parameters are measured in the stagnation region in front of the nozzle of the wind tunnel and in the free stream region at the nozzle exit. The test body has a conical shape with the cone axis in the gas flow direction and the cone vertex against the flow. It is placed at the nozzle exit and is equipped with three permanent magnets. In the configuration adopted, the Faraday current flows in a closed loop completely immersed into the plasma of the shock layer. The electric field and the pressure variation due to MHD interaction have been measured on the test body walls. Microwave adsorption measurements have been used for the determination of the electron number density and the electron collision frequency. Continuum recombination radiation and line radiation emissions have been detected. The electron temperature has been determined by means of the spectroscopic data by using different methods. The electron number density has been also determined by means of the Stark broadening of Hα and the Hβ lines. Optical imaging has been utilized to visualize the pattern of the electric current distribution in the shock layer around the test body. The experiments show a considerable effect of the electromagnetic forces produced by the MHD interaction acting on the plasma flow around the test body. A comparison of the experimental data with simulation results shows a good agreement.
Receptivity of Boundary Layer over a Blunt Wedge due to Freestream Pulse Disturbances at Mach 6
Directory of Open Access Journals (Sweden)
Jianqiang Shi
2016-01-01
Full Text Available Direct numerical simulation (DNS of a hypersonic compressible flow over a blunt wedge with fast acoustic disturbances in freestream is performed. The receptivity characteristics of boundary layer to freestream pulse acoustic disturbances are numerically investigated at Mach 6, and the frequency effects of freestream pulse wave on boundary layer receptivity are discussed. Results show that there are several main disturbance mode clusters in boundary layer under acoustic pulse wave, and the number of main disturbance clusters decreases along the streamwise. As disturbance wave propagates from upstream to downstream direction, the component of the modes below fundamental frequency decreases, and the component of the modes above second harmonic components increases quickly in general. There are competition and disturbance energy transfer between different boundary layer modes. The nose boundary layer is dominated by the nearby mode of fundamental frequency. The number of the main disturbance mode clusters decreases as the freestream disturbance frequency increases. The frequency range with larger growth narrows along the streamwise. In general, the amplitudes of both fundamental mode and harmonics become larger with the decreasing of freestream disturbance frequency. High frequency freestream disturbance accelerates the decay of disturbance wave in downstream boundary layer.
Highly stable polarization independent Mach-Zehnder interferometer
Energy Technology Data Exchange (ETDEWEB)
Mičuda, Michal, E-mail: micuda@optics.upol.cz; Doláková, Ester; Straka, Ivo; Miková, Martina; Dušek, Miloslav; Fiurášek, Jaromír; Ježek, Miroslav, E-mail: jezek@optics.upol.cz [Department of Optics, Faculty of Science, Palacký University, 17. listopadu 1192/12, 77146 Olomouc (Czech Republic)
2014-08-15
We experimentally demonstrate optical Mach-Zehnder interferometer utilizing displaced Sagnac configuration to enhance its phase stability. The interferometer with footprint of 27×40 cm offers individually accessible paths and shows phase deviation less than 0.4° during a 250 s long measurement. The phase drift, evaluated by means of Allan deviation, stays below 3° or 7 nm for 1.5 h without any active stabilization. The polarization insensitive design is verified by measuring interference visibility as a function of input polarization. For both interferometer's output ports and all tested polarization states the visibility stays above 93%. The discrepancy in visibility for horizontal and vertical polarization about 3.5% is caused mainly by undesired polarization dependence of splitting ratio of the beam splitter used. The presented interferometer device is suitable for quantum-information and other sensitive applications where active stabilization is complicated and common-mode interferometer is not an option as both the interferometer arms have to be accessible individually.
Ultra-Abrupt Tapered Fiber Mach-Zehnder Interferometer Sensors
Directory of Open Access Journals (Sweden)
Lanying Zhou
2011-05-01
Full Text Available A fiber inline Mach-Zehnder interferometer (MZI consisting of ultra-abrupt fiber tapers was fabricated through a new fusion-splicing method. By fusion-splicing, the taper diameter-length ratio is around 1:1, which is much greater than those (1:10 made by stretching. The proposed fabrication method is very low cost, 1/20–1/50 of those of LPFG pair MZI sensors. The fabricated MZIs are applied to measure refractive index, temperature and rotation angle changes. The temperature sensitivity of the MZI at a length of 30 mm is 0.061 nm/°C from 30–350 °C. The proposed MZI is also used to measure rotation angles ranging from 0° to 0.55°; the sensitivity is 54.98 nm/°. The refractive index sensitivity is improved by 3–5 fold by fabricating an inline micro–trench on the fiber cladding using a femtosecond laser. Acetone vapor of 50 ppm in N2 is tested by the MZI sensor coated with MFI–type zeolite thin film. The proposed MZI sensors are capable of in situ detection in many areas of interest such as environmental management, industrial process control, and public health.
Ultra-abrupt tapered fiber Mach-Zehnder interferometer sensors.
Li, Benye; Jiang, Lan; Wang, Sumei; Zhou, Lanying; Xiao, Hai; Tsai, Hai-Lung
2011-01-01
A fiber inline Mach-Zehnder interferometer (MZI) consisting of ultra-abrupt fiber tapers was fabricated through a new fusion-splicing method. By fusion-splicing, the taper diameter-length ratio is around 1:1, which is much greater than those (1:10) made by stretching. The proposed fabrication method is very low cost, 1/20-1/50 of those of LPFG pair MZI sensors. The fabricated MZIs are applied to measure refractive index, temperature and rotation angle changes. The temperature sensitivity of the MZI at a length of 30 mm is 0.061 nm/°C from 30-350 °C. The proposed MZI is also used to measure rotation angles ranging from 0° to 0.55°; the sensitivity is 54.98 nm/°. The refractive index sensitivity is improved by 3-5 fold by fabricating an inline micro-trench on the fiber cladding using a femtosecond laser. Acetone vapor of 50 ppm in N(2) is tested by the MZI sensor coated with MFI-type zeolite thin film. The proposed MZI sensors are capable of in situ detection in many areas of interest such as environmental management, industrial process control, and public health.
Plasma physics and fusion plasma electrodynamics
Bers, Abraham
2016-01-01
Plasma is a ubiquitous state of matter at high temperatures. The electrodynamics of plasmas encompasses a large number of applications, from understanding plasmas in space and the stars, to their use in processing semiconductors, and their role in controlled energy generation by nuclear fusion. This book covers collective and single particle dynamics of plasmas for fully ionized as well as partially ionized plasmas. Many aspects of plasma physics in current fusion energy generation research are addressed both in magnetic and inertial confinement plasmas. Linear and nonlinear dynamics in hydrodynamic and kinetic descriptions are offered, making both simple and complex aspects of the subject available in nearly every chapter. The approach of dividing the basic aspects of plasma physics as "linear, hydrodynamic descriptions" to be covered first because they are "easier", and postponing the "nonlinear and kinetic descriptions" for later because they are "difficult" is abandoned in this book. For teaching purpose...
Batterton, P. G.; Arpasi, D. J.; Baumbick, R. J.
1974-01-01
A digitally implemented integrated inlet-engine control system was designed and tested on a mixed-compression, axisymmetric, Mach 2.5, supersonic inlet with 45 percent internal supersonic area contraction and a TF30-P-3 augmented turbofan engine. The control matched engine airflow to available inlet airflow. By monitoring inlet terminal shock position and over-board bypass door command, the control adjusted engine speed so that in steady state, the shock would be at the desired location and the overboard bypass doors would be closed. During engine-induced transients, such as augmentor light-off and cutoff, the inlet operating point was momentarily changed to a more supercritical point to minimize unstarts. The digital control also provided automatic inlet restart. A variable inlet throat bleed control, based on throat Mach number, provided additional inlet stability margin.
Xie, Bin; Deng, Xi; Sun, Ziyao; Xiao, Feng
2017-04-01
We propose a novel Mach-uniform numerical model for 2D Euler equations on unstructured grids by using multi-moment finite volume method. The model integrates two key components newly developed to solve compressible flows on unstructured grids with improved accuracy and robustness. A new variant of AUSM scheme, so-called AUSM+-pcp (AUSM+ with pressure-correction projection), has been devised including a pressure-correction projection to the AUSM+ flux splitting, which maintains the exact numerical conservativeness and works well for all Mach numbers. A novel 3th-order, non-oscillatory and less-dissipative reconstruction has been proposed by introducing a multi-dimensional limiting and a BVD (boundary variation diminishing) treatment to the VPM (volume integrated average (VIA) and point value (PV) based multi-moment) reconstruction. The resulting reconstruction scheme, the limited VPM-BVD formulation, is able to resolve both smooth and non-smooth solutions with high fidelity. Benchmark tests have been used to verify the present model. The numerical results substantiate the present model as an accurate and robust unstructured-grid formulation for flows of all Mach numbers.
Arbitrary amplitude slow electron-acoustic solitons in three-electron temperature space plasmas
Energy Technology Data Exchange (ETDEWEB)
Mbuli, L. N. [South African National Space Agency (SANSA) Space Science, P.O. Box 32, Hermanus 7200, Republic of South Africa (South Africa); University of the Western Cape, Robert Sobukwe Road, Bellville 7535, Republic of South Africa (South Africa); Maharaj, S. K. [South African National Space Agency (SANSA) Space Science, P.O. Box 32, Hermanus 7200, Republic of South Africa (South Africa); Bharuthram, R. [University of the Western Cape, Robert Sobukwe Road, Bellville 7535, Republic of South Africa (South Africa); Singh, S. V.; Lakhina, G. S. [Indian Institute of Geomagnetism, New Panvel (West), Navi Mumbai 410218 (India)
2015-06-15
We examine the characteristics of large amplitude slow electron-acoustic solitons supported in a four-component unmagnetised plasma composed of cool, warm, hot electrons, and cool ions. The inertia and pressure for all the species in this plasma system are retained by assuming that they are adiabatic fluids. Our findings reveal that both positive and negative potential slow electron-acoustic solitons are supported in the four-component plasma system. The polarity switch of the slow electron-acoustic solitons is determined by the number densities of the cool and warm electrons. Negative potential solitons, which are limited by the cool and warm electron number densities becoming unreal and the occurrence of negative potential double layers, are found for low values of the cool electron density, while the positive potential solitons occurring for large values of the cool electron density are only limited by positive potential double layers. Both the lower and upper Mach numbers for the slow electron-acoustic solitons are computed and discussed.
Bifurcation of space-charge wave in a plasma waveguide including the wake potential effect
Energy Technology Data Exchange (ETDEWEB)
Lee, Myoung-Jae [Department of Physics and Research Institute for Natural Sciences, Hanyang University, Seoul 04763 (Korea, Republic of); Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr [Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588, South Korea and Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590 (United States)
2016-09-15
The wake potential effects on the propagation of the space-charge dust ion-acoustic wave are investigated in a cylindrically bounded dusty plasma with the ion flow. The results show that the wake potential would generate the double frequency modes in a cylindrically bounded dusty plasma. It is found that the upper mode of the wave frequency with the root of higher-order is smaller than that with the root of lower-order in intermediate wave number domains. However, the lower mode of the scaled wave frequency with the root of higher-order is found to be greater than that with the root of lower-order. It is found that the influence in the order of the root of the Bessel function on the wave frequency of the space-charge dust-ion-acoustic wave in a cylindrically confined dusty plasma decreases with an increase in the propagation wave number. It is also found that the double frequency modes increase with increasing Mach number due to the ion flow in a cylindrical dusty plasma. In addition, it is found that the upper mode of the group velocity decreases with an increase in the scaled radius of the plasma cylinder. However, it is shown that the lower mode of the scaled group velocity of the space-charge dust ion acoustic wave increases with an increase in the radius of the plasma cylinder. The variation of the space-charge dust-ion-acoustic wave due to the wake potential and geometric effects is also discussed.
Bifurcation of space-charge wave in a plasma waveguide including the wake potential effect
Lee, Myoung-Jae; Jung, Young-Dae
2016-09-01
The wake potential effects on the propagation of the space-charge dust ion-acoustic wave are investigated in a cylindrically bounded dusty plasma with the ion flow. The results show that the wake potential would generate the double frequency modes in a cylindrically bounded dusty plasma. It is found that the upper mode of the wave frequency with the root of higher-order is smaller than that with the root of lower-order in intermediate wave number domains. However, the lower mode of the scaled wave frequency with the root of higher-order is found to be greater than that with the root of lower-order. It is found that the influence in the order of the root of the Bessel function on the wave frequency of the space-charge dust-ion-acoustic wave in a cylindrically confined dusty plasma decreases with an increase in the propagation wave number. It is also found that the double frequency modes increase with increasing Mach number due to the ion flow in a cylindrical dusty plasma. In addition, it is found that the upper mode of the group velocity decreases with an increase in the scaled radius of the plasma cylinder. However, it is shown that the lower mode of the scaled group velocity of the space-charge dust ion acoustic wave increases with an increase in the radius of the plasma cylinder. The variation of the space-charge dust-ion-acoustic wave due to the wake potential and geometric effects is also discussed.
Wavelength conversion based on cross-phase modulation in a semiconductor Mach-Zehnder modulator
DEFF Research Database (Denmark)
Liu, Fenghai; Zheng, Xueyan; Oxenløwe, Leif Katsuo
2001-01-01
Wavelength conversion based on cross-phase modulation in a reversely biased semiconductor Mach-Zehnder modulator is proposed and successfully demonstrated in a commercial device. The converted signals exhibit extinction ratio >13 dB and penalty......Wavelength conversion based on cross-phase modulation in a reversely biased semiconductor Mach-Zehnder modulator is proposed and successfully demonstrated in a commercial device. The converted signals exhibit extinction ratio >13 dB and penalty...
Structural design and analysis of a Mach zero to five turbo-ramjet system
Spoth, Kevin A.; Moses, Paul L.
1993-01-01
The paper discusses the structural design and analysis of a Mach zero to five turbo-ramjet propulsion system for a Mach five waverider-derived cruise vehicle. The level of analysis detail necessary for a credible conceptual design is shown. The results of a finite-element failure mode sizing analysis for the engine primary structure is presented. The importance of engine/airframe integration is also discussed.
[Investigation of Empiricism. On Ernst Mach's Conception of the Thought Experiment].
Krauthausen, Karin
2015-03-01
Investigation of Empiricism. On Ernst Mach's Conception of the Thought Experiment. The paper argues that Ernst Mach's conception of the thought experiment from 1897/1905 holds a singular position in the lively discussions and repeated theorizations that have continued up to the present in relation to this procedure. Mach derives the thought experiment from scientific practice, and does not oppose it to the physical experiment, but, on the contrary, endows it with a robust relation to the facts. For Mach, the thought experiment is a reliable means of determining empiricism, and at the same time a real, because open and unbiased, experimenting. To shed light on this approach, the paper carries out a close reading of the relevant texts in Mach's body of writings (in their different stages of revision) and proceeds in three steps: first, Mach's processual understanding of science will be presented, which also characterizes his research and publication practice (I. 'Aperçu' and 'Sketch'. Science as Process and Projection); then in a second step the physiological and biological justification and valorization of memory and association will be examined with which Mach limits the relevance of categories such as consciousness and will (II. The Biology of Consciousness. Or The Polyp Colony); against this background, thirdly, the specific empiricism can be revealed that Mach inscribes into the thought experiment by on the one hand founding it in the memory and association, and on the other by tracing it back to geometry, which he deploys as an experimenting oriented to experience (III. Thinking and Experience. The Thought Experiment). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mach Cutoff Analysis and Results from NASA's Farfield Investigation of No-Boom Thresholds
Cliatt, Larry J., II; Hill, Michael A.; Haering, Edward A., Jr.
2016-01-01
In support of the ongoing effort by the National Aeronautics and Space Administration (NASA) to bring supersonic commercial travel to the public, the NASA Armstrong Flight Research Center and the NASA Langley Research Center, in partnership with other industry organizations and academia, conducted a flight research experiment to analyze acoustic propagation in the Mach cutoff shadow zone. The effort was conducted in the fall of 2012 and named the Farfield Investigation of No-boom Thresholds (FaINT). The test helped to build a dataset that will go toward further understanding of the unique acoustic propagation characteristics below Mach cutoff altitude. FaINT was able to correlate sonic boom noise levels measured below cutoff altitude with precise airplane flight conditions, potentially increasing the accuracy over previous studies. A NASA F-18B airplane made supersonic passes such that its Mach cutoff caustic would be at varying distances above a linear 60-microphone, 7375-ft (2247.9 m) long array. A TG-14 motor glider equipped with a microphone on its wing-tip also attempted to capture the same sonic boom waves above ground, but below the Mach cutoff altitude. This paper identified an appropriate metric for sonic boom waveforms in the Mach cutoff shadow zone called Perceived Sound Exposure Level; derived an empirical relationship between Mach cutoff flight conditions and noise levels in the shadow zone; validated a safe cutoff altitude theory presented by previous studies; analyzed the sensitivity of flight below Mach cutoff to unsteady atmospheric conditions and realistic aircraft perturbations; and demonstrated the ability to record sonic boom measurements over 5000 ft (1524.0 m) above ground level, but below Mach cutoff altitude.
An experimental investigation of a Mach 3.0 high-speed civil transport at supersonic speeds
Hernandez, Gloria; Covell, Peter F.; Mcgraw, Marvin E., Jr.
1993-01-01
An experimental study was conducted to determine the aerodynamic characteristics of a proposed high speed civil transport. This configuration was designed to cruise at Mach 3.0 and sized to carry 250 passengers for 6500 n.mi. The configuration consists of a highly blended wing body and features a blunt parabolic nose planform, a highly swept inboard wing panel, a moderately swept outboard wing panel, and a curved wingtip. Wind tunnel tests were conducted in the Langley Unitary Plan Wind Tunnel on a 0.0098-scale model. Force, moment, and pressure data were obtained for Mach numbers ranging from 1.6 to 3.6 and at angles of attack ranging from -4 to 10 deg. Extensive flow visualization studies (vapor screen and oil flow) were obtained in the experimental program. Both linear and advanced computational fluid dynamics (CFD) theoretical comparisons are shown to assess the ability to predict forces, moments, and pressures on configurations of this type. In addition, an extrapolation of the wind tunnel data, based on empirical principles, to full-scale conditions is compared with the theoretical aerodynamic predictions.
Gerberding, Oliver; Mehmet, Moritz; Danzmann, Karsten; Heinzel, Gerhard
2016-01-01
Low frequency high precision laser interferometry is subject to excess laser frequency noise coupling via arm-length differences which is commonly mitigated by locking the frequency to a stable reference system. This is crucial to achieve picometer level sensitivities in the 0.1 mHz to 1 Hz regime, where laser frequency noise is usually high and couples into the measurement phase via arm-length mismatches in the interferometers. Here we describe the results achieved by frequency stabilising an external cavity diode laser to a quasi-monolithic unequal arm-length Mach-Zehnder interferometer read out at mid-fringe via balanced detection. This stabilisation scheme has been found to be an elegant solution combining a minimal number of optical components, no additional laser modulations and relatively low frequency noise levels. The Mach-Zehnder interferometer has been designed and constructed to minimise the influence of thermal couplings and to reduce undesired stray light using the optical simulation tool IfoCAD...
Merrifield, Ruth C; Stephan, Chady; Lead, Jamie R
2017-01-01
It is challenging to separate and measure the physical and chemical properties of monometallic and bimetallic engineered nanoparticles (NPs), especially when mixtures are similar in size and at low concentration. We report that single particle inductively coupled mass spectroscopy (SP-ICP-MS), alongside field flow fractionation (FFF), has allowed for the accurate measurement of size and particle number concentrations of mixed metallic nanoparticles (NPs) containing monometallic NPs of gold (Au) and silver (Ag) and a bimetallic core-shell structured NP (Au@Ag) of equivalent size. Two sets of these NPs were measured. The first contained only 60nm particles, where the Au@Ag NP had a 30nm core and 15nm shell to make a total diameter of 60nm. The second contained only 80nm particles (Au@Ag NP core particle of 50nm with a 15nm shell). FFF separation was used here as a sizing technique rather than a separation technique. It was used to confirm that suspensions containing either individual or mixtures of the Au 60nm, Ag 60nm and AuAg 60nm suspensions eluted together and were of the same size. Similarly, FFF was used to show that suspensions containing individual or mixtures of the equivalent 80nm, eluted together and were of the same size. Although the 60nm and 80nm suspensions did not elute at the same time they were not run together. SP-ICP-MS is then used to identify the size and concentration of the particles within the suspension. Successful separation of the NPs was effected and the limits of the instrument were obtained. Copyright © 2016 Elsevier B.V. All rights reserved.
Revisiting Einstein's Happiest Thought: On Ernst Mach and the Early History of Relativity
Staley, Richard
2016-03-01
This paper argues we should distinguish three phases in the formation of relativity. The first involved relational approaches to perception, and physiological and geometrical space and time in the 1860s and 70s. The second concerned electrodynamics and mechanics (special relativity). The third concerned mechanics, gravitation, and physical and geometrical space and time. Mach's early work on the Doppler effect, together with studies of visual and motor perception linked physiology, physics and psychology, and offered new approaches to physiological space and time. These informed the critical conceptual attacks on Newtonian absolutes that Mach famously outlined in The Science of Mechanics. Subsequently Mach identified a growing group of ``relativists,'' and his critiques helped form a foundation for later work in electrodynamics (in which he did not participate). Revisiting Mach's early work will suggest he was still more important to the development of new approaches to inertia and gravitation than has been commonly appreciated. In addition to what Einstein later called ``Mach's principle,'' I will argue that a thought experiment on falling bodies in Mach's Science of Mechanics also provided a point of inspiration for the happy thought that led Einstein to the equivalence principle.
Energy Technology Data Exchange (ETDEWEB)
Stepanov, Sergey
2010-04-26
Tunable Diode Laser Absorption Spectroscopy in the mid InfraRed spectral range (IR-TDLAS) has been applied to investigate the behaviour of CF, CF{sub 2} and C{sub 2}F{sub 4} species produced in pulsed CF{sub 4}/H{sub 2} capacitively coupled radio frequency plasmas (13.56 MHz CCP). This experimental technique was shown to be suitable for temporally resolved measurements of the absolute number density of the target molecules in the studied fluorocarbon discharges. The temporal resolution of about 20..40 ms typically achieved in the standard data acquisition mode (''stream mode'') was sufficient for the real-time measurements of CF{sub 2} and C{sub 2}F{sub 4}, but not of CF whose kinetics was observed to be much faster. Therefore, a more sophisticated approach (''burst mode'') providing a temporal resolution of 0.94 ms was established and successfully applied to CF density measurements. In order to enable the TDLAS measurements of the target species, preliminary investigations on their spectroscopic data had been carried out. In particular, pure C{sub 2}F{sub 4} has been produced in laboratory by means of vacuum thermal decomposition (pyrolysis) of polytetrafluoroethylene and used as a reference gas. Therefore, an absorption structure consisting of several overlapping C{sub 2}F{sub 4} lines around 1337.11 cm{sup -1} was selected and carefully calibrated, which provided the first absolute measurements of the species by means of the applied experimental technique. The absolute number density traces measured for CF, CF{sub 2} and C{sub 2}F{sub 4} in the studied pulsed plasmas were then analysed, in which two differential balance equations were proposed for each of the species to describe their behaviour during both ''plasma on'' and ''plasma off'' phases. Analytical solutions of the balance equations were used to fit the experimental data and hence to deduce important information on the
Design of all-optical multi-level regenerators based on Mach-Zehnder interferometer
Kong, Xiangjian; Wu, Baojian; Zhou, Xingyu; Wan, Qingyao; Jiang, Shanglong; Wen, Feng; Qiu, Kun
2016-12-01
We propose a design method for all-optical multi-level regenerators by mimicking the normalized power transfer function (PTF) in the first-order approximation to the ideal step-like PTF, in which a key step is to appropriately select the amplitude and phase conditions of Mach-Zehnder-interferometer (MZI)-based regenerators. As an example, we describe the design process of the self-phase-modulation (SPM)-based MZI regenerator constructed by a section of nonlinear fiber and an optical phase shifter (OPS). It is shown that the parameter of reference power level (RPL) can be regarded as the upper limit of input power, which is useful for the measure of the multi-level regeneration performance. The number of regenerative power levels increases with the RPL parameter. For 4-level pulse amplitude modulated (4PAM) optical signals degraded by the Gaussian noises with the standard deviation of 0.02, the SPM-based MZI regenerator has an average noise reduction ratio (NRR) of 6.5 dB, better than that of 1st-order regenerator by about 5 dB.
Unsteadiness of a shock train in Mach 2.0 flow
Hunt, Robin; Driscoll, James; Gamba, Mirko
2016-11-01
Experimental observations of the progression of flow unsteadiness within a shock train are presented. A downstream control valve is used to generate a shock train in the constant area test section of a wind tunnel with a freestream Mach number of 2.0. Even with nominally constant boundary conditions the shock train exhibits inherent unsteady motion about the time average position. At the conditions presented the shocks can be displaced by up to 0.35 duct heights. Better knowledge of the shock train's dynamics may allow us to introduce control algorithms to reduce the system's unsteadiness and thus minimize the associated mechanical and thermal loads. An edge detection algorithm is applied to the instantaneous frames of high speed Schlieren movies to track the location of morphological features within the shock system. Simultaneously, high speed pressure transducers record the pressure fluctuations along the bottom wall of the duct. The results indicate a complex frequency dependent dynamical system. A strong component of the dynamics involves a disturbance traveling upstream through the boundary layer. Once the disturbance reaches the leading shock foot the shocks respond in order with the most upstream shock moving first.
Effects of Fin Leading Edge Sweep on Shock-Shock Interaction at Mach 6
Berry, Scott A.; Nowak, Robert J.
1996-01-01
The effects of fin leading edge sweep on peak heating rates due to shock-shock interaction have been experimentally examined in the Langley 20-Inch Mach 6 Tunnel. The shock interaction was produced by the intersection of a planar incident shock (16.8 deg shock angle relative to the freestream, generated by a 9 deg wedge) with the bow shock formed around a O.5-inch diameter cylindrical leading edge fin. Heating distributions along the leading edge stagnation line have been obtained using densely spaced thin film resistive-type sensors. Schlieren images were obtained to illustrate the very complex shock-shock interactions. The fin leading edge sweep angle was varied from 15-degrees swept back to 45-degrees swept forward for a freestream unit Reynolds number of 2 x 10(exp 6)/ft. Two models were utilized during the study, one with 0.025-inch spacing between gage centers, and the other 0.015-inch spacing. Gage spatial resolution on the order of 0.015-in appeared to accurately capture the narrow spike in heating. Peak heating due to shock interaction was maximized when the fin was swept forward 15 deg and 25 deg, both promoting augmentations about 7 times the baseline value. The schlieren images for these cases revealed Type 4 and Type 3 interactions, respectively.
Development and Benchmarking of a Hybrid PIC Code For Dense Plasmas and Fast Ignition
Energy Technology Data Exchange (ETDEWEB)
Witherspoon, F. Douglas [HyperV Technologies Corp.; Welch, Dale R. [Voss Scientific, LLC; Thompson, John R. [FAR-TECH, Inc.; MacFarlane, Joeseph J. [Prism Computational Sciences Inc.; Phillips, Michael W. [Advanced Energy Systems, Inc.; Bruner, Nicki [Voss Scientific, LLC; Mostrom, Chris [Voss Scientific, LLC; Thoma, Carsten [Voss Scientific, LLC; Clark, R. E. [Voss Scientific, LLC; Bogatu, Nick [FAR-TECH, Inc.; Kim, Jin-Soo [FAR-TECH, Inc.; Galkin, Sergei [FAR-TECH, Inc.; Golovkin, Igor E. [Prism Computational Sciences, Inc.; Woodruff, P. R. [Prism Computational Sciences, Inc.; Wu, Linchun [HyperV Technologies Corp.; Messer, Sarah J. [HyperV Technologies Corp.
2014-05-20
Radiation processes play an important role in the study of both fast ignition and other inertial confinement schemes, such as plasma jet driven magneto-inertial fusion, both in their effect on energy balance, and in generating diagnostic signals. In the latter case, warm and hot dense matter may be produced by the convergence of a plasma shell formed by the merging of an assembly of high Mach number plasma jets. This innovative approach has the potential advantage of creating matter of high energy densities in voluminous amount compared with high power lasers or particle beams. An important application of this technology is as a plasma liner for the flux compression of magnetized plasma to create ultra-high magnetic fields and burning plasmas. HyperV Technologies Corp. has been developing plasma jet accelerator technology in both coaxial and linear railgun geometries to produce plasma jets of sufficient mass, density, and velocity to create such imploding plasma liners. An enabling tool for the development of this technology is the ability to model the plasma dynamics, not only in the accelerators themselves, but also in the resulting magnetized target plasma and within the merging/interacting plasma jets during transport to the target. Welch pioneered numerical modeling of such plasmas (including for fast ignition) using the LSP simulation code. Lsp is an electromagnetic, parallelized, plasma simulation code under development since 1995. It has a number of innovative features making it uniquely suitable for modeling high energy density plasmas including a hybrid fluid model for electrons that allows electrons in dense plasmas to be modeled with a kinetic or fluid treatment as appropriate. In addition to in-house use at Voss Scientific, several groups carrying out research in Fast Ignition (LLNL, SNL, UCSD, AWE (UK), and Imperial College (UK)) also use LSP. A collaborative team consisting of HyperV Technologies Corp., Voss Scientific LLC, FAR-TECH, Inc., Prism
Energy Technology Data Exchange (ETDEWEB)
Smith, Roger J. [Univ. of Washington, Seattle, WA (United States)
2016-10-20
The goals were to collaborate with the MSX project and make the MSX platform reliable with a performance where pulsed polarimetry would be capable of adding a useful measurement and then to achieve a first measurement using pulsed polarimetry. The MSX platform (outside of laser blow off plasmas adjacent to magnetic fields which are low beta) is the only device that can generate high beta magnetized collisionless supercritical shocks, and with a large spatial size of ~10 cm. Creating shocks at high Mach numbers and investigating the dynamics of the shocks was the main goal of the project. The MSX shocks scale to astrophysical magnetized shocks and potentially throw light on the generation of highly energetic particles via a mechanism like the Fermi process.
Electron acoustic waves in a magnetized plasma with kappa distributed ions
Energy Technology Data Exchange (ETDEWEB)
Devanandhan, S.; Lakhina, G. S. [Indian Institute of Geomagnetism, Navi Mumbai (India); Singh, S. V. [Indian Institute of Geomagnetism, Navi Mumbai (India); School of Physics, University of Kwazulu-Natal, Durban (South Africa); Bharuthram, R. [University of the Western Cape, Bellville (South Africa)
2012-08-15
Electron acoustic solitary waves in a two component magnetized plasma consisting of fluid cold electrons and hot superthermal ions are considered. The linear dispersion relation for electron acoustic waves is derived. In the nonlinear regime, the energy integral is obtained by a Sagdeev pseudopotential analysis, which predicts negative solitary potential structures. The effects of superthermality, obliquity, temperature, and Mach number on solitary structures are studied in detail. The results show that the superthermal index {kappa} and electron to ion temperature ratio {sigma} alters the regime where solitary waves can exist. It is found that an increase in magnetic field value results in an enhancement of soliton electric field amplitude and a reduction in soliton width and pulse duration.
Three-fluid plasmas in star formation II. Momentum transfer rate coefficients
Pinto, Cecilia
2008-01-01
The charged component of the insterstellar medium consists of atomic and molecular ions, electrons, and charged dust grains, coupled to the local Galactic magnetic field. Collisions between neutral particles (mostly atomic or molecular hydrogen) and charged species, and between the charged species themselves, affect the magnetohydrodynamical behaviour of the medium and the dissipation of electric currents. The friction force due to elastic collisions between particles of different species in the multi-component interstellar plasma is a nonlinear function of the temperature of each species and the Mach number of the relative drift velocity. The aim of this paper is to provide an accurate and, as far as possible, complete set of momentum transfer rate coefficients for magnetohydrodynamical studies of the interstellar medium. Momentum transfer rates are derived from available experimental data and theoretical calculations of cross sections within the classic approach developed by Boltzmann and Langevin for a wid...
Hsu, S C; Moser, A L; Awe, T J; Brockington, S J E; Davis, J S; Adams, C S; Case, A; Cassibry, J T; Dunn, J P; Gilmore, M A; Lynn, A G; Messer, S J; Witherspoon, F D
2012-01-01
We report experimental results on the parameters, structure, and evolution of high-Mach-number (M) argon plasma jets formed and launched by a pulsed-power-driven railgun. The nominal initial average jet parameters in the data set analyzed are density \\approx 2 x 10^(16) cm^(-3), electron temperature \\approx 1.4 eV, velocity \\approx 30 km/s, M \\approx 14, ionization fraction \\approx 0.96, diameter \\approx 5 cm, and length \\approx 20 cm. These values approach the range needed by the Plasma Liner Experiment (PLX), which is designed to use merging plasma jets to form imploding spherical plasma liners that can reach peak pressures of 0.1-1 Mbar at stagnation. As these jets propagate a distance of approximately 40 cm, the average density drops by one order of magnitude, which is up to an order of magnitude less than the drop predicted by the ideal hydrodynamic theory of a constant-M jet.
Energy Technology Data Exchange (ETDEWEB)
Hsu, S. C.; Moser, A. L.; Awe, T. J.; Davis, J. S.; Dunn, J. P. [Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Merritt, E. C.; Adams, C. S. [Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); University of New Mexico, Albuquerque, New Mexico 87131 (United States); Brockington, S. J. E.; Case, A.; Messer, S. J.; Witherspoon, F. D. [HyperV Technologies Corp., Chantilly, Virginia 20151 (United States); Cassibry, J. T. [Propulsion Research Center, University of Alabama in Huntsville, Huntsville, Alabama 35899 (United States); Gilmore, M. A.; Lynn, A. G. [University of New Mexico, Albuquerque, New Mexico 87131 (United States)
2012-12-15
We report experimental results on the parameters, structure, and evolution of high-Mach-number (M) argon plasma jets formed and launched by a pulsed-power-driven railgun. The nominal initial average jet parameters in the data set analyzed are density Almost-Equal-To 2 Multiplication-Sign 10{sup 16} cm{sup -3}, electron temperature Almost-Equal-To 1.4 eV, velocity Almost-Equal-To 30 km/s, M Almost-Equal-To 14, ionization fraction Almost-Equal-To 0.96, diameter Almost-Equal-To 5 cm, and length Almost-Equal-To 20 cm. These values approach the range needed by the Plasma Liner Experiment, which is designed to use merging plasma jets to form imploding spherical plasma liners that can reach peak pressures of 0.1-1 Mbar at stagnation. As these jets propagate a distance of approximately 40 cm, the average density drops by one order of magnitude, which is at the very low end of the 8-160 times drop predicted by ideal hydrodynamic theory of a constant-M jet.
Effects of laser polarization on electrostatic shock ion acceleration in near-critical plasmas
Kim, Young-Kuk; Kang, Teyoun; Hur, Min Sup
2016-10-01
Ion acceleration from laser-driven collisionless electrostatic shock (CES) is attracting much attention, as quasi-monoenergetic, tens of MeV ion beams are expected to be available from relatively moderate laser power and near-critical density plasmas. For generation of a high-speed shock by a laser pulse, it is important to compress a high-contrast density layer by hole-boring process, and to heat the electrons in the upstream, where the hole-boring speed should match the Mach number condition 1.5 boring speed is higher in lower density plasmas, we observed consistently higher speed of the shock and accelerated ion energy when driven by CP pulses. Interesting point is that the CP-shock generation is determined predominantly by the transmittance only, while the LP-shock formation depends on other parameters such as plasma scale length. In 2D simulations, we found that Weibel instability is less effective in CP than LP, which enables more stable shock formation for given conditions of the laser and plasma. This work was supported by the Basic Science Research Program (NRF-2013R1A1A2006353) and the Creative Allied Project (CAP-15-06-ETRI).
Numerical simulation of tandem-cylinder noise-reduction using plasma-based flow control
Wang, Meng; Eltaweel, Ahmed; Thomas, Flint; Kozlov, Alexey; Kim, Dongjoo
2011-11-01
The noise of low-Mach-number flow over tandem cylinders at ReD = 22 , 000 and its reduction using plasma actuators are simulated numerically to confirm and extend earlier experimental results. The numerical approach is based on large-eddy simulation for the turbulent flow field, a semi-empirical plasma actuation model, and Lighthill's theory for acoustic calculation. Excellent agreement between LES and experimental results is obtained for both the baseline flow and flow with plasma control in terms of wake velocity profiles, turbulence intensity, and frequency spectra of pressure fluctuations on the downstream cylinder. The validated flow-field results allow an accurate acoustic analysis based on Lighthill's equation, which is solved using a boundary-element method. The effectiveness of plasma actuators for reducing noise is demonstrated. In the baseline flow, the acoustic field is dominated by the interaction of the downstream cylinder with the upstream wake. With flow control the interaction noise is reduced drastically through suppression of vortex shedding from the upstream cylinder, and the vortex-shedding noise from the downstream cylinder becomes dominant. The peak sound pressure level is reduced by approximately 15 dB. Supported by NASA Cooperative Agreement NNX07AO09A.
Simulation of Plasma Jet Merger and Liner Formation within the PLX- α Project
Samulyak, Roman; Chen, Hsin-Chiang; Shih, Wen; Hsu, Scott
2015-11-01
Detailed numerical studies of the propagation and merger of high Mach number argon plasma jets and the formation of plasma liners have been performed using the newly developed method of Lagrangian particles (LP). The LP method significantly improves accuracy and mathematical rigor of common particle-based numerical methods such as smooth particle hydrodynamics while preserving their main advantages compared to grid-based methods. A brief overview of the LP method will be presented. The Lagrangian particle code implements main relevant physics models such as an equation of state for argon undergoing atomic physics transformation, radiation losses in thin optical limit, and heat conduction. Simulations of the merger of two plasma jets are compared with experimental data from past PLX experiments. Simulations quantify the effect of oblique shock waves, ionization, and radiation processes on the jet merger process. Results of preliminary simulations of future PLX- alpha experiments involving the ~ π / 2 -solid-angle plasma-liner configuration with 9 guns will also be presented. Partially supported by ARPA-E's ALPHA program.
Granzow, Martin; Hegenbart, Ute; Hinderhofer, Katrin; Hose, Dirk; Seckinger, Anja; Bochtler, Tilmann; Hemminki, Kari; Goldschmidt, Hartmut; Schönland, Stefan O; Jauch, Anna
2017-07-01
Immunoglobulin light chain (AL) amyloidosis is a rare plasma cell dyscrasia characterized by the deposition of abnormal amyloid fibrils in multiple organs, thus impairing their function. In the largest cohort studied up to now of 118 CD138-purified plasma cell samples from previously untreated immunoglobulin light chain amyloidosis patients, we assessed in parallel copy number alterations using high-density copy number arrays and interphase fluorescence in situ hybridization (iFISH). We used fluorescence in situ hybridization probes for the IgH translocations t(11;14), t(4;14), and t(14;16) or any other IgH rearrangement as well as numerical aberrations of the chromosome loci 1q21, 8p21, 5p15/5q35, 11q22.3 or 11q23, 13q14, 15q22, 17p13, and 19q13. Recurrent gains included chromosomes 1q (36%), 9 (24%), 11q (24%), as well as 19 (15%). Recurrent losses affected chromosome 13 (29% monosomy) and partial losses of 14q (19%), 16q (14%) and 13q (12%), respectively. In 88% of patients with translocation t(11;14), the hallmark chromosomal aberration in AL amyloidosis, a concomitant gain of 11q22.3/11q23 detected by iFISH was part of the unbalanced translocation der(14)t(11;14)(q13;q32) with the breakpoint in the CCND1/MYEOV gene region. Partial loss of chromosome regions 14q and 16q were significantly associated to gain 1q. Gain 1q21 detected by iFISH almost always resulted from a gain of the long arm of chromosome 1 and not from trisomy 1, whereas deletions on chromosome 1p were rarely found. Overall and event-free survival analysis found a potential adverse prognostic effect of concomitant gain 1q and deletion 14q as well as of deletion 1p. In conclusion, in the first whole genome report of clonal plasma cells in AL amyloidosis, novel aberrations and hitherto unknown potential adverse prognostic effects were uncovered. Copyright© 2017 Ferrata Storti Foundation.
Anderson, B. H.; Bowditch, D. N.
1958-01-01
Investigation of the control parameters of an external-internal compression inlet indicates that the cowl-lip shock provides a signal to position the spike and to start the inlet over a Mach number range from 2.1 to 3.0. Use of a single fixed probe position to control the spike over the range of conditions resulted in a 3.7-count loss in total-pressure recovery at Mach 3.0 and 0 deg angle of attack. Three separate shock-sensing-probe positions were required to set the spike for peak recovery from Mach 2.1 to 3.0 and angles of attack from 0 deg to 6 deg. When the inlet was unstarted, an erroneous signal was obtained from the normal-shock control through most of the starting cycle that prevented the inlet from starting. Therefore, it was necessary to over-ride the normal-shock control signal and not allow the control to position the terminal shock until the spike was positioned.
Drozda, Tomasz G.; Cabell, Karen F.; Passe, Bradley J.; Baurle, Robert A.
2017-01-01
Computational fluid dynamics analyses and experimental data are presented for the Mach 6 facility nozzle used in the Arc-Heated Scramjet Test Facility for the Enhanced Injection and Mixing Project (EIMP). This project, conducted at the NASA Langley Research Center, aims to investigate supersonic combustion ramjet (scramjet) fuel injection and mixing physics relevant to flight Mach numbers greater than 8. The EIMP experiments use a two-dimensional Mach 6 facility nozzle to provide the high-speed air simulating the combustor entrance flow of a scramjet engine. Of interest are the physical extent and the thermodynamic properties of the core flow at the nozzle exit plane. The detailed characterization of this flow is obtained from three-dimensional, viscous, Reynolds-averaged simulations. Thermodynamic nonequilibrium effects are also investigated. The simulations are compared with the available experimental data, which includes wall static pressures as well as in-stream static pressure, pitot pressure and total temperature obtained via in-stream probes positioned just downstream of the nozzle exit plane.
Mendonça, J. Ricardo G.
2012-01-01
We define a new class of numbers based on the first occurrence of certain patterns of zeros and ones in the expansion of irracional numbers in a given basis and call them Sagan numbers, since they were first mentioned, in a special case, by the North-american astronomer Carl E. Sagan in his science-fiction novel "Contact." Sagan numbers hold connections with a wealth of mathematical ideas. We describe some properties of the newly defined numbers and indicate directions for further amusement.
Vorob'ev, Nikolai Nikolaevich
2011-01-01
Fibonacci numbers date back to an 800-year-old problem concerning the number of offspring born in a single year to a pair of rabbits. This book offers the solution and explores the occurrence of Fibonacci numbers in number theory, continued fractions, and geometry. A discussion of the ""golden section"" rectangle, in which the lengths of the sides can be expressed as a ration of two successive Fibonacci numbers, draws upon attempts by ancient and medieval thinkers to base aesthetic and philosophical principles on the beauty of these figures. Recreational readers as well as students and teacher
Number names and number understanding
DEFF Research Database (Denmark)
Ejersbo, Lisser Rye; Misfeldt, Morten
2014-01-01
through using mathematical names for the numbers such as one-ten-one for 11 and five-ten-six for 56. The project combines the renaming of numbers with supporting the teaching with the new number names. Our hypothesis is that Danish children have more difficulties learning and working with numbers, because...... the Danish number names are more complicated than in other languages. Keywords: A research project in grade 0 and 1th in a Danish school, Base-10 system, two-digit number names, semiotic, cognitive perspectives....
A Mach-Zender Holographic Microscope for Quantifying Bacterial Motility
Niraula, B.; Nadeau, J. L.; Serabyn, E.; Wallace, J. K.; Liewer, K.; Kuhn, J.; Graff, E.; Lindensmith, C.
2014-12-01
New microscopic techniques have revolutionized cell biology over the past two decades. However, there are still biological processes whose details elude us, especially those involving motility: e.g. feeding behavior of microorganisms in the ocean, or migration of cancer cells to form metastases. Imaging prokaryotes, which range in size from several hundred nm to a few microns, is especially challenging. An emerging technique to address these issues is Digital Holographic Microscopy (DHM). DHM is an imaging technique that uses the interference of light to record and reproduce three-dimensional magnified images of objects. This approach has several advantages over ordinary brightfield microscopy for fieldwork: a larger depth of field, hands-off operation, robustness regarding environmental conditions, and large sampling volumes with quantitative 3D records of motility behavior. Despite these promising features, real-time DHM was thought to be impractical for technological and computational reasons until recently, and there has so far been very limited application of DHM to biology. Most existing instruments are limited in performance by their particular (e.g. in-line, lens-less, phase-shifting) approach to holography. These limitations can be mitigated with an off-axis dual-path configuration. Here we describe the design and implementation of a design for a Mach-Zehnder-type holographic microscope with diffraction-limited lateral resolution, with intended applications in environmental microbiology. We have achieved sub-micron resolution and three-dimensional tracking of prokaryotic and eukaryotic test strains designed to represent different modes and speeds of microbial motility. Prokaryotes are Escherichia coli, Vibrio alginolyticus, and Bacillus subtilis. Each shows a characteristic motility pattern, as we illustrate in holographic videos in sample chambers 0.6 mm in depth. The ability to establish gradients of attractants with bacterial taxis towards the
Petersen, T Kyle
2015-01-01
This text presents the Eulerian numbers in the context of modern enumerative, algebraic, and geometric combinatorics. The book first studies Eulerian numbers from a purely combinatorial point of view, then embarks on a tour of how these numbers arise in the study of hyperplane arrangements, polytopes, and simplicial complexes. Some topics include a thorough discussion of gamma-nonnegativity and real-rootedness for Eulerian polynomials, as well as the weak order and the shard intersection order of the symmetric group. The book also includes a parallel story of Catalan combinatorics, wherein the Eulerian numbers are replaced with Narayana numbers. Again there is a progression from combinatorics to geometry, including discussion of the associahedron and the lattice of noncrossing partitions. The final chapters discuss how both the Eulerian and Narayana numbers have analogues in any finite Coxeter group, with many of the same enumerative and geometric properties. There are four supplemental chapters throughout, ...
Hydrogen film cooling with incident and swept-shock interactions in a Mach 6.4 nitrogen free stream
Olsen, George C.; Nowak, Robert J.
1995-01-01
The effectiveness of slot film cooling of a flat plate in a Mach 6.4 flow with and without incident and swept oblique shock interactions was experimentally investigated. Hydrogen was the primary coolant gas, although some tests were conducted using helium as the coolant. Tests were conducted in the Calspan 48-Inch Shock Tunnel with a nitrogen flow field to preclude combustion of the hydrogen coolant gas. A two-dimensional highly instrumented model developed in a previous test series was used. Parameters investigated included coolant mass flow rate, coolant gas, local free-stream Reynolds number, incident oblique shock strength, and a swept oblique shock. Both gases were highly effective coolants in undisturbed flow; however, both incident and swept shocks degraded that effectiveness.
Directory of Open Access Journals (Sweden)
Tiago Cavalcanti Rolim
2011-05-01
Full Text Available This paper presents a research in the development of the 14-X hypersonic airspace vehicle at Institute for Advanced Studies (IEAv from Department of Science and Aerospace Technology (DCTA of the Brazilian Air Force (FAB. The 14-X project objective is to develop a higher efficient satellite launch alternative, using a Supersonic Combustion Ramjet (SCRAMJET engine and waverider aerodynamics. For this development, the waverider technology is under investigation in Prof. Henry T. Nagamatsu Aerothermodynamics and Hypersonics Laboratory (LHTN, in IEAv/DCTA. The investigation has been conducted through ground test campaigns in Hypersonic Shock Tunnel T3. The 14-X Waverider Vehicle characteristic was verified in shock tunnel T3 where surface static pressures and pitot pressure for Mach number 10 were measured and, using Schlieren photographs Diagnostic Method, it was possible to identify a leading-edge attached shock wave in 14-X lower surface.
MHz-rate nitric oxide planar laser-induced fluorescence imaging in a Mach 10 hypersonic wind tunnel.
Jiang, Naibo; Webster, Matthew; Lempert, Walter R; Miller, Joseph D; Meyer, Terrence R; Ivey, Christopher B; Danehy, Paul M
2011-02-01
Nitric oxide planar laser-induced fluorescence (NO PLIF) imaging at repetition rates as high as 1 MHz is demonstrated in the NASA Langley 31 in. Mach 10 hypersonic wind tunnel. Approximately 200 time-correlated image sequences of between 10 and 20 individual frames were obtained over eight days of wind tunnel testing spanning two entries in March and September of 2009. The image sequences presented were obtained from the boundary layer of a 20° flat plate model, in which transition was induced using a variety of different shaped protuberances, including a cylinder and a triangle. The high-speed image sequences captured a variety of laminar and transitional flow phenomena, ranging from mostly laminar flow, typically at a lower Reynolds number and/or in the near wall region of the model, to highly transitional flow in which the temporal evolution and progression of characteristic streak instabilities and/or corkscrew-shaped vortices could be clearly identified.
Wang, Z; Barnes, C W; Barnes, D C; Wang, Zhehui; Pariev, Vladimir I.; Barnes, Cris W.; Barnes, Daniel C.
2002-01-01
A new kind of dynamo utilizing flowing laboratory plasmas has been identified. Conversion of plasma kinetic energy to magnetic energy is verified numerically by kinematic dynamo simulations for magnetic Reynolds numbers above 210. As opposed to intrinsically-turbulent liquid-sodium dynamos, the proposed plasma dynamos correspond to laminar flow topology. Modest plasma parameters, 1-20 eV temperatures, 10^{19}-10^{20} m^{-3} densities in 0.3-1.0 m scale-lengths driven by velocities on the order of the Alfven Critical Ionization Velocity (CIV), self-consistently satisfy the conditions needed for the magnetic field amplication. Growth rates for the plasma dynamos are obtained numerically with different geometry and magnetic Reynolds numbers. Magnetic-field-free coaxial plasma guns can be used to sustain the plasma flow and the dynamo.
Plasma-enhanced mixing and flameholding in supersonic flow
Firsov, Alexander; Savelkin, Konstantin V.; Yarantsev, Dmitry A.; Leonov, Sergey B.
2015-01-01
The results of experimental study of plasma-based mixing, ignition and flameholding in a supersonic model combustor are presented in the paper. The model combustor has a length of 600 mm and cross section of 72 mm width and 60 mm height. The fuel is directly injected into supersonic airflow (Mach number M=2, static pressure Pst=160–250 Torr) through wall orifices. Two series of tests are focused on flameholding and mixing correspondingly. In the first series, the near-surface quasi-DC electrical discharge is generated by flush-mounted electrodes at electrical power deposition of Wpl=3–24 kW. The scope includes parametric study of ignition and flame front dynamics, and comparison of three schemes of plasma generation: the first and the second layouts examine the location of plasma generators upstream and downstream from the fuel injectors. The third pattern follows a novel approach of combined mixing/ignition technique, where the electrical discharge distributes along the fuel jet. The last pattern demonstrates a significant advantage in terms of flameholding limit. In the second series of tests, a long discharge of submicrosecond duration is generated across the flow and along the fuel jet. A gasdynamic instability of thermal cavity developed after a deposition of high-power density in a thin plasma filament promotes the air–fuel mixing. The technique studied in this work has weighty potential for high-speed combustion applications, including cold start/restart of scramjet engines and support of transition regime in dual-mode scramjet and at off-design operation. PMID:26170434
Energy Technology Data Exchange (ETDEWEB)
Andreev, Pavel A., E-mail: andreevpa@physics.msu.ru [Faculty of Physics, Lomonosov Moscow State University, Moscow (Russian Federation)
2015-06-15
We discuss the complete theory of spin-1/2 electron-positron quantum plasmas, when electrons and positrons move with velocities mach smaller than the speed of light. We derive a set of two fluid quantum hydrodynamic equations consisting of the continuity, Euler, spin (magnetic moment) evolution equations for each species. We explicitly include the Coulomb, spin-spin, Darwin and annihilation interactions. The annihilation interaction is the main topic of the paper. We consider the contribution of the annihilation interaction in the quantum hydrodynamic equations and in the spectrum of waves in magnetized electron-positron plasmas. We consider the propagation of waves parallel and perpendicular to an external magnetic field. We also consider the oblique propagation of longitudinal waves. We derive the set of quantum kinetic equations for electron-positron plasmas with the Darwin and annihilation interactions. We apply the kinetic theory to the linear wave behavior in absence of external fields. We calculate the contribution of the Darwin and annihilation interactions in the Landau damping of the Langmuir waves. We should mention that the annihilation interaction does not change number of particles in the system. It does not related to annihilation itself, but it exists as a result of interaction of an electron-positron pair via conversion of the pair into virtual photon. A pair of the non-linear Schrodinger equations for the electron-positron plasmas including the Darwin and annihilation interactions is derived. Existence of the conserving helicity in electron-positron quantum plasmas of spinning particles with the Darwin and annihilation interactions is demonstrated. We show that the annihilation interaction plays an important role in the quantum electron-positron plasmas giving the contribution of the same magnitude as the spin-spin interaction.
Andreev, Pavel A.
2015-06-01
We discuss the complete theory of spin-1/2 electron-positron quantum plasmas, when electrons and positrons move with velocities mach smaller than the speed of light. We derive a set of two fluid quantum hydrodynamic equations consisting of the continuity, Euler, spin (magnetic moment) evolution equations for each species. We explicitly include the Coulomb, spin-spin, Darwin and annihilation interactions. The annihilation interaction is the main topic of the paper. We consider the contribution of the annihilation interaction in the quantum hydrodynamic equations and in the spectrum of waves in magnetized electron-positron plasmas. We consider the propagation of waves parallel and perpendicular to an external magnetic field. We also consider the oblique propagation of longitudinal waves. We derive the set of quantum kinetic equations for electron-positron plasmas with the Darwin and annihilation interactions. We apply the kinetic theory to the linear wave behavior in absence of external fields. We calculate the contribution of the Darwin and annihilation interactions in the Landau damping of the Langmuir waves. We should mention that the annihilation interaction does not change number of particles in the system. It does not related to annihilation itself, but it exists as a result of interaction of an electron-positron pair via conversion of the pair into virtual photon. A pair of the non-linear Schrodinger equations for the electron-positron plasmas including the Darwin and annihilation interactions is derived. Existence of the conserving helicity in electron-positron quantum plasmas of spinning particles with the Darwin and annihilation interactions is demonstrated. We show that the annihilation interaction plays an important role in the quantum electron-positron plasmas giving the contribution of the same magnitude as the spin-spin interaction.
Positioning approach based on Mach-Zehnder fiber sensors and a DSP processor
Wan, Xiong; Du, Tingting; Zhang, Zhimin; Zhang, Huaming; Wang, Peng
2013-12-01
A positioning system based on Mach-Zehnder optical fiber interferometer is proposed, which can sense vibration information along the circumference of the fiber sensor and hence be applied to positioning invasions as a safe-guard system in residence communities. A cross-correlation algorithm fulfilled with a DSP processor has been adopted to calculate the time difference of two channels of the Mach-Zehnder optical fiber interferometer. A signal identification algorithm is proposed to decrease the workload of the DSP when no vibration occurs. An experiment with 11.28 kilometers sensing fiber has been carried out, whose results show the Mach-Zehnder positioning system identifies the position of vibration instantaneously and has a 44 meters positioning error within the total sensing distance.
Concept development of a Mach 3.0 high-speed civil transport
Robins, A. Warner; Dollyhigh, Samuel M.; Beissner, Fred L., Jr.; Geiselhart, Karl; Martin, Glenn L.; Shields, E. W.; Swanson, E. E.; Coen, Peter G.; Morris, Shelby J., Jr.
1988-01-01
A baseline concept for a Mach 3.0 high-speed civil transport concept was developed as part of a national program with the goal that concepts and technologies be developed which will enable an effective long-range high-speed civil transport system. The Mach 3.0 concept reported represents an aggressive application of advanced technology to achieve the design goals. The level of technology is generally considered to be that which could have a demonstrated availability date of 1995 to 2000. The results indicate that aircraft are technically feasible that could carry 250 passengers at Mach 3.0 cruise for a 6500 nautical mile range at a size, weight and performance level that allows it to fit into the existing world airport structure. The details of the configuration development, aerodynamic design, propulsion system design and integration, mass properties, mission performance, and sizing are presented.
Bizzarri, A.; Dunham, Eric M.; Spudich, P.
2010-01-01
We study how heterogeneous rupture propagation affects the coherence of shear and Rayleigh Mach wavefronts radiated by supershear earthquakes. We address this question using numerical simulations of ruptures on a planar, vertical strike-slip fault embedded in a three-dimensional, homogeneous, linear elastic half-space. Ruptures propagate spontaneously in accordance with a linear slip-weakening friction law through both homogeneous and heterogeneous initial shear stress fields. In the 3-D homogeneous case, rupture fronts are curved owing to interactions with the free surface and the finite fault width; however, this curvature does not greatly diminish the coherence of Mach fronts relative to cases in which the rupture front is constrained to be straight, as studied by Dunham and Bhat (2008a). Introducing heterogeneity in the initial shear stress distribution causes ruptures to propagate at speeds that locally fluctuate above and below the shear wave speed. Calculations of the Fourier amplitude spectra (FAS) of ground velocity time histories corroborate the kinematic results of Bizzarri and Spudich (2008a): (1) The ground motion of a supershear rupture is richer in high frequency with respect to a subshear one. (2) When a Mach pulse is present, its high frequency content overwhelms that arising from stress heterogeneity. Present numerical experiments indicate that a Mach pulse causes approximately an ω−1.7 high frequency falloff in the FAS of ground displacement. Moreover, within the context of the employed representation of heterogeneities and over the range of parameter space that is accessible with current computational resources, our simulations suggest that while heterogeneities reduce peak ground velocity and diminish the coherence of the Mach fronts, ground motion at stations experiencing Mach pulses should be richer in high frequencies compared to stations without Mach pulses. In contrast to the foregoing theoretical results, we find no average elevation
Institute of Scientific and Technical Information of China (English)
无
2004-01-01
THE last digit of my home phone number in Beijing is 4. “So what?” European readers might ask.This was my attitude when I first lived in China; I couldn't understand why Chinese friends were so shocked at my indifference to the number 4. But China brings new discoveries every day, and I have since seen the light. I know now that Chinese people have their own ways of preserving their well being, and that they see avoiding the number 4 as a good way to stay safe.
Andrews, George E
1994-01-01
Although mathematics majors are usually conversant with number theory by the time they have completed a course in abstract algebra, other undergraduates, especially those in education and the liberal arts, often need a more basic introduction to the topic.In this book the author solves the problem of maintaining the interest of students at both levels by offering a combinatorial approach to elementary number theory. In studying number theory from such a perspective, mathematics majors are spared repetition and provided with new insights, while other students benefit from the consequent simpl
Mach-wave coherence in 3D media with random heterogeneities
Vyas, Jagdish C.; Mai, P. Martin; Galis, Martin; Dunham, Eric M.; Imperatori, Walter
2016-04-01
We investigate Mach-waves coherence for complex super-shear ruptures embedded in 3D random media that lead to seismic scattering. We simulate Mach-wave using kinematic earthquake sources that include fault-regions over which the rupture propagates at super-shear speed. The local slip rate is modeled with the regularized Yoffe function. The medium heterogeneities are characterized by Von Karman correlation function. We consider various realizations of 3D random media from combinations of different values of correlation length (0.5 km, 2 km, 5 km), standard deviation (5%, 10%, 15%) and Hurst exponent (0.2). Simulations in a homogeneous medium serve as a reference case. The ground-motion simulations (maximum resolved frequency of 5 Hz) are conducted by solving the elasto-dynamic equations of motions using a generalized finite-difference method, assuming a vertical strike-slip fault. The seismic wavefield is sampled at numerous locations within the Mach-cone region to study the properties and evolution of the Mach-waves in scattering media. We find that the medium scattering from random heterogeneities significantly diminishes the coherence of Mach-wave in terms of both amplitude and frequencies. We observe that Mach-waves are considerably scattered at distances RJB > 20 km (and beyond) for random media with standard deviation 10%. The scattering efficiency of the medium for small Hurst exponents (H seismic scattering. We suggest that if an earthquake is recorded within 10-15 km fault perpendicular distance and has high PGA, then inversion should be carried out by allowing rupture speed variations from sub-Rayleigh to super-shear.
Barnes, John
2016-01-01
In this intriguing book, John Barnes takes us on a journey through aspects of numbers much as he took us on a geometrical journey in Gems of Geometry. Similarly originating from a series of lectures for adult students at Reading and Oxford University, this book touches a variety of amusing and fascinating topics regarding numbers and their uses both ancient and modern. The author intrigues and challenges his audience with both fundamental number topics such as prime numbers and cryptography, and themes of daily needs and pleasures such as counting one's assets, keeping track of time, and enjoying music. Puzzles and exercises at the end of each lecture offer additional inspiration, and numerous illustrations accompany the reader. Furthermore, a number of appendices provides in-depth insights into diverse topics such as Pascal’s triangle, the Rubik cube, Mersenne’s curious keyboards, and many others. A theme running through is the thought of what is our favourite number. Written in an engaging and witty sty...
Mach-Zehnder Modulator Performance on the NIF South Pole Bang Time Diagnostic
Energy Technology Data Exchange (ETDEWEB)
Beeman, B.; MacPhee, A. G.; Kimbrough, J. R.; Chow, R.; Carpenter, A.; Bond, E.; Zayas-Rivera, Z.; Bell, P.; Celeste, J.; Clancy, T.; Miller, E. K.; Edgell, D.; Donaldson, W. R.
2013-09-01
We present performance data for Mach-Zehnder optical modulators fielded on the National Ignition Facility (NIF) as a potential signal path upgrade for the South Pole Bang Time diagnostic. A single channel demonstration system has been deployed utilizing two modulators operating in a 90-degree In phase and Quadrature (I/Q) configuration. X-ray target emission signals are split and fed into two recording systems: a reference CRT based oscilloscope, Greenfield FTD10000, and the dual Mach-Zehnder system. Results of X-ray implosion time (bang time) determination from these two recording systems are compared and presented.
Analysis of compressible light dynamic stall flow at transitional Reynolds numbers
DEFF Research Database (Denmark)
Dyken, R.D. Van; Ekaterinaris, John A.; Chandrasekhara, M.S.;
1996-01-01
Numerical and experimental results of steady and light dynamic stall flow over an oscillating NACA 0012 airfoil at a freestream Mach number of 0.3 and Reynolds number of 0.54 x 10(6) are compared, The experimental observation that dynamic stall is induced from the bursting of a laminar separation...
Li, Xipeng; Liu, Weidong; Pan, Yu; Yang, Leichao; An, Bin
2017-09-01
Laser-induced plasma ignition of an ethylene fuelled cavity is successfully conducted in a model scramjet engine combustor with dual cavities. The simulated flight condition corresponds to takeover flight Mach 4, with isolator entrance Mach number of 2.1, the total pressure of 0.65 MPa and stagnation temperature of 947 K. Ethylene is injected 35 mm upstream of cavity flameholder from four orifices with 2-mm-diameter. The 1064 nm laser beam, from a Q-switched Nd:YAG laser source running at 10 Hz and 940 mJ per pulse, is focused into cavity for ignition. High speed photography is used to capture the transient ignition process. The laser-induced gas breakdown, flame kernel generation and propagation are all recorded and ensuing stable supersonic combustion is established in cavity. The highly ionized plasma zone is almost round at starting, and then the surface of the flame kernel is wrinkled severely in 150 μs after the laser pulse due to the strong turbulence flow in cavity. The flame kernel is found rotating anti-clockwise and gradually moves upstream as the entrainment of circulation flow in cavity. The flame is stabilized at the corner of the cavity for about 200 μs, and then spreads from leading edge to trailing edge via the under part of shear layer to fully fill the entire cavity. The corner recirculation zone of cavity is of great importance for flame spreading. Eventually, a cavity shear-layer stabilized combustion is established in the supersonic flow roughly 2.9 ms after the laser pulse. Both the temporal evolution of normalized chemiluminescence intensity and normalized flame area show that the entire ignition process can be divided into four stages, which are referred as turbulent dissipation stage, combustion enhancement stage, reverting stage and combustion stabilization stage. The results show promising potentials of laser induced plasma for ignition in real scramjets.
1947-02-21
appendix D. Bra» coefficient of swot -tack wlnfl at Mach number of 1.0. - Tho solution of the equations for c. fiven in appendix 3 shown tliat, for...gm’’ A’U " "^ ’ I*’ ’ «’I a»-2 - (a» - 3m A’ • A»3) Cosh-l 5^ " A’k + ". jam’fm’ - A’)I A , -1 an’ - A’ A’ . s\\ + cosh
Ion-acoustic solitons, double layers and rogue waves in plasma having superthermal electrons
Singh Saini, Nareshpal
2016-07-01
Most of the space and astrophysical plasmas contain different type of charged particles with non-Maxwellian velocity distributions (e.g., nonthermal, superthermal, Tsallis ). These distributions are commonly found in the auroral region of the Earth's magnetosphere, planetary magnetosphere, solar and stellar coronas, solar wind, etc. The observations from various satellite missions have confirmed the presence of superthermal particles in space and astrophysical environments. Over the last many years, there have been a much interest in studying the different kind of properties of the electrostatic nonlinear excitations (solitons, double layers, rogue waves etc.) in a multi-component plasmas in the presence of superthermal particles. It has been analyzed that superthermal distributions are more appropriate than Maxwellian distribution for the modeling of space data. It is interesting to study the dynamics of various kinds of solitary waves, Double layers, Shocks etc. in varieties of plasma systems containing different kind of species obeying Lorentzian (kappa-type)/Tsallis distribution. In this talk, I have focused on the study of large amplitude IA solitary structures (bipolar solitary structures, double layers etc.), modulational instability and rogue waves in multicomponent plasmas. The Sagdeev potential method has been employed to setup an energy balance equation, from which we have studied the characteristics of large amplitude solitary waves under the influence of superthermality of charged particles and other plasma parameters. The critical Mach number has been determined, above which solitary structures are observed and its variation with superthermality of electrons and other parameters has also been discussed. Double layers have also been discussed. Multiple scale reductive perturbation method has been employed to derive NLS equation. From the different kind of solutions of this equation, amplitude modulation of envelope solitons and rogue waves have been
Murty, M Ram
2014-01-01
This book provides an introduction to the topic of transcendental numbers for upper-level undergraduate and graduate students. The text is constructed to support a full course on the subject, including descriptions of both relevant theorems and their applications. While the first part of the book focuses on introducing key concepts, the second part presents more complex material, including applications of Baker’s theorem, Schanuel’s conjecture, and Schneider’s theorem. These later chapters may be of interest to researchers interested in examining the relationship between transcendence and L-functions. Readers of this text should possess basic knowledge of complex analysis and elementary algebraic number theory.
Guzzardi, Luca
2014-01-01
This paper discusses Ernst Mach's interpretation of the principle of energy conservation (EC) in the context of the development of energy concepts and ideas about causality in nineteenth-century physics and theory of science. In doing this, it focuses on the close relationship between causality, energy conservation and space in Mach's…
Thelin, John R.
2013-01-01
What topic would you choose if you had the luxury of writing forever? In this article, John Thelin provides his response: He would opt to write about the history of higher education in a way that relies on quantitative data. "Numbers, please!" is his research request in taking on a longitudinal study of colleges and universities over…
Thelin, John R.
2013-01-01
What topic would you choose if you had the luxury of writing forever? In this article, John Thelin provides his response: He would opt to write about the history of higher education in a way that relies on quantitative data. "Numbers, please!" is his research request in taking on a longitudinal study of colleges and universities over…
Galbraith, Mary J.
1974-01-01
Examination of models for representing integers demonstrates that formal operational thought is required for establishing the operations on integers. Advocated is the use of many models for introducing negative numbers but, apart from addition, it is recommended that operations on integers be delayed until the formal operations stage. (JP)
Ross, James; Park, H.-S.; Huntington, C.; Ryutov, D.; Drake, R. P.; Froula, D.; Gregori, G.; Levy, M.; Lamb, D.; Fiuza, F.; Petrasso, R.; Li, C.; Zylastra, A.; Rinderknecht, H.; Sakawa, Y.; Spitkovsky, A.
2015-11-01
Shock formation from high-Mach number plasma flows is observed in many astrophysical objects such as supernova remnants and gamma ray bursts. These are collisionless shocks as the ion-ion collision mean free path is much larger than the system size. It is believed that seed magnetic fields can be generated on a cosmologically fast timescale via the Weibel instability when such environments are initially unmagnetized. Here we present laboratory experiments using high-power lasers whose ultimate goal is to investigate the dynamics of collisionless shock formation in two interpenetrating plasma streams. Particle-in-cell numerical simulations have confirmed that the strength and structure of the generated magnetic field are consistent with the Weibel mediated electromagnetic nature and that the inferred magnetization level could be as high as ~ 1%. This paper will review recent experimental results from various laser facilities as well as the simulation results and the theoretical understanding of these observations. Taken together, these results imply that electromagnetic instabilities can be significant in both inertial fusion and astrophysical conditions. We will present results from initial NIF experiments, where we observe the neutrons and x-rays generated from the hot plasmas at the center of weakly collisional, counterstreaming flows. Prepared by LLNL under Contract DE-AC52-07NA27344.
Merkle Peterkin, Laurence D., Jr.
1997-11-01
The time-dependent location of the critical surface of laser absorption is studied numerically, using the general purpose two-dimensional finite-difference MHD software uc(Mach2.) This software, which is based on an arbitrary Lagrangian-Eulerian fluid algorithm, includes models for partial laser absorption in underdense plasmas via inverse brehmsstrahlung, as well as total laser absorption at a critical surface. The simulations conducted are of a laboratory experiment in which a plasma is generated by a mode-locked laser interacting with a solid copper target (G.K. Chawla and C.W. von Rosenberg, Jr., IEEE Conference Record --- Abstracts, 1997 IEEE International Conference on Plasma Science). The location of the critical surface is a function of the number density of free electrons. Consequently, calculations must carefully consider the energy budget. Because of large opacities in hot regions, a non-equilibrium radiation diffusion model is employed. Adequate energy conservation in such simulations is possible only with careful attention to numerical aspects, such as time steps and flux limits. Simulations are performed for both 90^circ and 45^circ incident beams. The former are carried out using both cylindrical and plane-parallel geometries, while the latter require a plane-parallel geometry.
Analytical Model of an Asymmetric Sunspot with a Steady Plasma Flow in its Penumbra
Solov'ev, A. A.; Kirichek, E. A.
2016-08-01
A new exact analytical solution to the stationary problem of ideal magnetohydrodynamics is derived for an unipolar asymmetric sunspot immersed in a realistic solar atmosphere. The radial and vertical profiles of pressure, plasma density, and temperature in the visible layers of the sunspot are calculated. The reduction in plasma density in the magnetic funnel of the sunspot, corresponding to the Wilson depression, is also obtained. The magnetic structure of the sunspot is given analytically in a realistic way: a part of the magnetic flux of the sunspot approaches the surrounding photosphere at the outer edge of the penumbra. The magnetic field of the sunspot is not assumed to be axially symmetric. For the first time, the angular dependence of the physical variables in this model allows us to simulate not only a deviation from the circular shape of the sunspot, but also a fine filamentary structure of the sunspot penumbra. The Alfvén Mach number (the ratio of the plasma speed to the Alfvén speed) is zero at the center of the sunspot and rises slowly toward the periphery of the sunspot; this corresponds to the structure of the Evershed flow in the penumbra. The Evershed flow in our model is mainly concentrated in dark penumbral filaments, as is observed.
Comfort, Richard H.; Horwitz, James L.
1993-01-01
During the course of this grant, work was performed on a variety of topics and there were a number of significant accomplishments. A summary of these accomplishments is included. The topics studied include empirical model data base, data reduction for archiving, semikinetic modeling of low energy plasma in the inner terrestrial magnetosphere and ionosphere, O(+) outflows, equatorial plasma trough, and plasma wave ray-tracing studies. A list of publications and presentations which have resulted from this research is also included.
Experimental investigation of liquid jet injection into Mach 6 hypersonic crossflow
Beloki Perurena, J.; Asma, C.O.; Theunissen, R.; Chazot, O.
2008-01-01
The injection of a liquid jet into a crossing Mach 6 air flow is investigated. Experiments were conducted on a sharp leading edge flat plate with flush mounted injectors. Water jets were introduced through different nozzle shapes at relevant jet-to-air momentum-flux ratios. Sufficient temporal
Event-based simulation of single-photon beam splitters and Mach-Zehnder interferometers
De Raedt, H; De Raedt, K; Michielsen, K
2005-01-01
We demonstrate that networks of locally connected processing units with a primitive learning capability exhibit a behavior that is usually only attributed to quantum systems. We describe networks that simulate single-photon beam splitter and Mach-Zehnder interferometer experiments on a causal, event
Kashif, Muhammad; Bakar, A. Ashrif A.; Hashim, Fazida Hanim
2016-12-01
Surface Plasmon Resonance (SPR) based on Mach-Zehnder interferometer (MZI) is a very accurate tool for the detection and analysis of molecular interactions. The performance of the proposed SPR phase sensor is dependent upon multiple performance parameters that include sensitivity, repeatability, drift and the induction speed of fluid into the flow cell. The SPR Mach-Zehnder interferometer is tested for different glycerin-water concentrations to check its performance based on the different parameters. This paper highlights the enhancement of the performance of SPR phase technique based on MZI that is influenced by different parameters, measured using glycerin solutions. These four performance parameters can affect the performance of SPR based on MZI and have a particular impact on the sensor output. It also provides us information about suitable working conditions for the SPR Mach-Zehnder interferometer sensor. The experiment data shows that the sensor's sensitivity is high for small concentrations of glycerin-water mixtures. Also, any change in drift as well as in induction speed of fluid can affect the performance of SPR Mach-Zehnder interferometer. The sensitivity of SPR phase sensor is high as it can measure glycerin concentration as low as 0.05%.
Experimental investigation of liquid jet injection into Mach 6 hypersonic crossflow
Beloki Perurena, J.; Asma, C.O.; Theunissen, R.; Chazot, O.
2008-01-01
The injection of a liquid jet into a crossing Mach 6 air flow is investigated. Experiments were conducted on a sharp leading edge flat plate with flush mounted injectors. Water jets were introduced through different nozzle shapes at relevant jet-to-air momentum-flux ratios. Sufficient temporal resol
All optical wavelength conversion by SOA's in a Mach-Zehnder configuration
DEFF Research Database (Denmark)
Durhuus, T.; Jørgensen, C.; Mikkelsen, Benny
1994-01-01
Penalty free wavelength conversion is demonstrated at 2.5 Gbit/s over a wavelength span of 12 nm by the use of semiconductor optical amplifier (SOA)'s in a Mach-Zehnder configuration. An increase in the extinction ratio is measured for the converted signal compared to the input signal implying si...... signal regeneration as well as wavelength conversion...
A versatile all-optical modulator based on nonlinear Mach-Zehnder interferometers
Krijnen, G.J.M.; Villeneuve, A.; Stegeman, G.I.; Lambeck, P.V.; Hoekstra, H.J.W.M.
1994-01-01
A device based on a Nonlinear Mach-Zehnder interferometer (NMI) which exploits cross-phase modulation of two co-propagating modes in bimodal branches has been described in this paper. The advantage of this device is that it becomes polarisation independent while keeping phase insensitive by using di
Iseke, Judy
2009-01-01
Misrepresentation, appropriation, and denigrating Indigenous knowledge is still common practice in educational institutions despite efforts of critical educators to challenge these practices. One such challenge was to papier mache totem poles in an education institution's library in a faculty of education that houses teacher education programs. A…
Incorporation of Mach's Principle in ΛFRW Cosmology that depends dynamically of the distance range
Falcon, N.
2017-07-01
It postulates a FRW cosmological model without dark matter and cosmological term depending the distance scale, in addition to incorporate Mach's principle, is consistent with the observations: rotation curves of the galaxies, the nucleosynthesis primordial and CMB. The dynamic expression of Cosmological term is an alternative to non-baryonic dark matter and a reinterpretation of dark energy.
The realization of an integrated Mach-Zehnder waveguide immunosensor in silicon technology
Schipper, E.F.; Brugman, A.M.; Lechuga, L.M.; Kooyman, R.P.H.; Greve, J.; Dominguez, C.
1997-01-01
We describe the realization of a symmetric integrated channel waveguide Mach-Zehnder sensor which uses the evanescent field to detect small refractive-index changes (¿nmin ¿ 1 × 10¿4) near the guiding-layer surface. This guiding layer consists of ridge structures with a height of 3 nm and a width of
On the Use of a Virtual Mach-Zehnder Interferometer in the Teaching of Quantum Mechanics
Pereira, Alexsandro; Ostermann, Fernanda; Cavalcanti, Claudio
2009-01-01
For many students, the conceptual learning of quantum mechanics can be rather painful owing to the counter-intuitive nature of quantum phenomena. In order to enhance students' understanding of the odd behaviour of photons and electrons, we introduce a computational simulation of the Mach-Zehnder interferometer, developed by our research group. An…
On the Use of a Virtual Mach-Zehnder Interferometer in the Teaching of Quantum Mechanics
Pereira, Alexsandro; Ostermann, Fernanda; Cavalcanti, Claudio
2009-01-01
For many students, the conceptual learning of quantum mechanics can be rather painful owing to the counter-intuitive nature of quantum phenomena. In order to enhance students' understanding of the odd behaviour of photons and electrons, we introduce a computational simulation of the Mach-Zehnder interferometer, developed by our research group. An…
The Contribution of Ernst Mach to Embodied Cognition and Mathematics Education
Zudini, Verena; Zuccheri, Luciana
2016-01-01
A study of the interactions between mathematics and cognitive science, carried out within a historical perspective, is important for a better understanding of mathematics education in the present. This is evident when analysing the contribution made by the epistemological theories of Ernst Mach. On the basis of such theories, a didactic method was…
Energy Technology Data Exchange (ETDEWEB)
Uchida, S.; Sugawara, H.; Ventzek, P.; Sakai, Y. [Hokkaido University, Sapporo (Japan)
1998-06-01
Xe/Ne plasmas are important for plasma display panels and VUV light sources. However, reactions between electrons and excited particles in the mixtures are so complicated that influence of the reactions on the plasma properties is not understood well. In this work, taking account of reactions through which electrons are produced, such as cumulative and Penning ionization, and of transition between excited levels, the electron and excited particle properties in Xe/Ne plasmas are calculated using the Boltzmann equation. The ionization coefficient and electron drift velocity agreed with experimental data. The influence of laser absorption in Xe/Ne plasmas on the plasma properties is also discussed. 25 refs., 15 figs.
Vortex sound in the presence of a low Mach number flow across a drum-like silencer.
Tang, S K
2011-05-01
The sound generated by a vortex propagating across a two-dimensional duct section with flexible walls (membranes) in an infinitely long rigid duct conveying a flow is investigated numerically using the matched asymptotic expansion technique and the potential theory. The effects of the initial vortex position, the mechanical properties of the flexible walls, and the mean flow on the sound generation are examined in detail. Results show that the presence of a vortex inside a uniform mean flow can strengthen or attenuate the sound generation, depending on the phase of the membrane vibration when the vortex starts vigorous interaction with the membranes and the strength of the mean flow. The results tend to imply that there is a higher chance of sound amplification when a vortex stream is moving closer to the lighter membrane under a relatively strong mean flow or when the mean flow is weak. The chances of sound amplification or attenuation are equal otherwise.
Experimental study of nonlinear processes in a swept-wing boundary layer at the mach number M=2
Yermolaev, Yu. G.; Kosinov, A. D.; Semionov, N. V.
2014-09-01
Results of experiments aimed at studying the linear and nonlinear stages of the development of natural disturbances in the boundary layer on a swept wing at supersonic velocities are presented. The experiments are performed on a swept wing model with a lens-shaped airfoil, leading-edge sweep angle of 45°, and relative thickness of 3%. The disturbances in the flow are recorded by a constant-temperature hot-wire anemometer. For determining the nonlinear interaction of disturbances, the kurtosis and skewness are estimated for experimentally obtained distributions of the oscillating signal over the streamwise coordinate or along the normal to the surface. The disturbances are found to increase in the frequency range from 8 to 35 kHz in the region of their linear development, whereas enhancement of high-frequency disturbances is observed in the region of their nonlinear evolution. It is demonstrated that the growth of disturbances in the high-frequency spectral range ( f > 35 kHz) is caused by the secondary instability.
Shrewsbury, George D.; Vadyak, Joseph; Schuster, David M.; Smith, Marilyn J.
1989-01-01
A computer analysis was developed for calculating steady (or unsteady) three-dimensional aircraft component flow fields. This algorithm, called ENS3D, can compute the flow field for the following configurations: diffuser duct/thrust nozzle, isolated wing, isolated fuselage, wing/fuselage with or without integrated inlet and exhaust, nacelle/inlet, nacelle (fuselage) afterbody/exhaust jet, complete transport engine installation, and multicomponent configurations using zonal grid generation technique. Solutions can be obtained for subsonic, transonic, or hypersonic freestream speeds. The algorithm can solve either the Euler equations for inviscid flow, the thin shear layer Navier-Stokes equations for viscous flow, or the full Navier-Stokes equations for viscous flow. The flow field solution is determined on a body-fitted computational grid. A fully-implicit alternating direction implicit method is employed for the solution of the finite difference equations. For viscous computations, either a two layer eddy-viscosity turbulence model or the k-epsilon two equation transport model can be used to achieve mathematical closure.
Number names and number understanding
DEFF Research Database (Denmark)
Ejersbo, Lisser Rye; Misfeldt, Morten
2014-01-01
This paper concerns the results from the first year of a three-year research project involving the relationship between Danish number names and their corresponding digits in the canonical base 10 system. The project aims to develop a system to help the students’ understanding of the base 10 syste...
Wang, Boyun; Xiong, Liangbin; Zeng, Qingdong; Chen, Zhihong; Lv, Hao; Ding, Yaoming; Du, Jun; Yu, Huaqing
2016-06-01
We theoretically and numerically investigate all-optical Mach-Zehnder interferometer switching based on the phase-shift multiplication effect of an all-optical analog on the electromagnetically induced transparency effect. The free-carrier plasma dispersion effect modulation method is applied to improve the tuning rate with a response time of picoseconds. All observed schemes are analyzed rigorously through finite-difference time-domain simulations and coupled-mode formalism. Compared with no phase-shift multiplication effect, the average pump power of all-optical switching required to yield the π-phase shift difference decreases by 55.1%, and the size of the modulation region is reduced by 50.1% when the average pump power reaches 60.8 mW. This work provides a new direction for low-power consumption and miniaturization of microstructure integration light-controlled switching devices in optical communication and quantum information processing.
Montoya, L. C.; Jacobs, P. F.; Flechner, S. G.
1977-01-01
Pressure and spanwise load distributions on a first-generation jet transport semispan model at a Mach number of 0.30 are given for the basic wing and for configurations with an upper winglet only, upper and lower winglets, and a simple wing-tip extension. To simulate second-segment-climb lift conditions, leading- and/or trailing-edge flaps were added to some configurations.
Energy Technology Data Exchange (ETDEWEB)
Horton, W. [Univ. of Texas, Austin, TX (United States). Inst. for Fusion Studies; Hu, G. [Globalstar LP, San Jose, CA (United States)
1998-07-01
The origin of plasma turbulence from currents and spatial gradients in plasmas is described and shown to lead to the dominant transport mechanism in many plasma regimes. A wide variety of turbulent transport mechanism exists in plasmas. In this survey the authors summarize some of the universally observed plasma transport rates.
Woods, Leslie Colin
2003-01-01
A short, self-sufficient introduction to the physics of plasma for beginners as well as researchers in a number of fields. The author looks at the dynamics and stability of magnetoplasma and discusses wave and transport in this medium. He also looks at such applications as fusion research using magnetic confinement of Deuterium plasma, solar physics with its plasma loops reaching high into the corona, sunspots and solar wind, engineering applications to metallurgy, MHD direct generation of electricity, and railguns, finally touching on the relatively new and difficult subject of dusty plasmas.
Plasma Characteristics and Transport in the Near-Lunar Magnetotail: Observations from THEMIS/ARTEMIS
Stubbs, T. J.; Wang, Y.; Merka, J.; Sibeck, D. G.; Angelopoulos, V.
2015-12-01
The region of the Earth's magnetosphere tailward of ~30 RE remains relatively unexplored. A better characterization of the processes taking place in the mid-to-distant magnetotail is critical to a more complete understanding of the coupling between the solar wind and the Earth's magnetosphere. Similarly, an assessment of the magnetotail plasma encountered by the Moon will be valuable for understanding how the lunar environment is modified during these traversals. The THEMIS/ARTEMIS missions have returned sufficient data from this region of the magnetotail for a large-scale statistical survey to be undertaken with the publicly available data from NASA/CDAWeb. In this study various plasma moments are organized by occurrence frequency and location in the magnetotail. Further sorting is done to identify different regions within the magnetotail, such as the tail lobes and plasma sheet, and the physical processes taking place, such as reconnection. Additional sorting of the ion data has been required in order to identify intervals in the tail lobe where the signal-to-noise is so low that moments are erroneously calculated from just background counts. Initial results indicate that previous studies of the mid-to-distant magnetotail that were limited to using electron moments from the ISEE-3 mission overestimated Alfven Mach numbers. Super-Alfvenic flows, such as those associated with reconnection, are very rare in this region of the magnetotail. This survey is the first step in constructing a comprehensive large-scale picture of the energization, distribution, and transport of plasma in the mid-to-distant magnetotail, as well as characterizing the properties of the plasma environments encountered by the Moon during magnetotail traversals.
Ernst Mach, George Sarton and the Empiry of Teaching Science Part I
Siemsen, Hayo
2012-04-01
George Sarton had a strong influence on modern history of science. The method he pursued throughout his life was the method he had discovered in Ernst Mach's Mechanics when he was a student in Ghent. Sarton was in fact throughout his life implementing a research program inspired by the epistemology of Mach. Sarton in turn inspired many others (James Conant, Thomas Kuhn, Gerald Holton, etc.). What were the origins of these ideas in Mach and what can this origin tell us about the history of science and science education nowadays? Which ideas proved to be successful and which ones need to be improved upon? The following article will elaborate the epistemological questions, which Darwin's "Origin" raised concerning human knowledge and scientific knowledge and which led Mach to adapt the concept of what is "empirical" in contrast to metaphysical a priori assumptions a second time after Galileo. On this basis Sarton proposed "genesis and development" as the major goal of Isis. Mach had elaborated this epistemology in La Connaissance et l'Erreur ( Knowledge and Error), which Sarton read in 1913 (Hiebert 1905/1976; de Mey 1984). Accordingly for Sarton, history becomes not only a subject of science, but a method of science education. Culture—and science as part of culture—is a result of a genetic process. History of science shapes and is shaped by science and science education in a reciprocal process. Its epistemology needs to be adapted to scientific facts and the philosophy of science. Sarton was well aware of the need to develop the history of science and the philosophy of science along the lines of this reciprocal process. It was a very fruitful basis, but a specific part of it, Sarton did not elaborate further, namely the psychology of science education. This proved to be a crucial missing element for all of science education in Sarton's succession, especially in the US. Looking again at the origins of the central questions in the thinking of Mach, which provided
Plasma Anemometer Measurements and Optimization
Marshall, Curtis; Matlis, Eric; Corke, Thomas; Gogineni, Sivaram
2013-11-01
Velocity measurements using a constant-current plasma anemometer were performed in a Mach 0.4 jet in order to further optimize the anemometer design. The plasma anemometer uses an AC glow discharge (plasma) formed in the air gap between two protruding low profile electrodes as the flow sensing element. The output from the anemometer is an amplitude modulated version of the AC voltage input that contains information about the mean fluctuating velocity components. Experiments were performed to investigate the effect of the electrode gap, AC current, and AC frequency on the mean and fluctuating velocity sensitivity and repeatability of the sensor. This involved mean velocity calibrations from 0 to 140 m/s and mean and fluctuating velocity profiles through the shear layer of the jet. Measurements with a constant temperature hot-wire anemometer were used for reference. The results showed an improvement in performance with increasing AC frequency that was attributed a more stable glow discharge. The agreement with the hot-wire were good, with the advantage of the plasma anemometer being its 100-times higher frequency response. Supported by Air Force SBIR Phase II FA8650-11-C-2199.
Ganeev, Rashid A
2014-01-01
Preface; Why plasma harmonics? A very brief introduction Early stage of plasma harmonic studies - hopes and frustrations New developments in plasma harmonics studies: first successes Improvements of plasma harmonics; Theoretical basics of plasma harmonics; Basics of HHG Harmonic generation in fullerenes using few-cycle pulsesVarious approaches for description of observed peculiarities of resonant enhancement of a single harmonic in laser plasmaTwo-colour pump resonance-induced enhancement of odd and even harmonics from a tin plasmaCalculations of single harmonic generation from Mn plasma;Low-o