WorldWideScience

Sample records for mach number jet

  1. Spreading of Exhaust Jet from 16 Inch Ream Jet at Mach Number 2.0 / Fred Wilcox, Donald Pennington

    Science.gov (United States)

    Wilcox, Fred; Pennington, Donald

    1952-01-01

    An investigation of the jet-spreading characteristics of a 16 inch ram-jet engine was conducted in the 8 by 6 foot supersonic tunnel at a Mach number of 2.0; both a converging nozzle having a contraction ratio of 0.71 and a cylindrical extension to the combustion chamber were used. The jet boundaries determined by means of pitot pressure surveys were compared with boundaries calculated from one-dimensional continuity and momentum relations. For the cylindrical nozzle, the jet reaches its maximum diameter, 4 percent greater than calculated, about 0.6 nozzle-exit diameter downstream of the nozzle exit. The maximum diameter for the converging nozzle was 7 percent greater than calculated from one dimensional relations and occurred from 1 to 1.5 nozzle-exit diameters downstream of the exit. Non dimensional maximum jet diameters agreed closely with results of an investigation by Rousso and Baughman; these data were obtained with low-temperature jets exhausting into a stream at a Mach number of 1.91 from nozzles having exit diameters of 0.75 inch.

  2. Multiobjective Design Optimization of Supersonic Jet Engine in Different Cruise Mach Numbers

    Science.gov (United States)

    Ogawa, Masamichi; Sato, Tetsuya; Kobayashi, Hiroaki; Taguchi, Hideyuki

    The aim of this paper is to apply a multi-objective optimization generic algorithm (MOGA) to the conceptual design of the hypersonic/supersonic vehicles with different cruise Mach number. The pre-cooled turbojet engine is employed as a propulsion system and some engine parameters such as the precooler size, compressor size, compression ratio and fuel type are varied in the analysis. The result shows that the optimum cruise Mach number is about 4 if hydrogen fuel is used. Methane fuel instead of hydrogen reduces the vehicle gross weight by 33% in case of the Mach 2 vehicle.

  3. Experiments on the Flow Field and Acoustic Properties of a Mach number 0·75 Turbulent Air Jet at a Low Reynolds Number

    NARCIS (Netherlands)

    Slot, H.J.; Moore, P.; Delfos, R.; Boersma, B.J.

    2009-01-01

    In this paper we present the experimental results of a detailed investigation of the flow and acoustic properties of a turbulent jet with Mach number 0·75 and Reynolds number 3·5 103. We describe the methods and experimental procedures followed during the measurements, and subsequently present the f

  4. Numerical prediction of flow induced noise in free jets of high Mach numbers

    OpenAIRE

    Schönrock, Olaf

    2009-01-01

    A direct aeroacoustic simulation methodology is developed on the basis of the numerical schemes implemented in the commercial tool ANSYS CFX. The focus lies upon the efficient and direct numerical prediction of the flow-induced noise generated by natural gas and pneumatic applications. The respective compressed gas related components are characterized by tiny supersonic gas jets, strong noise emissions, poor accessibility by measurement techniques and excessive simulation costs in particular...

  5. Quasiperpendicular high Mach number Shocks

    CERN Document Server

    Sulaiman, A H; Dougherty, M K; Burgess, D; Fujimoto, M; Hospodarsky, G B

    2015-01-01

    Shock waves exist throughout the universe and are fundamental to understanding the nature of collisionless plasmas. Reformation is a process, driven by microphysics, which typically occurs at high Mach number supercritical shocks. While ongoing studies have investigated this process extensively both theoretically and via simulations, their observations remain few and far between. In this letter we present a study of very high Mach number shocks in a parameter space that has been poorly explored and we identify reformation using in situ magnetic field observations from the Cassini spacecraft at 10 AU. This has given us an insight into quasi-perpendicular shocks across two orders of magnitude in Alfven Mach number (MA) which could potentially bridge the gap between modest terrestrial shocks and more exotic astrophysical shocks. For the first time, we show evidence for cyclic reformation controlled by specular ion reflection occurring at the predicted timescale of ~0.3 {\\tau}c, where {\\tau}c is the ion gyroperio...

  6. Effect of gaseous and solid simulated jet plumes on a 040A space shuttle launch configuration at Mach numbers from 1.6 to 2.2

    Science.gov (United States)

    Lanfranco, M. J.; Sparks, V. W.; Kavanaugh, A. T.

    1973-01-01

    An experimental investigation was conducted in a 9- by 7-foot supersonic wind tunnel to determine the effect of plume-induced flow separation and aspiration effects due to operation of both the orbiter and the solid rocket motors on a 0.019-scale model of the launch configuration of the space shuttle vehicle. Longitudinal and lateral-directional stability data were obtained at Mach numbers of 1.6, 2.0, and 2.2 with and without the engines operating. The plumes exiting from the engines were simulated by a cold gas jet supplied by an auxiliary 200 atmosphere air supply system, and by solid body plume simulators. Comparisons of the aerodynamic effects produced by these two simulation procedures are presented. The data indicate that the parameters most significantly affected by the jet plumes are the pitching moment, the elevon control effectiveness, the axial force, and the orbiter wing loads.

  7. Quasiperpendicular High Mach Number Shocks

    Science.gov (United States)

    Sulaiman, A. H.; Masters, A.; Dougherty, M. K.; Burgess, D.; Fujimoto, M.; Hospodarsky, G. B.

    2015-09-01

    Shock waves exist throughout the Universe and are fundamental to understanding the nature of collisionless plasmas. Reformation is a process, driven by microphysics, which typically occurs at high Mach number supercritical shocks. While ongoing studies have investigated this process extensively both theoretically and via simulations, their observations remain few and far between. In this Letter we present a study of very high Mach number shocks in a parameter space that has been poorly explored and we identify reformation using in situ magnetic field observations from the Cassini spacecraft at 10 AU. This has given us an insight into quasiperpendicular shocks across 2 orders of magnitude in Alfvén Mach number (MA ) which could potentially bridge the gap between modest terrestrial shocks and more exotic astrophysical shocks. For the first time, we show evidence for cyclic reformation controlled by specular ion reflection occurring at the predicted time scale of ˜0.3 τc , where τc is the ion gyroperiod. In addition, we experimentally reveal the relationship between reformation and MA and focus on the magnetic structure of such shocks to further show that for the same MA , a reforming shock exhibits stronger magnetic field amplification than a shock that is not reforming.

  8. Interplay between Mach cone and radial expansion in jet events

    Science.gov (United States)

    Tachibana, Y.; Hirano, T.

    2016-12-01

    We study the hydrodynamic response to jet propagation in the expanding QGP and investigate how the particle spectra after the hydrodynamic evolution of the QGP reflect it. We perform simulations of the space-time evolution of the QGP in gamma-jet events by solving (3+1)-dimensional ideal hydrodynamic equations with source terms. Mach cone is induced by the jet energy deposition and pushes back the radial flow of the expanding background. Especially in the case when the jet passage is off-central one, the number of particles emitted in the direction of the push back decreases. This is the signal including the information about the formation of the Mach cone and the jet passage in the QGP fluid.

  9. Investigations of the Deterioration of 22 Refractory Materials in a Mach Number 2 Jet at a Stagnation Temperature of 3,800 F

    Science.gov (United States)

    Lewis, B. W.

    1961-01-01

    A limited investigation of the deterioration characteristics of 22 refractory materials was conducted by exposing them to a stagnation temperature of 3,800 F in a Mach number 2 ceramic-heated jet at the Langley Research Center. The materials tested were six materials whose major constituent was silicon carbide, five cermets whose major constituent was titanium carbide, six materials whose major constituents were metal borides, four cermets containing alumina, and one silicon nitride model. Tests consisted of obtaining weight change and appearance changes for 1/2-inch-diameter hemispherical-nose cylindrical models exposed to the air jet for 30 seconds at a time for a total of four runs or 2 minutes exposure. Curves of weight changes plotted against the number of 30-second tests in the jet were obtained. Estimates of average surface temperature near the stagnation point of the model were obtained by use of a special temperature-measuring camera. The models were examined before and after the completion of the tests for possible changes in microstructure; no significant changes were found. The data obtained were analyzed with the view that the oxidation characteristics of the materials were the main factor in deterioration of the materials under the conditions of the tests. It was concluded that only those materials which changed in weight the least could be recommended for further extensive application-oriented evaluations. The following materials fell in this category: silicon carbide - silicon, chromium - 28-percent alumina cermet, titanium boride - 5-percent boron carbide. The remainder of the materials tested had oxidation characteristics which appeared to be too severely limiting of their general applications to flight vehicles.

  10. Investigation at Mach Numbers 2.98 and 2.18 of Axially Symmetric Free-jet Diffusion with a Ram-jet Engine

    Science.gov (United States)

    Hunczak, Henry R

    1952-01-01

    An investigation was conducted to determine the effectiveness of a free-jet diffuser in reducing the over-all pressure ratios required to operate a free jet with a large air-breathing engine as a test vehicle. Efficient operation of the free jet was determined with and without the considerations required for producing suitable engine-inlet flow conditions. A minimum operating pressure ration of 5.5 was attained with a ratio of nozzle-exit to engine-inlet area of 1.85. Operation of the free jet with unstable engine-inlet flow (buzz) is also included.

  11. Chaotic behaviour of high Mach number flows

    Science.gov (United States)

    Varvoglis, H.; Ghosh, S.

    1985-01-01

    The stability of the super-Alfvenic flow of a two-fluid plasma model with respect to the Mach number and the angle between the flow direction and the magnetic field is investigated. It is found that, in general, a large scale chaotic region develops around the initial equilibrium of the laminar flow when the Mach number exceeds a certain threshold value. After reaching a maximum the size of this region begins shrinking and goes to zero as the Mach number tends to infinity. As a result high Mach number flows in time independent astrophysical plasmas may lead to the formation of 'quasi-shocks' in the presence of little or no dissipation.

  12. National transonic facility Mach number system

    Science.gov (United States)

    Kern, F. A.; Knight, C. W.; Zasimowich, R. F.

    1985-01-01

    The Mach number system for the Langley Research Center's National Transonic Facility was designed to measure pressures to determine Mach number to within + or - 0.002. Nine calibration laboratory type fused quartz gages, four different range gages for the total pressure measurement, and five different range gages for the static pressure measurement were used to satisfy the accuracy requirement over the 103,000-890,000 Pa total pressure range of the tunnel. The system which has been in operation for over 1 year is controlled by a programmable data process controller to select, through the operation of solenoid valves, the proper range fused quartz gage to maximize the measurement accuracy. The pressure gage's analog outputs are digitized by the process controller and transmitted to the main computer for Mach number computation. An automatic two-point on-line calibration of the nine quartz gages is provided using a high accuracy mercury manometer.

  13. Low Mach Number Fluctuating Hydrodynamics for Electrolytes

    CERN Document Server

    Péraud, Jean-Philippe; Chaudhri, Anuj; Bell, John B; Donev, Aleksandar; Garcia, Alejandro L

    2016-01-01

    We formulate and study computationally the low Mach number fluctuating hydrodynamic equations for electrolyte solutions. We are interested in studying transport in mixtures of charged species at the mesoscale, down to scales below the Debye length, where thermal fluctuations have a significant impact on the dynamics. Continuing our previous work on fluctuating hydrodynamics of multicomponent mixtures of incompressible isothermal miscible liquids (A. Donev, et al., Physics of Fluids, 27, 3, 2015), we now include the effect of charged species using a quasielectrostatic approximation. Localized charges create an electric field, which in turn provides additional forcing in the mass and momentum equations. Our low Mach number formulation eliminates sound waves from the fully compressible formulation and leads to a more computationally efficient quasi-incompressible formulation. We demonstrate our ability to model saltwater (NaCl) solutions in both equilibrium and nonequilibrium settings. We show that our algorithm...

  14. Exploratory investigation of lift induced on a swept wing by a two-dimensional partial-span deflected jet at Mach numbers from 0.20 to 1.30

    Science.gov (United States)

    Capone, F. J.

    1972-01-01

    An exploratory investigation was conducted in the Langley 16-foot transonic tunnel at Mach numbers from 0.20 to 1.30 to determine the induced lift characteristics of a body and swept-wing configuration having a partial-span two-dimensional propulsive nozzle with exhaust exit in the notch of the swept-wing trailing edge. The Reynolds number per meter varied from 4,900,000 to 14,030,000. The effects on wing-body characteristics of deflecting the propulsive jet in the flap mode at nominal exhaust-nozzle deflection angles of 0 deg and 30 deg were studied for two nozzle designs with different geometry and wing spans.

  15. Low Mach number fluctuating hydrodynamics for electrolytes

    Science.gov (United States)

    Péraud, Jean-Philippe; Nonaka, Andy; Chaudhri, Anuj; Bell, John B.; Donev, Aleksandar; Garcia, Alejandro L.

    2016-11-01

    We formulate and study computationally the low Mach number fluctuating hydrodynamic equations for electrolyte solutions. We are interested in studying transport in mixtures of charged species at the mesoscale, down to scales below the Debye length, where thermal fluctuations have a significant impact on the dynamics. Continuing our previous work on fluctuating hydrodynamics of multicomponent mixtures of incompressible isothermal miscible liquids [A. Donev et al., Phys. Fluids 27, 037103 (2015), 10.1063/1.4913571], we now include the effect of charged species using a quasielectrostatic approximation. Localized charges create an electric field, which in turn provides additional forcing in the mass and momentum equations. Our low Mach number formulation eliminates sound waves from the fully compressible formulation and leads to a more computationally efficient quasi-incompressible formulation. We demonstrate our ability to model saltwater (NaCl) solutions in both equilibrium and nonequilibrium settings. We show that our algorithm is second order in the deterministic setting and for length scales much greater than the Debye length gives results consistent with an electroneutral approximation. In the stochastic setting, our model captures the predicted dynamics of equilibrium and nonequilibrium fluctuations. We also identify and model an instability that appears when diffusive mixing occurs in the presence of an applied electric field.

  16. Characteristics of the Mach Disk in the Underexpanded Jet in which the Back Pressure Continuously Changes with Time

    Institute of Scientific and Technical Information of China (English)

    T. Irie; T. Yasunobu; H. Kashimura; T. Setoguchi

    2003-01-01

    When the high-pressure gas is exhausted to the vacuum chamber from the nozzle, the underexpanded supersonic jet contained with the Mach disk is generally formed. The eventual purpose of this study is to clarify the unsteady phenomenon of the underexpanded free jet when the back pressure continuously changes with time. The characteristic of the Mach disk has been clarified in consideration of the diameter and position of it by the numerical analysis in this paper. The sonic jet of the exit Mach number Me=1 is assumed and the axisymmetric conservational equation is solved by the TVD method in the numerical calculation.The diameter and position of the Mach disk differs with the results of a steady jet and the influence on the continuously changing of the back pressure is evidenced from the comparison with the case of steady supersonic jet.

  17. Effect of nozzle lateral spacing on afterbody drag and performance of twin-jet afterbody models with convergent-divergent nozzles at Mach numbers up to 2.2

    Science.gov (United States)

    Pendergraft, O. C., Jr.; Schmeer, J. W.

    1972-01-01

    Twin-jet afterbody models were investigated by using two balances to measure the thrust-minus-total drag and the afterbody drag, separately, at static conditions and at Mach numbers up to 2.2 for an angle of attack of 0 deg. Hinged-flap convergent-divergent nozzles were tested at subsonic-cruise- and maximum-afterburning-power settings with a high-pressure air system used to provide jet-total-pressure ratios up to 20. Two nozzle lateral spacings were studied, using afterbodies with similar interfairing shapes but with different longitudinal cross-sectional area distributions. Alternate, blunter, interfairings with different shapes for the two spacings, which produced afterbodies having identical cross-sectional area progressions corresponding to an axisymmetric minimum wave-drag configuration, were also tested. The results indicate that the wide-spaced configurations improved the flow field around the nozzles, thereby reducing drag on the cruise nozzles; however, the increased surface and projected cross-sectional areas caused an increase in afterbody drag. Except for a slight advantage with cruise nozzles at subsonic speeds, the wide-spaced configurations had the higher total drag at all other test conditions.

  18. Application of Powell's analogy for the prediction of vortex-pairing sound in a low-Mach number jet based on time-resolved planar and tomographic PIV

    NARCIS (Netherlands)

    Violato, D.; Bryon, K.; Moore, P.; Scarano, F.

    2010-01-01

    This paper describes an experimental investigation by time-resolved planar and tomographic PIV on the sound production mechanism of vortex pairing of a transitional water-jet flow at Re=5000. The shear layer is characterized by axisymmetric vortex rings which undergo pairing with a varicose mode.

  19. Application of Powell's analogy for the prediction of vortex-pairing sound in a low-Mach number jet based on time-resolved planar and tomographic PIV

    NARCIS (Netherlands)

    Violato, D.; Bryon, K.; Moore, P.; Scarano, F.

    2010-01-01

    This paper describes an experimental investigation by time-resolved planar and tomographic PIV on the sound production mechanism of vortex pairing of a transitional water-jet flow at Re=5000. The shear layer is characterized by axisymmetric vortex rings which undergo pairing with a varicose mode. Th

  20. Impinging Jet Resonant Modes at Mach 1.5

    CERN Document Server

    Davis, Timothy

    2013-01-01

    High speed impinging jets have been the focus of several studies owing to their practical application and resonance dominated flow-field. The current study focuses on the identification and visualization of the resonant modes at certain critical impingement heights for a Mach 1.5 normally impinging jet. These modes are associated with high amplitude, discrete peaks in the power spectra and can be identified as having either axisymmetric or azimuthal modes. Their visualization is accomplished through phase-locked Schlieren imaging and fast-response pressure sensitive paint (PC-PSP) applied to the ground plane.

  1. Turbulent mixing of a slightly supercritical Van der Waals fluid at Low-Mach number

    CERN Document Server

    Battista, Francesco; Casciola, Carlo Massimo

    2014-01-01

    Supercritical fluids near the critical point are characterized by liquid-like densities and gas-like transport properties. These features are purposely exploited in different contexts ranging from natural products extraction/fractionation to aerospace propulsion. Large part of studies concerns this last context, focusing on the dynamics of supercritical fluids at high Mach number where compressibility and thermodynamics strictly interact. Despite the widespread use also at low Mach number, the turbulent mixing properties of slightly supercritical fluids have still not investigated in detail in this regime. This topic is addressed here by dealing with Direct Numerical Simulations (DNS) of a coaxial jet of a slightly supercritical Van der Waals fluid. Since acoustic effects are irrelevant in the Low Mach number conditions found in many industrial applications, the numerical model is based on a suitable low-Mach number expansion of the governing equation. According to experimental observations, the weakly superc...

  2. Design of a continuously variable Mach-number nozzle

    Institute of Scientific and Technical Information of China (English)

    郭善广; 王振国; 赵玉新

    2015-01-01

    A design method was developed to specify the profile of the continuously variable Mach-number nozzle for the supersonic wind tunnel. The controllable contour design technique was applied to obtaining the original nozzle profile, while other Mach- numbers were derived from the transformation of the original profile. A design scheme, covering a Mach-number range of 3.0Mach-number deviation at the nozzle exit. The present design method achieves the continuously variable Mach-number flow during a wind tunnel running.

  3. Edge, cavity and aperture tones at very low Mach numbers

    Science.gov (United States)

    Howe, M. S.

    1997-01-01

    This paper discusses self-sustaining oscillations of high-Reynolds-number shear layers and jets incident on edges and corners at infinitesimal Mach number. These oscillations are frequently sources of narrow-band sound, and are usually attributed to the formation of discrete vortices whose interactions with the edge or corner produce impulsive pressures that lead to the formation of new vorticity and complete a feedback cycle of operation. Linearized analyses of these interactions are presented in which free shear layers are modelled by vortex sheets. Detailed results are given for shear flows over rectangular wall apertures and shallow cavities, and for the classical jet edge interaction. The operating stages of self-sustained oscillations are identified with poles in the upper half of the complex frequency plane of a certain impulse response function. It is argued that the real parts of these poles determine the Strouhal numbers of the operating stages observed experimentally for the real, nonlinear system. The response function coincides with the Rayleigh conductivity of the ‘window’ spanned by the shear flow for wall apertures and jet edge interactions, and to a frequency dependent drag coefficient for shallow wall cavities. When the interaction occurs in the neighbourhood of an acoustic resonator, exemplified by the flue organ pipe, the poles are augmented by a sequence of poles whose real parts are close to the resonance frequencies of the resonator, and the resonator can ‘speak’ at one of these frequencies (by extracting energy from the mean flow) provided the corresponding pole has positive imaginary part.

  4. A new numerical solver for flows at various Mach numbers

    CERN Document Server

    Miczek, F; Edelmann, P V F

    2014-01-01

    Many problems in stellar astrophysics feature low Mach number flows. However, conventional compressible hydrodynamics schemes frequently used in the field have been developed for the transonic regime and exhibit excessive numerical dissipation for these flows. While schemes were proposed that solve hydrodynamics strictly in the low Mach regime and thus restrict their applicability, we aim at developing a scheme that correctly operates in a wide range of Mach numbers. Based on an analysis of the asymptotic behavior of the Euler equations in the low Mach limit we propose a novel scheme that is able to maintain a low Mach number flow setup while retaining all effects of compressibility. This is achieved by a suitable modification of the well-known Roe solver. Numerical tests demonstrate the capability of this new scheme to reproduce slow flow structures even in moderate numerical resolution. Our scheme provides a promising approach to a consistent multidimensional hydrodynamical treatment of astrophysical low Ma...

  5. Low Mach Number Fluctuating Hydrodynamics of Diffusively Mixing Fluids

    CERN Document Server

    Donev, A; Sun, Y; Fai, T; Garcia, A L; Bell, J B

    2012-01-01

    We formulate low Mach number fluctuating hydrodynamic equations appropriate for modeling diffusive mixing in isothermal mixtures of fluids with different density and transport coefficients. These equations eliminate the fast isentropic fluctuations in pressure associated with the propagation of sound waves by replacing the equation of state with a local thermodynamic constraint. We demonstrate that the low Mach number model preserves the spatio-temporal spectrum of the slower diffusive fluctuations. We develop a strictly conservative finite-volume spatial discretization of the low Mach number fluctuating equations in both two and three dimensions. We construct several explicit Runge-Kutta temporal integrators that strictly maintain the equation of state constraint. The resulting spatio-temporal discretization is second-order accurate deterministically and maintains fluctuation-dissipation balance in the linearized stochastic equations. We apply our algorithms to model the development of giant concentration fl...

  6. Experimental investigation of liquid jet injection into Mach 6 hypersonic crossflow

    NARCIS (Netherlands)

    Beloki Perurena, J.; Asma, C.O.; Theunissen, R.; Chazot, O.

    2008-01-01

    The injection of a liquid jet into a crossing Mach 6 air flow is investigated. Experiments were conducted on a sharp leading edge flat plate with flush mounted injectors. Water jets were introduced through different nozzle shapes at relevant jet-to-air momentum-flux ratios. Sufficient temporal

  7. Experimental investigation of liquid jet injection into Mach 6 hypersonic crossflow

    NARCIS (Netherlands)

    Beloki Perurena, J.; Asma, C.O.; Theunissen, R.; Chazot, O.

    2008-01-01

    The injection of a liquid jet into a crossing Mach 6 air flow is investigated. Experiments were conducted on a sharp leading edge flat plate with flush mounted injectors. Water jets were introduced through different nozzle shapes at relevant jet-to-air momentum-flux ratios. Sufficient temporal resol

  8. Mathematical and numerical aspects of low mach number flows

    Energy Technology Data Exchange (ETDEWEB)

    Schochet, St.; Bresch, D.; Grenier, E.; Alazard, T.; Gordner, A.; Sankaran, V.; Massot, M.; Sery, R.; Pebay, P.; Lunch, O.; Mazhorova, O.; Turkel, O.E.; Faille, I.; Danchin, R.; Allain, O.; Birken, P.; Lafitte, O.; Kloczko, T.; Frick, W.; Bui, T.; Dellacherie, S.; Klein, R.; Roe, Ph.; Accary, G.; Braack, M.; Picano, F.; Cadiou, A.; Dinescu, C.; Lesage, A.C.; Wesseling, P.; Heuveline, V.; Jobelin, M.; Weisman, C.; Merkle, C.

    2004-07-01

    Low Mach number flows represent a significant part of the various flows encountered in geophysics, industry or every day life. Paradoxically, the mathematical analysis of the equations governing these flows is difficult and on the practical side, the research of numerical algorithms valid for all flow speeds is continuing to be a challenge. However, in the last decade, both from the theoretical and the numerical sides, significant progresses were made in the understanding and analysis of the equations governing these flows. This conference intends to provide an up-to-date inventory of recent mathematical and numerical results in the analysis of these flows by bringing together both mathematicians and numericists active in this area. In the framework of the conference, a numerical workshop is organized which proposes to compute several challenging low Mach number flows: liquid flow around non-cavitating and cavitating NACA0015 hydrofoil, natural convection with large temperature differences, free convection, free surface flow, vessel pressurization. This document brings together the descriptions of the test cases of the numerical workshop and the abstracts of the conference papers: A 3D high order finite volume method for the prediction of near-critical fluid flows (G. ACCARY, I. RASPO, P. BONTOUX, B. ZAPPOLI); low Mach number limit of the non-isentropic Navier-Stokes equations (T. ALAZARD); simulation of cavitation rolls past a forward step with a bubble model (O. ALLAIN, N. BLASKA, C. LECA); flux preconditioning methods and fire events (P. BIRKEN, A. MEISTER); an adaptive finite element solver for compressible flows: application to heat-driven cavity benchmarks in 2D and 3D (M. BRAACK); comparison of various implicit, explicit, centered and upwind schemes for the simulation of compressed flows on moving mesh (A. CADIOU, M. BUFFAT, L. Le PENVEN, C. Le RIBAULT); low Mach number limit for viscous compressible flows (R. DANCHIN); some Properties of the low Mach number

  9. Mathematical and numerical aspects of low mach number flows

    Energy Technology Data Exchange (ETDEWEB)

    Schochet, St.; Bresch, D.; Grenier, E.; Alazard, T.; Gordner, A.; Sankaran, V.; Massot, M.; Sery, R.; Pebay, P.; Lunch, O.; Mazhorova, O.; Turkel, O.E.; Faille, I.; Danchin, R.; Allain, O.; Birken, P.; Lafitte, O.; Kloczko, T.; Frick, W.; Bui, T.; Dellacherie, S.; Klein, R.; Roe, Ph.; Accary, G.; Braack, M.; Picano, F.; Cadiou, A.; Dinescu, C.; Lesage, A.C.; Wesseling, P.; Heuveline, V.; Jobelin, M.; Weisman, C.; Merkle, C.

    2004-07-01

    Low Mach number flows represent a significant part of the various flows encountered in geophysics, industry or every day life. Paradoxically, the mathematical analysis of the equations governing these flows is difficult and on the practical side, the research of numerical algorithms valid for all flow speeds is continuing to be a challenge. However, in the last decade, both from the theoretical and the numerical sides, significant progresses were made in the understanding and analysis of the equations governing these flows. This conference intends to provide an up-to-date inventory of recent mathematical and numerical results in the analysis of these flows by bringing together both mathematicians and numericists active in this area. In the framework of the conference, a numerical workshop is organized which proposes to compute several challenging low Mach number flows: liquid flow around non-cavitating and cavitating NACA0015 hydrofoil, natural convection with large temperature differences, free convection, free surface flow, vessel pressurization. This document brings together the descriptions of the test cases of the numerical workshop and the abstracts of the conference papers: A 3D high order finite volume method for the prediction of near-critical fluid flows (G. ACCARY, I. RASPO, P. BONTOUX, B. ZAPPOLI); low Mach number limit of the non-isentropic Navier-Stokes equations (T. ALAZARD); simulation of cavitation rolls past a forward step with a bubble model (O. ALLAIN, N. BLASKA, C. LECA); flux preconditioning methods and fire events (P. BIRKEN, A. MEISTER); an adaptive finite element solver for compressible flows: application to heat-driven cavity benchmarks in 2D and 3D (M. BRAACK); comparison of various implicit, explicit, centered and upwind schemes for the simulation of compressed flows on moving mesh (A. CADIOU, M. BUFFAT, L. Le PENVEN, C. Le RIBAULT); low Mach number limit for viscous compressible flows (R. DANCHIN); some Properties of the low Mach number

  10. Low Mach Number Fluctuating Hydrodynamics of Multispecies Liquid Mixtures

    CERN Document Server

    Donev, A; Bhattacharjee, A K; Garcia, A L; Bell, J B

    2014-01-01

    We develop a low Mach number formulation of the hydrodynamic equations describing transport of mass and momentum in a multispecies mixture of incompressible miscible liquids at specified temperature and pressure that generalizes our prior work on ideal mixtures of ideal gases and binary liquid mixtures. In this formulation we combine and extend a number of existing descriptions of multispecies transport available in the literature. The formulation applies to non-ideal mixtures of arbitrary number of species, without the need to single out a 'solvent' species, and includes contributions to the diffusive mass flux due to gradients of composition, temperature and pressure. Momentum transport and advective mass transport are handled using a low Mach number approach that eliminates fast sound waves (pressure fluctuations) from the full compressible system of equations and leads to a quasi-incompressible formulation. Thermal fluctuations are included in our fluctuating hydrodynamics description following the princi...

  11. Statistical error in particle simulations of low mach number flows

    Energy Technology Data Exchange (ETDEWEB)

    Hadjiconstantinou, N G; Garcia, A L

    2000-11-13

    We present predictions for the statistical error due to finite sampling in the presence of thermal fluctuations in molecular simulation algorithms. The expressions are derived using equilibrium statistical mechanics. The results show that the number of samples needed to adequately resolve the flowfield scales as the inverse square of the Mach number. Agreement of the theory with direct Monte Carlo simulations shows that the use of equilibrium theory is justified.

  12. Low Mach Number Fluctuating Hydrodynamics of Binary Liquid Mixtures

    CERN Document Server

    Nonaka, A J; Bell, J B; Donev, A

    2014-01-01

    Continuing on our previous work [ArXiv:1212.2644], we develop semi-implicit numerical methods for solving low Mach number fluctuating hydrodynamic equations appropriate for modeling diffusive mixing in isothermal mixtures of fluids with different densities and transport coefficients. We treat viscous dissipation implicitly using a recently-developed variable-coefficient Stokes solver [ArXiv:1308.4605]. This allows us to increase the time step size significantly compared to the earlier explicit temporal integrator. For viscous-dominated flows, such as flows at small scales, we develop a scheme for integrating the overdamped limit of the low Mach equations, in which inertia vanishes and the fluid motion can be described by a steady Stokes equation. We also describe how to incorporate advanced higher-order Godunov advection schemes in the numerical method, allowing for the treatment of fluids with high Schmidt number including the vanishing mass diffusion coefficient limit. We incorporate thermal fluctuations in...

  13. Hydrodynamic Flow and Jet Induced Mach Shocks at RHIC and LHC

    CERN Document Server

    Stöcker, H; Rau, P; Betz, Barbara; Rau, Philip; St\\"ocker, Horst

    2007-01-01

    We discuss the present collective flow signals for the phase transition to quark-gluon plasma (QGP) and the collective flow as a barometer for the equation of state (EoS). A study of Mach shocks induced by fast partonic jets propagating through the QGP is given. We predict a significant deformation of Mach shocks in central Au+Au collisions at RHIC and LHC energies as compared to the case of jet propagation in a static medium. Results of a hydrodynamical study of jet energy loss are presented.

  14. Courant Number and Mach Number Insensitive CE/SE Euler Solvers

    Science.gov (United States)

    Chang, Sin-Chung

    2005-01-01

    It has been known that the space-time CE/SE method can be used to obtain ID, 2D, and 3D steady and unsteady flow solutions with Mach numbers ranging from 0.0028 to 10. However, it is also known that a CE/SE solution may become overly dissipative when the Mach number is very small. As an initial attempt to remedy this weakness, new 1D Courant number and Mach number insensitive CE/SE Euler solvers are developed using several key concepts underlying the recent successful development of Courant number insensitive CE/SE schemes. Numerical results indicate that the new solvers are capable of resolving crisply a contact discontinuity embedded in a flow with the maximum Mach number = 0.01.

  15. Hysteresis phenomenon of hypersonic inlet at high Mach number

    Science.gov (United States)

    Jiao, Xiaoliang; Chang, Juntao; Wang, Zhongqi; Yu, Daren

    2016-11-01

    When the hypersonic inlet works at a Mach number higher than the design value, the hypersonic inlet is started with a regular reflection of the external compression shock at the cowl, whereas a Mach reflection will result in the shock propagating forwards to cause a shock detachment at the cowl lip, which is called "local unstart of inlet". As there are two operation modes of hypersonic inlet at high Mach number, the mode transition may occur with the operation condition of hypersonic inlet changing. A cowl-angle-variation-induced hysteresis and a downstream-pressure-variation-induced hysteresis in the hypersonic inlet start↔local unstart transition are obtained by viscous numerical simulations in this paper. The interaction of the external compression shock and boundary layer on the cowl plays a key role in the hysteresis phenomenon. Affected by the transition of external compression shock reflection at the cowl and the transition between separated and attached flow on the cowl, a hysteresis exists in the hypersonic inlet start↔local unstart transition. The hysteresis makes the operation of a hypersonic inlet very difficult to control. In order to avoid hysteresis phenomenon and keep the hypersonic inlet operating in a started mode, the control route should never pass through the local unstarted boundary.

  16. Low Mach number fluctuating hydrodynamics of multispecies liquid mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Donev, Aleksandar, E-mail: donev@courant.nyu.edu; Bhattacharjee, Amit Kumar [Courant Institute of Mathematical Sciences, New York University, New York, New York 10012 (United States); Nonaka, Andy; Bell, John B. [Center for Computational Science and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Garcia, Alejandro L. [Department of Physics and Astronomy, San Jose State University, San Jose, California 95192 (United States)

    2015-03-15

    We develop a low Mach number formulation of the hydrodynamic equations describing transport of mass and momentum in a multispecies mixture of incompressible miscible liquids at specified temperature and pressure, which generalizes our prior work on ideal mixtures of ideal gases [Balakrishnan et al., “Fluctuating hydrodynamics of multispecies nonreactive mixtures,” Phys. Rev. E 89 013017 (2014)] and binary liquid mixtures [Donev et al., “Low mach number fluctuating hydrodynamics of diffusively mixing fluids,” Commun. Appl. Math. Comput. Sci. 9(1), 47-105 (2014)]. In this formulation, we combine and extend a number of existing descriptions of multispecies transport available in the literature. The formulation applies to non-ideal mixtures of arbitrary number of species, without the need to single out a “solvent” species, and includes contributions to the diffusive mass flux due to gradients of composition, temperature, and pressure. Momentum transport and advective mass transport are handled using a low Mach number approach that eliminates fast sound waves (pressure fluctuations) from the full compressible system of equations and leads to a quasi-incompressible formulation. Thermal fluctuations are included in our fluctuating hydrodynamics description following the principles of nonequilibrium thermodynamics. We extend the semi-implicit staggered-grid finite-volume numerical method developed in our prior work on binary liquid mixtures [Nonaka et al., “Low mach number fluctuating hydrodynamics of binary liquid mixtures,” http://arxiv.org/abs/1410.2300 (2015)] and use it to study the development of giant nonequilibrium concentration fluctuations in a ternary mixture subjected to a steady concentration gradient. We also numerically study the development of diffusion-driven gravitational instabilities in a ternary mixture and compare our numerical results to recent experimental measurements [Carballido-Landeira et al., “Mixed-mode instability of a

  17. DSMC Simulation of High Mach Number Taylor-Couette Flow

    Science.gov (United States)

    Pradhan, Sahadev, , Dr.

    2017-01-01

    The main focus of this work is to characterise the Taylor-Couette flow of an ideal gas between two coaxial cylinders at Mach number Ma = (U_w /√{ kbT_w / m }) in the range 0.01 Boltzmann constant. The cylindrical surfaces are specified as being diffusely reflecting with the thermal accommodation coefficient equal to one. In the present analysis of high Mach number compressible Taylor-Couette flow using DSMC method, wall slip in the temperature and the velocities are found to be significant. Slip occurs because the temperature/velocity of the molecules incident on the wall could be very different from that of the wall, even though the temperature/velocity of the reflected molecules is equal to that of the wall. Due to the high surface speed of the inner cylinder, significant heating of the gas is taking place. The gas temperature increases until the heat transfer to the surface equals the work done in moving the surface. The highest temperature is obtained near the moving surface of the inner cylinder at a radius of about (1.26 r_1).

  18. The Variation of Slat Noise with Mach and Reynolds Numbers

    Science.gov (United States)

    Lockhard, David P.; Choudhari, Meelan M.

    2011-01-01

    The slat noise from the 30P30N high-lift system has been computed using a computational fluid dynamics code in conjunction with a Ffowcs Williams-Hawkings solver. By varying the Mach number from 0.13 to 0.25, the noise was found to vary roughly with the 5th power of the speed. Slight changes in the behavior with directivity angle could easily account for the different speed dependencies reported in the literature. Varying the Reynolds number from 1.4 to 2.4 million resulted in almost no differences, and primarily served to demonstrate the repeatability of the results. However, changing the underlying hybrid Reynolds-averaged-Navier-Stokes/Large-Eddy-Simulation turbulence model significantly altered the mean flow because of changes in the flap separation. However, the general trends observed in both the acoustics and near-field fluctuations were similar for both models.

  19. Low Mach number theory of freely cooling granular gases

    CERN Document Server

    Meerson, Baruch; Vilenkin, Arkady

    2007-01-01

    We use hydrodynamic equations to investigate the dynamics of a freely cooling dilute granular gas with nearly elastic particle collisions. We assume a narrow channel geometry and focus on the regime where the sound travel time through the system is much shorter than the typical cooling time of the gas. As a result, the pressure rapidly becomes almost homogeneous, while the Mach number is small. Eliminating the sound waves and employing Lagrangian coordinates, we reduce the full hydrodynamics to a single nonlinear/nonlocal equation of a reaction-diffusion type. This equation describes a broad class of flows and, in particular, can follow the development of strongly nonlinear states during clustering instability. Without heat diffusion, the reduced equation is exactly soluble and develops a finite-time density blowup with the same local features as those exhibited by the recently found family of exact solutions of the full set of ideal hydrodynamic equations (Fouxon et al. 2007). The heat diffusion, however, ar...

  20. Turbomachinery for Low-to-High Mach Number Flight

    Science.gov (United States)

    Tan, Choon S.; Shah, Parthiv N.

    2004-01-01

    The thrust capability of turbojet cycles is reduced at high flight Mach number (3+) by the increase in inlet stagnation temperature. The 'hot section' temperature limit imposed by materials technology sets the maximum heat addition and, hence, sets the maximum flight Mach number of the operating envelope. Compressor pre-cooling, either via a heat exchanger or mass-injection, has been suggested as a means to reduce compressor inlet temperature and increase mass flow capability, thereby increasing thrust. To date, however, no research has looked at compressor cooling (i.e., using a compressor both to perform work on the gas path air and extract heat from it simultaneously). We wish to assess the feasibility of this novel concept for use in low-to-high Mach number flight. The results to-date show that an axial compressor with cooling: (1) relieves choking in rear stages (hence opening up operability), (2) yields higher-pressure ratio and (3) yields higher efficiency for a given corrected speed and mass flow. The performance benefit is driven: (i) at the blade passage level, by a decrease in the total pressure reduction coefficient and an increase in the flow turning; and (ii) by the reduction in temperature that results in less work required for a given pressure ratio. The latter is a thermodynamic effect. As an example, calculations were performed for an eight-stage compressor with an adiabatic design pressure ratio of 5. By defining non-dimensional cooling as the percentage of compressor inlet stagnation enthalpy removed by a heat sink, the model shows that a non-dimensional cooling of percent in each blade row of the first two stages can increase the compressor pressure ratio by as much as 10-20 percent. Maximum corrected mass flow at a given corrected speed may increase by as much as 5 percent. In addition, efficiency may increase by as much as 5 points. A framework for characterizing and generating the performance map for a cooled compressor has been developed

  1. Aeroacoustic Properties of Moderate Reynolds Number Elliptic and Rectangular Supersonic Jets.

    Science.gov (United States)

    Kinzie, Kevin Wayne

    1995-01-01

    The aerodynamic and acoustic properties of supersonic elliptic, rectangular, and circular jets are experimentally investigated. All three jets are perfectly expanded with an exit Mach number of approximately 1.5 and are operated in the Reynolds number range of 25,000 to 50,000. The reduced Reynolds number facilitates the use of conventional hot-wire anemometry and a glow discharge excitation technique which preferentially excites the varicose or flapping modes in the jets. In order to simulate the high velocity and low density effects of heated jets, helium is mixed with the air jets. This allows the large-scale structures in the jet shear layer to achieve high enough convective velocity to radiate noise through the Mach wave emission process. Experiments in the present work focus on comparisons between the cold and simulated heated jet conditions and on the beneficial aeroacoustic properties of non-circular jets. Comparisons are also made between the elliptic and rectangular jets. When helium is added to the jets, the instability wave phase velocity is found to approach or exceed the ambient sound speed. The radiated noise is also louder and directed at a higher angle from the jet axis. In addition, near field hot-wire spectra are found to match the far-field acoustic spectra only for the helium/air mixture case. These results demonstrate that there are significant differences between unheated and heated asymmetric jets in the Mach 1.5 speed range, many of which have been found previously for circular jets. The asymmetric jets were also found to radiate less noise than the round jet at comparable operating conditions. Strong similarities were also found between the aerodynamic and acoustic properties of the elliptic and rectangular jets.

  2. Effect of winglets on a first-generation jet transport wing. 4: Stability characteristics for a full-span model at Mach 0.30

    Science.gov (United States)

    Meyer, R. R., Jr.

    1978-01-01

    The static longitudinal and lateral directional characteristics of a 0.035 scale model of a first generation jet transport were obtained with and without upper winglets. The data were obtained for take off and landing configurations at a free stream Mach number of 0.30. The results generally indicated that upper winglets had favorable effects on the stability characteristics of the aircraft.

  3. DSMC simulations of leading edge flat-plate boundary layer flows at high Mach number

    Science.gov (United States)

    Pradhan, Sahadev, , Dr.

    2017-01-01

    The flow over a 2D leading-edge flat plate is studied at Mach number Ma = (Uinf /√{kBTinf / m }) in the range Boltzmann constant. The variation of streamwise velocity, temperature, number-density, and mean free path along the wall normal direction away from the plate surface is studied. The qualitative nature of the streamwise velocity at high Mach number is similar to those in the incompressible limit (parabolic profile). However, there are important differences. The amplitudes of the streamwise velocity increase as the Mach number increases and turned into a more flatter profile near the wall. There is significant velocity and temperature slip at the surface of the plate, and the slip increases as the Mach number is increased. It is interesting to note that for the highest Mach numbers considered here, the streamwise velocity at the wall exceeds the sound speed, and the flow is supersonic throughout the flow domain.

  4. Variation with Mach Number of Static and Total Pressures Through Various Screens

    Science.gov (United States)

    Adler, Alfred A

    1946-01-01

    Tests were conducted in the Langley 24-inch highspeed tunnel to ascertain the static-pressure and total-pressure losses through screens ranging in mesh from 3 to 12 wires per inch and in wire diameter from 0.023 to 0.041 inch. Data were obtained from a Mach number of approximately 0.20 up to the maximum (choking) Mach number obtainable for each screen. The results of this investigation indicate that the pressure losses increase with increasing Mach number until the choking Mach number, which can be computed, is reached. Since choking imposes a restriction on the mass rate of flow and maximum losses are incurred at this condition, great care must be taken in selecting the screen mesh and wire dimmeter for an installation so that the choking Mach number is

  5. A Device for Measuring Sonic Velocity and Compressor Mach Number

    Science.gov (United States)

    1948-07-01

    resonator (the only 4 NACA TN No. 1664 accurate measurement required) is measured, as shomn in figure 1, by means of a mercury manometer . The compressor Mach...tube vs not connected to the ccmpressor inlet until after calibration. The pressure in the device was measured by means of the mercury manometer . Fram

  6. Numerical Simulation of Low Mach Number Fluid - Phenomena.

    Science.gov (United States)

    Reitsma, Scott H.

    A method for the numerical simulation of low Mach number (M) fluid-acoustic phenomena is developed. This computational fluid-acoustic (CFA) methodology is based upon a set of conservation equations, termed finite-compressible, derived from the unsteady Navier-Stokes equations. The finite-compressible and more familiar pseudo-compressible equations are compared. The impact of derivation assumptions are examined theoretically and through numerical experimentation. The error associated with these simplifications is shown to be of O(M) and proportional to the amplitude of unsteady phenomena. A computer code for the solution of the finite -compressible equations is developed from an existing pseudo -compressible code. Spatial and temporal discretization issues relevant in the context of near field fluid-acoustic simulations are discussed. The finite volume code employs a MUSCL based third order upwind biased flux difference splitting algorithm for the convective terms. An explicit, three stage, second order Runge-Kutta temporal integration is employed for time accurate simulations while an implicit, approximately factored time quadrature is available for steady state convergence acceleration. The CFA methodology is tested in a series of problems which examine the appropriateness of the governing equations, the exacerbation of spatial truncation errors and the degree of temporal accuracy. Characteristic based boundary conditions employing a spatial formulation are developed. An original non-reflective boundary condition based upon the generalization and extension of existing methods is derived and tested in a series of multi-dimensional problems including those involving viscous shear flows and propagating waves. The final numerical experiment is the simulation of boundary layer receptivity to acoustic disturbances. This represents the first simulation of receptivity at a surface inhomogeneity in which the acoustic phenomena is modeled using physically appropriate

  7. Twin Jet

    Science.gov (United States)

    Henderson, Brenda; Bozak, Rick

    2010-01-01

    Many subsonic and supersonic vehicles in the current fleet have multiple engines mounted near one another. Some future vehicle concepts may use innovative propulsion systems such as distributed propulsion which will result in multiple jets mounted in close proximity. Engine configurations with multiple jets have the ability to exploit jet-by-jet shielding which may significantly reduce noise. Jet-by-jet shielding is the ability of one jet to shield noise that is emitted by another jet. The sensitivity of jet-by-jet shielding to jet spacing and simulated flight stream Mach number are not well understood. The current experiment investigates the impact of jet spacing, jet operating condition, and flight stream Mach number on the noise radiated from subsonic and supersonic twin jets.

  8. A comparative study of scramjet injection strategies for high Mach numbers flows

    Science.gov (United States)

    Riggins, D. W.; Mcclinton, C. R.; Rogers, R. C.; Bittner, R. D.

    1992-01-01

    A simple method for predicting the axial distribution of supersonic combustor thrust potential is described. A complementary technique for illustrating the spatial evolution and distribution of thrust potential and loss mechanisms in reacting flows is developed. Wall jet cases and swept ramp injector cases for Mach 17 and Mach 13.5 flight enthalpy inflow conditions are numerically modeled and analyzed using these techniques. The visualization of thrust potential in the combustor for the various cases examined provides a unique tool for increasing understanding of supersonic combustor performance potential.

  9. Experimental investigation of drag reduction by forward facing high speed gas jet for a large angle blunt cone at Mach 8

    Indian Academy of Sciences (India)

    Balla Venukumar; K P J Reddy

    2007-02-01

    Substantial aerodynamic drag, while flying at hypersonic Mach number, due to the presence of strong standing shock wave ahead of a large-angle bluntcone configuration, is a matter of great design concern. Preliminary experimental results for the drag reduction by a forward-facing supersonic air jet for a 60° apex-angle blunt cone at a flow Mach number of 8 are presented in this paper. The measurements are carried out using an accelerometer-based balance system in the hypersonic shock tunnel HST2 of the Indian Institute of Science, Bangalore. About 29% reduction in the drag coefficient has been observed with the injection of a supersonic gas jet.

  10. Parametric Study of Afterbody/nozzle Drag on Twin Two-dimensional Convergent-divergent Nozzles at Mach Numbers from 0.60 to 1.20

    Science.gov (United States)

    Pendergraft, Odis C., Jr.; Burley, James R., II; Bare, E. Ann

    1986-01-01

    An investigation has been conducted in the Langley 16-Foot Transonic Tunnel to determine the effects of upper and lower external nozzle flap geometry on the external afterbody/nozzle drag of nonaxisymmetric two-dimensional convergent-divergent exhaust nozzles having parallel external sidewalls installed on a generic twin-engine, fighter-aircraft model. Tests were conducted over a Mach number range from 0.60 to 1.20 and over an angle-of-attack range from -5 to 9 deg. Nozzle pressure ratio was varied from jet off (1.0) to approximately 10.0, depending on Mach number.

  11. Structure of the magnetopause for low Mach number and strongly northward interplanetary magnetic field

    Science.gov (United States)

    Le, G.; Russell, C. T.; Gosling, J. T.

    1994-12-01

    We use International Sun-Earth Explorer (ISEE) magnetic field and plasma data to examine dayside magnetopause crossing under conditions of low Mach number and strongly northward interplanetary magnetic field (IMF). When the solar wind Mach number is low, the IMF stregth and magnetoseath field stregth are large, and we expect the effects of magnetic reconection to be the strongest. When the IMF is strongly northward, we find that the location of the magnetopause boundary layer is very stationary in the space, and we observe many features that are common for both typical and low Mach numbers. However, under low Mach number conditions, we have observed some features that would be expected for cusp reconnection. The boundary layer near the subsolar region contains heated magnetosheath plasma with little hot magnetospheric component that has clearly entered the magnetosphere elsewhere. At least some of the structures present in the boundary layer are impulsive. Inside the boundary layer there is also clear evidence of acceleratedflow from the cusp region for strongly northward IMF at low Mach number. Reconnection beyond the cusp can explain the observed field, plasma, and flow signatures. Therefore at low Mach number, reconection is important in the formation of the boundary layer for northward IMF.

  12. Note: A high Mach number arc-driven shock tube for turbulence studies.

    Science.gov (United States)

    Titus, J B; Alexander, A B; Johnson, J A

    2013-04-01

    A high Mach arc-driven shock tube has been built at the Center for Plasma Science and Technology of Florida A&M University to study shock waves. A larger apparatus with higher voltage was built to study more stable shock waves and subsequent plasmas. Initial measurements of the apparatus conclude that the desired Mach numbers can be reached using only two-thirds the maximum possible energy that the circuit can provide.

  13. The small-scale dynamo: Breaking universality at high Mach numbers

    CERN Document Server

    Schleicher, Dominik R G; Federrath, Christoph; Bovino, Stefano; Schmidt, Wolfram

    2013-01-01

    (Abridged) The small-scale dynamo may play a substantial role in magnetizing the Universe under a large range of conditions, including subsonic turbulence at low Mach numbers, highly supersonic turbulence at high Mach numbers and a large range of magnetic Prandtl numbers Pm, i.e. the ratio of kinetic viscosity to magnetic resistivity. Low Mach numbers may in particular lead to the well-known, incompressible Kolmogorov turbulence, while for high Mach numbers, we are in the highly compressible regime, thus close to Burgers turbulence. In this study, we explore whether in this large range of conditions, a universal behavior can be expected. Our starting point are previous investigations in the kinematic regime. Here, analytic studies based on the Kazantsev model have shown that the behavior of the dynamo depends significantly on Pm and the type of turbulence, and numerical simulations indicate a strong dependence of the growth rate on the Mach number of the flow. Once the magnetic field saturates on the current ...

  14. Mixing in High Schmidt Number Turbulent Jets.

    Science.gov (United States)

    Miller, Paul Lewis

    This thesis is an experimental investigation of the passive scalar (species concentration) field in the far-field of round, axisymmetric, high Schmidt number (liquid phase), turbulent jets issuing into a quiescent reservoir, by means of a quantitative laser-induced fluorescence technique. Single -point concentration measurements are made on the jet centerline, at axial locations from 100 to 305 nozzle diameters downstream, and Reynolds numbers of 3,000 to 102,000, yielding data with a resolved temporal dynamic range up to 2.5 times 10^5, and capturing as many as 504 large-scale structure passages. Long-time statistics of the jet concentration are found to converge slowly. Between 100 and 300 large-scale structure passages are required to reduce the uncertainty in the mean to 1%, or so. The behavior of the jet varies with Reynolds number. The centerline concentration pdf's become taller and narrower with increasing Re, and the normalized concentration variances correspondingly decrease with Re. The concentration power spectra also evolve with Re. The behavior of the spectral slopes is examined. No constant -1 (Batchelor) spectral slope range is present. Rather, in the viscous region, the power spectra exhibit log-normal behavior, over a range of scales exceeding a factor of 40, in some cases. The frequency of the beginning of this log-normal range scales like Re^{3/4} (Kolmogorov scaling). Mixing in the far-field is found to be susceptible to initial conditions. Disturbances in the jet plenum fluid and near the nozzle exit strongly influence the scalar variance, with larger disturbances causing larger variances, i.e., less homogeneous mixing. The plenum/nozzle geometry also influences the variance. These effects of initial conditions persist for hundreds of diameters from the nozzle exit, over hundreds of large scales. Mixing in these jets differs from gas-phase, order unity Sc, jet mixing. At low to moderate Re, the higher Sc jet is less well mixed. The difference

  15. Effect of Mach number on the efficiency of microwave energy deposition in supersonic flow

    Science.gov (United States)

    Lashkov, V. A.; Karpenko, A. G.; Khoronzhuk, R. S.; Mashek, I. Ch.

    2016-05-01

    The article is devoted to experimental and numerical studies of the efficiency of microwave energy deposition into a supersonic flow around the blunt cylinder at different Mach numbers. Identical conditions for energy deposition have been kept in the experiments, thus allowing to evaluate the pure effect of varying Mach number on the pressure drop. Euler equations are solved numerically to model the corresponding unsteady flow compressed gas. The results of numerical simulations are compared to the data obtained from the physical experiments. It is shown that the momentum, which the body receives during interaction of the gas domain modified by microwave discharge with a shock layer before the body, increases almost linearly with rising of Mach number and the efficiency of energy deposition also rises.

  16. Derivation of the low Mach number diphasic system. Numerical simulation in mono-dimensional geometry; Derivation du systeme diphasique bas Mach. Simulation numerique en geometrie monodimensionnelle

    Energy Technology Data Exchange (ETDEWEB)

    Dellacherie, St

    2004-07-01

    This work deals with the derivation of a diphasic low Mach number model obtained through a Mach number asymptotic expansion applied to the compressible diphasic Navier Stokes system, expansion which filters out the acoustic waves. This approach is inspired from the work of Andrew Majda giving the equations of low Mach number combustion for thin flame and for perfect gases. When the equations of state verify some thermodynamic hypothesis, we show that the low Mach number diphasic system predicts in a good way the dilatation or the compression of a bubble and has equilibrium convergence properties. Then, we propose an entropic and convergent Lagrangian scheme in mono-dimensional geometry when the fluids are perfect gases and we propose a first approach in Eulerian variables where the interface between the two fluids is captured with a level set technique. (author)

  17. Influences of attack angle and mach number on aerodynamic characters of typical sections of extra-long blade in a steam turbine

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    On super-sonic or trans-sonic planar cascade wind tunnel of free jet intermittent type, wind blowing experiments were performed on the typical sections of stator and rotor blades in the last stage of ultra-ultra-critical steam turbine with extra-long blade of 1200mm. The influences of attack angle and Mach number on the aerodynamic performances of these sections of the blade profiles were verified, and their operating ranges were also specified.

  18. Dispersive nature of high mach number collisionless plasma shocks: Poynting flux of oblique whistler waves.

    Science.gov (United States)

    Sundkvist, David; Krasnoselskikh, V; Bale, S D; Schwartz, S J; Soucek, J; Mozer, F

    2012-01-13

    Whistler wave trains are observed in the foot region of high Mach number quasiperpendicular shocks. The waves are oblique with respect to the ambient magnetic field as well as the shock normal. The Poynting flux of the waves is directed upstream in the shock normal frame starting from the ramp of the shock. This suggests that the waves are an integral part of the shock structure with the dispersive shock as the source of the waves. These observations lead to the conclusion that the shock ramp structure of supercritical high Mach number shocks is formed as a balance of dispersion and nonlinearity.

  19. Increased Mach Number Capability for the NASA Glenn 10x10 Supersonic Wind Tunnel

    Science.gov (United States)

    Slater, J. W.; Saunders, J. D.

    2015-01-01

    Computational simulations and wind tunnel testing were conducted to explore the operation of the Abe Silverstein Supersonic Wind Tunnel at the NASA Glenn Research Center at test section Mach numbers above the current limit of Mach 3.5. An increased Mach number would enhance the capability for testing of supersonic and hypersonic propulsion systems. The focus of the explorations was on understanding the flow within the second throat of the tunnel, which is downstream of the test section and is where the supersonic flow decelerates to subsonic flow. Methods of computational fluid dynamics (CFD) were applied to provide details of the shock boundary layer structure and to estimate losses in total pressure. The CFD simulations indicated that the tunnel could be operated up to Mach 4.0 if the minimum width of the second throat was made smaller than that used for previous operation of the tunnel. Wind tunnel testing was able to confirm such operation of the tunnel at Mach 3.6 and 3.7 before a hydraulic failure caused a stop to the testing. CFD simulations performed after the wind tunnel testing showed good agreement with test data consisting of static pressures along the ceiling of the second throat. The CFD analyses showed increased shockwave boundary layer interactions, which was also observed as increased unsteadiness of dynamic pressures collected in the wind tunnel testing.

  20. Aeropropulsive characteristics of Mach numbers up to 2.2 of axisymmetric and nonaxisymmetric nozzles installed on an F-18 model

    Science.gov (United States)

    Capone, F. J.

    1982-01-01

    An investigation to determine the aeropropulsive characteristics of nonaxisymmetric nozzles on an F-18 jet effects model was conducted in the Langley 16-foot transonic tunnel and the AEDC 16-foot supersonic wind tunnel. The performance of a two dimensional convergent-divergent nozzle, a single expansion ramp nozzle, and a wedge nozzle was compared with that of the baseline axisymmetric nozzle. Test data were obtained at static conditions and at Mach numbers from 0.60 to 2.20 at an angle of attack of 0 deg. Nozzle pressure ratio was varied from jet-off to about 20.

  1. Mach number study of supersonic turbulence: The properties of the density field

    CERN Document Server

    Konstandin, Lukas; Girichidis, Philipp; Peters, Thomas; Shetty, Rahul; Klessen, Ralf S

    2015-01-01

    We model driven, compressible, isothermal, turbulence with Mach numbers ranging from the subsonic ($\\mathcal{M} \\approx 0.65$) to the highly supersonic regime ($\\mathcal{M}\\approx 16 $). The forcing scheme consists both solenoidal (transverse) and compressive (longitudinal) modes in equal parts. We find a relation $\\sigma_{s}^2 = \\mathrm{b}\\log{(1+\\mathrm{b}^2\\mathcal{M}^2)}$ between the Mach number and the standard deviation of the logarithmic density with $\\mathrm{b} = 0.457 \\pm 0.007$. The density spectra follow $\\mathcal{D}(k,\\,\\mathcal{M}) \\propto k^{\\zeta(\\mathcal{M})}$ with scaling exponents depending on the Mach number. We find $\\zeta(\\mathcal{M}) = \\alpha \\mathcal{M}^{\\beta}$ with a coefficient $\\alpha$ that varies slightly with resolution, whereas $\\beta$ changes systematically. We extrapolate to the limit of infinite resolution and find $\\alpha = -1.91 \\pm 0.01,\\, \\beta =-0.30\\pm 0.03$. The dependence of the scaling exponent on the Mach number implies a fractal dimension $D=2+0.96 \\mathcal{M}^{-0.3...

  2. Performance characteristics of two multiaxis thrust-vectoring nozzles at Mach numbers up to 1.28

    Science.gov (United States)

    Wing, David J.; Capone, Francis J.

    1993-01-01

    The thrust-vectoring axisymmetric (VA) nozzle and a spherical convergent flap (SCF) thrust-vectoring nozzle were tested along with a baseline nonvectoring axisymmetric (NVA) nozzle in the Langley 16-Foot Transonic Tunnel at Mach numbers from 0 to 1.28 and nozzle pressure ratios from 1 to 8. Test parameters included geometric yaw vector angle and unvectored divergent flap length. No pitch vectoring was studied. Nozzle drag, thrust minus drag, yaw thrust vector angle, discharge coefficient, and static thrust performance were measured and analyzed, as well as external static pressure distributions. The NVA nozzle and the VA nozzle displayed higher static thrust performance than the SCF nozzle throughout the nozzle pressure ratio (NPR) range tested. The NVA nozzle had higher overall thrust minus drag than the other nozzles throughout the NPR and Mach number ranges tested. The SCF nozzle had the lowest jet-on nozzle drag of the three nozzles throughout the test conditions. The SCF nozzle provided yaw thrust angles that were equal to the geometric angle and constant with NPR. The VA nozzle achieved yaw thrust vector angles that were significantly higher than the geometric angle but not constant with NPR. Nozzle drag generally increased with increases in thrust vectoring for all the nozzles tested.

  3. Turbulent Flow Physics and Noise in High Reynolds Number Compressible Jets

    Science.gov (United States)

    Glauser, Mark

    2016-11-01

    In this talk I will present a snapshot of our ongoing research in high Reynolds number turbulent compressible jets. The high speed axisymmetric jet work (Mach 0.6 - 1.1) has been jointly performed with Spectral Energies LLC through AFRL support and involves 10 kHz and large window PIV data extracted from the near field jet plume, simultaneously sampled with near field pressure and far field noise. We have learned from the simultaneously sampled 10 kHz PIV near field plume and far field noise data, using POD/OID and Wavelet filtering, that there are certain "loud" velocity modes that have low averaged turbulent kinetic energy content but strongly correlate with the far field noise. From the large window PIV data obtained at Mach 1.0 and 1.1, specific POD modes were found to contain important physics of the problem. For example, the large-scale structure of the jet, shock-related fluctuations, and turbulent mixing regions of the flow were isolated through POD. By computing cross correlations, particular POD modes were found to be related to particular noise spectra. I will conclude with a description of our complex nozzle work which uses the multi-stream supersonic single expansion rectangular nozzle (SERN) recently installed in our large anechoic chamber at SU. This work is funded from both AFOSR (joint with OSU with a primary focus on flow physics) and Spectral Energies LLC (via AFRL funds with a focus on noise). Particular emphasis will be on insight gained into this complex 3D flow field (and its relationship to the far field noise) from applications of POD, Wavelet filtering and DMD to various numerical (LES) and experimental (PIV, high speed schlieren, near and far field pressure) data sets, at a core nozzle Mach number of 1.6 and a second stream Mach number of 1.0.

  4. DNS study on shock/turbulence interaction in homogeneous isotropic turbulence at low turbulent Mach number

    Science.gov (United States)

    Tanaka, Kento; Watanabe, Tomoaki; Nagata, Koji; Sasoh, Akihiro; Sakai, Yasuhiko; Hayase, Toshiyuki; Nagoya Univ Collaboration

    2016-11-01

    The interaction between homogeneous isotropic turbulence and normal shock wave is investigated by direct numerical simulations (DNSs). In the DNSs, a normal shock wave with a shock Mach number 1.1 passes through homogeneous isotropic turbulence with a low turbulent Mach number and a moderate turbulent Reynolds number. The statistics are calculated conditioned on the distance from the shock wave. The results showed that the shock wave makes length scales related to turbulence small. This effect is significant for the Taylor microscale defined with the velocity derivative orthogonal to the shock wave. The decrease in the Kolmogorov scale is also found. Statistics of velocity derivative are found to be changed by the shock wave propagation. The shock wave causes enstrophy amplification due to the dilatation/vorticity interaction. By this interaction, the vorticity components parallel to the shock wave is more amplified than the normal component. The strain rate is also amplified by the shock wave.

  5. Mach number scaling of helicopter rotor blade/vortex interaction noise

    Science.gov (United States)

    Leighton, Kenneth P.; Harris, Wesley L.

    1985-01-01

    A parametric study of model helicopter rotor blade slap due to blade vortex interaction (BVI) was conducted in a 5 by 7.5-foot anechoic wind tunnel using model helicopter rotors with two, three, and four blades. The results were compared with a previously developed Mach number scaling theory. Three- and four-bladed rotor configurations were found to show very good agreement with the Mach number to the sixth power law for all conditions tested. A reduction of conditions for which BVI blade slap is detected was observed for three-bladed rotors when compared to the two-bladed baseline. The advance ratio boundaries of the four-bladed rotor exhibited an angular dependence not present for the two-bladed configuration. The upper limits for the advance ratio boundaries of the four-bladed rotors increased with increasing rotational speed.

  6. Two-dimensional lattice Boltzmann model for compressible flows with high Mach number

    Science.gov (United States)

    Gan, Yanbiao; Xu, Aiguo; Zhang, Guangcai; Yu, Xijun; Li, Yingjun

    2008-03-01

    In this paper we present an improved lattice Boltzmann model for compressible Navier-Stokes system with high Mach number. The model is composed of three components: (i) the discrete-velocity-model by M. Watari and M. Tsutahara [Phys. Rev. E 67 (2003) 036306], (ii) a modified Lax-Wendroff finite difference scheme where reasonable dissipation and dispersion are naturally included, (iii) artificial viscosity. The improved model is convenient to compromise the high accuracy and stability. The included dispersion term can effectively reduce the numerical oscillation at discontinuity. The added artificial viscosity helps the scheme to satisfy the von Neumann stability condition. Shock tubes and shock reflections are used to validate the new scheme. In our numerical tests the Mach numbers are successfully increased up to 20 or higher. The flexibility of the new model makes it suitable for tracking shock waves with high accuracy and for investigating nonlinear nonequilibrium complex systems.

  7. Flow-induced cylinder noise formulated as a diffraction problem for low Mach numbers

    Science.gov (United States)

    Gloerfelt, X.; Pérot, F.; Bailly, C.; Juvé, D.

    2005-10-01

    The role of surfaces in the mechanism of sound generation by low Mach number flows interacting with solid nonvibrating surfaces is well established by the classical aeroacoustic papers by Powell, Doak, Ffowcs Williams, Crighton, or Howe. It can be formulated as a problem of diffraction of the flow sources by the rigid body. The present study illustrates this statement in the case of flow-induced cylinder noise. Curle's formulation is analytically and numerically compared to a formulation based on an exact Green's function tailored to a cylindrical geometry. The surface integral of Curle's formulation represents exactly the diffraction effects by the rigid body. The direct and scattered parts of the sound field are studied. In this low Mach number configuration, the cylinder is compact, and the scattered (dipole) field dominates the direct (quadrupole) field. The classical properties of the scattering by a cylinder are retrieved by considering a point quadripole source near the cylinder surface.

  8. Extension of the pressure correction method to zero-Mach number compressible flows

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In the present paper,the classical pressure correction method was extended into low Mach number compressible flow regime by integrating equation of state into SIMPLE algorithm.The self-developed code based on this algorithm was applied to predicting the lid-driven cavity flow and shock tube prob-lems,and the results showed good agreement with benchmark solutions and the Mach number can reach the magnitude of as low as 10-5.The attenuation of sound waves in viscous medium was then simulated.The results agree well with the analytical solutions given by theoretical acoustics.This demonstrated that the present method could also be implemented in acoustics field simulation,which is crucial for thermoacoustic simulation.

  9. The Density Variance--Mach Number Relation in Supersonic Turbulence: I. Isothermal, magnetised gas

    CERN Document Server

    Molina, F Z; Federrath, C; Klessen, R S

    2012-01-01

    It is widely accepted that supersonic, magnetised turbulence plays a fundamental role for star formation in molecular clouds. It produces the initial dense gas seeds out of which new stars can form. However, the exact relation between gas compression, turbulent Mach number, and magnetic field strength is still poorly understood. Here, we introduce and test an analytical prediction for the relation between the density variance and the root-mean-square Mach number in supersonic, isothermal, magnetised turbulent flows. We approximate the density and velocity structure of the interstellar medium as a superposition of shock waves. We obtain the density contrast considering the momentum continuity equation for a single magnetised shock and extrapolate this result to the entire cloud. Depending on the field geometry, we then make three different assumptions based on observational and theoretical constraints: B independent of density, B proportional to the root square of the density and B proportional to the density....

  10. Extension of the pressure correction method to zero-Mach number compressible flows

    Institute of Scientific and Technical Information of China (English)

    HE YaLing; HUANG Jing; TAO YuBing; TAO WenQuan

    2009-01-01

    In the present paper, the classical pressure correction method was extended into low Mach number compressible flow regime by integrating equation of state into SIMPLE algorithm. The self-developed code based on this algorithm was applied to predicting the lid-driven cavity flow and shock tube prob-lems, and the results showed good agreement with benchmark solutions and the Mach number can reach the magnitude of as low as 10-5. The attenuation of sound waves in viscous medium was then simulated. The results agree well with the analytical solutions given by theoretical acoustics. This demonstrated that the present method could also be implemented in acoustics field simulation, which is crucial for thermoacoustic simulation.

  11. Axisymmetric vortex method for low-Mach number, diffusion-controlled combustion

    CERN Document Server

    Lakkis, I

    2003-01-01

    A grid-free, Lagrangian method for the accurate simulation of low-Mach number, variable-density, diffusion-controlled reacting flow is presented. A fast-chemistry model in which the conversion rate of reactants to products is limited by the local mixing rate is assumed in order to reduce the combustion problem to the solution of a convection-diffusion-generation equation with volumetric expansion and vorticity generation at the reaction fronts. The solutions of the continuity and vorticity equations, and the equations governing the transport of species and energy, are obtained using a formulation in which particles transport conserved quantities by convection and diffusion. The dynamic impact of exothermic combustion is captured through accurate integration of source terms in the vorticity transport equations at the location of the particles, and the extra velocity field associated with volumetric expansion at low Mach number computed to enforced mass conservation. The formulation is obtained for an axisymmet...

  12. Low Mach and Peclet number limit for a model of stellar tachocline and upper radiative zones

    Directory of Open Access Journals (Sweden)

    Donatella Donatelli

    2016-09-01

    Full Text Available We study a hydrodynamical model describing the motion of internal stellar layers based on compressible Navier-Stokes-Fourier-Poisson system. We suppose that the medium is electrically charged, we include energy exchanges through radiative transfer and we assume that the system is rotating. We analyze the singular limit of this system when the Mach number, the Alfven number, the Peclet number and the Froude number approache zero in a certain way and prove convergence to a 3D incompressible MHD system with a stationary linear transport equation for transport of radiation intensity. Finally, we show that the energy equation reduces to a steady equation for the temperature corrector.

  13. Numerical Modeling of Flow Control in a Boundary-Layer-Ingesting Offset Inlet Diffuser at Transonic Mach Numbers

    Science.gov (United States)

    Allan Brian G.; Owens, Lewis, R.

    2006-01-01

    This paper will investigate the validation of a NASA developed, Reynolds-averaged Navier-Stokes (RANS) flow solver, OVERFLOW, for a boundary-layer-ingesting (BLI) offset (S-shaped) inlet in transonic flow with passive and active flow control devices as well as the baseline case. Numerical simulations are compared to wind tunnel results of a BLI inlet conducted at the NASA Langley 0.3-Meter Transonic Cryogenic Tunnel. Comparisons of inlet flow distortion, pressure recovery, and inlet wall pressures are performed. The numerical simulations are compared to the BLI inlet data at a freestream Mach number of 0.85 and a Reynolds number of approximately 2 million based on the length of the fan-face diameter. The numerical simulations with and without wind tunnel walls are performed, quantifying effects of the tunnel walls on the BLI inlet flow measurements. The wind tunnel test evaluated several different combinations of jet locations and mass flow rates as well as a vortex generator (VG) vane case. The numerical simulations will be performed on a single jet configuration for varying actuator mass flow rates at a fix inlet mass flow condition. Validation of the numerical simulations for the VG vane case will also be performed for varying inlet mass flow rates. Overall, the numerical simulations were able to predict the baseline circumferential flow distortion, DPCPavg, very well for comparisons made within the designed operating range of the BLI inlet. However the CFD simulations did predict a total pressure recovery that was 0.01 lower than the experiment. Numerical simulations of the baseline inlet flow also showed good agreement with the experimental inlet centerline surface pressures. The vane case showed that the CFD predicted the correct trends in the circumferential distortion for varying inlet mass flow but had a distortion level that was nearly twice as large as the experiment. Comparison to circumferential distortion measurements for a 15 deg clocked 40 probe

  14. Nearfield Unsteady Pressures at Cruise Mach Numbers for a Model Scale Counter-Rotation Open Rotor

    Science.gov (United States)

    Stephens, David B.

    2012-01-01

    An open rotor experiment was conducted at cruise Mach numbers and the unsteady pressure in the nearfield was measured. The system included extensive performance measurements, which can help provide insight into the noise generating mechanisms in the absence of flow measurements. A set of data acquired at a constant blade pitch angle but various rotor speeds was examined. The tone levels generated by the front and rear rotor were found to be nearly equal when the thrust was evenly balanced between rotors.

  15. Asymptotic preserving IMEX finite volume schemes for low Mach number Euler equations with gravitation

    Science.gov (United States)

    Bispen, Georgij; Lukáčová-Medvid'ová, Mária; Yelash, Leonid

    2017-04-01

    In this paper we will present and analyze a new class of the IMEX finite volume schemes for the Euler equations with a gravity source term. We will in particular concentrate on a singular limit of weakly compressible flows when the Mach number M ≪ 1. In order to efficiently resolve slow dynamics we split the whole nonlinear system in a stiff linear part governing the acoustic and gravity waves and a non-stiff nonlinear part that models nonlinear advection effects. For time discretization we use a special class of the so-called globally stiffly accurate IMEX schemes and approximate the stiff linear operator implicitly and the non-stiff nonlinear operator explicitly. For spatial discretization the finite volume approximation is used with the central and Rusanov/Lax-Friedrichs numerical fluxes for the linear and nonlinear subsystem, respectively. In the case of a constant background potential temperature we prove theoretically that the method is asymptotically consistent and asymptotically stable uniformly with respect to small Mach number. We also analyze experimentally convergence rates in the singular limit when the Mach number tends to zero.

  16. Particle-in-cell simulations of particle energization from low Mach number fast mode shocks

    CERN Document Server

    Park, Jaehong; Blackman, Eric G; Ren, Chuang; Siller, Robert

    2012-01-01

    Astrophysical shocks are often studied in the high Mach number limit but weakly compressive fast shocks can occur in magnetic reconnection outflows and are considered to be a site of particle energization in solar flares. Here we study the microphysics of such perpendicular, low Mach number collisionless shocks using two-dimensional particle-in-cell (PIC) simulations with a reduced ion/electron mass ratio and employ a moving wall boundary method for initial generation of the shock. This moving wall method allows for more control of the shock speed, smaller simulation box sizes, and longer simulation times than the commonly used fixed wall, reflection method of shock formation. Our results, which are independent of the shock formation method, reveal the prevalence shock drift acceleration (SDA) of both electron and ions in a purely perpendicular shock with Alfv\\'en Mach number $M_A=6.8$ and ratio of thermal to magnetic pressure $\\beta=8$. We determine the respective minimum energies required for electrons and ...

  17. A half-explicit, non-split projection method for low Mach number flows.

    Energy Technology Data Exchange (ETDEWEB)

    Pousin, Jerome G. (National Institute for Applied Sciences, France); Najm, Habib N.; Pebay, Philippe Pierre

    2004-02-01

    In the context of the direct numerical simulation of low MACH number reacting flows, the aim of this article is to propose a new approach based on the integration of the original differential algebraic (DAE) system of governing equations, without further differentiation. In order to do so, while preserving a possibility of easy parallelization, it is proposed to use a one-step index 2 DAE time-integrator, the Half Explicit Method (HEM). In this context, we recall why the low MACH number approximation belongs to the class of index 2 DAEs and discuss why the pressure can be associated with the constraint. We then focus on a fourth-order HEM scheme, and provide a formulation that makes its implementation more convenient. Practical details about the consistency of initial conditions are discussed, prior to focusing on the implicit solve involved in the method. The method is then evaluated using the Modified KAPS Problem, since it has some of the features of the low MACH number approximation. Numerical results are presented, confirming the above expectations. A brief summary of ongoing efforts is finally provided.

  18. The Dynamics of Very High Alfvén Mach Number Shocks in Space Plasmas

    Science.gov (United States)

    Sundberg, Torbjörn; Burgess, David; Scholer, Manfred; Masters, Adam; Sulaiman, Ali H.

    2017-02-01

    Astrophysical shocks, such as planetary bow shocks or supernova remnant shocks, are often in the high or very-high Mach number regime, and the structure of such shocks is crucial for understanding particle acceleration and plasma heating, as well inherently interesting. Recent magnetic field observations at Saturn’s bow shock, for Alfvén Mach numbers greater than about 25, have provided evidence for periodic non-stationarity, although the details of the ion- and electron-scale processes remain unclear due to limited plasma data. High-resolution, multi-spacecraft data are available for the terrestrial bow shock, but here the very high Mach number regime is only attained on extremely rare occasions. Here we present magnetic field and particle data from three such quasi-perpendicular shock crossings observed by the four-spacecraft Cluster mission. Although both ion reflection and the shock profile are modulated at the upstream ion gyroperiod timescale, the dominant wave growth in the foot takes place at sub-proton length scales and is consistent with being driven by the ion Weibel instability. The observed large-scale behavior depends strongly on cross-scale coupling between ion and electron processes, with ion reflection never fully suppressed, and this suggests a model of the shock dynamics that is in conflict with previous models of non-stationarity. Thus, the observations offer insight into the conditions prevalent in many inaccessible astrophysical environments, and provide important constraints for acceleration processes at such shocks.

  19. The Cosmic Mach Number: Comparison from Observations, Numerical Simulations and Nonlinear Predictions

    CERN Document Server

    Agarwal, Shankar

    2013-01-01

    We calculate the cosmic Mach number M - the ratio of the bulk flow of the velocity field on scale R to the velocity dispersion within regions of scale R. M is effectively a measure of the ratio of large-scale to small-scale power and can be a useful tool to constrain the cosmological parameter space. Using a compilation of existing peculiar velocity surveys, we calculate M and compare it to that estimated from mock catalogues extracted from the LasDamas (a LCDM cosmology) numerical simulations. We find agreement with expectations for the LasDamas cosmology at ~ 1.5 sigma CL. We also show that our Mach estimates for the mocks are not biased by selection function effects. To achieve this, we extract dense and nearly-isotropic distributions using Gaussian selection functions with the same width as the characteristic depth of the real surveys, and show that the Mach numbers estimated from the mocks are very similar to the values based on Gaussian profiles of the corresponding widths. We discuss the importance of ...

  20. A tabulation of pipe length to diameter ratios as a function of Mach number and pressure ratios for compressible flow

    Science.gov (United States)

    Dixon, G. V.; Barringer, S. R.; Gray, C. E.; Leatherman, A. D.

    1975-01-01

    Computer programs and resulting tabulations are presented of pipeline length-to-diameter ratios as a function of Mach number and pressure ratios for compressible flow. The tabulations are applicable to air, nitrogen, oxygen, and hydrogen for compressible isothermal flow with friction and compressible adiabatic flow with friction. Also included are equations for the determination of weight flow. The tabulations presented cover a wider range of Mach numbers for choked, adiabatic flow than available from commonly used engineering literature. Additional information presented, but which is not available from this literature, is unchoked, adiabatic flow over a wide range of Mach numbers, and choked and unchoked, isothermal flow for a wide range of Mach numbers.

  1. Mach Number Dependence of Turbulent Magnetic Field Amplification: Solenoidal versus Compressive Flows

    CERN Document Server

    Federrath, Christoph; Schober, Jennifer; Banerjee, Robi; Klessen, Ralf S; Schleicher, Dominik R G; 10.1103/PhysRevLett.107.114504

    2011-01-01

    We study the growth rate and saturation level of the turbulent dynamo in magnetohydrodynamical simulations of turbulence, driven with solenoidal (divergence-free) or compressive (curl-free) forcing. For models with Mach numbers ranging from 0.02 to 20, we find significantly different magnetic field geometries, amplification rates, and saturation levels, decreasing strongly at the transition from subsonic to supersonic flows, due to the development of shocks. Both extreme types of turbulent forcing drive the dynamo, but solenoidal forcing is more efficient, because it produces more vorticity.

  2. The Experimental Measurement of Aerodynamic Heating About Complex Shapes at Supersonic Mach Numbers

    Science.gov (United States)

    Neumann, Richard D.; Freeman, Delma C.

    2011-01-01

    In 2008 a wind tunnel test program was implemented to update the experimental data available for predicting protuberance heating at supersonic Mach numbers. For this test the Langley Unitary Wind Tunnel was also used. The significant differences for this current test were the advances in the state-of-the-art in model design, fabrication techniques, instrumentation and data acquisition capabilities. This current paper provides a focused discussion of the results of an in depth analysis of unique measurements of recovery temperature obtained during the test.

  3. Effect of winglets on a first-generation jet transport wing. 3: Pressure and spanwise load distributions for a semispan model at Mach 0.30. [in the Langley 8 ft transonic tunnel

    Science.gov (United States)

    Montoya, L. C.; Jacobs, P. F.; Flechner, S. G.

    1977-01-01

    Pressure and spanwise load distributions on a first-generation jet transport semispan model at a Mach number of 0.30 are given for the basic wing and for configurations with an upper winglet only, upper and lower winglets, and a simple wing-tip extension. To simulate second-segment-climb lift conditions, leading- and/or trailing-edge flaps were added to some configurations.

  4. Convective heat transport in stratified atmospheres at low and high Mach number

    CERN Document Server

    Anders, Evan H

    2016-01-01

    Convection in astrophysical systems is stratified and often occurs at high Rayleigh number (Ra) and low Mach number (Ma). Here we study stratified convection in the context of plane-parallel, polytropically stratified atmospheres. We hold the density stratification ($n_{\\rho}$) and Prandtl number (Pr) constant while varying Ma and Ra to determine the behavior of the Nusselt number (Nu), which quantifies the efficiency of convective heat transport. As Ra increases and $\\text{Ma} \\rightarrow 1$, a scaling of Nu $\\propto$ Ra$^{0.45}$ is observed. As Ra increases to a regime where Ma $\\geq 1$, this scaling gives way to a weaker Nu $\\propto$ Ra$^{0.19}$. In the regime of Ma $\\ll 1$, a consistent Nu $\\propto$ Ra$^{0.31}$ is retrieved, reminiscent of the Nu $\\propto$ Ra$^{2/7}$ seen in Rayleigh-B\\'{e}nard convection.

  5. Effects of nonuniform Mach-number entrance on scramjet nozzle flowfield and performance

    Science.gov (United States)

    Zhang, Pu; Xu, Jinglei; Quan, Zhibin; Mo, Jianwei

    2016-12-01

    Considering the non-uniformities of nozzle entrance influenced by the upstream, the effects of nonuniform Mach-number coupled with shock and expansion-wave on the flowfield and performances of single expansion ramp nozzle (SERN) are numerically studied using Reynolds-Averaged Navier-Stokes equations. The adopted Reynolds-averaged Navier-Stokes methodology is validated by comparing the numerical results with the cold experimental data, and the average method used in this paper is discussed. Uniform and nonuniform facility nozzles are designed to generate different Mach-number profile for the inlet of SERN, which is direct-connected with different facility nozzle, and the whole flowfield is simulated. Because of the coupling of shock and expansion-wave, flow direction of nonuniform SERN entrance is distorted. Compared with Mach contour of uniform case, the line is more curved for coupling shock-wave entrance (SWE) case, and flatter for the coupling expansion-wave entrance (EWE) case. Wall pressure distribution of SWE case appears rising region, whereas decreases like stairs of EWE case. The numerical results reveal that the coupled shock and expansion-wave play significant roles on nozzle performances. Compared with the SERN performances of uniform entrance case at the same work conditions, the thrust of nonuniform entrance cases reduces by 3-6%, pitch moment decreases by 2.5-7%. The negative lift presents an incremental trend with EWE while the situation is the opposite with SWE. These results confirm that considering the entrance flow parameter nonuniformities of a scramjet nozzle coupled with shock or expansion-wave from the upstream is necessary.

  6. Specularly reflected He sup 2+ at high Mach number quasi-parallel shocks

    Energy Technology Data Exchange (ETDEWEB)

    Fuselier, S.A.; Lennartsson, O.W. (Lockheed Palo Alto Research Lab., CA (United States)); Thomsen, M.F. (Los Alamos National Lab., NM (United States)); Russell, C.T. (Univ. of California, Los Angeles (United States))

    1990-04-01

    Upstream from the Earth's quasi-parallel bow shock, the Lockheed Plasma Composition Experiment on ISEE 1 often observes two types of suprathermal He{sup 2+} distributions. Always present to some degree is an energetic (several keV/eto 17.4 keV/e, the maximum energy of the detector) diffuse He{sup 2+} distribution. Sometimes, apparently when the Alfven Mach number, M{sub A}, is high enough and the spacecraft is near the shock (within a few minutes of a crossing), a second type of suprathermal He{sup 2+} distribution is also observed. This nongyrotropic, gyrating He{sup 2+} distribution has velocity components parallel and perpendicular to the magnetic field that are consistent with near-specular reflection of a portion of the incident solar wind He{sup 2+} distribution off the shock. Specularly reflected and diffuse proton distributions are associated with these gyrating He{sup 2+} distributions. The presence of these gyrating He{sup 2+} distributions suggests that specular reflection is controlled primarily by magnetic forces in high Mach number quasi-parallel shocks and that these distributions may be a seed population for more energetic diffuse He{sup 2+} distributions.

  7. The influence of incident shock Mach number on radial incident shock wave focusing

    Directory of Open Access Journals (Sweden)

    Xin Chen

    2016-04-01

    Full Text Available Experiments and numerical simulations were carried out to investigate radial incident shock focusing on a test section where the planar incident shock wave was divided into two identical ones. A conventional shock tube was used to generate the planar shock. Incident shock Mach number of 1.51, 1.84 and 2.18 were tested. CCD camera was used to obtain the schlieren photos of the flow field. Third-order, three step strong-stability-preserving (SSP Runge-Kutta method, third-order weighed essential non-oscillation (WENO scheme and adaptive mesh refinement (AMR algorithm were adopted to simulate the complicated flow fields characterized by shock wave interaction. Good agreement between experimental and numerical results was observed. Complex shock wave configurations and interactions (such as shock reflection, shock-vortex interaction and shock focusing were observed in both the experiments and numerical results. Some new features were observed and discussed. The differences of structure of flow field and the variation trends of pressure were compared and analyzed under the condition of different Mach numbers while shock wave focusing.

  8. The density variance - Mach number relation in isothermal and non-isothermal adiabatic turbulence

    CERN Document Server

    Nolan, Chris A; Sutherland, Ralph S

    2015-01-01

    The density variance - Mach number relation of the turbulent interstellar medium is relevant for theoretical models of the star formation rate, efficiency, and the initial mass function of stars. Here we use high-resolution hydrodynamical simulations with grid resolutions of up to 1024^3 cells to model compressible turbulence in a regime similar to the observed interstellar medium. We use Fyris Alpha, a shock-capturing code employing a high-order Godunov scheme to track large density variations induced by shocks. We investigate the robustness of the standard relation between the logarithmic density variance (sigma_s^2) and the sonic Mach number (M) of isothermal interstellar turbulence, in the non-isothermal regime. Specifically, we test ideal gases with diatomic molecular (gamma = 7/5) and monatomic (gamma = 5/3) adiabatic indices. A periodic cube of gas is stirred with purely solenoidal forcing at low wavenumbers, leading to a fully-developed turbulent medium. We find that as the gas heats in adiabatic comp...

  9. A NOVEL SLIGHTLY COMPRESSIBLE MODEL FOR LOW MACH NUMBER PERFECT GAS FLOW CALCULATION

    Institute of Scientific and Technical Information of China (English)

    邓小刚; 庄逢甘

    2002-01-01

    By analyzing the characteristics of low Mach number perfect gas flows, a novel Slightly Compressible Model (SCM) for low Mach number perfect gas flows is derived. In view of numerical calculations, this model is proved very efficient,for it is kept within the p-v frame but does not have to satisfy the time consuming divergence-free condition in order to get the incompressible Navier-Stokes equation solutions. Writing the equations in the form of conservation laws, we have derived the characteristic systems which are necessary for numerical calculations. A cellcentered finite-volume method with flux difference upwind-biased schemes is used for the equation solutions and a new Exact Newton Relaxation (ENR) implicit method is developed. Various computed results are presented to validate the present model.Laminar flow solutions over a circular cylinder with wake developing and vortex shedding are presented. Results for inviscid flow over a sphere are compared in excellent agreement with the exact analytic incompressible solution. Three-dimensional viscous flow solutions over sphere and prolate spheroid are also calculated and compared well with experiments and other incompressible solutions. Finally, good convergent performaces are shown for sphere viscous flows.

  10. Airfoil Aeroelastic Flutter Analysis Based on Modified Leishman-Beddoes Model at Low Mach Number

    Institute of Scientific and Technical Information of China (English)

    SHAO Song; ZHU Qinghua; ZHANG Chenglin; NI Xianping

    2011-01-01

    Based on modified Leishman-Beddoes(L-B)state space model at low Mach number(lower than 0.3),the airfoil aeroelastic system is presented in this paper.The main modifications for L-B model include a new dynamic stall criterion and revisions of normal force and pitching moment coefficient.The bifurcation diagrams,the limit cycle oscillation (LCO)phase plane plots and the time domain response figures are applied to investigating the stall flutter bifurcation behavior of airfoil aeroelastic systems with symmetry or asymmetry.It is shown that the symmetric periodical oscillation happens after subcritical bifurcation caused by dynamic stall,and the asymmetric periodical oscillation,which is caused by the interaction of dynamic stall and static divergence,only happens in the airfoil aeroelastic system with asymmetry.Validations of the modified L-B model and the airfoil aeroelastic system are presented with the experimental airload data of NACA0012 and OA207 and experimental stall flutter data of NACA0012 respectively.Results demonstrate that the airfoil aeroelastic system presented in this paper is effective and accurate,which can be applied to the investigation of airfoil stall flutter at low Mach number.

  11. Flow and Acoustic Features of a Mach 0.9 Free Jet Using High-Frequency Excitation

    Science.gov (United States)

    Upadhyay, Puja; Alvi, Farrukh

    2016-11-01

    This study focuses on active control of a Mach 0.9 (ReD = 6 ×105) free jet using high-frequency excitation for noise reduction. Eight resonance-enhanced microjet actuators with nominal frequencies of 25 kHz (StD 2 . 2) are used to excite the shear layer at frequencies that are approximately an order of magnitude higher than the jet preferred frequency. The influence of control on mean and turbulent characteristics of the jet is studied using Particle Image Velocimetry. Additionally, far-field acoustic measurements are acquired to estimate the effect of pulsed injection on noise characteristics of the jet. Flow field measurements revealed that strong streamwise vortex pairs, formed as a result of control, result in a significantly thicker initial shear layer. This excited shear layer is also prominently undulated, resulting in a modified initial velocity profile. Also, the distribution of turbulent kinetic energy revealed that forcing results in increased turbulence levels for near-injection regions, followed by a global reduction for all downstream locations. Far-field acoustic measurements showed noise reductions at low to moderate frequencies. Additionally, an increase in high-frequency noise, mostly dominated by the actuators' resonant noise, was observed. AFOSR and ARO.

  12. Numerical analysis of jet impingement heat transfer at high jet Reynolds number and large temperature difference

    DEFF Research Database (Denmark)

    Jensen, Michael Vincent; Walther, Jens Honore

    2013-01-01

    was investigated at a jet Reynolds number of 1.66 × 105 and a temperature difference between jet inlet and wall of 1600 K. The focus was on the convective heat transfer contribution as thermal radiation was not included in the investigation. A considerable influence of the turbulence intensity at the jet inlet......Jet impingement heat transfer from a round gas jet to a flat wall was investigated numerically for a ratio of 2 between the jet inlet to wall distance and the jet inlet diameter. The influence of turbulence intensity at the jet inlet and choice of turbulence model on the wall heat transfer...... was observed in the stagnation region, where the wall heat flux increased by a factor of almost 3 when increasing the turbulence intensity from 1.5% to 10%. The choice of turbulence model also influenced the heat transfer predictions significantly, especially in the stagnation region, where differences of up...

  13. Semi-implicit iterative methods for low Mach number turbulent reacting flows: Operator splitting versus approximate factorization

    Science.gov (United States)

    MacArt, Jonathan F.; Mueller, Michael E.

    2016-12-01

    Two formally second-order accurate, semi-implicit, iterative methods for the solution of scalar transport-reaction equations are developed for Direct Numerical Simulation (DNS) of low Mach number turbulent reacting flows. The first is a monolithic scheme based on a linearly implicit midpoint method utilizing an approximately factorized exact Jacobian of the transport and reaction operators. The second is an operator splitting scheme based on the Strang splitting approach. The accuracy properties of these schemes, as well as their stability, cost, and the effect of chemical mechanism size on relative performance, are assessed in two one-dimensional test configurations comprising an unsteady premixed flame and an unsteady nonpremixed ignition, which have substantially different Damköhler numbers and relative stiffness of transport to chemistry. All schemes demonstrate their formal order of accuracy in the fully-coupled convergence tests. Compared to a (non-)factorized scheme with a diagonal approximation to the chemical Jacobian, the monolithic, factorized scheme using the exact chemical Jacobian is shown to be both more stable and more economical. This is due to an improved convergence rate of the iterative procedure, and the difference between the two schemes in convergence rate grows as the time step increases. The stability properties of the Strang splitting scheme are demonstrated to outpace those of Lie splitting and monolithic schemes in simulations at high Damköhler number; however, in this regime, the monolithic scheme using the approximately factorized exact Jacobian is found to be the most economical at practical CFL numbers. The performance of the schemes is further evaluated in a simulation of a three-dimensional, spatially evolving, turbulent nonpremixed planar jet flame.

  14. Opacity Broadening of $^{13}$CO Linewidths and its Effect on the Variance-Sonic Mach Number Relation

    CERN Document Server

    Correia, Caio; Lazarian, Alex; Ossenkopf, Volker; Stutzki, Jürgen; Kainulainen, Jouni; Kowal, Grzegorz; de Medeiros, José Renan

    2014-01-01

    We study how the estimation of the sonic Mach number ($M_s$) from $^{13}$CO linewidths relates to the actual 3D sonic Mach number. For this purpose we analyze MHD simulations which include post-processing to take radiative transfer effects into account. As expected, we find very good agreement between the linewidth estimated sonic Mach number and the actual sonic Mach number of the simulations for optically thin tracers. However, we find that opacity broadening causes $M_s$ to be overestimated by a factor of ~ 1.16 - 1.3 when calculated from optically thick $^{13}$CO lines. We also find that there is a dependency on the magnetic field: super-Alfv\\'enic turbulence shows increased line broadening as compared with sub-Alfv\\'enic turbulence for all values of optical depth for supersonic turbulence. Our results have implications for the observationally derived sonic Mach number--density standard deviation ($\\sigma_{\\rho/}$) relationship, $\\sigma^2_{\\rho/}=b^2M_s^2$, and the related column density standard deviatio...

  15. Parametric investigation of single-expansion-ramp nozzles at Mach numbers from 0.60 to 1.20

    Science.gov (United States)

    Capone, Francis J.; Re, Richard J.; Bare, E. Ann

    1992-01-01

    An investigation was conducted in the Langley 16-Foot Transonic Tunnel to determine the effects of varying six nozzle geometric parameters on the internal and aeropropulsive performance characteristics of single-expansion-ramp nozzles. This investigation was conducted at Mach numbers from 0.60 to 1.20, nozzle pressure ratios from 1.5 to 12, and angles of attack of 0 deg +/- 6 deg. Maximum aeropropulsive performance at a particular Mach number was highly dependent on the operating nozzle pressure ratio. For example, as the nozzle upper ramp length or angle increased, some nozzles had higher performance at a Mach number of 0.90 because of the nozzle design pressure was the same as the operating pressure ratio. Thus, selection of the various nozzle geometric parameters should be based on the mission requirements of the aircraft. A combination of large upper ramp and large lower flap boattail angles produced greater nozzle drag coefficients at Mach number greater than 0.80, primarily from shock-induced separation on the lower flap of the nozzle. A static conditions, the convergent nozzle had high and nearly constant values of resultant thrust ratio over the entire range of nozzle pressure ratios tested. However, these nozzles had much lower aeropropulsive performance than the convergent-divergent nozzle at Mach number greater than 0.60.

  16. Tests of Full-Scale Helicopter Rotors at High Advancing Tip Mach Numbers and Advance Ratios

    Science.gov (United States)

    Biggers, James C.; McCloud, John L., III; Stroub, Robert H.

    2015-01-01

    As a continuation of the studies of reference 1, three full-scale helicopter rotors have been tested in the Ames Research Center 40- by SO-foot wind tunnel. All three of them were two-bladed, teetering rotors. One of the rotors incorporated the NACA 0012 airfoil section over the entire length of the blade. This rotor was tested at advance ratios up to 1.05. Both of the other rotors were tapered in thickness and incorporated leading-edge camber over the outer 20 percent of the blade radius. The larger of these rotors was tested at advancing tip Mach numbers up to 1.02. Data were obtained for a wide range of lift and propulsive force, and are presented without discussion.

  17. On the proper Mach number and ratio of specific heats for modeling the Venus bow shock

    Science.gov (United States)

    Tatrallyay, M.; Russell, C. T.; Luhmann, J. G.; Barnes, A.; Mihalov, J. D.

    1984-01-01

    Observational data from the Pioneer Venus Orbiter are used to investigate the physical characteristics of the Venus bow shock, and to explore some general issues in the numerical simulation of collisionless shocks. It is found that since equations from gas-dynamic (GD) models of the Venus shock cannot in general replace MHD equations, it is not immediately obvious what the optimum way is to describe the desired MHD situation with a GD code. Test case analysis shows that for quasi-perpendicular shocks it is safest to use the magnetospheric Mach number as an input to the GD code. It is also shown that when comparing GD predicted temperatures with MHD predicted temperatures total energy should be compared since the magnetic energy density provides a significant fraction of the internal energy of the MHD fluid for typical solar wind parameters. Some conclusions are also offered on the properties of the terrestrial shock.

  18. Relativistic Electron Shock Drift Acceleration in Low Mach Number Galaxy Cluster Shocks

    CERN Document Server

    Matsukiyo, Shuichi; Yamazaki, Ryo; Umeda, Takayuki

    2011-01-01

    An extreme case of electron shock drift acceleration in low Mach number collisionless shocks is investigated as a plausible mechanism of initial acceleration of relativistic electrons in large-scale shocks in galaxy clusters where upstream plasma temperature is of the order of 10 keV and a degree of magnetization is not too small. One-dimensional electromagnetic full particle simulations reveal that, even though a shock is rather moderate, a part of thermal incoming electrons are accelerated and reflected through relativistic shock drift acceleration and form a local nonthermal population just upstream of the shock. The accelerated electrons can self-generate local coherent waves and further be back-scattered toward the shock by those waves. This may be a scenario for the first stage of the electron shock acceleration occurring at the large-scale shocks in galaxy clusters such as CIZA J2242.8+5301 which has well defined radio relics.

  19. Low-Mach-number turbulence in interstellar gas revealed by radio polarization gradients

    CERN Document Server

    Gaensler, Bryan M; Burkhart, Blakesley; Newton-McGee, Katherine J; Ekers, Ronald D; Lazarian, Alex; McClure-Griffiths, Naomi M; Robishaw, Timothy; Dickey, John M; Green, Anne J; 10.1038/nature10446

    2011-01-01

    The interstellar medium of the Milky Way is multi-phase, magnetized and turbulent. Turbulence in the interstellar medium produces a global cascade of random gas motions, spanning scales ranging from 100 parsecs to 1000 kilometres. Fundamental parameters of interstellar turbulence such as the sonic Mach number (the speed of sound) have been difficult to determine because observations have lacked the sensitivity and resolution to directly image the small-scale structure associated with turbulent motion. Observations of linear polarization and Faraday rotation in radio emission from the Milky Way have identified unusual polarized structures that often have no counterparts in the total radiation intensity or at other wavelengths, and whose physical significance has been unclear. Here we report that the gradient of the Stokes vector (Q,U), where Q and U are parameters describing the polarization state of radiation, provides an image of magnetized turbulence in diffuse ionized gas, manifested as a complex filamenta...

  20. On the Relevance of Low-Mach-Number Asymptotics in Thermodynamics of Heterogeneous, Immiscible Mixtures

    Science.gov (United States)

    Varsakelis, Christos; Papalexandris, Miltiadis V.

    2017-01-01

    A conundrum in non-equilibrium thermodynamics of heterogeneous mixtures with microstructure concerns the selection of thermodynamic currents and forces in the entropy production rate from the multitude of available options. The objective of this article is to demonstrate that the low-Mach-number approximation can narrow down this ambiguity. More specifically, by postulating that the post-constitutive equations are well behaved with respect to this perturbation analysis we assert that thermal non-equilibrium should be chosen as an independent force even if this requires the explicit manipulation of the entropy inequality. According to our analysis, alternative choices result in post-constitutive equations; the incompressible limit of which gives rise to questionable predictions.

  1. Electron acceleration in a nonrelativistic shock with very high Alfv\\'en Mach number

    CERN Document Server

    Matsumoto, Y; Hoshino, M

    2013-01-01

    Electron acceleration associated with various plasma kinetic instabilities in a nonrelativistic, very-high-Alfv\\'en Mach-number ($M_A \\sim 45$) shock is revealed by means of a two-dimensional fully kinetic PIC simulation. Electromagnetic (ion Weibel) and electrostatic (ion-acoustic and Buneman) instabilities are strongly activated at the same time in different regions of the two-dimensional shock structure. Relativistic electrons are quickly produced predominantly by the shock surfing mechanism with the Buneman instability at the leading edge of the foot. The energy spectrum has a high-energy tail exceeding the upstream ion kinetic energy accompanying the main thermal population. This gives a favorable condition for the ion acoustic instability at the shock front, which in turn results in additional energization. The large-amplitude ion Weibel instability generates current sheets in the foot, implying another dissipation mechanism via magnetic reconnection in a three-dimensional shock structure in the very-hi...

  2. The formation of interstellar jets

    Science.gov (United States)

    Tenorio-Tagle, G.; Canto, J.; Rozyczka, M.

    1988-01-01

    The formation of interstellar jets by convergence of supersonic conical flows and the further dynamical evolution of these jets are investigated theoretically by means of numerical simulations. The results are presented in extensive graphs and characterized in detail. Strong radiative cooling is shown to result in jets with Mach numbers 2.5-29 propagating to lengths 50-100 times their original widths, with condensation of swept-up interstellar matter at Mach 5 or greater. The characteristics of so-called molecular outflows are well reproduced by the simulations of low-Mach-number and quasi-adiabatic jets.

  3. Effects of the Mach number on the evolution of vortex-surface fields in compressible Taylor-Green flows

    Science.gov (United States)

    Peng, Naifu; Yang, Yue

    2016-11-01

    We investigate the evolution of vortex-surface fields (VSFs) in viscous compressible Taylor-Green flows. The VSF is applied to the direct numerical simulation of the Taylor-Green flows at a range of Mach numbers from Ma = 0 . 6 to Ma = 2 . 2 for characterizing the Mach-number effects on evolving vortical structures. We find that the dilatation and baroclinic force strongly influence the geometry of vortex surfaces and the energy dissipation rate in the transitional stage. The vortex tubes in compressible flows are less curved than those in incompressible flows, and the maximum dissipation rate occurs earlier in high-Mach-number flows perhaps owing to the conversion of kinetic energy into heat. Moreover, the relations between the evolutionary geometry of vortical structures and flow statistics are discussed. This work has been supported in part by the National Natural Science Foundation of China (Grant Nos. 11522215 and 11521091), and the Thousand Young Talents Program of China.

  4. Generation and Evolution of High-Mach-Number Laser-Driven Magnetized Collisionless Shocks in the Laboratory

    Science.gov (United States)

    Schaeffer, D. B.; Fox, W.; Haberberger, D.; Fiksel, G.; Bhattacharjee, A.; Barnak, D. H.; Hu, S. X.; Germaschewski, K.

    2017-07-01

    We present the first laboratory generation of high-Mach-number magnetized collisionless shocks created through the interaction of an expanding laser-driven plasma with a magnetized ambient plasma. Time-resolved, two-dimensional imaging of plasma density and magnetic fields shows the formation and evolution of a supercritical shock propagating at magnetosonic Mach number Mms≈12 . Particle-in-cell simulations constrained by experimental data further detail the shock formation and separate dynamics of the multi-ion-species ambient plasma. The results show that the shocks form on time scales as fast as one gyroperiod, aided by the efficient coupling of energy, and the generation of a magnetic barrier between the piston and ambient ions. The development of this experimental platform complements present remote sensing and spacecraft observations, and opens the way for controlled laboratory investigations of high-Mach number collisionless shocks, including the mechanisms and efficiency of particle acceleration.

  5. Analysis of gas turbine engines using water and oxygen injection to achieve high Mach numbers and high thrust

    Science.gov (United States)

    Henneberry, Hugh M.; Snyder, Christopher A.

    1993-01-01

    An analysis of gas turbine engines using water and oxygen injection to enhance performance by increasing Mach number capability and by increasing thrust is described. The liquids are injected, either separately or together, into the subsonic diffuser ahead of the engine compressor. A turbojet engine and a mixed-flow turbofan engine (MFTF) are examined, and in pursuit of maximum thrust, both engines are fitted with afterburners. The results indicate that water injection alone can extend the performance envelope of both engine types by one and one-half Mach numbers at which point water-air ratios reach 17 or 18 percent and liquid specific impulse is reduced to some 390 to 470 seconds, a level about equal to the impulse of a high energy rocket engine. The envelope can be further extended, but only with increasing sacrifices in liquid specific impulse. Oxygen-airflow ratios as high as 15 percent were investigated for increasing thrust. Using 15 percent oxygen in combination with water injection at high supersonic Mach numbers resulted in thrust augmentation as high as 76 percent without any significant decrease in liquid specific impulse. The stoichiometric afterburner exit temperature increased with increasing oxygen flow, reaching 4822 deg R in the turbojet engine at a Mach number of 3.5. At the transonic Mach number of 0.95 where no water injection is needed, an oxygen-air ratio of 15 percent increased thrust by some 55 percent in both engines, along with a decrease in liquid specific impulse of 62 percent. Afterburner temperature was approximately 4700 deg R at this high thrust condition. Water and/or oxygen injection are simple and straightforward strategies to improve engine performance and they will add little to engine weight. However, if large Mach number and thrust increases are required, liquid flows become significant, so that operation at these conditions will necessarily be of short duration.

  6. Effect of mass-velocity on liquid jet atomization in Mach 1 gasflow

    Science.gov (United States)

    Ingebo, Robert D.

    Interacting two-phase flow in four differently sized pneumatic two-fluid atomizers was investigated to determine the effect of gas mass-velocity on the Sauter mean diameter of sprays produced by small diameter liquid jets breaking up in high velocity gas flow. Tests were conducted primarily in the acceleration-wave regime for liquid jet atomization, where it was found that the loss of droplets due to vaporization had a marked effect on drop size measurements. A scattered-light scanner, developed at NASA Lewis Research Center, was used to measure the Sauter mean diameter, D sub 32, which was correlated with nitrogen gas mass-velocity to give the following expression: D (sup -1)(sub 32) = 11.7(rho (sub n) V (sub n)) (sup 1.33). The exponent 1.33 for the gas mass-velocity is identical to that predicted by atomization theory for liquid jet breakup in the acceleration-wave regime.

  7. Background-oriented schlieren imaging of flow around a circular cylinder at low Mach numbers

    Science.gov (United States)

    Stadler, Hannes; Bauknecht, André; Siegrist, Silvan; Flesch, Robert; Wolf, C. Christian; van Hinsberg, Nils; Jacobs, Markus

    2017-09-01

    The background-oriented schlieren (BOS) imaging method has, for the first time, been applied in the investigation of the flow around a circular cylinder at low Mach numbers (Mnumbers of 0.1× 10^6 ≤ Re ≤ 6.0× 10^6. Even at ambient pressure and the lowest Reynolds number investigated, density gradients associated with the flow around the cylinder were recorded. The signal-to-noise ratio of the evaluated gradient field improved with increasing stagnation pressure. The separation point could easily be identified with this non-intrusive measurement technique and corresponds well to simultaneous surface pressure measurements. The resulting displacement field is in principle of qualitative nature as the observation angle was parallel to the cylinder axis only in a single point of the recorded images. However, it has been possible to integrate the density field along the surface of the cylinder by successive imaging at incremental angular positions around the cylinder. This density distribution has been found to agree well with the pressure measurements and with potential theory where appropriate.

  8. Aerodynamic Characteristics of a Revised Target Drone Vehicle at Mach Numbers from 1.60 to 2.86

    Science.gov (United States)

    Blair, A. B., Jr.; Babb, C. Donald

    1968-01-01

    An investigation has been conducted in the Langley Unitary Plan wind tunnel to determine the aerodynamic characteristics of a revised target drone vehicle through a Mach number range from 1.60 to 2.86. The vehicle had canard surfaces and a swept clipped-delta wing with twin tip-mounted vertical tails.

  9. Rescaling of the Roe scheme in low Mach-number flow regions

    Science.gov (United States)

    Boniface, Jean-Christophe

    2017-01-01

    A rescaled matrix-valued dissipation is reformulated for the Roe scheme in low Mach-number flow regions from a well known family of local low-speed preconditioners popularized by Turkel. The rescaling is obtained explicitly by suppressing the pre-multiplication of the preconditioner with the time derivative and by deriving the full set of eigenspaces of the Roe-Turkel matrix dissipation. This formulation preserves the time consistency and does not require to reformulate the boundary conditions based on the characteristic theory. The dissipation matrix achieves by construction the proper scaling in low-speed flow regions and returns the original Roe scheme at the sonic line. We find that all eigenvalues are nonnegative in the subsonic regime. However, it becomes necessary to formulate a stringent stability condition to the explicit scheme in the low-speed flow regions based on the spectral radius of the rescaled matrix dissipation. With the large disparity of the eigenvalues in the dissipation matrix, this formulation raises a two-timescale problem for the acoustic waves, which is circumvented for a steady-state iterative procedure by the development of a robust implicit characteristic matrix time-stepping scheme. The behaviour of the modified eigenvalues in the incompressible limit and at the sonic line also suggests applying the entropy correction carefully, especially for complex non-linear flows.

  10. Anomalous flow deflection at planetary bow shocks in the low Alfven Mach number regime

    Science.gov (United States)

    Nishino, Masaki N.; Fujimoto, Masaki; Tai, Phan-Duc; Mukai, Toshifumi; Saito, Yoshifumi; Kuznetsova, Masha M.; Rastaetter, Lutz

    A planetary magnetosphere is an obstacle to the super-sonic solar wind and the bow shock is formed in the front-side of it. In ordinary hydro-dynamics, the flow decelerated at the shock is diverted around the obstacle symmetrically about the planet-Sun line, which is indeed observed in the magnetosheath most of the time. Here we show a case under a very low density solar wind in which duskward flow was observed in the dawnside magnetosheath of the Earth's magnetosphere. A Rankine-Hugoniot test across the bow shock shows that the magnetic effect is crucial for this "wrong flow" to appear. A full three-dimensional Magneto- Hydro-Dynamics (MHD) simulation of the situation in this previously unexplored parameter regime is also performed. It is illustrated that in addition to the "wrong flow" feature, various peculiar characteristics appear in the global picture of the MHD flow interaction with the obstacle. The magnetic effect at the bow shock should become more conspicuously around the Mercury's magnetosphere, because stronger interplanetary magnetic field and slower solar wind around the Mercury let the Alfven Mach number low. Resultant strong deformation of the magnetosphere induced by the "wrong flow" will cause more complex interaction between the solar wind and the Mercury.

  11. Aeroacoustics of compressible subsonic jets: Direct Numerical Simulation of a low Reynolds number subsonic jet and the associated sound field

    NARCIS (Netherlands)

    Moore, P.D.

    2009-01-01

    Jet noise is an extensively studied phenomenon since the deployment of the first civil jet aircraft more than 50 years ago. Jet noise makes up a considerable portion of the total noise of jet aircraft, and the expansion of the numbers of airplanes and airports has only been possible by keeping the

  12. Effects of excitation around jet preferred mode Strouhal number in high-speed jets

    Science.gov (United States)

    Kuo, Ching-Wen; Cluts, Jordan; Samimy, Mo

    2017-04-01

    It has been widely reported in the literature that the jet preferred mode Strouhal number varies over a large range of 0.2-0.6, depending upon the facility where the measurement is made as well as the measurement techniques and the location in the jet plume where the measurement is taken. This study investigates this wide variation and potential explanations for it. Active flow control is used to show that the jet is receptive to excitation over a large range of Strouhal numbers and azimuthal modes. The wide variation in the preferred mode Strouhal number is shown to be tightly linked to the evolution, spacing, and scale of the coherent flow structures, which dominate the jet shear layer's development. The low-end of the range is determined by the minimum Strouhal number at which structures begin to interact with one another in the jet plume. Below this range, structures have no significant effect on the plume's statistical properties. For Strouhal numbers at the high-end of the range, the development of coherent flow structures shifts upstream toward the nozzle exit and the structures disintegrate earlier in the jet plume. The earlier development and disintegration prevent these structures from strongly impacting the entire flowfield. The results imply that upstream perturbations in the flow present in various facilities could be responsible for the variations in the measured jet preferred mode Strouhal number. Experimental results from schlieren imaging and near- and far-field microphone measurements are used to investigate the preferred mode Strouhal number across this range.

  13. Visualization of synthetic jets at higher Stokes numbers

    Directory of Open Access Journals (Sweden)

    Trávníček Zdeněk

    2012-04-01

    Full Text Available Visualization of synthetic jets at higher Stokes numbers (S = 90 and 127 by the phase-locked smoke-wire technique is presented and discussed. The working fluid is air. The Reynolds numbers are quantified using hot-wire anemometry. Although our method of visualization essentially provides only qualitative results, the present study also demonstrates some quantitative results, namely the behavior of the zero-net-mass-flux jet near its critical stage. Visualization of the sub-critical stage is also shown.

  14. Convective heat transfer studies at high temperatures with pressure gradient for inlet flow Mach number of 0.45

    Science.gov (United States)

    Pedrosa, A. C. F.; Nagamatsu, H. T.; Hinckel, J. A.

    1984-01-01

    Heat transfer measurements were determined for a flat plate with and without pressure gradient for various free stream temperatures, wall temperature ratios, and Reynolds numbers for an inlet flow Mach number of 0.45, which is a representative inlet Mach number for gas turbine rotor blades. A shock tube generated the high temperature and pressure air flow, and a variable geometry test section was used to produce inlet flow Mach number of 0.45 and accelerate the flow over the plate to sonic velocity. Thin-film platinum heat gages recorded the local heat flux for laminar, transition, and turbulent boundary layers. The free stream temperatures varied from 611 R (339 K) to 3840 R (2133 K) for a T(w)/T(r,g) temperature ratio of 0.87 to 0.14. The Reynolds number over the heat gages varied from 3000 to 690,000. The experimental heat transfer data were correlated with laminar and turbulent boundary layer theories for the range of temperatures and Reynolds numbers and the transition phenomenon was examined.

  15. Experimental Investigation of a Hypersonic Glider Configuration at a Mach Number of 6 and at Full-Scale Reynolds Numbers

    Science.gov (United States)

    Seiff, Alvin; Wilkins, Max E.

    1961-01-01

    The aerodynamic characteristics of a hypersonic glider configuration, consisting of a slender ogive cylinder with three highly swept wings, spaced 120 apart, with the wing chord equal to the body length, were investigated experimentally at a Mach number of 6 and at Reynolds numbers from 6 to 16 million. The objectives were to evaluate the theoretical procedures which had been used to estimate the performance of the glider, and also to evaluate the characteristics of the glider itself. A principal question concerned the viscous drag at full-scale Reynolds number, there being a large difference between the total drags for laminar and turbulent boundary layers. It was found that the procedures which had been applied for estimating minimum drag, drag due to lift, lift curve slope, and center of pressure were generally accurate within 10 percent. An important exception was the non-linear contribution to the lift coefficient which had been represented by a Newtonian term. Experimentally, the lift curve was nearly linear within the angle-of-attack range up to 10 deg. This error affected the estimated lift-drag ratio. The minimum drag measurements indicated that substantial amounts of turbulent boundary layer were present on all models tested, over a range of surface roughness from 5 microinches maximum to 200 microinches maximum. In fact, the minimum drag coefficients were nearly independent of the surface smoothness and fell between the estimated values for turbulent and laminar boundary layers, but closer to the turbulent value. At the highest test Reynolds numbers and at large angles of attack, there was some indication that the skin friction of the rough models was being increased by the surface roughness. At full-scale Reynolds number, the maximum lift-drag ratio with a leading edge of practical diameter (from the standpoint of leading-edge heating) was 4.0. The configuration was statically and dynamically stable in pitch and yaw, and the center of pressure was less

  16. Generation and Evolution of High-Mach Number, Laser-Driven Magnetized Collisionless Shocks in the Laboratory

    CERN Document Server

    Schaeffer, Derek; Haberberger, Dan; Fiksel, Gennady; Bhattacharjee, Amitava; Barnak, Daniel; Hu, Suxing; Germaschewski, Kai

    2016-01-01

    Shocks act to convert incoming supersonic flows to heat, and in collisionless plasmas the shock layer forms on kinetic plasma scales through collective electromagnetic effects. These collisionless shocks have been observed in many space and astrophysical systems [Smith 1975, Smith 1980, Burlaga 2008, Sulaiman 2015], and are believed to accelerate particles, including cosmic rays, to extremely high energies [Kazanas 1986, Loeb 2000, Bamba 2003, Masters 2013, Ackermann 2013]. Of particular importance are the class of high-Mach number, supercritical shocks [Balogh 2013] ($M_A\\gtrsim4$), which must reflect significant numbers of particles back into the upstream to accommodate entropy production, and in doing so seed proposed particle acceleration mechanisms [Blandford 1978, McClements 2001, Caprioli 2014, Matsumoto 2015]. Here we present the first laboratory generation of high-Mach number magnetized collisionless shocks created through the interaction of an expanding laser-driven plasma with a magnetized ambient ...

  17. Non-thermal Electron Acceleration in Low Mach Number Collisionless Shocks. I. Particle Energy Spectra and Acceleration Mechanism

    Science.gov (United States)

    Guo, Xinyi; Sironi, Lorenzo; Narayan, Ramesh

    2014-10-01

    Electron acceleration to non-thermal energies in low Mach number (Ms Diffusive shock acceleration, also known as first-order Fermi acceleration, cannot be directly invoked to explain the acceleration of electrons. Rather, an additional mechanism is required to pre-accelerate the electrons from thermal to supra-thermal energies, so they can then participate in the Fermi process. In this work, we use two- and three-dimensional particle-in-cell plasma simulations to study electron acceleration in low Mach number shocks. We focus on the particle energy spectra and the acceleration mechanism in a reference run with Ms = 3 and a quasi-perpendicular pre-shock magnetic field. We find that about 15% of the electrons can be efficiently accelerated, forming a non-thermal power-law tail in the energy spectrum with a slope of p ~= 2.4. Initially, thermal electrons are energized at the shock front via shock drift acceleration (SDA). The accelerated electrons are then reflected back upstream where their interaction with the incoming flow generates magnetic waves. In turn, the waves scatter the electrons propagating upstream back toward the shock for further energization via SDA. In summary, the self-generated waves allow for repeated cycles of SDA, similarly to a sustained Fermi-like process. This mechanism offers a natural solution to the conflict between the bright radio synchrotron emission observed from the outskirts of galaxy clusters and the low electron acceleration efficiency usually expected in low Mach number shocks.

  18. Nonlinear theory of nonstationary low Mach number channel flows of freely cooling nearly elastic granular gases.

    Science.gov (United States)

    Meerson, Baruch; Fouxon, Itzhak; Vilenkin, Arkady

    2008-02-01

    We employ hydrodynamic equations to investigate nonstationary channel flows of freely cooling dilute gases of hard and smooth spheres with nearly elastic particle collisions. This work focuses on the regime where the sound travel time through the channel is much shorter than the characteristic cooling time of the gas. As a result, the gas pressure rapidly becomes almost homogeneous, while the typical Mach number of the flow drops well below unity. Eliminating the acoustic modes and employing Lagrangian coordinates, we reduce the hydrodynamic equations to a single nonlinear and nonlocal equation of a reaction-diffusion type. This equation describes a broad class of channel flows and, in particular, can follow the development of the clustering instability from a weakly perturbed homogeneous cooling state to strongly nonlinear states. If the heat diffusion is neglected, the reduced equation becomes exactly soluble, and the solution develops a finite-time density blowup. The blowup has the same local features at singularity as those exhibited by the recently found family of exact solutions of the full set of ideal hydrodynamic equations [I. Fouxon, Phys. Rev. E 75, 050301(R) (2007); I. Fouxon,Phys. Fluids 19, 093303 (2007)]. The heat diffusion, however, always becomes important near the attempted singularity. It arrests the density blowup and brings about previously unknown inhomogeneous cooling states (ICSs) of the gas, where the pressure continues to decay with time, while the density profile becomes time-independent. The ICSs represent exact solutions of the full set of granular hydrodynamic equations. Both the density profile of an ICS and the characteristic relaxation time toward it are determined by a single dimensionless parameter L that describes the relative role of the inelastic energy loss and heat diffusion. At L>1 the intermediate cooling dynamics proceeds as a competition between "holes": low-density regions of the gas. This competition resembles Ostwald

  19. Measurement and Analysis of the Noise Radiated by Low Mach Number Centrifugal Blowers.

    Science.gov (United States)

    Yeager, David Marvin

    An investigation was performed of the broad band, aerodynamically generated noise in low tip-speed Mach number, centrifugal air moving devices. An interdisciplinary experimental approach was taken which involved investigation of the aerodynamic and acoustic fields, and their mutual relationship. The noise generation process was studied using two experimental vehicles: (1) a scale model of a homologous family of centrifugal blowers typical of those used to cool computer and business equipment, and (2) a single blade from a centrifugal blower impeller placed in a known, controllable flow field. The radiation characteristics of the model blower were investigated by measuring the acoustic intensity distribution near the blower inlet and comparing it with the intensity near the inlet to an axial flow fan. Results showed that the centrifugal blower is a distributed, random noise source, unlike an axial fan which exhibited the effects of a coherent, interacting source distribution. Aerodynamic studies of the flow field in the inlet and at the discharge to the rotating impeller were used to assess the mean flow distribution through the impeller blade channels and to identify regions of excessive turbulence near the rotating blade row. Both circumferential and spanwise mean flow nonuniformities were identified along with a region of increased turbulence just downstream of the scroll cutoff. The fluid incidence angle, normally taken as an indicator of blower performance, was estimated from mean flow data as deviating considerably from an ideal impeller design. An investigation of the noise radiated from the single, isolated airfoil was performed using modern correlation and spectral analysis techniques. Radiation from the single blade in flow was characterized using newly developed expressions for the correlation area and the dipole source strength per unit area, and from the relationship between the blade surface pressure and the incident turbulent flow field. Results

  20. Results obtained during accelerated transonic tests of the Bell XS-1 airplane in flights to a Mach number of 0.92

    Science.gov (United States)

    Drake, Hubert M; Mclaughlin, Milton D; Goodman, Harold R

    1948-01-01

    Results are presented of tests up to a Mach number of 0.92 at altitudes around 30,000 feet. The data obtained show that the airplane can be flown to this Mach number above 30,000 feet. Longitudinal trim changes have been experienced but the forces involved have been small. The elevator effectiveness decreased about one-half with increase of Mach number from 0.70 to 0.87. Buffeting has been experienced in level flight but it has been mild and the associated tail loads have been small. No aileron buzz or other flutter phenomena have been noted.

  1. Mach Cones Induced by Di-Jets at RHIC and LHC: The Speed of Sound of Big Bang Matter%在RHIC和LHC能区双喷注诱发的马赫锥:大爆炸物质的声速

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A study of Mach shocks generated by fast partonic jets propagating through the quark-gluon plasma (QGP) is reviewed briefly. We predict a significant deformation of Mach shocks in central Au+Au collisions at RHIC and LHC energies compared to those created by a jet propagation through a static medium.Moreover, a new hydrodynamical study of jet energy loss is presented.

  2. Control of flow separation on a contour bump by jets in a Mach 1.9 free-stream: An experimental study

    Science.gov (United States)

    Lo, Kin Hing; Zare-Behtash, Hossein; Kontis, Konstantinos

    2016-09-01

    Flow separation control over a three-dimensional contour bump using jet in a Mach 1.9 supersonic free-stream has been experimentally investigated using a transonic/supersonic wind tunnel. Jet total pressure in the range of 0-4 bar was blowing at the valley of the contour bump. Schlieren photography, surface oil flow visualisation and particle image velocimetry measurements were employed for flow visualisation and diagnostics. Experimental results show that blowing jet at the valley of the contour bump can hinder the formation and distort the spanwise vortices. The blowing jet can also reduce the extent of flow separation appears downstream of the bump crest. It was observed that this approach of flow control is more effective when high jet total pressure is employed. It is believed that a pressure gradient is generated as a result of the interaction between the flow downstream of the bump crest and the jet induced shock leads to the downwards flow motion around the bump valley.

  3. Flight and wind-tunnel measurements showing base drag reduction provided by a trailing disk for high Reynolds number turbulent flow for subsonic and transonic Mach numbers

    Science.gov (United States)

    Powers, Sheryll Goecke; Huffman, Jarrett K.; Fox, Charles H., Jr.

    1986-01-01

    The effectiveness of a trailing disk, or trapped vortex concept, in reducing the base drag of a large body of revolution was studied from measurements made both in flight and in a wind tunnel. Pressure data obtained for the flight experiment, and both pressure and force balance data were obtained for the wind tunnel experiment. The flight test also included data obtained from a hemispherical base. The experiment demonstrated the significant base drag reduction capability of the trailing disk to Mach 0.93 and to Reynolds numbers up to 80 times greater than for earlier studies. For the trailing disk data from the flight experiment, the maximum decrease in base drag ranged form 0.08 to 0.07 as Mach number increased from 0.70 to 0.93. Aircraft angles of attack ranged from 3.9 to 6.6 deg for the flight data. For the trailing disk data from the wind tunnel experiment, the maximum decrease in base and total drag ranged from 0.08 to 0.05 for the approximately 0 deg angle of attack data as Mach number increased from 0.30 to 0.82.

  4. PIV measurements of isothermal plane turbulent impinging jets at moderate Reynolds numbers

    Science.gov (United States)

    Khayrullina, A.; van Hooff, T.; Blocken, B.; van Heijst, G. J. F.

    2017-04-01

    This paper contains a detailed experimental analysis of an isothermal plane turbulent impinging jet (PTIJ) for two jet widths at moderate Reynolds numbers (7200-13,500) issued on a horizontal plane at fixed relative distances equal to 22.5 and 45 jet widths. The available literature on such flows is scarce. Previous studies on plane turbulent jets mainly focused on free jets, while most studies on impinging jets focused on the heat transfer between the jet and an impingement plane, disregarding jet development. The present study focuses on isothermal PTIJs at moderate Reynolds numbers characteristic of air curtains. Flow visualisations with fluorescent dye and 2D particle image velocimetry (PIV) measurements have been performed. A comparison is made with previous studies of isothermal free turbulent jets at moderate Reynolds numbers. Mean and instantaneous velocity and vorticity, turbulence intensity, and Reynolds shear stress are analysed. The jet issued from the nozzle with higher aspect ratio shows more intensive entrainment and a faster decay of the centreline velocity compared to the jet of lower aspect ratio for the same value of jet Reynolds number. The profiles of centreline and cross-jet velocity and turbulence intensity show that the PTIJs behave as a free plane turbulent jet until 70-75% of the total jet height. Alongside the information obtained on the jet dynamics, the data will be useful for the validation of numerical simulations.

  5. Non-Thermal Electron Acceleration in Low Mach Number Collisionless Shocks. I. Particle Energy Spectra and Acceleration Mechanism

    CERN Document Server

    Guo, Xinyi; Narayan, Ramesh

    2014-01-01

    Electron acceleration to non-thermal energies in low Mach number (M<5) shocks is revealed by radio and X-ray observations of galaxy clusters and solar flares, but the electron acceleration mechanism remains poorly understood. Diffusive shock acceleration, also known as first-order Fermi acceleration, cannot be directly invoked to explain the acceleration of electrons. Rather, an additional mechanism is required to pre-accelerate the electrons from thermal to supra-thermal energies, so they can then participate in the Fermi process. In this work, we use two- and three-dimensional particle-in-cell plasma simulations to study electron acceleration in low Mach number shocks. We focus on the particle energy spectra and the acceleration mechanism in a reference run with M=3. We find that about 15 percent of the electrons can be efficiently accelerated, forming a non-thermal power-law tail in the energy spectrum with a slope of p~2.4. Initially, thermal electrons are energized at the shock front via shock drift a...

  6. Aerodynamic Performance and Static Stability and Control of Flat-Top Hypersonic Gliders at Mach Numbers from 0.6 to 18

    Science.gov (United States)

    Syvertson, Clarence A; Gloria, Hermilo R; Sarabia, Michael F

    1958-01-01

    A study is made of aerodynamic performance and static stability and control at hypersonic speeds. In a first part of the study, the effect of interference lift is investigated by tests of asymmetric models having conical fuselages and arrow plan-form wings. The fuselage of the asymmetric model is located entirely beneath the wing and has a semicircular cross section. The fuselage of the symmetric model was centrally located and has a circular cross section. Results are obtained for Mach numbers from 3 to 12 in part by application of the hypersonic similarity rule. These results show a maximum effect of interference on lift-drag ratio occurring at Mach number of 5, the Mach number at which the asymmetric model was designed to exploit favorable lift interference. At this Mach number, the asymmetric model is indicated to have a lift-drag ratio 11 percent higher than the symmetric model and 15 percent higher than the asymmetric model when inverted. These differences decrease to a few percent at a Mach number of 12. In the course of this part of the study, the accuracy to the hypersonic similarity rule applied to wing-body combinations is demonstrated with experimental results. These results indicate that the rule may prove useful for determining the aerodynamic characteristics of slender configurations at Mach numbers higher than those for which test equipment is really available. In a second part of the study, the aerodynamic performance and static stability and control characteristics of a hypersonic glider are investigated in somewhat greater detail. Results for Mach numbers from 3 to 18 for performance and 0.6 to 12 for stability and control are obtained by standard text techniques, by application of the hypersonic stability rule, and/or by use of helium as a test medium. Lift-drag ratios of about 5 for Mach numbers up to 18 are shown to be obtainable. The glider studied is shown to have acceptable longitudinal and directional stability characteristics through the

  7. High initial amplitude and high Mach number effects on the evolution of the single-mode Richtmyer-Meshkov instability.

    Science.gov (United States)

    Rikanati, A; Oron, D; Sadot, O; Shvarts, D

    2003-02-01

    Effects of high-Mach numbers and high initial amplitudes on the evolution of the single-mode Richtmyer-Meshkov shock-wave induced hydrodynamic instability are studied using theoretical models, experiments, and numerical simulations. Two regimes in which there is a significant deviation from the linear dependence of the initial velocity on the initial perturbation amplitude are defined and characterized. In one, the observed reduction of the initial velocity is primarily due to large initial amplitudes. This effect is accurately modeled by a vorticity deposition model, quantifying both the effect of the initial perturbation amplitude and the exact shape of the interface. In the other, the reduction is dominated by the proximity of the shock wave to the interface. This effect is modeled by a modified incompressible model where the shock wave is mimicked by a moving bounding wall. These results are supplemented with high initial amplitude Mach 1.2 shock-tube experiments, enabling separation of the two effects. It is shown that in most of the previous experiments, the observed reduction is predominantly due to the effect of high initial amplitudes.

  8. A Reynolds Number Study of Wing Leading-Edge Effects on a Supersonic Transport Model at Mach 0.3

    Science.gov (United States)

    Williams, M. Susan; Owens, Lewis R., Jr.; Chu, Julio

    1999-01-01

    A representative supersonic transport design was tested in the National Transonic Facility (NTF) in its original configuration with small-radius leading-edge flaps and also with modified large-radius inboard leading-edge flaps. Aerodynamic data were obtained over a range of Reynolds numbers at a Mach number of 0.3 and angles of attack up to 16 deg. Increasing the radius of the inboard leading-edge flap delayed nose-up pitching moment to a higher lift coefficient. Deflecting the large-radius leading-edge flap produced an overall decrease in lift coefficient and delayed nose-up pitching moment to even higher angles of attack as compared with the undeflected large- radius leading-edge flap. At angles of attack corresponding to the maximum untrimmed lift-to-drag ratio, lift and drag coefficients decreased while lift-to-drag ratio increased with increasing Reynolds number. At an angle of attack of 13.5 deg., the pitching-moment coefficient was nearly constant with increasing Reynolds number for both the small-radius leading-edge flap and the deflected large-radius leading-edge flap. However, the pitching moment coefficient increased with increasing Reynolds number for the undeflected large-radius leading-edge flap above a chord Reynolds number of about 35 x 10 (exp 6).

  9. A uniquely defined entropy stable matrix dissipation operator for high Mach number ideal MHD and compressible Euler simulations

    Science.gov (United States)

    Winters, Andrew R.; Derigs, Dominik; Gassner, Gregor J.; Walch, Stefanie

    2017-03-01

    We describe a unique averaging procedure to design an entropy stable dissipation operator for the ideal magnetohydrodynamic (MHD) and compressible Euler equations. Often in the derivation of an entropy conservative numerical flux function much care is taken in the design and averaging of the entropy conservative numerical flux. We demonstrate in this work that if the discrete dissipation operator is not carefully chosen as well it can have deleterious effects on the numerical approximation. This is particularly true for very strong shocks or high Mach number flows present, for example, in astrophysical simulations. We present the underlying technique of how to construct a unique averaging technique for the discrete dissipation operator. We also demonstrate numerically the increased robustness of the approximation.

  10. Numerical Investigation on Hydrogen-Fueled Scramjet Combustor with Parallel Strut Fuel Injector at a Flight Mach Number of 6

    Directory of Open Access Journals (Sweden)

    Krishna Pandey

    2016-01-01

    Full Text Available A numerical analysis of the inlet-combustor interaction and flow structure through a scramjet engine at a flight Mach number M = 6 with parallel injection (Strut with circular inlet is presented in the present research article. Three different angles of attack (α=-4°, α=0°, α=4° have been studied for parallel injection. The scramjet configuration used here is a modified version of DLR scramjet model. Fuel is injected at supersonic speed (M=2 through a parallel strut injector. For parallel injection, the shape of the strut is chosen in a way to produce strong stream wise vorticity and thus to enhance the hydrogen/air mixing inside the combustor. These numerical simulations are aimed to study the flow structure, supersonic mixing, and combustion phenomena for the three different types of geometries along with circular shaped strut configuration.

  11. The influence of the Mach number of shock waves on turbulent mixing growth at an interface of gases

    Science.gov (United States)

    Nevmerzhitsky, N. V.; Sotskov, E. A.; Sen'kovsky, E. D.; Razin, A. N.; Ustinenko, V. A.; Krivonos, O. L.; Tochilina, L. V.

    2010-12-01

    The results of our experimental investigation of the turbulent mixing occurring at a Richtmayer-Meshkov instability driven by a shock wave (SW) in gases at different Mach numbers (M) ranging from ≈1.4 to ≈9 are presented in this paper. The experiments were performed by using an air shock tube with a channel section of 40×40 mm2. The SW passed from 'light' to 'heavy' gases. Air (helium) was used as a 'light' gas and Xe, CO2 and Ar were used as 'heavy' gases. The gases were initially separated by a thin (≈1 μm) polymer film, which was failed after the passing of the SW. A film of the flow was made using a high-speed camera by the Schlieren method.

  12. Design features of a low-disturbance supersonic wind tunnel for transition research at low supersonic Mach numbers

    Science.gov (United States)

    Wolf, Stephen W. D.; Laub, James A.; King, Lyndell S.; Reda, Daniel C.

    1992-01-01

    A unique, low-disturbance supersonic wind tunnel is being developed at NASA-Ames to support supersonic laminar flow control research at cruise Mach numbers of the High Speed Civil Transport (HSCT). The distinctive design features of this new quiet tunnel are a low-disturbance settling chamber, laminar boundary layers along the nozzle/test section walls, and steady supersonic diffuser flow. This paper discusses these important aspects of our quiet tunnel design and the studies necessary to support this design. Experimental results from an 1/8th-scale pilot supersonic wind tunnel are presented and discussed in association with theoretical predictions. Natural laminar flow on the test section walls is demonstrated and both settling chamber and supersonic diffuser performance is examined. The full-scale wind tunnel should be commissioned by the end of 1993.

  13. Effect of initial conditions and Mach number on the Richtmyer-Meshkov instability in ICF like conditions

    Science.gov (United States)

    Rao, Pooja; She, Dan; Lim, Hyunkyung; Glimm, James

    2015-11-01

    The qualitative and quantitative effect of initial conditions (linear and non-linear) and high Mach number (1.3 and 1.45) is studied on the turbulent mixing induced by the Richtmyer-Meshkov instability in idealized ICF conditions. The Richtmyer-Meshkov instability seeds Rayleigh-taylor instabilities in ICF experiments and is one of the factors that contributes to reduced performance of ICF experiments. Its also found in collapsing cores of stars and supersonic combustion. We use the Stony Brook University code, FronTier, which is verified via a code comparison study against the AMR multiphysics code FLASH, and validated against vertical shock tube experiments done by the LANL Extreme Fluids Team. These simulations are designed as a step towards simulating more realistic ICF conditions and quantifying the detrimental effects of mixing on the yield.

  14. Extension of Finite Volume Compressible Flow Solvers to Multi-dimensional, Variable Density Zero Mach Number Flows

    Science.gov (United States)

    Schneider, T.; Botta, N.; Geratz, K. J.; Klein, R.

    1999-11-01

    When attempting to compute unsteady, variable density flows at very small or zero Mach number using a standard finite volume compressible flow solver one faces at least the following difficulties: (i) Spatial pressure variations vanish as the Mach number M→0, but they do affect the velocity field at leading order; (ii) the resulting spatial homogeneity of the leading order pressure implies an elliptic divergence constraint for the energy flux; (iii) violations of this constraint crucially affect the transport of mass, preventing a code to properly advect even a constant density distribution. We overcome these difficulties through a new algorithm for constructing numerical fluxes in the context of multi-dimensional finite volume methods in conservation form. The construction of numerical fluxes involves: (1) An explicit upwind step yielding predictions for the nonlinear convective flux components. (2) A first correction step that introduces pressure gradients which guarantee compliance of the convective fluxes with a divergence constraint. This step requires the solution of a first Poisson-type equation. (3) A second projection step which provides the yet unknown (non-convective) pressure contribution to the total flux of momentum. This second projection requires the solution of another Poisson-type equation and yields the cell centered velocity field at the new time. This velocity field exactly satisfies a divergence constraint consistent with the asymptotic limit. Step (1) can be done by any standard finite volume compressible flow solver. The input to steps (2) and (3) involves solely the fluxes from step (1) and is independent of how these were obtained. Thus, our approach allows any such solver to be extended to compute variable density incompressible flows.

  15. Effect of inlet-air humidity, temperature, pressure, and reference Mach number on the formation of oxides of nitrogen in a gas turbine combustor

    Science.gov (United States)

    Marchionna, N. R.; Diehl, L. A.; Trout, A. M.

    1973-01-01

    Tests were conducted to determine the effect of inlet air humidity on the formation of oxides of nitrogen (NOx) from a gas turbine combustor. Combustor inlet air temperature ranged from 506 K (450 F) to 838 K (1050 F). The tests were primarily run at a constant pressure of 6 atmospheres and reference Mach number of 0.065. The NOx emission index was found to decrease with increasing inlet air humidity at a constant exponential rate: NOx = NOx0e-19H (where H is the humidity and the subscript 0 denotes the value at zero humidity). the emission index increased exponentially with increasing normalized inlet air temperature to the 1.14 power. Additional tests made to determine the effect of pressure and reference Mach number on NOx showed that the NOx emission index varies directly with pressure to the 0.5 power and inversely with reference Mach number.

  16. Influence of Mach number and static pressure on plasma flow control of supersonic and rarefied flows around a sharp flat plate

    Science.gov (United States)

    Coumar, Sandra; Lago, Viviana

    2017-06-01

    This paper presents an experimental investigation, carried out at the Icare Laboratory by the FAST team, focusing on plasma flow control in supersonic and rarefied regime. The study analyzes how the Mach number as well as the ambient pressure modify the repercussions of the plasma actuator on the shock wave. It follows previous experiments performed in the MARHy (ex-SR3) wind tunnel with a Mach 2 flow interacting with a sharp flat plate, where modifications induced by a plasma actuator were observed. The flat plate was equipped with a plasma actuator composed of two aluminum electrodes. The upstream one was biased with a negative DC potential and thus, created a glow discharge type plasma. Experimental measurements showed that the boundary layer thickness and the shock wave angle increased when the discharge was ignited. The current work was performed with two nozzles generating Mach 4 flows but at two different static pressures: 8 and 71 Pa. These nozzles were chosen to study independently the impact of the Mach number and the impact of the pressure on the flow behavior. In the range of the discharge current considered in this experimental work, it was observed that the shock wave angle increased with the discharge current of +15% for the Mach 2 flow but the increase rate doubled to +28% for the Mach 4 flow at the same static pressure, showing that the discharge effect is even more significant when boosting the flow speed. When studying the effect of the discharge on the Mach 4 flow at higher static pressure, it was observed that the topology of the plasma changed drastically and the increase in the shock wave angle with the discharge current of +21 %.

  17. Practical computational aeroacoustics for compact surfaces in low mach number flows

    DEFF Research Database (Denmark)

    Pradera-Mallabiabarrena, Ainara; Keith, Graeme; Jacobsen, Finn

    2011-01-01

    compared to the wavelength of interest. This makes it possible to focus on the surface source term of the Ffowcs Williams-Hawkings equation. In this paper, in order to illustrate the basic method for storing and utilizing data from the CFD analysis, the flow past a circular cylinder at a Reynolds number...

  18. Effect of Jet Injection Angle and Number of Jets on Mixing and Emissions From a Reacting Crossflow at Atmospheric Pressure

    Science.gov (United States)

    St.John, D.; Samuelsen, G. S.

    2000-01-01

    The mixing of air jets into hot, fuel-rich products of a gas turbine primary zone is an important step in staged combustion. Often referred to as "quick quench," the mixing occurs with chemical conversion and substantial heat release. An experiment has been designed to simulate and study this process, and the effect of varying the entry angle (0 deg, 22.5 deg and 45 deg from normal) and number of the air jets (7, 9, and 11) into the main flow, while holding the jet-to-crossflow mass-low ratio, MR, and momentum-flux ratio, J, constant (MR = 2.5;J = 25). The geometry is a crossflow confined in a cylindrical duct with side-wall injection of jets issuing from orifices equally spaced around the perimeter. A specially designed reactor, operating on propane, presents a uniform mixture to a module containing air jet injection tubes that can be changed to vary orifice geometry. Species concentrations of O2, CO, CO2, NO(x) and HC were obtained one duct diameter upstream (in the rich zone), and primarily one duct radius downstream. From this information, penetration of the jet, the spatial extent of chemical reaction, mixing, and the optimum jet injection angle and number of jets can be deduced.

  19. Variable Flavor Number Scheme for Final State Jets in DIS

    Energy Technology Data Exchange (ETDEWEB)

    Hoang, Andre H. [Wien Univ. (Austria). Fakultaet fuer Physik; Wien Univ. (Austria). Erwin Schroedinger International Inst. for Mathematical Physics; Pietrulewicz, Piotr [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group; Samitz, Daniel [Wien Univ. (Austria). Fakultaet fuer Physik

    2015-08-15

    We discuss massive quark effects in the endpoint region x→1 of inclusive deep inelastic scattering, where the hadronic final state is collimated and thus represents a jet. In this regime heavy quark pairs are generated via secondary radiation, i.e. due to a gluon splitting in light quark initiated contributions starting at O(α{sup 2}{sub s}) in the fixed-order expansion. Based on the factorization framework for massless quarks in Soft Collinear Effective Theory (SCET), we construct a variable flavor number scheme that deals with arbitrary hierarchies between the mass scale and the kinematic scales exhibiting a continuous behavior between the massless limit for very light quarks and the decoupling limit for very heavy quarks. We show that the threshold matching corrections for all gauge invariant components at the mass scale are related to each other via consistency conditions. This is explicitly demonstrated by recalculating the known threshold correction for the parton distribution function at O(α{sup 2}{sub s}C{sub F}T{sub F}) within SCET. The latter contains large rapidity logarithms ∝ln(1-x) that can be summed by exponentiation. Their coefficients are universal which can be used to obtain potentially relevant higher order results for generic threshold corrections at colliders from computations in deep inelastic scattering. In particular, we extract the O(α{sup 3}{sub s}) threshold correction multiplied by a single rapidity logarithm from results obtained earlier.

  20. Effects of leading edge sweep angle and design lift coefficient on performance of a modified arrow wing at a design Mach number of 2.6

    Science.gov (United States)

    Mack, R. J.

    1974-01-01

    Wing models were tested in the high-speed section of the Langley Unitary Plan wind tunnel to study the effects of the leading-edge sweep angle and the design lift coefficient on aerodynamic performance and efficiency. The models had leading-edge sweep angles of 69.44 deg, 72.65 deg, and 75.96 deg which correspond to values of the design Mach-number-sweep-angle parameter (beta cotangent A) sub DES of 0.6, 0.75, and 0.9, respectively. For each sweep angle, camber surfaces having design lift coefficients of 0,0.08, and 0.12 at a design Mach number of 2.6 were generated. The wind-tunnel tests were conducted at Mach numbers of 2.3, 2.6, and 2.96 with a stagnation temperature of 338.7 K (150 F) and a Reynolds number per meter of 9.843 times 10 to the 6th power. The results of the tests showed that only a moderate sweeping of the wing leading edge aft of the Mach line along with a small-to-moderate amount of camber and twist was needed to significantly improve the zero-lift (flat camber surface) wing performance and efficiency.

  1. Effect of variation of length-to-depth ratio and Mach number on the performance of a typical double cavity scramjet combustor

    Science.gov (United States)

    Mahto, Navin Kumar; Choubey, Gautam; Suneetha, Lakka; Pandey, K. M.

    2016-11-01

    The two equation standard k-ɛ turbulence model and the two-dimensional compressible Reynolds-Averaged Navier-Stokes (RANS) equations have been used to computationally simulate the double cavity scramjet combustor. Here all the simulations are performed by using ANSYS 14-FLUENT code. At the same time, the validation of the present numerical simulation for double cavity has been performed by comparing its result with the available experimental data which is in accordance with the literature. The results are in good agreement with the schlieren image and the pressure distribution curve obtained experimentally. However, the pressure distribution curve obtained numerically is under-predicted in 5 locations by numerical calculation. Further, investigations on the variations of the effects of the length-to-depth ratio of cavity and Mach number on the combustion characteristics has been carried out. The present results show that there is an optimal length-to-depth ratio for the cavity for which the performance of combustor significantly improves and also efficient combustion takes place within the combustor region. Also, the shifting of the location of incident oblique shock took place in the downstream of the H2 inlet when the Mach number value increases. But after achieving a critical Mach number range of 2-2.5, the further increase in Mach number results in lower combustion efficiency which may deteriorate the performance of combustor.

  2. Interstellar neutral helium in the heliosphere from IBEX observations. IV. Flow vector, Mach number, and abundance of the Warm Breeze

    CERN Document Server

    Kubiak, M A; Bzowski, M; Sokol, J M; Fuselier, S A; Galli, A; Heirtzler, D; Kucharek, H; Leonard, T W; Moebius, D J McComas E; Park, J; Schwadron, N A; Wurz, P

    2016-01-01

    With the velocity vector and temperature of the pristine interstellar neutral (ISN) He recently obtained with high precision from a coordinated analysis summarized by McComas et al.2015b, we analyzed the IBEX observations of neutral He left out from this analysis. These observations were collected during the ISN observation seasons 2010---2014 and cover the region in the Earth's orbit where the Warm Breeze persists. We used the same simulation model and a very similar parameter fitting method to that used for the analysis of ISN He. We approximated the parent population of the Warm Breeze in front of the heliosphere with a homogeneous Maxwell-Boltzmann distribution function and found a temperature of $\\sim 9\\,500$ K, an inflow speed of 11.3 km s$^{-1}$, and an inflow longitude and latitude in the J2000 ecliptic coordinates $251.6^\\circ$, $12.0^\\circ$. The abundance of the Warm Breeze relative to the interstellar neutral He is 5.7\\% and the Mach number is 1.97. The newly found inflow direction of the Warm Bree...

  3. The Alfven Mach Number Control of the Solar Wind-Magnetosphere Coupling Efficiency and the Saturation of the Geomagnetic Indices

    Science.gov (United States)

    Myllys, M. E.; Kilpua, E.; Lavraud, B.

    2015-12-01

    We have investigated the effect of key solar wind driving parameters on the solar wind-magnetosphere coupling efficiency and saturation of the cross polar cap potential (CPCP) during sheath and magnetic cloud driven storms. The particular focus of the study was on the coupling efficiency dependence with Alfven Mach number (MA).Since we are studying the instantaneous coupling efficiency instead of the average efficiency over the whole solar wind structure, we needed to take into account the communication time between the solar wind and the magnetosphere. We present the results of the time delay analysis between geomagnetic indices (PCN, AE and SYM-H) and the interplanetary electric field y-component (EY, GSM coordinate system) and Newell and Borovsky functions. The study shows that the MA has a clear effect to the saturation of the PCN index, which can be used as a proxy of the polar cap potential. The higher the MA the higher the limit EY value after which the saturation starts to occur. Thus, the coupling efficiency increases as a function of MA. Also, the AE index saturates during high solar wind driving but the saturation is not MA depended. However, the results also suggest that the MA it is not the primary cause for the PCN saturation.

  4. Concurrent identification of aero-acoustic scattering and noise sources at a flow duct singularity in low Mach number flow

    Science.gov (United States)

    Sovardi, Carlo; Jaensch, Stefan; Polifke, Wolfgang

    2016-09-01

    A numerical method to concurrently characterize both aeroacoustic scattering and noise sources at a duct singularity is presented. This approach combines Large Eddy Simulation (LES) with techniques of System Identification (SI): In a first step, a highly resolved LES with external broadband acoustic excitation is carried out. Subsequently, time series data extracted from the LES are post-processed by means of SI to model both acoustic propagation and noise generation. The present work studies the aero-acoustic characteristics of an orifice placed in a duct at low flow Mach numbers with the "LES-SI" method. Parametric SI based on the Box-Jenkins mathematical structure is employed, with a prediction error approach that utilizes correlation analysis of the output residuals to avoid overfitting. Uncertainties of model parameters due to the finite length of times series are quantified in terms of confidence intervals. Numerical results for acoustic scattering matrices and power spectral densities of broad-band noise are validated against experimental measurements over a wide range of frequencies below the cut-off frequency of the duct.

  5. Heat transfer investigation of two Langley Research Center delta wing configurations at a Mach number of 10.5, volume 1

    Science.gov (United States)

    Eaves, R. H.; Buchanan, T. D.; Warmbrod, J. D.; Johnson, C. B.

    1972-01-01

    Heat transfer tests for two delta wing configurations were conducted in the hypervelocity wind tunnel. The 24-inch long models were tested at a Mach number of approximately 10.5 and at angles of attack of 20, 40, and 60 degrees over a length Reynolds number range from 5 million to 23 million on 4 May to 4 June 1971. Heat transfer results were obtained from model surface heat gage measurements and thermographic phosphor paint.

  6. Jet Impingement Heat Transfer at High Reynolds Numbers and Large Density Variations

    DEFF Research Database (Denmark)

    Jensen, Michael Vincent; Walther, Jens Honore

    2010-01-01

    Jet impingement heat transfer from a round gas jet to a flat wall has been investigated numerically in a configuration with H/D=2, where H is the distance from the jet inlet to the wall and D is the jet diameter. The jet Reynolds number was 361000 and the density ratio across the wall boundary la...... density from the ideal gas law versus real gas data. In both cases the effect was found to be negligible.......Jet impingement heat transfer from a round gas jet to a flat wall has been investigated numerically in a configuration with H/D=2, where H is the distance from the jet inlet to the wall and D is the jet diameter. The jet Reynolds number was 361000 and the density ratio across the wall boundary....... The results also show a noticeable difference in the heat transfer predictions when applying different turbulence models. Furthermore calculations were performed to study the effect of applying temperature dependent thermophysical properties versus constant properties and the effect of calculating the gas...

  7. Jet Impingement Heat Transfer at High Reynolds Numbers and Large Density Variations

    DEFF Research Database (Denmark)

    Jensen, Michael Vincent; Walther, Jens Honore

    2010-01-01

    Jet impingement heat transfer from a round gas jet to a flat wall has been investigated numerically in a configuration with H/D=2, where H is the distance from the jet inlet to the wall and D is the jet diameter. The jet Reynolds number was 361000 and the density ratio across the wall boundary la...... density from the ideal gas law versus real gas data. In both cases the effect was found to be negligible........ The results also show a noticeable difference in the heat transfer predictions when applying different turbulence models. Furthermore calculations were performed to study the effect of applying temperature dependent thermophysical properties versus constant properties and the effect of calculating the gas......Jet impingement heat transfer from a round gas jet to a flat wall has been investigated numerically in a configuration with H/D=2, where H is the distance from the jet inlet to the wall and D is the jet diameter. The jet Reynolds number was 361000 and the density ratio across the wall boundary...

  8. Parametric dependences of momentum pinch and Prandtl number in JET

    NARCIS (Netherlands)

    Tala, T.; Salmi, A.; Angioni, C.; Casson, F. J.; Corrigan, G.; Ferreira, J.; Giroud, C.; Mantica, P.; Naulin, V.; Peeters, A.G.; Solomon, W. M.; Strintzi, D.; Tsalas, M.; Versloot, T. W.; de Vries, P. C.; Zastrow, K. D.

    2011-01-01

    Several parametric scans have been performed to study momentum transport on JET. A neutral beam injection modulation technique has been applied to separate the diffusive and convective momentum transport terms. The magnitude of the inward momentum pinch depends strongly on the inverse density gradie

  9. Parametric dependences of momentum pinch and Prandtl number in JET

    DEFF Research Database (Denmark)

    Tala, T.; Salmi, A.; Angioni, C.

    2011-01-01

    Several parametric scans have been performed to study momentum transport on JET. A neutral beam injection modulation technique has been applied to separate the diffusive and convective momentum transport terms. The magnitude of the inward momentum pinch depends strongly on the inverse density gra...

  10. Parametric dependences of momentum pinch and Prandtl number in JET

    NARCIS (Netherlands)

    Tala, T.; Salmi, A.; Angioni, C.; Casson, F. J.; Corrigan, G.; Ferreira, J.; Giroud, C.; Mantica, P.; Naulin, V.; Peeters, A.G.; Solomon, W. M.; Strintzi, D.; Tsalas, M.; Versloot, T. W.; de Vries, P. C.; Zastrow, K. D.

    2011-01-01

    Several parametric scans have been performed to study momentum transport on JET. A neutral beam injection modulation technique has been applied to separate the diffusive and convective momentum transport terms. The magnitude of the inward momentum pinch depends strongly on the inverse density

  11. Contribution from the Earth's Bow Shock to Region 1 Current under Low Alfvén Mach Numbers

    Institute of Scientific and Technical Information of China (English)

    PENG Zhong; HU You-Qiu

    2009-01-01

    @@ Using global MHD simulations of the solar wind-magnetosphere--ionosphere system, we investigate the depen-dence of the contribution from the Earth's bow shock (I1bs) to ionospheric region I field aligned current (FAC) (I1). It is found that I1bs increases with increasing southward interplanetary magnetic field (IMF) strength Bs, if the Alfven Mach number MA of the solar wind exceeds 2, a similar result as obtained by previous authors. However, if MA becomes close to or falls below 2, I1bs will decrease with B8 in both magnitude and percentage (i.e., I1bs/I1) because of the resultant reduction of the bow shock strength. Both the surface current density Jbs at the nose of the bow shock and the total bow shock current lb, share nearly the same relationship with MA, and vary non-monotonically with MA or Bs. The maximum point is found to be located at MA = 2.7. Three conclusions are then made as follows: (1) The surface current density at the nose, which is much easier to be evaluated, may be used to largely describe the behaviour of the bow shock instead of the total bow shock current. (2) The peak of the total bow shock current is reached at about MA = 2.7 when only Bs is adjusted. (3) The non-monotonic variation of the bow shock current with MA causes a similar variation of its contribution to region 1 FAC. The turning point for such contribution is found to be nearly MA= 2. The implication of these conclusions to the saturation of the ionospheric transpolar potential is briefly discussed.

  12. An improved high-order scheme for DNS of low Mach number turbulent reacting flows based on stiff chemistry solver

    Science.gov (United States)

    Yu, Rixin; Yu, Jiangfei; Bai, Xue-Song

    2012-06-01

    We present an improved numerical scheme for numerical simulations of low Mach number turbulent reacting flows with detailed chemistry and transport. The method is based on a semi-implicit operator-splitting scheme with a stiff solver for integration of the chemical kinetic rates, developed by Knio et al. [O.M. Knio, H.N. Najm, P.S. Wyckoff, A semi-implicit numerical scheme for reacting flow II. Stiff, operator-split formulation, Journal of Computational Physics 154 (2) (1999) 428-467]. Using the material derivative form of continuity equation, we enhance the scheme to allow for large density ratio in the flow field. The scheme is developed for direct numerical simulation of turbulent reacting flow by employing high-order discretization for the spatial terms. The accuracy of the scheme in space and time is verified by examining the grid/time-step dependency on one-dimensional benchmark cases: a freely propagating premixed flame in an open environment and in an enclosure related to spark-ignition engines. The scheme is then examined in simulations of a two-dimensional laminar flame/vortex-pair interaction. Furthermore, we apply the scheme to direct numerical simulation of a homogeneous charge compression ignition (HCCI) process in an enclosure studied previously in the literature. Satisfactory agreement is found in terms of the overall ignition behavior, local reaction zone structures and statistical quantities. Finally, the scheme is used to study the development of intrinsic flame instabilities in a lean H2/air premixed flame, where it is shown that the spatial and temporary accuracies of numerical schemes can have great impact on the prediction of the sensitive nonlinear evolution process of flame instability.

  13. The influence of Reynolds numbers on resistance properties of jet pumps

    Science.gov (United States)

    Geng, Q.; Zhou, G.; Li, Q.

    2014-01-01

    Jet pumps are widely used in thermoacoustic Stirling heat engines and pulse tube cryocoolers to eliminate the effect of Gedeon streaming. The resistance properties of jet pumps are principally influenced by their structures and flow regimes which are always characterized by Reynolds numbers. In this paper, the jet pump of which cross section contracts abruptly is selected as our research subject. Based on linear thermoacoustic theory, a CFD model is built and the oscillating flow of the working gas is simulated and analyzed with different Reynolds numbers in the jet pump. According to the calculations, the influence of different structures and Reynolds numbers on the resistance properties of the jet pump are analyzed and presented. The results show that Reynolds numbers have a great influence on the resistance properties of jet pumps and some empirical formulas which are widely used are unsuitable for oscillating flow with small Reynolds numbers. This paper provides a more comprehensive understanding on resistance properties of jet pumps with oscillating flow and is significant for the design of jet pumps in practical thermoacoustic engines and refrigerators.

  14. Aeroacoustic properties of supersonic elliptic jets

    Science.gov (United States)

    Kinzie, Kevin W.; McLaughlin, Dennis K.

    1999-09-01

    The aerodynamic and acoustic properties of supersonic elliptic and circular jets are experimentally investigated. The jets are perfectly expanded with an exit Mach number of approximately 1.5 and are operated in the Reynolds number range of 25 000 to 50 000. The reduced Reynolds number facilitates the use of conventional hot-wire anemometry and a glow discharge excitation technique which preferentially excites the varicose or flapping modes in the jets. In order to simulate the high-velocity and low-density effects of heated jets, helium is mixed with the air jets. This allows the large-scale structures in the jet shear layer to achieve a high enough convective velocity to radiate noise through the Mach wave emission process.

  15. Particle-in-cell simulations of particle energization via shock drift acceleration from low Mach number quasi-perpendicular shocks in solar flares

    CERN Document Server

    Park, Jaehong; Workman, Jared C; Blackman, Eric G

    2012-01-01

    Low Mach number, high beta fast mode shocks can occur in the magnetic reconnection outflows of solar flares. These shocks, which occur above flare loop tops, may provide the electron energization responsible for some of the observed hard X-rays and contemporaneous radio emission. Here we present new 2D particle-in-cell simulations of low Mach number/high beta quasi-perpendicular shocks. The simulations show that electrons above a certain energy threshold experience shock-drift-acceleration. The transition energy between the thermal and non-thermal spectrum and the spectral index from the simulations are consistent with some of the X-ray spectra from RHESSI in the energy regime, $E\\lesssim 40\\sim 100$ keV. Plasma instabilities associated with the shock structure such as the modified-two-stream and the electron whistler/mirror instabilities are examined and compared with the numerical solutions of the kinetic dispersion relations.

  16. Unsteady behavior of a confined jet in a cavity at moderate Reynolds numbers

    Energy Technology Data Exchange (ETDEWEB)

    Bouchet, G [Laboratoire IUSTI, UMR 7343 CNRS, Aix Marseille Universite, 5 rue Enrico Fermi, 13453 Marseille Cedex 13 (France); Climent, E, E-mail: Gilles.Bouchet@univ-amu.fr, E-mail: Gilles.Bouchet@univ-provence.fr, E-mail: climent@imft.fr [Institut de Mecanique des Fluides de Toulouse, UMR 5502 Universite de Toulouse-CNRS-INPT-UPS, 1 allee du Professeur Camille Soula, 31400 Toulouse (France)

    2012-04-01

    Self-sustained oscillations in the sinuous mode are observed when a jet impinges on a rigid surface. Confined jet instability is experimentally and numerically investigated here at moderate Reynolds numbers. When the Reynolds number is varied, the dynamic response of the jet is unusual in comparison with that of similar configurations (hole-tone, jet edge, etc). Modal transitions are clearly detected when the Reynolds number is varied. However, these transitions result in a reduction of the frequency, which means that the wavelength grows with Reynolds number. Moreover, the instability that sets in at low Reynolds number, as a subcritical Hopf bifurcation, disappears only 25% above the threshold. Then, the flow becomes steady again and symmetric. This atypical behavior is compared with our previous study on a submerged fountain (Bouchet et al 2002 Europhys. Lett. 59 826). (paper)

  17. The effects of winglets on low aspect ratio wings at supersonic Mach numbers. M.S. Thesis Report Feb. 1989 - Apr. 1991

    Science.gov (United States)

    Keenan, James A.; Kuhlman, John M.

    1991-01-01

    A computational study was conducted on two wings, of aspect ratios 1.244 and 1.865, each having 65 degree leading edge sweep angles, to determine the effects of nonplanar winglets at supersonic Mach numbers. A Mach number of 1.62 was selected as the design value. The winglets studied were parametrically varied in alignment, length, sweep, camber, thickness, and dihedral angle to determine which geometry had the best predicted performance. For the computational analysis, an available Euler marching technique was used. The results indicated that the possibility existed for wing-winglet geometries to equal the performance of wing-alone bodies in supersonic flows with both bodies having the same semispan. The first wing with winglet used NACA 1402 airfoils for the base wing and was shown to have lift-to-pressure drag ratios within 0.136 percent to 0.360 percent of the NACA 1402 wing-alone. The other base wing was a natural flow wing which was previously designed specifically for a Mach number of 1.62. The results obtained showed that the natural wing-alone had a slightly higher lift-to-pressure drag than the natural wing with winglets.

  18. A STABLE, ACCURATE METHODOLOGY FOR HIGH MACH NUMBER, STRONG MAGNETIC FIELD MHD TURBULENCE WITH ADAPTIVE MESH REFINEMENT: RESOLUTION AND REFINEMENT STUDIES

    Energy Technology Data Exchange (ETDEWEB)

    Li, Pak Shing; Klein, Richard I. [Astronomy Department, University of California, Berkeley, CA 94720 (United States); Martin, Daniel F. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); McKee, Christopher F., E-mail: psli@astron.berkeley.edu, E-mail: klein@astron.berkeley.edu, E-mail: DFMartin@lbl.gov, E-mail: cmckee@astro.berkeley.edu [Physics Department and Astronomy Department, University of California, Berkeley, CA 94720 (United States)

    2012-02-01

    Performing a stable, long-duration simulation of driven MHD turbulence with a high thermal Mach number and a strong initial magnetic field is a challenge to high-order Godunov ideal MHD schemes because of the difficulty in guaranteeing positivity of the density and pressure. We have implemented a robust combination of reconstruction schemes, Riemann solvers, limiters, and constrained transport electromotive force averaging schemes that can meet this challenge, and using this strategy, we have developed a new adaptive mesh refinement (AMR) MHD module of the ORION2 code. We investigate the effects of AMR on several statistical properties of a turbulent ideal MHD system with a thermal Mach number of 10 and a plasma {beta}{sub 0} of 0.1 as initial conditions; our code is shown to be stable for simulations with higher Mach numbers (M{sub rms}= 17.3) and smaller plasma beta ({beta}{sub 0} = 0.0067) as well. Our results show that the quality of the turbulence simulation is generally related to the volume-averaged refinement. Our AMR simulations show that the turbulent dissipation coefficient for supersonic MHD turbulence is about 0.5, in agreement with unigrid simulations.

  19. A Stable, Accurate Methodology for High Mach Number, Strong Magnetic Field MHD Turbulence with Adaptive Mesh Refinement: Resolution and Refinement Studies

    CERN Document Server

    Li, Pak Shing; Klein, Richard I; McKee, Christopher F

    2011-01-01

    Performing a stable, long duration simulation of driven MHD turbulence with a high thermal Mach number and a strong initial magnetic field is a challenge to high-order Godunov ideal MHD schemes because of the difficulty in guaranteeing positivity of the density and pressure. We have implemented a robust combination of reconstruction schemes, Riemann solvers, limiters, and Constrained Transport EMF averaging schemes that can meet this challenge, and using this strategy, we have developed a new Adaptive Mesh Refinement (AMR) MHD module of the ORION2 code. We investigate the effects of AMR on several statistical properties of a turbulent ideal MHD system with a thermal Mach number of 10 and a plasma $\\beta_0$ of 0.1 as initial conditions; our code is shown to be stable for simulations with higher Mach numbers ($M_rms = 17.3$) and smaller plasma beta ($\\beta_0 = 0.0067$) as well. Our results show that the quality of the turbulence simulation is generally related to the volume-averaged refinement. Our AMR simulati...

  20. Reynolds number limits for jet propulsion: A numerical study of simplified jellyfish

    CERN Document Server

    Herschlag, Gregory

    2010-01-01

    The Scallop Theorem states that reciprocal methods of locomotion, such as jet propulsion or paddling, will not work in Stokes flow (Reynolds number = 0). In nature the effective limit of jet propulsion is still in the range where inertial forces are significant. It appears that almost all animals that use jet propulsion swim at Reynolds numbers (Re) of about 5 or more. Juvenile squid and octopods hatch from the egg already swimming in this inertial regime. The limitations of jet propulsion at intermediate Re is explored here using the immersed boundary method to solve the two-dimensional Navier Stokes equations coupled to the motion of a simplified jellyfish. The contraction and expansion kinematics are prescribed, but the forward and backward swimming motions of the idealized jellyfish are emergent properties determined by the resulting fluid dynamics. Simulations are performed for both an oblate bell shape using a paddling mode of swimming and a prolate bell shape using jet propulsion. Average forward veloc...

  1. INTERSTELLAR NEUTRAL HELIUM IN THE HELIOSPHERE FROM IBEX OBSERVATIONS. IV. FLOW VECTOR, MACH NUMBER, AND ABUNDANCE OF THE WARM BREEZE

    Energy Technology Data Exchange (ETDEWEB)

    Kubiak, Marzena A.; Swaczyna, P.; Bzowski, M.; Sokół, J. M. [Space Research Centre of the Polish Academy of Sciences (CBK PAN), 00-716 Warsaw (Poland); Fuselier, S. A.; McComas, D. J. [Southwest Research Institute, San Antonio, TX (United States); Galli, A.; Wurz, P. [Physikalisches Institut, Universität Bern, Bern (Switzerland); Heirtzler, D.; Kucharek, H.; Leonard, T. W.; Möbius, E.; Park, J.; Schwadron, N. A., E-mail: mkubiak@cbk.waw.pl [Space Science Center and Department of Physics, University of New Hampshire, Durham, NH (United States)

    2016-04-15

    Following the high-precision determination of the velocity vector and temperature of the pristine interstellar neutral (ISN) He via a coordinated analysis summarized by McComas et al., we analyzed the Interstellar Boundary Explorer (IBEX) observations of neutral He left out from this analysis. These observations were collected during the ISN observation seasons 2010–2014 and cover the region in the Earth's orbit where the Warm Breeze (WB) persists. We used the same simulation model and a parameter fitting method very similar to that used for the analysis of ISN He. We approximated the parent population of the WB in front of the heliosphere with a homogeneous Maxwell–Boltzmann distribution function and found a temperature of ∼9500 K, an inflow speed of 11.3 km s{sup −1}, and an inflow longitude and latitude in the J2000 ecliptic coordinates 251.°6, 12.°0. The abundance of the WB relative to ISN He is 5.7% and the Mach number is 1.97. The newly determined inflow direction of the WB, the inflow directions of ISN H and ISN He, and the direction to the center of the IBEX Ribbon are almost perfectly co-planar, and this plane coincides within relatively narrow statistical uncertainties with the plane fitted only to the inflow directions of ISN He, ISN H, and the WB. This co-planarity lends support to the hypothesis that the WB is the secondary population of ISN He and that the center of the Ribbon coincides with the direction of the local interstellar magnetic field (ISMF). The common plane for the direction of the inflow of ISN gas, ISN H, the WB, and the local ISMF is given by the normal direction: ecliptic longitude 349.°7 ± 0.°6 and latitude 35.°7 ± 0.6 in the J2000 coordinates, with a correlation coefficient of 0.85.

  2. Scalar transport across the turbulent/non-turbulent interface in jets: Schmidt number effects

    Science.gov (United States)

    Silva, Tiago S.; B. da Silva, Carlos; Idmec Team

    2016-11-01

    The dynamics of a passive scalar field near a turbulent/non-turbulent interface (TNTI) is analysed through direct numerical simulations (DNS) of turbulent planar jets, with Reynolds numbers ranging from 142 URL http://www.lca.uc.pt.

  3. Energetic Impact of Jet Inflated Cocoons in Relaxed Galaxy Clusters

    OpenAIRE

    Vernaleo, John C.; Christopher S. Reynolds

    2007-01-01

    Jets from active galactic nuclei (AGN) in the cores of galaxy clusters have the potential to be a major contributor to the energy budget of the intracluster medium (ICM). To study the dependence of the interaction between the AGN jets and the ICM on the parameters of the jets themselves, we present a parameter survey of two-dimensional (axisymmetric) ideal hydrodynamic models of back-to-back jets injected into a cluster atmosphere (with varying Mach numbers and kinetic luminosities). We follo...

  4. On the transfer of energy to an unstable liquid jet in a coflowing compressible airstream

    Science.gov (United States)

    Li, Hsi-Shang; Kelly, Robert E.

    1993-01-01

    The transfer of energy from a compressible airstream to a coflowing unstable liquid jet via the pressure perturbation at the interface is studied as the Mach number varies continuously from subsonic to supersonic values. The 'lift' component of the pressure perturbation has been demonstrated to predominate up to slightly supersonic free-stream Mach numbers, after which the 'drag' component predominates.

  5. Surface pressure data for a supersonic-cruise airplane configuration at Mach numbers of 2.30, 2.96, 3.30

    Science.gov (United States)

    Shrout, B. L.; Corlett, W. A.; Collins, I. K.

    1979-01-01

    The tabulated results of surface pressure tests conducted on the wing and fuselage of an airplane model in the Langley Unitary Plan wind tunnel are presented without analysis. The model tested was that of a supersonic-cruise airplane with a highly swept arrow-wing planform, two engine nacelles mounted beneath the wing, and outboard vertical tails. Data were obtained at Mach numbers of 2.30, 2.96, and 3.30 for angles of attack from -4 deg to 12 deg. The Reynolds number for these tests was 6,560,000 per meter.

  6. An Experimental Parametric Study of Geometric, Reynolds Number, and Ratio of Specific Heats Effects in Three-Dimensional Sidewall Compression Scramjet Inlets at Mach 6

    Science.gov (United States)

    Holland, Scott D.; Murphy, Kelly J.

    1993-01-01

    Since mission profiles for airbreathing hypersonic vehicles such as the National Aero-Space Plane include single-stage-to-orbit requirements, real gas effects may become important with respect to engine performance. The effects of the decrease in the ratio of specific heats have been investigated in generic three-dimensional sidewall compression scramjet inlets with leading-edge sweep angles of 30 and 70 degrees. The effects of a decrease in ratio of specific heats were seen by comparing data from two facilities in two test gases: in the Langley Mach 6 CF4 Tunnel in tetrafluoromethane (where gamma=1.22) and in the Langley 15-Inch Mach 6 Air Tunnel in perfect gas air (where gamma=1.4). In addition to the simulated real gas effects, the parametric effects of cowl position, contraction ratio, leading-edge sweep, and Reynolds number were investigated in the 15-Inch Mach 6 Air Tunnel. The models were instrumented with a total of 45 static pressure orifices distributed on the sidewalls and baseplate. Surface streamline patterns were examined via oil flow, and schlieren videos were made of the external flow field. The results of these tests have significant implications to ground based testing of inlets in facilities which do not operate at flight enthalpies.

  7. Effects of density, velocity gradient, and compressibility on side-jet formation in round jets with variable density

    Science.gov (United States)

    Muramatsu, Akinori

    2013-11-01

    When a low density gas compared with the ambient gas is discharged from a round nozzle, side jets that are radial ejections of jet fluid are generated at the initial region of the jet. The density ratio between the jet fluid and the ambient fluid is a main parameter for the side-jet formation. Since the side-jet formation is also related to the instability of shear layer, it depends on the velocity gradient of the shear layer in the jet. The velocity gradient is evaluated by a ratio of the momentum thickness and the nozzle diameter at the nozzle exit. Compressibility suppresses the instability and the generation of the side jets. The compressibility is evaluated by a Mach number, which is a ratio defined by an issuing velocity of the jet and a sound velocity in the ambient fluid. Influence of these three parameters on the side-jet formation was examined experimentally. The density ratio and momentum thickness ratio were varied from 0.14 to 1.53, and from 14 to 155, respectively. The Mach number was varied to 0.7. Existence of side jets was confirmed by flow visualization using a laser sheet. Domains for the side-jet formation by the density ratio, the momentum thickness ratio, and the Mach number were determined.

  8. Flow structure and heat transfer characteristics of an unconfined impinging air jet at high jet Reynolds numbers

    Energy Technology Data Exchange (ETDEWEB)

    Ozmen, Y.; Baydar, E. [Karadeniz Technical University, Department of Mechanical Engineering, Trabzon (Turkey)

    2008-09-15

    The flow and heat transfer characteristics of an unconfined air jet that is impinged normally onto a heated flat plate have been experimentally investigated for high Reynolds numbers ranging from 30,000 to 70,000 and a nozzle-to-plate spacing range of 1-10. The mean and turbulence velocities by using hot-wire anemometry and impingement surface pressures with pressure transducer are measured. Surface temperature measurements are made by means of an infrared thermal imaging technique. The effects of Reynolds number and nozzle-to-plate spacing on the flow structure and heat transfer characteristics are described and compared with similar experiments. It was seen that the locations of the second peaks in Nusselt number distributions slightly vary with Reynolds number and nozzle-to-plate spacing. The peaks in distributions of Nusselt numbers and radial turbulence intensity are compatible for spacings up to 3. The stagnation Nusselt number was correlated for the jet Reynolds number and the nozzle-to-plate spacing as Nu{sub st}{proportional_to}Re {sup 0.69}(H/D){sup 0.019}. (orig.)

  9. PIV and LIF study of slot continuous jet at low Reynolds number

    Directory of Open Access Journals (Sweden)

    Broučková Zuzana

    2016-01-01

    Full Text Available This study deals with a continuous jet issuing from a small narrow slot with a width of 0.36 mm. The experimental arrangement is based on the piezoelectric synthetic jet actuator studied previously for easy comparisons. The working fluid is water at room temperature. The experiments were performed using methods of particle image velocimetry (PIV and flow visualization (laser induced fluorescence, LIF. The time-mean volume flux through the exit nozzle was quantified using precise scales. The mean velocity and the Reynolds number were evaluated as Um = 0.12 m/s and Re = 90, respectively. The results of LIF and PIV techniques revealed the three-dimensional character of the flow field, namely the saddle-shape velocity profiles. This behavior is typical for steady jets from a rectangular nozzle. The obtained results were compared with previous measurements of the synthetic jet issuing from the same cavity and the slot nozzle.

  10. Calibration of HYPULSE for hypervelocity air flows corresponding to flight Mach numbers 13.5, 15, and 17

    Science.gov (United States)

    Calleja, John; Tamagno, Jose

    1993-01-01

    A series of air calibration tests were performed in GASL's HYPULSE facility in order to more accurately determine test section flow conditions for flows simulating total enthalpies in the Mach 13 to 17 range. Present calibration data supplements previous data and includes direct measurement of test section pitot and static pressure, acceleration tube wall pressure and heat transfer, and primary and secondary incident shock velocities. Useful test core diameters along with the corresponding free-stream conditions and usable testing times were determined. For the M13.5 condition, in-stream static pressure surveys showed the temporal and spacial uniformity of this quantity across the useful test core. In addition, finite fringe interferograms taken of the free-stream flow at the test section did not indicate the presence of any 'strong' wave system for any of the conditions investigated.

  11. A powerful double radio relic system discovered in PSZ1 G108.18-11.53: evidence for a shock with non-uniform Mach number?

    CERN Document Server

    de Gasperin, F; van Weeren, R J; Dawson, W A; Golovich, N; Wittman, D; Bonafede, A; Bruggen, M

    2015-01-01

    Diffuse radio emission in the form of radio halos and relics has been found in a number of merging galaxy clusters. These structures indicate that shock and turbulence associated with the merger accelerate electrons to relativistic energies. We report the discovery of a radio relic + radio halo system in PSZ1 G108.18-11.53 (z=0.335). This cluster hosts the second most powerful double radio relic system ever discovered. We observed PSZ1 G108.18-11.53 with the Giant Meterwave Radio Telescope (GMRT) and the Westerbork Synthesis Radio Telescope (WSRT). We obtained radio maps at 147, 323, 607 and 1380 MHz. We also observed the cluster with the Keck telescope, obtaining the spectroscopic redshift for 42 cluster members. From the injection index we obtained the Mach number of the shocks generating the two radio relics. For the southern shock we found M = 2.33^{+0.19}_{-0.26}, while the northern shock Mach number goes from M = 2.20^{+0.07}_{-0.14} in the north part down to M = 2.00^{+0.03}_{-0.08} in the southern reg...

  12. Study of the shock structure of supersonic, dual, coaxial, jets

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. H.; Lee, J. H.; Kim, H. D. [Andong National Univ., Andong (Korea, Republic of)

    2001-07-01

    The shock structure of supersonic, dual, coaxial jet is experimentally investigated. Eight different kinds of coaxial, dual nozzles are employed to observe the major features of the near field shock structure of the supersonic, coaxial, dual jets. Four convergent-divergent supersonic nozzles having the Mach number of 2.0 and 3.0, and are used to compare the coaxial jet flows discharging from two sonic nozzles. The primary pressure ratio is changed in the range between 4.0 and 10.0 and the assistant jet pressure ratio from 1.0 to 4.0. The results obtained show that the impinging angle, nozzle geometry and pressure ratio significantly affect the near field shock structure, Mach disk location and Mach disk diameter. The annular shock system is found depending the assistant and primary jet pressure ratios.

  13. Acoustics of dual-stream high-speed jets

    Science.gov (United States)

    Debiasi, Marco Tullio

    2000-10-01

    This work presents the results of noise measurements in high-speed, round jets whose Mach number and velocity simulate the conditions of jet engines at take-off. The Mach number of the jet potential core ranged from 1.27 to 1.77 and the velocity ranged from 550 m/s to 1010 m/s. Most of the jets were silenced with a coflow that prevented the formation of Mach waves, a dominant contribution to supersonic jet noise. This method, called Mach Wave Elimination, relies on the shielding effect of the coflow which makes the motion of the eddies subsonic with respect to the surrounding streams, thus impeding the creation of Mach waves. Schlieren photography and pitot probe surveys were used to detect the principal features and the growth rate of the jets. Microphone measurements were performed inside an anechoic chamber at many positions around the jet exit. The results were corrected for the microphone response and for the effect of human sensitivity to sound. Equal-thrust comparison of different experimental results shows that elimination of Mach waves is very effective in reducing noise in the direction of strongest emission. Except for localized shock-associated components, noise emission was found to be insensitive to nozzle exit pressure and to depend principally on the values of fully-expanded Mach number and velocity in the jet potential core. Jets with a shorter Mach wave emitting region exhibited better noise suppression. Best results were obtained with an eccentric coflow that allows the shear layer of the upper part of the jet to grow naturally while silencing the jet in the downward direction. Coflows are capable of reducing the near-field screech peaks by up to 10 dB in imperfectly-expanded jets. Scaling the experimental results to a fall-size engine shows that eccentric coflows reduce the noise perceived in the direction of peak emission by up to 11 dB. Preliminary analysis of the application of this silencing technique to engine design indicates that Mach

  14. Linearized Euler Equations for the Determination of Scattering Matrices for Orifice and Perforated Plate Configurations in the High Mach Number Regime

    Directory of Open Access Journals (Sweden)

    Moritz Schulze

    2016-10-01

    Full Text Available The interaction of a plane acoustic wave and a sheared flow is numerically investigated for simple orifice and perforated plate configurations in an isolated, non-resonant environment for Mach numbers up to choked conditions in the holes. Analytical derivations found in the literature are not valid in this regime due to restrictions to low Mach numbers and incompressible conditions. To allow for a systematic and detailed parameter study, a low-cost hybrid Computational Fluid Dynamic/Computational Aeroacoustic (CFD/CAA methodology is used. For the CFD simulations, a standard k–ϵ Reynolds-Averaged Navier–Stokes (RANS model is employed, while the CAA simulations are based on frequency space transformed linearized Euler equations (LEE, which are discretized in a stabilized Finite Element method. Simulation times in the order of seconds per frequency allow for a detailed parameter study. From the application of the Multi Microphone Method together with the two-source location procedure, acoustic scattering matrices are calculated and compared to experimental findings showing very good agreement. The scattering properties are presented in the form of scattering matrices for a frequency range of 500–1500 Hz.

  15. High-dynamic-range extinction mapping of infrared dark clouds: Dependence of density variance with sonic Mach number in molecular clouds

    CERN Document Server

    Kainulainen, Jouni

    2012-01-01

    Measuring the mass distribution of infrared dark clouds (IRDCs) over the wide dynamic range of their column densities is a fundamental obstacle in determining the initial conditions of high-mass star formation and star cluster formation. We present a new technique to derive high-dynamic-range, arcsecond-scale resolution column density data for IRDCs and demonstrate the potential of such data in measuring the density variance - sonic Mach number relation in molecular clouds. We combine near-infrared data from the UKIDSS/Galactic Plane Survey with mid-infrared data from the Spitzer/GLIMPSE survey to derive dust extinction maps for a sample of ten IRDCs. We then examine the linewidths of the IRDCs using 13CO line emission data from the FCRAO/Galactic Ring Survey and derive a column density - sonic Mach number relation for them. For comparison, we also examine the relation in a sample of nearby molecular clouds. The presented column density mapping technique provides a very capable, temperature independent tool f...

  16. Using Computational Fluid Dynamics and Experiments to Design Sweeping Jets for High Reynolds Number Cruise Configurations

    Science.gov (United States)

    Jones, Gregory S.; Milholen, William E., II; Fell, Jared S.; Webb, Sandy R.; Cagle, C. Mark

    2016-01-01

    The application of a sweeping jet actuator to a circulation control system was initiated by a risk reduction series of experiments to optimize the authority of a single sweeping jet actuator. The sweeping jet design was integrated into the existing Fundamental Aerodynamic Subsonic Transonic- Modular Active Control (FAST-MAC) model by replacing the steady blowing system with an array of thirty-nine sweeping jet cartridges. A constant slot height to wing chord ratio was similar to the steady blowing configuration resulting in each actuator having a unique in size for the sweeping jet configuration. While this paper will describe the scaling and optimization of the actuators for future high Reynolds number applications, the major focus of this effort was to target the transonic flight regime by increasing the amplitude authority of the actuator. This was accomplished by modifying the diffuser of the sweeping jet actuator, and this paper highlights twelve different diffuser designs. The experimental portion of this work was completed in the NASA Langley National Transonic Facility.

  17. Drop Characteristics of non-Newtonian Impinging Jets at High Generalized Bird-Carreau Jet Reynolds Numbers

    Science.gov (United States)

    Sojka, Paul E.; Rodrigues, Neil S.

    2015-11-01

    The current study investigates the drop characteristics of three Carboxymethylcellulose (CMC) sprays produced by the impingement of two liquid jets. The three water-based solutions used in this work (0.5 wt.-% CMC-7MF, 0.8 wt.-% CMC-7MF, and 1.4 wt.-% CMC-7MF) exhibited strong shear-thinning, non-Newtonian behavior - characterized by the Bird-Carreau rheological model. A generalized Bird-Carreau jet Reynolds number was used as the primary parameter to characterize the drop size and the drop velocity, which were measured using Phase Doppler Anemometry (PDA). PDA optical configuration enabled a drop size measurement range of approximately 2.3 to 116.2 μm. 50,000 drops were measured at each test condition to ensure statistical significance. The arithmetic mean diameter (D10) , Sauter mean diameter (D32) , and mass median diameter (MMD) were used as representative diameters to characterize drop size. The mean axial drop velocity Uz -mean along with its root-mean square Uz -rms were used to characterize drop velocity. Incredibly, measurements for all three CMC liquids and reference DI water sprays seemed to follow a single curve for D32 and MMD drop diameters in the high generalized Bird-Carreau jet Reynolds number range considered in this work (9.21E +03 Number W911NF-08-1-0171.

  18. Adaptive multilevel mesh refinement method for the solution of low Mach number reactive flows; Methode adaptative de raffinement local multi-niveaux pour le calcul d'ecoulements reactifs a faible nombre de Mach

    Energy Technology Data Exchange (ETDEWEB)

    Core, X.

    2002-02-01

    The isobar approximation for the system of the balance equations of mass, momentum, energy and chemical species is a suitable approximation to represent low Mach number reactive flows. In this approximation, which neglects acoustics phenomena, the mixture is hydrodynamically incompressible and the thermodynamic effects lead to an uniform compression of the system. We present a novel numerical scheme for this approximation. An incremental projection method, which uses the original form of mass balance equation, discretizes in time the Navier-Stokes equations. Spatial discretization is achieved through a finite volume approach on MAC-type staggered mesh. A higher order de-centered scheme is used to compute the convective fluxes. We associate to this discretization a local mesh refinement method, based on Flux Interface Correction technique. A first application concerns a forced flow with variable density which mimics a combustion problem. The second application is natural convection with first small temperature variations and then beyond the limit of validity of the Boussinesq approximation. Finally, we treat a third application which is a laminar diffusion flame. For each of these test problems, we demonstrate the robustness of the proposed numerical scheme, notably for the density spatial variations. We analyze the gain in accuracy obtained with the local mesh refinement method. (author)

  19. Visualization of Flow Separation Around an Atmospheric Entry Capsule at Low-Subsonic Mach Number Using Background-Oriented Schlieren (BOS)

    Science.gov (United States)

    Mizukaki, Toshiharu; Borg, Stephen E.; Danehy, Paul M.; Murman, Scott M.

    2014-01-01

    This paper presents the results of visualization of separated flow around a generic entry capsule that resembles the Apollo Command Module (CM) and the Orion Multi-Purpose Crew Vehicle (MPCV). The model was tested at flow speeds up to Mach 0.4 at a single angle of attack of 28 degrees. For manned spacecraft using capsule-shaped vehicles, certain flight operations such as emergency abort maneuvers soon after launch and flight just prior to parachute deployment during the final stages of entry, the command module may fly at low Mach number. Under these flow conditions, the separated flow generated from the heat-shield surface on both windward and leeward sides of the capsule dominates the wake flow downstream of the capsule. In this paper, flow visualization of the separated flow was conducted using the background-oriented schlieren (BOS) method, which has the capability of visualizing significantly separated wake flows without the particle seeding required by other techniques. Experimental results herein show that BOS has detection capability of density changes on the order of 10(sup-5).

  20. Effect of Mach number, valve angle and length to diameter ratio on thermal performance in flow of air through Ranque Hilsch vortex tube

    Science.gov (United States)

    Devade, Kiran D.; Pise, Ashok T.

    2017-01-01

    Ranque Hilsch vortex tube is a device that can produce cold and hot air streams simultaneously from pressurized air. Performance of vortex tube is influenced by a number of geometrical and operational parameters. In this study parametric analysis of vortex tube is carried out. Air is used as the working fluid and geometrical parameters like length to diameter ratio (15, 16, 17, 18), exit valve angles (30°-90°), orifice diameters (5, 6 and 7 mm), 2 entry nozzles and tube divergence angle 4° is used for experimentation. Operational parameters like pressure (200-600 kPa), cold mass fraction (0-1) is varied and effect of Mach number at the inlet of the tube is investigated. The vortex tube is tested at sub sonic (0 tube is observed for CMF up to 0.5. Experimental correlations are proposed for optimum COP. Parametric correlation is developed for geometrical and operational parameters.

  1. Thin film deposition using rarefied gas jet

    Science.gov (United States)

    Pradhan, Sahadev, , Dr.

    2017-01-01

    The rarefied gas jet of aluminium is studied at Mach number Ma =(U_j /√{ kbTj / m }) in the range .01 mass and diameter, and kb is the Boltzmann constant. An important finding is that the capture width (cross-section of the gas jet deposited on the substrate) is symmetric around the centerline of the substrate, and decreases with increased Mach number due to an increase in the momentum of the gas molecules. DSMC simulation results reveals that at low Knudsen number ((Kn =0.01); shorter mean free paths), the atoms experience more collisions, which direct them toward the substrate. However, the atoms also move with lower momentum at low Mach number ,which allows scattering collisions to rapidly direct the atoms to the substrate.

  2. Influences of initial velocity, diameter and Reynolds number on a circular turbulent air/air jet

    Institute of Scientific and Technical Information of China (English)

    Mi Jian-Chun; Du Cheng

    2011-01-01

    This paper assesses the suitability of the inflow Reynolds number defined by Reo ≡ UoD/v (here Uo and D are respectively the initial jet velocity and diameter while v is kinematic viscosity) for a round air/air jet.Specifically an experimental investigation is performed for the influences of U(o),D and Re(o) on the mean-velocity decay and spread coefficients (Ku,Kr) in the far field of a circular air jet into air from a smoothly contracting nozzle.Present measurements agree well with those previously obtained under similar inflow conditions.The relations Ku (oc) U(o) and Kr (oc) 1/U(o) for U(o) < 5 m/s appear to work,while each coefficient approaches asymptotically to a constant for U(o) > 6 m/s,regardless of the magnitudes of Reo and D.It is revealed that Reo may not be an appropriate dimensionless parameter to characterize the entire flow of a free air/air jet.This paper is the first paper that has challenged the suitability of Re(o) for turbulent free jets.

  3. Investigation of two-stage air-cooled turbine suitable for flight at Mach number of 2.5 II : blade design

    Science.gov (United States)

    Miser, James W; Stewart, Warner L

    1957-01-01

    A blade design study is presented for a two-stage air-cooled turbine suitable for flight at a Mach number of 2.5 for which velocity diagrams have been previously obtained. The detailed procedure used in the design of the blades is given. In addition, the design blade shapes, surface velocity distributions, inner and outer wall contours, and other design data are presented. Of all the blade rows, the first-stage rotor has the highest solidity, with a value of 2.289 at the mean section. The second-stage stator also had a high mean-section solidity of 1.927, mainly because of its high inlet whirl. The second-stage rotor has the highest value of the suction-surface diffusion parameter, with a value of 0.151. All other blade rows have values for this parameter under 0.100.

  4. Performance of High-pressure-ratio Axial-flow Compressor Using Highly Cambered NACA 65-series Blower Blades at High Mach Numbers

    Science.gov (United States)

    Voit, Charles H; Guentert, Donald C; Dugan, James F

    1950-01-01

    A complete stage of an axial-flow compressor was designed and built to investigate the possibility of obtaining a high pressure ratio with an acceptable efficiency through the use of the optimum combination of high blade loading and high relative inlet Mach number. Over-all stage performance was investigated over a range of flows at equivalent tip speeds of 418 to 836 feet per second. At design speed (836 ft/sec), a peak total-pressure ration of 1.445 was obtained with an adiabatic efficiency of 0.89. For design angle of attack at the mean radius, a total-pressure ratio of 1.392 was obtained.

  5. Effect of Compressibility on Contrail Ice Particle Growth in an Engine Jet

    Science.gov (United States)

    Garnier, François; Maglaras, Ephi; Morency, François; Vancassel, Xavier

    2014-06-01

    In order to understand the formation process of condensation trails (contrails), the flow in the near field of an aircraft engine jet is studied by using the three-dimensional Large Eddy Simulation technique. The configuration consists of a hot round jet laden with soot particles. The particles are tracked using the Lagrangian approach, and their growth is calculated by a microphysics water vapour deposition model. A series of simulations are performed at a realistic Reynolds number (Re = 3.2 · 106) for two different jet Mach numbers: quasi-incompressible jet flow (M = 0.2) and compressible jet flow (M = 1). Whatever the Mach number used the ice crystals first appear at the edges of the jet where the hot and moist flow mixes with the cold and dry ambient air. Both the thermal transfers and the mass coupling, which are more significant for the quasi-incompressible jet flow, control the growth process.

  6. 基于预处理HLLEW格式的全速域数值算法%Preconditioning HLLEW Scheme for Flows at All Mach Numbers

    Institute of Scientific and Technical Information of China (English)

    刘中玉; 张明锋; 郑冠男; 杨国伟

    2016-01-01

    Based on HLLEW ( Harten⁃Lax⁃Van Leer⁃Einfeldt⁃Wada) scheme, low speed preconditioning technology is introduced to develop a three⁃dimensional Navier⁃Stokes solver for flows at all Mach numbers. Low speed preconditioning techniques is introduced to reconstruct dissipative term in HLLEW scheme and preconditioning HLLEW scheme is proposed. Implicit time⁃marching method is constructed based on preconditioning Jacobian Matrix. Results of NACA 4412 incompressible flow and RAE 2822 transonic flow with preconditioning HLLEW scheme are compared with results by original method and experimental data. It shows that preconditioning HLLEW method improves accuracy and convergence rate for low speed flow. It can be applied for flows at all Mach numbers.%基于HLLEW( Harten⁃Lax⁃Van Leer⁃Einfeldt⁃Wada)格式引入预处理技术发展适合求解全速域流场的三维Navier⁃Stokes求解器。引入低速预处理技术,重新构造HLLEW格式的耗散项,给出预处理后的HLLEW格式,并根据预处理后的雅克比矩阵构造相应的隐式时间推进方程。利用预处理方法求解 NACA 4412低速不可压流动与RAE 2822跨声速可压缩流动,并与实验结果及原有方法的计算结果对比。结果表明:预处理HLLEW格式不仅提高低速不可压缩流动的计算效率和精度,也保持了对可压缩流动的处理能力,是一种适用于全速域流场数值模拟的有效方法。

  7. Computation of aircraft component flow fields at transonic Mach numbers using a three-dimensional Navier-Stokes algorithm

    Science.gov (United States)

    Shrewsbury, George D.; Vadyak, Joseph; Schuster, David M.; Smith, Marilyn J.

    1989-01-01

    A computer analysis was developed for calculating steady (or unsteady) three-dimensional aircraft component flow fields. This algorithm, called ENS3D, can compute the flow field for the following configurations: diffuser duct/thrust nozzle, isolated wing, isolated fuselage, wing/fuselage with or without integrated inlet and exhaust, nacelle/inlet, nacelle (fuselage) afterbody/exhaust jet, complete transport engine installation, and multicomponent configurations using zonal grid generation technique. Solutions can be obtained for subsonic, transonic, or hypersonic freestream speeds. The algorithm can solve either the Euler equations for inviscid flow, the thin shear layer Navier-Stokes equations for viscous flow, or the full Navier-Stokes equations for viscous flow. The flow field solution is determined on a body-fitted computational grid. A fully-implicit alternating direction implicit method is employed for the solution of the finite difference equations. For viscous computations, either a two layer eddy-viscosity turbulence model or the k-epsilon two equation transport model can be used to achieve mathematical closure.

  8. An experimental setup for visualizations and measurements on free hypersonic jets

    Directory of Open Access Journals (Sweden)

    Tordella Daniela

    2012-04-01

    Full Text Available The free hypersonic jets can be found in several technological applications and even in astrophysical observations. This article is mainly devoted to explain an experiment about visualizations and measurements on free hypersonic jets extending on length scales in the order of hundreds of initial diameters and traveling in a medium not necessarily made of the same gas of the jets. The experiments are performed by means of special facilities where the jet Mach numbers and the jetto-ambient density ratios can be set independently of each other, what permits the investigation of a wide parameters range in the relevant physics. The Mach number of the jets ranges from 5 to 20 and the jet-to ambient density ratio, which plays an important role in the jets morphology, can be set from 0.1 up to values exceeding 100. The present setup produces the jets by means of a fast piston system (for high Mach numbers or injection valves (for low Mach numbers, both coupled with de Laval nozzles. The visualizations and measurements are based on the electron beam technique: the jets are weakly ionized, then a fast CMOS camera captures images that are analyzed by image processing techniques. A sample of the results obtained by this experimental system is included at the end of this work.

  9. Secondary peak in the Nusselt number distribution of impinging jet flows: A phenomenological analysis

    Science.gov (United States)

    Aillaud, P.; Duchaine, F.; Gicquel, L. Y. M.; Didorally, S.

    2016-09-01

    This paper focuses on a wall-resolved Large Eddy Simulation (LES) of an isothermal round submerged air jet impinging on a heated flat plate, at a Reynolds number of 23 000 (based on the nozzle diameter and the bulk velocity at the nozzle outlet) and for a nozzle to plate distance of two jet diameters. This specific configuration is known to lead to a non-monotonic variation of the temporal-mean Nusselt number as a function of the jet center distance, with the presence of two distinct peaks located on the jet axis and close to two nozzle diameters from the jet axis. The objectives are here twofold: first, validate the LES results against experimental data available in the literature and second to explore this validated numerical database by the use of high order statistics such as skewness and probability density functions of the temporal distribution of temperature and pressure to identify flow features at the origin of the second Nusselt peak. Skewness (Sk) of the pressure temporal distribution reveals the rebound of the primary vortices located near the location of the secondary peak and allows to identify the initiation of the unsteady separation linked to the local minimum in the mean heat transfer distribution. In the region of mean heat transfer enhancement, joint velocity-temperature analyses highlight that the most probable event is a cold fluid flux towards the plate produced by the passage of the vortical structures. In parallel, heat transfer distributions, analyzed using similar statistical tools, allow to connect the above mentioned events to the heat transfer on the plate. Thanks to such advanced analyses, the origin of the double peak is confirmed and connected to the flow dynamics.

  10. Reynolds number limits for jet propulsion: a numerical study of simplified jellyfish.

    Science.gov (United States)

    Herschlag, Gregory; Miller, Laura

    2011-09-21

    The Scallop theorem states that reciprocal methods of locomotion, such as jet propulsion or paddling, will not work in Stokes flow (Reynolds number=0). In nature the effective limit of jet propulsion is still in the range where inertial forces are significant. It appears that almost all animals that use jet propulsion swim at Reynolds numbers (Re) of about 5 or more. Juvenile squid and octopods hatch from the egg already swimming in this inertial regime. Juvenile jellyfish, or ephyrae, break off from polyps swimming at Re greater than 5. Many other organisms, such as scallops, rarely swim at Re less than 100. The limitations of jet propulsion at intermediate Re is explored here using the immersed boundary method to solve the 2D Navier-Stokes equations coupled to the motion of a simplified jellyfish. The contraction and expansion kinematics are prescribed, but the forward and backward swimming motions of the idealized jellyfish are emergent properties determined by the resulting fluid dynamics. Simulations are performed for both an oblate bell shape using a paddling mode of swimming and a prolate bell shape using jet propulsion. Average forward velocities and work put into the system are calculated for Re between 1 and 320. The results show that forward velocities rapidly decay with decreasing Re for all bell shapes when Rejellyfish after two pulse cycles are comparable to those reported for Aurelia aurita, but discrepancies are observed in the vortex dynamics between when the 2D model oblate jellyfish and the organism. This discrepancy is likely due to a combination of the differences between the 3D reality of the jellyfish and the 2D simplification, as well as the rigidity of the time varying geometry imposed by the idealized model.

  11. Production of microbubbles from axisymmetric flow focusing in the jetting regime for moderate Reynolds numbers.

    Science.gov (United States)

    Vega, E J; Acero, A J; Montanero, J M; Herrada, M A; Gañán-Calvo, A M

    2014-06-01

    We analyze both experimentally and numerically the formation of microbubbles in the jetting regime reached when a moderately viscous liquid stream focuses a gaseous meniscus inside a converging micronozzle. If the total (stagnation) pressure of the injected gas current is fixed upstream, then there are certain conditions on which a quasisteady gas meniscus forms. The meniscus tip is sharpened by the liquid stream down to the gas molecular scale. On the other side, monodisperse collections of microbubbles can be steadily produced in the jetting regime if the feeding capillary is appropriately located inside the nozzle. In this case, the microbubble size depends on the feeding capillary position. The numerical simulations for an imposed gas flow rate show that a recirculation cell appears in the gaseous meniscus for low enough values of that parameter. The experiments allow one to conclude that the bubble pinch-off comprises two phases: (i) a stretching motion of the precursor jet where the neck radius versus the time before the pinch essentially follows a potential law, and (ii) a final stage where a very thin and slender gaseous thread forms and eventually breaks apart into a number of micron-sized bubbles. Because of the difference between the free surface and core velocities, the gaseous jet breakage differs substantially from that of liquid capillary jets and gives rise to bubbles with diameters much larger than those expected from the Rayleigh-type capillary instability. The dependency of the bubble diameter upon the flow-rate ratio agrees with the scaling law derived by A. M. Gañán-Calvo [Phys. Rev. E 69, 027301 (2004)], although a slight influence of the Reynolds number can be observed in our experiments.

  12. Numerical Simulation of Low Reynolds Number Particle-Laden Gas Jet by Vortex Method

    Science.gov (United States)

    Uchiyama, Tomomi; Yagami, Hisanori

    An air jet, which remains laminar and axisymmetric in the single-phase flow condition, is simulated numerically in the particle-laden condition. The vortex method for particle-laden gas jet proposed by the authors is employed for the simulation. An air issues with velocity U0 from a round nozzle into the air co-flowing with velocity Ua. The Reynolds number based on U0 and the nozzle diameter is 1333, the velocity ratio Ua/U0 is 0.4. Spherical glass particles with diameter 65μm are loaded at the mass loading ratio 0.025. The particle velocity at the nozzle exit is 0.68U0. The particles impose disturbances on the air and induce the three-dimensional flow, resulting in the transition from the axisymmetric flow to the non-axisymmetric one. As the particles make the air velocity fluctuation increase, the air momentum diffuses more in the radial direction, and accordingly the spread of the jet becomes larger. The abovementioned results agree well with the trend of the existing experiments. The proposed vortex method can successfully capture the flow transition caused by the particles laden on an axisymmetric air jet.

  13. Large scale Direct Numerical Simulation of premixed turbulent jet flames at high Reynolds number

    Science.gov (United States)

    Attili, Antonio; Luca, Stefano; Lo Schiavo, Ermanno; Bisetti, Fabrizio; Creta, Francesco

    2016-11-01

    A set of direct numerical simulations of turbulent premixed jet flames at different Reynolds and Karlovitz numbers is presented. The simulations feature finite rate chemistry with 16 species and 73 reactions and up to 22 Billion grid points. The jet consists of a methane/air mixture with equivalence ratio ϕ = 0 . 7 and temperature varying between 500 and 800 K. The temperature and species concentrations in the coflow correspond to the equilibrium state of the burnt mixture. All the simulations are performed at 4 atm. The flame length, normalized by the jet width, decreases significantly as the Reynolds number increases. This is consistent with an increase of the turbulent flame speed due to the increased integral scale of turbulence. This behavior is typical of flames in the thin-reaction zone regime, which are affected by turbulent transport in the preheat layer. Fractal dimension and topology of the flame surface, statistics of temperature gradients, and flame structure are investigated and the dependence of these quantities on the Reynolds number is assessed.

  14. An Investigation of Transonic Resonance in a Mach 2.2 Round Convergent-Divergent Nozzle

    Science.gov (United States)

    Dippold, Vance F., III; Zaman, Khairul B. M. Q.

    2015-01-01

    Hot-wire and acoustic measurements were taken for a round convergent nozzle and a round convergent-divergent (C-D) nozzle at a jet Mach number of 0.61. The C-D nozzle had a design Mach number of 2.2. Compared to the convergent nozzle jet flow, the Mach 2.2 nozzle jet flow produced excess broadband noise (EBBN). It also produced a transonic resonance tone at 1200 Herz. Computational simulations were performed for both nozzle flows. A steady Reynolds-Averaged Navier-Stokes simulation was performed for the convergent nozzle jet flow. For the Mach 2.2 nozzle flow, a steady RANS simulation, an unsteady RANS (URANS) simulation, and an unsteady Detached Eddy Simulation (DES) were performed. The RANS simulation of the convergent nozzle showed good agreement with the hot-wire velocity and turbulence measurements, though the decay of the potential core was over-predicted. The RANS simulation of the Mach 2.2 nozzle showed poor agreement with the experimental data, and more closely resembled an ideally-expanded jet. The URANS simulation also showed qualitative agreement with the hot-wire data, but predicted a transonic resonance at 1145 Herz. The DES showed good agreement with the hot-wire velocity and turbulence data. The DES also produced a transonic tone at 1135 Herz. The DES solution showed that the destabilization of the shock-induced separation region inside the nozzle produced increased levels of turbulence intensity. This is likely the source of the EBBN.

  15. Study of the flow characteristics of supersonic coaxial jets

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.H. [Andong National University, Andong (Korea); Koo, B.S. [Andong National University Graudate School, Andong (Korea)

    2001-12-01

    Supersonic coaxial jets are investigated numerically by using the axisymmetric, Navier-Stokes equations which are solved using a fully implicit finite volume method. Three different kinds of coaxial nozzles are employed to understand the flow physics involved in the supersonic coaxial jets. Two convergent-divergent supersonic nozzles are designed to have the same Mach number 2.0, and used to compare the coaxial jet flows with those discharging from one constant-area nozzle. The impingement angle of the annular jets are varied. The primary pressure ratio is changed in the range from 2.0 to 10.0 and the assistant jet ratio from 1.0 to 3.0. The results obtained show that the fluctuations of the total pressure and Mach number along the jet axis are much higher in the constant-area nozzle than those in the convergent-divergent nozzles, and the constant-area nozzle lead to higher total pressure losses, compared with the convergent-divergent nozzles. The assistant jets from the annular nozzle affect the coaxial jet flows within the distance less than about ten times the nozzle throat diameter, but beyond it the coaxial jet is conical with self-similar velocity profiles. Increasing both the primary jet pressure ratio and the assistant jet pressure ratio produces a longer coaxial jet core. (author). 14 refs., 9 figs.

  16. Long-range μPIV in the turbulent region of a jet, at high Reynolds numbers

    NARCIS (Netherlands)

    Fiscaletti, D.; Elsinga, G.E.; Westerweel, J.

    The present work involves the investigation of the fine scale motions in the turbulent region of a high Reynolds number air jet. In the fully developed region of the jets, the small scales of turbulence are assumed to be isotropic, and expected to contain elongated vortices (worms), whose diameter s

  17. The flow feature of transverse hydrogen jet in presence of micro air jets in supersonic flow

    Science.gov (United States)

    Barzegar Gerdroodbary, M.; Amini, Younes; Ganji, D. D.; Takam, ​M. Rahimi

    2017-03-01

    Scramjet is found to be the efficient method for the space shuttle. In this paper, numerical simulation is performed to investigate the fundamental flow physics of the interaction between an array of fuel jets and multi air jets in a supersonic transverse flow. Hydrogen as a fuel is released with a global equivalence ratio of 0.5 in presence of micro air jets on a flat plate into a Mach 4 crossflow. The fuel and air are injected through streamwise-aligned flush circular portholes. The hydrogen is injected through 4 holes with 7dj space when the air is injected in the interval of the hydrogen jets. The numerical simulation is performed by using the Reynolds-averaged Navier-Stokes equations with Menter's Shear Stress Transport (SST) turbulence model. Both the number of air jets and jet-to-freestream total pressure ratio are varied in a parametric study. The interaction of the fuel and air jet in the supersonic flow present extremely complex feature of fuel and air jet. The results present various flow features depending upon the number and mass flow rate of micro air jets. These flow features were found to have significant effects on the penetration of hydrogen jets. A variation of the number of air jets, along with the jet-to-freestream total pressure ratio, induced a variety of flow structure in the downstream of the fuel jets.

  18. The role of coherent structures in the generation of noise for subsonic jets

    Science.gov (United States)

    Morrison, G. L.; Whitaker, K. W.

    1982-01-01

    Acoustic measurements were made in the 'near' (r/D 60, x/D 60) field for high Reynolds number (184,000 to 262,000) axisymmetric cold air jets exhausting at atmospheric pressure. These measurements were in conjunction with an investigation which characterized the large scale coherent structure in the flow field of Mach number 0.6 to 0.8 jets. Natural jets as well as artificially excited jets were studied. Directivity plots were made for both natural jets and jets excited at various frequencies. Overall noise radiated by the jets reached a maximum value around 30 deg from the jet axis. However, individual frequencies emitted maximum sound pressure level at different angles from the jet axis. As the angle from the jet axis increased, the spectra of the noise shifted to higher frequencies.

  19. Static Longitudinal Stability and Control Characteristics At A Mach Number of 1.99 of a Lenticular-Shaped Reentry Vehicle

    Science.gov (United States)

    Jackson, Charles M., Jr.; Harris, Roy V., Jr.

    1960-01-01

    An investigation has been made in the Langley 4- by 4-foot supersonic pressure tunnel at a Mach number of 1.99 to determine the longitudinal stability and control characteristics of a reentry model consisting of a lenticular-shaped body with two fin configurations (horizontal fins with end plates). Effects of deflecting the larger size fins as pitch-control surfaces were also investigated. The results indicate that the body alone was unstable from an angle of attack of 0 deg to about 55 deg where it became stable and remained so to 90 deg. The addition of fins provided positive longitudinal stability throughout the angle-of-attack range and increased the lift-drag ratio of the configuration. Reducing the horizontal-fin area at the inboard trailing edge of the fin had only a small effect on the aerodynamic characteristics of the vehicle for the condition of no fin deflection. Deflecting the fins, appeared to be an effective means of pitch control and had only a small effect on lift-drag ratio.

  20. Direct numerical simulation of K-type and H-type transitions to turbulence in a low Mach number flat plate boundary layer

    Science.gov (United States)

    Sayadi, Taraneh; Hamman, Curtis; Moin, Parviz

    2011-11-01

    Transition to turbulence via spatially evolving secondary instabilities in compressible, zero-pressure-gradient flat plate boundary layers is numerically simulated for both the Klebanoff K-type and Herbert H-type disturbances. The objective of this work is to evaluate the universality of the breakdown process between different routes through transition in wall-bounded shear flows. Each localized linear disturbance is amplified through weak non-linear instability that grows into lambda-vortices and then hairpin-shaped eddies with harmonic wavelength, which become less organized in the late-transitional regime once a fully populated spanwise turbulent energy spectrum is established. For the H-type transition, the computational domain extends from Rex =105 , where laminar blowing and suction excites the most unstable fundamental and a pair of oblique waves, to fully turbulent stage at Rex = 10 . 6 ×105 . The computational domain for the K-type transition extends to Rex = 9 . 6 ×105 . The computational algorithm employs fourth-order central differences with non-reflective numerical sponges along the external boundaries. For each case, the Mach number is 0.2. Supported by the PSAAP program of DoE, ANL and LLNL.

  1. Wing Tip Drag Reduction at Nominal Take-Off Mach Number: An Approach to Local Active Flow Control with a Highly Robust Actuator System

    Directory of Open Access Journals (Sweden)

    Matthias Bauer

    2016-10-01

    Full Text Available This paper discusses wind tunnel test results aimed at advancing active flow control technology to increase the aerodynamic efficiency of an aircraft during take-off. A model of the outer section of a representative civil airliner wing was equipped with two-stage fluidic actuators between the slat edge and wing tip, where mechanical high-lift devices fail to integrate. The experiments were conducted at a nominal take-off Mach number of M = 0.2. At this incidence velocity, separation on the wing section, accompanied by increased drag, is triggered by the strong slat edge vortex at high angles of attack. On the basis of global force measurements and local static pressure data, the effect of pulsed blowing on the complex flow is evaluated, considering various momentum coefficients and spanwise distributions of the actuation effort. It is shown that through local intensification of forcing, a momentum coefficient of less than c μ = 0.6 % suffices to offset the stall by 2.4°, increase the maximum lift by more than 10% and reduce the drag by 37% compared to the uncontrolled flow.

  2. A High-Order Immersed Boundary Method for Acoustic Wave Scattering and Low-Mach Number Flow-Induced Sound in Complex Geometries.

    Science.gov (United States)

    Seo, Jung Hee; Mittal, Rajat

    2011-02-20

    A new sharp-interface immersed boundary method based approach for the computation of low-Mach number flow-induced sound around complex geometries is described. The underlying approach is based on a hydrodynamic/acoustic splitting technique where the incompressible flow is first computed using a second-order accurate immersed boundary solver. This is followed by the computation of sound using the linearized perturbed compressible equations (LPCE). The primary contribution of the current work is the development of a versatile, high-order accurate immersed boundary method for solving the LPCE in complex domains. This new method applies the boundary condition on the immersed boundary to a high-order by combining the ghost-cell approach with a weighted least-squares error method based on a high-order approximating polynomial. The method is validated for canonical acoustic wave scattering and flow-induced noise problems. Applications of this technique to relatively complex cases of practical interest are also presented.

  3. Interstellar neutral helium in the heliosphere from IBEX observations. III. Mach number of the flow, velocity vector, and temperature from the first six years of measurements

    CERN Document Server

    Bzowski, M; Kubiak, M A; Sokol, J M; Fuselier, S A; Galli, A; Heirtzler, D; Kucharek, H; Leonard, T W; McComas, D J; Moebius, E; Schwadron, N A; Wurz, P

    2015-01-01

    We analyzed observations of interstellar neutral helium (ISN~He) obtained from the Interstellar Boundary Explorer (IBEX) satellite during its first six years of operation. We used a refined version of the ISN~He simulation model, presented in the companion paper by Sokol_et al. 2015, and a sophisticated data correlation and uncertainty system and parameter fitting method, described in the companion paper by Swaczyna et al 2015. We analyzed the entire data set together and the yearly subsets, and found the temperature and velocity vector of ISN~He in front of the heliosphere. As seen in the previous studies, the allowable parameters are highly correlated and form a four-dimensional tube in the parameter space. The inflow longitudes obtained from the yearly data subsets show a spread of ~6 degree, with the other parameters varying accordingly along the parameter tube, and the minimum chi-square value is larger than expected. We found, however, that the Mach number of the ISN~He flow shows very little scatter an...

  4. DIAMOND PORT JET INTERACTION WITH SUPERSONIC FLOW

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Interaction flow field of the sonic air jet through diamond shaped orifices at different incidence angles (10 degrees, 27.5 degrees, 45 degrees and 90 degrees) and total pressures (0.10 MPa and 0. 46 MPa) with a Mach 5.0 freestream was studied experimentally. A 90 degrees circular injector was examined for comparison. Crosssection Mach number contours were acquired by a Pitot-cone five-hole pressure probe.The results indicate that the low Mach semicircular region close to the wall is the wake region. The boundary layer thinning is in the areas adjacent to the wake. For the detached case, the interaction shock extends further into the freestream, and the shock shape has more curvature, also the low-Mach upwash region is larger. The vortices of the plume and the height of the jet interaction shock increase with increasing incidence angle and jet pressure. 90 degrees diamond and circular injector have stronger plume vorticity, and for the circular injector low-Mach region is smaller than that for the diamond injector. Tapered ramp increases the plume vorticity, and the double ramp reduces the level of vorticity. The three-dimensional interaction shock shape was modeled from the surface shock shape, the center plane shock shape, and crosssectional shock shape. The shock total pressure was estimated with the normal component of the Mach number using normal shock theory. The shock induced total pressure losses decrease with decreasing jet incidence angle and injection pressure,where the largest losses are incurred by the 90 degrees, circular injector.

  5. Jet-Intracluster Medium interaction in Hydra A. II The Effect of Jet Precession

    CERN Document Server

    Nawaz, M A; Wagner, A Y; Sutherland, R S; McNamara, B R

    2016-01-01

    We present three dimensional relativistic hydrodynamical simulations of a precessing jet interacting with the intracluster medium and compare the simulated jet structure with the observed structure of the Hydra A northern jet. For the simulations, we use jet parameters obtained in the parameter space study of the first paper in this series and probe different values for the precession period and precession angle. We find that for a precession period P = 1 Myr and a precession angle = 20 degree the model reproduces i) the curvature of the jet, ii) the correct number of bright knots within 20 kpc at approximately correct locations, and iii) the turbulent transition of the jet to a plume. The Mach number of the advancing bow shock = 1.85 is indicative of gentle cluster atmosphere heating during the early stages of the AGN's activity.

  6. The internal structure of magnetized relativistic jets

    CERN Document Server

    Martí, José M; Gómez, José L

    2016-01-01

    This work presents the first characterization of the internal structure of overpressured steady superfast magnetosonic relativistic jets in connection with their dominant type of energy. To this aim, relativistic magnetohydrodynamic simulations of different jet models threaded by a helical magnetic field have been analyzed covering a wide region in the magnetosonic Mach number - specific internal energy plane. The merit of this plane is that models dominated by different types of energy (internal energy: hot jets; rest-mass energy: kinetically dominated jets; magnetic energy: Poynting-flux dominated jets) occupy well separated regions. The analyzed models also cover a wide range of magnetizations. Models dominated by the internal energy (i.e., hot models, or Poynting-flux dominated jets with magnetizations larger than but close to 1) have a rich internal structure characterized by a series of recollimation shocks and present the largest variations in the flow Lorentz factor (and internal energy density). Conv...

  7. Free-jet Tests of a 1.1-inch-diameter Supersonic Ram-jet Engine

    Science.gov (United States)

    Judd, Joseph H; Trout, Otto F , Jr

    1957-01-01

    Results are presented of free-jet tests of a 1.1-inch-diameter hydrogen-burning ram-jet engine over a Mach number range from 1.42 to 2.28 and a Reynolds number range from 6.01 times 10 to the 6th power to 15.78 times 10 to the 6th power. Tests demonstrated the reliability and wide operating range of the engine and showed its suitability for installation on wind-tunnel models of airplane and missile configurations. A comparison of engine operation with combustion-chamber lengths of 3.33 and 1.51 engine diameters was made at a Mach number of 2.06. A maximum test thrust coefficient of 0.905 was obtained at fuel-air ratio of 0.034 and a Mach number of 2.06 for the engine with the 3.33-diameter combustion chamber.

  8. A Pressure-distribution Investigation of the Aerodynamic Characteristics of a Body of Revolution in the Vicinity of a Reflection Plane at Mach Numbers of 1.41 and 2.01

    Science.gov (United States)

    Gapcynski, John P; Carlson, Harry W

    1955-01-01

    The changes in the aerodynamic characteristics of a body of revolution with a fineness ratio of 8 have been determined at Mach numbers of 1.41 and 2.01, a Reynolds number, based on body length, of 4.54 x 10 to the 6th power, and angles of incidence of 0 degrees and plus or minus 3 degrees as the position of the body is varied with respect to a reflection plane. The data are compared with theoretical results.

  9. An experimental investigation of a highly underexpanded sonic jet ejecting from a flat plate into a subsonic crossflow

    Science.gov (United States)

    Shaw, C. S.; Margason, R. J.

    1973-01-01

    The induced static pressures due to a highly underexpanded sonic jet ejecting normally from a flat plate into a subsonic crosswind have been investigated. These pressure data have been recorded on the flat plate for a range of nominal jet-to-free-stream dynamic-pressure ratios from 0 to 1000 at free-stream Mach numbers of 0.1, 0.2, 0.4, and 0.6. The static pressure data measured on the flat plate are presented and correlated based upon the Riemann shock geometry in the jet plume. This data correlation improves with increasing free-stream Mach number.

  10. Experimental investigation of influence of Reynolds number on synthetic jet vortex rings impinging onto a solid wall

    Science.gov (United States)

    Xu, Yang; He, GuoSheng; Kulkarni, Varun; Wang, JinJun

    2017-01-01

    Time-resolved particle image velocimetry was employed to study the effect of Reynolds number ( Re sj) on synthetic jet vortex rings impinging onto a solid wall. Four Reynolds numbers ranging from 166 to 664 were investigated for comparison while other parameters were kept constant. It is found that the Reynolds number has a significant impact on the spatial evolution of near-wall vortical structures of the impinging synthetic jet. Velocity triple decomposition reveals that periodic Reynolds shear stresses produced by both impinging and secondary vortex rings agree well with a four-quadrant-type distribution rule, and the random velocity fluctuations are strengthened as Re sj increases. For radial wall jet, radial velocity profiles exhibit a self-similar behavior for all Re sj, and this self-similar profile gradually deviates from the laminar solution as Re sj is increased. In particular, the self-similar profile for low Re sj (166) coincides with the laminar solution indicating that periodic velocity fluctuations produced by vortex rings have little effect on the velocity profile of the laminar wall jet. This also provides evidence that the impinging synthetic jet is more effective in mixing than the continuous jet for the laminar flow. For the high Re sj, the mean skin friction coefficient has a slower decay rate after reaching peak, and the radial momentum flux has a higher value at locations far away from the impingement region, both of these can be attributed to the enhanced random fluctuations.

  11. Study of parameters and entrainment of a jet in cross-flow arrangement with transition at two low Reynolds numbers

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas, Camilo [Karlsruhe Institute of Technology, Institute for Chemical Technology and Polymer Chemistry, Karlsruhe (Germany); Convenio Andres Bello, Instituto Internacional de Investigaciones Educativas para la Integracion, La Paz (Bolivia); Denev, Jordan A.; Bockhorn, Henning [Karlsruhe Institute of Technology, Engler-Bunte-Institute, Combustion Division, Karlsruhe (Germany); Suntz, Rainer [Karlsruhe Institute of Technology, Institute for Chemical Technology and Polymer Chemistry, Karlsruhe (Germany)

    2012-10-15

    Investigation of the mixing process is one of the main issues in chemical engineering and combustion and the configuration of a jet into a cross-flow (JCF) is often employed for this purpose. Experimental data are gained for the symmetry plane in a JCF-arrangement of an air flow using a combination of particle image velocimetry (PIV) with laser-induced fluorescence (LIF). The experimental data with thoroughly measured boundary conditions are complemented with direct numerical simulations, which are based on idealized boundary conditions. Two similar cases are studied with a fixed jet-to-cross-flow velocity ratio of 3.5 and variable cross-flow Reynolds numbers equal to 4,120 and 8,240; in both cases the jet issues from the pipe at laminar conditions. This leads to a laminar-to-turbulent transition, which depends on the Reynolds number and occurs quicker for the case with higher Reynolds number in both experiments and simulations as well. It was found that the Reynolds number only slightly affects the jet trajectory, which in the case with the higher Reynolds number is slightly deeper. It is attributed to the changed boundary layer shape of the cross-flow. Leeward streamlines bend toward the jet and are responsible for the strong entrainment of cross-flow fluid into the jet. Velocity components are compared for the two Reynolds numbers at the leeward side at positions where strongest entrainment is present and a pressure minimum near the jet trajectory is found. The numerical simulations showed that entrainment is higher for the case with the higher Reynolds number. The latter is attributed to the earlier transition in this case. Fluid entrainment of the jet in cross-flow is more than twice stronger than for a similar flow of a jet issuing into a co-flowing stream. This comparison is made along the trajectory of the two jets at a distance of 5.5 jet diameters downstream and is based on the results from the direct numerical simulations and recently published

  12. Free-Flight Zero-Lift Drag Results from a 1/5-Scale Model and Several Small-Scale Equivalent Bodies of Revolution of the Convair F-102 Configuration at Mach Numbers up to 1.34

    Science.gov (United States)

    Wallskog, Harvey A.

    1954-01-01

    A 1/5-scale, rocket-propelled model of the Convair F-102 configuration was tested in free flight to determine zero-lift drag at Mach numbers up to 1.34 and at Reynolds numbers comparable to those of the full-scale airplane. This large-scale model corresponded to the prototype airplane and had air flow through the duct. Additional zero-lift drag tests involved a series of small equivalent bodies of revolution which were launched by means of a helium gun. The several small-scale models tested corresponded to: the basic configuration, the 1/5-scale rocket-propelled model configuration, a 2-foot (full-scale) fuselage-extension configuration, and a 7-foot (full-scale) fuselage-extension configuration. Models designed to correspond to the area distribution at a Mach number of 1.0 were flown for each of these 'shapes and, in addition, models designed to correspond to the area distribution at a Mach number of 1.2 were flown for the 1/5-scale rocket-propelled model and the 7-foot-fuselage-extension configuration. The value of external pressure drag coefficient (including base drag) obtained from the large-scale rocket model was 0.0190 at a Mach number of 1..05 and the corresponding values from the equivalent-body tests varied from 0.0183 for the rocket-propelled model shape to 0.0137 for the 7-foot-fuselage-extension configuration. From the results of tests of equivalent bodies designed to correspond to the area distribution at a Mach number of 1.0, it is evident that the small changes in shape incorporated in the basic and 2-foot-fuselage-extension configurations from that of the rocket-propelled model configuration will provide no significant change in pressure drag. On the other hand, the data from the 7-foot-fuselage-extension model indicate a substantial reduction in pressure drag at transonic speeds.

  13. On the Existence of Subharmonic Screech in Choked Circular Jets from a Sharp-Edged Orifice

    Science.gov (United States)

    Kandula, Max

    2014-01-01

    Experiments are performed in choked circular hot and cold nitrogen jets issuing from a 2.44 cm diameter sharp-edged orifice at a fully expanded jet Mach number of 1.85 in an effort to investigate the character of screech phenomenon. The stagnation temperature of the cold and the hot jets are 299 K and 319 K respectively. The axial distribution of the centerline Mach number was obtained with a pitot tube, while the screech data (frequency and amplitude) at different axial and radial stations were measured with the aid of microphones. The fundamental screech frequency of the hot jet is slightly increased relative to that of the cold jet. It is concluded that temperature effects on the screech amplitude are manifested with regard to the fundamental and the subharmonic even at relatively small temperature range considered.

  14. Numerical study of cavitation inception in the near field of an axisymmetric jet at high Reynolds number

    Science.gov (United States)

    Cerutti, Stefano; Knio, Omar M.; Katz, Joseph

    2000-10-01

    Cavitation inception in the near field of high Reynolds number axisymmetric jets is analyzed using a simplified computational model. The model combines a vorticity-stream-function finite-difference scheme for the simulation of the unsteady flow field with a simplified representation for microscopic bubbles that are injected at the jet inlet. The motion of the bubbles is tracked in a Lagrangian reference frame by integrating a semiempirical dynamical equation which accounts for pressure, drag, and lift forces. The likelihood of cavitation inception is estimated based on the distributions of pressure and microscopic bubbles. The computations are used to examine the role of jet slenderness ratio, Reynolds number, bubble size, and bubble injection location on the cavitation inception indices. The results indicate that, for all bubble sizes considered, the cavitation inception index increases as the jet slenderness ratio decreases. Larger bubbles entrain more rapidly into the cores of concentrated vortices than smaller bubbles, and the corresponding inception indices are generally higher than those of smaller bubbles. The inception indices for larger bubbles are insensitive to the injection location, while the inception indices of smaller bubbles tend to increase when they are injected inside the shear layer near the nozzle lip. Although it affects the bubble distributions, variation of the Reynolds number leads to insignificant changes in pressure minima and in the inception indices of larger bubbles, having noticeable effect only on the inception indices of smaller bubbles. Computed results are consistent with, and provide plausible explanations for, several trends observed in recent jet cavitation experiments.

  15. 3-D LDA study of a rectangular jet

    Science.gov (United States)

    Morrison, Gerald L.; Tatterson, Gary B.; Swan, David H.

    1988-01-01

    The flow field of a rectangular jet with a 2:1 aspect ratio was studied at an axial Reynolds number of 100,000 (Mach number 0.09) using three-dimensional laser Doppler velocimetry. The flow field survey resulted in mean velocity vector field plots and contour plots of the Reynolds stress tensor components. This paper presents contour plots in the planes of the jet minor and major axes at different axial locations. These data contribute substantially to currently available data of jet flow fields and will provide a valuable database for three-dimensional modeling.

  16. Subsonic and Supersonic Jet Noise Calculations Using PSE and DNS

    Science.gov (United States)

    Balakumar, P.; Owis, Farouk

    1999-01-01

    Noise radiated from a supersonic jet is computed using the Parabolized Stability Equations (PSE) method. The evolution of the instability waves inside the jet is computed using the PSE method and the noise radiated to the far field from these waves is calculated by solving the wave equation using the Fourier transform method. We performed the computations for a cold supersonic jet of Mach number 2.1 which is excited by disturbances with Strouhal numbers St=.2 and .4 and the azimuthal wavenumber m=l. Good agreement in the sound pressure level are observed between the computed and the measured (Troutt and McLaughlin 1980) results.

  17. Effects of the jet-to-crossflow momentum ratio on a sonic jet into a supersonic crossflow

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Numerical investigation of a transverse sonic jet injected into a supersonic crossflow was carried out using large-eddy simulation for a free-stream Mach number M = 1.6 and a Reynolds number Re = 1.38×10~5 based on the jet diameter.Effects of the jet-to-crossflow momentum ratio on various fundamental mechanisms dictating the intricate flow phenomena,including flow structures, turbulent characters and frequency behaviors,have been studied.The complex flow structures and the relevant flow features are disc...

  18. Cross and clover shaped orifice jets analysis at low Reynolds number

    Directory of Open Access Journals (Sweden)

    Meslem Amina

    2015-01-01

    Full Text Available The jet coming from a cross-shaped orifice with an open center has been shown in the past, to provide substantial increase in the near field convective transport-mixing, in comparison to a classical round orifice jet. Detailed information has been reported in previous works on the role played in the jet mixing enhancement by the crow of vortices composed of counter-rotating pairs of secondary streamwise structures which are developing in orifice’s troughs. A trough in the cross-shaped jet generates a local shear like the one generated by a triangular tab in a square jet. In the present study we are interested by the modification of local shears in the troughs of the cross-shaped jet, when orifice geometry is modified, such as the center of the orifice becomes closed, leading to a clover-shaped orifice. The general motivation is to understand the effect of using a set of combination of longitudinal structures, themselves produced by the superposition of local shear regions, in mixing performance of a cross jet. It is shown that lower entrainment rates in the clover jet is a results of a additional internal crown of vortices which opposes the external one due to inner shears generated by closing the center of the orifice.

  19. High-resolution PIV analysis of compressibility effects in turbulent jets

    NARCIS (Netherlands)

    Ceglia, G.; Violato, D.; Tuinstra, M.; Scarano, F.

    An investigation on the compressibility effects arising into the near field of turbulent jets operated at high Reynolds number at Mach numbers M=0.3, 0.9 and 1.1 (under-expanded regime) is carried out with two-components planar PIV experiments with high resolution cameras. The arrangement of the PIV

  20. Performance of a Supersonic Ramp-type Side Inlet with Ram-scoop Throat Bleed and Varying Fuselage Boundary-layer Removal : Mach Number Range 1.5 to 2.0 / Glenn A. Mitchell and Robert C. Campbell

    Science.gov (United States)

    Mitchell, Glenn A; Campbell, Robert C

    1957-01-01

    Provided sufficient throat bleed was employed, maximum pressure recoveries of 0.87 to 0.88 at Mach number 2.0 were obtained for a fuselage-mounted 14 degrees ramp inlet regardless of the amount of fuselage boundary layer ingested. The addition of inlet side fairings yielded further increases in pressure recovery to 0.90 to 0.91, decreased critical drag coefficients, and increased critical mass-flow ratios. With throat bleed, peak pressure recoveries and calculated thrust-minus-drag values were comparable at two axial positions of the scoop and were highest with the greatest amount of fuselage boundary layer ingested.

  1. Estimation of aerodynamic noise generated by forced compressible round jets

    Science.gov (United States)

    Maidi, Mohamed

    2006-05-01

    An acoustic numerical code based on Ligthill's analogy is combined with large-eddy simulations techniques in order to evaluate the noise emitted by subsonic (M=0.7) and supersonic (M=1.4) round jets. We show first that, for centerline Mach number M=0.9 and Reynolds number Re=3.6×10, acoustic intensities compare satisfactorily with experimental data of the literature in terms of levels and directivity. Afterwards, high Reynolds number (Re=3.6×10) free and forced jets at Mach 0.7 and 1.4 are studied. Numerical results show that the jet noise intensity depends on the nature of the upstream mixing layer. Indeed, the subsonic jet is 4 dB quieter than the free jet when acting on this shear layer by superposing inlet varicose and flapping perturbations at preferred and first subharmonic frequency, respectively. The maximal acoustic level of the supersonic jet is, on the other hand, 3 dB lower than the free one with a flapping upstream perturbation at the second subharmonic. The results reported in this paper confirm previous works presented in the literature demonstrating that jet noise may be modified according to the inlet conditions. To cite this article: M. Maidi, C. R. Mecanique 334 (2006).

  2. Numerical investigation on jet interaction with a compression ramp

    Institute of Scientific and Technical Information of China (English)

    Zhen Huaping; Gao Zhenxun; Lee Chunhian

    2013-01-01

    A numerical investigation on jet interaction in supersonic laminar flow with a compression ramp is performed utilizing the AUSMDV scheme and a parallel solver.Several parameters dominating the interference flowfield are studied after defining the relative increment of normal force and the jet amplification factor as the evaluation criterion of jet control performance.The computational results show that most features of the interaction flowfield between the transverse jet and the ramp are similar to those between a jet and a flat plate,except that the flow structures are more complicated and the low-pressure region behind the jet is less extensive.The relative force increment and the jet amplification factor both increase with the distance between the jet and the ramp shortening till quintuple jet diameters.Inconspicuous difference is observed between the jet-before-ramp and jet-on-ramp cases.The variation of the injection angle changes the extent of the separation region,the plateau pressure,and the peak pressure near the jet.In the present computational conditions,120° is indicated relatively optimal among all the injection angles studied.For cold gas simulations,although little influence of the jet temperature on the pressure distribution near the jet is observed under the computation model and the flow parameters studied,reducing jet temperature somehow benefits the improvement of the normal force and the jet efficiency.When the pressure ratio of jet to freestream is fixed,the relative force increment varies little when increasing the freestream Mach number,while the jet amplification factor increases.

  3. Twin Jet Effects on Noise of Round and Rectangular Jets: Experiment and Model

    Science.gov (United States)

    Bozak, Rick

    2014-01-01

    Many subsonic and supersonic aircraft concepts proposed by NASA's Fundamental Aeronautics Program have asymmetric, integrated propulsion systems. The asymmetries in the exhaust of these propulsion systems create an asymmetric acoustic field. The asymmetries investigated in the current study are from twin jets and rectangular nozzles. Each effect produces its own variation of the acoustic field. An empirical model was developed to predict the acoustic field variation from round twin jets with twin jet spacing from 2.6 to 5.6, where s is the center-to-center spacing over the jet diameter. The model includes parameters to account for the effects of twin jet spacing, jet static temperature ratio, flight Mach number, frequency, and observer angle (both polar and azimuthal angles). The model was then applied to twin 2:1 and 8:1 aspect ratio nozzles to determine the impact of jet aspect ratio. For the round and rectangular jets, the use of the model reduces the average magnitude of the error over all frequencies, observation angles, and jet spacings by approximately 0.5dB when compared against the assumption of adding two jets incoherently.

  4. Turbulence and heat excited noise sources in single and coaxial jets

    Science.gov (United States)

    Koh, Seong Ryong; Schröder, Wolfgang; Meinke, Matthias

    2010-03-01

    The generation of noise in subsonic high Reynolds number single and coaxial turbulent jets is analyzed by a hybrid method. The computational approach is based on large-eddy simulations (LES) and solutions of the acoustic perturbation equations (APE). The method is used to investigate the acoustic fields of one isothermal single stream jet at a Mach number 0.9 and a Reynolds number 400,000 based on the nozzle diameter and two coaxial jets whose Mach number and Reynolds number based on the secondary jet match the values of the single jet. One coaxial jet configuration possesses a cold primary flow, whereas the other configuration has a hot primary jet. Thus, the configurations allow in a first step the analysis of the relationship of the flow and acoustic fields of a single and a cold coaxial jet and in a second step the investigation of the differences of the fluid mechanics and aeroacoustics of cold and hot coaxial jets. For the isothermal single jet the present hybrid acoustic computation shows convincing agreement with the direct acoustic simulation based on large-eddy simulations. The analysis of the acoustic field of the coaxial jets focuses on two noise sources, the Lamb vector fluctuations and the entropy sources of the APE equations. The power spectral density (PSD) distributions evidence the Lamb vector fluctuations to represent the major acoustic sources of the isothermal jet. Especially the typical downstream and sideline acoustic generations occur on a cone-like surface being wrapped around the end of the potential core. Furthermore, when the coaxial jet possesses a hot primary jet, the acoustic core being characterized by the entropy source terms increases the low frequency acoustics by up to 5 dB, i.e., the sideline acoustics is enhanced by the pronounced temperature gradient.

  5. High-resolution flow field measurements in the rotor passage of a low-mach number turbine for different tip geometries; Hochaufgeloeste Stroemungsfeldvermessungen in der Rotorpassage einer Niedermachzahlturbine fuer verschiedene Schaufelspitzengeometrien

    Energy Technology Data Exchange (ETDEWEB)

    Kegalj, Martin

    2013-11-01

    In axial turbines tip leakage forms a large portion of the overall losses. Applying a shroud is very aerodynamically useful, but the higher mechanical loads of the revolving rotor blading exposed to a high thermal load and the higher costs suggest a shroudless configuration is better. The main parameter in the tip leakage loss is the tip gap height, which cannot be reduced arbitrarily as a running gap is necessary due to thermal expansion and vibration of the jet engine. The pressure ratio between pressure and suction of the rotor blade forces the fluid over the blade tip and leads to the formation of the tip leakage vortex. Reduced turning and losses caused by vortices and subsequent mixing are responsible for the reduced efficiency. Using a squealer cavity on the flat blade tip is a feasible way to reduce the aerodynamic losses. A portion of the kinetic energy of the tip leakage flow is dissipated while entering the cavity; the flow exiting the cavity enters the passage with reduced momentum and reduced tip gap mass flow. A 1(1)/(2) stage low mach number turbine was used to investigate the influence of tip geometry. Aerodynamic measurements, performed with five-hole probes, two-component hot-wire anemometer, unsteady wall pressure sensors, stereo and borescopic particle-image-velocimetry setups and oil and dye flow visualization, found small differences in the flow velocities and angles between the flat and squealer tip configuration in the measurement planes downstream of the rotor. The measurement uncertainty proves the difficulty of determining the influence of the squealer cavity on the blade row outflow with global measurement data. To gather information on the flow close to the casing inside the rotor passage is only possible with non-intrusive laser measurement techniques. Comparison of the different tip geometries is still difficult due to the small differences in the absolute flow data. The use of the {lambda}{sub 2} vortex criterion enables an objective

  6. A Radical New Mach 7 Engine

    Institute of Scientific and Technical Information of China (English)

    履之

    1994-01-01

    Most engines compress air, add fuel and burn it, and then allow theheated gas to expand, creating power or thrust. A radical aircraft enginedevised by ONERA, France’s equivalent of NASA, does the opposite.The Priam inverse-cycle" engine is designed for hypersonic speedsabove Mach 4 (2, 650 mph). Conventional jets do not work at suchspeeds, because the air becomes so hot when it is rammed into the

  7. Ernst Mach a deeper look : documents and new perspectives

    CERN Document Server

    1992-01-01

    Ernst Mach -- A Deeper Look has been written to reveal to English-speaking readers the recent revival of interest in Ernst Mach in Europe and Japan. The book is a storehouse of new information on Mach as a philosopher, historian, scientist and person, containing a number of biographical and philosophical manuscripts publihsed for the first time, along with correspondence and other matters published for the first time in English. The book also provides English translations of Mach's controversies with leading physicists and psychologists, such as Max Planck and Carl Stumpf, and offers basic evidence for resolving Mach's position on atomism and Einstein's theory of relativity. Mach's scientific, philosophical and personal influence in a number of countries -- Austria, Germany, Bohemia and Yugoslavia among them -- has been carefully explored and many aspects detailed for the first time. All of the articles are eminently readable, especially those written by Mach's sister. They are deeply researched, new interpre...

  8. Optimization Design of Two-Dimensional Hypersonic Curved Compression Surface with Controllable Mach Number Distribution%马赫数分布可控的二元高超弯曲压缩面优化设计

    Institute of Scientific and Technical Information of China (English)

    翟永玺; 张堃元; 王磊; 李永洲; 张林

    2014-01-01

    A parametric research on the curved compression surface with controllable Mach number distri-bution was commenced to find the effect regularity of design parameters on the performance parameters of curved compression surface. On this basis,a polynomial response surface proxy model was built to make a multi-objec-tive optimization,and a hypersonic curved shock two-dimensional inlet was designed based on the optimization result, the performance was compared with the three-ramp compression inlet which was designed under the same constraints. Results indicate among the design parameters, the initial compress angle θ and the factor C and factor md1 affect most. The flow coefficient of the innovative inlet is up to 0.769 at Mach 4,when Mach num-ber ranges from 4 to 7,the two inlets have equally the same mass capture ratio,while the innovative inlet has high total pressure recovery of throat and outlet section. Compared with the relative three-ramp inlet , the total pressure recovery of throat section of the innovative inlet increased by 6.5%at Mach 4, 8.4%at Mach 6, and 10.7%at Mach 7.%针对一种马赫数分布可控的二元高超弯曲压缩面进行参数化研究,获得其设计参数对压缩面性能的影响规律,在此基础上建立多项式响应面代理模型并进行多目标优化,基于优化结果设计了二元弯曲激波进气道,并与同等约束条件下的三楔进气道进行比较。结果表明:压缩面初始压缩角θ与马赫数梯度函数中的设计参数md1,C对压缩面性能影响最为显著;Ma∞=4.0时弯曲激波进气道流量系数达0.769,与三楔进气道相比,在Ma∞=4~7工作范围内的流量捕获能力相当,但其喉道、出口截面的总压恢复系数均高于三楔进气道,在Ma∞=4,6,7工况下,喉道截面总压恢复分别有6.5%,8.4%和10.7%的提高。

  9. A Detailed Investigation of Staged Normal Injection into a Mach 2 Flow

    Science.gov (United States)

    Eklund, Dean R.; Northam, G. Burton; Hartfield, Roy J., Jr.

    1990-01-01

    A study of the staged injection of two jets of air behind a rearward facing step into a Mach 2 flow was performed using the SPARK 3-D Navier-Stokes code. Calculated mole fraction distributions were compared with an extensive set of planar mole fraction measurements made with a laser induced iodine fluorescence technique. A statistical measure, the standard deviation, was used to help assess agreement between calculation and experiment. Overall, good agreement was found between calculated and measured values. Generally, agreement was better in the far field of the injectors. The effect of grid resolution was investigated by calculating solutions on grids of 60,000, 200,000, and 450,000 points. Differences in the solutions on the two finer grids were small. However, the mole fraction distributions were distinguishable. The effect of turbulence modeling was investigated by employing three different algebraic models for the jet turbulence: the Baldwin-Lomax model, the Prandtl mixing length model, and the Eggers mixing length model. Overall, the Eggers mixing length model was found to be superior for this case. Finally, the effect of the jet exit conditions was examined. A recently proposed Mach number distribution at the jet exit was found to slightly improve agreement between measurement and calculation.

  10. Statistics of fully turbulent impinging jets

    CERN Document Server

    Wilke, Robert

    2016-01-01

    Direct numerical simulations of sub- and supersonic impinging jets with Reynolds numbers of 3300 and 8000 are carried out to analyse their statistical properties. The influence of the parameters Mach number, Reynolds number and ambient temperature on the mean velocity and temperature fields are studied. For the compressible subsonic cold impinging jets into a heated environment, different Reynolds analogies are assesses. It is shown, that the (original) Reynolds analogy as well as the Chilton Colburn analogy are in good agreement with the DNS data outside the impinging area. The generalised Reynolds analogy (GRA) and the Crocco-Busemann relation are not suited for the estimation of the mean temperature field based on the mean velocity field of impinging jets. Furthermore, the prediction of fluctuating temperatures according to the GRA fails. On the contrary, the linear relation between thermodynamic fluctuations of entropy, density and temperature as suggested by Lechner et al. (2001) can be confirmed for the...

  11. Numerical simulations of flame dynamics in the near-field of high-Reynolds number jets

    Science.gov (United States)

    Venugopal, Rishikesh

    Recent experiments in diesel jet flames show that flame lift-off has a significant influence on pollutant formation. Lift-off occurs in the near-field of the jet, which is characterized by complex interactions between turbulence and chemistry. Commonly employed modeling approaches based on Reynolds-averaged Navier-Stokes (RANS) simulations are limited in their capability to predict transient and steady lift-off phenomena, as they ignore effects due to unsteadiness and curvature that are inherent in the near-field. In the present work, we perform numerical investigations of localized flame dynamics in the near-field (x/d diesel engine applications. The primary focus is on the exploration of unsteady extinction/reignition phenomena. A dual approach involving large-eddy simulation (LES) of a 70,000-Re variable-density isothermal gaseous fuel jet, and studies of flame-vortex interactions and unsteady flamelets, under diesel engine conditions, is employed in this work. Results from flame-vortex interaction studies show that in the near-field (x/d 1.0) in the jet near-field,temporary flame weakening/recovery events are likely to occur. Steady flamelet models provide reasonable estimates of the mean temperature, and mean mass fractions of the major species and unburned hydrocarbons (UHCs), but are inadequate for the prediction of mean NO mass fractions. Extrapolation of the analysis to jets with higher global strain rates shows that unsteady effects on the localized flame dynamics are important for the prediction of transient and steady lift-off behavior.

  12. Flight and wind-tunnel calibrations of a flush airdata sensor at high angles of attack and sideslip and at supersonic Mach numbers

    Science.gov (United States)

    Moes, Timothy R.; Whitmore, Stephen A.; Jordan, Frank L., Jr.

    1993-01-01

    A nonintrusive airdata-sensing system was calibrated in flight and wind-tunnel experiments to an angle of attack of 70 deg and to angles of sideslip of +/- 15 deg. Flight-calibration data have also been obtained to Mach 1.2. The sensor, known as the flush airdata sensor, was installed on the nosecap of an F-18 aircraft for flight tests and on a full-scale F-18 forebody for wind-tunnel tests. Flight tests occurred at the NASA Dryden Flight Research Facility, Edwards, California, using the F-18 High Alpha Research Vehicle. Wind-tunnel tests were conducted in the 30- by 60-ft wind tunnel at the NASA LaRC, Hampton, Virginia. The sensor consisted of 23 flush-mounted pressure ports arranged in concentric circles and located within 1.75 in. of the tip of the nosecap. An overdetermined mathematical model was used to relate the pressure measurements to the local airdata quantities. The mathematical model was based on potential flow over a sphere and was empirically adjusted based on flight and wind-tunnel data. For quasi-steady maneuvering, the mathematical model worked well throughout the subsonic, transonic, and low supersonic flight regimes. The model also worked well throughout the angles-of-attack and -sideslip regions studied.

  13. Aerodynamic pressure and heating-rate distributions in tile gaps around chine regions with pressure gradients at a Mach number of 6.6

    Science.gov (United States)

    Hunt, L. Roane; Notestine, Kristopher K.

    1990-06-01

    Surface and gap pressures and heating-rate distributions were obtained for simulated Thermal Protection System (TPS) tile arrays on the curved surface test apparatus of the Langley 8-Foot High Temperature Tunnel at Mach 6.6. The results indicated that the chine gap pressures varied inversely with gap width because larger gap widths allowed greater venting from the gap to the lower model side pressures. Lower gap pressures caused greater flow ingress from the surface and increased gap heating. Generally, gap heating was greater in the longitudinal gaps than in the circumferential gaps. Gap heating decreased with increasing gap depth. Circumferential gap heating at the mid-depth was generally less than about 10 percent of the external surface value. Gap heating was most severe at local T-gap junctions and tile-to-tile forward-facing steps that caused the greatest heating from flow impingement. The use of flow stoppers at discrete locations reduced heating from flow impingement. The use of flow stoppers at discrete locations reduced heating in most gaps but increased heating in others. Limited use of flow stoppers or gap filler in longitudinal gaps could reduce gap heating in open circumferential gaps in regions of high surface pressure gradients.

  14. Effect of air jet vortex generators on a shock wave boundary layer interaction

    NARCIS (Netherlands)

    Souverein, L.J.; Debiève, J.-F.

    2010-01-01

    The effect of upstream injection by means of continuous air jet vortex generators (AJVGs) on a shock wave turbulent boundary layer interaction is experimentally investigated. The baseline interaction is of the impinging type, with a flow deflection angle of 9.5degrees and a Mach number Me = 2.3. Con

  15. Effect on a shock wave boundary layer interaction of air jet vortex generators

    NARCIS (Netherlands)

    Souverein, L.J.; Debieve, J.F.

    2013-01-01

    The effect of upstream injection by means of continuous Air Jet Vortex Generators (AJVGs) on a shock wave turbulent boundary layer interaction is experimentally investigated. The baseline interaction is of the impinging type, with a flow deflection angle of 9.5◦, a Mach number Me = 2.3, and a moment

  16. Unsteady Computations of a Jet in a Crossflow with Ground Effect

    Science.gov (United States)

    Pandya, Shishir; Murman, Scott; Venkateswaran, Sankaran; Kwak, Dochan (Technical Monitor)

    2002-01-01

    A numerical study of a jet in crossflow with ground effect is conducted using OVERFLOW with dual time-stepping and low Mach number preconditioning. The results of the numerical study are compared to an experiment to show that the numerical methods are capable of capturing the dominant features of the flow field as well as the unsteadiness associated with the ground vortex.

  17. 3D organization of high-speed compressible jets by tomographic PIV

    NARCIS (Netherlands)

    Violato, D.; Ceglia, G.; Tuinstra, M.; Scarano, F.

    2013-01-01

    This work investigates the three dimensional organization of compressible jets at high-speed regime by tomographic particle image velocimetry (TOMO PIV). Experiments are conducted at Mach numbers 0.3, 0.9 and 1.1 (underexpanded regime) across the end of the potential core within a large cylindrica

  18. Supersonic Injection of Aerated Liquid Jet

    Science.gov (United States)

    Choudhari, Abhijit; Sallam, Khaled

    2016-11-01

    A computational study of the exit flow of an aerated two-dimensional jet from an under-expanded supersonic nozzle is presented. The liquid sheet is operating within the annular flow regime and the study is motivated by the application of supersonic nozzles in air-breathing propulsion systems, e.g. scramjet engines, ramjet engines and afterburners. The simulation was conducted using VOF model and SST k- ω turbulence model. The test conditions included: jet exit of 1 mm and mass flow rate of 1.8 kg/s. The results show that air reaches transonic condition at the injector exit due to the Fanno flow effects in the injector passage. The aerated liquid jet is alternately expanded by Prandtl-Meyer expansion fan and compressed by oblique shock waves due to the difference between the back (chamber) pressure and the flow pressure. The process then repeats itself and shock (Mach) diamonds are formed at downstream of injector exit similar to those typical of exhaust plumes of propulsion system. The present results, however, indicate that the flow field of supersonic aerated liquid jet is different from supersonic gas jets due to the effects of water evaporation from the liquid sheet. The contours of the Mach number, static pressure of both cases are compared to the theory of gas dynamics.

  19. A non-conformal finite element/finite volume scheme for the non-structured grid-based approximation of low Mach number flows; Un schema elements finis non-conformes/volumes finis pour l'approximation en maillages non-structures des ecoulements a faible nombre de Mach

    Energy Technology Data Exchange (ETDEWEB)

    Ansanay-Alex, G.

    2009-06-17

    The development of simulation codes aimed at a precise simulation of fires requires a precise approach of flame front phenomena by using very fine grids. The need to take different spatial scale into consideration leads to a local grid refinement and to a discretization with homogeneous grid for computing time and memory purposes. The author reports the approximation of the non-linear convection term, the scalar advection-diffusion in finite volumes, numerical simulations of a flow in a bent tube, of a three-dimensional laminar flame and of a low Mach number an-isotherm flow. Non conformal finite elements are also presented (Rannacher-Turek and Crouzeix-Raviart elements)

  20. Two-fluid electromagnetic simulations of plasma-jet acceleration with detailed equation-of-state

    Energy Technology Data Exchange (ETDEWEB)

    Thoma, C.; Welch, D. R.; Clark, R. E.; Bruner, N. [Voss Scientific, LLC, Albuquerque, New Mexico 87108 (United States); MacFarlane, J. J.; Golovkin, I. E. [Prism Computational Sciences, Inc., Madison, Wisconsin 53711 (United States)

    2011-10-15

    We describe a new particle-based two-fluid fully electromagnetic algorithm suitable for modeling high density (n{sub i} {approx} 10{sup 17} cm{sup -3}) and high Mach number laboratory plasma jets. In this parameter regime, traditional particle-in-cell (PIC) techniques are challenging due to electron timescale and lengthscale constraints. In this new approach, an implicit field solve allows the use of large timesteps while an Eulerian particle remap procedure allows simulations to be run with very few particles per cell. Hall physics and charge separation effects are included self-consistently. A detailed equation of state (EOS) model is used to evolve the ion charge state and introduce non-ideal gas behavior. Electron cooling due to radiation emission is included in the model as well. We demonstrate the use of these new algorithms in 1D and 2D Cartesian simulations of railgun (parallel plate) jet accelerators using He and Ar gases. The inclusion of EOS and radiation physics reduces the electron temperature, resulting in higher calculated jet Mach numbers in the simulations. We also introduce a surface physics model for jet accelerators in which a frictional drag along the walls leads to axial spreading of the emerging jet. The simulations demonstrate that high Mach number jets can be produced by railgun accelerators for a variety of applications, including high energy density physics experiments.

  1. Simulation of underexpanded supersonic jet flows with chemical reactions

    Directory of Open Access Journals (Sweden)

    Fu Debin

    2014-06-01

    Full Text Available To achieve a detailed understanding of underexpanded supersonic jet structures influenced by afterburning and other flow conditions, the underexpanded turbulent supersonic jet with and without combustions are investigated by computational fluid dynamics (CFD method. A program based on a total variation diminishing (TVD methodology capable of predicting complex shocks is created to solve the axisymmetric expanded Navier–Stokes equations containing transport equations of species. The finite-rate ratio model is employed to handle species sources in chemical reactions. CFD solutions indicate that the structure of underexpanded jet is typically influenced by the pressure ratio and afterburning. The shock reflection distance and maximum value of Mach number in the first shock cell increase with pressure ratio. Chemical reactions for the rocket exhaust mostly exist in the mixing layer of supersonic jet flows. This tends to reduce the intensity of shocks existing in the jet, responding to the variation of thermal parameters.

  2. Simulation of underexpanded supersonic jet flows with chemical reactions

    Institute of Scientific and Technical Information of China (English)

    Fu Debin; Yu Yong; Niu Qinglin

    2014-01-01

    To achieve a detailed understanding of underexpanded supersonic jet structures influenced by afterburning and other flow conditions, the underexpanded turbulent supersonic jet with and without combustions are investigated by computational fluid dynamics (CFD) method. A program based on a total variation diminishing (TVD) methodology capable of predicting complex shocks is created to solve the axisymmetric expanded Navier-Stokes equations containing transport equations of species. The finite-rate ratio model is employed to handle species sources in chemical reactions. CFD solutions indicate that the structure of underexpanded jet is typically influenced by the pressure ratio and afterburning. The shock reflection distance and maximum value of Mach number in the first shock cell increase with pressure ratio. Chemical reactions for the rocket exhaust mostly exist in the mixing layer of supersonic jet flows. This tends to reduce the intensity of shocks existing in the jet, responding to the variation of thermal parameters.

  3. Dual-use conversion of a high-Mach-number jet engine test cell for industrial gas turbine low-emission combustor development

    Energy Technology Data Exchange (ETDEWEB)

    Pillsbury, P.W.; Ryan, W.R. [Westinghouse Electric Corp., Orlando, FL (United States); Moore, J.R. [Sverdrup Technology, Inc., Arnold AFB, TN (United States). AEDC Group

    1997-01-01

    With the recent trend of reducing US military expenditures, it has become desirable to develop dual use of certain Department of Defense facilities. These efforts have a commercial purpose, while still retaining a military benefit. The goals of these efforts are to make US business more competitive in world markets, to develop the technology to solve pressing national problems, and to maintain intact the necessary talent pool and equipment for possible military needs. In a recent initiative described in this paper, test cell equipment at the Arnold Engineering Development Center, Arnold AFB, Tennessee, was modified and expanded to allow development by the Westinghouse Electric Corporation of low-emission combustors for heavy-duty gas turbines for commercial power generation.

  4. A pressure-based semi-implicit space-time discontinuous Galerkin method on staggered unstructured meshes for the solution of the compressible Navier-Stokes equations at all Mach numbers

    Science.gov (United States)

    Tavelli, Maurizio; Dumbser, Michael

    2017-07-01

    We propose a new arbitrary high order accurate semi-implicit space-time discontinuous Galerkin (DG) method for the solution of the two and three dimensional compressible Euler and Navier-Stokes equations on staggered unstructured curved meshes. The method is pressure-based and semi-implicit and is able to deal with all Mach number flows. The new DG scheme extends the seminal ideas outlined in [1], where a second order semi-implicit finite volume method for the solution of the compressible Navier-Stokes equations with a general equation of state was introduced on staggered Cartesian grids. Regarding the high order extension we follow [2], where a staggered space-time DG scheme for the incompressible Navier-Stokes equations was presented. In our scheme, the discrete pressure is defined on the primal grid, while the discrete velocity field and the density are defined on a face-based staggered dual grid. Then, the mass conservation equation, as well as the nonlinear convective terms in the momentum equation and the transport of kinetic energy in the energy equation are discretized explicitly, while the pressure terms appearing in the momentum and energy equation are discretized implicitly. Formal substitution of the discrete momentum equation into the total energy conservation equation yields a linear system for only one unknown, namely the scalar pressure. Here the equation of state is assumed linear with respect to the pressure. The enthalpy and the kinetic energy are taken explicitly and are then updated using a simple Picard procedure. Thanks to the use of a staggered grid, the final pressure system is a very sparse block five-point system for three dimensional problems and it is a block four-point system in the two dimensional case. Furthermore, for high order in space and piecewise constant polynomials in time, the system is observed to be symmetric and positive definite. This allows to use fast linear solvers such as the conjugate gradient (CG) method. In

  5. Space Shuttle Orbiter trimmed center-of-gravity extension study. Volume 8: Effects of configuration modifications on the aerodynamic characteristics of the 140 A/B Orbiter at a Mach number of 5.97

    Science.gov (United States)

    Phillips, W. P.

    1984-01-01

    Aerodynamic characteristics at M=5.97 for the 140 A/B Space Shuttle Orbiter configuration and for the configuration modified by geometric changes in the wing planform fillet region and the fuselage forebody are presented. The modifications, designed to extend the orbiter's longitudinal trim capability to more forward center of gravity locations, include reshaping the baseline wing fillet, changing the fuselage forebody camber, and adding canards. The Langley 20 inch Mach 6 Tunnel at a Reynolds number of approximately 6 million based on fuselage reference length was used. The angle of attack range of the investigation varied from about 15 deg to 35 deg at 0 deg and -5 deg sideslip angles. Data are obtained with the elevators and body flap deflected at appropriate negative and positive conditions to assess the trim limits.

  6. Study on Mach stems induced by interaction of planar shock waves on two intersecting wedges

    Institute of Scientific and Technical Information of China (English)

    Gaoxiang Xiang; Chun Wang; Honghui Teng; Yang Yang; Zonglin Jiang

    2016-01-01

    The properties of Mach stems in hypersonic corner flow induced by Mach interaction over 3D inter-secting wedges were studied theoretically and numerically. A new method called “spatial dimension reduction” was used to analyze theoretically the location and Mach num-ber behind Mach stems. By using this approach, the problem of 3D steady shock/shock interaction over 3D intersecting wedges was transformed into a 2D moving one on cross sec-tions, which can be solved by shock-polar theory and shock dynamics theory. The properties of Mach interaction over 3D intersecting wedges can be analyzed with the new method, including pressure, temperature, density in the vicinity of triple points, location, and Mach number behind Mach stems. Theoretical results were compared with numerical results, and good agreement was obtained. Also, the influence of Mach number and wedge angle on the properties of a 3D Mach stem was studied.

  7. Experimental Determination of the Recovery Factor and Analytical Solution of the Conical Flow Field for a 20 deg Included Angle Cone at Mach Numbers of 4.6 and 6.0 and Stagnation Temperatures to 2600 degree R

    Science.gov (United States)

    Pfyl, Frank A.; Presley, Leroy L.

    1961-01-01

    The local recovery factor was determined experimentally along the surface of a thin-walled 20 deg included angle cone for Mach numbers near 6.0 at stagnation temperatures between 1200 deg R and 2600 deg R. In addition, a similar cone configuration was tested at Mach numbers near 4.5 at stagnation temperatures of approximately 612 deg R. The local Reynolds number based on flow properties at the edge of the boundary layer ranged between 0.1 x 10(exp 4) and 3.5 x 10(exp 4) for tests at temperatures above 1200 deg R and between 6 x 10(exp 4) and 25 x 10(exp 4) for tests at temperatures near 612 deg R. The results indicated, generally, that the recovery factor can be predicted satisfactorily using the square root of the Prandtl number. No conclusion could be made as to the necessity of evaluating the Prandtl number at a reference temperature given by an empirical equation, as opposed to evaluating the Prandtl number at the wall temperature or static temperature of the gas at the cone surface. For the tests at temperatures above 1200 deg R (indicated herein as the tests conducted in the slip-flow region), two definite trends in the recovery data were observed - one of increasing recovery factor with decreasing stagnation pressure, which was associated with slip-flow effects and one of decreasing recovery factor with increasing temperature. The true cause of the latter trend could not be ascertained, but it was shown that this trend was not appreciably altered by the sources of error of the magnitude considered herein. The real-gas equations of state were used to determine accurately the local stream properties at the outer edge of the boundary layer of the cone. Included in the report, therefore, is a general solution for the conical flow of a real gas using the Beattie-Bridgeman equation of state. The largest effect of temperature was seen to be in the terms which were dependent upon the internal energy of the gas. The pressure and hence the pressure drag terms were

  8. LES of an inclined jet into a supersonic cross-flow

    CERN Document Server

    Ferrante, Antonino; Matheou, Georgios; Dimotakis, Paul E; Stephens, Mike; Adams, Paul; Walters, Richard; Hand, Randall

    2008-01-01

    This short article describes flow parameters, numerical method, and animations of the fluid dynamics video LES of an Inclined Jet into a Supersonic Cross-Flow (http://hdl.handle.net/1813/11480). Helium is injected through an inclined round jet into a supersonic air flow at Mach 3.6. The video shows 2D contours of Mach number and magnitude of density gradient, and 3D iso-surfaces of Helium mass-fraction and vortical structures. Large eddy simulation with the sub-grid scale (LES-SGS) stretched vortex model of turbulent and scalar transport captures the main flow features: bow shock, Mach disk, shear layers, counter-rotating vortices, and large-scale structures.

  9. Surface-Pressure and Flow-Visualization Data at Mach Number of 1.60 for Three 65 deg Delta Wings Varying in Leading-Edge Radius and Camber

    Science.gov (United States)

    McMIllin, S. Naomi; Byrd, James E.; Parmar, Devendra S.; Bezos-O'Connor, Gaudy M.; Forrest, Dana K.; Bowen, Susan

    1996-01-01

    An experimental investigation of the effect of leading-edge radius, camber, Reynolds number, and boundary-layer state on the incipient separation of a delta wing at supersonic speeds was conducted at the Langley Unitary Plan Wind Tunnel at Mach number of 1.60 over a free-stream Reynolds number range of 1 x 106 to 5 x 106 ft-1. The three delta wing models examined had a 65 deg swept leading edge and varied in cross-sectional shape: a sharp wedge, a 20:1 ellipse, and a 20:1 ellipse with a -9.750 circular camber imposed across the span. The wings were tested with and without transition grit applied. Surface-pressure coefficient data and flow-visualization data are electronically stored on the CD-ROM. The data indicated that by rounding the wing leading edge or cambering the wing in the spanwise direction, the onset of leading-edge separation on a delta wing can be raised to a higher angle of attack than that observed on a sharp-edged delta wing. The data also showed that the onset of leading-edge separation can be raised to a higher angle of attack by forcing boundary-layer transition to occur closer to the wing leading edge by the application of grit or the increase in free-stream Reynolds number.

  10. Experimental wake survey behind Viking 1975 entry vehicle at angles of attack of 0 deg and 5 deg, Mach numbers from 1.60 to 3.95, and longitudinal stations from 1.0 to 8.39 body diameters

    Science.gov (United States)

    Brown, C. A., Jr.; Campbell, J. F.; Tudor, D. H.

    1971-01-01

    An investigation was conducted to obtain flow properties in the wake of the Viking '75 entry vehicle at Mach numbers from 1.60 to 3.95 and at angles of attack of 0 deg and 5 deg. The wake flow properties were calculated from total and static pressures measured with a pressure rake at longitudinal stations varying from 1.0 to 8.39 body diameters and lateral stations varying from -0.42 to 3.0 body diameters. These measurements showed a a consistent trend throughout the range of Mach numbers and longitudinal distances and an increase in dynamic pressure with increasing downstream position.

  11. Prediction of jet noise shielding with forward flight effects

    Science.gov (United States)

    Mayoral, Salvador

    Aircraft noise continues to be a major concern among airport-neighboring communities. A strong component of aircraft noise is the jet noise that is generated from the turbulent mixing between the jet exhaust and ambient medium. The hybrid wing body aircraft suppresses jet noise by mounting the engines over-the-wing so that the airframe may shield ground observers from jet noise sources. Subscale jet noise shielding measurements of a scaled-down turbofan nozzle and a model of the hybrid wing body planform are taken with two 12-microphone polar arrays. Chevrons and wedge-type fan flow deflectors are integrated into the baseline bypass ratio 10 (BPR10) nozzle to modify the mean flow and alter the noise source behavior. Acoustic results indicate that the baseline BPR10 nozzle produces a long noise source region that the airframe has difficulty shielding, even when the nozzle is translated two fan diameters upstream of its nominal position. The integration of either chevrons or fan flow deflectors into the nozzle is essential for jet noise shielding because they translate peak intensities upstream, closer to the fan exit plane. The numerical counterpart of this study transforms the system of equations governing the acoustic diffraction with forward flight into the wave equation. Two forward flight formulations are considered: uniform flow over slender body; and non-uniform potential flow at low Mach number. The wave equation is solved numerically in the frequency domain using the boundary element method. The equivalent jet noise source is modeled using the combination of a wavepacket and a monopole. The wavepacket is parameterized using the experimental far-field acoustic autospectra of the BPR10 jets and knowledge of their peak noise locations. It is shown that the noise source compacts with increasing Mach number and consequently there is an increase in shielding. An assessment of the error associated with the non-uniform formulation for forward flight shows that the

  12. Numerical Study of Noise Characteristics in Overexpanded Jet Flows

    Science.gov (United States)

    2015-08-05

    heating effect in mildly screeching underexpanded jets in our previous work [18]. Increasing the jet temperature has greatly increased Mach wave ...originated in the shear layer are the source of Mach wave radiation. As the jet temperature increases, the intensity of hydrodynamic pressure fluctuations...conical surface. It is found that the radiating portion of the pressure wave intensity increases with the jet temperature , but the hydrodynamic portion is

  13. Investigation of Inlet Condition Effect on Flow and Turbulence Characteristics in Subsonic Jets from Conical and Chevron Nozzles Using RANS/ILES High Resolutions Method

    Directory of Open Access Journals (Sweden)

    L. A. Benderskiy

    2015-01-01

    Full Text Available Effect of Mach number and temperature on subsonic jets flow with a combined highresolution RANS/ILES method (Reynolds Averaged Navier-Stokes - RANS, Implicit Large Eddy Simulation - ILES was investigated. Cold Mj=0.985 T0=300К and hot Mj=0.548 T0=858.6К jets were considered (Mj – Mach number at the nozzle exit and T0 – total temperature at the nozzle inlet. Conical and two chevron nozzles with angle of chevrons to the nozzle axis α=5° and α=18.2° were investigated. The jet flow calculations were carried out together with flow calculation in nozzles. Computation grids were Meshes for simulations (2.8-3.2×106 cells. Investigated cases were compared by average velocity and velocity fluctuations at the jet axis and at the mixing layer. The magnitude of velocity fluctuations at the jet axis and at the mixing layer for hot jets is higher than for cold jets. It leads to increasing expansion angle of the mixing layer inward the jet axis. This is why the initial part length of hot jets becomes shorter than in cold jets. Comparison of simulations with the experimental data of other authors showed a good agreement by flow and turbulences characteristics.

  14. Two-step simulation of velocity and passive scalar mixing at high Schmidt number in turbulent jets

    Science.gov (United States)

    Rah, K. Jeff; Blanquart, Guillaume

    2016-11-01

    Simulation of passive scalar in the high Schmidt number turbulent mixing process requires higher computational cost than that of velocity fields, because the scalar is associated with smaller length scales than velocity. Thus, full simulation of both velocity and passive scalar with high Sc for a practical configuration is difficult to perform. In this work, a new approach to simulate velocity and passive scalar mixing at high Sc is suggested to reduce the computational cost. First, the velocity fields are resolved by Large Eddy Simulation (LES). Then, by extracting the velocity information from LES, the scalar inside a moving fluid blob is simulated by Direct Numerical Simulation (DNS). This two-step simulation method is applied to a turbulent jet and provides a new way to examine a scalar mixing process in a practical application with smaller computational cost. NSF, Samsung Scholarship.

  15. High and Low Reynolds number Measurements in a Room with an Impinging Isothermal Jet

    DEFF Research Database (Denmark)

    Skovgaard, M.; Hyldgaard, C. E.; Nielsen, Peter V.

    The present paper, which is within the work of the lEA - annex 20, presents a series of full-scale velocity measurements in a room with isothermal mixing ventilation. The measurements are in the Reynolds number range 1000 - 7000 based on inlet dimensions. This means that a transition from laminar...

  16. A computational study of heat transfer in a laminar oscillating confined slot jet impinging on an isothermal surface at low Reynolds numbers

    Directory of Open Access Journals (Sweden)

    Johnny ISSA

    2015-09-01

    Full Text Available Heat transfer in a laminar confined oscillating slot jet is numerically investigated. A uniform inlet velocity profile oscillating with an angle φ, having the following sinusoidal shape: φ= φmax*sin(2πft. φ is in radians, φmax is the maximum jet angle, and f is the oscillation frequency. The height-to-jet-width ratio (H/w was fixed to 5 and the fluid’s Prandtl number which is one of the dimensionless governing groups is 0.74. The other dimensionless groups characterizing this problem, which are, Strouhal’s number, St, and Reynolds number, Re, where varied. Re was in the range 100numbers are based on the jet hydraulic diameter (2w. Defining φmax is explained later in this paper. For Re=250 and St=0.5, a dim heat transfer enhancement was noticed in the stagnation region, when compared to the steady case. A similar enhancement was observed for Re=400 at St=0.75. At Re=100 no improvements were observed, where the flow showed a high vulnerability to severe oscillations, that drastically reduced heat removal ability. Jet flapping could be triggered at Re=400. But the flapping mode was most stable for St=0.75, in which case, heat transfer enhancement was detected.

  17. Shock-induced mixing of nonhomogeneous density turbulent jets

    Science.gov (United States)

    Hermanson, J. C.; Cetegen, B. M.

    2000-05-01

    An experimental study of the mixing enhancement and changes in flow structure arising from the interaction of weak normal shock waves with turbulent jets was conducted. The experimental configuration was an axisymmetric jet processed by weak normal shock waves propagating in a shock tube along the jet axis. Experiments involved three different jet gases: helium, air, and carbon dioxide, each in a coflowing air stream, with nominal jet fluid to ambient density ratios of 0.14, 1.00, and 1.52, respectively. The jet local Reynolds number was Reδ≈25 000 and the nominal oncoming shock Mach numbers were 1.23 and 1.45. Planar laser Mie light scattering from mineral oil smoke was utilized for flow visualization and for obtaining jet fluid concentration distributions across diametric planes of jets. Analysis of the spatial probability density function (pdf) of jet fluid concentration indicates that the average helium jet fluid concentration levels decrease and become more uniform in the regions processed by the shock waves. The degree of mixing enhancement increases with increasing shock strength, and amounts to nearly 30% for the stronger shock (M=1.45). The passage of a shock through low-density (helium) jets induces the formation of a flow structure that resembles a large-scale, toroidal vortex. The air and carbon dioxide jets exhibit neither a vortex-like structure or a significant change in mixing upon shock passage, unlike the helium jets. A comparison of the results for the helium and carbon dioxide jets indicates that the reversal of the density ratio between the jet and the surroundings, and the consequent change in the sign of baroclinic vorticity does not yield similar effects in terms of flow structure or mixing enhancement. The average concentration behind the shock wave decreases for both air and helium jets with increasing distance behind the shock. These features are explained qualitatively in terms of a simple characteristic time scale argument. The

  18. Time-Resolved PIV for Space-Time Correlations in Hot Jets

    Science.gov (United States)

    Wernet, Mark P.

    2007-01-01

    Temporally Resolved Particle Image Velocimetry (TR-PIV) is being used to characterize the decay of turbulence in jet flows a critical element for understanding the acoustic properties of the flow. A TR-PIV system, developed in-house at the NASA Glenn Research Center, is capable of acquiring planar PIV image frame pairs at up to 10 kHz. The data reported here were collected at Mach numbers of 0.5 and 0.9 and at temperature ratios of 0.89 and 1.76. The field of view of the TR-PIV system covered 6 nozzle diameters along the lip line of the 50.8 mm diameter jet. The cold flow data at Mach 0.5 were compared with hotwire anemometry measurements in order to validate the new TR-PIV technique. The axial turbulence profiles measured across the shear layer using TR-PIV were thinner than those measured using hotwire anemometry and remained centered along the nozzle lip line. The collected TR-PIV data illustrate the differences in the single point statistical flow properties of cold and hot jet flows. The planar, time-resolved velocity records were then used to compute two-point space-time correlations of the flow at the Mach 0.9 flow condition. The TR-PIV results show that there are differences in the convective velocity and growth rate of the turbulent structures between cold and hot flows at the same Mach number.

  19. An Investigation of Single- and Dual-Rotation Propellers at Positive and Negative Thrust, and in Combination with an NACA 1-series D-Type Cowling at Mach Numbers up to 0.84

    Science.gov (United States)

    Reynolds, Robert M; Samonds, Robert I; Walker, John H

    1957-01-01

    An investigation has been made to determine the aerodynamic characteristics of the NACA 4-(5)(05)-041 four-blade, single-relation propeller and the NACA 4-(5)(05)-037 six- and eight-blade, dual-rotation propellers in combination with various spinners and NACA d-type spinner-cowling combinations at Mach numbers up to 0.84. Propeller force characteristics, local velocity distributions in the propeller planes, inlet pressure recoveries, and static-pressure distributions on the cowling surfaces were measured for a wide range of blade angles, advance ratios, and inlet-velocity ratios. Included are data showing: (a) the effect of extended cylindrical spinners on the characteristics of the single-rotation propeller, (b) the effect of variation of the difference in blade angle setting between the front and rear components of the dual-rotation propellers, (c) the negative- and static-thrust characteristics of the propellers with 1 series spinners, and (d) the effects of ideal- and platform-type propeller-spinner junctures on the pressure-recovery characteristics of the single-rotation propeller-spinner-cowling combination.

  20. Two-jet astrosphere model: effect of azimuthal magnetic field

    Science.gov (United States)

    Golikov, E. A.; Izmodenov, V. V.; Alexashov, D. B.; Belov, N. A.

    2017-01-01

    Opher et al., Drake, Swisdak and Opher have shown that the heliospheric magnetic field results in formation of two-jet structure of the solar wind flow in the inner heliosheath, i.e. in the subsonic region between the heliospheric termination shock (TS) and the heliopause. In this scenario, the heliopause has a tube-like topology as compared with a sheet-like topology in the most models of the global heliosphere. In this paper, we explore the two-jet scenario for a simplified astrosphere in which (1) the star is at rest with respect to the circumstellar medium, (2) radial magnetic field is neglected as compared with azimuthal component and (3) the stellar wind outflow is assumed to be hypersonic (both the Mach number and the Alfvénic Mach number are much greater than unity at the inflow boundary). We have shown that the problem can be formulated in dimensionless form, in which the solution depends only on one dimensionless parameter ε that is reciprocal of the Alfvénic Mach number at the inflow boundary. This parameter is proportional to stellar magnetic field. We present the numerical solution of the problem for various values of ε. Three first integrals of the governing ideal magnetohydrodynamic equations are presented, and we make use of them in order to get the plasma distribution in the jets. Simple relations between distances to the TS, astropause and the size of the jet are established. These relations allow us to determine the stellar magnetic field from the geometrical pattern of the jet-like astrosphere.

  1. Aeroacoustic computation of low mach number flow

    Energy Technology Data Exchange (ETDEWEB)

    Skriver Dahl, K. [Risoe National Laboratory, Roskilde (Denmark)

    1997-12-31

    The possibilities of applying a recently developed numerical technique to predict aerodynamically generated sound from wind turbines is explored. The technique is a perturbation technique that has the advantage that the underlying flow field and the sound field are computed separately. Solution of the incompressible, time dependent flow field yields a hydrodynamic density correction to the incompressible constant density. The sound field is calculated from a set of equations governing the inviscid perturbations about the corrected flow field. Here, the emphasis is placed on the computation of the sound field. The nonlinear partial differential equations governing the sound fields are solved numerically using an explicit MacCormack scheme. Two types of non-reflecting boundary conditions are applied; one based on the asymptotic solution of the governing equations and the other based on a characteristic analysis of the governing equations. The former condition is easy to use and it performs slightly better than the charcteristic based condition. The technique is applied to the problems of the sound generation of a co-rotating vortex pair, which is a quadrupole, and the viscous flow over a circular cylinder, which is a dipole. Numerical results agree very well with the analytical solution for the problem of the co-rotating vortex pair. Numerical results for the viscous flow over a cylinder are presented and evaluated qualitatively. (au)

  2. Use of cross-correlation measurements to investigate noise generating regions of a real jet engine and a model jet

    Science.gov (United States)

    Meecham, W. C.; Hurdle, P. M.

    1974-01-01

    Cross-correlations are reported of the jet static pressure fluctuations (as measured with a B and K microphone fitted with a nose cone), with the far-field radiated sound pressure. These measurements were made for various probe positions and a large number of far-field positions (at various angles). In addition, the tests were run for a number of different jet exit velocities. The measured, normalized cross-correlation functions vary between 0.004 and 0.155. These values depend upon the angular position of the far-field microphone, the jet exit Mach number, and the position of the probe. In addition, the cross-correlation technique was employed to study the symmetry of the far-field radiated sound about the jet axis. Third-octave analyses of both the probe signal and the far-field radiated sound were made. This is the first time correlation measurements have been made on a jet engine. In addition, a report is given on an extensive noise survey of a model jet. The correlations are related to sound source functions and jet source regions are discussed.

  3. Numerical simulations of Mach stem formation via intersecting bow shocks

    Science.gov (United States)

    Hansen, E. C.; Frank, A.; Hartigan, P.; Yirak, K.

    2015-12-01

    Hubble Space Telescope observations show bright knots of Hα emission within outflowing young stellar jets. Velocity variations in the flow create secondary bow shocks that may intersect and lead to enhanced emission. When the bow shocks intersect at or above a certain critical angle, a planar shock called a Mach stem is formed. These shocks could produce brighter Hα emission since the incoming flow to the Mach stem is parallel to the shock normal. In this paper we report first results of a study using 2-D numerical simulations designed to explore Mach stem formation at the intersection of bow shocks formed by hypersonic "bullets" or "clumps". Our 2-D simulations show how the bow shock shapes and intersection angles change as the adiabatic index γ changes. We show that the formation or lack of a Mach stem in our simulations is consistent with the steady-state Mach stem formation theory. Our ultimate goal, which is part of an ongoing research effort, is to characterize the physical and observational consequences of bow shock intersections including the formation of Mach stems.

  4. Analysis of gas jetting and fumarole acoustics at Aso Volcano, Japan

    Science.gov (United States)

    McKee, Kathleen; Fee, David; Yokoo, Akihiko; Matoza, Robin S.; Kim, Keehoon

    2017-06-01

    The gas-thrust region of a large volcanic eruption column is predominately a momentum-driven, fluid flow process that perturbs the atmosphere and produces sound akin to noise from jet and rocket engines, termed ;jet noise;. We aim to enhance understanding of large-scale volcanic jets by studying an accessible, less hazardous fumarolic jet. We characterize the acoustic signature of 2.5-meter wide vigorously jetting fumarole at Aso Volcano, Japan using a 5-element infrasound array located on the nearby crater. The fumarole opened on 13 July 2015 on the southwest flank of the partially collapsed pyroclastic cone within Aso Volcano's Naka-dake crater and had persistent gas jetting, which produced significant audible jet noise. The array was 220 m from the fumarole and 57.6° from the vertical jet axis, a recording angle not typically feasible in volcanic environments. Array processing is performed to distinguish fumarolic jet noise from wind. Highly correlated periods are characterized by sustained, low-amplitude signal with a 7-10 Hz spectral peak. Finite difference time domain method numerical modeling suggests the influence of topography near the vent and along the propagation path significantly affects the spectral content, complicating comparisons with laboratory jet noise. The fumarolic jet has a low estimated Mach number (0.3 to 0.4) and measured temperature of 260 °C. The Strouhal number for infrasound from volcanic jet flows and geysers is not known; thus we assume a peak Strouhal number of 0.19 based on pure-air laboratory jet experiments. This assumption leads to an estimated exit velocity of the fumarole of 79 to 132 m/s. Using published gas composition data from 2003 to 2009, the fumarolic vent area estimated from thermal infrared images, and estimated jet velocity, we estimate total volatile flux at 160-270 kg/s (14,000-23,000 t/d).

  5. Analysis of gas jetting and fumarole acoustics at Aso Volcano, Japan

    Energy Technology Data Exchange (ETDEWEB)

    McKee, Kathleen; Fee, David; Yokoo, Akihiko; Matoza, Robin S.; Kim, Keehoon

    2017-06-01

    The gas-thrust region of a large volcanic eruption column is predominately a momentum-driven, fluid flow process that perturbs the atmosphere and produces sound akin to noise from jet and rocket engines, termed “jet noise”. We aim to enhance understanding of large-scale volcanic jets by studying an accessible, less hazardous fumarolic jet. We characterize the acoustic signature of ~ 2.5-meter wide vigorously jetting fumarole at Aso Volcano, Japan using a 5-element infrasound array located on the nearby crater. The fumarole opened on 13 July 2015 on the southwest flank of the partially collapsed pyroclastic cone within Aso Volcano's Naka-dake crater and had persistent gas jetting, which produced significant audible jet noise. The array was ~ 220 m from the fumarole and 57.6° from the vertical jet axis, a recording angle not typically feasible in volcanic environments. Array processing is performed to distinguish fumarolic jet noise from wind. Highly correlated periods are characterized by sustained, low-amplitude signal with a 7–10 Hz spectral peak. Finite difference time domain method numerical modeling suggests the influence of topography near the vent and along the propagation path significantly affects the spectral content, complicating comparisons with laboratory jet noise. The fumarolic jet has a low estimated Mach number (0.3 to 0.4) and measured temperature of ~ 260 °C. The Strouhal number for infrasound from volcanic jet flows and geysers is not known; thus we assume a peak Strouhal number of 0.19 based on pure-air laboratory jet experiments. This assumption leads to an estimated exit velocity of the fumarole of ~ 79 to 132 m/s. Using published gas composition data from 2003 to 2009, the fumarolic vent area estimated from thermal infrared images, and estimated jet velocity, we estimate total volatile flux at ~ 160–270 kg/s (14,000–23,000 t/d).

  6. Prospects for Nonlinear Laser Diagnostics in the Jet Noise Laboratory

    Science.gov (United States)

    Herring, Gregory C.; Hart, Roger C.; Fletcher, mark T.; Balla, R. Jeffrey; Henderson, Brenda S.

    2007-01-01

    Two experiments were conducted to test whether optical methods, which rely on laser beam coherence, would be viable for off-body flow measurement in high-density, compressible-flow wind tunnels. These tests measured the effects of large, unsteady density gradients on laser diagnostics like laser-induced thermal acoustics (LITA). The first test was performed in the Low Speed Aeroacoustics Wind Tunnel (LSAWT) of NASA Langley Research Center's Jet Noise Laboratory (JNL). This flow facility consists of a dual-stream jet engine simulator (with electric heat and propane burners) exhausting into a simulated flight stream, reaching Mach numbers up to 0.32. A laser beam transited the LSAWT flow field and was imaged with a high-speed gated camera to measure beam steering and transverse mode distortion. A second, independent test was performed on a smaller laboratory jet (Mach number < 1.2 and mass flow rate < 0.1 kg/sec). In this test, time-averaged LITA velocimetry and thermometry were performed at the jet exit plane, where the effect of unsteady density gradients is observed on the LITA signal. Both experiments show that LITA (and other diagnostics relying on beam overlap or coherence) faces significant hurdles in the high-density, compressible, and turbulent flow environments similar to those of the JNL.

  7. 基于神经网络的风洞马赫数预测控制仿真研究%Predictive Control Simulation Research of Mach Number in Wind Tunnel Based on Neural Network

    Institute of Scientific and Technical Information of China (English)

    金志伟; 杨兴锐; 苏北辰

    2016-01-01

    It is hard to use precise mechanism to describe system dynamic feature of 2.4 m transonic wind tunnel. Put forwards wind tunnel Mach number predictive control strategy based on neural network. Combine the advanteges of model predictive control and nueral network modeling, it is good at processing control parameter unkown, unlinear system and time varing system. Use dynamic response of nueral network based on radial basis function and nonlinear neural network to capture system dynamic feature, apply nerual nwork model in MPC structure. The simulation results show that the control strtegy has a good control effect and trace performance.%针对2.4 m跨声速风洞很难用精确的机理模型表示系统的动态特性的问题,提出了基于神经网络模型的风洞马赫数预测控制策略.综合了模型预测控制和神经网络建模的优点,对于控制参数未知、非线性和时变系统具有很好的处理效果.利用基于径向基函数的神经网络模型预测系统的动态响应、非线性神经网络模型可以在训练过程中捕获系统的动态特性等措施,实现了将神经网络模型应用到MPC结构中.仿真结果表明,该控制策略具有很好的跟踪性能和控制效果.

  8. High fidelity simulation and analysis of liquid jet atomization in a gaseous crossflow at intermediate Weber numbers

    Science.gov (United States)

    Li, Xiaoyi; Soteriou, Marios C.

    2016-08-01

    Recent advances in numerical methods coupled with the substantial enhancements in computing power and the advent of high performance computing have presented first principle, high fidelity simulation as a viable tool in the prediction and analysis of spray atomization processes. The credibility and potential impact of such simulations, however, has been hampered by the relative absence of detailed validation against experimental evidence. The numerical stability and accuracy challenges arising from the need to simulate the high liquid-gas density ratio across the sharp interfaces encountered in these flows are key reasons for this. In this work we challenge this status quo by presenting a numerical model able to deal with these challenges, employing it in simulations of liquid jet in crossflow atomization and performing extensive validation of its results against a carefully executed experiment with detailed measurements in the atomization region. We then proceed to the detailed analysis of the flow physics. The computational model employs the coupled level set and volume of fluid approach to directly capture the spatiotemporal evolution of the liquid-gas interface and the sharp-interface ghost fluid method to stably handle high liquid-air density ratio. Adaptive mesh refinement and Lagrangian droplet models are shown to be viable options for computational cost reduction. Moreover, high performance computing is leveraged to manage the computational cost. The experiment selected for validation eliminates the impact of inlet liquid and gas turbulence and focuses on the impact of the crossflow aerodynamic forces on the atomization physics. Validation is demonstrated by comparing column surface wavelengths, deformation, breakup locations, column trajectories and droplet sizes, velocities, and mass rates for a range of intermediate Weber numbers. Analysis of the physics is performed in terms of the instability and breakup characteristics and the features of downstream

  9. Investigation of the on-axis atom number density in the supersonic gas jet under high gas backing pressure by simulation

    Directory of Open Access Journals (Sweden)

    Guanglong Chen

    2015-10-01

    Full Text Available The supersonic gas jets from conical nozzles are simulated using 2D model. The on-axis atom number density in gas jet is investigated in detail by comparing the simulated densities with the idealized densities of straight streamline model in scaling laws. It is found that the density is generally lower than the idealized one and the deviation between them is mainly dependent on the opening angle of conical nozzle, the nozzle length and the gas backing pressure. The density deviation is then used to discuss the deviation of the equivalent diameter of a conical nozzle from the idealized deq in scaling laws. The investigation on the lateral expansion of gas jet indicates the lateral expansion could be responsible for the behavior of the density deviation. These results could be useful for the estimation of cluster size and the understanding of experimental results in laser-cluster interaction experiments.

  10. Number of Blades-up Runs Using JetStream XC Atherectomy for Optimal Tissue Debulking in Patients with Femoropopliteal Artery In-Stent Restenosis.

    Science.gov (United States)

    Shammas, Nicolas W; Shammas, Gail A; Aasen, Nicole; Jarvis, Gary

    2015-12-01

    Rotational atherectomy with the use of the JetStream XC device is indicated for treatment of infrainguinal arterial obstructive disease. The number of blades-up (BU) runs needed for optimal tissue debulking in femoropopliteal in-stent restenosis (ISR) is unknown. In the present series, 6 patients (15 lesions) were treated for femoropopliteal ISR with the JetStream XC device. Minimal luminal diameter or percent stenosis improved significantly from baseline after 2 BU runs, but no further gain was seen between 2 and 4 BU runs (P > .05). However, adjunctive balloon angioplasty reduced percent stenosis significantly following BU runs. In conclusion, the JetStream XC device achieved optimal acute angiographic results in treating femoropopliteal ISR following 2 BU runs and adjunctive balloon angioplasty.

  11. Space Shuttle Orbiter trimmed center-of-gravity extension study. Volume 9: Effects of configuration modifications on the aerodynamic characteristics of the 140 A/B Orbiter at Mach numbers of 1.5, 2.0, and 2.5. [wind tunnel tests

    Science.gov (United States)

    Phillips, W. P.; Fournier, R. H.

    1985-01-01

    Wind-tunnel tests were conducted at Mach 1.5 to 2.5 to determine the effect of modifications designed to extend the forward center-of-gravity trim capability on the static longitudal and lateral directional characteristics of a Space shuttle 140 A/B orbiter model (0.01 scale). The modifications consisted of a forward-extended wing fillet, a flat plate canard, and a blended canard. The investigation was conducted in the low Mach number test section of the Langley unitary plan wind tunnel at a Reynolds number of approximately 2.15 million based on the fuselage reference length. The test angle of attack range was -1 deg to 32 deg and the sideslip angles were 0 deg and 5 deg.

  12. Two-jet astrosphere model: effect of azimuthal magnetic field

    CERN Document Server

    Golikov, E A; Alexashov, D B; Belov, N A

    2016-01-01

    Opher et al. (2015), Drake et al. (2015) have shown that the heliospheric magnetic field results in formation of two-jet structure of the solar wind flow in the inner heliosheath, i.e. in the subsonic region between the heliospheric termination shock and the heliopause. In this scenario the heliopause has a tube-like topology as compared with a sheet-like topology in the most models of the global heliosphere (e.g. Izmodenov and Alexashov, 2015). In this paper we explore the two-jet scenario for a simplified astrosphere in which 1) the star is at rest with respect to the circumstellar medium, 2) radial magnetic field is neglected as compared with azimuthal component, 3) the stellar wind outflow is assumed to be hypersonic (both the Mach number and the Alfv\\'enic Mach number are much greater than unity at the inflow boundary). We have shown that the problem can be formulated in dimensionless form, in which the solution depends only on one dimensionless parameter epsilon that is reciprocal of the Alfv\\'enic Mach...

  13. Numerical Simulations of Mach Stem Formation via Intersecting Bow Shocks

    CERN Document Server

    Hansen, Edward C; Hartigan, Patrick

    2014-01-01

    Hubble Space Telescope observations show bright knots of H$\\alpha$ emission within outflowing young stellar jets. Velocity variations in the flow create secondary bow shocks that may intersect and lead to enhanced emission. When the bow shocks intersect at or above a certain critical angle, a planar shock called a Mach stem is formed. These shocks could produce brighter H$\\alpha$ emission since the incoming flow to the Mach stem is parallel to the shock normal. In this paper we report first results of a study using 2-D numerical simulations designed to explore Mach stem formation at the intersection of bow shocks formed by hypersonic "bullets" or "clumps". Our 2-D simulations show how the bow shock shapes and intersection angles change as the adiabatic index $\\gamma$ changes. We show that the formation or lack of a Mach stem in our simulations is consistent with the steady-state Mach stem formation theory. Our ultimate goal, which is part of an ongoing research effort, is to characterize the physical and obse...

  14. Experimental Verification Of The Osculating Cones Method For Two Waverider Forebodies At Mach 4 and 6

    Science.gov (United States)

    Miller, Rolf W.; Argrow, Brian M.; Center, Kenneth B.; Brauckmann, Gregory J.; Rhode, Matthew N.

    1998-01-01

    The NASA Langley Research Center Unitary Plan Wind Tunnel and the 20-Inch Mach 6 Tunnel were used to test two osculating cones waverider models. The Mach-4 and Mach-6 shapes were generated using the interactive design tool WIPAR. WIPAR performance predictions are compared to the experimental results. Vapor screen results for the Mach-4 model at the on- design Mach number provide visual verification that the shock is attached along the entire leading edge, within the limits of observation. WIPAR predictions of pressure distributions and aerodynamic coefficients show general agreement with the corresponding experimental values.

  15. Characteristics of Spherical Shock Wave and Circular Pulse Jet Generated by Discharge of Propagating Shock Wave at Open End of Tube

    Institute of Scientific and Technical Information of China (English)

    Tsukasa Irie; Tsuyoshi Yasunobu; Hideo Kashimura; Toshiaki Setoguchi; Kazuyasu Matsuo

    2003-01-01

    When the shock wave propagating in the straight circular tube reaches at the open end, the impulsive wave is generated by the emission of a shock wave from an open end, and unsteady pulse jet is formed near the open end behind the impulsive wave under the specific condition. The pulse jet transits to spherical shock wave with the increase in the strength of shock wave. The strength is dependent on the Mach number of shock wave, which attenuates by propagation distance from the open end. In this study, the mechanism of generating the unsteady pulse jet, the characteristics of the pressure distribution in the flow field and the emission of shock wave from straight circular tube which has the infinite flange at open end are analyzed numerically by the TVD method. Strength of spherical shock wave, relation of shock wave Mach number, distance decay of spherical shock wave and directional characteristics are clarified.

  16. High resolution 3D gas-jet characterization.

    Science.gov (United States)

    Landgraf, Björn; Schnell, Michael; Sävert, Alexander; Kaluza, Malte C; Spielmann, Christian

    2011-08-01

    We present a tomographic characterization of gas jets employed for high-intensity laser-plasma interaction experiments where the shape can be non-symmetrically. With a Mach-Zehnder interferometer we measured the phase shift for different directions through the neutral density distribution of the gas jet. From the recorded interferograms it is possible to retrieve 3-dimensional neutral density distributions by tomographic reconstruction based on the filtered back projections. We report on criteria for the smallest number of recorded interferograms as well as a comparison with the widely used phase retrieval based on an Abel inversion. As an example for the performance of our approach, we present the characterization of nozzles with rectangular openings or gas jets with shock waves. With our setup we obtained a spatial resolution of less than 60 μm for an Argon density as low as 2 × 10(17) cm(-3).

  17. Experimental wake survey behind Viking 75 entry vehicle at angles of attack of 0 deg, 5 deg, and 10 deg, Mach numbers from 0.20 to 1.20, and longitudinal stations from 1.50 to 11.00 body diameters

    Science.gov (United States)

    Brown, C. A., Jr.; Campbell, J. F.

    1973-01-01

    An investigation was conducted to obtain flow properties in the wake of a preliminary configuration of the Viking '75 Entry Vehicle at Mach numbers from 0.20 to 1.20 and at angles of attack of 0 deg, 5 deg, and 10 deg. The wake flow properties were calculated from total and static pressures measured with a pressure rake at longitudinal stations varying from 1.50 to 11.00 body diameters, and are presented in tabulated and plotted form. The wake properties were essentially symmetrical about the X-axis at alpha = 0 deg and the profiles were shifted away from the X-axis at angles of attack. An unexpected reduction in wake property ratios occurred as the Mach number increased from 0.60 to 1.00; these ratios then increased as the Mach number increased to 1.20. The reduction was present for all the longitudinal stations of the tests and decreased with increased longitudinal distance.

  18. [Kelvin-Helmholtz instability in protostellar jets

    Science.gov (United States)

    Stone, James; Hardee, Philip

    1996-01-01

    NASA grant NAG 5 2866, funded by the Astrophysics Theory Program, enabled the study the Kelvin-Helmholtz instability in protostellar jets. In collaboration with co-investigator Philip Hardee, the PI derived the analytic dispersion relation for the instability in including a cooling term in the energy equation which was modeled as one of two different power laws. Numerical solutions to this dispersion relation over a wide range of perturbation frequencies, and for a variety of parameter values characterizing the jet (such as Mach number, and density ratio) were found It was found that the growth rates and wavelengths associated with unstable roots of the dispersion relation in cooling jets are significantly different than those associated with adiabatic jets, which have been studied previously. In collaboration with graduate student Jianjun Xu (funded as a research associate under this grant), hydrodynamical simulations were used to follow the growth of the instability into the nonlinear regime. It was found that asymmetric surface waves lead to large amplitude, sinusoidal distortions of the jet, and ultimately to disruption Asymmetric body waves, on the other hand, result in the formation of shocks in the jet beam in the nonlinear regime. In cooling jets, these shocks lead to the formation of dense knots and filaments of gas within the jet. For sufficiently high perturbation frequencies, however, the jet cannot respond and it remains symmetric. Applying these results to observed systems, such as the Herbig-Haro jets HH34, HH111 and HH47 which have been observed with the Hubble Space Telescope, we predicted that some of the asymmetric structures observed in these systems could be attributed to the K-H modes, but that perturbations on timescales associated with the inner disk (about 1 year) would be too rapid to cause disruption. Moreover, it was discovered that weak shock 'spurs' in the ambient gas produced by ripples in the jet surface due to nonlinear, modes of

  19. Controlling the development of coherent structures in high speed jets and the resultant near field

    Science.gov (United States)

    Speth, Rachelle

    This work uses Large-Eddy Simulations to examine the effect of actuator parameters and jet exit properties on the evolution of coherent structures and their impact on the near-acoustic field without and with control. For the controlled cases, Localized Arc Filament Plasma Actuators (LAFPAs) are considered, and modeled with a simple heating approach that successfully reproduces the main observations and trends of experiments. A parametric study is first conducted, using the flapping mode (m = +/-1), to investigate the sensitivity of the results to various actuator parameters including: actuator model temperature, actuator duty cycle, and excitation frequency. It is shown by considering a Mach 1.3 jet at Reynolds number of 1 x 106 that the response of the jet is relatively insensitive to actuator model temperature within the limits of the experimentally measured temperature values. Furthermore, duty cycles in the range of 20%--90% were observed to be effective in reproducing the characteristic coherent structures of the flapping mode. Next, jet flow parameters were explored to determine the control authority under different operating conditions. To begin, the effect of the laminar nozzle exit boundary layer thickness was examined by varying its value from essentially uniform flow to 25% of the diameter. In the absence of control, the distance between the nozzle lip and the initial appearance of breakdown is proportional to the boundary-layer thickness, which is consistent with theory and previous results obtained by other researchers at Mach 0.9. The second flow parameter studied was the effect of Reynolds number on a Mach 1.3 jet controlled by the flapping mode at an excitation Strouhal number of 0.3. The higher Reynolds number (Re=1,100,000) jet exhibited reduced control authority compared to the Re=100,000 jet. Like the effect of increasing the nozzle exit boundary layer thickness, increasing the Reynolds number cause a reduction in spreading on the flapping plane

  20. Ernst Mach on the Self

    OpenAIRE

    Schrenk, Markus

    2011-01-01

    In his Contributions to the Analysis of the Sensations (Mach 1885) the phenomenalist philosopher Ernst Mach confronts us with a difficulty: “If we regard the Ego as a real unity, we become involved in the following dilemma: either we must set over against the Ego a world of unknowable entities […] or we must regard the whole world, the Egos of other people included, as comprised in our own Ego.” (Mach 1885: 21) In other words, if we start from a phenomenalist viewpoint, i.e., if we believ...

  1. A finite element method with a high order L{sup 2} decomposition devoted to the simulation of diphasic low Mach number flows; Une methode elements finis a decomposition L{sup 2} d'ordre eleve motivee par la simulation d'ecoulement diphasique bas mach

    Energy Technology Data Exchange (ETDEWEB)

    Fortin, T

    2006-05-15

    This work deals with the discretization of Navier-Stokes equations using different finite element methods adapted to the problem of two-phase flows. These methods must be of high order to limit the presence of spurious flows (which contradict the establishment of a physical equilibrium) and to verify energy conservation properties. Several solutions are proposed which seem to fulfill these expectations. A reformulation of the six-equation system adapted to low Mach two-phase flows has been also proposed. These methods have been implemented into the Trio-U code of CEA Grenoble, but have been tested only on simple 'academic' configurations. (J.S.)

  2. Local Convective Heat Transfer from Small Heaters to Impinging Submerged Axisymmetric Jets of Seven Coolants with Prandtl Number Ranging from 0.7 to 348

    Institute of Scientific and Technical Information of China (English)

    H.Sun; C.F.Ma; 等

    1997-01-01

    Using seven working fluids,a systematic experimental study was performed to investigate the local convective heat transfer from vertical heaters to impinging circular submerged jets in the range of Reynolds number between 1.17×102 and 3.69×104 with the emphasis placed on the examination of Prandtl number dependence.Heat transfer coefficients at the stagnation point were collected and correlated with the plate held within and beyond the potential core.Radial distribution of the local heat transfer coefficient was measured with five test liquids.Based on the measured profiles of the local heat transfer,a correlation was developed to cover the entire range of the adial distance.Basides the present data,the correlations developed in this work were also compared with a large quantity of available data of circular air jets.General agreement was observed between the air data and the correlations.

  3. 3D shock-bubble interactions at Mach 3

    CERN Document Server

    Hejazialhosseini, Babak; Koumoutsakos, Petros

    2012-01-01

    We present a simulation for the interactions of shockwaves with light spherical density inhomogeneities. Euler equations for two-phase compressible flows are solved in a 3D uniform resolution finite volume based solver using 5th order WENO reconstructions of the primitive quantities, HLL-type numerical fluxes and 3rd order TVD time stepping scheme. In this study, a normal Mach 3 shockwave in air is directed at a helium bubble with an interface Atwood number of -0.76. We employ 4 billion cells on a supercomputing cluster and demonstrate the development of this flow until relatively late times. Shock passage compresses the bubble and deposits baroclinic vorticity on the interface. Initial distribution of the vorticity and compressions lead to the formation of an air jet, interface roll-ups and the formation of a long lasting vortical core, the white core. Compressed upstream of the bubble turns into a mixing zone and as the vortex ring distances from this mixing zone, a plume-shaped region is formed and sustain...

  4. Transient analysis of counterflowing jet over highly blunt cone in hypersonic flow

    Science.gov (United States)

    Barzegar Gerdroodbary, M.; Bishehsari, Shervin; Hosseinalipour, S. M.; Sedighi, K.

    2012-04-01

    Understanding the characteristics of various Counterflowing jets exiting from a nose cone is crucial for determining heat load reduction and usage of this device in various conditions. Such jets can undergo several flow regimes during venting, from initial supersonic flow, to transonic, to subsonic flow regimes as the pressure of jet decreases. A bow shock wave is a characteristic flow structure during the initial stage of the jet development, and this paper focuses on the development of the bow shock wave and the jet structure behind it. The transient behavior of a sonic counterflow jet is investigated using unsteady, axisymmetric Navier-Stokes solved with SST turbulence model at free stream Mach number of 5.75. The coolant gas (Carbon Dioxide and Helium) is chosen to inject into the hypersonic air flow at the nose of the model. The gases are considered to be ideal, and the computational domain is axisymmetric. The jet structure, including the shock wave and flow separation due to an adverse pressure gradient at the nose is investigated with a focus on the differences between high diffusivity coolant jet (Helium) and low diffusivity coolant jet (CO2) flow scenarios.

  5. Three-Dimensional Simulations of Jets from Keplerian Disks Self--Regulatory Stability

    CERN Document Server

    Ouyed, R; Pudritz, R E

    2002-01-01

    We present the extension of previous two-dimensional simulations of the time-dependent evolution of non-relativistic outflows from the surface of Keplerian accretion disks, to three dimensions. The accretion disk itself is taken to provide a set of fixed boundary conditions for the problem. The 3-D results are consistent with the theory of steady, axisymmetric, centrifugally driven disk winds up to the Alfv\\'en surface of the outflow. Beyond the Alfv\\'en surface however, the jet in 3-D becomes unstable to non-axisymmetric, Kelvin-Helmholtz instabilities. We show that jets maintain their long-term stability through a self-limiting process wherein the average Alfv\\'enic Mach number within the jet is maintained to order unity. This is accomplished in at least two ways. First, poloidal magnetic field is concentrated along the central axis of the jet forming a ``backbone'' in which the Alfv\\'en speed is sufficiently high to reduce the average jet Alfv\\'enic Mach number to unity. Second, the onset of higher order K...

  6. Experimental Study of Ignition over Impact-Driven Supersonic Liquid Fuel Jet

    Directory of Open Access Journals (Sweden)

    Anirut Matthujak

    2013-01-01

    Full Text Available This study experimentally investigates the mechanism of the ignition of the supersonic liquid fuel jet by the visualization. N-Hexadecane having the cetane number of 100 was used as a liquid for the jet in order to enhance the ignition potential of the liquid fuel jet. Moreover, the heat column and the high intensity CO2 laser were applied to initiate the ignition. The ignition over the liquid fuel jet was visualized by a high-speed digital video camera with a shadowgraph system. From the shadowgraph images, the autoignition or ignition of the supersonic liquid fuel jet, at the velocity of 1,186 m/s which is a Mach number relative to the air of 3.41, did not take place. The ignition still did not occur, even though the heat column or the high intensity CO2 laser was alone applied. The attempt to initiate the ignition over the liquid fuel jet was achieved by applying both the heat column and the high intensity CO2 laser. Observing the signs of luminous spots or flames in the shadowgraph would readily indicate the presence of ignitions. The mechanism of the ignition and combustion over the liquid fuel jet was clearly clarified. Moreover, it was found that the ignition over the supersonic liquid fuel jet in this study was rather the force ignition than being the auto-ignition induced by shock wave heating.

  7. Investigation of the Static Longitudinal and Lateral Stability Characteristics of a 0.10-Scale Model of a Three-Stage Configuration of the Scout Research Vehicle at Mach Numbers of 2.29, 2.96, 3.96, and 4.65

    Science.gov (United States)

    Jernell, Lloyd S.

    1961-01-01

    An investigation w a s made i n the Langley Unitary Plan wind tunnel o determine the effects of fin area and the effects of antennas and w iring tunnels on the static longitudinal and lateral stability of a 0 .10- scale model of a three- stage configuration of the Scout vehicle. The tests were performed at Mach numbers of 2.29, 2.96, 3.96, and 4. 65 6 and at Reynolds numbers of about 3.5 X 10 per foot.

  8. On the Importance of Very-light Internally-subsonic AGN Jets in Radio-mode AGN Feedback

    CERN Document Server

    Guo, Fulai

    2016-01-01

    Radio-mode active galactic nucleus (AGN) feedback plays a key role in the evolution of galaxy groups and clusters. Its physical origin lies in the kpc-scale interaction of AGN jets with the hot halo gas, where jet properties may play an important role. Large-scale jet simulations often initiate light internally-supersonic jets with density contrast $0.01<\\eta<1$. Here we argue for the importance of very-light ($\\eta<0.01$) internally-subsonic jets in AGN feedback. We investigated the shapes of young X-ray cavities produced by AGN jets in a suite of hydrodynamic simulations, and found that bottom-wide cavities are always produced by internally-subsonic jets, while internally-supersonic jets produce cylindrical, center-wide, or top-wide cavities. We found examples of real cavities inflated by internally-subsonic and internally-supersonic jets, suggesting a dichotomy of AGN jets according to their internal Mach numbers. We further studied the long-term cavity evolution, and found that old cavities resul...

  9. Slow light Mach-Zehnder fiber interferometer

    Institute of Scientific and Technical Information of China (English)

    Yundong Zhang; Jinfang Wang; Xuenan Zhang; Hao Wu; Yuanxue Cai; Jing Zhang; Ping Yuan

    2012-01-01

    A slow light structure Mach-Zehnder fiber interferometer is theoretically demonstrated.The sensitivity of the interferometer is significantly enhanced by the dispersion of the slow light structure.The numerical results show that the sensitivity enhancement factor varies with the coupling coefficient and reaches its maximum under critical coupling conditions.Interferometers have been investigated in relation to their applications in fields such as metrology[1],optical sensing[2],optical communication[3,4],quantum information processing[5],and biomedical engineering[6].A number of schemes have been proposed to improve the performance of interferometers[7],such as using photonic crystal structures to minimize the size of on-chip devices[8],utilizing the dispersive property of semiconductor to enhance the spectral sensitivity of interferometers[9,10],utilizing slow light medium to enhance the resolution of Fourier transform interferometer[11],exploiting fast light medium or slow light structure to increase the rotation sensitivity of a Sagnac interferometer[12,13],enhancing the transmittance of the Mach-Zehnder interferometer (MZI) in the slow light region by gratings[14],and using liquid crystal light valve to derive high sensitivity interferometers[15].%A slow light structure Mach-Zehnder fiber interferometer is theoretically demonstrated. The sensitivity of the interferometer is significantly enhanced by the dispersion of the slow light structure. The numerical results show that the sensitivity enhancement factor varies with the coupling coefficient and reaches its maximum under critical coupling conditions.

  10. Effect of winglets on a first-generation jet transport wing. 1: Longitudinal aerodynamic characteristics of a semispan model at subsonic speeds. [in the Langley 8 ft transonic tunnel

    Science.gov (United States)

    Jacobs, P. F.; Flechner, S. G.; Montoya, L. C.

    1977-01-01

    The effects of winglets and a simple wing-tip extension on the aerodynamic forces and moments and the flow-field cross flow velocity vectors behind the wing tip of a first generation jet transport wing were investigated in the Langley 8-foot transonic pressure tunnel using a semi-span model. The test was conducted at Mach numbers of 0.30, 0.70, 0.75, 0.78, and 0.80. At a Mach number of 0.30, the configurations were tested with combinations of leading- and trailing-edge flaps.

  11. Mini-Jet Controlled Turbulent Round Air Jet

    Institute of Scientific and Technical Information of China (English)

    杜诚; 米建春; 周裕; 詹杰

    2011-01-01

    We report an investigation of the active control of a round air jet by multiple radial blowing mini-jets.The Reynolds number based on the jet exit velocity and diameter is 8000.It is found that once the continuous minijets are replaced with pulsed ones,the centerline velocity decay rate K can be greatly increased as the pulsing frequency of mini-jets approaches the natural vortex frequency of the main jet.For example,the K value is amplified by more than 50% with two(or four)pulsed mini-jets blowing,compared with the continuous mini-jets at the same ratio of the mass flow rate of the mini-jets to that of the main jet.%We report an investigation of the active control of a round air jet by multiple radial blowing mini-jets. The Reynolds number based on the jet exit velocity and diameter is 8000. It is found that once the continuous mini-jets are replaced with pulsed ones, the centerline velocity decay rate K can be greatly increased as the pulsing frequency of mini-jets approaches the natural vortex frequency of the main jet. For example, the K value is amplified by more than 50% with two (or four) pulsed mini-jets blowing, compared with the continuous mini-jets at the same ratio of the mass Sow rate of the mini-jets to that of the main jet.

  12. Upper wing surface boundary layer measurements and static aerodynamic data obtained on a 0.015-scale model (42-0) or the SSV orbiter configuration 140A/B in the LTV HSWT at a Mach number of 4.6 (LA58)

    Science.gov (United States)

    Ball, J. W.; Lindahl, R. H.

    1976-01-01

    The purpose of the test was to investigate the nature of the Orbiter boundary layer characteristics at angles of attack from -4 to 32 degrees at a Mach number of 4.6. The effect of large grit, employed as transition strips, on both the nature of the boundary layer and the force and moment characteristics were investigated along with the effects of large negative elevon deflection on lee side separation. In addition, laminar and turbulent boundary layer separation phenomena which could cause asymmetric flow separation were investigated.

  13. Multiaxis control power from thrust vectoring for a supersonic fighter aircraft model at Mach 0.20 to 2.47

    Science.gov (United States)

    Capone, Francis J.; Bare, E. Ann

    1987-01-01

    The aeropropulsive characteristics of an advanced twin-engine fighter aircraft designed for supersonic cruise have been studied in the Langley 16-Foot Tansonic Tunnel and the Lewis 10- by 10-Foot Supersonic Tunnel. The objective was to determine multiaxis control-power characteristics from thrust vectoring. A two-dimensional convergent-divergent nozzle was designed to provide yaw vector angles of 0, -10, and -20 deg combined with geometric pitch vector angles of 0 and 15 deg. Yaw thrust vectoring was provided by yaw flaps located in the nozzle sidewalls. Roll control was obtained from differential pitch vectoring. This investigation was conducted at Mach numbers from 0.20 to 2.47. Angle of attack was varied from 0 to about 19 deg, and nozzle pressure ratio was varied from about 1 (jet off) to 28, depending on Mach number. Increments in force or moment coefficient that result from pitch or yaw thrust vectoring remain essentially constant over the entire angle-of-attack range of all Mach numbers tested. There was no effect of pitch vectoring on the lateral aerodynamic forces and moments and only very small effects of yaw vectoring on the longitudinal aerodynamic forces and moments. This result indicates little cross-coupling of control forces and moments for combined pitch-yaw vectoring.

  14. Computational Analysis of Ares I Roll Control System Jet Interaction Effects on Rolling Moment

    Science.gov (United States)

    Deere, Karen A.; Pao, S. Paul; Abdol-Hamid, Khaled S.

    2011-01-01

    The computational flow solver USM3D was used to investigate the jet interaction effects from the roll control system on the rolling moment of the Ares I full protuberance configuration at wind tunnel Reynolds numbers. Solutions were computed at freestream Mach numbers from M = 0.5 to M = 5 at the angle of attack 0deg, at the angle of attack 3.5deg for a roll angle of 120deg, and at the angle of attack 7deg for roll angles of 120deg and 210deg. Results indicate that the RoCS housing provided a beneficial jet interaction effect on vehicle rolling moment for M > or = 0.9. Most of the components downstream of the roll control system housing contributed to jet interaction penalties on vehicle rolling moment.

  15. Jet-Surface Interaction Test: Phased Array Noise Source Localization Results

    Science.gov (United States)

    Podboy, Gary

    2012-01-01

    Subsonic jets are relatively simple. The peak noise source location gradually moves upstream toward the nozzle as frequency increases. 2) Supersonic jets are more complicated. The peak noise source location moves downstream as frequency increases through a BBSN hump. 3) In both subsonic and supersonic jets the peak noise source location corresponding to a given frequency of noise moves downstream as jet Mach number increases. 4) The noise generated at a given frequency in a BBSN hump is generated by a small number of shocks, not from all the shocks at the same time. 5) Single microphone spectrum levels decrease when the noise source locations measured with the phased array are blocked by a shielding surface. This consistency validates the phased array data and the stationary monopole source model used to process it. 6) Reflecting surface data illustrate that the law of reflection must be satisfied for noise to reflect off a surface toward an observer. Depending on the relative locations of the jet, the surface and the observer only some of the jet noise sources may satisfy this requirement. 7) The low frequency noise created when a jet flow impinges on a surface comes primarily from the trailing edge regardless of the axial extent impacted by the flow.

  16. In-flight imaging of transverse gas jets injected into transonic and supersonic crossflows: Design and development. M.S. Thesis, Mar. 1993

    Science.gov (United States)

    Wang, Kon-Sheng Charles

    1994-01-01

    The design and development of an airborne flight-test experiment to study nonreacting gas jets injected transversely into transonic and supersonic crossflows is presented. Free-stream/crossflow Mach numbers range from 0.8 to 2.0. Planar laser-induced fluorescence (PLIF) of an iodine-seeded nitrogen jet is used to visualize the jet flow. Time-dependent images are obtained with a high-speed intensified video camera synchronized to the laser pulse rate. The entire experimental assembly is configured compactly inside a unique flight-test-fixture (FTF) mounted under the fuselage of the F-104G research aircraft, which serves as a 'flying wind tunnel' at NASA Dryden Flight Research Center. The aircraft is flown at predetermined speeds and altitudes to permit a perfectly expanded (or slightly underexpanded) gas jet to form just outside the FTF at each free-stream Mach number. Recorded gas jet images are then digitized to allow analysis of jet trajectory, spreading, and mixing characteristics. Comparisons will be made with analytical and numerical predictions. This study shows the viability of applying highly sophisticated groundbased flow diagnostic techniques to flight-test vehicle platforms that can achieve a wide range of thermo/fluid dynamic conditions. Realistic flow environments, high enthalpies, unconstrained flowfields, and moderate operating costs are also realized, in contrast to traditional wind-tunnel testing.

  17. Time Resolved PIV for Space-Time Correlations in Hot Jets

    Science.gov (United States)

    Wernet, Mark P.

    2007-01-01

    Temporally Resolved Particle Image Velocimetry (TR-PIV) is the newest and most exciting tool recently developed to support our continuing efforts to characterize and improve our understanding of the decay of turbulence in jet flows -- a critical element for understanding the acoustic properties of the flow. A new TR-PIV system has been developed at the NASA Glenn Research Center which is capable of acquiring planar PIV image frame pairs at up to 25 kHz. The data reported here were collected at Mach numbers of 0.5 and 0.9 and at temperature ratios of 0.89 and 1.76. The field of view of the TR-PIV system covered 6 nozzle diameters along the lip line of the 50.8 mm diameter jet. The cold flow data at Mach 0.5 were compared with hotwire anemometry measurements in order to validate the new TR-PIV technique. The axial turbulence profiles measured across the shear layer using TR-PIV were thinner than those measured using hotwire anemometry and remained centered along the nozzle lip line. The collected TR-PIV data illustrate the differences in the single point statistical flow properties of cold and hot jet flows. The planar, time-resolved velocity records were then used to compute two-point space-time correlations of the flow at the Mach 0.9 flow condition. The TR-PIV results show that there are differences in the convective velocity and growth rate of the turbulent structures between cold and hot flows at the same Mach number

  18. Measurements of Jets in ALICE

    CERN Document Server

    Nattrass, Christine

    2016-01-01

    The ALICE detector can be used for measurements of jets in pp , p Pb, and Pb–Pb collisions. Measurements of jets in pp collisions are consis- tent with expectations from perturbative calculations and jets in p Pb scale with the number of nucleon–nucleon collisions, indicating that cold nuclear matter effects are not observed for jets. Measurements in Pb–Pb collisions demonstrate suppression of jets relative to expectations from binary scaling to the equivalent number of nucleon–nucleon collisions

  19. Energetic Impact of Jet Inflated Cocoons in Relaxed Galaxy Clusters

    CERN Document Server

    Vernaleo, John C

    2007-01-01

    Jets from active galactic nuclei (AGN) in the cores of galaxy clusters have the potential to be a major contributor to the energy budget of the intracluster medium (ICM). To study the dependence of the interaction between the AGN jets and the ICM on the parameters of the jets themselves, we present a parameter survey of two-dimensional (axisymmetric) ideal hydrodynamic models of back-to-back jets injected into a cluster atmosphere (with varying Mach numbers and kinetic luminosities). We follow the passive evolution of the resulting structures for several times longer than the active lifetime of the jet. The simulations fall into roughly two classes, cocoon-bounded and non-cocoon bounded sources. We suggest a correspondence between these two classes and the Faranoff-Riley types. We find that the cocoon-bounded sources inject significantly more entropy into the core regions of the ICM atmosphere, even though the efficiency with which energy is thermalized is independent of the morphological class. In all cases,...

  20. Flow Field and Acoustic Predictions for Three-Stream Jets

    Science.gov (United States)

    Simmons, Shaun Patrick; Henderson, Brenda S.; Khavaran, Abbas

    2014-01-01

    Computational fluid dynamics was used to analyze a three-stream nozzle parametric design space. The study varied bypass-to-core area ratio, tertiary-to-core area ratio and jet operating conditions. The flowfield solutions from the Reynolds-Averaged Navier-Stokes (RANS) code Overflow 2.2e were used to pre-screen experimental models for a future test in the Aero-Acoustic Propulsion Laboratory (AAPL) at the NASA Glenn Research Center (GRC). Flowfield solutions were considered in conjunction with the jet-noise-prediction code JeNo to screen the design concepts. A two-stream versus three-stream computation based on equal mass flow rates showed a reduction in peak turbulent kinetic energy (TKE) for the three-stream jet relative to that for the two-stream jet which resulted in reduced acoustic emission. Additional three-stream solutions were analyzed for salient flowfield features expected to impact farfield noise. As tertiary power settings were increased there was a corresponding near nozzle increase in shear rate that resulted in an increase in high frequency noise and a reduction in peak TKE. As tertiary-to-core area ratio was increased the tertiary potential core elongated and the peak TKE was reduced. The most noticeable change occurred as secondary-to-core area ratio was increased thickening the secondary potential core, elongating the primary potential core and reducing peak TKE. As forward flight Mach number was increased the jet plume region decreased and reduced peak TKE.

  1. Recent JET experiments on Alfven eigenmodes with intermediate toroidal mode numbers: measurements and modelling of n=3 toroidal Alfven eigenmodes with the TAEFL code

    Energy Technology Data Exchange (ETDEWEB)

    Testa, D. [CRPP, Switzerland; Spong, Donald A [ORNL; Panis, T. [CRPP, Switzerland; Blanchard, P. [CRPP, Switzerland; Fasoli, A. [CRPP, Switzerland

    2011-01-01

    This paper reports the results of recent experiments performed on the JET tokamak on Alfven eigenmodes (AEs) with toroidal mode number (n) in the range n = 3-15. The stability properties of these medium-n AEs are investigated experimentally using a new set of compact in-vessel antennas, providing a direct and real-time measurement of the frequency, damping rate and amplitude for each individual toroidal mode number. We report here the quantitative analysis of the measurements of the damping rate for stable n = 3 toroidal AEs as a function of the edge plasma elongation, and the theoretical analysis of these data with the TAEFL code. The TAEFL results are in excellent qualitative agreement with the measurements, reproducing well the experimental scaling of increasing damping rate versus increasing edge elongation, and in many cases are also quantitatively correct, with a difference with respect to the measurements below 30%, particularly for magnetic configurations that have a larger edge magnetic shear.

  2. Numerical investigation of gas-particle interaction in polydisperse volcanic jets

    Science.gov (United States)

    Carcano, Susanna; Esposti Ongaro, Tomaso; Bonaventura, Luca; Neri, Augusto

    2014-05-01

    We investigate the problem of underexpanded jet decompression when the injected fluid is a mixture of a gaseous phase and different classes of solid particles. The underexpanded multiphase jet problem is representative of phenomena that can be observed in the first stages of explosive volcanic eruptions. Whereas the case of homogeneous jets has been studied deeply in the literature, both experimentally, theoretically and numerically, the case of multiphase gas--particle jets still presents some open issues. It has been proven theoretically and experimentally that vents with supersonic or sonic velocity and gas pressure greater than the atmospheric one result in a rapid expansion and acceleration of the fluid to high Mach number. A series of expansion waves form and are reflected as compression waves at the flow boundary. The compression waves coealesce to form a standing normal shock wave (Mach disk), across which the fluid is rapidly compressed and decelerated to subsonic speeds. When solid particles are added to the gas flow, new phenomena associated to kinetic and thermal non-equilibrium between gas and particulate phases arise. Such effects are controlled by drag and heat exchange terms in the momentum and energy equations. In the present work we carry out two- and three-dimensional numerical simulations with the multiphase flow model PDAC (Neri et al., J. Geophys. Res, 2003; Carcano et al., Geosci. Mod. Dev., 2013), to identify and quantify non-equilibrium effects related to the interaction between the jet decompression structure and solid particles. We quantify, on a theoretical basis, the expected non-equilibrium effects between the gas and the solid phase in terms of the particle Stokes numer (St), i.e. the ratio between the particle relaxation time and a characteristic time scale of the jet (taken as the formation time of the Mach disk shock), for two sample grain-size distributions of natural events (Mount St. Helens, 1980; Vesuvius, aD 79). The Stokes

  3. Long-range lPIV to resolve the small scales in a jet at high Reynolds number

    NARCIS (Netherlands)

    Fiscaletti, D.; Westerweel, J.; Elsinga, G.E.

    2014-01-01

    The investigation of flows at high Reynolds number is of great interest for the theory of turbulence, in that the large and the small scales of turbulence show a clear separation. But, as the Reynolds number of the flow increases, the size of the Kolmogorov length scale ( η ) drops almost proportion

  4. Testing astrophysical radiation hydrodynamics codes with hypervelocity jet experiments on the nova laser

    Energy Technology Data Exchange (ETDEWEB)

    Estabrook, K; Farley, D; Glendinning, S G; Remington, B A; Stone, J; Turner, N

    1999-09-22

    Recent shock tube experiments using the Nova laser facility have demonstrated that strong shocks and highly supersonic flows similar to those encountered in astrophysical jets can be studied in detail through carefully controlled experiment. We propose the use of high power lasers such as Nova, Omega, and NIF to perform experiments on radiation hydrodynamic problems such as jets involving the multidimensional dynamics of strong shocks. High power lasers are the only experimental facilities that can reach the very high Mach number regime. The experiments will serve both as diagnostics of astrophysically interesting gas dynamic problems, and could also form the basis of test problems for numerical algorithms for astrophysical radiation hydrodynamic codes, The potential for experimentally achieving a strongly radiative jet seems very good.

  5. Space shuttle orbiter trimmed center-of-gravity extension study. Volume 5: Effects of configuration modifications on the aerodynamic characteristics of the 140A/B orbiter at Mach numbers of 2.5, 3.95 and 4.6

    Science.gov (United States)

    Phillips, W. P.; Fournier, R. H.

    1979-01-01

    Supersonic aerodynamic characteristics are presented for the 140A/B space shuttle orbiter configuration (0.010 scale) and for the configuration modified to incorporate geometry changes in the wing planform fillet region. The modifications designed to extend the orbiter's longitudinal trim capability to more forward center-of-gravity locations, included reshaping of the baseline wing planform fillet and adding canards. The investigation was made in the high Mach number test section of the Langley Unitary Plan Wind Tunnel at a Reynolds number of approximately 2.2 million based on fuselage reference length. The angle-of-attack range for the investigation extended from -1 deg to 31 deg. Data were obtained with the elevators and body flap deflected at appropriate negative and positive conditions to assess the trim limits.

  6. ePLAS Development for Jet Modeling and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Rodney J. Mason

    2011-09-07

    Plasma jets provide an alternate approach to the creation of high energy density laboratory plasmas (HEDLP). For the Plasma Liner Experiment (PLX), typically 30 partially ionized argon jets, produced with mini-rail guns, will be focused into a central volume for subsequent magnetic compression into high density plasma liners that can reach high (0.1 Mbar) peak pressures upon stagnation. The jets are typically 2.5 cm in radius traveling at Mach number 30. Ultimate success will require optimized tuning of the rail configurations, the nozzles injecting the gases, and the careful implementation of pre-ionization. The modeling of plasma jet transport is particularly challenging, due the large space (100 sq cm) and time scales (microseconds) involved. Even traditional implicit methods are insufficient, due to the usual need to track electrons explicitly on the mesh. Wall emission and chemistry must be managed, as must ionization of the jet plasma. Ions in the jets are best followed as particles to account properly for collisions upon jet merger. This Phase I Project developed the code ePLAS to attack and successfully surmount many of these challenges. It invented a new 'super implicit' electromagnetic scheme, using implicit electron moment currents that allowed for modeling of jets over multi-cm and multi-picoseconds on standard, single processor 2 GHz PCs. It enabled merger studies of two jets, in preparation for the multi-jet merger problem. The Project explored particle modeling for the ions, and prepared for the future addition of a grid-base jet ion collision model. Access was added to tabular equations of state for the study of ionization effects in merging jets. The improved code was discussed at the primary plasma meetings (IEEE and APS) during the Project period. Collaborations with National Laboratory and industrial partners were nurtured. Code improvements were made to facilitate code use. See: http://www.researchapplicationscorp.com. The ePLAS code

  7. Modeling of the merging, liner formation, implosion of hypervelocity plasma jets for the PLX- α project

    Science.gov (United States)

    Cassibry, Jason; Hsu, Scott; Schillo, Kevin; Samulyak, Roman; Stoltz, Peter; Beckwith, Kris

    2015-11-01

    A suite of numerical tools will support the conical and 4 π plasma-liner-formation experiments for the PLX- α project. A new Lagrangian particles (LP) method will provide detailed studies of the merging of plasma jets and plasma-liner formation/convergence. A 3d smooth particle hydrodynamic (SPH) code will simulate conical (up to 9 jets) and 4 π spherical (up to 60 jets) liner formation and implosion. Both LP and SPH will use the same tabular EOS generated by Propaceos, thermal conductivity, optically thin radiation and physical viscosity models. With LP and SPH,the major objectives are to study Mach-number degradation during jet merging, provide RMS amplitude and wave number of the liner nonuniformity at the leading edge, and develop scaling laws for ram pressure and liner uniformity as a function of jet parameters. USIM, a 3D multi-fluid plasma code, will be used to perform 1D and 2D simulations of plasma-jet-driven magneto-inertial fusion (PJMIF) to identify initial conditions in which the ``liner gain'' exceeds unity. A brief overview of the modeling program will be provided. Results from SPH modeling to support the PLX- α experimental design will also be presented, including preliminary ram-pressure scaling and non-uniformity characterization.

  8. Effect of Heating on Turbulent Density Fluctuations and Noise Generation From High Speed Jets

    Science.gov (United States)

    Panda, Jayanta; Seasholtz, Richard G.; Elam, Kristie A.; Mielke, Amy F.; Eck, Dennis G.

    2004-01-01

    Heated jets in a wide range of temperature ratios (TR), and acoustic Mach numbers (Ma) were investigated experimentally using far field microphones and a molecular Rayleigh scattering technique. The latter provided density fluctuations measurements. Two sets of operating conditions were considered: (1) TR was varied between 0.84 and 2.7 while Ma was fixed at 0.9; (2) Ma was varied between 0.6 and 1.48, while TR was fixed at 2.27. The implementation of the molecular Rayleigh scattering technique required dust removal and usage of a hydrogen combustor to avoid soot particles. Time averaged density measurements in the first set of data showed differences in the peripheral density shear layers between the unheated and heated jets. The nozzle exit shear layer showed increased turbulence level with increased plume temperature. Nevertheless, further downstream the density fluctuations spectra are found to be nearly identical for all Mach number and temperature ratio conditions. To determine noise sources a correlation study between plume density fluctuations and far field sound pressure fluctuations was conducted. For all jets the core region beyond the end of the potential flow was found to be the strongest noise source. Except for an isothermal jet, the correlations did not differ significantly with increasing temperature ratio. The isothermal jet created little density fluctuations. Although the far field noise from this jet did not show any exceptional trend, the flow-sound correlations were very low. This indicated that the density fluctuations only acted as a "tracer parameter" for the noise sources.

  9. Relativistic AGN jets I. The delicate interplay between jet structure, cocoon morphology and jet-head propagation

    Science.gov (United States)

    Walg, S.; Achterberg, A.; Markoff, S.; Keppens, R.; Meliani, Z.

    2013-08-01

    Astrophysical jets reveal strong signs of radial structure. They suggest that the inner region of the jet, the jet spine, consists of a low-density, fast-moving gas, while the outer region of the jet consists of a more dense and slower moving gas, called the jet sheath. Moreover, if jets carry angular momentum, the resultant centrifugal forces lead to a radial stratification. Current observations are not able to fully resolve the radial structure, so little is known about its actual profile. We present three active galactic nuclei jet models in 2.5D of which two have been given a radial structure. The first model is a homogeneous jet, the only model that does not carry angular momentum; the second model is a spine-sheath jet with an isothermal equation of state; and the third jet model is a (piecewise) isochoric spine-sheath jet, with constant but different densities for jet spine and jet sheath. In this paper, we look at the effects of radial stratification on jet integrity, mixing between the different jet components and global morphology of the jet-head and surrounding cocoon. We consider steady jets that have been active for 23 Myr. All jets have developed the same number of strong internal shocks along their jet axis at the final time of simulation. These shocks arise when vortices are being shed by the jet-head. We find that all three jets maintain their stability all the way up to the jet-head. The isothermal jet maintains part of its structural integrity at the jet-head where the distinction between jet spine and jet sheath material can still be made. In this case, mixing between jet spine and jet sheath within the jet is fairly inefficient. The isochoric jet, on the other hand, loses its structural jet integrity fairly quickly after the jet is injected. At its jet-head, little structure is maintained and the central part of the jet predominantly consists of jet sheath material. In this case, jet spine and jet sheath material mix efficiently within the jet

  10. Mach-like capillary-gravity wakes.

    Science.gov (United States)

    Moisy, Frédéric; Rabaud, Marc

    2014-08-01

    We determine experimentally the angle α of maximum wave amplitude in the far-field wake behind a vertical surface-piercing cylinder translated at constant velocity U for Bond numbers Bo(D)=D/λ(c) ranging between 0.1 and 4.2, where D is the cylinder diameter and λ(c) the capillary length. In all cases the wake angle is found to follow a Mach-like law at large velocity, α∼U(-1), but with different prefactors depending on the value of Bo(D). For small Bo(D) (large capillary effects), the wake angle approximately follows the law α≃c(g,min)/U, where c(g,min) is the minimum group velocity of capillary-gravity waves. For larger Bo(D) (weak capillary effects), we recover a law α∼√[gD]/U similar to that found for ship wakes at large velocity [Rabaud and Moisy, Phys. Rev. Lett. 110, 214503 (2013)]. Using the general property of dispersive waves that the characteristic wavelength of the wave packet emitted by a disturbance is of order of the disturbance size, we propose a simple model that describes the transition between these two Mach-like regimes as the Bond number is varied. We show that the new capillary law α≃c(g,min)/U originates from the presence of a capillary cusp angle (distinct from the usual gravity cusp angle), along which the energy radiated by the disturbance accumulates for Bond numbers of order of unity. This model, complemented by numerical simulations of the surface elevation induced by a moving Gaussian pressure disturbance, is in qualitative agreement with experimental measurements.

  11. Nonlinear interaction of instability waves and vortex-pairing noise in axisymmetric subsonic jets

    Science.gov (United States)

    Yang, Hai-Hua; Zhou, Lin; Zhang, Xing-Chen; Wan, Zhen-Hua; Sun, De-Jun

    2016-10-01

    A direct simulation with selected inflow forcing is performed for an accurate description of the jet flow field and far-field noise. The effects of the Mach number and heating on the acoustic field are studied in detail. The beam patterns and acoustic intensities are both varied as the change of the Mach number and temperature. The decomposition of the source terms of the Lilley-Goldstein (L-G) equation shows that the momentum and thermodynamic components lead to distinctly different beam patterns. Significant cancellation is found between the momentum and thermodynamic components at low polar angles for the isothermal jet and large polar angles for the hot jet. The cancellation leads to the minimum values of the far-field sound. Based on linear parabolized stability equation solutions, the nonlinear interaction model for sound prediction is built in combination with the L-G equation. The dominant beam patterns and their original locations predicted by the nonlinear model are in good agreement with the direct simulation results, and the predictions of sound pressure level (SPL) by the nonlinear model are relatively reasonable.

  12. Measurement and Empirical Correlation of Transpiration-Cooling Parameters on a 25 degree Cone in a Turbulent Boundary Layer in Both Free Flight and a Hot-Gas Jet

    Science.gov (United States)

    Walton, Thomas E., Jr.; Rashis, Bernard

    1961-01-01

    Transpiration-cooling parameters are presented for a turbulent boundary layer on a cone configuration with a total angle of 250 which was tested in both free flight and in an ethylene-heated high-temperature jet at a Mach number of 2.0. The flight-tested cone was flown to a maximum Mach number of 4.08 and the jet tests were conducted at stagnation temperatures ranging from 937 R to 1,850 R. In general, the experimental heat transfer was in good agreement with the theoretical values. Inclusion of the ratio of local stream temperature to wall temperature in the nondimensional flow rate parameter enabled good correlation of both sets of transpiration data. The measured pressure at the forward station coincided with the theoretical pressure over a sharp cone; however, the measured pressure increased with distance from the nose tip.

  13. Detailed flowfield and surface properties for high Knudsen number planar jet impingement at an inclined flat plate

    Science.gov (United States)

    Cai, Chunpei; He, Xin

    2016-05-01

    This paper presents two sets of analytical exact solutions for collisionless gas flows from a planar exit, impinging at an inclined flat plate. These analytical results are obtained by using gaskinetic theories. The first set of solutions are for a diffuse reflective plate surface, and the other set of solutions are for a specular reflective plate surface. A virtual nozzle exit is adopted to aid analyzing the specular reflective plate scenario. New formulas for plate surface properties, including velocity slips, pressure, shear stress, and heat flux distributions, are provided. For both problems, the flowfield exact solutions are investigated as well. Numerical simulations with the direct simulation Monte Carlo method are performed to validate these new analytical results, and good agreement is obtained for flows with high Knudsen numbers. The results consider effects from many factors, such as the plate inclination angle, geometry ratios, and exit gas and plate properties (such as exit gas bulk density, gas speed ratio, and exit gas and plate temperatures). Compared with past work, these new solutions are more comprehensive and practical. The results also illustrate that if the plate is quite close to the nozzle exit, it is improper to adopt the traditional treatments of a point source and a simple cosine function.

  14. Near Field Screech Noise Computation for an Underexpanded Supersonic Jet by the CE/SE Method

    Science.gov (United States)

    Loh, Ching Y.; Hultgren, Lennart S.; Jorgenson, Philip C. E.

    2001-01-01

    The space-time conservation element and solution element (CE/SE) method is employed to numerically study the near-field axisymmetric screech-tone noise of a typical underexpanded circular jet issuing from a sonic nozzle. For the computed cases, corresponding to fully expanded Mach numbers of 1.10, 1.15 and 1.19, the self-sustained feedback loop is automatically established. The computed shock-cell structure, acoustic wave length, screech tone frequencies, and sound pressure levels are in good agreement with experimental results.

  15. MACH: Fast Randomized Tensor Decompositions

    CERN Document Server

    Tsourakakis, Charalampos E

    2009-01-01

    Tensors naturally model many real world processes which generate multi-aspect data. Such processes appear in many different research disciplines, e.g, chemometrics, computer vision, psychometrics and neuroimaging analysis. Tensor decompositions such as the Tucker decomposition are used to analyze multi-aspect data and extract latent factors, which capture the multilinear data structure. Such decompositions are powerful mining tools, for extracting patterns from large data volumes. However, most frequently used algorithms for such decompositions involve the computationally expensive Singular Value Decomposition. In this paper we propose MACH, a new sampling algorithm to compute such decompositions. Our method is of significant practical value for tensor streams, such as environmental monitoring systems, IP traffic matrices over time, where large amounts of data are accumulated and the analysis is computationally intensive but also in "post-mortem" data analysis cases where the tensor does not fit in the availa...

  16. Jet Substructure Without Trees

    Energy Technology Data Exchange (ETDEWEB)

    Jankowiak, Martin; Larkoski, Andrew J.; /SLAC /Stanford U., ITP

    2011-08-19

    We present an alternative approach to identifying and characterizing jet substructure. An angular correlation function is introduced that can be used to extract angular and mass scales within a jet without reference to a clustering algorithm. This procedure gives rise to a number of useful jet observables. As an application, we construct a top quark tagging algorithm that is competitive with existing methods. In preparation for the LHC, the past several years have seen extensive work on various aspects of collider searches. With the excellent resolution of the ATLAS and CMS detectors as a catalyst, one area that has undergone significant development is jet substructure physics. The use of jet substructure techniques, which probe the fine-grained details of how energy is distributed in jets, has two broad goals. First, measuring more than just the bulk properties of jets allows for additional probes of QCD. For example, jet substructure measurements can be compared against precision perturbative QCD calculations or used to tune Monte Carlo event generators. Second, jet substructure allows for additional handles in event discrimination. These handles could play an important role at the LHC in discriminating between signal and background events in a wide variety of particle searches. For example, Monte Carlo studies indicate that jet substructure techniques allow for efficient reconstruction of boosted heavy objects such as the W{sup {+-}} and Z{sup 0} gauge bosons, the top quark, and the Higgs boson.

  17. Wind-tunnel force and flow visualization data at Mach numbers from 1.6 to 4.63 for a series of bodies of revolution at angles of attack from minus 4 deg to 60 deg

    Science.gov (United States)

    Landrum, E. J.; Babb, C. D.

    1979-01-01

    Flow visualization and force data for a series of six bodies of revolution are presented without analysis. The data were obtained in the Langley Unitary Plan wind tunnel for angles of attack from -4 deg to 60 deg. The Reynolds number used for these tests was 6,600,000 per meter.

  18. Jet observables without jet algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Bertolini, Daniele; Chan, Tucker; Thaler, Jesse [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States)

    2014-04-02

    We introduce a new class of event shapes to characterize the jet-like structure of an event. Like traditional event shapes, our observables are infrared/collinear safe and involve a sum over all hadrons in an event, but like a jet clustering algorithm, they incorporate a jet radius parameter and a transverse momentum cut. Three of the ubiquitous jet-based observables — jet multiplicity, summed scalar transverse momentum, and missing transverse momentum — have event shape counterparts that are closely correlated with their jet-based cousins. Due to their “local” computational structure, these jet-like event shapes could potentially be used for trigger-level event selection at the LHC. Intriguingly, the jet multiplicity event shape typically takes on non-integer values, highlighting the inherent ambiguity in defining jets. By inverting jet multiplicity, we show how to characterize the transverse momentum of the n-th hardest jet without actually finding the constituents of that jet. Since many physics applications do require knowledge about the jet constituents, we also build a hybrid event shape that incorporates (local) jet clustering information. As a straightforward application of our general technique, we derive an event-shape version of jet trimming, allowing event-wide jet grooming without explicit jet identification. Finally, we briefly mention possible applications of our method for jet substructure studies.

  19. Supersonic Jet Interactions in a Plenum Chamber

    Directory of Open Access Journals (Sweden)

    K. M. Venugopal

    2004-07-01

    Full Text Available Understanding thè supersonic jet interactions in a plenum chamber is essential for thè design of hot launch systems. Static tests were conducted in a small-scale rocket motor ioaded with a typical nitramine propellaiit to produce a nozzle exit Mach number of 3. This supersonic jet is made to interact with plenum chambers having both open and closed sides. The distance between thè nozzle exit and thè back piate of plenum chamber are varied from 2. 5 to 7. 0 times thè nozzle exit diameter. The pressure rise in thè plenum chamber was measured using pressure transducers mounted at different locatìons. The pressure-time data were analysed to obtain an insight into thè flow field in thè plenum chamber. The maximum pressure exerted on thè back piate of plenum chamber is about 25-35 per cent. of thè maximum stagnation pressure developed in thè rocket motor. Ten static tests were carried out to obtain thè effect of axial distance between thè nozzle exit and thè plenum chamber back piate, and stagnation pressure in thè rocket motoron thè flow field in thè open-sided and closed-sided plenum chambers configurations.

  20. Mach stem formation in reflection and focusing of weak shock acoustic pulses.

    Science.gov (United States)

    Karzova, Maria M; Khokhlova, Vera A; Salze, Edouard; Ollivier, Sébastien; Blanc-Benon, Philippe

    2015-06-01

    The aim of this study is to show the evidence of Mach stem formation for very weak shock waves with acoustic Mach numbers on the order of 10(-3) to 10(-2). Two representative cases are considered: reflection of shock pulses from a rigid surface and focusing of nonlinear acoustic beams. Reflection experiments are performed in air using spark-generated shock pulses. Shock fronts are visualized using a schlieren system. Both regular and irregular types of reflection are observed. Numerical simulations are performed to demonstrate the Mach stem formation in the focal region of periodic and pulsed nonlinear beams in water.

  1. LES of film cooling for different jet fluids

    Institute of Scientific and Technical Information of China (English)

    P.Renze; W.Schr(o)der; M.Meinke

    2007-01-01

    The present paper investigates the impact of the velocity and density ratio on the turbulent mixing process in gas turbine blade film cooling.A cooling fluid is injected from an inclined pipe at α=30° into a turbulent boundary layer profile at a freestream Reynolds number of Re∞=400000.This jet-in-a-crossflow(JICF) problem is investigated using large-eddy simulations(LES).The governing equations comprise the Navier-Stokes equations plus additional transport equations for several species to simulate a non-reacting gas mixture.A variation of the density ratio is simulated by the heat-mass transfer analogy,i.e.,gases of different density are effused into an an air crossflow at a constant temperature.An efficient large-eddy simulation method for low subsonic flows based on an implicit dual time-stepping scheme combined with low Mach number preconditioning is applied.The numerical results and experimental velocity data measured using two-component particle-image velocimetry (PIV) are in excellent agreement.The results show the dynamics of the flow field in the vicinity of the jet hole,i.e.,the recirculation region and the inclination of the shear layers,to be mainly determined by the velocity ratio.However,evaluating the cooling efficiency downstream of the jet hole the mass flux ratio proves to be the dominant similarity parameter,i.e.,the density ratio between the fluids and the velocity ratio have to be considered.

  2. Jet propulsion without inertia

    CERN Document Server

    Spagnolie, Saverio E

    2010-01-01

    A body immersed in a highly viscous fluid can locomote by drawing in and expelling fluid through pores at its surface. We consider this mechanism of jet propulsion without inertia in the case of spheroidal bodies, and derive both the swimming velocity and the hydrodynamic efficiency. Elementary examples are presented, and exact axisymmetric solutions for spherical, prolate spheroidal, and oblate spheroidal body shapes are provided. In each case, entirely and partially porous (i.e. jetting) surfaces are considered, and the optimal jetting flow profiles at the surface for maximizing the hydrodynamic efficiency are determined computationally. The maximal efficiency which may be achieved by a sphere using such jet propulsion is 12.5%, a significant improvement upon traditional flagella-based means of locomotion at zero Reynolds number. Unlike other swimming mechanisms which rely on the presentation of a small cross section in the direction of motion, the efficiency of a jetting body at low Reynolds number increas...

  3. Aerodynamic Loads at Mach Numbers from 0.70 to 2.22 on an Airplane Model Having a Wing and Canard of Triangular Plan Form and Either Single or Twin Vertical Tails. Supplement 2; Tabulated Data for the Model with Twin Vertical Tails

    Science.gov (United States)

    Peterson, Victor L.; Menees, Gene P.

    1961-01-01

    Tabulated results of a wind-tunnel investigation of the aerodynamic loads on a canard airplane model with twin vertical tails are presented for Mach numbers from 0.70 to 2.22. The Reynolds number for the measurements was 2.9 x 10(exp 6) based on the wing mean aerodynamic chord. The results include local static-pressure coefficients measured on the wing, body, and one of the vertical tails for angles of attack from -4 degrees to 16 degree angles of sideslip of 0 degrees and 5.3 degrees, and nominal canard deflections of O degrees and 10 degrees. Also included are section force and moment coefficients obtained from integrations of the local pressures and model-component force and moment coefficients obtained from integrations of the section coefficients. Geometric details of the model are shown and the locations of the pressure orifices are shown. An index to the data contained herein is presented and definitions of nomenclature are given. Detailed descriptions of the model and experiments and a brief discussion of some of the results are given. Tabulated results of measurements of the aerodynamic loads on the same canard model but having a single vertical tail instead of twin vertical tails are presented.

  4. Aerodynamic Loads at Mach Numbers from 0.70 to 2.22 on an Airplane Model Having a Wing and Canard of Triangular Plan Form and Either Single or Twin Vertical Tails Supplement I-Tabulated Data for the Model with Single Vertical Tails. Supplement 1; Tabulated Data for the Model with Single Vertical Tail

    Science.gov (United States)

    Peterson, Victor L.; Menees, Gene P.

    1961-01-01

    Tabulated results of a wind-tunnel investigation of the aerodynamic loads on a canard airplane model with a single vertical tail are presented for Mach numbers from 0.70 to 2.22. The Reynolds number for the measurements was 2.9 x 10(exp 6) based on the wing mean aerodynamic chord. The results include local static pressure coefficients measured on the wing, body, and vertical tail for angles of attack from -4 deg to + 16 deg, angles of sideslip of 0 deg and 5.3 deg, vertical-tail settings of 0 deg and 5 deg, and nominal canard deflections of 0 deg and 10 deg. Also included are section force and moment coefficients obtained from integrations of the local pressures and model-component force and moment coefficients obtained from integrations of the section coefficients. Geometric details of the model and the locations of the pressure orifices are shown. An index to the data contained herein is presented and definitions of nomenclature are given.

  5. Heat transfer due to impinging double free circular jets

    Directory of Open Access Journals (Sweden)

    Mohamed A. Teamah

    2015-09-01

    Full Text Available The heat transfer and fluid flow between a horizontal heated plate and impinging circular double jets were studied experimentally. The parameters investigated are the Reynolds number of each jet and jet-to-jet spacing. Experiments are carried out covering a range for Reynolds number from 7100 to 30,800 for each jet, the dimensionless jet-to-jet spacing from 22.73 to 90.1. During experimental phases, the right jet Reynolds number was higher than the left jet Reynolds number. The isothermal contours were plotted for different cases as well as the distribution of water film thickness over the heated plate. The results indicated that increasing the Reynolds number of one jet than the other increases both local and average Nusselt numbers. In addition, increasing the jet-to-jet spacing at the same Reynolds number increases the average Nusselt number.

  6. The hydrogen laminar jet

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Sanz, M. [Departamento de Motopropulsion y Termofluidomecanica, ETSI Aeronauticos, Universidad Politecnica de Madrid, 28040 Madrid (Spain); Rosales, M. [Department Ingenieria Termica y de Fluidos, Universidad Carlos III de Madrid, 28911, Leganes (Spain); Instituto de Innovacion en Mineria y Metalurgia, Avenida del Valle 738, Santiago (Chile); Sanchez, A.L. [Department Ingenieria Termica y de Fluidos, Universidad Carlos III de Madrid, 28911, Leganes (Spain)

    2010-04-15

    Numerical and asymptotic methods are used to investigate the structure of the hydrogen jet discharging into a quiescent air atmosphere. The analysis accounts in particular for the variation of the density and transport properties with composition. The Reynolds number of the flow R{sub j}, based on the initial jet radius a, the density {rho}{sub j} and viscosity {mu}{sub j} of the jet and the characteristic jet velocity u{sub j}, is assumed to take moderately large values, so that the jet remains slender and stable, and can be correspondingly described by numerical integration of the continuity, momentum and species conservation equations written in the boundary-layer approximation. The solution for the velocity and composition in the jet development region of planar and round jets, corresponding to streamwise distances of order R{sub j}a, is computed numerically, along with the solutions that emerge both in the near field and in the far field. The small value of the hydrogen-to-air molecular weight ratio is used to simplify the solution by considering the asymptotic limit of vanishing jet density. The development provides at leading-order explicit analytical expressions for the far-field velocity and hydrogen mass fraction that describe accurately the hydrogen jet near the axis. The information provided can be useful in particular to characterize hydrogen discharge processes from holes and cracks. (author)

  7. Experimental characterization of railgun-driven supersonic plasma jets motivated by high energy density physics applications

    CERN Document Server

    Hsu, S C; Moser, A L; Awe, T J; Brockington, S J E; Davis, J S; Adams, C S; Case, A; Cassibry, J T; Dunn, J P; Gilmore, M A; Lynn, A G; Messer, S J; Witherspoon, F D

    2012-01-01

    We report experimental results on the parameters, structure, and evolution of high-Mach-number (M) argon plasma jets formed and launched by a pulsed-power-driven railgun. The nominal initial average jet parameters in the data set analyzed are density \\approx 2 x 10^(16) cm^(-3), electron temperature \\approx 1.4 eV, velocity \\approx 30 km/s, M \\approx 14, ionization fraction \\approx 0.96, diameter \\approx 5 cm, and length \\approx 20 cm. These values approach the range needed by the Plasma Liner Experiment (PLX), which is designed to use merging plasma jets to form imploding spherical plasma liners that can reach peak pressures of 0.1-1 Mbar at stagnation. As these jets propagate a distance of approximately 40 cm, the average density drops by one order of magnitude, which is up to an order of magnitude less than the drop predicted by the ideal hydrodynamic theory of a constant-M jet.

  8. Experimental characterization of railgun-driven supersonic plasma jets motivated by high energy density physics applications

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, S. C.; Moser, A. L.; Awe, T. J.; Davis, J. S.; Dunn, J. P. [Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Merritt, E. C.; Adams, C. S. [Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); University of New Mexico, Albuquerque, New Mexico 87131 (United States); Brockington, S. J. E.; Case, A.; Messer, S. J.; Witherspoon, F. D. [HyperV Technologies Corp., Chantilly, Virginia 20151 (United States); Cassibry, J. T. [Propulsion Research Center, University of Alabama in Huntsville, Huntsville, Alabama 35899 (United States); Gilmore, M. A.; Lynn, A. G. [University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    2012-12-15

    We report experimental results on the parameters, structure, and evolution of high-Mach-number (M) argon plasma jets formed and launched by a pulsed-power-driven railgun. The nominal initial average jet parameters in the data set analyzed are density Almost-Equal-To 2 Multiplication-Sign 10{sup 16} cm{sup -3}, electron temperature Almost-Equal-To 1.4 eV, velocity Almost-Equal-To 30 km/s, M Almost-Equal-To 14, ionization fraction Almost-Equal-To 0.96, diameter Almost-Equal-To 5 cm, and length Almost-Equal-To 20 cm. These values approach the range needed by the Plasma Liner Experiment, which is designed to use merging plasma jets to form imploding spherical plasma liners that can reach peak pressures of 0.1-1 Mbar at stagnation. As these jets propagate a distance of approximately 40 cm, the average density drops by one order of magnitude, which is at the very low end of the 8-160 times drop predicted by ideal hydrodynamic theory of a constant-M jet.

  9. Detailed characterization of laser-produced astrophysically-relevant jets formed via a poloidal magnetic nozzle

    Science.gov (United States)

    Higginson, D. P.; Revet, G.; Khiar, B.; Béard, J.; Blecher, M.; Borghesi, M.; Burdonov, K.; Chen, S. N.; Filippov, E.; Khaghani, D.; Naughton, K.; Pépin, H.; Pikuz, S.; Portugall, O.; Riconda, C.; Riquier, R.; Ryazantsev, S. N.; Skobelev, I. Yu.; Soloviev, A.; Starodubtsev, M.; Vinci, T.; Willi, O.; Ciardi, A.; Fuchs, J.

    2017-06-01

    The collimation of astrophysically-relevant plasma ejecta in the form of narrow jets via a poloidal magnetic field is studied experimentally by irradiating a target situated in a 20 T axial magnetic field with a 40 J, 0.6 ns, 0.7 mm diameter, high-power laser. The dynamics of the plasma shaping by the magnetic field are studied over 70 ns and up to 20 mm from the source by diagnosing the electron density, temperature and optical self-emission. These show that the initial expansion of the plasma is highly magnetized, which leads to the formation of a cavity structure when the kinetic plasma pressure compresses the magnetic field, resulting in an oblique shock [A. Ciardi et al., Phys. Rev. Lett. 110, 025002 (2013)]. The resulting poloidal magnetic nozzle collimates the plasma into a narrow jet [B. Albertazzi et al., Science 346, 325 (2014)]. At distances far from the target, the jet is only marginally magnetized and maintains a high aspect ratio due to its high Mach-number (M ∼ 20) and not due to external magnetic pressure. The formation of the jet is evaluated over a range of laser intensities (1012-1013 W/cm2), target materials and orientations of the magnetic field. Plasma cavity formation is observed in all cases and the viability of long-range jet formation is found to be dependent on the orientation of the magnetic field.

  10. Effect of Jet-nozzle-expansion Ratio on Drag of Parabolic Afterbodies

    Science.gov (United States)

    Englert, Gerald W; Vargo, Donald J; Cubbison, Robert W

    1954-01-01

    The interaction of the flow from one convergent and two convergent-divergent nozzles on parabolic afterbodies was studied at free-stream Mach numbers of 2.0, 1.6, and 0.6 over a range of jet pressure ratio. The influence of the jet on boattail and base drag was very pronounced. Study of the total external afterbody drag values at supersonic speeds indicated that, over most of the high-pressure-ratio range, increasing the nozzle design expansion ratio increased the drag even though the boattail area was reduced. Increasing the pressure ratio tended to increase slightly the total-drag increment caused by angle-of-attack operation.

  11. Laser interferometry of radiation driven gas jets

    Science.gov (United States)

    Swanson, Kyle James; Ivanov, Vladimir; Mancini, Roberto; Mayes, Daniel C.

    2017-06-01

    In a series of experiments performed at the 1MA Zebra pulsed power accelerator of the Nevada Terawatt Facility nitrogen gas jets were driven with the broadband x-ray flux produced during the collapse of a wire-array z-pinch implosion. The wire arrays were comprised of 4 and 8, 10μm-thick gold wires and 17μm-thick nickel wires, 2cm and 3cm tall, and 0.3cm in diameter. They radiated 12kJ to 16kJ of x-ray energy, most of it in soft x-ray photons of less than 1keV of energy, in a time interval of 30ns. This x-ray flux was used to drive a nitrogen gas jet located at 0.8cm from the axis of the z-pinch radiation source and produced with a supersonic nozzle. The x-ray flux ionizes the nitrogen gas thus turning it into a photoionized plasma. We used laser interferometry to probe the ionization of the plasma. To this end, a Mach-Zehnder interferometer at the wavelength of 266 nm was set up to extract the atom number density profile of the gas jet just before the Zebra shot, and air-wedge interferometers at 266 and 532 nm were used to determine the electron number density of the plasma right during the Zebra shot. The ratio of electron to atom number densities gives the distribution of average ionization state of the plasma. A python code was developed to perform the image data processing, extract phase shift spatial maps, and obtain the atom and electron number densities via Abel inversion. Preliminary results from the experiment are promising and do show that a plasma has been created in the gas jet driven by the x-ray flux, thus demonstrating the feasibility of a new experimental platform to study photoionized plasmas in the laboratory. These plasmas are found in astrophysical scenarios including x-ray binaries, active galactic nuclei, and the accretion disks surrounding black holes1. This work was sponsored in part by DOE Office of Science Grant DE-SC0014451.1R. C. Mancini et al, Phys. Plasmas 16, 041001 (2009)

  12. Spectrum of the sound produced by a jet impinging on the gas-water interface of a supercavity

    Science.gov (United States)

    Foley, A. W.; Howe, M. S.; Brungart, T. A.

    2010-02-01

    An analysis is made of the sound generated by the impingement of an air jet on the gas-water interface of a supercavity. The water is in uniform low Mach number motion over the interface. The interface is rippled by the jet, which produces an unsteady surface force on the water that behaves as a dipole or monopole acoustic source, respectively, at high and low frequencies. In a first approximation the very large difference in the gas density and that of water implies that the surface force is similar to that occurring when a jet impinges on a rigid wall. Data from recent measurements by Foley (2009, Ph.D. Dissertation, Department of Mechanical Engineering, Boston University) of the frequency spectrum of the surface force produced by the impact of a turbulent jet on a wall are used to formulate an analytical representation of the spectrum and thence to predict the sound produced in water when the same jet impinges on the cavity interface. The prediction is used to estimate the characteristics of gas jet impingement noise for an experimental supercavitating vehicle in use at the Applied Research Laboratory of Penn State University.

  13. Mach, the Universe, and Foundations of Mechanics

    CERN Document Server

    Mashhoon, B

    2011-01-01

    Barbour's response to our recent paper on "Mach's principle and higher-dimensional dynamics" describes an approach to Mach's principle in which the universe as a whole is involved in the definition of inertial frames of reference. Moreover, Barbour's theoretical procedure is in agreement with general relativity for a finite universe that is spatially closed. However, we prefer an operational approach that relies ultimately on observational data.

  14. Resolving boosted jets with XCone

    Energy Technology Data Exchange (ETDEWEB)

    Thaler, Jesse; Wilkason, Thomas F. [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA, 02139 (United States)

    2015-12-09

    We show how the recently proposed XCone jet algorithm http://dx.doi.org/10.1007/JHEP11(2015)072 smoothly interpolates between resolved and boosted kinematics. When using standard jet algorithms to reconstruct the decays of hadronic resonances like top quarks and Higgs bosons, one typically needs separate analysis strategies to handle the resolved regime of well-separated jets and the boosted regime of fat jets with substructure. XCone, by contrast, is an exclusive cone jet algorithm that always returns a fixed number of jets, so jet regions remain resolved even when (sub)jets are overlapping in the boosted regime. In this paper, we perform three LHC case studies — dijet resonances, Higgs decays to bottom quarks, and all-hadronic top pairs — that demonstrate the physics applications of XCone over a wide kinematic range.

  15. Resolving boosted jets with XCone

    Science.gov (United States)

    Thaler, Jesse; Wilkason, Thomas F.

    2015-12-01

    We show how the recently proposed XCone jet algorithm [1] smoothly interpolates between resolved and boosted kinematics. When using standard jet algorithms to reconstruct the decays of hadronic resonances like top quarks and Higgs bosons, one typically needs separate analysis strategies to handle the resolved regime of well-separated jets and the boosted regime of fat jets with substructure. XCone, by contrast, is an exclusive cone jet algorithm that always returns a fixed number of jets, so jet regions remain resolved even when (sub)jets are overlapping in the boosted regime. In this paper, we perform three LHC case studies — dijet resonances, Higgs decays to bottom quarks, and all-hadronic top pairs — that demonstrate the physics applications of XCone over a wide kinematic range.

  16. Resolving Boosted Jets with XCone

    CERN Document Server

    Thaler, Jesse

    2015-01-01

    We show how the recently proposed XCone jet algorithm smoothly interpolates between resolved and boosted kinematics. When using standard jet algorithms to reconstruct the decays of hadronic resonances like top quarks and Higgs bosons, one typically needs separate analysis strategies to handle the resolved regime of well-separated jets and the boosted regime of fat jets with substructure. XCone, by contrast, is an exclusive cone jet algorithm that always returns a fixed number of jets, so jet regions remain resolved even when (sub)jets are overlapping in the boosted regime. In this paper, we perform three LHC case studies---dijet resonances, Higgs decays to bottom quarks, and all-hadronic top pairs---that demonstrate the physics applications of XCone over a wide kinematic range.

  17. Active Flow Control Using Sweeping Jet Actuators on a Semi-Span Wing Model

    Science.gov (United States)

    Melton, LaTunia Pack; Koklu, Mehti

    2016-01-01

    Wind tunnel experiments were performed using active flow control on an unswept semispan wing model with a 30% chord trailing edge flap to aid in the selection of actuators for a planned high Reynolds number experiment. Two sweeping jet actuator sizes were investigated to determine the influence of actuator size on the active flow control system efficiency. Sweeping jet actuators with orifice sizes of 1 mm x 2 mm and 2 mm x 4 mm were selected because of the differences in actuator jet sweep angle. The parameters that were varied include actuator momentum, freestream velocity, and trailing edge flap deflection angle. Steady and unsteady pressure data, Particle Image Velocimetry data, and force and moment data were acquired to assess the performance of the two actuators. In addition to the wind tunnel experiments, benchtop studies of the actuators were performed to characterize the jets produced by each actuator. Benchtop investigations of the smaller actuator reveal that the jet exiting the actuator has a reduced sweep angle compared to published data for larger versions of this type of actuator. The larger actuator produces an oscillating jet that attaches to the external di?user walls at low supply pressures and produces the expected sweep angles. The AFC results using the smaller actuators show that while the actuators can control flow separation, the selected spacing of 3.3 cm may be too large due to the reduced sweep angle. In comparison, the spacing for the larger actuators, 6.6 cm, appears to be optimal for the Mach numbers investigated. Particle Image Velocimetry results are presented and show how the wall jets produced by the actuators cause the flow to attach to the flap surface.

  18. The Topology of Canonical Flux Tubes in Flared Jet Geometry

    Science.gov (United States)

    Sander Lavine, Eric; You, Setthivoine

    2017-01-01

    Magnetized plasma jets are generally modeled as magnetic flux tubes filled with flowing plasma governed by magnetohydrodynamics (MHD). We outline here a more fundamental approach based on flux tubes of canonical vorticity, where canonical vorticity is defined as the circulation of the species’ canonical momentum. This approach extends the concept of magnetic flux tube evolution to include the effects of finite particle momentum and enables visualization of the topology of plasma jets in regimes beyond MHD. A flared, current-carrying magnetic flux tube in an ion-electron plasma with finite ion momentum is thus equivalent to either a pair of electron and ion flow flux tubes, a pair of electron and ion canonical momentum flux tubes, or a pair of electron and ion canonical vorticity flux tubes. We examine the morphology of all these flux tubes for increasing electrical currents, different radial current profiles, different electron Mach numbers, and a fixed, flared, axisymmetric magnetic geometry. Calculations of gauge-invariant relative canonical helicities track the evolution of magnetic, cross, and kinetic helicities in the system, and show that ion flow fields can unwind to compensate for an increasing magnetic twist. The results demonstrate that including a species’ finite momentum can result in a very long collimated canonical vorticity flux tube even if the magnetic flux tube is flared. With finite momentum, particle density gradients must be normal to canonical vorticities, not to magnetic fields, so observations of collimated astrophysical jets could be images of canonical vorticity flux tubes instead of magnetic flux tubes.

  19. Emergent gravity of fractons: Mach's principle revisited

    Science.gov (United States)

    Pretko, Michael

    2017-07-01

    Recent work has established the existence of stable quantum phases of matter described by symmetric tensor gauge fields, which naturally couple to particles of restricted mobility, such as fractons. We focus on a minimal toy model of a rank 2 tensor gauge field, consisting of fractons coupled to an emergent graviton (massless spin-2 excitation). We show how to reconcile the immobility of fractons with the expected gravitational behavior of the model. First, we reformulate the fracton phenomenon in terms of an emergent center of mass quantum number, and we show how an effective attraction arises from the principles of locality and conservation of center of mass. This interaction between fractons is always attractive and can be recast in geometric language, with a geodesiclike formulation, thereby satisfying the expected properties of a gravitational force. This force will generically be short-ranged, but we discuss how the power-law behavior of Newtonian gravity can arise under certain conditions. We then show that, while an isolated fracton is immobile, fractons are endowed with finite inertia by the presence of a large-scale distribution of other fractons, in a concrete manifestation of Mach's principle. Our formalism provides suggestive hints that matter plays a fundamental role, not only in perturbing, but in creating the background space in which it propagates.

  20. Aeroelastic Calculations Using CFD for a Typical Business Jet Model

    Science.gov (United States)

    Gibbons, Michael D.

    1996-01-01

    Two time-accurate Computational Fluid Dynamics (CFD) codes were used to compute several flutter points for a typical business jet model. The model consisted of a rigid fuselage with a flexible semispan wing and was tested in the Transonic Dynamics Tunnel at NASA Langley Research Center where experimental flutter data were obtained from M(sub infinity) = 0.628 to M(sub infinity) = 0.888. The computational results were computed using CFD codes based on the inviscid TSD equation (CAP-TSD) and the Euler/Navier-Stokes equations (CFL3D-AE). Comparisons are made between analytical results and with experiment where appropriate. The results presented here show that the Navier-Stokes method is required near the transonic dip due to the strong viscous effects while the TSD and Euler methods used here provide good results at the lower Mach numbers.

  1. Three dimensional dynamic mode decomposition of premixed turbulent jet flames

    Science.gov (United States)

    Grenga, Temistocle; Macart, Jonathan; Mueller, Michael

    2016-11-01

    Analysis of turbulent combustion DNS data largely focuses on statistical analyses. However, turbulent combustion is highly unsteady and dynamic. In this work, Dynamic Mode Decomposition (DMD) will be explored as a tool for dynamic analysis of turbulent combustion DNS data, specifically a series of low Mach number spatially-evolving turbulent planar premixed hydrogen/air jet flames. DMD decomposes data into coherent modes with corresponding growth rates and oscillatory frequencies. The method identifies structures unbiased by energy so is particularly well suited to exploring dynamic processes at scales smaller than the largest, energy-containing scales of the flow and that may not be co-located in space and time. The focus of this work will be on both the physical insights that can potentially be derived from DMD modes and the computational issues associated with applying DMD to large three-dimensional DNS datasets.

  2. Fuzzy jets

    Energy Technology Data Exchange (ETDEWEB)

    Mackey, Lester [Department of Statistics, Stanford University,Stanford, CA 94305 (United States); Nachman, Benjamin [Department of Physics, Stanford University,Stanford, CA 94305 (United States); SLAC National Accelerator Laboratory, Stanford University,2575 Sand Hill Rd, Menlo Park, CA 94025 (United States); Schwartzman, Ariel [SLAC National Accelerator Laboratory, Stanford University,2575 Sand Hill Rd, Menlo Park, CA 94025 (United States); Stansbury, Conrad [Department of Physics, Stanford University,Stanford, CA 94305 (United States)

    2016-06-01

    Collimated streams of particles produced in high energy physics experiments are organized using clustering algorithms to form jets. To construct jets, the experimental collaborations based at the Large Hadron Collider (LHC) primarily use agglomerative hierarchical clustering schemes known as sequential recombination. We propose a new class of algorithms for clustering jets that use infrared and collinear safe mixture models. These new algorithms, known as fuzzy jets, are clustered using maximum likelihood techniques and can dynamically determine various properties of jets like their size. We show that the fuzzy jet size adds additional information to conventional jet tagging variables in boosted topologies. Furthermore, we study the impact of pileup and show that with some slight modifications to the algorithm, fuzzy jets can be stable up to high pileup interaction multiplicities.

  3. Mach Cones and Hydrodynamic Flow:. Probing Big Bang Matter in the Laboratory

    Science.gov (United States)

    Betz, Barbara; Rau, Philip; Stöcker, Horst

    A critical discussion of the present signals for the phase transition to quark-gluon plasma (QGP) is given. Since hadronic rescattering models predict much larger flow than observed from 1 to 50 A GeV laboratory bombarding energies, this observation is interpreted as potential evidence for a first-order phase transition at high baryon density. A detailed discussion of the collective flow as a barometer for the equation of state (EoS) of hot dense matter at RHIC follows. Here, hadronic rescattering models can explain 2 GeV/c. This is interpreted as an evidence for the production of superdense matter at RHIC. The connection of v2 to jet suppression is examined. A study of Mach shocks generated by fast partonic jets propagating through the QGP is given. The main goal is to take into account different types of collective motion during the formation and evolution of this matter. A significant deformation of Mach shocks in central Au+Au collisions at RHIC and LHC energies as compared to the case of jet propagation in a static medium is predicted. A new hydrodynamical study of jet energy loss is presented.

  4. Fenomenologia e fenomenismo em Husserl e Mach

    Directory of Open Access Journals (Sweden)

    Denis Fisette

    2009-12-01

    Full Text Available Como conciliar as repetidas críticas ao fenomenismo de Mach, um pouco por toda a obra de Husserl, com o papel proeminente que Husserl parece nele reconhecer em seus últimos trabalhos, quanto à gênese de sua própria fenomenologia? Para responder a essa questão, examinaremos, primeiramente, a relação estreita que Husserl estabelece entre o método fenomenológico e o descritivismo de Mach à luz do debate que opõe nativismo e empirismo sobre a origem da percepção do espaço. Em seguida, examinaremos dois aspectos da crítica que Husserl faz ao positivismo de Mach: o primeiro se refere ao fenomenismo e sua doutrina dos elementos, enquanto o segundo, ao princípio de economia de pensamento, que Husserl associa a uma forma de psicologismo em Prolegômenos. A hipótese que nos guiará nesse estudo é que as opiniões aparentemente contraditórias de Husserl sobre o positivismo de Mach se explicam em parte pelo estatuto duplo que a fenomenologia recebe em seus últimos trabalhos: enquanto programa filosófico, ela se opõe explicitamente ao positivismo; enquanto método, ela se aparenta ao descritivismo de Mach. Concluiremos com a ideia de que esses dois filósofos de origem checa perseguiam o objetivo comum de apreender o sentido originário de positividade.How to conciliate the recurrent criticisms to Mach's phenomenism, a bit in all Husserl's work, with the outstanding role Husserl seems to recognise in phenomenism in his last works, as to the genesis of his own phenomenology? In order to answer this question, we examine, first, the close relationship stablished by Husserl between the phenomenological method and Mach's descriptivism in light of the debate that opposes nativism and empiricism regarding the origin of the perception of space. Next, we examine two features of Husserl's criticism to Mach's positivism: the first refers to phenomenism ans its doctrine of elements, and the second, to the principle of economy of thought, which

  5. Numerical Simulation of Shock Bubble Interaction with Different Mach Numbers

    Science.gov (United States)

    Yang, Jie; Wan, Zhen-Hua; Wang, Bo-Fu; Sun, De-Jun

    2015-03-01

    Not Available Supported by the National Natural Science Foundation of China under Grant Nos 11232011 and 11402262, the 111 Project under Grant No B07033, and the China Postdoctoral Science Foundation Funded Project under Grant No 2014M561833.

  6. Experimental Studies of Very-High Mach Number Hydrodynamics

    Science.gov (United States)

    1994-02-14

    intensity of the from Rotman (1991. symbol R) shock amplification of the density fluctuations as a parameter, together with a turbulent kinetic energy...overlapsubgrid scale model while predicting an increase in the model where an algebraic identity provides a procedure for overall grid spectral energy... Rotman , and W. P. improvement in the dissipative near-wal region. Dannevik during the course of this work. Figure 8. indicates that for even steeper

  7. Plasma flow at a high Mach-number

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Bing; Hameiri, Eliezer [Courant Institute of Mathematical Sciences, New York University New York, New York 10012 (United States)

    2013-09-15

    Unlike the case of static magnetohydrodynamic (MHD) equilibria, where an expansion in large aspect ratio of toroidal devices is common, cases of MHD equilibria with flow are rarely treated this way, and when this is done the expansion tends to be only partial. The main reason for the difference seems to be the difficulty of expanding the larger system of equilibrium equations with flow. Here, we use a recent expansion technique which employs a variational principle to simplify the process [E. Hameiri, Phys. Plasmas 20, 024504 (2013)]. We treat four cases of MHD equilibria with flow, developing their asymptotic expansions in full, and for an application consider the effect of the flow on the Shafranov shift.

  8. Hydrocarbon-Fueled Scramjet Research at Hypersonic Mach Numbers

    Science.gov (United States)

    2005-03-31

    hypersonic flow. Laser-induced fluorescence has the threefold advantages for combustion studies of being non- intrusive , species-specific and highly sensitive...Propulsion Conference and Exhibit, Seattle, WA. Griffiths, A. (2004), Development and Demonstration of a Diode Laser Based Temperature and Water Vapour

  9. Condensation in jet engine intake ducts during stationary operation

    Energy Technology Data Exchange (ETDEWEB)

    Young, J.B. [Univ. of Cambridge (United Kingdom). Whittle Lab.

    1995-04-01

    The paper describes on analysis of the condensation of moist air in very long intake ducts of jet engines during stationary operation. Problems arising from such condensation include fan over speed and increased stagnation pressure loss in the intake duct. The analysis demonstrates that, for moderate values of relative humidity, homogeneous condensation will occur in an outer annulus adjacent to the intake cowling if the local flow Mach number attains values of about 1.0. In the central region of the intake duct, where design Mach numbers of 0.8 may be attained, homogeneous condensation is unlikely to occur except, possibly, when the relative humidity is close to 100 percent and the ambient temperature very high. However, if the intake duct is very long, significant heterogeneous condensation on foreign particles present in the atmosphere is possible. The concentration of foreign nuclei required for this type of condensation is comparable to the likely levels of contamination at many industrial test sites. The effects of condensation on engine test results are twofold. First, condensation is a thermodynamically irreversible process and results in an increase of entropy and hence loss of total pressure in the intake duct. Uncorrected measurements using Pitot probes may not record this loss correctly. Second, the mass and energy transfer between the phases during the condensation process has a tendency to accelerate the flow approaching the engine, an effect that may be counteracted by a reduction in mass flow rate in order to maintain the static pressure constant. These conclusions are in agreement with experimental results obtained on-site during the testing of a jet engine fitted with a very long intake duct.

  10. MODELING AND EXPERIMENTAL EVALUATION OF AN AEROSOL GENERATOR FOR VERY HIGH NUMBER CURRENTS BASED ON A FREE TURBULENT JET. (R827354C008)

    Science.gov (United States)

    In this paper we report on theoretical and experimental work on aerosol formation in a free turbulent jet. A hot DEHS vapor issues through a circular nozzle into slowly moving cold air. Vapor concentration and temperatures are such that particles are formed via homogeneous nuc...

  11. Physics of Acoustic Radiation from Jet Engine Inlets

    Science.gov (United States)

    Tam, Christopher K. W.; Parrish, Sarah A.; Envia, Edmane; Chien, Eugene W.

    2012-01-01

    Numerical simulations of acoustic radiation from a jet engine inlet are performed using advanced computational aeroacoustics (CAA) algorithms and high-quality numerical boundary treatments. As a model of modern commercial jet engine inlets, the inlet geometry of the NASA Source Diagnostic Test (SDT) is used. Fan noise consists of tones and broadband sound. This investigation considers the radiation of tones associated with upstream propagating duct modes. The primary objective is to identify the dominant physical processes that determine the directivity of the radiated sound. Two such processes have been identified. They are acoustic diffraction and refraction. Diffraction is the natural tendency for an acoustic wave to follow a curved solid surface as it propagates. Refraction is the turning of the direction of propagation of sound waves by mean flow gradients. Parametric studies on the changes in the directivity of radiated sound due to variations in forward flight Mach number and duct mode frequency, azimuthal mode number, and radial mode number are carried out. It is found there is a significant difference in directivity for the radiation of the same duct mode from an engine inlet when operating in static condition and in forward flight. It will be shown that the large change in directivity is the result of the combined effects of diffraction and refraction.

  12. Extragalactic jets with helical magnetic fields: relativistic MHD simulations

    CERN Document Server

    Keppens, R; van der Holst, B; Casse, F

    2008-01-01

    Extragalactic jets are inferred to harbor dynamically important, organized magnetic fields which presumably aid in the collimation of the relativistic jet flows. We here explore by means of grid-adaptive, high resolution numerical simulations the morphology of AGN jets pervaded by helical field and flow topologies. We concentrate on morphological features of the bow shock and the jet beam behind the Mach disk, for various jet Lorentz factors and magnetic field helicities. We investigate the influence of helical magnetic fields on jet beam propagation in overdense external medium. We use the AMRVAC code, employing a novel hybrid block-based AMR strategy, to compute ideal plasma dynamics in special relativity. The helicity of the beam magnetic field is effectively transported down the beam, with compression zones in between diagonal internal cross-shocks showing stronger toroidal field regions. In comparison with equivalent low-relativistic jets which get surrounded by cocoons with vortical backflows filled by ...

  13. Jet Observables Without Jet Algorithms

    CERN Document Server

    Bertolini, Daniele; Thaler, Jesse

    2013-01-01

    We introduce a new class of event shapes to characterize the jet-like structure of an event. Like traditional event shapes, our observables are infrared/collinear safe and involve a sum over all hadrons in an event, but like a jet clustering algorithm, they incorporate a jet radius parameter and a transverse momentum cut. Three of the ubiquitous jet-based observables---jet multiplicity, summed scalar transverse momentum, and missing transverse momentum---have event shape counterparts that are closely correlated with their jet-based cousins. Due to their "local" computational structure, these jet-like event shapes could potentially be used for trigger-level event selection at the LHC. Intriguingly, the jet multiplicity event shape typically takes on non-integer values, highlighting the inherent ambiguity in defining jets. By inverting jet multiplicity, we show how to characterize the transverse momentum of the n-th hardest jet without actually finding the constituents of that jet. Since many physics applicatio...

  14. Detonation re-initiation mechanism following the Mach reflection of a quenched detonation

    CERN Document Server

    Bhattacharjee, Rohit; Maines, Geoffrey; Maley, Logan; Radulescu, Matei Ioan

    2012-01-01

    This experimental study addresses the re-initiation mechanism of detonation waves following the Mach reflection of a shock-flame complex. The detonation diffraction around a cylinder is used to reproducibly generate the shock-flame complex of interest. The experiments are performed in methane-oxygen. We use a novel experimental technique of coupling a two-in-line-spark flash system with a double-frame camera in order to obtain microsecond time resolution permitting accurate schlieren velocimetry. The first series of experiments compares the non-reactive sequence of shock reflections with the reflection over a rough wall under identical conditions. It was found that the hot reaction products generated along the rough wall are entrained by the wall jet into a large vortex structure behind the Mach stem. The second series of experiments performed in more sensitive mixtures addressed the sequence of events leading to the detonation establishment along the Mach and transverse waves. Following ignition and jet entr...

  15. A comprehensive statistical investigation of schlieren image velocimetry (SIV) using high-velocity helium jet

    Science.gov (United States)

    Biswas, Sayan; Qiao, Li

    2017-03-01

    A detailed statistical assessment of seedless velocity measurement using Schlieren Image Velocimetry (SIV) was explored using open source Robust Phase Correlation (RPC) algorithm. A well-known flow field, an axisymmetric turbulent helium jet, was analyzed near and intermediate region (0≤ x/d≤ 20) for two different Reynolds numbers, Re d = 11,000 and Re d = 22,000 using schlieren with horizontal knife-edge, schlieren with vertical knife-edge and shadowgraph technique, and the resulted velocity fields from SIV techniques were compared to traditional Particle Image Velocimetry (PIV) measurements. A novel, inexpensive, easy to setup two-camera SIV technique had been demonstrated to measure high-velocity turbulent jet, with jet exit velocities 304 m/s (Mach = 0.3) and 611 m/s (Mach = 0.6), respectively. Several image restoration and enhancement techniques were tested to improve signal to noise ratio (SNR) in schlieren and shadowgraph images. Processing and post-processing parameters for SIV techniques were examined in detail. A quantitative comparison between self-seeded SIV techniques and traditional PIV had been made using correlation statistics. While the resulted flow field from schlieren with horizontal knife-edge and shadowgraph showed excellent agreement with PIV measurements, schlieren with vertical knife-edge performed poorly. The performance of spatial cross-correlations at different jet locations using SIV techniques and PIV was evaluated. Turbulence quantities like turbulence intensity, mean velocity fields, Reynolds shear stress influenced spatial correlations and correlation plane SNR heavily. Several performance metrics such as primary peak ratio (PPR), peak to correlation energy (PCE), the probability distribution of signal and noise were used to compare capability and potential of different SIV techniques.

  16. Solar coronal jets

    Science.gov (United States)

    Dobrzyck, D.

    The solar jets were first observed by SOHO instruments (EIT, LASCO, UVCS) during the previous solar minimum. They were small, fast ejections originating from flaring UV bright points within large polar coronal holes. The obtained data provided us with estimates of the jet plasma conditions, dynamics, evolution of the electron temperature and heating rate required to reproduce the observed ionization state. To follow the polar jets through the solar cycle a special SOHO Joint Observing Program (JOP 155) was designed. It involves a number of SOHO instruments (EIT, CDS, UVCS, LASCO) as well as TRACE. The coordinated observations have been carried out since April 2002. The data enabled to identify counterparts of the 1996-1998 solar minimum jets. Their frequency of several events per day appear comparable to the frequency from the previous solar minimum. The jets are believed to be triggered by field line reconnection between emerging magnetic dipole and pre-existing unipolar field. Existing models predict that the hot jet is formed together with another jet of a cool material. The particular goal of the coordinated SOHO and TRACE observations was to look for possible association of the hot and cool plasma ejections. Currently there is observational evidence that supports these models.

  17. Jet dynamics. Recollimation shocks and helical patterns

    CERN Document Server

    Perucho, M

    2013-01-01

    The dynamics and stability of extragalactic jets may be strongly influenced by small (and probable) differences in pressure between the jet and the ambient and within the jet itself. The former give rise to expansion and recollimation of the jet. This occurs in the form of conical shocks, or Mach disks, if the pressure difference is large enough. Pressure asymmetries within the jet may trigger the development of helical patterns via coupling to kink current-driven instability, or to helical Kelvin-Helmholtz instability, depending on the physical conditions in the jet. I summarize here the evidence collected during the last years on the presence of recollimation shocks and waves in jets. In the jet of CTA 102 evidence has been found for (traveling)shock-(standing)shock interaction in the core-region (0.1 mas from the core), using information from the light-curve of the source combined with VLBI data. The conclusions derived have been confirmed by numerical simulations combined with emission calculations that h...

  18. LARGE EDDY SIMULATION COMBINED WITH EQUIVALENT DIAMETER FOR TURBULENT JET MODELLING AND GAS DISPERSION

    Directory of Open Access Journals (Sweden)

    E. S. Ferreira Jr.

    Full Text Available Abstract CFD modelling combines transport phenomena and numerical approaches to solve physical problems. Although numerical modelling of flow scenarios is the cutting edge of flow modelling, there seems to be room for improvement. This paper proposes an approach for jet modelling in a low Mach number computational code. The methodology is based on the equivalent diameter and velocity profile calculated downstream from the jet leak orifice. The novel model DESQr (Diameter of Equivalent Simulation for Quicker Run is combined with LES (Large Eddy Simulation to calculate the gas jet profile due to accidental releases. The model is implemented in the framework of FDS (Fire Dynamics Simulator and the open source code is modified to handle gas dispersion scenarios. Numerical findings for jet modelling and gas dispersion are compared with experimental data. The results are also compared with a commercial CFD tool. Good agreement is observed. Significant computational time reduction is achieved. A free open source CFD tool emerges and the results presented in this work are promising.

  19. Numerical Simulations of Morphology, Flow Structures and Forces for a Sonic Jet Exhausting in Supersonic Crossflow

    Directory of Open Access Journals (Sweden)

    S.B.H Shah

    2012-01-01

    Full Text Available A numerical study is performed for a sonic jet issuing from a blunted cone to provide possible directional control in supersonic crossflow by solving the unsteady Reynolds-averaged Navier-Stokes (RANS equations with the twoequation k −ω turbulence model. Results are presented in the form of static aerodynamic coefficients, computed at a free stream Mach number 4.0, with varying pressure ratios, incidence angle and keeping zero yaw and roll angles. The morphology and flow structure for the jet exhausting in crossflow at various pressure ratios is described in detail. The Flight control of the projectile can be accomplished by taking advantage of a complex shock-boundary layer interaction produced by jet interacting with the oncoming crossflow by altering pressure distribution in vicinity of the jet, a net increase in the net force can be utilized for maneuvering of vehicle and possible flight control. Computed static aerodynamic coefficients and pressure distribution using CFD analyses is with an accuracy of ± 5% in the supersonic range.

  20. Ion-viscosity effects on plasma-liner formation and implosion via merging supersonic plasma jets

    Science.gov (United States)

    Schillo, Kevin; Cassibry, Jason; Samulyak, Roman; Shih, Wen; Hsu, Scott; PLX-Alpha Team

    2016-10-01

    The PLX- α project endeavors to study plasma-liner formation and implosion by merging a spherical array of plasma jets as a candidate standoff driver for MIF. Smoothed particle hydrodynamics is used to model the liner formation and implosion processes. SPH is a meshless Lagrangian method to simulate fluid flows by dividing a fluid into a set of particles and using a summation interpolant function to calculate the properties and gradients for each of these particles. Ion viscosity is anticipated to be an important mechanism for momentum transport during liner formation, implosion, and stagnation. To study this, ion viscosity was incorporated into the code. To provide confidence in the numerical output and to help identify the difference between numerical and physical diffusion, a series of test cases were performed, consisting of Couette flow, Gresho vortex, and a Taylor-Green vortex. An L2-norm analysis was performed to measure the error and convergence. Simulations of conical (6 jets) and 4 π (60 jets) liners with and without ion viscosity reveal potential effects of viscosity on ram pressure, Mach-number degradation, and evolution of liner perturbations during jet merging and liner implosion.

  1. Mathematical modeling of jet interaction with a high-enthalpy flow in an expanding channel

    Science.gov (United States)

    Fedorova, N. N.; Fedorchenko, I. A.; Fedorov, A. V.

    2013-03-01

    Results of modeling the interaction of a plane supersonic jet with a supersonic turbulent high-enthalpy flow in a channel are reported. The problem is solved in a two-dimensional formulation at external flow Mach numbers M∞ = 2.6 and 2.8 and at high values of the total temperature of the flow T 0 = 1800-2000 K. The mathematical model includes full averaged Navier-Stokes equations supplemented with a two-equation turbulence model and an equation that describes the transportation of the injected substance. The computations are performed by using the ANSYS Fluent 12.1 software package. Verification of the computational technique is performed against available experimental results on transverse injection of nitrogen and helium jets. The computed and experimental results are demonstrated to agree well. For the examined problems, in addition to surface distributions of characteristics, fields of flow parameters are obtained, which allow one to reproduce specific features that can be hardly captured in experiments. Parametric studies show that an increase in the angle of inclination and the mass flow rate of the jet leads to an increase in the depth of jet penetration into the flow, but more intense separated flows and shock waves are observed in this case.

  2. The Effect of Reflector with Sound-Absorbing Material on Supersonic Jet Noise

    Institute of Scientific and Technical Information of China (English)

    Y.-H. KWEON; M. TSUCHIDA; Y. MIYAZATO; T. AOKI; H.-D. KIM; T. SETOGUCHI

    2005-01-01

    This paper describes an experimental work to investigate the effect of a reflector on supersonic jet noise radiated from a convergent-divergent nozzle with a design Mach number 2.0. In the present study, a metal reflector and reflectors made of three different sound-absorbing materials (grass wool and polyurethane foam) were employed,and the reflector size was varied. Acoustic measurement is carried out to obtain the acoustic characteristics such as frequency, amplitude of screech tone and overall sound pressure level (OASPL). A high-quality schlieren optical system is used to visualize the detailed structure of supersonic jet. The results obtained show that the acoustic characteristics of supersonic jet noise are strongly dependent upon the jet pressure ratio and the reflector size. It is also found that the reflector with sound-absorbing material reduces the screech tone amplitude by about 5-13dB and the overall sound pressure levels by about 2-5dB, compared with those of the metal reflector.

  3. Preliminary Report on Experimental Investigation of Engine Dynamics and Controls for a 48-inch Ram-jet Engine

    Science.gov (United States)

    Vasu, George; Hart, Clint E; Dunbar, William R

    1956-01-01

    Engine dynamics and controls data are presented for a ram-jet engine which was operated in a free-jet facility at a Mach number of 2.76 and altitudes from 68,000 to 82,000 feet. The predominant engine dynamic characteristics was dead time, with values ranging from 0.018 to 0.053 sec. The control systems were designed to hold a constant ratio of a diffuser static pressure to an inlet-cone reference static pressure. Response times and percent overshoot to fuel-flow disturbances that would have caused subcritical operation without control are included for a wide range of control settings. For all settings, the control response was fast enough (0.08 to 0.5 sec) to prevent subcritical operation.

  4. Mach Cones and Hydrodynamic Flow Probing Big Bang Matter in the Laboratory

    CERN Document Server

    Betz, Barbara; Stöcker, Horst

    2007-01-01

    A critical discussion of the present signals for the phase transition to quark-gluon plasma (QGP) is given. Since hadronic rescattering models predict much larger flow than observed from 1 to 50 A GeV laboratory bombarding energies, this observation is interpreted as potential evidence for a first-order phase transition at high baryon density. A detailed discussion of the collective flow as a barometer for the equation of state (EoS) of hot dense matter at RHIC follows. Here, hadronic rescattering models can explain $ 2$ GeV/c. This is interpreted as an evidence for the production of superdense matter at RHIC. The connection of $v_2$ to jet suppression is examined. A study of Mach shocks generated by fast partonic jets propagating through the QGP is given. The main goal is to take into account different types of collective motion during the formation and evolution of this matter. A significant deformation of Mach shocks in central Au+Au collisions at RHIC and LHC energies as compared to the case of jet propag...

  5. Mach bands change asymmetrically during solar eclipses.

    Science.gov (United States)

    Ross, John; Diamond, Mark R; Badcock, David R

    2003-01-01

    Observations made during two partial eclipses of the Sun show that the Mach bands on shadows cast by the Sun disappear and reappear asymmetrically as an eclipse progresses. These changes can be explained as due to changes in the shape of the penumbras of shadows as the visible portion of the Sun forms crescents of different orientation.

  6. Edge and divertor plasma measurements with ion sensitive and Mach probes in LHD

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Y., E-mail: shihaya_uki884@yahoo.co.jp [Nagano National College of Technology, 716 Tokuma, Nagano 381-8550 (Japan); Ezumi, N. [Nagano National College of Technology, 716 Tokuma, Nagano 381-8550 (Japan); Masuzaki, S.; Tanaka, H.; Kobayashi, M. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Sawada, K. [Shinshu University, Wakasato, Nagano 380-8553 (Japan); Ohno, N. [Nagoya University, Furo-cho Chikusa-ku, Nagoya 464-8603 (Japan)

    2013-07-15

    Spatial profiles of plasma flow and Mach number in the stochastic magnetic boundary layer as well as ion temperature (T{sub i}) and electron temperature (T{sub e}) in the divertor region in Large Helical Device (LHD) have been studied by a movable multiple functions probe, which consists of Mach probes and an ion sensitive probe. The results of ion saturation current measurements indicated plasma flow direction is alternated in the stochastic magnetic boundary. Mach number profiles for different plasma densities have been evaluated experimentally which compared with 3-D transport code. T{sub i} and T{sub e} in the divertor region measured by the ion sensitive probe decreased with increasing line-averaged density. Although T{sub i} was higher than T{sub e} in the low density plasma, both temperatures became almost the same at higher density.

  7. Jet aircraft engine exhaust emissions database development: Year 1990 and 2015 scenarios

    Science.gov (United States)

    Landau, Z. Harry; Metwally, Munir; Vanalstyne, Richard; Ward, Clay A.

    1994-01-01

    Studies relating to environmental emissions associated with the High Speed Civil Transport (HSCT) military jet and charter jet aircraft were conducted by McDonnell Douglas Aerospace Transport Aircraft. The report includes engine emission results for baseline 1990 charter and military scenario and the projected jet engine emissions results for a 2015 scenario for a Mach 1.6 HSCT charter and military fleet. Discussions of the methodology used in formulating these databases are provided.

  8. The prediction of noise and installation effects of high-subsonic dual-stream jets in flight

    Science.gov (United States)

    Saxena, Swati

    Both military and civil aircraft in service generate high levels of noise. One of the major contributors to this noise generated from the aircraft is the jet engine exhaust. This makes the study of jet noise and methods to reduce jet noise an active research area with the aim of designing quieter military and commercial aircraft. The current stringent aircraft noise regulations imposed by the Federal Aviation Administration (FAA) and other international agencies, have further raised the need to perform accurate jet noise calculations for more reliable estimation of the jet noise sources. The main aim of the present research is to perform jet noise simulations of single and dual-stream jets with engineering accuracy and assess forward flight effects on the jet noise. Installation effects such as caused by the pylon are also studied using a simplified pylon nozzle configuration. Due to advances in computational power, it has become possible to perform turbulent flow simulations of high speed jets, which leads to more accurate noise predictions. In the present research, a hybrid unsteady RANS-LES parallel multi-block structured grid solver called EAGLEJet is written to perform the nozzle flow calculations. The far-field noise calculation is performed using solutions to the Ffowcs Williams and Hawkings equation. The present calculations use meshes with 5 to 11 million grid points and require about three weeks of computing time with about 100 processors. A baseline single stream convergent nozzle and a dual-stream coaxial convergent nozzle are used for the flow and noise analysis. Calculations for the convergent nozzle are performed at a high subsonic jet Mach number of Mj = 0.9, which is similar to the operating conditions for commercial aircraft engines. A parallel flow gives the flight effect, which is simulated with a co-flow Mach number, Mcf varying from 0.0 to 0.28. The grid resolution effects, statistical properties of the turbulence and the heated jet effects

  9. Flight test results of an automatic support system on board a YF-12A airplane. [for jet engine inlet air control

    Science.gov (United States)

    Love, J. E.

    1974-01-01

    An automatic support system concept that isolated faults in an existing nonavionics subsystem was flight tested up to a Mach number of 3. The adaptation of the automated support concept to an existing system (the jet engine automatic inlet control system) caused most of the problems one would expect to encounter in other applications. These problems and their solutions are discussed. Criteria for integrating automatic support into the initial design of new subsystems are included in the paper. Cost effectiveness resulted from both the low maintenance of the automated system and the man-hour saving resulting from the real time diagnosis of the monitored subsystem.

  10. Di-jet asymmetric momentum transported by QGP fluid

    Energy Technology Data Exchange (ETDEWEB)

    Tachibana, Y., E-mail: tachibana@nt.phys.s.u-tokyo.ac.jp [Department of Physics, The University of Tokyo, Tokyo 113-0033 (Japan); Theoretical Research Division, Nishina Center, RIKEN, Wako 351-0198 (Japan); Department of Physics, Sophia University, Tokyo 102-8554 (Japan); Hirano, T., E-mail: hirano@sophia.ac.jp [Department of Physics, Sophia University, Tokyo 102-8554 (Japan)

    2014-12-15

    We study the collective flow of the QGP-fluid which transports the energy and momentum deposited from jets. Simulations of the propagation of jets together with expansion of the QGP-fluid are performed by solving relativistic hydrodynamic equations numerically in the fully (3+1)-dimensional space. Mach cones are induced by the energy–momentum deposition from jets and extended by the expansion of the QGP. As a result, low-p{sub T} particles are enhanced at large angles from the jet axis. This provedes an intimate link between the observables in di-jet asymmetric events in heavy-ion collisions and theoretical pictures of the medium excitation by jet-energy deposition.

  11. Needle-free jet injections: dependence of jet penetration and dispersion in the skin on jet power.

    Science.gov (United States)

    Schramm-Baxter, Joy; Mitragotri, Samir

    2004-07-07

    Jet injection is a needle-free drug delivery method in which a high-speed stream of fluid impacts the skin and delivers drugs. Although a number of jet injectors are commercially available, especially for insulin delivery, a quantitative understanding of the energetics of jet injection is still lacking. Here, we describe the dependence of jet injections into human skin on the power of the jet. Dermal delivery of liquid jets was quantified using two measurements, penetration of a radiolabeled solute, mannitol, into skin and the shape of jet dispersion in the skin which was visualized using sulforhodamine B (SRB). The power of the jet at the nozzle was varied from 1 to 600 W by independently altering the nozzle diameter (30-560 microm) and jet velocity (100-200 m/s). The dependence of the amount of liquid delivered in the skin and the geometric measurements of jet dispersion on nozzle diameter and jet velocity was captured by a single parameter, jet power. Additional experiments were performed using a model material, polyacrylamide gel, to further understand the dependence of jet penetration on jet power. These experiments demonstrated that jet power also effectively describes gel erosion due to liquid impingement.

  12. Characteristics of transverse hydrogen jet in presence of multi air jets within scramjet combustor

    Science.gov (United States)

    Barzegar Gerdroodbary, M.; Fallah, Keivan; Pourmirzaagha, H.

    2017-03-01

    In this article, three-dimensional simulation is performed to investigate the effects of micro air jets on mixing performances of cascaded hydrogen jets within a scramjet combustor. In order to compare the efficiency of this technique, constant total fuel rate is injected through one, four, eight and sixteen arrays of portholes in a Mach 4.0 crossflow with a fuel global equivalence ratio of 0.5. In this method, micro air jets are released within fuel portholes to augment the penetration in upward direction. Extensive studies were performed by using the Reynolds-averaged Navier-Stokes equations with Menter's Shear Stress Transport (SST) turbulence model. Numerical studies on various air and fuel arrangements are done and the mixing rate and penetration are comprehensively investigated. Also, the flow feature of the fuel and air jets for different configuration is revealed. According to the obtained results, the influence of the micro air jets is significant and the presence of micro air jets increases the mixing rate about 116%, 77%, 56% and 41% for single, 4, 8 and 16 multi fuel jets, respectively. The maximum mixing rate of the hydrogen jet is obtained when the air jets are injected within the sixteen multi fuel jets. According to the circulation analysis of the flow for different air and fuel arrangements, it was found that the effects of air jets on flow structure are varied in various conditions and the presence of the micro jet highly intensifies the circulation in the case of 8 and 16 multi fuel jets.

  13. Rapid Confined Mixing Using Transverse Jets Part 2: Multiple Jets

    Science.gov (United States)

    Forliti, David; Salazar, David

    2012-11-01

    An experimental study has been conducted at the Air Force Research Laboratory at Edwards Air Force Base to investigate the properties of confined mixing devices that employ transverse jets. The experiment considers the mixing of water with a mixture of water and fluorescein, and planar laser induced fluorescence was used to measure instantaneous mixture fraction distributions in the cross section view. Part one of this study presents the scaling law development and results for a single confined transverse jet. Part two will describe the results of configurations including multiple transverse jets. The different regimes of mixing behavior, ranging from under to overpenetration of the transverse jets, are characterized in terms of a new scaling law parameter presented in part one. The level of unmixedness, a primary metric for mixing device performance, is quantified for different jet diameters, number of jets, and relative flow rates. It is apparent that the addition of a second transverse jet provides enhanced scalar uniformity in the main pipe flow cross section compared to a single jet. Three and six jet configurations also provide highly uniform scalar distributions. Turbulent scalar fluctuation intensities, spectral features, and spatial eigenfunctions using the proper orthogonal decomposition will be presented. Distribution A: Public Release, Public Affairs Clearance Number: 12656.

  14. A Design of Experiments Investigation of Offset Streams for Supersonic Jet Noise Reduction

    Science.gov (United States)

    Henderson, Brenda; Papamoschou, Dimitri

    2014-01-01

    An experimental investigation into the noise characteristics of a dual-stream jet with four airfoils inserted in the fan nozzle was conducted. The intent of the airfoils was to deflect the fan stream relative to the core stream and, therefore, impact the development of the secondary potential core and noise radiated in the peak jet-noise direction. The experiments used a full-factorial Design of Experiments (DoE) approach to identify parameters and parameter interactions impacting noise radiation at two azimuthal microphone array locations, one of which represented a sideline viewing angle. The parameters studied included airfoil angle-of-attack, airfoil azimuthal location within the fan nozzle, and airfoil axial location relative to the fan-nozzle trailing edge. Jet conditions included subsonic and supersonic fan-stream Mach numbers. Heated jets conditions were simulated with a mixture of helium and air to replicate the exhaust velocity and density of the hot jets. The introduction of the airfoils was shown to impact noise radiated at polar angles in peak-jet noise direction and to have no impact on noise radiated at small and broadside polar angles and to have no impact on broadband-shock-associated noise. The DoE analysis showed the main effects impacting noise radiation at sideline-azimuthal-viewing angles included airfoil azimuthal angle for the airfoils on the lower side of the jet near the sideline array and airfoil trailing edge distance (with airfoils located at the nozzle trailing edge produced the lowest sound pressure levels). For an array located directly beneath the jet (and on the side of the jet from which the fan stream was deflected), the main effects impacting noise radiation included airfoil angle-of-attack and airfoil azimuthal angle for the airfoils located on the observation side of the jet as well and trailing edge distance. Interaction terms between multiple configuration parameters were shown to have significant impact on the radiated

  15. Enceladus' Supersonic Gas Jets' Role in Diurnal Variability of Particle Flux

    Science.gov (United States)

    Hansen, Candice; Esposito, Larry W.; Portyankina, Ganna; Hendrix, Amanda; Colwell, Joshua E.; Aye, Klaus-Michael

    2016-10-01

    Introduction: The Cassini Ultraviolet Imaging Spectrograph (UVIS) has observed 6 occultations of stars by Enceladus' plume from 2005 to 2011 [1]. Supersonic gas jets were detected, imbedded in the overall expulsion of gas at escape velocity along the tiger stripe fissures that cross Enceladus' south pole [2]. The gas flux can be calculated [1], and is observed to vary just 15% in over 6 years, representing a steady output of ~200 kg/sec. In contrast, the brightness of the particle jets, a proxy for the amount of particles expelled, varies 3x with orbital longitude [3], implicating tidal stresses. This is not necessarily inconsistent with the steady gas flux, which had not been measured at apokrone until now.2016 epsilon Orionis Occultation: In order to investigate whether gas flow increases dramatically at apokrone an occultation observation was inserted into the Cassini tour on March 11, 2016 on orbit 233. Enceladus was at a mean anomaly of 208 at the time of the occultation. Using the same methodology as previously employed the column density has been determined to be 1.5 x 1016 cm-2, giving a gas flux of 250 kg/sec. This value is 20% higher than the average 210 kg/sec, but only 15% higher than the occultations at a mean anomaly of 236; i.e. higher than the others but not by a factor of 2 or 3. The overall expulsion of gas from the south pole of Enceladus thus does not seem to change dramatically with orbital position.Jets: The line of sight to the star pierced the Baghdad I gas jet. The jet data, in contrast to the integrated plume, look significantly different in this dataset. The column density of the jet is higher than observed in previous occultations. The collimation of the jet is more pronounced and from that we derive a mach number of 8-9, compared to a previous value for this jet of 6. We conclude that the higher velocity and increased quantity of gas in the jet close to apokrone indicate that the jets are the primary contributors to the increased

  16. PIV Measurements of Supersonic Internally-Mixed Dual-Stream Jets

    Science.gov (United States)

    Bridges, James E.; Wernet, Mark P.

    2012-01-01

    While externally mixed, or separate flow, nozzle systems are most common in high bypass-ratio aircraft, they are not as attractive for use in lower bypass-ratio systems and on aircraft that will fly supersonically. The noise of such propulsion systems is also dominated by jet noise, making the study and noise reduction of these exhaust systems very important, both for military aircraft and future civilian supersonic aircraft. This paper presents particle image velocimetry of internally mixed nozzle with different area ratios between core and bypass, and nozzles that are ideally expanded and convergent. Such configurations independently control the geometry of the internal mixing layer and of the external shock structure. These allow exploration of the impact of shocks on the turbulent mixing layers, the impact of bypass ratio on broadband shock noise and mixing noise, and the impact of temperature on the turbulent flow field. At the 2009 AIAA/CEAS Aeroacoustics Conference the authors presented data and analysis from a series of tests that looked at the acoustics of supersonic jets from internally mixed nozzles. In that paper the broadband shock and mixing noise components of the jet noise were independently manipulated by holding Mach number constant while varying bypass ratio and jet temperature. Significant portions of that analysis was predicated on assumptions regarding the flow fields of these jets, both shock structure and turbulence. In this paper we add to that analysis by presenting particle image velocimetry measurements of the flow fields of many of those jets. In addition, the turbulent velocity data documented here will be very useful for validation of computational flow codes that are being developed to design advanced nozzles for future aircraft.

  17. Interacting Jets from Binary Protostars

    CERN Document Server

    Murphy, G C; O'Sullivan, S; Spicer, D; Bacciotti, F; Rosén, A

    2007-01-01

    We investigate potential models that could explain why multiple proto-stellar systems predominantly show single jets. During their formation, stars most frequently produce energetic outflows and jets. However, binary jets have only been observed in a very small number of systems. We model numerically 3D binary jets for various outflow parameters. We also model the propagation of jets from a specific source, namely L1551 IRS 5, known to have two jets, using recent observations as constraints for simulations with a new MHD code. We examine their morphology and dynamics, and produce synthetic emission maps. We find that the two jets interfere up to the stage where one of them is almost destroyed or engulfed into the second one. We are able to reproduce some of the observational features of L1551 such as the bending of the secondary jet. While the effects of orbital motion are negligible over the jets dynamical timeline, their interaction has significant impact on their morphology. If the jets are not strictly pa...

  18. Asymptotic structure of low frequency supersonic heated jet noise using LES data to re-construct a turbulence model

    Science.gov (United States)

    Afsar, Mohammed; Sescu, Adrian; Sassanis, Vasileios; Bres, Guillaume; Towne, Aaron; Lele, Sanjiva

    2016-11-01

    The Goldstein-Sescu-Afsar asymptotic theory postulated that the appropriate distinguished limit in which non-parallel mean flow effects introduces a leading order change in the 'propagator' (which is related adjoint linearized Euler Green's function) within Goldstein's acoustic analogy must be when the jet spread rate is the same order as Strouhal number. We analyze the low frequency structure of the acoustic spectrum using Large-eddy simulations of two axi-symmetric jets (heated & unheated) at constant supersonic jet Mach number to obtain the mean flow for the asymptotic theory. This approach provides excellent quantitative agreement for the peak jet noise when the coefficients of the turbulence model are tuned for good agreement with the far-field acoustic data. Our aim in this talk, however, is to show the predictive capability of the asymptotics when the turbulence model in the acoustic analogy is 'exactly' re-constructed by numerically matching the length scale coefficients of an algebraic-exponential model for the 1212-component of the Reynolds stress auto-covariance tensor (1 is streamwise & 2 is radial direction) with LES data at any spatial location and temporal frequency. In this way, all information is obtained from local unsteady flow. We thank Professor Parviz Moin for supporting this work as part of the Center for Turbulence Research Summer Program 2016.

  19. Advanced thermally stable jet fuels

    Energy Technology Data Exchange (ETDEWEB)

    Schobert, H.H.

    1999-01-31

    The Pennsylvania State University program in advanced thermally stable coal-based jet fuels has five broad objectives: (1) Development of mechanisms of degradation and solids formation; (2) Quantitative measurement of growth of sub-micrometer and micrometer-sized particles suspended in fuels during thermal stressing; (3) Characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) Elucidation of the role of additives in retarding the formation of carbonaceous solids; (5) Assessment of the potential of production of high yields of cycloalkanes by direct liquefaction of coal. Future high-Mach aircraft will place severe thermal demands on jet fuels, requiring the development of novel, hybrid fuel mixtures capable of withstanding temperatures in the range of 400--500 C. In the new aircraft, jet fuel will serve as both an energy source and a heat sink for cooling the airframe, engine, and system components. The ultimate development of such advanced fuels requires a thorough understanding of the thermal decomposition behavior of jet fuels under supercritical conditions. Considering that jet fuels consist of hundreds of compounds, this task must begin with a study of the thermal degradation behavior of select model compounds under supercritical conditions. The research performed by The Pennsylvania State University was focused on five major tasks that reflect the objectives stated above: Task 1: Investigation of the Quantitative Degradation of Fuels; Task 2: Investigation of Incipient Deposition; Task 3: Characterization of Solid Gums, Sediments, and Carbonaceous Deposits; Task 4: Coal-Based Fuel Stabilization Studies; and Task 5: Exploratory Studies on the Direct Conversion of Coal to High Quality Jet Fuels. The major findings of each of these tasks are presented in this executive summary. A description of the sub-tasks performed under each of these tasks and the findings of those studies are provided in the remainder of this volume

  20. Control of a Circular Jet

    CERN Document Server

    Gohil, Trushar B; Muralidhar, K

    2010-01-01

    The present study report direct numerical simulation (DNS) of a circular jet and the effect of a large scale perturbation at the jet inlet. The perturbation is used to control the jet for increased spreading. Dual-mode perturbation is obtained by combining an axisymmetric excitation with the helical. In the fluid dynamics videos, an active control of the circular jet at a Reynolds number of 2000 for various frequency ratios (both integer and non-integer) has been demonstrated. When the frequency ratio is fixed to 2, bifurcation of the jet on a plane is evident. However, for a non-integer frequency ratio, the axisymmetric jet is seen to bloom in all directions.

  1. 自由射流中飞机进气道前方亚声速流场数值仿真研究%Numerical calculation of subsonic flow field in front of aircraft inlet duct in free jet

    Institute of Scientific and Technical Information of China (English)

    王键灵; 徐让书; 侯亚军; 王娟娟

    2014-01-01

    To predict the characteristics of subsonic flow field in front of aircraft inlet-engine combination in the free jet test of engine altitude simulation and to optimize the aerodynimic configuration of the test cell, the CFD method has been used to simulate the external flow of a fighter inlet in subsonic free-jet and in the real flight environment in the atmosphere. The relation of compression effect of the inlet to the inflow air and flight Mach number is analyzed. Optimized installation location of inlet has been found in three Mach num-ber of subsonic free-jet. And we compared the Mach number distribution of the forward and entrance of inlet between the condition that in free-jet and in real atmospheric environment. As a result,it can obtain the flow field of similar Mach number that the simulating of real atmospheric flight environment with subsonic free-jet.%为了预测航空发动机高空模拟自由射流试验中飞机进气道-发动机组合体前方的亚声速流场特性,优化试验舱的气动设计,采用 CFD 方法在亚声速自由射流和真实大气飞行条件下对某战斗机进气道的外流场进行数值模拟。分析了进气道对前方气流压缩作用与飞行马赫数关系,对比和分析了分别在自由射流与真实大气中进气道前和进气道入口处的马赫数分布,确定了3种马赫数下进气道在自由射流中的最佳安装位置。比较发现,亚声速自由射流对真实高空大气飞行进行模拟,可以得到马赫数相似的流场。

  2. Generation of Overpressure due to Condensation in Moist Air Jet

    Institute of Scientific and Technical Information of China (English)

    Yumiko OTOBE; Hideo KASHIMURA; Shigeru MATSUO; Masanori TANAKA; Toshiaki SETOGUCHI

    2007-01-01

    In the present study, a computational fluid dynamics method has been applied to investigate the effects of initial degree of supersaturation at reservoir condition on under-expanded sonic jet structures, such as Mach disk location and diameter, barrel shock wave and jet boundary. The axisymmetric nozzle geometry investigated was a converging nozzle with straight part. As a result, it was found that the overpressures due to condensation generate and the characteristics of flow with generation of overpressure due to condensation in the jet were different from those without condensation.

  3. Mach-Zehnder interferometer for movement monitoring

    Science.gov (United States)

    Vasinek, Vladimir; Cubik, Jakub; Kepak, Stanislav; Doricak, Jan; Latal, Jan; Koudelka, Petr

    2012-06-01

    Fiber optical interferometers belong to highly sensitive equipments that are able to measure slight changes like distortion of shape, temperature and electric field variation and etc. Their great advantage is that they are insensitive on ageing component, from which they are composed of. It is in virtue of herewith, that there are evaluated no changes in optical signal intensity but number interference fringes. To monitor the movement of persons, eventually to analyze the changes in state of motion we developed method based on analysis the dynamic changes in interferometric pattern. We have used Mach- Zehnder interferometer with conventional SM fibers excited with the DFB laser at wavelength of 1550 nm. It was terminated with optical receiver containing InGaAs PIN photodiode. Its output was brought into measuring card module that performs on FFT of the received interferometer signal. The signal rises with the composition of two waves passing through single interferometer arm. The optical fiber SMF 28e in one arm is referential; the second one is positioned on measuring slab at dimensions of 1x2m. A movement of persons around the slab was monitored, signal processed with FFT and frequency spectra were evaluated. They rose owing to dynamic changes of interferometric pattern. The results reflect that the individual subjects passing through slab embody characteristic frequency spectra, which are individual for particular persons. The scope of measuring frequencies proceeded from zero to 10 kHz. It was also displayed in experiments that the experimental subjects, who walked around the slab and at the same time they have had changed their state of motion (knee joint fixation), embodied characteristic changes in their frequency spectra. At experiments the stability of interferometric patterns was evaluated as from time aspects, so from the view of repeated identical experiments. Two kinds of balls (tennis and ping-pong) were used to plot the repeatability measurements and

  4. Instabilities and subharmonic resonances of subsonic heated round jets, volume 2. Ph.D. Thesis Final Report

    Science.gov (United States)

    Ng, Lian Lai

    1990-01-01

    When a jet is perturbed by a periodic excitation of suitable frequency, a large-scale coherent structure develops and grows in amplitude as it propagates downstream. The structure eventually rolls up into vortices at some downstream location. The wavy flow associated with the roll-up of a coherent structure is approximated by a parallel mean flow and a small, spatially periodic, axisymmetric wave whose phase velocity and mode shape are given by classical (primary) stability theory. The periodic wave acts as a parametric excitation in the differential equations governing the secondary instability of a subharmonic disturbance. The (resonant) conditions for which the periodic flow can strongly destabilize a subharmonic disturbance are derived. When the resonant conditions are met, the periodic wave plays a catalytic role to enhance the growth rate of the subharmonic. The stability characteristics of the subharmonic disturbance, as a function of jet Mach number, jet heating, mode number and the amplitude of the periodic wave, are studied via a secondary instability analysis using two independent but complementary methods: (1) method of multiple scales, and (2) normal mode analysis. It is found that the growth rates of the subharmonic waves with azimuthal numbers beta = 0 and beta = 1 are enhanced strongly, but comparably, when the amplitude of the periodic wave is increased. Furthermore, compressibility at subsonic Mach numbers has a moderate stabilizing influence on the subharmonic instability modes. Heating suppresses moderately the subharmonic growth rate of an axisymmetric mode, and it reduces more significantly the corresponding growth rate for the first spinning mode. Calculations also indicate that while the presence of a finite-amplitude periodic wave enhances the growth rates of subharmonic instability modes, it minimally distorts the mode shapes of the subharmonic waves.

  5. Comparison of Turbulence Models for Nozzle-Afterbody Flows with Propulsive Jets

    Science.gov (United States)

    Compton, William B., III

    1996-01-01

    A numerical investigation was conducted to assess the accuracy of two turbulence models when computing non-axisymmetric nozzle-afterbody flows with propulsive jets. Navier-Stokes solutions were obtained for a Convergent-divergent non-axisymmetric nozzle-afterbody and its associated jet exhaust plume at free-stream Mach numbers of 0.600 and 0.938 at an angle of attack of 0 deg. The Reynolds number based on model length was approximately 20 x 10(exp 6). Turbulent dissipation was modeled by the algebraic Baldwin-Lomax turbulence model with the Degani-Schiff modification and by the standard Jones-Launder kappa-epsilon turbulence model. At flow conditions without strong shocks and with little or no separation, both turbulence models predicted the pressures on the surfaces of the nozzle very well. When strong shocks and massive separation existed, both turbulence models were unable to predict the flow accurately. Mixing of the jet exhaust plume and the external flow was underpredicted. The differences in drag coefficients for the two turbulence models illustrate that substantial development is still required for computing very complex flows before nozzle performance can be predicted accurately for all external flow conditions.

  6. On Mach's critique of Newton and Copernicus

    CERN Document Server

    Hartman, H I; Hartman, Herbert I.; Nissim-Sabat, Charles

    2003-01-01

    Maintaining the relativity of all motion, especially rotational motion, Mach denied the existence of absolute motion and absolute space. He maintained the equivalence of the Ptolemaic and the Copernican systems and the equivalence of a fixed bucket in a rotating universe with the converse. An analysis of the Foucault pendulum shows that there cannot be a fixed bucket in a rotating universe. Also, Mach's views violate the physics he espoused: non-inertial experiments, e.g. stellar aberration and electromagnetic effects, distinguish between a rotating bucket in a fixed universe and the converse, between the Copernican and the Ptolemaic systems, and establish that one cannot ascribe all observations solely to relative motion between a system and the universe.

  7. Dynamics of compressional Mach cones in a strongly coupled complex plasma

    CERN Document Server

    Bandyopadhyay, P; Kadyan, Sangeeta; Sen, Abhijit

    2016-01-01

    Using a Generalised-Hydrodynamic (GH) fluid model we study the influence of strong coupling induced modification of the fluid compressibility on the dynamics of compressional Mach cones in a dusty plasma medium. A significant structural change of lateral wakes for a given Mach number and Epstein drag force is found in the strongly coupled regime. With the increase of fluid compressibility, the peak amplitude of the normalised perturbed dust density first increases and then decreases monotonically after reaching its maximum value. It is also noticed that the opening angle of the cone structure decreases with the increase of the compressibility of the medium and the arm of the Mach cone breaks up into small structures in the velocity vector profile when the coupling between the dust particles increases.

  8. Dynamic transition from Mach to regular reflection of shock waves in a steady flow

    CSIR Research Space (South Africa)

    Naidoo, K

    2014-07-01

    Full Text Available decreased with increased rotation speed. The sensitivity of the transition angle to changing the rotation point from the trailing edge to the experimental model pivot point was investigated briefly at a free-stream Mach number of M=2.98 with M(subE)=-0...

  9. Optimization and Modeling of Noise Reduction for Turbulent Jets with Induced Asymmetry

    Science.gov (United States)

    Rostamimonjezi, Sara

    This project relates to the development of next-generation high-speed aircraft that are efficient and environmentally compliant. The emphasis of the research is on reducing noise from high-performance engines that will power these aircraft. A strong component of engine noise is jet mixing noise that comes from the turbulent mixing process between the high-speed exhaust flow of the engine and the atmosphere. The fan flow deflection method (FFD) suppresses jet noise by deflecting the fan stream downward, by a few degrees, with respect to the core stream. This reduces the convective Mach number of the primary shear layer and turbulent kinetic energy in the downward direction and therefore reduces the noise emitted towards the ground. The redistribution of the fan stream is achieved with inserting airfoil-shaped vanes inside the fan duct. Aerodynamic optimization of FFD has been done by Dr. Juntao Xiong using a computational fluid dynamics code to maximize reduction of noise perceived by the community while minimizing aerodynamic losses. The optimal vane airfoils are used in a parametric experimental study of 50 4-vane deflector configurations. The vane chord length, angle of attack, and azimuthal location are the parameters studied in acoustic optimization. The best vane configuration yields a reduction in cumulative (downward + sideline) effective perceived noise level (EPNL) of 5.3 dB. The optimization study underscores the sensitivity of FFD to deflector parameters and the need for careful design in the practical implementation of this noise reduction approach. An analytical model based on Reynolds Averaged Navier Stokes (RANS) and acoustic analogy is developed to predict the spectral changes from a known baseline in the direction of peak emission. A generalized form for space-time correlation is introduced that allows shapes beyond the traditional exponential forms. Azimuthal directivity based on the wavepacket model of jet noise is integrated with the acoustic

  10. Mach's Principle and Higher-Dimensional Dynamics

    CERN Document Server

    Mashhoon, B

    2011-01-01

    We briefly discuss the current status of Mach's principle in general relativity and point out that its last vestige, namely, the gravitomagnetic field associated with rotation, has recently been measured for the earth in the GP-B experiment. Furthermore, in his analysis of the foundations of Newtonian mechanics, Mach provided an operational definition for inertial mass and pointed out that time and space are conceptually distinct from their operational definitions by means of masses. Mach recognized that this circumstance is due to the lack of any a priori connection between the inertial mass of a body and its Newtonian state in space and time. One possible way to improve upon this situation in classical physics is to associate mass with an extra dimension. Indeed, Einstein's theory of gravitation can be locally embedded in a Ricci-flat 5D manifold such that the 4D energy-momentum tensor appears to originate from the existence of the extra dimension. An outline of such a 5D Machian extension of Einstein's gen...

  11. Numerical study of jet noise radiated by turbulent coherent structures

    Energy Technology Data Exchange (ETDEWEB)

    Bastin, F.

    1995-08-01

    a numerical approach of jet mixing noise prediction is presented, based on the assumption that the radiated sound field is essentially due to large-scale coherent turbulent structures. A semi-deterministic turbulence modelling is used to obtain the flow coherent fluctuations. This model is derived from the k-{epsilon} model and validated on the 2-D compressible shear layer case. Three plane jets at Mach 0.5, 1.33 and 2 are calculated. The semi-deterministic modelling yields a realistic unsteady representation of plane jets but not appropriate for axisymmetric jet computations. Lighthill`s analogy is used to estimate the noise radiated by the flow. Three integral formulations of the theory are compared and the most suitable one is expressed in space-time Fourier space. This formulation is associated to a geometrical interpretation of acoustic computations in (k, {omega}) plane. The only contribution of coherent structures cannot account for the high-frequency radiation of a subsonic jet and thus, the initial assumption is not verified in the subsonic range. The interpretation of Lighthill`s analogy in (k, {omega}) plane allows to conclude that the missing high-frequency components are due to the inner structure of the coherent motion. For supersonic jets, full acoustic spectra are obtained, at least in the forward arc where the dominant radiation is emitted. For the fastest jet (M = 2), no Mach waves are observed, which may be explained by a ratio of the structures convection velocity to the jet exit velocity lower in plane than in circular jets. This point is confirmed by instability theory calculations. Large eddy simulations (LES) were performed for subsonic jets. Data obtained in the plane jet case show that this technique allows only a slight improvement of acoustic results. To obtain a satisfactory high-frequency radiation, very fine grids should be considered, and the 2-D approximation could not be justified anymore. (Abstract Truncated)

  12. Jet quenching via jet collimation

    CERN Document Server

    Casalderrey-Solana, J; Wiedemann, U

    2011-01-01

    The strong modifications of dijet properties in heavy ion collisions measured by ATLAS and CMS provide important constraints on the dynamical mechanisms underlying jet quenching. In this work, we show that the transport of soft gluons away from the jet cone - jet collimation - can account for the observed dijet asymmetry with values of $\\hat{q}\\, L$ that lie in the expected order of magnitude. Further, we show that the energy loss attained through this mechanism results in a very mild distortion of the azimuthal angle dijet distribution.

  13. Emerging jets

    Energy Technology Data Exchange (ETDEWEB)

    Schwaller, Pedro; Stolarski, Daniel [European Organization for Nuclear Research (CERN), Geneva (Switzerland). TH-PH Div.; Weiler, Andreas [European Organization for Nuclear Research (CERN), Geneva (Switzerland). TH-PH Div.; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2015-02-15

    In this work, we propose a novel search strategy for new physics at the LHC that utilizes calorimeter jets that (i) are composed dominantly of displaced tracks and (ii) have many different vertices within the jet cone. Such emerging jet signatures are smoking guns for models with a composite dark sector where a parton shower in the dark sector is followed by displaced decays of dark pions back to SM jets. No current LHC searches are sensitive to this type of phenomenology. We perform a detailed simulation for a benchmark signal with two regular and two emerging jets, and present and implement strategies to suppress QCD backgrounds by up to six orders of magnitude. At the 14 TeV LHC, this signature can be probed with mediator masses as large as 1.5 TeV for a range of dark pion lifetimes, and the reach is increased further at the high-luminosity LHC. The emerging jet search is also sensitive to a broad class of long-lived phenomena, and we show this for a supersymmetric model with R-parity violation. Possibilities for discovery at LHCb are also discussed.

  14. Emerging Jets

    CERN Document Server

    Schwaller, Pedro; Weiler, Andreas

    2015-01-01

    In this work, we propose a novel search strategy for new physics at the LHC that utilizes calorimeter jets that (i) are composed dominantly of displaced tracks and (ii) have many different vertices within the jet cone. Such emerging jet signatures are smoking guns for models with a composite dark sector where a parton shower in the dark sector is followed by displaced decays of dark pions back to SM jets. No current LHC searches are sensitive to this type of phenomenology. We perform a detailed simulation for a benchmark signal with two regular and two emerging jets, and present and implement strategies to suppress QCD backgrounds by up to six orders of magnitude. At the 14 TeV LHC, this signature can be probed with mediator masses as large as 1.5 TeV for a range of dark pion lifetimes, and the reach is increased further at the high-luminosity LHC. The emerging jet search is also sensitive to a broad class of long-lived phenomena, and we show this for a supersymmetric model with R-parity violation. Possibilit...

  15. Effect of de-correlating turbulence on the low frequency decay of jet-surface interaction noise in sub-sonic unheated air jets using a CFD-based approach

    Science.gov (United States)

    Afsar, M. Z.; Leib, S. J.; Bozak, R. F.

    2017-01-01

    In this paper we extend the Rapid-distortion theory (RDT)-based model derived by Goldstein, Afsar & Leib (J. Fluid Mech., vol. 736, pp. 532-569, 2013) for the sound generated by the interaction of a large-aspect-ratio rectangular jet with the trailing edge of a flat plate to include a more realistic upstream turbulence spectrum that possess a de-correlation (i.e. negative dip) in its space-time structure and use results from three-dimensional Reynolds-Averaged Navier-Stokes (RANS) solutions to determine the mean flow, turbulent kinetic energy and turbulence length & time scales. Since the interaction noise dominates the low-frequency portion of the spectrum, we use an appropriate asymptotic approximation for the Rayleigh equation Green's function, which enters the analysis, based on a two-dimensional mean flow representation for the jet. We use the model to predict jet-surface interaction noise for a range of subsonic acoustic Mach number jets, nozzle aspect ratios, streamwise and transverse trailing-edge locations and compare them with experimental data. The RANS meanflow computations are also compared with flow data for selected cases to assess their validity. We find that finite de-correlation in the turbulence spectrum increases the low-frequency algebraic decay (the low-frequency "roll-off") of the acoustic spectrum with angular frequency to give a model that has a pure dipole frequency scaling. This gives better agreement with noise data compared to Goldstein et al. (2013) for Strouhal numbers less than the peak jet-surface interaction noise. For example, through sensitivity analysis we find that there is a difference of 10 dB at the lowest frequency for which data exists (relative to a model without de-correlation effects included) for the highest acoustic Mach number case. Secondly, our results for the planar flow theory provide a first estimate of the low-frequency amplification due to the jet-surface interaction for moderate aspect ratio nozzles when RANS

  16. From free jets to clinging wall jets: The influence of a horizontal boundary on a horizontally forced buoyant jet

    Science.gov (United States)

    Burridge, H. C.; Hunt, G. R.

    2017-02-01

    We investigate the incompressible turbulent jet formed when buoyant fluid is steadily ejected horizontally from a circular source into an otherwise quiescent uniform environment. As our primary focus, we introduce a horizontal boundary beneath the source. For sufficiently small separations, the jet attaches and clings to the boundary, herein the "clinging jet," before, farther downstream, the jet is pulled away from the boundary by the buoyancy force. For larger source-boundary separations, the buoyant jet is free to rise under the action of the buoyancy force, herein the "free jet." Based on measurements of saline jets in freshwater surroundings we deduce the conditions required for a jet to cling. We present a data set that spans a broad range of source conditions for the variation in volume flux (indicative of entrainment), jet perimeter, and jet centerline for both "clinging" and "free" jets. For source Froude numbers Fr0≥12 the data collapse when scaled, displaying universal behaviors for both clinging and free jets. Our results for the variation in the volume flux across horizontal planes, π Qjet , show that within a few jet lengths of the source, π Qjet for the clinging jet exceeds that of a free jet with identical source conditions. However, when examined in a coordinate following the jet centerline π Qjet for free jets is greater. Finally, we propose a new parametrization for an existing integral model which agrees well with our experimental data as well as with data from other studies. Our findings offer the potential to tailor the dilution of horizontal buoyant jets by altering the distance at which they are released from a boundary.

  17. Combustion-Powered Actuation for Dynamic Stall Suppression - Simulations and Low-Mach Experiments

    Science.gov (United States)

    Matalanis, Claude G.; Min, Byung-Young; Bowles, Patrick O.; Jee, Solkeun; Wake, Brian E.; Crittenden, Tom; Woo, George; Glezer, Ari

    2014-01-01

    An investigation on dynamic-stall suppression capabilities of combustion-powered actuation (COMPACT) applied to a tabbed VR-12 airfoil is presented. In the first section, results from computational fluid dynamics (CFD) simulations carried out at Mach numbers from 0.3 to 0.5 are presented. Several geometric parameters are varied including the slot chordwise location and angle. Actuation pulse amplitude, frequency, and timing are also varied. The simulations suggest that cycle-averaged lift increases of approximately 4% and 8% with respect to the baseline airfoil are possible at Mach numbers of 0.4 and 0.3 for deep and near-deep dynamic-stall conditions. In the second section, static-stall results from low-speed wind-tunnel experiments are presented. Low-speed experiments and high-speed CFD suggest that slots oriented tangential to the airfoil surface produce stronger benefits than slots oriented normal to the chordline. Low-speed experiments confirm that chordwise slot locations suitable for Mach 0.3-0.4 stall suppression (based on CFD) will also be effective at lower Mach numbers.

  18. Numerical simulation of Mach reflection of cellular detonations

    Science.gov (United States)

    Li, J.; Lee, J. H. S.

    2016-09-01

    The Mach reflection of cellular detonation waves on a wedge is investigated numerically in an attempt to elucidate the effect of cellular instabilities on Mach reflection, the dependence of self-similarity on the thickness of a detonation wave, and the initial development of the Mach stem near the wedge apex. A two-step chain-branching reaction model is used to give a thermally neutral induction zone followed by a chemical reaction zone for the detonation wave. A sufficiently large distance of travel of the Mach stem is computed to observe the asymptotic behavior in the far field. Depending on the scale at which the Mach reflection process occurs, it is found that the Mach reflection of a cellular detonation behaves essentially in the same way as a planar ZND detonation wave. The cellular instabilities, however, cause the triple-point trajectory to fluctuate. The fluctuations are due to interactions of the triple point of the Mach stem with the transverse waves of cellular instabilities. In the vicinity of the wedge apex, the Mach reflection is found to be self-similar and corresponds to that of a shock wave of the same strength, since the Mach stem is highly overdriven initially. In the far field, the triple-point trajectory approaches a straight line, indicating that the Mach reflection becomes self-similar asymptotically. The distance of the approach to self-similarity is found to decrease rapidly with decreasing thickness of the detonation front.

  19. Temperature measurement of axisymmetric partially premixed methane/air flame in a co-annular burner using Mach-Zehnder interferometry

    Science.gov (United States)

    Irandoost, M. S.; Ashjaee, M.; Askari, M. H.; Ahmadi, S.

    2015-11-01

    In this paper partially premixed laminar methane/air co-flow flame is studied experimentally. Methane-air flame is established on an axisymmetric co-annular burner. The fuel-air jet flows from the central tube while the secondary air flows from the region between the inner and the outer tube. The aim is to investigate the flame characteristics for methane/air axisymmetric partially premixed flame using Mach-Zehnder interferometry. Different equivalence ratios (φ=1.4-2.2) and Reynolds numbers (Re=100-1200) are considered in the study. Flame generic visible appearance and the corresponding fringe map structures are also investigated. It is seen that the fringe maps are poorly influenced by equivalence ratio variations at constant Reynolds number but are significantly affected by Reynolds number variations in constant equivalence ratio. Temperatures obtained from optical techniques are compared with those obtained from thermocouples and good agreement is observed. It is concluded that the effect of Reynolds number increment on maximum flame temperature is negligible while equivalence ratio reduction increases maximum flame temperature substantially.

  20. Effect of exit Reynolds number on self-preservation of a plane jet%出口雷诺数对平面射流自保持性的影响

    Institute of Scientific and Technical Information of China (English)

    米建春; 冯宝平; Deo Ravinesh; Nathan Graham J

    2009-01-01

    通过实验研究出口雷诺数对平面湍流射流自保持性的影响.测量的射流来自相同的喷嘴但不同的雷诺数Re(≡U_jh/ v,其中U_j是出口平均速度、h是窄缝出口的厚度和v是黏性系数),其变化范围是Re=4582-57735.所得的数据包括沿轴线的平均速度、湍流强度、积分尺度、高阶矩和能谱.实验发现,随着Re的增大,平面射流发展减慢,平均速度和湍流强度更难达到自保持状态.沿轴线的积分尺度随轴向距离成线性增长但随雷诺数的增大增长速度减慢.同时发现,平面射流的局部雷诺数会随轴向距离的增大而增大.最后,通过对比湍流能谱并结合以往发表的结果,对不同雷诺数的射流所表现出的不同的统计学行为给出了解释.%We investigated in experiment the effect of exit Reynolds number on self-preservation of a turbulent plane jet. Centerline velocity statistics were measured in plane jets issuing from the same nozzle but, respectively, with seven Reynolds numbers varying between Re = 4,582 and Re = 57,735, where Re ≡U_j h/v,(U_j being the momentum-averaged exit mean velocity, h the slot height and v the kinematic viscosity). All measurements were conducted using single hot-wire anemometry and over an axial distance (x) of 40 h. These measurements revealed a significant Re-dependence of either the mean or turbulent flow field. As Re increases, the pace of the jet development decreases and, as a result, both the mean and turbulent properties reach their self-preserving states over a longer downstream distance (x). The centerline integral scale L for all jets grows linearly with x and the growth rate decreases as Re is increased. It is also found that the local Reynolds number Re_L scales with x as Re_L ∝ x~(1/2).The study suggests that differences of the self-preserving states observed may be related to the differences in the underlying turbulence structures in the near field of the seven jets.

  1. MODELING SUPERSONIC-JET DEFLECTION IN THE HERBIG–HARO 110-270 SYSTEM WITH HIGH-POWER LASERS

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Dawei; Li, Yutong; Lu, Xin; Yin, Chuanlei; Su, Luning; Liao, Guoqian; Zhang, Jie [National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Wu, Junfeng; Wang, Lifeng; He, Xiantu [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); Zhong, Jiayong; Wei, Huigang; Zhang, Kai; Han, Bo; Zhao, Gang [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Jiang, Shaoen; Du, Kai; Ding, Yongkun [Research Center for Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Zhu, Jianqiang, E-mail: ytli@iphy.ac.cn, E-mail: jzhang@sjtu.edu.cn [National Laboratory on High Power Lasers and Physics, Shanghai, 201800 (China)

    2015-12-10

    Herbig–Haro (HH) objects associated with newly born stars are typically characterized by two high Mach number jets ejected in opposite directions. However, HH 110 appears to only have a single jet instead of two. Recently, Kajdi et al. measured the proper motions of knots in the whole system and noted that HH 110 is a continuation of the nearby HH 270. It has been proved that the HH 270 collides with the surrounding mediums and is deflected by 58°, reshaping itself as HH 110. Although the scales of the astrophysical objects are very different from the plasmas created in the laboratory, similarity criteria of physical processes allow us to simulate the jet deflection in the HH 110/270 system in the laboratory with high power lasers. A controllable and repeatable laboratory experiment could give us insight into the deflection behavior. Here we show a well downscaled experiment in which a laser-produced supersonic-jet is deflected by 55° when colliding with a nearby orthogonal side-flow. We also present a two-dimensional hydrodynamic simulation with the Euler program, LARED-S, to reproduce the deflection. Both are in good agreement. Our results show that the large deflection angle formed in the HH 110/270 system is probably due to the ram pressure from a flow–flow collision model.

  2. Simulation of a Synthetic Jet in Quiescent Air Using TLNS3D Flow Code

    Science.gov (United States)

    Vatsa, Veer N.; Turkel, Eli

    2007-01-01

    Although the actuator geometry is highly three-dimensional, the outer flowfield is nominally two-dimensional because of the high aspect ratio of the rectangular slot. For the present study, this configuration is modeled as a two-dimensional problem. A multi-block structured grid available at the CFDVAL2004 website is used as a baseline grid. The periodic motion of the diaphragm is simulated by specifying a sinusoidal velocity at the diaphragm surface with a frequency of 450 Hz, corresponding to the experimental setup. The amplitude is chosen so that the maximum Mach number at the jet exit is approximately 0.1, to replicate the experimental conditions. At the solid walls zero slip, zero injection, adiabatic temperature and zero pressure gradient conditions are imposed. In the external region, symmetry conditions are imposed on the side (vertical) boundaries and far-field conditions are imposed on the top boundary. A nominal free-stream Mach number of 0.001 is imposed in the free stream to simulate incompressible flow conditions in the TLNS3D code, which solves compressible flow equations. The code was run in unsteady (URANS) mode until the periodicity was established. The time-mean quantities were obtained by running the code for at least another 15 periods and averaging the flow quantities over these periods. The phase-locked average of flow quantities were assumed to be coincident with their values during the last full time period.

  3. Quark vs Gluon Jet Tagging at ATLAS

    CERN Document Server

    Rubbo, Francesco; The ATLAS collaboration

    2017-01-01

    Distinguishing quark-initiated from gluon-initiated jets is useful for many measurements and searches at the LHC. We present a quark-initiated versus gluon-initiated jet tagger from the ATLAS experiment using the number of reconstructed charged particles inside the jet. The measurement of the charged-particle multiplicity inside jets from Run 1 is used to derive uncertainties on the tagger performance for Run 2. With an efficiency of 60% to select quark-initiated jets, the efficiency to select gluon-initiated jets is between 10 and 20% across a wide range in jet pT up to 1.5 TeV with about an absolute 5% systematic uncertainty on the efficiencies. In addition, we also present preliminary studies on a tagger for the ATLAS experiment using the full radiation pattern inside a jet processed as images in deep neural network classifiers.

  4. Jet-Surface Interaction Noise from High-Aspect Ratio Nozzles: Test Summary

    Science.gov (United States)

    Brown, Clifford; Podboy, Gary

    2017-01-01

    Noise and flow data have been acquired for a 16:1 aspect ratio rectangular nozzle exhausting near a simple surface at the NASA Glenn Research Center as part of an ongoing effort to understand, model, and predict the noise produced by current and future concept aircraft employing a tightly integrated engine airframe designs. The particular concept under consideration in this experiment is a blended-wing-body airframe powered by a series of electric fans exhausting through slot nozzle over an aft deck. The exhaust Mach number and surface length were parametrically varied during the test. Far-field noise data were acquired for all nozzle surface geometries and exhaust flow conditions. Phased-array noise source localization data and in-flow pressure data were also acquired for a subset of the isolated (no surface) and surface configurations; these measurements provide data that have proven useful for modeling the jet-surface interaction noise source and the surface effect on the jet-mixing noise in round jets. A summary of the nozzle surface geometry, flow conditions tested, and data collected are presented.

  5. Simulation of Plasma Jet Merger and Liner Formation within the PLX- α Project

    Science.gov (United States)

    Samulyak, Roman; Chen, Hsin-Chiang; Shih, Wen; Hsu, Scott

    2015-11-01

    Detailed numerical studies of the propagation and merger of high Mach number argon plasma jets and the formation of plasma liners have been performed using the newly developed method of Lagrangian particles (LP). The LP method significantly improves accuracy and mathematical rigor of common particle-based numerical methods such as smooth particle hydrodynamics while preserving their main advantages compared to grid-based methods. A brief overview of the LP method will be presented. The Lagrangian particle code implements main relevant physics models such as an equation of state for argon undergoing atomic physics transformation, radiation losses in thin optical limit, and heat conduction. Simulations of the merger of two plasma jets are compared with experimental data from past PLX experiments. Simulations quantify the effect of oblique shock waves, ionization, and radiation processes on the jet merger process. Results of preliminary simulations of future PLX- alpha experiments involving the ~ π / 2 -solid-angle plasma-liner configuration with 9 guns will also be presented. Partially supported by ARPA-E's ALPHA program.

  6. The first calculation of fractional jets

    Energy Technology Data Exchange (ETDEWEB)

    Bertolini, Daniele [Ernest Orlando Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Center for Theoretical Physics, University of California, Berkeley, CA 94720 (United States); Thaler, Jesse [Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Walsh, Jonathan R. [Ernest Orlando Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Center for Theoretical Physics, University of California, Berkeley, CA 94720 (United States)

    2015-05-04

    In collider physics, jet algorithms are a ubiquitous tool for clustering particles into discrete jet objects. Event shapes offer an alternative way to characterize jets, and one can define a jet multiplicity event shape, which can take on fractional values, using the framework of “jets without jets”. In this paper, we perform the first analytic studies of fractional jet multiplicity N-tilde{sub jet} in the context of e{sup +}e{sup −} collisions. We use fixed-order QCD to understand the N-tilde{sub jet} cross section at order α{sub s}{sup 2}, and we introduce a candidate factorization theorem to capture certain higher-order effects. The resulting distributions have a hybrid jet algorithm/event shape behavior which agrees with parton shower Monte Carlo generators. The N-tilde{sub jet} observable does not satisfy ordinary soft-collinear factorization, and the N-tilde{sub jet} cross section exhibits a number of unique features, including the absence of collinear logarithms and the presence of soft logarithms that are purely non-global. Additionally, we find novel divergences connected to the energy sharing between emissions, which are reminiscent of rapidity divergences encountered in other applications. Given these interesting properties of fractional jet multiplicity, we advocate for future measurements and calculations of N-tilde{sub jet} at hadron colliders like the LHC.

  7. Hybrid Reynolds-Averaged/Large-Eddy Simulations of a Coaxial Supersonic Free-Jet Experiment

    Science.gov (United States)

    Baurle, Robert A.; Edwards, Jack R.

    2010-01-01

    Reynolds-averaged and hybrid Reynolds-averaged/large-eddy simulations have been applied to a supersonic coaxial jet flow experiment. The experiment was designed to study compressible mixing flow phenomenon under conditions that are representative of those encountered in scramjet combustors. The experiment utilized either helium or argon as the inner jet nozzle fluid, and the outer jet nozzle fluid consisted of laboratory air. The inner and outer nozzles were designed and operated to produce nearly pressure-matched Mach 1.8 flow conditions at the jet exit. The purpose of the computational effort was to assess the state-of-the-art for each modeling approach, and to use the hybrid Reynolds-averaged/large-eddy simulations to gather insight into the deficiencies of the Reynolds-averaged closure models. The Reynolds-averaged simulations displayed a strong sensitivity to choice of turbulent Schmidt number. The initial value chosen for this parameter resulted in an over-prediction of the mixing layer spreading rate for the helium case, but the opposite trend was observed when argon was used as the injectant. A larger turbulent Schmidt number greatly improved the comparison of the results with measurements for the helium simulations, but variations in the Schmidt number did not improve the argon comparisons. The hybrid Reynolds-averaged/large-eddy simulations also over-predicted the mixing layer spreading rate for the helium case, while under-predicting the rate of mixing when argon was used as the injectant. The primary reason conjectured for the discrepancy between the hybrid simulation results and the measurements centered around issues related to the transition from a Reynolds-averaged state to one with resolved turbulent content. Improvements to the inflow conditions were suggested as a remedy to this dilemma. Second-order turbulence statistics were also compared to their modeled Reynolds-averaged counterparts to evaluate the effectiveness of common turbulence closure

  8. Separation control using synthetic vortex generator jets in axial compressor cascade

    Institute of Scientific and Technical Information of China (English)

    Xinqian Zheng; Sheng Zhou; Anping Hou; Zhengli Jiang; Daijun Ling

    2006-01-01

    An experimental investigation conducted in a high-speed plane cascade wind tunnel demonstrates that unsteady flow control by using synthetic(zero mass flux)vortex generator jets can effectively improve the aerodynamic performances and reduce(or eliminate) flow separation in axial compressor cascade.The Mach number of the incoming flow is up to 0.7 and most tested cases are at Ma=0.3.The incidence is 10° at which the boundary layer is separated from 70% of the chord length.The roles of excitation frequency,amplitude,location and pitch angle are investigated.Preliminary results show that the excitation amplitude plays a very important role.The optimal excitation location is just upstream of the separation point,and the optimal pitch angle is 35°.The maximum relative reduction of loss coefficient is 22.8%.

  9. Effect of ELMs on rotation and momentum confinement in H-mode discharges in JET

    DEFF Research Database (Denmark)

    Versloot, T.W.; de Vries, P.C.; Giroud, C.

    2010-01-01

    The loss of plasma toroidal angular momentum and thermal energy by edge localized modes (ELMs) has been studied in JET. The analysis shows a consistently larger drop in momentum in comparison with the energy loss associated with the ELMs. This difference originates from the large reduction...... in angular frequency at the plasma edge, observed to penetrate into the plasma up to r/a ~ 0.65 during large type-I ELMs. As a result, the time averaged angular frequency is lowered near the top of the pedestal with increasing ELM frequency, resulting in a significant drop in thermal Mach number at the edge...... for momentum in combination with the observed longer build-up time for the momentum density at the plasma edge....

  10. Jet charge at the LHC.

    Science.gov (United States)

    Krohn, David; Schwartz, Matthew D; Lin, Tongyan; Waalewijn, Wouter J

    2013-05-24

    Knowing the charge of the parton initiating a light-quark jet could be extremely useful both for testing aspects of the standard model and for characterizing potential beyond-the-standard-model signals. We show that despite the complications of hadronization and out-of-jet radiation such as pileup, a weighted sum of the charges of a jet's constituents can be used at the LHC to distinguish among jets with different charges. Potential applications include measuring electroweak quantum numbers of hadronically decaying resonances or supersymmetric particles, as well as standard model tests, such as jet charge in dijet events or in hadronically decaying W bosons in tt[over ¯] events. We develop a systematically improvable method to calculate moments of these charge distributions by combining multihadron fragmentation functions with perturbative jet functions and pertubative evolution equations. We show that the dependence on energy and jet size for the average and width of the jet charge can be calculated despite the large experimental uncertainty on fragmentation functions. These calculations can provide a validation tool for data independent of Monte Carlo fragmentation models.

  11. On Mach's principle: Inertia as gravitation

    CERN Document Server

    Martín, J; Tiemblo, A; Ranada, Antonio F.

    2007-01-01

    In order to test the validity of Mach's principle, we calculate the action of the entire universe on a test mass in its rest frame, which is an acceleration ${\\bf g}^*$. We show the dependence of the inertia principle on the lapse and the shift. Using the formalism of linearized gravitation, we obtain the non-relativistic limit of ${\\bf g}^*$ in terms of two integrals. We follow then two approaches. In the first one, these integrals are calculated in the actual time section $t=t_0$ up to the distance $R_U=ct_0$. In the more exact and satisfactory second approach, they are calculated over the past light cone using the formalism of the retarded potentials. The aim is to find whether the acceleration $\\dot{\\bf v}$ in the LHS of Newton's second law can be interpreted as a reactive acceleration, in other words, as minus the acceleration of gravity ${\\bf g}^*$ in the rest frame of the accelerated particle ({\\it i. e.} to know whether or not ${\\bf g}^*=-\\dot{\\bf v}$). The results strongly support Mach's idea since t...

  12. Jet Quenching via Jet Collimation

    CERN Document Server

    Casalderrey-Solana, Jorge; Wiedemann, Urs Achim

    2011-01-01

    The ATLAS Collaboration recently reported strong modifications of dijet properties in heavy ion collisions. In this work, we discuss to what extent these first data constrain already the microscopic mechanism underlying jet quenching. Simple kinematic arguments lead us to identify a frequency collimation mechanism via which the medium efficiently trims away the soft components of the jet parton shower. Through this mechanism, the observed dijet asymmetry can be accomodated with values of $\\hat{q}\\, L$ that lie in the expected order of magnitude.

  13. Mach 5 to 7 RBCC Propulsion System Testing at NASA-LeRC HTF

    Science.gov (United States)

    Perkins, H. Douglas; Thomas, Scott R.; Pack, William D.

    1996-01-01

    A series of Mach 5 to 7 freejet tests of a Rocket Based Combined Cycle (RBCC) engine were cnducted at the NASA Lewis Research Center (LERC) Hypersonic Tunnel Facility (HTF). This paper describes the configuration and operation of the HTF and the RBCC engine during these tests. A number of facility support systems are described which were added or modified to enhance the HTF test capability for conducting this experiment. The unfueled aerodynamic perfor- mance of the RBCC engine flowpath is also presented and compared to sub-scale test results previously obtained in the NASA LERC I x I Supersonic Wind Tunnel (SWT) and to Computational Fluid Dynamic (CFD) analysis results. This test program demonstrated a successful configuration of the HTF for facility starting and operation with a generic RBCC type engine and an increased range of facility operating conditions. The ability of sub-scale testing and CFD analysis to predict flowpath performance was also shown. The HTF is a freejet, blowdown propulsion test facility that can simulate up to Mach 7 flight conditions with true air composition. Mach 5, 6, and 7 facility nozzles are available, each with an exit diameter of 42 in. This combination of clean air, large scale, and Mach 7 capabilities is unique to the HTF. This RBCC engine study is the first engine test program conducted at the HTF since 1974.

  14. Fluorescence Imaging Study of Impinging Underexpanded Jets

    Science.gov (United States)

    Inman, Jennifer A.; Danehy, Paul M.; Nowak, Robert J.; Alderfer, David W.

    2008-01-01

    An experiment was designed to create a simplified simulation of the flow through a hole in the surface of a hypersonic aerospace vehicle and the subsequent impingement of the flow on internal structures. In addition to planar laser-induced fluorescence (PLIF) flow visualization, pressure measurements were recorded on the surface of an impingement target. The PLIF images themselves provide quantitative spatial information about structure of the impinging jets. The images also help in the interpretation of impingement surface pressure profiles by highlighting the flow structures corresponding to distinctive features of these pressure profiles. The shape of the pressure distribution along the impingement surface was found to be double-peaked in cases with a sufficiently high jet-exit-to-ambient pressure ratio so as to have a Mach disk, as well as in cases where a flow feature called a recirculation bubble formed at the impingement surface. The formation of a recirculation bubble was in turn found to depend very sensitively upon the jet-exit-to-ambient pressure ratio. The pressure measured at the surface was typically less than half the nozzle plenum pressure at low jet pressure ratios and decreased with increasing jet pressure ratios. Angled impingement cases showed that impingement at a 60deg angle resulted in up to a factor of three increase in maximum pressure at the plate compared to normal incidence.

  15. Ernst Mach and the episode of the monocular depth sensations.

    Science.gov (United States)

    Banks, E C

    2001-01-01

    Although Ernst Mach is widely recognized in psychology for his discovery of the effects of lateral inhibition in the retina ("Mach Bands"), his contributions to the theory of depth perception are not as well known. Mach proposed that steady luminance gradients triggered sensations of depth. He also expanded on Ewald Hering's hypothesis of "monocular depth sensations," arguing that they were subject to the same principle of lateral inhibition as light sensations were. Even after Hermann von Helmholtz's attack on Hering in 1866, Mach continued to develop theories involving the monocular depth sensations, proposing an explanation of perspective drawings in which the mutually inhibiting depth sensations scaled to a mean depth. Mach also contemplated a theory of stereopsis in which monocular depth perception played the primary role. Copyright 2001 John Wiley & Sons, Inc.

  16. Effects of Wing Leading Edge Penetration with Venting and Exhaust Flow from Wheel Well at Mach 24 in Flight

    Science.gov (United States)

    Gnoffo, Peter A.

    2003-01-01

    A baseline solution for CFD Point 1 (Mach 24) in the STS-107 accident investigation was modified to include effects of: (1) holes through the leading edge into a vented cavity; and (2) a scarfed, conical nozzle directed toward the centerline of the vehicle from the forward, inboard corner of the landing gear door. The simulations were generated relatively quickly and early in the investigation because simplifications were made to the leading edge cavity geometry and an existing utility to merge scarfed nozzle grid domains with structured baseline external domains was implemented. These simplifications in the breach simulations enabled: (1) a very quick grid generation procedure; and (2) high fidelity corroboration of jet physics with internal surface impingements ensuing from a breach through the leading edge, fully coupled to the external shock layer flow at flight conditions. These simulations provided early evidence that the flow through a two-inch diameter (or larger) breach enters the cavity with significant retention of external flow directionality. A normal jet directed into the cavity was not an appropriate model for these conditions at CFD Point 1 (Mach 24). The breach diameters were of the same order or larger than the local, external boundary-layer thickness. High impingement heating and pressures on the downstream lip of the breach were computed. It is likely that hole shape would evolve as a slot cut in the direction of the external streamlines. In the case of the six-inch diameter breach the boundary layer is fully ingested. The intent of externally directed jet simulations in the second scenario was to approximately model aerodynamic effects of a relatively large internal wing pressure, fueled by combusting aluminum, which deforms the corner of the landing gear door and directs a jet across the windside surface. These jet interactions, in and of themselves, were not sufficiently large to explain observed aerodynamic behavior.

  17. The effects of profiles on supersonic jet noise

    Science.gov (United States)

    Tiwari, S. N.; Bhat, T. R. S.

    1994-01-01

    The effect of velocity profiles on supersonic jet noise are studied by using stability calculations made for a shock-free coannular jet, with both the inner and outer flows supersonic. The Mach wave emission process is modeled as the noise generated by the large scale turbulent structures or the instability waves in the mixing region. Both the vortex-sheet and the realistic finite thickness shear layer models are considered. The stability calculations were performed for both inverted and normal velocity profiles. Comparisons are made with the results for an equivalent single jet, based on equal thrust, mass flow rate and exit area to that of the coannular jet. The advantages and disadvantages of these velocity profiles as far as noise radiation is concerned are discussed. It is shown that the Rayleigh's model prediction of the merits and demerits of different velocity profiles are in good agreement with the experimental data.

  18. Dichotomy of Solar Coronal Jets: Standard Jets and Blowout Jets

    Science.gov (United States)

    Moore, R. L.; Cirtain, J. W.; Sterling, A. C.; Falconer, D. A.

    2010-01-01

    By examining many X-ray jets in Hinode/XRT coronal X-ray movies of the polar coronal holes, we found that there is a dichotomy of polar X-ray jets. About two thirds fit the standard reconnection picture for coronal jets, and about one third are another type. We present observations indicating that the non-standard jets are counterparts of erupting-loop H alpha macrospicules, jets in which the jet-base magnetic arch undergoes a miniature version of the blowout eruptions that produce major CMEs. From the coronal X-ray movies we present in detail two typical standard X-ray jets and two typical blowout X-ray jets that were also caught in He II 304 Angstrom snapshots from STEREO/EUVI. The distinguishing features of blowout X-ray jets are (1) X-ray brightening inside the base arch in addition to the outside bright point that standard jets have, (2) blowout eruption of the base arch's core field, often carrying a filament of cool (T 10(exp 4) - 10(exp 5) K) plasma, and (3) an extra jet-spire strand rooted close to the bright point. We present cartoons showing how reconnection during blowout eruption of the base arch could produce the observed features of blowout X-ray jets. We infer that (1) the standard-jet/blowout-jet dichotomy of coronal jets results from the dichotomy of base arches that do not have and base arches that do have enough shear and twist to erupt open, and (2) there is a large class of spicules that are standard jets and a comparably large class of spicules that are blowout jets.

  19. Distributed optical fiber perturbation sensing system based on Mach-Zehnder interferometer

    Institute of Scientific and Technical Information of China (English)

    Wengang WANG; Deming LIU; Hairong LIU; Qizhen SUN; Zhifeng SUN; Xu ZHANG; Ziheng XU

    2009-01-01

    A novel distributed optical fiber vibration-sensing system based on Mach-Zehnder interferometer has been designed and experimentally demonstrated. Firstly, the principle of Mach-Zehnder optical path interferometer technique is clarified. The output of the Mach-Zehnder interferometer is proportional to the phase shift induced by the perturbation. Secondly, the system consists of the laser diode (LD) as the light source, fiber, Mach-Zehnder optical interferometers as the sensing units, a 1×N star fiber-optic coupler, an N×1 fiber-optic coupler, a photodiode (PD) detector, and a computer used in signal processing. The entire monitoring region of this system is divided into several small zones, and each small monitoring zone is independent from each other. All of the small monitoring zones have their own sensing unit, which is defined by Mach-Zehnder optical interferometer. A series of sensing units are connected by the star fiber-optic couplers to form a whole sensing net. Thirdly, signal-processing techniques are subsequently used to calculate the phase shift to estimate whether intruders appear. The sensing system is able to locate the vibration signal simultaneously, includ-ing multiple vibrations at different positions, by employing the time-division multiplexed (TDM) technique. Finally, the operation performance of the proposed system is tested in the experiment lab with the conditions as follows: the number of the sensing units is 3, the length of the sensing fiber is 50 m, and the wavelength of the light diode is 1550nm. Based on these investigations, the fiber surrounding alert system is achieved. We have experimen-tally demonstrated that the sensing system can measure both the frequency and position of the vibration in real time, with a spatial positional resolution better than 50 m in an area of 1 km2.

  20. Progress in the development of a Mach 5 quiet tunnel

    Science.gov (United States)

    Beckwith, I. E.; Andere, J. B.; Stainback, P. C.; Harvey, W. D.; Srokowski, A. J.

    1977-01-01

    Various techniques to control and reduce radiated noise and the application of these techniques to a 1/2-water Mach 5 quiet tunnel are reviewed. Measurements in a small scale nozzle have shown that the upstream part of the supersonic wall boundary layer could be maintained laminar up to Reynolds numbers of nearly 4 x 1 million based on the test region length upstream of the nozzle exit. Turbulent noise levels in this test region were then reduced by an order of magnitude. To maintain low noise levels at higher Reynolds numbers, laminar flow noise shields are required. Data are presented for shields that consist of small diameter rods alined nearly parallel to the entrance flow with small gaps between the rods for boundary layer suction. Analysis and data presented on the noise shielding and reflection characteristics of flat plates and a rod-wall test panel indicate that freestream turbulent noise can be reduced by 70 to 90 deg at high Reynolds numbers. Performance estimates for the 1/2-meter tunnel are based on these results.

  1. Investigation of the flow-field of two parallel round jets impinging normal to a flat surface

    Science.gov (United States)

    Myers, Leighton M.

    The flow-field features of dual jet impingement were investigated through sub-scale model experiments. The experiments were designed to simulate the environment of a Short Takeoff, and Vertical Landing, STOVL, aircraft performing a hover over the ground, at different heights. Two different dual impinging jet models were designed, fabricated, and tested. The Generation 1 Model consisted of two stainless-steel nozzles, in a tandem configuration, each with an exit diameter of approximately 12.7 mm. The front convergent nozzle was operated at the sonic Mach number of 1.0, while the rear C-D nozzle was generally operated supersonically. The nozzles were embedded in a rectangular flat plate, referred to as the lift plate, which represents a generic lifting surface. The lift plate was instrumented with 36 surface pressure taps, which were used to examine the flow entrainment and recirculation patterns caused by varying the stand-off distance from the nozzle exits to a flat ground surface. The stand-off distance was adjusted with a sliding rail frame that the ground plane was mounted to. Typical dimensionless stand-off distances (ground plane separation) were H/DR = 2 to 24. A series of measurements were performed with the Generation 1 model, in the Penn State High Speed Jet Aeroacoustics Laboratory, to characterize the basic flow phenomena associated with dual jet impingement. The regions of interest in the flow-field included the vertical jet plume(s), near impingement/turning region, and wall jet outwash. Other aspects of interest included the loss of lift (suckdown) that occurs as the ground plane separation distance becomes small, and azimuthal variation of the acoustic noise radiation. Various experimental methods and techniques were used to characterize the flow-field, including flow-visualization, pressure rake surveys, surface mounted pressure taps, laser Doppler velocimetry, and acoustic microphone arrays. A second dual impinging jet scale model, Generation 2

  2. Nanofluid impingement jet heat transfer.

    Science.gov (United States)

    Zeitoun, Obida; Ali, Mohamed

    2012-02-17

    Experimental investigation to study the heat transfer between a vertical round alumina-water nanofluid jet and a horizontal circular round surface is carried out. Different jet flow rates, jet nozzle diameters, various circular disk diameters and three nanoparticles concentrations (0, 6.6 and 10%, respectively) are used. The experimental results indicate that using nanofluid as a heat transfer carrier can enhance the heat transfer process. For the same Reynolds number, the experimental data show an increase in the Nusselt numbers as the nanoparticle concentration increases. Size of heating disk diameters shows reverse effect on heat transfer. It is also found that presenting the data in terms of Reynolds number at impingement jet diameter can take into account on both effects of jet heights and nozzle diameter. Presenting the data in terms of Peclet numbers, at fixed impingement nozzle diameter, makes the data less sensitive to the percentage change of the nanoparticle concentrations. Finally, general heat transfer correlation is obtained verses Peclet numbers using nanoparticle concentrations and the nozzle diameter ratio as parameters.

  3. Improving Jet Reactor Configuration for Production of Carbon Nanotubes

    Science.gov (United States)

    Povitsky, Alex

    2000-01-01

    The jet mixing reactor has been proposed for the industrial production of fullerene carbon nanotubes. Here we study the flowfield of this reactor using the SIMPLER algorithm. Hot peripheral jets are used to enhance heating of the central jet by mixing with the ambiance of reactor. Numerous configurations of peripheral jets with various number of jets, distance between nozzles, angles between the central jet and a peripheral jets, and twisted configuration of nozzles are considered. Unlike the previous studies of jet mixing, the optimal configuration of peripheral jets produces strong non-uniformity of the central jet in a cross-section. The geometrical shape of reactor is designed to obtain a uniform temperature of a catalyst.

  4. Study on the breakup length of circular impinging jet

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Circular impinging jet, which is widely used in accelerated control cooling (ACC) equipment to accelerate the cooling of hot rolled plates, is subject to breakup, and may result in undesirable cooling effect. Therefore, the jet breakup should be avoided as possible in industrial production. The objective of this study is to find the relation of the processing parameters of the ACC equipment versus the breakup length of jet with weaker turbulence. To obtain quantitative findings, not only relative experimental study but also numerical simulation was carried out. For a weaker turbulent water jet, the breakup length increases with the increase of jet diameter, as well as with the jet velocity; jet diameter has a significant effect on the breakup length for a certain flow rate when compared with jet velocity; finally a suggested correlation of the jet breakup length versus jet Weber number is presented in this study.

  5. A Magnetically-Switched, Rotating Black Hole Model For the Production of Extragalactic Radio Jets and the Fanaroff and Riley Class Division

    CERN Document Server

    Meier, D L

    1998-01-01

    A model is presented in which both Fanaroff and Riley class I and II extragalactic jets are produced by magnetized accretion disk coronae in the ergospheres of rotating black holes. While the jets are produced in the accretion disk itself, the output power still is an increasing function of the black hole angular momentum. For high enough spin, the black hole triggers the magnetic switch, producing highly-relativistic, kinetic-energy-dominated jets instead of Poynting-flux-dominated ones for lower spin. The coronal mass densities needed to trigger the switch at the observed FR break power are quite small ($\\sim 10^{-15} g cm^{-3}$), implying that the source of the jet material may be either a pair plasma or very tenuous electron-proton corona, not the main accretion disk itself. The model explains the differences in morphology and Mach number between FR I and II sources and the observed trend for massive galaxies to undergo the FR I/II transition at higher radio power. It also is consistent with the energy co...

  6. Numerical simulation of the generation mechanism of axisymmetric supersonic jet screech tones

    Science.gov (United States)

    Li, X. D.; Gao, J. H.

    2005-08-01

    In this paper an axisymmetric computational aeroacoustic procedure is developed to investigate the generation mechanism of axisymmetric supersonic jet screech tones. The axisymmetric Navier-Stokes equations and the two equations standard k-ɛ turbulence model modified by Turpin and Troyes ["Validation of a two-equation turbulence model for axisymmetric reacting and non-reaction flows," AIAA Paper No. 2000-3463 (2000)] are solved in the generalized curvilinear coordinate system. A generalized wall function is applied in the nozzle exit wall region. The dispersion-relation-preserving scheme is applied for space discretization. The 2N storage low-dissipation and low-dispersion Runge-Kutta scheme is employed for time integration. Much attention is paid to far-field boundary conditions and turbulence model. The underexpanded axisymmetric supersonic jet screech tones are simulated over the Mach number from 1.05 to 1.2. Numerical results are presented and compared with the experimental data by other researchers. The simulated wavelengths of A0, A1, A2, and B modes and part of simulated amplitudes agree very well with the measurement data by Ponton and Seiner ["The effects of nozzle exit lip thickness on plume resonance," J. Sound Vib. 154, 531 (1992)]. In particular, the phenomena of modes jumping have been captured correctly although the numerical procedure has to be improved to predict the amplitudes of supersonic jet screech tones more accurately. Furthermore, the phenomena of shock motions are analyzed. The predicted splitting and combination of shock cells are similar with the experimental observations of Panda ["Shock oscillation in underexpanded screeching jets," J. Fluid. Mech. 363, 173 (1998)]. Finally, the receptivity process is numerically studied and analyzed. It is shown that the receptivity zone is associated with the initial thin shear layer, and the incoming and reflected sound waves.

  7. Mach band type lateral inhibition in different sense organs.

    Science.gov (United States)

    von Békésy, G

    1967-01-01

    Experiments were done on the skin with shearing forces, vibrations, and heat stimuli and on the tongue with taste stimuli to show that the well known Mach bands are not exclusively a visual phenomenon. On the contrary, it is not difficult to produce areas of a decreased sensation magnitude corresponding to the dark Mach bands in vision. It is shown on a geometrical model of nervous interaction that the appearance of Mach bands for certain patterns of stimulus distribution is correlated with nervous inhibition surrounding the area of sensation. This corroborates the earlier finding that surrounding every area transmitting sensation there is an area simultaneously transmitting inhibition.

  8. The Influence of Ernst Mach in the Teaching of Mechanics

    Science.gov (United States)

    Assis, Andre K. T.; Zylbersztajn, Arden

    We present Newton's main ideas for the formulation of classical mechanics as given in the Principia. Then we discuss Ernst Mach's criticisms of Newtonian mechanics as contained in his book The Science of Mechanics. We analyze the influence of Mach's ideas in the teaching of classical mechanics considering five representative textbooks: those of Kittel, Knight and Ruderman; Marion and Thornton; Symon; Feynman, Leighton and Sands; and Goldstein. We conclude that the influence of Mach's ideas has been very great, being incorporated in the textbooks, although not always with the deserved acknowledgment.

  9. Jet Car Track Site

    Data.gov (United States)

    Federal Laboratory Consortium — Located in Lakehurst, New Jersey, the Jet Car Track Site supports jet cars with J57 engines and has a maximum jet car thrust of 42,000 pounds with a maximum speed of...

  10. Hybrid Reynolds-Averaged/Large-Eddy Simulations of a Co-Axial Supersonic Free-Jet Experiment

    Science.gov (United States)

    Baurle, R. A.; Edwards, J. R.

    2009-01-01

    Reynolds-averaged and hybrid Reynolds-averaged/large-eddy simulations have been applied to a supersonic coaxial jet flow experiment. The experiment utilized either helium or argon as the inner jet nozzle fluid, and the outer jet nozzle fluid consisted of laboratory air. The inner and outer nozzles were designed and operated to produce nearly pressure-matched Mach 1.8 flow conditions at the jet exit. The purpose of the computational effort was to assess the state-of-the-art for each modeling approach, and to use the hybrid Reynolds-averaged/large-eddy simulations to gather insight into the deficiencies of the Reynolds-averaged closure models. The Reynolds-averaged simulations displayed a strong sensitivity to choice of turbulent Schmidt number. The baseline value chosen for this parameter resulted in an over-prediction of the mixing layer spreading rate for the helium case, but the opposite trend was noted when argon was used as the injectant. A larger turbulent Schmidt number greatly improved the comparison of the results with measurements for the helium simulations, but variations in the Schmidt number did not improve the argon comparisons. The hybrid simulation results showed the same trends as the baseline Reynolds-averaged predictions. The primary reason conjectured for the discrepancy between the hybrid simulation results and the measurements centered around issues related to the transition from a Reynolds-averaged state to one with resolved turbulent content. Improvements to the inflow conditions are suggested as a remedy to this dilemma. Comparisons between resolved second-order turbulence statistics and their modeled Reynolds-averaged counterparts were also performed.

  11. Jet Dipolarity: Top Tagging with Color Flow

    Energy Technology Data Exchange (ETDEWEB)

    Hook, Anson; Jankowiak, Martin; /SLAC /Stanford U., Phys. Dept.; Wacker, Jay G.; /SLAC

    2011-08-12

    A new jet observable, dipolarity, is introduced that can distinguish whether a pair of subjets arises from a color singlet source. This observable is incorporated into the HEPTopTagger and is shown to improve discrimination between top jets and QCD jets for moderate to high p{sub T}. The impressive resolution of the ATLAS and CMS detectors means that a typical QCD jet at the LHC deposits energy in {Omicron}(10-100) calorimeter cells. Such fine-grained calorimetry allows for jets to be studied in much greater detail than previously, with sophisticated versions of current techniques making it possible to measure more than just the bulk properties of jets (e.g. event jet multiplicities or jet masses). One goal of the LHC is to employ these techniques to extend the amount of information available from each jet, allowing for a broader probe of the properties of QCD. The past several years have seen significant progress in developing such jet substructure techniques. A number of general purpose tools have been developed, including: (i) top-tagging algorithms designed for use at both lower and higher p{sub T} as well as (ii) jet grooming techniques such as filtering, pruning, and trimming, which are designed to improve jet mass resolution. Jet substructure techniques have also been studied in the context of specific particle searches, where they have been shown to substantially extend the reach of traditional search techniques in a wide variety of scenarios, including for example boosted Higgses, neutral spin-one resonances, searches for supersymmetry, and many others. Despite these many successes, however, there is every reason to expect that there remains room for refinement of jet substructure techniques.

  12. Mach-Zehnder Phasing Sensor for Elts

    Science.gov (United States)

    Dohlen, Kjetil; Montoya-Martinez, Luzma

    Segmented mirror technology has been successfully applied to 10m class telescopes (Keck HET GTC) and its application to future extremely large telescopes (20m NG-CFHT 30m CELT 50m EURO50 100m OWL) is required. Extensive use of adaptive optics in these telescopes puts stringent specifications on wavefront error allowing typically of the order of lambda/20 to segmentation errors. Several phasing metrology schemes adaptable to these giant telescopes are under development. We investigate a novel technique based on the Mach-Zehnder interferometer with a spatial filter in one arm. Atmospheric turbulence is tolerated in this setup if the spatial filter has the size similar to that of the seeing disk. The resulting interference pattern only contains the high-frequency spatial information including information about the piston step height. We describe the theoretical analysis of this system and show simulated and experimatal results. Different error sources are analyzed in order to provide a preliminary idea of the merits of this technique compared with other phasing techniques.

  13. Mach 6 flowfield survey at the engine inlet of a research airplane

    Science.gov (United States)

    Johnson, C. B.; Lawing, P. L.

    1977-01-01

    A flowfield survey was conducted to better define the nature of vehicle forebody flowfield at the inlet location of an airframe-integrated scramjet engine mounted on the lower surface of a high-speed research airplane to be air launched from a B-52 and rocket boosted to Mach 6. The tests were conducted on a 1/30-scale brass model in a Mach-6 20-in. wind tunnel at Reynolds number of 11,200,000 based on distance to engine inlet. Boundary layer profiles at five spanwise locations indicate that the boundary layer in the area of the forebody centerline is more than twice as thick as the boundary layer at three outboard stations. It is shown that the cold streak found in heating contours on the centerline of the forebody is caused by a thickening of the boundary layer on the centerline, and that this thickening decreases with angle of attack.

  14. A fast spatial scanning combination emissive and mach probe for edge plasma diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Lehmer, R.D.; LaBombard, B.; Conn, R.W.

    1989-04-01

    A fast spatially scanning emissive and mach probe has been developed for the measurement of plasma profiles in the PISCES facility at UCLA. A pneumatic cylinder is used to drive a multiple tip probe along a 15cm stroke in less than 400msec, giving single shot profiles while limiting power deposition to the probe. A differentially pumped sliding O-ring seal allows the probe to be moved between shots to infer two and three dimensional profiles. The probe system has been used to investigate the plasma potential, density, and parallel mach number profiles of the presheath induced by a wall surface and scrape-off-layer profile modifications in biased limiter simulation experiments. Details of the hardware, data acquisition electronics, and tests of probe reliability are discussed. 30 refs., 24 figs.

  15. Krypton tagging velocimetry in a turbulent Mach 2.7 boundary layer

    Science.gov (United States)

    Zahradka, D.; Parziale, N. J.; Smith, M. S.; Marineau, E. C.

    2016-05-01

    The krypton tagging velocimetry (KTV) technique is applied to the turbulent boundary layer on the wall of the "Mach 3 Calibration Tunnel" at Arnold Engineering Development Complex (AEDC) White Oak. Profiles of velocity were measured with KTV and Pitot-pressure probes in the Mach 2.7 turbulent boundary layer comprised of 99 % {N}2/1 % Kr at momentum-thickness Reynolds numbers of {Re}_{\\varTheta }= 800, 1400, and 2400. Agreement between the KTV- and Pitot-derived velocity profiles is excellent. The KTV and Pitot velocity data follow the law of the wall in the logarithmic region with application of the Van Driest I transformation. The velocity data are analyzed in the outer region of the boundary layer with the law of the wake and a velocity-defect law. KTV-derived streamwise velocity fluctuation measurements are reported and are consistent with data from the literature. To enable near-wall measurement with KTV (y/δ ≈ 0.1-0.2), an 800-nm longpass filter was used to block the 760.2-nm read-laser pulse. With the longpass filter, the 819.0-nm emission from the re-excited Kr can be imaged to track the displacement of the metastable tracer without imaging the reflection and scatter from the read-laser off of solid surfaces. To operate the Mach 3 AEDC Calibration Tunnel at several discrete unit Reynolds numbers, a modification was required and is described herein.

  16. Improvement of Flow Quality in NAL Chofu Mach 10 Nozzle

    Science.gov (United States)

    Lacey, John; Inoue, Yasutoshi; Higashida, Akio; Inoue, Manabu; Ishizaka, Kouichi; Korte, John J.

    2002-01-01

    As a result of CFD analysis and remachining of the nozzle, the flow quality of the Mach 10 Hypersonic Wind Tunnel at NAL Chofu, Japan was improved. The subsequent test results validated the CFD analytical predictions by NASA and MHL.

  17. Mach's Principle selects 4 space-time dimensions

    CERN Document Server

    Altshuler, Boris L

    2012-01-01

    Bi-tensor kernel in integral form of Einstein equations realizing Mach's idea of non-existence of empty space-times is taken as an inverse of differential operator ("Mach operator") defined conventionally as a second variation of Einstein's gravity Action over contravariant components of metric tensor. The choice of transverse gauge condition used in this definition does not influence results of the paper since only transverse and traceless tensor modes written on different background space-times are studied. Presence of ghosts among modes of Mach operator invalidates the integral formulation of Einstein equations. And the demand of absence of these ghosts proves to be a selection rule for dimensionality of the background space-time. In particular Mach operator written on De Sitter background or on the background of so called "Einstein Universe" does not possess tensor ghosts only in 4-dimensions. The similar demand gives non-trivial formula for dimensionalities of subspaces of the Freund-Rubin background.

  18. Mach-Zehnder Fiber-Optic Links for ICF Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Miller, E. K., Hermann, H. W.

    2012-11-01

    This article describes the operation and evolution of Mach-Zehnder links for single-point detectors in inertial confinement fusion experimental facilities, based on the Gamma Reaction History (GRH) diagnostic at the National Ignition Facility.

  19. Improvement of Flow Quality in NAL Chofu Mach 10 Nozzle

    Science.gov (United States)

    Lacey, John; Inoue, Yasutoshi; Higashida, Akio; Inoue, Manabu; Ishizaka, Kouichi; Korte, John J.

    2002-01-01

    As a result of CFD analysis and remachining of the nozzle, the flow quality of the Mach 10 Hypersonic Wind Tunnel at NAL Chofu, Japan was improved. The subsequent test results validated the CFD analytical predictions by NASA and MHL.

  20. Transition boundary between regular and Mach reflections for a moving shock interacting with a wedge in inviscid and polytropic air

    Science.gov (United States)

    Hryniewicki, M. K.; Gottlieb, J. J.; Groth, C. P. T.

    2017-07-01

    The transition boundary separating the region of regular reflection from the regions of single-, transitional-, and double-Mach reflections for a planar shock wave moving in air and interacting with an inclined wedge in a shock tube is studied by both analytical methods and computational-fluid-dynamic simulations. The analytical solution for regular reflection and the corresponding solutions from the extreme-angle (detachment), sonic, and mechanical-equilibrium transition criteria by von Neumann (Oblique reflection of shocks, Explosive Research Report No. 12, Navy Department, Bureau of Ordnance, U.S. Dept. Comm. Tech. Serv. No. PB37079 (1943). Also, John von Neumann, Collected Works, Pergamon Press 6, 238-299, 1963) are first revisited and revised. The boundary between regular and Mach reflection is then determined numerically using an advanced computational-fluid-dynamics algorithm to solve Euler's inviscid equations for unsteady motion in two spatial dimensions. This numerical transition boundary is determined by post-processing many closely stationed flow-field simulations, to determine the transition point when the Mach stem of the Mach-reflection pattern just disappears and this pattern then transcends into that of regular reflection. The new numerical transition boundary is shown to agree well with von Neumann's closely spaced sonic and extreme-angle boundaries for weak incident shock Mach numbers from 1.0 to 1.6, but this new boundary trends upward and above von Neumann's sonic and extreme-angle boundaries by a couple of degrees at larger shock Mach numbers from 1.6 to 4.0. Furthermore, the new numerically determined transition boundary is shown to agree well with very few available experimental data obtained from previous experiments designed to reflect two symmetrical moving oblique shock waves along a plane without a shear or boundary layer.

  1. Transition boundary between regular and Mach reflections for a moving shock interacting with a wedge in inviscid and polytropic air

    Science.gov (United States)

    Hryniewicki, M. K.; Gottlieb, J. J.; Groth, C. P. T.

    2016-12-01

    The transition boundary separating the region of regular reflection from the regions of single-, transitional-, and double-Mach reflections for a planar shock wave moving in air and interacting with an inclined wedge in a shock tube is studied by both analytical methods and computational-fluid-dynamic simulations. The analytical solution for regular reflection and the corresponding solutions from the extreme-angle (detachment), sonic, and mechanical-equilibrium transition criteria by von Neumann (Oblique reflection of shocks, Explosive Research Report No. 12, Navy Department, Bureau of Ordnance, U.S. Dept. Comm. Tech. Serv. No. PB37079 (1943). Also, John von Neumann, Collected Works, Pergamon Press 6, 238-299, 1963) are first revisited and revised. The boundary between regular and Mach reflection is then determined numerically using an advanced computational-fluid-dynamics algorithm to solve Euler's inviscid equations for unsteady motion in two spatial dimensions. This numerical transition boundary is determined by post-processing many closely stationed flow-field simulations, to determine the transition point when the Mach stem of the Mach-reflection pattern just disappears and this pattern then transcends into that of regular reflection. The new numerical transition boundary is shown to agree well with von Neumann's closely spaced sonic and extreme-angle boundaries for weak incident shock Mach numbers from 1.0 to 1.6, but this new boundary trends upward and above von Neumann's sonic and extreme-angle boundaries by a couple of degrees at larger shock Mach numbers from 1.6 to 4.0. Furthermore, the new numerically determined transition boundary is shown to agree well with very few available experimental data obtained from previous experiments designed to reflect two symmetrical moving oblique shock waves along a plane without a shear or boundary layer.

  2. Inclusive Jets in PHP

    Science.gov (United States)

    Roloff, P.

    Differential inclusive-jet cross sections have been measured in photoproduction for boson virtualities Q^2 < 1 GeV^2 with the ZEUS detector at HERA using an integrated luminosity of 300 pb^-1. Jets were identified in the laboratory frame using the k_T, anti-k_T or SIScone jet algorithms. Cross sections are presented as functions of the jet pseudorapidity, eta(jet), and the jet transverse energy, E_T(jet). Next-to-leading-order QCD calculations give a good description of the measurements, except for jets with low E_T(jet) and high eta(jet). The cross sections have the potential to improve the determination of the PDFs in future QCD fits. Values of alpha_s(M_Z) have been extracted from the measurements based on different jet algorithms. In addition, the energy-scale dependence of the strong coupling was determined.

  3. Tagging and suppression of pileup jets

    CERN Document Server

    The ATLAS collaboration

    2014-01-01

    The suppression of pileup jets has been a crucial component of many physics analyses using 2012 LHC proton-proton collisions. In ATLAS, tracking information has been used to calculate a variable called the jet-vertex-fraction, which is the fraction of the total mo- mentum of tracks in the jet which is associated to the primary vertex. Imposing a minimum on this variable rejects the majority of pileup jets, but leads to hard-scatter jet efficiencies that depend on the number of reconstructed primary vertices in the event ($N_{Vtx}$). In this note, new track-based variables to suppress pileup jets are developed in such a way that the resulting hard-scatter jet efficiency is stable as a function of $N_{Vtx}$. A multivariate combina- tion of two such variables called the jet-vertex-tagger is constructed. In addition, it is shown that jet-vertex association can be applied to large-R jets, providing a track-based grooming technique that is as powerful as calorimeter-based trimming but based on complementary trackin...

  4. Jet engine performance enhancement through use of a wave-rotor topping cycle

    Science.gov (United States)

    Wilson, Jack; Paxson, Daniel E.

    1993-01-01

    A simple model is used to calculate the thermal efficiency and specific power of simple jet engines and jet engines with a wave-rotor topping cycle. The performance of the wave rotor is based on measurements from a previous experiment. Applied to the case of an aircraft flying at Mach 0.8, the calculations show that an engine with a wave rotor topping cycle may have gains in thermal efficiency of approximately 1 to 2 percent and gains in specific power of approximately 10 to 16 percent over a simple jet engine with the same overall compression ratio. Even greater gains are possible if the wave rotor's performance can be improved.

  5. Integrated Mach-Zehnder interferometer for Bose-Einstein condensates.

    Science.gov (United States)

    Berrada, T; van Frank, S; Bücker, R; Schumm, T; Schaff, J-F; Schmiedmayer, J

    2013-01-01

    Particle-wave duality enables the construction of interferometers for matter waves, which complement optical interferometers in precision measurement devices. This requires the development of atom-optics analogues to beam splitters, phase shifters and recombiners. Integrating these elements into a single device has been a long-standing goal. Here we demonstrate a full Mach-Zehnder sequence with trapped Bose-Einstein condensates confined on an atom chip. Particle interactions in our Bose-Einstein condensate matter waves lead to a nonlinearity, absent in photon optics. We exploit it to generate a non-classical state having reduced number fluctuations inside the interferometer. Making use of spatially separated wave packets, a controlled phase shift is applied and read out by a non-adiabatic matter-wave recombiner. We demonstrate coherence times a factor of three beyond what is expected for coherent states, highlighting the potential of entanglement as a resource for metrology. Our results pave the way for integrated quantum-enhanced matter-wave sensors.

  6. Elliptic nozzle aspect ratio effect on controlled jet propagation

    Science.gov (United States)

    Aravindh Kumar, S. M.; Rathakrishnan, Ethirajan

    2017-04-01

    The present study deals with the control of a Mach 2 elliptic jet from a convergent-divergent elliptic nozzle of aspect ratio 4 using tabs at the nozzle exit. The experiments were carried out for rectangular and triangular tabs of the same blockage, placed along the major and minor axes of the nozzle exit, at different levels of nozzle expansion. The triangular tabs along the minor axis promoted superior mixing compared to the other controlled jets and caused substantial core length reduction at all the nozzle pressure ratios studied. The rectangular tabs along the minor axis caused core length reduction at all pressure ratios, but the values were minimal compared to that of triangular tabs along the minor axis. For all the test conditions, the mixing promotion caused by tabs along the major axis was inferior to that of tabs along the minor axis. The waves present in the core of controlled jets were visualized using a shadowgraph. Comparison of the present results with the results of a controlled Mach 2 elliptic jet of aspect ratio 2 (Aravindh Kumar and Sathakrishnan 2016 J. Propulsion Power 32 121-33, Aravindh Kumar and Rathakrishnan 2016 J. Aerospace Eng. at press (doi:10.1177/0954410016652921)) show that for all levels of expansion, the mixing effectiveness of triangular tabs along the minor axis of an aspect ratio 4 nozzle is better than rectangular or triangular tabs along the minor axis of an aspect ratio 2 nozzle.

  7. Application of Tomo-PIV in a large-scale supersonic jet flow facility

    Science.gov (United States)

    Wernet, Mark P.

    2016-09-01

    Particle imaging velocimetry (PIV) has been used extensively at NASA GRC over the last 15 years to build a benchmark data set of hot and cold jet flow measurements in an effort to understand acoustic noise sources in high-speed jets. Identifying the noise sources in high-speed jets is critical for ultimately modifying the nozzle hardware design/operation and therefore reducing the jet noise. Tomographic PIV (Tomo-PIV) is an innovative approach for acquiring and extracting velocity information across extended volumes of a flow field, enabling the computation of additional fluid mechanical properties not typically available using traditional PIV techniques. The objective of this work was to develop and implement the Tomo-PIV measurement capability and apply it in a large-scale outdoor test facility, where seeding multiple flow streams and operating in the presence of daylight presents formidable challenges. The newly developed Tomo-PIV measurement capability was applied in both a subsonic M 0.9 flow and an under-expanded M 1.4 heated jet flow field. Measurements were also obtained using traditional two-component (2C) PIV and stereo PIV in the M 0.9 flow field for comparison and validation of the Tomo-PIV results. In the case of the M 1.4 flow, only the 2C PIV was applied to allow a comparison with the Tomo-PIV measurement. The Tomo-PIV fields-of-view covered 180 × 180 × 10 mm, and the reconstruction domains were 3500 × 3500 × 200 voxels. These Tomo-PIV measurements yielded all three components of vorticity across entire planes for the first time in heated supersonic jet flows and provided the first full 3D reconstruction of the Mach disk and oblique shock intersections inside of the barrel shocks. Measuring all three components of vorticity across multiple planes in the flow, potentially reduces the number of measurement configurations (streamwise and cross-stream PIV) required to fully characterize the mixing-enhanced nozzle flows routinely studied in

  8. The Giant Jet

    Science.gov (United States)

    Neubert, T.; Chanrion, O.; Arnone, E.; Zanotti, F.; Cummer, S.; Li, J.; Füllekrug, M.; van der Velde, O.

    2012-04-01

    Thunderstorm clouds may discharge directly to the ionosphere in spectacular luminous jets - the longest electric discharges on our planet. The electric properties of jets, such as their polarity, conductivity, and currents, have been predicted by models, but are poorly characterized by measurements. Here we present an analysis of the first gigantic jet that with certainty has a positive polarity. The jet region in the mesosphere was illuminated by an unusual sprite discharge generated by a positive cloud-to-ground lightning flash shortly after the onset of the jet. The sprite appeared with elements in a ring at ~40 km distance around the jet, the elements pointing curving away from the jet. This suggests that the field close the jet partially cancels the field driving the sprite. From a simple model of the event we conclude that a substantial portion of the positive cloud potential must be carried to ~50 km altitude, which is also consistent with the observed channel expansion and the electromagnetic radiation associated with the jet. It is further shown that blue jets are likely to substantially modify the free electron content in the lower ionosphere because of increased electron attachment driven by the jet electric field. The model further makes clear the relationship between jets, gigantic jets, and sprites. This is the first time that sprites are used for sounding the properties of the mesosphere. The observations presented here will allow evaluation of theories for jet and gigantic jet generation and of their influence on the atmosphere-ionosphere system.

  9. Mechanisms of Plasma Acceleration in Coronal Jets

    Science.gov (United States)

    Soto, N.; Reeves, K.; Savcheva, A. S.

    2016-12-01

    magnetically accelerated. The magnetic model for this jet needs to be studied further by using a NLFFF magnetic field model and not just the potential magnetic field. This work supported by the NSF-REU solar physics program at SAO, grant number AGS-1560313 and NASA Grant NNX15AF43G

  10. H-mode fueling optimization with the supersonic deuterium jet in NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Soukhanovskii, V A; Bell, M G; Bell, R E; Gates, D A; Kaita, R; Kugel, H W; LeBlanc, B P; Lundberg, D P; Maingi, R; Menard, J E; Raman, R; Roquemore, A L; Stotler, D P

    2008-06-18

    High-performance, long-pulse 0.7-1.2 MA 6-7 MW NBI-heated small-ELM H-mode plasma discharges are developed in the National Spherical Torus Experiment (NSTX) as prototypes for confinement and current drive extrapolations to future spherical tori. It is envisioned that innovative lithium coating techniques for H-mode density pumping and a supersonic deuterium jet for plasma refueling will be used to achieve the low pedestal collisionality and low n{sub e}/n{sub G} fractions (0.3-0.6), both of which being essential conditions for maximizing the non-inductive (bootstrap and beam driven) current fractions. The low field side supersonic gas injector (SGI) on NSTX consists of a small converging-diverging graphite Laval nozzle and a piezoelectric gas valve. The nozzle is capable of producing a deuterium jet with Mach number M {le} 4, estimated gas density at the nozzle exit n {le} 5 x 10{sup 23} m{sup -3}, estimated temperature T {ge} 70 K, and flow velocity v = 2:4 km/s. The nozzle Reynolds number Reis {approx_equal} 6000. The nozzle and the valve are enclosed in a protective carbon fiber composite shroud and mounted on a movable probe at a midplane port location. Despite the beneficial L-mode fueling experience with supersonic jets in limiter tokamaks, there is a limited experience with fueling of high-performance H-mode divertor discharges and the associated density, MHD stability, and MARFE limits. In initial supersonic deuterium jet fueling experiments in NSTX, a reliable H-mode access, a low NBI power threshold, P{sub LH} {le} 2 MW, and a high fueling efficiency (0.1-0.4) have been demonstrated. Progress has also been made toward a better control of the injected fueling gas by decreasing the uncontrolled high field side (HFS) injector fueling rate by up to 95 % and complementing it with the supersonic jet fueling. These results motivated recent upgrades to the SGI gas delivery and control systems. The new SGI-Upgrade (SGI-U) capabilities include multi-pulse ms

  11. Breakup of free liquid jets influenced by external mechanical vibrations

    Science.gov (United States)

    Lad, V. N.; Murthy, Z. V. P.

    2017-02-01

    The breakup of liquid jets has been studied with various test liquids using externally imposed mechanical vibrations. Images of the jets were captured by a high speed camera up to the speed of 1000 frames per second, and analyzed to obtain the profile of the jet and breakup length. The dynamics of the jets have also been studied to understand the effects of additives—a surfactant and polymer—incorporating externally imposed mechanical vibrations. Different types of breakup modes have been explored with respect to the Weber number and Ohnesorge number. The introduction of mechanical vibrations have caused jet breakup with separated droplets at a comparatively lower Weber number. The region of jet breakup by neck formation at constant jet velocities also contracted due to mechanical vibrations.

  12. Study on the breakup lengths of free round liquid jets

    Institute of Scientific and Technical Information of China (English)

    ZHU Ying; WAN Yun-xia; HUANG Yong; PENG Xin-ke

    2007-01-01

    An experiment was conducted to measure the breakup lengths of water jets with a high-speed video camera for Weber numbers from 0 to about 1.1 × 103. The initial jet diameters are changed from 0.3mm to 1.0mm. The results indicate that at low jet velocity the breakup lengths of the jets are increased linearly from 0 to a maximum value. At the Weber number about 20 the breakup length of the jet reaches its maximum value for different initial jet diameter. A computation based on the dispersion equation is conducted to study the relationship between the growth rate of the jet surface wave and the maximum breakup length. The computations show that the maximum growth rate for the axisymmetric surface wave has a turning point at Weber number about 20, and that agrees well with the experiments.

  13. An alternative model of jet suppression at RHIC energies

    OpenAIRE

    Lietava, Roman; Pisut, Jan; Pisutova, Neva; Tomasik, Boris

    2003-01-01

    We propose a simple Glauber-type mechanism for suppression of jet production up to transverse momenta of about 10 GeV/c at RHIC. For processes in this kinematic region, the formation time is smaller than the interval between two successive hard partonic collisions and the subsequent collision influences the jet production. Number of jets then roughly scales with the number of participants. Proportionality to the number of binary collisions is recovered for very high transverse momenta. The mo...

  14. Numerical Study for Hysteresis Phenomena of Shock Wave Reflection in Overexpanded Axisymmetric Supersonic Jet

    Institute of Scientific and Technical Information of China (English)

    Tsuyoshi Yasunobu; Ken Matsuoka; Hideo Kashimura; Shigeru Matsuo; Toshiaki Setoguchi

    2006-01-01

    When the high-pressure gas is exhausted to the vacuum chamber from the supersonic nozzle, the overexpanded supersonic jet is formed at specific condition. In two-dimensional supersonic jet, furthermore, it is known that the hysteresis phenomena for the reflection type of shock wave in the flow field is occurred under the quasi-steady flow and for instance, the transitional pressure ratio between the regular reflection (RR) and Mach reflection (MR) is affected by this phenomenon. Many papers have described the hysteresis phenomena for underexpanded supersonic jet, but this phenomenon under the overexpanded axisymmetric jet has not been detailed in the past papers. The purpose of this study is to clear the hysteresis phenomena for the reflection type of shock wave at the overexpanded axisymmetric jet using the TVD method and to discuss the characteristic of hysteresis phenomena.

  15. Mach-Zehnder recording systems for pulsed power diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Miller, E. K.; Abbott, R. Q.; McKenna, I.; Macrum, G.; Baker, D.; Tran, V.; Rodriguez, E.; Kaufman, M. I.; Tibbits, A.; Silbernagel, C. T.; Waltman, T. B. [National Security Technologies, LLC, Santa Barbara and Livermore, California 93111 (United States); National Security Technologies, LLC, Los Alamos, New Mexico 87544 (United States); and National Security Technologies, LLC, North Las Vegas, Nevada 89193 (United States); Herrmann, H. W.; Kim, Y. H.; Mack, J. M.; Young, C. S.; Caldwell, S. E.; Evans, S. C.; Sedillo, T. J. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Stoeffl, W.; Grafil, E. [Lawrence Livermore National Laboratory, Livermore, California (United States); and others

    2012-10-15

    Fiber-optic transmission and recording systems, based on Mach-Zehnder modulators, have been developed and installed at the National Ignition Facility (NIF), and are being developed for other pulsed-power facilities such as the Z accelerator at Sandia, with different requirements. We present the design and performance characteristics for the mature analog links, based on the system developed for the Gamma Reaction History diagnostic at the OMEGA laser and at NIF. For a single detector channel, two Mach-Zehnders are used to provide high dynamic range at the full recording bandwidth with no gaps in the coverage. We present laboratory and shot data to estimate upper limits on the radiation effects as they impact recorded data quality. Finally, we will assess the technology readiness level for mature and developing implementations of Mach-Zehnder links for these environments.

  16. Mach-Zehnder recording systems for pulsed power diagnostics.

    Science.gov (United States)

    Miller, E K; Abbott, R Q; McKenna, I; Macrum, G; Baker, D; Tran, V; Rodriguez, E; Kaufman, M I; Tibbits, A; Silbernagel, C T; Waltman, T B; Herrmann, H W; Kim, Y H; Mack, J M; Young, C S; Caldwell, S E; Evans, S C; Sedillo, T J; Stoeffl, W; Grafil, E; Liebman, J; Beeman, B; Watts, P; Carpenter, A; Horsfied, C J; Rubery, M S; Chandler, G A; Torres, J A; Smelser, R M

    2012-10-01

    Fiber-optic transmission and recording systems, based on Mach-Zehnder modulators, have been developed and installed at the National Ignition Facility (NIF), and are being developed for other pulsed-power facilities such as the Z accelerator at Sandia, with different requirements. We present the design and performance characteristics for the mature analog links, based on the system developed for the Gamma Reaction History diagnostic at the OMEGA laser and at NIF. For a single detector channel, two Mach-Zehnders are used to provide high dynamic range at the full recording bandwidth with no gaps in the coverage. We present laboratory and shot data to estimate upper limits on the radiation effects as they impact recorded data quality. Finally, we will assess the technology readiness level for mature and developing implementations of Mach-Zehnder links for these environments.

  17. Mach-Zehnder Recording Systems for Pulsed Power Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Miller, E K; McKenna, I; Macrum, G; Baker, D; Tran, V; Rodriguez, E; Kaufman, M I; Tibbits, A; Silbernagel, C T; Waltman, T B; Herrmann, H W; Kim, Y H; Mack, J M; Young, C S; Caldwell, S E; Evans, S C; Sedillo, T J; Stoeffl, W; Grafil, E; Liebman, J; Beeman, B; Watts, P; Carpenter, A; Horsfied, C J; Rubery, M S; Chandler, G A; Torres, J A

    2012-10-01

    Fiber-optic transmission and recording systems, based on Mach-Zehnder modulators, have been developed and installed at the National Ignition Facility (NIF), and are being developed for other pulsed-power facilities such as Z-R at Sandia, with different requirements. We present the design and performance characteristics for the mature analog links, based on the system developed for the Gamma Reaction History (GRH) diagnostic at OMEGA and NIF. For a single detector channel, two Mach-Zehnders are used to provide high dynamic range at the full recording bandwidth with no gaps in the coverage. We present laboratory and shot data to estimate upper limits on the radiation effects as they impact recorded data quality. Finally, we will assess the technology readiness level for mature and developing implementations of Mach-Zehnder links for these environments.

  18. Associated jet and subjet rates in light-quark and gluon jet discrimination

    CERN Document Server

    Bhattacherjee, Biplob; Nojiri, Mihoko M; Sakaki, Yasuhito; Webber, Bryan R

    2015-01-01

    We show that in studies of light quark- and gluon-initiated jet discrimination, it is important to include the information on softer reconstructed jets (associated jets) around a primary hard jet. This is particularly relevant while adopting a small radius parameter for reconstructing hadronic jets. The probability of having an associated jet as a function of the primary jet transverse momentum ($p_T$) and radius, the minimum associated jet $p_T$ and the association radius is computed upto next-to-double logarithmic accuracy (NDLA), and the predictions are compared with results from Herwig++, Pythia6 and Pythia8 Monte Carlos (MC). We demonstrate the improvement in quark-gluon discrimination on using the associated jet rate variable with the help of a multivariate analysis. The associated jet rates are found to be only mildly sensitive to the choice of parton shower and hadronization algorithms, as well as to the effects of initial state radiation and underlying event. In addition, the number of $k_T$ subjets ...

  19. Measurement of jet properties with the ATLAS detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00034698; The ATLAS collaboration

    2016-01-01

    The average charge and the multiplicity of charged hadrons within a jet provide new insights into the modeling of strong interactions. The jet charge can also be used to tag hadronically decaying gauge bosons and the number of charged particles within a jet provides a powerful means to distinguish gluon-initiated from quark-initiated jets. The ATLAS collaboration has used a selection of di-jet events in 20.3 fb-1 of data collected at a center-of-mass energy of 8 TeV to measure the average charged-particle multiplicity and the transverse-momentum weighted average charge of the hadrons within the jets, separately for the more central and the more forward jet and as a function of the jet transverse momentum. The results have been compared with calculations at NLO in pQCD and with predictions of MC generators interfaced with various parton distribution functions and underlying-event tunes.

  20. The jet-cloud interacting radio galaxy PKS B2152-699. I. Structures revealed in new deep radio and X-ray observations

    CERN Document Server

    Worrall, D M; Young, A J; Momtahan, K; Fosbury, R A E; Morganti, R; Tadhunter, C N; Kleijn, G Verdoes

    2012-01-01

    PKS B2152-699 has radio power characteristic of sources that dominate radio feedback. We present new deep ATCA, Chandra and optical observations, and test the feedback model. We report the first high-resolution observations of the radio jet. The inner jet extends ~8.5 kpc towards an optical emission-line High Ionization Cloud (HIC) before taking a zig-zag path to an offset position. Jet X-ray synchrotron radiation is seen. The HIC is associated with 0.3 keV X-ray gas of anomalously low metallicity. On larger scales the radio galaxy displays all three X-ray features that together confirm supersonic expansion of the lobes into the external medium: gas cavities, inverse-Compton emission showing excess internal lobe pressure, and high-contrast arms of temperature above the ~1 keV ambient medium. The well-formed S lobe on the counterjet side is expanding with a Mach number 2.2-3. We estimate a cavity power ~3x10^43 ergs/s, which falls well below previously reported correlations with radio power. The total inferred...

  1. Effect of gaseous and solid simulated jet plumes on an 040A space shuttle launch configuration at m=1.6 to 2.2

    Science.gov (United States)

    Dods, J. B., Jr.; Brownson, J. J.; Kassner, D. L.; Blackwell, K. L.; Decker, J. P.; Roberts, B. B.

    1974-01-01

    The effect of plume-induced flow separation and aspiration effects due to operation of both orbiter and the solid rocket motors on a 0.019-scale model of the launch configuration of the Space Shuttle Vehicle is determined. Longitudinal and lateral-directional stability data were obtained at Mach numbers of 1.6, 2.0, and 2.2 with and without the engines operating. The plumes exiting from the engines were simulated by a cold-gas jet supplied by an auxiliary 200-atm air supply system and solid-body plume simulators. The aerodynamic effects produced by these two simulation procedures are compared. The parameters most significantly affected by the jet plumes are pitching moment, elevon control effectiveness, axial force, and orbiter wing loads. The solid rocket motor (SRM) plumes have the largest effect on the aerodynamic characteristics. The effect of the orbiter plumes in combination with the SRM plumes is also significant. Variations in the nozzle design parameters and configuration changes can reduce the jet plume-induced aerodynamic effects.

  2. Three-Dimensional Computations of Multiple Tandem Jets in Crossflow

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The mixing and merging characteristics of multiple tandem jets in crossflow are investigated by use of the Computational Fluid Dynamics (CFD) code FLUENT. The realizable k~ε model is employed for turbulent closure of the Reynolds-averaged Navier-Stokes equations. Numerical experiments are performed for 1-, 2- and 4-jet groups, for jet-to-crossflow velocity ratios of R=4.2~16.3. The computed velocity and scalar concentration field are in good agreement with experiments using Particle Image Velocimetry (PIV) and Laser Induced Fluorescence (LIF), as well as previous work. The results show that the leading jet behavior is similar to a single free jet in crossflow, while all the downstream rear jets have less bent-over jet trajectories-suggesting a reduced ambient velocity for the rear jets. The concentration decay of the leading jet is greater than that of the rear jets. When normalized by appropriate crossflow momentum length scales, all jet trajectories follow a universal relation regardless of the sequential order of jet position and the number of jets. Supported by the velocity and trajectory measurements, the averaged maximum effective crossflow velocity ratio is computed to be in the range of 0.39 to 0.47.

  3. ASTROPHYSICAL JETS AS HYPERSONIC BUCKSHOT: LABORATORY EXPERIMENTS AND SIMULATIONS

    Directory of Open Access Journals (Sweden)

    A. Frank

    2009-01-01

    Full Text Available Herbig-Haro (HH jets are commonly thought of as homogeneous beams of plasma traveling at hypersonic velocities. Structure within jet beams is often attributed to periodic or "pulsed" variations of conditions at the jet source. In this contribution we offer an alternative to "pulsed" models of protostellar jets. Using direct numerical simulations and laboratory experiments we explore the possibility that jets are chains of sub-radial clumps propagating through a moving inter-clump medium. Our simulations explore an idealization of this scenario by injecting small (r ¿jet spheres embedded in an otherwise smooth inter-clump jet flow. The spheres are initialized with velocities differing from the jet velocity by ¿ 15%. We find the consequences of shifting from homogeneous to heterogeneous flows are significant as clumps interact with each other and with the inter-clump medium in a variety of ways. We also present new experiments that, for the first time, directly address issues of magnetized astrophysical jets. Our experiments explore the propagation and stability of super-magnetosonic, radiatively cooled, and magnetically dominated bubbles with internal, narrow jets. The results are scalable to astrophysical environments via the similarity of dimensionl ss numbers controlling the dynamics in both settings. These experiments show the jets are subject to kink mode instabilities which quickly fragment the jet into narrow chains of hypersonic knots, providing support for the "clumpy jet" paradigm.

  4. Quantum heat engines based on electronic Mach-Zehnder interferometers

    Science.gov (United States)

    Hofer, Patrick P.; Sothmann, Björn

    2015-05-01

    We theoretically investigate the thermoelectric properties of heat engines based on Mach-Zehnder interferometers. The energy dependence of the transmission amplitudes in such setups arises from a difference in the interferometer arm lengths. Any thermoelectric response is thus of purely quantum-mechanical origin. In addition to an experimentally established three-terminal setup, we also consider a two-terminal geometry as well as a four-terminal setup consisting of two interferometers. We find that Mach-Zehnder interferometers can be used as powerful and efficient heat engines which perform well under realistic conditions.

  5. Study of Water Jet Impulse in Water-Jet Looms

    Institute of Scientific and Technical Information of China (English)

    LI Ke-rang; MA Wei-wei; CHEN Ming

    2005-01-01

    The water jet impulse is brought forward to study the traction force of the water jet to the flying weft in water-jet looms. The distribution of the water jet impulse in the shed is tested by a sensor, and the influence of water jet parameters on the water jet impulse is analyzed.

  6. INTRACLUSTER MEDIUM REHEATING BY RELATIVISTIC JETS

    Energy Technology Data Exchange (ETDEWEB)

    Perucho, Manel; Quilis, Vicent; Marti, Jose-Maria [Departament d' Astronomia i Astrofisica, Universitat de Valencia, c/Dr. Moliner 50, E-46100 Burjassot (Valencia) (Spain)

    2011-12-10

    Galactic jets are powerful energy sources reheating the intracluster medium in galaxy clusters. Their crucial role in the cosmic puzzle, motivated by observations, has been established by a great number of numerical simulations excluding the relativistic nature of these jets. We present the first relativistic simulations of the very long-term evolution of realistic galactic jets. Unexpectedly, our results show no buoyant bubbles, but large cocoon regions compatible with the observed X-ray cavities. The reheating is more efficient and faster than in previous scenarios, and it is produced by the shock wave driven by the jet, that survives for several hundreds of Myr. Therefore, the X-ray cavities in clusters produced by powerful relativistic jets would remain confined by weak shocks for extremely long periods and their detection could be an observational challenge.

  7. Altitude Test Chamber Investigation of Performance of a 28-inch Ram-jet Engine II : Effects of Gutter Width and Blocked Area on Operating Range and Combustion Efficiency

    Science.gov (United States)

    Shillito, T B; Jones, W L; Kahn, R W

    1950-01-01

    Altitude-test-chamber investigation of effects of flame-holder blocked area and gutter width on performance of 28-inch diameter ram jet at simulated flight Mach number of 2.0 for altitudes from 40,000 to 55,000 feet was conducted at NACA Lewis laboratory. Ten flame holders investigated covered gutter widths from 1.00 to 2.50 inches and blocked areas from 40.5 to 62.0 percent of combustion-chamber area. Gutter width did not appreciably affect combustion efficiency. Increase in blocked area from 40 to 62 percent resulted in 5- to 10-percent increase in combustion efficiency. Increasing gutter width resulted in improvement in fuel-air-ratio operating range.

  8. Transition to Double Mach Stem for Nuclear Explosion at 104 ft Height of Burst.

    Science.gov (United States)

    1981-11-17

    intersecting the ground. The initialization provides a strong shock with Mach number MI = 12. This speed and the need for restart capability led to the choice...a HOB of 104 ft (31.7m). A strong spherical shock is created in the surrounding air, and’ reflects from the grcund. 9 The outward-traveling airbiast...AIR FCIPCF SYST T’M CCvfvtANC NORTON" A!7, CA 9?40Pg (MIIJ’r’-MAN) QICY ATTN "INNYH "D IALAN5S<Y 0O1C Y ATTNJ MMN)) eHM kF-LVECCHir OICY ATTN fuNN w

  9. Study of Rayleigh scattering for visualization of helium-air mixing at Mach 6

    Science.gov (United States)

    Shirinzadeh, B.; Balla, R. J.; Hillard, M. E.; Anders, J. B.; Exton, R. J.; Waitz, I. A.

    1991-01-01

    Using an ArF excimer laser, planar Rayleigh scattering measurements were performed to investigate helium mixing into air at supersonic speeds. These experiments were conducted in the Mach 6, high-Reynolds-number facility at NASA Langley Research Center. The capability of the Rayleigh scattering technique for flow visualization of a turbulent environment was demonstrated. The qualitative agreement between the averaged Rayleigh results and the reduced mean-mass-densities obtained from probe measurements substantiate that careful application of the technique, even in the presence of clusters, can give very useful results. It was also demonstrated that planar, quantitative measurements can be made in the absence of clusters.

  10. An Experimental Investigation on Inclined Negatively Buoyant Jets

    Directory of Open Access Journals (Sweden)

    Raed Bashitialshaaer

    2012-09-01

    Full Text Available An experimental study was performed to investigate the behavior of inclined negatively buoyant jets. Such jets arise when brine is discharged from desalination plants. A turbulent jet with a specific salinity was discharged through a circular nozzle at an angle to the horizontal into a tank with fresh water and the spatial evolution of the jet was recorded. Four different initial jet parameters were changed, namely the nozzle diameter, the initial jet inclination, the jet density and the flow rate. Five geometric quantities describing the jet trajectory that are useful in the design of brine discharge systems were determined. Dimensional analysis demonstrated that the geometric jet quantities studied, if normalized with the jet exit diameter, could be related to the densimetric Froude number. Analysis of the collected data showed that this was the case for a Froude number less than 100, whereas for larger values of the Froude number the scatter in the data increased significantly. As has been observed in some previous investigations, the slope of the best-fit straight line through the data points was a function of the initial jet angle (θ, where the slope increased with θ for the maximum levels (Ym studied, but had a more complex behavior for horizontal distances.

  11. Low frequency variability of Southern Ocean jets

    Science.gov (United States)

    Thompson, A. F.; Richards, K. J.

    2011-12-01

    Both observations and high resolution numerical models show that the Southern Ocean circumpolar flow is concentrated in a large number (approximately 8 to 12) of narrow filamentary jets. It is shown here that coherent jets exhibit a range of low frequency variability, on time scales of months to years, that can lead to displacement and to intermittent formation and dissipation of jets. Using output from an eddy-resolving ocean general circulation model in local regions near topographic features, the impact of energy exchange between eddy and mean flow components on jet persistence and variability is examined. A novel approach that uses a time-dependent definition of the mean flow provides a clearer picture of eddy-mean flow interactions in regions with spatially and temporally varying flow structure. The dynamics are largely consistent with those in idealized quasi-geostrophic models, including topographically-organized and surface-enhanced Reynolds stress forcing of the mean flow. Jets form during periods of enhanced eddy activity, but may persist long after the eddy activity has decayed. Similarly, jets may evolve in a downstream sense, with jet formation localized near topography and undergoing modification in response to changing bathymetry. The evolution of both temperature and potential vorticity is used to show that the low-frequency variability of the jets impacts water mass structure and tracer transport. This study highlights various examples of Southern Ocean dynamics that will prove difficult to capture through existing parameterizations in coarser climate models.

  12. Flow Mapping of a Jet in Crossflow with Stereoscopic PIV

    DEFF Research Database (Denmark)

    Meyer, Knud Erik; Özcan, Oktay; Westergaard, C. H.

    2002-01-01

    Stereoscopic Particle Image Velocimetry (PIV) has been used to make a three-dimensional flow mapping of a jet in crossflow. The Reynolds number based on the free stream velocity and the jet diameter was nominally 2400. A jet-to-crossflow velocity ratio of 3.3 was used. Details of the formation...... of the counter rotating vortex pair found behind the jet are shown. The vortex pair results in two regions with strong reversed velocities behind the jet trajectory. Regions of high turbulent kinetic energy are identified. The signature of the unsteady shear layer vortices is found in the mean vorticity field....

  13. ON THE SELF-SIMILARITY OF A JET IN CROSSFLOW

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The RNG k-ε turbulence model is adopted to investigate a turbulent round jet issuing into crossflow, with the Reynolds number at jet exit of Re=6000 and jet-to crossflow velocity ratio of r=8. With the CFD code, FLUENT, the relations of dimensional analysis are successfully reproduced and the calculated coefficients agree well with the experimental measurements of Wong (1991) and Chu (1996). The investigations are then taken on the velocity, stream function and vorticity at the far field of the jet. It shows that at least within the covered range herein, the jet at the far field is self-similar.

  14. Concept Development of a Mach 1.6 High-Speed Civil Transport

    Science.gov (United States)

    Shields, Elwood W.; Fenbert, James W.; Ozoroski, Lori P.; Geiselhart, Karl A.

    1999-01-01

    A high-speed civil transport configuration with a Mach number of 1.6 was developed as part of the NASA High-Speed Research Program to serve as a baseline for assessing advanced technologies required for an aircraft with a service entry date of 2005. This configuration offered more favorable solutions to environmental concerns than configurations with higher Mach numbers. The Mach 1.6 configuration was designed for a 6500 n.mi. mission with a 250-passenger payload. The baseline configuration has a wing area of 8732 square feet a takeoff gross weight of 591570 lb, and four 41000-lb advanced turbine bypass engines defined by NASA. These engines have axisymmetric mixer-ejector nozzles that are assumed to yield 20 dB of noise suppression during takeoff, which is assumed to satisfy, the FAR Stage III noise requirements. Any substantial reduction in this assumed level of suppression would require oversizing the engines to meet community noise regulations and would severly impact the gross weight of the aircraft at takeoff. These engines yield a ratio of takeoff thrust to weight of 0.277 and a takeoff wing loading of 67.8 lb/square feet that results in a rotation speed of 169 knots. The approach velocity of the sized configuration at the end of the mission is 131 knots. The baseline configuration was resized with an engine having a projected life of 9000 hr for hot rotating parts and 18000 hr for the rest of the engine, as required for commercial use on an aircraft with a service entry date of 2005. Results show an increase in vehicle takeoff gross weight of approximately 58700 lb. This report presents the details of the configuration development, mass properties, aerodynamic design, propulsion system and integration, mission performance, and sizing.

  15. Tunable multiwavelength erbium-doped fiber laser based on an in-line Mach Zehnder interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Han, Young-Geun [Hanyang University, Seoul (Korea, Republic of)

    2010-12-15

    A tunable multiwavelength erbium-doped fiber laser based on an in-line Mach Zehnder interferometer is proposed and experimentally demonstrated. The in-line Mach Zehnder interferometer is realized by using cascaded long-period fiber gratings. The long-period fiber gratings can couple the guided core mode to several cladding modes. If two identical long-period fiber gratings are concatenated, an interference pattern can be generated, which results from an interaction of the core and the cladding modes in the second long-period fiber grating. Therefore, a simple multichannel filter based on an in-line Mach Zehnder interferometer can be realized. The wavelength spacing of the proposed multichannel filter is controlled by the number of long-period fiber gratings. We apply the proposed multichannel fiber to the generation of a multiwavelength erbium-doped fiber laser with a tunability on the order of the wavelength spacing. An erbium-doped fiber amplifier is implemented as a gain medium. The gain competition of erbium ions is suppressed by soaking the erbium-doped fiber in liquid nitrogen. The power fluctuation of the proposed multiwavelength fiber laser is measured to be less than 0.5 dB. A high-quality multiwavelength output with a high extinction ratio of more than 40 dB is achieved. The wavelength spacing of the proposed multiwavelength fiber laser is controlled by increasing the number of long-period fiber gratings. The wavelength spacing is changed from 0.8 nm to 1.6 nm discretely.

  16. Effect of emerging technology on a convertible, business/interceptor, supersonic-cruise jet

    Science.gov (United States)

    Beissner, F. L., Jr.; Lovell, W. A.; Robins, A. W.; Swanson, E. E.

    1986-01-01

    This study was initiated to assess the feasibility of an eight-passenger, supersonic-cruise long range business jet aircraft that could be converted into a military missile carrying interceptor. The baseline passenger version has a flight crew of two with cabin space for four rows of two passenger seats plus baggage and lavatory room in the aft cabin. The ramp weight is 61,600 pounds with an internal fuel capacity of 30,904 pounds. Utilizing an improved version of a current technology low-bypass ratio turbofan engine, range is 3,622 nautical miles at Mach 2.0 cruise and standard day operating conditions. Balanced field takeoff distance is 6,600 feet and landing distance is 5,170 feet at 44,737 pounds. The passenger section from aft of the flight crew station to the aft pressure bulkhead in the cabin was modified for the interceptor version. Bomb bay type doors were added and volume is sufficient for four advanced air-to-air missiles mounted on a rotary launcher. Missile volume was based on a Phoenix type missile with a weight of 910 pounds per missile for a total payload weight of 3,640 pounds. Structural and equipment weights were adjusted and result in a ramp weight of 63,246 pounds with a fuel load of 30,938 pounds. Based on a typical intercept mission flight profile, the resulting radius is 1,609 nautical miles at a cruise Mach number of 2.0.

  17. Sound Radiation from a Supersonic Jet Passing Through a Partially Open Exhaust Duct

    Science.gov (United States)

    Kandula, Max

    2011-01-01

    The radiation of sound from a perfectly expanded Mach 2.5 cold supersonic jet of 25.4 mm exit diameter flowing through a partially open rigid-walled duct with an upstream i-deflector has been studied experimentally. In the experiments, the nozzle is mounted vertically, with the nozzle exit plane at a height of 73 jet diameters above ground level. Relative to the nozzle exit plane (NEP), the location of the duct inlet is varied at 10, 5, and -1 jet diameters. Far-field sound pressure levels were obtained at 54 jet diameters above ground with the aid of acoustic sensors equally spaced around a circular arc of radius equal to 80 jet diameters from the jet axis. Data on the jet acoustic field for the partially open duct were obtained and compared with those with a free jet and with a closed duct. The results suggest that for the partially open duct the overall sound pressure level (OASPL) decreases as the distance between the NEP and the duct inlet plane decreases, while the opposite trend is observed for the closed duct. It is also concluded that the observed peak frequency in the partially open duct increases above the free jet value as the angle from the duct axis is increased, and as the duct inlet plane becomes closer to the NEP.

  18. Experimental study of jet gas-particle interaction generated during explosive volcanic eruptions

    Science.gov (United States)

    Medici, E. F.; Waite, G. P.

    2014-12-01

    During violent volcanic eruptions, a shock wave may be generated that is immediately followed by the formation of a supersonic jet. The overpressurized vapor-solid-liquid mixture being ejected begins to expand and accelerate. Oblique shock waves and rarefaction waves are generated at the edge of the crater. The oblique shock waves, inclined relatively to the flow axis, intersect forming a structure called a "Mach disk" or "Mach diamond". This pattern repeats until the jet decelerates into subsonic flow. In an explosive volcanic eruption, unlike other applications involving jets, a mixture of hot gas and solid particles is present. The mixture typically contains a relatively high percentage of solid particles of different sizes. The relationship between jet and particle is one the major parameters affecting the formation of ash plume dynamics and the pyroclastic flows. Therefore, a more comprehensive study is needed in order to understand the mixing occurring within the volcanic eruption jet, specifically, the effect of particle size and concentration. In this work, a series of analog explosive volcanic experiments using an atmospheric shock tube are performed to generate supersonic jets. High-speed video imaging of the expanding jet as well as the pressure evolution at different points in space are recorded for different values of initial energy and particle sizes and concentrations. Particles of different sizes and in various concentrations are placed inside the jet stream in which all the environmental conditions are monitored. Understanding of the coupling between the particles and the jet dynamics interaction is the first step toward a more thorough understanding of ash plume dynamics and the pyroclastic flows formation.

  19. Jet engine noise and infrared plume correlation field campaign

    Science.gov (United States)

    Cunio, Phillip M.; Weber, Reed A.; Knobel, Kimberly R.; Smith, Christine; Draudt, Andy

    2015-09-01

    Jet engine noise can be a health hazard and environmental pollutant, particularly affecting personnel working in close proximity to jet engines, such as airline mechanics. Mitigating noise could reduce the potential for hearing loss in runway workers; however, there exists a very complex relationship between jet engine design parameters, operating conditions, and resultant noise power levels, and understanding and characterizing this relationship is a key step in mitigating jet engine noise effects. We demonstrate initial results highlighting the utility of high-speed imaging (hypertemporal imaging) in correlating the infrared signatures of jet engines with acoustic noise. This paper builds on prior theoretical analysis of jet engine infrared signatures and their potential relationships to jet engine acoustic emissions. This previous work identified the region of the jet plume most likely to emit both in infrared and in acoustic domains, and it prompted the investigation of wave packets as a physical construct tying together acoustic and infrared energy emissions. As a means of verifying these assertions, a field campaign to collect relevant data was proposed, and data collection was carried out with a bank of infrared instruments imaging a T700 turboshaft engine undergoing routine operational testing. The detection of hypertemporal signatures in association with acoustic signatures of jet engines enables the use of a new domain in characterizing jet engine noise. This may in turn enable new methods of predicting or mitigating jet engine noise, which could lead to socioeconomic benefits for airlines and other operators of large numbers of jet engines.

  20. Planetary waves near the mesospheric easterly jet

    Science.gov (United States)

    Burks, D.; Leovy, C.

    1986-01-01

    Analysis of temperatures retrieved from satellite limb radiance measurements of the stratosphere and mesosphere during January-February 1979 reveals 3 prominent waves: wave number 3 with period 2.1 days, wave number 4 with period 1.8 days, and wave number 1 with period approximately 9 days. Each of these has maximum amplitude in the equatorward shear zone of the summer mesospheric easterly jet and propagates westward. Characteristics of the 1.8 day wave number 4 mode indicate that it arises from instability of the jet. The set of three waves may comprise an interacting triad.

  1. Jet substructure in ATLAS

    CERN Document Server

    Miller, David W

    2011-01-01

    Measurements are presented of the jet invariant mass and substructure in proton-proton collisions at $\\sqrt{s} = 7$ TeV with the ATLAS detector using an integrated luminosity of 37 pb$^{-1}$. These results exercise the tools for distinguishing the signatures of new boosted massive particles in the hadronic final state. Two "fat" jet algorithms are used, along with the filtering jet grooming technique that was pioneered in ATLAS. New jet substructure observables are compared for the first time to data at the LHC. Finally, a sample of candidate boosted top quark events collected in the 2010 data is analyzed in detail for the jet substructure properties of hadronic "top-jets" in the final state. These measurements demonstrate not only our excellent understanding of QCD in a new energy regime but open the path to using complex jet substructure observables in the search for new physics.

  2. Factorization at the LHC: From PDFs to Initial State Jets (Ph.D. thesis)

    CERN Document Server

    Waalewijn, Wouter J

    2011-01-01

    New physics searches at the LHC or Tevatron typically look for a specific number of hard jets, leptons and photons. To obtain an exclusive N-jet sample, one can measure the event shape "N-jettiness" \\tau_N and veto additional undesired jets by requiring \\tau_N XL, where a central jet veto \\tau_B0, we obtain a factorization formula with inclusive jet and beam functions that allows us to sum the large logarithms of \\tau_N.

  3. Experimental and Computational Study of Underexpanded Jet Impingement Heat Transfer

    Science.gov (United States)

    Rufer, Shann J.; Nowak, Robert J.; Daryabeigi, Kamran; Picetti, Donald

    2009-01-01

    An experiment was performed to assess CFD modeling of a hypersonic-vehicle breach, boundary-layer flow ingestion and internal surface impingement. Tests were conducted in the NASA Langley Research Center 31-Inch Mach 10 Tunnel. Four simulated breaches were tested and impingement heat flux data was obtained for each case using both phosphor thermography and thin film gages on targets placed inside the model. A separate target was used to measure the surface pressure distribution. The measured jet impingement width and peak location are in good agreement with CFD analysis.

  4. Heat transfer and pressure distributions on hemisphere-cylinders in methane-air combustion products at Mach 7

    Science.gov (United States)

    Weinstein, I.

    1973-01-01

    Heat-transfer and pressure distributions were measured over the surfaces of three hemisphere-cylinder models tested at a nominal Mach number of 7 in the Langley 8-foot high-temperature structures tunnel which uses methane-air products of combustion as a test medium. The results showed that the heat-transfer and pressure distributions over the surface of the models were in good agreement with experimental data obtained in air and also with theoretical predictions.

  5. Numerical and experimental study of rotating jet flows

    Science.gov (United States)

    Shin, Seungwon; Che, Zhizhao; Kahouadji, Lyes; Matar, Omar; Chergui, Jalel; Juric, Damir

    2015-11-01

    Rotating jets are investigated through experimental measurements and numerical simulations. The experiments are performed on a rotating jet rig and the effects of a range of parameters controlling the liquid jet are investigated, e.g. jet flow rate, rotation speed, jet diameter, etc. Different regimes of the jet morphology are identified, and the dependence on several dimensionless numbers is studied, e.g. Reynolds number, Weber number, etc. The breakup process of droplets is visualized through high speed imaging. Full three-dimensional direct numerical simulations are performed using BLUE, a massively parallel two-phase flow code. The novel interface algorithms in BLUE track the gas-liquid interface through a wide dynamic range including ligament formation, break up and rupture. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  6. Control of Supercavitating Vehicles using Transverse Jets

    Science.gov (United States)

    2016-03-15

    motion required to produce the synthetic jet. The electromechanical method of choice has varied with respect to the working fluid and the specific... physical phenomena. Direct numerical simulation at relatively low Reynolds numbers has indicated that a coherent vortex ring does not form when the...34 Physics of Fluids, Vol. 26, 2014, 014101 ; doi: 10.1063/1.4859895. Cater, J. E. and Soria, J. , "The evolution ofround zero-net-mass-flux jets

  7. Coastal Jets and Their Interactions Along the Central California Coastline

    Science.gov (United States)

    2009-03-01

    Airport when the flow is unblocked. 15. NUMBER OF PAGES 85 14. SUBJECT TERMS Coastal Jet, Froude number, gap flow , barrier jets...8 1. Gap Flows and the Resulted Local Wind Speed Maximums...INTERACTIONS WITH TOPOGRAPHY 1. Gap Flows and the Resulted Local Wind Speed Maximums Gap flows are known to occur in many different places in the world and in

  8. Turbulent buoyant jets and plumes

    CERN Document Server

    Rodi, Wolfgang

    The Science & Applications of Heat and Mass Transfer: Reports, Reviews, & Computer Programs, Volume 6: Turbulent Buoyant Jets and Plumes focuses on the formation, properties, characteristics, and reactions of turbulent jets and plumes. The selection first offers information on the mechanics of turbulent buoyant jets and plumes and turbulent buoyant jets in shallow fluid layers. Discussions focus on submerged buoyant jets into shallow fluid, horizontal surface or interface jets into shallow layers, fundamental considerations, and turbulent buoyant jets (forced plumes). The manuscript then exami

  9. Effects of wind-tunnel noise on swept-cylinder transition at Mach 3.5

    Science.gov (United States)

    Creel, T. R., Jr.; Beckwith, I. E.; Chen, F.-J.

    1986-01-01

    Transition data are reported for circular cylinders at swept angles of 45 and 60 degrees in the Mach 3.5 pilot-low-disturbance tunnel where free-stream noise levels are varied from approximately .05-0.5 percent in terms of the rms fluctuating pressure normalized by the mean static pressure. Results indicate that end plate or boundary layer trip disturbances at the upstream end of the cylinders cause turbulent flow along the entire test Reynolds number range of 10-170 thousand per inch. With all end plate and trip disturbances removed, transition at the attachment lines occurred at free-stream Reynolds numbers based on diameters of about 70-80 thousand, independent of stream noise levels. The installation of small trips on the attachement lines caused transition at lower Reynolds numbers, depending on both the roughness height and the wind tunnel noise level.

  10. Impact of Jet Veto Resummation on Slepton Searches

    CERN Document Server

    Tackmann, Frank J; Zeune, Lisa

    2016-01-01

    Several searches for new physics at the LHC require a fixed number of signal jets, vetoing events with additional jets from QCD radiation. As the probed scale of new physics gets much larger than the jet-veto scale, such jet vetoes strongly impact the QCD perturbative series, causing nontrivial theoretical uncertainties. We consider slepton pair production with 0 signal jets, for which we perform the resummation of jet-veto logarithms and study its impact. Currently, the experimental exclusion limits take the jet-veto cut into account by extrapolating to the inclusive cross section using parton shower Monte Carlos. Our results indicate that the associated theoretical uncertainties can be large, and when taken into account have a sizeable impact already on present exclusion limits. This is improved by performing the resummation to higher order, which allows us to obtain accurate predictions even for high slepton masses. For the interpretation of the experimental results to benefit from improved theory predicti...

  11. 3 TUNNELS IN THE ENGINE RESEARCH BUILDING ERB - IN CELL CE-26 VARIABLE REYNOLDS NUMBER SUPERSONIC NO

    Science.gov (United States)

    1956-01-01

    3 TUNNELS IN THE ENGINE RESEARCH BUILDING ERB - IN CELL CE-26 VARIABLE REYNOLDS NUMBER SUPERSONIC NOZZLE - CELL CE-4 6X6 INCH MACH NUMBER 2.96 SUPERSONIC AIRPLANE - CELL 1-NW 1X1 FOOT MACH 3.12 SUPERSONIC TUNNEL

  12. Mach-Zehnder fiber interferometer for people monitoring

    Science.gov (United States)

    Vasinek, Vladimir; Latal, Jan; Koudelka, Petr; Siska, Petr; Vitasek, Jan; Skapa, Jan

    2010-10-01

    Fiber optical interferometers belong to highly sensitive equipments that are able to measure slight changes like distortion of shape, temperature and electric field variation and etc. Their great advantage is that they are insensitive on ageing component, from which they are composed of. It is in virtue of herewith, that there are evaluated no changes in optical signal intensity but number interference fringes. To monitor the movement of persons, eventually to analyze the changes in state of motion we developed method based on analysis the dynamic changes in interferometric pattern. We have used Mach- Zehnder interferometer with conventional SM fibers excited with the DFB laser at wavelength of 1550 nm. It was terminated with optical receiver containing InGaAs PIN photodiode. Its output was brought into measuring card module that performs on FFT of the received interferometer signal. The signal rises with the composition of two waves passing through single interferometer arm. The optical fiber SMF 28e in one arm is referential; the second one is positioned on measuring slab at dimensions of 1x2m. A movement of persons over the slab was monitored, signal processed with FFT and frequency spectra were evaluated. They rose owing to dynamic changes of interferometric pattern. The results reflect that the individual subjects passing through slab embody characteristic frequency spectra, which are individual for particular persons. The scope of measuring frequencies proceeded from zero to 10 KHz. It was also displayed in experiments that the experimental subjects, who walked around the slab and at the same time they have had changed their state of motion (knee joint fixation), embodied characteristic changes in their frequency spectra. At experiments the stability of interferometric patterns was evaluated as from time aspects, so from the view of repeated identical experiments. Two kinds of balls (tennis and ping-pong) were used to plot the repeatability measurements and

  13. Laser-Induced Fluorescence Velocity Measurements in Supersonic Underexpanded Impinging Jets

    Science.gov (United States)

    Inman, Jennifer A.; Danehy, Paul M.; Barthel, Brett; Alderfer, David W.; Novak, Robert J.

    2010-01-01

    We report on an application of nitric oxide (NO) flow-tagging velocimetry to impinging underexpanded jet flows issuing from a Mach 2.6 nozzle. The technique reported herein utilizes a single laser, single camera system to obtain planar maps of the streamwise component of velocity. Whereas typical applications of this technique involve comparing two images acquired at different time delays, this application uses a single image and time delay. The technique extracts velocity by assuming that particular regions outside the jet flowfield have negligible velocity and may therefore serve as a stationary reference against which to measure motion of the jet flowfield. By taking the average of measurements made in 100 single-shot images for each flow condition, streamwise velocities of between -200 and +1,000 m/s with accuracies of between 15 and 50 m/s are reported within the jets. Velocity measurements are shown to explain otherwise seemingly anomalous impingement surface pressure measurements.

  14. Heavy quark jets at the LHC

    CERN Document Server

    Voutilainen, Mikko

    2015-01-01

    We summarize measurements of b and c jet production at the LHC, which are an important signature and background for decays of massive particles such as H-to-b-bbar. These include measurements of the inclusive and dijet production of heavy quark jets, b and c jets produced in association with vector bosons Z and W, and decays of boosted Z bosons into pairs of b-bbar. The current status of b tagging and b jet energy scale is also reviewed. These measurements test perturbative QCD in the four and five-flavor number schemes, and provide insight into the relative importance of heavy flavor production through flavor creation, flavor excitation and gluon splitting channels. The W+c measurement provides additionally a powerful way to probe the strange quark and antiquark sea in the proton. The recent studies looking separately at production of one and two b jets find generally good agreement with theory predictions for two b-jet production, while some discrepancies are observed for singly produced b jets, particularl...

  15. Technical design note: differential infrared thermography of methane jets

    Science.gov (United States)

    Golzke, Hendrik; Leick, Philippe; Dreizler, Andreas

    2016-10-01

    In this note a novel approach for temperature measurements of methane jets is presented. Differential infrared thermography (DIT) is a contactless, tracer-free temperature determination method for semi-transparent objects, based on an infrared camera. DIT does not rely on a specific a priori value for the emissivity, but typically assumes constant emissivity within the relevant wavelength band. This is reasonable for complex hydrocarbons (i.e. as in liquid fuel sprays) but no longer justified for the discrete absorption spectrum of simple molecules such as methane. An alternative approximation is suggested and discussed, and the feasibility of DIT for the study of supercritical methane jets in a pressure chamber at conditions relevant for internal combustion engines is demonstrated. As DIT also determines the gas emissivity, a combined two-dimensional temperature and projected density visualisation becomes possible and is shown to highlight supersonic structurues such as Mach disks.

  16. Smoothed Particle Magnetohydrodynamics Simulations of Protostellar Jets and Turbulent Dynamos

    CERN Document Server

    Tricco, Terrence S; Federrath, Christoph; Bate, Matthew R

    2013-01-01

    We presents results from Smoothed Particle Magnetohydrodynamics simulations of collapsing molecular cloud cores, and dynamo amplification of the magnetic field in the presence of Mach 10 magnetised turbulence. Our star formation simulations have produced, for the first time ever, highly collimated magnetised protostellar jets from the first hydrostatic core phase. Up to 40% of the initial core mass may be ejected through this outflow. The primary difficulty in performing these simulations is maintaining the divergence free constraint of the magnetic field, and to address this issue, we have developed a new divergence cleaning method which has allowed us to stably follow the evolution of these protostellar jets for long periods. The simulations performed of supersonic MHD turbulence are able to exponentially amplify magnetic energy by up to 10 orders of magnitude via turbulent dynamo. To reduce numerical dissipation, a new shock detection algorithm is utilised which is able to track magnetic shocks throughout ...

  17. Quantitative Global Heat Transfer in a Mach-6 Quiet Tunnel

    Science.gov (United States)

    Sullivan, John P.; Schneider, Steven P.; Liu, Tianshu; Rubal, Justin; Ward, Chris; Dussling, Joseph; Rice, Cody; Foley, Ryan; Cai, Zeimin; Wang, Bo; Woodiga, Sudesh

    2012-01-01

    This project developed quantitative methods for obtaining heat transfer from temperature sensitive paint (TSP) measurements in the Mach-6 quiet tunnel at Purdue, which is a Ludwieg tube with a downstream valve, moderately-short flow duration and low levels of heat transfer. Previous difficulties with inferring heat transfer from TSP in the Mach-6 quiet tunnel were traced to (1) the large transient heat transfer that occurs during the unusually long tunnel startup and shutdown, (2) the non-uniform thickness of the insulating coating, (3) inconsistencies and imperfections in the painting process and (4) the low levels of heat transfer observed on slender models at typical stagnation temperatures near 430K. Repeated measurements were conducted on 7 degree-half-angle sharp circular cones at zero angle of attack in order to evaluate the techniques, isolate the problems and identify solutions. An attempt at developing a two-color TSP method is also summarized.

  18. Global versus Local -- Mach's Principle versus the Equivalence Principle

    CERN Document Server

    Singleton, Douglas

    2016-01-01

    The equivalence principle is the conceptual basis for general relativity. In contrast Mach's principle, although said to have been influential on Einstein in his formulation of general relativity, has not been shown to be central to the structure of general relativity. In this essay we suggest that the quantum effects of Hawking and Unruh radiation are a manifestation of a {\\it thermal} Mach's principle, where the local thermodynamic properties of the system are determined by the non-local structure of the quantum fields which determine the vacuum of a given spacetime. By comparing Hawking and Unruh temperatures for the same local acceleration we find a violation of the Einstein elevator version of the equivalence principle, which vanishes in the limit that the horizon is approached.

  19. A Solar System Test of Mach's Principle with Gravimetric Data

    CERN Document Server

    Unzicker, A; Fabian, Karl; Unzicker, Alexander

    2006-01-01

    We present a new test for a possible Mach-Sciama dependence of the Gravitational constant G. According to Ernst Mach (1838-1916), the gravitational interaction depends on the distribution of masses in the universe. A corresponding hypothesis of Sciama (1953) on the gravitational constant, $c^2/G = \\sum m_i/r_i$, can be tested since the elliptic earth orbit should then cause minute annual variations in G. The test is performed by analyzing the gravity signals of a network of superconducting gravimeters (SG) which reach a precision of $10^{-10} m/s^2$. After reducing the signal by modelling tidal, meteorologic and geophysical effects, no significant evidence for the above dependence is found.

  20. Quantum interference in an asymmetric Mach-Zehnder interferometer

    Science.gov (United States)

    Trenti, A.; Borghi, M.; Mancinelli, M.; Price, H. M.; Fontana, G.; Pavesi, L.

    2016-08-01

    A re-visitation of the well known free space Mach-Zehnder interferometer is reported here. The coexistence between one-photon and two-photons interference from collinear color entangled photon pairs is investigated. Thisarises from an arbitrarily small unbalance in the arm transmittance. The tuning of such asymmetry is reflected in dramatic changes in the coincidence detection, revealing beatings between one particle and two particle interference patterns. In particular, the role of the losses and of the intrinsic phase imperfectness of the lossy beamsplitter are explored in a single-port excited Mach-Zehnder interferometer. This configuration is especially useful for quantum optics on a chip, where the guiding geometry forces photons to travel in the same spatial mode.