Numerical resolution of the Navier-Stokes equations for a low Mach number by a spectral method
International Nuclear Information System (INIS)
Frohlich, Jochen
1990-01-01
The low Mach number approximation of the Navier-Stokes equations, also called isobar, is an approximation which is less restrictive than the one due to Boussinesq. It permits strong density variations while neglecting acoustic phenomena. We present a numerical method to solve these equations in the unsteady, two dimensional case with one direction of periodicity. The discretization uses a semi-implicit finite difference scheme in time and a Fourier-Chebycheff pseudo-spectral method in space. The solution of the equations of motion is based on an iterative algorithm of Uzawa type. In the Boussinesq limit we obtain a direct method. A first application is concerned with natural convection in the Rayleigh-Benard setting. We compare the results of the low Mach number equations with the ones in the Boussinesq case and consider the influence of variable fluid properties. A linear stability analysis based on a Chebychev-Tau method completes the study. The second application that we treat is a case of isobaric combustion in an open domain. We communicate results for the hydrodynamic Darrieus-Landau instability of a plane laminar flame front. [fr
Improving Euler computations at low Mach numbers
Koren, B.; Leer, van B.; Deconinck, H.; Koren, B.
1997-01-01
The paper consists of two parts, both dealing with conditioning techniques for lowMach-number Euler-flow computations, in which a multigrid technique is applied. In the first part, for subsonic flows and upwind-discretized, linearized 1-D Euler equations, the smoothing behavior of
Improving Euler computations at low Mach numbers
Koren, B.
1996-01-01
This paper consists of two parts, both dealing with conditioning techniques for low-Mach-number Euler-flow computations, in which a multigrid technique is applied. In the first part, for subsonic flows and upwind-discretized linearized 1-D Euler equations, the smoothing behavior of
Aeroacoustic computation of low Mach number flow
Energy Technology Data Exchange (ETDEWEB)
Dahl, K.S.
1996-12-01
This thesis explores the possibilities of applying a recently developed numerical technique to predict aerodynamically generated sound from wind turbines. The technique is a perturbation technique that has the advantage that the underlying flow field and the sound field are computed separately. Solution of the incompressible, time dependent flow field yields a hydrodynamic density correction to the incompressible constant density. The sound field is calculated from a set of equations governing the inviscid perturbations about the corrected flow field. Here, the emphasis is placed on the computation of the sound field. The nonlinear partial differential equations governing the sound field are solved numerically using an explicit MacCormack scheme. Two types of non-reflecting boundary conditions are applied; one based on the asymptotic solution of the governing equations and the other based on a characteristic analysis of the governing equations. The former condition is easy to use and it performs slightly better than the characteristic based condition. The technique is applied to the problems of the sound generation of a pulsating sphere, which is a monopole; a co-rotating vortex pair, which is a quadrupole, and the viscous flow over a circular cylinder, which is a dipole. The governing equations are written and solved for spherical, Cartesian, and cylindrical coordinates, respectively, thus, representing three common orthogonal coordinate systems. Numerical results agree very well with the analytical solutions for the problems of the pulsating sphere and the co-rotating vortex pair. Numerical results for the viscous flow over a cylinder are presented and evaluated qualitatively. The technique has potential for applications to airfoil flows as they are on a wind turbine blade, as well as for other low Mach number flows. (au) 2 tabs., 33 ills., 48 refs.
Physical and numerical modelling of low mach number compressible flows
International Nuclear Information System (INIS)
Paillerre, H.; Clerc, S.; Dabbene, F.; Cueto, O.
1999-01-01
This article reviews various physical models that may be used to describe compressible flow at low Mach numbers, as well as the numerical methods developed at DRN to discretize the different systems of equations. A selection of thermal-hydraulic applications illustrate the need to take into account compressibility and multidimensional effects as well as variable flow properties. (authors)
Mathematical and numerical aspects of low mach number flows
Energy Technology Data Exchange (ETDEWEB)
Schochet, St.; Bresch, D.; Grenier, E.; Alazard, T.; Gordner, A.; Sankaran, V.; Massot, M.; Sery, R.; Pebay, P.; Lunch, O.; Mazhorova, O.; Turkel, O.E.; Faille, I.; Danchin, R.; Allain, O.; Birken, P.; Lafitte, O.; Kloczko, T.; Frick, W.; Bui, T.; Dellacherie, S.; Klein, R.; Roe, Ph.; Accary, G.; Braack, M.; Picano, F.; Cadiou, A.; Dinescu, C.; Lesage, A.C.; Wesseling, P.; Heuveline, V.; Jobelin, M.; Weisman, C.; Merkle, C.
2004-07-01
Low Mach number flows represent a significant part of the various flows encountered in geophysics, industry or every day life. Paradoxically, the mathematical analysis of the equations governing these flows is difficult and on the practical side, the research of numerical algorithms valid for all flow speeds is continuing to be a challenge. However, in the last decade, both from the theoretical and the numerical sides, significant progresses were made in the understanding and analysis of the equations governing these flows. This conference intends to provide an up-to-date inventory of recent mathematical and numerical results in the analysis of these flows by bringing together both mathematicians and numericists active in this area. In the framework of the conference, a numerical workshop is organized which proposes to compute several challenging low Mach number flows: liquid flow around non-cavitating and cavitating NACA0015 hydrofoil, natural convection with large temperature differences, free convection, free surface flow, vessel pressurization. This document brings together the descriptions of the test cases of the numerical workshop and the abstracts of the conference papers: A 3D high order finite volume method for the prediction of near-critical fluid flows (G. ACCARY, I. RASPO, P. BONTOUX, B. ZAPPOLI); low Mach number limit of the non-isentropic Navier-Stokes equations (T. ALAZARD); simulation of cavitation rolls past a forward step with a bubble model (O. ALLAIN, N. BLASKA, C. LECA); flux preconditioning methods and fire events (P. BIRKEN, A. MEISTER); an adaptive finite element solver for compressible flows: application to heat-driven cavity benchmarks in 2D and 3D (M. BRAACK); comparison of various implicit, explicit, centered and upwind schemes for the simulation of compressed flows on moving mesh (A. CADIOU, M. BUFFAT, L. Le PENVEN, C. Le RIBAULT); low Mach number limit for viscous compressible flows (R. DANCHIN); some Properties of the low Mach number
Tavelli, Maurizio; Dumbser, Michael
2017-07-01
We propose a new arbitrary high order accurate semi-implicit space-time discontinuous Galerkin (DG) method for the solution of the two and three dimensional compressible Euler and Navier-Stokes equations on staggered unstructured curved meshes. The method is pressure-based and semi-implicit and is able to deal with all Mach number flows. The new DG scheme extends the seminal ideas outlined in [1], where a second order semi-implicit finite volume method for the solution of the compressible Navier-Stokes equations with a general equation of state was introduced on staggered Cartesian grids. Regarding the high order extension we follow [2], where a staggered space-time DG scheme for the incompressible Navier-Stokes equations was presented. In our scheme, the discrete pressure is defined on the primal grid, while the discrete velocity field and the density are defined on a face-based staggered dual grid. Then, the mass conservation equation, as well as the nonlinear convective terms in the momentum equation and the transport of kinetic energy in the energy equation are discretized explicitly, while the pressure terms appearing in the momentum and energy equation are discretized implicitly. Formal substitution of the discrete momentum equation into the total energy conservation equation yields a linear system for only one unknown, namely the scalar pressure. Here the equation of state is assumed linear with respect to the pressure. The enthalpy and the kinetic energy are taken explicitly and are then updated using a simple Picard procedure. Thanks to the use of a staggered grid, the final pressure system is a very sparse block five-point system for three dimensional problems and it is a block four-point system in the two dimensional case. Furthermore, for high order in space and piecewise constant polynomials in time, the system is observed to be symmetric and positive definite. This allows to use fast linear solvers such as the conjugate gradient (CG) method. In
Role of Turbulent Prandtl Number on Heat Flux at Hypersonic Mach Numbers
Xiao, X.; Edwards, J. R.; Hassan, H. A.; Gaffney, R. L., Jr.
2007-01-01
A new turbulence model suited for calculating the turbulent Prandtl number as part of the solution is presented. The model is based on a set of two equations: one governing the variance of the enthalpy and the other governing its dissipation rate. These equations were derived from the exact energy equation and thus take into consideration compressibility and dissipation terms. The model is used to study two cases involving shock wave/boundary layer interaction at Mach 9.22 and Mach 5.0. In general, heat transfer prediction showed great improvement over traditional turbulence models where the turbulent Prandtl number is assumed constant. It is concluded that using a model that calculates the turbulent Prandtl number as part of the solution is the key to bridging the gap between theory and experiment for flows dominated by shock wave/boundary layer interactions.
Derivation of the low Mach number diphasic system. Numerical simulation in mono-dimensional geometry
International Nuclear Information System (INIS)
Dellacherie, St.
2004-01-01
This work deals with the derivation of a diphasic low Mach number model obtained through a Mach number asymptotic expansion applied to the compressible diphasic Navier Stokes system, expansion which filters out the acoustic waves. This approach is inspired from the work of Andrew Majda giving the equations of low Mach number combustion for thin flame and for perfect gases. When the equations of state verify some thermodynamic hypothesis, we show that the low Mach number diphasic system predicts in a good way the dilatation or the compression of a bubble and has equilibrium convergence properties. Then, we propose an entropic and convergent Lagrangian scheme in mono-dimensional geometry when the fluids are perfect gases and we propose a first approach in Eulerian variables where the interface between the two fluids is captured with a level set technique. (author)
Role of Turbulent Prandtl Number on Heat Flux at Hypersonic Mach Number
Xiao, X.; Edwards, J. R.; Hassan, H. A.
2004-01-01
Present simulation of turbulent flows involving shock wave/boundary layer interaction invariably overestimates heat flux by almost a factor of two. One possible reason for such a performance is a result of the fact that the turbulence models employed make use of Morkovin's hypothesis. This hypothesis is valid for non-hypersonic Mach numbers and moderate rates of heat transfer. At hypersonic Mach numbers, high rates of heat transfer exist in regions where shock wave/boundary layer interactions are important. As a result, one should not expect traditional turbulence models to yield accurate results. The goal of this investigation is to explore the role of a variable Prandtl number formulation in predicting heat flux in flows dominated by strong shock wave/boundary layer interactions. The intended applications involve external flows in the absence of combustion such as those encountered in supersonic inlets. This can be achieved by adding equations for the temperature variance and its dissipation rate. Such equations can be derived from the exact Navier-Stokes equations. Traditionally, modeled equations are based on the low speed energy equation where the pressure gradient term and the term responsible for energy dissipation are ignored. It is clear that such assumptions are not valid for hypersonic flows. The approach used here is based on the procedure used in deriving the k-zeta model, in which the exact equations that governed k, the variance of velocity, and zeta, the variance of vorticity, were derived and modeled. For the variable turbulent Prandtl number, the exact equations that govern the temperature variance and its dissipation rate are derived and modeled term by term. The resulting set of equations are free of damping and wall functions and are coordinate-system independent. Moreover, modeled correlations are tensorially consistent and invariant under Galilean transformation. The final set of equations will be given in the paper.
Energy Technology Data Exchange (ETDEWEB)
Dellacherie, St
2004-07-01
This work deals with the derivation of a diphasic low Mach number model obtained through a Mach number asymptotic expansion applied to the compressible diphasic Navier Stokes system, expansion which filters out the acoustic waves. This approach is inspired from the work of Andrew Majda giving the equations of low Mach number combustion for thin flame and for perfect gases. When the equations of state verify some thermodynamic hypothesis, we show that the low Mach number diphasic system predicts in a good way the dilatation or the compression of a bubble and has equilibrium convergence properties. Then, we propose an entropic and convergent Lagrangian scheme in mono-dimensional geometry when the fluids are perfect gases and we propose a first approach in Eulerian variables where the interface between the two fluids is captured with a level set technique. (author)
Aeroacoustic computation of low mach number flow
Energy Technology Data Exchange (ETDEWEB)
Skriver Dahl, K. [Risoe National Laboratory, Roskilde (Denmark)
1997-12-31
The possibilities of applying a recently developed numerical technique to predict aerodynamically generated sound from wind turbines is explored. The technique is a perturbation technique that has the advantage that the underlying flow field and the sound field are computed separately. Solution of the incompressible, time dependent flow field yields a hydrodynamic density correction to the incompressible constant density. The sound field is calculated from a set of equations governing the inviscid perturbations about the corrected flow field. Here, the emphasis is placed on the computation of the sound field. The nonlinear partial differential equations governing the sound fields are solved numerically using an explicit MacCormack scheme. Two types of non-reflecting boundary conditions are applied; one based on the asymptotic solution of the governing equations and the other based on a characteristic analysis of the governing equations. The former condition is easy to use and it performs slightly better than the charcteristic based condition. The technique is applied to the problems of the sound generation of a co-rotating vortex pair, which is a quadrupole, and the viscous flow over a circular cylinder, which is a dipole. Numerical results agree very well with the analytical solution for the problem of the co-rotating vortex pair. Numerical results for the viscous flow over a cylinder are presented and evaluated qualitatively. (au)
Study and discretization of kinetic models and fluid models at low Mach number
International Nuclear Information System (INIS)
Dellacherie, Stephane
2011-01-01
This thesis summarizes our work between 1995 and 2010. It concerns the analysis and the discretization of Fokker-Planck or semi-classical Boltzmann kinetic models and of Euler or Navier-Stokes fluid models at low Mach number. The studied Fokker-Planck equation models the collisions between ions and electrons in a hot plasma, and is here applied to the inertial confinement fusion. The studied semi-classical Boltzmann equations are of two types. The first one models the thermonuclear reaction between a deuterium ion and a tritium ion producing an α particle and a neutron particle, and is also in our case used to describe inertial confinement fusion. The second one (known as the Wang-Chang and Uhlenbeck equations) models the transitions between electronic quantified energy levels of uranium and iron atoms in the AVLIS isotopic separation process. The basic properties of these two Boltzmann equations are studied, and, for the Wang-Chang and Uhlenbeck equations, a kinetic-fluid coupling algorithm is proposed. This kinetic-fluid coupling algorithm incited us to study the relaxation concept for gas and immiscible fluids mixtures, and to underline connections with classical kinetic theory. Then, a diphasic low Mach number model without acoustic waves is proposed to model the deformation of the interface between two immiscible fluids induced by high heat transfers at low Mach number. In order to increase the accuracy of the results without increasing computational cost, an AMR algorithm is studied on a simplified interface deformation model. These low Mach number studies also incited us to analyse on cartesian meshes the inaccuracy at low Mach number of Godunov schemes. Finally, the LBM algorithm applied to the heat equation is justified
Low Mach and Peclet number limit for a model of stellar tachocline and upper radiative zones
Directory of Open Access Journals (Sweden)
Donatella Donatelli
2016-09-01
Full Text Available We study a hydrodynamical model describing the motion of internal stellar layers based on compressible Navier-Stokes-Fourier-Poisson system. We suppose that the medium is electrically charged, we include energy exchanges through radiative transfer and we assume that the system is rotating. We analyze the singular limit of this system when the Mach number, the Alfven number, the Peclet number and the Froude number approache zero in a certain way and prove convergence to a 3D incompressible MHD system with a stationary linear transport equation for transport of radiation intensity. Finally, we show that the energy equation reduces to a steady equation for the temperature corrector.
Axisymmetric vortex method for low-Mach number, diffusion-controlled combustion
Lakkis, I
2003-01-01
A grid-free, Lagrangian method for the accurate simulation of low-Mach number, variable-density, diffusion-controlled reacting flow is presented. A fast-chemistry model in which the conversion rate of reactants to products is limited by the local mixing rate is assumed in order to reduce the combustion problem to the solution of a convection-diffusion-generation equation with volumetric expansion and vorticity generation at the reaction fronts. The solutions of the continuity and vorticity equations, and the equations governing the transport of species and energy, are obtained using a formulation in which particles transport conserved quantities by convection and diffusion. The dynamic impact of exothermic combustion is captured through accurate integration of source terms in the vorticity transport equations at the location of the particles, and the extra velocity field associated with volumetric expansion at low Mach number computed to enforced mass conservation. The formulation is obtained for an axisymmet...
Applicability of higher-order TVD method to low mach number compressible flows
International Nuclear Information System (INIS)
Akamatsu, Mikio
1995-01-01
Steep gradients of fluid density are the influential factor of spurious oscillation in numerical solutions of low Mach number (M<<1) compressible flows. The total variation diminishing (TVD) scheme is a promising remedy to overcome this problem and obtain accurate solutions. TVD schemes for high-speed flows are, however, not compatible with commonly used methods in low Mach number flows using pressure-based formulation. In the present study a higher-order TVD scheme is constructed on a modified form of each individual scalar equation of primitive variables. It is thus clarified that the concept of TVD is applicable to low Mach number flows within the framework of the existing numerical method. Results of test problems of the moving interface of two-component gases with the density ratio ≥ 4, demonstrate the accurate and robust (wiggle-free) profile of the scheme. (author)
On the instabilities of supersonic mixing layers - A high-Mach-number asymptotic theory
Balsa, Thomas F.; Goldstein, M. E.
1990-01-01
The stability of a family of tanh mixing layers is studied at large Mach numbers using perturbation methods. It is found that the eigenfunction develops a multilayered structure, and the eigenvalue is obtained by solving a simplified version of the Rayleigh equation (with homogeneous boundary conditions) in one of these layers which lies in either of the external streams. This analysis leads to a simple hypersonic similarity law which explains how spatial and temporal phase speeds and growth rates scale with Mach number and temperature ratio. Comparisons are made with numerical results, and it is found that this similarity law provides a good qualitative guide for the behavior of the instability at high Mach numbers. In addition to this asymptotic theory, some fully numerical results are also presented (with no limitation on the Mach number) in order to explain the origin of the hypersonic modes (through mode splitting) and to discuss the role of oblique modes over a very wide range of Mach number and temperature ratio.
An implicit turbulence model for low-Mach Roe scheme using truncated Navier-Stokes equations
Li, Chung-Gang; Tsubokura, Makoto
2017-09-01
The original Roe scheme is well-known to be unsuitable in simulations of turbulence because the dissipation that develops is unsatisfactory. Simulations of turbulent channel flow for Reτ = 180 show that, with the 'low-Mach-fix for Roe' (LMRoe) proposed by Rieper [J. Comput. Phys. 230 (2011) 5263-5287], the Roe dissipation term potentially equates the simulation to an implicit large eddy simulation (ILES) at low Mach number. Thus inspired, a new implicit turbulence model for low Mach numbers is proposed that controls the Roe dissipation term appropriately. Referred to as the automatic dissipation adjustment (ADA) model, the method of solution follows procedures developed previously for the truncated Navier-Stokes (TNS) equations and, without tuning of parameters, uses the energy ratio as a criterion to automatically adjust the upwind dissipation. Turbulent channel flow at two different Reynold numbers and the Taylor-Green vortex were performed to validate the ADA model. In simulations of turbulent channel flow for Reτ = 180 at Mach number of 0.05 using the ADA model, the mean velocity and turbulence intensities are in excellent agreement with DNS results. With Reτ = 950 at Mach number of 0.1, the result is also consistent with DNS results, indicating that the ADA model is also reliable at higher Reynolds numbers. In simulations of the Taylor-Green vortex at Re = 3000, the kinetic energy is consistent with the power law of decaying turbulence with -1.2 exponents for both LMRoe with and without the ADA model. However, with the ADA model, the dissipation rate can be significantly improved near the dissipation peak region and the peak duration can be also more accurately captured. With a firm basis in TNS theory, applicability at higher Reynolds number, and ease in implementation as no extra terms are needed, the ADA model offers to become a promising tool for turbulence modeling.
Very high Mach number shocks - Theory. [in space plasmas
Quest, Kevin B.
1986-01-01
The theory and simulation of collisionless perpendicular supercritical shock structure is reviewed, with major emphasis on recent research results. The primary tool of investigation is the hybrid simulation method, in which the Newtonian orbits of a large number of ion macroparticles are followed numerically, and in which the electrons are treated as a charge neutralizing fluid. The principal results include the following: (1) electron resistivity is not required to explain the observed quasi-stationarity of the earth's bow shock, (2) the structure of the perpendicular shock at very high Mach numbers depends sensitively on the upstream value of beta (the ratio of the thermal to magnetic pressure) and electron resistivity, (3) two-dimensional turbulence will become increasingly important as the Mach number is increased, and (4) nonadiabatic bulk electron heating will result when a thermal electron cannot complete a gyrorbit while transiting the shock.
Energy Technology Data Exchange (ETDEWEB)
Marc O Delchini; Jean E. Ragusa; Ray A. Berry
2015-07-01
We present a new version of the entropy viscosity method, a viscous regularization technique for hyperbolic conservation laws, that is well-suited for low-Mach flows. By means of a low-Mach asymptotic study, new expressions for the entropy viscosity coefficients are derived. These definitions are valid for a wide range of Mach numbers, from subsonic flows (with very low Mach numbers) to supersonic flows, and no longer depend on an analytical expression for the entropy function. In addition, the entropy viscosity method is extended to Euler equations with variable area for nozzle flow problems. The effectiveness of the method is demonstrated using various 1-D and 2-D benchmark tests: flow in a converging–diverging nozzle; Leblanc shock tube; slow moving shock; strong shock for liquid phase; low-Mach flows around a cylinder and over a circular hump; and supersonic flow in a compression corner. Convergence studies are performed for smooth solutions and solutions with shocks present.
Low-Mach number simulations of transcritical flows
Lapenna, Pasquale E.
2018-01-08
A numerical framework for the direct simulation, in the low-Mach number limit, of reacting and non-reacting transcritical flows is presented. The key feature are an efficient and detailed representation of the real fluid properties and an high-order spatial discretization. The latter is of fundamental importance to correctly resolve the largely non-linear behavior of the fluid in the proximity of the pseudo-boiling. The validity of the low-Mach number assumptions is assessed for a previously developed non-reacting DNS database of transcritical and supercritical mixing. Fully resolved DNS data employing high-fidelity thermodynamical models are also used to investigate the spectral characteristic as well as the differences between transcritical and supercritical jets.
Low Mach number asymptotics for reacting compressible fluid flows
Czech Academy of Sciences Publication Activity Database
Feireisl, Eduard; Petzeltová, Hana
2010-01-01
Roč. 26, č. 2 (2010), s. 455-480 ISSN 1078-0947 R&D Projects: GA ČR GA201/05/0164 Institutional research plan: CEZ:AV0Z10190503 Keywords : low Mach number * Navier-Stokes-Fourier system * reacting fluids Subject RIV: BA - General Mathematics Impact factor: 0.986, year: 2010 http://www.aimsciences.org/journals/displayArticles.jsp?paperID=4660
Low Mach number limits of compressible rotating fluids
Czech Academy of Sciences Publication Activity Database
Feireisl, Eduard
2012-01-01
Roč. 14, č. 1 (2012), s. 61-78 ISSN 1422-6928 R&D Projects: GA ČR GA201/08/0315 Institutional research plan: CEZ:AV0Z10190503 Keywords : low Mach number limit * rotating fluid * compressible fluid Subject RIV: BA - General Mathematics Impact factor: 1.415, year: 2012 http://www.springerlink.com/content/635r1116j40t6428/
Assessment of a transitional boundary layer theory at low hypersonic Mach numbers
Shamroth, S. J.; Mcdonald, H.
1972-01-01
An investigation was carried out to assess the accuracy of a transitional boundary layer theory in the low hypersonic Mach number regime. The theory is based upon the simultaneous numerical solution of the boundary layer partial differential equations for the mean motion and an integral form of the turbulence kinetic energy equation which controls the magnitude and development of the Reynolds stress. Comparisions with experimental data show the theory is capable of accurately predicting heat transfer and velocity profiles through the transitional regime and correctly predicts the effects of Mach number and wall cooling on transition Reynolds number. The procedure shows promise of predicting the initiation of transition for given free stream disturbance levels. The effects on transition predictions of the pressure dilitation term and of direct absorption of acoustic energy by the boundary layer were evaluated.
Application of a transitional boundary-layer theory in the low hypersonic Mach number regime
Shamroth, S. J.; Mcdonald, H.
1975-01-01
An investigation is made to assess the capability of a finite-difference boundary-layer procedure to predict the mean profile development across a transition from laminar to turbulent flow in the low hypersonic Mach-number regime. The boundary-layer procedure uses an integral form of the turbulence kinetic-energy equation to govern the development of the Reynolds apparent shear stress. The present investigation shows the ability of this procedure to predict Stanton number, velocity profiles, and density profiles through the transition region and, in addition, to predict the effect of wall cooling and Mach number on transition Reynolds number. The contribution of the pressure-dilatation term to the energy balance is examined and it is suggested that transition can be initiated by the direct absorption of acoustic energy even if only a small amount (1 per cent) of the incident acoustic energy is absorbed.
Numerical simulation of low Mach number reacting flows
International Nuclear Information System (INIS)
Bell, J B; Aspden, A J; Day, M S; Lijewski, M J
2007-01-01
Using examples from active research areas in combustion and astrophysics, we demonstrate a computationally efficient numerical approach for simulating multiscale low Mach number reacting flows. The method enables simulations that incorporate an unprecedented range of temporal and spatial scales, while at the same time, allows an extremely high degree of reaction fidelity. Sample applications demonstrate the efficiency of the approach with respect to a traditional time-explicit integration method, and the utility of the methodology for studying the interaction of turbulence with terrestrial and astrophysical flame structures
Turbulent mixing of a slightly supercritical van der Waals fluid at low-Mach number
International Nuclear Information System (INIS)
Battista, F.; Casciola, C. M.; Picano, F.
2014-01-01
Supercritical fluids near the critical point are characterized by liquid-like densities and gas-like transport properties. These features are purposely exploited in different contexts ranging from natural products extraction/fractionation to aerospace propulsion. Large part of studies concerns this last context, focusing on the dynamics of supercritical fluids at high Mach number where compressibility and thermodynamics strictly interact. Despite the widespread use also at low Mach number, the turbulent mixing properties of slightly supercritical fluids have still not investigated in detail in this regime. This topic is addressed here by dealing with Direct Numerical Simulations of a coaxial jet of a slightly supercritical van der Waals fluid. Since acoustic effects are irrelevant in the low Mach number conditions found in many industrial applications, the numerical model is based on a suitable low-Mach number expansion of the governing equation. According to experimental observations, the weakly supercritical regime is characterized by the formation of finger-like structures – the so-called ligaments – in the shear layers separating the two streams. The mechanism of ligament formation at vanishing Mach number is extracted from the simulations and a detailed statistical characterization is provided. Ligaments always form whenever a high density contrast occurs, independently of real or perfect gas behaviors. The difference between real and perfect gas conditions is found in the ligament small-scale structure. More intense density gradients and thinner interfaces characterize the near critical fluid in comparison with the smoother behavior of the perfect gas. A phenomenological interpretation is here provided on the basis of the real gas thermodynamics properties
Turbulent mixing of a slightly supercritical van der Waals fluid at low-Mach number
Energy Technology Data Exchange (ETDEWEB)
Battista, F.; Casciola, C. M. [Department of Mechanical and Aerospace Engineering, Sapienza University, via Eudossiana 18, 00184 Rome (Italy); Picano, F. [Department of Industrial Engineering, University of Padova, via Venezia 1, 35131 Padova (Italy)
2014-05-15
Supercritical fluids near the critical point are characterized by liquid-like densities and gas-like transport properties. These features are purposely exploited in different contexts ranging from natural products extraction/fractionation to aerospace propulsion. Large part of studies concerns this last context, focusing on the dynamics of supercritical fluids at high Mach number where compressibility and thermodynamics strictly interact. Despite the widespread use also at low Mach number, the turbulent mixing properties of slightly supercritical fluids have still not investigated in detail in this regime. This topic is addressed here by dealing with Direct Numerical Simulations of a coaxial jet of a slightly supercritical van der Waals fluid. Since acoustic effects are irrelevant in the low Mach number conditions found in many industrial applications, the numerical model is based on a suitable low-Mach number expansion of the governing equation. According to experimental observations, the weakly supercritical regime is characterized by the formation of finger-like structures – the so-called ligaments – in the shear layers separating the two streams. The mechanism of ligament formation at vanishing Mach number is extracted from the simulations and a detailed statistical characterization is provided. Ligaments always form whenever a high density contrast occurs, independently of real or perfect gas behaviors. The difference between real and perfect gas conditions is found in the ligament small-scale structure. More intense density gradients and thinner interfaces characterize the near critical fluid in comparison with the smoother behavior of the perfect gas. A phenomenological interpretation is here provided on the basis of the real gas thermodynamics properties.
Mach Number effects on turbulent superstructures in wall bounded flows
Kaehler, Christian J.; Bross, Matthew; Scharnowski, Sven
2017-11-01
Planer and three-dimensional flow field measurements along a flat plat boundary layer in the Trisonic Wind Tunnel Munich (TWM) are examined with the aim to characterize the scaling, spatial organization, and topology of large scale turbulent superstructures in compressible flow. This facility is ideal for this investigation as the ratio of boundary layer thickness to test section spanwise extent ratio is around 1/25, ensuring minimal sidewall and corner effects on turbulent structures in the center of the test section. A major difficulty in the experimental investigation of large scale features is the mutual size of the superstructures which can extend over many boundary layer thicknesses. Using multiple PIV systems, it was possible to capture the full spatial extent of large-scale structures over a range of Mach numbers from Ma = 0.3 - 3. To calculate the average large-scale structure length and spacing, the acquired vector fields were analyzed by statistical multi-point methods that show large scale structures with a correlation length of around 10 boundary layer thicknesses over the range of Mach numbers investigated. Furthermore, the average spacing between high and low momentum structures is on the order of a boundary layer thicknesses. This work is supported by the Priority Programme SPP 1881 Turbulent Superstructures of the Deutsche Forschungsgemeinschaft.
The Variation of Slat Noise with Mach and Reynolds Numbers
Lockard, David P.; Choudhari, Meelan M.
2011-01-01
The slat noise from the 30P30N high-lift system has been computed using a computational fluid dynamics code in conjunction with a Ffowcs Williams-Hawkings solver. By varying the Mach number from 0.13 to 0.25, the noise was found to vary roughly with the 5th power of the speed. Slight changes in the behavior with directivity angle could easily account for the different speed dependencies reported in the literature. Varying the Reynolds number from 1.4 to 2.4 million resulted in almost no differences, and primarily served to demonstrate the repeatability of the results. However, changing the underlying hybrid Reynolds-averaged-Navier-Stokes/Large-Eddy-Simulation turbulence model significantly altered the mean flow because of changes in the flap separation. However, the general trends observed in both the acoustics and near-field fluctuations were similar for both models.
Angular dependence of high Mach number plasma interactions
International Nuclear Information System (INIS)
Thomas, V.A.; Brecht, S.H.
1987-01-01
In this paper a 2-1/2-dimensional hybrid code is used to examine the collisionless large spatial scale (kc/ω pi ∼ 1) low-frequency (ω ∼ ω ci ) interaction initiated by a plasma shell of finite width traveling at high Alfven Mach number relative to a uniform background plasma. Particular attention is given to the angle of the relative velocity relative to the ambient magnetic field for the range of angles O < θ < π/2. An attempt is made to parameterize some of the important physics including the Alfven ion cyclotron instability, the field-aligned electromagnetic ion counter streaming instability, mixing of the plasma shell with the background ions, and structuring of the interaction region. These results are applicable to various astrophysical interactions such as bow shocks and interplanetary shocks
Numerical solutions of unsteady flows with low inlet Mach numbers
Czech Academy of Sciences Publication Activity Database
Punčochářová, Petra; Furst, Jiří; Horáček, Jaromír; Kozel, Karel
2010-01-01
Roč. 80, č. 8 (2010), s. 1795-1805 ISSN 0378-4754 R&D Projects: GA AV ČR IAA200760613 Institutional research plan: CEZ:AV0Z20760514 Keywords : finite volume method * unsteady flow * low Mach number * viscous compressible fluid Subject RIV: BI - Acoustics Impact factor: 0.812, year: 2010 http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6V0T-4Y0D67D-1-R&_cdi=5655&_user=640952&_pii=S0378475409003607&_origin=search&_coverDate=04%2F30%2F2010&_sk=999199991&view=c&wchp=dGLbVlb-zSkzk&md5=ed6eaf0a050968ee978714fd54e7f131&ie=/sdarticle.pdf
Effects of Mach number on pitot-probe displacement in a turbulent boundary layer
Allen, J. M.
1974-01-01
Experimental pitot-probe-displacement data have been obtained in a turbulent boundary layer at a local free-stream Mach number of 4.63 and unit Reynolds number of 6.46 million meter. The results of this study were compared with lower Mach number results of previous studies. It was found that small probes showed displacement only, whereas the larger probes showed not only displacement but also distortion of the shape of the boundary-layer profile. The distortion pattern occurred lower in the boundary layer at the higher Mach number than at the the lower Mach number. The maximum distortion occurred when the center of the probe was about one probe diameter off the test surface. For probes in the wall contact position, the indicated Mach numbers were, for all probes tested, close to the true profile. Pitot-probe displacement was found to increase significantly with increasing Mach number.
High-Mach number, laser-driven magnetized collisionless shocks
International Nuclear Information System (INIS)
Schaeffer, Derek B.; Fox, W.; Haberberger, D.; Fiksel, G.; Bhattacharjee, A.
2017-01-01
Collisionless shocks are ubiquitous in space and astrophysical systems, and the class of supercritical shocks is of particular importance due to their role in accelerating particles to high energies. While these shocks have been traditionally studied by spacecraft and remote sensing observations, laboratory experiments can provide reproducible and multi-dimensional datasets that provide complementary understanding of the underlying microphysics. We present experiments undertaken on the OMEGA and OMEGA EP laser facilities that show the formation and evolution of high-Mach number collisionless shocks created through the interaction of a laser-driven magnetic piston and magnetized ambient plasma. Through time-resolved, 2-D imaging we observe large density and magnetic compressions that propagate at super-Alfvenic speeds and that occur over ion kinetic length scales. Electron density and temperature of the initial ambient plasma are characterized using optical Thomson scattering. Measurements of the piston laser-plasma are modeled with 2-D radiation-hydrodynamic simulations, which are used to initialize 2-D particle-in-cell simulations of the interaction between the piston and ambient plasmas. The numerical results show the formation of collisionless shocks, including the separate dynamics of the carbon and hydrogen ions that constitute the ambient plasma and their effect on the shock structure. Furthermore, the simulations also show the shock separating from the piston, which we observe in the data at late experimental times.
Effects of rocket jet on stability and control at high Mach numbers
Fetterman, David E , Jr
1958-01-01
Paper presents the results of an investigation to determine the jet-interference effects which may occur at high jet static-pressure ratios and high Mach numbers. Tests were made in the Langley 11-inch hypersonic tunnel at a Mach number of 6.86.
Variation with Mach Number of Static and Total Pressures Through Various Screens
Adler, Alfred A
1946-01-01
Tests were conducted in the Langley 24-inch highspeed tunnel to ascertain the static-pressure and total-pressure losses through screens ranging in mesh from 3 to 12 wires per inch and in wire diameter from 0.023 to 0.041 inch. Data were obtained from a Mach number of approximately 0.20 up to the maximum (choking) Mach number obtainable for each screen. The results of this investigation indicate that the pressure losses increase with increasing Mach number until the choking Mach number, which can be computed, is reached. Since choking imposes a restriction on the mass rate of flow and maximum losses are incurred at this condition, great care must be taken in selecting the screen mesh and wire dimmeter for an installation so that the choking Mach number is
Acoustic-hydrodynamic-flame coupling—A new perspective for zero and low Mach number flows
Pulikkottil, V. V.; Sujith, R. I.
2017-04-01
A combustion chamber has a hydrodynamic field that convects the incoming fuel and oxidizer into the chamber, thereby causing the mixture to react and produce heat energy. This heat energy can, in turn, modify the hydrodynamic and acoustic fields by acting as a source and thereby, establish a positive feedback loop. Subsequent growth in the amplitude of the acoustic field variables and their eventual saturation to a limit cycle is generally known as thermo-acoustic instability. Mathematical representation of these phenomena, by a set of equations, is the subject of this paper. In contrast to the ad hoc models, an explanation of the flame-acoustic-hydrodynamic coupling, based on fundamental laws of conservation of mass, momentum, and energy, is presented in this paper. In this paper, we use a convection reaction diffusion equation, which, in turn, is derived from the fundamental laws of conservation to explain the flame-acoustic coupling. The advantage of this approach is that the physical variables such as hydrodynamic velocity and heat release rate are coupled based on the conservation of energy and not based on an ad hoc model. Our approach shows that the acoustic-hydrodynamic interaction arises from the convection of acoustic velocity fluctuations by the hydrodynamic field and vice versa. This is a linear mechanism, mathematically represented as a convection operator. This mechanism resembles the non-normal mechanism studied in hydrodynamic theory. We propose that this mechanism could relate the instability mechanisms of hydrodynamic and thermo-acoustic systems. Furthermore, the acoustic-hydrodynamic interaction is shown to be responsible for the convection of entropy disturbances from the inlet of the chamber. The theory proposed in this paper also unifies the observations in the fields of low Mach number flows and zero Mach number flows. In contrast to the previous findings, where compressibility is shown to be causing different physics for zero and low Mach
Dynamic pressure sensitivity determination with Mach number method
Sarraf, Christophe; Damion, Jean-Pierre
2018-05-01
Measurements of pressure in fast transient conditions are often performed even if the dynamic characteristic of the transducer are not traceable to international standards. Moreover, the question of a primary standard in dynamic pressure is still open, especially for gaseous applications. The question is to improve dynamic standards in order to respond to expressed industrial needs. In this paper, the method proposed in the EMRP IND09 ‘Dynamic’ project, which can be called the ‘ideal shock tube method’, is compared with the ‘collective standard method’ currently used in the Laboratoire de Métrologie Dynamique (LNE/ENSAM). The input is a step of pressure generated by a shock tube. The transducer is a piezoelectric pressure sensor. With the ‘ideal shock tube method’ the sensitivity of a pressure sensor is first determined dynamically. This method requires a shock tube implemented with piezoelectric shock wave detectors. The measurement of the Mach number in the tube allows an evaluation of the incident pressure amplitude of a step using a theoretical 1D model of the shock tube. Heat transfer, other actual effects and effects of the shock tube imperfections are not taken into account. The amplitude of the pressure step is then used to determine the sensitivity in dynamic conditions. The second method uses a frequency bandwidth comparison to determine pressure at frequencies from quasi-static conditions, traceable to static pressure standards, to higher frequencies (up to 10 kHz). The measurand is also a step of pressure generated by a supposed ideal shock tube or a fast-opening device. The results are provided as a transfer function with an uncertainty budget assigned to a frequency range, also deliverable frequency by frequency. The largest uncertainty in the bandwidth of comparison is used to trace the final pressure step level measured in dynamic conditions, owing that this pressure is not measurable in a steady state on a shock tube. A reference
Calibration of the 7—Equation Transition Model for High Reynolds Flows at Low Mach
Colonia, S.; Leble, V.; Steijl, R.; Barakos, G.
2016-09-01
The numerical simulation of flows over large-scale wind turbine blades without considering the transition from laminar to fully turbulent flow may result in incorrect estimates of the blade loads and performance. Thanks to its relative simplicity and promising results, the Local-Correlation based Transition Modelling concept represents a valid way to include transitional effects into practical CFD simulations. However, the model involves coefficients that need tuning. In this paper, the γ—equation transition model is assessed and calibrated, for a wide range of Reynolds numbers at low Mach, as needed for wind turbine applications. An aerofoil is used to evaluate the original model and calibrate it; while a large scale wind turbine blade is employed to show that the calibrated model can lead to reliable solutions for complex three-dimensional flows. The calibrated model shows promising results for both two-dimensional and three-dimensional flows, even if cross-flow instabilities are neglected.
Miscellaneous: Various Low-Mach-Number Fluid Problems and Motions
Zeytounian, Radyadour Kh.
In this last chapter, we consider, first, in Sect. 7.1, mainly the asymptotic derivation of the KZK equation of nonlinear acoustics, which generalizes the well-known Burgers' unsteady one-dimensional dissipative model equation (Burgers 1948) to an equation with a diffraction and parabolic effect.
Performance Limiting Flow Processes in High-State Loading High-Mach Number Compressors
National Research Council Canada - National Science Library
Tan, Choon S
2008-01-01
In high-stage loading high-Mach number (HLM) compressors, counter-rotating pairs of discrete vortices are shed at the trailing edge of the upstream blade row at a frequency corresponding to the downstream rotor blade passing frequency...
Sensitivity of boundary-layer stability to base-state distortions at high Mach numbers
Park, Junho; Zaki, Tamer
2017-11-01
The stability diagram of high-speed boundary layers has been established by evaluating the linear instability modes of the similarity profile, over wide ranges of Reynolds and Mach numbers. In real flows, however, the base state can deviate from the similarity profile. Both the base velocity and temperature can be distorted, for example due to roughness and thermal wall treatments. We review the stability problem of high-speed boundary layer, and derive a new formulation of the sensitivity to base-state distortion using forward and adjoint parabolized stability equations. The new formulation provides qualitative and quantitative interpretations on change in growth rate due to modifications of mean-flow and mean-temperature in heated high-speed boundary layers, and establishes the foundation for future control strategies. This work has been funded by the Air Force Office of Scientific Research (AFOSR) Grant: FA9550-16-1-0103.
Nielsen number and differential equations
Directory of Open Access Journals (Sweden)
Andres Jan
2005-01-01
Full Text Available In reply to a problem of Jean Leray (application of the Nielsen theory to differential equations, two main approaches are presented. The first is via Poincaré's translation operator, while the second one is based on the Hammerstein-type solution operator. The applicability of various Nielsen theories is discussed with respect to several sorts of differential equations and inclusions. Links with the Sharkovskii-like theorems (a finite number of periodic solutions imply infinitely many subharmonics are indicated, jointly with some further consequences like the nontrivial -structure of solutions of initial value problems. Some illustrating examples are supplied and open problems are formulated.
A Parametric Study of a Constant-Mach-Number MHD Generator with Nuclear Ionization
International Nuclear Information System (INIS)
Braun, J.
1965-03-01
The influence of electrical and gas dynamical parameters on the length, of a linear constant-Mach-number MHD duct has been investigated. The gas has been assumed to be ionized by neutron irradiation in the expansion nozzle preceding the MHD duct. Inside the duct the electron recombination is assumed to be governed, by volume recombination. It is found that there exists a distinct domain from which the parameters must be chosen, pressure and Mach number being the most critical ones. If power densities in the order of magnitude 100 MW/m 3 are desired, high magnetic fields and Mach numbers in the supersonic range are needed. The influence of the variation of critical parameters on the channel length is given as a product of simple functions, each containing one parameter
A Parametric Study of a Constant-Mach-Number MHD Generator with Nuclear Ionization
Energy Technology Data Exchange (ETDEWEB)
Braun, J
1965-03-15
The influence of electrical and gas dynamical parameters on the length, of a linear constant-Mach-number MHD duct has been investigated. The gas has been assumed to be ionized by neutron irradiation in the expansion nozzle preceding the MHD duct. Inside the duct the electron recombination is assumed to be governed, by volume recombination. It is found that there exists a distinct domain from which the parameters must be chosen, pressure and Mach number being the most critical ones. If power densities in the order of magnitude 100 MW/m{sup 3} are desired, high magnetic fields and Mach numbers in the supersonic range are needed. The influence of the variation of critical parameters on the channel length is given as a product of simple functions, each containing one parameter.
Meerson, Baruch; Fouxon, Itzhak; Vilenkin, Arkady
2008-02-01
We employ hydrodynamic equations to investigate nonstationary channel flows of freely cooling dilute gases of hard and smooth spheres with nearly elastic particle collisions. This work focuses on the regime where the sound travel time through the channel is much shorter than the characteristic cooling time of the gas. As a result, the gas pressure rapidly becomes almost homogeneous, while the typical Mach number of the flow drops well below unity. Eliminating the acoustic modes and employing Lagrangian coordinates, we reduce the hydrodynamic equations to a single nonlinear and nonlocal equation of a reaction-diffusion type. This equation describes a broad class of channel flows and, in particular, can follow the development of the clustering instability from a weakly perturbed homogeneous cooling state to strongly nonlinear states. If the heat diffusion is neglected, the reduced equation becomes exactly soluble, and the solution develops a finite-time density blowup. The blowup has the same local features at singularity as those exhibited by the recently found family of exact solutions of the full set of ideal hydrodynamic equations [I. Fouxon, Phys. Rev. E 75, 050301(R) (2007); I. Fouxon,Phys. Fluids 19, 093303 (2007)]. The heat diffusion, however, always becomes important near the attempted singularity. It arrests the density blowup and brings about previously unknown inhomogeneous cooling states (ICSs) of the gas, where the pressure continues to decay with time, while the density profile becomes time-independent. The ICSs represent exact solutions of the full set of granular hydrodynamic equations. Both the density profile of an ICS and the characteristic relaxation time toward it are determined by a single dimensionless parameter L that describes the relative role of the inelastic energy loss and heat diffusion. At L>1 the intermediate cooling dynamics proceeds as a competition between "holes": low-density regions of the gas. This competition resembles Ostwald
Increased Mach Number Capability for the NASA Glenn 10x10 Supersonic Wind Tunnel
Slater, J. W.; Saunders, J. D.
2015-01-01
Computational simulations and wind tunnel testing were conducted to explore the operation of the Abe Silverstein Supersonic Wind Tunnel at the NASA Glenn Research Center at test section Mach numbers above the current limit of Mach 3.5. An increased Mach number would enhance the capability for testing of supersonic and hypersonic propulsion systems. The focus of the explorations was on understanding the flow within the second throat of the tunnel, which is downstream of the test section and is where the supersonic flow decelerates to subsonic flow. Methods of computational fluid dynamics (CFD) were applied to provide details of the shock boundary layer structure and to estimate losses in total pressure. The CFD simulations indicated that the tunnel could be operated up to Mach 4.0 if the minimum width of the second throat was made smaller than that used for previous operation of the tunnel. Wind tunnel testing was able to confirm such operation of the tunnel at Mach 3.6 and 3.7 before a hydraulic failure caused a stop to the testing. CFD simulations performed after the wind tunnel testing showed good agreement with test data consisting of static pressures along the ceiling of the second throat. The CFD analyses showed increased shockwave boundary layer interactions, which was also observed as increased unsteadiness of dynamic pressures collected in the wind tunnel testing.
Numerical simulation of unsteady compressible low Mach number flow in a channel
Czech Academy of Sciences Publication Activity Database
Punčochářová-Pořízková, P.; Kozel, Karel; Horáček, Jaromír; Fürst, J.
2010-01-01
Roč. 17, č. 2 (2010), s. 83-97 ISSN 1802-1484 R&D Projects: GA MŠk OC09019 Institutional research plan: CEZ:AV0Z20760514 Keywords : CFD * finite volume method * unsteady flow * low Mach number Subject RIV: BI - Acoustics
Background-oriented schlieren imaging of flow around a circular cylinder at low Mach numbers
Stadler, Hannes; Bauknecht, André; Siegrist, Silvan; Flesch, Robert; Wolf, C. Christian; van Hinsberg, Nils; Jacobs, Markus
2017-09-01
The background-oriented schlieren (BOS) imaging method has, for the first time, been applied in the investigation of the flow around a circular cylinder at low Mach numbers (Msuccessive imaging at incremental angular positions around the cylinder. This density distribution has been found to agree well with the pressure measurements and with potential theory where appropriate.
A two-dimensional, TVD numerical scheme for inviscid, high Mach number flows in chemical equilibrium
Eberhardt, S.; Palmer, G.
1986-01-01
A new algorithm has been developed for hypervelocity flows in chemical equilibrium. Solutions have been achieved for Mach numbers up to 15 with no adverse effect on convergence. Two methods of coupling an equilibrium chemistry package have been tested, with the simpler method proving to be more robust. Improvements in boundary conditions are still required for a production-quality code.
Hruschka, R.; Klatt, D.
2018-03-01
The transient shock dynamics and drag characteristics of a projectile flying through a pipe 3.55 times larger than its diameter at transonic speed are analyzed by means of time-of-flight and pipe wall pressure measurements as well as computational fluid dynamics (CFD). In addition, free-flight drag of the 4.5-mm-pellet-type projectile was also measured in a Mach number range between 0.5 and 1.5, providing a means for comparison against in-pipe data and CFD. The flow is categorized into five typical regimes the in-pipe projectile experiences. When projectile speed and hence compressibility effects are low, the presence of the pipe has little influence on the drag. Between Mach 0.5 and 0.8, there is a strong drag increase due to the presence of the pipe, however, up to a value of about two times the free-flight drag. This is exactly where the nose-to-base pressure ratio of the projectile becomes critical for locally sonic speed, allowing the drag to be estimated by equations describing choked flow through a converging-diverging nozzle. For even higher projectile Mach numbers, the drag coefficient decreases again, to a value slightly below the free-flight drag at Mach 1.5. This behavior is explained by a velocity-independent base pressure coefficient in the pipe, as opposed to base pressure decreasing with velocity in free flight. The drag calculated by CFD simulations agreed largely with the measurements within their experimental uncertainty, with some discrepancies remaining for free-flying projectiles at supersonic speed. Wall pressure measurements as well as measured speeds of both leading and trailing shocks caused by the projectile in the pipe also agreed well with CFD.
Analytic MHD Theory for Earth's Bow Shock at Low Mach Numbers
Grabbe, Crockett L.; Cairns, Iver H.
1995-01-01
A previous MHD theory for the density jump at the Earth's bow shock, which assumed the Alfven M(A) and sonic M(s) Mach numbers are both much greater than 1, is reanalyzed and generalized. It is shown that the MHD jump equation can be analytically solved much more directly using perturbation theory, with the ordering determined by M(A) and M(s), and that the first-order perturbation solution is identical to the solution found in the earlier theory. The second-order perturbation solution is calculated, whereas the earlier approach cannot be used to obtain it. The second-order terms generally are important over most of the range of M(A) and M(s) in the solar wind when the angle theta between the normal to the bow shock and magnetic field is not close to 0 deg or 180 deg (the solutions are symmetric about 90 deg). This new perturbation solution is generally accurate under most solar wind conditions at 1 AU, with the exception of low Mach numbers when theta is close to 90 deg. In this exceptional case the new solution does not improve on the first-order solutions obtained earlier, and the predicted density ratio can vary by 10-20% from the exact numerical MHD solutions. For theta approx. = 90 deg another perturbation solution is derived that predicts the density ratio much more accurately. This second solution is typically accurate for quasi-perpendicular conditions. Taken together, these two analytical solutions are generally accurate for the Earth's bow shock, except in the rare circumstance that M(A) is less than or = 2. MHD and gasdynamic simulations have produced empirical models in which the shock's standoff distance a(s) is linearly related to the density jump ratio X at the subsolar point. Using an empirical relationship between a(s) and X obtained from MHD simulations, a(s) values predicted using the MHD solutions for X are compared with the predictions of phenomenological models commonly used for modeling observational data, and with the predictions of a
Lattice Boltzmann method and gas-kinetic BGK scheme in the low-Mach number viscous flow simulations
International Nuclear Information System (INIS)
Xu Kun; He Xiaoyi
2003-01-01
Both lattice Boltzmann method (LBM) and the gas-kinetic BGK scheme are based on the numerical discretization of the Boltzmann equation with collisional models, such as, the Bhatnagar-Gross-Krook (BGK) model. LBM tracks limited number of particles and the viscous flow behavior emerges automatically from the intrinsic particle stream and collisions process. On the other hand, the gas-kinetic BGK scheme is a finite volume scheme, where the time-dependent gas distribution function with continuous particle velocity space is constructed and used in the evaluation of the numerical fluxes across cell interfaces. Currently, LBM is mainly used for low Mach number, nearly incompressible flow simulation. For the gas-kinetic scheme, the application is focusing on the high speed compressible flows. In this paper, we are going to compare both schemes in the isothermal low-Mach number flow simulations. The methodology for developing both schemes will be clarified through the introduction of operator splitting Boltzmann model and operator averaging Boltzmann model. From the operator splitting Boltzmann model, the error rooted in many kinetic schemes, which are based on the decoupling of particle transport and collision, can be easily understood. As to the test case, we choose to use the 2D cavity flow since it is one of the most extensively studied cases. Detailed simulation results with different Reynolds numbers, as well as the benchmark solutions, are presented
Low Mach-number collisionless electrostatic shocks and associated ion acceleration
Pusztai, I.; TenBarge, J. M.; Csapó, A. N.; Juno, J.; Hakim, A.; Yi, L.; Fülöp, T.
2018-03-01
The existence and properties of low Mach-number (M≳ 1) electrostatic collisionless shocks are investigated with a semi-analytical solution for the shock structure. We show that the properties of the shock obtained in the semi-analytical model can be well reproduced in fully kinetic Eulerian Vlasov-Poisson simulations, where the shock is generated by the decay of an initial density discontinuity. Using this semi-analytical model, we study the effect of the electron-to-ion temperature ratio and the presence of impurities on both the maximum shock potential and the Mach number. We find that even a small amount of impurities can influence the shock properties significantly, including the reflected light ion fraction, which can change several orders of magnitude. Electrostatic shocks in heavy ion plasmas reflect most of the hydrogen impurity ions.
Mach number scaling of helicopter rotor blade/vortex interaction noise
Leighton, Kenneth P.; Harris, Wesley L.
1985-01-01
A parametric study of model helicopter rotor blade slap due to blade vortex interaction (BVI) was conducted in a 5 by 7.5-foot anechoic wind tunnel using model helicopter rotors with two, three, and four blades. The results were compared with a previously developed Mach number scaling theory. Three- and four-bladed rotor configurations were found to show very good agreement with the Mach number to the sixth power law for all conditions tested. A reduction of conditions for which BVI blade slap is detected was observed for three-bladed rotors when compared to the two-bladed baseline. The advance ratio boundaries of the four-bladed rotor exhibited an angular dependence not present for the two-bladed configuration. The upper limits for the advance ratio boundaries of the four-bladed rotors increased with increasing rotational speed.
Surfing and drift acceleration at high mach number quasi-perpendicular shocks
International Nuclear Information System (INIS)
Amano, T.
2008-01-01
Electron acceleration in high Mach number collisionless shocks relevant to supernova remnant is discussed. By performing one- and two-dimensional particle-in-cell simulations of quasi-perpendicular shocks, we find that energetic electrons are quickly generated in the shock transition region through shock surfing and drift acceleration. The electron energization is strong enough to account for the observed injection at supernova remnant shocks. (author)
The Dynamics of Very High Alfvén Mach Number Shocks in Space Plasmas
Energy Technology Data Exchange (ETDEWEB)
Sundberg, Torbjörn; Burgess, David [School of Physics and Astronomy, Queen Mary University of London, London, E1 4NS (United Kingdom); Scholer, Manfred [Max-Planck-Institut für extraterrestrische Physik, Garching (Germany); Masters, Adam [The Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2AZ (United Kingdom); Sulaiman, Ali H., E-mail: torbjorn.sundberg@gmail.com [Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242 (United States)
2017-02-10
Astrophysical shocks, such as planetary bow shocks or supernova remnant shocks, are often in the high or very-high Mach number regime, and the structure of such shocks is crucial for understanding particle acceleration and plasma heating, as well inherently interesting. Recent magnetic field observations at Saturn’s bow shock, for Alfvén Mach numbers greater than about 25, have provided evidence for periodic non-stationarity, although the details of the ion- and electron-scale processes remain unclear due to limited plasma data. High-resolution, multi-spacecraft data are available for the terrestrial bow shock, but here the very high Mach number regime is only attained on extremely rare occasions. Here we present magnetic field and particle data from three such quasi-perpendicular shock crossings observed by the four-spacecraft Cluster mission. Although both ion reflection and the shock profile are modulated at the upstream ion gyroperiod timescale, the dominant wave growth in the foot takes place at sub-proton length scales and is consistent with being driven by the ion Weibel instability. The observed large-scale behavior depends strongly on cross-scale coupling between ion and electron processes, with ion reflection never fully suppressed, and this suggests a model of the shock dynamics that is in conflict with previous models of non-stationarity. Thus, the observations offer insight into the conditions prevalent in many inaccessible astrophysical environments, and provide important constraints for acceleration processes at such shocks.
Some Functional Equations Originating from Number Theory
Indian Academy of Sciences (India)
We will introduce new functional equations (3) and (4) which are strongly related to well-known formulae (1) and (2) of number theory, and investigate the solutions of the equations. Moreover, we will also study some stability problems of those equations.
Nonaka, Andrew; Day, Marcus S.; Bell, John B.
2018-01-01
We present a numerical approach for low Mach number combustion that conserves both mass and energy while remaining on the equation of state to a desired tolerance. We present both unconfined and confined cases, where in the latter the ambient pressure changes over time. Our overall scheme is a projection method for the velocity coupled to a multi-implicit spectral deferred corrections (SDC) approach to integrate the mass and energy equations. The iterative nature of SDC methods allows us to incorporate a series of pressure discrepancy corrections naturally that lead to additional mass and energy influx/outflux in each finite volume cell in order to satisfy the equation of state. The method is second order, and satisfies the equation of state to a desired tolerance with increasing iterations. Motivated by experimental results, we test our algorithm on hydrogen flames with detailed kinetics. We examine the morphology of thermodiffusively unstable cylindrical premixed flames in high-pressure environments for confined and unconfined cases. We also demonstrate that our algorithm maintains the equation of state for premixed methane flames and non-premixed dimethyl ether jet flames.
Some functional equations originating from number theory
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
Moreover, we will also study some stability problems of those equations. ... Wisconsin in which he discussed a number of important unsolved problems [18]. ... According to a well-known theorem in number theory, a positive integer of the form.
The Experimental Measurement of Aerodynamic Heating About Complex Shapes at Supersonic Mach Numbers
Neumann, Richard D.; Freeman, Delma C.
2011-01-01
In 2008 a wind tunnel test program was implemented to update the experimental data available for predicting protuberance heating at supersonic Mach numbers. For this test the Langley Unitary Wind Tunnel was also used. The significant differences for this current test were the advances in the state-of-the-art in model design, fabrication techniques, instrumentation and data acquisition capabilities. This current paper provides a focused discussion of the results of an in depth analysis of unique measurements of recovery temperature obtained during the test.
Chu, Julio; Luckring, James M.
1996-01-01
An experimental wind tunnel test of a 65 deg. delta wing model with interchangeable leading edges was conducted in the Langley National Transonic Facility (NTF). The objective was to investigate the effects of Reynolds and Mach numbers on slender-wing leading-edge vortex flows with four values of wing leading-edge bluntness. Experimentally obtained pressure data are presented without analysis in tabulated and graphical formats across a Reynolds number range of 6 x 10(exp 6) to 84 x 10(exp 6) at a Mach number of 0.85 and across a Mach number range of 0.4 to 0.9 at Reynolds numbers of 6 x 10(exp 6) and 60 x 10(exp 6). Normal-force and pitching-moment coefficient plots for these Reynolds number and Mach number ranges are also presented.
Needleman, Kathy E.; Mack, Robert J.
1990-01-01
This paper presents and discusses trends in nose shock overpressure generated by two conceptual Mach 2.0 configurations. One configuration was designed for high aerodynamic efficiency, while the other was designed to produce a low boom, shaped-overpressure signature. Aerodynamic lift, sonic boom minimization, and Mach-sliced/area-rule codes were used to analyze and compute the sonic boom characteristics of both configurations with respect to cruise Mach number, weight, and altitude. The influence of these parameters on the overpressure and the overpressure trends are discussed and conclusions are given.
Low Mach number analysis of idealized thermoacoustic engines with numerical solution.
Hireche, Omar; Weisman, Catherine; Baltean-Carlès, Diana; Le Quéré, Patrick; Bauwens, Luc
2010-12-01
A model of an idealized thermoacoustic engine is formulated, coupling nonlinear flow and heat exchange in the heat exchangers and stack with a simple linear acoustic model of the resonator and load. Correct coupling results in an asymptotically consistent global model, in the small Mach number approximation. A well-resolved numerical solution is obtained for two-dimensional heat exchangers and stack. The model assumes that the heat exchangers and stack are shorter than the overall length by a factor of the order of a representative Mach number. The model is well-suited for simulation of the entire startup process, whereby as a result of some excitation, an initially specified temperature profile in the stack evolves toward a near-steady profile, eventually reaching stationary operation. A validation analysis is presented, together with results showing the early amplitude growth and approach of a stationary regime. Two types of initial excitation are used: Random noise and a small periodic wave. The set of assumptions made leads to a heat-exchanger section that acts as a source of volume but is transparent to pressure and to a local heat-exchanger model characterized by a dynamically incompressible flow to which a locally spatially uniform acoustic pressure fluctuation is superimposed.
Thermodynamic analysis on optimum performance of scramjet engine at high Mach numbers
International Nuclear Information System (INIS)
Zhang, Duo; Yang, Shengbo; Zhang, Silong; Qin, Jiang; Bao, Wen
2015-01-01
In order to predict the maximum performance of scramjet engine at flight conditions with high freestream Mach numbers, a thermodynamic model of Brayton cycle was utilized to analyze the effects of inlet pressure ratio, fuel equivalence ratio and the upper limit of gas temperature to the specific thrust and the fuel impulse of the scramjet considering the characteristics of non-isentropic compression in the inlet. The results show that both the inlet efficiency and the temperature limit in the combustor have remarkable effects on the overall engine performances. Different with the ideal Brayton cycles assuming isentropic compression without upper limit of gas temperature, both the maximum specific thrust and the maximum fuel impulse of a scramjet present non-monotonic trends against the fuel equivalence ratio in this study. Considering the empirical design efficiencies of inlet, there is a wide range of fuel equivalence ratios in which the fuel impulses remain at high values. Moreover, the maximum specific thrust can also be achieved with a fuel equivalence ratio near this range. Therefore, it is possible to achieve an overall high performance in a scramjet at high Mach numbers. - Highlights: • Thermodynamic analysis with Brayton cycle on overall performances of scramjet. • The compression loss in the inlet was considered in predicting scram-mode operation. • Non-monotonic trends of engine performances against fuel equivalence ratio.
Influences of mach number and flow incidence on aerodynamic losses of steam turbine blade
International Nuclear Information System (INIS)
Yoo, Seok Jae; Ng, Wing Fai
2000-01-01
An experiment was conducted to investigate the aerodynamic losses of high pressure steam turbine nozzle (526A) subjected to a large range of incident angles (-34 .deg. to 26 .deg. ) and exit Mach numbers (0.6 and 1.15). Measurements included downstream pitot probe traverses, upstream total pressure, and endwall static pressures. Flow visualization techniques such as shadowgraph and color oil flow visualization were performed to complement the measured data. When the exit Mach number for nozzles increased from 0.9 to 1.1 the total pressure loss coefficient increased by a factor of 7 as compared to the total pressure losses measured at subsonic conditions (M 2 <0.9). For the range of incidence tested, the effect of flow incidence on the total pressure losses is less pronounced. Based on the shadowgraphs taken during the experiment, it's believed that the large increase in losses at transonic conditions is due to strong shock/ boundary layer interaction that may lead to flow separation on the blade suction surface
Energy Technology Data Exchange (ETDEWEB)
Matsumoto, Yosuke [Department of Physics, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba 263-8522 (Japan); Amano, Takanobu; Hoshino, Masahiro, E-mail: ymatumot@astro.s.chiba-u.ac.jp [Department of Earth and Planetary Science, University of Tokyo, Hongo 1-33, Bunkyo-ku, Tokyo 113-0033 (Japan)
2012-08-20
Electron accelerations at high Mach number collisionless shocks are investigated by means of two-dimensional electromagnetic particle-in-cell simulations with various Alfven Mach numbers, ion-to-electron mass ratios, and the upstream electron {beta}{sub e} (the ratio of the thermal pressure to the magnetic pressure). We find electrons are effectively accelerated at a super-high Mach number shock (M{sub A} {approx} 30) with a mass ratio of M/m = 100 and {beta}{sub e} = 0.5. The electron shock surfing acceleration is an effective mechanism for accelerating the particles toward the relativistic regime even in two dimensions with a large mass ratio. Buneman instability excited at the leading edge of the foot in the super-high Mach number shock results in a coherent electrostatic potential structure. While multi-dimensionality allows the electrons to escape from the trapping region, they can interact with the strong electrostatic field several times. Simulation runs in various parameter regimes indicate that the electron shock surfing acceleration is an effective mechanism for producing relativistic particles in extremely high Mach number shocks in supernova remnants, provided that the upstream electron temperature is reasonably low.
Tests of Full-Scale Helicopter Rotors at High Advancing Tip Mach Numbers and Advance Ratios
Biggers, James C.; McCloud, John L., III; Stroub, Robert H.
2015-01-01
As a continuation of the studies of reference 1, three full-scale helicopter rotors have been tested in the Ames Research Center 40- by SO-foot wind tunnel. All three of them were two-bladed, teetering rotors. One of the rotors incorporated the NACA 0012 airfoil section over the entire length of the blade. This rotor was tested at advance ratios up to 1.05. Both of the other rotors were tapered in thickness and incorporated leading-edge camber over the outer 20 percent of the blade radius. The larger of these rotors was tested at advancing tip Mach numbers up to 1.02. Data were obtained for a wide range of lift and propulsive force, and are presented without discussion.
Spectroscopic studies of a high Mach-number rotating plasma flow
International Nuclear Information System (INIS)
Ando, Akira; Ashino, Masashi; Sagi, Yukiko; Inutake, Masaaki; Hattori, Kunihiko; Yoshinuma, Mikirou; Imasaki, Atsushi; Tobari, Hiroyuki; Yagai, Tsuyoshi
2001-01-01
Characteristics of an axially-magnetized rotating plasma are investigated by spectroscopy in the HITOP device of Tohoku University. A He plasma flows our axially and rotates azimuthally near the muzzle region of the MPD arcjet. Flow and rotational velocities and temperature of He ions and atoms are measured by Doppler shift and broadening of the HeII (γ=468.58 nm) and HeI (γ=587.56 nm) lines. Rotational velocity increases with the increase of axially-applied magnetic field strength and discharge current. As discharge current increases and mass flow rate decreases, the plasma flow velocity increases and T i increases. Ion acoustic Mach number of the plasma flow also increases, but tends to saturate at near 1. Radial profile of space potential is calculated from the obtained rotational velocity. The potential profile in the core region is parabolic corresponding to the observed rigid-body rotation of the core plasma. (author)
Spectroscopic studies of a high Mach-number rotating plasma flow
Energy Technology Data Exchange (ETDEWEB)
Ando, Akira; Ashino, Masashi; Sagi, Yukiko; Inutake, Masaaki; Hattori, Kunihiko; Yoshinuma, Mikirou; Imasaki, Atsushi; Tobari, Hiroyuki; Yagai, Tsuyoshi [Tohoku Univ., Dept. of Electrical Engineering, Sendai, Miyagi (Japan)
2001-07-01
Characteristics of an axially-magnetized rotating plasma are investigated by spectroscopy in the HITOP device of Tohoku University. A He plasma flows our axially and rotates azimuthally near the muzzle region of the MPD arcjet. Flow and rotational velocities and temperature of He ions and atoms are measured by Doppler shift and broadening of the HeII ({gamma}=468.58 nm) and HeI ({gamma}=587.56 nm) lines. Rotational velocity increases with the increase of axially-applied magnetic field strength and discharge current. As discharge current increases and mass flow rate decreases, the plasma flow velocity increases and T{sub i} increases. Ion acoustic Mach number of the plasma flow also increases, but tends to saturate at near 1. Radial profile of space potential is calculated from the obtained rotational velocity. The potential profile in the core region is parabolic corresponding to the observed rigid-body rotation of the core plasma. (author)
Engineering method for aero-propulsive characteristics at hypersonic Mach numbers
Goradia, Suresh; Torres, Abel O.; Stack, Sharon H.; Everhart, Joel L.
1991-01-01
An engineering method has been developed for the rapid analysis of external aerodynamics and propulsive performance characteristics of airbreathing vehicles at hypersonic Mach numbers. This method, based on the theory of characteristics, has been developed to analyze fuselage-wing body combinations and body flaps with blunt or sharp leading/trailing edges. Arbitrary ratio of specific heat for the flowing medium can be specified in the program. Furthermore, the capability exists in the code to compute the inviscid inlet mass capture and momentum flux. The method is under development for computations of pressure distribution, and flow characteristics in the inlet, along with the effect of viscosity. Correlative studies have been performed for representative hypersonic configurations using the current method. The results of these correlations for various aerodynamics parameters are encouraging.
Effect of Mach number on thermoelectric performance of SiC ceramics nose-tip for supersonic vehicles
International Nuclear Information System (INIS)
Han, Xiao-Yi; Wang, Jun
2014-01-01
This paper focus on the effects of Mach number on thermoelectric energy conversion for the limitation of aero-heating and the feasibility of energy harvesting on supersonic vehicles. A model of nose-tip structure constructed with SiC ceramics is developed to numerically study the thermoelectric performance in a supersonic flow field by employing the computational fluid dynamics and the thermal conduction theory. Results are given in the cases of different Mach numbers. Moreover, the thermoelectric performance in each case is predicted with and without Thomson heat, respectively. Due to the increase of Mach number, both the temperature difference and the conductive heat flux between the hot side and the cold side of nose tip are increased. This results in the growth of the thermoelectric power generated and the energy conversion efficiency. With respect to the Thomson effect, over 50% of total power generated converts to Thomson heat, which greatly reduces the thermoelectric power and efficiency. However, whether the Thomson effect is considered or not, with the Mach number increasing from 2.5 to 4.5, the thermoelectric performance can be effectively improved. -- Highlights: • Thermoelectric SiC nose-tip structure for aerodynamic heat harvesting of high-speed vehicles is studied. • Thermoelectric performance is predicted based on numerical methods and experimental thermoelectric parameters. • The effects of Mach number on thermoelectric performance are studied in the present paper. • Results with respect to the Thomson effect are also explored. • Output power and energy efficiency of the thermoelectric nose-tip are increased with the increase of Mach number
Energy Technology Data Exchange (ETDEWEB)
Correia, C.; De Medeiros, J. R. [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, 59072-970 (Brazil); Burkhart, B.; Lazarian, A. [Astronomy Department, University of Wisconsin, Madison, 475 North Charter Street, WI 53711 (United States); Ossenkopf, V.; Stutzki, J. [Physikalisches Institut der Universität zu Köln, Zülpicher Strasse 77, D-50937 Köln (Germany); Kainulainen, J. [Max-Planck-Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Kowal, G., E-mail: caioftc@dfte.ufrn.br [Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, 05508-090 (Brazil)
2014-04-10
We study how the estimation of the sonic Mach number (M{sub s} ) from {sup 13}CO linewidths relates to the actual three-dimensional sonic Mach number. For this purpose we analyze MHD simulations that include post-processing to take radiative transfer effects into account. As expected, we find very good agreement between the linewidth estimated sonic Mach number and the actual sonic Mach number of the simulations for optically thin tracers. However, we find that opacity broadening causes M{sub s} to be overestimated by a factor of ≈1.16-1.3 when calculated from optically thick {sup 13}CO lines. We also find that there is a dependence on the magnetic field: super-Alfvénic turbulence shows increased line broadening compared with sub-Alfvénic turbulence for all values of optical depth for supersonic turbulence. Our results have implications for the observationally derived sonic Mach number-density standard deviation (σ{sub ρ/(ρ)}) relationship, σ{sub ρ/〈ρ〉}{sup 2}=b{sup 2}M{sub s}{sup 2}, and the related column density standard deviation (σ {sub N/(N)}) sonic Mach number relationship. In particular, we find that the parameter b, as an indicator of solenoidal versus compressive driving, will be underestimated as a result of opacity broadening. We compare the σ {sub N/(N)}-M{sub s} relation derived from synthetic dust extinction maps and {sup 13}CO linewidths with recent observational studies and find that solenoidally driven MHD turbulence simulations have values of σ {sub N/(N)}which are lower than real molecular clouds. This may be due to the influence of self-gravity which should be included in simulations of molecular cloud dynamics.
Henneberry, Hugh M.; Snyder, Christopher A.
1993-01-01
An analysis of gas turbine engines using water and oxygen injection to enhance performance by increasing Mach number capability and by increasing thrust is described. The liquids are injected, either separately or together, into the subsonic diffuser ahead of the engine compressor. A turbojet engine and a mixed-flow turbofan engine (MFTF) are examined, and in pursuit of maximum thrust, both engines are fitted with afterburners. The results indicate that water injection alone can extend the performance envelope of both engine types by one and one-half Mach numbers at which point water-air ratios reach 17 or 18 percent and liquid specific impulse is reduced to some 390 to 470 seconds, a level about equal to the impulse of a high energy rocket engine. The envelope can be further extended, but only with increasing sacrifices in liquid specific impulse. Oxygen-airflow ratios as high as 15 percent were investigated for increasing thrust. Using 15 percent oxygen in combination with water injection at high supersonic Mach numbers resulted in thrust augmentation as high as 76 percent without any significant decrease in liquid specific impulse. The stoichiometric afterburner exit temperature increased with increasing oxygen flow, reaching 4822 deg R in the turbojet engine at a Mach number of 3.5. At the transonic Mach number of 0.95 where no water injection is needed, an oxygen-air ratio of 15 percent increased thrust by some 55 percent in both engines, along with a decrease in liquid specific impulse of 62 percent. Afterburner temperature was approximately 4700 deg R at this high thrust condition. Water and/or oxygen injection are simple and straightforward strategies to improve engine performance and they will add little to engine weight. However, if large Mach number and thrust increases are required, liquid flows become significant, so that operation at these conditions will necessarily be of short duration.
Study of Perturbations on High Mach Number Blast Waves in Various Gasses
Edens, A.; Adams, R.; Rambo, P.; Shores, J.; Smith, I.; Atherton, B.; Ditmire, T.
2006-10-01
We have performed a series of experiments examining the properties of high Mach number blast waves. Experiments were conducted on the Z-Beamlet^1 laser at Sandia National Laboratories. We created blast waves in the laboratory by using 10 J- 1000 J laser pulses to illuminate millimeter scale solid targets immersed in gas. Our experiments studied the validity of theories forwarded by Vishniac and Ryu^2-4 to explain the dynamics of perturbations on astrophysical blast waves. These experiments consisted of an examination of the evolution of perturbations of known primary mode number induced on the surface of blast waves by means of regularly spaced wire arrays. The temporal evolution of the amplitude of the induced perturbations relative to the mean radius of the blast wave was fit to a power law in time. Measurements were taken for a number of different mode numbers and background gasses and the results show qualitative agreement with previously published theories for the hydrodynamics of thin shell blast wave. The results for perturbations on nitrogen gas have been recently published^5. .^1 P. K. Rambo, I. C. Smith, J. L. Porter, et al., Applied Optics 44, 2421 (2005). ^2 D. Ryu and E. T. Vishniac, Astrophysical Journal 313, 820 (1987). ^3 D. Ryu and E. T. Vishniac, Astrophysical Journal 368, 411 (1991). ^4 E. T. Vishniac, Astrophysical Journal 274, 152 (1983). ^5 A. D. Edens, T. Ditmire, J. F. Hansen, et al., Physical Review Letters 95 (2005).
Risius, Steffen; Costantini, Marco; Koch, Stefan; Hein, Stefan; Klein, Christian
2018-05-01
The influence of unit Reynolds number (Re_1=17.5× 106-80× 106 {m}^{-1}), Mach number (M= 0.35-0.77) and incompressible shape factor (H_{12} = 2.50-2.66) on laminar-turbulent boundary layer transition was systematically investigated in the Cryogenic Ludwieg-Tube Göttingen (DNW-KRG). For this investigation the existing two-dimensional wind tunnel model, PaLASTra, which offers a quasi-uniform streamwise pressure gradient, was modified to reduce the size of the flow separation region at its trailing edge. The streamwise temperature distribution and the location of laminar-turbulent transition were measured by means of temperature-sensitive paint (TSP) with a higher accuracy than attained in earlier measurements. It was found that for the modified PaLASTra model the transition Reynolds number (Re_{ {tr}}) exhibits a linear dependence on the pressure gradient, characterized by H_{12}. Due to this linear relation it was possible to quantify the so-called `unit Reynolds number effect', which is an increase of Re_{ {tr}} with Re_1. By a systematic variation of M, Re_1 and H_{12} in combination with a spectral analysis of freestream disturbances, a stabilizing effect of compressibility on boundary layer transition, as predicted by linear stability theory, was detected (`Mach number effect'). Furthermore, two expressions were derived which can be used to calculate the transition Reynolds number as a function of the amplitude of total pressure fluctuations, Re_1 and H_{12}. To determine critical N-factors, the measured transition locations were correlated with amplification rates, calculated by incompressible and compressible linear stability theory. By taking into account the spectral level of total pressure fluctuations at the frequency of the most amplified Tollmien-Schlichting wave at transition location, the scatter in the determined critical N-factors was reduced. Furthermore, the receptivity coefficients dependence on incidence angle of acoustic waves was used to
Investigation of side wall effects on an inward scramjet inlet at Mach number 8.6
Rolim, Tiago Cavalcanti
Experimental and computational studies were conducted to evaluate the performance of a scramjet inlet as the side cowl length is changed. A slender inward turning inlet of a total length of 304.8 mm, a span of 50.8 mm with the compression at 11.54 deg and CR = 4.79 was used. The side cowl lengths were of 0, 50.8 and 76.2 mm. The UTA Hypersonic Shock Tunnel facility was used in the reflected mode. The model was instrumented with nine piezoelectric pressure transducers, for static and total pressure measurements. A wedge was mounted at the rear of the inlet in order to accommodate a Pitot pressure rake. The driven tube was instrumented with three pressure transducers. Two of them were used to measure the incident shock wave speed, and a third one was used for stagnation pressure measurements during a test. Furthermore, a Pitot probe was installed below the model in order to measure the impact pressure on each run, this reading along with the driven sensor readings, allowed us for the calculation of freestream properties. During the experiments, nominal stagnation enthalpy of 0.67 MJ/kg and stagnation pressure of 3.67 MPa were achieved. Freestream conditions were Mach number 8.6 and Reynolds number of 1.94 million per m. Test times were 300 - 500 microseconds. Numerical simulations using RANS with the Wilcox K-w turbulence model were performed using ANSYS Fluent. The results from the static pressure measurements presented a good agreement with CFD predictions. Moreover, the uniformity at the inlet exit was achieved within the experimental precision. The experiments showed that the cowl length has a pronounced effect in the pressure distribution on the inlet and a minor effect in the exit flow Mach number. The numerical results confirmed these trends and showed that a complex flow structure is formed in the cowl-ramp corners; a non-uniform transverse shock structure was found to be related to the cowl leading edge position. Cross flow due to the side expansion
Particle image velocimetry measurements of Mach 3 turbulent boundary layers at low Reynolds numbers
Brooks, J. M.; Gupta, A. K.; Smith, M. S.; Marineau, E. C.
2018-05-01
Particle image velocimetry (PIV) measurements of Mach 3 turbulent boundary layers (TBL) have been performed under low Reynolds number conditions, Re_τ =200{-}1000, typical of direct numerical simulations (DNS). Three reservoir pressures and three measurement locations create an overlap in parameter space at one research facility. This allows us to assess the effects of Reynolds number, particle response and boundary layer thickness separate from facility specific experimental apparatus or methods. The Morkovin-scaled streamwise fluctuating velocity profiles agree well with published experimental and numerical data and show a small standard deviation among the nine test conditions. The wall-normal fluctuating velocity profiles show larger variations which appears to be due to particle lag. Prior to the current study, no detailed experimental study characterizing the effect of Stokes number on attenuating wall-normal fluctuating velocities has been performed. A linear variation is found between the Stokes number ( St) and the relative error in wall-normal fluctuating velocity magnitude (compared to hot wire anemometry data from Klebanoff, Characteristics of Turbulence in a Boundary Layer with Zero Pressure Gradient. Tech. Rep. NACA-TR-1247, National Advisory Committee for Aeronautics, Springfield, Virginia, 1955). The relative error ranges from about 10% for St=0.26 to over 50% for St=1.06. Particle lag and spatial resolution are shown to act as low-pass filters on the fluctuating velocity power spectral densities which limit the measurable energy content. The wall-normal component appears more susceptible to these effects due to the flatter spectrum profile which indicates that there is additional energy at higher wave numbers not measured by PIV. The upstream inclination and spatial correlation extent of coherent turbulent structures agree well with published data including those using krypton tagging velocimetry (KTV) performed at the same facility.
Aerodynamic Characteristics of a Revised Target Drone Vehicle at Mach Numbers from 1.60 to 2.86
Blair, A. B., Jr.; Babb, C. Donald
1968-01-01
An investigation has been conducted in the Langley Unitary Plan wind tunnel to determine the aerodynamic characteristics of a revised target drone vehicle through a Mach number range from 1.60 to 2.86. The vehicle had canard surfaces and a swept clipped-delta wing with twin tip-mounted vertical tails.
Vink, J.; Yamazaki, R.
2014-01-01
It is shown that, under some generic assumptions, shocks cannot accelerate particles unless the overall shock Mach number exceeds a critical value M > √5. The reason is that for M ≤ √5 the work done to compress the flow in a particle precursor requires more enthalpy flux than the system can sustain.
MacArt, Jonathan F.; Mueller, Michael E.
2016-12-01
Two formally second-order accurate, semi-implicit, iterative methods for the solution of scalar transport-reaction equations are developed for Direct Numerical Simulation (DNS) of low Mach number turbulent reacting flows. The first is a monolithic scheme based on a linearly implicit midpoint method utilizing an approximately factorized exact Jacobian of the transport and reaction operators. The second is an operator splitting scheme based on the Strang splitting approach. The accuracy properties of these schemes, as well as their stability, cost, and the effect of chemical mechanism size on relative performance, are assessed in two one-dimensional test configurations comprising an unsteady premixed flame and an unsteady nonpremixed ignition, which have substantially different Damköhler numbers and relative stiffness of transport to chemistry. All schemes demonstrate their formal order of accuracy in the fully-coupled convergence tests. Compared to a (non-)factorized scheme with a diagonal approximation to the chemical Jacobian, the monolithic, factorized scheme using the exact chemical Jacobian is shown to be both more stable and more economical. This is due to an improved convergence rate of the iterative procedure, and the difference between the two schemes in convergence rate grows as the time step increases. The stability properties of the Strang splitting scheme are demonstrated to outpace those of Lie splitting and monolithic schemes in simulations at high Damköhler number; however, in this regime, the monolithic scheme using the approximately factorized exact Jacobian is found to be the most economical at practical CFL numbers. The performance of the schemes is further evaluated in a simulation of a three-dimensional, spatially evolving, turbulent nonpremixed planar jet flame.
Practical computational aeroacoustics for compact surfaces in low mach number flows
DEFF Research Database (Denmark)
Pradera-Mallabiabarrena, Ainara; Keith, Graeme; Jacobsen, Finn
2011-01-01
compared to the wavelength of interest. This makes it possible to focus on the surface source term of the Ffowcs Williams-Hawkings equation. In this paper, in order to illustrate the basic method for storing and utilizing data from the CFD analysis, the flow past a circular cylinder at a Reynolds number...
Effects of Mach Numbers on Side Force, Yawing Moment and Surface Pressure
Sohail, Muhammad Amjad; Muhammad, Zaka; Husain, Mukkarum; Younis, Muhammad Yamin
2011-09-01
In this research, CFD simulations are performed for air vehicle configuration to compute the side force effect and yawing moment coefficients variations at high angle of attack and Mach numbers. As the angle of attack is increased then lift and drag are increased for cylinder body configurations. But when roll angle is given to body then side force component is also appeared on the body which causes lateral forces on the body and yawing moment is also produced. Now due to advancement of CFD methods we are able to calculate these forces and moment even at supersonic and hypersonic speed. In this study modern CFD techniques are used to simulate the hypersonic flow to calculate the side force effects and yawing moment coefficient. Static pressure variations along the circumferential and along the length of the body are also calculated. The pressure coefficient and center of pressure may be accurately predicted and calculated. When roll angle and yaw angle is given to body then these forces becomes very high and cause the instability of the missile body with fin configurations. So it is very demanding and serious problem to accurately predict and simulate these forces for the stability of supersonic vehicles.
Effect of finite cavity width on flow oscillation in a low-Mach-number cavity flow
Energy Technology Data Exchange (ETDEWEB)
Zhang, Ke; Naguib, Ahmed M. [Michigan State University, East Lansing, MI (United States)
2011-11-15
The current study is focused on examining the effect of the cavity width and side walls on the self-sustained oscillation in a low Mach number cavity flow with a turbulent boundary layer at separation. An axisymmetric cavity geometry is employed in order to provide a reference condition that is free from any side-wall influence, which is not possible to obtain with a rectangular cavity. The cavity could then be partially filled to form finite-width geometry. The unsteady surface pressure is measured using microphone arrays that are deployed on the cavity floor along the streamwise direction and on the downstream wall along the azimuthal direction. In addition, velocity measurements using two-component Laser Doppler Anemometer are performed simultaneously with the array measurements in different azimuthal planes. The compiled data sets are used to investigate the evolution of the coherent structures generating the pressure oscillation in the cavity using linear stochastic estimation of the velocity field based on the wall-pressure signature on the cavity end wall. The results lead to the discovery of pronounced harmonic pressure oscillations near the cavity's side walls. These oscillations, which are absent in the axisymmetric cavity, are linked to the establishment of a secondary mean streamwise circulating flow pattern near the side walls and the interaction of this secondary flow with the shear layer above the cavity. (orig.)
Measurement and analysis of the noise radiated by low Mach numbers centrifugal blowers
Yeager, D. M.; Lauchle, G. C.
1987-11-01
The broad band, aerodynamically generated noise in low tip-speed Mach number, centrifugal air moving devices is investigated. An interdisciplinary approach was taken which involved investigation of the aerodynamic and acoustic fields, and their mutual relationship. The noise generation process was studied using two experimental vehicles: (1) a scale model of a homologous family of centrifugal blowers typical of those used to cool computer and business equipment, and (2) a single blade from a centrifugal blower impeller which was placed in a known, controllable flow field. The radiation characteristics of the model blower were investigated by measuring the acoustic intensity distribution near the blower inlet and comparing it with the intensity near the inlet to an axial flow fan. Aerodynamic studies of the flow field in the inlet and at the discharge to the rotating impeller were used to assess the mean flow distribution through the impeller blade channels and to identify regions of excessive turbulence near the rotating blade row. New frequency-domain expressions for the correlation area and dipole source strength per unit area on a surface immersed in turbulence were developed which can be used to characterize the noise generation process over a rigid surface immersed in turbulence. An investigation of the noise radiated from the single, isolated airfoil (impeller blade) was performed using modern correlation and spectral analysis techniques.
Energy Technology Data Exchange (ETDEWEB)
Core, X.
2002-02-01
The isobar approximation for the system of the balance equations of mass, momentum, energy and chemical species is a suitable approximation to represent low Mach number reactive flows. In this approximation, which neglects acoustics phenomena, the mixture is hydrodynamically incompressible and the thermodynamic effects lead to an uniform compression of the system. We present a novel numerical scheme for this approximation. An incremental projection method, which uses the original form of mass balance equation, discretizes in time the Navier-Stokes equations. Spatial discretization is achieved through a finite volume approach on MAC-type staggered mesh. A higher order de-centered scheme is used to compute the convective fluxes. We associate to this discretization a local mesh refinement method, based on Flux Interface Correction technique. A first application concerns a forced flow with variable density which mimics a combustion problem. The second application is natural convection with first small temperature variations and then beyond the limit of validity of the Boussinesq approximation. Finally, we treat a third application which is a laminar diffusion flame. For each of these test problems, we demonstrate the robustness of the proposed numerical scheme, notably for the density spatial variations. We analyze the gain in accuracy obtained with the local mesh refinement method. (author)
Plasma wave profiles of Earth's bow shock at low Mach number: ISEE 3 observations on the far flank
International Nuclear Information System (INIS)
Greenstadt, E.W.; Coroniti, F.V.; Moses, S.L.; Smith, E.J.
1992-01-01
The Earth's bow shock is weak along its distant flanks where the projected component of solar wind velocity normal to the hyperboloidal surface is only a fraction of the total free stream velocity, severely reducing the local Mach number. The authors present a survey of selected crossings far downstream from the subsolar shock, delineating the overall plasma wave (pw) behavior of a selected set of nearly perpendicular crossings and another set of limited Mach number but broad geometry; they include their immediate upstream regions. The result is a generalizable pw signature, or signatures, of low Mach number shocks and some likely implications of those signatures for the weak shock's plasma physical processes on the flank. They find the data consistent with the presence of ion beam interactions producing noise ahead of the shock in the ion acoustic frequency range. One subcritical case was found whose pw noise was presumably related to a reflected ion population just as in stronger events. The presence or absence, and the amplitudes, of pw activity are explainable by the presence or absence of a population of upstream ions controlled by the component of interplanetary magnetic field normal to the solar wind flow
Measurement and Analysis of the Noise Radiated by Low Mach Number Centrifugal Blowers.
Yeager, David Marvin
An investigation was performed of the broad band, aerodynamically generated noise in low tip-speed Mach number, centrifugal air moving devices. An interdisciplinary experimental approach was taken which involved investigation of the aerodynamic and acoustic fields, and their mutual relationship. The noise generation process was studied using two experimental vehicles: (1) a scale model of a homologous family of centrifugal blowers typical of those used to cool computer and business equipment, and (2) a single blade from a centrifugal blower impeller placed in a known, controllable flow field. The radiation characteristics of the model blower were investigated by measuring the acoustic intensity distribution near the blower inlet and comparing it with the intensity near the inlet to an axial flow fan. Results showed that the centrifugal blower is a distributed, random noise source, unlike an axial fan which exhibited the effects of a coherent, interacting source distribution. Aerodynamic studies of the flow field in the inlet and at the discharge to the rotating impeller were used to assess the mean flow distribution through the impeller blade channels and to identify regions of excessive turbulence near the rotating blade row. Both circumferential and spanwise mean flow nonuniformities were identified along with a region of increased turbulence just downstream of the scroll cutoff. The fluid incidence angle, normally taken as an indicator of blower performance, was estimated from mean flow data as deviating considerably from an ideal impeller design. An investigation of the noise radiated from the single, isolated airfoil was performed using modern correlation and spectral analysis techniques. Radiation from the single blade in flow was characterized using newly developed expressions for the correlation area and the dipole source strength per unit area, and from the relationship between the blade surface pressure and the incident turbulent flow field. Results
International Nuclear Information System (INIS)
Hou Bingxu; Yu Jiyang; Senechal, Dorothee; Mechitoua, Namane; Min Jiesheng; Chen Guofei
2015-01-01
During CFD simulations of the flows at low Mach number regime, the classical assumption which neglects the dilatable effect of gas is no longer applicable when the temperature variation or the concentration variation of the mixture's components is too large in the fluid domain. To be able to correctly predict the flow at such a regime, some authors have recourse to a Low Mach number algorithm. This algorithm is based on the well-known pressure-based algorithm or elliptic solver for incompressible flows, SIMPLE, with a modification for the treatment of the pressure which is split into two parts (the hydrodynamic pressure and the thermodynamic pressure) and a dilatable term added in the mass equation. This algorithm has been implemented in the CFD code, Code_—Saturne, developed by EDF R and D, and applied for the CFD simulations of the erosion phenomena of light gas stratification by air injection. This paper is devoted to the analytical work with the Low Mach number algorithm based on the ST1 series of the SETH-2 campaign provided by the OECD project on the PANDA test facility of PSI. The first part is focused on a mesh sensitivity analysis, which is a common procedure for CFD codes validation. The second part of the paper presents a comparison between the CFD results obtained with the standard algorithms used for incompressible flows and the Low Mach number algorithm. The third part is an analysis of the CFD results obtained on the reference mesh with both different Froude numbers corresponding to the tests ST1_—7 (Fr=6.04) and ST1_—10 (Fr=7.95) from the ST1 series. In the last part the authors perform the knowledge of the initial light gas distribution effect on the stratification erosion and the capability of the CFD codes to predict this phenomenon with an area governed by diffusion regime (at the top of the vessel) and another one by forced convection near the injection. (author)
Hess, Robert V; Gardner, Clifford S
1947-01-01
By using the Prandtl-Glauert method that is valid for three-dimensional flow problems, the value of the maximum incremental velocity for compressible flow about thin ellipsoids at zero angle of attack is calculated as a function of the Mach number for various aspect ratios and thickness ratios. The critical Mach numbers of the various ellipsoids are also determined. The results indicate an increase in critical Mach number with decrease in aspect ratio which is large enough to explain experimental results on low-aspect-ratio wings at zero lift.
LES of Supersonic Turbulent Channel Flow at Mach Numbers 1.5 and 3
Raghunath, Sriram; Brereton, Giles
2009-11-01
LES of compressible, turbulent, body-force driven, isothermal-wall channel flows at Reτ of 190 and 395 at moderate supersonic speeds (Mach 1.5 and 3) are presented. Simulations are fully resolved in the wall-normal direction without the need for wall-layer models. SGS models for incompressible flows, with appropriate extensions for compressibility, are tested a priori/ with DNS results and used in LES. Convergence of the simulations is found to be sensitive to the initial conditions and to the choice of model (wall-normal damping) in the laminar sublayer. The Nicoud--Ducros wall adapting SGS model, coupled with a standard SGS heat flux model, is found to yield results in good agreement with DNS.
A new pseudorandom number generator based on a complex number chaotic equation
International Nuclear Information System (INIS)
Liu Yang; Tong Xiao-Jun
2012-01-01
In recent years, various chaotic equation based pseudorandom number generators have been proposed. However, the chaotic equations are all defined in the real number field. In this paper, an equation is proposed and proved to be chaotic in the imaginary axis. And a pseudorandom number generator is constructed based on the chaotic equation. The alteration of the definitional domain of the chaotic equation from the real number field to the complex one provides a new approach to the construction of chaotic equations, and a new method to generate pseudorandom number sequences accordingly. Both theoretical analysis and experimental results show that the sequences generated by the proposed pseudorandom number generator possess many good properties
Yang, Zhongwei; Lu, Quanming; Liu, Ying D.; Wang, Rui
2018-04-01
Electron dynamics at low-Mach-number collisionless shocks are investigated by using two-dimensional electromagnetic particle-in-cell simulations with various shock normal angles. We found: (1) The reflected ions and incident electrons at the shock front provide an effective mechanism for the quasi-electrostatic wave generation due to the charge-separation. A fraction of incident electrons can be effectively trapped and accelerated at the leading edge of the shock foot. (2) At quasi-perpendicular shocks, the electron trapping and reflection is nonuniform due to the shock rippling along the shock surface and is more likely to take place at some locations accompanied by intense reflected ion-beams. The electron trapping process has a periodical evolution over time due to the shock front self-reformation, which is controlled by ion dynamics. Thus, this is a cross-scale coupling phenomenon. (3) At quasi-parallel shocks, reflected ions can travel far back upstream. Consequently, quasi-electrostatic waves can be excited in the shock transition and the foreshock region. The electron trajectory analysis shows these waves can trap electrons at the foot region and reflect a fraction of them far back upstream. Simulation runs in this paper indicate that the micro-turbulence at the shock foot can provide a possible scenario for producing the reflected electron beam, which is a basic condition for the type II radio burst emission at low-Mach-number interplanetary shocks driven by Coronal Mass Ejections (CMEs).
International Nuclear Information System (INIS)
Hendijanifard, Mohammad; Willis, David A
2011-01-01
Laser-matter interactions are frequently studied by measuring the propagation of shock waves caused by the rapid laser-induced material removal. An improved method for calculating the thermo-fluid parameters behind shock waves is introduced in this work. Shock waves in ambient air, induced by pulsed Nd : YAG laser ablation of aluminium films, are measured using a shadowgraph apparatus. Normal shock solutions are applied to experimental data for shock wave positions and used to calculate pressure, temperature, and velocity behind the shock wave. Non-dimensionalizing the pressure and temperature with respect to the ambient values, the dimensionless pressure and temperature are estimated to be as high as 90 and 16, respectively, at a time of 10 ns after the ablation pulse for a laser fluence of F = 14.5 J cm -2 . The results of the normal shock solution and the Taylor-Sedov similarity solution are compared to show that the Taylor-Sedov solution under-predicts pressure when the Mach number of the shock wave is small. At a fluence of 3.1 J cm -2 , the shock wave Mach number is less than 3, and the Taylor-Sedov solution under-predicts the non-dimensional pressure by as much as 45%.
Dodd, Michael; Ferrante, Antonino
2017-11-01
Our objective is to perform DNS of finite-size droplets that are evaporating in isotropic turbulence. This requires fully resolving the process of momentum, heat, and mass transfer between the droplets and surrounding gas. We developed a combined volume-of-fluid (VOF) method and low-Mach-number approach to simulate this flow. The two main novelties of the method are: (i) the VOF algorithm captures the motion of the liquid gas interface in the presence of mass transfer due to evaporation and condensation without requiring a projection step for the liquid velocity, and (ii) the low-Mach-number approach allows for local volume changes caused by phase change while the total volume of the liquid-gas system is constant. The method is verified against an analytical solution for a Stefan flow problem, and the D2 law is verified for a single droplet in quiescent gas. We also demonstrate the schemes robustness when performing DNS of an evaporating droplet in forced isotropic turbulence.
Peng, Naifu; Yang, Yue
2018-01-01
We investigate the evolution of vortex-surface fields (VSFs) in compressible Taylor-Green flows at Mach numbers (Ma) ranging from 0.5 to 2.0 using direct numerical simulation. The formulation of VSFs in incompressible flows is extended to compressible flows, and a mass-based renormalization of VSFs is used to facilitate characterizing the evolution of a particular vortex surface. The effects of the Mach number on the VSF evolution are different in three stages. In the early stage, the jumps of the compressive velocity component near shocklets generate sinks to contract surrounding vortex surfaces, which shrink vortex volume and distort vortex surfaces. The subsequent reconnection of vortex surfaces, quantified by the minimal distance between approaching vortex surfaces and the exchange of vorticity fluxes, occurs earlier and has a higher reconnection degree for larger Ma owing to the dilatational dissipation and shocklet-induced reconnection of vortex lines. In the late stage, the positive dissipation rate and negative pressure work accelerate the loss of kinetic energy and suppress vortex twisting with increasing Ma.
A new approach to Catalan numbers using differential equations
Kim, D. S.; Kim, T.
2017-10-01
In this paper, we introduce two differential equations arising from the generating function of the Catalan numbers which are `inverses' to each other in a certain sense. From these differential equations, we obtain some new and explicit identities for Catalan and higher-order Catalan numbers. In addition, by other means than differential equations, we also derive some interesting identities involving Catalan numbers which are of arithmetic and combinatorial nature.
DEFF Research Database (Denmark)
Pradera-Mallabiabarrena, Ainara; Jacobsen, Finn; Svendsen, Christian
2013-01-01
-compact surfaces are involved. Here the generation of noise is dominated by the interaction of the flow with a surface whose maximum dimension is shorter than the wavelength of interest. The analysis is based on the surface-source term of the Ffowcs Williams-Hawkings equation. The acoustic source data of the flow...
Loposer, J. Dan; Rumsey, Charles B.
1954-01-01
Measurement of average skin-friction coefficients have been made on six rocket-powered free-flight models by using the boundary-layer rake technique. The model configuration was the NACA RM-10, a 12.2-fineness-ratio parabolic body of revolution with a flat base. Measurements were made over a Mach number range from 1 to 3.7, a Reynolds number range 40 x 10(exp 6) to 170 x 10(exp 6) based on length to the measurement station, and with aerodynamic heating conditions varying from strong skin heating to strong skin cooling. The measurements show the same trends over the test ranges as Van Driest's theory for turbulent boundary layer on a flat plate. The measured values are approximately 7 percent higher than the values of the flat-plate theory. A comparison which takes into account the differences in Reynolds number is made between the present results and skin-friction measurements obtained on NACA RM-10 scale models in the Langley 4- by 4-foot supersonic pressure tunnel, the Lewis 8- by 6-foot supersonic tunnel, and the Langley 9-inch supersonic tunnel. Good agreement is shown at all but the lowest tunnel Reynolds number conditions. A simple empirical equation is developed which represents the measurements over the range of the tests.
Harrington, Douglas E.; Burley, Richard R.; Corban, Robert R.
1986-01-01
Wall Mach number distributions were determined over a range of test-section free-stream Mach numbers from 0.2 to 0.92. The test section was slotted and had a nominal porosity of 11 percent. Reentry flaps located at the test-section exit were varied from 0 (fully closed) to 9 (fully open) degrees. Flow was bled through the test-section slots by means of a plenum evacuation system (PES) and varied from 0 to 3 percent of tunnel flow. Variations in reentry flap angle or PES flow rate had little or no effect on the Mach number distributions in the first 70 percent of the test section. However, in the aft region of the test section, flap angle and PES flow rate had a major impact on the Mach number distributions. Optimum PES flow rates were nominally 2 to 2.5 percent wtih the flaps fully closed and less than 1 percent when the flaps were fully open. The standard deviation of the test-section wall Mach numbers at the optimum PES flow rates was 0.003 or less.
Adaptive testing with equated number-correct scoring
van der Linden, Willem J.
1999-01-01
A constrained CAT algorithm is presented that automatically equates the number-correct scores on adaptive tests. The algorithm can be used to equate number-correct scores across different administrations of the same adaptive test as well as to an external reference test. The constraints are derived
Rao, Pooja; She, Dan; Lim, Hyunkyung; Glimm, James
2015-11-01
The qualitative and quantitative effect of initial conditions (linear and non-linear) and high Mach number (1.3 and 1.45) is studied on the turbulent mixing induced by the Richtmyer-Meshkov instability in idealized ICF conditions. The Richtmyer-Meshkov instability seeds Rayleigh-taylor instabilities in ICF experiments and is one of the factors that contributes to reduced performance of ICF experiments. Its also found in collapsing cores of stars and supersonic combustion. We use the Stony Brook University code, FronTier, which is verified via a code comparison study against the AMR multiphysics code FLASH, and validated against vertical shock tube experiments done by the LANL Extreme Fluids Team. These simulations are designed as a step towards simulating more realistic ICF conditions and quantifying the detrimental effects of mixing on the yield.
ASYMPTOTIC STEADY-STATE SOLUTION TO A BOW SHOCK WITH AN INFINITE MACH NUMBER
Energy Technology Data Exchange (ETDEWEB)
Yalinewich, Almog; Sari, Re’em [Racah Institute of Physics, the Hebrew University, 91904, Jerusalem (Israel)
2016-08-01
The problem of a cold gas flowing past a stationary obstacle is considered. We study the bow shock that forms around the obstacle and show that at large distances from the obstacle the shock front forms a parabolic solid of revolution. The profiles of the hydrodynamic variables in the interior of the shock are obtained by solution of the hydrodynamic equations in parabolic coordinates. The results are verified with a hydrodynamic simulation. The drag force on the obstacle is also calculated. Finally, we use these results to model the bow shock around an isolated neutron star.
Influence of Mach Number and Dynamic Pressure on Cavity Tones and Freedrop Trajectories
2014-03-27
18 LU-SGS Lower Upper-Symmetric Gauss Seidel . . . . . . . . . . . . . . . . . . 18 SSOR Successive Symmetric Over...complexity, the number of iterations necessary to gain convergence causes the simulation to be too expensive. The modern CFD method of overset or...solvers are Alternating Direction Implicit (ADI) Beam-Warming, Steger- Warming, Lower Upper-Symmetric Gauss Seidel (LU-SGS), and Successive Symmetric
Normal solutions of the Boltzmann equation with small Knudsen number
International Nuclear Information System (INIS)
Ding, E.J.; Huang, Z.Q.
1986-01-01
A singular perturbation method is used to find the normal solutions of the Boltzmann equation with small Knudsen number. It is proved that the secular terms may be removed by improving the Hilbert expansion and the Enskog expansion
Fractional Number Operator and Associated Fractional Diffusion Equations
Rguigui, Hafedh
2018-03-01
In this paper, we study the fractional number operator as an analog of the finite-dimensional fractional Laplacian. An important relation with the Ornstein-Uhlenbeck process is given. Using a semigroup approach, the solution of the Cauchy problem associated to the fractional number operator is presented. By means of the Mittag-Leffler function and the Laplace transform, we give the solution of the Caputo time fractional diffusion equation and Riemann-Liouville time fractional diffusion equation in infinite dimensions associated to the fractional number operator.
Analysis of Quadratic Diophantine Equations with Fibonacci Number Solutions
Leyendekkers, J. V.; Shannon, A. G.
2004-01-01
An analysis is made of the role of Fibonacci numbers in some quadratic Diophantine equations. A general solution is obtained for finding factors in sums of Fibonacci numbers. Interpretation of the results is facilitated by the use of a modular ring which also permits extension of the analysis.
Evaluation of Blended Wing-Body Combinations with Curved Plan Forms at Mach Numbers Up to 3.50
Holdaway, George H.; Mellenthin, Jack A.
1960-01-01
This investigation is a continuation of the experimental and theoretical evaluation of the effects of wing plan-form variations on the aerodynamic performance characteristics of blended wing-body combinations. The present report compares previously tested straight-edged delta and arrow models which have leading-edge sweeps of 59.04 and 70-82 deg., respectively, with related models which have plan forms with curved leading and trailing edges designed to result in the same average sweeps in each case. All the models were symmetrical, without camber, and were generally similar having the same span, length, and aspect ratios. The wing sections had an average value of maximum thickness ratio of about 4 percent of the local wing chords in a streamwise direction. The wing sections were computed by varying their shapes along with the body radii (blending process) to match the selected area distribution and the given plan form. The models were tested with transition fixed at Reynolds numbers of roughly 4,000,000 to 9,000,000, based on the mean aerodynamic chord of the wing. The characteristic effect of the wing curvature of the delta and arrow models was an increase at subsonic and transonic speeds in the lift-curve slopes which was partially reflected in increased maximum lift-drag ratios. Curved edges were not evaluated on a diamond plan form because a preliminary investigation indicated that the curvature considered would increase the supersonic zero-lift wave drag. However, after the test program was completed, a suitable modification for the diamond plan form was discovered. The analysis presented in the appendix indicates that large reductions in the zero-lift wave drag would be obtained at supersonic Mach numbers if the leading- and trailing-edge sweeps are made to differ by indenting the trailing edge and extending the root of the leading edge.
On two functional equations originating from number theory
Indian Academy of Sciences (India)
On two functional equations originating from number theory. JAEYOUNG CHUNG1 and JEONGWOOK CHANG2,∗. 1Department of Mathematics, Kunsan National University, Kunsan, 573-701, Korea. 2Department of Mathematics Education, Dankook University, Yongin 448-701, Korea. *Corresponding author. E-mail: ...
Esenwein, Fred T; Schueller, Carl F
1952-01-01
An analysis of inlet-turbojet-engine matching for a range of Mach numbers up to 2.0 indicates large performance penalties when fixed-geometry inlets are used. Use of variable-geometry inlets, however, nearly eliminates th The analysis was confirmed experimentally by investigating at Mach numbers of 0, 0.63, and 1.5 to 2.0 two single oblique-shock-type inlets of different compression-ramp angles, which simulated a variable-geometry configuration. The experimental investigation indicated that total-pressure recoveries comparable withose attainable with well designed nose inlets were obtained with the side inlets when all the boundary layer ahead of the inlets was removed. Serious drag penalties resulted at a Mach number of 2.0 from the use of blunt-cowl leading edges. However, sharp-lip inlets produced large losses in thrust for the take-off condition. These thrust penalties which are associated with the the low-speed operation of the sharp-lip inlet designs can probably be avoided without impairing the supersonic performance of the inlet by the use of auxiliary inlets or blow-in doors.
International Nuclear Information System (INIS)
Khoury, Justin; Parikh, Maulik
2009-01-01
Mach's principle is the proposition that inertial frames are determined by matter. We put forth and implement a precise correspondence between matter and geometry that realizes Mach's principle. Einstein's equations are not modified and no selection principle is applied to their solutions; Mach's principle is realized wholly within Einstein's general theory of relativity. The key insight is the observation that, in addition to bulk matter, one can also add boundary matter. Given a space-time, and thus the inertial frames, we can read off both boundary and bulk stress tensors, thereby relating matter and geometry. We consider some global conditions that are necessary for the space-time to be reconstructible, in principle, from bulk and boundary matter. Our framework is similar to that of the black hole membrane paradigm and, in asymptotically anti-de Sitter space-times, is consistent with holographic duality.
Minimal Liouville gravity correlation numbers from Douglas string equation
International Nuclear Information System (INIS)
Belavin, Alexander; Dubrovin, Boris; Mukhametzhanov, Baur
2014-01-01
We continue the study of (q,p) Minimal Liouville Gravity with the help of Douglas string equation. We generalize the results of http://dx.doi.org/10.1016/0550-3213(91)90548-Chttp://dx.doi.org/10.1088/1751-8113/42/30/304004, where Lee-Yang series (2,2s+1) was studied, to (3,3s+p 0 ) Minimal Liouville Gravity, where p 0 =1,2. We demonstrate that there exist such coordinates τ m,n on the space of the perturbed Minimal Liouville Gravity theories, in which the partition function of the theory is determined by the Douglas string equation. The coordinates τ m,n are related in a non-linear fashion to the natural coupling constants λ m,n of the perturbations of Minimal Lioville Gravity by the physical operators O m,n . We find this relation from the requirement that the correlation numbers in Minimal Liouville Gravity must satisfy the conformal and fusion selection rules. After fixing this relation we compute three- and four-point correlation numbers when they are not zero. The results are in agreement with the direct calculations in Minimal Liouville Gravity available in the literature http://dx.doi.org/10.1103/PhysRevLett.66.2051http://dx.doi.org/10.1007/s11232-005-0003-3http://dx.doi.org/10.1007/s11232-006-0075-8
Energy Technology Data Exchange (ETDEWEB)
Guo, Xinyi; Narayan, Ramesh [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Sironi, Lorenzo [NASA Einstein Postdoctoral Fellow. (United States)
2014-12-10
Electron acceleration to non-thermal energies is known to occur in low Mach number (M{sub s} ≲ 5) shocks in galaxy clusters and solar flares, but the electron acceleration mechanism remains poorly understood. Using two-dimensional (2D) particle-in-cell (PIC) plasma simulations, we showed in Paper I that electrons are efficiently accelerated in low Mach number (M{sub s} = 3) quasi-perpendicular shocks via a Fermi-like process. The electrons bounce between the upstream region and the shock front, with each reflection at the shock resulting in energy gain via shock drift acceleration. The upstream scattering is provided by oblique magnetic waves that are self-generated by the electrons escaping ahead of the shock. In the present work, we employ additional 2D PIC simulations to address the nature of the upstream oblique waves. We find that the waves are generated by the shock-reflected electrons via the firehose instability, which is driven by an anisotropy in the electron velocity distribution. We systematically explore how the efficiency of wave generation and of electron acceleration depend on the magnetic field obliquity, the flow magnetization (or equivalently, the plasma beta), and the upstream electron temperature. We find that the mechanism works for shocks with high plasma beta (≳ 20) at nearly all magnetic field obliquities, and for electron temperatures in the range relevant for galaxy clusters. Our findings offer a natural solution to the conflict between the bright radio synchrotron emission observed from the outskirts of galaxy clusters and the low electron acceleration efficiency usually expected in low Mach number shocks.
On two functional equations originating from number theory
Indian Academy of Sciences (India)
Reducing the functional equations introduced in Proc. Indian Acad. Sci. (Math. Sci.) 113(2) (2003) 91–98 and in Appl. Math. Lett. 21 (2008) 974–977 to equations in complex variables and quaternions, we find general solutions of the equations. We also obtain the stability of the equations.
Spearman, M. L.
1983-01-01
An investigation has been made to determine the effects of external stores on the stability and control characteristics of a delta wing fighter airplane model at Mach numbers from 0.60 to 2.01 for a Reynolds number of 3.0 X 1 million per foot. The angle-of-attack range was from about -4 degrees to 20 degrees at a sideslip angle of 0 degrees for the transonic tests, and from about -4 degrees to 10 degrees at sideslip angles of 0 degrees and 3 degrees for the supersonic tests. In general, the results of the tests indicated no seriously detrimental effects of the stores on the stability and control characteristics of the model but did show an increase in the minimum drag level throughout the Mach number range. However, the drag-due-to-lift was such that for subsonic/transonic speeds, the drag at higher lifts was essentially unaffected and the indications are that the maneuvering capability may not be impaired by the stores.
Mack, Robert J.
1988-01-01
A wind-tunnel study was conducted to determine the capability of a method combining linear theory and shock-expansion theory to design optimum camber surfaces for wings that will fly at high-supersonic/low-hypersonic speeds. Three force models (a flat-plate reference wing and two cambered and twisted wings) were used to obtain aerodynamic lift, drag, and pitching-moment data. A fourth pressure-orifice model was used to obtain surface-pressure data. All four wing models had the same planform, airfoil section, and centerbody area distribution. The design Mach number was 4.5, but data were also obtained at Mach numbers of 3.5 and 4.0. Results of these tests indicated that the use of airfoil thickness as a theoretical optimum, camber-surface design constraint did not improve the aerodynamic efficiency or performance of a wing as compared with a wing that was designed with a zero-thickness airfoil (linear-theory) constraint.
Pittman, J. L.
1979-01-01
Aerodynamic predictions from supersonic linear theory and hypersonic impact theory were compared with experimental data for three hypersonic research airplane concepts over a Mach number range from 1.10 to 2.86. The linear theory gave good lift prediction and fair to good pitching-moment prediction over the Mach number (M) range. The tangent-cone theory predictions were good for lift and fair to good for pitching moment for M more than or equal to 2.0. The combined tangent-cone theory predictions were good for lift and fair to good for pitching moment for M more than or equal to 2.0. The combined tangent-cone/tangent-wedge method gave the least accurate prediction of lift and pitching moment. The zero-lift drag was overestimated, especially for M less than 2.0. The linear theory drag prediction was generally poor, with areas of good agreement only for M less than or equal to 1.2. For M more than or equal to 2.), the tangent-cone method predicted the zero-lift drag most accurately.
Energy Technology Data Exchange (ETDEWEB)
Choi, Seung Min [GyeongBuk Technopark, Gyeongsan (Korea, Republic of); Kang, Hui Bo; Kwon, Young Doo; Kwon, Soon Bum [Kyungpook Nat’l Univ., Daegu (Korea, Republic of)
2016-12-15
In the present study, the effects of non-equilibrium condensation on the drag divergence Mach number with the angle of attack in a transonic 2D moist air flow of NACA0012 are investigated using the TVD finite difference scheme. For the same α, the maximum upstream Mach number of the shock wave, Mmax, and the size of supersonic bubble decrease with the increase in Φ{sub 0}. For the same M{sub ∞}, Φ{sub 0}, and T{sub 0}, the length of the non-equilibrium condensation zone Δ{sub z} decreases with increasing Φ{sub 0}. On the other hand, because of the attenuating effect of non-equilibrium condensation on wave drag, which is related to the interaction between the shock wave and the boundary layer, the drag coefficient C{sub D} decreases with an increase in Φ{sub 0} for the same M{sub ∞} and α. For the same α, M{sub D} increases with increasing Φ{sub 0}, while M{sub D} decreases with an increase in α.
Nason, Martin L.; Brown, Clarence A., Jr.; Rock, Rupert S.
1955-01-01
A linear stability analysis and flight-test investigation has been performed on a rolleron-type roll-rate stabilization system for a canard-type missile configuration through a Mach number range from 0.9 to 2.3. This type damper provides roll damping by the action of gyro-actuated uncoupled wing-tip ailerons. A dynamic roll instability predicted by the analysis was confirmed by flight testing and was subsequently eliminated by the introduction of control-surface damping about the rolleron hinge line. The control-surface damping was provided by an orifice-type damper contained within the control surface. Steady-state rolling velocities were at all times less than 1 radian per second between the Mach numbers of 0.9 to 2.3 on the configurations tested. No adverse longitudinal effects were experienced in flight because of the tendency of the free-floating rollerons to couple into the pitching motion at the low angles of attack and disturbance levels investigated herein after the introduction of control-surface damping.
International Nuclear Information System (INIS)
Barigozzi, Giovanna; Armellini, Alessandro; Mucignat, Claudio; Casarsa, Luca
2012-01-01
Highlights: ► Flow visualization and PIV documented the presence of large coherent structures. ► The presence of coherent structures is documented up to the vane trailing edge. ► Shape and direction of rotation of vortices change with injection conditions. ► Vortices morphology influences the film cooling effectiveness distributions. ► A Mach number increase moves vortices closer to the wall. - Abstract: The present paper shows the results of an experimental investigation into the unsteadiness of coolant ejection at the trailing edge of a highly loaded nozzle vane cascade. The trailing edge cooling scheme features a pressure side cutback with film cooling slots, stiffened by evenly spaced ribs in an inline configuration. Cooling air is also ejected through two rows of cylindrical holes placed upstream of the cutback. Tests were performed with a low inlet turbulence intensity level (Tu 1 = 1.6%), changing the cascade operating conditions from low speed (M 2is = 0.2) up to high subsonic regime (M 2is = 0.6), and with coolant to main stream mass flow ratio varied within the 0.5–2.0% range. Particle Image Velocimetry (PIV) and flow visualizations were used to investigate the unsteady mixing process taking place between coolant and main flow downstream of the cutback, up to the trailing edge. For all the tested conditions, the results show the presence of large coherent structures, which presence is still evident up to the trailing edge. Their shape and direction of rotation change with injection conditions, as a function of coolant to mainstream velocity ratio, strongly influencing the thermal protection capability of the injected coolant flow. The Mach number increase is only responsible for a positioning of such vortical structures closer to the wall, while the Strouhal number almost remains unchanged.
Carlson, H. W.
1979-01-01
A new linearized-theory pressure-coefficient formulation was studied. The new formulation is intended to provide more accurate estimates of detailed pressure loadings for improved stability analysis and for analysis of critical structural design conditions. The approach is based on the use of oblique-shock and Prandtl-Meyer expansion relationships for accurate representation of the variation of pressures with surface slopes in two-dimensional flow and linearized-theory perturbation velocities for evaluation of local three-dimensional aerodynamic interference effects. The applicability and limitations of the modification to linearized theory are illustrated through comparisons with experimental pressure distributions for delta wings covering a Mach number range from 1.45 to 4.60 and angles of attack from 0 to 25 degrees.
Energy Technology Data Exchange (ETDEWEB)
Jacobs, A. M.; Zingale, M. [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States); Nonaka, A.; Almgren, A. S.; Bell, J. B. [Center for Computational Sciences and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)
2016-08-10
The dynamics of helium shell convection driven by nuclear burning establish the conditions for runaway in the sub-Chandrasekhar-mass, double-detonation model for SNe Ia, as well as for a variety of other explosive phenomena. We explore these convection dynamics for a range of white dwarf core and helium shell masses in three dimensions using the low Mach number hydrodynamics code MAESTRO. We present calculations of the bulk properties of this evolution, including time-series evolution of global diagnostics, lateral averages of the 3D state, and the global 3D state. We find a variety of outcomes, including quasi-equilibrium, localized runaway, and convective runaway. Our results suggest that the double-detonation progenitor model is promising and that 3D dynamic convection plays a key role.
Mason, M. L.; Putnam, L. E.
1979-01-01
The flow field behind a circular arc nozzle with exhaust jet was studied at subsonic free stream Mach numbers. A conical probe was used to measure the pitot pressure in the jet and free stream regions. Pressure data were recorded for two nozzle configurations at nozzle pressure ratios of 2.0, 2.9, and 5.0. At each set of test conditions, the probe was traversed from the jet center line into the free stream region at seven data acquisition stations. The survey began at the nozzle exit and extended downstream at intervals. The pitot pressure data may be applied to the evaluation of computational flow field models, as illustrated by a comparison of the flow field data with results of inviscid jet plume theory.
Pendergraft, O. C., Jr.; Bare, E. A.
1982-01-01
An investigation was conducted in the Langley 16 foot transonic tunnel to determine the longitudinal aerodynamic characteristics of twin two dimensional nozzles and twin baseline axisymmetric nozzles installed on a fully metric 0.047 scale model of the F-15 three surface configuration (canards, wing, horizontal tails). The effects on performance of two dimensional nozzle in flight thrust reversing, locations and orientation of the vertical tails, and deflections of the horizontal tails were also determined. Test data were obtained at static conditions and at Mach numbers from 0.60 to 1.20 over an angle of attack range from -2 deg to 15 deg. Nozzle pressure ratio was varied from jet off to about 6.5.
International Nuclear Information System (INIS)
Ansanay-Alex, G.
2009-01-01
The development of simulation codes aimed at a precise simulation of fires requires a precise approach of flame front phenomena by using very fine grids. The need to take different spatial scale into consideration leads to a local grid refinement and to a discretization with homogeneous grid for computing time and memory purposes. The author reports the approximation of the non-linear convection term, the scalar advection-diffusion in finite volumes, numerical simulations of a flow in a bent tube, of a three-dimensional laminar flame and of a low Mach number an-isotherm flow. Non conformal finite elements are also presented (Rannacher-Turek and Crouzeix-Raviart elements)
Comment on ''Boltzmann equation and the conservation of particle number''
International Nuclear Information System (INIS)
Zanette, D.
1990-09-01
In a recent paper (Z. Banggu, Phys. Rev. A 42, 761 (1990)) it is argued that some solutions of the Boltzmann equation do not satisfy particle conservation as a consequence of the independence of velocity on position. In this comment, the arguments and conclusions of that paper are discussed. In particular, it is stressed that the temporal series used for solving the kinetic equation are generally divergent. A discussion about the particle conservation in its solutions is also provided. (author). 4 refs
Determining integral density distribution in the mach reflection of shock waves
Shevchenko, A. M.; Golubev, M. P.; Pavlov, A. A.; Pavlov, Al. A.; Khotyanovsky, D. V.; Shmakov, A. S.
2017-05-01
We present a method for and results of determination of the field of integral density in the structure of flow corresponding to the Mach interaction of shock waves at Mach number M = 3. The optical diagnostics of flow was performed using an interference technique based on self-adjusting Zernike filters (SA-AVT method). Numerical simulations were carried out using the CFS3D program package for solving the Euler and Navier-Stokes equations. Quantitative data on the distribution of integral density on the path of probing radiation in one direction of 3D flow transillumination in the region of Mach interaction of shock waves were obtained for the first time.
Energy Technology Data Exchange (ETDEWEB)
Fortin, T
2006-05-15
This work deals with the discretization of Navier-Stokes equations using different finite element methods adapted to the problem of two-phase flows. These methods must be of high order to limit the presence of spurious flows (which contradict the establishment of a physical equilibrium) and to verify energy conservation properties. Several solutions are proposed which seem to fulfill these expectations. A reformulation of the six-equation system adapted to low Mach two-phase flows has been also proposed. These methods have been implemented into the Trio-U code of CEA Grenoble, but have been tested only on simple 'academic' configurations. (J.S.)
Fisher, D. F.; Saltzman, E. J.
1973-01-01
Boundary-layer and local friction data for Mach numbers up to 2.5 and Reynolds numbers up to 3.6 x 10 to the 8th power were obtained in flight at three locations on the XB-70-1 airplane: the lower forward fuselage centerline (nose), the upper rear fuselage centerline, and the upper surface of the right wing. Local skin friction coefficients were derived at each location by using (1) a skin friction force balance, (2) a Preston probe, and (3) an adaptation of Clauser's method which derives skin friction from the rake velocity profile. These three techniques provided consistent results that agreed well with the von Karman-Schoenherr relationship for flow conditions that are quasi-two-dimensional. At the lower angles of attack, the nose-boom and flow-direction vanes are believed to have caused the momentum thickness at the nose to be larger than at the higher angles of attack. The boundary-layer data and local skin friction coefficients are tabulated. The wind-tunnel-model surface-pressure distribution ahead of the three locations and the flight surface-pressure distribution ahead of the wing location are included.
Czech Academy of Sciences Publication Activity Database
Feireisl, Eduard; Medviďová-Lukáčová, M.; Nečasová, Šárka; Novotný, A.; She, Bangwei
2018-01-01
Roč. 16, č. 1 (2018), s. 150-183 ISSN 1540-3459 R&D Projects: GA ČR GA16-03230S EU Projects: European Commission(XE) 320078 - MATHEF Institutional support: RVO:67985840 Keywords : Navier-Stokes system * finite element numerical method * finite volume numerical method * asymptotic preserving schemes Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.865, year: 2016 http://epubs.siam.org/doi/10.1137/16M1094233
Berry, S. A.
1986-01-01
An incompressible boundary-layer stability analysis of Laminar Flow Control (LFC) experimental data was completed and the results are presented. This analysis was undertaken for three reasons: to study laminar boundary-layer stability on a modern swept LFC airfoil; to calculate incompressible design limits of linear stability theory as applied to a modern airfoil at high subsonic speeds; and to verify the use of linear stability theory as a design tool. The experimental data were taken from the slotted LFC experiment recently completed in the NASA Langley 8-Foot Transonic Pressure Tunnel. Linear stability theory was applied and the results were compared with transition data to arrive at correlated n-factors. Results of the analysis showed that for the configuration and cases studied, Tollmien-Schlichting (TS) amplification was the dominating disturbance influencing transition. For these cases, incompressible linear stability theory correlated with an n-factor for TS waves of approximately 10 at transition. The n-factor method correlated rather consistently to this value despite a number of non-ideal conditions which indicates the method is useful as a design tool for advanced laminar flow airfoils.
Driver, Cornelius
1956-01-01
Tests have been made in the Langley 4- by 4-foot supersonic pressure tunnel at Mach numbers of 1.41, 1.61, and 2.01 to determine the static longitudinal stability and control characteristics of various arrangements of the Grumman F11F-1 airplane. Tests were made of the complete model and various combinations of its component parts and, in addition, the effects of various body modifications, a revised vertical tail, and wing fences on the longitudinal characteristics were determined. The results indicate that for a horizontal-tail incidence of -10 deg the trim lift coefficient varied from 0.29 at a Mach number of 1.61 to 0.23 at a Mach number of 2.01 with a corresponding decrease in lift-drag trim from 3.72 to 3.15. Stick-position instability was indicated in the low-supersonic-speed range. A photographic-type nose modification resulted in slightly higher values of minimum drag coefficient but did not significantly affect the static stability or lift-curve slope. The minimum drag coefficient for the complete model with the production nose remained essentially constant at 0.047 throughout the Mach number range investigated.
Sinclair, Archibald R; Mace, William D
1956-01-01
A limited calibration of a combined pitot-static tube and vane-type flow-angularity indicator has been made in the Langley 4- by 4-foot supersonic pressure tunnel at Mach numbers of 1.61 and 2.01. The results indicated that the angle-of-yaw indications were affected by unsymmetric shock effects at low angles of attack.
Stack, John; Draley, Eugene C; Delano, James B; Feldman, Lewis
1950-01-01
As part of a general investigation of propellers at high forward speeds, tests of two 2-blade propellers having the NACA 4-(3)(8)-03 and NACA 4-(3)(8)-45 blade designs have been made in the Langley 8-foot high-speed tunnel through a range of blade angle from 20 degrees to 60 degrees for forward Mach numbers from 0.165 to 0.725 to establish in detail the changes in propeller characteristics due to compressibility effects. These propellers differed primarily only in blade solidity, one propeller having 50 percent and more solidity than the other. Serious losses in propeller efficiency were found as the propeller tip Mach number exceeded 0.91, irrespective of forward speed or blade angle. The magnitude of the efficiency losses varied from 9 percent to 22 percent per 0.1 increase in tip Mach number above the critical value. The range of advance ratio for peak efficiency decreased markedly with increase of forward speed. The general form of the changes in thrust and power coefficients was found to be similar to the changes in airfoil lift coefficient with changes in Mach number. Efficiency losses due to compressibility effects decreased with increase of blade width. The results indicated that the high level of propeller efficiency obtained at low speeds could be maintained to forward sea-level speeds exceeding 500 miles per hour.
Ferri, Antonio; Nucci, Louis M
1954-01-01
Contains theoretical and experimental analysis of circular inlets having a central body at Mach numbers of 3.30, 2.75, and 2.45. The inlets have been designed in order to have low drag and high pressure recovery. The pressure recoveries obtained are of the same order of magnitude as those previously obtained by inlets having very large external drag.
Directory of Open Access Journals (Sweden)
Matthias Bauer
2016-10-01
Full Text Available This paper discusses wind tunnel test results aimed at advancing active flow control technology to increase the aerodynamic efficiency of an aircraft during take-off. A model of the outer section of a representative civil airliner wing was equipped with two-stage fluidic actuators between the slat edge and wing tip, where mechanical high-lift devices fail to integrate. The experiments were conducted at a nominal take-off Mach number of M = 0.2. At this incidence velocity, separation on the wing section, accompanied by increased drag, is triggered by the strong slat edge vortex at high angles of attack. On the basis of global force measurements and local static pressure data, the effect of pulsed blowing on the complex flow is evaluated, considering various momentum coefficients and spanwise distributions of the actuation effort. It is shown that through local intensification of forcing, a momentum coefficient of less than c μ = 0.6 % suffices to offset the stall by 2.4°, increase the maximum lift by more than 10% and reduce the drag by 37% compared to the uncontrolled flow.
Solution of a System of Linear Equations with Fuzzy Numbers
Czech Academy of Sciences Publication Activity Database
Horčík, Rostislav
2008-01-01
Roč. 159, č. 14 (2008), s. 1788-1810 ISSN 0165-0114 R&D Projects: GA AV ČR KJB100300502 Institutional research plan: CEZ:AV0Z10300504 Keywords : fuzzy number * fuzzy interval * interval analysis * fuzzy arithmetic * fuzzy class theory * united solution set Subject RIV: BA - General Mathematics Impact factor: 1.833, year: 2008
On the number of polynomial solutions of Bernoulli and Abel polynomial differential equations
Cima, A.; Gasull, A.; Mañosas, F.
2017-12-01
In this paper we determine the maximum number of polynomial solutions of Bernoulli differential equations and of some integrable polynomial Abel differential equations. As far as we know, the tools used to prove our results have not been utilized before for studying this type of questions. We show that the addressed problems can be reduced to know the number of polynomial solutions of a related polynomial equation of arbitrary degree. Then we approach to these equations either applying several tools developed to study extended Fermat problems for polynomial equations, or reducing the question to the computation of the genus of some associated planar algebraic curves.
Numerical Solution of Uncertain Beam Equations Using Double Parametric Form of Fuzzy Numbers
Directory of Open Access Journals (Sweden)
Smita Tapaswini
2013-01-01
Full Text Available Present paper proposes a new technique to solve uncertain beam equation using double parametric form of fuzzy numbers. Uncertainties appearing in the initial conditions are taken in terms of triangular fuzzy number. Using the single parametric form, the fuzzy beam equation is converted first to an interval-based fuzzy differential equation. Next, this differential equation is transformed to crisp form by applying double parametric form of fuzzy number. Finally, the same is solved by homotopy perturbation method (HPM to obtain the uncertain responses subject to unit step and impulse loads. Obtained results are depicted in terms of plots to show the efficiency and powerfulness of the methodology.
Superposition of elliptic functions as solutions for a large number of nonlinear equations
International Nuclear Information System (INIS)
Khare, Avinash; Saxena, Avadh
2014-01-01
For a large number of nonlinear equations, both discrete and continuum, we demonstrate a kind of linear superposition. We show that whenever a nonlinear equation admits solutions in terms of both Jacobi elliptic functions cn(x, m) and dn(x, m) with modulus m, then it also admits solutions in terms of their sum as well as difference. We have checked this in the case of several nonlinear equations such as the nonlinear Schrödinger equation, MKdV, a mixed KdV-MKdV system, a mixed quadratic-cubic nonlinear Schrödinger equation, the Ablowitz-Ladik equation, the saturable nonlinear Schrödinger equation, λϕ 4 , the discrete MKdV as well as for several coupled field equations. Further, for a large number of nonlinear equations, we show that whenever a nonlinear equation admits a periodic solution in terms of dn 2 (x, m), it also admits solutions in terms of dn 2 (x,m)±√(m) cn (x,m) dn (x,m), even though cn(x, m)dn(x, m) is not a solution of these nonlinear equations. Finally, we also obtain superposed solutions of various forms for several coupled nonlinear equations
Bond, Aleck C.; Swanson, Andrew G.
1953-01-01
A free-flight 0.12-scale rocket-boosted model of the North American MX-770 (X-10) missile has been tested in flight by the Pilotless Aircraft Research Division of the Langley Aeronautical Laboratory. Drag, longitudinal stability, and duct performance data were obtained at Mach numbers from 0.8 to 1.7 covering a Reynolds number range of about 9 x 10(exp 6) to 24 x 10(exp 6) based on wing mean aerodynamic chord. The lift-curve slope, static stability, and damping-in-pitch derivatives showed similar variations with Mach number, the parameters increasing from subsonic values in the transonic region and decreasing in the supersonic region. The variations were for the most part fairly smooth. The aerodynamic center of the configuration shifted rearward in the transonic region and moved forward gradually in the supersonic region. The pitching effectiveness of the canard control surfaces was maintained throughout the flight speed range, the supersonic values being somewhat greater than the subsonic. Trim values of angle of attack and lift coefficient changed abruptly in the transonic region, the change being associated with variations in the out-of-trim pitching moment, control effectiveness, and aerodynamic-center travel in this speed range. Duct total-pressure recovery decreased with increase in free-stream Mach number and the values were somewhat less than normal-shock recovery. Minimum drag data indicated a supersonic drag coefficient about twice the subsonic drag coefficient and a drag-rise Mach number of approximately 0.90. Base drag was small subsonically but was about 25 percent of the minimum drag of the configuration supersonically.
Montoya, L. C.; Economu, M. A.; Cissell, R. E.
1974-01-01
The use of a pitot-static probe to determine wing section drag at speeds from Mach 0.5 to approximately 1.0 was evaluated in flight. The probe unit is described and operational problems are discussed. Typical wake profiles and wing section drag coefficients are presented. The data indicate that the pitot-static probe gave reliable results up to speeds of approximately 1.0.
Estimation of periodic solutions number of first-order differential equations
Ivanov, Gennady; Alferov, Gennady; Gorovenko, Polina; Sharlay, Artem
2018-05-01
The paper deals with first-order differential equations under the assumption that the right-hand side is a periodic function of time and continuous in the set of arguments. Pliss V.A. obtained the first results for a particular class of equations and showed that a number of theorems can not be continued. In this paper, it was possible to reduce the restrictions on the degree of smoothness of the right-hand side of the equation and obtain upper and lower bounds on the number of possible periodic solutions.
Mach's principle in spatially homogeneous spacetimes
International Nuclear Information System (INIS)
Tipler, F.J.
1978-01-01
On the basis of Mach's Principle it is concluded that the only singularity-free solution to the empty space Einstein equations is flat space. It is shown that the only singularity-free solution to the empty space Einstein equations which is spatially homogeneous and globally hyperbolic is in fact suitably identified Minkowski space. (Auth.)
Particle number fluctuations for the van der Waals equation of state
International Nuclear Information System (INIS)
Vovchenko, V; Anchishkin, D V; Gorenstein, M I
2015-01-01
The van der Waals (VDW) equation of state describes a thermal equilibrium in system of particles, where both repulsive and attractive interactions between them are included. This equation predicts the existence of the first order liquid–gas phase transition and the critical point. The standard form of the VDW equation is given by the pressure function in a canonical ensemble (CE) with a fixed number of particles. In this paper the VDW equation is derived within the grand canonical ensemble (GCE) formulation. We argue that this procedure can be useful for new physical applications, in particular, the fluctuations of the number of particles, which are absent in the CE, can be studied in the GCE. For the VDW equation of state in the GCE the particle number fluctuations are calculated for the whole phase diagram, both outside and inside the liquid–gas mixed phase region. It is shown that the scaled variance of these fluctuations remains finite within the mixed phase and goes to infinity at the critical point. The GCE formulation of the VDW equation of state can also be an important step for its application in the statistical description of hadronic systems, where numbers of different particle species are usually not conserved. (paper)
A Whitham-Theory Sonic-Boom Analysis of the TU-144 Aircraft at a Mach Number of 2.2
Mack, Robert J.
1999-01-01
. Therefore, an analysis of the Tu-144 was made to obtain predictions of pressure signature shape and shock strengths at cruise conditions so that the range and characteristics of the required pressure gages could be determined well in advance of the tests. Cancellation of the sonic-boom signature measurement part of the tests removed the need for these pressure gages. Since CFD methods would be used to analyze the aerodynamic performance of the Tu-144 and make similar pressure signature predictions, the relatively quick and simple Whitham-theory pressure signature predictions presented in this paper could be used for comparisons. Pressure signature predictions of sonic-boom disturbances from the Tu- 144 aircraft were obtained from geometry derived from a three-view description of the production aircraft. The geometry was used to calculate aerodynamic performance characteristics at supersonic-cruise conditions. These characteristics and Whitham/Walkden sonic-boom theory were employed to obtain F-functions and flow-field pressure signature predictions at a Mach number of 2.2, at a cruise altitude of 61000 feet, and at a cruise weight of 350000 pounds.
The Max-Plus Algebra of the Natural Numbers has no Finite Equational Basis
DEFF Research Database (Denmark)
Aceto, Luca; Esik, Zoltan; Ingolfsdottir, Anna
2003-01-01
This paper shows that the collection of identities which hold in the algebra N of the natural numbers with constant zero, and binary operations of sum and maximum is not finitely based. Moreover, it is proven that, for every n, the equations in at most n variables that hold in N do not form...... an equational basis. As a stepping stone in the proof of these facts, several results of independent interest are obtained. In particular, explicit descriptions of the free algebras in the variety generated by N are offered. Such descriptions are based upon a geometric characterization of the equations...
Interplay between Mach cone and radial expansion in jet events
Energy Technology Data Exchange (ETDEWEB)
Tachibana, Y., E-mail: tachibana@nt.phys.s.u-tokyo.ac.jp [Theoretical Research Division, Nishina Center, RIKEN, Wako 351-0198 (Japan); Department of Engineering, Nishinippon Institute of Technology, Fukuoka 800-0344 (Japan); Department of Physics, Sophia University, Tokyo 102-8554 (Japan); Hirano, T., E-mail: hirano@sophia.ac.jp [Department of Physics, Sophia University, Tokyo 102-8554 (Japan)
2016-12-15
We study the hydrodynamic response to jet propagation in the expanding QGP and investigate how the particle spectra after the hydrodynamic evolution of the QGP reflect it. We perform simulations of the space-time evolution of the QGP in gamma-jet events by solving (3+1)-dimensional ideal hydrodynamic equations with source terms. Mach cone is induced by the jet energy deposition and pushes back the radial flow of the expanding background. Especially in the case when the jet passage is off-central one, the number of particles emitted in the direction of the push back decreases. This is the signal including the information about the formation of the Mach cone and the jet passage in the QGP fluid.
Interplay between Mach cone and radial expansion in jet events
International Nuclear Information System (INIS)
Tachibana, Y.; Hirano, T.
2016-01-01
We study the hydrodynamic response to jet propagation in the expanding QGP and investigate how the particle spectra after the hydrodynamic evolution of the QGP reflect it. We perform simulations of the space-time evolution of the QGP in gamma-jet events by solving (3+1)-dimensional ideal hydrodynamic equations with source terms. Mach cone is induced by the jet energy deposition and pushes back the radial flow of the expanding background. Especially in the case when the jet passage is off-central one, the number of particles emitted in the direction of the push back decreases. This is the signal including the information about the formation of the Mach cone and the jet passage in the QGP fluid.
Numerical Solution of Fuzzy Differential Equations with Z-numbers Using Bernstein Neural Networks
Directory of Open Access Journals (Sweden)
Raheleh Jafari
2017-01-01
Full Text Available The uncertain nonlinear systems can be modeled with fuzzy equations or fuzzy differential equations (FDEs by incorporating the fuzzy set theory. The solutions of them are applied to analyze many engineering problems. However, it is very difficult to obtain solutions of FDEs. In this paper, the solutions of FDEs are approximated by two types of Bernstein neural networks. Here, the uncertainties are in the sense of Z-numbers. Initially the FDE is transformed into four ordinary differential equations (ODEs with Hukuhara differentiability. Then neural models are constructed with the structure of ODEs. With modified back propagation method for Z- number variables, the neural networks are trained. The theory analysis and simulation results show that these new models, Bernstein neural networks, are effective to estimate the solutions of FDEs based on Z-numbers.
Schmeer, James W.; Cassetti, Marlowe D.
1960-01-01
An investigation of the performance, stability, and control characteristics of a variable-sweep arrow-wing model with the outer wing panels swept 75 deg. has been conducted in the Langley 16-foot transonic tunnel. Four outboard engines located above and below the wing provided propulsive thrust, and, by deflecting in the pitch direction and rotating in the lateral plane, also produced control forces. The engine nacelles incorporated swept lateral and vertical fins for aerodynamic stability and control. Jet-off data were obtained with flow-through nacelles, simulating inlet flow; jet thrust and hot-jet interference effects were obtained with faired-nose nacelles housing hydrogen peroxide gas generators. Six-component force and moment data were obtained at Mach numbers from 0.60 to 1.05 through a range of angles of attack and angles of side-slip. Control characteristics were obtained by deflecting the nacelle-fin combinations as elevators, rudders, and ailerons at several fixed angles for each control. The results indicate that the basic wing-body configuration becomes neutrally stable or unstable at a lift coefficient of 0.15; addition of nacelles with fins delayed instability to a lift coefficient of 0.30. Addition of nacelles to the wing-body configuration increased minimum drag from 0.0058 to 0.0100 at a Mach number of 0.60 and from 0.0080 to 0.0190 at a Mach number of 1.05 with corresponding reductions in maximum lift-drag ratio of 12 percent and 33 percent, respectively. The nacelle-fin combinations were ineffective as longitudinal controls but were adequate as directional and lateral controls. The model with nacelles and fins was directionally and laterally stable; the stability generally increased with increasing lift. Jet interference effects on stability and control characteristics were small but the adverse effects on drag were greater than would be expected for isolated nacelles.
Mccain, W. E.
1984-01-01
The unsteady aerodynamic lifting surface theory, the Doublet Lattice method, with experimental steady and unsteady pressure measurements of a high aspect ratio supercritical wing model at a Mach number of 0.78 were compared. The steady pressure data comparisons were made for incremental changes in angle of attack and control surface deflection. The unsteady pressure data comparisons were made at set angle of attack positions with oscillating control surface deflections. Significant viscous and transonic effects in the experimental aerodynamics which cannot be predicted by the Doublet Lattice method are shown. This study should assist development of empirical correction methods that may be applied to improve Doublet Lattice calculations of lifting surface aerodynamics.
Graves, E. B.; Fournier, R. H.
1979-01-01
The tests were performed at a Mach number of 2.50 and at angles of attack from about -4 deg to 32 deg. The results indicate that increasing nose bluntness increases zero lift drag and decreases both the maximum lift-drag ratio and the level of directional stability. The center of pressure generally moves forward with increasing nose size; however, small nose radii on the modified elliptical configurations move the center of pressure rearward. The circular bodied configurations exhibit the greatest longitudinal stability and the least directional stability. Concepts with the variable geometry afterbody contour display the most directional stability and the greatest zero lift drag.
Irie, T.; Yasunobu, T.; Kashimura, H.; Setoguchi, T.
2003-05-01
When the high-pressure gas is exhausted to the vacuum chamber from the nozzle, the underexpanded supersonic jet contained with the Mach disk is generally formed. The eventual purpose of this study is to clarify the unsteady phenomenon of the underexpanded free jet when the back pressure continuously changes with time. The characteristic of the Mach disk has been clarified in consideration of the diameter and position of it by the numerical analysis in this paper. The sonic jet of the exit Mach number Me=1 is assumed and the axisymmetric conservational equation is solved by the TVD method in the numerical calculation. The diameter and position of the Mach disk differs with the results of a steady jet and the influence on the continuously changing of the back pressure is evidenced from the comparison with the case of steady supersonic jet.
Brown, Clarence A , Jr
1957-01-01
A full- scale rocket-powered model of a cruciform canard missile configuration with a low- aspect - ratio wing and blunt nose has been flight tested by the Langley Pilotless Aircraft Research Division. Static and dynamic longitudinal stability and control derivatives of this interdigitated canard-wing missile configuration were determined by using the pulsed- control technique at low angles of attack and for a Mach number range of 1.2 to 2.1. The lift - curve slope showed only small nonlinearities with changes in control deflection or angle of attack but indicated a difference in lift- .curve slope of approximately 7 percent for the two control deflections of delta = 3.0 deg and delta= -0.3 deg . The large tail length of the missile tested was effective in producing damping in pitch throughout the Mach number range tested. The aerodynamic- center location was nearly constant with Mach number for the two control deflections but was shown to be less stable with the larger control deflection. The increment of lift produced by the controls was small and positive throughout the Mach number range tested, whereas the pitching moment produced by the controls exhibited a normal trend of reduced effectiveness with increasing Mach number.The effectiveness of the controls in producing angle of attack, lift, and pitching moment was good at all Mach numbers tested.
Crabill, Norman L.
1956-01-01
The National Advisory Committee for Aeronautics has conducted a flight test of a model approximating the McDonnell F3H-lN airplane configuration to determine its pitch-up and buffet boundaries, as well as the usual longitudinal stability derivatives obtainable from the pulsed- tail technique. The test was conducted by the freely flying rocket- boosted model technique developed at the Langley Laboratory; results were obtained at Mach numbers from 0.40 to 1.27 at corresponding Reynolds numbers of 2.6 x 10(exp 6) and 9.0 x 10(exp 6). The phenomena of pitch-up, buffet, and maximum lift were encountered at Mach numbers between 0.42 and 0.85. The lift-curve slope and wing-root bending-moment slope increased with increasing angle of attack, whereas the static stability decreased with angle of attack at subsonic speeds and increased at transonic speeds. There was little change in trim at low lift at transonic speeds.
Multigrid solution of the convection-diffusion equation with high-Reynolds number
Energy Technology Data Exchange (ETDEWEB)
Zhang, Jun [George Washington Univ., Washington, DC (United States)
1996-12-31
A fourth-order compact finite difference scheme is employed with the multigrid technique to solve the variable coefficient convection-diffusion equation with high-Reynolds number. Scaled inter-grid transfer operators and potential on vectorization and parallelization are discussed. The high-order multigrid method is unconditionally stable and produces solution of 4th-order accuracy. Numerical experiments are included.
Ernst Mach a deeper look : documents and new perspectives
1992-01-01
Ernst Mach -- A Deeper Look has been written to reveal to English-speaking readers the recent revival of interest in Ernst Mach in Europe and Japan. The book is a storehouse of new information on Mach as a philosopher, historian, scientist and person, containing a number of biographical and philosophical manuscripts publihsed for the first time, along with correspondence and other matters published for the first time in English. The book also provides English translations of Mach's controversies with leading physicists and psychologists, such as Max Planck and Carl Stumpf, and offers basic evidence for resolving Mach's position on atomism and Einstein's theory of relativity. Mach's scientific, philosophical and personal influence in a number of countries -- Austria, Germany, Bohemia and Yugoslavia among them -- has been carefully explored and many aspects detailed for the first time. All of the articles are eminently readable, especially those written by Mach's sister. They are deeply researched, new interpre...
Simplified equations for transient heat transfer problems at low Fourier numbers
DEFF Research Database (Denmark)
Christensen, Martin Gram; Adler-Nissen, Jens
2015-01-01
and validated for infinite slabs, infinite cylinders and spheres and by an industrial application example, covering the center temperature and the volume average temperature. The approach takes ground in the residual difference between a 1 term series solution and a 100 term solution to the Fourier equation...... of the thermal response for solids subjected to convective heat transfer. By representing the residual thermal response as a function of the Biot number and the first eigenvalue, the new approach enables the description of the thermal response in the whole Fourier regime. The presented equation is simple...
A nonperturbative approximation for the moderate Reynolds number Navier-Stokes equations.
Roper, Marcus; Brenner, Michael P
2009-03-03
The nonlinearity of the Navier-Stokes equations makes predicting the flow of fluid around rapidly moving small bodies highly resistant to all approaches save careful experiments or brute force computation. Here, we show how a linearization of the Navier-Stokes equations captures the drag-determining features of the flow and allows simplified or analytical computation of the drag on bodies up to Reynolds number of order 100. We illustrate the utility of this linearization in 2 practical problems that normally can only be tackled with sophisticated numerical methods: understanding flow separation in the flow around a bluff body and finding drag-minimizing shapes.
A nonperturbative approximation for the moderate Reynolds number Navier–Stokes equations
Roper, Marcus; Brenner, Michael P.
2009-01-01
The nonlinearity of the Navier–Stokes equations makes predicting the flow of fluid around rapidly moving small bodies highly resistant to all approaches save careful experiments or brute force computation. Here, we show how a linearization of the Navier–Stokes equations captures the drag-determining features of the flow and allows simplified or analytical computation of the drag on bodies up to Reynolds number of order 100. We illustrate the utility of this linearization in 2 practical problems that normally can only be tackled with sophisticated numerical methods: understanding flow separation in the flow around a bluff body and finding drag-minimizing shapes. PMID:19211800
Igoe, William B.; Re, Richard J.; Cassetti, Marlowe
1961-01-01
An investigation has been made of the effects of conical wing camber and supersonic body indentation on the aerodynamic characteristics of a wing-body configuration at transonic speeds. Wing aspect ratio was 3.0, taper ratio was 0.1, and quarter-chord line sweepback was 52.5 deg with airfoil sections of 0.03 thickness ratio. The tests were conducted in the Langley 16-foot transonic tunnel at various Mach numbers from 0.80 to 1.05 at angles of attack from -4 deg to 14 deg. The cambered-wing configuration achieved higher lift-drag ratios than a similar plane-wing configuration. The camber also reduced the effects of wing-tip flow separation on the aerodynamic characteristics. In general, no stability or trim changes below wing-tip flow separation resulted from the use of camber. The use of supersonic body indentation improved the lift-drag ratios at Mach numbers from 0.96 to 1.05.
International Nuclear Information System (INIS)
Samir, U.; Wildman, P.J.; Rich, F.; Brinton, H.C.; Sagalyn, R.C.
1981-01-01
Measurements of ion current, electron temperature, and density and values of satellite potential from the U.S. Air Force Satellite S3-2 together with ion composition measurements from the Atmosphere Explorer (AE-E) satellite were used to examine the variation of the ratio α = [I/sub +/(wake)]/[I/sub +/(ambient)] (where I/sub +/ is the ion current) with altitude and to examine the significance of the parametric interplay between ionic Mach number, normalized body size R/sub D/( = R0/lambda/sub D/, where R 0 is the satellite radius and lambda/sub D/ is the ambient debye length) and normalized body potenital phi/sub N/( = ephis/KT/sub e/, where phi/sub s/ is the satellite potential, T/sub e/ is the electron temperature, and e and K are constants). It was possible to separate between the influence of R/sub D/ and phi/sub N/ on α for a specific range parameters. Uncertainty, however, remains regarding the competiton between R/sub D/ and S(H + ) and S(O + ) are oxygen and hydrogen ionic Mach numbers, respectively) in determining the ion distribution in the nearest vicincity to the satellite surface. A brief discussion relevant to future experiments in the area of body plasma flow interactions to be conducted on board the Shuttle/Spacelab facility, is also included
Arbitrarily large numbers of kink internal modes in inhomogeneous sine-Gordon equations
Energy Technology Data Exchange (ETDEWEB)
González, J.A., E-mail: jalbertgonz@yahoo.es [Department of Physics, Florida International University, Miami, FL 33199 (United States); Department of Natural Sciences, Miami Dade College, 627 SW 27th Ave., Miami, FL 33135 (United States); Bellorín, A., E-mail: alberto.bellorin@ucv.ve [Escuela de Física, Facultad de Ciencias, Universidad Central de Venezuela, Apartado Postal 47586, Caracas 1041-A (Venezuela, Bolivarian Republic of); García-Ñustes, M.A., E-mail: monica.garcia@pucv.cl [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059 (Chile); Guerrero, L.E., E-mail: lguerre@usb.ve [Departamento de Física, Universidad Simón Bolívar, Apartado Postal 89000, Caracas 1080-A (Venezuela, Bolivarian Republic of); Jiménez, S., E-mail: s.jimenez@upm.es [Departamento de Matemática Aplicada a las TT.II., E.T.S.I. Telecomunicación, Universidad Politécnica de Madrid, 28040-Madrid (Spain); Vázquez, L., E-mail: lvazquez@fdi.ucm.es [Departamento de Matemática Aplicada, Facultad de Informática, Universidad Complutense de Madrid, 28040-Madrid (Spain)
2017-06-28
We prove analytically the existence of an infinite number of internal (shape) modes of sine-Gordon solitons in the presence of some inhomogeneous long-range forces, provided some conditions are satisfied. - Highlights: • We have found exact kink solutions to the perturbed sine-Gordon equation. • We have been able to study analytically the kink stability problem. • A kink equilibrated by an exponentially-localized perturbation has a finite number of oscillation modes. • A sufficiently broad equilibrating perturbation supports an infinite number of soliton internal modes.
Moes, Timothy R.; Whitmore, Stephen A.; Jordan, Frank L., Jr.
1993-01-01
A nonintrusive airdata-sensing system was calibrated in flight and wind-tunnel experiments to an angle of attack of 70 deg and to angles of sideslip of +/- 15 deg. Flight-calibration data have also been obtained to Mach 1.2. The sensor, known as the flush airdata sensor, was installed on the nosecap of an F-18 aircraft for flight tests and on a full-scale F-18 forebody for wind-tunnel tests. Flight tests occurred at the NASA Dryden Flight Research Facility, Edwards, California, using the F-18 High Alpha Research Vehicle. Wind-tunnel tests were conducted in the 30- by 60-ft wind tunnel at the NASA LaRC, Hampton, Virginia. The sensor consisted of 23 flush-mounted pressure ports arranged in concentric circles and located within 1.75 in. of the tip of the nosecap. An overdetermined mathematical model was used to relate the pressure measurements to the local airdata quantities. The mathematical model was based on potential flow over a sphere and was empirically adjusted based on flight and wind-tunnel data. For quasi-steady maneuvering, the mathematical model worked well throughout the subsonic, transonic, and low supersonic flight regimes. The model also worked well throughout the angle-of-attack and sideslip regions studied.
Energy Technology Data Exchange (ETDEWEB)
Ansanay-Alex, G.
2009-06-17
The development of simulation codes aimed at a precise simulation of fires requires a precise approach of flame front phenomena by using very fine grids. The need to take different spatial scale into consideration leads to a local grid refinement and to a discretization with homogeneous grid for computing time and memory purposes. The author reports the approximation of the non-linear convection term, the scalar advection-diffusion in finite volumes, numerical simulations of a flow in a bent tube, of a three-dimensional laminar flame and of a low Mach number an-isotherm flow. Non conformal finite elements are also presented (Rannacher-Turek and Crouzeix-Raviart elements)
Bailey, R. O.; Brownson, J. J.
1979-01-01
Tests were conducted in the Ames 6 by 6 foot wind tunnel to determine the interaction of reaction jets for roll control on the M2-F2 lifting-body entry vehicle. Moment interactions are presented for a Mach number range of 0.6 to 1.7, a Reynolds number range of 1.2 x 10 to the 6th power to 1.6 x 10 to the 6th power (based on model reference length), an angle-of-attack range of -9 deg to 20 deg, and an angle-of-sideslip range of -6 deg to 6 deg at an angle of attack of 6 deg. The reaction jets produce roll control with small adverse yawing moment, which can be offset by horizontal thrust component of canted jets.
Regularity of the Rotation Number for the One-Dimensional Time-Continuous Schroedinger Equation
Energy Technology Data Exchange (ETDEWEB)
Amor, Sana Hadj, E-mail: sana_hadjamor@yahoo.fr [Ecole Nationale d' Ingenieurs de Monastir (Tunisia)
2012-12-15
Starting from results already obtained for quasi-periodic co-cycles in SL(2, R), we show that the rotation number of the one-dimensional time-continuous Schroedinger equation with Diophantine frequencies and a small analytic potential has the behavior of a 1/2-Hoelder function. We give also a sub-exponential estimate of the length of the gaps which depends on its label given by the gap-labeling theorem.
Enthalpy of dissociation and hydration number of methane hydrate from the Clapeyron equation
International Nuclear Information System (INIS)
Anderson, Graydon K.
2004-01-01
The enthalpies of the reactions in which methane hydrate is dissociated to methane vapor and either (1) water, or (2) ice are determined by a new analysis using the Clapeyron equation. The difference in enthalpies of the two reactions is used to infer the hydration number at the quadruple point where hydrate, ice, liquid water, and methane vapor coexist. By appropriate corrections, the hydration number at points removed from the quadruple point is also determined. The most important feature of the new analysis is the direct use of the Clapeyron equation. The method avoids the use of certain simplifying assumptions that have compromised the accuracy of previous analyses in which the Clausius-Clapeyron equation was used. The analysis takes into account the finite volumes of all phases, the non-ideality of the vapor phase, and the solubility of methane in water. The results show that the enthalpy of dissociation and hydration number are constant within experimental error over the entire (hydrate, liquid, vapor) coexistence region. The results are more accurate than but entirely consistent with almost all previous studies
Numerical solution of the Navier--Stokes equations at high Reynolds numbers
International Nuclear Information System (INIS)
Shestakov, A.I.
1974-01-01
A numerical method is presented which is designed to solve the Navier-Stokes equations for two-dimensional, incompressible flow. The method is intended for use on problems with high Reynolds numbers for which calculations via finite difference methods have been unattainable or unreliable. The proposed scheme is a hybrid utilizing a time-splitting finite difference method in areas away from the boundaries. In areas neighboring the boundaries, the equations of motion are solved by the newly proposed vortex method by Chorin. The major accomplishment of the new scheme is that it contains a simple way for merging the two methods at the interface of the two subdomains. The proposed algorithm is designed for use on the time-dependent equations but can be used on steady state problems as well. The method is tested on the popular, time-independent, square cavity problem, an example of a separated flow with closed streamlines. Numerical results are presented for a Reynolds number of 10 3 . (auth)
Mach's principle and space-time structure
International Nuclear Information System (INIS)
Raine, D.J.
1981-01-01
Mach's principle, that inertial forces should be generated by the motion of a body relative to the bulk of matter in the universe, is shown to be related to the structure imposed on space-time by dynamical theories. General relativity theory and Mach's principle are both shown to be well supported by observations. Since Mach's principle is not contained in general relativity this leads to a discussion of attempts to derive Machian theories. The most promising of these appears to be a selection rule for solutions of the general relativistic field equations, in which the space-time metric structure is generated by the matter content of the universe only in a well-defined way. (author)
Hollinger, James A.; Mitcham, Grady L.
1955-01-01
A flight test of a rocket-propelled model of the Convair XFY-1 airplane was conducted to determine the lateral stability and control characteristics, The 0.133-scale model had windmilling propellers for this test, which covered a Mach number range of O.70 to 1.12. The center of gravity was located at 13.9 percent of the mean aerodynamic chord. The methods of analysis included both a solution by vector diagrams and simple one- and two-degree-of-freedom methods. The model was both statically and dynamically stable throughout the speed range of the testa The roll damping was good, and the slope of the side-force curve varied little with speed. The rudder was effective throughout the test speed range, although it was reduced to about 43 percent of its subsonic value at supersonic speeds.
Putnam, L. E.; Mercer, C. E.
1986-01-01
An investigation has been conducted in the Langley 16-Foot Transonic Tunnel to measure the flow field in and around the jet exhaust from a nonaxisymmetric nozzle configuration. The nozzle had a rectangular exit with a width-to-height ratio of 2.38. Pitot-pressure measurements were made at five longitudinal locations downstream of the nozzle exit. The maximum distance downstream of the exit was about 5 nozzle heights. These measurements were made at free-stream Mach numbers of 0.00, 0.60, and 1.20 with the nozzle operating at a ratio of nozzle total pressure to free-stream static pressure of 4.0. The jet exhaust was simulated with high-pressure air that had an exit total temperature essentially equal to the free-stream total temperature.
Garland, Benjamine J.; Chauvin, Leo T.
1957-01-01
Measurements of aerodynamic heat transfer have been made along the hemisphere and cylinder of a hemisphere-cylinder rocket-propelled model in free flight up to a Mach number of 3.88. The test Reynolds number based on free-stream condition and diameter of model covered a range from 2.69 x l0(exp 6) to 11.70 x 10(exp 6). Laminar, transitional, and turbulent heat-transfer coefficients were obtained. The laminar data along the body agreed with laminar theory for blunt bodies whereas the turbulent data along the cylinder were consistently lower than that predicted by the turbulent theory for a flat plate. Measurements of heat transfer at the stagnation point were, in general, lower than the theory for stagnation-point heat transfer. When the Reynolds number to the junction of the hemisphere-cylinder was greater than 6 x l0(exp 6), the transitional Reynolds number varied from 0.8 x l0(exp 6) to 3.0 x 10(exp 6); however, than 6 x l(exp 6) when the Reynolds number to the junction was less, than the transitional Reynolds number varied from 7.0 x l0(exp 6) to 24.7 x 10(exp 6).
Use of Resolving Equation to Define the Lower Critical Reynolds Number
Directory of Open Access Journals (Sweden)
Alexander A. Solovyev
2014-09-01
Full Text Available Although the issue of streams with non-crossing trajectories of particle motions ranging from chaotic, random with irregular current lines, has been given a lot of attention, it still remains unresolved. The study features a relevant issue for hydromechanics, which is precise values determination of the Lower Critical Reynolds Number. It is suggested to put forward an updated approach to the use of energetic analysis for analytical calculation of the Reynolds Resolving Equation. The assessment of transition to mean motion from pulsation to the direction of laminar flows was fulfilled.
International Nuclear Information System (INIS)
Le Quere, P.; Weisman, C.; Paillere, H.; Vierendeels, J.; Dick, E.; Becker, R.; Braack, M.; Locke, J.
2005-01-01
Heat transfer by natural convection and conduction in enclosures occurs in numerous practical situations including the cooling of nuclear reactors. For large temperature difference, the flow becomes compressible with a strong coupling between the continuity, the momentum and the energy equations through the equation of state, and its properties (viscosity, heat conductivity) also vary with the temperature, making the Boussinesq flow approximation inappropriate and inaccurate. There are very few reference solutions in the literature on non-Boussinesq natural convection flows. We propose here a test case problem which extends the well-known De Vahl Davis differentially heated square cavity problem to the case of large temperature differences for which the Boussinesq approximation is no longer valid. The paper is split in two parts: in this first part, we propose as yet unpublished reference solutions for cases characterized by a non-dimensional temperature difference of 0.6, Ra 10 6 (constant property and variable property cases) and Ra = 10 7 (variable property case). These reference solutions were produced after a first international workshop organized by Cea and LIMSI in January 2000, in which the above authors volunteered to produce accurate numerical solutions from which the present reference solutions could be established. (authors)
Hastings, Earl C., Jr.; Dickens, Waldo L.
1957-01-01
A flight investigation was conducted to determine the effects of an inlet modification and rocket-rack extension on the longitudinal trim and low-lift drag of the Douglas F5D-1 airplane. The investigation was conducted with a 0.125-scale rocket-boosted model which was flight tested at the Langley Pilotless Aircraft Research Station at Wallops Island, Va. Results indicate that the combined effects of the modified inlet and fully extended rocket racks on the trim lift coefficient and trim angle of attack were small between Mach numbers of 0.94 and 1.57. Between Mach numbers of 1.10 and 1.57 there was an average increase in drag coefficient of about o,005 for the model with modified inlet and extended rocket racks. The change in drag coefficient due to the inlet modification alone is small between Mach numbers of 1.59 and 1.64
Supersonic and transonic Mach probe for calibration control in the Trisonic Wind Tunnel
Directory of Open Access Journals (Sweden)
Alexandru Marius PANAIT
2017-12-01
Full Text Available A supersonic and high speed transonic Pitot Prandtl is described as it can be implemented in the Trisonic Wind Tunnel for calibration and verification of Mach number precision. A new calculation method for arbitrary precision Mach numbers is proposed and explained. The probe is specially designed for the Trisonic wind tunnel and would greatly simplify obtaining a precise Mach calibration in the critical high transonic and low supersonic regimes, where typically wind tunnels exhibit poor performance. The supersonic Pitot Prandtl combined probe is well known in the aerospace industry, however the proposed probe is a derivative of the standard configuration, combining a stout cone-cylinder probe with a supersonic Pitot static port which allows this configuration to validate the Mach number by three methods: conical flow method – using the pressure ports on a cone generatrix, the Schlieren-optical method of shock wave angle photogrammetry and the Rayleigh supersonic Pitot equation, while having an aerodynamic blockage similar to that of a scaled rocket model commonly used in testing. The proposed probe uses an existing cone-cylinder probe forebody and support, adding only an afterbody with a support for a static port.
Hofstetter, William R.
1957-01-01
The static longitudinal and lateral stability charaetefistics of an 0 .065-scale model of the XRSSM-N-9a (REGULUS II) Missile at Mach number range of 1.6 to 2.0 at a Reynolds number per foot of 2.0(exp 8)
Empirical solution of Green-Ampt equation using soil conservation service - curve number values
Grimaldi, S.; Petroselli, A.; Romano, N.
2012-09-01
The Soil Conservation Service - Curve Number (SCS-CN) method is a popular widely used rainfall-runoff model for quantifying the total stream-flow volume generated by storm rainfall, but its application is not appropriate for sub-daily resolutions. In order to overcome this drawback, the Green-Ampt (GA) infiltration equation is considered and an empirical solution is proposed and evaluated. The procedure, named CN4GA (Curve Number for Green-Ampt), aims to calibrate the Green-Ampt model parameters distributing in time the global information provided by the SCS-CN method. The proposed procedure is evaluated by analysing observed rainfall-runoff events; results show that CN4GA seems to provide better agreement with the observed hydrographs respect to the classic SCS-CN method.
An infinite number of stationary soliton solutions to the five-dimensional vacuum Einstein equation
International Nuclear Information System (INIS)
Azuma, Takahiro; Koikawa, Takao
2006-01-01
We obtain an infinite number of soliton solutions to the five-dimensional stationary Einstein equation with axial symmetry by using the inverse scattering method. We start with the five-dimensional Minkowski space as a seed metric to obtain these solutions. The solutions are characterized by two soliton numbers and a constant appearing in the normalization factor which is related to a coordinate condition. We show that the (2, 0)-soliton solution is identical to the Myers-Perry solution with one angular momentum variable by imposing a condition on the relation between parameters. We also show that the (2, 2)-soliton solution is different from the black ring solution discovered by Emparan and Reall, although one component of the two metrics can be identical. (author)
Hastings, Earl C., Jr.; Dickens, Waldo L.
1957-01-01
A flight investigation was conducted to determine the effects of inlet modification and rocket-rack extension on the longitudinal trim and low-lift drag of the Douglas F5D-1 airplane. The investigation was conducted with a 0.125-scale rocket-boosted model between Mach Numbers of 0.81 and 1.64. This paper presents the changes in trim angle of attack, trim lift coefficient, and low-lift drag caused by the modified inlets alone over a small part of the test Mach number range and by a combination of the modified inlets and extended rocket racks throughout the remainder of the test.
Photodensitometric tracing of Mach bands and its significance
International Nuclear Information System (INIS)
Yoo, Shi Joon; Cho, Kyung Sik; Kang, Heung Sik; Cho, Byung Jae
1984-01-01
Mach bands, a visual phenomenon resulting from lateral inhibitory impulses in the retina, are recognized as lucent or dense lines at the borders of different radiographic densities. A number of clinical situations have been described in which Mach bands may cause difficulty in radiographic diagnosis. Photodensitometric measurement of the film can differentiate the true change in film density from the Mach band which is an optical illusion. Authors present several examples of photodensitometric tracings of Mach bands, with the brief review of the mechanism of their production
Dark matter versus Mach's principle.
von Borzeszkowski, H.-H.; Treder, H.-J.
1998-02-01
Empirical and theoretical evidence show that the astrophysical problem of dark matter might be solved by a theory of Einstein-Mayer type. In this theory up to global Lorentz rotations the reference system is determined by the motion of cosmic matter. Thus one is led to a "Riemannian space with teleparallelism" realizing a geometric version of the Mach-Einstein doctrine. The field equations of this gravitational theory contain hidden matter terms where the existence of hidden matter is inferred safely from its gravitational effects. It is argued that in the nonrelativistic mechanical approximation they provide an inertia-free mechanics where the inertial mass of a body is induced by the gravitational action of the comic masses. Interpreted form the Newtonian point of view this mechanics shows that the effective gravitational mass of astrophysical objects depends on r such that one expects the existence of dark matter.
Incompressible limit of compressible Navier-Stokes equations
International Nuclear Information System (INIS)
Bessaih, H.
1994-01-01
In this paper we study the system which describes the motion of compressible viscous fluid in a bounded domain Ω of R 3 . When we introduce a parameter λ, that is the inverse of the Mach number, we prove, under small initial data and external force (for barotropic flows), that the solution of Navier-Stokes equations is the incompressible limit of the solution of compressible Navier-Stokes equations, as the Mach number becomes small. For this, we show the existence of a solution verifying estimates independent of λ. Compactness argument allow us to pass to the limit on λ in the nonlinear terms. (author). 17 refs
Numerical simulation of transmission coefficient using c-number Langevin equation
Barik, Debashis; Bag, Bidhan Chandra; Ray, Deb Shankar
2003-12-01
We numerically implement the reactive flux formalism on the basis of a recently proposed c-number Langevin equation [Barik et al., J. Chem. Phys. 119, 680 (2003); Banerjee et al., Phys. Rev. E 65, 021109 (2002)] to calculate transmission coefficient. The Kramers' turnover, the T2 enhancement of the rate at low temperatures and other related features of temporal behavior of the transmission coefficient over a range of temperature down to absolute zero, noise correlation, and friction are examined for a double well potential and compared with other known results. This simple method is based on canonical quantization and Wigner quasiclassical phase space function and takes care of quantum effects due to the system order by order.
Yang, Jihua; Zhao, Liqin
2018-05-01
In this paper, by using Picard-Fuchs equations and Chebyshev criterion, we study the upper bounds of the number of limit cycles given by the first order Melnikov function for discontinuous differential systems, which can bifurcate from the periodic orbits of quadratic reversible centers of genus one (r19): x ˙ = y - 12x2 + 16y2, y ˙ = - x - 16 xy, and (r20): x ˙ = y + 4x2, y ˙ = - x + 16 xy, and the periodic orbits of the quadratic isochronous centers (S1) : x ˙ = - y +x2 -y2, y ˙ = x + 2 xy, and (S2) : x ˙ = - y +x2, y ˙ = x + xy. The systems (r19) and (r20) are perturbed inside the class of polynomial differential systems of degree n and the system (S1) and (S2) are perturbed inside the class of quadratic polynomial differential systems. The discontinuity is the line y = 0. It is proved that the upper bounds of the number of limit cycles for systems (r19) and (r20) are respectively 4 n - 3 (n ≥ 4) and 4 n + 3 (n ≥ 3) counting the multiplicity, and the maximum numbers of limit cycles bifurcating from the period annuluses of the isochronous centers (S1) and (S2) are exactly 5 and 6 (counting the multiplicity) on each period annulus respectively.
Stevens, Joseph E.
1955-01-01
Low-lift drag data are presented herein for one 1/7.5-scale rocket-boosted model and three 1/45.85-scale equivalent-body models of the Grumman F9F-9 airplane, The data were obtained over a Reynolds number range of about 5 x 10(exp 6) to 10 x 10(exp 6) based on wing mean aerodynamic chord for the rocket model and total body length for the equivalent-body models. The rocket-boosted model showed a drag rise of about 0,037 (based on included wing area) between the subsonic level and the peak supersonic drag coefficient at the maximum Mach number of this test. The base drag coefficient measured on this model varied from a value of -0,0015 in the subsonic range to a maximum of about 0.0020 at a Mach number of 1.28, Drag coefficients for the equivalent-body models varied from about 0.125 (based on body maximum area) in the subsonic range to about 0.300 at a Mach number of 1.25. Increasing the total fineness ratio by a small amount raised the drag-rise Mach number slightly.
Sogukpinar, Haci
2018-02-01
In this paper, some of the NACA 64A series airfoils data are estimated and aerodynamic properties are calculated to facilitate great understandings effect of relative thickness on the aerodynamic performance of the airfoil by using COMSOL software. 64A201-64A204 airfoils data are not available in literature therefore 64A210 data are used as reference data to estimate 64A201, 64A202, 64A203, 64A204 airfoil configurations. Numerical calculations are then conducted with the angle of attack from -12° to +16° by using k-w turbulence model based on the finite-volume approach. The lift and drag coefficient are one of the most important parameters in studying the airplane performance. Therefore lift, drag and pressure coefficient around selected airfoil are calculated and compared at the Reynolds numbers of 6 × 106 and also stalling characteristics of airfoil section are investigated and presented numerically.
Cassetti, Marlowe D.; Re, Richard J.; Igoe, William B.
1961-01-01
An investigation has been made of the effects of conical wing camber and body indentation according to the supersonic area rule on the aerodynamic wing loading characteristics of a wing-body-tail configuration at transonic speeds. The wing aspect ratio was 3, taper ratio was 0.1, and quarter-chord-line sweepback was 52.5 deg. with 3-percent-thick airfoil sections. The tests were conducted in the Langley 16-foot transonic tunnel at Mach numbers from 0.80 to 1.05 and at angles of attack from 0 deg. to 14 deg., with Reynolds numbers based on mean aerodynamic chord varying from 7 x 10(exp 6) to 8 x 10(exp 6). Conical camber delayed wing-tip stall and reduced the severity of the accompanying longitudinal instability but did not appreciably affect the spanwise load distribution at angles of attack below tip stall. Body indentation reduced the transonic chordwise center-of-pressure travel from about 8 percent to 5 percent of the mean aerodynamic chord.
Hastings, Earl E., Jr.; Mitcham, Grady L.
1954-01-01
A flight test has been conducted to determine the longitudinal stability and control,characteristics of a 0.133-scale model of the Consolidated Vultee XFY-1 airplane without propellers for the Mach number range between 0.73 and 1.19.
Baber, Hal T , Jr; Moul, Martin T
1955-01-01
Two full-scale models of an inline, cruciform, canard missile configuration having a low-aspect-ratio wing equipped with flap-type controls were flight tested in order to determine the missile's longitudinal aerodynamic characteristics. Stability derivatives and control and drag characteristics are presented for a range of Mach number from 0.7 to 1.8. Nonlinear lift and moment curves were noted for the angle - of-attack range of this test (0 deg to 8 deg). The aerodynamic-center location for angles of attack near 50 remained nearly constant for supersonic speeds at 13.5 percent of the mean aerodynamic chord; whereas for angles of attack near 0 deg, there was a rapid forward movement of the aerodynamic center as the Mach number increased. At a control deflection of 0 deg, the missile's response to the longitudinal control was in an essentially fixed space plane which was not coincident with the pitch plane as a result of the missile rolling. As a consequence, stability characteristics were determined from the resultant of pitch and yaw motions. The damping-in-pitch derivatives for the two angle -of-attack ranges of the test are in close agreement and varied only slightly with Mach number. The horn-balanced trailing-edge flap was effective in producing angle of attack over the Mach number range.
Baber, H. T., Jr.; Moul, M. T.
1955-01-01
Two full-scale models of an inline, cruciform, canard missile configuration having a low-aspect-ratio wing equipped with flap-type controls were flight tested in order to determine the missile's longitudinal aerodynamic characteristics. Stability derivatives and control and drag characteristics are presented for a range of Mach number from 0.7 to 1.8. Nonlinear lift and moment curves were noted for the angle-of-attack range of this test (0 deg to 8 deg ). The aerodynamic-center location for angles of attack near 5 deg remained nearly constant for supersonic speeds at 13.5 percent of the mean aerodynamic chord; whereas for angles of attack near O deg, there was a rapid forward movement of the aerodynamic center as the Mach number increased. At a control deflection of O deg, the missile's response to the longitudinal control was in an essentially fixed space plane which was not coincident with the pitch plane as a result of the missile rolling. As a consequence, stability characteristics were determined from the resultant of pitch and yaw motions. The damping-in-pitch derivatives for the two angle-of-attack ranges of the test are in close agreement and varied only slightly with Mach number. The horn-balanced trailing-edge flap was effective in producing angle of attack over the Mach number range.
Runckel, Jack F.; Schmeer, James W.; Cassetti, Marlowe D.
1960-01-01
An investigation of the performance, stability, and control characteristics of a variable-sweep arrow-wing model (the "Swallow") with the outer wing panels swept 25 deg has been conducted in the Langley 16-foot transonic tunnel. The wing was uncambered and untwisted and had RAE 102 airfoil sections with a thickness-to-chord ratio of 0.14 normal to the leading edge. Four outboard engines located above and below the wing provided propulsive thrust, and, by deflecting in the pitch direction and rotating in the lateral plane, also produced control forces. A pair of swept lateral fins and a single vertical fin were mounted on each engine nacelle to provide aerodynamic stability and control. Jets-off data were obtained with flow-through nacelles, stimulating the effects of inlet flow; jet thrust and hot-jet interference effects were obtained with faired-nose nacelles housing hydrogen peroxide gas generators. Six-component force and moment data were obtained through a Mach number range of 0.40 to 0.90 at angles of attack and angles of sideslip from 0 deg to 15 deg. Longitudinal, directional, and lateral control were obtained by deflecting the nacelle-fin combinations as elevators, rudders, and ailerons at several fixed angles for each control.
Kanagawa, Tetsuya
2015-05-01
This paper theoretically treats the weakly nonlinear propagation of diffracted sound beams in nonuniform bubbly liquids. The spatial distribution of the number density of the bubbles, initially in a quiescent state, is assumed to be a slowly varying function of the spatial coordinates; the amplitude of variation is assumed to be small compared to the mean number density. A previous derivation method of nonlinear wave equations for plane progressive waves in uniform bubbly liquids [Kanagawa, Yano, Watanabe, and Fujikawa (2010). J. Fluid Sci. Technol. 5(3), 351-369] is extended to handle quasi-plane beams in weakly nonuniform bubbly liquids. The diffraction effect is incorporated by adding a relation that scales the circular sound source diameter to the wavelength into the original set of scaling relations composed of nondimensional physical parameters. A set of basic equations for bubbly flows is composed of the averaged equations of mass and momentum, the Keller equation for bubble wall, and supplementary equations. As a result, two types of evolution equations, a nonlinear Schrödinger equation including dissipation, diffraction, and nonuniform effects for high-frequency short-wavelength case, and a Khokhlov-Zabolotskaya-Kuznetsov equation including dispersion and nonuniform effects for low-frequency long-wavelength case, are derived from the basic set.
Energy Technology Data Exchange (ETDEWEB)
Sari, Salih [Hacettepe University, Department of Nuclear Engineering, Beytepe, 06800 Ankara (Turkey); Erguen, Sule [Hacettepe University, Department of Nuclear Engineering, Beytepe, 06800 Ankara (Turkey); Barik, Muhammet; Kocar, Cemil; Soekmen, Cemal Niyazi [Hacettepe University, Department of Nuclear Engineering, Beytepe, 06800 Ankara (Turkey)
2009-03-15
In this study, isothermal turbulent bubbly flow is mechanistically modeled. For the modeling, Fluent version 6.3.26 is used as the computational fluid dynamics solver. First, the mechanistic models that simulate the interphase momentum transfer between the gas (bubbles) and liquid (continuous) phases are investigated, and proper models for the known flow conditions are selected. Second, an interfacial area transport equation (IATE) solution is added to Fluent's solution scheme in order to model the interphase momentum transfer mechanisms. In addition to solving IATE, bubble number density (BND) approach is also added to Fluent and this approach is also used in the simulations. Different source/sink models derived for the IATE and BND models are also investigated. The simulations of experiments based on the available data in literature are performed by using IATE and BND models in two and three-dimensions. The results show that the simulations performed by using IATE and BND models agree with each other and with the experimental data. The simulations performed in three-dimensions give better agreement with the experimental data.
International Nuclear Information System (INIS)
Sari, Salih; Erguen, Sule; Barik, Muhammet; Kocar, Cemil; Soekmen, Cemal Niyazi
2009-01-01
In this study, isothermal turbulent bubbly flow is mechanistically modeled. For the modeling, Fluent version 6.3.26 is used as the computational fluid dynamics solver. First, the mechanistic models that simulate the interphase momentum transfer between the gas (bubbles) and liquid (continuous) phases are investigated, and proper models for the known flow conditions are selected. Second, an interfacial area transport equation (IATE) solution is added to Fluent's solution scheme in order to model the interphase momentum transfer mechanisms. In addition to solving IATE, bubble number density (BND) approach is also added to Fluent and this approach is also used in the simulations. Different source/sink models derived for the IATE and BND models are also investigated. The simulations of experiments based on the available data in literature are performed by using IATE and BND models in two and three-dimensions. The results show that the simulations performed by using IATE and BND models agree with each other and with the experimental data. The simulations performed in three-dimensions give better agreement with the experimental data
Hooshyar, M.; Wang, D.
2016-12-01
The empirical proportionality relationship, which indicates that the ratio of cumulative surface runoff and infiltration to their corresponding potentials are equal, is the basis of the extensively used Soil Conservation Service Curve Number (SCS-CN) method. The objective of this paper is to provide the physical basis of the SCS-CN method and its proportionality hypothesis from the infiltration excess runoff generation perspective. To achieve this purpose, an analytical solution of Richards' equation is derived for ponded infiltration in shallow water table environment under the following boundary conditions: 1) the soil is saturated at the land surface; and 2) there is a no-flux boundary which moves downward. The solution is established based on the assumptions of negligible gravitational effect, constant soil water diffusivity, and hydrostatic soil moisture profile between the no-flux boundary and water table. Based on the derived analytical solution, the proportionality hypothesis is a reasonable approximation for rainfall partitioning at the early stage of ponded infiltration in areas with a shallow water table for coarse textured soils.
Mach's principle and rotating universes
International Nuclear Information System (INIS)
King, D.H.
1990-01-01
It is shown that the Bianchi 9 model universe satisfies the Mach principle. These closed rotating universes were previously thought to be counter-examples to the principle. The Mach principle is satisfied because the angular momentum of the rotating matter is compensated by the effective angular momentum of gravitational waves. A new formulation of the Mach principle is given that is based on the field theory interpretation of general relativity. Every closed universe with 3-sphere topology is shown to satisfy this formulation of the Mach principle. It is shown that the total angular momentum of the matter and gravitational waves in a closed 3-sphere topology universe is zero
Directory of Open Access Journals (Sweden)
Vujaković Jelena
2016-01-01
Full Text Available The study of complex differential equations in recent years has opened up some of questions concerning the determination of the frequency of zero solutions, the distribution of zero, oscillation of the solution, asymptotic behavior, rank growth and so on. Besides, this is solved by only some classes of differential equations. In this paper, our aim was to determine the number of zeros and their arrangement in the first quadrant, for the complex canonical differential equation of the second order. The accuracy of our results, we illustrate with two examples.
Graham, John B., Jr.
1958-01-01
Heat-transfer and pressure measurements were obtained from a flight test of a 1/18-scale model of the Titan intercontinental ballistic missile up to a Mach number of 3.86 and Reynolds number per foot of 23.5 x 10(exp 6) and are compared with the data of two previously tested 1/18-scale models. Boundary-layer transition was observed on the nose of the model. Van Driest's theory predicted heat-transfer coefficients reasonably well for the fully laminar flow but predictions made by Van Driest's theory for turbulent flow were considerably higher than the measurements when the skin was being heated. Comparison with the flight test of two similar models shows fair repeatability of the measurements for fully laminar or turbulent flow.
International Nuclear Information System (INIS)
Tay, B A
2011-01-01
We use a generalized Bogoliubov transformation to construct a set of transformed occupation number states of the harmonic oscillator in the Liouville space. General expressions for the expansion coefficients of these states in the bare number basis are obtained and the properties of these states investigated. The transformation is non-dynamical in nature and divides the transformed basis into disconnected correlation subspaces under the transformation. The basis is complete and orthonormal. Elements of the basis are in general mixed states, and the state with the lowest number indices is the thermal vacuum. Since the Kossakowski-Lindblad (KL) equation remains form invariant under the same transformation, the transformation parameter can be identified to the thermal parameter of the master equation. The transformed states then acquire thermal property through this connection. We also work out the explicit expressions of the transformation matrices between the transformed states and the eigenstates of the KL equation for different temperatures.
Solving Second-Order Ordinary Differential Equations without Using Complex Numbers
Kougias, Ioannis E.
2009-01-01
Ordinary differential equations (ODEs) is a subject with a wide range of applications and the need of introducing it to students often arises in the last year of high school, as well as in the early stages of tertiary education. The usual methods of solving second-order ODEs with constant coefficients, among others, rely upon the use of complex…
SGS Modeling of the Internal Energy Equation in LES of Supersonic Channel Flow
Raghunath, Sriram; Brereton, Giles
2011-11-01
DNS of fully-developed turbulent supersonic channel flows (Reτ = 190) at up to Mach 3 indicate that the turbulent heat fluxes depend only weakly on Mach number, while the viscous dissipation and pressure dilatation do so strongly. Moreover, pressure dilatation makes a significant contribution to the internal energy budget at Mach 3 and higher. The balance between these terms is critical to determining the temperature (and so molecular viscosity) from the internal energy equation and so, in LES of these flows, it is essential to use accurate SGS models for the viscous dissipation and the pressure dilatation. In this talk, we present LES results for supersonic channel flow, using SGS models for these terms that are based on the resolved-scale dilatation, an inverse timescale, and SGS momentum fluxes, which intrinsically represent this Mach number effect.
Gyro precession and Mach's principle
International Nuclear Information System (INIS)
Eby, P.
1979-01-01
The precession of a gyroscope is calculated in a nonrelativistic theory due to Barbour which satisfies Mach's principle. It is shown that the theory predicts both the geodetic and motional precession of general relativity to within factors of order 1. The significance of the gyro experiment is discussed from the point of view of metric theories of gravity and this is contrasted with its significance from the point of view of Mach's principle. (author)
Directory of Open Access Journals (Sweden)
Abbas Badakaya Ja'afaru
2012-01-01
Full Text Available We study pursuit and evasion differential game problems described by infinite number of first-order differential equations with function coefficients in Hilbert space l2. Problems involving integral, geometric, and mix constraints to the control functions of the players are considered. In each case, we give sufficient conditions for completion of pursuit and for which evasion is possible. Consequently, strategy of the pursuer and control function of the evader are constructed in an explicit form for every problem considered.
Energy Technology Data Exchange (ETDEWEB)
Kegalj, Martin
2013-11-01
In axial turbines tip leakage forms a large portion of the overall losses. Applying a shroud is very aerodynamically useful, but the higher mechanical loads of the revolving rotor blading exposed to a high thermal load and the higher costs suggest a shroudless configuration is better. The main parameter in the tip leakage loss is the tip gap height, which cannot be reduced arbitrarily as a running gap is necessary due to thermal expansion and vibration of the jet engine. The pressure ratio between pressure and suction of the rotor blade forces the fluid over the blade tip and leads to the formation of the tip leakage vortex. Reduced turning and losses caused by vortices and subsequent mixing are responsible for the reduced efficiency. Using a squealer cavity on the flat blade tip is a feasible way to reduce the aerodynamic losses. A portion of the kinetic energy of the tip leakage flow is dissipated while entering the cavity; the flow exiting the cavity enters the passage with reduced momentum and reduced tip gap mass flow. A 1(1)/(2) stage low mach number turbine was used to investigate the influence of tip geometry. Aerodynamic measurements, performed with five-hole probes, two-component hot-wire anemometer, unsteady wall pressure sensors, stereo and borescopic particle-image-velocimetry setups and oil and dye flow visualization, found small differences in the flow velocities and angles between the flat and squealer tip configuration in the measurement planes downstream of the rotor. The measurement uncertainty proves the difficulty of determining the influence of the squealer cavity on the blade row outflow with global measurement data. To gather information on the flow close to the casing inside the rotor passage is only possible with non-intrusive laser measurement techniques. Comparison of the different tip geometries is still difficult due to the small differences in the absolute flow data. The use of the {lambda}{sub 2} vortex criterion enables an objective
Bandyopadhyay, Debades; Bhat, Sajad A.; Char, Prasanta; Chatterjee, Debarati
2018-02-01
We investigate the impact of strange-matter equations of state involving Λ hyperons, Bose-Einstein condensate of K- mesons and first-order hadron-quark phase transition on moment of inertia, quadrupole moment and tidal deformability parameter of slowly rotating neutron stars. All these equations of state are compatible with the 2 M_{solar} constraint. The main findings of this investigation are the universality of the I- Q and I -Love number relations, which are preserved by the EoSs including Λ hyperons and antikaon condensates, but broken in the presence of a first-order hadron-quark phase transition. Furthermore, it is also noted that the quadrupole moment approaches the Kerr value of a black hole for maximum-mass neutron stars.
Mach's predictions and relativistic cosmology
International Nuclear Information System (INIS)
Heller, M.
1989-01-01
Deep methodological insight of Ernst Mach into the structure of the Newtonian mechanics allowed him to ask questions, the importance of which can be appreciated only today. Three such Mach's ''predictions'' are briefly presented, namely: the possibility of the existence of an allpervading medium which could serve as an universal frame of reference and which has actually been discovered in the form of the microwave background radiation, a certain ''smoothness'' of the Universe which is now recognized as the Robertson-Walker symmetries and the possibility of the experimental verification of the mass anisotropy. 11 refs. (author)
Motornenko, A.; Bravina, L.; Gorenstein, M. I.; Magner, A. G.; Zabrodin, E.
2018-03-01
Properties of equilibrated nucleon system are studied within the ultra-relativistic quantum molecular dynamics (UrQMD) transport model. The UrQMD calculations are done within a finite box with periodic boundary conditions. The system achieves thermal equilibrium due to nucleon-nucleon elastic scattering. For the UrQMD-equilibrium state, nucleon energy spectra, equation of state, particle number fluctuations, and shear viscosity η are calculated. The UrQMD results are compared with both, statistical mechanics and Chapman-Enskog kinetic theory, for a classical system of nucleons with hard-core repulsion.
Directory of Open Access Journals (Sweden)
Jichul Ryu
2016-04-01
Full Text Available In this study, 52 asymptotic Curve Number (CN regression equations were developed for combinations of representative land covers and hydrologic soil groups. In addition, to overcome the limitations of the original Long-term Hydrologic Impact Assessment (L-THIA model when it is applied to larger watersheds, a watershed-scale L-THIA Asymptotic CN (ACN regression equation model (watershed-scale L-THIA ACN model was developed by integrating the asymptotic CN regressions and various modules for direct runoff/baseflow/channel routing. The watershed-scale L-THIA ACN model was applied to four watersheds in South Korea to evaluate the accuracy of its streamflow prediction. The coefficient of determination (R2 and Nash–Sutcliffe Efficiency (NSE values for observed versus simulated streamflows over intervals of eight days were greater than 0.6 for all four of the watersheds. The watershed-scale L-THIA ACN model, including the asymptotic CN regression equation method, can simulate long-term streamflow sufficiently well with the ten parameters that have been added for the characterization of streamflow.
Numerical solutions of the complete Navier-Strokes equations. no. 27
Hassan, H. A.
1996-01-01
This report describes the development of an enstrophy model capable of predicting turbulence separation and its application to two airfoils at various angles of attack and Mach numbers. In addition, a two equation kappa-xi model with a tensor eddy viscosity was developed. Plans call for this model to be used in calculating three dimensional turbulent flows.
Czech Academy of Sciences Publication Activity Database
Těšínská, Emilie; Landa, Ivan; Drahoš, Jiří
2016-01-01
Roč. 66, č. 3 (2016), s. 167-174 ISSN 0009-0700 Institutional support: RVO:67985955 ; RVO:68378114 ; RVO:67985858 Keywords : Ernst Mach * pedagogy * experiments * general education * ballistics * Doppler principle Subject RIV: AB - History; CF - Physical ; Theoretical Chemistry (UCHP-M)
International Nuclear Information System (INIS)
Khisamutdinov, A I; Velker, N N
2014-01-01
The talk examines a system of pairwise interaction particles, which models a rarefied gas in accordance with the nonlinear Boltzmann equation, the master equations of Markov evolution of this system and corresponding numerical Monte Carlo methods. Selection of some optimal method for simulation of rarefied gas dynamics depends on the spatial size of the gas flow domain. For problems with the Knudsen number K n of order unity 'imitation', or 'continuous time', Monte Carlo methods ([2]) are quite adequate and competitive. However if K n ≤ 0.1 (the large sizes), excessive punctuality, namely, the need to see all the pairs of particles in the latter, leads to a significant increase in computational cost(complexity). We are interested in to construct the optimal methods for Boltzmann equation problems with large enough spatial sizes of the flow. Speaking of the optimal, we mean that we are talking about algorithms for parallel computation to be implemented on high-performance multi-processor computers. The characteristic property of large systems is the weak dependence of sub-parts of each other at a sufficiently small time intervals. This property is taken into account in the approximate methods using various splittings of operator of corresponding master equations. In the paper, we develop the approximate method based on the splitting of the operator of master equations system 'over groups of particles' ([7]). The essence of the method is that the system of particles is divided into spatial subparts which are modeled independently for small intervals of time, using the precise 'imitation' method. The type of splitting used is different from other well-known type 'over collisions and displacements', which is an attribute of the known Direct simulation Monte Carlo methods. The second attribute of the last ones is the grid of the 'interaction cells', which is completely absent in the imitation methods. The
International Nuclear Information System (INIS)
Grimstone, M.J.
1978-06-01
The WRS Modular Programming System has been developed as a means by which programmes may be more efficiently constructed, maintained and modified. In this system a module is a self-contained unit typically composed of one or more Fortran routines, and a programme is constructed from a number of such modules. This report describes one WRS module, the function of which is to solve a set of multigroup diffusion equations for a system represented in one-dimensional plane, cylindrical or spherical geometry. The information given in this manual is of use both to the programmer wishing to incorporate the module in a programme, and to the user of such a programme. (author)
Directory of Open Access Journals (Sweden)
A. Abdullah
2018-04-01
Full Text Available Convection-diffusion problems, due to its fundamental nature, are found in various science and engineering applications. In this research, the importance of the relationship between grid structure and flow parameters in such problems is emphasized. In particular, we propose a systematic technique in the selection of the grid expansion factor based on its logarithmic relationship with low Peclet number. Such linear mathematical connection between the two non-dimensional parameters serves as a guideline for more structured decision-making and improves the heuristic process in the determination of the computational domain grid for the numerical solution of convection-diffusion equations especially in the prediction of the concentration of the scalar. Results confirm the effectiveness of the new approach.
Elementary physical approach to Mach's principle and its observational basis
International Nuclear Information System (INIS)
Horak, Z.
1979-01-01
It is shown that Mach's principle and the general principle of relativity are logical consequences of a 'materialistic postulate' and that general relativity implies the validity of Mach's principle for a static (or quasistatic) homogeneous and isotropic universe, spatially self-enclosed. The finite velocity of propagation of gravitational field does not imply a retardation of inertial forces due to the distant masses and therefore does not exclude the validity of Mach's principle. Similarly, the experimentally verified isotropy of inertia is compatible with this principle. The recent observational evidence of very high isotropy of the actual universe proves that the 'anti-Machian' Godel world model must be rejected as a nonphysical one. This suggests the possibility of a renaissance of Einstein's first cosmological model by considering-in the spirit of an older idea of Herbert Dingle-a superlarge-scale quasistatic universe consisting of an unknown number of statistically oscillating regions similar to our own, momentarily expanding, metagalaxy. (author)
Local flow measurements at the inlet spike tip of a Mach 3 supersonic cruise airplane
Johnson, H. J.; Montoya, E. J.
1973-01-01
The flow field at the left inlet spike tip of a YF-12A airplane was examined using at 26 deg included angle conical flow sensor to obtain measurements at free-stream Mach numbers from 1.6 to 3.0. Local flow angularity, Mach number, impact pressure, and mass flow were determined and compared with free-stream values. Local flow changes occurred at the same time as free-stream changes. The local flow usually approached the spike centerline from the upper outboard side because of spike cant and toe-in. Free-stream Mach number influenced the local flow angularity; as Mach number increased above 2.2, local angle of attack increased and local sideslip angle decreased. Local Mach number was generally 3 percent less than free-stream Mach number. Impact-pressure ratio and mass flow ratio increased as free-stream Mach number increased above 2.2, indicating a beneficial forebody compression effect. No degradation of the spike tip instrumentation was observed after more than 40 flights in the high-speed thermal environment encountered by the airplane. The sensor is rugged, simple, and sensitive to small flow changes. It can provide accurate imputs necessary to control an inlet.
Evans, Mark
2016-12-01
A new parametric approach, termed the Wilshire equations, offers the realistic potential of being able to accurately lift materials operating at in-service conditions from accelerated test results lasting no more than 5000 hours. The success of this approach can be attributed to a well-defined linear relationship that appears to exist between various creep properties and a log transformation of the normalized stress. However, these linear trends are subject to discontinuities, the number of which appears to differ from material to material. These discontinuities have until now been (1) treated as abrupt in nature and (2) identified by eye from an inspection of simple graphical plots of the data. This article puts forward a statistical test for determining the correct number of discontinuities present within a creep data set and a method for allowing these discontinuities to occur more gradually, so that the methodology is more in line with the accepted view as to how creep mechanisms evolve with changing test conditions. These two developments are fully illustrated using creep data sets on two steel alloys. When these new procedures are applied to these steel alloys, not only do they produce more accurate and realistic looking long-term predictions of the minimum creep rate, but they also lead to different conclusions about the mechanisms determining the rates of creep from those originally put forward by Wilshire.
Diffusive wave in the low Mach limit for non-viscous and heat-conductive gas
Liu, Yechi
2018-06-01
The low Mach number limit for one-dimensional non-isentropic compressible Navier-Stokes system without viscosity is investigated, where the density and temperature have different asymptotic states at far fields. It is proved that the solution of the system converges to a nonlinear diffusion wave globally in time as Mach number goes to zero. It is remarked that the velocity of diffusion wave is proportional with the variation of temperature. Furthermore, it is shown that the solution of compressible Navier-Stokes system also has the same phenomenon when Mach number is suitably small.
Robert Musil versus Ernst Mach
Directory of Open Access Journals (Sweden)
Jalón, Mauricio
2010-06-01
Full Text Available On Mach’s Theories (DT of R. Musil rejects that the scientific representation tends to build a clear and complete inventory of facts. Mach finds himself obliged to presuppose constant relationships in nature; but this regularity of phenomena implies that the law is something more than a «table», that its mere dependencies are pushed into the background, and that a theoretical relationship in Physics is much more than an order relationship. His conception of scientific economy as a «natural adaptation» implies a biological monism opposed to the characteristic dualities of an empiricist.
Sobre las teorías de Mach (TD de R. Musil rebate que la representación científica tienda a construir un claro y completo inventario de hechos. Pues Mach se ve obligado a presuponer relaciones constantes en la naturaleza; pero esta regularidad de los fenómenos implica que la ley es algo más que cierto «cuadro», que las meras dependencias que defiende están en un segundo plano y que una relación teórica en física es mucho más que una relación de orden. Su concepción de la economía científica como «adaptación natural» significa un monismo biológico opuesto a las dualidades propias de un empirista.
Rotating detectors and Mach's principle
International Nuclear Information System (INIS)
Paola, R.D.M. de; Svaiter, N.F.
2000-08-01
In this work we consider a quantum version of Newton s bucket experiment in a fl;at spacetime: we take an Unruh-DeWitt detector in interaction with a real massless scalar field. We calculate the detector's excitation rate when it is uniformly rotating around some fixed point and the field is prepared in the Minkowski vacuum and also when the detector is inertial and the field is in the Trocheries-Takeno vacuum state. These results are compared and the relations with Mach's principle are discussed. (author)
Recovery Temperature, Transition, and Heat Transfer Measurements at Mach 5
Brinich, Paul F.
1961-01-01
Schlieren, recovery temperature, and heat-transfer measurements were made on a hollow cylinder and a cone with axes alined parallel to the stream. Both the cone and cylinder were equipped with various bluntnesses, and the tests covered a Reynolds number range up to 20 x 10(exp 6) at a free-stream Mach number of 4.95 and wall to free-stream temperature ratios from 1.8 to 5.2 (adiabatic). A substantial transition delay due to bluntness was found for both the cylinder and the cone. For the present tests (Mach 4.95), transition was delayed by a factor of 3 on the cylinder and about 2 on the cone, these delays being somewhat larger than those observed in earlier tests at Mach 3.1. Heat-transfer tests on the cylinder showed only slight effects of wall temperature level on transition location; this is to be contrasted to the large transition delays observed on conical-type bodies at low surface temperatures at Mach 3.1. The schlieren and the peak-recovery-temperature methods of detecting transition were compared with the heat-transfer results. The comparison showed that the first two methods identified a transition point which occurred just beyond the end of the laminar run as seen in the heat-transfer data.
Hooshyar, Milad; Wang, Dingbao
2016-08-01
The empirical proportionality relationship, which indicates that the ratio of cumulative surface runoff and infiltration to their corresponding potentials are equal, is the basis of the extensively used Soil Conservation Service Curve Number (SCS-CN) method. The objective of this paper is to provide the physical basis of the SCS-CN method and its proportionality hypothesis from the infiltration excess runoff generation perspective. To achieve this purpose, an analytical solution of Richards' equation is derived for ponded infiltration in shallow water table environment under the following boundary conditions: (1) the soil is saturated at the land surface; and (2) there is a no-flux boundary which moves downward. The solution is established based on the assumptions of negligible gravitational effect, constant soil water diffusivity, and hydrostatic soil moisture profile between the no-flux boundary and water table. Based on the derived analytical solution, the proportionality hypothesis is a reasonable approximation for rainfall partitioning at the early stage of ponded infiltration in areas with a shallow water table for coarse textured soils.
Laser-driven Mach waves for gigabar-range shock experiments
Swift, Damian; Lazicki, Amy; Coppari, Federica; Saunders, Alison; Nilsen, Joseph
2017-10-01
Mach reflection offers possibilities for generating planar, supported shocks at higher pressures than are practical even with laser ablation. We have studied the formation of Mach waves by algebraic solution and hydrocode simulation for drive pressures at much than reported previously, and for realistic equations of state. We predict that Mach reflection continues to occur as the drive pressure increases, and the pressure enhancement increases monotonically with drive pressure even though the ``enhancement spike'' characteristic of low-pressure Mach waves disappears. The growth angle also increases monotonically with pressure, so a higher drive pressure seems always to be an advantage. However, there are conditions where the Mach wave is perturbed by reflections. We have performed trial experiments at the Omega facility, using a laser-heated halfraum to induce a Mach wave in a polystyrene cone. Pulse length and energy limitations meant that the drive was not maintained long enough to fully support the shock, but the results indicated a Mach wave of 25-30 TPa from a drive pressure of 5-6 TPa, consistent with simulations. A similar configuration should be tested at the NIF, and a Z-pinch driven configuration may be possible. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Numerical solution of Boltzmann's equation
International Nuclear Information System (INIS)
Sod, G.A.
1976-04-01
The numerical solution of Boltzmann's equation is considered for a gas model consisting of rigid spheres by means of Hilbert's expansion. If only the first two terms of the expansion are retained, Boltzmann's equation reduces to the Boltzmann-Hilbert integral equation. Successive terms in the Hilbert expansion are obtained by solving the same integral equation with a different source term. The Boltzmann-Hilbert integral equation is solved by a new very fast numerical method. The success of the method rests upon the simultaneous use of four judiciously chosen expansions; Hilbert's expansion for the distribution function, another expansion of the distribution function in terms of Hermite polynomials, the expansion of the kernel in terms of the eigenvalues and eigenfunctions of the Hilbert operator, and an expansion involved in solving a system of linear equations through a singular value decomposition. The numerical method is applied to the study of the shock structure in one space dimension. Numerical results are presented for Mach numbers of 1.1 and 1.6. 94 refs, 7 tables, 1 fig
Reflected rarefactions, double regular reflection, and mach waves in aluminum and beryllium
International Nuclear Information System (INIS)
Neal, T.
1975-01-01
A number of shock techniques which can be used to obtain high-pressure equation-of-state information between the principal Hugoniot and the principal adiabat are illustrated. A rarefaction wave in aluminum shocked to 27.7 GPa [277 kbar] is examined with radiographic techniques and the bulk sound speed is determined. The two stage compression which occurs in a double shock may be attained by colliding two shocks and observing regular reflection. A radiographic method which uses this phenomenon to measure a three-stage compression of aluminum to a density of 4.7 Mg/m 3 and beryllium to a density of 3.1 Mg/m 3 is presented. The results of a Mach reflection experiment in aluminum are found to disagree substantially with the simple three-shock model. A modified model, consistent with observations, is discussed. In all cases the Gruneisen parameter is determined. (U.S.)
Lyon, Steve W.; Walter, M. Todd; Gérard-Marchant, Pierre; Steenhuis, Tammo S.
2004-10-01
Because the traditional Soil Conservation Service curve-number (SCS-CN) approach continues to be used ubiquitously in water quality models, new application methods are needed that are consistent with variable source area (VSA) hydrological processes in the landscape. We developed and tested a distributed approach for applying the traditional SCS-CN equation to watersheds where VSA hydrology is a dominant process. Predicting the location of source areas is important for watershed planning because restricting potentially polluting activities from runoff source areas is fundamental to controlling non-point-source pollution. The method presented here used the traditional SCS-CN approach to predict runoff volume and spatial extent of saturated areas and a topographic index, like that used in TOPMODEL, to distribute runoff source areas through watersheds. The resulting distributed CN-VSA method was applied to two subwatersheds of the Delaware basin in the Catskill Mountains region of New York State and one watershed in south-eastern Australia to produce runoff-probability maps. Observed saturated area locations in the watersheds agreed with the distributed CN-VSA method. Results showed good agreement with those obtained from the previously validated soil moisture routing (SMR) model. When compared with the traditional SCS-CN method, the distributed CN-VSA method predicted a similar total volume of runoff, but vastly different locations of runoff generation. Thus, the distributed CN-VSA approach provides a physically based method that is simple enough to be incorporated into water quality models, and other tools that currently use the traditional SCS-CN method, while still adhering to the principles of VSA hydrology.
Does the chromatic Mach bands effect exist?
Tsofe, Avital; Spitzer, Hedva; Einav, Shmuel
2009-06-30
The achromatic Mach bands effect is a well-known visual illusion, discovered over a hundred years ago. This effect has been investigated thoroughly, mainly for its brightness aspect. The existence of Chromatic Mach bands, however, has been disputed. In recent years it has been reported that Chromatic Mach bands are not perceived under controlled iso-luminance conditions. However, here we show that a variety of Chromatic Mach bands, consisting of chromatic and achromatic regions, separated by a saturation ramp, can be clearly perceived under iso-luminance and iso-brightness conditions. In this study, observers' eye movements were recorded under iso-brightness conditions. Several observers were tested for their ability to perceive the Chromatic Mach bands effect and its magnitude, across different cardinal and non-cardinal Chromatic Mach bands stimuli. A computational model of color adaptation, which predicted color induction and color constancy, successfully predicts this variation of Chromatic Mach bands. This has been tested by measuring the distance of the data points from the "achromatic point" and by calculating the shift of the data points from predicted complementary lines. The results suggest that the Chromatic Mach bands effect is a specific chromatic induction effect.
Cui, Peng; Xu, WanWu; Li, Qinglian
2018-01-01
Currently, the upper operating limit of the turbine engine is Mach 2+, and the lower limit of the dual-mode scramjet is Mach 4. Therefore no single power systems can operate within the range between Mach 2 + and Mach 4. By using ejector rockets, Rocket-based-combined-cycle can work well in the above scope. As the key component of Rocket-based-combined-cycle, the ejector rocket has significant influence on Rocket-based-combined-cycle performance. Research on the influence of rocket parameters on Rocket-based-combined-cycle in the speed range of Mach 2 + to Mach 4 is scarce. In the present study, influences of Mach number and total pressure of the ejector rocket on Rocket-based-combined-cycle were analyzed numerically. Due to the significant effects of the flight conditions and the Rocket-based-combined-cycle configuration on Rocket-based-combined-cycle performances, flight altitude, flight Mach number, and divergence ratio were also considered. The simulation results indicate that matching lower altitude with higher flight Mach numbers can increase Rocket-based-combined-cycle thrust. For another thing, with an increase of the divergent ratio, the effect of the divergent configuration will strengthen and there is a limit on the divergent ratio. When the divergent ratio is greater than the limit, the effect of divergent configuration will gradually exceed that of combustion on supersonic flows. Further increases in the divergent ratio will decrease Rocket-based-combined-cycle thrust.
Edelman, Mark
2015-07-01
In this paper, we consider a simple general form of a deterministic system with power-law memory whose state can be described by one variable and evolution by a generating function. A new value of the system's variable is a total (a convolution) of the generating functions of all previous values of the variable with weights, which are powers of the time passed. In discrete cases, these systems can be described by difference equations in which a fractional difference on the left hand side is equal to a total (also a convolution) of the generating functions of all previous values of the system's variable with the fractional Eulerian number weights on the right hand side. In the continuous limit, the considered systems can be described by the Grünvald-Letnikov fractional differential equations, which are equivalent to the Volterra integral equations of the second kind. New properties of the fractional Eulerian numbers and possible applications of the results are discussed.
Numerical simulation of energy equation with viscous dissipation for compressible flow over cones
International Nuclear Information System (INIS)
Asif, M.; Chughtai, I.R.
1998-01-01
A finite volume discretization technique has been used to solve the energy equation with viscous dissipation. The effects of viscous heat dissipation for Mach numbers 1.5 and 2.0, at an angle of attack of 0 degree, over sharp and blunt cones have been studied. Algebraic equations have been solved using line-by-line Tda method. Supersonic flow over cones has been analyzed and discussed with and without considering the viscous dissipation effects. It has been found that the effects of viscous dissipation increase with the increase in Mach number. Viscous dissipation affects the temperature distribution of the body. However, the temperature difference in these cases was insignificant. This may be due to the fact that these analysis have been done at 0 km altitude. (author)
Poitevin, Frédéric; Edelstein, Stuart J
2013-05-13
In response to a 100-word footnote in the 1965 article by Monod, Wyman, and Changeux, a detailed manuscript signed by Francis Crick and Jeffries Wyman with 6000 words and 30 equations entitled "A Footnote on Allostery" circulated in 1965 among a limited group of scientists interested in allosteric interactions. This interesting and provocative document is published in this special issue for the first time. An intriguing equation in their text relates the difference between n (the number of ligand binding sites) and n' (the Hill coefficient) to the ratio of the saturation functions Y¯, for oligomers with n-1 and n binding sites. A compact derivation of this equation was not provided by Crick and Wyman, but one is presented here based on a definition of Y¯ involving the binding polynomial and its first derivative. Copyright © 2013 Elsevier Ltd. All rights reserved.
Mach cones in space and laboratory dusty magnetoplasmas
International Nuclear Information System (INIS)
Mamun, A.A.; Shukla, P.K
2004-07-01
We present a rigorous theoretical investigation on the possibility for the formation of Mach cones in both space and laboratory dusty magnetoplasmas. We find the parametric regimes for which different types of Mach cones, such as dust acoustic Mach cones, dust magneto-acoustic Mach cones, oscillonic Mach cones, etc. are formed in space and laboratory dusty magnetoplasmas. We also identify the basic features of such different classes of Mach cones (viz. dust- acoustic, dust magneto-acoustic, oscillonic Mach cones, etc.), and clearly explain how they are relevant to space and laboratory dusty manetoplasmas. (author)
The limit of small Rossby numbers for randomly forced quasi-geostrophic equation on $\\beta$-plane
Kuksin, Sergei; Maiocchi, Alberto
2014-01-01
We consider the 2d quasigeostrophic equation on the $\\beta$-plane for the stream function $\\psi$, with dissipation and a random force: $$ (*)\\qquad (-\\Delta +K)\\psi_t - \\rho J(\\psi, \\Delta\\psi) -\\beta\\psi_x= \\langle \\text{random force}\\rangle -\\kappa\\Delta^2\\psi +\\Delta\\psi, $$ where $\\psi=\\psi(t,x,y), \\ x\\in\\mathbb{R}/2\\pi L\\mathbb{Z}, \\ y\\in \\mathbb{R}/2\\pi \\mathbb{Z}$. For typical values of the horizontal period $L$ we prove that the law of the action-vector of a solution for $(*)$ (formed...
Emergent gravity of fractons: Mach's principle revisited
Pretko, Michael
2017-07-01
Recent work has established the existence of stable quantum phases of matter described by symmetric tensor gauge fields, which naturally couple to particles of restricted mobility, such as fractons. We focus on a minimal toy model of a rank 2 tensor gauge field, consisting of fractons coupled to an emergent graviton (massless spin-2 excitation). We show how to reconcile the immobility of fractons with the expected gravitational behavior of the model. First, we reformulate the fracton phenomenon in terms of an emergent center of mass quantum number, and we show how an effective attraction arises from the principles of locality and conservation of center of mass. This interaction between fractons is always attractive and can be recast in geometric language, with a geodesiclike formulation, thereby satisfying the expected properties of a gravitational force. This force will generically be short-ranged, but we discuss how the power-law behavior of Newtonian gravity can arise under certain conditions. We then show that, while an isolated fracton is immobile, fractons are endowed with finite inertia by the presence of a large-scale distribution of other fractons, in a concrete manifestation of Mach's principle. Our formalism provides suggestive hints that matter plays a fundamental role, not only in perturbing, but in creating the background space in which it propagates.
Turbulent kinetic energy equation and free mixing
Morel, T.; Torda, T. P.; Bradshaw, P.
1973-01-01
Calculation of free shear flows was carried out to investigate the usefulness of several concepts which were previously successfully applied to wall flows. The method belongs to the class of differential approaches. The turbulence is taken into account by the introduction of one additional partial differential equation, the transport equation for the turbulent shear stress. The structure of turbulence is modeled after Bradshaw et al. This model was used successfully in boundary layers and its applicability to other flows is demonstrated. The work reported differs substantially from that of an earlier attempt to use this approach for calculation of free flows. The most important difference is that the region around the center line is treated by invoking the interaction hypothesis (concerning the structure of turbulence in the regions separated by the velocity extrema). The compressibility effects on shear layer spreading at low and moderate Mach numbers were investigated. In the absence of detailed experiments in free flows, the evidence from boundary layers that at low Mach numbers the structure of turbulence is unaffected by the compressibility was relied on. The present model was tested over a range of self-preserving and developing flows including pressure gradients using identical empirical input. The dependence of the structure of turbulence on the spreading rate of the shear layer was established.
Direct Computation of Sound Radiation by Jet Flow Using Large-scale Equations
Mankbadi, R. R.; Shih, S. H.; Hixon, D. R.; Povinelli, L. A.
1995-01-01
Jet noise is directly predicted using large-scale equations. The computational domain is extended in order to directly capture the radiated field. As in conventional large-eddy-simulations, the effect of the unresolved scales on the resolved ones is accounted for. Special attention is given to boundary treatment to avoid spurious modes that can render the computed fluctuations totally unacceptable. Results are presented for a supersonic jet at Mach number 2.1.
Gyenge, E. L.
The Quraishi-Fahidy method [Can. J. Chem. Eng. 59 (1981) 563] was employed to derive characteristic dimensionless numbers for the membrane-electrolyte, cathode catalyst layer and gas diffuser, respectively, based on the model presented by Bernardi and Verbrugge for polymer electrolyte fuel cells [AIChE J. 37 (1991) 1151]. Monomial correlations among dimensionless numbers were developed and tested against experimental and mathematical modeling results. Dimensionless numbers comparing the bulk and surface-convective ionic conductivities, the electric and viscous forces and the current density and the fixed surface charges, were employed to describe the membrane ohmic drop and its non-linear dependence on current density due to membrane dehydration. The analysis of the catalyst layer yielded electrode kinetic equivalents of the second Damköhler number and Thiele modulus, influencing the penetration depth of the oxygen reduction front based on the pseudohomogeneous film model. The correlating equations for the catalyst layer could describe in a general analytical form, all the possible electrode polarization scenarios such as electrode kinetic control coupled or not with ionic and/or oxygen mass transport limitation. For the gas diffusion-backing layer correlations are presented in terms of the Nusselt number for mass transfer in electrochemical systems. The dimensionless number-based correlating equations for the membrane electrode assembly (MEA) could provide a practical approach to quantify single-cell polarization results obtained under a variety of experimental conditions and to implement them in models of the fuel cell stack.
Energy Technology Data Exchange (ETDEWEB)
Gyenge, E.L. [Department of Chemical and Biological Engineering, The University of British Columbia, 2216 Main Mall, Vancouver, BC (Canada V6T 1Z4)
2005-12-01
The Quraishi-Fahidy method [Can. J. Chem. Eng. 59 (1981) 563] was employed to derive characteristic dimensionless numbers for the membrane-electrolyte, cathode catalyst layer and gas diffuser, respectively, based on the model presented by Bernardi and Verbrugge for polymer electrolyte fuel cells [AIChE J. 37 (1991) 1151]. Monomial correlations among dimensionless numbers were developed and tested against experimental and mathematical modeling results. Dimensionless numbers comparing the bulk and surface-convective ionic conductivities, the electric and viscous forces and the current density and the fixed surface charges, were employed to describe the membrane ohmic drop and its non-linear dependence on current density due to membrane dehydration. The analysis of the catalyst layer yielded electrode kinetic equivalents of the second Damkohler number and Thiele modulus, influencing the penetration depth of the oxygen reduction front based on the pseudohomogeneous film model. The correlating equations for the catalyst layer could describe in a general analytical form, all the possible electrode polarization scenarios such as electrode kinetic control coupled or not with ionic and/or oxygen mass transport limitation. For the gas diffusion-backing layer correlations are presented in terms of the Nusselt number for mass transfer in electrochemical systems. The dimensionless number-based correlating equations for the membrane electrode assembly (MEA) could provide a practical approach to quantify single-cell polarization results obtained under a variety of experimental conditions and to implement them in models of the fuel cell stack. (author)
Directory of Open Access Journals (Sweden)
Zengtai Gong
2014-01-01
Full Text Available This paper deals with the Choquet integral of fuzzy-number-valued functions based on the nonnegative real line. We firstly give the definitions and the characterizations of the Choquet integrals of interval-valued functions and fuzzy-number-valued functions based on the nonadditive measure. Furthermore, the operational schemes of above several classes of integrals on a discrete set are investigated which enable us to calculate Choquet integrals in some applications. Secondly, we give a representation of the Choquet integral of a nonnegative, continuous, and increasing fuzzy-number-valued function with respect to a fuzzy measure. In addition, in order to solve Choquet integral equations of fuzzy-number-valued functions, a concept of the Laplace transformation for the fuzzy-number-valued functions in the sense of Choquet integral is introduced. For distorted Lebesgue measures, it is shown that Choquet integral equations of fuzzy-number-valued functions can be solved by the Laplace transformation. Finally, an example is given to illustrate the main results at the end of the paper.
On integral formulation of the Mach principle in a conformally flat space
International Nuclear Information System (INIS)
Mal'tsev, V.K.
1976-01-01
The integral formulation of the Mach principle represents a rather complicated mathematical formalism in which many aspects of the physical content of theory are not clear. Below an attempt is made to consider the integral representation for the most simple case of conformally flat spaces. The fact that this formalism there is only one scalar function makes it possible to analyse in more detail many physical peculiarities of this representation of the Mach principle: the absence of asymptotically flat spaces, problems of inertia and gravity, constraints on state equations, etc
Low Mach number limit for a model of accretion disk
Czech Academy of Sciences Publication Activity Database
Donatelli, D.; Ducomet, B.; Nečasová, Šárka
2018-01-01
Roč. 38, č. 7 (2018), s. 3239-3268 ISSN 1078-0947 R&D Projects: GA ČR GA13-00522S; GA ČR GA16-03230S Institutional support: RVO:67985840 Keywords : Navier-Stokes-Fourier-Poisson system * magnetohydrodynamics * radiating transfer Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.099, year: 2016 http://aimsciences.org/article/doi/10.3934/dcds.2018141
Low Mach number limit for a model of accretion disk
Czech Academy of Sciences Publication Activity Database
Donatelli, D.; Ducomet, B.; Nečasová, Šárka
2018-01-01
Roč. 38, č. 7 (2018), s. 3239-3268 ISSN 1078-0947 R&D Projects: GA ČR GA13-00522S; GA ČR GA16-03230S Institutional support: RVO:67985840 Keywords : Navier-Stokes-Fourier-Poisson system * magnetohydrodynamics * radiating transfer Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.099, year: 2016 http://aimsciences.org/ article /doi/10.3934/dcds.2018141
Modelling of high-enthalpy, high-Mach number flows
International Nuclear Information System (INIS)
Degrez, G; Lani, A; Panesi, M; Chazot, O; Deconinck, H
2009-01-01
A review is made of the computational models of high-enthalpy flows developed over the past few years at the von Karman Institute and Universite Libre de Bruxelles, for the modelling of high-enthalpy hypersonic (re-)entry flows. Both flows in local thermo-chemical equilibrium (LTE) and flows in thermo-chemical non-equilibrium (TCNEQ) are considered. First, the physico-chemical models are described, i.e. the set of conservation laws, the thermodynamics, transport phenomena and chemical kinetics models. Particular attention is given to the correct modelling of elemental (LTE flows) and species (chemical non-equilibrium-CNEQ-flows) transport. The numerical algorithm, based on a state-of-the-art finite volume discretization, is then briefly described. Finally, selected examples are included to illustrate the capabilities of the developed solver. (review article)
International Nuclear Information System (INIS)
Tzanos, C.P.
1992-01-01
A higher-order differencing method was recently proposed for the convection-diffusion equation, which even with a coarse mesh gives oscillation-free solutions that are far more accurate than those of the upwind scheme. In this paper, the performance of this method is investigated in conjunction with the performance of different iterative solvers for the solution of the Navier-Stokes equations in the vorticity-streamfunction formulation for incompressible flow at high Reynolds numbers. Flow in a square cavity with a moving lid was chosen as a model problem. Solvers that performed well at low Re numbers either failed to converge or had a computationally prohibitive convergence rate at high Re numbers. The additive correction method of Settari and Aziz and an iterative incomplete lower and upper (ILU) solver were used in a multigrid approach that performed well in the whole range of Re numbers considered (from 1000 to 10,000) and for uniform as well as nonuniform grids. At high Re numbers, point or line Gauss-Seidel solvers converged with uniform grids, but failed to converge with nonuniform grids
Acoustic Radiation From a Mach 14 Turbulent Boundary Layer
Zhang, Chao; Duan, Lian; Choudhari, Meelan M.
2016-01-01
Direct numerical simulations (DNS) are used to examine the turbulence statistics and the radiation field generated by a high-speed turbulent boundary layer with a nominal freestream Mach number of 14 and wall temperature of 0:18 times the recovery temperature. The flow conditions fall within the range of nozzle exit conditions of the Arnold Engineering Development Center (AEDC) Hypervelocity Tunnel No. 9 facility. The streamwise domain size is approximately 200 times the boundary-layer thickness at the inlet, with a useful range of Reynolds number corresponding to Re 450 ?? 650. Consistent with previous studies of turbulent boundary layer at high Mach numbers, the weak compressibility hypothesis for turbulent boundary layers remains applicable under this flow condition and the computational results confirm the validity of both the van Driest transformation and Morkovin's scaling. The Reynolds analogy is valid at the surface; the RMS of fluctuations in the surface pressure, wall shear stress, and heat flux is 24%, 53%, and 67% of the surface mean, respectively. The magnitude and dominant frequency of pressure fluctuations are found to vary dramatically within the inner layer (z/delta 0.< or approx. 0.08 or z+ < or approx. 50). The peak of the pre-multiplied frequency spectrum of the pressure fluctuation is f(delta)/U(sub infinity) approx. 2.1 at the surface and shifts to a lower frequency of f(delta)/U(sub infinity) approx. 0.7 in the free stream where the pressure signal is predominantly acoustic. The dominant frequency of the pressure spectrum shows a significant dependence on the freestream Mach number both at the wall and in the free stream.
A composite velocity procedure for the compressible Navier-Stokes equations
Khosla, P. K.; Rubin, S. G.
1982-01-01
A new boundary-layer relaxation procedure is presented. In the spirit of the theory of matched asymptotic expansions, a multiplicative composite of the appropriate velocity representations for the inviscid and viscous regions is prescribed. The resulting equations are structured so that far from the surface of the body the momentum equations lead to the Bernoulli relation for the pressure, while the continuity equation reduces to the familiar compressible potential equation. Close to the body surface, the governing equations and solution techniques are characteristic of those describing interacting boundary-layers; although, the full Navier-Stokes equations are considered here. Laminar flow calculations for the subsonic flow over an axisymmetric boattail simulator geometry are presented for a variety of Reynolds and Mach numbers. A strongly implicit solution method is applied for the coupled velocity components.
International Nuclear Information System (INIS)
Cohendet, O.
1989-01-01
We consider a quantum system with a finite number N of states and we show that a Markov process evolving in an 'extended' discrete phase can be associated with the discrete Wigner function of the system. This Wigner function is built using the Weyl quantization procedure on the group Z N xZ N . Moreover we can use this process to compute the quantum mean values as probabilistic expectations of functions of this process. This probabilistic formulation can be seen as a stochastic mechanics in phase space. (orig.)
Hypersonic Shock Wave Computations Using the Generalized Boltzmann Equation
Agarwal, Ramesh; Chen, Rui; Cheremisin, Felix G.
2006-11-01
Hypersonic shock structure in diatomic gases is computed by solving the Generalized Boltzmann Equation (GBE), where the internal and translational degrees of freedom are considered in the framework of quantum and classical mechanics respectively [1]. The computational framework available for the standard Boltzmann equation [2] is extended by including both the rotational and vibrational degrees of freedom in the GBE. There are two main difficulties encountered in computation of high Mach number flows of diatomic gases with internal degrees of freedom: (1) a large velocity domain is needed for accurate numerical description of the distribution function resulting in enormous computational effort in calculation of the collision integral, and (2) about 50 energy levels are needed for accurate representation of the rotational spectrum of the gas. Our methodology addresses these problems, and as a result the efficiency of calculations has increased by several orders of magnitude. The code has been validated by computing the shock structure in Nitrogen for Mach numbers up to 25 including the translational and rotational degrees of freedom. [1] Beylich, A., ``An Interlaced System for Nitrogen Gas,'' Proc. of CECAM Workshop, ENS de Lyon, France, 2000. [2] Cheremisin, F., ``Solution of the Boltzmann Kinetic Equation for High Speed Flows of a Rarefied Gas,'' Proc. of the 24th Int. Symp. on Rarefied Gas Dynamics, Bari, Italy, 2004.
International Nuclear Information System (INIS)
Girardin, Mathieu
2014-01-01
Two-phase flows in Pressurized Water Reactors belong to a wide range of Mach number flows. Computing accurate approximate solutions of those flows may be challenging from a numerical point of view as classical finite volume methods are too diffusive in the low Mach regime. In this thesis, we are interested in designing and studying some robust numerical schemes that are stable for large time steps and accurate even on coarse meshes for a wide range of flow regimes. An important feature is the strategy to construct those schemes. We use a mixed implicit-explicit strategy based on an operator splitting to solve fast and slow phenomena separately. Then, we introduce a modification of a Suliciu type relaxation scheme to improve the accuracy of the numerical scheme in some regime of interest. Two approaches have been used to assess the ability of our numerical schemes to deal with a wide range of flow regimes. The first approach, based on the asymptotic preserving property, has been used for the gas dynamics equations with stiff source terms. The second approach, based on the all-regime property, has been used for the gas dynamics equations and the homogeneous two-phase flows models HRM and HEM in the low Mach regime. We obtained some robustness and stability properties for our numerical schemes. In particular, some discrete entropy inequalities are shown. Numerical evidences, in 1D and in 2D on unstructured meshes, assess the gain in term of accuracy and CPU time of those asymptotic preserving and all-regime numerical schemes in comparison with classical finite volume methods. (author) [fr
All-optical negabinary adders using Mach-Zehnder interferometer
Cherri, A. K.
2011-02-01
In contrast to optoelectronics, all-optical adders are proposed where all-optical signals are used to represent the input numbers and the control signals. In addition, the all-optical adders use the negabinary modified signed-digit number representation (an extension of the negabinary number system) to represent the input digits. Further, the ultra-speed of the designed circuits is achieved due to the use of ultra-fast all-optical switching property of the semiconductor optical amplifier and Mach-Zehnder interferometer (SOA-MZI). Furthermore, two-bit per digit binary encoding scheme is employed to represent the trinary values of the negabinary modified signed-digits.
Multiple solutions and stability of the steady transonic small-disturbance equation
Directory of Open Access Journals (Sweden)
Ya Liu
2017-09-01
Full Text Available Numerical solutions of the steady transonic small-disturbance (TSD potential equation are computed using the conservative Murman−Cole scheme. Multiple solutions are discovered and mapped out for the Mach number range at zero angle of attack and the angle of attack range at Mach number 0.85 for the NACA 0012 airfoil. We present a linear stability analysis method by directly assembling and evaluating the Jacobian matrix of the nonlinear finite-difference equation of the TSD equation. The stability of all the discovered multiple solutions are then determined by the proposed eigen analysis. The relation of stability to convergence of the iterative method for solving the TSD equation is discussed. Computations and the stability analysis demonstrate the possibility of eliminating the multiple solutions and stabilizing the remaining unique solution by adding a sufficiently long splitter plate downstream the airfoil trailing edge. Finally, instability of the solution of the TSD equation is shown to be closely connected to the onset of transonic buffet by comparing with experimental data.
Combustion-Powered Actuation for Dynamic Stall Suppression - Simulations and Low-Mach Experiments
Matalanis, Claude G.; Min, Byung-Young; Bowles, Patrick O.; Jee, Solkeun; Wake, Brian E.; Crittenden, Tom; Woo, George; Glezer, Ari
2014-01-01
An investigation on dynamic-stall suppression capabilities of combustion-powered actuation (COMPACT) applied to a tabbed VR-12 airfoil is presented. In the first section, results from computational fluid dynamics (CFD) simulations carried out at Mach numbers from 0.3 to 0.5 are presented. Several geometric parameters are varied including the slot chordwise location and angle. Actuation pulse amplitude, frequency, and timing are also varied. The simulations suggest that cycle-averaged lift increases of approximately 4% and 8% with respect to the baseline airfoil are possible at Mach numbers of 0.4 and 0.3 for deep and near-deep dynamic-stall conditions. In the second section, static-stall results from low-speed wind-tunnel experiments are presented. Low-speed experiments and high-speed CFD suggest that slots oriented tangential to the airfoil surface produce stronger benefits than slots oriented normal to the chordline. Low-speed experiments confirm that chordwise slot locations suitable for Mach 0.3-0.4 stall suppression (based on CFD) will also be effective at lower Mach numbers.
Arán Filippetti, Vanessa; Richaud, María Cristina
2017-10-01
Though the relationship between executive functions (EFs) and mathematical skills has been well documented, little is known about how both EFs and IQ differentially support diverse math domains in primary students. Inconsistency of results may be due to the statistical techniques employed, specifically, if the analysis is conducted with observed variables, i.e., regression analysis, or at the latent level, i.e., structural equation modeling (SEM). The current study explores the contribution of both EFs and IQ in mathematics through an SEM approach. A total of 118 8- to 12-year-olds were administered measures of EFs, crystallized (Gc) and fluid (Gf) intelligence, and math abilities (i.e., number production, mental calculus and arithmetical problem-solving). Confirmatory factor analysis (CFA) offered support for the three-factor solution of EFs: (1) working memory (WM), (2) shifting, and (3) inhibition. Regarding the relationship among EFs, IQ and math abilities, the results of the SEM analysis showed that (i) WM and age predict number production and mental calculus, and (ii) shifting and sex predict arithmetical problem-solving. In all of the SEM models, EFs partially or totally mediated the relationship between IQ, age and math achievement. These results suggest that EFs differentially supports math abilities in primary-school children and is a more significant predictor of math achievement than IQ level.
Korucu, Ayse; Miller, Richard
2016-11-01
Direct numerical simulations (DNS) of temporally developing shear flames are used to investigate both equation of state (EOS) and unity-Lewis (Le) number assumption effects in hydrocarbon flames at elevated pressure. A reduced Kerosene / Air mechanism including a semi-global soot formation/oxidation model is used to study soot formation/oxidation processes in a temporarlly developing hydrocarbon shear flame operating at both atmospheric and elevated pressures for the cubic Peng-Robinson real fluid EOS. Results are compared to simulations using the ideal gas law (IGL). The results show that while the unity-Le number assumption with the IGL EOS under-predicts the flame temperature for all pressures, with the real fluid EOS it under-predicts the flame temperature for 1 and 35 atm and over-predicts the rest. The soot mass fraction, Ys, is only under-predicted for the 1 atm flame for both IGL and real gas fluid EOS models. While Ys is over-predicted for elevated pressures with IGL EOS, for the real gas EOS Ys's predictions are similar to results using a non-unity Le model derived from non-equilibrium thermodynamics and real diffusivities. Adopting the unity Le assumption is shown to cause misprediction of Ys, the flame temperature, and the mass fractions of CO, H and OH.
Chan, David T.; Balakrishna, Sundareswara; Walker, Eric L.; Goodliff, Scott L.
2015-01-01
Recent data quality improvements at the National Transonic Facility have an intended goal of reducing the Mach number variation in a data point to within plus or minus 0.0005, with the ultimate goal of reducing the data repeatability of the drag coefficient for full-span subsonic transport models at transonic speeds to within half a drag count. This paper will discuss the Mach stability improvements achieved through the use of an existing second throat capability at the NTF to create a minimum area at the end of the test section. These improvements were demonstrated using both the NASA Common Research Model and the NTF Pathfinder-I model in recent experiments. Sonic conditions at the throat were verified using sidewall static pressure data. The Mach variation levels from both experiments in the baseline tunnel configuration and the choked tunnel configuration will be presented and the correlation between Mach number and drag will also be examined. Finally, a brief discussion is given on the consequences of using the second throat in its location at the end of the test section.
Scramjet Combustor Characteristics at Hypervelocity Condition over Mach 10 Flight
Takahashi, M.; Komuro, T.; Sato, K.; Kodera, M.; Tanno, H.; Itoh, K.
2009-01-01
To investigate possibility of reduction of a scramjet combustor size without thrust performance loss, a two-dimensional constant-area combustor of a previous engine model was replaced with the one with 23% lower-height. With the application of the lower-height combustor, the pressure in the combustor becomes 50% higher and the combustor length for the optimal performance becomes 43% shorter than the original combustor. The combustion tests of the modified engine model were conducted using a large free-piston driven shock tunnel at flow conditions corresponding to the flight Mach number from 9 to 14. CFD was also applied to the engine internal flows. The results showed that the mixing and combustion heat release progress faster to the distance and the combustor performance similar to that of the previous engine was obtained with the modified engine. The reduction of the combustor size without the thrust performance loss is successfully achieved by applying the lower-height combustor.
Lee, J.
1994-01-01
A generalized flow solver using an implicit Lower-upper (LU) diagonal decomposition based numerical technique has been coupled with three low-Reynolds number kappa-epsilon models for analysis of problems with engineering applications. The feasibility of using the LU technique to obtain efficient solutions to supersonic problems using the kappa-epsilon model has been demonstrated. The flow solver is then used to explore limitations and convergence characteristics of several popular two equation turbulence models. Several changes to the LU solver have been made to improve the efficiency of turbulent flow predictions. In general, the low-Reynolds number kappa-epsilon models are easier to implement than the models with wall-functions, but require much finer near-wall grid to accurately resolve the physics. The three kappa-epsilon models use different approaches to characterize the near wall regions of the flow. Therefore, the limitations imposed by the near wall characteristics have been carefully resolved. The convergence characteristics of a particular model using a given numerical technique are also an important, but most often overlooked, aspect of turbulence model predictions. It is found that some convergence characteristics could be sacrificed for more accurate near-wall prediction. However, even this gain in accuracy is not sufficient to model the effects of an external pressure gradient imposed by a shock-wave/ boundary-layer interaction. Additional work on turbulence models, especially for compressibility, is required since the solutions obtained with base line turbulence are in only reasonable agreement with the experimental data for the viscous interaction problems.
Two-fluid electromagnetic simulations of plasma-jet acceleration with detailed equation-of-state
International Nuclear Information System (INIS)
Thoma, C.; Welch, D. R.; Clark, R. E.; Bruner, N.; MacFarlane, J. J.; Golovkin, I. E.
2011-01-01
We describe a new particle-based two-fluid fully electromagnetic algorithm suitable for modeling high density (n i ∼ 10 17 cm -3 ) and high Mach number laboratory plasma jets. In this parameter regime, traditional particle-in-cell (PIC) techniques are challenging due to electron timescale and lengthscale constraints. In this new approach, an implicit field solve allows the use of large timesteps while an Eulerian particle remap procedure allows simulations to be run with very few particles per cell. Hall physics and charge separation effects are included self-consistently. A detailed equation of state (EOS) model is used to evolve the ion charge state and introduce non-ideal gas behavior. Electron cooling due to radiation emission is included in the model as well. We demonstrate the use of these new algorithms in 1D and 2D Cartesian simulations of railgun (parallel plate) jet accelerators using He and Ar gases. The inclusion of EOS and radiation physics reduces the electron temperature, resulting in higher calculated jet Mach numbers in the simulations. We also introduce a surface physics model for jet accelerators in which a frictional drag along the walls leads to axial spreading of the emerging jet. The simulations demonstrate that high Mach number jets can be produced by railgun accelerators for a variety of applications, including high energy density physics experiments.
Two-fluid electromagnetic simulations of plasma-jet acceleration with detailed equation-of-state
Energy Technology Data Exchange (ETDEWEB)
Thoma, C.; Welch, D. R.; Clark, R. E.; Bruner, N. [Voss Scientific, LLC, Albuquerque, New Mexico 87108 (United States); MacFarlane, J. J.; Golovkin, I. E. [Prism Computational Sciences, Inc., Madison, Wisconsin 53711 (United States)
2011-10-15
We describe a new particle-based two-fluid fully electromagnetic algorithm suitable for modeling high density (n{sub i} {approx} 10{sup 17} cm{sup -3}) and high Mach number laboratory plasma jets. In this parameter regime, traditional particle-in-cell (PIC) techniques are challenging due to electron timescale and lengthscale constraints. In this new approach, an implicit field solve allows the use of large timesteps while an Eulerian particle remap procedure allows simulations to be run with very few particles per cell. Hall physics and charge separation effects are included self-consistently. A detailed equation of state (EOS) model is used to evolve the ion charge state and introduce non-ideal gas behavior. Electron cooling due to radiation emission is included in the model as well. We demonstrate the use of these new algorithms in 1D and 2D Cartesian simulations of railgun (parallel plate) jet accelerators using He and Ar gases. The inclusion of EOS and radiation physics reduces the electron temperature, resulting in higher calculated jet Mach numbers in the simulations. We also introduce a surface physics model for jet accelerators in which a frictional drag along the walls leads to axial spreading of the emerging jet. The simulations demonstrate that high Mach number jets can be produced by railgun accelerators for a variety of applications, including high energy density physics experiments.
Indian Academy of Sciences (India)
Admin
Triangular number, figurate num- ber, rangoli, Brahmagupta–Pell equation, Jacobi triple product identity. Figure 1. The first four triangular numbers. Left: Anuradha S Garge completed her PhD from. Pune University in 2008 under the supervision of Prof. S A Katre. Her research interests include K-theory and number theory.
Analysis of compressible light dynamic stall flow at transitional Reynolds numbers
DEFF Research Database (Denmark)
Dyken, R.D. Van; Ekaterinaris, John A.; Chandrasekhara, M.S.
1996-01-01
Numerical and experimental results of steady and light dynamic stall flow over an oscillating NACA 0012 airfoil at a freestream Mach number of 0.3 and Reynolds number of 0.54 x 10(6) are compared, The experimental observation that dynamic stall is induced from the bursting of a laminar separation...... point is specified suitably and a simple transition length model is incorporated to determine the extent of the laminar separation bubble. The thin-layer approximations of compressible, Reynolds-averaged, Navier-Stokes equations are used for the numerical solution, with an implicit, upwind-biased, third...
Caviedes-Voullième, Daniel; García-Navarro, Pilar; Murillo, Javier
2012-07-01
SummaryHydrological simulation of rain-runoff processes is often performed with lumped models which rely on calibration to generate storm hydrographs and study catchment response to rain. In this paper, a distributed, physically-based numerical model is used for runoff simulation in a mountain catchment. This approach offers two advantages. The first is that by using shallow-water equations for runoff flow, there is less freedom to calibrate routing parameters (as compared to, for example, synthetic hydrograph methods). The second, is that spatial distributions of water depth and velocity can be obtained. Furthermore, interactions among the various hydrological processes can be modeled in a physically-based approach which may depend on transient and spatially distributed factors. On the other hand, the undertaken numerical approach relies on accurate terrain representation and mesh selection, which also affects significantly the computational cost of the simulations. Hence, we investigate the response of a gauged catchment with this distributed approach. The methodology consists of analyzing the effects that the mesh has on the simulations by using a range of meshes. Next, friction is applied to the model and the response to variations and interaction with the mesh is studied. Finally, a first approach with the well-known SCS Curve Number method is studied to evaluate its behavior when coupled with a shallow-water model for runoff flow. The results show that mesh selection is of great importance, since it may affect the results in a magnitude as large as physical factors, such as friction. Furthermore, results proved to be less sensitive to roughness spatial distribution than to mesh properties. Finally, the results indicate that SCS-CN may not be suitable for simulating hydrological processes together with a shallow-water model.
Simulation of shock-induced bubble collapse using a four-equation model
Goncalves, E.; Hoarau, Y.; Zeidan, D.
2018-02-01
This paper presents a numerical study of the interaction between a planar incident shock wave with a cylindrical gas bubble. Simulations are performed using an inviscid compressible one-fluid solver based upon three conservation laws for the mixture variables, namely mass, momentum, and total energy along with a supplementary transport equation for the volume fraction of the gas phase. The study focuses on the maximum pressure generated by the bubble collapse. The influence of the strength of the incident shock is investigated. A law for the maximum pressure function of the Mach number of the incident shock is proposed.
Mach-Like Structure in a Patronic-Hadronic Transport Model at RHIC Energies
International Nuclear Information System (INIS)
Ma, Y.G.; Ma, G.L.; Zhang, S.
2008-01-01
Recent RHIC experimental results indicated an exotic partonic matter may be created in central Au + Au collisions at dollars sqrt (s ( NN))dollars =200 GeV. When a parton with high transverse momentum (jet) passes through the new matter, jet will quench. The lost energy will be redistributed into the medium. Experimentally the soft scattered particles which carry the lost energy have been reconstructed via di-hadron angular correlations of charged particles and a hump structure on away side in di-hadron $ Delta phi$ correlation has been observed in central Au + Au collisions [1,2]. Some interpretations, such as Mach-cone shock wave and gluon Cherenkov-like radiation mechanism etc, have been proposed to explain the splitting behavior of the away side peaks. However, quantitative understanding of the experimental observation has yet to be established. In this work, we use a multi-phase transport (AMPT) model to make a detailed simulation for di-hadron or tri-hadron azimuthal correlation for central Au + Au collisions at dollars sqrt(s ( NN)) dollars =200 GeV. The hump structure on away side (we called Mach-like structure later) in the di-hadron and tri-hadron azimuthal correlations has been observed [3,4,5]. Furthermore, the time evolution of Mach-like structure is presented [6]. With the increasing of the lifetime of partonic matter, Mach-like structure develops by strong parton cascade process. Not only the splitting parameter but also the number of associated hadrons (dollarsN ( h) (assoc)dollars) increases with the lifetime of partonic matter and partonic interaction cross section. Both the explosion of dollarsN ( h) (assoc)dollars following the formation of Mach-like structure and the corresponding results of three-particle correlation support that a partonic Mach-like behavior can be produced by a collective coupling of partons because of the strong parton cascade mechanism. Therefore, the studies about Mach-like structure may give us some critical information
Goedel, Penrose, anti-Mach: extra supersymmetries of time-dependent plane waves
International Nuclear Information System (INIS)
Blau, Matthias; O'Loughlin, Martin; Meessen, Patrick
2003-01-01
We prove that M-theory plane waves with extra supersymmetries are necessarily homogeneous (but possibly time-dependent), and we show by explicit construction that such time-dependent plane waves can admit extra supersymmetries. To that end we study the Penrose limits of Goedel-like metrics, show that the Penrose limit of the M-theory Goedel metric (with 20 supercharges) is generically a time-dependent homogeneous plane wave of the anti-Mach type, and display the four extra Killings spinors in that case. We conclude with some general remarks on the Killing spinor equations for homogeneous plane waves. (author)
Goedel, Penrose, anti-Mach: extra supersymmetries of time-dependent plane waves
Energy Technology Data Exchange (ETDEWEB)
Blau, Matthias; O' Loughlin, Martin; Meessen, Patrick [SISSA/ISAS, Via Beirut 2-4, 34014 Trieste (Italy)]. E-mail: meessen@sissa.it
2003-09-01
We prove that M-theory plane waves with extra supersymmetries are necessarily homogeneous (but possibly time-dependent), and we show by explicit construction that such time-dependent plane waves can admit extra supersymmetries. To that end we study the Penrose limits of Goedel-like metrics, show that the Penrose limit of the M-theory Goedel metric (with 20 supercharges) is generically a time-dependent homogeneous plane wave of the anti-Mach type, and display the four extra Killings spinors in that case. We conclude with some general remarks on the Killing spinor equations for homogeneous plane waves. (author)
International Nuclear Information System (INIS)
Zaza, Chady
2015-01-01
The numerical simulation of steam generators of pressurized water reactors is a complex problem, involving different flow regimes and a wide range of length and time scales. An accidental scenario may be associated with very fast variations of the flow with an important Mach number. In contrast in the nominal regime the flow may be stationary, at low Mach number. Moreover whatever the regime under consideration, the array of U-tubes is modelled by a porous medium in order to avoid taking into account the complex geometry of the steam generator, which entails the issue of the coupling conditions at the interface with the free-fluid. We propose a new pressure-correction scheme for cell-centered finite volumes for solving the compressible Navier-Stokes and Euler equations at all Mach number. The existence of a discrete solution, the consistency of the scheme in the Lax sense and the positivity of the internal energy were proved. Then the scheme was extended to the homogeneous two-phase flow models of the GENEPI code developed at CEA. Lastly a multigrid-AMR algorithm was adapted for using our pressure-correction scheme on adaptive grids. Regarding the second issue addressed in this work, the numerical simulation of a fluid flow over a porous bed involves very different length scales. Macroscopic interface models - such as Ochoa-Tapia-Whitaker or Beavers-Joseph law for a viscous flow - represent the transition region between the free-fluid and the porous region by an interface of discontinuity associated with specific transmission conditions. An extension to the Beavers-Joseph law was proposed for the convective regime. By introducing a jump in the kinetic energy at the interface, we recover an interface condition close to the Beavers-Joseph law but with a non-linear slip coefficient, which depends on the free-fluid velocity at the interface and on the Darcy velocity. The validity of this new transmission condition was assessed with direct numerical simulations at
Lezberg, Erwin A.; Metzler, Allen J.; Pack, William D.
1993-01-01
Results of in-stream combustion measurements taken during Mach 5 to 7 true simulation testing of the Hypersonic Research Engine/Aerothermodynamic Integration Model (HRE/AIM) are presented. These results, the instrumentation techniques, and configuration changes to the engine installation that were required to test this model are described. In test runs at facility Mach numbers of 5 to 7, an exhaust instrumentation ring which formed an extension of the engine exhaust nozzle shroud provided diagnostic measurements at 10 circumferential locations in the HRE combustor exit plane. The measurements included static and pitot pressures using conventional conical probes, combustion gas temperatures from cooled-gas pyrometer probes, and species concentration from analysis of combustion gas samples. Results showed considerable circumferential variation, indicating that efficiency losses were due to nonuniform fuel distribution or incomplete mixing. Results using the Mach 7 facility nozzle but with Mach 6 temperature simulation, 1590 to 1670 K, showed indications of incomplete combustion. Nitric oxide measurements at the combustor exit peaked at 2000 ppmv for stoichiometric combustion at Mach 6.
Application of thin-layer Navier-Stokes equations near maximum lift
Anderson, W. K.; Thomas, J. L.; Rumsey, C. L.
1984-01-01
The flowfield about a NACA 0012 airfoil at a Mach number of 0.3 and Reynolds number of 1 million is computed through an angle of attack range, up to 18 deg, corresponding to conditions up to and beyond the maximum lift coefficient. Results obtained using the compressible thin-layer Navier-Stokes equations are presented as well as results from the compressible Euler equations with and without a viscous coupling procedure. The applicability of each code is assessed and many thin-layer Navier-Stokes benchmark solutions are obtained which can be used for comparison with other codes intended for use at high angles of attack. Reasonable agreement of the Navier-Stokes code with experiment and the viscous-inviscid interaction code is obtained at moderate angles of attack. An unsteady solution is obtained with the thin-layer Navier-Stokes code at the highest angle of attack considered. The maximum lift coefficient is overpredicted, however, in comparison to experimental data, which is attributed to the presence of a laminar separation bubble near the leading edge not modeled in the computations. Two comparisons with experimental data are also presented at a higher Mach number.
A fast spatial scanning combination emissive and mach probe for edge plasma diagnosis
International Nuclear Information System (INIS)
Lehmer, R.D.; LaBombard, B.; Conn, R.W.
1989-04-01
A fast spatially scanning emissive and mach probe has been developed for the measurement of plasma profiles in the PISCES facility at UCLA. A pneumatic cylinder is used to drive a multiple tip probe along a 15cm stroke in less than 400msec, giving single shot profiles while limiting power deposition to the probe. A differentially pumped sliding O-ring seal allows the probe to be moved between shots to infer two and three dimensional profiles. The probe system has been used to investigate the plasma potential, density, and parallel mach number profiles of the presheath induced by a wall surface and scrape-off-layer profile modifications in biased limiter simulation experiments. Details of the hardware, data acquisition electronics, and tests of probe reliability are discussed. 30 refs., 24 figs
Krypton tagging velocimetry in a turbulent Mach 2.7 boundary layer
Zahradka, D.; Parziale, N. J.; Smith, M. S.; Marineau, E. C.
2016-05-01
The krypton tagging velocimetry (KTV) technique is applied to the turbulent boundary layer on the wall of the "Mach 3 Calibration Tunnel" at Arnold Engineering Development Complex (AEDC) White Oak. Profiles of velocity were measured with KTV and Pitot-pressure probes in the Mach 2.7 turbulent boundary layer comprised of 99 % {N}2/1 % Kr at momentum-thickness Reynolds numbers of {Re}_{\\varTheta }= 800, 1400, and 2400. Agreement between the KTV- and Pitot-derived velocity profiles is excellent. The KTV and Pitot velocity data follow the law of the wall in the logarithmic region with application of the Van Driest I transformation. The velocity data are analyzed in the outer region of the boundary layer with the law of the wake and a velocity-defect law. KTV-derived streamwise velocity fluctuation measurements are reported and are consistent with data from the literature. To enable near-wall measurement with KTV (y/δ ≈ 0.1-0.2), an 800-nm longpass filter was used to block the 760.2-nm read-laser pulse. With the longpass filter, the 819.0-nm emission from the re-excited Kr can be imaged to track the displacement of the metastable tracer without imaging the reflection and scatter from the read-laser off of solid surfaces. To operate the Mach 3 AEDC Calibration Tunnel at several discrete unit Reynolds numbers, a modification was required and is described herein.
Hypersonic expansion of the Fokker--Planck equation
International Nuclear Information System (INIS)
Fernandez-Feria, R.
1989-01-01
A systematic study of the hypersonic limit of a heavy species diluted in a much lighter gas is made via the Fokker--Planck equation governing its velocity distribution function. In particular, two different hypersonic expansions of the Fokker--Planck equation are considered, differing from each other in the momentum equation of the heavy gas used as the basis of the expansion: in the first of them, the pressure tensor is neglected in that equation while, in the second expansion, the pressure tensor term is retained. The expansions are valid when the light gas Mach number is O(1) or larger and the difference between the mean velocities of light and heavy components is small compared to the light gas thermal speed. They can be applied away from regions where the spatial gradient of the distribution function is very large, but it is not restricted with respect to the temporal derivative of the distribution function. The hydrodynamic equations corresponding to the lowest order of both expansions constitute two different hypersonic closures of the moment equations. For the subsequent orders in the expansions, closed sets of moment equations (hydrodynamic equations) are given. Special emphasis is made on the order of magnitude of the errors of the lowest-order hydrodynamic quantities. It is shown that if the heat flux vanishes initially, these errors are smaller than one might have expected from the ordinary scaling of the hypersonic closure. Also it is found that the normal solution of both expansions is a Gaussian distribution at the lowest order
Yokoyama, Naoto; Takaoka, Masanori
2014-12-01
A single-wave-number representation of a nonlinear energy spectrum, i.e., a stretching-energy spectrum, is found in elastic-wave turbulence governed by the Föppl-von Kármán (FvK) equation. The representation enables energy decomposition analysis in the wave-number space and analytical expressions of detailed energy budgets in the nonlinear interactions. We numerically solved the FvK equation and observed the following facts. Kinetic energy and bending energy are comparable with each other at large wave numbers as the weak turbulence theory suggests. On the other hand, stretching energy is larger than the bending energy at small wave numbers, i.e., the nonlinearity is relatively strong. The strong correlation between a mode a(k) and its companion mode a(-k) is observed at the small wave numbers. The energy is input into the wave field through stretching-energy transfer at the small wave numbers, and dissipated through the quartic part of kinetic-energy transfer at the large wave numbers. Total-energy flux consistent with energy conservation is calculated directly by using the analytical expression of the total-energy transfer, and the forward energy cascade is observed clearly.
The intellectual quadrangle: Mach-Boltzmann-Planck-Einstein
International Nuclear Information System (INIS)
Broda, E.
1981-01-01
These four men were influential in the transition from classical to modern physics. They interacted as scientists, often antagonistically. Thus Boltzmann was the greatest champion of the atom, while Mach remained unconvinced all his life. As a aphysicist, Einstein was greatly influenced by both Mach and Boltzmann, although Mach in the end rejected relativity as well. Because of his work on statistical mechanics, fluctuations, and quantum theory, Einstein has been called the natural successor to Boltzmann. Planck also was influenced by Mach at first. Hence he and Boltzmann were adversaries antil Planck converted to atomistics in 1900 and used the statistical interpretation of entropy to establish his radiation law. Planck accepted relativity early, but in quantum theory he was for a long time partly opposed to Einstein, and vice versa - Einstein considered Planck's derivation of his radiation law as unsound, while Planck could not accept the light quantum. In the case of all four physicists, science was interwoven with philosophy. Boltzmann consistently fought Mach's positivism, while Planck and Einstein moved from positivism to realism. All were also, though in very different ways, actively interested in public affairs. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Shadid, J.N.; Tuminaro, R.S. [Sandia National Labs., Albuquerque, NM (United States); Walker, H.F. [Utah State Univ., Logan, UT (United States). Dept. of Mathematics and Statistics
1997-02-01
The solution of the governing steady transport equations for momentum, heat and mass transfer in flowing fluids can be very difficult. These difficulties arise from the nonlinear, coupled, nonsymmetric nature of the system of algebraic equations that results from spatial discretization of the PDEs. In this manuscript the authors focus on evaluating a proposed nonlinear solution method based on an inexact Newton method with backtracking. In this context they use a particular spatial discretization based on a pressure stabilized Petrov-Galerkin finite element formulation of the low Mach number Navier-Stokes equations with heat and mass transport. The discussion considers computational efficiency, robustness and some implementation issues related to the proposed nonlinear solution scheme. Computational results are presented for several challenging CFD benchmark problems as well as two large scale 3D flow simulations.
Hoenders, B.J.
1979-01-01
If the wavefunction in the (not necessarily gaussian) image plane of an optical instrument is distorted by an arbitrary number of aberrations, the wavefunction in planes situated between the image plane and the plane of the specimen holder cannot be reconstructed by a Fourier series or a Fourier
Heat transfer to surface and gaps of RSI tile arrays in turbulent flow at Mach 10.3
Throckmorton, D. A.
1974-01-01
Heat transfer to gap walls and surface of a simulated reusable surface insulation (RSI) tile array are presented. The data were obtained in the thick, turbulent tunnel wall boundary layer of the Langley Continuous Flow Hypersonic Tunnel at a freestream Mach number of 10.3 and a freestream unit Reynolds number of one million. Pertinent test variables were: (1) tile array orientation (staggered and in-line), (2) gap width, (3) flow angularity, and (4) tile mismatch.
Computation of Mach reflection from rigid and yielding surfaces
International Nuclear Information System (INIS)
Buckingham, A.C.; Wilson, S.S.
1976-01-01
The present discussion centers on a theoretical description of one aspect of the irregular or Mach reflection from solid surfaces. The discussion is restricted to analytical considerations and some preliminary results using model approximations to the surface interaction phenomena. Currently, full numerical simulations of the irregular reflection surface interaction dynamics have not been obtained since the method is still under development. Discussion of the numerical method is, therefore, restricted to some special procedures for the gas-solid surface boundary dynamics. The discussion is divided into an introductory section briefly describing a particular Mach reflection process. Subsequently, some of the considerations on boundary conditions are submitted for numerical treatment of the gas-solid interface. Analysis and discussion of a yielding solid surface subjected to impulsive loading from an intense gas shock wave follows. This is used as a guide for the development of the numerical procedure. Mach reflection processes are then briefly reviewed with special attention for similitude and singular perturbation features
Generalized fluid equations for parallel transport in collisional to weakly collisional plasmas
International Nuclear Information System (INIS)
Zawaideh, E.; Najmabadi, F.; Conn, R.W.
1986-01-01
A new set of two-fluid equations that are valid from collisional to weakly collisional limits is derived. Starting from gyrokinetic equations in flux coordinates with no zero-order drifts, a set of moment equations describing plasma transport along the field lines of a space- and time-dependent magnetic field is derived. No restriction on the anisotropy of the ion distribution function is imposed. In the highly collisional limit, these equations reduce to those of Braginskii, while in the weakly collisional limit they are similar to the double adiabatic or Chew, Goldberger, and Low (CGL) equations [Proc. R. Soc. London, Ser. A 236, 112 (1956)]. The new set of equations also exhibits a physical singularity at the sound speed. This singularity is used to derive and compute the sound speed. Numerical examples comparing these equations with conventional transport equations show that in the limit where the ratio of the mean free path lambda to the scale length of the magnetic field gradient L/sub B/ approaches zero, there is no significant difference between the solution of the new and conventional transport equations. However, conventional fluid equations, ordinarily expected to be correct to the order (lambda/L/sub B/) 2 , are found to have errors of order (lambda/L/sub u/) 2 = (lambda/L/sub B/) 2 /(1-M 2 ) 2 , where L/sub u/ is the scale length of the flow velocity gradient and M is the Mach number. As such, the conventional equations may contain large errors near the sound speed (Mroughly-equal1)
Li, Q; He, Y L; Wang, Y; Tao, W Q
2007-11-01
A coupled double-distribution-function lattice Boltzmann method is developed for the compressible Navier-Stokes equations. Different from existing thermal lattice Boltzmann methods, this method can recover the compressible Navier-Stokes equations with a flexible specific-heat ratio and Prandtl number. In the method, a density distribution function based on a multispeed lattice is used to recover the compressible continuity and momentum equations, while the compressible energy equation is recovered by an energy distribution function. The energy distribution function is then coupled to the density distribution function via the thermal equation of state. In order to obtain an adjustable specific-heat ratio, a constant related to the specific-heat ratio is introduced into the equilibrium energy distribution function. Two different coupled double-distribution-function lattice Boltzmann models are also proposed in the paper. Numerical simulations are performed for the Riemann problem, the double-Mach-reflection problem, and the Couette flow with a range of specific-heat ratios and Prandtl numbers. The numerical results are found to be in excellent agreement with analytical and/or other solutions.
Analysis of wave equation in electromagnetic field by Proca equation
International Nuclear Information System (INIS)
Pamungkas, Oky Rio; Soeparmi; Cari
2017-01-01
This research is aimed to analyze wave equation for the electric and magnetic field, vector and scalar potential, and continuity equation using Proca equation. Then, also analyze comparison of the solution on Maxwell and Proca equation for scalar potential and electric field, both as a function of distance and constant wave number. (paper)
Simulation of acousto-optical interaction in a Mach-Zehnder interferometer
DEFF Research Database (Denmark)
Dühring, Maria Bayard; Sigmund, Ole; Jensen, Jakob Søndergaard
of half the SAW wavelength the light at the output waveguide will interfere constructively and destructively in a periodic way and the MZI can hence be used as an optical switch. To understand and improve the interaction of the elastic field from the SAW with the optical field in the waveguides......The acousto-optical modulation of light in a Mach-Zehnder interferometer affected by a surface acoustic wave, is simulated by the finite element method. It is discussed how the modulation can be improved based on a parameter study of the geometry. Summary A new way to control and modulate light...... introduced by the SAW the changes in refractive indices are obtained from Pockels constants. This model is then coupled to an optical model where the time independent wave equation is solved as an eigenvalue problem giving the effective refractive index of the lowest modes in the waveguide arms. Numerical...
Directory of Open Access Journals (Sweden)
K. Banoo
1998-01-01
equation in the discrete momentum space. This is shown to be similar to the conventional drift-diffusion equation except that it is a more rigorous solution to the Boltzmann equation because the current and carrier densities are resolved into M×1 vectors, where M is the number of modes in the discrete momentum space. The mobility and diffusion coefficient become M×M matrices which connect the M momentum space modes. This approach is demonstrated by simulating electron transport in bulk silicon.
MACH MIT: Deutsches Wochenende am Karlsfluss (MACH MIT: a German Week-End on the Charles River).
Reizes, Sonia; Kramsch, Claire J.
1980-01-01
Describes a joint high school/college pilot program planned by Massachusetts foreign language teachers and hosted by M.I.T. The success of the program dubbed "MACH MIT Total Immersion German Weekend" is attributed to the concept of active involvement, which was implemented through games, seminars, shows, cooking and other activities.…
Convective and global stability analysis of a Mach 5.8 boundary layer grazing a compliant surface
Dettenrieder, Fabian; Bodony, Daniel
2016-11-01
Boundary layer transition on high-speed vehicles is expected to be affected by unsteady surface compliance. The stability properties of a Mach 5.8 zero-pressure-gradient laminar boundary layer grazing a nominally-flat thermo-mechanically compliant panel is considered. The linearized compressible Navier-Stokes equations describe small amplitude disturbances in the fluid while the panel deformations are described by the Kirchhoff-Love plate equation and its thermal state by the transient heat equation. Compatibility conditions that couple disturbances in the fluid to those in the solid yield simple algebraic and robin boundary conditions for the velocity and thermal states, respectively. A local convective stability analysis shows that the panel can modify both the first and second Mack modes when, for metallic-like panels, the panel thickness exceeds the lengthscale δ99 Rex- 0 . 5 . A global stability analysis, which permits finite panel lengths with clamped-clamped boundary conditions, shows a rich eigenvalue spectrum with several branches. Unstable modes are found with streamwise-growing panel deformations leading to Mach wave-type radiation. Stable global modes are also found and have distinctly different panel modes but similar radiation patterns. Air Force Office of Scientific Research.
Discrete-Roughness-Element-Enhanced Swept-Wing Natural Laminar Flow at High Reynolds Numbers
Malik, Mujeeb; Liao, Wei; Li, Fei; Choudhari, Meelan
2015-01-01
Nonlinear parabolized stability equations and secondary-instability analyses are used to provide a computational assessment of the potential use of the discrete-roughness-element technology for extending swept-wing natural laminar flow at chord Reynolds numbers relevant to transport aircraft. Computations performed for the boundary layer on a natural-laminar-flow airfoil with a leading-edge sweep angle of 34.6 deg, freestream Mach number of 0.75, and chord Reynolds numbers of 17 × 10(exp 6), 24 × 10(exp 6), and 30 × 10(exp 6) suggest that discrete roughness elements could delay laminar-turbulent transition by about 20% when transition is caused by stationary crossflow disturbances. Computations show that the introduction of small-wavelength stationary crossflow disturbances (i.e., discrete roughness element) also suppresses the growth of most amplified traveling crossflow disturbances.
DRE-Enhanced Swept-Wing Natural Laminar Flow at High Reynolds Numbers
Malik, Mujeeb; Liao, Wei; Li, Fe; Choudhari, Meelan
2013-01-01
Nonlinear parabolized stability equations and secondary instability analyses are used to provide a computational assessment of the potential use of the discrete roughness elements (DRE) technology for extending swept-wing natural laminar flow at chord Reynolds numbers relevant to transport aircraft. Computations performed for the boundary layer on a natural laminar flow airfoil with a leading-edge sweep angle of 34.6deg, free-stream Mach number of 0.75 and chord Reynolds numbers of 17 x 10(exp 6), 24 x 10(exp 6) and 30 x 10(exp 6) suggest that DRE could delay laminar-turbulent transition by about 20% when transition is caused by stationary crossflow disturbances. Computations show that the introduction of small wavelength stationary crossflow disturbances (i.e., DRE) also suppresses the growth of most amplified traveling crossflow disturbances.
Measurements of flows in the DIII-D divertor by Mach probes
International Nuclear Information System (INIS)
Boedo, J.A.; Lehmer, R.; Moyer, R.A.; Watkins, J.G.; Porter, G.D.; Evans, T.E.; Leonard, A.W.; Schaffer, M.J.
1998-06-01
First measurements of Mach number of background plasma in the DIII-D divertor are presented in conjunction with temperature T e and density n e using a fast scanning probe array. To validate the probe measurements, the authors compared the T e , n e and J sat data to Thomson scattering data and find good overall agreement in attached discharges and some discrepancy for T e and n e in detached discharges. The discrepancy is mostly due to the effect of large fluctuations present during detached plasmas on the probe characteristic; the particle flux is accurately measured in every case. A composite 2-D map of measured flows is presented for an ELMing H-mode discharge and they focus on some of the details. They have also documented the temperature, density and Mach number in the private flux region of the divertor and the vicinity of the X-point, which are important transition regions that have been little studied or modeled. Background parallel plasma flows and electric fields in the divertor region show a complex structure
Quantitative Pointwise Estimate of the Solution of the Linearized Boltzmann Equation
Lin, Yu-Chu; Wang, Haitao; Wu, Kung-Chien
2018-04-01
We study the quantitative pointwise behavior of the solutions of the linearized Boltzmann equation for hard potentials, Maxwellian molecules and soft potentials, with Grad's angular cutoff assumption. More precisely, for solutions inside the finite Mach number region (time like region), we obtain the pointwise fluid structure for hard potentials and Maxwellian molecules, and optimal time decay in the fluid part and sub-exponential time decay in the non-fluid part for soft potentials. For solutions outside the finite Mach number region (space like region), we obtain sub-exponential decay in the space variable. The singular wave estimate, regularization estimate and refined weighted energy estimate play important roles in this paper. Our results extend the classical results of Liu and Yu (Commun Pure Appl Math 57:1543-1608, 2004), (Bull Inst Math Acad Sin 1:1-78, 2006), (Bull Inst Math Acad Sin 6:151-243, 2011) and Lee et al. (Commun Math Phys 269:17-37, 2007) to hard and soft potentials by imposing suitable exponential velocity weight on the initial condition.
Quantitative Pointwise Estimate of the Solution of the Linearized Boltzmann Equation
Lin, Yu-Chu; Wang, Haitao; Wu, Kung-Chien
2018-06-01
We study the quantitative pointwise behavior of the solutions of the linearized Boltzmann equation for hard potentials, Maxwellian molecules and soft potentials, with Grad's angular cutoff assumption. More precisely, for solutions inside the finite Mach number region (time like region), we obtain the pointwise fluid structure for hard potentials and Maxwellian molecules, and optimal time decay in the fluid part and sub-exponential time decay in the non-fluid part for soft potentials. For solutions outside the finite Mach number region (space like region), we obtain sub-exponential decay in the space variable. The singular wave estimate, regularization estimate and refined weighted energy estimate play important roles in this paper. Our results extend the classical results of Liu and Yu (Commun Pure Appl Math 57:1543-1608, 2004), (Bull Inst Math Acad Sin 1:1-78, 2006), (Bull Inst Math Acad Sin 6:151-243, 2011) and Lee et al. (Commun Math Phys 269:17-37, 2007) to hard and soft potentials by imposing suitable exponential velocity weight on the initial condition.
Blunt body near wake flow field at Mach 6
Horvath, Thomas J.; McGinley, Catherine B.; Hannemann, Klaus
1996-01-01
Tests were conducted in a Mach 6 flow to examine the reattachment process of an axisymmetric free shear layer associated with the near wake of a 70 deg. half angle, spherically blunted cone with a cylindrical after body. Model angle of incidence was fixed at 0 deg. and free-stream Reynolds numbers based on body diameter ranged from 0.5 x 10(exp 6) to 4 x 10(exp 6). The sensitivity of wake shear layer transition on reattachment heating was investigated. The present perfect gas study was designed to compliment results obtained previously in facilities capable of producing real gas effects. The instrumented blunted cone model was designed primarily for testing in high enthalpy hypervelocity shock tunnels in both this country and abroad but was amenable for testing in conventional hypersonic blowdown wind tunnels as well. Surface heating rates were inferred from temperature - time histories from coaxial surface thermocouples on the model forebody and thin film resistance gages along the model base and cylindrical after body. General flow feature (bow shock, wake shear layer, and recompression shock) locations were visually identified by schlieren photography. Mean shear layer position and growth were determined from intrusive pitot pressure surveys. In addition, wake surveys with a constant temperature hot-wire anemometer were utilized to qualitatively characterize the state of the shear layer prior to reattachment. Experimental results were compared to laminar perfect gas predictions provided by a 3-D Navier Stokes code (NSHYP). Shear layer impingement on the instrumented cylindrical after body resulted in a localized heating maximum that was 21 to 29 percent of the forebody stagnation point heating. Peak heating resulting from the reattaching shear layer was found to be a factor of 2 higher than laminar predictions, which suggested a transitional shear layer. Schlieren flow visualization and fluctuating voltage time histories and spectra from the hot wire surveys
Assessment of UF6 Equation of State
Energy Technology Data Exchange (ETDEWEB)
Brady, P; Chand, K; Warren, D; Vandersall, J
2009-02-11
A common assumption in the mathematical analysis of flows of compressible fluids is to treat the fluid as a perfect gas. This is an approximation, as no real fluid obeys the perfect gas relationships over all temperature and pressure conditions. An assessment of the validity of treating the UF{sub 6} gas flow field within a gas centrifuge with perfect gas relationships has been conducted. The definition of a perfect gas is commonly stated in two parts: (1) the gas obeys the thermal equation of state, p = {rho}RT (thermally perfect), and, (2) the gas specific heats are constant (calorically perfect). Analysis indicates the thermally perfect assumption is valid for all flow conditions within the gas centrifuge, including shock fields. The low operating gas pressure is the primary factor in the suitability of the thermally perfect equation of state for gas centrifuge computations. UF{sub 6} is not calorically perfect, as the specific heats vary as a function of temperature. This effect is insignificant within the bulk of the centrifuge gas field, as gas temperatures vary over a narrow range. The exception is in the vicinity of shock fields, where temperature, pressure, and density gradients are large, and the variation of specific heats with temperature should be included in the technically detailed analyses. Results from a normal shock analysis incorporating variable specific heats is included herein, presented in the conventional form of shock parameters as a function of inlet Mach Number. The error introduced by assuming constant specific heats is small for a nominal UF{sub 6} shock field, such that calorically perfect shock relationships can be used for scaling and initial analyses. The more rigorous imperfect gas analysis should be used for detailed analyses.
Transient Growth Analysis of Compressible Boundary Layers with Parabolized Stability Equations
Paredes, Pedro; Choudhari, Meelan M.; Li, Fei; Chang, Chau-Lyan
2016-01-01
The linear form of parabolized linear stability equations (PSE) is used in a variational approach to extend the previous body of results for the optimal, non-modal disturbance growth in boundary layer flows. This methodology includes the non-parallel effects associated with the spatial development of boundary layer flows. As noted in literature, the optimal initial disturbances correspond to steady counter-rotating stream-wise vortices, which subsequently lead to the formation of stream-wise-elongated structures, i.e., streaks, via a lift-up effect. The parameter space for optimal growth is extended to the hypersonic Mach number regime without any high enthalpy effects, and the effect of wall cooling is studied with particular emphasis on the role of the initial disturbance location and the value of the span-wise wavenumber that leads to the maximum energy growth up to a specified location. Unlike previous predictions that used a basic state obtained from a self-similar solution to the boundary layer equations, mean flow solutions based on the full Navier-Stokes (NS) equations are used in select cases to help account for the viscous-inviscid interaction near the leading edge of the plate and also for the weak shock wave emanating from that region. These differences in the base flow lead to an increasing reduction with Mach number in the magnitude of optimal growth relative to the predictions based on self-similar mean-flow approximation. Finally, the maximum optimal energy gain for the favorable pressure gradient boundary layer near a planar stagnation point is found to be substantially weaker than that in a zero pressure gradient Blasius boundary layer.
Irrational Numbers, Square Roots, and Quadratic Equations
Popovic, Gorjana
2015-01-01
To improve mathematics achievement of U.S. students and to assure that "what and how students are taught should reflect not only the topics within a certain academic discipline, but also the key ideas that determine how knowledge is organized and generated within that discipline" are dual goals of the Common Core State Standards for…
Quantitative Global Heat Transfer in a Mach-6 Quiet Tunnel
Sullivan, John P.; Schneider, Steven P.; Liu, Tianshu; Rubal, Justin; Ward, Chris; Dussling, Joseph; Rice, Cody; Foley, Ryan; Cai, Zeimin; Wang, Bo;
2012-01-01
This project developed quantitative methods for obtaining heat transfer from temperature sensitive paint (TSP) measurements in the Mach-6 quiet tunnel at Purdue, which is a Ludwieg tube with a downstream valve, moderately-short flow duration and low levels of heat transfer. Previous difficulties with inferring heat transfer from TSP in the Mach-6 quiet tunnel were traced to (1) the large transient heat transfer that occurs during the unusually long tunnel startup and shutdown, (2) the non-uniform thickness of the insulating coating, (3) inconsistencies and imperfections in the painting process and (4) the low levels of heat transfer observed on slender models at typical stagnation temperatures near 430K. Repeated measurements were conducted on 7 degree-half-angle sharp circular cones at zero angle of attack in order to evaluate the techniques, isolate the problems and identify solutions. An attempt at developing a two-color TSP method is also summarized.
Elements of partial differential equations
Sneddon, Ian Naismith
1957-01-01
Geared toward students of applied rather than pure mathematics, this volume introduces elements of partial differential equations. Its focus is primarily upon finding solutions to particular equations rather than general theory.Topics include ordinary differential equations in more than two variables, partial differential equations of the first and second orders, Laplace's equation, the wave equation, and the diffusion equation. A helpful Appendix offers information on systems of surfaces, and solutions to the odd-numbered problems appear at the end of the book. Readers pursuing independent st
Laser produced plasma density measurement by Mach-Zehnder interferometry
International Nuclear Information System (INIS)
Vaziri, A.; Kohanzadeh, Y.; Mosavi, R.K.
1976-06-01
This report describes an optical interferometric method of measuring the refractive index of the laser-produced plasma, giving estimates of its electron density. The plasma is produced by the interaction of a high power pulsed CO 2 laser beam with a solid target in the vacuum. The time varying plasma has a transient electron density. This transient electron density gives rise to a changing plasma refractive index. A Mach-Zehnder ruby laser interferometer is used to measure this refractive index change
Directory of Open Access Journals (Sweden)
Wei Khim Ng
2009-02-01
Full Text Available We construct nonlinear extensions of Dirac's relativistic electron equation that preserve its other desirable properties such as locality, separability, conservation of probability and Poincaré invariance. We determine the constraints that the nonlinear term must obey and classify the resultant non-polynomial nonlinearities in a double expansion in the degree of nonlinearity and number of derivatives. We give explicit examples of such nonlinear equations, studying their discrete symmetries and other properties. Motivated by some previously suggested applications we then consider nonlinear terms that simultaneously violate Lorentz covariance and again study various explicit examples. We contrast our equations and construction procedure with others in the literature and also show that our equations are not gauge equivalent to the linear Dirac equation. Finally we outline various physical applications for these equations.
Optimization of OT-MACH Filter Generation for Target Recognition
Johnson, Oliver C.; Edens, Weston; Lu, Thomas T.; Chao, Tien-Hsin
2009-01-01
An automatic Optimum Trade-off Maximum Average Correlation Height (OT-MACH) filter generator for use in a gray-scale optical correlator (GOC) has been developed for improved target detection at JPL. While the OT-MACH filter has been shown to be an optimal filter for target detection, actually solving for the optimum is too computationally intensive for multiple targets. Instead, an adaptive step gradient descent method was tested to iteratively optimize the three OT-MACH parameters, alpha, beta, and gamma. The feedback for the gradient descent method was a composite of the performance measures, correlation peak height and peak to side lobe ratio. The automated method generated and tested multiple filters in order to approach the optimal filter quicker and more reliably than the current manual method. Initial usage and testing has shown preliminary success at finding an approximation of the optimal filter, in terms of alpha, beta, gamma values. This corresponded to a substantial improvement in detection performance where the true positive rate increased for the same average false positives per image.
Moiseiwitsch, B L
2005-01-01
Two distinct but related approaches hold the solutions to many mathematical problems--the forms of expression known as differential and integral equations. The method employed by the integral equation approach specifically includes the boundary conditions, which confers a valuable advantage. In addition, the integral equation approach leads naturally to the solution of the problem--under suitable conditions--in the form of an infinite series.Geared toward upper-level undergraduate students, this text focuses chiefly upon linear integral equations. It begins with a straightforward account, acco
Jet propagation and Mach-cone formation in (3+1)-dimensional ideal hydrodynamics
International Nuclear Information System (INIS)
Betz, Barbara
2009-01-01
This thesis investigates the jet-medium interactions in a Quark-Gluon Plasma using a hydrodynamical model. Such a Quark-Gluon Plasma represents a very early stage of our universe and is assumed to be created in heavy-ion collisions. Its properties are subject of current research. Since the comparison of measured data to model calculations suggests that the Quark-Gluon Plasma behaves like a nearly perfect liquid, the medium created in a heavy-ion collision can be described applying hydrodynamical simulations. One of the crucial questions in this context is if highly energetic particles (so-called jets), which are produced at the beginning of the collision and traverse the formed medium, may lead to the creation of a Mach cone. Such a Mach cone is always expected to develop if a jet moves with a velocity larger than the speed of sound relative to the medium. In that case, the measured angular particle distributions are supposed to exhibit a characteristic structure allowing for direct conclusions about the Equation of State and in particular about the speed of sound of the medium. Several different scenarios of jet energy loss are examined (the exact form of which is not known from first principles) and different mechanisms of energy and momentum loss are analyzed, ranging from weak interactions (based on calculations from perturbative Quantum Chromodynamics, pQCD) to strong interactions (formulated using the Anti-de-Sitter/Conformal Field Theory Correspondence, AdS/CFT). Though they result in different angular particle correlations which could in principle allow to distinguish the underlying processes (if it becomes possible to analyze single-jet events), it is shown that the characteristic structure observed in experimental data can be obtained due to the different contributions of several possible jet trajectories through an expanding medium. Such a structure cannot directly be connected to the Equation of State. In this context, the impact of a strong flow
High Mach Number Scramjet Test Flows in the X3 Expansion Tube
Gildfind, D. E.; Sancho, J.; Morgan, R. G.
The University of Queensland (UQ) has two free-piston driven expansion tube facilities; X2 has a total length of 23 m and was originally commissioned in 1995 [1]; X3 is much longer at 62 m, and was commissioned in 2001 [2].
Stability with respect to domain of the low Mach number limit of compressible viscous fluids
Czech Academy of Sciences Publication Activity Database
Feireisl, Eduard; Karper, T.; Kreml, Ondřej; Stebel, Jan
2013-01-01
Roč. 23, č. 13 (2013), s. 2465-2493 ISSN 0218-2025 R&D Projects: GA ČR GA201/09/0917 Institutional research plan: CEZ:AV0Z10190503 Keywords : incompressible limit * domain dependence * Navier-Stokes system Subject RIV: BA - General Mathematics Impact factor: 2.351, year: 2013 http://www.worldscientific.com/doi/abs/10.1142/S0218202513500371
On the low Mach number limit of compressible flows in exterior moving domains
Czech Academy of Sciences Publication Activity Database
Feireisl, Eduard; Kreml, Ondřej; Mácha, Václav; Nečasová, Šárka
2016-01-01
Roč. 16, č. 3 (2016), s. 705-722 ISSN 1424-3199 R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : compressible Navier-Stokes system * incompressible limit * moving domain Subject RIV: BA - General Mathematics Impact factor: 1.038, year: 2016 http://link.springer.com/article/10.1007%2Fs00028-016-0338-2
Investigation of Shock Diffusers at Mach Number 1.85. 1 - Projecting Single Shock Cones
1947-06-17
cylindrical simulated combustion chamber was used to vary the outlet area of the flow through the diffuser. The pitot -static rake, located as shown in the...and II. Proc. Roy. Soc. (London), ser. A, vol. 139, no 838, Feb. 1, 1933, pp. 278-311. 5. Wyatt, DeMarquis D., and Hunczak, Henry R.: An...Simulated combustion u chamber A 90° W •—Conical damper S Static-pressure orifice ps pitot -static ""rake’ NATIONAL ADVISORY
Measurement and Analysis of the Noise Radiated by Low Mach Numbers Centrifugal Blowers
1987-11-01
Lang, V Manager of the IBM Poughkeepsie Acoustics Laboratory, for his understanding and support. I would also like to express my gratitude to the IBM...ficl.l. Knowlede p of these quantities provides important information on the relative strength of thL :cro- a dynamic noise sources on the blade... manageability . The model blower design was thus determined by scaling all of the linear dimensions of the reference device by 2.0 and by maintaining • all of
High Angle of Attack Missile Aerodynamics at Mach Numbers 0.30 to 1.5
1980-11-01
I AFWAL-TR-80-3070 I 45~//1° 4. N3B2 Cn 3d . 35 10 -2 36 30 37 50 2- S Cy ’ -1I __- 40 0 45 CAh ------ 50 -555 70- * 6C 50 504 40 ZS 8 9 LO R*N a 4. 5...Continued) 36. Drescher, H., "Messung Der Auf Querange-Sti"mte Zylinder Ausgeubten Zeitlich Verabderten Druck ," Z.F. Flugwss, Vol. 4, No. 1/2, 1956
Low Mach and Peclet number limit for a model of stellar tachocline and upper radiative zones
Czech Academy of Sciences Publication Activity Database
Donatelli, D.; Ducomet, B.; Kobera, M.; Nečasová, Šárka
2016-01-01
Roč. 2016, Č. 245 (2016), s. 1-31 ISSN 1072-6691 R&D Projects: GA ČR GA16-03230S Institutional support: RVO:67985840 Keywords : Navier-Stokes-Fourier-Poisson system * radiation transfer * compressible magnetohydrodynamics Subject RIV: BA - General Math ematics Impact factor: 0.954, year: 2016 http://ejde. math .txstate.edu/Volumes/2016/245/abstr.html
Turbulent boundary layer noise : direct radiation at Mach number 0.5
Gloerfelt , Xavier; Berland , Julien
2013-01-01
International audience; Boundary layers constitute a fundamental source of aerodynamic noise. A turbulent boundary layer over a plane wall can provide an indirect contribution to the noise by exciting the structure, and a direct noise contribution. The latter part can play a significant role even if its intensity is very low, explaining why it is hardly measured unambiguously. In the present study, the aerodynamic noise generated by a spatially developing turbulent boundary layer is computed ...
Rotating detectors and Mach's principle
Energy Technology Data Exchange (ETDEWEB)
Paola, R.D.M. de; Svaiter, N.F
2000-08-01
In this work we consider a quantum version of Newton{sup s} bucket experiment in a fl;at spacetime: we take an Unruh-DeWitt detector in interaction with a real massless scalar field. We calculate the detector's excitation rate when it is uniformly rotating around some fixed point and the field is prepared in the Minkowski vacuum and also when the detector is inertial and the field is in the Trocheries-Takeno vacuum state. These results are compared and the relations with Mach's principle are discussed. (author)
Ordinary differential equations
Miller, Richard K
1982-01-01
Ordinary Differential Equations is an outgrowth of courses taught for a number of years at Iowa State University in the mathematics and the electrical engineering departments. It is intended as a text for a first graduate course in differential equations for students in mathematics, engineering, and the sciences. Although differential equations is an old, traditional, and well-established subject, the diverse backgrounds and interests of the students in a typical modern-day course cause problems in the selection and method of presentation of material. In order to compensate for this diversity,
Uncertain differential equations
Yao, Kai
2016-01-01
This book introduces readers to the basic concepts of and latest findings in the area of differential equations with uncertain factors. It covers the analytic method and numerical method for solving uncertain differential equations, as well as their applications in the field of finance. Furthermore, the book provides a number of new potential research directions for uncertain differential equation. It will be of interest to researchers, engineers and students in the fields of mathematics, information science, operations research, industrial engineering, computer science, artificial intelligence, automation, economics, and management science.
Tricomi, FG
2013-01-01
Based on his extensive experience as an educator, F. G. Tricomi wrote this practical and concise teaching text to offer a clear idea of the problems and methods of the theory of differential equations. The treatment is geared toward advanced undergraduates and graduate students and addresses only questions that can be resolved with rigor and simplicity.Starting with a consideration of the existence and uniqueness theorem, the text advances to the behavior of the characteristics of a first-order equation, boundary problems for second-order linear equations, asymptotic methods, and diff
On the number of special numbers
Indian Academy of Sciences (India)
We now apply the theory of the Thue equation to obtain an effective bound on m. Indeed, by Lemma 3.2, we can write m2 = ba3 and m2 − 4 = cd3 with b, c cubefree. By the above, both b, c are bounded since they are cubefree and all their prime factors are less than e63727. Now we have a finite number of. Thue equations:.
Barbu, Viorel
2016-01-01
This textbook is a comprehensive treatment of ordinary differential equations, concisely presenting basic and essential results in a rigorous manner. Including various examples from physics, mechanics, natural sciences, engineering and automatic theory, Differential Equations is a bridge between the abstract theory of differential equations and applied systems theory. Particular attention is given to the existence and uniqueness of the Cauchy problem, linear differential systems, stability theory and applications to first-order partial differential equations. Upper undergraduate students and researchers in applied mathematics and systems theory with a background in advanced calculus will find this book particularly useful. Supplementary topics are covered in an appendix enabling the book to be completely self-contained.
Iodine Tagging Velocimetry in a Mach 10 Wake
Balla, Robert Jeffrey
2013-01-01
A variation on molecular tagging velocimetry (MTV) [1] designated iodine tagging velocimetry (ITV) is demonstrated. Molecular iodine is tagged by two-photon absorption using an Argon Fluoride (ArF) excimer laser. A single camera measures fluid displacement using atomic iodine emission at 206 nm. Two examples ofMTVfor cold-flowmeasurements areN2OMTV [2] and Femtosecond Laser Electronic Excitation Tagging [3]. These, like most MTV methods, are designed for atmospheric pressure applications. Neither can be implemented at the low pressures (0.1- 1 Torr) in typical hypersonic wakes. Of all the single-laser/singlecamera MTV approaches, only Nitric-Oxide Planar Laser Induced Fluorescence-based MTV [4] has been successfully demonstrated in a Mach 10 wake. Oxygen quenching limits transit times to 500 ns and accuracy to typically 30%. The present note describes the photophysics of the ITV method. Off-body velocimetry along a line is demonstrated in the aerothermodynamically important and experimentally challenging region of a hypersonic low-pressure near-wake in a Mach 10 air wind tunnel. Transit times up to 10 µs are demonstrated with conservative errors of 10%.
Computing generalized Langevin equations and generalized Fokker-Planck equations.
Darve, Eric; Solomon, Jose; Kia, Amirali
2009-07-07
The Mori-Zwanzig formalism is an effective tool to derive differential equations describing the evolution of a small number of resolved variables. In this paper we present its application to the derivation of generalized Langevin equations and generalized non-Markovian Fokker-Planck equations. We show how long time scales rates and metastable basins can be extracted from these equations. Numerical algorithms are proposed to discretize these equations. An important aspect is the numerical solution of the orthogonal dynamics equation which is a partial differential equation in a high dimensional space. We propose efficient numerical methods to solve this orthogonal dynamics equation. In addition, we present a projection formalism of the Mori-Zwanzig type that is applicable to discrete maps. Numerical applications are presented from the field of Hamiltonian systems.
Quantum Anatomy of the Classical Interference of n-Photon States in a Mach-Zehnder Interferometer
International Nuclear Information System (INIS)
Ramírez-Cruz, N; Velázquez, V; Bastarrachea-Magnani, M A
2016-01-01
In this work we present the theory for the quantum interference of states with an arbitrary number of photons in a Mach-Zehnder interferometer. We express the mathematical description of the interference in an algebraic way. We show the interference pattern of an average of a n photons input state corresponds to the classical interference pattern, which tells us the last comes from a quantum interference statistical average. Then, we propose to use this scheme to study the statistical transition from quantum to classical interference. (paper)
Ernst Mach, George Sarton and the Empiry of Teaching Science Part I
Siemsen, Hayo
2012-01-01
George Sarton had a strong influence on modern history of science. The method he pursued throughout his life was the method he had discovered in Ernst Mach's "Mechanics" when he was a student in Ghent. Sarton was in fact throughout his life implementing a research program inspired by the epistemology of Mach. Sarton in turn inspired many…
3-D Wizardry: Design in Papier-Mache, Plaster, and Foam.
Wolfe, George
Papier-mache, plaster, and foam are inexpensive and versatile media for 3-dimensional classroom and studio art experiences. They can be used equally well by elementary, high school, or college students. Each medium has its own characteristic. Papier-mache is pliable but dries into a hard, firm surface that can be waterproofed. Plaster can be…
Germanium on silicon mid-infrared waveguides and Mach-Zehnder interferometers
Malik, A.; Muneeb, M.; Shimura, Y.; Campenhout, van J.; Loo, van de R.; Roelkens, G.C.
2013-01-01
In this paper we describe Ge-on-Si waveguides and Mach-Zehnder interferometers operating in the 5.2 - 5.4 µm wavelength range. 3dB/cm waveguide losses and Mach-Zehnder interferometers with 20dB extinction ratio are presented.
Sub-shot-noise phase sensitivity with a Bose-Einstein condensate Mach-Zehnder interferometer
International Nuclear Information System (INIS)
Pezze, L.; Smerzi, A.; Collins, L.A.; Berman, G.P.; Bishop, A.R.
2005-01-01
Bose-Einstein condensates (BEC), with their coherence properties, have attracted wide interest for their possible application to ultraprecise interferometry and ultraweak force sensors. Since condensates, unlike photons, are interacting, they may permit the realization of specific quantum states needed as input of an interferometer to approach the Heisenberg limit, the supposed lower bound to precision phase measurements. To this end, we study the sensitivity to external weak perturbations of a representative matter-wave Mach-Zehnder interferometer whose input are two Bose-Einstein condensates created by splitting a single condensate in two parts. The interferometric phase sensitivity depends on the specific quantum state created with the two condensates, and, therefore, on the time scale of the splitting process. We identify three different regimes, characterized by a phase sensitivity Δθ scaling with the total number of condensate particles N as (i) the standard quantum limit Δθ∼1/N 1/2 (ii) the sub shot-noise Δθ∼1/N 3/4 , and the (iii) the Heisenberg limit Δθ∼1/N. However, in a realistic dynamical BEC splitting, the 1/N limit requires a long adiabaticity time scale, which is hardly reachable experimentally. On the other hand, the sub-shot-noise sensitivity Δθ∼1/N 3/4 can be reached in a realistic experimental setting. We also show that the 1/N 3/4 scaling is a rigorous upper bound in the limit N→∞, while keeping constant all different parameters of the bosonic Mach-Zehnder interferometer
Density Measurement of Compact Toroid with Mach-Zehnder Interferometer
Laufman-Wollitzer, Lauren; Endrizzi, Doug; Brookhart, Matt; Flanagan, Ken; Forest, Cary
2016-10-01
Utilizing a magnetized coaxial plasma gun (MCPG) built by Tri Alpha Energy, a dense compact toroid (CT) is created and injected at high speed into the Wisconsin Plasma Astrophysics Laboratory (WiPAL) vessel. A modified Mach-Zehnder interferometer from the Line-Tied Reconnection Experiment (LTRX) provides an absolute measurement of electron density. The interferometer is located such that the beam intersects the plasma across the diameter of the MCPG drift region before the CT enters the vessel. This placement ensures that the measurement is taken before the CT expand. Results presented will be used to further analyze characteristics of the CT. Funding provided by DoE, NSF, and WISE Summer Research.
Mach's principle and the rest mass of the graviton
International Nuclear Information System (INIS)
Woodward, J.F.; Crowley, R.J.; Yourgrau, W.
1975-01-01
The question of the graviton rest mass is briefly discussed and then it is shown that the Sciama-Dicke formulation of Mach's principle admits, in the linear approximation, the calculation of the graviton rest mass. One finds that the value of the graviton rest mass depends on the cosmological model adopted, the mean matter density in the universe, the speed of light, and the constant of gravitation. The value obtained for an infinite, stationary universe is 7.6 times 10 -67 g. The value for evolutionary cosmological models is found to depend critically on the mass and ''radius'' of the universe, both null and non-null values occurring only for certain values of these parameters. Problems that arise as a consequence of the linear approximation are pointed out
On-chip Mach-Zehnder interferometer for OCT systems
van Leeuwen, Ton G.; Akca, Imran B.; Angelou, Nikolaos; Weiss, Nicolas; Hoekman, Marcel; Leinse, Arne; Heideman, Rene G.
2018-04-01
By using integrated optics, it is possible to reduce the size and cost of a bulky optical coherence tomography (OCT) system. One of the OCT components that can be implemented on-chip is the interferometer. In this work, we present the design and characterization of a Mach-Zehnder interferometer consisting of the wavelength-independent splitters and an on-chip reference arm. The Si3N4 was chosen as the material platform as it can provide low losses while keeping the device size small. The device was characterized by using a home-built swept source OCT system. A sensitivity value of 83 dB, an axial resolution of 15.2 μm (in air) and a depth range of 2.5 mm (in air) were all obtained.
Combined Experimental and Numerical Investigation of Electric-Arc Airspikes For Blunt Body at Mach 3
Misiewicz, C.; Myrabo, L. N.; Shneider, M. N.; Raizer, Y. P.
2005-04-01
Electric-arc airspike experiments were performed with a 1.25-inch diameter blunt body in the vacuum-driven Mach 3 wind tunnel at Rensselaer Polytechnic Institute. Schlieren movies at 30-Hz frame rate were recorded of the airspike flowfields, revealing substantial evolution over the 6-second run durations. Arc powers up to 2-kW were delivered into the airspike by an arc-welding power supply, using zirconiated tungsten electrodes. Aerodynamic drag was measured with a piezo-electric load cell, revealing reductions up to 70% when the airspike was energized. The test article was a small-scale model of the Mercury lightcraft, a laser-propelled transatmospheric vehicle designed to transport one-person into orbit. Numerical modeling of this airspike is based on the Euler gasdynamic equations for conditions identical to those tested in the RPI supersonic tunnel. Excellent agreement between the shock wave shapes given by first-order asymptotic theory, numerical modeling, and experiment is demonstrated. Results of the numerical modeling confirm both the significant drag reduction potential and the energy efficiency of the airspike concept.
How the mach phenomenon and shape affect the radiographic appearance of skeletal structures
International Nuclear Information System (INIS)
Papageorges, M.
1991-01-01
The shape of skeletal structures and their position relative to the x-ray beam have a considerable effect on their radiographic appearance. Depending on the thickness of the cortical or subchondral bone, skeletal structures display the characteristics of either homogeneous or compound lamellar structures. Convex homogeneous structures are associated with a negative Mach line, and concave homogeneous structures are associated with a positive Mach line. Convex compound lamellar structures are associated with a negative Mach band and visualization of the lamina (subchondral or cortical bone) is reduced. Concave compound lamellar structures are associated with a positive Mach band and visualization of the lamina is enhanced. The combined effect of Mach phenomenon, shape, and thickness enhances visualization of some skeletal surfaces and make others imperceptible. These principles are very useful to correctly identify complex skeletal structures and avoid misinterpretations
[Thought Experiments of Economic Surplus: Science and Economy in Ernst Mach's Epistemology].
Wulz, Monika
2015-03-01
Thought Experiments of Economic Surplus: Science and Economy in Ernst Mach's Epistemology. Thought experiments are an important element in Ernst Mach's epistemology: They facilitate amplifying our knowledge by experimenting with thoughts; they thus exceed the empirical experience and suspend the quest for immediate utility. In an economical perspective, Mach suggested that thought experiments depended on the production of an economic surplus based on the division of labor relieving the struggle for survival of the individual. Thus, as frequently emphasized, in Mach's epistemology, not only the 'economy of thought' is an important feature; instead, also the socioeconomic conditions of science play a decisive role. The paper discusses the mental and social economic aspects of experimental thinking in Mach's epistemology and examines those within the contemporary evolutionary, physiological, and economic contexts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Indian Academy of Sciences (India)
regarding nature of forces hold equally for liquids, even though the ... particle. Figure A. A fluid particle is a very small imaginary blob of fluid, here shown sche- matically in .... picture gives important information about the flow field. ... Bernoulli's equation is derived assuming ideal flow, .... weight acting in the flow direction S is.
International Nuclear Information System (INIS)
Gross, F.
1986-01-01
Relativistic equations for two and three body scattering are discussed. Particular attention is paid to relativistic three body kinetics because of recent form factor measurements of the Helium 3 - Hydrogen 3 system recently completed at Saclay and Bates and the accompanying speculation that relativistic effects are important for understanding the three nucleon system. 16 refs., 4 figs
The Red Rectangle: An Astronomical Example of Mach Bands?
Brecher, K.
2005-12-01
Recently, the Hubble Space Telescope (HST) produced spectacular images of the "Red Rectangle". This appears to be a binary star system undergoing recurrent mass loss episodes. The image-processed HST photographs display distinctive diagonal lightness enhancements. Some of the visual appearance undoubtedly arises from actual variations in the luminosity distribution of the light of the nebula itself, i.e., due to limb brightening. Psychophysical enhancement similar to the Vasarely or pyramid effect also seems to be involved in the visual impression conveyed by the HST images. This effect is related to Mach bands (as well as to the Chevreul and Craik-O'Brien-Cornsweet effects). The effect can be produced by stacking concentric squares (or other geometrical figures such as rectangles or hexagons) of linearly increasing or decreasing size and lightness, one on top of another. We have constructed controllable Flash applets of this effect as part of the NSF supported "Project LITE: Light Inquiry Through Experiments". They can be found in the vision section of the LITE web site at http://lite.bu.edu. Mach band effects have previously been seen in medical x-ray images. Here we report for the first time the possibility that such effects play a role in the interpretation of astronomical images. Specifically, we examine to what extent the visual impressions of the Red Rectangle and other extended astronomical objects are purely physical (photometric) in origin and to what degree they are enhanced by psychophysical processes. To help assess the relative physical and psychophysical contributions to the perceived lightness effects, we have made use of a center-surround (Difference of Gaussians) filter we developed for MatLab. We conclude that local (lateral inhibition) and longer range human visual perception effects probably do contribute to the lightness features seen in astronomical objects like the Red Rectangle. Project LITE is supported by NSF Grant # DUE-0125992.
Singularly perturbed Burger-Huxley equation: Analytical solution ...
African Journals Online (AJOL)
user
numbers, Navier-Stokes flows with large Reynolds numbers, chemical reactor ... It is to observe the layer behavior of the solution for smaller values of ε leading to singular ...... Burger equation, momentum gas equation and heat equation.
Generation of sub-Poissonian photon number distribution
DEFF Research Database (Denmark)
Grønbech-Jensen, N.; Ramanujam, P. S.
1990-01-01
An optimization of a nonlinear Mach-Zehnder interferometer to produce sub-Poissonian photon number distribution is proposed. We treat the system quantum mechanically and estimate the mirror parameters, the nonlinearity of the medium in the interferometer, and the input power to obtain minimal...... output uncertainty in the photon number. The power efficiency of the system is shown to be high....
Indian Academy of Sciences (India)
research, teaching and practice related to the analysis and design ... its variants, are present in a large number of ma- chines used in daily ... with advanced electronics, sensors, control systems and computing ... ted perfectly well with the rapidly developing comput- .... velopment of the Freudenstein equation using Figure 3.
Preconditioned conjugate gradient methods for the Navier-Stokes equations
Ajmani, Kumud; Ng, Wing-Fai; Liou, Meng-Sing
1994-01-01
A preconditioned Krylov subspace method (GMRES) is used to solve the linear systems of equations formed at each time-integration step of the unsteady, two-dimensional, compressible Navier-Stokes equations of fluid flow. The Navier-Stokes equations are cast in an implicit, upwind finite-volume, flux-split formulation. Several preconditioning techniques are investigated to enhance the efficiency and convergence rate of the implicit solver based on the GMRES algorithm. The superiority of the new solver is established by comparisons with a conventional implicit solver, namely line Gauss-Seidel relaxation (LGSR). Computational test results for low-speed (incompressible flow over a backward-facing step at Mach 0.1), transonic flow (trailing edge flow in a transonic turbine cascade), and hypersonic flow (shock-on-shock interactions on a cylindrical leading edge at Mach 6.0) are presented. For the Mach 0.1 case, overall speedup factors of up to 17 (in terms of time-steps) and 15 (in terms of CPU time on a CRAY-YMP/8) are found in favor of the preconditioned GMRES solver, when compared with the LGSR solver. The corresponding speedup factors for the transonic flow case are 17 and 23, respectively. The hypersonic flow case shows slightly lower speedup factors of 9 and 13, respectively. The study of preconditioners conducted in this research reveals that a new LUSGS-type preconditioner is much more efficient than a conventional incomplete LU-type preconditioner.
Modeling Turbulent Combustion for Variable Prandtl and Schmidt Number
Hassan, H. A.
2004-01-01
This report consists of two abstracts submitted for possible presentation at the AIAA Aerospace Science Meeting to be held in January 2005. Since the submittal of these abstracts we are continuing refinement of the model coefficients derived for the case of a variable Turbulent Prandtl number. The test cases being investigated are a Mach 9.2 flow over a degree ramp and a Mach 8.2 3-D calculation of crossing shocks. We have developed an axisymmetric code for treating axisymmetric flows. In addition the variable Schmidt number formulation was incorporated in the code and we are in the process of determining the model constants.
On the number of special numbers
Indian Academy of Sciences (India)
without loss of any generality to be the first k primes), then the equation a + b = c has .... This is an elementary exercise in partial summation (see [12]). Thus ... This is easily done by inserting a stronger form of the prime number theorem into the.
International Nuclear Information System (INIS)
Kolosov, G L; Kosinov, A D
2016-01-01
Experimental data on the linear and nonlinear wave train development in 3D supersonic boundary layer over a 45° swept-wing at Mach number 2.5 are presented. Travelling artificial disturbances were introduced in the boundary layer by periodical glow discharge at frequencies 10 and 20 kHz. The spatial-temporal and spectral-wave characteristics of the wave train of unstable disturbances in the linear region are obtained. It is shown that the additional peaks in β '-spectra arise for both subharmonic and fundamental frequencies. The experiments indicate the presence of subharmonic resonance mechanism in 3D boundary layer at Mach number 2.5. (paper)
Working with Instruments: Ernst Mach as Material Epistemologist, a Short Introduction.
Hoffmann, Christoph; Métraux, Alexandre
2016-12-01
With the death of Ernst Mach on February 19, 1916, one day after his seventy-eighth birthday, a question finally became explicit that had been looming for some time. It was as simple as it was fundamental: who, in the end, was this man, a scientist or a philosopher? The importance of this question for contemporaries can easily be gleaned from the obituaries that appeared in the weeks following Mach's death: one in the Physikalische Zeitschrift, written by Albert Einstein, and another in the Archiv für die Geschichte der Philosophie, written by Mach's former student Heinrich Gomperz. They both addressed this critical issue in plain words. Einstein stressed that Mach "was not a philosopher who chose the natural sciences as the object of his speculation, but a many-sided, interested, diligent scientist who also took visible pleasure in detailed questions outside the burning issues of general interest" (Einstein 1916, 104; translation cited in Blackmore 1992, 158). Gomperz in turn first emphasized the great loss science had experienced with Mach's death, asking subsequently whether "the suffering science is physics or philosophy?" (Gomperz 1916, 321). His answer broadly followed Einstein's conclusion; relying on Mach's own words, he reminded his readers that Mach never claimed to be a philosopher, but merely was looking for a viewpoint that transcended the disciplinary constraints of particular scientific activities.
Generalized Fermat equations: A miscellany
Bennett, M.A.; Chen, I.; Dahmen, S.R.; Yazdani, S.
2015-01-01
This paper is devoted to the generalized Fermat equation xp + yq = zr, where p, q and r are integers, and x, y and z are nonzero coprime integers. We begin by surveying the exponent triples (p, q, r), including a number of infinite families, for which the equation has been solved to date, detailing
International Nuclear Information System (INIS)
Li, Zhihui; Ma, Qiang; Wu, Junlin; Jiang, Xinyu; Zhang, Hanxin
2014-01-01
Based on the Gas-Kinetic Unified Algorithm (GKUA) directly solving the Boltzmann model equation, the effect of rotational non-equilibrium is investigated recurring to the kinetic Rykov model with relaxation property of rotational degrees of freedom. The spin movement of diatomic molecule is described by moment of inertia, and the conservation of total angle momentum is taken as a new Boltzmann collision invariant. The molecular velocity distribution function is integrated by the weight factor on the internal energy, and the closed system of two kinetic controlling equations is obtained with inelastic and elastic collisions. The optimization selection technique of discrete velocity ordinate points and numerical quadrature rules for macroscopic flow variables with dynamic updating evolvement are developed to simulate hypersonic flows, and the gas-kinetic numerical scheme is constructed to capture the time evolution of the discretized velocity distribution functions. The gas-kinetic boundary conditions in thermodynamic non-equilibrium and numerical procedures are studied and implemented by directly acting on the velocity distribution function, and then the unified algorithm of Boltzmann model equation involving non-equilibrium effect is presented for the whole range of flow regimes. The hypersonic flows involving non-equilibrium effect are numerically simulated including the inner flows of shock wave structures in nitrogen with different Mach numbers of 1.5-Ma-25, the planar ramp flow with the whole range of Knudsen numbers of 0.0009-Kn-10 and the three-dimensional re-entering flows around tine double-cone body
Quadratic Diophantine equations
Andreescu, Titu
2015-01-01
This monograph treats the classical theory of quadratic Diophantine equations and guides the reader through the last two decades of computational techniques and progress in the area. These new techniques combined with the latest increases in computational power shed new light on important open problems. The authors motivate the study of quadratic Diophantine equations with excellent examples, open problems, and applications. Moreover, the exposition aptly demonstrates many applications of results and techniques from the study of Pell-type equations to other problems in number theory. The book is intended for advanced undergraduate and graduate students as well as researchers. It challenges the reader to apply not only specific techniques and strategies, but also to employ methods and tools from other areas of mathematics, such as algebra and analysis.
Stochastic porous media equations
Barbu, Viorel; Röckner, Michael
2016-01-01
Focusing on stochastic porous media equations, this book places an emphasis on existence theorems, asymptotic behavior and ergodic properties of the associated transition semigroup. Stochastic perturbations of the porous media equation have reviously been considered by physicists, but rigorous mathematical existence results have only recently been found. The porous media equation models a number of different physical phenomena, including the flow of an ideal gas and the diffusion of a compressible fluid through porous media, and also thermal propagation in plasma and plasma radiation. Another important application is to a model of the standard self-organized criticality process, called the "sand-pile model" or the "Bak-Tang-Wiesenfeld model". The book will be of interest to PhD students and researchers in mathematics, physics and biology.
Boundary-Layer Instability Measurements in a Mach-6 Quiet Tunnel
Berridge, Dennis C.; Ward, Christopher, A. C.; Luersen, Ryan P. K.; Chou, Amanda; Abney, Andrew D.; Schneider, Steven P.
2012-01-01
Several experiments have been performed in the Boeing/AFOSR Mach-6 Quiet Tunnel at Purdue University. A 7 degree half angle cone at 6 degree angle of attack with temperature-sensitive paint (TSP) and PCB pressure transducers was tested under quiet flow. The stationary crossflow vortices appear to break down to turbulence near the lee ray for sufficiently high Reynolds numbers. Attempts to use roughness elements to control the spacing of hot streaks on a flared cone in quiet flow did not succeed. Roughness was observed to damp the second-mode waves in areas influenced by the roughness, and wide roughness spacing allowed hot streaks to form between the roughness elements. A forward-facing cavity was used for proof-of-concept studies for a laser perturber. The lowest density at which the freestream laser perturbations could be detected was 1.07 x 10(exp -2) kilograms per cubic meter. Experiments were conducted to determine the transition characteristics of a streamwise corner flow at hypersonic velocities. Quiet flow resulted in a delayed onset of hot streak spreading. Under low Reynolds number flow hot streak spreading did not occur along the model. A new shock tube has been built at Purdue. The shock tube is designed to create weak shocks suitable for calibrating sensors, particularly PCB-132 sensors. PCB-132 measurements in another shock tube show the shock response and a linear calibration over a moderate pressure range.
Experiments on a smooth wall hypersonic boundary layer at Mach 6
Neeb, Dominik; Saile, Dominik; Gülhan, Ali
2018-04-01
The turbulent boundary layer along the surface of high-speed vehicles drives shear stress and heat flux. Although essential to the vehicle design, the understanding of compressible turbulent boundary layers at high Mach numbers is limited due to the lack of available data. This is particularly true if the surface is rough, which is typically the case for all technical surfaces. To validate a methodological approach, as initial step, smooth wall experiments were performed. A hypersonic turbulent boundary layer at Ma = 6 (Ma_e=5.4) along a 7{}° sharp cone model at low Reynolds numbers Re_{θ } ≈ 3000 was characterized. The mean velocities in the boundary layer were acquired by means of Pitot pressure and particle image velocimetry (PIV) measurements. Furthermore, the PIV data were used to extract turbulent intensities along the profile. The mean velocities in the boundary layer agree with numerical data, independent of the measurement technique. Based on the profile data, three different approaches to extract the skin friction velocity were applied and show favorable comparison to literature and numerical data. The extracted values were used for inner and outer scaling of the van Driest transformed velocity profiles which are in good agreement to incompressible theoretical data. Morkovin scaled turbulent intensities show ambiguous results compared to literature data which may be influenced by inflow turbulence level, particle lag and other measurement uncertainties.
Receptivity of Boundary Layer over a Blunt Wedge due to Freestream Pulse Disturbances at Mach 6
Directory of Open Access Journals (Sweden)
Jianqiang Shi
2016-01-01
Full Text Available Direct numerical simulation (DNS of a hypersonic compressible flow over a blunt wedge with fast acoustic disturbances in freestream is performed. The receptivity characteristics of boundary layer to freestream pulse acoustic disturbances are numerically investigated at Mach 6, and the frequency effects of freestream pulse wave on boundary layer receptivity are discussed. Results show that there are several main disturbance mode clusters in boundary layer under acoustic pulse wave, and the number of main disturbance clusters decreases along the streamwise. As disturbance wave propagates from upstream to downstream direction, the component of the modes below fundamental frequency decreases, and the component of the modes above second harmonic components increases quickly in general. There are competition and disturbance energy transfer between different boundary layer modes. The nose boundary layer is dominated by the nearby mode of fundamental frequency. The number of the main disturbance mode clusters decreases as the freestream disturbance frequency increases. The frequency range with larger growth narrows along the streamwise. In general, the amplitudes of both fundamental mode and harmonics become larger with the decreasing of freestream disturbance frequency. High frequency freestream disturbance accelerates the decay of disturbance wave in downstream boundary layer.
Ultra-Abrupt Tapered Fiber Mach-Zehnder Interferometer Sensors
Directory of Open Access Journals (Sweden)
Lanying Zhou
2011-05-01
Full Text Available A fiber inline Mach-Zehnder interferometer (MZI consisting of ultra-abrupt fiber tapers was fabricated through a new fusion-splicing method. By fusion-splicing, the taper diameter-length ratio is around 1:1, which is much greater than those (1:10 made by stretching. The proposed fabrication method is very low cost, 1/20–1/50 of those of LPFG pair MZI sensors. The fabricated MZIs are applied to measure refractive index, temperature and rotation angle changes. The temperature sensitivity of the MZI at a length of 30 mm is 0.061 nm/°C from 30–350 °C. The proposed MZI is also used to measure rotation angles ranging from 0° to 0.55°; the sensitivity is 54.98 nm/°. The refractive index sensitivity is improved by 3–5 fold by fabricating an inline micro–trench on the fiber cladding using a femtosecond laser. Acetone vapor of 50 ppm in N2 is tested by the MZI sensor coated with MFI–type zeolite thin film. The proposed MZI sensors are capable of in situ detection in many areas of interest such as environmental management, industrial process control, and public health.
Highly stable polarization independent Mach-Zehnder interferometer
Energy Technology Data Exchange (ETDEWEB)
Mičuda, Michal, E-mail: micuda@optics.upol.cz; Doláková, Ester; Straka, Ivo; Miková, Martina; Dušek, Miloslav; Fiurášek, Jaromír; Ježek, Miroslav, E-mail: jezek@optics.upol.cz [Department of Optics, Faculty of Science, Palacký University, 17. listopadu 1192/12, 77146 Olomouc (Czech Republic)
2014-08-15
We experimentally demonstrate optical Mach-Zehnder interferometer utilizing displaced Sagnac configuration to enhance its phase stability. The interferometer with footprint of 27×40 cm offers individually accessible paths and shows phase deviation less than 0.4° during a 250 s long measurement. The phase drift, evaluated by means of Allan deviation, stays below 3° or 7 nm for 1.5 h without any active stabilization. The polarization insensitive design is verified by measuring interference visibility as a function of input polarization. For both interferometer's output ports and all tested polarization states the visibility stays above 93%. The discrepancy in visibility for horizontal and vertical polarization about 3.5% is caused mainly by undesired polarization dependence of splitting ratio of the beam splitter used. The presented interferometer device is suitable for quantum-information and other sensitive applications where active stabilization is complicated and common-mode interferometer is not an option as both the interferometer arms have to be accessible individually.
Mach-Zehnder atom interferometer inside an optical fiber
Xin, Mingjie; Leong, Wuiseng; Chen, Zilong; Lan, Shau-Yu
2017-04-01
Precision measurement with light-pulse grating atom interferometry in free space have been used in the study of fundamental physics and applications in inertial sensing. Recent development of photonic band-gap fibers allows light for traveling in hollow region while preserving its fundamental Gaussian mode. The fibers could provide a very promising platform to transfer cold atoms. Optically guided matter waves inside a hollow-core photonic band-gap fiber can mitigate diffraction limit problem and has the potential to bring research in the field of atomic sensing and precision measurement to the next level of compactness and accuracy. Here, we will show our experimental progress towards an atom interferometer in optical fibers. We designed an atom trapping scheme inside a hollow-core photonic band-gap fiber to create an optical guided matter waves system, and studied the coherence properties of Rubidium atoms in this optical guided system. We also demonstrate a Mach-Zehnder atom interferometer in the optical waveguide. This interferometer is promising for precision measurements and designs of mobile atomic sensors.
Mach-Zehnder interferometry with interacting Bose-Einstein condensates in a double-well potential
International Nuclear Information System (INIS)
Berrada, T.
2014-01-01
Mach-Zehnder interferometry with interacting Bose-Einstein condensates in a double-well potential Particle-wave duality has enabled the construction of interferometers for massive particles such as electrons, neutrons, atoms or molecules. Implementing atom interferometry has required the development of analogues to the optical beam-splitters, phase shifters or recombiners to enable the coherent, i.e. phase-preserving manipulation of quantum superpositions. While initially demonstrating the wave nature of particles, atom interferometers have evolved into some of the most advanced devices for precision measurement, both for technological applications and tests of the fundamental laws of nature. Bose- Einstein condensates (BEC) of ultracold atoms are particular matter waves: they exhibit a collective many-body wave function and macroscopic coherence properties. As such, they have often been considered as an analogue to optical laser elds and it is natural to wonder whether BECs can provide to atom interferometry a similar boost as the laser brought to optical interferometry. One fundamental dierence between atomic BECs and lasers elds is the presence of atomic interactions, yielding an intrinsic non-linearity. On one hand, interactions can lead to eects destroying the phase coherence and limiting the interrogation time of trapped BEC interferometers. On the other hand, they can be used to generate nonclassical (e.g. squeezed) states to improve the sensitivity of interferometric measurements beyond the standard quantum limit (SQL). In this thesis, we present the realization of a full Mach-Zehnder interferometric sequence with trapped, interacting BECs con ned on an atom chip. Our interferometer relies on the coherent manipulation of a BEC in a magnetic double-well potential. For this purpose, we developed a novel type of matter-wave recombiner, an element which so far was missing in BEC atom optics. We have been able to exploit interactions to generate a squeezed
Li, Zhi-Hui; Peng, Ao-Ping; Zhang, Han-Xin; Yang, Jaw-Yen
2015-04-01
This article reviews rarefied gas flow computations based on nonlinear model Boltzmann equations using deterministic high-order gas-kinetic unified algorithms (GKUA) in phase space. The nonlinear Boltzmann model equations considered include the BGK model, the Shakhov model, the Ellipsoidal Statistical model and the Morse model. Several high-order gas-kinetic unified algorithms, which combine the discrete velocity ordinate method in velocity space and the compact high-order finite-difference schemes in physical space, are developed. The parallel strategies implemented with the accompanying algorithms are of equal importance. Accurate computations of rarefied gas flow problems using various kinetic models over wide ranges of Mach numbers 1.2-20 and Knudsen numbers 0.0001-5 are reported. The effects of different high resolution schemes on the flow resolution under the same discrete velocity ordinate method are studied. A conservative discrete velocity ordinate method to ensure the kinetic compatibility condition is also implemented. The present algorithms are tested for the one-dimensional unsteady shock-tube problems with various Knudsen numbers, the steady normal shock wave structures for different Mach numbers, the two-dimensional flows past a circular cylinder and a NACA 0012 airfoil to verify the present methodology and to simulate gas transport phenomena covering various flow regimes. Illustrations of large scale parallel computations of three-dimensional hypersonic rarefied flows over the reusable sphere-cone satellite and the re-entry spacecraft using almost the largest computer systems available in China are also reported. The present computed results are compared with the theoretical prediction from gas dynamics, related DSMC results, slip N-S solutions and experimental data, and good agreement can be found. The numerical experience indicates that although the direct model Boltzmann equation solver in phase space can be computationally expensive
Differential Equations Compatible with KZ Equations
International Nuclear Information System (INIS)
Felder, G.; Markov, Y.; Tarasov, V.; Varchenko, A.
2000-01-01
We define a system of 'dynamical' differential equations compatible with the KZ differential equations. The KZ differential equations are associated to a complex simple Lie algebra g. These are equations on a function of n complex variables z i taking values in the tensor product of n finite dimensional g-modules. The KZ equations depend on the 'dual' variable in the Cartan subalgebra of g. The dynamical differential equations are differential equations with respect to the dual variable. We prove that the standard hypergeometric solutions of the KZ equations also satisfy the dynamical equations. As an application we give a new determinant formula for the coordinates of a basis of hypergeometric solutions
Hadron Azimuthal Correlations and Mach-like Structures in a Partonic/Hadronic Transport Model
International Nuclear Information System (INIS)
Ma, G.L.; Zhang, S.; Ma, Y.G.; Cai, X.Z.; Chen, J.H.; He, Z.J.; Huang, H.Z.; Long, J.L.; Shen, W.Q.; Shi, X.H.; Zhong, C.; Zuo, J.X.
2007-01-01
With a multi-phase transport model (AMPT) with both partonic and hadronic interactions, two- and three-particle azimuthal correlations in Au + Au collisions at s NN =200 GeV have been studied by the mixing-event technique. A Mach-like structure has been observed in two- and three-particle correlations in central collisions. It has been found that both partonic and hadronic dynamical mechanisms contribute to the Mach-like structure. However, only hadronic rescattering is unable to reproduce experimental amplitude of Mach-like structure, and parton cascade process is indispensable. The results of three-particle correlation indicate a partonic Mach-like shock wave can be produced by strong parton cascade in central Au+Au collisions
Hypervelocity Wind Tunnel No. 9 Mach 7 Thermal Structural Facility Verification and Calibration
National Research Council Canada - National Science Library
Lafferty, John
1996-01-01
This report summarizes the verification and calibration of the new Mach 7 Thermal Structural Facility located at the White Oak, Maryland, site of the Dahlgren Division, Naval Surface Warfare Center...
Electrical crosstalk in integrated Mach-Zehnder modulators caused by a shared ground path
Yao, W.; Gilardi, G.; Smit, M.K.; Wale, M.J.
2015-01-01
We show that the majority of electrical crosstalk between integrated Mach-Zehnder modulators can be caused by a shared ground path and demonstrate that in its absence crosstalk and related transmission penalty is greatly reduced.
Batterton, P. G.; Arpasi, D. J.; Baumbick, R. J.
1974-01-01
A digitally implemented integrated inlet-engine control system was designed and tested on a mixed-compression, axisymmetric, Mach 2.5, supersonic inlet with 45 percent internal supersonic area contraction and a TF30-P-3 augmented turbofan engine. The control matched engine airflow to available inlet airflow. By monitoring inlet terminal shock position and over-board bypass door command, the control adjusted engine speed so that in steady state, the shock would be at the desired location and the overboard bypass doors would be closed. During engine-induced transients, such as augmentor light-off and cutoff, the inlet operating point was momentarily changed to a more supercritical point to minimize unstarts. The digital control also provided automatic inlet restart. A variable inlet throat bleed control, based on throat Mach number, provided additional inlet stability margin.
Integral equations and their applications
Rahman, M
2007-01-01
For many years, the subject of functional equations has held a prominent place in the attention of mathematicians. In more recent years this attention has been directed to a particular kind of functional equation, an integral equation, wherein the unknown function occurs under the integral sign. The study of this kind of equation is sometimes referred to as the inversion of a definite integral. While scientists and engineers can already choose from a number of books on integral equations, this new book encompasses recent developments including some preliminary backgrounds of formulations of integral equations governing the physical situation of the problems. It also contains elegant analytical and numerical methods, and an important topic of the variational principles. Primarily intended for senior undergraduate students and first year postgraduate students of engineering and science courses, students of mathematical and physical sciences will also find many sections of direct relevance. The book contains eig...
[Investigation of Empiricism. On Ernst Mach's Conception of the Thought Experiment].
Krauthausen, Karin
2015-03-01
Investigation of Empiricism. On Ernst Mach's Conception of the Thought Experiment. The paper argues that Ernst Mach's conception of the thought experiment from 1897/1905 holds a singular position in the lively discussions and repeated theorizations that have continued up to the present in relation to this procedure. Mach derives the thought experiment from scientific practice, and does not oppose it to the physical experiment, but, on the contrary, endows it with a robust relation to the facts. For Mach, the thought experiment is a reliable means of determining empiricism, and at the same time a real, because open and unbiased, experimenting. To shed light on this approach, the paper carries out a close reading of the relevant texts in Mach's body of writings (in their different stages of revision) and proceeds in three steps: first, Mach's processual understanding of science will be presented, which also characterizes his research and publication practice (I. 'Aperçu' and 'Sketch'. Science as Process and Projection); then in a second step the physiological and biological justification and valorization of memory and association will be examined with which Mach limits the relevance of categories such as consciousness and will (II. The Biology of Consciousness. Or The Polyp Colony); against this background, thirdly, the specific empiricism can be revealed that Mach inscribes into the thought experiment by on the one hand founding it in the memory and association, and on the other by tracing it back to geometry, which he deploys as an experimenting oriented to experience (III. Thinking and Experience. The Thought Experiment). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Revisiting Einstein's Happiest Thought: On Ernst Mach and the Early History of Relativity
Staley, Richard
2016-03-01
This paper argues we should distinguish three phases in the formation of relativity. The first involved relational approaches to perception, and physiological and geometrical space and time in the 1860s and 70s. The second concerned electrodynamics and mechanics (special relativity). The third concerned mechanics, gravitation, and physical and geometrical space and time. Mach's early work on the Doppler effect, together with studies of visual and motor perception linked physiology, physics and psychology, and offered new approaches to physiological space and time. These informed the critical conceptual attacks on Newtonian absolutes that Mach famously outlined in The Science of Mechanics. Subsequently Mach identified a growing group of ``relativists,'' and his critiques helped form a foundation for later work in electrodynamics (in which he did not participate). Revisiting Mach's early work will suggest he was still more important to the development of new approaches to inertia and gravitation than has been commonly appreciated. In addition to what Einstein later called ``Mach's principle,'' I will argue that a thought experiment on falling bodies in Mach's Science of Mechanics also provided a point of inspiration for the happy thought that led Einstein to the equivalence principle.
Directory of Open Access Journals (Sweden)
Najafian Ashrafi Zabihollah
2016-01-01
Full Text Available An experimental study was conducted to investigate the influence of Reynolds number and equivalence ratio on flame temperature field and thermal flame height of laminar premixed LFG fuel. Mach-Zehnder interferometry technique is used to obtain an insight to the overall temperature field. The slot burner with large aspect ratio (L/W, length of L=60 mm and width of W=6 mm was used to eliminate the three- dimensional effect of temperature field. Two kinds of mixed fuels, LFG70 (70%CH4- 30%CO2 on volume basis and LFG50 (50%CH4- 50%CO2 were used to investigate flame characteristics under the test conditions of 100 ≤ Re ≤ 600 and 0.7 ≤ φ ≤ 1.3. The present measurement reveals that the variation of maximum flame temperature with increment of Reynolds number is mainly due to heat transfer effects and is negligible. On the other hand, the equivalence ratio and fuel composition have a noticeable effect on flame temperature. In addition, the results show that the LFG flames compared to the CH4 ones have a lower flame temperature. With increment of CO2 volume fraction at lean combustion, thermal flame height is augmented while at stoichiometric and rich combustion, its value reduced. Thermal flame height augments linearly by Reynolds number increase, while its increment at rich mixture is higher and the effect of Reynolds number at lean mixtures is insignificant. For validation of experimental results from Mach-Zehnder Interferometry, K-type thermocouples are used at peripherally low and moderate isotherm lines.
Experimental investigation of liquid jet injection into Mach 6 hypersonic crossflow
Energy Technology Data Exchange (ETDEWEB)
Beloki Perurena, J. [von Karman Institute for Fluid Dynamics, Rhode-Saint-Genese (Belgium)]|[RWTH Aachen University, Shock Wave Laboratory, Aachen (Germany); Asma, C.O. [von Karman Institute for Fluid Dynamics, Rhode-Saint-Genese (Belgium)]|[Ghent University, Department of Flow, Heat and Combustion Mechanics, Ghent (Belgium); Theunissen, R. [von Karman Institute for Fluid Dynamics, Rhode-Saint-Genese (Belgium)]|[Delft University of Technology, Faculty of Aerospace Engineering, Delft (Netherlands); Chazot, O. [von Karman Institute for Fluid Dynamics, Rhode-Saint-Genese (Belgium)
2009-03-15
The injection of a liquid jet into a crossing Mach 6 air flow is investigated. Experiments were conducted on a sharp leading edge flat plate with flush mounted injectors. Water jets were introduced through different nozzle shapes at relevant jet-to-air momentum-flux ratios. Sufficient temporal resolution to capture small scale effects was obtained by high-speed recording, while directional illumination allowed variation in field of view. Shock pattern and flow topology were visualized by Schlieren-technique. Correlations are proposed on relating water jet penetration height and lateral extension with the injection ratio and orifice diameter for circular injector jets. Penetration height and lateral extension are compared for different injector shapes at relevant jet-to-air momentum-flux ratios showing that penetration height and lateral extension decrease and increase, respectively, with injector's aspect ratio. Probability density function analysis has shown that the mixing of the jet with the crossflow is completed at a distance of x/d{sub j}{proportional_to} 40, independent of the momentum-flux ratio. Mean velocity profiles related with the liquid jet have been extracted by means of an ensemble correlation PIV algorithm. Finally, frequency analyses of the jet breakup and fluctuating shock pattern are performed using a fast Fourier algorithm and characteristic Strouhal numbers of St=0.18 for the liquid jet breakup and of St=0.011 for the separation shock fluctuation are obtained. (orig.)
Patterned Roughness for Cross-flow Transition Control at Mach 6
Arndt, Alexander; Matlis, Eric; Semper, Michael; Corke, Thomas
2017-11-01
Experiments are performed to investigate patterned discrete roughness for transition control on a sharp right-circular cone at an angle of attack at Mach 6.0. The approach to transition control is based on exciting less-amplified (subcritical) stationary cross-flow (CF) modes that suppress the growth of the more-amplified (critical) CF modes, and thereby delay transition. The experiments were performed in the Air Force Academy Ludwieg Tube which is a conventional (noisy) design. The cone model is equipped with a motorized 3-D traversing mechanism that mounts on the support sting. The traversing mechanism held a closely-spaced pair of fast-response total pressure Pitot probes. The model utilized a removable tip to exchange between different tip-roughness conditions. Mean flow distortion x-development indicated that the transition Reynolds number increased by 25% with the addition of the subcritical roughness. The energy in traveling disturbances was centered in the band of most amplified traveling CF modes predicted by linear theory. The spatial pattern in the amplitude of the traveling CF modes indicated a nonlinear (sum and difference) interaction between the stationary and traveling CF modes that might explain differences in Retrans between noisy and quiet environments. Air Force Grant FA9550-15-1-0278.
Ladiges, Daniel R.; Sader, John E.
2018-05-01
Nanomechanical resonators and sensors, operated in ambient conditions, often generate low-Mach-number oscillating rarefied gas flows. Cercignani [C. Cercignani, J. Stat. Phys. 1, 297 (1969), 10.1007/BF01007482] proposed a variational principle for the linearized Boltzmann equation, which can be used to derive approximate analytical solutions of steady (time-independent) flows. Here we extend and generalize this principle to unsteady oscillatory rarefied flows and thus accommodate resonating nanomechanical devices. This includes a mathematical approach that facilitates its general use and allows for systematic improvements in accuracy. This formulation is demonstrated for two canonical flow problems: oscillatory Couette flow and Stokes' second problem. Approximate analytical formulas giving the bulk velocity and shear stress, valid for arbitrary oscillation frequency, are obtained for Couette flow. For Stokes' second problem, a simple system of ordinary differential equations is derived which may be solved to obtain the desired flow fields. Using this framework, a simple and accurate formula is provided for the shear stress at the oscillating boundary, again for arbitrary frequency, which may prove useful in application. These solutions are easily implemented on any symbolic or numerical package, such as Mathematica or matlab, facilitating the characterization of flows produced by nanomechanical devices and providing insight into the underlying flow physics.
Wu, Lingling
composite deuterium - xenon liners reduce the energy gain due to lower target compression rates. The effect of heating of targets by alpha particles on the fusion energy gain has also been investigated. The study of the dependence of the ram pressure amplification on radial compressibility showed a good agreement with the theory. The study concludes that a liner with higher Mach number and lower adiabatic index gamma (the radio of specific heats) will generate higher ram pressure amplification and higher fusion energy gain. We implemented a second order embedded boundary method for the Maxwell equations in geometrically complex domains. The numerical scheme is second order in both space and time. Comparing to the first order stair-step approximation of complex geometries within the FDTD method, this method can avoid spurious solution introduced by the stair step approximation. Unlike the finite element method and the FE-FD hybrid method, no triangulation is needed for this scheme. This method preserves the simplicity of the embedded boundary method and it is easy to implement. We will also propose a conservative (symplectic) fourth order scheme for uniform geometry boundary.
A Note of Extended Proca Equations and Superconductivity
Directory of Open Access Journals (Sweden)
Christianto V.
2009-01-01
Full Text Available It has been known for quite long time that the electrodynamics of Maxwell equations can be extended and generalized further into Proca equations. The implications of in- troducing Proca equations include an alternative description of superconductivity, via extending London equations. In the light of another paper suggesting that Maxwell equations can be written using quaternion numbers, then we discuss a plausible exten- sion of Proca equation using biquaternion number. Further implications and experi- ments are recommended.
International Nuclear Information System (INIS)
Shore, B.W.
1981-01-01
The equations of motion are discussed which describe time dependent population flows in an N-level system, reviewing the relationship between incoherent (rate) equations, coherent (Schrodinger) equations, and more general partially coherent (Bloch) equations. Approximations are discussed which replace the elaborate Bloch equations by simpler rate equations whose coefficients incorporate long-time consequences of coherence
Mach's Principle to Hubble's Law and Light Relativity
Zhang, Tianxi
2018-01-01
Discovery of the redshift-distance relation to be linear (i.e. Hubble's law) for galaxies in the end of 1920s instigated us to widely accept expansion of the universe, originated from a big bang around 14 billion years ago. Finding of the redshift-distance relation to be weaker than linear for distant type Ia supernovae nearly two decades ago further precipitated us to largely agree with recent acceleration of the universe, driven by the mysterious dark energy. The time dilation measured for supernovae has been claimed as a direct evidence for the expansion of the universe, but scientists could not explain why quasars and gamma-ray bursts had not similar time dilations. Recently, an anomaly was found in the standard template for the width of supernova light curves to be proportional to the wavelength, which exactly removed the time dilation of supernovae and hence was strongly inconsistent with the conventional redshift mechanism. In this study, we have derived a new redshift-distance relation from Mach's principle with light relativity that describes the effect of light on spacetime as well as the influence of disturbed spacetime on the light inertia or frequency. A moving object or photon, because of its continuously keeping on displacement, disturbs the rest of the entire universe or distorts/curves the spacetime. The distorted or curved spacetime then generates an effective gravitational force to act back on the moving object or photon, so that reduces the object inertia or photon frequency. Considering the disturbance of spacetime by a photon is extremely weak, we have modelled the effective gravitational force to be Newtonian and derived the new redshift-distance relation that can not only perfectly explain the redshift-distance measurement of distant type Ia supernovae but also inherently obtain Hubble's law as an approximate at small redshift. Therefore, the result obtained from this study does neither support the acceleration of the universe nor the
Skew differential fields, differential and difference equations
van der Put, M
2004-01-01
The central question is: Let a differential or difference equation over a field K be isomorphic to all its Galois twists w.r.t. the group Gal(K/k). Does the equation descend to k? For a number of categories of equations an answer is given.
The evolution of the flame surface in turbulent premixed jet flames at high Reynolds number
Luca, Stefano; Attili, Antonio; Bisetti, Fabrizio
2017-11-01
A set of direct numerical simulations of turbulent premixed flames in a spatially developing turbulent slot burner at four Reynolds number is presented. This configuration is of interest since it displays turbulent production by mean shear as in real combustion devices. The gas phase hydrodynamics are modeled with the reactive, unsteady Navier-Stokes equations in the low Mach number limit, with finite-rate chemistry consisting of 16 species and 73 reactions. For the highest jet Reynolds number of 22 ×103, 22 Billion grid points are employed. The jet consists of a lean methane/air mixture at 4 atm and preheated to 800 K. The analysis of stretch statistics shows that the mean total stretch is close to zero. Mean stretch decreases moving downstream from positive to negative values, suggesting a formation of surface area in the near field and destruction at the tip of the flame; the mean contribution of the tangential strain term is positive, while the mean contribution of the propagative term is always negative. Positive values of stretch are due to the tangential strain rate term, while large negative values are associated with the propagative term. Increasing Reynolds number is found to decrease the correlation between stretch and the single contributions.
Computational Fluid Dynamics (CFD) Image of Hyper-X Research Vehicle at Mach 7 with Engine Operating
1997-01-01
This computational fluid dynamics (CFD) image shows the Hyper-X vehicle at a Mach 7 test condition with the engine operating. The solution includes both internal (scramjet engine) and external flow fields, including the interaction between the engine exhaust and vehicle aerodynamics. The image illustrates surface heat transfer on the vehicle surface (red is highest heating) and flowfield contours at local Mach number. The last contour illustrates the engine exhaust plume shape. This solution approach is one method of predicting the vehicle performance, and the best method for determination of vehicle structural, pressure and thermal design loads. The Hyper-X program is an ambitious series of experimental flights to expand the boundaries of high-speed aeronautics and develop new technologies for space access. When the first of three aircraft flies, it will be the first time a non-rocket engine has powered a vehicle in flight at hypersonic speeds--speeds above Mach 5, equivalent to about one mile per second or approximately 3,600 miles per hour at sea level. Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly
Solórzano, S.; Mendoza, M.; Succi, S.; Herrmann, H. J.
2018-01-01
We present a numerical scheme to solve the Wigner equation, based on a lattice discretization of momentum space. The moments of the Wigner function are recovered exactly, up to the desired order given by the number of discrete momenta retained in the discretization, which also determines the accuracy of the method. The Wigner equation is equipped with an additional collision operator, designed in such a way as to ensure numerical stability without affecting the evolution of the relevant moments of the Wigner function. The lattice Wigner scheme is validated for the case of quantum harmonic and anharmonic potentials, showing good agreement with theoretical results. It is further applied to the study of the transport properties of one- and two-dimensional open quantum systems with potential barriers. Finally, the computational viability of the scheme for the case of three-dimensional open systems is also illustrated.
DEFF Research Database (Denmark)
Dyre, Jeppe
1995-01-01
energies chosen randomly according to a Gaussian. The random-walk model is here derived from Newton's laws by making a number of simplifying assumptions. In the second part of the paper an approximate low-temperature description of energy fluctuations in the random-walk modelthe energy master equation...... (EME)is arrived at. The EME is one dimensional and involves only energy; it is derived by arguing that percolation dominates the relaxational properties of the random-walk model at low temperatures. The approximate EME description of the random-walk model is expected to be valid at low temperatures...... of the random-walk model. The EME allows a calculation of the energy probability distribution at realistic laboratory time scales for an arbitrarily varying temperature as function of time. The EME is probably the only realistic equation available today with this property that is also explicitly consistent...
Classical Diophantine equations
1993-01-01
The author had initiated a revision and translation of "Classical Diophantine Equations" prior to his death. Given the rapid advances in transcendence theory and diophantine approximation over recent years, one might fear that the present work, originally published in Russian in 1982, is mostly superseded. That is not so. A certain amount of updating had been prepared by the author himself before his untimely death. Some further revision was prepared by close colleagues. The first seven chapters provide a detailed, virtually exhaustive, discussion of the theory of lower bounds for linear forms in the logarithms of algebraic numbers and its applications to obtaining upper bounds for solutions to the eponymous classical diophantine equations. The detail may seem stark--- the author fears that the reader may react much as does the tourist on first seeing the centre Pompidou; notwithstanding that, Sprind zuk maintainsa pleasant and chatty approach, full of wise and interesting remarks. His emphases well warrant, ...
Equations of multiparticle dynamics
International Nuclear Information System (INIS)
Chao, A.W.
1987-01-01
The description of the motion of charged-particle beams in an accelerator proceeds in steps of increasing complexity. The first step is to consider a single-particle picture in which the beam is represented as a collection on non-interacting test particles moving in a prescribed external electromagnetic field. Knowing the external field, it is then possible to calculate the beam motion to a high accuracy. The real beam consists of a large number of particles, typically 10 11 per beam bunch. It is sometimes inconvenient, or even impossible, to treat the real beam behavior using the single particle approach. One way to approach this problem is to supplement the single particle by another qualitatively different picture. The commonly used tools in accelerator physics for this purpose are the Vlasov and the Fokker-Planck equations. These equations assume smooth beam distributions and are therefore strictly valid in the limit of infinite number of micro-particles, each carrying an infinitesimal charge. The hope is that by studying the two extremes -- the single particle picture and the picture of smooth beam distributions -- we will be able to describe the behavior of our 10 11 -particle system. As mentioned, the most notable use of the smooth distribution picture is the study of collective beam instabilities. However, the purpose of this lecture is not to address this more advanced subject. Rather, it has the limited goal to familiarize the reader with the analytical tools, namely the Vlasov and the Fokker-Planck equations, as a preparation for dealing with the more advanced problems at later times. We will first derive these equations and then illustrate their applications by several examples which allow exact solutions
Rayleigh Scattering Density Measurements, Cluster Theory, and Nucleation Calculations at Mach 10
Balla, R. Jeffrey; Everhart, Joel L.
2012-01-01
In an exploratory investigation, quantitative unclustered laser Rayleigh scattering measurements of density were performed in the air in the NASA Langley Research Center's 31 in. Mach 10 wind tunnel. A review of 20 previous years of data in supersonic and Mach 6 hypersonic flows is presented where clustered signals typically overwhelmed molecular signals. A review of nucleation theory and accompanying nucleation calculations are also provided to interpret the current observed lack of clustering. Data were acquired at a fixed stagnation temperature near 990Kat five stagnation pressures spanning 2.41 to 10.0 MPa (350 to 1454 psi) using a pulsed argon fluoride excimer laser and double-intensified charge-coupled device camera. Data averaged over 371 images and 210 pixels along a 36.7mmline measured freestream densities that agree with computed isentropic-expansion densities to less than 2% and less than 6% at the highest and lowest densities, respectively. Cluster-free Mach 10 results are compared with previous clustered Mach 6 and condensation-free Mach 14 results. Evidence is presented indicating vibrationally excited oxygen and nitrogen molecules are absorbed as the clusters form, release their excess energy, and inhibit or possibly reverse the clustering process. Implications for delaying clustering and condensation onset in hypersonic and hypervelocity facilities are discussed.
Human vision model in relation to characteristics of shapes for the Mach band effect.
Wu, Bo-Wen; Fang, Yi-Chin
2015-10-01
For human vision to recognize the contours of objects means that, as the contrast variation at the object's edges increases, so will the Mach band effect of human vision. This paper more deeply investigates the relationship between changes in the contours of an object and the Mach band effect of human vision. Based on lateral inhibition and the Mach band effect, we studied subjects' eyes as they watched images of different shapes under a fixed brightness at 34 cd/m2, with changes of contrast and spatial frequency. Three types of display were used: a television, a computer monitor, and a projector. For each display used, we conducted a separate experiment for each shape. Although the maximum values for the contrast sensitivity function curves of the displays were different, their variations were minimal. As the spatial frequency changed, the diminishing effect of the different lines also was minimal. However, as the shapes at the contour intersections were modified by the Mach band effect, a greater degree of variation occurred. In addition, as the spatial frequency at a contour intersection increased, the Mach band effect became lower, along with changes in the corresponding contrast sensitivity function curve. Our experimental results on the characteristics of human vision have led to what we believe is a new vision model based on tests with different shapes. This new model may be used for future development and implementation of an artificial vision system.
High Mach flow associated with plasma detachment in JT-60U
International Nuclear Information System (INIS)
Hatayama, A.; Hoshino, K.; Miyamoto, K.
2003-01-01
Recent new results of the high Mach flows associated with plasma detachment are presented on the basis of numerical simulations by a 2-D edge simulation code (the B2-Eirene code) and their comparisons with experiments in JT-60U W-shaped divertor plasma. High Mach flows appear near the ionization front away from the target plate. The plasma static pressure rapidly drops, while the total pressure is kept almost constant near the ionization front, because the ionization front near the X-point is clearly separated from the momentum loss region near the target plate. Redistribution from static to dynamic pressure without a large momentum loss is confirmed to be a possible mechanism of the high Mach flows. It has been also shown that the radial structure of the high Mach flow near the X point away from the target plate has a strong correlation with the DOD (Degree of Detachment) at the target plate. Also, we have made systematic analyses on the high Mach flows for both the 'Open' geometry and the 'W-shaped' geometry of JT-60U in order to clarify the geometric effects on the flows. (author)
Guzzardi, Luca
2014-06-01
This paper discusses Ernst Mach's interpretation of the principle of energy conservation (EC) in the context of the development of energy concepts and ideas about causality in nineteenth-century physics and theory of science. In doing this, it focuses on the close relationship between causality, energy conservation and space in Mach's antireductionist view of science. Mach expounds his thesis about EC in his first historical-epistemological essay, Die Geschichte und die Wurzel des Satzes von der Erhaltung der Arbeit (1872): far from being a new principle, it is used from the early beginnings of mechanics independently from other principles; in fact, EC is a pre-mechanical principle which is generally applied in investigating nature: it is, indeed, nothing but a form of the principle of causality. The paper focuses on the scientific-historical premises and philosophical underpinnings of Mach's thesis, beginning with the classic debate on the validity and limits of the notion of cause by Hume, Kant, and Helmholtz. Such reference also implies a discussion of the relationship between causality on the one hand and space and time on the other. This connection plays a major role for Mach, and in the final paragraphs its importance is argued in order to understand his antireductionist perspective, i.e. the rejection of any attempt to give an ultimate explanation of the world via reduction of nature to one fundamental set of phenomena.
Directory of Open Access Journals (Sweden)
Tiago Cavalcanti Rolim
2011-05-01
Full Text Available This paper presents a research in the development of the 14-X hypersonic airspace vehicle at Institute for Advanced Studies (IEAv from Department of Science and Aerospace Technology (DCTA of the Brazilian Air Force (FAB. The 14-X project objective is to develop a higher efficient satellite launch alternative, using a Supersonic Combustion Ramjet (SCRAMJET engine and waverider aerodynamics. For this development, the waverider technology is under investigation in Prof. Henry T. Nagamatsu Aerothermodynamics and Hypersonics Laboratory (LHTN, in IEAv/DCTA. The investigation has been conducted through ground test campaigns in Hypersonic Shock Tunnel T3. The 14-X Waverider Vehicle characteristic was verified in shock tunnel T3 where surface static pressures and pitot pressure for Mach number 10 were measured and, using Schlieren photographs Diagnostic Method, it was possible to identify a leading-edge attached shock wave in 14-X lower surface.
MHz-rate nitric oxide planar laser-induced fluorescence imaging in a Mach 10 hypersonic wind tunnel.
Jiang, Naibo; Webster, Matthew; Lempert, Walter R; Miller, Joseph D; Meyer, Terrence R; Ivey, Christopher B; Danehy, Paul M
2011-02-01
Nitric oxide planar laser-induced fluorescence (NO PLIF) imaging at repetition rates as high as 1 MHz is demonstrated in the NASA Langley 31 in. Mach 10 hypersonic wind tunnel. Approximately 200 time-correlated image sequences of between 10 and 20 individual frames were obtained over eight days of wind tunnel testing spanning two entries in March and September of 2009. The image sequences presented were obtained from the boundary layer of a 20° flat plate model, in which transition was induced using a variety of different shaped protuberances, including a cylinder and a triangle. The high-speed image sequences captured a variety of laminar and transitional flow phenomena, ranging from mostly laminar flow, typically at a lower Reynolds number and/or in the near wall region of the model, to highly transitional flow in which the temporal evolution and progression of characteristic streak instabilities and/or corkscrew-shaped vortices could be clearly identified.
LeVeque, William J
1996-01-01
This excellent textbook introduces the basics of number theory, incorporating the language of abstract algebra. A knowledge of such algebraic concepts as group, ring, field, and domain is not assumed, however; all terms are defined and examples are given - making the book self-contained in this respect.The author begins with an introductory chapter on number theory and its early history. Subsequent chapters deal with unique factorization and the GCD, quadratic residues, number-theoretic functions and the distribution of primes, sums of squares, quadratic equations and quadratic fields, diopha
Sierpinski, Waclaw
1988-01-01
Since the publication of the first edition of this work, considerable progress has been made in many of the questions examined. This edition has been updated and enlarged, and the bibliography has been revised.The variety of topics covered here includes divisibility, diophantine equations, prime numbers (especially Mersenne and Fermat primes), the basic arithmetic functions, congruences, the quadratic reciprocity law, expansion of real numbers into decimal fractions, decomposition of integers into sums of powers, some other problems of the additive theory of numbers and the theory of Gaussian
International Nuclear Information System (INIS)
Gastaldo, L.
2007-11-01
We develop in this PhD thesis a simulation tool for bubbly flows encountered in some late phases of a core-melt accident in pressurized water reactors, when the flow of molten core and vessel structures comes to chemically interact with the concrete of the containment floor. The physical modelling is based on the so-called drift-flux model, consisting of mass balance and momentum balance equations for the mixture (Navier-Stokes equations) and a mass balance equation for the gaseous phase. First, we propose a pressure correction scheme for the compressible Navier-Stokes equations based on mixed non-conforming finite elements. An ad hoc discretization of the advection operator, by a finite volume technique based on a dual mesh, ensures the stability of the velocity prediction step. A priori estimates for the velocity and the pressure yields the existence of the solution. We prove that this scheme is stable, in the sense that the discrete entropy is decreasing. For the conservation equation of the gaseous phase, we build a finite volume discretization which satisfies a discrete maximum principle. From this last property, we deduce the existence and the uniqueness of the discrete solution. Finally, on the basis of these works, a conservative and monotone scheme which is stable in the low Mach number limit, is build for the drift-flux model. This scheme enjoys, moreover, the following property: the algorithm preserves a constant pressure and velocity through moving interfaces between phases (i.e. contact discontinuities of the underlying hyperbolic system). In order to satisfy this property at the discrete level, we build an original pressure correction step which couples the mass balance equation with the transport terms of the gas mass balance equation, the remaining terms of the gas mass balance being taken into account with a splitting method. We prove the existence of a discrete solution for the pressure correction step. Numerical results are presented; they
Bennett, Ruth, Ed.; And Others
An introduction to the Hupa number system is provided in this workbook, one in a series of numerous materials developed to promote the use of the Hupa language. The book is written in English with Hupa terms used only for the names of numbers. The opening pages present the numbers from 1-10, giving the numeral, the Hupa word, the English word, and…
Directory of Open Access Journals (Sweden)
Schwarzweller Christoph
2015-02-01
Full Text Available In this article we introduce Proth numbers and prove two theorems on such numbers being prime [3]. We also give revised versions of Pocklington’s theorem and of the Legendre symbol. Finally, we prove Pepin’s theorem and that the fifth Fermat number is not prime.
Advanced number theory with applications
Mollin, Richard A
2009-01-01
Algebraic Number Theory and Quadratic Fields Algebraic Number Fields The Gaussian Field Euclidean Quadratic Fields Applications of Unique Factorization Ideals The Arithmetic of Ideals in Quadratic Fields Dedekind Domains Application to Factoring Binary Quadratic Forms Basics Composition and the Form Class Group Applications via Ambiguity Genus Representation Equivalence Modulo p Diophantine Approximation Algebraic and Transcendental Numbers Transcendence Minkowski's Convex Body Theorem Arithmetic Functions The Euler-Maclaurin Summation Formula Average Orders The Riemann zeta-functionIntroduction to p-Adic AnalysisSolving Modulo pn Introduction to Valuations Non-Archimedean vs. Archimedean Valuations Representation of p-Adic NumbersDirichlet: Characters, Density, and Primes in Progression Dirichlet Characters Dirichlet's L-Function and Theorem Dirichlet DensityApplications to Diophantine Equations Lucas-Lehmer Theory Generalized Ramanujan-Nagell Equations Bachet's Equation The Fermat Equation Catalan and the A...
Numbers their history and meaning
Flegg, Graham
2003-01-01
Readable, jargon-free book examines the earliest endeavors to count and record numbers, initial attempts to solve problems by using equations, and origins of infinite cardinal arithmetic. "Surprisingly exciting." - Choice.
Bizzarri, A.; Dunham, Eric M.; Spudich, P.
2010-01-01
We study how heterogeneous rupture propagation affects the coherence of shear and Rayleigh Mach wavefronts radiated by supershear earthquakes. We address this question using numerical simulations of ruptures on a planar, vertical strike-slip fault embedded in a three-dimensional, homogeneous, linear elastic half-space. Ruptures propagate spontaneously in accordance with a linear slip-weakening friction law through both homogeneous and heterogeneous initial shear stress fields. In the 3-D homogeneous case, rupture fronts are curved owing to interactions with the free surface and the finite fault width; however, this curvature does not greatly diminish the coherence of Mach fronts relative to cases in which the rupture front is constrained to be straight, as studied by Dunham and Bhat (2008a). Introducing heterogeneity in the initial shear stress distribution causes ruptures to propagate at speeds that locally fluctuate above and below the shear wave speed. Calculations of the Fourier amplitude spectra (FAS) of ground velocity time histories corroborate the kinematic results of Bizzarri and Spudich (2008a): (1) The ground motion of a supershear rupture is richer in high frequency with respect to a subshear one. (2) When a Mach pulse is present, its high frequency content overwhelms that arising from stress heterogeneity. Present numerical experiments indicate that a Mach pulse causes approximately an ω−1.7 high frequency falloff in the FAS of ground displacement. Moreover, within the context of the employed representation of heterogeneities and over the range of parameter space that is accessible with current computational resources, our simulations suggest that while heterogeneities reduce peak ground velocity and diminish the coherence of the Mach fronts, ground motion at stations experiencing Mach pulses should be richer in high frequencies compared to stations without Mach pulses. In contrast to the foregoing theoretical results, we find no average elevation
Cost-effective evolution of research prototypes into end-user tools: The MACH case study
DEFF Research Database (Denmark)
Störrle, Harald
2017-01-01
's claim by fellow scientists, and (3) demonstrate the utility and value of the research contribution to any interested parties. However, turning an exploratory prototype into a “proper” tool for end-users often entails great effort. Heavyweight mainstream frameworks such as Eclipse do not address...... this issue; their steep learning curves constitute substantial entry barriers to such ecosystems. In this paper, we present the Model Analyzer/Checker (MACH), a stand-alone tool with a command-line interpreter. MACH integrates a set of research prototypes for analyzing UML models. By choosing a simple...... command line interpreter rather than (costly) graphical user interface, we achieved the core goal of quickly deploying research results to a broader audience while keeping the required effort to an absolute minimum. We analyze MACH as a case study of how requirements and constraints in an academic...
Hyper-X Mach 7 Scramjet Design, Ground Test and Flight Results
Ferlemann, Shelly M.; McClinton, Charles R.; Rock, Ken E.; Voland, Randy T.
2005-01-01
The successful Mach 7 flight test of the Hyper-X (X-43) research vehicle has provided the major, essential demonstration of the capability of the airframe integrated scramjet engine. This flight was a crucial first step toward realizing the potential for airbreathing hypersonic propulsion for application to space launch vehicles. However, it is not sufficient to have just achieved a successful flight. The more useful knowledge gained from the flight is how well the prediction methods matched the actual test results in order to have confidence that these methods can be applied to the design of other scramjet engines and powered vehicles. The propulsion predictions for the Mach 7 flight test were calculated using the computer code, SRGULL, with input from computational fluid dynamics (CFD) and wind tunnel tests. This paper will discuss the evolution of the Mach 7 Hyper-X engine, ground wind tunnel experiments, propulsion prediction methodology, flight results and validation of design methods.
Directory of Open Access Journals (Sweden)
Erinc Erdem
2014-12-01
Full Text Available An experimental investigation of sonic air, CO2 and Helium transverse jets in Mach 5 cross flow was carried out over a flat plate. The jet to freestream momentum flux ratio, J, was kept the same for all gases. The unsteady flow topology was examined using high speed schlieren visualisation and PIV. Schlieren visualisation provided information regarding oscillating jet shear layer structures and bow shock, Mach disc and barrel shocks. Two-component PIV measurements at the centreline, provided information regarding jet penetration trajectories. Barrel shocks and Mach disc forming the jet boundary were visualised/quantified also jet penetration boundaries were determined. Even though J is kept the same for all gases, the penetration patterns were found to be remarkably different both at the nearfield and the farfield. Air and CO2 jet resulted similar nearfield and farfield penetration pattern whereas Helium jet spread minimal in the nearfield.
Mendonça, J. Ricardo G.
2012-01-01
We define a new class of numbers based on the first occurrence of certain patterns of zeros and ones in the expansion of irracional numbers in a given basis and call them Sagan numbers, since they were first mentioned, in a special case, by the North-american astronomer Carl E. Sagan in his science-fiction novel "Contact." Sagan numbers hold connections with a wealth of mathematical ideas. We describe some properties of the newly defined numbers and indicate directions for further amusement.
Partial Differential Equations
1988-01-01
The volume contains a selection of papers presented at the 7th Symposium on differential geometry and differential equations (DD7) held at the Nankai Institute of Mathematics, Tianjin, China, in 1986. Most of the contributions are original research papers on topics including elliptic equations, hyperbolic equations, evolution equations, non-linear equations from differential geometry and mechanics, micro-local analysis.
Equating error in observed-score equating
van der Linden, Willem J.
2006-01-01
Traditionally, error in equating observed scores on two versions of a test is defined as the difference between the transformations that equate the quantiles of their distributions in the sample and population of test takers. But it is argued that if the goal of equating is to adjust the scores of
International Nuclear Information System (INIS)
Nishimura, M.
1998-04-01
To predict thermal-hydraulic phenomena in actual plant under various conditions accurately, adequate simulation of laminar-turbulent flow transition is of importance. A low Reynolds number turbulence model is commonly used for a numerical simulation of the laminar-turbulent transition. The existing low Reynolds number turbulence models generally demands very thin mesh width between a wall and a first computational node from the wall, to keep accuracy and stability of numerical analyses. There is a criterion for the distance between the wall and the first computational node in which non-dimensional distance y + must be less than 0.5. Due to this criterion the suitable distance depends on Reynolds number. A liquid metal sodium is used for a coolant in first reactors therefore, Reynolds number is usually one or two order higher than that of the usual plants in which air and water are used for the work fluid. This makes the load of thermal-hydraulic numerical simulation of the liquid sodium relatively heavier. From above context, a new method is proposed for providing wall boundary condition of turbulent kinetic energy dissipation rate ε. The present method enables the wall-first node distance 10 times larger compared to the existing models. A function of the ε wall boundary condition has been constructed aided by a direct numerical simulation (DNS) data base. The method was validated through calculations of a turbulent Couette flow and a fully developed pipe flow and its laminar-turbulent transition. Thus the present method and modeling are capable of predicting the laminar-turbulent transition with less mesh numbers i.e. lighter computational loads. (J.P.N.)
MACHe3: A new generation detector for non-baryonic dark matter direct detection
International Nuclear Information System (INIS)
Santos, D.; Mayet, F.; Perrin, G.; Moulin, E.; Bunkov, Yu. M.; Godfrin, H.; Krusius, M.
2002-01-01
MACHe3 (MAtrix of Cells of superfluid 3 H e) is a project of a new detector for direct Dark Matter (DM) search, using superfluid 3 He as a sensitive medium. An experiment on a prototype cell has been performed and the st results reported here are encouraging to develop of a multicell prototype. In order to investigate the discovery potential of MACHe3, and its complementarity with other DM detectors, a phenomenological study done with the DarkSUSY code is shown. (authors)
Petersen, T Kyle
2015-01-01
This text presents the Eulerian numbers in the context of modern enumerative, algebraic, and geometric combinatorics. The book first studies Eulerian numbers from a purely combinatorial point of view, then embarks on a tour of how these numbers arise in the study of hyperplane arrangements, polytopes, and simplicial complexes. Some topics include a thorough discussion of gamma-nonnegativity and real-rootedness for Eulerian polynomials, as well as the weak order and the shard intersection order of the symmetric group. The book also includes a parallel story of Catalan combinatorics, wherein the Eulerian numbers are replaced with Narayana numbers. Again there is a progression from combinatorics to geometry, including discussion of the associahedron and the lattice of noncrossing partitions. The final chapters discuss how both the Eulerian and Narayana numbers have analogues in any finite Coxeter group, with many of the same enumerative and geometric properties. There are four supplemental chapters throughout, ...
Siemsen, Hayo
2013-01-01
George Sarton had a strong influence on modern history of science. The method he pursued throughout his life was the method he had discovered in Ernst Mach's "Mechanics" when he was a student in Ghent. Sarton was in fact throughout his life implementing a research program inspired by the epistemology of Mach. Sarton in turn inspired many…
Indian Academy of Sciences (India)
Transfinite Numbers. What is Infinity? S M Srivastava. In a series of revolutionary articles written during the last quarter of the nineteenth century, the great Ger- man mathematician Georg Cantor removed the age-old mistrust of infinity and created an exceptionally beau- tiful and useful theory of transfinite numbers. This is.
An Explicit Upwind Algorithm for Solving the Parabolized Navier-Stokes Equations
Korte, John J.
1991-01-01
An explicit, upwind algorithm was developed for the direct (noniterative) integration of the 3-D Parabolized Navier-Stokes (PNS) equations in a generalized coordinate system. The new algorithm uses upwind approximations of the numerical fluxes for the pressure and convection terms obtained by combining flux difference splittings (FDS) formed from the solution of an approximate Riemann (RP). The approximate RP is solved using an extension of the method developed by Roe for steady supersonic flow of an ideal gas. Roe's method is extended for use with the 3-D PNS equations expressed in generalized coordinates and to include Vigneron's technique of splitting the streamwise pressure gradient. The difficulty associated with applying Roe's scheme in the subsonic region is overcome. The second-order upwind differencing of the flux derivatives are obtained by adding FDS to either an original forward or backward differencing of the flux derivative. This approach is used to modify an explicit MacCormack differencing scheme into an upwind differencing scheme. The second order upwind flux approximations, applied with flux limiters, provide a method for numerically capturing shocks without the need for additional artificial damping terms which require adjustment by the user. In addition, a cubic equation is derived for determining Vegneron's pressure splitting coefficient using the updated streamwise flux vector. Decoding the streamwise flux vector with the updated value of Vigneron's pressure splitting improves the stability of the scheme. The new algorithm is applied to 2-D and 3-D supersonic and hypersonic laminar flow test cases. Results are presented for the experimental studies of Holden and of Tracy. In addition, a flow field solution is presented for a generic hypersonic aircraft at a Mach number of 24.5 and angle of attack of 1 degree. The computed results compare well to both experimental data and numerical results from other algorithms. Computational times required
Random walk and the heat equation
Lawler, Gregory F
2010-01-01
The heat equation can be derived by averaging over a very large number of particles. Traditionally, the resulting PDE is studied as a deterministic equation, an approach that has brought many significant results and a deep understanding of the equation and its solutions. By studying the heat equation by considering the individual random particles, however, one gains further intuition into the problem. While this is now standard for many researchers, this approach is generally not presented at the undergraduate level. In this book, Lawler introduces the heat equation and the closely related notion of harmonic functions from a probabilistic perspective. The theme of the first two chapters of the book is the relationship between random walks and the heat equation. The first chapter discusses the discrete case, random walk and the heat equation on the integer lattice; and the second chapter discusses the continuous case, Brownian motion and the usual heat equation. Relationships are shown between the two. For exa...
Energy Technology Data Exchange (ETDEWEB)
Gastaldo, L
2007-11-15
We develop in this PhD thesis a simulation tool for bubbly flows encountered in some late phases of a core-melt accident in pressurized water reactors, when the flow of molten core and vessel structures comes to chemically interact with the concrete of the containment floor. The physical modelling is based on the so-called drift-flux model, consisting of mass balance and momentum balance equations for the mixture (Navier-Stokes equations) and a mass balance equation for the gaseous phase. First, we propose a pressure correction scheme for the compressible Navier-Stokes equations based on mixed non-conforming finite elements. An ad hoc discretization of the advection operator, by a finite volume technique based on a dual mesh, ensures the stability of the velocity prediction step. A priori estimates for the velocity and the pressure yields the existence of the solution. We prove that this scheme is stable, in the sense that the discrete entropy is decreasing. For the conservation equation of the gaseous phase, we build a finite volume discretization which satisfies a discrete maximum principle. From this last property, we deduce the existence and the uniqueness of the discrete solution. Finally, on the basis of these works, a conservative and monotone scheme which is stable in the low Mach number limit, is build for the drift-flux model. This scheme enjoys, moreover, the following property: the algorithm preserves a constant pressure and velocity through moving interfaces between phases (i.e. contact discontinuities of the underlying hyperbolic system). In order to satisfy this property at the discrete level, we build an original pressure correction step which couples the mass balance equation with the transport terms of the gas mass balance equation, the remaining terms of the gas mass balance being taken into account with a splitting method. We prove the existence of a discrete solution for the pressure correction step. Numerical results are presented; they
Equational theories of tropical sernirings
DEFF Research Database (Denmark)
Aceto, Luca; Esik, Zoltan; Ingolfsdottir, Anna
2003-01-01
examples of such structures are the (max,+) semiring and the tropical semiring. It is shown that none of the exotic semirings commonly considered in the literature has a finite basis for its equations, and that similar results hold for the commutative idempotent weak semirings that underlie them. For each......This paper studies the equational theories of various exotic semirings presented in the literature. Exotic semirings are semirings whose underlying carrier set is some subset of the set of real numbers equipped with binary operations of minimum or maximum as sum, and addition as product. Two prime...... of these commutative idempotent weak semirings, the paper offers characterizations of the equations that hold in them, decidability results for their equational theories, explicit descriptions of the free algebras in the varieties they generate, and relative axiomatization results. Udgivelsesdato: APR 11...
Leuca, Maxim
are made using the Mach number M =0.17 and Reynolds number Re = 6x10 6 conditions for which we have experimental results. For the airfoil ATR-42 the calculations are made using the Mach number M =0.1 and Reynolds number Re=536450 as it was analysed in LARCASE's Price-Paidoussis wind tunnel. Keywords: boundary layer, direct method, displacement thickness, finite differences, Xfoil code.
Every Equation Tells a Story: Using Equation Dictionaries in Introductory Geophysics
Caplan-Auerbach, Jacqueline
2009-01-01
Many students view equations as a series of variables and operators into which numbers should be plugged rather than as representative of a physical process. To solve a problem they may simply look for an equation with the correct variables and assume it meets their needs, rather than selecting an equation that represents the appropriate physical…
Ji, Caleb; Khovanova, Tanya; Park, Robin; Song, Angela
2015-01-01
In this paper, we consider a game played on a rectangular $m \\times n$ gridded chocolate bar. Each move, a player breaks the bar along a grid line. Each move after that consists of taking any piece of chocolate and breaking it again along existing grid lines, until just $mn$ individual squares remain. This paper enumerates the number of ways to break an $m \\times n$ bar, which we call chocolate numbers, and introduces four new sequences related to these numbers. Using various techniques, we p...
Andrews, George E
1994-01-01
Although mathematics majors are usually conversant with number theory by the time they have completed a course in abstract algebra, other undergraduates, especially those in education and the liberal arts, often need a more basic introduction to the topic.In this book the author solves the problem of maintaining the interest of students at both levels by offering a combinatorial approach to elementary number theory. In studying number theory from such a perspective, mathematics majors are spared repetition and provided with new insights, while other students benefit from the consequent simpl
On the Use of a Virtual Mach-Zehnder Interferometer in the Teaching of Quantum Mechanics
Pereira, Alexsandro; Ostermann, Fernanda; Cavalcanti, Claudio
2009-01-01
For many students, the conceptual learning of quantum mechanics can be rather painful owing to the counter-intuitive nature of quantum phenomena. In order to enhance students' understanding of the odd behaviour of photons and electrons, we introduce a computational simulation of the Mach-Zehnder interferometer, developed by our research group. An…
All-silicon thermal independent Mach-Zehnder interferometer with multimode waveguides
DEFF Research Database (Denmark)
Guan, Xiaowei; Frandsen, Lars Hagedorn
2016-01-01
A novel all-silicon thermal independent Mach-Zehnder interferometer consisting of two multimode waveguide arms having equal lengths and widths but transmitting different modes is proposed and experimentally demonstrated. The interferometer has a temperature sensitivity smaller than 8pm/°C in a wa...
A versatile all-optical modulator based on nonlinear Mach-Zehnder interferometers
Krijnen, Gijsbertus J.M.; Villeneuve, A.; Stegeman, G.I.; Lambeck, Paul; Hoekstra, Hugo
1994-01-01
A device based on a Nonlinear Mach-Zehnder interferometer (NMI) which exploits cross-phase modulation of two co-propagating modes in bimodal branches has been described in this paper. The advantage of this device is that it becomes polarisation independent while keeping phase insensitive by using
Experiments on a hot plume base flow interaction at Mach 2
Blinde, P.L.; Schrijer, F.F.J.; Powell, S.J.; Werner, R.M.; Van Oudheusden, B.W.
2015-01-01
A wind tunnel model containing a solid rocket motor was tested at Mach 2 to assess the feasibility of investigating the interaction between a hot plume and a high-speed outer stream. In addition to Schlieren visualisation, the feasibility of applying PIV was explored. Recorded particle images
Mach probe interpretation in the presence of supra-thermal electrons
Czech Academy of Sciences Publication Activity Database
Fuchs, Vladimír; Gunn, J. P.
2007-01-01
Roč. 14, č. 3 (2007), 032501-1 ISSN 1070-664X R&D Projects: GA ČR GA202/04/0360 Institutional research plan: CEZ:AV0Z20430508 Keywords : Mach probes * supra -thermal electrons * quasi-neutral PIC codes Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.325, year: 2007
Quantum nonlocality of photon pairs in interference in a Mach-Zehnder interferometer
Czech Academy of Sciences Publication Activity Database
Trojek, P.; Peřina ml., Jan
2003-01-01
Roč. 53, č. 4 (2003), s. 335-349 ISSN 0011-4626 R&D Projects: GA MŠk LN00A015 Institutional research plan: CEZ:AV0Z1010921 Keywords : entangled photon pairs * nonlocal interference * Mach-Zehender interferometer Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.263, year: 2003
The realization of an integrated Mach-Zehnder waveguide immunosensor in silicon technology
Schipper, E.F.; Schipper, E.F.; Brugman, A.M.; Lechuga, L.M.; Lechuga, L.M.; Kooyman, R.P.H.; Greve, Jan; Dominguez, C.
1997-01-01
We describe the realization of a symmetric integrated channel waveguide Mach-Zehnder sensor which uses the evanescent field to detect small refractive-index changes (¿nmin ¿ 1 × 10¿4) near the guiding-layer surface. This guiding layer consists of ridge structures with a height of 3 nm and a width of
Design of an Optical OR Gate using Mach-Zehnder Interferometers
Choudhary, Kuldeep; Kumar, Santosh
2018-04-01
The optical switching phenomenon enhances the speed of optical communication systems. It is widely used in the wavelength division multiplexing (WDM). In this work, an optical OR gate is proposed using the Mach-Zehnder interferometer (MZI) structure. The detailed derivation of mathematical expression have been shown. The analysis is carried out by simulating the proposed device with MATLAB and Beam propagation method.
Consistency of the Mach principle and the gravitational-to-inertial mass equivalence principle
International Nuclear Information System (INIS)
Granada, Kh.K.; Chubykalo, A.E.
1990-01-01
Kinematics of the system, composed of two bodies, interacting with each other according to inverse-square law, was investigated. It is shown that the Mach principle, earlier rejected by the general relativity theory, can be used as an alternative for the absolute space concept, if it is proposed, that distant star background dictates both inertial and gravitational mass of a body
Coupled Higgs field equation and Hamiltonian amplitude equation ...
Indian Academy of Sciences (India)
the rational functions are obtained. Keywords. ... differential equations as is evident by the number of research papers, books and a new symbolic software .... Now using (2.11), (2.14) in (2.8) with C1 = 0 and integrating once we get. P. 2 = − β.
Barnes, John
2016-01-01
In this intriguing book, John Barnes takes us on a journey through aspects of numbers much as he took us on a geometrical journey in Gems of Geometry. Similarly originating from a series of lectures for adult students at Reading and Oxford University, this book touches a variety of amusing and fascinating topics regarding numbers and their uses both ancient and modern. The author intrigues and challenges his audience with both fundamental number topics such as prime numbers and cryptography, and themes of daily needs and pleasures such as counting one's assets, keeping track of time, and enjoying music. Puzzles and exercises at the end of each lecture offer additional inspiration, and numerous illustrations accompany the reader. Furthermore, a number of appendices provides in-depth insights into diverse topics such as Pascal’s triangle, the Rubik cube, Mersenne’s curious keyboards, and many others. A theme running through is the thought of what is our favourite number. Written in an engaging and witty sty...
Bridging the Knowledge Gaps between Richards' Equation and Budyko Equation
Wang, D.
2017-12-01
The empirical Budyko equation represents the partitioning of mean annual precipitation into evaporation and runoff. Richards' equation, based on Darcy's law, represents the movement of water in unsaturated soils. The linkage between Richards' equation and Budyko equation is presented by invoking the empirical Soil Conservation Service curve number (SCS-CN) model for computing surface runoff at the event-scale. The basis of the SCS-CN method is the proportionality relationship, i.e., the ratio of continuing abstraction to its potential is equal to the ratio of surface runoff to its potential value. The proportionality relationship can be derived from the Richards' equation for computing infiltration excess and saturation excess models at the catchment scale. Meanwhile, the generalized proportionality relationship is demonstrated as the common basis of SCS-CN method, monthly "abcd" model, and Budyko equation. Therefore, the linkage between Darcy's law and the emergent pattern of mean annual water balance at the catchment scale is presented through the proportionality relationship.
Blakley, G. R.
1982-01-01
Reviews mathematical techniques for solving systems of homogeneous linear equations and demonstrates that the algebraic method of balancing chemical equations is a matter of solving a system of homogeneous linear equations. FORTRAN programs using this matrix method to chemical equation balancing are available from the author. (JN)
Design-order, non-conformal low-Mach fluid algorithms using a hybrid CVFEM/DG approach
Domino, Stefan P.
2018-04-01
A hybrid, design-order sliding mesh algorithm, which uses a control volume finite element method (CVFEM), in conjunction with a discontinuous Galerkin (DG) approach at non-conformal interfaces, is outlined in the context of a low-Mach fluid dynamics equation set. This novel hybrid DG approach is also demonstrated to be compatible with a classic edge-based vertex centered (EBVC) scheme. For the CVFEM, element polynomial, P, promotion is used to extend the low-order P = 1 CVFEM method to higher-order, i.e., P = 2. An equal-order low-Mach pressure-stabilized methodology, with emphasis on the non-conformal interface boundary condition, is presented. A fully implicit matrix solver approach that accounts for the full stencil connectivity across the non-conformal interface is employed. A complete suite of formal verification studies using the method of manufactured solutions (MMS) is performed to verify the order of accuracy of the underlying methodology. The chosen suite of analytical verification cases range from a simple steady diffusion system to a traveling viscous vortex across mixed-order non-conformal interfaces. Results from all verification studies demonstrate either second- or third-order spatial accuracy and, for transient solutions, second-order temporal accuracy. Significant accuracy gains in manufactured solution error norms are noted even with modest promotion of the underlying polynomial order. The paper also demonstrates the CVFEM/DG methodology on two production-like simulation cases that include an inner block subjected to solid rotation, i.e., each of the simulations include a sliding mesh, non-conformal interface. The first production case presented is a turbulent flow past a high-rate-of-rotation cube (Re, 4000; RPM, 3600) on like and mixed-order polynomial interfaces. The final simulation case is a full-scale Vestas V27 225 kW wind turbine (tower and nacelle omitted) in which a hybrid topology, low-order mesh is used. Both production simulations
Re, Richard J.
2005-01-01
Force balance and wing pressure data were obtained on a 0.017-Scale Model of a blended-wing-body configuration (without a simulated propulsion system installation) to validate the capability of computational fluid dynamic codes to predict the performance of such thick sectioned subsonic transport configurations. The tests were conducted in the National Transonic Facility of the Langley Research Center at Reynolds numbers from 3.5 to 25.0 million at Mach numbers from 0.25 to 0.86. Data were obtained in the pitch plane only at angles of attack from -1 to 8 deg at Mach numbers greater than 0.25. A configuration with winglets was tested at a Reynolds number of 25.0 million at Mach numbers from 0.83 to 0.86.
Handbook of integral equations
Polyanin, Andrei D
2008-01-01
This handbook contains over 2,500 integral equations with solutions as well as analytical and numerical methods for solving linear and nonlinear equations. It explores Volterra, Fredholm, WienerHopf, Hammerstein, Uryson, and other equations that arise in mathematics, physics, engineering, the sciences, and economics. This second edition includes new chapters on mixed multidimensional equations and methods of integral equations for ODEs and PDEs, along with over 400 new equations with exact solutions. With many examples added for illustrative purposes, it presents new material on Volterra, Fredholm, singular, hypersingular, dual, and nonlinear integral equations, integral transforms, and special functions.
Equations for formally real meadows
Bergstra, J.A.; Bethke, I.; Ponse, A.
2015-01-01
We consider the signatures Σm = (0,1,−,+,⋅,−1) of meadows and (Σm,s) of signed meadows. We give two complete axiomatizations of the equational theories of the real numbers with respect to these signatures. In the first case, we extend the axiomatization of zero-totalized fields by a single axiom
Monge-Ampere equations and tensorial functors
International Nuclear Information System (INIS)
Tunitsky, Dmitry V
2009-01-01
We consider differential-geometric structures associated with Monge-Ampere equations on manifolds and use them to study the contact linearization of such equations. We also consider the category of Monge-Ampere equations (the morphisms are contact diffeomorphisms) and a number of subcategories. We are chiefly interested in subcategories of Monge-Ampere equations whose objects are locally contact equivalent to equations linear in the second derivatives (semilinear equations), linear in derivatives, almost linear, linear in the second derivatives and independent of the first derivatives, linear, linear and independent of the first derivatives, equations with constant coefficients or evolution equations. We construct a number of functors from the category of Monge-Ampere equations and from some of its subcategories to the category of tensorial objects (that is, multi-valued sections of tensor bundles). In particular, we construct a pseudo-Riemannian metric for every generic Monge-Ampere equation. These functors enable us to establish effectively verifiable criteria for a Monge-Ampere equation to belong to the subcategories listed above.
Measurements in a Transitioning Cone Boundary Layer at Freestream Mach 3.5
King, Rudolph A.; Chou, Amanda; Balakumar, Ponnampalam; Owens, Lewis R.; Kegerise, Michael A.
2016-01-01
An experimental study was conducted in the Supersonic Low-Disturbance Tunnel to investigate naturally-occurring instabilities in a supersonic boundary layer on a 7 deg half- angle cone. All tests were conducted with a nominal freestream Mach number of M(sub infinity) = 3:5, total temperature of T(sub 0) = 299:8 K, and unit Reynolds numbers of Re(sub infinity) x 10(exp -6) = 9:89, 13.85, 21.77, and 25.73 m(exp -1). Instability measurements were acquired under noisy- ow and quiet- ow conditions. Measurements were made to document the freestream and the boundary-layer edge environment, to document the cone baseline flow, and to establish the stability characteristics of the transitioning flow. Pitot pressure and hot-wire boundary- layer measurements were obtained using a model-integrated traverse system. All hot- wire results were single-point measurements and were acquired with a sensor calibrated to mass ux. For the noisy-flow conditions, excellent agreement for the growth rates and mode shapes was achieved between the measured results and linear stability theory (LST). The corresponding N factor at transition from LST is N 3:9. The stability measurements for the quiet-flow conditions were limited to the aft end of the cone. The most unstable first-mode instabilities as predicted by LST were successfully measured, but this unstable first mode was not the dominant instability measured in the boundary layer. Instead, the dominant instabilities were found to be the less-amplified, low-frequency disturbances predicted by linear stability theory, and these instabilities grew according to linear theory. These low-frequency unstable disturbances were initiated by freestream acoustic disturbances through a receptivity process that is believed to occur near the branch I locations of the cone. Under quiet-flow conditions, the boundary layer remained laminar up to the last measurement station for the largest Re1, implying a transition N factor of N greater than 8:5.
Number names and number understanding
DEFF Research Database (Denmark)
Ejersbo, Lisser Rye; Misfeldt, Morten
2014-01-01
This paper concerns the results from the first year of a three-year research project involving the relationship between Danish number names and their corresponding digits in the canonical base 10 system. The project aims to develop a system to help the students’ understanding of the base 10 syste...... the Danish number names are more complicated than in other languages. Keywords: A research project in grade 0 and 1th in a Danish school, Base-10 system, two-digit number names, semiotic, cognitive perspectives....
Positive integer solutions of certain diophantine equations
Indian Academy of Sciences (India)
BIJAN KUMAR PATEL
2018-03-19
Mar 19, 2018 ... integer solutions. They also found all the positive integer solutions of the given equations in terms of Fibonacci and Lucas numbers. Another interesting number sequence which is closely related to the sequence of. Fibonacci numbers is the sequence of balancing numbers. In 1999, Behera et al. [1] intro-.
1944-11-01
SS SUBJECT HEADIN6S: Pressure distribution - Flow research - Methods (40950) Wings (74500); DMiion, Intolilfjonco Air Kkrtcricl Command AIQ TECHNICAL INDGK Wrl0ht- Patto *son Air Forco ( Dayton, Ohio ///¥
Olsen, W. A.; Krejsa, E. A.; Coats, J. W.
1972-01-01
Noise attenuation was measured for several types of cylindrical suppressors that use a duct lining composed of honeycomb cells covered with a perforated plate. The experimental technique used gave attenuation data that were repeatable and free of noise floors and other sources of error. The suppressor length, the effective acoustic diameter, suppressor shape and flow velocity were varied. The agreement among the attenuation data and two widely used analytical models was generally satisfactory. Changes were also made in the construction of the acoustic lining to measure their effect on attenuation. One of these produced a very broadband muffler.
International Nuclear Information System (INIS)
Zaytsev, S.G.; Lazareva, E.V.; Mikhailova, A.V.; Nikolaev-Kozlov, V.L.; Chebotareva, E.I.
1979-01-01
Propagation of intensive shock waves with a temperature of about 1 eV has been studied in a two-dimensional reflection nozzle mounted at the exit of a shock tube. The Toepler technique has been involved along with the interference scheme with a laser light source allowing the multiple-frame recording to be done. Density distribution in the nozzle as well as the wave pattern occurring at the shock propagation are presented. (author)
Directory of Open Access Journals (Sweden)
Theodore M. Porter
2012-12-01
Full Text Available The struggle over cure rate measures in nineteenth-century asylums provides an exemplary instance of how, when used for official assessments of institutions, these numbers become sites of contestation. The evasion of goals and corruption of measures tends to make these numbers “funny” in the sense of becoming dis-honest, while the mismatch between boring, technical appearances and cunning backstage manipulations supplies dark humor. The dangers are evident in recent efforts to decentralize the functions of governments and corporations using incen-tives based on quantified targets.
Murty, M Ram
2014-01-01
This book provides an introduction to the topic of transcendental numbers for upper-level undergraduate and graduate students. The text is constructed to support a full course on the subject, including descriptions of both relevant theorems and their applications. While the first part of the book focuses on introducing key concepts, the second part presents more complex material, including applications of Baker’s theorem, Schanuel’s conjecture, and Schneider’s theorem. These later chapters may be of interest to researchers interested in examining the relationship between transcendence and L-functions. Readers of this text should possess basic knowledge of complex analysis and elementary algebraic number theory.
Indian Academy of Sciences (India)
this is a characteristic difference between finite and infinite sets and created an immensely useful branch of mathematics based on this idea which had a great impact on the whole of mathe- matics. For example, the question of what is a number (finite or infinite) is almost a philosophical one. However Cantor's work turned it ...
A transport equation for the evolution of shock amplitudes along rays
Directory of Open Access Journals (Sweden)
Giovanni Russo
1991-05-01
Full Text Available A new asymptotic method is derived for the study of the evolution of weak shocks in several dimension. The method is based on the Generalized Wavefront Expansion derived in [1]. In that paper the propagation of a shock into a known background was studied under the assumption that shock is weak, i.e. Mach Number =1+O(ε, ε ≪ 1, and that the perturbation of the field varies over a length scale O(ε. To the lowest order, the shock surface evolves along the rays associated with the unperturbed state. An infinite system of compatibility relations was derived for the jump in the field and its normal derivatives along the shock, but no valid criterion was found for a truncation of the system. Here we show that the infinite hierarchy is equivalent to a single equation that describes the evolution of the shock along the rays. We show that this method gives equivalent results to those obtained by Weakly Nonlinear Geometrical Optics [2].
Wave equations for pulse propagation
International Nuclear Information System (INIS)
Shore, B.W.
1987-01-01
Theoretical discussions of the propagation of pulses of laser radiation through atomic or molecular vapor rely on a number of traditional approximations for idealizing the radiation and the molecules, and for quantifying their mutual interaction by various equations of propagation (for the radiation) and excitation (for the molecules). In treating short-pulse phenomena it is essential to consider coherent excitation phenomena of the sort that is manifest in Rabi oscillations of atomic or molecular populations. Such processes are not adequately treated by rate equations for excitation nor by rate equations for radiation. As part of a more comprehensive treatment of the coupled equations that describe propagation of short pulses, this memo presents background discussion of the equations that describe the field. This memo discusses the origin, in Maxwell's equations, of the wave equation used in the description of pulse propagation. It notes the separation into lamellar and solenoidal (or longitudinal and transverse) and positive and negative frequency parts. It mentions the possibility of separating the polarization field into linear and nonlinear parts, in order to define a susceptibility or index of refraction and, from these, a phase and group velocity. The memo discusses various ways of characterizing the polarization characteristics of plane waves, that is, of parameterizing a transverse unit vector, such as the Jones vector, the Stokes vector, and the Poincare sphere. It discusses the connection between macroscopically defined quantities, such as the intensity or, more generally, the Stokes parameters, and microscopic field amplitudes. The material presented here is a portion of a more extensive treatment of propagation to be presented separately. The equations presented here have been described in various books and articles. They are collected here as a summary and review of theory needed when treating pulse propagation
From ordinary to partial differential equations
Esposito, Giampiero
2017-01-01
This book is addressed to mathematics and physics students who want to develop an interdisciplinary view of mathematics, from the age of Riemann, Poincaré and Darboux to basic tools of modern mathematics. It enables them to acquire the sensibility necessary for the formulation and solution of difficult problems, with an emphasis on concepts, rigour and creativity. It consists of eight self-contained parts: ordinary differential equations; linear elliptic equations; calculus of variations; linear and non-linear hyperbolic equations; parabolic equations; Fuchsian functions and non-linear equations; the functional equations of number theory; pseudo-differential operators and pseudo-differential equations. The author leads readers through the original papers and introduces new concepts, with a selection of topics and examples that are of high pedagogical value.
On integrability of the Killing equation
Houri, Tsuyoshi; Tomoda, Kentaro; Yasui, Yukinori
2018-04-01
Killing tensor fields have been thought of as describing the hidden symmetry of space(-time) since they are in one-to-one correspondence with polynomial first integrals of geodesic equations. Since many problems in classical mechanics can be formulated as geodesic problems in curved space and spacetime, solving the defining equation for Killing tensor fields (the Killing equation) is a powerful way to integrate equations of motion. Thus it has been desirable to formulate the integrability conditions of the Killing equation, which serve to determine the number of linearly independent solutions and also to restrict the possible forms of solutions tightly. In this paper, we show the prolongation for the Killing equation in a manner that uses Young symmetrizers. Using the prolonged equations, we provide the integrability conditions explicitly.
Scaling of differential equations
Langtangen, Hans Petter
2016-01-01
The book serves both as a reference for various scaled models with corresponding dimensionless numbers, and as a resource for learning the art of scaling. A special feature of the book is the emphasis on how to create software for scaled models, based on existing software for unscaled models. Scaling (or non-dimensionalization) is a mathematical technique that greatly simplifies the setting of input parameters in numerical simulations. Moreover, scaling enhances the understanding of how different physical processes interact in a differential equation model. Compared to the existing literature, where the topic of scaling is frequently encountered, but very often in only a brief and shallow setting, the present book gives much more thorough explanations of how to reason about finding the right scales. This process is highly problem dependent, and therefore the book features a lot of worked examples, from very simple ODEs to systems of PDEs, especially from fluid mechanics. The text is easily accessible and exam...
Fedosov differentials and Catalan numbers
Energy Technology Data Exchange (ETDEWEB)
Loeffler, Johannes, E-mail: j.j.loeffler@web.d [Muehlgasse 19, 78549 Spaichingen (Germany)
2010-06-11
The aim of the paper is to establish a non-recursive formula for the general solution of Fedosov's 'quadratic' fixed-point equation (Fedosov 1994 J. Diff. Geom. 40 213-38). Fedosov's geometrical fixed-point equation for a differential is rewritten in a form similar to the functional equation for the generating function of Catalan numbers. This allows us to guess the solution. An adapted example for Kaehler manifolds of constant sectional curvature is considered in detail. Also for every connection on a manifold a familiar classical differential will be introduced.
Fedosov differentials and Catalan numbers
Löffler, Johannes
2010-06-01
The aim of the paper is to establish a non-recursive formula for the general solution of Fedosov's 'quadratic' fixed-point equation (Fedosov 1994 J. Diff. Geom. 40 213-38). Fedosov's geometrical fixed-point equation for a differential is rewritten in a form similar to the functional equation for the generating function of Catalan numbers. This allows us to guess the solution. An adapted example for Kaehler manifolds of constant sectional curvature is considered in detail. Also for every connection on a manifold a familiar classical differential will be introduced. Dedicated to the memory of Nikolai Neumaier.
Dorren, H.J.S.
1998-01-01
It is shown that the Korteweg–de Vries (KdV) equation can be transformed into an ordinary linear partial differential equation in the wave number domain. Explicit solutions of the KdV equation can be obtained by subsequently solving this linear differential equation and by applying a cascade of
Ernst Mach, George Sarton and the Empiry of Teaching Science Part I
Siemsen, Hayo
2012-04-01
George Sarton had a strong influence on modern history of science. The method he pursued throughout his life was the method he had discovered in Ernst Mach's Mechanics when he was a student in Ghent. Sarton was in fact throughout his life implementing a research program inspired by the epistemology of Mach. Sarton in turn inspired many others (James Conant, Thomas Kuhn, Gerald Holton, etc.). What were the origins of these ideas in Mach and what can this origin tell us about the history of science and science education nowadays? Which ideas proved to be successful and which ones need to be improved upon? The following article will elaborate the epistemological questions, which Darwin's "Origin" raised concerning human knowledge and scientific knowledge and which led Mach to adapt the concept of what is "empirical" in contrast to metaphysical a priori assumptions a second time after Galileo. On this basis Sarton proposed "genesis and development" as the major goal of Isis. Mach had elaborated this epistemology in La Connaissance et l'Erreur ( Knowledge and Error), which Sarton read in 1913 (Hiebert 1905/1976; de Mey 1984). Accordingly for Sarton, history becomes not only a subject of science, but a method of science education. Culture—and science as part of culture—is a result of a genetic process. History of science shapes and is shaped by science and science education in a reciprocal process. Its epistemology needs to be adapted to scientific facts and the philosophy of science. Sarton was well aware of the need to develop the history of science and the philosophy of science along the lines of this reciprocal process. It was a very fruitful basis, but a specific part of it, Sarton did not elaborate further, namely the psychology of science education. This proved to be a crucial missing element for all of science education in Sarton's succession, especially in the US. Looking again at the origins of the central questions in the thinking of Mach, which provided
Geometric approach to soliton equations
International Nuclear Information System (INIS)
Sasaki, R.
1979-09-01
A class of nonlinear equations that can be solved in terms of nxn scattering problem is investigated. A systematic geometric method of exploiting conservation laws and related equations, the so-called prolongation structure, is worked out. The nxn problem is reduced to nsub(n-1)x(n-1) problems and finally to 2x2 problems, which have been comprehensively investigated recently by the author. A general method of deriving the infinite numbers of polynomial conservation laws for an nxn problem is presented. The cases of 3x3 and 2x2 problems are discussed explicitly. (Auth.)
Introduction to differential equations
Taylor, Michael E
2011-01-01
The mathematical formulations of problems in physics, economics, biology, and other sciences are usually embodied in differential equations. The analysis of the resulting equations then provides new insight into the original problems. This book describes the tools for performing that analysis. The first chapter treats single differential equations, emphasizing linear and nonlinear first order equations, linear second order equations, and a class of nonlinear second order equations arising from Newton's laws. The first order linear theory starts with a self-contained presentation of the exponen
Uraltseva, N N
1995-01-01
This collection focuses on nonlinear problems in partial differential equations. Most of the papers are based on lectures presented at the seminar on partial differential equations and mathematical physics at St. Petersburg University. Among the topics explored are the existence and properties of solutions of various classes of nonlinear evolution equations, nonlinear imbedding theorems, bifurcations of solutions, and equations of mathematical physics (Navier-Stokes type equations and the nonlinear Schrödinger equation). The book will be useful to researchers and graduate students working in p
Saxena, Anand
The focus of this research was to demonstrate a four blade rotor trim in forward flight using integrated trailing edge flaps instead of using a swashplate controls. A compact brushless DC motor was evaluated as an on-blade actuator, with the possibility of achieving large trailing edge flap amplitudes. A control strategy to actuate the trailing edge flap at desired frequency and amplitude was developed and large trailing edge flap amplitudes from the motor (instead of rotational motion) were obtained. Once the actuator was tested on the bench-top, a lightweight mechanism was designed to incorporate the motor in the blade and actuate the trailing edge flaps. A six feet diameter, four bladed composite rotor with motor-flap system integrated into the NACA 0012 airfoil section was fabricated. Systematic testing was carried out for a range of load conditions, first in the vacuum chamber followed by hover tests. Large trailing edge flap deflections were observed during the hover testing, and a peak to peak trailing edge flap amplitude of 18 degree was achieved at 2000 rotor RPM with hover tip Mach number of 0.628. A closed loop controller was designed to demonstrate trailing edge flap mean position and the peak to peak amplitude control. Further, a soft pitch link was designed and fabricated, to replace the stiff pitch link and thereby reduce the torsional stiffness of the blade to 2/rev. This soft pitch link allowed for blade root pitch motion in response to the trailing edge flap inputs. Blade pitch response due to both steady as well as sinusoidal flap deflections were demonstrated. Finally, tests were performed in Glenn L. Martin wind tunnel using a model rotor rig to assess the performance of motor-flap system in forward flight. A swashplateless trim using brushless DC motor actuated trailing edge flaps was achieved for a rotor operating at 1200 RPM and an advance ratio of 0.28. Also, preliminary exploration was carried out to test the scalability of the motor
Compressible stability of growing boundary layers using parabolized stability equations
Chang, Chau-Lyan; Malik, Mujeeb R.; Erlebacher, Gordon; Hussaini, M. Y.
1991-01-01
The parabolized stability equation (PSE) approach is employed to study linear and nonlinear compressible stability with an eye to providing a capability for boundary-layer transition prediction in both 'quiet' and 'disturbed' environments. The governing compressible stability equations are solved by a rational parabolizing approximation in the streamwise direction. Nonparallel flow effects are studied for both the first- and second-mode disturbances. For oblique waves of the first-mode type, the departure from the parallel results is more pronounced as compared to that for the two-dimensional waves. Results for the Mach 4.5 case show that flow nonparallelism has more influence on the first mode than on the second. The disturbance growth rate is shown to be a strong function of the wall-normal distance due to either flow nonparallelism or nonlinear interactions. The subharmonic and fundamental types of breakdown are found to be similar to the ones in incompressible boundary layers.
Local p-Adic Differential Equations
Put, Marius van der; Taelman, Lenny
2006-01-01
This paper studies divergence in solutions of p-adic linear local differential equations. Such divergence is related to the notion of p-adic Liouville numbers. Also, the influence of the divergence on the differential Galois groups of such differential equations is explored. A complete result is
Fermat type differential and difference equations
Directory of Open Access Journals (Sweden)
Kai Liu
2015-06-01
Full Text Available This article we explore the relationship between the number of differential and difference operators with the existence of meromorphic solutions of Fermat type differential and difference equations. Some Fermat differential and difference equations of certain types are also considered.
How Should Equation Balancing Be Taught?
Porter, Spencer K.
1985-01-01
Matrix methods and oxidation-number methods are currently advocated and used for balancing equations. This article shows how balancing equations can be introduced by a third method which is related to a fundamental principle, is easy to learn, and is powerful in its application. (JN)
Mach-Zehnder interferometer implementation for thermo-optical and Kerr effect study
Bundulis, Arturs; Nitiss, Edgars; Busenbergs, Janis; Rutkis, Martins
2018-04-01
In this paper, we propose the Mach-Zehnder interferometric method for third-order nonlinear optical and thermo-optical studies. Both effects manifest themselves as refractive index dependence on the incident light intensity and are widely employed for multiple opto-optical and thermo-optical applications. With the implemented method, we have measured the Kerr and thermo-optical coefficients of chloroform under CW, ns and ps laser irradiance. The application of lasers with different light wavelengths, pulse duration and energy allowed us to distinguish the processes responsible for refractive index changes in the investigated solution. Presented setup was also used for demonstration of opto-optical switching. Results from Mach-Zehnder experiment were compared to Z-scan data obtained in our previous studies. Based on this, a quality comparison of both methods was assessed and advantages and disadvantages of each method were analyzed.
The Interaction of Boltzmann with Mach, Ostwald and Planck, and his influence on Nernst and Einstein
International Nuclear Information System (INIS)
Broda, E.
1981-01-01
Boltzmann esteemed both Mach and Ostwald personally and as experimentalists, but consistently fought them in epistemology. He represented atomism and realism against energism and positivism. In the early period Boltzmann also had to struggle against Planck as a phenomenologist, but he welcomed his quantum hypothesis. As a scientist Nernst was also under Boltzmann's influence. Einstein learned atomism from (Maxwell and) Boltzmann. After Einstein had overcome Mach's positivist influence, he unknowingly approached Boltzmann's philosophical views. Some sociopolitlcal aspects of the lives of the great physicists will be discussed. It will be shown how they all, and many of Boltzmann's most eminent students, in one way or other conflicted with evil tendencies and developments in existing society. (author)
The three-grating Mach-Zehnder optical interferometer: a tutorial approach using particle optics
International Nuclear Information System (INIS)
Miffre, A; Delhuille, R; Viaris Lesegno, B de; Buechner, M; Rizzo, C; Vigue, J
2002-01-01
In this paper, we present a tutorial set-up based on an optical three-grating Mach-Zehnder interferometer. As this apparatus is very similar in its principle to the Mach-Zehnder interferometers used with matter waves (neutrons, atoms and molecules), it can be used to familiarize students with particle optics, and in our explanations, we use the complementary points of view of wave optics and particle optics. Finally, we have used this interferometer to measure the index of refraction of BK7 glass for red light at 633 nm, with a technique equivalent to the one used to measure the index of refraction of solid matter for thermal neutrons. The dimensions of this interferometer and its cost make it very interesting for laboratory courses and the experiment described here can be reproduced by students
The respiratory system in equations
Maury, Bertrand
2013-01-01
The book proposes an introduction to the mathematical modeling of the respiratory system. A detailed introduction on the physiological aspects makes it accessible to a large audience without any prior knowledge on the lung. Different levels of description are proposed, from the lumped models with a small number of parameters (Ordinary Differential Equations), up to infinite dimensional models based on Partial Differential Equations. Besides these two types of differential equations, two chapters are dedicated to resistive networks, and to the way they can be used to investigate the dependence of the resistance of the lung upon geometrical characteristics. The theoretical analysis of the various models is provided, together with state-of-the-art techniques to compute approximate solutions, allowing comparisons with experimental measurements. The book contains several exercises, most of which are accessible to advanced undergraduate students.
Integration rules for scattering equations
International Nuclear Information System (INIS)
Baadsgaard, Christian; Bjerrum-Bohr, N.E.J.; Bourjaily, Jacob L.; Damgaard, Poul H.
2015-01-01
As described by Cachazo, He and Yuan, scattering amplitudes in many quantum field theories can be represented as integrals that are fully localized on solutions to the so-called scattering equations. Because the number of solutions to the scattering equations grows quite rapidly, the contour of integration involves contributions from many isolated components. In this paper, we provide a simple, combinatorial rule that immediately provides the result of integration against the scattering equation constraints for any Möbius-invariant integrand involving only simple poles. These rules have a simple diagrammatic interpretation that makes the evaluation of any such integrand immediate. Finally, we explain how these rules are related to the computation of amplitudes in the field theory limit of string theory.
International Nuclear Information System (INIS)
Lebedev, D.R.
1979-01-01
Benney's equations of motion of incompressible nonviscous fluid with free surface in the approximation of long waves are analyzed. The connection between the Lie algebra of Hamilton plane vector fields and the Benney's momentum equations is shown
Comparison between Hydrogen and Methane Fuels in a 3-D Scramjet at Mach 8
2016-06-24
scramjet using a cavity based flame holder in the T4 shock tunnel at The University of Queensland, as well as a companion fundamental CFD study. The...shock tunnel. 15. SUBJECT TERMS Airbreathing Engines, Hypersonics , Propulsion, AOARD 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18...Report Comparison between hydrogen, methane and ethylene fuels in a 3-D Scramjet at Mach 8 Professor Michael K. Smart Chair of Hypersonic Propulsion
Comparison between Hydrogen, Methane and Ethylene Fuels in a 3-D Scramjet at Mach 8
2016-06-24
scramjet using a cavity based flame holder in the T4 shock tunnel at The University of Queensland, as well as a companion fundamental CFD study. The...shock tunnel. 15. SUBJECT TERMS Airbreathing Engines, Hypersonics , Propulsion, AOARD 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18...Report Comparison between hydrogen, methane and ethylene fuels in a 3-D Scramjet at Mach 8 Professor Michael K. Smart Chair of Hypersonic Propulsion
CFD Validation Experiment of a Mach 2.5 Axisymmetric Shock-Wave/Boundary-Layer Interaction
Davis, David Owen
2015-01-01
Preliminary results of an experimental investigation of a Mach 2.5 two-dimensional axisymmetric shock-wave/ boundary-layer interaction (SWBLI) are presented. The purpose of the investigation is to create a SWBLI dataset specifically for CFD validation purposes. Presented herein are the details of the facility and preliminary measurements characterizing the facility and interaction region. These results will serve to define the region of interest where more detailed mean and turbulence measurements will be made.
Fractional Schroedinger equation
International Nuclear Information System (INIS)
Laskin, Nick
2002-01-01
Some properties of the fractional Schroedinger equation are studied. We prove the Hermiticity of the fractional Hamilton operator and establish the parity conservation law for fractional quantum mechanics. As physical applications of the fractional Schroedinger equation we find the energy spectra of a hydrogenlike atom (fractional 'Bohr atom') and of a fractional oscillator in the semiclassical approximation. An equation for the fractional probability current density is developed and discussed. We also discuss the relationships between the fractional and standard Schroedinger equations
Ordinary differential equations
Greenberg, Michael D
2014-01-01
Features a balance between theory, proofs, and examples and provides applications across diverse fields of study Ordinary Differential Equations presents a thorough discussion of first-order differential equations and progresses to equations of higher order. The book transitions smoothly from first-order to higher-order equations, allowing readers to develop a complete understanding of the related theory. Featuring diverse and interesting applications from engineering, bioengineering, ecology, and biology, the book anticipates potential difficulties in understanding the various solution steps
Beginning partial differential equations
O'Neil, Peter V
2014-01-01
A broad introduction to PDEs with an emphasis on specialized topics and applications occurring in a variety of fields Featuring a thoroughly revised presentation of topics, Beginning Partial Differential Equations, Third Edition provides a challenging, yet accessible,combination of techniques, applications, and introductory theory on the subjectof partial differential equations. The new edition offers nonstandard coverageon material including Burger's equation, the telegraph equation, damped wavemotion, and the use of characteristics to solve nonhomogeneous problems. The Third Edition is or
International Nuclear Information System (INIS)
Ichiguchi, Katsuji
1998-01-01
A new reduced set of resistive MHD equations is derived by averaging the full MHD equations on specified flux coordinates, which is consistent with 3D equilibria. It is confirmed that the total energy is conserved and the linearized equations for ideal modes are self-adjoint. (author)
NASA Administrator Sean O'Keefe, left, learned about the Mach 10 X-43 research vehicle from manager
2002-01-01
NASA Administrator Sean O'Keefe left, learned about the Mach 10 X-43 research vehicle from manager, Joel Sitz during O'Keefe's visit to the NASA Dryden Flight Research Center, Edwards, California, January 31, 2002.
International Nuclear Information System (INIS)
Mosquera, L; Osorio, Jonas H; Hayashi, Juliano G; Cordeiro, Cristiano M B
2011-01-01
A refractometric sensor based on mechanically induced interferometers formed with long period gratings is reported. It is also shown two different setups based on a Michelson and Mach-Zehnder interferometer and its application to measure ethanol concentration in gasoline.
Generalized Callan-Symanzik equations and the Renormalization Group
International Nuclear Information System (INIS)
MacDowell, S.W.
1975-01-01
A set of generalized Callan-Symanzik equations derived by Symanzik, relating Green's functions with arbitrary number of mass insertions, is shown be equivalent to the new Renormalization Group equation proposed by S. Weinberg
Hartree--Fock density matrix equation
International Nuclear Information System (INIS)
Cohen, L.; Frishberg, C.
1976-01-01
An equation for the Hartree--Fock density matrix is discussed and the possibility of solving this equation directly for the density matrix instead of solving the Hartree--Fock equation for orbitals is considered. Toward that end the density matrix is expanded in a finite basis to obtain the matrix representative equation. The closed shell case is considered. Two numerical schemes are developed and applied to a number of examples. One example is given where the standard orbital method does not converge while the method presented here does
Attractors for equations of mathematical physics
Chepyzhov, Vladimir V
2001-01-01
One of the major problems in the study of evolution equations of mathematical physics is the investigation of the behavior of the solutions to these equations when time is large or tends to infinity. The related important questions concern the stability of solutions or the character of the instability if a solution is unstable. In the last few decades, considerable progress in this area has been achieved in the study of autonomous evolution partial differential equations. For a number of basic evolution equations of mathematical physics, it was shown that the long time behavior of their soluti
Kinetic Boltzmann, Vlasov and Related Equations
Sinitsyn, Alexander; Vedenyapin, Victor
2011-01-01
Boltzmann and Vlasov equations played a great role in the past and still play an important role in modern natural sciences, technique and even philosophy of science. Classical Boltzmann equation derived in 1872 became a cornerstone for the molecular-kinetic theory, the second law of thermodynamics (increasing entropy) and derivation of the basic hydrodynamic equations. After modifications, the fields and numbers of its applications have increased to include diluted gas, radiation, neutral particles transportation, atmosphere optics and nuclear reactor modelling. Vlasov equation was obtained in
Parabolized stability equations
Herbert, Thorwald
1994-01-01
The parabolized stability equations (PSE) are a new approach to analyze the streamwise evolution of single or interacting Fourier modes in weakly nonparallel flows such as boundary layers. The concept rests on the decomposition of every mode into a slowly varying amplitude function and a wave function with slowly varying wave number. The neglect of the small second derivatives of the slowly varying functions with respect to the streamwise variable leads to an initial boundary-value problem that can be solved by numerical marching procedures. The PSE approach is valid in convectively unstable flows. The equations for a single mode are closely related to those of the traditional eigenvalue problems for linear stability analysis. However, the PSE approach does not exploit the homogeneity of the problem and, therefore, can be utilized to analyze forced modes and the nonlinear growth and interaction of an initial disturbance field. In contrast to the traditional patching of local solutions, the PSE provide the spatial evolution of modes with proper account for their history. The PSE approach allows studies of secondary instabilities without the constraints of the Floquet analysis and reproduces the established experimental, theoretical, and computational benchmark results on transition up to the breakdown stage. The method matches or exceeds the demonstrated capabilities of current spatial Navier-Stokes solvers at a small fraction of their computational cost. Recent applications include studies on localized or distributed receptivity and prediction of transition in model environments for realistic engineering problems. This report describes the basis, intricacies, and some applications of the PSE methodology.
Singular stochastic differential equations
Cherny, Alexander S
2005-01-01
The authors introduce, in this research monograph on stochastic differential equations, a class of points termed isolated singular points. Stochastic differential equations possessing such points (called singular stochastic differential equations here) arise often in theory and in applications. However, known conditions for the existence and uniqueness of a solution typically fail for such equations. The book concentrates on the study of the existence, the uniqueness, and, what is most important, on the qualitative behaviour of solutions of singular stochastic differential equations. This is done by providing a qualitative classification of isolated singular points, into 48 possible types.
Non-Abelian plasmons and their kinetics equation
International Nuclear Information System (INIS)
Zheng Xiaoping; Li Jiarong
1998-01-01
After the fluctuated modes in QGP are treated as plasmons, the kinetics equation for the plasmons in linear approximation is established starting from Yang-Mills fields equation. The kinetics equation can be considered as the balance equation for the number of plasmons, which indicates the balance of the number variation (growth or damping) in space and time because of their motion with velocities that equal to the wave's group velocity and the emission or absorption of plasmons by plasma particles
Equations of macrotransport in reactor fuel assemblies
International Nuclear Information System (INIS)
Sorokin, A.P.; Zhukov, A.V.; Kornienko, Yu.N.; Ushakov, P.A.
1986-01-01
The rigorous statement of equations of macrotransport is obtained. These equations are bases for channel-by-channel methods of thermohydraulic calculations of reactor fuel assemblies within the scope of the model of discontinuous multiphase coolant flow (including chemical reactions); they also describe a wide range of problems on thermo-physical reactor fuel assembly justification. It has been carried out by smoothing equations of mass, momentum and enthalpy transfer in cross section of each phase of the elementary fuel assembly subchannel. The equation for cross section flows is obtaind by smoothing the equation of momentum transfer on the interphase. Interaction of phases on the channel boundary is described using the Stanton number. The conclusion is performed using the generalized equation of substance transfer. The statement of channel-by-channel method without the scope of homogeneous flow model is given
Introduction to complex theory of differential equations
Savin, Anton
2017-01-01
This book discusses the complex theory of differential equations or more precisely, the theory of differential equations on complex-analytic manifolds. Although the theory of differential equations on real manifolds is well known – it is described in thousands of papers and its usefulness requires no comments or explanations – to date specialists on differential equations have not focused on the complex theory of partial differential equations. However, as well as being remarkably beautiful, this theory can be used to solve a number of problems in real theory, for instance, the Poincaré balayage problem and the mother body problem in geophysics. The monograph does not require readers to be familiar with advanced notions in complex analysis, differential equations, or topology. With its numerous examples and exercises, it appeals to advanced undergraduate and graduate students, and also to researchers wanting to familiarize themselves with the subject.
On stochastic differential equations with random delay
International Nuclear Information System (INIS)
Krapivsky, P L; Luck, J M; Mallick, K
2011-01-01
We consider stochastic dynamical systems defined by differential equations with a uniform random time delay. The latter equations are shown to be equivalent to deterministic higher-order differential equations: for an nth-order equation with random delay, the corresponding deterministic equation has order n + 1. We analyze various examples of dynamical systems of this kind, and find a number of unusual behaviors. For instance, for the harmonic oscillator with random delay, the energy grows as exp((3/2) t 2/3 ) in reduced units. We then investigate the effect of introducing a discrete time step ε. At variance with the continuous situation, the discrete random recursion relations thus obtained have intrinsic fluctuations. The crossover between the fluctuating discrete problem and the deterministic continuous one as ε goes to zero is studied in detail on the example of a first-order linear differential equation
Pseudodifferential equations over non-Archimedean spaces
Zúñiga-Galindo, W A
2016-01-01
Focusing on p-adic and adelic analogues of pseudodifferential equations, this monograph presents a very general theory of parabolic-type equations and their Markov processes motivated by their connection with models of complex hierarchic systems. The Gelfand-Shilov method for constructing fundamental solutions using local zeta functions is developed in a p-adic setting and several particular equations are studied, such as the p-adic analogues of the Klein-Gordon equation. Pseudodifferential equations for complex-valued functions on non-Archimedean local fields are central to contemporary harmonic analysis and mathematical physics and their theory reveals a deep connection with probability and number theory. The results of this book extend and complement the material presented by Vladimirov, Volovich and Zelenov (1994) and Kochubei (2001), which emphasize spectral theory and evolution equations in a single variable, and Albeverio, Khrennikov and Shelkovich (2010), which deals mainly with the theory and applica...
Combinatorics of Generalized Bethe Equations
Kozlowski, Karol K.; Sklyanin, Evgeny K.
2013-10-01
A generalization of the Bethe ansatz equations is studied, where a scalar two-particle S-matrix has several zeroes and poles in the complex plane, as opposed to the ordinary single pole/zero case. For the repulsive case (no complex roots), the main result is the enumeration of all distinct solutions to the Bethe equations in terms of the Fuss-Catalan numbers. Two new combinatorial interpretations of the Fuss-Catalan and related numbers are obtained. On the one hand, they count regular orbits of the permutation group in certain factor modules over {{Z}^M}, and on the other hand, they count integer points in certain M-dimensional polytopes.
The 'generalized Balescu-Lenard' transport equations
International Nuclear Information System (INIS)
Mynick, H.E.
1990-01-01
The transport equations arising from the 'generalized Balescu-Lenard' collision operator are obtained and some of their properties examined. The equations contain neoclassical and turbulent transport as two special cases having the same structure. The resultant theory offers a possible explanation for a number of results not well understood, including the anomalous pinch, observed ratios of Q/ΓT on TFTR, and numerical reproduction of ASDEX profiles by a model for turbulent transport invoked without derivation, but by analogy with neoclassical theory. The general equations are specialized to consideration of a number of particular transport mechanisms of interest. (author). Letter-to-the-editor. 10 refs
An alternative form of the Darcy equation
Directory of Open Access Journals (Sweden)
Awad Mohamed M.
2014-01-01
Full Text Available This study presents an alternative form of the Darcy equation. This alternative form will be presented with the use of Bejan number (Be in the Left Hand Side (LHS of the equation. The main advantage in this alternative form of the Darcy equation is presenting both the Left Hand Side (LHS and the Right Hand Side (RHS as dimensionless quantities. For instance, this is similar to the relation of Fanning friction factor with Reynolds number for Hagen-Poiseuille flow (fully developed laminar flow in a circular pipe.
International Nuclear Information System (INIS)
Mynick, H.E.
1989-05-01
The transport equations arising from the ''generalized Balescu- Lenard'' (gBL) collision operator are obtained, and some of their properties examined. The equations contain neoclassical and turbulent transport as two special cases, having the same structure. The resultant theory offers potential explanation for a number of results not well understood, including the anomalous pinch, observed ratios of Q/ΓT on TFTR, and numerical reproduction of ASDEX profiles by a model for turbulent transport invoked without derivation, but by analogy to neoclassical theory. The general equations are specialized to consideration of a number of particular transport mechanisms of interest. 10 refs
Bodony, Daniel; Ostoich, Christopher; Geubelle, Philippe
2013-11-01
The interaction between a thin metallic panel and a Mach 2.25 turbulent boundary layer is investigated using a direct numerical simulation approach for coupled fluid-structure problems. The solid solution uses a finite-strain, finite-deformation formulation, while the direct numerical simulation of the boundary layer uses a finite-difference compressible Navier-Stokes solver. The initially laminar boundary layer contains low amplitude unstable eigenmodes that grow in time and excite traveling bending waves in the panel. As the boundary layer transitions to a fully turbulent state, with Reθ ~ 1200 , the panel's bending waves coalesce into a standing wave pattern exhibiting flutter with a final amplitude approximately 20 times the panel thickness. The corresponding panel deflection is roughly 25 wall units and reaches across the sonic line in the boundary layer profile. Once it reaches a limit cycle state, the panel/boundary layer system is examined in detail where it is found that turbulence statistics, especially the main Reynolds stress - , appear to be modified by the presence of the compliant panel, the effect of which is forgotten within one integral length downstream of the panel. Supported by the U.S. Air Force Research Laboratory Air Vehicles Directorate under contract number FA8650-06-2-3620.
Qu, Kun; Zhao, Shanghong; Li, Xuan; Tan, Qinggui; Zhu, Zihang
2018-04-01
A novel scheme for the generation of ultraflat and broadband optical frequency comb (OFC) is proposed based on cascaded two dual-electrode Mach-Zehnder modulators (DE-MZM). The first DE-MZM can generate a four-comb-line OFC, then the OFC is injected into the second DE-MZM as a carrier, which can increase the number of comb lines. Our modified scheme finally can generate a broadband OFC with high flatness by simply modifying the electrical power and the bias voltage of the DE-MZM. Theoretical analysis and simulation results reveal that a 16-comb-line OFC with a frequency spacing that two times the frequency of the RF signal can be obtained. The power fluctuation of the OFC lines is 0.48 dB and the unwanted-mode suppression ratio (UMSR) can reach 16.5 dB. Additionally, whether the bias drift of the DE-MZMs has little influence on the power fluctuation is also analyzed. These results demonstrate the robustness of our scheme and verify its good accuracy and high stability with perfect flatness.
International Nuclear Information System (INIS)
Zhalij, Alexander
2002-01-01
We classify (1+3)-dimensional Pauli equations for a spin-(1/2) particle interacting with the electro-magnetic field, that are solvable by the method of separation of variables. As a result, we obtain the 11 classes of vector-potentials of the electro-magnetic field A(t,x(vector sign))=(A 0 (t,x(vector sign)), A(vector sign)(t,x(vector sign))) providing separability of the corresponding Pauli equations. It is established, in particular, that the necessary condition for the Pauli equation to be separable into second-order matrix ordinary differential equations is its equivalence to the system of two uncoupled Schroedinger equations. In addition, the magnetic field has to be independent of spatial variables. We prove that coordinate systems and the vector-potentials of the electro-magnetic field providing the separability of the corresponding Pauli equations coincide with those for the Schroedinger equations. Furthermore, an efficient algorithm for constructing all coordinate systems providing the separability of Pauli equation with a fixed vector-potential of the electro-magnetic field is developed. Finally, we describe all vector-potentials A(t,x(vector sign)) that (a) provide the separability of Pauli equation, (b) satisfy vacuum Maxwell equations without currents, and (c) describe non-zero magnetic field
Functional equations with causal operators
Corduneanu, C
2003-01-01
Functional equations encompass most of the equations used in applied science and engineering: ordinary differential equations, integral equations of the Volterra type, equations with delayed argument, and integro-differential equations of the Volterra type. The basic theory of functional equations includes functional differential equations with causal operators. Functional Equations with Causal Operators explains the connection between equations with causal operators and the classical types of functional equations encountered by mathematicians and engineers. It details the fundamentals of linear equations and stability theory and provides several applications and examples.
Counting equations in algebraic attacks on block ciphers
DEFF Research Database (Denmark)
Knudsen, Lars Ramkilde; Miolane, Charlotte Vikkelsø
2010-01-01
This paper is about counting linearly independent equations for so-called algebraic attacks on block ciphers. The basic idea behind many of these approaches, e.g., XL, is to generate a large set of equations from an initial set of equations by multiplication of existing equations by the variables...... in the system. One of the most difficult tasks is to determine the exact number of linearly independent equations one obtain in the attacks. In this paper, it is shown that by splitting the equations defined over a block cipher (an SP-network) into two sets, one can determine the exact number of linearly...... independent equations which can be generated in algebraic attacks within each of these sets of a certain degree. While this does not give us a direct formula for the success of algebraic attacks on block ciphers, it gives some interesting bounds on the number of equations one can obtain from a given block...
Unsolved problems in number theory
Guy, Richard K
1994-01-01
Unsolved Problems in Number Theory contains discussions of hundreds of open questions, organized into 185 different topics. They represent numerous aspects of number theory and are organized into six categories: prime numbers, divisibility, additive number theory, Diophantine equations, sequences of integers, and miscellaneous. To prevent repetition of earlier efforts or duplication of previously known results, an extensive and up-to-date collection of references follows each problem. In the second edition, not only extensive new material has been added, but corrections and additions have been included throughout the book.
A generalized simplest equation method and its application to the Boussinesq-Burgers equation.
Sudao, Bilige; Wang, Xiaomin
2015-01-01
In this paper, a generalized simplest equation method is proposed to seek exact solutions of nonlinear evolution equations (NLEEs). In the method, we chose a solution expression with a variable coefficient and a variable coefficient ordinary differential auxiliary equation. This method can yield a Bäcklund transformation between NLEEs and a related constraint equation. By dealing with the constraint equation, we can derive infinite number of exact solutions for NLEEs. These solutions include the traveling wave solutions, non-traveling wave solutions, multi-soliton solutions, rational solutions, and other types of solutions. As applications, we obtained wide classes of exact solutions for the Boussinesq-Burgers equation by using the generalized simplest equation method.
Partial differential equations
Evans, Lawrence C
2010-01-01
This text gives a comprehensive survey of modern techniques in the theoretical study of partial differential equations (PDEs) with particular emphasis on nonlinear equations. The exposition is divided into three parts: representation formulas for solutions; theory for linear partial differential equations; and theory for nonlinear partial differential equations. Included are complete treatments of the method of characteristics; energy methods within Sobolev spaces; regularity for second-order elliptic, parabolic, and hyperbolic equations; maximum principles; the multidimensional calculus of variations; viscosity solutions of Hamilton-Jacobi equations; shock waves and entropy criteria for conservation laws; and, much more.The author summarizes the relevant mathematics required to understand current research in PDEs, especially nonlinear PDEs. While he has reworked and simplified much of the classical theory (particularly the method of characteristics), he primarily emphasizes the modern interplay between funct...
Differential equations for dummies
Holzner, Steven
2008-01-01
The fun and easy way to understand and solve complex equations Many of the fundamental laws of physics, chemistry, biology, and economics can be formulated as differential equations. This plain-English guide explores the many applications of this mathematical tool and shows how differential equations can help us understand the world around us. Differential Equations For Dummies is the perfect companion for a college differential equations course and is an ideal supplemental resource for other calculus classes as well as science and engineering courses. It offers step-by-step techniques, practical tips, numerous exercises, and clear, concise examples to help readers improve their differential equation-solving skills and boost their test scores.
Degenerate nonlinear diffusion equations
Favini, Angelo
2012-01-01
The aim of these notes is to include in a uniform presentation style several topics related to the theory of degenerate nonlinear diffusion equations, treated in the mathematical framework of evolution equations with multivalued m-accretive operators in Hilbert spaces. The problems concern nonlinear parabolic equations involving two cases of degeneracy. More precisely, one case is due to the vanishing of the time derivative coefficient and the other is provided by the vanishing of the diffusion coefficient on subsets of positive measure of the domain. From the mathematical point of view the results presented in these notes can be considered as general results in the theory of degenerate nonlinear diffusion equations. However, this work does not seek to present an exhaustive study of degenerate diffusion equations, but rather to emphasize some rigorous and efficient techniques for approaching various problems involving degenerate nonlinear diffusion equations, such as well-posedness, periodic solutions, asympt...
The distribution of prime numbers and associated problems in number theory
International Nuclear Information System (INIS)
Nair, M.
1991-01-01
Some problems in number theory, namely the gaps between consecutive primes, the distribution of primes in arithmetic progressions, Brun-Titchmarsh theorem, Fermat's last theorem, The Thue equation, the gaps between square-free numbers are discussed
Solving Ordinary Differential Equations
Krogh, F. T.
1987-01-01
Initial-value ordinary differential equation solution via variable order Adams method (SIVA/DIVA) package is collection of subroutines for solution of nonstiff ordinary differential equations. There are versions for single-precision and double-precision arithmetic. Requires fewer evaluations of derivatives than other variable-order Adams predictor/ corrector methods. Option for direct integration of second-order equations makes integration of trajectory problems significantly more efficient. Written in FORTRAN 77.
Reactimeter dispersion equation
A.G. Yuferov
2016-01-01
The aim of this work is to derive and analyze a reactimeter metrological model in the form of the dispersion equation which connects reactimeter input/output signal dispersions with superimposed random noise at the inlet. It is proposed to standardize the reactimeter equation form, presenting the main reactimeter computing unit by a convolution equation. Hence, the reactimeter metrological characteristics are completely determined by this unit hardware function which represents a transient re...
Differential equations I essentials
REA, Editors of
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Differential Equations I covers first- and second-order equations, series solutions, higher-order linear equations, and the Laplace transform.
Indian Academy of Sciences (India)
space was postulated arbitrarily and in an abstract man- ner. Why does ... moves with uniform velocity. But we now no .... action. The reaction from B to A, however travels back along the same route, arriving at A earlier than it left. B. Such an ...
International Nuclear Information System (INIS)
Laenen, E.
1995-01-01
We propose a new evolution equation for the gluon density relevant for the region of small x B . It generalizes the GLR equation and allows deeper penetration in dense parton systems than the GLR equation does. This generalization consists of taking shadowing effects more comprehensively into account by including multigluon correlations, and allowing for an arbitrary initial gluon distribution in a hadron. We solve the new equation for fixed α s . We find that the effects of multigluon correlations on the deep-inelastic structure function are small. (orig.)
The Influence of Ernst Mach and Ludwig Boltzmann on Albert Einstein
International Nuclear Information System (INIS)
Broda, E.
1979-01-01
This document, written by Engelbert Broda in 1979, analyses the influence of Ernst Mach and Ludwig Boltzmann on Albert Einstein. Broda describes how Einstein and his scientific thinking benefited from Mach’s criticism on classical mechanics and its basic concepts like absolute time and absolute space. This criticism encouraged Einstein in the time he worked on his special relativity. On the other side Broda writes about the influence of Ludwig Boltzman, an atomist, whose scientific work and research prepared the ground for Einsteins work on the quantum-structure of electromagnetic radiation or the discovery of the photoelectric effect. (nowak)